
Reference Volume I
Class Library Reference
For the Microsoft Foundation Class LibraI}'

Development System for WindowsTM

Reference V olume I
Class Library Reference
For the Microsoft® Foundation Class Library

Microsoft® Visual C++TM
Development System for Windows ™

Version 1.0

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1993 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks and Visual Basic, Visual C++, and
Windows are trademarks of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4955066

Epson is a registered trademark of Seiko Epson Corporation, Inc.
IBM is a registered trademark of International Business Machines Corporation.
Paintbrush is a trademark of ZSoft Corporation.

Document No. DB35743-0193
Printed in the United States of America.

iii

Contents

Introduction ... xiii

Document Conventions ... xiv

Part 1 Introduction to the Microsoft Foundation Class Library

Chapter 1 The Microsoft Foundation Class Library. .. 3
Class Summary .. 4

Root Class .. 4
Application Architecture Classes .. 5

Visual Object Classes .. 6
General-Purpose Classes .. 11
Object Linking and Embedding (OLE) Classes .. 14

Macros and Globals 16
General Class Design Philosophy .. 16
In Chapters to Come. .. 18

Chapter 2 Using the Classes to Write Applications for Windows. 19
The Framework. .. 20

SDI and MDI ... 20
Documents, Views, and the Framework. .. 21

Building on the Framework. .. 24

How the Framework Calls Your Code .. 28
CWinApp: The Application Class .. 29

CWinApp and App Wizard. .. 29
Overridable CWinApp Member Functions. .. 30
The Run Function .. 31

Other CWinApp Services. .. 32
Document Templates .. 33

Document Template Creation. .. 34
DocumentNiew Creation. .. 34

Windows of Your Own ... 39
Class CWnd .. 39
Derived Window Classes. .. 40

Creating Windows. .. 42

iv Contents

Destroying Windows .. 43

Working With Windows 44

Graphic Objects . 45
How to Use the Clipboard 47

In the Next Chapter .. 49

Chapter 3 Working with Messages and Commands. 51
Messages and Commands in the Framework 51

Messages. 51

Message Handlers .. 52

Message Categories ... 52
Message Maps ... 53

User-Interface Objects and Command IDs 54

Command Targets .. 56

How the Framework Calls a Handler 56
Message Sending and Receiving .. 56

How Noncommand Messages Reach Their Handlers 57

Command Routing .. 57

How the Framework Searches Message Maps 60

Where to Find Message Maps 60

Derived Message Maps 61

Message-Map Entries . 62

Declaring Handler Functions . 63

How to Manage Commands and Messages with Class Wizard 65

How to Update User-Interface Objects 67

When Update Handlers are Called 67

The ON_UPDATE_COMMAND_UI Macro 68

The CCmdUI Class .. 68

How to Display Command Information In the Status Bar 69

In the Next Chapter .. 70

Chapter 4 Working with Frame Windows, Documents, and Views. 71
Frame Windows .. 71

Window Classes .. 73

The Frame Window Classes Created by AppWizard 73

U sing Frame Windows 73

Documents and Views .. 78

Document and View Classes Created by App Wizard 79

U sing Documents and Views 79

Special View Classes .. 90

Contents v

Printing and Print Preview .. 91

Printing the Document. .. 91
Print Preview .. 92

In the Next Chapter ... 93

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and
Context-Sensitive Help ... 95
Dialog Boxes. .. 95

Dialog-Box Components in the Framework 96
Modal and Modeless Dialog Boxes. .. 96
Creating the Dialog Resource with App Studio. .. 97
Creating a Dialog Class with Class Wizard .. 97
Life Cycle of a Dialog Box .. 98

Dialog Data Exchange and Validation. .. 101
Type-Safe Access to Controls in a Dialog Box. 103
Mapping Windows Messages to Your Class .. 105
Common Dialog Classes. .. 106

Controls .. 106
New Controls .. 107
Controls and Dialog Boxes. .. 109
Making and Using Controls .. 109

Control Bars .. 111

Toolbars. .. 112
Status Bars. .. 113
Dialog Bars. .. 113

Context-Sensitive Help. .. 114

Components of Help .. 115
Help-Menu Support. .. 115
F1 Help Support .. 116

SHIFT +F1 Help Support .. 117
More Precise Context-Sensitivity .. 117
Help Support Tools. .. 117
Authoring and Compiling Help. .. 120

In the Next Chapter .. 120

Chapter 6 Using the General-Purpose Classes. .. 121
CObject Services. .. 121

Object Diagnostics. .. 121

Run-Time Class Information. .. 122

vi Contents

The File Classes . 124

The Collection Classes ... 124
Lists ... 125
Arrays .. 125
Maps ... 125

Other Support Classes . 126
The CString Class ... 126
The CTime and CTimeSpan Classes 126

Diagnostic Services. 126
Memory Diagnostics .. 127

Diagnostic Output . 127
Assertions . 127

Exception Handling. 128

Part 2 The Microsoft Foundation Class Library Reference
class CArchive .. 131
class CArchiveException. 140
class CBEdit. ... 142
class CBitmap ... 148
class CBitmapButton .. 158
class CBrush .. 162

class CButton . 168
class CByteArray .. 176

class CClientDC . 178
class CCmdTarget. ... 180
class CCmdUI. 183
class CColorDialog . 186
class CComboBox. 191

class CControlBar .. 215
struct CCreateContext . 217
class CDataExchange 219
class CDC ... 220
class CDialog ... 325

class CDialogBar .. 338
class CDocitem. 340

class CDocTemplate .. 341
class CDocument. 344

class CDumpContext .. 356

Contents vii

class CDWordArray. .. 361

class CEdit .. 363
class CEditView .. 383
class CException .. 392
class CFile .. 393
class CFileDialog. .. 407
class CFileException .. 416
class CFindReplaceDialog 421
class CFont .. 428

class CFontDialog .. 435
class CForm View. .. 442
class CFrameWnd ... 446

class CGdiObject. .. 456
class CREdit. .. 462

class CListBox .. 470
class CMapPtrToPtr. .. 493
class CMapPtrTo Word. .. 495

class CMapStringToOb .. 497
class CMapStringToPtr .. 505
class CMapStringToString 507
class CMapWordToOb .. 509
class CMap WordToPtr. .. 511

class CMDIChildWnd .. 513
class CMDIFrameWnd .. 518

class CMemFile. .. 526
class CMemoryException 528
struct CMemoryState ... 529
class CMenu .. 534
class CMetaFileDC .. 556

class CMultiDocTemplate. .. 559
class CNotSupportedException 562
class CObArray. .. 563

class CObject .. 574
class CObList .. 582

class COleClientDoc ... 600
class COleClientItem ... 604
class COleDocument .. 626
class COleException .. 630

class COleServer .. 633

viii Contents

class COleServerDoc .. 640
class COleServerItem . 649
class COleTemplateServer. 660
class CPaintDC. 663
class CPalette . 666
class CPen ... 671
class CPoint .. 675
class CPrintDialog . 679
struct CPrintInfo ... 688
class CPtrArray .. 694
class CPtrList . 696
class CRect ... 698
class CResourceException . 712
class CRgn . 713
struct CRuntimeClass . 725
class CScrollBar ... 726
class CScrollView .. 732
class CSingleDocTemplate. 740
class CSize ... 743
class CSplitterWnd ... 746
class CStatic .. 756
class CStatusBar. 760
class CStdioFile . 766
class CString .. 770
class CStringArray . 794
class CStringList. 796
class CTime . 798
class CTimeSpan ... 808
class CTooiBar .. 816
class CUIntArray . 824
class CUserException ... 826
class CVBControl . 827
class CView ... 842
class CWinApp .. 854
class CWindowDC ... 882
class CWnd ... 884

class CWordArray :\' 1044

Contents ix

Macros and Globals. .. 1046
Data Types. 1047

Run-Time Object Model Services .. 1048
Diagnostic Services. 1049
Exception Processing. 1051
CString Formatting and Message-Box Display 1052

Message Maps .. 1053
Application Information and Management. 1055

OLE Support. 1055
Standard Commands and Window IDs 1056
Macros, Global Functions, and Global Variables. 1057

Index 1095

x Contents

Figures and Tables

Figures
1.1 Microsoft Foundation Class Library Hierarchy Chart xvi
2.1 Objects in a Running SDI Application .. 22
2.2 Sequence of Execution .. 29
2.3 The Message Loop .. 31
2.4 An MDI Application with Two Document Types .. 33
2.5 Sequence in Creating a Document.. ... 36
2.6 Sequence in Creating a Frame Window .. 37
2.7 Sequence in Creating a View .. 38
2.8 Window Object and Windows Window .. 39
2.9 An MDI Frame Window with Children .. 41
3.1 Commands in the Framework .. 54
3.2 A View Hierarchy ... 61
3.3 ClassWizard ... 66
3.4 A Command Prompt in the Status Bar ... 69
4.1 Frame Window and View ... 72
4.2 MDI Frame Windows and Children .. 75
4.3 Document and View .. 78
4.4 Multiple-View User Interfaces .. 88
5.1 Dialog Data Exchange .. 102
5.2 Bitmap Buttons ... 108
5.3 The Standard Toolbar Bitmap ... 112
5.4 A Toolbar with Separators .. 112
5.5 A Status Bar .. 113
5.6 A Dialog Bar ... 114
5.7 Preparing Help Files ... 120

Tables
1.1 Reference Overview Chapters ... 18
2.1 Where to Find More Information .. 20
2.2 Sequence in Building an Application with the Framework 24
2.3 Object Creators ... 35
2.4 How to Access Other Objects ... 35
2.5 Graphic Objects .. 45
3.1 Standard Command Route ... 58
3.2 Message-Map Entry Macros ... 62

Contents xi

5 .1 Dialog-Related Tasks .. 97
5.2 Dialog Creation ... 99
5.3 Commonly Overridden Member Functions of Class CDialog 105
5.4 Common Dialog Classes ... 106
5.5 Standard Control Window Classes .. 107
5.6 New Control Classes ... 107
5.7 AppWizard-Supplied Help Files ... 118
5.8 Preferred Resource ID Naming Conventions ... 119
R.1 Using CCmdUI Member Functions .. 183

xiii

Introduction

The Class Library Reference covers the classes, global functions, global variables,
and macros that make up the Microsoft® Foundation Class Library version 2.0,
which is included with Microsoft Visual C++TM Development System for
Windows™ version 1.0. Figure 1.1 at the end of this introduction is a class hierarchy
chart that details the class relationships in the class library. This book is divided
into two parts:

Part 1 Introduction to the Microsoft Foundation Class Library

Part 2 The Microsoft Foundation Class Reference

Part 1 contains overview material designed to help you learn about and use the
Microsoft Foundation Class Library. Chapter 1 lists the classes in helpful
categories. Use these lists to help locate a class that contains the functionality you
are interested in. Chapters 2 through 6 describe the Microsoft Foundation Class
Library and the "application framework" that it provides to help you program for
the Microsoft Windows™ operating system. Use these chapters to learn how the
framework operates and how your code fits into the framework. Practical examples
and techniques are provided in the Class Library User's Guide.

Material applicable to programs for MS-DOS® as well as to programs for Windows
is covered in Chapter 6. This includes diagnostics, file handling, exception
handling, and collection classes.

Part 2 contains the following components:

• An alphabetical listing of the classes

• A section that explains the global functions, global variables, and macros used
with the class library

The hierarchy chart and the subset charts included with each class are useful for
locating base classes. Be aware that the class documentation does not include
repeated descriptions of inherited member functions, inherited operators, and
overridden virtual member functions. You must always refer to the base classes
depicted in the hierarchy diagrams.

xiv Introduction

In the alphabetical listing, each class description includes a member summary by
category followed by alphabetical listings of:

• Member functions (public, protected, and private intermixed)

• Overloaded operators

• Data members

Public and protected class members are documented only when they are normally
used in application programs or derived classes. Occasionally, private members are
listed because they override a public or protected member in the base class. See the
class header files for a complete listing of class members.

Many member functions of the Microsoft Foundation classes encapsulate calls to
Windows API functions that are specific to Microsoft Windows version 3.1. These
functions (and other material) are marked as "Windows 3.1 Only" in the
alphabetical reference. To clearly distinguish Windows 3. I-specific material, each
such section begins with the heading "Windows 3.1 Only" and ends with a diamond
icon (.).

Some C-Ianguage structures defined by Windows are so widely applicable that their
descriptions have been reproduced completely in pertinent places in the alphabetical
reference. Similarly, styles, such as window styles, are listed in appropriate places
in the alphabetical reference.

In Part 2, please note that the "See Also" sections refer to Windows functions by
prefacing them with the scope resolution operator (::). For example, ::EquaIRect.
More information on these functions can be found in the Windows Programmer's
Reference, other Windows references, and Help.

The "Macros and Globals" section at the end of the alphabetical class reference
details the global functions, global variables, and macros supplied with the
Microsoft Foundation Class Library. The section lists data types used with the class
library, diagnostic and exception-handling services available, and message-map
information. Macros, global functions, and global variables are listed alphabeti­
cally. See the beginning of the "Macros and Globals" section for a list of the topics
covered.

Document Conventions
This book uses the following typographic conventions:

Examples

STDIO.H

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system command
level.

char, CObject, GetTime,
TRACE, MF _STRING,
CREATESTRUCT, __ far

expression

[option]

#pragma pack {II 2}

#include <io.h>.
MyObject

CL [option]file ...

while(
{

CTRL+ENTER

"argument"

"e string"

Color Graphics Adapter
(CGA)

•

Introduction xv

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines. This
includes the classes and member functions of the Microsoft
Foundation Class Library, macros, flags, data structures
and their members, and enumerators. Within discussions of
syntax, bold type indicates that the text must be entered
exactly as shown.

Many functions and constants begin with either a single or
double underscore. These are part of the name and are
mandatory. For example, to have the __ cplusplus manifest
constant be recognized by the compiler, you must enter the
leading double underscore.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two or
more items. You must choose one of these items unless
double square brackets ([]) surround the braces.

This font is used for examples, user input, program output,
and error messages in text.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of keys
on the keyboard. When you see a plus sign (+) between two
key names, you should hold down the first key while
pressing the second.

The carriage-return key, sometimes marked as a bent arrow
on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language have the
form" "and' 'rather than" " and ' '.

The first time an acronym is used, it is usually spelled out.

This symbol denotes the end of a section of "Windows 3.1
Only" material or a "Protected" or "Private" class member.

xvi Introduction

Exceptions

L{ CExcegtion I
H CMemoryException I
H CFileException I
H CArchiveException I
H CNotSupportedException I
H CResourceException I
H CUserException I

y COle Exception I

CObject

I File Services
L{ CFile I

H CStdioFile

Lf CMemFile

I

I

Graphical Drawing
Y CDC

H CClientDC

--{ CWindowDC

-1 CPaintDC

-1 CMetaFileDC

I
I
I
I
I

Graphical Drawing Objects
--1 CGdiObject I

--1 CPen I
-1 CBrush I
-1 CFont I
-j CBitmap I
H CPalette

y CRgn

I

I

Run-Time Object Simple Value Types Structures Support Classes
CCmdTarget

Model Support CString
I CArchive I CTime
I CDum~Context

CTimeS~an
I CRuntimeClass

CRect

CPoint

CSize

Frame Windows
y CFrameWnd I

H ~MDIChildWnd I
: -~ ~i~r-MQ{~ln_d9~s: _- _:

:Y CMDIFrameWnd I
I I r------------------.
: ' -: _U_s~! J-1 Q L '!.V9r~S.P_a_c~~ _ !

: -Lu_s~r-~_QI_VyiD~9~_-_-_-_:

I I CFileStatus I CDataExchange

I I CCreateContext I CCmdUI

I CPrintinfo

I CMemoryState

CWnd

Control Bars Views

H CControlBar

H CToolBar

H CStatusBar

-j CDialogBar

I -j CView I

L{ CSplitterWnd I

I
I
I

-j CScroliView I

Q
----------:-------'
~ _u~~r §g~oJI_ '{I~'!.V§ _____ :

CFormView I

:-:~j~ifQriQ-y~Yis:::::j
,-j CEditView I
I __________________ ~

'- -~ ..u~~r Yle_l}{~ _________ :

Dialog Boxes

y CDialoa I
H CFileDialog I
H CColorDialoa I
--1 CFontDialog I
--1 CPrintDialog I

,--1 CFindReplaceDialoQ I

:- -: _uj~i ~i~IQg _b9~~i _- _-_-:

Figure 1.1 Microsoft Foundation Class Library Hierarchy Chart

Introduction xvii

CObject I

Menus OLE 1.0 Support Collections
Y CMenu I ---1 COleServer I H CByteArray I -LU_S~!-_oJ;l~~t§-_-_-_-;

4 COleTemplateServer I H CWordArray I

-1 CDocltem I H CDWordArray I

-1 COleClientltem I H CPtrArray I
I r----------------I H CObArray I
1- t l!~E~(cJi~!l! lt~!TLS ____ :

Y COleServerltem I H CStringArray I
I r----------------l H CUlntArray I
1- ~_l!~~(s_eJy~r_ i!~f!1? ___ , ,

Document Architecture -[~~~y~ 9! ~~~~ iip~e~~ J

I CCmdTarget H CPtrList I
--1 CObList I '-r CDocument I --1 CStrinQList I

4 COleDocument I -[~~t~ ~o} ~u~~~ !i~~S~ ~ ~ J
! b COleClientDoc I

---1 CMapWordToPtr I
: COleServerDoc I
:- {~~~~~Q~~~~Qts~ ~ ~~:

---1 CMapPtrToWord
-'

---1 CMapPtrToPtr I

Window Support
---1 CMapWordToOb I
--1 CMapStringToPtr I

I
CWnd --1 CMapStrinQToOb I

I ,--1 CMapStrinQToStrinQ I
Controls ,

H CStatic I -1 CScroliBar I
~ -[~~ip~~ ~(~~e!)¥e~~ ~ J

H CButton I Y CEdit I
4 CBitmapButton I 4CHEdit I

H CListBox I 4CBEdit I
Y CComboBox I -1 CVBControl I

PAR T 1

Introduction to the
Microsoft Foundation
Class Library

Chapter 1 The Microsoft Foundation Class Library 3
Chapter 2 Using the Classes to Write Applications for Windows 19
Chapter 3 Working with Messages and Commands. 51
Chapter 4 Working with Frame Windows, Documents, and Views. 71
Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and

Context-Sensitive Help 95
Chapter 6 U sing the General-Purpose Classes .. 121

CHAPTER 1

The Microsoft
Foundation Class Library

This chapter categorizes and describes the classes in the Microsoft Foundation
Class Library version 2.0. These classes support application development for
Microsoft Windows versions 3.0 and later.

Because the class library supports programming for Windows, its Windows
classes are the largest and most important group of classes. Taken together,
they constitute an "application framework" - the framework of an application
written for Windows. Your programming task is to fill in the code that is unique
to your application.

The library's classes are presented here in the following categories:

• Root Class

• Application Architecture Classes

• Windows Application Class

• Command-Related Classes

• DocumentNiew Classes

• Visual Object Classes

• Window Classes

• View Classes

• Dialog Classes

• Control Classes

• Menu Class

• Device-Context Classes

• Drawing Object Classes

• General-Purpose Classes

• File Classes

• Diagnostics

• Exceptions

3

4 Class Library Reference

• Collections

• Miscellaneous Support Classes

• Object Linking and Embedding (OLE) Classes

• OLE Base Classes

• OLE Client Classes

• OLE Server Classes

• OLE Exception Class

• Macros and Globals

The section "General Class Design Philosophy" at the end of this chapter explains
how the Microsoft Foundation Class Library was designed.

The framework is explained in detail in Chapters 2 through 6.

Some of the classes listed above are general-purpose classes that can be used either
with the framework or in MS-DOS programs. Chapter 6 details these classes,
which provide useful abstractions such as collections, exceptions, files, and strings.
The Object Linking and Embedding (OLE) classes support programming for OLE.
See Chapter 18 in the Class Library User's Guide for more information about the
OLE classes.

Class Summary

Root Class

The following is a brief summary of the classes in the Microsoft Foundation Class
Library, divided by category to help you locate what you need. In some cases, a
class is listed in more than one category. To see a class's inheritance, use the class
hierarchy diagram on page xvi.

Most of the classes in the Microsoft Foundation Class Library are derived from a
single base class at the root of the class hierarchy. CObject provides a number of
useful capabilities to all classes derived from it, with very low overhead. For more
information about CObject and its capabilities, see "CObject Services" on page
121 in Chapter 6.

CObject
The ultimate base class of nearly all other classes. Supports serializing data and
obtaining run-time information about a class.

Chapter 1 The Microsoft Foundation Class Library 5

Application Architecture Classes
Classes in this category contribute to the architecture of a framework application.
They supply functionality common to most applications written for Windows. You
fill in the framework to add application-specific functionality. Typically, you do so
by deriving new classes from the architecture classes, sometimes adding new
members or overriding existing member functions.

The framework consists of a group of class objects that cooperate at run time to
function as an application for Windows. The principal objects are:

• An application object derived from class CWinApp.

• One or more document objects derived from class CDocument and associated
with a window.

• One or more view objects derived from class CView, each attached to a docu­
ment and associated with a window.

Windows Application Class
Each application has one and only one application object; this object coordinates
other objects in the running program and is derived from CWinApp.

CWinApp
Encapsulates the code to initialize, run, and terminate the application.

Command-Related Classes
As the user interacts with the application by choosing menus or control-bar buttons
with the mouse, the application sends messages from the affected user-interface
object to an appropriate command-target object, which is of class CCmdTarget.
Command-target classes derived from CCmdTarget include CWinApp, CWnd,
CDocTemplate, CDocument, CView, and the classes derived from them. Class
CCmdUI represents a command user-interface object, such as a menu or button,
for updating the object's state.

CCmdTarget
Serves as the base class for all classes of objects that can receive and respond to
messages.

CCmdUI
Provides a programmatic interface for updating user-interface objects such as
menu items or control-bar buttons. The command-target object enables, dis­
ables, checks, and/or unchecks the user-interface object via this proxy object.

6 Class Library Reference

Document/View Classes
Document objects, created by document template objects, manage the application's
data. View objects, which represent the client area of a window, display a docu­
ment's data and allow users to interact with it.

CDocTemplate
The base class for document templates. A document template coordinates the
creation of document, view, and frame window objects.

CSingleDocTemplate
A template for documents in the single document interface (SDI). SDI applica­
tions have only one document open at a time.

CMuitiDocTemplate
A template for documents in the multiple document interface (MDI). MDI appli­
cations can have multiple documents open at a time.

CDocument
The base class for application-specific documents. Derive your document
class(es) from CDocument.

CView
The base class for application-specific views of a document's data. Views
display data and take user input to edit or select the data. Derive your view
class(es) from CView. See the description of CView and its derived classes
under "View Classes."

CPrintlnfo
A structure containing information about a print or print preview job. Used by
CView's printing architecture.

CCreateContext
A structure passed by a document template to window-creation functions to
coordinate the creation of document, view, and frame window objects.

Visual Object Classes
Classes in this category represent visual user-interface objects: windows, dialog
boxes, controls, and menus. Also included are associated objects employed in
rendering the contents of a window: device contexts and drawing objects such as
pens and brushes.

Window Classes
Class CWnd and its derived classes encapsulate an HWND, a handle to a
Windows window. CWnd can be used by itself or as a base for deriving new
classes. The derived classes supplied by the class library represent various kinds of
windows.

Chapter 1 The Microsoft Foundation Class Library 7

CWnd
The base class for all windows. Use the derived classes below, or derive your
own classes directly from CWnd.

CFrameWnd
The base class for an SDI application's main frame window.

CMDIFrameWnd
The base class for an MDI application's main frame window.

CMDIChildWnd
The base class for an MDI application's document frame windows.

View Classes
Class CView and its derived classes are child windows that represent the client
area of a frame window and that show and accept input for a document.

CView
The base class for application-specific views of a document's data. Views
display data and take user input to edit or select the data. Derive your view
classes from CView or use CScrollView for automatic scrolling.

CScrollView
The base class for views with scrolling capabilities. Derive your view class from
CScrollView for automatic scrolling.

CFormView
A scroll view whose layout is defined in a dialog resource. Derive classes from
CForm View to quickly implement user interfaces based on dialog resources.

CEditView
A view with text-editing, searching, replacing, and scrolling capabilities. Use
this class to provide a text-based user interface to a document.

Dialog Classes
Class CDiaiog and its derived classes encapsulate dialog-box functionality. Since a
dialog box is a special kind of window, CDiaiog is derived from CWnd. Derive
your dialog classes from CDiaiog or use one of the common dialog classes for
standard dialog boxes such as opening or saving a file, printing, selecting a font or
color, or initiating a search-and-replace operation.

CDialog
The base class for all dialog boxes-both modal and modeless.

CDataExchange
Supplies initialization and validation information for dialog boxes.

CFileDiaiog
Provides a standard dialog box for opening or saving a file.

8 Class Library Reference

CPrintDialog
Provides a standard dialog box for printing a file.

CFontDialog
Provides a standard dialog box for selecting a font.

CColorDialog
Provides a standard dialog box for selecting a color.

CFindReplaceDialog
Provides a standard dialog box for a search-and-replace operation.

Control Classes
Control classes encapsulate standard Windows controls such as buttons, list
boxes, and combo boxes, as well as new controls, including buttons with bitmaps,
edit controls for Microsoft Windows for Pen computing, control bars, and VBX
custom controls. The Visual C++ class provides a programmatic interface to the
Windows control.

CStatic
A static-text control window. Static controls are used to label, box, or separate
other controls in a dialog box or window.

CButton
A button control window. The class provides a programmatic interface to a
pushbutton, check box, or radio button in a dialog box or window.

CEdit
An editable-text control window. Edit controls are used to take textual input
from the user.

CScrollBar
A scroll-bar control window. The class provides the functionality of a scroll bar
for use as a control in a dialog box or window through which the user can spec­
ify a position within a range.

CListBox
A list-box control window. A list box displays a list of items that the user can
view and select.

CComboBox
A combo-box control window. A combo box consists of an edit control plus a
list box.

CHEdit
A Windows for Pens edit control in which the user can enter and modify text
using standard pen editing gestures.

CBEdit
A Windows for Pens edit control in which the user can enter and modify text
using standard pen editing gestures. This control differs from CHEdit in that it
provides boxes to guide text entry.

Chapter 1 The Microsoft Foundation Class Library 9

CControlBar
A window aligned to the top or bottom of a frame window that contains
HWND-based child controls or controls not based on an HWND, such as tool­
bar buttons. The base class for control bars such as toolbars and status bars.

CStatusBar
The base class for status-bar control windows.

CToolBar
Toolbar control windows that contain bitmap command buttons not based on
an HWND.

CDialogBar
A modeless dialog box in the form of a control bar.

CBitmapButton
A button with a bitmap rather than a text caption.

CVBControl
A window whose implementation is a VBX control.

CSplitterWnd
A window that the user can split into multiple panes.

Menu Class
Class CMenu provides an interface through which to access your application's
menus. It's useful for manipulating menus dynamically at run time; for example,
you may want to add or delete menu items according to context.

CMenu
Encapsulates an HMENU handle to the application's menu bar and pop-up
menus.

Device-Context Classes
Most of the following classes encapsulate a handle to a Windows device context.
A device context is a Windows object that contains information about the drawing
attributes of a device such as a display or a printer. All drawing calls are made
through a device-context object. Additional classes derived from CDC encapsulate
specialized device-context functionality, including support for Windows metafiles.

CDC
The base class for device contexts; used directly for accessing the whole display
and for accessing nondisplay contexts such as printers.

CPaintDC
A display context used in OnPaint member functions of windows and OnDraw
member functions of views. Automatically calls BeginPaint on construction and
EndPaint on destruction.

10 Class Library Reference

CClientDC
A display context for client areas of windows. Used, for example, to draw in an
immediate response to mouse events.

CWindowDC
A display context for entire windows, including both the client and frame areas.

CMetaFileDC
A device context for Windows metafiles. A Windows metafile contains a
sequence of graphics device interface (GDI) commands that can be replayed
to create an image. Calls made to the member functions of a CMetaFileDC are
recorded in a metafile.

Drawing Object Classes
The following classes encapsulate handle-based GDI objects. They allow you to
manipulate common GDI drawing objects with C++ syntax.

CGdiObject
The base class for GDI drawing tools.

CBitmap
Encapsulates a GDI bitmap, providing an interface for manipulating bitmaps.

CBrush
Encapsulates a GDI brush that can be selected as the current brush in a device
context.

CFont
Encapsulates a GDI font that can be selected as the current font in a device
context.

CPalette
Encapsulates a GDI color palette for use as an interface between the application
and a color output device such as a display.

CPen
Encapsulates a GDI pen that can be selected as the current pen in a device
context.

CRgn
Encapsulates a GDI region for manipulating an elliptical or polygonal area
within a window. Used in conjunction with the clipping member functions in
class CDC.

Chapter 1 The Microsoft Foundation Class Library 11

General·Purpose Classes
Classes in this category provide a variety of general-purpose services such as file
I/O, diagnostics, and exception handling. Also included are classes such as arrays
and lists for storing aggregates of data.

File Classes
Use the following classes, particularly CArchive and CFile, if you write your own
input/output processing. Nonnally you don't need to derive from these classes. If
you use the application framework, the default implementations of the Open and
Save commands on the File menu handle file I/O (using class CArchive), provided
you supply details about how a document "serializes" its contents. For more
infonnation about the file classes and serialization, see "The File Classes" on page
124 and Chapter 14, "Files and Serialization," in the Class Library User's Guide.

CFile
Provides a programmatic interface to binary disk files.

CMemFile
Provides a programmatic interface to in-memory Jiles.

CStdioFile
Provides a programmatic interface to buffered stream disk files, usually in
text mode.

CArchive
Cooperates with a CFile object to implement persistent storage for objects
through serialization (see CObject::Serialize).

Diagnostics
Use classes CDumpContext and CMemoryState during development to assist
with debugging, as described in Chapter 15, "Diagnostics," in the Class Library
User's Guide. Use CRuntimeClass to detennine the class of any object at run
time, as described in Chapter 12, "The CObject Class," in the Class Library User's
Guide. The framework uses CRuntimeClass to dynamically create objects of a
particular class.

CDumpContext
Provides a destination for diagnostic dumps.

CMemoryState
Provides snapshots of memory use. The class is also used to compare earlier and
later snapshots.

CRuntimeClass
Used to detennine the exact class of an object at run time.

12 Class Library Reference

Exceptions
The class library provides an exception-handling mechanism based on class
CException. The application framework uses exceptions in its code; you can also
use them in yours. For more information, see "Exception Handling" on page 128.
You can derive your own exception types from CException.

CException
The base class for exceptions.

CArchiveException
An archive exception.

CFileException
A file-oriented exception.

CMemoryException
An out-of-memory exception.

CNotSupportedException
An exception resulting from the invocation of an unsupported feature.

CResourceException
An exception resulting from a failure to load a Windows resource.

COleException
An exception resulting from failures in OLE processing. This class is used by
both clients and servers.

CUserException
An exception used to stop a user-initiated operation. The user has typically been
notified of the problem before this exception is thrown.

Collections
For handling aggregates of data, the class library provides a group of collection
classes-arrays, lists, and "maps" -that can hold a variety of object and pre­
defined types. The collections are dynamically sized. These classes can be used in
any program, whether written for Windows or not. However, they are most useful
for implementing the data structures that define your document classes in the
application framework. You can readily derive specialized collection classes from
these, or you can create them with a template tool supplied with the class library.
For more information about these approaches, see "The Collection Classes" on
page 124.

CByteArray
Stores elements of type BYTE in an array.

CDWordArray
Stores elements of type doubleword in an array.

Chapter 1 The Microsoft Foundation Class Library 13

CObArray
Stores pointers to objects of class CObject or to objects of classes derived from
CObject in an array.

CPtrArray
Stores pointers to void (generic pointers) in an array.

CStringArray
Stores CString objects in an array.

CWordArray
Stores elements of type WORD in an array.

CUIntArray
Stores elements of type UINT in an array.

CObList
Stores pointers to objects of class CObject or to objects of classes derived from
CObject in a linked list.

CPtrList
Stores pointers to void (generic pointers) in a linked list.

CStringList
Stores CString objects in a linked list.

CMapPtrTo Word
Maps void pointers to data of type WORD. Uses void pointers as keys for
finding data of type WORD.

CMapPtrToPtr
Maps void pointers to void pointers. Uses void pointers as keys for finding other
void pointers.

CMapStringToOb
Maps CString objects to CObject pointers. Uses CString objects as keys for
fmding CObject pointers.

CMapStringToPtr
Maps CString objects to void pointers. Uses CString objects as keys for find­
ing void pointers.

CMapStringToString
Maps CString objects to CString objects. Uses CString objects as keys for
fmding other CString objects.

CMap WordToOb
Maps data of type WORD to CObject pointers. Uses data of type WORD to
fmd CObject pointers.

CMap WordToPtr
Maps data of type WORD to void pointers. Uses data of type WORD to fmd
void pointers.

14 Class Library Reference

Miscellaneous Support Classes
The following classes encapsulate drawing coordinates, character strings, and time
and date information, allowing convenient use of C++ syntax. These objects are
used widely as parameters to the member functions of Windows classes in the
Microsoft Foundation Class Library. Because CPoint, CSize, and CRect corre­
spond to the POINT, SIZE, and RECT structures, respectively, in the Windows
Software Development Kit (SDK), you can use objects of these C++ classes
wherever you can use these C-Ianguage structures. The classes provide useful
interfaces through their member functions. CString provides very flexible dynamic
character strings. CTime and CTimeSpan represent time and date values. For
more information about these classes, see "Other Support Classes"
on page 126.

CPoint
Holds coordinate (x, y) pairs.

CSize
Holds distance, relative positions, or paired values.

CRect
Holds rectangular areas.

CString
Holds character strings.

CTime
Holds absolute time and date values.

CTimeSpan
Holds relative time and date values.

Object Linking and Embedding (OLE) Classes
The class library supplies four categories of classes to support Object Linking and
Embedding: OLE base classes, OLE client classes, OLE server classes, and an
OLE exception class. For more about using the OLE classes, see Chapter 18 in the
Class Library User's Guide.

OLE Base Classes
The classes listed in this category serve as base classes for more specialized OLE
classes in the other categories. These classes are listed here for completeness; you
will not use them directly.

COleDocument
The abstract base class of the COleClientDoc and COleServerDoc classes.
A COleDocument is the container for items of type CDocItem. A
COleClientDoc contains items of type COleClientItem while a
COleServerDoc contains items of type COleServerItem.

Chapter 1 The Microsoft Foundation Class Library 15

CDocltem
An item that is part of a document. Abstract base class of COleClientItem and
COleServerltem.

OLE Client Classes
The class library supplies two classes for use in OLE client applications.
COleClientDoc represents client documents, which maintain a collection of items
of type COleClientltem. A COleClientltem represents the client view of an
embedded or linked OLE item. These classes are derived from abstract base
classes, as shown.

COleClientDoc
A client document class that manages client items. You must derive your
documents from this class instead of CDocument to implement OLE client
functionality.

COleClientltem
A client item class that represents the client's side of the connection to an em­
bedded or linked OLE item. You must derive your client items from this class.

OLE Server Classes
An OLE server application has server objects for each of the document types it
supports. A server creates and maintains server documents in much the same way
that CDocTemplate objects create and maintain documents. For OLE objects
embedded in a client application, the OLE server maintains one server document
and one server item for each active item embedded in a client. For OLE objects
linked to this server application, the OLE server maintains an OLE server document
for each document that contains links. Each of these documents can be linked to
multiple server items.

COleServer
A server application class that creates and manages server documents. You must
derive a class from this class for each server type your application supports.

COleServerDoc
A server document class that creates and manages server items. You must derive
your server documents from this class instead of CDocument.

COleServerItem
A server item class that represents the server's side of the connection to an em­
bedded or linked OLE item. You must derive your server items from this class.

COleTemplateServer
An OLE server implementation class that manages server documents using a
document template. This class can be used directly as an alternative to deriving
from COleServer.

16 Class Library Reference

OLE Exception Class
The class library provides an exception class, derived from CException, for excep­
tional conditions that occur during OLE processing. For more information, see
Chapter 3. For details about exception handling, see Chapter 16, "Exceptions,"
in the Class Library User's Guide.

COleException
An exception resulting from a failure in OLE processing. This class is used by
both clients and servers.

Macros and Globals
The "Macros and Globals" section in Part 2 of this manual documents the elements
of the Microsoft Foundation Class Library that are not defined as members of
specific classes. These include macros and global functions and variables in the
following general categories:

• Data types

• Run-time object model services

• Diagnostic services

• Exception processing

• CString formatting and message-box display

• Message maps

• Dialog data exchange and validation

• Application information and management

• OLE support

• Standard commands and window IDs

General Class Design Philosophy
Microsoft Windows was designed long before the C++ language became popular.
Because thousands of applications use the C-Ianguage Windows application pro­
gramming interface (API), that interface will be maintained for the foreseeable
future. Any C++ Windows interface must therefore be built on top of the procedural
C-Ianguage API. This guarantees that C++ applications will be able to coexist with
C applications.

Chapter 1 The Microsoft Foundation Class Library 17

Design Goals
The Microsoft Foundation Class Library is truly an object-oriented interface to
Windows that meets the following design goals:

• Significantly reduce the effort of programming an application for Windows

• Execution speed comparable to that of the C-Ianguage API

• Minimum code size overhead

• The ability to call any Windows C function directly

• Easier conversion of existing C applications to C++

• The ability to leverage from the existing base of C-Ianguage Windows
programming experience

• Easier use of the Windows API with C++ than with C

• True Windows API for C++ that effectively uses C++ language features

The Application Framework
The core of the Microsoft Foundation Class Library is an encapsulation of a large
portion of the Windows API in C++ form. Library classes represent windows,
dialog boxes, device contexts, common GDI objects such as brushes and pens,
controls, and other standard Windows items. These classes provide a convenient
C++ member function interface to the structures in Windows that they encapsulate.
For more information about these core classes, see "Window Objects" in Chapter 2.

But the Microsoft Foundation Class Library also supplies a layer of additional
application functionality built on the C++ encapsulation of the Windows API. This
layer is a working application framework for Windows that provides most of the
common user interface expected of programs for Windows. Chapter 2 explains the
framework in detail, and the Class Library User's Guide provides a tutorial that
teaches application-framework programming.

Relationship to the C-Language API
The single characteristic that sets the Microsoft Foundation classes for Windows
apart from other class libraries for Windows is the very close mapping to the
Windows API written in the C language. Further, you can generally freely mix calls
to the class library with direct calls to the Windows API. This direct access does
not, however, imply that the classes are a complete replacement for that API.
Developers must still occasionally make direct calls to some Windows functions­
GetSystemMetrics, for example. A Windows function is wrapped by a class
member function only if there is a clear advantage to doing so.

Because you sometimes need to make native Windows function calls, you should
have access to the C-Ianguage Windows API documentation. This is included with
Microsoft Visual C++ as Help. If you require printed documentation, refer to the

18 Class Library Reference

Microsoft Windows 3.1 Programmer's Reference and the Microsoft Windows 3.1
Guide to Programming from Microsoft Press. Another useful book is
Programming Windows by Charles Petzold, also from Microsoft Press. Many of
that book's examples can be easily converted to the Microsoft Foundation classes.

For examples and additional information about programming with the Microsoft
Foundation Class Library version 2.0, see Microsoft Visual C/C + + Programming
for Windows by David J. Kruglinski from Microsoft Press.

In Chapters to Come
Chapters 2 through 6 provide an overview of the framework and how it functions.
Table 1.1 shows the topics covered by each chapter.

Table 1.1 Reference Overview Chapters

Chapter

2

3

4

5

6

Contents

The application object; creation of document templates, documents, views,
and frame windows. How to initialize these objects.

Messages and commands; command routing; updating user-interface
objects such as menus and toolbar buttons.

Documents and views; drawing in a view; working with multiple views;
printing and print preview.

Dialog boxes and controls; control bars, including toolbars and status bars;
using context-sensitive help.

Diagnostics; exception handling; files and serialization; collection classes.

The alphabetical reference for the classes in the Microsoft Foundation Class
Library begins on page 131.

CHAPTER 2

Using the Classes to Write
Applications for Windows

19

Taken together, the classes in the Microsoft Foundation Class Library make up an
"application framework" - the framework on which you build an application for
Windows. At a very general level, the framework defines the skeleton of an appli­
cation and supplies standard user-interface implementations that can be placed onto
the skeleton. Your job as programmer is to fill in the rest of the skeleton-those
things that are specific to your application. You can get a head start by using
App Wizard to create the files for a very thorough starter application. You use
App Studio to design your user-interface elements visually, ClassWizard to con­
nect those elements to code, and the class library to implement your application­
specific logic.

This chapter presents a broad overview of the application framework. It also
explores the major objects that make up your application and how they are created.
Among the topics covered in this chapter are the following:

• The major objects in a running application

• Division of labor between the framework and your code

• The application class, which encapsulates application-level functionality

• How document templates create and manage documents and their associated
views and frame windows

• Class CWnd, the root base class of all windows

• Graphic objects, such as pens and brushes

• The Windows Clipboard

Subsequent chapters continue the framework story, covering:

• Messages and commands (Chapter 3)

• Documents, views, and frame windows (Chapter 4)

• Dialog boxes, controls, control bars, and context-sensitive help (Chapter 5)

20 Class Library Reference

For a step-by-step tutorial in which you build an application with the framework,
read the Class Library User's Guide, Chapters 1 through 10. Table 2.1 directs you
to other documents:

Table 2.1 Where to Find More Information

Topic Manual Chapters

Classes mentioned in this C lass Library Reference Alphabetic
chapter reference

App Studio App Studio User's Guide

Class Wizard App Studio User's Guide 9

C lass Library User's Guide 6, 7

Visual Workbench User's Guide 13

AppWizard Visual Workbench User's Guide 13

Class Library User's Guide 2

Visual Workbench Visual Workbench User's Guide

Diagnostics, exceptions Class Library User's Guide 15-16

Macros and globals Class Library Reference Alphabetic
reference

Resources App Studio User's Guide

The Framework

SOl and MOl

This section introduces the major classes of the framework and three tools that
simplify your work with the framework. Some of the classes encapsulate a large
portion of the Microsoft Windows application programming interface (API). Other
classes encapsulate application concepts such as documents, views, and the
application itself.

The Microsoft Foundation Class Library makes it easy to work with both single
document interface (SDI) and multiple document interface (MDI) applications.

SDI applications allow only one open document frame window at a time. MDI
applications allow multiple document frame windows to be open in the same in­
stance of an application. An MDI application has a window within which multiple
MDI child windows, which are frame windows themselves, can be opened, each
containing a separate document. In some applications, the child windows may be of
different types, such as chart windows and spreadsheet windows. In that case, the
menu bar may change as MDI child windows of different types are activated.

Chapter 2 Using the Classes to Write Applications for Windows 21

Documents, Views, and the Framework
At the heart of the framework are the concepts of document and view. A document
is a data object with which the user interacts in an editing session. It is created by
the New or Open commands on the File menu and is typically saved in a file. A
view is a window object through which the user interacts with a document.

The key objects in a running application are:

• The document(s)

Your document class (derived from CDocument) specifies your application's
data.

• The view(s)

Your view class (derived from CView) is the user's "window on the data." The
view class specifies how the user sees your document's data and interacts with
it. In some cases, you may want a document to have multiple views of the data.

If you need scrolling, derive from CScrollView. If your view has a user inter­
face that is laid out in a dialog-template resource, derive from CForm View. For
simple text data, use or derive from CEditView.

• The frame windows

Views are displayed inside "document frame windows." In an SDI application,
the document frame window is also the "main frame window" for the applica­
tion. In an MDI application, document windows are child windows displayed
inside a main frame window. Your derived main frame-window class specifies
the styles and other characteristics of the frame windows that contain your
views. Derive from CFrameWnd to customize the document frame window for
SDI applications. Derive from CMDIFrame Wnd to customize the main frame
window for MDI applications. Also derive a class from CMDIChildWnd to
customize each of the distinct kinds of MDI document frame windows that your
application supports.

• The document template(s)

A document template orchestrates the creation of documents, views, and frame
windows. A particular document-template class creates and manages all open
documents of one type. Applications that support more than one type of docu­
ment have multiple document templates. Use class CSingleDocTemplate for
SDI applications, or use class CMultiDocTemplate for MDI applications.

• The application object

Your application class (derived from CWinApp) controls all of the objects
above and specifies application behavior such as initialization and cleanup. The
application's one and only application object creates and manages the document
templates for any document types the application supports.

22 Class Library Reference

In a running application, these objects cooperatively respond to user actions, bound
together by commands and other messages. A single application object manages one
or more document templates. Each document template creates and manages one or
more documents (depending on whether the application is SDI or MDI). The user
views and manipulates a document through a view contained inside a frame win­
dow. Figure 2.1 shows the relationships among these objects for an SDI application.

Arrows show directions
of communication flow.

Main Frame Window

Toolbar

View

Status Bar

Figure 2.1 Objects in a Running SDI Application

The rest of this chapter explains how the framework creates these objects, how they
work together, and how you use them in your programming. Documents, views, and
frame windows are discussed in more detail in Chapter 4.

AppWizard
App Wizard creates a skeleton application upon which you can build your applica­
tion-specific code.

You begin your application by invoking AppWizard from Visual Workbench. By
default, App Wizard creates an MDI application, but you can change this through
the Options dialog box. App Wizard then creates all of the necessary files and
classes for the application type you have chosen.

An MDI application created by AppWizard already supports creating new MDI
child windows when the user opens a document with the New or Open commands
on the File menu. It handles changing the menu bar when an MDI child window of
a different type receives the focus. It manages tiling or cascading open MDI child
windows in response to the Tile and Cascade commands on the Window menu.

Chapter 2 Using the Classes to Write Applications for Windows 23

AppWizard also offers numerous options that let you incorporate support for tool­
bars, printing and print preview, VBX controls, context-sensitive help, and Object
Linking and Embedding (OLE) in the files that AppWizard creates.

For more information about AppWizard, see Chapter 13 in the Visual Workbench
User's Guide and Chapter 2 in the Class Library User's Guide.

App Studio
Use App Studio to design your application's user interface and create the applica­
tion's resources: menus, dialog boxes, custom controls, accelerator keys, bitmaps,
icons, cursors, and strings.

After creating a skeletal application with App Wizard, run App Studio from Visual
Workbench. Select the type of resource you want to create or edit and open an
editor for that type. App Studio lets you work easily and intuitively, operating
visually upon visual objects. For example, to add controls to a dialog box, simply
select a control icon on the Control Palette, drag it into the dialog box, and drop
it in place. Editor functions make it easy to align and organize controls in a
dialog box.

To help you even more, the Microsoft Foundation Class Library provides a file
called COMMON.RC, which contains "clip art" resources that you can copy from
COMMON.RC and paste into your own resource file. COMMON.RC includes
toolbar buttons, common cursors, icons, and more. You can use, modify, and
redistribute these resources in your application.

For more information about App Studio and COMMON.RC, see the App Studio
User's Guide.

ClassWizard
Applications running under the Windows operating system are "message driven."
User actions and other events that occur in the running program cause Windows to
send messages to the windows in the program. For example, if the user clicks the
mouse in a window, Windows sends a WM_LBUTTONDOWN message when
the left mouse button is pressed and a WM _ LBUTTONUP message when the
button is released. Windows also sends WM_COMMAND messages when the
user selects commands from the menu bar.

In the framework, various objects-documents, views, frame windows, document
templates, the application object -can "handle" messages. Such an object provides
a "handler function" as one of its member functions, and the framework maps the
incoming message to its handler.

A large part of your programming task is choosing which messages to map to
which objects and then implementing that mapping. To do so, you use the
Class Wizard tool.

24 Class Library Reference

You can invoke Class Wizard from App Studio or from Visual Workbench.
ClassWizard will create empty message-handler member functions and you use the
Visual Workbench editor to implement the body of the handler.

For more information about messages, see Chapter 3, "Working with Messages and
Commands." For more information about ClassWizard, see Chapter 9 in the App
Studio User's Guide.

Building on the Framework
Your role in configuring an application with the framework is to supply the appli­
cation-specific source code and to connect the components by defining what
messages and commands they respond to. You use the C++ language and standard
C++ techniques to derive your own application-specific classes from those supplied
by the class library and to override and augment the base class's behavior.

Table 2.2 shows what you do in relation to what the framework does.

Table 2.2 Sequence in Building an Application with the Framework

Task

Create a skeleton
application.

See what it offers
without adding a
line of your own
code.

You Do

Run App Wizard. Specify the
options you want in the Options
dialog box.

Build the skeleton application and
run it in Visual Workbench.

The Framework Does

App Wizard creates the files
for a skeleton application,
including source files for
your application, document,
view, and frame windows; a
resource file; a project file
(.MAK); and others-all
tailored to your specifica­
tions.

The running skeleton appli­
cation derives many stan­
dard File, Edit, View, and
Help menu commands from
the framework. For MDI
applications, you also get a
fully functional Window
menu, and the framework
manages creation, arrange­
ment, and destruction of
MDI child windows.

Chapter 2 Using the Classes to Write Applications for Windows 25

Table 2.2 Sequence in Building an Application with the Framework (continued)

Task

Construct your
application's user
interface.

Map menus to
handler functions.

Write your handler
code.

Map toolbar buttons
to commands.

Test your handler
functions.

You Do

Use App Studio to visually edit
the application's user interface:

• Create menus.

• Define accelerators.

• Create dialog boxes.

• Create and edit bitmaps, icons,
and cursors.

• Edit the toolbar bitmap created
for you by App Wizard.

• Create and edit other
resources.

You can also test the dialog boxes
in App Studio.

Use Class Wizard to connect
menus and accelerators to handler
functions in your code.

Use ClassWizard to jump directly
to the code in the Visual
Workbench editor. Fill in the code
for your handler functions.

Map each button on your toolbar
to a menu or accelerator command
by assigning the button the
appropriate command ID.

Rebuild the program and use
Visual Workbench's built-in
debugging tools to test that your
handlers work correctly.

The Framework Does

The default resource file
created by App Wizard
supplies many of the
resources you need. App
Studio lets you edit existing
resources and add new
resources, easily and
visually.

Class Wizard inserts
message-map entries and
empty function templates in
the source files you specify
and manages many manual
coding tasks.

Class Wizard brings up the
editor, scrolls to the empty
function template, and
positions the cursor for you.

The framework controls the
drawing, enabling, dis­
abling, checking, and other
visual aspects of the toolbar
buttons.

You can step or trace
through the code to see how
your handlers are called. If
you've filled out the handler
code, the handlers carry out
commands. The framework
will automatically disable
menu items and toolbar
buttons that are not
handled.

26 Class Library Reference

Table 2.2 Sequence in Building an Application with the Framework (continued)

Task

Create additional
classes.

Implement your
document class.

Implement Open,
Save, and Save As
commands.

Implement your
view class.

Enhance default
printing.

You Do

Use ClassWizard to create addi­
tional document, view, and frame­
window classes beyond those
created automatically by
AppWizard.

Implement your application­
specific document class(es). Add
member variables to hold data

The Framework Does

Class Wizard adds these
classes to your source files
and helps you define their
connections to any com­
mands they handle.

The framework already
knows how to interact with
document data files. It can

structures. Add member functions open and close document
to provide an interface to the data. files, read and write the

document's data, and
handle other user interfaces.
You can focus on how the
document's data is
manipulated.

Write code for the document's
S e ria 1 i z e member function.

Implement one or more view
classes corresponding to your
documents. Implement the view's
member functions that you
mapped to the user interface with
Class Wizard.

If you need to support multipage
printing, override view member
functions.

The framework displays
dialog boxes for the Open,
Save, and Save As com­
mands on the File menu. It
writes and reads back a
document using the data
format specified in your
S e ria 1 i z e member
function.

The framework manages
most of the relationship be­
tween a document and its
view. The view's member
functions access the view's
document to render its
image on the screen or
printed page and to update
the document's data struc­
tures in response to user
editing commands.

The framework supports the
Print, Print Setup, and Print
Preview commands on the
File menu. You must tell it
how to break your docu­
ment into multiple pages.

Chapter 2 Using the Classes to Write Applications for Windows 27

Table 2.2 Sequence in Building an Application with the Framework (continued)

Task

Add scrolling.

Create form views.

Create a simple text
editor.

Add splitter
windows.

Add dialog boxes.

Initialize, validate,
and retrieve dialog­
box data.

Build, test, and
debug your
application.

You Do

If you need to support scrolling,
derive your view class(es) from
CScrollView.

If you want to base your views on
dialog-template resources, derive
your view class(es) from
CFormView.

If you want your view to be a
simple text editor, derive your
view class(es) from CEditView.

If you want to support window
splitting, add a CSplitterWnd
object to your SDI frame window
or MDI child window and hook it
up in the window's
OnCreateClient member
function.

Design dialog-template resources
with App Studio. Then use
Class Wizard to create a dialog
class and the code that handles the
dialog box.

You can also define how the
dialog box's controls are to be
initialized and validated. Use
Class Wizard to add member
variables to the dialog class and
map them to dialog controls.
Specify validation rules to be
applied to each control as the user
enters data. Provide your own
custom validations if you wish.

Use the facilities of Visual
Workbench to build, test, and
debug your application.

The Framework Does

The view automatically
adds scroll bars when the
view window becomes too
small.

The view uses the dialog­
template resource to display
controls. The user can tab
from control to control in
the view.

The view provides editing
functions, Clipboard sup­
port, and file input/output.

The framework supplies
splitter-box controls next to
the scroll bars and manages
splitting your view into
multiple panes. If the user
splits a window, the
framework creates and
attaches additional view
objects to the document.

The framework manages
the dialog box and facili­
tates retrieving information
entered by the user.

The framework manages
dialog-box initialization and
validation. If the user enters
invalid information, the
framework puts up a
message box and lets the
user reenter the data.

Visual Workbench is
closely coupled with
App Wizard, App Studio,
and Class Wizard. It lets you
adjust compile, link, and
other options. And it lets
you browse your source
code and class structure.

28 Class Library Reference

As you can see, App Wizard, App Studio, and Class Wizard do a lot of work for you
and make managing your code much easier. The bulk of your application-specific
code is in your document and view classes. For a tour of this process with a real
application, see Chapters 1 through 10 in the Class Library User's Guide.

While it is possible to do these tasks by hand or using other tools, your savings in
time, energy, and errors suggest that using the tools is greatly to your benefit.

You willieam more about these tools in the rest of this chapter. For more informa­
tion about AppWizard, see Chapter 13 in the Visual Workbench User's Guide and
Chapter 3 in the Class Library User's Guide. For more information about App
Studio, see the App Studio User's Guide. For more information about ClassWizard,
see Chapter 9 in the App Studio User's Guide, Chapter 13 in the Visual
Workbench User's Guide, and Chapters 6 and 7 in the Class Library User's
Guide. For information about resources and resource files, see the App Studio
User's Guide.

How the Framework Calls Your Code
It is crucial to understand the relationship between your source code and the code
in the framework. When your application runs, most of the flow of control resides
in the framework's code. The framework manages the message loop that gets
messages from Windows as the user chooses commands and edits data in a view.
Events that the framework can handle by itself don't rely on your code at all.
For example, the framework knows how to close windows and how to exit the
application in response to user commands. As it handles these tasks, the framework
uses message handlers and C++ virtual functions to give you opportunities to
respond to these events as well. But your code is not in the driver's seat.

Your code is called by the framework for application-specific events. For example,
when the user chooses a menu command, the framework routes the command along
a sequence of C++ objects: the current view and frame window, the document
associated with the view, the document's document template, and the application
object. If one of these objects can handle the command, it does so, calling the ap­
propriate message-handler function. For any given command, the code called may
be yours or it may be the framework's.

This arrangement is somewhat familiar to programmers experienced with tradi­
tional programming for Windows or event-driven programming.

In the next several sections, you'll see what the framework does as it initializes and
runs the application and then cleans up as the application terminates. You'll also get
a clearer picture of where the code you write fits in.

Chapter 2 Using the Classes to Write Applications for Windows 29

CWinApp: The Application Class
The main application class encapsulates the initialization, running, and tennination
of an application for Windows. An application built on the framework must have
one (and only one) object of a class derived from CWinApp. This object is con­
structed before windows are created.

Like any program for Windows, your framework application has a WinMain func­
tion. In a framework application, however, you don't write WinMain. It is supplied
by the class library and is called when the application starts up. WinMain perfonns
standard services such as registering window classes. Then it calls member func­
tions of the application object to initialize and run the application.

To initialize the application, WinMain calls your application object's
In i tApp 1 i ea t i on and In it I nsta nee member functions. To run the applica­
tion's message loop, WinMain calls the Run member function. On tennination,
WinMain calls the application object's Ex i tIn s tan e e member function. Figure
2.2 shows the sequence of execution in a framework application.

WinMain
calls

~
calls

~

InitInstanee

Run
calls

L. ExitInstanee

Figure 2.2 Sequence of Execution

Standard function supplied by framework

Initializes current instance of the application

Runs the message loop and Onldle

Cleans up after the application

Note Names shown in bold type indicate elements supplied by the Microsoft Foun­
dation Class Library. Names shown in monospaced type indicate elements that you
create or override.

CWinApp and AppWizard
When it creates a skeleton application, App Wizard declares an application class
derived from CWinApp. App Wizard also generates an implementation file that
contains the following items:

• A message map for the application class

• An empty class constructor

30 Class Library Reference

• A variable that declares the one and only object of the class

• A standard implementation of your I nit Ins tan c e member function

The application class is placed in the project header and main source files. The
names of the class and files created are based on the project name you supply in the
App Wizard dialog box.

The standard implementations and message map supplied are adequate for many
purposes, but you can modify them as needed. The most interesting of these imple­
mentations is the I nit Ins tan c e member function. Typically you will add code to
the skeletal implementation of I nit Ins tan c e.

Overridable CWinApp Member Functions
CWinApp provides several key overridable member functions. The only
CWinApp member function that you must override is Initlnstance.

Initlnstance
Windows allows you to run more than one copy, or "instance," of the same appli­
cation. Win Main calls Initlnstance every time a new instance of the application
starts.

The standard I nit Ins tan c e implementation created by App Wizard performs the
following tasks:

• Loads standard file options from an .INI file, including the names of the most
recently used files.

• Registers one or more document templates.

• For an MDI application, creates a main frame window.

• Processes the command line to open a document specified on the command line
or to open anew, empty document.

The central action of I nit Ins tan c e is to create the document templates that, in
tum, create documents, views, and frame windows. For a description of this
process, see "Document Templates" on page 33.

Exitlnstance
The Exitlnstance member function of class CWinApp is called each time a copy
of your application terminates, usually as a result of the user quitting the applica­
tion. Override Exitlnstance if you need special cleanup processing, such as freeing
graphics device interface (GDI) resources or de allocating memory used during
program execution. Cleanup of standard items such as documents and views,
however, is provided by the framework, with other overridable functions for doing
special cleanup specific to those objects.

Chapter 2 Using the Classes to Write Applications for Windows 31

Onldle
When no Windows messages are being processed, the framework calls the
CWinApp member function Onldle. Override Onldle to perform background
tasks. The default version updates the state of user-interface objects such as toolbar
buttons and performs cleanup of temporary objects created by the framework in the
course of its operations. Figure 2.3 illustrates how the message loop calls Onldle
when there are no messages in the queue.

Idle
processing

Sleep until
message

>~..:...::e:..::...s -.----I~I GetlTranslate/Dispatch

Figure 2.3 The Message Loop

The Run Function
A framework application spends most of its time in the Run member function
of class CWinApp. After initialization, WinMain calls Run to process the
message loop.

Run cycles through a message loop, checking the message queue for available
messages. If a message is available, Run dispatches it for action. If no messages

32 Class Library Reference

are available-often the case-Run calls Onldle to do any idle-time processing
that you or the framework may need done. If there are no messages and no idle
processing to do, the application waits until something happens. When the applica­
tion terminates, Run calls Exitlnstance. Figure 2.3 above shows the sequence of
actions in the message loop.

Message dispatching depends on the kind of message. For more information, see
Chapter 3, "Working with Messages and Commands."

Other CWinApp Services
Besides running the message loop and giving you an opportunity to initialize the
application and clean up after it, CWinApp provides several other services.

Shell Registration
By default, App Wizard makes it possible for the user to open data files that your
application has created by double-clicking them in the Windows File Manager. If
your application is an MDI application and you specify an extension for the files
your application creates, App Wizard adds calls to the EnableShellOpen and
RegisterShellFileTypes member functions of CWinApp to the I nit Ins tan c e
override that it writes for you.

RegisterShellFileTypes registers your application's document types with File
Manager. The function adds entries to the registration database that Windows
maintains. The entries register each document type, associate a file extension with
the file type, specify a command line to open the application, and specify a dynamic
data exchange (DDE) command to open a document of that type.

EnableShellOpen completes the process by allowing your application to receive
DDE commands from File Manager to open the file chosen by the user.

This automatic registration support in CWinApp eliminates the need to ship an
.REG file with your application or to do special installation work.

File Manager Drag and Drop
Windows versions 3.1 and later allow the user to drag filenames from the file view
window in the File Manager and drop them into a window in your application. You
might, for example, allow the user to drag one or more filenames into an MDI
application's main window, where the application could retrieve the filenames and
open MDI child windows for those files.

To enable file drag and drop in your application, App Wizard writes a call to the
CWnd member function DragAcceptFiles for your main frame window in your
I nit Ins tan c e. You can remove that call if you do not want to implement the
drag-and-drop feature.

Chapter 2 Using the Classes to Write Applications for Windows 33

Keeping Track of the Most Recently Used Documents
As the user opens and closes files, the application object keeps track of the four
most recently used files. The names of these files are added to the File menu and
updated when they change. The framework stores these filenames in an .INI file
with the same name as your project and reads them from the file when your appli­
cation starts up. The In i tIn s tan c e override that App Wizard creates for you
includes a call to the CWinApp member function LoadStdProfileSettings, which
loads information from the .INI file, including the most recently used filenames.

Document Templates
To manage the complex process of creating documents with their associated
views and frame windows, the framework uses two document template classes:
CSingleDocTemplate for SDI applications and CMultiDocTemplate for MDI
applications. A CSingleDocTemplate can create and store one document of one
type at a time. A CMultiDocTemplate keeps a list of many open documents of
one type.

Some applications support multiple document types. For example, an application
might support text documents and graphics documents. In such an application, when
the user chooses the New command on the File menu, a dialog box shows a list of
possible new document types to open. For each supported document type, the appli­
cation uses a distinct document template object. Figure 2.4 illustrates the configura­
tion of an MDI application that supports two document types. The figure shows
several open documents.

Doc Template B
CMultiDocTemplate

I Doc 1 I I Doc 2 I I Doc 3 I I Doc 1 I Open documents
CMyDocA CMyDocA CMyDocA CMyDocB

, I Instances of one~lass ~ance of a different class

Figure 2.4 An MDI Application with Two Document Types

34 Class Library Reference

Document templates are created and maintained by the application object. One of
the key tasks performed during your application's I nit Ins tan c e function is to
construct one or more document templates of the appropriate kind. This feature is
described in "Document Template Creation" below. The application object stores a
pointer to each document template in its template list and provides an interface for
adding and removing document templates.

If you need to support two or more document types, you must add an extra call to
AddDocTemplate for each document type.

Document Template Creation
While creating a new document in response to a New or Open command from the
File menu, the document template also creates a new frame window through which
to view the document.

The document-template constructor specifies what types of documents, windows,
and views the template will be able to create. This is determined by the arguments
you pass to the document-template constructor. The following code illustrates
creation of a CMultiDocTemplate for a sample application:

AddDocTemplate(new CMultiDocTemplate(IDR_SCRIBTYPE.
RUNTIME_CLASS(CScribDoc),
RUNTIME_CLASS(CMDIChildWnd),
RUNTIME_CLASS(CScribView)));

The pointer to a new CMultiDocTemplate object is used as an argument to
AddDocTemplate. Arguments to the CMultiDocTemplate constructor include
the resource ID associated with the document type's menus and accelerators, and
three uses of the RUNTIME CLASS macro. RUNTIME CLASS returns the - -
CRuntimeClass object for the C++ class named as its argument. The three
CRuntimeClass objects passed to the document -template constructor supply the
information needed to create new objects of the specified classes during the
document creation process. The example shows creation of a document template
that creates CScri bOac objects with CScri bVi ew objects attached. The views are
framed by standard MDI child frame windows.

Document/View Creation
The framework supplies implementations of the New and Open commands (among
others) on the File menu. Creation of a new document and its associated view and
frame window is a cooperative effort among the application object, a document
template, the newly created document, and the newly created frame window. Table
2.3 summarizes which objects create what.

Chapter 2 Using the Classes to Write Applications for Windows 35

Table 2.3 Object Creators

Creator

Application object

Document template

Document template

Frame window

Creates

Document template

Document

Frame window

View

Relationships Among Documents, Views,
Frame Windows, Templates, and the Application
To help put the document/view creation process in perspective, first consider a
running program: a document, the frame window used to contain the view, and the
view associated with the document.

• A document keeps a list of the views of that document and a pointer to the
document template that created the document.

• A view keeps a pointer to its document and is a child of its parent frame
window.

• A document frame window keeps a pointer to its current active view.

• A document template keeps a list of its open documents.

• The application keeps a list of its document templates.

• Windows keeps track of all open windows so it can send messages to them.

These relationships are established during document/view creation. Table 2.4 shows
how objects in a running program can access other objects. Any object can obtain a
pointer to the application object by calling the global function AfxGetApp.

Table 2.4 How to Access Other Objects

From Object How to Access Other Objects

Document

View

Document frame window

MDI frame window

Use GetFirstViewPosition and GetNextView to access
the document's view list.

Call GetDocTemplate to get the document template.

Call GetDocument to get the document.

Call GetParentFrame to get the frame window.

Call GetActive View to get the current view.

Call MDIGetActive to get the currently active
CMDIChildWnd.

36 Class Library Reference

Typically, a frame window has one view, but sometimes, as in splitter windows, the
same frame window contains multiple views. The frame window keeps a pointer to
the currently active view; the pointer is updated any time another view is activated.

Note A pointer to the main frame window is stored in the myMainWnd member
variable of the application object. You must set the value of this variable in your
override of CWinApp 's InitInstance member function.

Creating New Documents, Windows, and Views
Figures 2.5, 2.6, and 2.7 give an overview of the creation process for documents,
views, and frame windows. Later chapters that focus onthe participating objects
provide further details.

Upon completion of this process, the cooperating objects exist and store pointers to
each other. These figures show the sequence in which objects are created. You can
follow the sequence from figure to figure.

Application

10 FILE OPEN
-command

CWinApp::
OnFileOpen

handler called

Get filename
from user

Use file extension
to select

document
template

CWinApp::
OnFileNew

handler called

IO_FILE_NEW
command

Get document
type from user

• ---- Document template
selected at this point
(MOl or SOl)

Figure 2.5 Sequence in Creating a Document

Chapter 2 Using the Classes to Write Applications for Windows 37

Document Template: OpenDocumentFile

Construct
document object:

CMyDoc

Construct frame
window object:
CMainFrame

Frame { Lc_r_ea_te--,-do_c_um_e_n---lt frame

Create Windows
window with

CFrameWnd::Create

Handle WM_CREATE message.
eM a i n F ram e: : 0 nCr eat e calls

CFrameWnd::OnCreateClient to
create client area

CMyView: :OnCreate
handles WM_CREATE

message

,) File opened and archive created I
CMyDoc: :

OnNewDocument
called

CMyDoc: : ""
OnOpenDocument :

called "'""L--------r-------l

• ---- Document ready to use

Figure 2.6 Sequence in Creating a Frame Window

Document

38 Class Library Reference

View

WM INITIALUPDATE
message sent to view

• CMyVi ew: :
OnlnitialUpdate-

handles message

•
Default

OnlnitialUpdate calis
CView: :OnUpdate

• ---- View initialized

Figure 2.7 Sequence in Creating a View

Initializing the New Objects
For information about how the framework initializes the new document, view,
and frame window objects, see classes CDocument, CView, CFrameWnd,
CMDIFrameWnd, and CMDIChildWnd in the alphabetic reference. Also see
Technical Note 22 in MSVC\HELP\MFCNOTES.HLP, which explains the creation
and initialization processes further under its discussion of the framework's standard
commands for the New and Open items on the File menu.

Initializing Your Own Additions to These Classes
Figures 2.5, 2.6, and 2.7 also suggest the points at which you can override member
functions to initialize your application's objects. An override of OnInitialUpdate
in your view class is the best place to initialize the view. The OnInitialUpdate call
occurs immediately after the frame window is created and the view within the frame
window is attached to its document. For example, if your view is a scroll view
(derived from CScrollView rather than CView), you should set the view size
based on the document size in your 0 n I nit i a 1 Up d ate override. (This process
is described in the description of class CScrollView.) You can override the
CDocument member functions OnNewDocument and OnOpenDocument to
provide application-specific initialization of the document. Typically, you must
override both since a document can be created in two ways.

In most cases, your override should call the base class version. For more
information, see the named member functions of classes CDocument, CView,
CFrame Wnd, and CWinApp.

Chapter 2 Using the Classes to Write Applications for Windows 39

Windows of Your Own

Class CWnd

Although the framework provides windows on your documents, you may at times
want to create your own windows, particularly child windows. Keeping in mind
how much the framework does for you, this section discusses windows in a more
general way, with particular emphasis on creating windows of your own. For more
information about the frame windows that the framework creates, see Chapter 4.

In the Microsoft Foundation Class Library, all windows are ultimately derived from
class CWnd. This includes dialog boxes, controls, control bars, and views as well
as frame windows and your own child windows, as shown in the Microsoft
Foundation Class Library hierarchy diagram on page xvi.

Window Objects
A C++ window object (whether for a frame window or some other kind of window)
is distinct from its corresponding Windows window (the HWND), but the two are
tightly linked. A good understanding of this relationship is crucial for effective
programming with the Microsoft Foundation Class Library.

The window object is an object of the C++ CWnd class (or a derived class) that
your program creates directly. It comes and goes in response to your program's
constructor and destructor calls. The Windows window, on the other hand, is an
opaque handle to an internal Windows data structure that corresponds to a window
and consumes system resources when present. A Windows window is identified by
a "window handle" (HWND) and is created after the CWnd object is created by a
call to the Create member function of class CWnd. The window may be destroyed
either by a program call or by a user's action. The window handle is stored in the
window object's m_hWnd member variable. Figure 2.8 shows the relationship
between the C++ window object and the Windows window. Creating windows is
discussed in "Creating Windows" on page 42. Destroying windows is discussed in
"Destroying Windows" on page 43.

m_hWnd -+-H-W-N-D---I~"rl

c++ Window object (CWnd) Windows window

Figure 2.8 Window Object and Windows Window

40 Class Library Reference

CWnd Member Functions
CWnd and its derived classes provide constructors, destructors, and member
functions to initialize the object, create the underlying Windows structures, and
access the encapsulated HWND. CWnd also provides member functions that
encapsulate Windows APIs for sending messages, accessing the window's state,
converting coordinates, updating, scrolling, accessing the Clipboard, and many
other tasks. Most Windows window-management APIs that take an HWND argu­
ment are encapsulated as member functions of CWnd. The names of the functions
and their parameters are preserved in the CWnd member function. For details
about the Windows APIs encapsulated by CWnd, see class CWnd in the alpha­
betic reference.

The general literature on programming for Windows is a good resource for learn­
ing how to use the CWnd member functions, which typically encapsulate the
HWND APIs. For example, see Charles Petzold's Programming Windows 3.1,
third edition.

Message Handling
One of the primary purposes of CW nd is to provide an interface for handling
Windows messages, such as WM_PAINT or WM_MOUSEMOVE. Many of
the member functions of CWnd are handlers for standard messages-those
beginning with the identifier afx _ msg and the prefix "On," such as OnPaint
and OnMouseMove. Chapter 3 covers messages and message handling in detail.
The information there applies equally to the framework's windows and those that
you create yourself for special purposes.

Derived Window Classes
Although you can create windows directly from CWnd, or derive new window
classes from CWnd, most windows used in a framework program are instead
created from one of the CWnd-derived frame-window classes supplied by the
Microsoft Foundation Class Library:

CFrameWnd
Used for SDI frame windows that frame a single document and its view. The
frame window is both the main frame window for the application and the frame
window for the current document.

CMDIFrameWnd
U sed as the main frame window for MDI applications. The main frame window
is a container for all MDI document windows and shares its menu bar with
them. An MDI frame window is a top-level window that appears on the desktop.

Chapter 2 Using the Classes to Write Applications for Windows 41

CMDIChildWnd
Used for individual documents opened in an MDI main frame window. Each
document and its view are framed by an MDI child frame window contained by
the MDI main frame window. An MDI child window looks much like a typical
frame window but is contained inside an MDI frame window instead of sitting
on the desktop. However, the MDI child window lacks a menu bar of its own
and must share the menu bar of the MDI frame window that contains it. Figure
2.9 shows an MDI application whose main frame window contains two MDI
document windows. Each document window contains a document and its view.

Figure 2.9 An MDI Frame Window with Children

In addition to frame windows, several other major categories of windows are
derived from CWnd:

Views
Views are created using the CWnd-derived class CView (or one of its derived
classes). A view is attached to a document and acts as an intermediary between
the document and the user. A view is a child window (not an MDI child) that
typically fills the client area of an SDI frame window or an MDI child frame
window.

Dialog Boxes
Dialog boxes are created using the CWnd-derived class CDialog.

Controls
Controls such as buttons, list boxes, and combo boxes are created using other
classes derived from CWnd.

Control Bars
Child windows that contain controls. Examples include toolbars and status bars.

Refer again to the Microsoft Foundation Class Library hierarchy diagram on page
xvi. Views are explained in Chapter 4. Dialog boxes, controls, and control bars are
explained in Chapter 5.

42 Class Library Reference

In addition to the window classes provided by the class library, you may need
special-purpose child windows. To create such a window, write your own CWnd­
derived class and make it a child window of a frame window or view.

Bear in mind that the framework manages the client area of a document frame
window. Most of the client area is managed by a view, but other windows, such as
control bars or your own custom windows, may share the space with the view. You
may need to interact with the mechanisms in classes CView and CControlBar for
positioning child windows in a frame window's client area.

The next section discusses creation of window objects and the Windows windows
they manage.

Creating Windows
Most of the windows you need in a framework program are created automatically
by the framework. You have already seen, in this chapter, how the framework
creates the frame windows associated with documents and views. This section
discusses window creation at a more general level. The material presented here is
especially useful if you need to create your own windows-in addition to the
windows supplied by the framework-for special purposes.

Registering Window "Classes"
In a traditional Windows program, you process all messages to a window in its
"window procedure" or "WndProc." A WndProc is associated with a window by
means of a "window class registration" process. The main window is registered in
the WinMain function, but other classes of windows can be registered anywhere in
the application. Registration depends on a structure that contains a pointer to the
WndProc function together with specifications for the cursor, background brush,
and so forth. The structure is passed as a parameter, along with the string name of
the class, in a prior call to the RegisterClass function. Thus a registration class can
be shared by multiple windows.

In contrast, most window class registration activity is done automatically in a
framework program. If you are using the Microsoft Foundation Class Library, you
typically derive a C++ window class from an existing library class using the normal
C++ syntax for class inheritance. The framework still uses traditional "registration
classes," and it provides several standard ones, registered for you in the standard
application initialization function. You can register additional registration classes
by calling the AfxRegisterWndClass global function and then pass the registered
class to the Create member function of CWnd. As described here, the traditional
Windows "registration class" is not to be confused with a C++ class.

For more information, see Technical Note 1 in MFCNOTES.HLP.

Chapter 2 Using the Classes to Write Applications for Windows 43

General Creation Sequence
If you are creating a window of your own, such as a child window, this section
describes what you need to know. The framework uses much the same process to
create windows for your documents as that described earlier in the chapter.

All the window classes provided by the Microsoft Foundation Class Library employ
two-phase construction. That is, during an invocation of the C++ new operator, the
constructor allocates and initializes a C++ object but does not create a correspond­
ing Windows window. That is done afterwards by calling the Create member
function of the window object.

The Create member function makes the Windows window and stores its HWND in
the C++ object's public data member m_hWnd. Create gives complete flexibility
over the creation parameters. Before calling Create, you may want to register a
window class with AfxRegisterWndClass in order to set the icon and class styles
for the frame.

For frame windows, the LoadFrame member function can be used instead of
Create. LoadFrame makes the Windows window using fewer parameters. It gets
many default values from resources, including the frame's caption, icon, accelerator
table, and menu.

Note Your icon, accelerator table, and menu resources must have a common
resource ID, such as IDR _MAINFRAME.

Destroying Windows
Care must be taken with your own child windows to destroy the C++ window
object when the user is finished with the window. If these objects are not destroyed,
your application will not recover their memory. Fortunately, the framework man­
ages window destruction as well as creation for frame windows, views, and dialog
boxes. If you create additional windows, you are responsible for destroying them.

In the framework, when the user closes the frame window, the window's default
OnClose handler calls DestroyWindow. The last member function called when the
Windows window is destroyed is OnNcDestroy, which does some cleanup, calls
the Default member function to perform Windows cleanup, and lastly calls the
virtual member function PostNcDestroy. The CFrameWnd implementation of
PostNcDestroy deletes the C++ window object.

Do not use the C++ delete operator to destroy a frame window or view. Instead,
call the CWnd member function DestroyWindow. Frame windows, therefore,
should be allocated on the heap with operator new. Care must be taken when allo­
cating frame windows on the stack frame or globally. Other windows should be
allocated on the stack frame whenever possible.

44 Class Library Reference

If you need to circumvent the object-HWND relationship, the Microsoft Foundation
Class Library provides another CWnd member function, Detach, which discon­
nects the C++ window object from the Windows window. This prevents the
destructor from destroying the Windows window when the object is destroyed.

Working With Windows
Working with windows calls for two kinds of activity:

• Handling Windows messages

• Drawing in the window

To handle Windows messages in any window, including your own child windows,
use Class Wizard to map the messages to your window class. Then write message­
handler member functions in your class. Chapter 3 details message handling.

Most drawing in a framework application occurs in the view, whose 0 nOr a w
member function is called whenever the window's contents must be drawn. If your
window is a child of the view, you might delegate some of the view's drawing to
your child window by having On Draw call one of your window's member functions.

In any case, you will need a device context for drawing.

Device Contexts
A device context is a Windows data structure that contains information about the
drawing attributes of a device such as a display or a printer. All drawing calls are
made through a device-context object, which encapsulates the Windows APIs for
drawing lines, shapes, and text. Device contexts allow device-independent
Windows drawing. Device contexts can be used to draw to the screen, to the
printer, or to a metafile.

Special Device-Context Classes
CPaintDC objects encapsulate the common Windows idiom of calling the
BeginPaint function, then drawing in the device context, then calling the EndPaint
function. The CPaintDC constructor calls BeginPaint for you, and the destructor
calls EndPaint. The simplified process is to create the CDC object, draw, and
destroy the CDC object. In the framework, much of even this process is automated.
In particular, your 0 nOr a w function is passed a CPaintDC already prepared (via
OnPrepareDC), and you simply draw into it. It is destroyed by the framework and
the underlying Windows device context is released to Windows upon return from
the call to your 0 nOr a w function.

CClientDC objects encapsulate working with a device context that represents only
the client area of a window. The CClientDC constructor calls the GetDC function,

Chapter 2 Using the Classes to Write Applications for Windows 45

and the destructor calls the ReleaseDC function. CWindowDC objects encapsulate
a device context that represents the whole window, including its frame.

CMetaFileDC objects encapsulate drawing into a Windows metafile. In contrast to
the CPaintDC passed to 0 n D raw, you must in this case call OnPrepareDC
yourself. For more information about these classes, see the alphabetic reference.

Drawing is discussed in greater detail in Chapter 4.

Other Device-Context Uses
Although most drawing-and thus most device-context work-in a framework
program is done in the view's 0 n D raw member function, as described in Chapter 4,
you can still use device-context objects for other purposes. For example, to provide
tracking feedback for mouse movement in a view, you need to draw directly into the
view without waiting for 0 n D raw to be called.

In such a case, you can use a CClientDC device-context object to draw directly
into the view. For more information about mouse drawing, see "Interpreting User
Input Through a View" in Chapter 4.

Graphic Objects
Windows provides a variety of drawing tools to use in device contexts. It provides
pens to draw lines, brushes to fill interiors, and fonts to draw text. The Microsoft
Foundation Class Library provides graphic-object classes equivalent to the drawing
tools in Windows. Table 2.5 shows the available classes and the equivalent
Windows GDI handle types.

The general literature on programming for the Windows GDI applies to the
Microsoft Foundation classes that encapsulate GDI graphic objects. This section
explains the use of the graphic-object classes.

Table 2.5 Graphic Objects

Classes

CPen

CBrush

CFont

CBitmap

CPalette

CRgn

Windows Handle Types

HPEN

HBRUSH

HFONT

HBITMAP

HPALETTE

HRGN

46 Class Library Reference

Each of the graphic-object classes in the class library has a constructor that allows
you to create graphic objects of that class, which you must then initialize with the
appropriate create function, such as CreatePen.

The following four steps are typically used when you need a graphic object for a
drawing operation:

1. Define a graphic object on the stack frame. Initialize the object with the type­
specific create function, such as CreatePen. Alternatively, initialize the object
in the constructor. See the discussion of one-stage and two-stage creation below.

2. Select the object into the current device context, saving the old graphic object
that was selected before.

3. When done with the current graphic object, select the old graphic object back
into the device context to restore its state.

4. Allow the frame-allocated graphic object to be deleted automatically when the
scope is exited.

Note If you will be using a graphic object repeatedly, you can allocate it once and
select it into a device context each time it is needed. Be sure to delete such an object
when you no longer need it.

You have a choice between two techniques for creating graphic objects:

• One-stage construction: Construct and initialize the object in one stage, all with
the constructor.

• Two-stage construction: Construct and initialize the object in two separate
stages. The constructor creates the object and an initialization function
initializes it.

Two-stage construction is always safer. In one-stage construction, the constructor
could throw an exception if you provide incorrect arguments or memory allocation
fails. That problem is avoided by two-stage construction, although you do have to
check for failure. In either case, destroying the object is the same process.

The following brief example shows both methods of constructing a pen object:

void CMyView::OnDraw(CDC* pDC)
{

CPen myPenl(PS_DOT, 5, RGB(0,0,0));
II Two-stage: first construct the pen
CPen myPen2;
II Then initialize it

II One-stage

if(myPen2.CreatePen(PS_DOT, 5, RGB(0,0,0)))
II Use the pen

Chapter 2 Using the Classes to Write Applications for Windows 47

After you create a drawing object, you must select it into the device context in place
of the default pen stored there:

void CMyView::OnDraw(CDC* pDC)
{

CPen penBlack; II Construct it. then initialize
if(newPen.CreatePen(PS_SOLID. 2. RGB(0.0.0)))
{

else

II Select it into the device context
II Save the old pen at the same time
CPen* pOldPen = pDC->SelectObject(&penBlack);

II Draw with the pen
pDC ->MoveTo (...) ;
pDC->LineTo(...);

II Restore the old pen to the device context
pDC->SelectObject(pOldPen);

II Alert the user that resources are low

The graphic object returned by SelectObject is a "temporary" object. That is, it
will be deleted by the OnIdle member function of class CWinApp the next time
the program gets idle time. As long as you use the object returned by SelectObject
in a single function without returning control to the main message loop, you will
have no problem.

How to Use the Clipboard
Most applications for Windows support cutting or copying data to the Windows
Clipboard and pasting data from the Clipboard. The Clipboard data formats vary
among applications. The framework supports only a limited number of Clipboard
formats for a limited number of classes. You will normally implement the
Clipboard-related commands-Cut, Copy, and Paste-on the Edit menu for your
view. The class library defines the command IDs for these commands:
ID _EDIT_CUT, ID _EDIT_COPY, and ID _EDIT_PASTE. Their message-line
prompts are also defmed.

The Clipboard is a system service shared by the entire Windows session, so it does
not have a handle or class of its own. You manage the Clipboard through member
functions of class CWnd.

48 Class Library Reference

Chapter 3 explains how to handle menu commands in your application by mapping
the menu command to a handler function. As long as your application does not
define handler functions for the Clipboard commands on the Edit menu, they remain
disabled. To write handler functions for the Cut and Copy commands, implement
selection in your application. To write a handler function for the Paste command,
query the Clipboard to see whether it contains data in a format your application can
accept. For example, to enable the Copy command, you might write a handler
something like the following:

void CMyView::OnEditCopy()
{

if(!OpenClipboard())
{

}

II

AfxMessageBox("Cannot open the Clipboard");
return;

II Get the currently selected data
II
II For the appropriate data formats ...
SetClipboardData(CF_??, hData);
I I ...
CloseClipboard();

The Cut, Copy, and Paste commands are only meaningful in certain contexts. The
Cut and Copy commands should be enabled only when something is selected, and
the Paste command only when something is in the Clipboard. You can provide this
behavior by defining update handler functions that enable or disable these com­
mands depending on the context. For more information, see "How to Update User­
Interface Objects" on page 67 in Chapter 3.

The Microsoft Foundation Class Library does provide Clipboard support for text
editing with the CEdit and CEditView classes. The Object Linking and Embed­
ding (OLE) classes also simplify implementing Clipboard operations that involve
OLE items. For more information on the OLE classes, see Chapter 18 in the Class
Library User's Guide.

Implementing other Edit menu commands, such as Undo (ID _EDIT _UNDO)
and Redo (ID _ EDIT _REDO), is also left to you. If your application does not
support these commands, you can easily delete them from your resource file
using App Studio.

Chapter 2 Using the Classes to Write Applications for Windows 49

In the Next Chapter
So far you have seen how the framework creates its major component objects. In
Chapter 3, you will see how the framework dispatches Windows messages­
including "commands," a new category of messages introduced by the Microsoft
Foundation Class Library-to those objects and how the objects "handle" the
messages and commands to do the application's work.

51

CHAPTER 3

Working with
Messages and Commands

Chapter 2 introduced the major objects in a running framework application written
with the Microsoft Foundation Class Library. This chapter describes how messages
and commands are processed by the framework and how you connect them to their
handler functions using the Class Wizard tool. Topics covered include:

• Messages and commands

• Message categories

• How the framework calls a message handler

• Message maps

• Managing messages and commands with Class Wizard

• Dynamic update of user-interface objects

• Dynamic display of command information in the status bar

Messages and Commands in the Framework

Messages

Applications written for Microsoft Windows are "message driven." In response to
events such as mouse clicks, keystrokes, window movements, and so on, Windows
sends messages to the proper window. Framework applications process Windows
messages like any other application for Windows. But the framework also provides
some enhancements that make processing messages easier, more maintainable, and
better encapsulated.

The following sections introduce the key terms used in the rest of the chapter to
discuss messages and commands.

The message loop in the Run member function of class CWinApp retrieves
queued messages generated by various events. For example, when the user
clicks the mouse, Windows sends several mouse-related messages, such as

52 Class Library Reference

WM _ LBUTTONDOWN when the left mouse button is pressed and
WM LBUTTONUP when the left mouse button is released. The framework's
implementation of the application message loop dispatches the message to the
appropriate window.

The important categories of messages are described in "Message Categories" later
on this page.

Message Handlers
In the Microsoft Foundation Class Library, a dedicated "handler" function
processes each separate message. Message-handler functions are member functions
of a class. This manual uses the terms "message-handler member function,"
"message-handler function," "message handler," and "handler" interchangeably.

Writing message handlers accounts for a large proportion of your work in writing
a framework application. This chapter describes how the message-processing
mechanism works.

What does the handler for a message do? The answer is that it does whatever you
want done in response to that message. Class Wizard will create the handlers for
you and allow you to implement them. You can jump directly from the Class Wizard
dialog box to the handler function's definition in your source files and fill in the
handler's code using the Visual Workbench editor. Or you can create all of your
handlers with Class Wizard, then move to the editor to fill in all functions at once.
You willieam more about using ClassWizard in "How to Manage Commands and
Messages with ClassWizard" on page 65.

You can use all of the facilities of Microsoft Visual C++ and the Microsoft
Foundation Class Library to write your handlers. For a list of all classes, see
Chapter 1.

Message Categories
What kinds of messages do you write handlers for? There are three main categories:

1. Windows messages

This includes primarily those messages beginning with the WM _ prefix, except
for WM _COMMAND. Windows messages are handled by windows and
views. These messages often have parameters that are used in determining
how to handle the message.

2. Control notifications

Chapter 3 Working with Messages and Commands 53

This includes WM _ COMMAND notification messages from controls, includ­
ing VBX control events from Microsoft Visual Basic™-compatible controls,
and other child windows to their parent windows. For example, an edit control
sends its parent a WM _COMMAND message containing the EN_CHANGE
control-notification code when the user has taken an action that may have
altered text in the edit control. The window's handler for the message responds
to the notification message in some appropriate way, such as retrieving the text
in the control. VBX notification messages are identified by VBN _ identifiers.

The framework routes control-notification messages like other WM _ messages.
One exception, however, is the BN _ CLICKED control-notification message sent
by buttons when the user clicks them. This message is treated specially as a
command message and routed like other commands.

3. Command messages

This includes WM _ COMMAND notification messages from user-interface
objects: menus, toolbar buttons, and accelerator keys. The framework processes
commands differently from other messages, and they can be handled by more
kinds of objects, as explained below.

Windows Messages and Control·Notification Messages
Messages in categories I and 2 are handled by windows: objects of classes
derived from class CWnd. This includes CFrame Wnd, CMDIFrame Wnd,
CMDIChildWnd, CView, CDiaiog, and your own classes derived from these
base classes. Such objects encapsulate an HWND, a handle to a Windows window.

Command Messages
Messages in category 3-commands-can be handled by a wider variety of
objects: documents, document templates, and the application object itself in addition
to windows and views. When a command directly affects some particular object, it
makes sense to have that object handle the command. For example, the Open com­
mand on the File menu is logically associated with the application: the application
opens a specified document upon receiving the command. So the handler for the
Open command is a member function of the application class. You will learn more
about commands and how they are routed to objects in "How the Framework Calls
a Handler" on page 56.

Message Maps
Each framework class that can receive messages or commands has its own
"message map." The framework uses message maps to connect messages and
commands to their handler functions. Any class derived from class CCmdTarget
can have a message map. Later sections of this chapter explain message maps in
detail and describe how to use them.

54 Class Library Reference

In spite of the name "message map," message maps handle both messages and
commands-all three categories of messages listed in "Message Categories" on
page 52.

User-Interface Objects and Command IDs
Menu items, toolbar buttons, and accelerator keys are "user-interface objects"
capable of generating commands. Each such user-interface object has an ID. You
associate a user-interface object with a command by assigning the same ID to the
object and the command. As you have seen, commands are implemented as special
messages. Figure 3.1 shows how the framework manages commands.

Edit Clear All Clears all
menuitem ID_EDIT_CLEAR_ALL Document object OnEditClearAll() documentdata

User-interface Command -target message map
object is selected .. ON_COMMAND

Command ... ON_UPDATE_COMMAND_UI Updating user- ------II ~ I
interface object L--_______ ----'

Command handler ----. Takes action

Update command ----. Updates
UI handler user-interface

object

In idle loop or
menu popup

OnUpdateEditClearAll()

Figure 3.1 Commands in the Framework

Command IDs

Enables/Disables
menu item

A command is fully described by its command ill alone (encoded in the
WM_ COMMAND message). This ID is assigned to the user-interface object
that generates the command. Typically, IDs are named for the functionality of
the user-interface object they are assigned to.

For example, a Clear All item in the Edit menu might be assigned an ID such as
ID _EDIT _CLEAR_ALL. The class library predefines some IDs, particularly for
commands that the framework handles itself, such as ID _EDIT_CLEAR _ALL or
ID _FILE_OPEN . You will create other command IDs yourself.

When you create your own menus in App Studio, it is a good idea to follow the
class library's naming convention as illustrated by ID _FILE_OPEN. The next
section explains the standard commands defined by the class library.

Chapter 3 Working with Messages and Commands 55

Standard Commands
The framework defines many standard command messages. The IDs for these
commands typically take the form:

ID _Source_Item

where Source is usually a menu name and Item is a menu item. For example, the
command ID for the New command on the File menu is ID FILE NEW. Standard - -
command IDs are shown in bold type in the documentation. Programmer-defined
IDs are shown in monotype.

The following is a list of some of the most important commands supported:

File Menu Commands
New, Open, Close, Save, Save As, Page Setup, Print Setup, Print, Print Preview,
Exit, and most-recently-used files.

Edit Menu Commands
Clear, Clear All, Copy, Cut, Find, Paste, Repeat, Replace, Select All, Undo,
and Redo.

View Menu Commands
Toolbar and Status Bar.

Window Menu Commands
New, Arrange, Cascade, Tile Horizontal, Tile Vertical, and Split.

Help Menu Commands
Index, Using Help, and About.

Object Linking and Embedding (OLE) Commands (Edit Menu)
Insert New Object, Edit Links, Paste Link, Paste Special, and typename Object
(verb commands).

The framework provides varying levels of support for these commands. Some
commands are supported only as defined command IDs, while others are supported
with thorough implementations. For example, the framework implements the Open
command on the File menu by creating a new document object, displaying an Open
dialog box, and opening and reading the file. In contrast, you must implement
commands on the Edit menu yourself, since commands like ID _EDIT_COPY
depend on the nature of the data you are copying.

For more information about the commands supported and the level of implementa­
tion provided, see Technical Note 22 in MSVC\HELP\MFCNOTES.HLP. The
standard commands are defined in file AFXRES.H.

56 Class Library Reference

Command Targets
Figure 3.1 shows the connection between a user-interface object, such as a menu
item, and the handler function that the framework calls to carry out the resulting
command when the object is clicked.

Windows sends messages that are not command messages directly to a window
whose handler for the message is then called. However, the framework routes
commands to a number of candidate objects-called "command targets" -one of
which normally invokes a handler for the command. The handler functions work the
same way for both commands and standard Windows messages, but the mechanism
by which they are called is different, as explained in "How the Framework Calls a
Handler" below.

How the Framework Calls a Handler
This section first examines how the framework routes commands, then examines
how other messages and control notifications are sent to windows.

Message Sending and Receiving
Consider the sending part of the process and how the framework responds.

Most messages result from user interaction with the program. Commands are
generated by mouse clicks in menu items or toolbar buttons or by accelerator
keystrokes. The user also generates Windows messages by, for example, moving or
resizing a window. Other Windows messages are sent when events such as program
startup or termination occur, as windows get or lose the focus, and so on. Control­
notification messages are generated by mouse clicks or other user interactions with
a control, such as a button or list-box control in a dialog box. VBX events are
generated by user interactions with VBX controls.

The Run member function of class CWinApp retrieves messages and dispatches
them to the appropriate window. Most command messages are sent to the main
frame window of the application. The WindowProc predefined by the class library
gets the messages and routes them differently, depending on the category of
message received.

Now consider the receiving part of the process.

The initial receiver of a message must be a window object. Windows messages
are usually handled directly by that window object. Command messages, usually
originating in the application's main frame window, get routed to the command­
target chain described in "Command Routing" on page 57.

Each object capable of receiving messages or commands has its own message map
that pairs a message or command with the name of its handler.

Chapter 3 Working with Messages and Commands 57

When a command-target object receives a message or command, it searches its
message map for a match. If it finds a handler for the message, it calls the handler.
For more information about how message maps are searched, see "How the
Framework Searches Message Maps" on page 60. Refer again to Figure 3.1 on
page 54.

How Noncommand Messages Reach Their Handlers
Unlike commands, standard Windows messages do not get routed through a chain
of command targets but are usually handled by the window to which Windows
sends the message. The window might be a main frame window, an MDI child
window, a standard control, a dialog box, a view, or some other kind of child
window.

At run time, each Windows window is attached to a window object (derived from
CWnd) that has its own associated message map and handler functions. The frame­
work uses the message map-as for a command-to map incoming messages to
handlers.

Command Routing
Your responsibility in working with commands is limited to making message-map
connections between commands and their handler functions, a task for which you
use Class Wizard. You must also write most command handlers.

All messages are usually sent to the main frame window, but command messages
are then routed on to other objects. The framework routes commands through a
standard sequence of command-target objects, one of which is expected to have a
handler for the command. Each command-target object checks its message map to
see if it can handle the incoming message.

Different command-target classes check their own message maps at different times.
Typically, a class routes the command to certain other objects to give them first
chance at the command. If none of those objects handles the command, the original
class checks its own message map. Then, if it can't supply a handler itself, it may
route the command to yet more command targets. Table 3.1, on the next page,
shows how each of the classes structures this sequence. The general order in which
a command target routes a command is:

1. To its currently active child command-target object

2. To itself

3. To other command targets

How expensive is this routing mechanism? Compared to what your handler does
in response to a command, the cost of the routing is low. Bear in mind that the

58 Class Library Reference

framework generates commands only when the user interacts with a user-interface
object.

Table 3.1 Standard Command Route

When an object of this type
receives a command ...

MDI frame window
(CMDIFrame Wnd)

Document frame window
(CFrameWnd, CMDIChildWnd)

View

Document

Dialog box

... it gives itself and other command-target
objects a chance to handle the command in
this order:

1. Active CMDIChildWnd

2. This frame window

3. Application (CWinApp object)

1. Active view

2. This frame window

3. Application (CWinApp object)

1. This view

2. Document attached to the view

1. This document

2. Document template attached to the document

1. This dialog box

2. Window that owns the dialog box

3. Application (CWinApp object)

Where numbered entries in the second column of Table 3.1 mention other objects,
such as a document, see the corresponding item in the first column. For instance,
when you read in the second column that the view forwards a command to its
document, see the "Document" entry in the first column to follow the routing
further.

An Example
To illustrate, consider a command message from a Clear All menu item in an MDI
application's Edit menu. Suppose the handler function for this command happens
to be a member function of the application's document class. Here's how that
command reaches its handler after the user chooses the menu item:

1. The main frame window receives the command message first.

2. The main MDI frame window gives the currently active MDI child window a
chance to handle the command.

3. The standard routing of an MDI child frame window gives its view a chance at
the command before checking its own message map.

Chapter 3 Working with Messages and Commands 59

4. The view checks its own message map first, but, finding no handler, the view
next routes the command to its associated document.

5. The document checks its message map and finds a handler. This document
member function is called and the routing stops.

If the document did not have a handler, it would next route the command to its
document template. Then the command would return to the view and then the
frame window. Finally, the frame window would check its message map. If that
check failed as well, the command would be routed back to the main MDI frame
window and then to the application object-the ultimate destination of unhandled
commands.

OnCmdMsg
To accomplish this routing of commands, each command target calls the
OnCmdMsg member function of the next command target in the sequence.
Command targets use OnCmdMsg to determine whether they can handle a
command and to route it to another command target if they cannot handle it.

Each command-target class may override the OnCmdMsg member function.
The overrides let each class route commands to a particular next target. A frame
window, for example, always routes commands to its current child window or view,
as shown in Table 3.1 on page 58.

The default CCmdTarget implementation of OnCmdMsg uses the message map
of the command-target class to search for a handler function for each command
message it receives-in the same way that standard messages are searched. If
it finds a match, it calls the handler. Message-map searching is explained in the
section "How the Framework Searches Message Maps" on page 60.

Overriding the Standard Routing
In rare cases when you must implement some variation of the standard framework
routing, you can override it. The idea is to change the routing in one or more classes
by overriding OnCmdMsg in those classes. Do so:

• In the class that breaks the order to pass to a nondefault object.

• In the new nondefault object or in command targets it might in tum pass
commands to.

If you insert some new object into the routing, its class must be a command-target
class. In your overriding versions of OnCmdMsg, be sure to call the version that
you're overriding. See the OnCmdMsg member function of class CCmdTarget
and the versions in such classes as CView and CDocument in the supplied source
code for examples.

60 Class Library Reference

How the Framework Searches Message Maps
The framework searches the message-map table for matches with incoming
messages. Once you use Class Wizard to write a message-map entry for each
message you want a class to handle and to write the corresponding handlers, the
framework calls your handlers automatically.

Where to Find Message Maps
When you create a new skeleton application with App Wizard, App Wizard writes
a message map for each command-target class it creates for you. This includes
your derived application, document, view, and frame-window classes. Some of
these message maps already have App Wizard-supplied entries for certain messages
and predefined commands, and some are just placeholders for handlers that you
will add.

A class's message map is located in the .CPP file for the class. Working with the
basic message maps that AppWizard creates, you use ClassWizard to add entries
for the messages and commands that each class will handle. A typical message
map might look like the following after you add some entries:

BEGIN_MESSAGE_MAP(CMyView, CView)
11{{AFX_MSG_MAP(CMyView)
ON_WM_MOUSEACTIVATE()
ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
ON_BN_CLICKED(ID_MY_BUTTON, OnMyButton)
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

The message map consists of a collection of macros. Two macros,
BEGIN_MESSAGE _MAP and END _MESSAGE_MAP, bracket the message
map. Other macros, such as ON_COMMAND, fill in the message map's contents.
You will learn more about these macros in the sections to come.

Note The message-map macros are not followed by semicolons.

The message map also includes comments of the form

11{{AFX_MSG_MAP(CMyView)
I/} }AFX_MSG_MAP

that bracket many of the entries (not necessarily all). Class Wizard uses these
special comments when it writes entries for you. All Class Wizard entries go
between the comment lines.

Chapter 3 Working with Messages and Commands 61

When you use Class Wizard to create a new class, it provides a message map for
the class. Alternatively, you can create a message map manually using the Visual
Workbench editor.

Derived Message Maps
During message handling, checking a class's own message map is not the end of the
message-map story. What happens if class CMyVi ew (derived from CView) has no
matching entry for a message?

Keep in mind that CView, the base class of CMyVi ew, is derived in tum from
CWnd. Thus CMyVi ew is a CView and is a CWnd. Each of those classes has its
own message map. Figure 3.2 shows the hierarchical relationship of the classes, but
keep in mind that a CMyVi ew object is a single object that has the characteristics of
all three classes.

In the class library

CMyView

Figure 3.2 A View Hierarchy

So if a message can't be matched in class CMyVi ew's message map, the
framework also searches the message map of its immediate base class. The
BEGIN_MESSAGE _MAP macro at the start of the message map specifies two
class names as its arguments:

BEGIN_MESSAGE_MAP(CMyView, CView)

The first argument names the class to which the message map belongs. The second
argument provides a connection with the immediate base class-CView here-so
the framework can search its message map too.

The message handlers provided in a base class are thus inherited by the derived
class. This is very similar to normal virtual member functions without needing to
make all handler member functions virtual.

62 Class Library Reference

If no handler is found in any of the base-class message maps, default processing of
the message is performed. If the message is a command, the framework routes it to
the next command target. If it is a standard Windows message, the message is
passed to the appropriate default window procedure.

To speed message-map matching, the framework caches recent matches on the
likelihood that it will receive the same message again. One consequence of this is
that the framework processes unhandled messages quite efficiently. Message maps
are also more space-efficient than implementations that use virtual functions.

Message-Map Entries
In your source files, a message map consists of a sequence of predefined macros.
The macros inside the message map are called "entry macros." The entry macros
used in a message map depend upon the category of the message to be handled. The
following sample shows a message map with several common entries (given in the
same order as the items in Table 3.2):

BEGIN_MESSAGE_MAP(CMyView, CView)
11{{AFX_MSG_MAP(CMyView)
ON_WM_MOUSEACTIVATE()
ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
ON_BN_CLICKED(ID_MY_BUTTON, OnMyButton)
ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)
ON_REGISTERED_MESSAGE(WM_FIND, OnFind)
ON_VBXEVENT(VBN_CLICK, IDC_MYBUTTON, OnClickedMyButton)
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

Table 3.2 summarizes the various kinds of entries. Each entry consists of a macro
with zero or more arguments. The macros are predefined by the class library. For
examples of the macros, see the message map above.

Table 3.2 Message-Map Entry Macros

Message Type Macro Form

Predefined ON WM XXXX
Windows messages

Commands ON COMMAND

Arguments

None

Command ID, Handler
name

Update commands ON _ VPDATE _COMMAND_VI Command ID, Handler
name

Control notifications 0 N XXXX Control ID, Handler name

Chapter 3 Working with Messages and Commands 63

Table 3.2 Message-Map Entry Macros (continued)

Message Type

User-defined
message

Registered
Windows message

VBX control event

Macro Form Arguments

ON MESSAGE User-defined message ID,
Handler name (see
Technical Note 6 in
MFCNOTES.HLP)

ON_REGISTERED_MESSAGE Registered message ID
variable, Handler name (see
Technical Note 6 in
MFCNOTES.HLP)

ON VBXEVENT Event-registration variable
(VBN_XXX), Control ID,
Handler name (see
Technical Note 27 'in
MFCNOTES.HLP)

Names in the table with the notation _XXX represent groups of messages whose
names are based on standard message names or control-notification codes in
Windows. For example: ON_ WM_PAINT, ON_ WM_LBUTTONDOWN,
ON _ EN_CHANGE, ON _ LB _ GETSEL. Even though the ON_ WM _XXX
macros take no arguments, the corresponding handler functions often do take
arguments, passed to them by the framework.

Declaring Handler Functions
Certain rules and conventions govern the names of your message-handler functions.
These depend on the message category.

Standard Windows Messages
Default handlers for standard Windows messages (WM_) are predefined in class
CWnd. The class library bases names for these handlers on the message name. For
example, the handler for the WM_PAINT message is declared in CWnd as:

afx_msg void OnPaint();

The afx _ msg keyword suggests the effect of the C++ virtual keyword by
distinguishing the handlers from other CWnd member functions. Note, however,
that these functions are not actually virtual; they are instead implemented through
message maps. Message maps depend solely on standard preprocessor macros, not
on any extensions to the C++ language. The afx _ msg keyword resolves to white
space after preprocessing.

64 Class Library Reference

To override a handler defined in a base class, simply use ClassWizard to define a
function with the same prototype in your derived class and to make a message-map
entry for the handler. Your handler "overrides" any handler of the same name in
any of your class's base classes.

In some cases, your handler should call the overridden handler in the base class so
the base class(es) and Windows can operate on the message. Where you call the
base-class handler in your override depends on the circumstances. Sometimes you
must call the base-class handler first and sometimes last. Sometimes you call the
base-class handler conditionally, if you choose not to handle the message yourself.
Sometimes you should call the base-class handler, then conditionally execute your
own handler code, depending on the value or state returned by the base-class
handler.

Important It is not safe to modify the arguments passed into a handler if you intend
to pass them to a base-class handler. For example, you might be tempted to modify
the nChar argument of the OnChar handler (to convert to uppercase, for example).
This behavior is fairly obscure, but if you need to accomplish this effect, use the
CWnd member function SendMessage instead.

How do you determine the proper way to override a given message? ClassWizard
helps with this decision. When Class Wizard writes the skeleton of the handler
function for a given message-an 0 nCr eat e handler for WM _ CREATE, for
example-it sketches in the form of the recommended overridden member function.
The following example recommends that the handler first call the base-class
handler and proceed only on condition that it does not return -1.

int CMyView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CView::OnCreate(lpCreateStruct) == -1)
return -I;

II TODO: Add your specialized creation code here
return 0;

By convention the names of these handlers begin with the prefix "On." Some of
these handlers take no arguments, while others take several. Some also have a
return type other than void. The default handlers for all WM _ messages are
documented in the reference as member functions of class CWnd whose names
begin with "On." The member function declarations in CWnd are prefixed with
afx_msg.

Chapter 3 Working with Messages and Commands 65

Commands and Control Notifications
There are no default handlers for commands or control-notification messages.
Therefore, you are bound only by convention in naming your handlers for these
categories of messages. When you map the command or control notification to a
handler, ClassWizard proposes a name based on the command ID or control­
notification code. You can accept the proposed name, change it, or replace it.

Convention suggests that you name handlers in both categories for the user­
interface object they represent. Thus a handler for the Cut command on the
Edit menu might be named

afx_msg void OnEditCut();

Because the Cut command is so commonly implemented in applications, the
framework predefines the command ID for the Cut command as ID _ EDIT _CUT.
For a list of all predefined command IDs, see the file AFXRES.H. For more
information, see "Standard Commands" on page 54.

In addition, convention suggests a handler for the BN_ CLICKED notification
message from a button labeled "Use As Default" might be named

afx_msg void OnClickedUseAsDefault();

You might assign this command an ID of I DC_US E_AS_D E FAU L T since it is
equivalent to an application-specific user-interface object.

Both categories of messages take no arguments and return no value.

How to Manage Commands and
Messages with ClassWizard

Now that you have seen how messages and commands work, it is time to see
how easy it is to manage them with Class Wizard. This section briefly describes
the process.

Since a framework application must handle many messages-with the handlers
distributed among numerous windows and views, and even documents and other
objects-the job of making and maintaining all the connections is demanding.

For that reason, Visual C++ provides ClassWizard, a tool designed specifically to
connect Windows messages and user-interface objects such as menus to their
handlers. Figure 3.3 shows ClassWizard being used to map a message to a handler.

66 Class Library Reference

file ClassWizard

~ Class Harne: L-IC_Sc_ri_bV_ie_w ____ --"liI_!:
scribvw.h, scribvw.cpp

Member functions:

OK

Cancel

I.Q.detll hM"lc(irm I
, f.dit Code I

I

' Add Function I

'---------------~
Description: Passes ke!.'board events to focus window

p

1===11

~----------------------~_.~~--~~~Ol~

Figure 3.3 Class Wizard

The typical development scenarios are as follows:

• You determine that one of your classes must handle a certain Windows message,
so you invoke Class Wizard and make the connection.

• You create a menu or accelerator resource in App Studio, then invoke
Class Wizard to connect the command associated with that object to a handler.

As you work with the framework, you'll find that Class Wizard greatly simplifies
your message-management tasks.

Class Wizard writes the following information to your source files:

• The appropriate message-map entry for the connection

• A declaration of the handler as a member function of the class

• An empty function template for you to fill in with the handler's code

You can invoke ClassWizard from App Studio while you're editing menus, accel­
erators, toolbars, or dialog boxes. Or you can invoke it from Visual Workbench
while you're working on source code files with the editor. For detailed information
about using Class Wizard to connect messages to handlers, see Chapter 13 in the
Visual Workbench User's Guide and Chapter 9 in the App Studio User's Guide.
For examples, see Chapters 6 and 7 in the Class Library User's Guide.

Chapter 3 Working with Messages and Commands 67

Important Use ClassWizard to create and edit all message-map entries. If you add
them manually, you may not be able to edit them with ClassWizard later. If you add
them outside the bracketing comments, / / { {A F X_M S G_MA P (c 1 ass n a me) and
/ /} }AFX_MSG_MAP, ClassWizard cannot edit them at all. Note that by the same
token ClassWizard will not touch any entries you add outside the comments, so feel
free to add messages outside the comments if you do not want them to be modified.

How to Update User-Interface Objects
Typically, menu items and toolbar buttons have more than one state. For example, a
menu item is grayed (dimmed) if it is unavailable in the present context. Menu
items can also be checked or unchecked. A toolbar button can also be disabled if
unavailable, or be checked.

Who updates the state of these items as program conditions change? Logically, if a
menu item generates a command that is handled by, say, a document, it makes sense
to have the document update the menu item. The document probably contains the
infonnation on which the update is based.

If a command has multiple user-interface objects (perhaps a menu item and a
toolbar button), both are routed to the same handler function. This encapsulates
your user-interface update code for all of the equivalent user-interface objects in a
single place.

The framework provides a convenient interface for automatically updating user­
interface objects. You can choose to do the updating in some other way, but the
interface provided is efficient and easy to use.

When Update Handlers are Called
Suppose the user clicks the mouse in the File menu, which generates a
WM_INITMENUPOPUP message. The framework's update mechanism
collectively updates all items on the File menu before the menu drops down
so the user can see it.

To do this, the framework routes update commands for all menu items in the pop-up
menu along the standard command routing. Command targets on the routing have an
opportunity to update any menu items by matching the update command with an
appropriate message-map entry (of the fonn ON_ UPDATE_COMMAND _ UI)
and calling an "update handler" function. Thus, for a menu with six menu items, six
update commands are sent out. If an update handler exists for the command ID of

68 Class Library Reference

the menu item, it is called to do the updating. If not, the framework checks for the
existence of a handler for that command ID and enables or disables the menu item
as appropriate.

If the framework does not find an ON_UPDATE _COMMAND _ UI entry during
command routing, it automatically enables the user-interface object if there is an
ON_COMMAND entry somewhere with the same command ID. Otherwise, it
disables the user-interface object. Therefore, to ensure that a user-interface object is
enabled, supply a handler for the command the object generates or supply an update
handler for it. See Figure 3.1 on page 54.

It is possible to disable the default disabling of user-interface objects. For more
information, see the m _ bAutoMenuEnable member of class CFrame Wnd.

Menu initialization is automatic in the framework, occurring when the application
receives a WM _ INITMENUPOPUP message. During the idle loop, the frame­
work searches the command routing for button update handlers in much the same
way as it does for menus.

The ON UPDATE COMMAND UI Macro - -
Use ClassWizard to connect a user-interface object to a command-update handler
in a command-target object. It will automatically connect the user-interface object's
ID to the ON UPDATE COMMAND UI macro and create a handler in the - - -
object that will handle the update.

For example, the Scribble tutorial in the Class Library User's Guide updates a
Clear All command in its Edit menu. In the tutorial, Class Wizard adds a message­
map entry in the chosen class, a function declaration for a command-update handler
called 0 n Up d ate Ed i tel ear A 11 in the class declaration, and an empty function
template in the class's implementation file. The function prototype looks like this:

afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);

Like all handlers, the function shows the afx _ msg keyword. Like all update
handlers, it takes one argument, a pointer to a CCmdUI object.

The CCmdUI Class
When it routes the update command to the handler, the framework passes the
handler a pointer to a CCmdUI object (or to an object of a CCmdUI-derived
class). This object represents the menu item or toolbarbutton or other user-interface
object that generated the command. The update handler calls member functions of

Chapter 3 Working with Messages and Commands 69

the CCmdUI structure through the pointer to update the user-interface object. For
example, here is an update handler for the Clear All menu item:

void CMyClass::OnUpdateToolsMyTool(CCmdUI* pCmdUI)
{

if(ToolAvailable()
pCmdUI->Enable(TRUE);

This handler calls the Enable member function of an object with access to the menu
item. Enable makes the item available for use.

How to Display Command Information In the Status Bar
When you run App Wizard to create the skeleton of your application, you can easily
support a toolbar and a status bar. A single option in App Wizard supports both
together. When a status bar is present, the framework automatically gives helpful
feedback as the user of your application moves the mouse through items in the
menus. The framework automatically displays a prompt string in the status bar
when the menu item is being selected. For example, when the user drags the mouse
over the Cut item in the Edit menu, the framework might display "Cut the selection
and put it on the Clipboard" in the message area of the status bar. The prompt helps
the user grasp the menu item's purpose. This also works when the user clicks on a
toolbar button. Figure 3.4 shows a status bar displaying a command prompt string.

I Is ave the adive document

I Message area

Figure 3.4 A Command Prompt in the Status Bar

\ I

I Keyboard
indicators

You can easily add to this status-bar help by defining prompt strings for the menu
items that you add to the program. To do so, provide the prompt strings when you
edit the properties of the menu item in App Studio. The strings you define this way
are stored in your application's resource file; they have the same IDs as the
commands they explain.

By default, AppWizard adds the ID for a standard prompt, "Ready," which is
displayed when the program is waiting for new messages. If you specify the
Context-Sensitive Help option in AppWizard, the ID for a help prompt, "For Help,
press Fl," is added to your application. This ID is AFX_IDS_IDLEMESSAGE.

70 Class Library Reference

In the Next Chapter
So far you have seen how the framework creates its major component objects and
how those objects communicate through Windows messages and user-initiated
commands. In Chapter 4, you will learn more about documents, views, frame
windows, drawing, and printing.

CHAPTER 4

Working with Frame Windows,
Documents, and Views

Previous chapters introduced the primary objects in an application built upon the
framework of the Microsoft Foundation Class Library and showed how these
objects communicate via messages and commands.

This chapter takes you deeper into three of the most important objects in a
framework application:

• Frame windows, which contain and manage your views

• Documents, which define your application's data

• Views, which display your documents and manage user interaction with them

The chapter also explains how the framework manages printing and print preview
since printing functionality is intimately tied to the view.

71

One of the most important features of the framework is the division of labor among
frame windows, documents, and views. The document manages your data. The view
displays it and takes user input. And the frame window puts a frame around the
view. Code that defines and manipulates data resides in the document class. Code
that displays the data and interprets user input resides in the view class.

Frame Windows
When an application runs under Microsoft Windows, the user interacts with docu­
ments displayed in frame windows. A document frame window has two major
components: the frame and the contents that it frames. A document frame window
can be a single document interface (SDI) frame window or a multiple document
interface (MDI) child window. The Windows operating system manages most of the
user's interaction with the frame window: moving and resizing the window, closing
it, minimizing and maximizing it. You manage the contents inside the frame.

The framework uses frame windows to contain views. The two components­
frame and contents-are represented and managed by two different classes in the
Microsoft Foundation Class Library. A frame window class manages the frame,

72 Class Library Reference

and a view class manages the contents. The view window is a child of the frame
window. Drawing and other user interaction with the document take place in the
view's client area, not the frame window's client area. The frame window provides
a visible frame around a view, complete with a caption bar and standard window
controls such as a control menu, buttons to minimize and maximize the window,
and controls for resizing the window. The "contents" consist of the window's client
area, which is fully occupied by a child window-the view. Figure 4.1 shows the
relationship between a frame window and a view.

Frame
Window
Object

I

I

View
Object

(child window)

j t
Document

Object

Figure 4.1 Frame Window and View

- I-- Client area
Allocated to view
(a child window)

Later, the chapter discusses splitter windows. In a splitter window, the frame
window's client area is occupied by a splitter window, which in tum has multiple
child windows, called panes, which are views.

This section explains what you need to know about frame windows. Topics covered
include:

• The frame window classes created by App Wizard

• Managing child windows

• Managing the current view

• Managing menus, control bars, and accelerators

• Working with the File Manager

• Orchestrating other window actions

Chapter 4 Working with Frame Windows, Documents, and Views 73

Window Classes
Each application has one "main frame window," a desktop window that usually has
the application name in its caption. Each document usually has one "document
frame window." A document frame window contains at least one view, which
presents the document's data. For an SDI application, there is one frame window
derived from class CFrame Wnd. This window is both the main frame window and
the document frame window. For an MDI application, the main frame window is
derived from class CMDIFrameWnd, and the document frame windows, which
are MDI child windows, are derived from class CMDIChildWnd.

These classes provide most of the frame window functionality you will need for
your applications. Under normal circumstances, the default behavior and appear­
ance they provide will suit your needs. If you need additional functionality, derive
from these classes.

The Frame Window Classes Created by AppWizard
When you use App Wizard to create a skeleton application, in addition to
application, document, and view classes, App Wizard creates a derived frame­
window class for your application's main frame window. The class is called
CMa in Frame by default, and the files that contain it are named MAINFRM.H
and MAINFRM.CPP.

If your application is SDI, your CMa in Frame class is derived from class
CFrameWnd. If your application is MDI, CMa in Frame is derived from class
CMDIFrame Wnd. If you choose to support a toolbar, the class also has member
variables of type CToolBar and CStatusBar and an OnCreate message-handler
function to initialize the two control bars.

If your application is MDI, App Wizard does not derive a new document
frame window class for you. Instead, it uses the default implementation in
CMDIChildWnd. Later on, if you find you need to customize your document
frame window, you can use Class Wizard to create a new document frame
window class.

These frame window classes work as created, but to enhance their functionality,
you must add member variables and member functions. You may also want to have
your window classes handle other Windows messages.

Using Frame Windows
The framework creates document frame windows-and their views and documents
-as part of its implementation of the New and Open commands on the File menu.
Because the framework does most of the frame window work for you, you play only
a small role in creating, using, and destroying those windows. You can, however,
explicitly create your own frame windows and child windows for special purposes.

74 Class Library Reference

Creating Document Frame Windows
As you saw earlier, in "DocumentNiew Creation" in Chapter 2, the
CDocTemplate object orchestrates creating the frame window, document, and
view and connecting them all together. Three CRuntimeClass arguments to the
CDocTemplate constructor specify the frame window, document, and view classes
that the document template creates dynamically in response to user commands such
as the New command on the File menu or the New Window command on an MDI
Window menu. The document template stores this information for later use when it
creates a frame window for a view and document.

In order for the RUNTIME_CLASS mechanism to work correctly, your derived
frame-window classes must be declared with the DECLARE DYNCREATE
macro. This is because the framework needs to create document frame windows
using the dynamic construction mechanism of class CObject. For details about
DECLARE _DYNCREATE, see the "Macros and Globals" section in Part 2 and
Chapter 12 in the Class Library User's Guide.

When the user chooses a command that creates a document, the framework calls
upon the document template to create the document object, its view, and the frame
window that will display the view. Chapter 2 described this creation process. When
it creates the document frame window, the document template creates an object of
the appropriate class-a class derived from CFrameWnd for an SDI application
or from CMDIChildWnd for an MDI application. The framework then calls the
frame window object's LoadFrame member function to get creation information
from resources and to create the Windows window. The framework attaches the
window handle to the frame-window object. Then it creates the view as a child
window of the document frame window.

Note You cannot create your own child windows or call any Windows application
programming interface (API) functions in the constructor of a CWnd-derived
object. This is because the HWND for the CWnd object has not been created yet.
Most Windows-specific initialization, such as adding child windows, must be done
in an OnCreate message handler.

Destroying Frame Windows
The framework manages window destruction as well as creation for those windows
associated with framework documents and views. If you create additional windows,
you are responsible for destroying them.

In the framework, when the user closes the frame window, the window's default
OnClose handler calls DestroyWindow. The last member function called when the
Windows window is destroyed is OnNcDestroy, which does some cleanup, calls
the Default member function to perform Windows cleanup, and lastly calls the
virtual member function PostNcDestroy. The CFrame Wnd implementation of

Chapter 4 Working with Frame Windows, Documents, and Views 75

PostNcDestroy deletes the C++ window object. You should never use the C++
delete operator on a frame window. Use DestroyWindow instead.

When the main window closes, the application closes. If there are modified unsaved
documents, the framework puts up a message box to ask if the documents should be
saved and ensures that the appropriate documents are saved if necessary.

What Frame Windows Do
Besides simply framing a view, frame windows are responsible for numerous
tasks involved in coordinating the frame with its view and with the application.
CMDIFrameWnd and CMDIChildWnd inherit from CFrameWnd, so they
have CFrame Wnd capabilities as well as new capabilities that they add. Examples
of child windows include views, controls such as buttons and list boxes, and
control bars, including toolbars, status bars, and dialog bars. The frame window is
responsible for managing the layout of its child windows. In the framework, a frame
window positions any control bars, views, and other child windows inside its client
area. The frame window also forwards commands to its views and can respond to
notification messages from control windows. Chapter 2 showed how commands are
routed from the frame window to its view and other command targets.

Managing Child Windows
MDI main frame windows (one per application) contain a special child window
called the MDICLIENT window. The MDICLIENTwindow manages the client
area of the main frame window, and itself has child windows: the document
windows, derived from CMDIChildWnd. Because the document windows are
frame windows themselves (MDI child windows), they can also have their own
children. In all of these cases, the parent window manages its child windows and
forwards some commands to them.

In an MDI frame window, the frame window manages the MDICLIENT window,
repositioning it in conjunction with control bars. The MDICLIENT window, in
tum, manages all MDI child frame windows. Figure 4.2 shows the relationship
between an MDI frame window, its MDICLIENT window, and its child document
frame windows.

Frame window

I --f'ii"f't- MDICLIENT window

--+--~- Document frame windows

Figure 4.2 MDI Frame Windows and Children

76 Class Library Reference

An MDI frame window also works in conjunction with the current MDI child
window, if there is one. The MDI frame window delegates command messages
to the MDI child before it tries to handle them itself.

Managing the Current View
As part of the default implementation of frame windows, a frame window keeps
track of a currently active view. If the frame window contains more than one view,
as for example in a splitter window, the current view is the most recent view in use.
The active view is independent of the active window in Windows or the current
input focus.

When the active view changes, the framework notifies the current view by calling
its OnActivate View member function. You can tell whether the view is being
activated or deactivated by examining OnActivateView's bActivate parameter.
By default, OnActivateView sets the focus to the current view on activation.
You can override On Activate View to perform any special processing when the
view is deactivated or reactivated. For example, you might want to provide special
visual cues to distinguish the active view from other, inactive views. For more
information, see the OnActivate View member function of class CView.

A frame window forwards commands to its current (active) view, as described in
Chapter 2, as part of the standard command routing.

Managing Menus, Control Bars, and Accelerators
The frame window manages updating user-interface objects, including menus,
toolbar buttons, and the status bar. It also manages sharing the menu bar in MDI
applications.

The frame window participates in updating user-interface items using the
ON_ UPDATE_COMMAND _ UI mechanism described in Chapter 3. Buttons on
toolbars and other control bars are updated during the idle loop. Menu items in
drop-down menus on the menu bar are updated just before the menu drops down.

The frame window also positions the status bar within its client area and manages
the status bar's indicators. The frame window clears and updates the message area
in the status bar as needed and displays prompt strings as the user selects menu
items or toolbar buttons, as described in Chapter 3.

For MDI applications, the MDI frame window manages the menu bar and caption.
An MDI frame window owns one default menu that is used as the menu bar when
there are no active MDI child windows. When there are active children, the MDI
frame window's menu bar is taken over by the menu for the active MDI child
window. If an MDI application supports multiple document types, such as chart
and worksheet documents, each type puts its own menus into the menu bar and
changes the main frame window's caption.

Chapter 4 Working with Frame Windows, Documents, and Views 77

CMDIFrame Wnd provides default implementations for the standard commands
on the Window menu that appears for MDI applications. In particular, the New
Window command (ID _ WINDOW _NEW) is implemented to create a new
frame window and view on the current document. You need to override these
implementations only if you need advanced customization.

Multiple MDI child windows of the same document type share menu resources. If
several MDI child windows are created by the same document template, they can
all use the same menu resource, saving on Windows system resources.

Each frame window maintains an optional accelerator table that does keyboard
accelerator translation for you automatically. This mechanism makes it easy to
define accelerator keys (also called shortcut keys) that invoke menu commands.

Frame Window Styles
The frame windows that you get with the framework are suitable for most
programs, but you can gain additional flexibility by using the advanced functions
PreCreateWindow and AfxRegisterWindowClass. PreCreateWindow is a
member function of CWnd. AfxRegisterWindowClass is a global function
documented in "Macros and Globals" in the alphabetic reference.

If you apply the WS_HSCROLL and WS_ VSCROLL styles to the main frame
window, they are instead applied to the MDICLIENT window so users can scroll
the MDICLIENT area.

If the window's FWS_ADDTOTITLE style bit is set (which it is by default), the
view tells the frame window what title to display in the window's title bar based on
the view's document name.

Working with the File Manager
The frame window manages a relationship with the Windows File Manager.

By adding a few initializing calls in your override of the CWinApp member
function InitInstance, as described in Chapter 2, you can have your frame window
indirectly open files dragged from the Windows File Manager and dropped in the
frame window. See "File Manager Drag and Drop" in Chapter 2, on page 32.

The frame window can also respond to dynamic data exchange (DDE) requests to
open files from the File Manager (if the file extension is registered or associated
with the application). See "Shell Registration" in Chapter 2, on page 32.

Orchestrating Other Window Actions
The frame window orchestrates semimodal states such as context -sensitive help
and print preview. The framework's role in managing context-sensitive help is
described in Chapter 5. For a description of the frame window's role in print
preview, see "Printing and Print Preview" on page 91.

78 Class Library Reference

Documents and Views
The parts of the framework most visible both to the user and to you, the program­
mer, are the document and view. Most of your work in developing an application
with the framework goes into writing your document and view classes. This section
describes:

• The purposes of documents and views and how they interact in the framework.

• What you must do to implement them.

The CDocument class provides the basic functionality for programmer -defined
document classes. A document represents the unit of data that the user typically
opens with the File Open command and saves with the File Save command.

The CView class provides the basic functionality for programmer-defined view
classes. A view is attached to a document and acts as an intermediary between the
document and the user: the view renders an image of the document on the screen
and interprets user input as operations upon the document. The view also renders
the image for both printing and print preview.

Figure 4.3 shows the relationship between a document and its view.

Document

View

Part of document
currently visible

Figure 4.3 Document and View

The document/view implementation in the class library separates the data itself
from its display and from user operations on the data. All changes to the data are
managed through the document class. The view calls this interface to access and
update the data.

Chapter 4 Working with Frame Windows, Documents, and Views 79

Documents, their associated views, and the frame windows that frame the views are
created by a document template, as described in "DocumentNiew Creation" on
page 34 in Chapter 2. The document template is responsible for creating and
managing all documents of one document type.

Document and View Classes Created by AppWizard
App Wizard gives you a head start on your program development by creating
skeletal document and view classes for you. You can then use Class Wizard to map
commands and messages to these classes and the Visual Workbench editor to write
their member functions.

The document class created by App Wizard is derived from class CDocument. The
view class is derived from CView. The names that App Wizard gives these classes
and the files that contain them are based on the project name you supply in the
App Wizard dialog box. From App Wizard, you can use the Classes dialog box to
alter the default names.

Some applications might need more than one document class, view class, or frame
window class. For more information, see "Multiple Document Types, Views, and
Frame Windows" on page 86.

Using Documents and Views
Working together, documents and views:

• Contain, manage, and display your application-specific data.

• Provide an interface for manipulating the data.

• Participate in writing and reading files.

• Participate in printing.

• Handle most of your application's commands and messages.

Managing Data
Documents contain and manage your application's data. To use the AppWizard­
supplied document class, you must do the following:

• Derive a class from CDocument for each type of document.

• Add member variables to store each document's data.

• Override CDocument' s Serialize member function in your document class.
Serialize writes and reads the document's data to and from disk.

80 Class Library Reference

You may also want to override other CDocument member functions. In particular,
you will often need to override OnNewDocument and OnOpenDocument to
initialize the document's data members and DeleteContents to destroy dynamically
allocated data. For information about overridable members, see class CDocument.

Document Data Variables
Implement your document's data as member variables of your document class. For
example, the Scribble tutorial program declares a data member of type CObList­
a linked list that stores pointers to CObject objects. This list is used to store arrays
of points that make up a freehand line drawing.

How you implement your document's member data depends on the nature of your
application. To help you out, the Microsoft Foundation Class Library supplies a
group of "collection classes" -arrays, lists, and maps (dictionaries)-along with
classes that encapsulate a variety of common data types such as CString, CRect,
CPoint, CSize, and CTime. For more information about these classes, see
Chapter 1.

When you define your document's member data, you will usually add member
functions to the document class to set and get data items and perform other useful
operations on them.

Your views access the document object by using the view's pointer to the docu­
ment, installed in the view at creation time. You can retrieve this pointer in a view's
member functions by calling the CView member function GetDocument. Be sure
to cast this pointer to your own document type. Then you can access public docu­
ment members through the pointer.

If frequent data transfer requires direct access, or you wish to use the nonpublic
members of the document class, you may want to make your view class a friend of
the document class.

Serializing Data to and from Files
The basic idea of persistence is that an object should be able to write its current
state, indicated by the values of its member variables, to persistent storage. Later,
the object can be recreated by reading, or "deserializing," the object's state from
persistent storage. A key point here is that the object itself is responsible for reading
and writing its own state. Thus, for a class to be persistent, it must implement the
basic serialization operations.

The framework provides a default implementation for saving documents to disk files
in response to the Save and Save As commands on the File menu and for loading
documents from disk files in response to the Open command. With very little work,
you can implement a document's ability to write and read its data to and from a file.
The main thing you must do is override CDocument' s Serialize member function
in your document class.

Chapter 4 Working with Frame Windows, Documents, and Views 81

App Wizard places a skeletal override of the CDocumeot member function
Serialize in the document class it creates for you. After you have implemented
your application's member variables, you can fill in your S e ria 1 i z e override with
code that sends the data to an "archive object" connected to a file. A CArchive
object is similar to the cio and cout input/output objects from the C++ iostream
library. However, CArchive writes and reads binary format, not formatted text.

The Document's Role
The framework responds automatically to the File menu's Open, Save, and Save As
commands by calling the document's S e ria 1 i z e member function if it is imple­
mented. An ID _FILE _OPEN command, for example, calls a handler function in
the application object. During this process, the user sees and responds to the File
Open dialog box and the framework obtains the filename the user chooses. The
framework creates a CArchive object set up for loading data into the document and
passes the archive to S e ria 1 i z e. The framework has already opened the file. The
code in your document's Seri ali ze member function reads the data in through
the archive, reconstructing data objects as needed. For more information about
serialization, see Chapter 14 in the Class Library User's Guide.

The Data's Role
In general, class-type data should be able to serialize itself. That is, when you pass
an object to an archive, the object should know how to write itself to the archive
and how to read itself from the archive. The Microsoft Foundation Class Library
provides support for making classes serializable in this way. If you design a class
to define a data type and you intend to serialize data of that type, design for
serialization.

Instructions for defining a serializable class are given in Chapter 14 of the Class
Library User's Guide.

Bypassing the Archive Mechanism
As you have seen, the framework provides a default way to read and write data to
and from files. Serializing through an archive object suits the needs of a great many
applications. Such an application reads a file entirely into memory, lets the user
update the file, and then writes the updated version to disk again.

However, some applications operate on data very differently, and for these
applications serialization through an archive is not suitable. Examples include
database programs, programs that edit only parts of large files, and programs
that share data files.

In these cases, you can override the Serialize member function of CDocumeot in a
different way to mediate file actions through a CFile object rather than a CArchive
object.

82 Class Library Reference

You can use the Open, Read, Write, Close, and Seek member functions of class
CFile to open a file, move the file pointer (seek) to a specific point in the file, read
a record (a specified number of bytes) at that point, let the user update the record,
then seek to the same point again and write the record back to the file. The frame­
work will open the file for you, and you can use the GetFile member function of
class CArchive to obtain a pointer to the CFile object. For even more sophisticated
and flexible use, you can override the OnOpenDocument and OnSaveDocument
member functions of class CWinApp. For more information, see class CFile in the
alphabetic reference.

In this scenario, your S e ria 1 i z e override does nothing, unless, for example, you
want to have it read and write a file header to keep it up to date when the document
closes.

For an example of such nonarchived processing, see the CHKBOOK sample
program.

Handling Commands in the Document
Your document class may also handle certain commands generated by menu items,
toolbar buttons, or accelerator keys. By default, CDocument handles the File Save
and Save As commands, using serialization. Other commands that affect the data
may also be handled by member functions of your document. For example, in the
Scribble tutorial program, class esc rib Doc provides a handler for the Edit Clear
All command, which deletes all of the data currently stored in the document. Unlike
views, documents cannot handle standard Windows messages.

Displaying Data in a View and Interacting with the User
The view's responsibilities are to display the document's data graphically to the
user and to accept and interpret user input as operations on the document. Your
tasks in writing your view class are to:

• Write your view class's 0 nOr a w member function, which renders the
document's data.

• Connect appropriate Windows messages and user-interface objects such
as menu items to message-handler member functions in the view class.

• Implement those handlers to interpret user input.

In addition, you may need to override other CView member functions in your
derived view class. In particular, you may want to override OnlnitialUpdate to
perform special initialization for the view and OnUpdate to do any special
processing needed just before the view redraws itself. For multipage documents,
you also must override OnPreparePrinting to initialize the Print dialog box with
the number of pages to print and other information. For more information on
overriding CView member functions, see class CView.

Chapter 4 Working with Frame Windows, Documents, and Views 83

The Microsoft Foundation Class Library also provides several derived view classes
for special purposes:

• CScrollView, which provides automatic scrolling and view scaling.

• CForm View, which provides a scrollable view useful for displaying a form
made up of dialog controls. A CFormView object is created from a dialog­
template resource.

• CEdit View, which provides a view with the characteristics of an editable-text
control with enhanced editing features. You can use a CEdit View object to
implement a simple text editor.

To take advantage of these special classes, derive your view classes from them.
For more information, see "Scrolling" on page 86 and "Special View Classes" on
page 90.

Drawing in a View
Nearly all drawing in your application occurs in the view's OnDraw member
function, which you must override in your view class. (The exception is mouse
drawing, discussed in the next section.) Your OnDraw override:

1. Gets data by calling the document member functions you provide.

2. Displays the data by calling member functions of a device-context object that
the framework passes to 0 n D raw.

When a document's data changes in some way, the view must be redrawn to reflect
the changes. Typically, this happens when the user makes a change through a view
on the document. In this case, the view calls the document's UpdateAlIViews
member function to notify all views on the same document to update themselves.
UpdateAlIViews calls each view's OnUpdate member function. The default
implementation of On Update invalidates the view's entire client area. You can
override it to invalidate only those regions of the client area that map to the
modified portions of the document.

The UpdateAlIViews member function of class CDocument and the OnUpdate
member function of class CView let you pass information describing what parts of
the document were modified. This "hint" mechanism lets you limit the area that the
view must redraw. OnUpdate takes two "hint" arguments. The first, lHint, of type
LPARAM, lets you pass any data you like, while the second,pHint, of type
CObject*, lets you pass a pointer to any object derived from CObject.

When a view becomes invalid, Windows sends it a WM _PAINT message. The
view's OnPaint handler function responds to the message by creating a device­
context object of class CPaintDC and calls your view's 0 n D raw member function.
You do not normally have to write an overriding 0 n P a i n t handler function.

84 Class Library Reference

Recall from Chapter 2 that a device context is a Windows data structure that con­
tains information about the drawing attributes of a device such as a display or a
printer. All drawing calls are made through a device-context object. For drawing on
the screen, OnDraw is passed a CPaintDC object. For drawing on a printer, it is
passed a CDC object set up for the current printer.

Your code for drawing in the view first retrieves a pointer to the document, then
makes drawing calls through the device context. The following simple 0 nOr a w
example illustrates the process:

void CMyView: :OnDraw(CDC* pDC
{

CMyDoc* pDoc = GetDocument();
CString s = pDoc->GetData(); II Returns a CString
CRect rect;

GetClientRect(&rect);
pDC->SetTextAlign(TA_BASELINE ITA_CENTER);
pDC->TextOut(rect.right I 2, rect.bottom I 2,

s, s.GetLength());

In this example, you would define the Get 0 a t a function as a member of your
derived document class.

The example prints whatever string it gets from the document, centered in the view.
If the 0 nOr a w call is for screen drawing, the CDC object passed in pDC is a
CPaintDC whose constructor has already called BeginPaint. Calls to drawing
functions are made through the device-context pointer. For information about device
contexts and drawing calls, see class CDC and "Working with Windows" in
Chapter 2.

For more examples of how to write OnDraw, see MFCSAMP.HLP in MFC.HLP.

Interpreting User Input Through a View
Other member functions of the view handle and interpret all user input. You will
usually define message-handler member functions in your view class to:

• Process Windows messages generated by mouse and keyboard actions.

• Process commands from menus, toolbar buttons, and accelerator keys.

These message-handler member functions interpret mouse clicks, drags, double­
clicks, and mouse movements; keystrokes; and menu commands as data input,
selection, dragging, or other editing operations, including moving data to and from
the Clipboard. Which Windows messages your view handles depends on your
application's needs.

Chapter 4 Working with Frame Windows, Documents, and Views 85

You saw earlier, in "Messages and Commands in the Framework" on page 51 in
Chapter 3, how to assign menu items and other user-interface objects to commands
and how to bind the commands to handler functions with Class Wizard. You have
also seen how the framework routes such commands and sends standard Windows
messages to the objects that contain handlers for them.

For example, your application might need to implement direct mouse drawing
in the view. The Scribble tutorial example shows how to handle the
WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
messages respectively to begin, continue, and end the drawing of a line segment.
On the other hand, you might sometimes need to interpret a mouse click in your
view as a selection. Your view's On LButtonDown handler function would
determine whether the user was drawing or selecting. If selecting, the handler
would determine whether the click was within the bounds of some object in the
view and, if so, alter the display to show the object as selected.

Your view might also handle certain menu commands, such as those from the Edit
menu to cut, copy, paste, or delete selected data using the Clipboard. Such a handler
would call some of the Clipboard-related member functions of class CWnd to
transfer a selected data item to or from the Clipboard.

Printing and the View
Your view also plays two important roles in printing its associated document.
The view:

• Uses the same anD raw code to draw on the printer as to draw on the screen.

• Manages dividing the document into pages for printing.

For more information about printing and about the view's role in printing, see
"Printing and Print Preview" on page 91.

Scrolling and Scaling Views
The Microsoft Foundation Class Library supports views that scroll and views that
are automatically scaled to the size of the frame window that displays them. Class
CScrollView supports both kinds of views.

For more information about scrolling and scaling, see class CScrollView. For
a scrolling example, see Chapter 8, "Enhancing Views," in the Class Library
User's Guide.

86 Class Library Reference

Scrolling
Frequently the size of a document is greater than the size that its view can display.
This may occur because the document's data increases or the user shrinks the
window that frames the view. In such cases, the view must support scrolling.

Any view can handle scroll-bar messages in its OnHScroll and On VScroll
member functions. You can either implement scroll-bar message handling in these
functions, doing all the work yourself, or you can use the CScrollView class to
handle scrolling for you.

CScrollView does the following:

• Manages window and viewport sizes and mapping modes

• Scrolls automatically in response to scroll-bar messages

You can specify how much to scroll for a "page" (when the user clicks in a scroll­
bar shaft) and a "line" (when the user clicks in a scroll arrow). Plan these values to
suit the nature of your view. For example, you might want to scroll in I-pixel
increments for a graphics view but in increments based on the line height in text
documents.

Scaling
When you want the view to automatically fit the size of its frame window, you can
use CScrollView for scaling instead of scrolling. The logical view is stretched or
shrunk to fit the window's client area exactly. A scaled view has no scroll bars.

Multiple Document Types, Views, and Frame Windows
The standard relationship among a document, its view, and its frame window was
described earlier in "DocumentNiew Creation" on page 34 in Chapter 2. Many
applications support a single document type (but possibly multiple open documents
of that type) with a single view on the document and only one frame window per
document. But some applications may need to alter one or more of those defaults.

Multiple Document Types
App Wizard creates a single document class for you. In some cases, though, you
may need to support more than one document type. For example, your application
may need worksheet and chart documents. Each document type is represented by its
own document class and probably by its own view class as well. When the user
chooses the File New command, the framework puts up a dialog box that lists the
supported document types. Then it creates a document of the type that the user
chooses. Each document type is managed by its own document-template object.

To create extra document classes, use the Add Class button in the ClassWizard
dialog box. Choose CDocument as the Class Type to derive from and supply the
requested document information. Then implement the new class's data.

Chapter 4 Working with Frame Windows, Documents, and Views 87

To let the framework know about your extra document class, you must add a second
call to AddDocTemplate in your application class's In i tIn s tan c e override. For
more information, see "Document Templates" in Chapter 2.

Multiple Views
Many documents require only a single view, but it is possible to support more than
one view of a single document. To help you implement mUltiple views, a document
object keeps a list of its views, provides member functions for adding and removing
views, and supplies the UpdateAIIViews member function for letting multiple
views know when the document's data has changed.

The Microsoft Foundation Class Library supports three common user interfaces
requiring multiple views on the same document. These models are:

• View objects of the same class, each in a separate MDI document frame
window.

You might want to support creating a second frame window on a document. The
user could choose a New Window command to open a second frame with a view
of the same document and then use the two frames to view different portions of
the document simultaneously. The framework supports the New Window com­
mand on the Window menu for MDI applications by duplicating the initial frame
window and view attached to the document.

• View objects of the same class in the same document frame window.

Splitter windows split the view space of a single document window into multiple
separate views of the document. The framework creates multiple view objects
from the same view class. For more information, see the next section, "Splitter
Windows."

• View objects of different classes in a single frame window.

In this model, a variation of the splitter window, mUltiple views share a single
frame window. The views are constructed from different classes, each view
providing a different way to view the same document. For example, one view
might show a word-processing document in normal mode while the other view
shows it in outline mode. A splitter control allows the user to adjust the relative
sizes of the views.

Figure 4.4, on the next page, shows the three user-interface models in the order
presented above.

88 Class Library Reference

Document

O
;;;;;'WJ~

fiiij

-+-- I
1l8:'

View 1/Frame 1

a

0;;;;;·; :Iit·.: ... !.·,:.i: •.••.. ':.:.·::.· .• :.:: .. ! .•

::F:

View 2/Frame 2

Document

b r 1':".'.[.1.: ~~~~r Bar 'iZ;~:1

;i~ View 2

Document

c View 2 (Graphics)

Figure 4.4 Multiple-View User Interfaces

The framework provides these models by implementing the New Window command
and by providing class CSplitterWnd, as discussed in the next section. You can
implement other models using these as your starting point. For sample programs
that illustrate different configurations of views, frame windows, and splitters, see
MFCSAMP.HLP in MFC.HLP.

For more information about UpdateAIlViews, see class CView in this manual and
Chapter 8 in the Class Library User's Guide.

Splitter Windows
In a splitter window, the window is, or can be, split into two or more scroll able
panes. A splitter control (or "split box") in the window frame next to the scroll bars
allows the user to adjust the relative sizes of the panes. Each pane is a view on the
same document. In "dynamic" splitters, the views are of the same class, as shown in
Figure 4.4(b). In "static" splitters, the views can be of different classes. Splitter
windows of both kinds are supported by class CSplitterWnd.

Dynamic splitter windows, with views of the same class, allow the user to split a
window into multiple panes at will and then scroll different panes to see different

Chapter 4 Working with Frame Windows, Documents, and Views 89

parts of the document. The user can also unsplit the window to remove the addi­
tional views. The splitter windows added to the Scribble application in Chapter 8 of
the Class Library User's Guide are an example. That chapter describes the
technique for creating dynamic splitter windows. A dynamic splitter window is
shown in Figure 4.4(b).

Static splitter windows, with views of different classes, start with the window split
into multiple panes, each with a different purpose. For example, in App Studio's
bitmap editor, the image window shows two panes side by side. The left-hand pane
displays a life-sized image of the bitmap. The right-hand pane displays a zoomed or
magnified image of the same bitmap. The panes are separated by a "splitter bar"
that the user can drag to change the relative sizes of the panes. A static splitter
window is shown in Figure 4.4(c).

For more information, see class CSplitterWnd in the alphabetical reference and
MFCSAMP.HLP in MFC.HLP.

Initializing and Cleaning Up Documents and Views
Use the following guidelines for initializing and cleaning up after your documents
and views:

• The framework initializes documents and views; you initialize any data that you
add to them.

• The framework cleans up as documents and views close; you must deallocate
any memory that you allocated on the heap from within the member functions of
those documents and views.

Note Recall that initialization for the whole application is best done in your
override of the InitInstance member function of class CWinApp, and cleanup for
the whole application is best done in your override of the CWinApp member
function ExitInstance.

The life cycle of a document (and its frame window and view or views) in an MDI
application is as follows:

1. During dynamic creation, the document constructor is called.

2. For each new document, the document's OnNewDocument or
OnOpenDocument is called.

3. The user interacts with the document throughout its lifetime.

4. The framework calls DeleteContents to delete data specific to a document.

5. The document's destructor is called.

90 Class Library Reference

In an SDI application, step 1 is performed once, when the document is first created.
Then steps 2 through 4 are performed repeatedly each time a new document is
opened. The new document reuses the existing document object. Finally, step 5 is
performed when the application ends.

Initializing
Documents are created in two different ways, so your document class must support
both ways. First, the user can create a new, empty document with the File New
command. In that case, initialize the document in your override of the
OnNewDocument member function of class CDocument. Second, the user
can use the File Open command to create a new document whose contents are
read from a file. In that case, initialize the document in your override of the
OnOpenDocument member function of class CDocument. If both initializations
are the same, you can call a common member function from both overrides, or
OnOpenDocument can call OnNewDocument to initialize a clean document and
then finish the open operation.

Views are created after their documents are created. The best time to initialize a
view is after the framework has finished creating the document, frame window, and
view. You can initialize your view by overriding the OnInitialUpdate member
function of CView. If you need to reinitialize or adjust anything each time the
document changes, you can override OnUpdate.

Cleaning Up
When a document is closing, the framework first calls its DeleteContents member
function. If you allocated any memory on the heap during the course of the
document's operation, DeleteContents is the best place to deallocate it.

Note You should not deallocate document data in the document's destructor. In the
case of an SDI application, the document object may be reused.

You can override a view's destructor to deallocate any memory you allocated on
the heap.

Special View Classes
Besides CScrollView, the Microsoft Foundation Class Library provides two other
classes derived from CView:

• CFormView, a view with attributes of a dialog box and a scrolling view. A
CForm View is created from a dialog-template resource. You can create the
dialog-template resource with App Studio.

• CEditView, a view that uses the Windows edit control as a simple multiline text
editor. You can use a CEditView as the view on a document.

Chapter 4 Working with Frame Windows, Documents, and Views 91

CFormView
CForm View provides a view based on a dialog -template resource. You can use it
to create formlike views with edit boxes and other dialog controls. The user can
scroll the form view and tab among its controls. Form views support scrolling using
the CScrollView functionality. For more information, see class CFormView in the
alphabetical reference.

CEditView
CEdit View provides the functionality of a CEdit control with enhanced editing
features: printing; find and replace; cut, copy, paste, clear, and undo commands;
and File Save and File Open commands. You can use a CEditView to implement
a simple text-editor view. See classes CEditView and CEdit in the alphabetical
reference.

Printing and Print Preview
Microsoft Windows implements device-independent display. This means that the
same drawing calls, made through a device context passed to your view's 0 nOr a w
member function, are used to draw on the screen and on other devices, such as
printers. You use the device context to call graphics device interface (GDI) func­
tions, and the device driver associated with the particular device translates the calls
into calls that the device can understand.

When your framework document prints, 0 nOr a w receives a different kind of
device-context object as its argument; instead of a CPaintDC object, it gets a CDC
object associated with the current printer. 0 nOr a w makes exactly the same calls
through the device context as it does for rendering your document on the screen.

The framework also provides an implementation of the File Print Preview command
as described below.

Chapter 9 in the Class Library User's Guide describes the partnership between you
and the framework during printing and print preview and provides an example. In
particular, see Figure 9.1 in that chapter.

Printing the Document
To print, the framework calls member functions of the view object to set up the
Print dialog box, allocate fonts and other resources needed, set the printer mode for
a given page, print a given page, and deallocate resources. Once the document as a
whole is set up, the process iteratively prints each page. When all pages have been
printed, the framework cleans up and deallocates resources. You can, and some­
times must, override some view member functions to facilitate printing. For
information, see class CView.

92 Class Library Reference

Print Preview

When the view's OnPrint member function is called, it must calculate what part of
the document image to draw for the given page number. Typically, OnPrint adjusts
the viewport origin or the clipping region of the device context to specify what
should be drawn. Then OnPrint calls the view's OnDraw member function to
draw that portion of the image.

The framework also implements print-preview functionality and makes it easy for
you to use this functionality in your applications. Print preview shows a reduced
image of either one or two pages of the document as it would appear when printed.
The implementation also provides controls for printing the displayed page(s),
moving to the next or the previous page, toggling the display between one and two
pages, zooming the display in and out to view it at different sizes, and closing the
display. If the framework knows how long the document is, it can also display a
scroll bar for moving from page to page.

To implement print preview, instead of directly drawing an image on a device, the
framework must simulate the printer using the screen. To do this, the Microsoft
Foundation Class Library implements the CPreviewDC class, which is used in
conjunction with the implementation class CPreviewView. All CDC objects
contain two device contexts. In a CPreviewDC object, the first device context
represents the printer being simulated; the second represents the screen on which
output is actually displayed.

In response to a Print Preview command from the File menu, the framework creates
a CPreviewDC object. Then when your application performs an operation that sets
a characteristic of the printer device context, the framework performs a similar
operation on the screen device context. For example, if your application selects a
font for printing, the framework selects a font for screen display that simulates the
printer font. When your application sends output that would go to the printer, the
framework instead sends it to the screen.

The order and manner in which pages of a document are displayed are also different
for print preview. Instead of printing a range of pages from start to finish, print
preview displays one or two pages at a time and waits for a cue from the user
before it displays different pages.

You are not required to do anything to provide print preview, other than to make
sure the Print Preview command is in the File menu for your application. However,
if you choose, you can modify the behavior of print preview in a number of ways.
For more information about making such modifications to print preview in your
application, see Technical Note 30 in MSVC\HELP\MFCNOTES.HLP.

Chapter 4 Working with Frame Windows, Documents, and Views 93

In the Next Chapter
In this and previous chapters, you have seen how the framework's application,
frame window, document, and view classes work, bound together by messages and
commands mapped to handler functions in the program's run-time objects. In
Chapter 5, you will learn about dialog boxes and the controls that appear in them
and about control bars, such as toolbars, status bars, and dialog bars. You will also
learn how to incorporate context-sensitive Windows help in your application.

CHAPTER 5

Working with Dialog Boxes,
Controls, Control Bars, and
Context-Sensitive Help

95

The previous chapter explained windows, particularly the frame windows used to
display views of documents. As you saw briefly in that chapter, class CWnd is the
base class of many other window classes besides the frame windows.

This chapter covers the following topics, including several additional categories of
window classes:

• Dialog boxes

• Control windows

• Control bars

• Context-sensitive Windows Help

Dialog boxes are used to take user input. Inside a dialog box, the user interacts with
controls, such as buttons, list boxes, combo boxes, and edit boxes. You can also
place controls in a frame window, a view, or a control bar.

A toolbar is a control bar that contains bitmapped buttons; these buttons can be
configured to appear and behave as pushbuttons, radio buttons, or check boxes. A
status bar is a control bar that contains text-output panes, or "indicators." A dialog
bar is a control bar based on a dialog-template resource; as in a dialog box, the user
can tab among the controls.

This chapter also explains how to implement context -sensitive Windows Help in
your application. The Microsoft Foundation Class Library simplifies the process.
If you choose the Context -Sensitive Help option in App Wizard, App Wizard creates
basic .RTF files and supplies other code needed to invoke Help.

Dialog Boxes
Applications for the Windows graphical user interface frequently communicate with
the user through dialog boxes. Class CDialog provides an interface for managing
dialog boxes, App Studio makes it easy to design dialog boxes and create their
dialog-template resources, and ClassWizard simplifies the process of initializing

96 Class Library Reference

and validating the controls in a dialog box and of gathering the values entered by
the user.

This section explains:

• Modal and modeless dialog boxes.

• The roles of App Wizard, App Studio, and Class Wizard in creating dialog
resources and dialog classes for dialog boxes.

• Controls in dialog boxes.

• How dialog boxes are invoked and displayed on the screen.

• Initializing and gathering data from the controls in a dialog box: dialog data
exchange (DDX).

• Validating data entered in a dialog box: dialog data validation (DDV).

• Dialog classes supplied by the class library.

Dialog-Box Components in the Framework
In the framework, a dialog box has two components:

• A dialog-template resource that specifies the dialog box's controls and their
placement.

The dialog resource stores a dialog template from which Windows creates
the dialog window and displays it. The template specifies the dialog box's
characteristics, including its size, location, style, and the types and positions
of the dialog box's controls. You will usually use a dialog template stored as
a resource, but you can also create your own template in memory.

• A dialog class, derived from CDiaiog, to provide a programmatic interface for
managing the dialog box.

A dialog box is a window and will be attached to a Windows window when
visible. When the dialog window is created, the dialog-template resource is
used as a template for creating child window controls for the dialog box.

Modal and Modeless Dialog Boxes
You can use class CDiaiog to manage two kinds of dialog boxes:

• Modal dialog boxes, which require the user to respond before continuing the
program

• Modeless dialog boxes, which stay on the screen and are available for use at any
time but permit other user activities

The App Studio and Class Wizard procedures for creating a dialog template are the
same for modal and modeless dialog boxes.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 97

Creating a dialog box for your program requires the following steps:

1. Use App Studio to design the dialog box and create its dialog-template resource.

2. Use ClassWizard to create a dialog class.

3. Connect its controls to message handlers in the dialog class.

4. Use ClassWizard to add data members associated with the dialog box's controls
and to specify dialog data exchange and dialog data validations for the controls.

Creating the Dialog Resource with App Studio
To design the dialog box and create the dialog resource, you use App Studio. In the
App Studio dialog editor, you can:

• Adjust the size and location your dialog will have when it appears.

• Drag various kinds of controls-including VBX and other custom controls­
from a controls palette and drop them where you want them in the dialog box.

• Position the controls with alignment buttons on the App Studio toolbar.

• Test your dialog box by simulating the appearance and behavior it will have in
your program. In Test mode, you can manipulate the dialog box's controls by
typing text in text boxes, clicking pushbuttons, and so on.

When you finish, your dialog-template resource is stored in your application's
resource script file. You can edit it later if needed. For a full description of how to
create and edit dialog resources in App Studio, see the App Studio User's Guide.

When the dialog box's appearance suits you, use Class Wizard to create a dialog
class and map its messages, as discussed in the next section.

Creating a Dialog Class with ClassWizard
ClassWizard helps you manage the dialog-related tasks shown in Table 5.1.

Table 5.1 Dialog-Related Tasks

Task

Create a new CDialog-derived class to
manage your dialog box.

Map Windows messages to your dialog
class.

Declare class member variables to represent
the controls in the dialog box.

Apply to ...

Each dialog box.

Each message you want handled.

Each control that yields a text or numeric
value you want to access from your
program.

98 Class Library Reference

Table 5.1 Dialog-Related Tasks (continued)

Task

Specify how data is to be exchanged
between the controls and the member
variables.

Specify validation rules for the member
variables.

Apply to ...

Each control that you want to access from
your program.

Each control that yields a text or numeric
value, if desired.

Mapping Windows messages to your dialog class is explained in "Handling
Windows Messages" on page 100. Mapping dialog class member variables to
dialog-box controls and specifying data exchange and validation are explained in
"Dialog Data Exchange and Validation" on page 101.

Creating Your Dialog Class
For each dialog box in your program, create a new dialog class to work with the
dialog resource.

Chapter 9 in the App Studio User's Guide explains how to create a new dialog
class. When you create a dialog class with ClassWizard, ClassWizard writes the
following items in the .H and .CPP files you specify:

In the .H file:

• A class declaration for the dialog class. The class is derived from CDiaiog.

In the .CPP file:

• A message map for the class.

• A standard constructor for the dialog box.

• An override of the DoDataExcbange member function. Edit this function with
Class Wizard. It is used for dialog data exchange and validation capabilities as
described later in this chapter.

Life Cycle of a Dialog Box
During the life cycle of a dialog box, the user invokes the dialog box, typically
inside a command handler that creates and intializes the dialog object; the user
interacts with the dialog box; and the dialog box closes.

For modal dialog boxes, your handler gathers any data the user entered once the
dialog box closes. Since the dialog object exists after its dialog window has closed,
you can simply use the member variables of your dialog class to extract the data.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 99

For modeless dialog boxes, you may often extract data from the dialog object while
the dialog box is still visible. At some point, the dialog object is destroyed; when
this happens depends on your code.

Creating and Displaying Dialog Boxes
Creating a dialog object is a two-phase operation. First, construct the dialog object.
Then create the dialog window. Modal and modeless dialog boxes differ somewhat
in the process used to create and display them. Table 5.2 lists how modal and
modeless dialog boxes are normally constructed and displayed.

Table 5.2 Dialog Creation

Dialog Type

Modeless

Modal

How to Create It

Construct CDialog, then call Create member function.

Construct CDialog, then call DoModal member function.

Creating Modal Dialog Boxes
To create a modal dialog box, you call either of the two public constructors de­
clared in CDialog and then call the dialog object's DoModal member function
to display the dialog box and manage interaction with it until the user chooses OK
or Cancel. This management by DoModal is what makes the dialog box "modal."
For modal dialog boxes, DoModalloads the dialog resource.

Creating Modeless Dialog Boxes
For a modeless dialog box, you must provide your own public constructor in your
dialog class. To create a modeless dialog box, call your public constructor and then
call the dialog object's Create member function to load the dialog resource. You
can call Create either during or after the constructor call. If the dialog resource has
the property WS_ VISIBLE, the dialog box appears immediately. If not, you must
call its ShowWindow member function.

Using a Dialog Template in Memory
Instead of using the methods given in Table 5.2, you can create either kind of dialog
box indirectly from a dialog template in memory. For more information, see class
CDialog in the alphabetic reference.

Setting the Dialog Box's Background Color
You can set the background color of your dialog boxes by calling the CWinApp
member function SetDialogBkColor in your In i tIn s tan c e override. The color
you set is used for all dialog boxes and message boxes.

100 Class Library Reference

Initializing the Dialog Box
After the dialog box and all of its controls are created but just before the dialog box
(of either type) appears on the screen, the dialog object's OnlnitDialog member
function is called. For a modal dialog box, this occurs during the DoModal call.
You typically override this function to initialize the dialog box's controls, such as
setting the initial text of an edit box. You must call the OnlnitDialog member
function of the base class, CDialog, from your 0 n I nit 0 i a log override.

Handling Windows Messages
Dialog boxes are Windows, so they can handle Windows messages if you supply
the appropriate handler functions.

Exchanging Data Between Dialog Box and Dialog Object
The framework provides an easy way to initialize the values of controls in a dialog
box and to retrieve values from the controls. The more laborious manual approach
is to call functions such as the SetDlgltemText and GetDlgltemText member
functions of class CWnd, which apply to control windows. With these functions,
you access each control individually to set or get its value, calling functions such
as SetWindowText and GetWindowText. The framework's approach automates
both initialization and retrieval.

Dialog data exchange (DDX) lets you automatically exchange data between the
dialog box and member variables in the dialog object. This exchange works both
ways. To initialize the controls in the dialog box, you can set the values of data
members in the dialog object, and the values will be transferred automatically to
the controls before the dialog box is displayed. Then you can at any time update
the dialog data members with data entered by the user. At that point, you can use
the data by referring to the data member variables.

You can also arrange for the values of dialog controls to be validated automatically
with dialog data validation (DDV).

Use ClassWizard to add DDX and DDV capabilities to a dialog class. DDX and
DDV are explained in more detail in "Dialog Data Exchange and Validation" on
page 101.

Retrieving Data from the Dialog Object
DDX exchanges data between the dialog box and a dialog object. Once the dialog
object's data members have been updated from the dialog box's controls, other
objects in your program, such as a view, can access the data through those data
members.

For a modal dialog box, you can retrieve any data the user entered when DoModal
returns IDOK but before the dialog object is destroyed. For a modeless dialog box,
you can retrieve data from the dialog object at any time by calling UpdateData

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 101

with the argument TRUE and then accessing dialog class member variables. This
subject is discussed in more detail in "Dialog Data Exchange and Validation" on
this page.

Closing the Dialog Box
A modal dialog box closes when the user chooses one of its buttons, typically
the OK button or the Cancel button. Choosing the OK or Cancel button causes
Windows to send the dialog object a BN_ CLICKED control-notification message
with the button's ID, either IDOK or IDCANCEL. CDialog provides default
handler functions for these messages: OnOK and OnCancel. The default handlers
call the EndDialog member function to close the dialog window. You can also call
EndDialog from your own code. For more information, see the EndDialog member
function of class CDialog.

To arrange for closing and deleting a modeless dialog box, override
PostNcDestroy and invoke the delete operator on the this pointer. The next
section explains what happens next.

Destroying the Dialog Box
Modal dialog boxes are normally created on the stack frame and destroyed when
the function that created them ends. The dialog object's destructor is called when
the object goes out of scope.

Modeless dialog boxes are normally created and "owned" by a parent view or
frame window-the application's main frame window or a document frame
window. The default OnClose handler calls DestroyWindow, which destroys the
dialog-box window. The PostNcDestroy handler destroys the C++ dialog object.
You should also override OnCancel and call DestroyWindow from within it.

Dialog Data Exchange and Validation
Dialog data exchange (DDX) is an easy way to initialize the controls in your dialog
box and to gather data input by the user. Dialog data validation (DDV) is an easy
way to validate data entry in a dialog box. To take advantage of DDX and DDV in
your dialog boxes, Use Class Wizard to create the data members and set their data
types and specify validation rules. For additional information about DDX/DDV and
for examples, see Chapter 9 in the App Studio User's Guide and Chapter 7 in the
Class Library User's Guide.

Data Exchange
If you use the DDX mechanism, you set the initial values of the dialog object's
member variables, typically in your OnlnitDialog handler or the dialog
constructor. The framework's DDX mechanism then transfers the values of
the member variables to the controls in the dialog box, where they appear when

102 Class Library Reference

the dialog box itself appears. The default implementation of OnlnitDiaiog in
CDiaiog calls the UpdateData member function of class CWnd to initialize the
controls in the dialog box.

The same mechanism transfers values from the controls to the member variables
when the user clicks the OK button (or whenever you call the UpdateData member
function with the argument TRUE). The dialog data validation mechanism vali­
dates any data items for which you specified validation rules.

Figure 5.1 illustrates dialog data exchange.

Initialize variables in Initialize controls in
dialog constructor OnlnitDialog

Dialog box on screen

... Member Variables Thin Pen Width: D
Thick Pen Width: D Controls

I Default I I OK I I Cancel I- I-

Dialog Object

Retrieve values when Retrieve control values
they are updated with Update Data

Figure 5.1 Dialog Data Exchange

UpdateData works in both directions, as specified by the BOOL parameter passed
to it. To carry out the exchange, UpdateData sets up a CDataExchange object
and calls your dialog class's override of CDiaiog' s DoDataExchange member
function. DoDataExchange takes an argument of type CDataExchange. The
CDataExchange object passed to UpdateData represents the context of the ex­
change, defining such information as the direction of the exchange.

When you (or Class Wizard) override DoDataExchange, you specify a call to one
DDX function per data member (control). Each DDX function knows how to
exchange data in both directions based on the context supplied by the
CDataExchange argument passed to your DoD a t a Ex c han 9 e by U pdateData.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 103

The Microsoft Foundation Class Library provides many DDX functions for
different kinds of exchange. The following example shows aDo 0 a t a Ex c han 9 e
override in which two DDX functions and one DDV function are called:

void CMyOialog::OoOataExchange(COataExchange* pOX)
{

COialog::OoOataExchange(pOX); II Call base class version
11{{AFX_OATA_MAP(CMyOialog)
OOX_CheckCpOX. IOC_MY_CHECKBOX. m_bVar);
OOX_Text(pOX. IOC_MY_TEXTBOX. m_strName);
OOV_MaxChars(pOX. IOC_MY_TEXTBOX. m_strName. 20);
II}}AFX_OATA_MAP

The DDX_ and DDV_Iines between the / / {{AFX_DATA_MAP and
/ /} } A FX_DATA_MAP delimiters are a "data map." The sample DDX and DDV
functions shown are for a check-box control and an edit-box control, respectively.

If the user cancels a modal dialog box, the OnCancel member function tenninates
the dialog box and DoModal returns the value IDCANCEL. In that case, no data
is exchanged between the dialog box and the dialog object.

Data Validation
You can specify validation in addition to data exchange by calling DDV functions,
as shown in the example above. The DDV _ MaxChars call in the example above
validates that the string entered in the text-box control is not longer than 20 charac­
ters. The DDV function typically alerts the user with a message box if the valida­
tion fails and puts the focus on the offending control so the user can reenter the
data. A DDV function for a given control must be called immediately after the
DDX function for the same control.

You can also define your own custom DDX and DDV routines. For details on
this and other aspects of DDX and DDV, see Technical Note 26 in
MSVC\HELP\MFCNOTES.HLP.

ClassWizard will write all of the DDX and DDV calls in the data map for you. Do
not manually edit the lines in the data map between the delimiting comments.

Type-Safe Access to Controls in a Dialog Box
The controls in a dialog box can use the interfaces of the Microsoft Foundation
Class Library control classes such as CListBox and CEdit. You can create a con­
trol object and attach it to a dialog control. Then you can access the control through
its class interface, calling member functions to operate on the control, as shown
below. The methods described here are designed to give you type-safe access to a
control. This is especially useful for controls such as edit boxes and list boxes.

104 Class Library Reference

The connection between a control in a dialog box and a C++ control member
variable in a CDialog-derived class can be done in two different ways.

Without ClassWizard
The first approach uses an inline member function to cast the return type of class
CWnd's GetDlgItem member function to the appropriate C++ control type, as in
this example:

II Declared inline in class CMyDialog
CButton* GetMyCheckbox()
{

return (CButton*)GetDlgltem(ID_MYCHECKBOX);

You can then use this member function to access the control in a type-safe manner
with code similar to the following:

GetMyCheckbox()->SetState(TRUE);

With ClassWizard
However, there is a much easier way to accomplish the same effect if you are
familiar with the DDX features, using the Control property in ClassWizard.

If you simply want access to a control's value, DDX provides it. If you want to do
more than access a control's value, use Class Wizard to add a member variable of
the appropriate class to your dialog class. Attach this member variable to the
Control property.

Member variables can have a Control property instead of a Value property. The
Value property refers to the type of data returned from the control, such as CString
or int. The Control property enables direct access to the control through a data
member whose type is one of the control classes in the Microsoft Foundation Class
Library, such as CButton or CEdit.

You can use this object to call any member functions for the control object. Such
calls affect the control in the dialog box. For example, for a check-box control
represented by a variable m_checkboxDefa ul t, of type CButton, you could call:

m_checkboxDefault.SetState(TRUE);

Here the member variable m_ c h e c k box 0 e f a u 1 t serves the same purpose as the
member function Get My C h e c k box shown above. If the check box is not an auto
check box, you would still need a handler in your dialog class for the
BN _ CLICKED control-notification message when the button is clicked.

For more information about controls, see "Controls" on page 106.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 105

Mapping Windows Messages to Your Class
If you need your dialog box to handle Windows messages, override the appropriate
handler functions. To do so, use Class Wizard to map the messages to the dialog
class. This writes a message-map entry for each message and adds the message­
handler member functions to the class. Use the Visual Workbench editor to write
code in the message handlers. Chapter 3 describes message maps and message­
handler functions in detail.

Commonly Overridden Member Functions
The most likely member functions to override in your CDialog-derived class are
listed in Table 5.3.

Table 5.3 Commonly Overridden Member Functions of Class CDialog

Member Function Message It Responds To Purpose of the Override

OnInitDialog WM INITDIALOG Initialize the dialog box's
controls

OnOK BN CLICKED for button Respond when the user clicks
IDOK the OK button

OnCancel BN CLICKED for button Respond when the user clicks
IDCANCEL the Cancel button

OnlnitDialog, OnOK, and OnCancel are virtual functions. To override them, you
declare an overriding function in your derived dialog class using Class Wizard; in
these cases, ClassWizard will not add any message-map entries because they are
not necessary.

OnlnitDialog is called just before the dialog box is displayed. You must call the
default OnlnitDialog handler from your override-usually as the first action in the
handler. By default, OnInitDialog returns TRUE to indicate that the focus should
be set to the fIrst control in the dialog box.

OnOK is typically overridden for modeless but not modal dialog boxes. If you
override this handler for a modal dialog box, call the base class version from your
override-to ensure that End Dialog is called-or call EndDialog yourself.

OnCancel is usually overridden for modeless dialog boxes.

For more information about these member functions, see class CDialog and the
discussion on "Life Cycle of a Dialog Box" on page 98.

106 Class Library Reference

Commonly Added Member Functions
If your dialog box contains pushbuttons other than OK or Cancel, you need to write
message-handler member functions in your dialog class to respond to the control­
notification messages they generate. For an example, see Chapter 7, "Adding A
Dialog Box," in the Class Library User's Guide. You can also handle control­
notification messages from other controls in your dialog box.

Common Dialog Classes

Controls

In addition to class CDialog, the Microsoft Foundation Class Library supplies
several classes derived from CDialog that encapsulate commonly used dialog
boxes, as shown in Table 5.4. The dialog boxes encapsulated are called the
"common dialog boxes" and are part of the Windows common dialog library.
The dialog-template resources and code for these classes is provided in the
Windows common dialog boxes that are part of Windows version 3.1.

Table 5.4 Common Dialog Classes

Derived Dialog Class

CColorDialog

CFileDialog

CFindReplaceDialog

CFontDialog

CPrintDialog

Purpose

Lets user select colors

Lets user select a filename to open or to save

Lets user initiate a find or replace operation in a text file

Lets user specify a font

Lets user specify information for a print job

For more information about the common dialog classes, see the individual class
names in the alphabetic reference.

Two other classes in the Microsoft Foundation Class Library have dialog-like
characteristics. For information about class CFormView, see "CFormView" on
page 91 in Chapter 4. For information about class CDialogBar, see "Control Bars"
on page 111.

The Microsoft Foundation Class Library supplies a set of classes that correspond
to the standard control windows provided by Microsoft Windows. These include
buttons of several kinds, static- and editable-text controls, scroll bars, list boxes,
and combo boxes. Table 5.5 lists the classes and the corresponding standard
controls. The next section describes new kinds of controls.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 107

New Controls

Table 5.5 Standard Control Window Classes

Class

CStatic

CButton

CListBox

CComboBox

CEdit

CScrollBar

Windows Control

Static-text control

Button control: pushbutton, check box, radio button,
or group-box control

List-box control

Combo-box control

Edit control

Scroll-bar control

Each control class encapsulates a Windows control and provides a member function
user interface to the underlying control. Using a control object's member functions,
you can get and set the value or state of the control and respond to various standard
messages sent by the control to its parent window (usually a dialog box). For addi­
tional control classes, see "New Controls," which follows.

You can create control objects in a window or dialog box. You can also use a
control class as an interface to a control created in a dialog box from a dialog­
template resource.

In addition to the standard Windows controls discussed above, the Microsoft
Foundation Class Library provides several new control classes. These provide
buttons labeled with bitmaps instead of text, control bars, VBX controls, controls
that support Microsoft Windows for Pen Computing operations, and splitter­
window controls. Splitter windows were discussed in Chapter 4.

Table 5.6 shows the new classes and their purposes.

Table 5.6 New Control Classes

Class

CBitmapButton

CToolBar

CStatusBar

CDialogBar

CVBControl

Purpose

Button labeled with a bitmap instead of text

Toolbar arranged along a border of a frame window and
containing other controls

Status bar arranged along a border of a frame window and
containing panes, or indicators

Control bar created from a dialog -template resource and
arranged along a border of a frame window

Custom control compatible with Visual C++ and Visual
Basic

108 Class Library Reference

Table 5.6 New Control Classes (continued)

Class

CHEdit

CBEdit

Purpose

Text box in which the user can enter and edit text using
standard pen editing gestures

Like a CHEdit, but with boxes to guide text entry

Control bars, including toolbars, status bars, and dialog bars, are discussed in
"Control Bars" on page 111.

Bitmap Buttons
Class CBitmapButton allows you to have button controls labeled with bitmaps
instead of text. An object of this class stores four CBitmap objects that represent
various states of the button: up (active), down (pushed), focused, and disabled.
Bitmap buttons can be used in dialog boxes. For more information, see class
CBitmapButton. Figure 5.2 shows bitmap buttons in a dialog box.

OwnerBtn Testl

E Hample Dialog with

self-drawing bitmap buttons

PCancel I~)

Figure 5.2 Bitmap Buttons

VBX Controls
Class CVBControl allows you to use VBX controls. You can use VBX controls
in both Visual C++ and Microsoft Visual Basic. You can use the class to load
controls, get their properties, set their properties, change their screen location,
and perform many other operations. You can also import VBX controls into
App Studio and place them in dialog boxes. For more information, see class
CVBControl. For information about using VBX controls in App Studio, see
theApp Studio User's Guide.

Windows for Pen Controls
Classes CHEdit and CBEdit support programming Windows for Pen applications.
These classes allow you to place controls in your dialog boxes that can be edited
with a pen. For more information, see classes CHEdit and CBEdit.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 109

Controls and Dialog Boxes
Nonnally the controls in a dialog box are created from the dialog template at the
time the dialog box is created. Use Class Wizard to manage the controls in your
dialog box. For details, see "Dialog Data Exchange and Validation" on page 101,
"Type-Safe Access to Controls in a Dialog Box" on page 103, and "Mapping
Windows Messages to Your Class" on page 105.

Making and Using Controls
You make most controls for dialog boxes in the App Studio dialog editor. But you
can also create controls in any dialog box or window.

Using App Studio
When you create your dialog-template resource with App Studio, you drag controls
from a controls palette and drop them into the dialog box. This adds the specifica­
tions for that control type to the dialog-template resource. When you construct a
dialog object and call its Create or DoModal member function, the framework
creates a Windows control and places it in the dialog window on screen.

Doing It By Hand
To create a control object yourself, you will usually embed the C++ control object
in a C++ dialog or frame window object. Like many other objects in the framework,
controls require two-stage construction. You should call the control's Create
member function as part of the parent dialog box or frame window creation. For
dialog boxes, this is usually done in OnlnitDialog, and for frame windows, in
OnCreate.

The following example shows how you might declare a CEdit object in the class
declaration of a derived dialog class and then call the Create member function in
OnlnitDialog. Because the CEdit object is declared as an embedded object, it is
automatically constructed when the dialog object is constructed, but it must still
be initialized with its own Create member function.

class CMyDialog : public CDialog
{

protected:
CEdit m_edit; II Embedded edit object

public:
virtual BOOl OnlnitDialog();

} ;

110 Class Library Reference

The following 0 n I nit D i a log function sets up a rectangle, then calls Create to
create the Windows edit control and attach it to the uninitialized CEdit object.

BOOl CMyOialog::OnlnitOialog()
{

COi a log: : On I n itOi a log () ;
CRect rect(85. 110. 180. 210);

m_edit.Create(WS_CHIlO
ES_AUTOSCROll

m_edit.SetFocus();
return FALSE;

WS_VISIBlE I WS_TABSTOP I
WS_BOROER. recto this. IO_EXTRA_EOIT);

After creating the edit object, you can also set the input focus to the control by
calling the SetFocus member function. Finally, you return 0 from OnlnitDialog to
show that you set the focus. If you return nonzero, the dialog manager sets the focus
to the first control item in the dialog item list.

Deriving Controls from a Standard Control
As with any CWnd-derived class, you can modify a control's behavior by deriving
a new class from an existing control class.

To create a derived control class, follow these steps:

1. Derive your class from an existing control class and optionally override the
Create member function so that it provides the necessary arguments to the
base-class Create function.

2. Use Class Wizard to provide message-handler member functions and message­
map entries to modify the control's behavior in response to specific Windows
messages.

3. Provide new member functions to extend the functionality of the control
(optional).

U sing a derived control in a dialog box requires extra work. The types and positions
of controls in a dialog box are normally specified in a dialog-template resource. If
you create a derived control class, you cannot specify it in a dialog template since
the resource compiler knows nothing about your derived class. To place your
derived control in a dialog box, follow these steps:

1. Embed an object of the derived control class in the declaration of your derived
dialog class.

2. Override the OnlnitDialog member function in your dialog class to call the
SubclassDlgItem member function for the derived control.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 111

SubclassDlgltem "dynamically subclasses" a control created from a dialog
template. When a control is dynamically subclassed, you hook into Windows,
process some messages within your own application, then pass the remaining
messages on to Windows. For more information, see the SubclassDlgltem
member function of class CWnd. The following example shows how you might
write an override of OnlnitDialog to call SubclassDlgltem:

BOO L C My 0 i a log: : 0 n I n it 0 i a log ()
{

CDialog::OnlnitDialog();
m_wndMyBtn.SubclassDlgltem(IDC_MYBTN, this);
return TRUE;

Because the derived control is embedded in the dialog class, it will be constructed
when the dialog box is constructed, and it will be destroyed when the dialog box is
destroyed. Compare this code to the previous example on page 110.

Control Bars
Control bars greatly enhance a program's usability by providing quick, one-step
command actions. Control bars include tool bars , status bars, and dialog bars. The
base class of all control bars is CControlBar.

• A toolbar is a control bar that displays a row of bitmapped buttons that activate
commands similarly to menu items. The buttons can act like pushbuttons, check
boxes, or radio buttons. Toolbars are usually aligned to the top of a frame
window.

• A status bar is a control bar with a row of text output panes, or "indicators."
The output panes are commonly used as message lines and as status indicators.
Examples include the command help-message lines that briefly explain the
selected menu or toolbar command and the indicators that indicate the status of
the SCROLL LOCK, NUM LOCK, and other keys. Status bars are usually aligned to
the bottom of a frame window.

• A dialog bar is a control bar with the functionality of a modeless dialog box.
Dialog bars are created from dialog templates and can contain any Windows
control, including VBX controls. Dialog bars support tabbing among controls
and can be aligned to the top, bottom, left, or right sides of a frame window.

This section explains how control bars of all three types work. The base class,
CControlBar, provides the functionality for positioning the control bar in its
parent frame window. Because a control bar is usually a child window of a parent
frame window, it is a "sibling" to the client view or MDI client of the frame

112 Class Library Reference

Toolbars

window. A control-bar object uses infonnation about its parent window's client
rectangle to position itself. Then it alters the parent's remaining client-window
rectangle so that the client view or MDI client window will fill the rest of the client
window.

The buttons in a toolbar are analogous to the items in a menu. Both kinds of user­
interface objects generate commands, which your program handles by providing
handler functions. Often toolbar buttons duplicate the functionality of menu
commands, providing an alternative user interface to the same functionality. Such
duplication is arranged by giving the button and the menu item the same ID.

Once constructed, a CToolBar object creates the toolbar image by loading a single
bitmap that contains one image for each button. App Wizard creates a standard
toolbar bitmap, in file TOOLBAR.BMP, that you can customize with App Studio.
Figure 5.3 shows that bitmap as it appears in the App Studio bitmap editor.

Figure 5.3 The Standard Toolbar Bitmap

Figure 5.4 shows a toolbar as it appears in a running application, including
separators between groups of buttons.

I Separator

button button

Figure 5.4 A Toolbar with Separators

The buttons in a toolbar are only bitmaps, but the toolbar object processes mouse
clicks in the toolbar and generates the appropriate command based on the clicked
button's position in the toolbar.

Buttons are correlated with the commands they generate by an array of command
IDs, in which the position of an ID in the array is the same as the position of a
button image in the toolbar bitmap. If you choose the Initial Toolbar option in
App Wizard, App Wizard adds a "buttons" array to the source file for your main
frame window class. The array also contains ID _SEPARATOR elements used to
space the buttons into groups. The separators are ignored in detennining button
positions. For an example of using App Studio and the array to modify the default
toolbar provided by AppWizard, see Chapter 5 in the Class Library User's Guide.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 113

Status Bars

Dialog Bars

You can make the buttons in a toolbar appear and behave as pushbuttons, check
boxes, or radio buttons.

For more information, see class CToolBar in the alphabetic reference.

As with toolbars, a CStatusBar object is based on an array of IDs for its indicator
panes. If you select the Initial Toolbar option in App Wizard, App Wizard creates
the array for a status bar as well as the array for a toolbar in the source file for your
main frame window class. The array looks like this:

static UINT BASED_CODE indicators[] =
{

ID_SEPARATOR, II message line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

} ;

These indicators are arranged horizontally along the status bar from left to right.
You can add more indicators by adding more IDs to the array. You can size these
indicators as needed. You can also add separators by adding ID _ SEP ARA TOR
elements. The leftmost indicator, at position 0, takes up all space remaining after
the other panes are placed. This indicator is most often used as a message area in
which to display text strings such as command prompts. Figure 5.5 shows a status
bar that displays several indicators.

I Save the active document

Figure 5.5 A Status Bar

Like the toolbar, the status-bar object is embedded in its parent frame window and
is constructed automatically when the frame window is constructed. During
creation, a call to the Setlndicators member function of class CStatusBar
associates an ID from the array with each indicator. The status bar, like all control
bars, is destroyed automatically as well.

For an example of using a status bar, see the Scribble tutorial program in the Class
Library User's Guide. For more information, see class CStatusBar.

Because it has the characteristics of a modeless dialog box, a CDialogBar provides
a more powerful toolbar. There are several key differences between a toolbar and
a CDialogBar. A CDialogBar is created from a dialog-template resource, which
you can create with App Studio and which can contain any kind of Windows

114 Class Library Reference

control. The user can tab from control to control. And you can specify an alignment
style to align the dialog bar with any part of the parent frame window or even to
leave it in place if the parent is resized. Figure 5.6 shows a dialog bar with a variety
of controls.

I :t>.i.'riL;:;:' II Next Page II PwxY il\W II Two Page II Zoom In II 20mn Lut II Close

Figure 5.6 A Dialog Bar

In other respects, working with a CDialogBar is like working with a modeless
dialog box. Use App Studio to design and create the dialog resource.

One of the virtues of dialog bars is that they can include controls other than buttons.

While it is normal to derive your own dialog classes from CDialog, you do not
typically derive your own class for a dialog bar. Dialog bars are extensions to a
main window and any dialog-bar control-notification messages, such as
BN_CLICKED or EN_CHANGE, will be sent to the parent of the dialog bar­
the main window.

For more information about dialog bars, see class CDialogBar.

Context-Sensitive Help
Applications written for Windows usually provide context-sensitive Help, allowing
the user to get Help on a particular window, dialog box, command, or toolbar
button. The Microsoft Foundation Class Library makes it simple to add context­
sensitive Help to your application.

The user can access Help in three ways:

• Getting Help from the Help menu.

• Getting Help on the task at hand by pressing the FI key. This kind of help is
called "Fl Help."

• Getting Help by invoking a "help mode" with SHIFT +Fl and then selecting a
user-interface object to get help about. This kind of help is called "SHIFT +Fl
Help."

This section explains how the framework manages the three kinds of Help support.
It also explains the tools you use to add Help support. For a detailed example, see
Chapter 10 in the Class Library User's Guide. For additional technical
information, see Technical Note 28 in MFCNOTES.HLP.

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 115

Components of Help
The Help subsystem in the framework has the following components, many of
which are supplied by AppWizard when you choose its Context-Sensitive Help
option:

• A Help drop-down menu with several commands. For a new MDI application,
there are two copies of this drop-down menu: one for an application with no
open documents and one for each type of document that uses its own menu
structure. App Wizard supplies these menus.

• Several message-map entries in your CWinApp-derived application class.
App Wizard supplies these entries.

• Message handlers corresponding to the message-map entries. Class CWinApp
supplies these handlers and App Wizard supplies the message-map entries for
them.

• The CWinApp::WinHeJp member function, which calls WINHELP.EXE, the
Windows Help program.

• Additional App Wizard support for Help, including several Help-related files.
The files include skeleton .RTF files that contain Help entries for the common
elements of the Windows user interface such as the File and Edit menus. You
can edit these files to revise the supplied text and add your own application­
specific Help information.

• A mechanism and tool for mapping resource and command IDs in your
application to "help contexts" in Windows Help. The MAKEHM tool is
described later.

Help-Menu Support
The framework implements two Help menu commands:

• Help Index launches Windows Help with the Help index. The user can browse
Help topics or search for a specific topic. The command ID for Help Index is
ID HELP INDEX. - -

• U sing Help launches Windows Help with general information about using
Windows Help. The command ID is ID _HELP _USING.

116 Class Library Reference

Each of these menu items is implemented with commands. The following partial
message map for a main frame window class contains mappings for the Help
commands:

BEGIN_MESSAGE_MAPCCMyApp, CWinApp)
11{{AFX_MSG_MAPCCMyApp)
II ...
I/} }AFX_MSG_MAP
II Standard file based document commands
I I ...
I I Global hel p commands
ON_COMMANDCID_HELP_INDEX, CWinApp: :OnHelpIndex)
ON_COMMANDCID_HELP_USING, CWinApp: :OnHelpUsing)
ON_COMMANDCID_HELP, CWinApp: :OnHelp)
ON_COMMANDCID_CONTEXT_HELP, CWinApp: :OnContextHelp)
ON_COMMANDCID_DEFAULT_HELP, CWinApp: :OnHelpIndex)

END_MESSAGE_MAPC)

The first two entries under the / / G lob a 1 he 1 p co mm and s comment specify
handlers for the two menu commands. The remaining three entries are for FI Help,
Shift+FI Help, and default Help, respectively. All you have to do to enable these
menu items is choose the Context-Sensitive Help option in App Wizard. App Wizard
writes the message-map entries.

When the user chooses a Help menu command (or uses one of the context -sensitive
Help techniques described in the next two sections), the framework calls
CWinApp's Win Help member function, which in tum starts the program
WINHELP.EXE, passing context information to it.

F1 Help Support
The framework implements FI Help forwindows, dialog boxes, message boxes,
menus, and toolbar buttons. If the cursor is over a window, dialog box, or message
box when the user presses the FI key, the framework opens Windows Help for that
window. If a menu item is highlighted, the framework opens Windows Help for that
menu item. And if a toolbar button has been pressed (but the mouse not released
yet), the framework opens Windows Help for that toolbar button.

When the user presses the FI key, the framework processes the keystroke as a Help
request, as follows, using a variation on the normal command routing. Pressing FI

causes a WM _ COMMAND message to be sent for the ID _HELP command. If
the application supports Help, this command is mapped to the OnHelp message
handler of class CWinApp and is routed directly there. OnHelp uses the ID of
the current frame window or dialog box to determine the appropriate Help topic

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 117

to display to the user. If no specific Help topic is found, OnHelp displays default
Help, which is usually mapped to CWinApp member function OnHelpIndex in the
application object's message map-the same handler as for the Help Index menu
command.

SHIFT +F1 Help Support
If the user presses SHIff +Fl at any time the application is active, the framework
puts the application into Help mode and changes the cursor to a Help cursor. The
next thing the user clicks determines what Help context the framework opens in
Windows Help.

If the user presses SHIff +Fl, the framework routes the command
ID _ CONTEXT_HELP through the normal command routing. The command
is mapped to the CWinApp member function OnContextHelp, which captures
the mouse, changes the cursor to a Help cursor (arrow + question mark), and puts
the application into Help mode. The Help cursor is maintained as long as the
application is in Help mode but reverts to a normal arrow cursor if it is not over
the application that is in Help mode. Activating a different application cancels Help
mode in the original application. While in Help mode, the application determines
what object the user clicks on and calls the CWinApp member function WinHelp
with the appropriate context, determined from the object clicked upon. Once
an object has been selected, Help mode ends and the cursor is restored to the
normal arrow.

For more information, see Technical Note 28 in MFCNOTES.HLP.

More Precise Context-Sensitivity
The standard Help implementation in the framework can obtain a Help context from
a window, dialog box, message box, menu item, or toolbar button. If you need more
precise control over this mechanism, you can override parts of the mechanism.

For additional information, see Technical Note 28 in MFCNOTES.HLP.

Help Support Tools
You will use three main tools to develop your application's Help system:
App Wizard, MAKEHM, and the Windows Help Compiler (the Help Compiler is
included with the Microsoft Visual C++ Professional Edition). You also need an
editor, such as Microsoft Word for Windows, that can edit .RTF files. You can
use App Studio to create bitmaps to include in your Help files.

118 Class Library Reference

AppWizard
As you have seen, AppWizard is your first tool for implementing context-sensitive
Help. Set the Context-Sensitive Help option in AppWizard's Options dialog box.
App Wizard then provides the message-map entries in your CWinApp-derived
class that connect up the whole help mechanism. App Wizard also creates a set of
skeletal starter files, as shown in Table 5.7. The bitmap and .RTF files are in an
HLP subdirectory that App Wizard creates in your project directory.

Table 5.7 AppWizard-Supplied Help Files

File

[Yourproject].HPJ

MAKEHELP.BAT

HLP*.BMP

HLP*.RTF

Description

A Windows Help project file that the Windows Help
Compiler uses to compile your Help.

A batch file that manages Help ID mapping and calls the
Help Compiler.

Various bitmap files used with the supplied Help files.

Skeleton Help files in .RTF format that contain starter Help
for the application components supplied by the framework.

The help project file (.HPJ) and MAKEHELP.BAT are in your project directory.
The other files are in an HLP subdirectory of your project directory.

You can edit these files as described in "Authoring and Compiling Help" on page
120 to fill in application-specific Help information.

MAKEHM and MAKEHELP.BAT
Once you've created the Help support files with AppWizard and are ready to
prepare context-sensitive Help files, run the MAKEHELP.BAT tool from the
MS-DOS command line to create a "Help mapping" file (.HM extension) and
to compile your Help file. MAKEHELP.BAT calls the MAKEHM tool, which
translates the contents of your RESOURCE.H file to a Help mapping file, which is
then included in the [MAP] section of your .HPJ file. The [MAP] section associates
context strings (or aliases) with context numbers used by the Help Compiler. Then
MAKEHELP.BAT calls the Windows Help Compiler to compile your Help file.

When you create a new resource or object within a resource, App Studio assigns it
an identifier, or symbol, consisting of a C preprocessor macro name mapped to an
integer value. App Studio writes these symbols as #define statements in a file
called RESOURCE.H.

MAKEHM reads your RESOURCE.H file, locates all applicable #define state­
ments (defining various IDs, including those for dialog boxes, menus, and toolbar
buttons), and adds an appropriate number to each ID number, using certain rules
that depend on the kind ofID (dialog box, menu, etc.). The rules are defined by

Chapter 5 Working with Dialog Boxes, Controls, Control Bars, and Context-Sensitive Help 119

MAKEHELP.BAT; the MAKEHM tool is actually more flexible than needed for
MAKEHELP.BAT. The new "Help IDs" are written to an .HM file, which the
Help Compiler uses to define contexts. For example, the following IDs defined
in RESOURCE.H

#define IDD MY DIALOG 2000
#define ID_MY_COMMAND 150

would be translated by MAKEHM into

HIDD MY DIALOG
HID MY COMMAND

0x207d0
0x10096

Dialog-box IDs are translated to values beginning at Ox20000. Command and
resource IDs are translated to values beginning at Ox 1 0000. That is, the framework
reserves specific ranges of values for different kinds of objects. For details, see the
contents of MAKEHELP.BAT and Technical Note 28 in MFCNOTES.HLP.

This format is compatible with the Help Compiler, which maps context IDs (the
numbers on the right side) to topic names (the symbols on the left). Use these topic
names in the .R TF Help files to identify contexts.

Preferred Resource 10 Prefixes
To facilitate using MAKEHELP.BAT and MAKEHM, observe the conventions in
specifying IDs for your resource objects, as shown in Table 5.8. It is important that
different kinds of resource objects have different ID prefixes.

Table 5.8 Preferred Resource ID Naming Conventions

Predefined ID Object

IDP

IDD

ID

IDR

IDW

Message-box prompt

Dialog-box ID

Toolbar or menu command (IDM_ is okay too)

Frame-related resources

Control bar

Use the IDS _ prefix for normal string resources, and do not write Help topics for
them. For string resources used in message boxes, use the IDP _ prefix and write
Help topics for them so the user can get context-sensitive Help by pressing Fl while
the message box is displayed.

120 Class Library Reference

Authoring and Compiling Help
For details about authoring and compiling Windows Help, see Programming Tools
for the Microsoft Windows Operating System.

The preferred way to build Help for your framework application is to run
MAKEHELP.BAT. You must have the Microsoft Windows 3.1 Help Compiler in
your path.

Figure 5.7 shows the general process for creating a Help system for your
application.

AppWizard

Create
skeleton
application
with context
sensitive
help
option set

-

Program file
+

Help files
containing

standard AF
topics

s-

X

App Studio

Add dialog
boxes,
menus, and
other

~ resources ~

11r

Resource file
+

RESQURCE.H
I

Figure 5.7 Preparing Help Files

Editor

Author
help topics

11r

.RTF
topic
files

I

MAKEHELP.BAT
+

MAKEHM

Create
help

~
mapping

11r

.HM help
mapping file

+
AFXHELP.HM

~

Windows
Help Compiler

Compile
help files

~Ir

.HLP
help
file

For an example of preparing Help files, see Chapter 10 in the Class Library User's
Guide.

In the Next Chapter
Chapters 2 through 5 have explained how the framework functions and given you
some insight into its use. The next chapter explains the "general-purpose" classes
and facilities of the Microsoft Foundation Class Library. These classes, global
functions, and macros Help you diagnose problems with your application, manage
file input/output, handle exceptional conditions, use collection classes, and more.

CHAPTER 6

Using the General-Purpose Classes

This chapter summarizes the use of the general-purpose classes in the Microsoft
Foundation Class Library. These classes provide useful services such as diag­
nostics, exception handling, and collections.

CObject Services
The CObject base class provides the following services to objects of its derived
classes:

• Object diagnostics

• Run-time class information

• Object persistence

121

Some of these services are available only if you use certain macros in derived
class declarations and implementations. In order to make use of the services listed
above, you should seriously consider deriving most of your nontrivial classes from
CObject. Many of the Microsoft Foundation classes are so derived, including
almost all of the application architecture classes that make up the framework.

Object Diagnostics
The Microsoft Foundation library provides many diagnostic features, including
diagnostic dump context and object validity checking supplied by the CObject
class. For global diagnostic features, see "Memory Diagnostics" later in this
chapter, on page 127.

Diagnostic Dump Context
The CDumpContext class works in conjunction with the Dump member function
of the CObject class to provide formatted diagnostic printing of internal object
data. CDumpContext provides an insertion «<) operator that accepts not only

122 Class Library Reference

CObject pointers; standard types, such as BYTE and WORD; and CString and
CTime objects.

A predefined CDumpContext object, afxDump, is available in the Debug version
of the Microsoft Foundation classes (#define _DEBUG is required in your source
code). For more information about afxDump, see "Macros and Globals" on page
1046, and Technical Note 12, which can be found in
MSVC\HELP\MFCNOTES.HLP.

Object Validity Checking
You override the base class Assert Valid member function in your derived
class to perform a specific test of your object's internal consistency. Call the
ASSERT_VALID macro, passing it a pointer to any CObject, to call that object's
Ass e r t Val i d function. The implementation of an Ass e r t Val i d function usually
includes calls to the ASSERT macro. For more information about AssertValid, see
Chapter 15, "Diagnostics," in the Class Library User's Guide.

Run-Time Class Information
The Microsoft Foundation classes offer the developer some optional features that
make it possible to do run-time type checking. If you derive a class from CObject
and implement one of three macros (IMPLEMENT _DYNAMIC,
IMPLEMENT _ DYNCREATE, or IMPLEMENT_SERIAL), you can use
member functions to:

• Access the class name at run time.

• Safely cast a generic CObject pointer to a derived class pointer.

Run-time class information is particularly valuable in the Debug environment
because it can be used to detect incorrect casts and to produce object dumps with
class names included.

Note In order to access run-time type information, you must use the
DECLARE_DYNAMIC, DECLARE_DYNCREATE, or
DECLARE_SERIAL macro in your class declaration, and you must use the
corresponding IMPLEMENT _DYNAMIC, IMPLEMENT _ DYNCREATE, or
IMPLEMENT_SERIAL macro in your class implementation.

Run-time class information is, of course, available in the Release environment.
During serialization, the run-time class information is used to store the object's type
with the object data.

Run-time class testing is not meant to be a substitute for using virtual functions
added in a common base class. Use the run-time type information only when virtual
functions are not appropriate.

Chapter 6 Using the General·Purpose Classes 123

Object Persistence
Class CObject, in conjunction with class CArchive, supports "object persistence"
through a process called serialization. Object persistence allows you to save a
complex network of objects in a permanent binary fonn (usually disk storage) that
persists after those objects are deleted from memory. Later you can load the objects
from persistent storage and reconstitute them in memory.

To create your own serializable CObject-derived class, you must use the
DECLARE_SERIAL macro in the class declaration, and you must use the
corresponding IMPLEMENT_SERIAL macro in the class implementation. If you
have added new data members in your derived class, you must override the base
class Serialize member function to store object data to the archive object and load
object data from it. Once you have a serializable class, you can serialize objects of
that class to and from a file via a CArchive object.

A CArchive object provides a type-safe buffering mechanism for writing or
reading serializable objects to or from a CFile object. Usually the CFile object
represents a disk file; however, it can be also be a memory file (CMemFile object),
perhaps representing the Clipboard. A given CArchive object either stores (writes,
serializes) data or loads (reads, de serializes) data, but never both. Thus two succes­
sively created CArchive objects are required to serialize data to a file and then
deserialize it back from the file. The life of a CArchive object is limited to one
pass-either writing an object to a file or reading an object from a file.

When storing an object to a file, an archive attaches the CRuntimeClass name to
the object. Then, when another archive loads the object from a file, the archive uses
the CRuntimeClass name of the object to dynamically reconstruct the object in
memory. A given object may be referenced more than once as it is written to the
file by the storing archive. The loading archive, however, will reconstruct the object
only once. The details about how an archive attaches CRuntimeClass information
to objects and reconstructs objects, taking into account possible multiple references,
are described in Technical Note 2 in MFCNOTES.HLP.

As you serialize data to an archive, the archive accumulates the data until its buffer
is full. When the buffer is full, the archive then writes its buffer to the CFile object
pointed to by the CArchive object. Similarly, as you read data from an archive,
the archive reads data from the file to its buffer, and then from the buffer to your
deserialized object. This buffering reduces the number of times a hard disk is physi­
cally read, thus improving your application's performance.

There are two ways to create a CArchive object. The most common way, and
the easiest way, is to let the framework create one for your document on behalf
of the Save, Save As, and Open commands on the File menu. The other way is to
explicitly create the CArchive object yourself.

To let the framework create the CArchive object for your document, simply
implement the document's S e ria 1 i z e function, which writes and reads to and

124 Class Library Reference

from the archive. You also have to implement Ser; ali ze for any CObject­
derived objects that the document's Ser; ali ze function in tum serializes
directly or indirectly.

There are other occasions besides serializing a document via the framework when
you may need a CArchive object. For example, you might want to serialize data to
and from the Clipboard, represented by a CMemFile object. Or, you might want to
develop a user interface for saving files that is different from the one offered by the
framework. In this case, you can explicitly create a CArchive object. You do this
the same way the framework does. For more detailed information, see Chapter 14,
"Files and Serialization" in the Class Library User's Guide.

The File Classes
The CFile family of classes provides a C++ programming interface to operating­
system files. The CFile class itself gives access to low-level binary files, and the
CStdioFile class gives access to buffered "standard I/O" files. CStdioFile files are
often processed in "text mode," which means that newline characters are converted
to carriage return -linefeed pairs on output.

CMemFile supports "in-memory files." The files behave like disk files except that
bytes are stored in RAM. An in-memory file is a useful means of transferring raw
bytes or serialized objects between independent processes.

Because CFile is the base class for all file classes, it provides a polymorphic pro­
gramming interface. If a CStdioFile file is opened, for example, its object pointer
can be used by the virtual Read and Write member functions defined for the CFile
class. The CDumpContext and CArchive classes, described previously, depend
on the CFile class for input and output.

The Collection Classes
The Microsoft Foundation Class Library contains a number of ready-to-use lists,
arrays, and maps that are referred to as "collection classes." A collection is an
extremely useful programming idiom for holding and processing groups of class
objects or groups of standard types. A collection object appears as a single object.
Class member functions can operate on all elements of the collection.

Most collections may be archived or sent to a dump context. The Dump and
Serialize member functions for CObject pointer collections call the corresponding
functions for each of their elements. Some collections may not be archived-for
example, pointer collections.

If you need a list, array, or map that is not included among the standard collections
provided with the Microsoft Foundation classes, you can use the Templdef template

Lists

Arrays

Maps

Chapter 6 Using the General·Purpose Classes 125

tool that is included in the \MSVC\MFc\sAMPLES directory. Technical Note 4,
found in MSVC\HELP\MFCNOTES.HLP, describes how to the use this tool.

Note The collection classes CObArray, CObList, CMapStringToOb, and
CMapWordToOb accept CObject pointer elements and thus are useful for
storing collections of objects of CObject-derived classes. If such a collection
is archived or sent to a diagnostic dump context, then the element objects are
automatically archived or dumped as well. For more about collection classes,
see Chapter 13, "Collections," in the Class Library User's Guide.

When you program with the application framework, the collection classes will be
especially useful for implementing data structures in your document class. For an
example, see the document implementation in the tutorial contained in the Class
Library User's Guide.

There are "list" classes for CString objects, CObject pointers, and void pointers.
A list is an ordered grouping of elements. New elements can be added at the head
or tail of the list, or before or after a specified element. The list can be traversed in
forward or reverse sequence, and elements may be retrieved or removed during the
traversal.

The Microsoft Foundation Class Library contains "array" classes for bytes, words,
doublewords, CString objects, CObject pointers, and void pointers. An array
implemented this way is a dynamically sized grouping of elements that is directly
accessible through a zero-based integer subscript. The subscript ([]) operator can
be used to set or retrieve array elements. If an element above the current array
bound is to be set, then the programmer can specify whether the array is to grow
automatically. When growing is not required, array collection access is as fast as
standard C array access.

A "map" is a dictionary that maps keys to values. The map classes support
CString objects, words, CObject pointers, and void pointers. Consider the
CMapWordToOb class as an example. A WORD variable is used as a key to
find the corresponding CObject pointer. Duplicate key values are not allowed.
A key-pointer pair can be inserted only if the key is not already contained in the
map. Key lookups are fast because they rely on a hashing technique.

126 Class Library Reference

Other Support Classes
The Microsoft Foundation CString, CTime, and CTimeSpan classes are not
derived from CObject. They are discussed below.

The CString Class
The CString class supports dynamic character strings. CString objects can grow
and shrink automatically, and they can be serialized. Member functions and
overloaded operators add Basic-like string-processing capability. These features
make CString objects easier to use than C-style fixed-length character arrays.
Conversion functions allow CString objects to be used interchangeably with C­
style strings. Thus a CString object can be passed to a function that expects a
pointer to a constant string (const char*) parameter.

Like other Microsoft Foundation classes, the CString class allocates memory
on the heap. You must be sure that CString destructors are called at appropriate
times to free unneeded memory. There is no automatic "garbage collection" as
there is in Basic.

The CTime and CTimeSpan Classes
The CTime class encapsulates the run-time time _ t data type. Thus it represents
absolute time values in the range 1970 to 2038, approximately. There are member
functions that convert a time value to years, months, days, hours, minutes, and
seconds. The class has overloaded insertion and extraction operators for archiving
and for diagnostic dumping.

The CTimeSpan class extends time _ t by representing relative time values. When
one CTime object is subtracted from another one, the result is a CTimeSpan
object. A CTimeSpan object can be added to or subtracted from a CTime object.
A CTimeSpan value is limited to the range of ± 68 years, approximately.

Diagnostic Services
The Microsoft Foundation Class Library provides diagnostic services that make it
easier to debug your programs. These services include macros and global functions
that allow you to trace your program's memory allocations, dump the contents of
objects during run time, and print debugging messages during run time. Most of
these services require the Debug version of the library and thus should not be used
in released applications. For a detailed description of the functions and macros
available, see Chapter 15, "Diagnostics," in the Class Library User's Guide and
the overview of "Macros and Globals" in this book.

Chapter 6 Using the General·Purpose Classes 127

Memory Diagnostics
Many applications use the C++ new operator to allocate memory on the heap. The
Microsoft Foundation classes provide a special Debug version of new that inserts
extra control bytes in allocated memory blocks. These control bytes, together with
the run-time class information that results from CObject derivation, allow you to
analyze memory-allocation statistics and detect memory-block bounds violations. A
memory dump can include the source filename and the line number of the allocated
memory and, in the case of objects from CObject-derived classes, the name of the
class and the output from its Dump function.

Diagnostic Output

Assertions

Many programmers want diagnostic output statements in their programs, particu­
larly during the early stages of development. The TRACE statement acts like
printf except that the TRACE code is not generated by the compiler with the
Release version of the library. In the Windows environment, debugging output
goes to the debugger if it is present.

Important For important information on using TRACE, see the "Macros and
Globals" section of this book and Technical Note 7 found in MFCNOTES.HLP.

You can use the afxDump dump context object for stream-style dumping of
standard types as well as Microsoft Foundation class objects. If you use afxDump,
be sure to bracket references with #ifdef DEBUG and #endif statements.

In the Debug environment, the ASSERT macro evaluates a specified condition.
If the condition is false, the macro displays a message in a message box that gives
the source filename and the line number and then terminates the program. In the
Release environment, the ASSERT statement has no effect.

VERIFY, a companion macro, evaluates the condition in both the Debug and
Release environments. It prints and terminates only in the Debug environment.

Classes derived from CObject, directly or indirectly, can also override the
AssertValid member function to test the internal validity of objects of the class.
For an example, see "Object Validity Checking" on page 122.

128 Class Library Reference

Exception Handling
The Microsoft Foundation Class Library includes an exception-handling
mechanism, similar to, and upwardly compatible with, the one in the proposed
ANSI C++ standard, for handling "abnormal conditions." An abnormal condition is
defined as a condition outside the program's control that influences the outcome of
a function. Abnormal conditions include low memory, I/O errors, and attempted use
of an unsupported feature. They do not include programming errors or normally
expected conditions such as an end-of-file condition. In general, you can consider
an exception to be a bug that remains in your program after shipping.

Exception handling in the Microsoft Foundation classes relies on "exception
objects" and a group of macros. The process starts with the interruption of normal
program execution in response to a THROW statement (macro invocation).
Execution resumes at the appropriate CATCH statement leading into code that
presumably deals with the abnormal condition. The exception objects, which are
instances of classes derived from CException, differentiate the various kinds of
exceptions and are used for communication.

This exception-handling scheme eliminates the need for extensive error testing after
every library function call. If, for example, you enclose your entire program in an
exception-handling block, then you don't have to test for low memory after each
statement that contains the new operator.

If you don't provide THROW and CATCH exception-processing code in your
classes, then exceptions will be caught in the Microsoft Foundation code. This
results in termination of the program through the global function AfxTerminate,
which normally calls the run-time function abort. However, if you use the
AfxSetTerminate function, the effect of AfxTerminate is changed. When
programming for Windows, it is important to remember that exceptions cannot
cross the boundary of a "callback." In other words, if an exception occurs within
the scope of a message handler, it must be caught there, before the next message is
processed. If you do not catch an exception, the CWinApp member function
ProcessWndProcException is called as a last resort. This function displays an
error message and then continues processing.

For exception-processing examples and a more detailed explanation of error
categories, see Chapter 16, "Exceptions," in the Class Library User's Guide. For
a detailed description of the functions and macros available, see the "Macros and
Globals" section in Part 2 of this book.

PAR T 2

The Microsoft Foundation
Class Library Reference

Alphabetic Microsoft Foundation Class Library Reference 131
Macros and Globals .. 1046

CArchive 131

class CArchive

See Also

The CArchive class allows you to save a complex network of objects in a
permanent binary form (usually disk storage) that persists after those objects are
deleted. Later you can load the objects from persistent storage, reconstituting them
in memory. This process of making data persistent is called "serialization."

You can think of an archive object as a kind of binary stream. Like an input/output
stream, an archive is associated with a file and permits the buffered writing and
reading of data to and from storage. An input/output stream processes sequences of
ASCII characters, but an archive processes binary object data in an efficient,
nonredundant format.

You must create a CFile object before you can create a CArchive object. In
addition, you must ensure that the archive's load/store status is compatible with the
file's open mode. You are limited to one active archive per file.

When you construct a CArchive object, you attach it to an object of class CFile
(or a derived class) that represents an open file. You also specify whether the
archive will be used for loading or storing. A CArchive object can process not
only primitive types but also objects of CObject-derived classes designed for
serialization. A serializable class must have a Serialize member function, and it
must use the DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as
described under class CObject.

The overloaded extraction (») and insertion «<) operators are convenient
archive programming interfaces that support both primitive types and CObject­
derived classes.

#include <afx.h>

CFile, CObject

Construction/Destruction - Public Members
CArchive

-CArchive

Close

Creates a CArchive object.

Destroys a CArchive object and flushes unwritten data.

Flushes unwritten data and disconnects from the CFile.

Basic Input/Output - Public Members
Flush

operator »

operator «

Flushes unwritten data from the archive buffer.

Loads objects and primitive types from the archive.

Stores objects and primitive types to the archive.

132 CArchive::CArchive

Read

Write

Reads raw bytes.

Writes raw bytes.

Status - Public Members
GetFile

IsLoading

IsStoring

Gets the CFile object pointer for this archive.

Determines if the archive is loading.

Determines if the archive is storing.

Object Input/Output - Public Members
ReadObject

WriteObject

Member Functions

CArchive: :CArchive

Calls an object's Serialize function for loading.

Calls an object's Serialize function for storing.

CArchive(CFile* pFile, UINT nMode, int nBuJSize = 512,
void FAR * lpBuJ = NULL)
throw(CMemoryException, CArchiveException, CFileException);

pFile A pointer to the CFile object that is the ultimate source or destination of the
persistent data.

nM ode A flag that specifies whether objects will be loaded from or stored to the
archive. The nMode parameter must have one of the following values, with the
meaning as given:

• CArchive: :Ioad Loads data from the archive. Requires only CFile read
permission.

• CArchive::store Saves data to the archive. Requires CFile write
permission.

• CArchive::bNoFlushOnDelete Prevents the archive from automatically
calling Flush when the archive destructor is invoked. If you set this flag, you
are responsible for explicitly calling Close before the destructor is invoked.
If you do not, your data will be corrupted.

Remarks

See Also

Example

CArchive::",CArchive 133

nBufSize An integer that specifies the size of the internal file buffer, in bytes.
Note that the default buffer size is 512 bytes. If you routinely archive large
objects, you will improve performance if you use a larger buffer size that is a
multiple of the file buffer size.

IpBuJ An optional FAR pointer to a user-supplied buffer of size nBufSize. If you
do not specify this parameter, the archive allocates a buffer from the local heap
and frees it when the object is destroyed. The archive does not free a user­
supplied buffer.

Constructs a CArchive object and specifies whether it will be used for loading or
storing objects. You cannot change this specification after you have created the
archive. You may not use CFile operations to alter the state of the file until you
have closed the archive. Any such operation will damage the integrity of the
archive. You may access the position of the file pointer at any time during
serialization by (1) obtaining the archive's file object from the GetFile member
function and then (2) using the CFile::GetPosition function. You should call
CArchive: :Flush before obtaining the position of the file pointer.

CArchive: :Close, CArchive: :Flush, CFile: :Close

extern char* pFileName;
CFile f;
char buf[512];
if(!f.Open(pFileName, CFile::modeCreate I CFile::modeWrite)) {

1Fi fdef _DEBUG

}

afxDump « "Unable to open file" « "\n";
exit (1);

1fend if

CArchive are &f, CArchive: :store, 512, buf);

CArchive: :,..,CArchive

Remarks

See Also

"'CArchive();

The CArchive destructor closes the archive if it is not closed already. However,
you should call the member function Close before calling the destructor. After you
have used the CFile object for archiving, you must close and destroy it as you
usually would.

CArchive::Flush, CFile::Close

134 CArchive::Close

CArchive::Close

Remarks

See Also

void Close()
throw(CArchiveException, CFileException);

Flushes any data remaining in the buffer, closes the archive, and disconnects the
archive from the file. No further operations on the archive are permitted. After you
close an archive, you can create another archive for the same file or you can close
the file. The member function Close ensures that all data is transferred from the
archive to the file, and it makes the archive unavailable. To complete the transfer
from the file to the storage medium, you must first use CFile::Close and then
destroy the CFile object.

CArchive: :Flush

CArchive::Flush

Remarks

See Also

void Flush()
throw(CFileException);

Forces any data remaining in the archive buffer to be written to the file. Member
function Flush ensures that all data is transferred from the archive to the file. You
must call CFile::Close to complete the transfer from the file to the storage medium.

CArchive::Close, CFile::Flush, CFile::Close

CArchive: :GetFile

Remarks

Return Value

Example

CFile* GetFile() const;

Gets the CFile object pointer for this archive. You must flush the archive before
using GetFile.

A constant pointer to the CFile object in use.

extern CArchive ar;
canst CFile* fp = ar.GetFile();

CArchive::lsStoring 135

CArchive::lsLoading

Remarks

Return Value

See Also

Example

BOOL IsLoadingO const;

Determines if the archive is loading data. This member function is called by the
Serialize functions of the archived classes.

TRUE if the archive is currently being used for loading; otherwise FALSE.

CArchive: :IsStoring

int i;
extern CArchive ar;
if(ar.lsLoading())

ar » i;
else

ar « i;

CArchive::lsStoring

Remarks

Return Value

See Also

Example

BOOL IsStoring() const;

Determines if the archive is storing data. This member function is called by the
Serialize functions of the archived classes. If the IsStoring status of an archive
is TRUE, then its IsLoading status is FALSE, and vice versa.

TRUE if the archive is currently being used for storing; otherwise FALSE.

CArchive: :IsLoading

i nt i;
extern CArchive ar;
if(ar.lsStoring())

ar « i;
else

ar » i;

136 CArchive::Read

CArchive::Read

Remarks

Return Value

Example

UINT Read(void FAR* lpBuf, UINT nMax)
throw(CFileException);

lpBuJ AFAR pointer to a user-supplied buffer that is to receive the data read
from the archive.

nMax An unsigned integer specifying the number of bytes to be read from
the archive.

Reads a specified number of bytes from the archive. The archive does not interpret
the bytes. You can use the Read member function within your Serialize function
for reading ordinary structures that are contained in your objects.

An unsigned integer containing the number of bytes actually read. If the return
value is less than the number requested, the end of file has been reached. No
exception is thrown on the end-of-file condition.

extern CArchive ar;
char pb[100];
UINT nr = ar.Read(pb, 100);

CArchive::ReadObject

Remarks

Return Value

See Also

CObject* ReadObject(const CRllntimeClass* pClass)
throw(CFileException, CArchiveException, CMemoryException);

pC lass A constant pointer to the CRllntimeClass structure that corresponds to
the object you expect to read.

Reads object data from the archive and constructs an object of the appropriate type.
If the object contains pointers to other objects, those objects are constructed
automatically. This function is normally called by the CArchive extraction (»)
operator overloaded for a CObject pointer. ReadObject, in tum, calls the
Serialize function of the archived class. If you supply a nonzero pClass parameter,
which is obtained by the RUNTIME_CLASS macro, then the function verifies the
run-time class of the archived object. This assumes you have used the
IMPLEMENT _SERIAL macro in the implementation of the class.

A CObject pointer that must be safely cast to the correct derived class by using
CObject: :IsKindOf.

CArchive:: WriteObject, CObject: :IsKindOf

CArchive: :WriteObject 137

CArchive::Write

Remarks

See Also

Example

void Write(const void FAR* IpBuf, UINT nMax)
throw(CFileException);

IpBuf A pointer to a user-supplied buffer that contains the data to be written to
the archive.

nM ax An integer that specifies the number of bytes to be written to the archive.

Writes a specified number of bytes to the archive. The archive does not format the
bytes. You can use the Write member function within your Serialize function to
write ordinary structures that are contained in your objects.

CArchive::Read

extern CArchive ar;
char pb[100];
ar.Write(pb, 100);

CArchive: :WriteObject

Remarks

See Also

void WriteObject(const CObject* pOb)
throw(CFileException, CArchiveException);

pOb A constant pointer to the object being stored.

Stores the specified CObject to the archive. If the object contains pointers to other
objects, they are serialized in tum. This function is normally called by the
CArchive insertion «<) operator overloaded for CObject. WriteObject, in tum,
calls the Serialize function of the archived class. To enable archiving you must use
the IMPLEMENT_SERIAL macro. WriteObject writes the ASCII class name to
the archive. This class name is validated later during the load process. A special
encoding scheme prevents unnecessary duplication of the class name for mUltiple
objects of the class. This scheme also prevents redundant storage of objects that are
targets of more than one pointer. The exact object encoding method (including the
presence of the ASCII class name) could change in future versions of the library.

Note Finish creating, deleting, and updating all your objects before you begin to
archive them. Your archive will be corrupted if you mix archiving with object
modification.

CArchive: :ReadObject

138 CArchive::operator«

Operators

CArchive::operator «

Remarks

Return Value

See Also

Example

friend CArchive& operator «(CArchive& ar, const CObject* pOb)
throw(CArchiveException, CFileException);

CArchive& operator «(BYTE by)
throw(CArchiveException, CFileException);

CArchive& operator «(WORD w)
throw(CArchiveException, CFileException);

CArchive& operator «(LONG I)
throw(CArchiveException, CFileException);

CArchive& operator «(DWORD dw)
throw(CArchiveException, CFileException);

CArchive& operator «(floatf)
throw(CArchiveException, CFileException);

CArchive& operator «(double d)
throw(CArchiveException, CFileException);

Stores the indicated object or primitive type to the archive. If you used the
IMPLEMENT_SERIAL macro in your class implementation, then the insertion
operator overloaded for CObject calls the protected WriteObject. This function,
in tum, calls the Serialize function of the class.

A CArchive reference that enables multiple insertion operators on a single line.

CArchive::WriteObject, CObject::Serialize

long 1;
i nt i;
extern CArchive ar;
if(ar.IsStoring())

CArchive::operator» 139

CArchive::operator »

Remarks

Return Value

See Also

Example

friend CArchive& operator »(CArchive& ar, CObject *& pOb)
throw(CArchiveException, CFileException, CMemoryException);

friend CArchive& operator »(CArchive& ar, const CObject *& pOb)
throw(CArchiveException, CFileException, CMemoryException);

CArchive& operator »(BYTE& by)
throw(CArchiveException, CFileException);

CArchive& operator »(WORD& w)
throw(CArchiveException, CFileException);

CArchive& operator »(LONG& I)
throw(CArchiveException, CFileException);

CArchive& operator »(DWORD& dw)
throw(CArchiveException, CFileException);

CArchive& operator »(float& f)
throw(CArchiveException, CFileException);

CArchive& operator »(double& d)
throw(CArchiveException, CFileException);

Loads the indicated object or primitive type from the archive. If you used the
IMPLEMENT _SERIAL macro in your class implementation, then the extraction
operators overloaded for CObject call the protected ReadObject function (with a
nonzero run-time class pointer). This function, in turn, calls the Serialize function
of the class.

A CArchive reference that enables multiple insertion operators on a single line.

CArchive: :ReadObject, CObject:: Serialize

i nt i:
extern CArchive ar:
if(ar.IsLoading())

ar » i:
ar»l»i:

140 CArchiveException

class CArchiveException : public CException

See Also

A CArchiveException object represents a
serialization exception condition. The
CArchiveException class includes a public data
member that indicates the cause of the exception.
CArchiveException objects are constructed and
thrown inside CArchive member functions. You

CArchiveException

can access these objects within the scope of a CATCH expression. The cause code
is independent of the operating system. For more information about exception
processing, see Chapter 16, "Exceptions," in the Class Library User's Guide.

#include <afx.h>

CArchive, AfxThrow ArchiveException

Data Members - Public Members
m cause Indicates the exception cause.

Construction/Destruction - Public Members
CArchiveException Constructs a CArchiveException object.

Member Functions

CArchiveException: :CArchiveException

Remarks

CArchiveException(int cause = CArchiveException::none);

cause An enumerated type variable that indicates the reason for the exception.
For a list of the enumerators, see the m _cause data member.

Constructs a CArchiveException object, storing the value of cause in the
object. You can create a CArchiveException object on the heap and throw it
yourself or let the global function AfxThrow ArchiveException handle it for
you. Do not use this constructor directly; instead, call the global function
AfxThrow ArchiveException.

CArchiveException::m_cause 141

Data Members

CArch iveException::m _cause
Remarks Specifies the cause of the exception. This data member is a public variable of type

int. Its values are defined by a CArchiveException enumerated type. The
enumerators and their meanings are as follows:

• CArchiveException::none No error occurred.

• CArchiveException: : generic Unspecified error.

• CArchiveException::readOnly Tried to write into an archive opened for
loading.

• CArchiveException::endOfFile Reached end of file while reading an object.

• CArchiveException: :writeOnly Tried to read from an archive opened
for storing.

• CArchiveException::badlndex Invalid file format.

• CArchiveException::badClass Tried to read an object into an object of
the wrong type.

• CArchiveException::badSchema Tried to read an object with a different
version of the class.

Note These CArchiveException cause enumerators are distinct from the
CFileException cause enumerators.

142 CBEdit

class CBEdit : public CHEdit
The CBEdit class encapsulates
the boxed handwriting edit, or
"bedit," functionality of
Microsoft Windows for Pen
Computing. CBEdit controls
allow the user of your application
to enter and modify text using
standard pen editing gestures.
They differ from handwriting edit,
or "hedit," controls, which are

CBEdit

created using CHEdit-derived classes, in that they display a "comb" that shows the
user where each character must be entered. The comb improves recognition
accuracy because it gives the recognizer information about the location of input
characters.

Text in a boxed edit control is considered a single stream of text that is arranged in
rows of cells for convenience. Text always wraps at the end of a row, not necessar­
ily at word boundaries or carriage returns.

You can set the layout of a bedit control by using the SetBoxLayout member
function. Defaults are used if you do not set the box layout. For information about
the default box layout, see Microsoft Windows for Pen Computing: Programmer's
Reference.

See class CHEdit for information about:

• Creating a boxed-edit control using App Studio.

• Setting the alphabet code (ALC) styles for CBEdit controls.

• Setting control styles for CBEdit controls.

• Notification messages.

If you want to handle Windows notification messages sent by a CBEdit control to
its parent (usually a class derived from CDialog), add a message-map entry and
message-handler function to the parent class for each message.

#include <afxpen.h>

Construction/Destruction - Public Members
CBEdit

Create

Constructs a CBEdit object.

Creates and displays a CBEdit control.

Operations
CharOffset

CharPosition

DefaultFont

GetBoxLayout

SetBoxLayout

CBEdit: :CharOffset 143

Converts the logical character position of a character in the
bedit control to a byte offset to that character.

Converts the byte offset in the text buffer to the logical
character position in the bedit control.

Changes the font of the bedit control to the default font.

Gets the box layout.

Sets the box layout.

Member Functions

CBEdit::CBEdit

Remarks

See Also

CBEdit();

Constructs a CBEdit object.

CBEdit: :Create

CBEdit::CharOffset

Remarks

Return Value

DWORD CharOffset(UINT nCharPosition);

nCharPosition The logical position in the bedit control to map to a character
position. The first position is O.

There is not always a one-to-one correspondence between characters and cells in
the bedit control. To find the offset in the text buffer of a given cell position (or
"logical" character position), use CharOffset.

If the logical position specified by nCharPosition is less than the total number of
logical characters in the control, the low word of the return value is the byte offset
and the high word is O. If nCharPosition is greater than or equal to the total number
of logical characters in the control, the low word contains the length of text in bytes
and the high word contains OxFFFF.

144 CBEdit: :CharPosition

See Also

You can use the LOWORD and HIWORD macros to examine the two parts of the
return value.

CBEdit::CharPosition, LOWORD, HIWORD, WM_HEDITCTL

CB Edit: :CharPosition

Remarks

Return Value

See Also

DWORD CharPosition(UINT nCharOffset);

nCharOffset A byte offset into the text buffer. The first offset is O.

There is not always a one-to-one correspondence between characters and cells in
the bedit control. To find the cell or "logical" character position that corresponds to
a given byte offset into the text buffer, use CharPosition.

If the position specified by nCharOffset is less than the length of the text in bytes,
the low word contains the logical character position and the high word is O. If the
position specified by nCharOffset is greater than or equal to the length of the text in
bytes, the total number of logical characters in the control is returned in the low
word and the high word contains OxFFFF.

You can use the LOWORD and HIWORD macros to examine the two parts of the
return value.

CBEdit::CharOffset, LOWORD, HIWORD, WM_HEDITCTL

CBEdit::Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,

UINT nID);

dwStyle Specifies the bedit control's style. See CEdit::Create for a list of these
styles.

reet Specifies the bedit control's boxed rectangle. Note that the area sensitive to
pen gestures and inking can be modified using member function Setlnflate of
class CHEdit.

pParentWnd Specifies the bedit control's parent window (usually a CDialog).1t
must not be NULL.

nID Specifies the edit control ID.

Remarks

Return Value

See Also

CBEdit::GetBoxLayout 145

You construct a CBEdit object in two steps. First, construct the CBEdit object,
then call Create, which creates the bedit control and attaches it to the CBEdit
object. To extend the default message handling, derive a class from CBEdit, add a
message map to the new class, and override the appropriate message-handler
member functions. Override OnCreate, for example, to perform needed initializa­
tion for the new class.

Nonzero if initialization is successful; otherwise O.

CEdit::Create, CBEdit::CBEdit, CHEdit::SetInflate, WM_HEDITCTL

CBEdit::DefaultFont

Comments

See Also

void DefaultFont(BOOL bRepaint);

bRepaint If TRUE, the control is repainted; otherwise, repainting is deferred until
forced by some other event.

If you have made a SetFont call, you may want to force the bedit control to display
using the font with which it was originally created. DefaultFont causes the bedit
control to select this default font, and optionally forces repaint of the control.

CWnd::SetFont, WM_HEDITCTL

CB Ed it: :GetBoxLayout

Remarks

void GetBoxLayout(LPBOXLAYOUT IpBoxLayout);

IpBoxLayout A far pointer to a BOXLAYOUT structure. See the structure
description below.

Use GetBoxLayout to retrieve a BOXLAYOUT structure that describes the way
the bedit's boxes are arranged in the control. You can use GetBoxLayout in
conjunction with SetBoxLayout to modify certain aspects of the box layout.

146 CBEdit::GetBoxLayout

BOXLAYOUT
Structure

Members

Comments

See Also

A BOXLA YOUT structure has this form:

typedef struct
{

int cyCusp;
int cyEndCusp;
UINT style;
DWORD rgbText;
DWORD rgbBox;
DWORD rgbSelect;

BOXLAYOUT;

A BOXLA YOUT structure specifies some of the characteristics of a bedit control.

cyCusp Height (in pixels) of the box when the BXS _ RECT style is specified,
otherwise the height of the comb. This is the equivalent in pixels of
BXD _ CUSPHEIGHT in dialog units.

cyEndCusp Height (in pixels) of the cusps at the ends of the box. This is the
equivalent in pixels of BXD _ ENDCUSPHEIGHT in dialog units.

style 0 for a single-line boxed edit control, BXS _ ENDTEXTMARK for a
multiline boxed edit control, or BXS _ RECT for a boxed-edit control that uses
rectangular boxes instead of a comb.

rgbText If -1, the color of the window text is used; otherwise, this member
specifies the ROB color to use for text.

rgbBox If -1, the color of the window frame is used; otherwise, this member
specifies the ROB color to use for the boxes.

rgbSelect If -1, the color of the window text is used; otherwise, this member
specifies the ROB color to use for the selection.

Use the BOXLAYOUT structure in conjunction with the GetBoxLayout and
SetBoxLayout functions to customize your bedit controls.

CBEdit: :SetBoxLayout, WM _ HEDITCTL

CBEdit: :SetBoxLayout 147

CBEdit: :SetBoxLayout

Remarks

Return Value

See Also

BOOL SetBoxLayout(LPBOXLAYOUT IpBoxLayout);

IpBoxLayout A far pointer to a BOXLA YOUT structure. See GetBoxLayout
for a description of this structure.

Use SetBoxLayout to change the box layout of a bedit control from the default.
You can use GetBoxLayout to fill in a "template" BOXLA YOUT structure, then
change only the members you need.

Nonzero if successful; 0 if unsuccessful.

CBEdit::GetBoxLayout, WM _ HEDITCTL

148 CBitmap

class CBitmap : public CGdiObject
The CBitmap class encapsulates a Windows
graphics device interface (GDI) bitmap and
provides member functions to manipulate the
bitmap. To use a CBitmap object, construct the
object, install a bitmap handle in it with one of
the initialization member functions, and then call
the object's member functions.

#include <afxwin.h>

Construction/Destruction - Public Members

CBitmap

CBitmap Constructs a CBitmap object.

Initialization - Public Members
LoadBitmap Initializes the object by loading a named bitmap

resource from the application's executable file and
attaching the bitmap to the object.

LoadOEMBitmap Initializes the object by loading a predefined
Windows bitmap and attaching the bitmap to the
object.

CreateBitmap Initializes the object with a device-dependent
memory bitmap that has a specified width, height,
and bit pattern.

CreateBitmapIndirect Initializes the object with a bitmap with the width,
height, and bit pattern (if one is specified) given in
a BITMAP structure.

CreateCompatibleBitmap Initializes the object with a bitmap so that it is
compatible with a specified device.

CreateDiscardableBitmap Initializes the object with a discardable bitmap that
is compatible with a specified device.

Operations - Public Members
FromHandle

SetBitmapBits

GetBitmapBits

Returns a pointer to a CBitmap object when given
a handle to a Windows HBITMAP bitmap.

Sets the bits of a bitmap to the specified bit values.

Copies the bits of the specified bitmap into the
specified buffer.

SetBitmapDimension

GetBitmapDimension

CBitmap::CreateBitmap 149

Assigns a width and height to a bitmap in 0.1-
millimeter units.

Returns the width and height of the bitmap. The
height and width are assumed to have been set
previously by the SetBitmapDimension member
function.

Member Functions

CBitmap: :CBitmap

Remarks

See Also

CBitmap();

Constructs a CBitmap object. The resulting object must be initialized with one of
the initialization member functions.

CBitmap: :LoadBitmap, CBitmap: :LoadOEMBitmap,
CBitmap: :CreateBitmap, CBitmap: :CreateBitmapIndirect,
CBitmap: :CreateCompatibleBitmap, CBitmap: :CreateDiscardableBitmap

CBitmap: :CreateB itmap
BOOL CreateBitmap(int nWidth, int nHeight, UINT nPlanes,

UINT nBitcount, const void FAR * IpBits);

n Width Specifies the width (in pixels) of the bitmap.

nHeight Specifies the height (in pixels) of the bitmap.

nP lanes Specifies the number of color planes in the bitmap.

nBitcount Specifies the number of color bits per display pixel.

150 CBitmap: :CreateBitmaplndirect

Remarks

Return Value

See Also

IpBits Points to a short-integer array that contains the initial bitmap bit values. If
it is NULL, the new bitmap is left uninitialized.

For more information, see the description of the bmBits field in the BITMAP
structure. In this manual, the BITMAP structure is described under the
CBitmap: :CreateBitmapIndirect member function.

Initializes a device-dependent memory bitmap that has the specified width, height,
and bit pattern. For a color bitmap, either the nPlanes or nBitcount parameter
should be set to 1. If both of these parameters are set to 1, CreateBitmap creates a
monochrome bitmap. Although a bitmap cannot be directly selected for a display
device, it can be selected as the current bitmap for a "memory device context" by
using CDC::SelectObject and copied to any compatible device context by using
the CDC::BitBlt function.

When you finish with the CBitmap object created by the CreateBitmap function,
first select the bitmap out of the device context, then delete the CBitmap object.

Nonzero if successful; otherwise O.

CDC:: SelectObject, CGdiObject: :DeleteObject, CDC: :BitBlt,
: :CreateBitmap

CB itmap: :CreateBitmaplnd irect

Remarks

BOOL CreateBitmapIndirect(LPBITMAP IpBitmap);

IpBitmap Points to a BITMAP structure that contains information about the
bitmap.

Initializes a bitmap that has the width, height, and bit pattern (if one is specified)
given in the structure pointed to by IpBitmap. Although a bitmap cannot be directly
selected for a display device, it can be selected as the current bitmap for a memory
device context by using CDC: :SelectObject or and copied to any compatible
device context by using the CDC::BitBlt or CDC::StretchBlt function. (The
CDC: :PatBlt function can copy the bitmap for the current brush directly to the
display device context.)

If the BITMAP structure pointed to by the IpBitmap parameter has been filled in
by using the GetObject function, the bits of the bitmap are not specified and the
bitmap is uninitialized. To initialize the bitmap, an application can use a function
such as CDC::BitBlt or ::SetDIBits to copy the bits from the bitmap identified by
the first parameter of CGdiObject::GetObject to the bitmap created by
CreateBitmapIndirect.

CBitmap::CreateBitmaplndirect 151

When you finish with the CBitmap object created with CreateBitmapIndirect
function, first select the bitmap out of the device context, then delete the CBitmap
object.

Return Value Nonzero if successful; otherwise O.

BITMAP Structure A BITMAP structure has this form:

Members

Comments

typedef struct tagBITMAP /* bm */
int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

BITMAP;

The BITMAP structure defines the height, width, color format, and bit values of a
logical bitmap.

bmType Specifies the bitmap type. For logical bitmaps, this member must be O.

bm Width Specifies the width of the bitmap in pixels. The width must be greater
than O.

bmHeight Specifies the height of the bitmap in raster lines. The height must be
greater than O.

bm WidthBytes Specifies the number of bytes in each raster line. This value must
be an even number since the graphics device interface (ODI) assumes that the bit
values of a bitmap form an array of integer (2-byte) values. In other words,
bmWidthBytes * 8 must be the next multiple of 16 greater than or equal to the
value obtained when the bm Width member is multiplied by the bmBitsPixel
member.

bmPlanes Specifies the number of color planes in the bitmap.

bmBitsPixel Specifies the number of adjacent color bits on each plane needed to
define a pixel.

bmBits Points to the location of the bit values for the bitmap. The bmBits
member must be a long pointer to an array of I-byte values.

The currently used bitmap formats are monochrome and color. The monochrome
bitmap uses a I-bit, I-plane format. Each scan is a mUltiple of 16 bits.

152 CBitmap: :CreateCompatibleBitmap

See Also

Scans are organized as follows for a monochrome bitmap of height n:

Scan 0
Scan 1

Scan n-2
Scan n-l

The pixels on a monochrome device are either black or white. If the corresponding
bit in the bitmap is 1, the pixel is turned on (white). If the corresponding bit in the
bitmap is 0, the pixel is turned off (black).

All devices support bitmaps that have the RC _ BITBL T bit set in the
RASTERCAPS index of the GetDeviceCaps member function.

Each device has its own unique color format. In order to transfer a bitmap from one
device to another, use the GetDIBits and SetDIBits Windows functions.

CDC: :SelectObject, CDC: :BitBlt, CGdiObject: :DeleteObject,
CGdiObject: : GetObject, : :CreateBitmaplndirect

CBitmap: :CreateCompatibleBitmap

Remarks

BOOL CreateCompatibleBitmap(CDC* pDC, int nWidth, int nHeight);

pDC Specifies the device context.

nWidth Specifies the width (in bits) of the bitmap.

nHeight Specifies the height (in bits) of the bitmap.

Initializes a bitmap that is compatible with the device specified by pDC. The
bitmap has the same number of color planes or the same bits-per-pixel format as the
specified device context. It can be selected as the current bitmap for any memory
device that is compatible with the one specified by pDC. If pDC is a memory
device context, the bitmap returned has the same format as the currently selected
bitmap in that device context. A "memory device context" is a block of memory
that represents a display surface. It can be used to prepare images in memory before
copying them to the actual display surface of the compatible device. When a
memory device context is created, GDI automatically selects a monochrome stock
bitmap for it.

Return Value

See Also

CBitmap: :CreateDiscardableBitmap 153

Since a color memory device context can have either color or monochrome bitmaps
selected, the format of the bitmap returned by the CreateCompatibleBitmap
function is not always the same; however, the format of a compatible bitmap for a
nonmemory device context is always in the format of the device.

When you finish with the CBitmap object created with the
CreateCompatibleBitmap function, first select the bitmap out of the device
context, then delete the CBitmap object.

Nonzero if successful; otherwise O.

: :CreateCompatibleBitmap, CGdi Object:: DeleteObject

CBitmap: :CreateDiscardableBitmap

Remarks

Return Value

See Also

BOOL CreateDiscardableBitmap(CDC* pDC, int nWidth, int nHeight);

pDC Specifies a device context.

nWidth Specifies the width (in bits) of the bitmap.

nHeight Specifies the height (in bits) of the bitmap.

Initializes a discardable bitmap that is compatible with the device context identified
by pDC. The bitmap has the same number of color planes or the same bits-per-pixel
format as the specified device context. An application can select this bitmap as the
current bitmap for a memory device that is compatible with the one specified by
pDC. Windows can discard a bitmap created by this function only if an application
has not selected it into a display context. If Windows discards the bitmap when it is
not selected and the application later attempts to select it, the CDC::SelectObject
function will return NULL.

When you finish with the CBitmap object created with the
CreateDiscardableBitmap function, first select the bitmap out of the device
context, then delete the CBitmap object.

Nonzero if successful; otherwise O.

: :CreateDiscardableBitmap, CGdiObject: :DeleteObject

154 CBitmap::FromHandle

CBitmap::FromHandle

Remarks

Return Value

static CBitmap* PASCAL FromHandle(HBITMAP hBitmap);

hBitmap Specifies a Windows GDI bitmap.

Returns a pointer to a CBitmap object when given a handle to a Windows GDI
bitmap. If a CBitmap object is not already attached to the handle, a temporary
CBitmap object is created and attached. This temporary CBitmap object is valid
only until the next time the application has idle time in its event loop, at which time
all temporary graphic objects are deleted. Another way of saying this is that the
temporary object is only valid during the processing of one window message.

A pointer to a CBitmap object if successful; otherwise NULL.

CBitmap: :GetBitmapBits

Remarks

Return Value

See Also

DWORD GetBitmapBits(DWORD dwCount, LPVOID IpBits) const;

dwCount Specifies the number of bytes to be copied.

IpBits Points to the buffer that is to receive the bitmap. The bitmap is an array of
bytes. The bitmap byte array conforms to a structure where horizontal scan lines
are multiples of 16 bits.

Copies the bit pattern of the CBitmap object into the buffer pointed to by IpBits.
The dwCount parameter specifies the number of bytes to be copied to the buffer.
Use GetObject to determine the correct dwCount value for the given bitmap.

The actual number of bytes in the bitmap, or 0 if there is an error.

CGdiObject: : GetObject, : : GetBitmapBits

CB itmap: :GetB itmapDimension

Remarks

CSize GetBitmapDimension() const;

Returns the width and height of the bitmap. The height and width are assumed to
have been set previously by using the SetBitmapDimension member function.

Return Value

See Also

CBitmap::LoadBitmap 155

The width and height of the bitmap, measured in O.l-millimeter units. The height is
in the ey member of the CSize object, and the width is in the ex member. If the
bitmap width and height have not been set by using SetBitmapDimension, the
return value is O.

CBitmap: :SetBitmapDimension, : : GetBitmapDimension

CBitmap:: Load Bitmap
BOOL LoadBitmap(LPCSTR IpszResourceName);

BOOL LoadBitmap(UINT nIDResource);

IpszResourceName Points to a null-terminated string that contains the name of
the bitmap resource.

nIDResource Specifies the resource ID number of the bitmap resource.

Remarks Loads the bitmap resource named by IpszResourceName or identified by the ID
number in nIDResource from the application's executable file. The loaded bitmap
is attached to the CBitmap object. If the bitmap identified by IpszResourceName
does not exist or if there is insufficient memory to load the bitmap, the function
returns O. An application must call the CGdiObject: :DeleteObjeet function to
delete any bitmap loaded by the LoadBitmap function.

Windows 3.1 Only The following new bitmaps have been added:

Return Value

See Also

OBM UPARRROWI
OBM DNARROWI
OBM RGARROWI
OBM LFARROWI

These bitmaps are not found in device drivers for previous versions of Windows.
For a complete list of bitmaps and a display of their appearance, see the Pro gram­
mer's Reference in the Windows version 3.1 Software Development Kit .•

Nonzero if successful; otherwise O.

CBitmap: :LoadOEMBitmap, : :LoadBitmap, CGdiObjeet: :DeleteObject

156 CBitmap: :LoadOEMBitmap

CBitmap::LoadOEMBitmap

Remarks

Return Value

See Also

BOOL LoadOEMBitmap(UINT nIDBitmap);

nIDBitmap ID number of the predefined Windows bitmap. The possible values
are listed below from WINDOWS.H:

OBM BTNCORNERS OBM BTSIZE

OBM CHECK OBM CHECKBOXES

OBM CLOSE OBM COMBO

OBM DNARROW OBM DNARROWD

OBM DNARROWI OBM LFARROW

OBM LFARROWD OBM LFARROWI

OBM MNARROW OBM OLD CLOSE - -
OBM OLD DNARROW OBM OLD LFARROW - - - -
OBM OLD REDUCE OBM OLD RESTORE - - - -
OBM OLD RGARROW OBM OLD UPARROW - - - -
OBM OLD ZOOM OBM REDUCE - -
OBM REDUCED OBM RESTORE

OBM RESTORED OBM RGARROW

OBM RGARROWD OBM RGARROWI

OBM SIZE OBM UPARROW

OBM UPARROWD OBM UPARROWI

OBM ZOOM OBM ZOOMD

Loads a predefined bitmap used by Windows. Bitmap names that begin with
OBM_ OLD represent bitmaps used by Windows versions prior to 3.0. Note that
the constant OEMRESOURCE must be defined before including WINDOWS.H
in order to use any of the OBM _ constants.

Nonzero if successful; otherwise o.
CBitmap: : LoadBitmap , : : LoadBitmap

CBitmap::SetBitmapDimension 157

CBitmap: :SetBitmapB its

Remarks

Return Value

See Also

DWORD SetBitmapBits(DWORD dwCount, eonst void FAR* IpBits);

dwCount Specifies the number of bytes pointed to by IpBits.

IpBits Points to the BYTE array that contains the bit values to be copied to the
CBitmap object.

Sets the bits of a bitmap to the bit values given by IpBits.

The number of bytes used in setting the bitmap bits; 0 if the function fails.

::SetBitmapBits

CBitmap: :SetBitmapDi mension

Remarks

Return Value

See Also

CSize SetBitmapDimension(int nWidth, int nHeight);

n Width Specifies the width of the bitmap (in O.l-millimeter units).

nHeight Specifies the height of the bitmap (in O.l-millimeter units).

Assigns a width and height to a bitmap in O.l-millimeter units. The GDI does not
use these values except to return them when an application calls the
GetBitmapDimension member function.

The previous bitmap dimensions. Height is in the ey member variable of the CSize
object, and width is in the ex member variable.

CBitmap: :GetBitmapDimension, : :SetBitmapDimension

158 CBitmapButton

class CBitmapButton : public CButton
Use the CBitmapButton class to
create pushbutton controls labeled
with bitmapped images instead of text.
CBitmapButton objects contain up to
four bitmaps, which contain images
for the different states a button can
assume: up (or normal), down (or
selected), focused, and disabled. Only
the first bitmap is required; the others
are optional.

CBitmapButton

Bitmap-button images include the border around the image as well as the image
itself. The border typically plays a part in showing the state of the button. For
example, the bitmap for the focused state usually is like the one for the up state but
with a dashed rectangle inset from the border or a thick solid line at the border. The
bitmap for the disabled state usually resembles the one for the up state but has
lower contrast (like a dimmed or grayed menu selection).

These bitmaps can be of any size, but all are treated as if they were the same size as
the bitmap for the up state.

Various applications demand different combinations of bitmap images:

Up Down Focused

x

x x

x x x

x x x

Disabled

x

Application

Bitmap

Button without WS T ABSTOP
style

Dialog button with all states

Dialog button with
WS _ T ABSTOP style

To create a bitmap-button control in a window's client area, follow these steps:

1. Create one to four bitmap images for the button.

2. Construct the CBitmapButton object.

3. Call the Create function to create the Windows button control and attach it to
the CBitmapButton object.

4. Call the LoadBitmaps member function to load the bitmap resources after the
bitmap button is constructed.

See Also

CBitmapButton 159

To include a bitmap-button control in a dialog box, follow these steps:

1. Create one to four bitmap images for the button.

2. Create a dialog template with an owner-draw button positioned where you want
the bitmap button. The size of the button in the template does not matter.

3. Set the button's caption to a value such as "MYIMAGE" and define a symbol
for the button such as IDC_MYIMAGE.

4. In your application's resource script, give each of the images created for the
button an ID constructed by appending one of the letters "U," "D," "F," or "X"
(for up, down, focused, and disabled) to the string used for the button caption in
step 3. For the button caption "MYIMAGE," for example, the IDs would be
"MYIMAGEU," "MYIMAGED," "MYIMAGEF," and "MYIMAGEX."

5. In your application's dialog class (derived from CDialog), add a
CBitmapButton member object.

6. In the CDialog object's OnInitDialog routine, call the CBitmapButton
object's AutoLoad function, using as parameters the button's control ID and the
CDialog object's this pointer.

If you want to handle Windows notification messages, such as BN_ CLICKED,
sent by a bitmap-button control to its parent (usually a class derived from
CDialog), add to the CDialog-derived object a message-map entry and message­
handler member function for each message. The notifications sent by a
CBitmapButton object are the same as those sent by a CButton object.

The class CToolBar takes a different approach to bitmap buttons. See CToolBar
for more information.

#include <afxext.h>

CButton, CBitmapButton: : AutoLoad , CToolBar

Construction/Destruction - Public Members
CBitmapButton

LoadBitmaps

AutoLoad

Constructs a CBitmapButton object.

Initializes the object by loading one or more named bitmap
resources from the application's resource file and attaching
the bitmaps to the object.

Associates a button in a dialog with an object of the
CBitmapButton class, loads the bitmap(s) by name, and
sizes the button to fit the bitmap.

Operations - Public Members
SizeToContent Sizes the button to accommodate the bitmap.

160 CBitmapButton::AutoLoad

Member Functions

CBitmapButton: :AutoLoad

Remarks

Return Value

See Also

BOOL AutoLoad(UINT nID, CWnd* pParent);

nID The button's control ID.

pP arent Pointer to the object that owns the button.

Associates a button in a dialog box with an object of the CBitmapButton class,
loads the bitmap(s) by name, and sizes the button to fit the bitmap.

Use the AutoLoad function to initialize an owner-draw button in a dialog box as a
bitmap button. Instructions for using this function are in the remarks for the
CBitmapButton class.

Nonzero if successful; otherwise O.

CBitmapButton, CBitmapButton: :LoadBitmaps,
CBitmapButton: :SizeToContent

CBitmapButton: :CBitmapButton

Remarks

See Also

CBitmapButton();

Creates a CBitmapButton object.

CBitmapButton: :LoadBitmaps, CBitmapButton: :AutoLoad,
CBitmapButton: :SizeToContent, CButton: :Create

CBitmapButton: :SizeToContent 161

CBitmapButton: :Load Bitmaps

Remarks

Return Value

See Also

BOOL LoadBitmaps(LPCSTR IpszBitmapResource,
LPCSTR IpszBitmapResourceSel = NULL,
LPCSTR IpszBitmapResourceFocus = NULL,
LPCSTR IpszBitmapResourceDisabled = NULL);

IpszBitmapResource Resource name of the bitmap for a bitmap button's normal
or "up" state. Required.

IpszBitmapResourceSel Resource name of the bitmap for a bitmap button's
selected or "down" state. May be NULL.

lpszBitmapResourceFocus Resource name of the bitmap for a bitmap button's
focused state. May be NULL.

lpszBitmapResourceDisabled Resource name of the bitmap for a bitmap button's
disabled state. May be NULL.

Use this function when you want to load bitmap images identified by their resource
names or when you cannot use the AutoLoad function because, for example, you
are creating a bitmap button that is not part of a dialog box.

Zero if successful; otherwise nonzero.

CBitmapButton, CBitmapButton: :AutoLoad,
CBitmapButton: :SizeToContent, CButton: :Create, CBitmap: :LoadBitmap

CBitmapButton::SizeToContent

Remarks

See Also

void SizeToContent();

Call this function to resize a bitmap button to the size of the bitmap.

CBitmapButton, CBitmapButton: :LoadBitmaps, CBitmapButton: :AutoLoad

162 CBrush

class CBrush : public CGdiObject

See Also

The CBrush class encapsulates a Windows
graphics device interface (GDI) brush. To use a
CBrush object, construct a CBrush object and
pass it to any CDC member function that
requires a brush. Brushes can be solid, hatched,
or patterned.

#include <afxwin.h>

CBitmap, CDC

Construction/Destruction - Public Members
CBrush Constructs a CBrush object.

Initialization - Public Members
CreateSolidBrush

CreateHatchBrush

CreateBrushIndirect

CreatePatternBrush

CreateDIBPatternBrush

Initializes a brush with the specified solid color.

Initializes a brush with the specified hatched pattern
and color.

Initializes a brush with the style, color, and pattern
specified in a LOGBRUSH structure.

Initializes a brush with a pattern specified by a
bitmap.

Initializes a brush with a pattern specified by a
device-independent bitmap (DIB).

Operations - Public Members
FromHandle Returns a pointer to a CBrush object when given a

handle to a Windows HBRUSH object.

CBrush::CBrush 163

Member Functions

CBrush: :CBrush

Remarks

CBrush();

CBrush(COLORREF creolor)
throw(CResourceException);

CBrush(int nlndex, COLORREF creolor)
throw(CResourceException);

CBrush(CBitmap* pBitmap)
throw(CResourceException);

creolor Specifies the foreground color of the brush as an RGB color. If the brush
is hatched, this parameter specifies the color of the hatching.

nlndex Specifies the hatch style of the brush. It can be anyone of the following
values, with the meaning as given:

• HS _ BDIAGONAL Downward hatch (left to right) at 45 degrees

• HS CROSS Horizontal and vertical crosshatch

• HS _DIAGCROSS Crosshatch at 45 degrees

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

• HS HORIZONTAL Horizontal hatch

• HS VERTICAL Vertical hatch

pBitmap Points to a CBitmap object that specifies a bitmap with which the brush
paints.

Has four overloaded constructors. The constructor with no arguments constructs an
uninitialized CBrush object that must be initialized before it can be used. If you
use the constructor with no arguments, you must initialize the resulting CBrush
object with CreateSolidBrush, CreateHatchBrush, CreateBrushIndirect,
CreatePatternBrush, or CreateDIBPatternBrush. If you use one of the
constructors that takes arguments, then no further initialization is necessary. The
constructors with arguments can throw an exception if errors are encountered, while
the constructor with no arguments will always succeed.

The constructor with a single COLORREF parameter constructs a solid brush with
the specified color. The color specifies an RGB value and can be constructed with
the RGB macro in WINDOWS.H.

164 CBrush: :CreateBrushlndirect

See Also

The constructor with two parameters constructs a hatch brush. The nI ndex
parameter specifies the index of a hatched pattern. The creolor parameter specifies
the color.

The constructor with a CBitmap parameter constructs a patterned brush. The
parameter identifies a bitmap. The bitmap is assumed to have been created by using
CBitmap: :CreateBitmap, CBitmap: :CreateBitmapIndirect,
CBitmap: : LoadBitmap, or CBitmap: :CreateCompatibleBitmap. The
minimum size for a bitmap to be used in a fill pattern is 8 pixels by 8 pixels.

CBitmap: :CreateBitmap, CBitmap: :CreateBitmapIndirect,
CBitmap: :LoadBitmap, CBitmap: :CreateCompatibleBitmap,
CBrush: :CreateSolidBrush, CBrush: :CreateHatchBrush,
CBrush::CreateBrushIndirect, CBrush::CreatePatternBrush,
CBrush: :CreateDIBPatternBrush, CGdiObject: :CreateStockObject

CBrush: :CreateBrushlndirect

Remarks

Return Value

See Also

BOOL CreateBrushIndirect(LPLOGBRUSH lpLogBrush);

lpLogBrush Points to a LOGBRUSH structure that contains information about
the brush.

The LOGBRUSH structure has the following form:

typedef struct tagLOGBRUSH {
UINT lbStyle;
COLORREF lbColor;
int lbHatch;

LOGBRUSH;

Initializes a brush with a style, color, and pattern specified in a LOGBRUSH
structure. The brush can subsequently be selected as the current brush for any
device context. A brush created using a monochrome (1 plane, 1 bit per pixel)
bitmap is drawn using the current text and background colors. Pixels represented by
a bit set to 0 will be drawn with the current text color. Pixels represented by a bit
set to 1 will be drawn with the current background color.

Nonzero if the function is successful; otherwise O.

CBrush: :CreateDIBPatternBrush, CBrush: :CreatePatternBrush,
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CGdiObject:: CreateStockObject, CGdiObject: :DeleteObject,
: :CreateBrushIndirect

CBrush::CreateDIBPatternBrush 165

C Brush: : Create D I B Pattern Brush

Remarks

Return Value

See Also

BOOL CreateDIBPatternBrush(HGLOBAL hPackedDIB, UINT nUsage);

hPackedDIB Identifies a global-memory object containing a packed device­
independent bitmap (DIB).

nU sage Specifies whether the bmiColors[] fields of the BITMAPINFO data
structure contain explicit RGB values or indexes into the currently realized
logical palette. The parameter must be one of the following values, with the
meaning as given:

• DIB_PAL_ COLORS The color table consists of an array of 16-bit
indexes.

• DIB RGB COLORS The color table contains literal RGB values.

Initializes a brush with the pattern specified by a device-independent bitmap (DIB).
The brush can subsequently be selected for any device context that supports raster
operations. To obtain a handle to the DIB, call the Windows GlobalAlloc function
to allocate a block of global memory and then fill the memory with the packed DIB.
A packed DIB consists of a BITMAPINFO data structure immediately followed
by the array of bytes that define the pixels of the bitmap.

The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

BITMAP INFO;

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
the Windows operating system creates a fill pattern using only the bits correspond­
ing to the first 8 rows and 8 columns of pixels in the upper-left comer of the bitmap.

When an application selects a two-color DIB pattern brush into a monochrome
device context, the Windows operating system ignores the colors specified in the
DIB and instead displays the pattern brush using the current text and background
colors of the device context. Pixels mapped to the first color (at offset 0 in the DIB
color table) of the DIB are displayed using the text color. Pixels mapped to the
second color (at offset 1 in the color table) are displayed using the background
color.

Nonzero if successful; otherwise O.

CBrush: :CreatePatternBrush, CBrush: :CreateBrushIndirect,
CBrush: :CreateSolidBrush, CBrush: :CreateHatchBrush,
CGdiObject: :CreateStockObject, : :CreateDIBPatternBrush, : :GlobalAlloc

166 CBrush: :CreateHatch Brush

CBrush: :CreateHatchBrush

Remarks

Return Value

See Also

BOOL CreateHatchBrush(int nlndex, COLORREF crColor);

nlndex Specifies the hatch style of the brush. It can be one of the following
values, with the meaning as given:

• HS _ BDIAGONAL Downward hatch (left to right) at 45 degrees

• HS CROSS Horizontal and vertical crosshatch

• HS _ DIAGCROSS Crosshatch at 45 degrees

• HS _ FDIAGONAL Upward hatch (left to right) at 45 degrees

• HS HORIZONTAL Horizontal hatch

• HS VERTICAL Vertical hatch

crColor Specifies the foreground color of the brush as an RGB color (the color of
the hatches).

Initializes a brush with the specified hatched pattern and color. The brush can
subsequently be selected as the current brush for any device context.

Nonzero if successful; otherwise O.

CBrush: :CreateBrushIndirect, CBrush: :CreateDIBPatternBrush,
CBrush: :CreatePatternBrush, CBrush: :CreateSolidBrush,
CGdiObject::CreateStockObject, ::CreateHatchBrush

CBrush: :CreatePattern Brush

Remarks

BOOL CreatePatternBrush(CBitmap* pBitmap);

pBitmap Identifies a bitmap.

Initializes a brush with a pattern specified by a bitmap. The brush can subsequently
be selected for any device context that supports raster operations. The pBitmap
bitmap is typically initialized using the CBitmap functions CreateBitmap,
CreateBitmaplndirect, LoadBitmap, or CreateCompatibleBitmap. Bitmaps
used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger, Windows
will only use the bits corresponding to the first 8 rows and columns of pixels in the
bitmap's upper-left comer. A pattern brush can be deleted without affecting the
associated bitmap, so the bitmap can be used to create any number of pattern
brushes. A brush created using a monochrome bitmap (1 color plane, 1 bit per
pixel) is drawn using the current text and background colors. Pixels represented by

Return Value

See Also

CBrush::FromHandle 167

a bit set to 0 are drawn with the current text color. Pixels represented by a bit set to
1 are drawn with the current background color.

Nonzero if successful; otherwise o.
CBrush:: CreateBrushIndirect, CBrush: :CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreateSolidBrush,
CGdiObject: :CreateStockObject, CBitmap: :CreateBitmap,
CBitmap: :CreateBitmapIndirect, CBitmap:: CreateCompatibleBitmap,
CBitmap::LoadBitmap, ::CreatePatternBrush

CBrush: :CreateSolidBrush

Remarks

Return Value

See Also

BOOL CreateSolidBrush(COLORREF crColor);

crColor Specifies the color of the brush. The color specifies an RGB value and
can be constructed with the RGB macro in WINDOWS.H.

Initializes a brush with a specified solid color. The brush can then be selected as the
current brush for any device context. When an application finishes using the brush
created by CreateSolidBrush, it should select the brush out of the device context.

Nonzero if successful; otherwise O.

CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreatePatternBrush,
: :CreateSolidBrush, CGdiObject: :DeleteObject

CBrush: :FromHandle

Remarks

Return Value

static CBrush* PASCAL FromHandle(HBRUSH hBrush);

hBrush HANDLE to a Windows GDI brush.

Returns a pointer to a CBrush object when given a handle to a Windows
HBRUSH object. If a CBrush is not already attached to the handle, a temporary
CBrush is created and attached. This temporary CBrush is valid only until the next
time the application has idle time in its event loop. At this time, all temporary
graphic objects are deleted. In other words the temporary object is only valid during
the processing of one window message.

A pointer to a CBrush object if successful; NULL if not.

168 CButton

class CButton : public CWnd
The CButton class provides the
functionality of Windows button controls.
A button control is a small, rectangular
child window that can be clicked on and off.
Buttons can be used alone or in groups and
can either be labeled or appear without text.
A button typically changes appearance

CButton

when the user clicks it. Typical buttons are the check box, radio button, and
pushbutton. A CButton object can become any of these, according to the style
specified at its initialization by the Create member function.

In addition, the CBitmapButton class derived from CButton supports creation of
button controls labeled with bitmap images instead of text. A CBitmapButton can
have separate bitmaps for a button's up, down, focused, and disabled states.

You can create a button control either from a dialog template or directly in your
code. In both cases, first call the constructor CButton to construct the CButton
object; then call the Create member function to create the Windows button control
and attach it to the CButton object. Construction can be a one-step process in a
class derived from CButton. Write a constructor for the derived class and call
Create from within the constructor.

If you want to handle Windows notification messages sent by a button control to its
parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON_ Notification(id, memberFxn)

where id specifies the child window ID of the control sending the notification and
memberFxn is the name of the parent member function you have written to handle
the notification.

The parent's function prototype is as follows:

afx _ msg void memberFxn();

Potential message-map entries are:

Map Entry Sent To Parent When ...

ON BN CLICKED The user clicks a button.

ON BN DOUBLECLICKED The user double-clicks a button.

See Also

CButton 169

If you create a CButton object from a dialog resource using App Studio, the
CButton object is automatically destroyed when the user closes the dialog box.

If you create a CButton object within a window, you may need to destroy it. If you
create the CButton object on the heap by using the new function, you must call
delete on the object to destroy it when the user closes the Windows button control.
If you create the CButton object on the stack, or it is embedded in the parent dialog
object, it is destroyed automatically.

#include <afxwin.h>

CWnd, CComboBox, CEdit, CListBox, CScrollBar, CStatic, CBitmapButton,
CDialog

Construction/Destruction·-Public Members
CButton Constructs a CButton object.

Initialization - Public Members
Create Creates the Windows button control and attaches it to the

CButton object.

Operations - Public Members
GetState

SetState

GetCheck

SetCheck

GetButtonStyle

SetButtonStyle

Retrieves the check state, highlight state, and focus state of a
button control.

Sets the highlighting state of a button control.

Retrieves the check state of a button control.

Sets the check state of a button control.

Retrieves information about the button control style.

Changes the style of a button.

Overridables - Public Members
DrawItem Override to draw an owner-drawn CButton object.

170 CButton::CButton

Member Functions

CButton: :CButton

Remarks

See Also

CButton();

Constructs a CButton object.

CButton: :Create

CButton::Create

Remarks

BOOL Create(LPCSTR IpszCaption, DWORD dwStyle, const RECT & reet,
CWnd* pParentWnd, UINT nID);

IpszCaption Specifies the button control's text.

dwStyle Specifies the button control's style.

reet Specifies the button control's size and position. It can be either a CRect
object or a RECT structure.

pParentWnd Specifies the button control's parent window, usually a CDialog or
CModalDialog. It must not be NULL.

nID Specifies the button control's ID.

You construct a CButton object in two steps. First call the constructor, then call
Create, which creates the Windows button control and attaches it to the CButton
object.

If the WS _VISIBLE style is given, Windows sends the button control all the
messages required to activate and show the button.

Apply the following window styles to a button control:

• WS _CHILD Always

• WS _VISIBLE Usually

• WS _DISABLED Rarely

• WS _GROUP To group controls

• WS TABSTOP To include the button in the tabbing order

Return Value

Button Styles

See Also

CButton::Create 171

See the CreateEx member function in the CWnd base class for a full description
of these window styles.

Nonzero if successful; otherwise O.

You can use any combination of the following button styles for dwStyle:

• BS_AUTOCHECKBOX Same as a check box, except that an X appears in
the check box when the user selects the box; the X disappears the next time the
user selects the box.

• BS _ AUTORADIOBUTTON Same as a radio button, except that when the
user selects it, the button automatically highlights itself and removes the
selection from any other radio buttons with the same style in the same group.

• BS_AUT03STATE Same as a three-state check box, except that the box
changes its state when the user selects it.

• BS _ CHECKBOX Creates a small square that has text displayed to its right
(unless this style is combined with the BS_LEFTTEXT style).

• BS _ DEFPUSHBUTTON Creates a button that has a heavy black border.
The user can select this button by pressing the ENTER key. This style enables the
user to quickly select the most likely option (the default option).

• BS _ GROUPBOX Creates a rectangle in which other buttons can be grouped.
Any text associated with this style is displayed in the rectangle's upper-left
comer.

• BS _ LEFT TEXT When combined with a radio-button or check-box style, the
text appears on the left side of the radio button or check box.

• BS OWNERDRA W Creates an owner-drawn button. The framework calls
the DrawItem member function when a visual aspect of the button has changed.
This style must be set when using the CBitmapButton class.

• BS_PUSHBUTTON Creates a pushbutton that posts a WM_COMMAND
message to the owner window when the user selects the button.

• BS _ RADIOBUTTON Creates a small circle that has text displayed to its
right (unless this style is combined with the BS_LEFTTEXT style). Radio
buttons are usually used in groups of related but mutually exclusive choices.

• BS _ 3ST ATE Same as a check box, except that the box can be dimmed as
well as checked. The dimmed state typically is used to show that a check box
has been disabled.

CButton::CButton

172 CButton::Drawltem

CButton: :Drawltem

Remarks

See Also

virtual void DrawItem(LPDRA WITEMSTRUCT IpDrawItemStruct);

IpDrawltemStruct A long pointer to a DRA WITEMSTRUCT structure. The
structure contains information about the item to be drawn and the type of drawing
required.

Called by the framework when a visual aspect of an owner -drawn button has
changed. An owner-drawn button has the BS _ OWNERDRA W style set. Override
this member function to implement drawing for an owner-drawn CButton object.
The application should restore all graphics device interface (GDI) objects selected
for the display context supplied in IpDrawltemStruct before the member function
terminates.

See the Create member function for a list of button styles.

WM _ DRA WITEM, CButton: :SetButtonStyle

CButton: :GetButtonStyle

Remarks

See Also

UINT GetButtonStyle() const;

Retrieves the window style of CButton. It only returns the BS_ style values, not
any of the other window styles.

See the Create member function for a list of button styles.

: : GetWindowLong, CButton: :SetButtonStyle

CButton: :GetCheck
int GetCheck() const;

Remarks Retrieves the check state of a radio button or check box.

Return Value

See Also

CButton::GetState 173

The return value from a button control created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_ CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style is one of the following values:

Value Meaning

o Button state is unchecked.

Button state is checked.

2 Button state is indetenninate (only applies if the button has the BS _ 3ST A TE
or BS_AUT03STATE style).

If the button has any other style, the return value is O.

CButton: : GetState, CButton: :SetState, CButton: :SetCheck,
BM GETCHECK

CButton: :GetState

Return Value

See Also

UINT GetState() const;

Specifies the current state of the button control. You can use the following masks
against the return value to extract information about the state:

Mask

Ox0003

Ox0004

Ox0008

Meaning

Specifies the check state (radio buttons and check boxes only). A 0 indicates
the button is unchecked. A I indicates the button is checked. A radio button is
checked when it contains a bullet (.). A check box is checked when it
contains an X. A 2 indicates the check state is indetenninate (three-state
check boxes only). The state of a three-state check box is indetenninate when
it contains a halftone pattern.

Specifies the highlight state. A nonzero value indicates that the button is
highlighted. A button is highlighted when the user clicks and holds the left
mouse button. The highlighting is removed when the user releases the mouse
button.

Specifies the focus state. A nonzero value indicates that the button has the
focus.

CButton: :GetCheck, CButton: :SetCheck, CButton: :SetState,
BM GETS TATE

174 CButton::SetButtonStyle

CButton: :SetButtonStyle

Remarks

See Also

void SetBllttonStyle(UINT nStyle, BOOL bRedraw = TRUE);

nStyle Specifies the button style.

bRedraw Specifies whether the button is to be redrawn. A nonzero value redraws
the button. A 0 value does not redraw the button. The button is redrawn by
default.

Changes the style of a button. Use the GetBllttonStyle member function to retrieve
the button style. The low-order word of the complete button style is the button­
specific style.

See the Create member function for a list of possible button styles.

CBlltton: : GetBllttonStyle, BM _ SETSTYLE

CButton::SetCheck

Remarks

See Also

void SetCheck(int nCheck);

nCheck Specifies the check state. This parameter can be one of the following:

Value Meaning

o Set the button state to unchecked.

Set the button state to checked.

2 Set the button state to indetenninate. This value can be used only if the
button has the BS_3STATE or BS_AUT03STATE style.

Sets or resets the check state of a radio button or check box. This member function
has no effect on a pushbutton.

CBlltton: :GetCheck, CBlltton: :GetState, CBlltton: :SetState,
BM SETCHECK

CButton::SetState 175

CButton: :SetState

Remarks

See Also

void SetState(BOOL bHighlight);

bHighlight Specifies whether the button is to be highlighted. A nonzero value
highlights the button; a 0 value removes any highlighting.

Sets the highlighting state of a button control. Highlighting affects the exterior of a
button control. It has no effect on the check state of a radio button or check box. A
button control is automatically highlighted when the user clicks and holds the left
mouse button. The highlighting is removed when the user releases the mouse button.

CButton: : GetState, CButton: :SetCheck, CButton::GetCheck,
BM SETSTATE

176 CByteArray

class CByteArray : public CObject

See Also

The CByteArray class supports dynamic arrays of
bytes. The member functions of CByteArray are
similar to the member functions of class CObArray. ,-C_B-,-yt_eA_r_ra-,,-Y ____ ----'

Because of this similarity, you can use the
CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a BYTE.

CObject* CObArray: :GetAt(int <nlndex>) const;

for example, translates to

BYTE CByteArray::GetAt(int <nlndex>) const;

CByteArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of bytes is stored to an
archive, either with the overloaded insertion «<) operator or with the Serialize
member function, each element is, in turn, serialized. If you need debug output from
individual elements in the array, you must set the depth of the CDumpContext
object to 1 or greater.

#include <afxcoll.h>

CObArray

Construction/Destruction - Public Members
CByteArray

"'CByteArray

Constructs an empty array for bytes.

Destroys a CByteArray object.

Bounds-Public Members
GetSize Gets the number of elements in this array.

GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this array.

Operations - Public Members
FreeExtra

RemoveAll

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

CByteArray 177

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the byte within the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array
if necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at
a specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

178 CClientDC

class CClientDC : public CDC

See Also

The CClientDC class is derived from CDC and
takes care of calling the Windows functions
GetDC at construction time and ReleaseDC at
destruction time. This means that the device
context associated with a CClientDC object is
the client area of a window.

#include <afxwin.h>

CDC

Construction/Destruction - Public Members

CClientDC

CClientDC Constructs a CClientDC object connected to the CWnd.

Data Members - Protected Members
m hWnd The HWND of the window for which this CClientDC is valid.

Member Functions

CCI ientDC: :CCI ientDC

Remarks

CClientDC(CWnd* pWnd)
throw(CResourceException);

pWnd The window whose client area the device context object will access.

Constructs a CClientDC object that accesses the client area of the CWnd pointed
to by pWnd. The constructor calls the Windows function GetDC. An exception (of
type CResourceException) is thrown if the Windows GetDC call fails. A device
context may not be available if Windows has already allocated all of its available
device contexts. Your application competes for the five common display contexts
available at any given time under the Windows operating system.

CClientDC::m_hWnd 179

Data Members

CClientDC::m hWnd
Remarks The HWND of the CWnd pointer used to construct the CClientDC object.

m _ h Wnd is a protected variable.

180 CCmdTarget

class CCmdTarget : public CObject

See Also

CCmdTarget is the base class for the Microsoft
Foundation Class Library message-map architecture.
A message map routes commands or messages to the c-C_C_m_dli_a.....,::r9:...,..et ____ ----'

member functions you write to handle them. (A
command is a message from a menu item, command button, or accelerator key.)

Key framework classes derived from CCmdTarget include CView, CWinApp,
CDocument, CWnd, and CFrame Wnd. If you intend for a new class to handle
messages, derive the class from one of these CCmdTarget-derived classes. You
will rarely derive a class from CCmdTarget directly.

For an overview of command targets and OnCmdMsg routing, see Chapter 3 in
this manual.

CCmdTarget includes member functions that handle the display of an hourglass
cursor. Display the hourglass cursor when you expect a command to take a
noticeable time interval to execute.

include <afxwin.h>

CCmdUI, CDocument, CDocTemplate, CWinApp, CWnd, CView,
CFrameWnd

Operations - Public Members
Begin WaitCursor Displays the cursor as an hourglass cursor.

EndWaitCursor Returns to the previous cursor.

Restore W aitCursor Restores the hourglass cursor.

Overridables - Public Members
OnCmdMsg Routes and dispatches command messages.

CCmdTarget::OnCmdMsg 181

Member Functions

CCmdTarget::BeginWaitCursor

Remarks

See Also

void Begin WaitCursor();

Call this function to display the cursor as an hourglass when you expect a command
to take a noticeable time interval to execute. The framework calls this function to
show the user that it is busy, such as when a CDocument object loads or saves
itself to a file.

Call EndWaitCursor to restore the previous cursor.

CCmdTarget::EndWaitCursor, CCmdTarget::RestoreWaitCursor,
CWinApp: :Do WaitCursor

CCmdTarget:: EndWaitCursor

Remarks

See Also

void EndWaitCursor();

Call this function after you have called the Begin WaitCursor member function to
return from the hourglass cursor to the previous cursor. The framework also calls
this member function after it has invoked the hourglass cursor.

CCmdTarget: :Begin WaitCursor, CCmdTarget: :Restore WaitCursor,
CWinApp: :Do WaitCursor

CCmdTarget: :OnCmdMsg
virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,

AFX_CMDHANDLERINFO* pHandlerlnfo);

nID Contains the command ID.

nC ode Identifies the command notification code.

182 CCmdTarget::RestoreWaitCursor

Remarks

Return Value

See Also

pExtra Used according to the value of nCode.

pHandlerlnfo If not NULL, OnCmdMsg fills in the pHandlerlnfo structure with
the pTarget and pmf members of the CMDHANDLERINFO structure instead
of dispatching the command. Typically, this parameter should be NULL.

Called by the framework to route and dispatch command messages and to handle
the update of command user-interface objects. This is the main implementation
routine of the framework command architecture.

At run time, OnCmdMsg dispatches a command to other objects or handles the
command itself by calling the root class CCmdTarget::OnCmdMsg, which does
the actual message-map lookup. For a complete description of the default command
routing, see Chapter 6 in the Class Library User's Guide.

On rare occasions, you may want to override this member function to extend the
framework's standard command routing. Please refer to Technical Note 21 in
MSVC\HELP\MFCNOTES.HLP for advanced details of the command-routing
architecture.

Nonzero if the message is handled; otherwise O.

CCmdUI

CCmdTarget:: Restore WaitCu rsor

Remarks

See Also

void Restore W aitCursor() ;

Call this function to restore the appropriate hourglass cursor after the system cursor
has changed (for example, after a message box has opened and then closed while in
the middle of a lengthy operation).

CCmdTarget: :EndWaitCursor, CCmdTarget: :Begin WaitCursor,
CWinApp: :Do WaitCursor

CCmdUI 183

class CCmdUI
The CCmdUI class is used only within an ON_UPDATE_COMMAND_UI
handler in a CCmdTarget-derived class.

When a user of your application pulls down a menu, each menu item needs to know
whether it should be displayed as enabled or disabled (dimmed). The target of a
menu command provides this information by implementing an
ON UPDATE COMMAND UI handler. Use ClassWizard to browse the - -
command user-interface objects in your application and create a message-map
entry and function prototype for each handler.

When the menu is pulled down, the framework searches for and calls each
ON _UPDATE_COMMAND _ UI handler, each handler calls CCmdUI member
functions such as Enable and Check, and the framework then appropriately
displays each menu item.

A menu item can be replaced with a control-bar button or other command user­
interface object without changing the code within the
ON UPDATE COMMAND UIhandler. - -
Table R.I summarizes the effect CCmdUI's member functions have on various
command user-interface items.

Table R.t Using CCmdUI Member Functions

User-Interface Item Enable SetCheck SetRadio SetText

Menu item Enables or Checks (.t) or Checks using Sets item text
disables unchecks dot (e)

Toolbar button Enables or Selects, Same as (Not
disables unselects, or SetCheck applicable)

indeterminate

Status-bar pane Makes text Sets pop-out or Same as Sets pane text
visible or normal border SetCheck
invisible

Normal button in Enables or Checks or Same as Sets button text
CDialogBar disables unchecks SetCheck

check box

Normal control in Enables or (Not (Not Sets window
CDialogBar disables applicable) applicable) text

For more on the use of this class, see Chapter 6 in the Class Library User's Guide
and Chapter 3 in this manual.

#include <afxwin.h>

184 CCmdUI::ContinueRouting

See Also CCmdTarget

Operations - Public Members
Enable

SetCheck

Enables or disables the user-interface item for this command.

Sets the check state of the user-interface item for this
command.

SetRadio Like the SetCheck member function, but operates on radio
groups.

SetText Sets the text for the user-interface item for this command.

ContinueRouting Tells the command-routing mechanism to continue routing the
current message down the chain of handlers.

Member Functions

CCmdUI: :ContinueRouting

Remarks

void ContinueRouting();

Call this member function to tell the command-routing mechanism to continue
routing the current message down the chain of handlers.

This is an advanced member function that should be used in conjunction with an
ON_ COMMAND_EX handler that returns FALSE. For more information, see
Technical Note 21 in MSVC\HELP\MFCNOTES.HLP.

CCmdUI: :Enable

Remarks

See Also

virtual void Enable(BOOL bOn = TRUE);

bOn TRUE to enable the item, FALSE to disable it.

Call this member function to enable or disable the user-interface item for this
command.

CCmdUI::SetCheck

CCmdUI::SetText 185

CCmdUI: :SetCheck

Remarks

See Also

virtual void SetCheck(int nCheck = 1);

nCheck Specifies the check state to set. If 0, unchecks; if 1, checks; and if 2, sets
indeterminate.

Call this member function to set the user-interface item for this command to the
appropriate check state. This member function works for menu items and toolbar
buttons. The indeterminate state applies only to toolbar buttons.

CCmdUI: :SetRadio

CCmdUI::SetRadio

Remarks

See Also

virtual void SetRadio(BOOL bOn = TRUE);

bOn TRUE to enable the item; otherwise FALSE.

Call this member function to set the user-interface item for this command to the
appropriate check state. This member function operates like SetCheck, except that
it operates on user-interface items acting as part of a radio group. Unchecking the
other items in the group is not automatic unless the items themselves maintain the
radio-group behavior.

CCmdUI::SetCheck

CCmdUI::SetText

Remarks

See Also

virtual void SetText(LPCSTR IpszText);

IpszT ext A pointer to a text string.

Call this member function to set the text of the user-interface item for this
command.

CCmdUI: :Enable

186 CColorDialog

class CColorDialog : public CDialog
The CColorDialog class allows you to
incorporate a color-selection dialog
box into your application. A
CColorDialog object is a dialog box
with a list of colors that are defined for
the display system. The user can select
or create a particular color from the
list, which is then reported back to the
application when the dialog box exits.

CColorDialog

To construct a CColorDialog object, use the provided constructor or derive a new
class and use your own custom constructor.

Once the dialog box has been constructed, you can set or modify any values in the
m _ cc structure to initialize the values of the dialog box's controls. The m _ cc
structure is of type CHOOSECOLOR. For more information on this structure, see
the Windows Software Development Kit (SDK) documentation.

After initializing the dialog box's controls, call the DoModal member function to
display the dialog box and allow the user to select a color. DoModal returns the
user's selection of either the dialog box's OK (IDOK) or Cancel (IDCANCEL)
button.

If DoModal returns IDOK, you can use one of CColorDialog's member functions
to retrieve the information input by the user.

You can use the Windows CommDlgExtendedError function to determine if an
error occurred during initialization of the dialog box and to learn more about the
error. For more information on this function, see the Windows SDK documentation.

CColorDialog relies on the COMMDLG.DLL file that ships with Windows
version 3.1. For details about redistributing COMMDLG.DLL to Windows version
3.0 users, see the Getting Started manual for the Windows version 3.1 SDK.

To customize the dialog box, derive a class from CColorDialog, provide a custom
dialog template, and add a message map to process notification messages from the
extended controls. Any unprocessed messages should be passed to the base class.

Customizing the hook function is not required.

Note On some installations the CColorDialog object will not display with a gray
background if you have used the framework to make other CDialog objects gray.

#include <afxdlgs.h>

CColorDialog: :CColorDialog 187

Data Members - Public Members
clrSavedCustom An array of RGB values used to store custom colors.

m cc A structure used to customize the settings of the dialog box.

Construction/Destruction - Public Members
CColorDialog Constructs a CColorDialog object.

Operations - Public Members
DoModal

GetColor

SetCurrentColor

Displays a color dialog box and allows the user to make a
selection.

Returns a COLORREF structure containing the values of
the selected color.

Forces the current color selection to the specified color.

Overridables-Protected Members
OnCoiorOK Override to validate the color entered into the dialog box.

Member Functions

CColorDialog: :CColorDialog

Remarks

See Also

CColorDialog(COLORREF clr/nit = 0, DWORD dwFlags = 0,
CWnd* pParentWnd = NULL);

clr/nit The default color selection. If no value is specified, the default is
RGB(O,O,O) (black).

dwFlags A set of flags that customize the function and appearance of the dialog
box. For more information, see the CHOOSECOLOR structure in the Windows
SDK documentation.

pParentWnd A pointer to the dialog box's parent or owner window.

Constructs a CColorDialog object.

CDialog: :DoModal, :: ChooseColor

188 CColorDialog::DoModal

CColorDialog:: DoModal

Remarks

Return Value

See Also

virtual int DoModal();

Call this function to display the Windows common color dialog box and allow the
user to select a color.

If you want to initialize the various color dialog-box options by setting members of
the m _ cc structure, you should do this before calling DoModal but after the dialog­
box object is constructed.

After calling DoModal, you can call other member functions to retrieve the settings
or information input by the user into the dialog box.

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or
Cancel button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine if an error occurred.

CDialog: :DoModal, CColorDialog: :CColorDialog

CColorDialog: :GetColor

Remarks

Return Value

See Also

COLORREF GetColor() const;

Call this function after calling DoModal to retrieve the information about the color
the user selected.

A COLORREF value that contains the RGB information for the color selected in
the color dialog box.

CColorDialog: :SetCurrentColor

CColorDialog: :SetCurrentColor 189

CColorDialog: :OnColorOK
Protected

Remarks

Return Value

virtual BOOL OnColorOK(); +

Override this function only if you want to provide custom validation of the color
entered into the dialog box. This function allows you to reject a color entered by a
user into a common color dialog box for any application-specific reason. Normally,
you do not need to use this function because the framework provides default
validation of colors and displays a message box if an invalid color is entered.

Use the GetColor member function to get the ROB value of the color.

If 0 is returned, the dialog box will remain displayed in order for the user to enter
another filename.

Nonzero if the dialog box should not be dismissed; otherwise 0 to accept the color
that was entered.

CColorDialog: :SetCurrentColor

Remarks

See Also

void SetCurrentColor(COLORREF clr);

clr An ROB color value.

Call this function after calling DoModal to force the current color selection to the
color value specified in cZr. This function is called from within a message handler
or OnColorOK. The dialog box will automatically update the user's selection
based on the value of the clr parameter.

CColorDialog: :GetColor

190 CColorDialog: :clrSavedCustom

Data Members

CColorDialog: :clrSavedCustom

Remarks

static COLORREF clrSavedCustom[16];

In addition to choosing colors, CColorDialog objects permit the user to define up
to 16 custom colors. The clrSavedCustom member is an array of 16 RGB color
values that stores these custom colors between invocations of the CColorDialog
object. These colors can be retrieved after DoModal returns IDOK.

Each of the 16 RGB values in clrSavedCustom is initialized to
RGB(255,255,255) (white). The clrSavedCustom member only allows you to save
custom colors between dialog box invocations within the application. If you wish to
save these colors between invocations of the application, you must save them in
some other manner, such as in an initialization (.INI) file. Typically, this saving is
done in your application's ExitInstance function.

CColorDialog:: m _ cc

Remarks

CHOOSECOLOR m_cc;

A structure of type CHOOSECOLOR, whose members store the characteristics
and values of the dialog box. After constructing a CColorDialog object, you can
use m _ cc to set various aspects of the dialog box before calling the DoModal
member function.

class CComboBox : public CWnd
The CComboBox class provides the
functionality of a Windows combo box.

A combo box consists of a list box
combined with either a static control or edit
control. The list-box portion of the control
may be displayed at all tirpes or may only
drop down when the user selects the drop­
down arrow next to the control.

CComboBox 191

CComboBox

The currently selected item (if any) in the list box is displayed in the static or edit
control. In addition, if the combo box has an edit control, the user can type text in
the edit control and the list box, if it is visible, will highlight the first selection that
matches the typed entry.

The following table compares the three combo-box styles:

Style When Is List Box Visible? Static or Edit Control?

Simple Always Edit

Drop-down When dropped down Edit

Drop-down list When dropped down Static

You can create a CComboBox object from either a dialog template or directly in
your code. In both cases, first call the constructor CComboBox to construct the
CComboBox object; then call the Create member function to create the control
and attach it to the CComboBox object. If you want to handle Windows
notification messages sent by a combo box to its parent (usually a class derived
from CDialog), add a message-map entry and message-handler member function to
the parent class for each message.

Each message-map entry takes the following form:

ON_Notification(id, memberFxn)

where id specifies the child-window ID of the combo-box control sending the
notification and memberFxn is the name of the parent member function you have
written to handle the notification.

The parent's function prototype is as follows:

afx _ msg void memberFxn();

The order in which certain notifications will be sent cannot be predicted. In
particular, a CBN_SELCHANGE notification may occur either before or after a
CBN CLOSEUP notification.

192 CComboBox

Potential message-map entries are:

Windows 3.1 Only • ON CBN CLOSEUP The list box of a combo box has closed. This
notification message is not sent for a combo box that has the CBS_SIMPLE
style. +

• ON_ CBN _ DBLCLK The user double-clicks a string in the list box of a
combo box. This notification message is only sent for a combo box with the
CBS_SIMPLE style. For a combo box with the CBS_DROPDOWN or
CBS _ DROPDOWNLIST style, a double-click cannot occur because a single
click hides the list box.

• ON _ CBN _ DROPDOWN The list box of a combo box is about to drop down
(be made visible). This notification message can occur only for a combo box
with the CBS _ DROPDOWN or CBS _ DROPDOWNLIST style.

• ON_ CBN _ EDITCHANGE The user has taken an action that may have
altered the text in the edit-control portion of a combo box. Unlike the
CBN _ EDITUPDATE message, this message is sent after the Windows
operating system updates the screen. It is not sent if the combo box has the
CBS_DROPDOWNLIST style.

• ON_CBN_EDITUPDATE The edit-control portion of a combo box is about
to display altered text. This notification message is sent after the control has
formatted the text but before it displays the text. It is not sent if the combo box
has the CBS _ DROPDOWNLIST style.

• ON_ CBN _ ERRSP ACE The combo box cannot allocate enough memory to
meet a specific request.

Windows 3.1 Only • ON CBN SELENDCANCEL Indicates the user's selection should be
canceled. The user clicks an item and then clicks another window or control to
hide the list box of a combo box. This notification message is sent before the
CBN _CLOSEUP notification message to indicate that the user's selection
should be ignored. The CBN_ SELENDCANCEL or CBN_ SELENDOK
notification message is sent even if the CBN_ CLOSEUP notification message
is not sent (as in the case of a combo box with the CBS_SIMPLE style).

• ON_CBN_SELENDOK The user selects an item and then either presses the
ENTER key or clicks the DOWN ARROW key to hide the list box of a combo box.
This notification message is sent before the CBN_ CLOSEUP message to
indicate that the user's selection should be considered valid. The
CBN_SELENDCANCEL or CBN_SELENDOK notification message is sent
even if the CBN_ CLOSEUP notification message is not sent (as in the case of
a combo box with the CBS_SIMPLE style). +

• ON CBN KILLFOCUS The combo box is losing the input focus.

See Also

CComboBox 193

• ON CBN SELCHANGE The selection in the list box of a combo box is - -
about to be changed as a result of the user either clicking in the list box or
changing the selection by using the arrow keys.

• ON_CBN_SETFOCUS The combo box receives the input focus.

If you create a CComboBox object within a dialog box (through a dialog resource
with App Studio), the CComboBox object is automatically destroyed when the user
closes the dialog box. If you embed a CComboBox object within another window
object, you do not need to destroy it. If you create the CComboBox object on the
stack, it is destroyed automatically. If you create the CComboBox object on the
heap by using the new function, you must call delete on the object to destroy it
when the Windows combo box is destroyed.

#include <afxwin.h>

CWnd, CButton, CEdit, CListBox, CScrollBar, CStatic, CDialog

Construction/Destruction - Public Members
CComboBox Constructs a CComboBox object.

Initialization - Public Members
Create Creates the combo box and attaches it to the

CComboBox object.

General Operations - Public Members
GetCount

GetCurSel

SetCurSel

GetEditSel

SetEditSel

SetItemData

SetItemDataPtr

GetItemData

Retrieves the number of items in the list box of a
combo box.

Retrieves the index of the currently selected item, if
any, in the list box of a combo box.

Selects a string in the list box of a combo box.

Gets the starting and ending character positions of
the current selection in the edit control of a combo
box.

Selects characters in the edit control of a combo box.

Sets the 32-bit value associated with the specified
item in a combo box.

Sets the 32-bit value associated with the specified
item in a combo box to the specified pointer (void*).

Retrieves the application-supplied 32-bit value
associated with the specified combo-box item.

194 CComboBox

GetltemDataPtr Retrieves the application-supplied 32-bit value
associated with the specified combo-box item as a
pointer (void*).

Clear Deletes (clears) the current selection (if any) in the
edit control.

Copy Copies the current selection (if any) onto the
Clipboard in CF _TEXT format.

Cut Deletes (cuts) the current selection, if any, in the edit
control and copies the deleted text onto the Clipboard
in CF TEXT format.

Paste Inserts the data from the Clipboard into the edit con­
trol at the current cursor position. Data is inserted
only if the Clipboard contains data in CF _TEXT
format.

LimitText Limits the length of the text that the user may enter
into the edit control of a combo box.

SetltemHeight Sets the height of list items in a combo box or the
height of the edit-control (or static-text) portion of
a combo box.

GetltemHeight Retrieves the height of list items in a combo box.

GetLBText Gets a string from the list box of a combo box.

GetLBTextLen Gets the length of a string in the list box of a
combo box.

ShowDropDown Shows or hides the list box of a combo box that
has the CBS DROPDOWN or
CBS _ DROPDOWNLIST style.

GetDroppedControlRect Retrieves the screen coordinates of the visible
(dropped-down) list box of a drop-down combo box.

GetDroppedState Determines whether the list box of a drop-down
combo box is visible (dropped down).

SetExtendedUI Selects either the default user interface or the
extended user interface for a combo box that has the
CBS DROPDOWN or CBS DROPDOWNLIST

GetExtendedUI

- -
style.

Determines whether a combo box has the default
user interface or the extended user interface.

CComboBox 195

String Operations-Public Members
AddString

DeleteString

InsertString

ResetContent

Dir

FindString

FindStringExact

SelectString

Adds a string to the end of the list in the list box of a
combo box or at the sorted position for list boxes
with the CBS_SORT style.

Deletes a string from the list box of a combo box.

Inserts a string into the list box of a combo box.

Removes all items from the list box and edit control
of a combo box.

Adds a list of filenames to the list box of a
combo box.

Finds the first string that contains the specified prefix
in the list box of a combo box.

Finds the first list-box string (in a combo box) that
matches the specified string.

Searches for a string in the list box of a combo box
and, if the string is found, selects the string in the list
box and copies the string to the edit control.

Overridables - Public Members
DrawItem

MeasureItem

CompareItem

DeleteItem

Called by the framework when a visual aspect of an
owner-draw combo box changes.

Called by the framework to determine combo box
dimensions when an owner-draw combo box is
created.

Called by the framework to determine the relative
position of a new list item in a sorted owner-draw
combo box.

Called by the framework when a list item is deleted
from an owner-draw combo box.

196 CComboBox::AddString

Member Functions

CComboBox: :AddStri ng

Remarks

Return Value

See Also

int AddString(LPCSTR IpszString);

IpszString Points to the null-terminated string that is to be added.

Adds a string to the list box of a combo box. If the list box was not created with the
CBS _SORT style, the string is added to the end of the list. Otherwise, the string is
inserted into the list, and the list is sorted. To insert a string into a specific location
within the list, use the InsertString member function.

If the return value is greater than or equal to 0, it is the zero-based index to the
string in the list box. The return value is CB _ERR if an error occurs; the return
value is CB _ ERRSPACE if insufficient space is available to store the new string.

CComboBox: :InsertString, CComboBox: :DeleteString, CB _ ADDSTRING

CComboBox: :CComboBox

Remarks

See Also

CComboBox() ;

Constructs a CComboBox object.

CComboBox: :Create

CComboBox: :Clear

Remarks

See Also

void Clear();

Deletes (clears) the current selection, if any, in the edit control of the combo box.
To delete the current selection and place the deleted contents onto the Clipboard,
use the Cut member function.

CComboBox::Copy, CComboBox::Cut, CComboBox::Paste, WM_ CLEAR

CComboBox::Copy 197

CComboBox: :Compareltem

Remarks

Return Value

See Also

virtual int Compareltem(LPCOMPAREITEMSTRUCT
IpCompareItemStruct);

IpCompareltemStruct A long pointer to a COMPAREITEMSTRUCT
structure.

Called by the framework to determine the relative position of a new item in the list­
box portion of a sorted owner-draw combo box. By default, this member function
does nothing. If you create an owner-draw combo box with the LBS _SORT style,
you must override this member function to assist the framework in sorting new
items added to the list box.

Indicates the relative position of the two items described in the
COMP AREITEMSTRUCT structure. It may be any of the following values:

Value

-1

o

Meaning

Item 1 sorts before item 2.

Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

See CWnd::OnCompareltem on page 956 for a description of
COMPAREITEMSTRUCT.

WM _ COMPAREITEM, CComboBox::Drawltem,
CComboBox: :Measureltem, CComboBox: : DeleteItem

CComboBox: :Copy

Remarks

See Also

void Copy();

Copies the current selection, if any, in the edit control of the combo box onto the
Clipboard in CF _TEXT format.

CComboBox: :Clear, CComboBox: :Cut, CComboBox: :Paste, WM _COpy

198 CComboBox::Create

CComboBox: :Create

Remarks

Return Value

BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,
UINT nID);

dwStyle Specifies the style of the combo box.

reet Points to the position and size of the combo box. Can be a RECT structure
or a CRect object.

pParentWnd Specifies the combo box's parent window (usually a CDialog). It
must not be NULL.

nID Specifies the combo box's control ID.

You construct a CComboBox object in two steps. First call the constructor, then
call Create, which creates the Windows combo box and attaches it to the
CComboBox object. When Create executes, Windows sends the
WM_NCCREATE, WM_CREATE, WM_NCCALCSIZE, and
WM_GETMINMAXINFO messages to the combo box. These messages are
handled by default by the OnNcCreate, OnCreate, OnNcCalcSize, and
OnGetMinMaxInfo member functions in the CWnd base class. To extend the
default message handling, derive a class from CComboBox, add a message map to
the new class, and override the preceding message-handler member functions.
Override OnCreate, for example, to perform needed initialization for a new class.

Apply the following window styles to a combo-box control:

• WS _CHILD Always

• WS _VISIBLE Usually

• WS DISABLED Rarely

• WS VSCROLL To add vertical scrolling for the list box in the combo box

• WS HSCROLL To add horizontal scrolling for the list box in the combo box

• WS _ GROUP To group controls

• WS_TABSTOP To include the combo box in the tabbing order

See Create in the CWnd base class for a full description of these window styles.

Nonzero if successful; otherwise O.

CComboBox::Create 199

Combo-Box Styles You can use any combination of the following combo-box styles for dwStyle:

• CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to
the right when the user types a character at the end of the line. If this style is not
set, only text that fits within the rectangular boundary is allowed.

• CBS_DROPDOWN Similar to CBS_SIMPLE, except that the list box is
not displayed unless the user selects an icon next to the edit control.

• CBS _ DROPDOWNLIST Similar to CBS _ DROPDOWN, except that the
edit control is replaced by a static-text item that displays the current selection in
the list box.

• CBS _ HAS STRINGS An owner-draw combo box contains items consisting
of strings. The combo box maintains the memory and pointers for the strings so
the application can use the GetText member function to retrieve the text for a
particular item.

• CBS OEMCONVERT Text entered in the combo-box edit control is
converted from the ANSI character set to the OEM character set and then back
to ANSI. This ensures proper character conversion when the application calls
the AnsiToOem Windows function to convert an ANSI string in the combo box
to OEM characters. This style is most useful for combo boxes that contain
filenames and applies only to combo boxes created with the CBS_SIMPLE or
CBS_DROPDO\yN styles.

• CBS _ OWNERDRA WFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box are all the same height.

• CBS _ OWNERDRA WV ARIABLE The owner of the list box is responsible
for drawing its contents; the items in the list box are variable in height.

• CBS _SIMPLE The list box is displayed at all times. The current selection in
the list box is displayed in the edit control.

• CBS_SORT Automatically sorts strings entered into the list box.

Windows 3.1 Only • CBS DISABLENOSCROLL The list box shows a disabled vertical scroll
bar when the list box does not contain enough items to scroll. Without this style,
the scroll bar is hidden when the list box does not contain enough items.

• CBS_NOINTEGRALHEIGHT Specifies that the size of the combo box is
exactly the size specified by the application when it created the combo box.
Normally, Windows sizes a combo box so that the combo box does not display
partial items .•

See Also CComboBox::CComboBox

200 CComboBox::Cut

CComboBox: :Cut

Remarks

See Also

void Cut();

Deletes (cuts) the current selection, if any, in the combo-box edit control and copies
the deleted text onto the Clipboard in CF _TEXT format.

To delete the current selection without placing the deleted text onto the Clipboard,
call the Clear member function.

CComboBox: :Clear, CComboBox: :Copy, CComboBox: :Paste, WM _CUT

CComboBox::Deleteltem

Remarks

See Also

virtual void Deleteltem(LPDELETEITEMSTRUCT IpDeleteltemStruct);

IpDeleteltemStruct A long pointer to a Windows DELETEITEMSTRUCT
structure that contains information about the deleted item.

See CWnd: :OnDeleteltem on page 961 for a description of this structure.

Called by the framework when the user deletes an item from an owner-draw
CComboBox object or destroys the combo box. The default implementation of this
function does nothing. Override this function to redraw the combo box as needed.

CComboBox: :Compareltem, CComboBox: : Drawltem,
CComboBox: :Measureltem, WM _ DELETEITEM

CComboBox::DeleteString

Remarks

Return Value

See Also

int DeleteString(UINT nI ndex);

nI ndex Specifies the index to the string that is to be deleted.

Deletes a string in the list box of a combo box.

If the return value is greater than or equal to 0, then it is a count of the strings
remaining in the list. The return value is CB _ ERR if nI ndex specifies an index
greater then the number of items in the list.

CComboBox: :InsertString, CComboBox: :AddString, CB _ DELETESTRING

CComboBox::Drawltem 201

CComboBox::Dir

Remarks

Return Value

See Also

int Dir(UINT aur, LPCSTR IpszWildCard);

aUr Can be any combination of the enum values described in CFile::GetStatus
or any combination of the following values:

• DDL READWRITE File can be read from or written to.

• DDL READONL Y File can be read from but not written to.

• DDL_HIDDEN File is hidden and does not appear in a directory listing.

• DDL_SYSTEM File is a system file.

• DDL_DIRECTORY The name specified by IpszWildCard specifies a
directory.

• DDL ARCHIVE File has been archived.

• DDL _DRIVES Include all drives that match the name specified by
IpszWildCard.

• DDL _EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files
of the specified type are listed. Otherwise, files of the specified type are
listed in addition to "normal" files.

IpszWildCard Points to a file-specification string. The string can contain
wildcards (for example, *. *).

Adds a list of filenames and/or drives to the list box of a combo box.

If the return value is greater than or equal to 0, it is the zero-based index of the last
filename added to the list. The return value is CB _ERR if an error occurs; the
return value is CB _ERRSP ACE if insufficient space is available to store the new
strings.

CWnd: :DIgDirList, CB _ DIR, CFile: : GetStatus

CComboBox::Drawltem
virtual void Drawltem(LPDRA WITEMSTRUCT IpDrawltemStruct);

IpDrawltemStruct A pointer to a DRA WITEMSTRUCT structure that contains
information about the type of drawing required.

202 CComboBox::FindString

Remarks Called by the framework when a visual aspect of an owner-draw combo box
changes. The itemAction member of the DRA WITEMSTRUCT structure defines
the drawing action that is to be performed.

See Also

See CWnd::OnDrawItem on page 964 for a description of this structure.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CComboBox object. Before this member
function terminates, the application should restore all graphics device interface
(GDI) objects selected for the display context supplied in IpDrawltemStruct.

CComboBox: :CompareItem, : :Draw Item, CComboBox:: MeasureItem,
CComboBox: : DeleteItem

CComboBox::FindString

Remarks

Return Value

See Also

int FindString(int nStartAfter, LPCSTR IpszString) const;

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If -1, the entire list
box is searched from the beginning.

IpszString Points to the null-terminated string that contains the prefix to search
for. The search is case independent, so this string may contain any combination of
uppercase and lowercase letters.

Finds, but doesn't select, the first string that contains the specified prefix in the list
box of a combo box.

If the return value is greater than or equal to 0, it is the zero-based index of the
matching item. It is CB _ERR if the search was unsuccessful.

CComboBox: :SelectString, CComboBox: :SetCurSel, CB _ FINDSTRING

CComboBox::FindStringExact
Windows 3.1 Only int FindStringExact(int nlndexStart, LPCSTR IpszFind) const; +

nlndexStart Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the

Remarks

Return Value

See Also

CComboBox::GetCurSel 203

top of the list box back to the item specified by nlndexStart. If nlndexStart is -1,
the entire list box is searched from the beginning.

/pszFind Points to the null-terminated string to search for. This string can contain
a complete filename, including the extension. The search is not case sensitive, so
this string can contain any combination of uppercase and lowercase letters.

Call the FindStringExact member function to find the first list-box string (in a
combo box) that matches the string specified in /pszFind.

If the combo box was created with an owner-draw style but without the
CBS _ HAS STRINGS style, FindStringExact attempts to match the doubleword
value against the value of /pszFind.

The zero-based index of the matching item, or CB _ERR if the search was
unsuccessful.

CComboBox: :FindString, CB _ FINDSTRINGEXACT

CComboBox: :GetCount

Return Value

See Also

int GetCount() const;

The number of items in the list box of a combo box. The returned count is one
greater then the index value of the last item (the index is zero-based). It is
CB ERR if an error occurs.

CB GETCOUNT

CComboBox: :GetCurSel

Return Value

See Also

int GetCurSel() const;

The zero-based index of the currently selected item in the list box of a combo box,
or CB ERR if no item is selected.

CComboBox: :SetCurSel, CB _ GETCURSEL

204 CComboBox: :GetDroppedControlRect

CCombo Box: :GetDroppedControl Reet
Windows 3.1 Only void GetDroppedControlRect(LPRECT lprect) const; +

Remarks

See Also

lprect Points to the RECT structure that is to receive the coordinates.

Call the GetDroppedControlRect member function to retrieve the screen
coordinates of the visible (dropped-down) list box of a drop-down combo box.

CB GETDROPPEDCONTROLRECT

CComboBox: :GetDroppedState
Windows 3.1 Only BOOL GetDroppedState() const; +

Remarks Call the GetDroppedState member function to determine whether the list box of a
drop-down combo box is visible (dropped down).

Return Value Nonzero if the listbox is visible; otherwise O.

See Also CB _ SHOWDROPDOWN, CB _ GETDROPPEDSTATE

CComboBox: :GetEditSel

Remarks

See Also

DWORD GetEditSel() const;

Gets the starting and ending character positions of the current selection in the edit
control of a combo box.

A 32-bit value that contains the starting position in the low-order word and the
position of the first nons elected character after the end of the selection in the high­
order word. If this function is used on a combo box without an edit control,
CB ERR is returned.

CComboBox: :SetEditSel, CB _ GETEDITSEL

CComboBox::GetltemData 205

CComboBox: :GetExtendedUI
Windows 3.1 Only BOOL GetExtendedUI() const; +

Remarks Call the GetExtendedUI member function to determine whether a combo box has
the default user interface or the extended user interface. The extended user interface
can be identified in the following ways:

Return Value

See Also

• Clicking the static control displays the list box only for combo boxes with the
CBS _ DROPDOWNLIST style.

• Pressing the DOWN ARROW key displays the list box (F4 is disabled).

• Scrolling in the static control is disabled when the item list is not visible (arrow
keys are disabled).

Nonzero if the combo box has the extended user interface; otherwise O.

CComboBox::SetExtendedUI, CB _ GETEXTENDEDUI

CComboBox: :GetltemData

Remarks

Return Value

See Also

DWORD GetItemData(int nlndex) const;

nI ndex Contains the zero-based index of an item in the combo box's list box.

Retrieves the application-supplied 32-bit value associated with the specified
combo-box item. The 32-bit value can be set with the dwltemData parameter of a
SetItemData member function call. Use the GetItemDataPtr member function if
the 32-bit value to be retrieved is a pointer (void*).

The 32-bit value associated with the item, or CB _ERR if an error occurs.

CComboBox: :SetItemData, CComboBox:: GetItemDataPtr,
CComboBox: :SetItemDataPtr, CB _ GETITEMDAT A

206 CComboBox::GetltemDataPtr

CComboBox: :GetltemDataPtr

Remarks

Return ~Iue

See Also

void* GetItemDataPtr(int nlndex) const;

nlndex Contains the zero-based index of an item in the combo box's list box.

Retrieves the application-supplied 32-bit value associated with the specified
combo-box item as a pointer (void*).

Retrieves a pointer, or -1 if an error occurs.

CComboBox: :SetItemDataPtr, CComboBox: : GetItemData,
CComboBox: :SetltemData, CB _ GETITEMDAT A

CComboBox: :GetltemHeight
Windows 3.1 Only int GetItemHeight(int nlndex) const; +

Remarks

Return Value

See Also

nI ndex Specifies the component of the combo box whose height is to be retrieved.
If the nI ndex parameter is -1, the height of the edit-control (or static-text) portion
of the combo box is retrieved. If the combo box has the
CBS _ OWNERDRA WV ARIABLE style, nlndex specifies the zero-based index
of the list item whose height is to be retrieved. Otherwise, nlndex should be set
to O.

Call the GetltemHeight member function to retrieve the height of list items in a
combo box.

The height, in pixels, of the specified item in a combo box. The return value is
CB ERR if an error occurs.

CComboBox: :SetItemHeight, WM _ MEASUREITEM,
CB GETITEMHEIGHT

CComboBox::GetLBTextLen 207

CComboBox: :GetLBText

Remarks

Return Value

See Also

int GetLBText(int nlndex, LPSTR IpszText) const;

void GetLBText(int nlndex, CString& rString) const;

nlndex Contains the zero-based index of the list-box string to be copied.

IpszText Points to a buffer that is to receive the string. The buffer must have
sufficient space for the string and a terminating null character.

rString A reference to a CString.

Gets a string from the list box of a combo box. The second form of this member
function fills a CString object with the item's text.

The length (in bytes) of the string, excluding the terminating null character. If
nI ndex does not specify a valid index, the return value is CB _ERR.

CComboBox: : GetLBTextLen, CB _ GETLBTEXT

CComboBox: :GetLBTextLen

Remarks

Return Value

See Also

int GetLBTextLen(int nlndex) const;

nlndex Contains the zero-based index of the list-box string.

Gets the length of a string in the list box of a combo box.

The length of the string in bytes, excluding the terminating null character. If nlndex
does not specify a valid index, the return value is CB _ERR.

CComboBox::GetLBText, CB _ GETLBTEXTLEN

208 CComboBox::lnsertString

CCom bo Box: : I nsertStri ng

Remarks

Return Value

See Also

int InsertString(int nlndex, LPCSTR IpszString);

nlndex Contains the zero-based index to the position in the list box that will
receive the string. If this parameter is -1, the string is added to the end of the list.

IpszString Points to the null-terminated string that is to be inserted.

Inserts a string into the list box of a combo box. Unlike the AddString member
function, the InsertString member function does not cause a list with the
CBS_SORT style to be sorted.

The zero-based index of the position at which the string was inserted. The return
value is CB ERR if an error occurs. The return value is CB ERRSP ACE if - -
insufficient space is available to store the new string.

CComboBox: :AddString, CComboBox: :DeleteString,
CComboBox: :ResetContent, CB _INSERTSTRING

CComboBox: :LimitText

Remarks

Return Value

See Also

BOOL LimitText(int nMaxChars);

nMaxChars Specifies the length (in bytes) of the text that the user can enter. If
this parameter is 0, the text length is set to 65,535 bytes.

Limits the length in bytes of the text that the user can enter into the edit control of a
combo box. If the combo box does not have the style CBS _ AUTOHSCROLL,
setting the text limit to be larger than the size of the edit control will have no effect.
LimitText only limits the text the user can enter. It has no effect on any text
already in the edit control when the message is sent, nor does it affect the length of
the text copied to the edit control when a string in the list box is selected.

Nonzero if successful. If called for a combo box with the style
CBS _ DROPDOWNLIST or for a combo box without an edit control, the return
value is CB ERR.

CB LIMITTEXT

CComboBox::Paste 209

CComboBox: :Measureltem

Remarks

See Also

virtual void Measureltem(LPMEASUREITEMSTRUCT
IpMeasureltemStruct);

IpMeasureItemStruct A long pointer to a MEASUREITEMSTRUCT structure.

Called by the framework when a combo box with an owner-draw style is created.

By default, this member function does nothing. Override this member function and
fill in the MEASUREITEM structure to inform Windows of the dimensions of the
list box in the combo box. If the combo box is created with the
CBS _ OWNERDRA WV ARIABLE style, the framework calls this member
function for each item in the list box. Otherwise, this member is called only once.

Using the CBS _ OWNERDRA WFIXED style in an owner-draw combo box
created with the SubclassDIgltem member function of CWnd involves further
programming considerations. See the discussion in Technical Note 14 in
MSVC\HELP\MFCNOTES.HLP.

See CWnd: :OnMeasureltem on page 980 for a description of the
MEASUREITEMSTRUCT structure.

CComboBox: :Compareltem, CComboBox: : Drawltem, : :Measureltem,
CComboBox: : Deleteltem

CComboBox::Paste

Remarks

See Also

void Paste();

Inserts the data from the Clipboard into the edit control of the combo box at the
current cursor position. Data is inserted only if the Clipboard contains data in
CF TEXT format.

CComboBox::Clear, CComboBox::Copy, CComboBox::Cut, WM_PASTE

210 CComboBox::ResetContent

CComboBox:: ResetContent

Remarks

See Also

void ResetContent();

Removes all items from the list box and edit control of a combo box.

CB RESETCONTENT

CComboBox: :SelectString

Remarks

Return Value

See Also

int SelectString(int nStartAfter, LPCSTR IpszString);

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If -1, the entire list
box is searched from the beginning.

IpszString Points to the null-terminated string that contains the prefix to search
for. The search is case independent, so this string may contain any combination of
uppercase and lowercase letters.

Searches for a string in the list box of a combo box, and if the string is found,
selects the string in the list box and copies it to the edit control. A string is selected
only if its initial characters (from the starting point) match the characters in the
prefix string. Note that the SelectString and FindString member functions both
find a string, but the SelectString member function also selects the string.

The zero-based index of the selected item if the string was found. If the search was
unsuccessful, the return value is CB _ERR and the current selection is not changed.

CComboBox: :FindString, CB _ SELECTSTRING

CComboBox: :SetCurSel
int SetCurSel(int nSelect);

nSelect Specifies the zero-based index of the string to select. If -1, any current
selection in the list box is removed and the edit control is cleared.

Remarks

Return Value

See Also

CComboBox::SetExtendedUI 211

Selects a string in the list box of a combo box. If necessary, the list box scrolls the
string into view (if the list box is visible). The text in the edit control of the combo
box is changed to reflect the new selection. Any previous selection in the list box is
removed.

The zero-based index of the item selected if the message is successful. The return
value is CB _ERR if nSelect is greater than the number of items in the list or if
nSelect is set to -1, which clears the selection.

CComboBox: :GetCurSel, CB _SETCURSEL

CComboBox: :SetEditSel

Remarks

Return Value

See Also

BOOL SetEditSel(int nStartChar, int nEndChar);

nStartChar Specifies the starting position. If the starting position is set to -1, then
any existing selection is removed.

nEndC har Specifies the ending position. If the ending position is set to -1, then
all text from the starting position to the last character in the edit control is
selected.

Selects characters in the edit control of a combo box. The positions are zero-based.
To select the first character of the edit control, you specify a starting position of O.
The ending position is for the character just after the last character to select. For
example, to select the first four characters of the edit control, you would use a
starting position of 0 and an ending position of 4.

Nonzero if the member function is successful; otherwise O. It is CB _ERR if
CComboBox has the CBS _ DROPDOWNLIST style or doesn't have a list box.

CComboBox: : GetEditSel, CB _ SETEDITSEL

CComboBox::SetExtendedUI
Windows 3.1 Only int SetExtendedUI(BOOL bExtended = TRUE);.

bExtended Specifies whether the combo box should use the extended user
interface or the default user interface. A value of TRUE selects the extended user
interface; a value of FALSE selects the standard user interface.

212 CComboBox::SetltemData

Remarks Call the SetExtendedUI member function to select either the default user interface
or the extended user interface for a combo box that has the CBS DROPDOWN or
CBS _ DROPDOWNLIST style. The extended user interface can be identified in
the following ways:

Return Value

See Also

• Clicking the static control displays the list box only for combo boxes with the
CBS _ DROPDOWNLIST style.

• Pressing the DOWN ARROW key displays the list box (F4 is disabled).

• Scrolling in the static control is disabled when the item list is not visible (the
arrow keys are disabled).

CB _ OKAY if the operation is successful, or CB _ERR if an error occurs.

CComboBox: : GetExtendedUI, CB _ SETEXTENDEDUI

CComboBox::SetltemData

Remarks

Return Value

See Also

int SetItemData(int nlndex, DWORD dwltemData);

nlndex Contains a zero-based index to the item to set.

dwltemData Contains the new value to associate with the item.

Sets the 32-bit value associated with the specified item in a combo box. Use the
SetItemDataPtr member function if the 32-bit item is to be a pointer.

CB ERR if an error occurs.

CComboBox:: GetItemData, CComboBox: : GetItemDataPtr ,
CComboBox: :SetItemDataPtr, CB _ SETITEMDAT A,
CComboBox: :AddString, CComboBox: : InsertString

CComboBox: :SetltemDataPtr

Remarks

int SetItemDataPtr(int nlndex, void* pData);

nlndex Contains a zero-based index to the item.

pData Contains the pointer to associate with the item.

Sets the 32-bit value associated with the specified item in a combo box to be the
specified pointer (void*).

Return Value

See Also

CComboBox: :ShowDropDown 213

CB ERR if an error occurs.

CComboBox: : GetltemData, CComboBox: : GetltemDataPtr ,
CComboBox: :SetltemData, CB _ SETITEMDAT A, CComboBox: :AddString,
CComboBox: : InsertString

CComboBox: :SetltemHeight
Windows 3.1 Only int SetltemHeight(int nlndex, UINT cyltemHeight); •

Remarks

Return Value

See Also

nI ndex Specifies whether the height of list items or the height of the edit -control
(or static-text) portion of the combo box is set.

If the combo box has the CBS _ OWNERDRA WV ARIABLE style, nlndex
specifies the zero-based index of the list item whose height is to be set; otherwise,
nI ndex must be 0 and the height of all list items will be set.

If nlndex is -1, the height of the edit-control or static-text portion of the combo
box is to be set.

cyltemHeight Specifies the height, in pixels, of the combo-box component
identified by nlndex.

Call the SetItemHeight member function to set the height of list items in a combo
box or the height of the edit-control (or static-text) portion of a combo box. The
height of the edit-control (or static-text) portion of the combo box is set
independently of the height of the list items. An application must ensure that the
height of the edit-control (or static-text) portion isn't smaller than the height of a
particular list -box item.

CB _ERR if the index or height is invalid; otherwise O.

CComboBox: : GetItemHeight, WM _ MEASUREITEM,
CB SETITEMHEIGHT

CComboBox: :ShowDropDown
void ShowDropDown(BOOL bShowlt = TRUE);

bShowlt Specifies whether the drop-down list box is to be shown or hidden. A
value of TRUE shows the list box. A value of FALSE hides the list box.

214 CComboBox: :ShowDropDown

Remarks Shows or hides the list box of a combo box that has the CBS DROPDOWN or
CBS _ DROPDOWNLIST style. By default, a combo box of this style will show
the list box.

This member function has no effect on a combo box created with the
CBS_SIMPLE style.

See Also CB SHOWDROPDOWN

CControlBar 215

class CControlBar : public CWnd

See Also

CControlBar is the base class for the
control-bar classes CStatusBar,
CToolBar, and CDialogBar. A control
bar is a window that is usually aligned to
the top or bottom of a frame window. It
may contain child items that are either
HWND-based controls, which are

CControlBar

Windows windows that generate and respond to Windows messages, or non­
HWND-based items, which are not windows and are managed by application code
or framework code. List boxes and edit controls are examples of HWND-based
controls; status-bar panes and bitmap buttons are examples of non-HWND-based
controls.

Control-bar windows are usually child windows of a parent frame window and
are usually "siblings" to the client view or MDI client of the frame window.
A CControlBar object uses information about the parent window's client rectangle
to position itself. It then informs the parent window as to how much space remains
unallocated in the parent window's client area.

#include <afxext.h>

CStatusBar, CToolBar, CDialogBar

Data Members-Public Members
m bAutoDelete If nonzero, the CControlBar object is deleted when the

Windows control bar is destroyed.

Attributes - Public Members
GetCount Returns the number of non-HWND elements in the

control bar.

216 CControIBar::GetCount

Member Functions

CControl Bar: :GetCount

Remarks

Return Value

See Also

int GetCount();

Returns the number ofnon-HWND items on the CControlBar object. The type of
the item depends on the derived object: panes for CStatusBar objects, and buttons
and separators for CToolBar objects.

The number of non-HWND items on the CControlBar object. This function
returns 0 for a CDialogBar object.

CToolBar: :SetButtons, CStatusBar: :Setlndicators

Data Members

CControIBar::m bAutoDelete
Remarks

See Also

m _ bAutoDelete is a public variable of type BOOL. If it is nonzero when the
Windows control-bar object is destroyed, the CControlBar object is deleted.

A control-bar object is usually embedded in a frame-window object. In this case,
m_bAutoDelete is 0 because the embedded control-bar object is destroyed when
the frame window is destroyed.

Set this variable to a nonzero value if you allocate a CControlBar object on the
heap and you do not plan to call delete.

CWnd: : DestroyWindow

CCreateContext 217

struct CCreateContext
The framework uses the CCreateContext structure when it creates the frame
windows and views associated with a document. When creating a window, the
values in this structure provide information used to connect the components that
make up a document and the view of its data. You will only need to use
CCreateContext if you are overriding parts of the creation process.

A CCreateContext structure contains pointers to the document, the frame
window, the view, and the document template. It also contains a pointer to a
CRuntimeClass that identifies the type of view to create. The run-time class
information and the current document pointer are used to create a new view
dynamically. The following table suggests how and when each CCreateContext
member might be used:

Member

m _pNewViewClass

m yCurrentDoc

m _pNewDocTemplate

m _pCurrentFrame

What It Is For

CRuntimeClass of the new view to create.

The existing document to be associated with the new view.

The document template associated with the creation of a new
MDI frame window.

The original view upon which additional views are modeled,
as in the creation of a splitter window's views or the creation
of a second view on a document.

The frame window upon which additional frame windows are
modeled, as in the creation of a second frame window on a
document.

When a document template creates a document and its associated components, it
validates the information stored in the CCreateContext structure. For example, a
view should not be created for a nonexistent document.

Note All of the pointers in CCreateContext are optional and may be NULL if
unspecified or unknown.

CCreateContext is used by the member functions listed under "See Also." Consult
the descriptions of these functions for specific information if you plan to override
them.

218 CCreateContext

See Also

Here are a few general guidelines:

• When passed as an argument for window creation, as in CWnd: :Create,
CFrameWnd::Create, and CFrameWnd::LoadFrame, the create context
specifies what the new window should be connected to. For most windows, the
entire structure is optional and a NULL pointer may be passed.

• For overridable member functions, such as CFrameWnd::OnCreateClient,
the CCreateContext argument is optional.

• For member functions involved in view creation, you must provide enough
information to create the view. For example, for the first view in a splitter
window, you must supply the view class information and the current document.

In general, if you use the framework defaults, you can ignore CCreateContext. If
you attempt more advanced modifications, refer to the Microsoft Foundation Class
Library source code or the sample programs, such as the VIEWEX example in the
MFc\sAMPLES\ VIEWEX subdirectory. If you do forget a required parameter, a
framework assertion will tell you what you forgot.

#include <afxext.h>

CFrameWnd::Create, CFrameWnd::LoadFrame,
CFrame Wnd:: OnCreateClient, CSplitter Wnd: :Create,
CSplitter Wnd: :Create View, CWnd: :Create

CDataExchange 219

class CDataExchange

See Also

The CDataExchange class supports the dialog data exchange (DDX) and dialog
data validation (DDV) routines used by the Microsoft Foundation classes. Use this
class if you are writing data exchange routines for custom data types or controls, or
if you are writing your own data validation routines. For more information on
writing your own DDX and DDV routines, see Technical Note 26 in
MSVC\HELP\MFCNOTES.HLP. For an overview ofDDX and DDV, see the
App Studio User's Guide.

A CDataExchange object provides the context information needed for DDX and
DDV to take place. The flag m_bSaveAndValidate is FALSE when DDX is used
to fill the initial values of dialog controls from data members. The flag
m bSaveAndValidate is TRUE when DDX is used to set the current values of
dialog controls into data members and when DDV is used to validate the data
values. If the DDV validation fails, the DDV procedure will display a message box
explaining the input error. The DDV procedure will then call Fail to reset the focus
to the offending control and throw an exception to stop the validation process.

CWnd::DoDataExchange, CWnd::UpdateData

Data Members
m bSaveAndValidate

myDlgWnd

Flag for the direction of DDX and DDV.

The dialog box or window where the data
exchange takes place.

Operations - Public Members
PrepareCtrl

PrepareEditCtrl

Fail

Prepare VBCtrl

Prepares the specified control for data exchange or
validation. Use for nonedit controls.

Prepares the specified edit control for data
exchange or validation.

Called when validation fails. Resets focus to the
previous control and throws an exception.

Prepares a Visual Basic control for data exchange
or validation.

220 CDC

class CDC: public CObject
The CDC class defines a class of device-context I CObject
objects. The CDC object provides member functions '---o,,---'-c-o-C--------'
for working with a device context, such as a display L-J
or printer, as well as members for working with a
display context associated with the client area of a window.

Do all drawing through the member functions of a CDC object. The class provides
member functions for device-context operations, working with drawing tools, type­
safe graphics device interface (GDI) object selection, and working with colors and
palettes. It also provides member functions for getting and setting drawing attrib­
utes, mapping, working with the viewport, working with the window extent,
converting coordinates, working with regions, clipping, drawing lines, and drawing
simple shapes, ellipses, and polygons. Member functions are also provided for
drawing text, working with fonts, using printer escapes, scrolling, and playing
metafiles.

To use a CDC object, construct it, and then call its member functions, which
parallel Windows functions that use device contexts or display contexts.

For specific uses, the Microsoft Foundation Class Library provides several classes
derived from CDC. CPaintDC encapsulates calls to BeginPaint and EndPaint.
CClientDC manages a display context associated with a window's client area.
CWindowDC manages a display context associated with an entire window,
including its frame and controls. CMetaFileDC associates a device context with a
metafile.

CDC contains two device contexts, m _ hDC and m _ hAttribDC, which, on
creation of a CDC object, refer to the same device. CDC directs all output GDI
calls to m _ hDC and most attribute GDI calls to m _ hAttribDC. (An example of an
attribute call is GetTextColor, while SetTextColor is an output call.)

The framework uses these two device contexts to, for example, implement a
CMetaFileDC object that will send output to a metafile while reading attributes
from a physical device. Print preview is implemented in the framework in a similar
fashion. You can also use the two device contexts in a similar way in your
application-specific code.

See Also

CDC 221

There are times when you may need text-metric information from both the m _ hDC
and m _ hAttribDC device contexts. The following pairs of functions provide this
capability:

Uses m hAttribDC

GetTextExtent

GetTabbedTextExtent

GetTextMetrics

GetCharWidth

#include <afxwin.h>

Uses m hDC

GetOutputTextExtent

GetOutputTabbedTextExtent

GetOutputTextMetrics

GetOutputCharWidth

CPaintDC, CWindowDC, CClientDC, CMetaFileDC

Data Members - Public Members
m hDC

m hAttribDC

The output-device context used by this CDC
object.

The attribute-device context used by this CDC
object.

Construction/Destruction - Public Members
CDC Constructs a CDC object.

Initialization - Public Members
CreateDC

CreateIC

CreateCompatibleDC

DeleteDC

FromHandle

Creates a device context for a specific device.

Creates an information context for a specific
device. This provides a fast way to get informa­
tion about the device without creating a device
context.

Creates a memory-device context that is compat­
ible with another device context. You can use it
to prepare images in memory.

Deletes the Windows device context associated
with this CDC object.

Returns a pointer to a CDC object when given a
handle to a device context. If a CDC object is
not attached to the handle, a temporary CDC
object is created and attached.

222 CDC

DeleteTempMap

Attach

Detach

SetAttribDC

SetOutputDC

ReleaseAttribDC

ReleaseOutputDC

Called by the CWinApp idle-time handler to
delete any temporary CDC object created by
FromHandle. Also detaches the device context.

Attaches a Windows device context to this CDC
object.

Detaches the Windows device context from this
CDC object.

Sets m _ hAttribDC, the attribute device context.

Sets m _ hDC, the output device context.

Releases m _ hAttribDC, the attribute device
context.

Releases m _ hDC, the output device context.

Device-Context Functions - Public Members
GetSafeHdc

SaveDC

RestoreDC

ResetDC

GetDeviceCaps

IsPrinting

Returns m _ hDC, the output device context.

Saves the current state of the device context.

Restores the device context to a previous state
saved with SaveDC.

Updates the m _ hAttribDC device context.

Retrieves a specified kind of device-specific
information about a given display device's
capabilities.

Determines if the device context is being used
for printing.

Drawing-Tool Functions-Public Members
GetBrushOrg

SetBrushOrg

EnumObjects

Retrieves the origin of the current brush.

Specifies the origin for the next brush selected
into a device context.

Enumerates the pens and brushes available in a
device context.

Type-Safe Selection Helpers-Public Members
SelectObject

SelectStockObject

Selects a GDI drawing object such as a pen.

Selects one of the predefined stock pens,
brushes, or fonts provided by Windows.

CDC 223

Color and Color Palette Functions - Public Members
GetN earestColor

SelectPalette

RealizePalette

UpdateColors

Retrieves the closest logical color to a specified
logical color that the given device can represent.

Selects the logical palette.

Maps palette entries in the current logical palette
to the system palette.

Updates the client area of the device context by
matching the current colors in the client area to
the system palette on a pixel-by-pixel basis.

Drawing-Attribute Functions - Public Members
GetBkColor

SetBkColor

GetBkMode

SetBkMode

GetPolyFillMode

SetPoly FiIIMode

GetROP2

SetROP2

GetStretchBItMode

SetStretchBItMode

GetTextColor

SetTextColor

Retrieves the current background color.

Sets the current background color.

Retrieves the background mode.

Sets the background mode.

Retrieves the current polygon-filling mode.

Sets the polygon-filling mode.

Retrieves the current drawing mode.

Sets the current drawing mode.

Retrieves the current bitmap-stretching mode.

Sets the bitmap-stretching mode.

Retrieves the current text color.

Sets the text color.

Mapping Functions-Public Members
GetMapMode

SetMapMode

Get ViewportOrg

Set ViewportOrg

OffsetViewportOrg

Get ViewportExt

Set ViewportExt

Scale ViewportExt

Retrieves the current mapping mode.

Sets the current mapping mode.

Retrieves the x- and y-coordinates of the
viewport origin.

Sets the viewport origin.

Modifies the viewport origin relative to the
coordinates of the current viewport origin.

Retrieves the x- and y-extents of the viewport.

Sets the x-and y -extents of the viewport.

Modifies the viewport extent relative to the
current values.

224 CDC

GetWindowOrg

SetWindowOrg

OffsetWindowOrg

GetWindowExt

SetWindowExt

Scale WindowExt

Retrieves the x-and y -coordinates of the origin
of the associated window.

Sets the window origin of the device context.

Modifies the window origin relative to the
coordinates of the current window origin.

Retrieves the x- and y-extents of the associated
window.

Sets the x-and y -extents of the associated
window.

Modifies the window extents relative to the
current values.

Coordinate Functions-Public Members
DPtoLP

LPtoDP

Converts device points or rectangles into logical
points or rectangles.

Converts logical points or rectangles into device
points or rectangles.

Region Functions-Public Members
FillRgn

FrameRgn

InvertRgn

PaintRgn

Fills a specific region with the specified brush.

Draws a border around a specific region using a
brush.

Inverts the colors in a region.

Fills a region with the selected brush.

Clipping Functions - Public Members
SetBoundsRect

GetBoundsRect

GetClipBox

SelectClipRgn

ExciudeClipRect

Controls the accumulation of bounding-rectangle
information for the specified device context.

Returns the current accumulated bounding rec­
tangle for the specified device context.

Retrieves the dimensions of the tightest bounding
rectangle around the current clipping boundary.

Selects the given region as the current clipping
region.

Creates a new clipping region that consists of the
existing clipping region minus the specified
rectangle.

ExcludeUpdateRgn

IntersectClipRect

OffsetClipRgn

PtVisible

RectVisible

CDC 225

Prevents drawing within invalid areas of a
window by excluding an updated region in the
window from a clipping region.

Creates a new clipping region by forming the
intersection of the current region and a rectangle.

Moves the clipping region of the given device.

Specifies whether the given point is within the
clipping region.

Determines whether any part of the given
rectangle lies within the clipping region.

Line-Output Functions-Public Members
GetCurrentPosition

MoveTo

LineTo

Arc

Polyline

Retrieves the current position of the pen (in
logical coordinates).

Moves the current position.

Draws a line from the current position up to, but
not including, a point.

Draws an elliptical arc.

Draws a set of line segments connecting the
specified points.

Simple Drawing Functions-Public Members
FillRect Fills a given rectangle by using a specific brush.

FrameRect

InvertRect

Drawlcon

Draws a border around a rectangle.

Inverts the contents of a rectangle.

Draws an icon.

Ellipse and Polygon Functions-Public Members
Chord Draws a chord (a closed figure bounded by the

intersection of an ellipse and a line segment).

DrawFocusRect

Ellipse

Pie

Polygon

Draws a rectangle in the style used to indicate
focus.

Draws an ellipse.

Draws a pie-shaped wedge.

Draws a polygon consisting of two or more
points (vertices) connected by lines.

226 CDC

Poly Polygon

Rectangle

RoundRect

Creates two or more polygons that are filled
using the current polygon-filling mode. The
polygons may be disjoint or they may overlap.

Draws a rectangle using the current pen and fills
it using the current brush.

Draws a rectangle with rounded comers using
the current pen and filled using the current brush.

Bitmap Functions - Public Members
PatBlt Creates a bit pattern.

BitBlt

StretchBlt

GetPixel

SetPixel

FloodFill

ExtFloodFill

Copies a bitmap from a specified device context.

Moves a bitmap from a source rectangle and
device into a destination rectangle, stretching or
compressing the bitmap if necessary to fit the
dimensions of the destination rectangle.

Retrieves the RGB color value of the pixel at the
specified point.

Sets the pixel at the specified point to the closest
approximation of the specified color.

Fills an area with the current brush.

Fills an area with the current brush. Provides
more flexibility than the FloodFill member
function.

Text Functions-Public Members
TextOut

ExtTextOut

TabbedTextOut

DrawText

GetTextExtent

GetOutputTextExtent

Writes a character string at a specified location
using the currently selected font.

Writes a character string within a rectangular
region using the currently selected font.

Writes a character string at a specified location,
expanding tabs to the values specified in an
array of tab-stop positions.

Draws formatted text in the specified rectangle.

Computes the width and height of a line of text
on the attribute device context using the current
font to determine the dimensions.

Computes the width and height of a line of text
on the output device context using the current
font to determine the dimensions.

GetTabbedTextExtent

GetOutputTabbedTextExtent

GrayString

GetTextAlign

SetTextAlign

GetTextFace

GetTextMetrics

GetOutputTextMetrics

SetTextJ ustification

GetTextCharacterExtra

SetTextCharacter Extra

CDC 227

Computes the width and height of a character
string on the attribute device context.

Computes the width and height of a character
string on the output device context.

Draws dimmed (grayed) text at the given
location.

Retrieves the text-alignment flags.

Sets the text-alignment flags.

Copies the typeface name of the current font into
a buffer as a null-terminated string.

Retrieves the metrics for the current font from
the attribute device context.

Retrieves the metrics for the current font from
the output device context.

Adds space to the break characters in a string.

Retrieves the current setting for the amount of
intercharacter spacing.

Sets the amount of intercharacter spacing.

Font Functions - Public Members
GetFontData

GetKerningPairs

GetOutlineTextMetrics

GetGlyphOutline

GetChar ABCWidths

Retrieves font metric information from a scal­
able font file. The information to retrieve is
identified by specifying an offset into the font
file and the length of the information to return.

Retrieves the character kerning pairs for the font
that is currently selected in the specified device
context.

Retrieves font metric information for TrueType
fonts.

Retrieves the outline curve or bitmap for an
outline character in the current font.

Retrieves the widths of consecutive characters in
a specified range from the current TrueType
font. The widths are returned in logical units.
This function succeeds only with TrueType
fonts.

228 CDC

GetCharWidth

GetOutputCharWidth

SetMapperFlags

GetAspectRatioFilter

Retrieves the widths of individual characters in a
consecutive group of characters from the current
font using the attribute device context.

Retrieves the widths of individual characters in a
consecutive group of characters from the current
font using the output device context.

Alters the algorithm that the font mapper uses
when it maps logical fonts to physical fonts.

Retrieves the setting for the current aspect-ratio
filter.

Printer Escape Functions - Public Members
Query Abort Calls the AbortProc callback function for a

printing application and queries whether the
printing should be terminated.

Escape

StartDoc

StartPage

EndPage

SetAbortProc

AbortDoc

EndDoc

Allows applications to access facilities that are
not directly available from a particular device
through GDI. Escape calls made by an applica­
tion are translated and sent to the device driver.

Informs the device driver tha~ a new print job is
starting.

Informs the device driver that a new page is
starting.

Informs the device driver that a page is ending.

Sets a programmer-supplied callback function
that Windows calls if a print job must be
aborted.

Terminates the current print job, erasing
everything the application has written to the
device since the last call of the StartDoc
member function.

Ends a print job started by the StartDoc
member function.

Scrolling Functions - Public Members
ScrollDC Scrolls a rectangle of bits horizontally and

vertically.

CDC::AbortDoc 229

Metafile Functions - Public Members
Play MetaFile Plays the contents of the specified metafile on

the given device. The metafile can be played any
number of times.

Member Functions

CDC: :AbortDoc

Remarks

int AbortDoc();

Terminates the current print job and erases everything the application has written to
the device since the last call to the StartDoc member function. This member
function replaces the ABORTDOC printer escape.

AbortDoc should be used to terminate:

• Printing operations that do not specify an abort function using SetAbortProc.

• Printing operations that have not yet reached their first NEWFRAME or
NEXTBAND escape call.

If an application encounters a printing error or a canceled print operation, it must
not attempt to terminate the operation by using either the End Doc or AbortDoc
member functions of class CDC. GDI automatically terminates the operation before
returning the error value.

If the application displays a dialog box to allow the user to cancel the print
operation, it must call AbortDoc before destroying the dialog box.

If Print Manager was used to start the print job, calling AbortDoc erases the entire
spool job-the printer receives nothing. If Print Manager was not used to start the
print job, the data may have been sent to the printer before AbortDoc was called.
In this case, the printer driver would have reset the printer (when possible) and
closed the print job.

When running under Windows version 3.0, this member function sends an
ABORTDOC printer escape.

230 CDC::Arc

Return Value

See Also

CDC::Arc

A value greater than or equal to 0 if successful, or a negative value if an error has
occurred. The following list shows common error values and their meanings:

• SP ERROR General error.

• SP _ OUTOFDISK Not enough disk space is currently available for spooling,
and no more space will become available.

• SP _ OUTOFMEMORY Not enough memory is available for spooling.

• SP _ USERABORT User terminated the job through the Print Manager.

CDC::StartDoc, CDC::EndDoc, CDC::SetAbortProc

BOOL Arc(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);

BOOL Arc(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

xl Specifies the x-coordinate of the upper-left comer of the bounding rectangle
(in logical units).

y 1 Specifies the y -coordinate of the upper -left comer of the bounding rectangle
(in logical units).

x2 Specifies the x-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

y2 Specifies the y-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

x3 Specifies the x -coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

y3 Specifies the y-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

x4 Specifies the x-coordinate of the point that defines the arc's endpoint (in
logical units). This point does not have to lie exactly on the arc.

y4 Specifies the y-coordinate of the point that defines the arc's endpoint (in
logical units). This point does not have to lie exactly on the arc.

Remarks

Return Value

See Also

CDC::Attach 231

IpRect Specifies the bounding rectangle (in logical units). You can pass either an
LPRECT or a CRect object for this parameter.

ptStart Specifies the x- and y-coordinates of the point that defines the arc's
starting point (in logical units). This point does not have to lie exactly on the arc.
You can pass either a POINT structure or a CPoint object for this parameter.

ptEnd Specifies the x- and y-coordinates of the point that defines the arc's ending
point (in logical units). This point does not have to lie exactly on the arc. You can
pass either a POINT structure or a CPoint object for this parameter.

Draws an elliptical arc. The arc drawn by using the function is a segment of the
ellipse defined by the specified bounding rectangle. The actual starting point of the
arc is the point at which a ray drawn from the center of the bounding rectangle
through the specified starting point intersects the ellipse. The actual ending point of
the arc is the point at which a ray drawn from the center of the bounding rectangle
through the specified ending point intersects the ellipse. The arc is drawn in a
counterclockwise direction. Since an arc is not a closed figure, it is not filled. Both
the width and height of the rectangle must be greater than 2 units and less than
32,767 units.

Nonzero if the function is successful; otherwise O.

CDC::Chord, ::Arc, POINT, RECT

CDC::Attach

Remarks

Return Value

See Also

BOOL Attach(HDC hDC);

hDC A Windows device context.

Use this member function to attach an hDC to the CDC object. The hDC is stored
in both m_hDC, the output device context, and in m_hAttrihDC, the attribute
device context.

Nonzero if the function is successful; otherwise O.

CDC::Detach, CDC::m_hDC, CDC::m_hAttrihDC

232 CDC::BitBlt

CDC::BitBlt
BOOL BitBlt(int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc,

int ySrc, DWORD dwRop);

x Specifies the logical x-coordinate of the upper-left comer of the destination
rectangle.

y Specifies the logical y-coordinate of the upper-left comer of the destination
rectangle.

n Width Specifies the width (in logical units) of the destination rectangle and
source bitmap.

nHeight Specifies the height (in logical units) of the destination rectangle and
source bitmap.

pSrcDC Pointer to a CDC object that identifies the device context from which the
bitmap will be copied. It must be NULL if dwRop specifies a raster operation that
does not include a source.

xSrc Specifies the logical x-coordinate of the upper-left comer of the source
bitmap.

ySrc Specifies the logical y-coordinate of the upper-left comer of the source
bitmap.

dwRop Specifies the raster operation to be performed. Raster-operation codes
define how the GDI combines colors in output operations that involve a current
brush, a possible source bitmap, and a destination bitmap. The following lists
raster-operation codes for dwRop and their descriptions:

• BLACKNESS Turns all output black.

• DSTINVERT Inverts the destination bitmap.

• MERGECOPY Combines the pattern and the source bitmap using the
Boolean AND operator.

• MERGE PAINT Combines the inverted source bitmap with the
destination bitmap using the Boolean OR operator.

• NOTSRCCOPY Copies the inverted source bitmap to the destination.

• NOTSRCERASE Inverts the result of combining the destination and
source bitmaps using the Boolean OR operator.

• P ATCOPY Copies the pattern to the destination bitmap.

• P A TINVERT Combines the destination bitmap with the pattern using the
Boolean XOR operator.

Remarks

CDC::BitBlt 233

• P A TP AINT Combines the inverted source bitmap with the pattern using
the Boolean OR operator. Combines the result of this operation with the
destination bitmap using the Boolean OR operator.

• SRCAND Combines pixels of the destination and source bitmaps using the
Boolean AND operator.

• SRCCOPY Copies the source bitmap to the destination bitmap.

• SRCERASE Inverts the desination bitmap and combines the result with
the source bitmap using the Boolean AND operator.

• SRCINVERT Combines pixels of the destination and source bitmaps
using the Boolean XOR operator.

• SRCP AINT Combines pixels of the destination and source bitmaps using
the Boolean OR operator.

• WHITENESS Turns all output white.

For a complete list of raster-operation codes, see the Windows Software
Development Kit (SDK) documentation.

Copies a bitmap from the source device context to this current device context.
The application can align the windows or client areas on byte boundaries to
ensure that the BitBlt operations occur on byte-aligned rectangles. (Set the
CS_BYTEALIGNWINDOW or CS_BYTEALIGNCLIENT flags when you
register the window classes.) BitBlt operations on byte-aligned rectangles are
considerably faster than BitBlt operations on rectangles that are not byte aligned.
If you want to specify class styles such as byte-alignment for your own device
context, you will have to register a window class rather than relying on the
Microsoft Foundation classes to do it for you. Use the global function
AfxRegisterWndClass.

GDI transforms nWidth and nHeight, once by using the destination device context,
and once by using the source device context. If the resulting extents do not match,
GDI uses the Windows StretchBlt function to compress or stretch the source
bitmap as necessary.

If destination, source, and pattern bitmaps do not have the same color format, the
BitBlt function converts the source and pattern bitmaps to match the destination.
The foreground and background colors of the destination bitmap are used in the
conversion. When the BitBlt function converts a monochrome bitmap to color, it
sets white bits (1) to the background color and black bits (0) to the foreground
color. The foreground and background colors of the destination device context are
used. To convert color to monochrome, BitBIt sets pixels that match the

234 CDC::CDC

Return Value

See Also

CDC::CDC

Remarks

See Also

background color to white and sets all other pixels to black. BitBIt uses the
foreground and background colors of the color device context to convert from color
to monochrome.

Note that not all device contexts support BitBIt. To check whether a given device
context does support BitBIt, use the GetDeviceCaps member function and specify
the RASTERCAPS index.

Nonzero if the function is successful; otherwise O.

CDC:: GetDeviceCaps, CDC: :PatBIt, CDC: :SetTextColor, CDC: :StretchBIt,
::StretchDIBits, ::BitBIt

CDCO;

Constructs a CDC object.

CDC: :CreateDC, CDC:: CreateIC, CDC: :CreateCompatibleDC

CDC::Chord
BOOL Chord(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);

BOOL Chord(LPCRECT IpRect, POINT ptStart, POINT ptEnd);

xl Specifies the x-coordinate of the upper-left comer of the chord's bounding
rectangle (in logical units).

yl Specifies the y-coordinate of the upper-left comer of the chord's bounding
rectangle (in logical units).

x2 Specifies the x-coordinate of the lower-right comer of the chord's bounding
rectangle (in logical units).

y2 Specifies the y-coordinate of the lower-right comer of the chord's bounding
rectangle (in logical units).

x3 Specifies the x -coordinate of the point that defines the chord's starting point
(in logical units).

Remarks

Return Value

See Also

CDC: :CreateCompatibleDC 235

y3 Specifies the y-coordinate of the point that defines the chord's starting point
(in logical units).

x4 Specifies the x-coordinate of the point that defines the chord's endpoint (in
logical units).

y4 Specifies the y-coordinate of the point that defines the chord's endpoint (in
logical units).

IpRect Specifies the bounding rectangle (in logical units). You can pass either a
LPRECT or a CRect object for this parameter.

ptStart Specifies the x- and y-coordinates of the point that defines the chord's
starting point (in logical units). This point does not have to lie exactly on the
chord. You can pass either a POINT structure or a CPoint object for this
parameter.

ptEnd Specifies the x- and y-coordinates of the point that defines the chord's
ending point (in logical units). This point does not have to lie exactly on the chord.
You can pass either a POINT structure or a CPoint object for this parameter.

Draws a chord (a closed figure bounded by the intersection of an ellipse and a line
segment). The (xl, yl) and (x2, y2) parameters specify the upper-left and lower­
right comers, respectively, of a rectangle bounding the ellipse that is part of the
chord. The (x3, y3) and (x4, y4) parameters specify the endpoints of a line that
intersects the ellipse. The chord is drawn by using the selected pen and filled by
using the selected brush. The figure drawn by the Chord function extends up to, but
does not include the right and bottom coordinates. This means that the height of the
figure is y2 - y I and the width of the figure is x2 - xl.

Nonzero if the function is successful; otherwise O.

CDC::Arc, ::Chord, POINT

CDC: :CreateCompatibleDC

Remarks

virtual BOOL CreateCompatibleDC(CDC* pDC);

pDC A pointer to a device context. If pDC is NULL, the function creates a
memory device context that is compatible with the system display.

Creates a memory device context that is compatible with the device specified by
pDC. A memory device context is a block of memory that represents a display
surface. It can be used to prepare images in memory before copying them to the
actual device surface of the compatible device.

236 CDC: :CreateDC

Return Value

See Also

When a memory device context is created, GDI automatically selects a I-by-l
monochrome stock bitmap for it. GDI output functions can be used with a memory
device context only if a bitmap has been created and selected into that context.

This function can only be used to create compatible device contexts for devices that
support raster operations. See the CDC::BitBlt member function for information
regarding bit-block transfers between device contexts. To determine if a device
context supports raster operations, see the RC _ BITBL T raster capability in the
member function CDC:: GetDeviceCaps.

Nonzero if the function is successful; otherwise O.

CDC::CDC, CDC::GetDeviceCaps, ::CreateCompatibleDC, CDC::BitBlt,
CDC::CreateDC, CDC::CreateIC, CDC::DeleteDC

CDC: :CreateDC
virtual BOOL CreateDC(LPCSTR IpszDriverName,

LPCSTR IpszDeviceName, LPCSTR IpszOutput,
const void FAR * IpI nitData);

IpszDriverName Points to a null-terminated string that specifies the MS-DOS
filename (without extension) of the device driver (for example, "EPSON"). You
can also pass a CString object for this parameter.

IpszDeviceName Points to a null-terminated string that specifies the name of the
specific device to be supported (for example, "EPSON FX-80"). The
IpszDeviceName parameter is used if the module supports more than one device.
You can also pass a CString object for this parameter.

IpszOutput Points to a null-terminated string that specifies the MS-DOS file or
device name for the physical output medium (file or output port). You can also
pass a CString object for this parameter.

IplnitData Points to a DEVMODE structure containing device-specific
initialization data for the device driver. The Windows ExtDeviceMode function
retrieves this structure filled in for a given device. The IplnitData parameter must
be NULL if the device driver is to use the default initialization (if any) specified
by the user through the Control Panel.

Remarks

Return Value

See Also

A DEVMODE structure has this fonn:

#include <print.h>

typedef struct tagDEVMODE /* dm */
char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

DEVMODE;

CDC::CreateIC 237

For more infonnation about this structure, see DEVMODE in the Windows SDK
documentation.

Creates a device context for the specified device. The PRINT.H header file is
required if the DEVMODE structure is used.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is recom­
mended, but optional. Windows strips the tenninating colon so that a device name
ending with a colon is mapped to the same port as the same name without a colon.
The driver and port names must not contain leading or trailing spaces. GDI output
functions cannot be used with infonnation contexts.

Nonzero if the function is successful; otherwise O.

::ExtDeviceMode, ::CreateDC, CDC::DeleteDC, CDC::CreateIC

CDC: :CreatelC
virtual BOOL CreateIC(LPCSTR IpszDriverName,

LPCSTR IpszDeviceName, LPCSTR IpszOutput,
const void FAR* IplnitData);

238 CDC::DeleteDC

Remarks

Return Value

See Also

IpszDriverName Points to a null-tenninated string that specifies the MS-DOS
filename (without extension) of the device driver (for example, "EPSON"). You
can pass a CString object for this parameter.

IpszDeviceName Points to a null-tenninated string that specifies the name of the
specific device to be supported (for example, "EPSON FX-80"). The
IpszDeviceName parameter is used if the module supports more than one device.
You can pass a CString object for this parameter.

IpszOutput Points to a null-tenninated string that specifies the MS-DOS file or
device name for the physical output medium (file or port). You can pass a
CString object for this parameter.

IplnitData Points to device-specific initialization data for the device driver. The
IplnitData parameter must be NULL if the device driver is to use the default
initialization (if any) specified by the user through the Control Panel. See
CreateDC for the data fonnat for device-specific initialization.

Creates an infonnation context for the specified device. The infonnation context
provides a fast way to get infonnation about the device without creating a device
context.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is
recommended, but optional. Windows strips the tenninating colon so that a device
name ending with a colon is mapped to the same port as the same name without a
colon. The driver and port names must not contain leading or trailing spaces. GDI
output functions cannot be used with infonnation contexts.

Nonzero if successful; otherwise O.

CDC::CreateDC, ::CreateIC, CDC::DeleteDC

CDC::DeleteDC

Remarks

virtual BOOL DeleteDC();

In general, do not call this function; the destructor will do it for you. The DeleteDC
member function deletes the Windows device contexts that are associated with
m _ hDC in the current CDC object. If this CDC object is the last active device
context for a given device, the device is notified and all storage and system re­
sources used by the device are released. An application should not call DeleteDC if
objects have been selected into the device context. Objects must first be selected out
of the device context before it it is deleted. An application must not delete a device
context whose handle was obtained by calling CWnd::GetDC. Instead, it must call

Return Value

See Also

CDC::DPtoLP 239

CWnd: :ReleaseDC to free the device context. The CClientDC and CWindowDC
classes are provided to wrap this functionality. The DeleteDC function is generally
used to delete device contexts created with CreateDC, CreateIC, or
CreateCompatibleDC.

Nonzero if the function completed successfully; otherwise O.

CDC::CDC, ::DeleteDC, CDC::CreateDC, CDC::CreateIC,
CDC: :CreateCompatibleDC, CWnd: :GetDC, CWnd: :ReleaseDC

CDC::DeleteTempMap

Remarks

See Also

static void PASCAL DeleteTempMap();

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes
any temporary CDC objects created by FromHandle, but does not destroy the
device context handles (HDCs) temporarily associated with the CDC objects.

CDC::Detach, CDC::FromHandle, CWinApp::Onldle

CDC::Detach

Remarks

Return Value

See Also

HDC Detach();

Call this function to detach m_hDC (the output device context) from the CDC
object and set both m _ hDC and m _ hAttribDC to NULL.

A Windows device context.

CDC::Attach, CDC::m_hDC, CDC::m_hAttribDC

CDC::DPtoLP
void DPtoLP(LPPOINT IpPoints, int nCount = 1) const;

void DPtoLP(LPRECT IpRect) const;

240 CDC::DrawFocusRect

Remarks

See Also

IpPoints Points to an array of POINT structures or CPoint objects.

nCount Specifies the number of points in the array.

IpRect Points to a RECT structure or CRect object. This parameter is used for
the simple case of converting one rectangle from device points to logical points.

Converts device points into logical points. The function maps the coordinates of
each point from the device coordinate system into the GDI's logical coordinate
system. The conversion depends on the current mapping mode and the settings of
the origins and extents for the device's window and viewport.

CDC::LPtoDP, ::DPtoLP, POINT, RECT

CDC:: DrawFocusRect

Remarks

See Also

void DrawFocusRect(LPCRECT IpRect);

IpRect Points to a RECT structure or a CRect object that specifies the logical
coordinates of the rectangle to be drawn.

Draws a rectangle in the style used to indicate that the rectangle has the focus.
Since this is a Boolean XOR function, calling this function a second time with the
same rectangle removes the rectangle from the display. The rectangle drawn by this
function cannot be scrolled. To scroll an area containing a rectangle drawn by this
function, first call DrawFocusRect to remove the rectangle from the display, then
scroll the area, and then call DrawFocusRect again to draw the rectangle in the
new position.

CDC: :FrameRect, : : DrawFocusRect, RECT

CDC::Drawlcon
BOOL DrawIcon(int x, int y, HICON hlcon);

BOOL DrawIcon(POINT point, HICON hlcon);

x Specifies the logical x-coordinate of the upper-left comer of the icon.

y Specifies the logical y-coordinate of the upper-left comer of the icon.

Remarks

Return Value

See Also

CDC::DrawText 241

hI con Identifies the handle of the icon to be drawn.

point Specifies the logical x- and y-coordinates of the upper-left comer of the
icon. You can pass a POINT structure or a CPoint object for this parameter.

Draws an icon on the device represented by the current CDC object. The function
places the icon's upper-left comer at the location specified by x and y. The location
is subject to the current mapping mode of the device context. The icon resource
must have been previously loaded by using the functions CWinApp: : LoadIcon ,
CWinApp: : LoadStandardIcon , or CWinApp: :LoadOEMIcon. The
MM _ TEXT mapping mode must be selected prior to using this function.

Nonzero if the function completed successfully; otherwise O.

CWinApp: :LoadIcon, CWinApp: :LoadStandardIcon,
CWinApp: :LoadOEMIcon, CDC: : GetMapMode, CDC: :SetMapMode,
::DrawIcon, POINT

CDC::DrawText
virtual int DrawText(LPCSTR lpszString, int nCount, LPRECT lpRect,

UINT nF ormat);

lpszString Points to the string to be drawn. If nCount is -1, the string must be
null-terminated.

nCount Specifies the number of bytes in the string. If nCount is -1, then
lpszString is assumed to be a long pointer to a null-terminated string and
DrawText computes the character count automatically.

lpRect Points to a RECT structure or CRect object that contains the rectangle (in
logical coordinates) in which the text is to be formatted.

nF ormat Specifies the method of formatting the text. It can be any combination of
the following values (combine using the bitwise-OR operator), with the meanings
as given:

• DT _BOTTOM Specifies bottom-justified text. This value must be
combined with DT SINGLELINE.

• DT _ CALCRECT Determines the width and height of the rectangle. If
there are multiple lines of text, DrawText will use the width of the rectangle
pointed to by lpRect and extend the base of the rectangle to bound the last
line of text. If there is only one line of text, DrawText will modify the right

242 CDC::DrawText

Remarks

side of the rectangle so that it bounds the last character in the line. In either
case, DrawText returns the height of the formatted text but does not draw
the text.

• DT _ CENTER Centers text horizontally.

• DT _ EXP ANDT ABS Expands tab characters. The default number of
characters per tab is eight.

• DT_EXTERNALLEADING Includes the font's external leading in the
line height. Normally, external leading is not included in the height of a line
of text.

• DT_LEFT Aligns text flush-left.

• DT _ NO CLIP Draws without clipping. DrawText is somewhat faster
when DT NOCLIP is used.

• DT _ NO PREFIX Turns off processing of prefix characters. Normally,
DrawText interprets the ampersand (&) mnemonic-prefix character as a
directive to underscore the character that follows, and the two-ampersand
(&&) mnemonic-prefix characters as a directive to print a single ampersand.
By specifiying DT _ NOPREFIX this processing is turned off.

• DT _RIGHT Aligns text flush-right.

• DT_SINGLELINE Specifies single line only. Carriage returns and
linefeeds do not break the line.

• DT_TABSTOP Sets tab stops. The high-order byte of nFormat is the
number of characters for each tab. The default number of characters per tab
is eight.

• DT _TOP Specifies top-justified text (single line only).

• DT _ VCENTER Specifies vertically centered text (single line only).

• DT _ WORDBREAK Specifies word-breaking. Lines are automatically
broken between words if a word would extend past the edge of the rectangle
specified by IpRect. A carriage return-linefeed sequence will also break
the line.

Note that the values DT_CALCRECT, DT_EXTERNALLEADING,
DT_INTERNAL, DT_NOCLIP, and DT_NOPREFIX cannot be used with the
DT T ABSTOP value.

Draws formatted text in the rectangle specified by IpRect. It formats text by
expanding tabs into appropriate spaces, aligning text to the left, right, or center of
the given rectangle, and breaking text into lines that fit within the given rectangle.
The type of formatting is specified by nF ormat. This member function uses the
device context's selected font, text color, and background color to draw the text.
Unless the DT _ NOCLIP format is used, DrawText clips the text so that the text
does not appear outside the given rectangle. All formatting is assumed to have
multiple lines unless the DT _ SINGLELINE format is given. If the selected font is

Return Value

See Also

CDC::Ellipse 243

too large for the specified rectangle, the DrawText member function does not
attempt to substitute a smaller font.

If the DT _ CALCRECT flag is specified, the rectangle specified by IpRect will be
updated to reflect the width and height needed to draw the text.

If the T A _ UPDA TECP text-alignment flag has been set (see
CDC::SetTextAlign), DrawText will display text starting at the current position,
rather than at the left of the given rectangle. DrawText will not wrap text when the
TA_UPDATECP flag has been set (that is, the DT_ WORDBREAK flag will
have no effect).

The text color may be set by CDC::SetTextColor.

The height of the text if the function is successful.

CDC: :SetTextColor, CDC: :ExtTextOut, CDC: :TabbedTextOut,
CDC::TextOut, ::DrawText, RECT, CDC::SetTextAlign

CDC::Ellipse

Remarks

BOOL Ellipse(int xl, int yl, int x2, int y2);

BOOL Ellipse(LPCRECT IpRect);

xl Specifies the logical x-coordinate of the upper-left comer of the ellipse's
bounding rectangle.

yl Specifies the logical y-coordinate of the upper-left comer of the ellipse's
bounding rectangle.

x2 Specifies the logical x -coordinate of the lower-right comer of the ellipse's
bounding rectangle.

y2 Specifies the logical y-coordinate of the lower-right comer of the ellipse's
bounding rectangle.

IpRect Specifies the ellipse's bounding rectangle. You can also pass a CRect
object for this parameter.

Draws an ellipse. The center of the ellipse is the center of the bounding rectangle
specified by xl, yl, x2, and y2, or IpRect. The ellipse is drawn with the current pen
and its interior is filled with the current brush. The figure drawn by this function
extends up to but does not include the right and bottom coordinates. This means that
the height of the figure is y2 - y I and the width of the figure is x2 - xl. If either the
width or the height of the bounding rectangle is 0, no ellipse is drawn.

244 CDC::EndDoc

Return Value

See Also

Nonzero if the function is successful; otherwise 0.

CDC::Arc, CDC::Chord, ::Ellipse

CDC::EndDoc

Remarks

Return Value

See Also

int EndDoc() ;

Ends a print job started by a call to the StartDoc member function. This member
function replaces the ENDDOC printer escape, and should be called immediately
after finishing a successful print job. If an application encounters a printing error or
a canceled print operation, it must not attempt to terminate the operation by using
either EndDoc or AbortDoc. GDI automatically terminates the operation before
returning the error value.

This function should not be used inside metafiles.

When used with Windows version 3.0, this member function sends the ENDDOC
escape.

Greater than or equal to ° if the function is successful, or a negative value if an
error occurred. The following list shows common error values and their meanings:

• SP ERROR General error.

• SP _ OUTOFDISK Not enough disk space is currently available for spooling,
and no more space will become available.

• SP _ OUTOFMEMORY Not enough memory is available for spooling.

• SP _ USERABORT User ended the job through the Print Manager.

CDC::AbortDoc, CDC::Escape, CDC::StartDoc

CDC::EndPage

Remarks

int EndPage();

Informs the device that the application has finished writing to a page. This member
function is typically used to direct the device driver to advance to a new page. This
member function replaces the NEWFRAME printer escape. Unlike
NEWFRAME, this function is always called after printing a page.

When used with Windows version 3.0, this member function sends the
NEWFRAME escape.

Return Value

See Also

CDC::EnumObjects 245

Greater than or equal to 0 if successful; otherwise it is an error value, which can be
one of the following, with its meaning as given:

• SP ERROR General error.

• SP _APPABORT Job was ended because the application's abort function
returned O.

• SP _ USERABORT User ended the job through Print Manager.

• SP _ OUTOFDISK Not enough disk space is currently available for spooling,
and no more space will become available.

• SP _ OUTOFMEMORY Not enough memory is available for spooling.

CDC::StartPage, CDC::StartDoc, CDC::Escape

CDC::EnumObjects

Remarks

int EnumObjects(int nObjectType,
int (CALLBACK EXPORT* lpfn)(LPVOID, LPARAM),
LPARAM lpData);

nObjectType Specifies the object type. It can have the values OBJ _BRUSH or
OBJ_PEN.

lpfn Is the procedure-instance address of the application-supplied callback
function. See the "Remarks" section below.

lpData Points to the application-supplied data. The data is passed to the callback
function along with the object information.

Enumerates the pens and brushes available in a device context. For each object of a
given type, the callback function that you pass is called with the information for that
object. The system calls the callback function until there are no more objects or the
callback function returns O.

Note that the features of Microsoft Visual c++ let you use an ordinary function as
the function passed to EnumObjects. The address passed to EnumObjects is a
FAR pointer to a function exported with __ export and with the Pascal calling
convention. In protect-mode applications, you do not have to create this function
with the Windows MakeProclnstance function or free the function after use with
the FreeProclnstance Windows function. You also do not have to export the
function name in an EXPORTS statement in your application's module-definition
file. You can instead use the __ export function modifier, as in

int FAR PASCAL __ export AFunction(LPSTR, LPSTR);

246 CDC::EnumObjects

to cause the compiler to emit the proper export record for export by name without
aliasing. This works for most needs. For some special cases, such as exporting a
function by ordinal or aliasing the export, you still need to use an EXPORTS
statement in a module-definition file.

For compiling Microsoft Foundation programs, you will normally use the lOA and
IOEs compiler options. The lOw compiler option is not used with the Microsoft
Foundation classes. (If you do use the Windows function MakeProclnstance, you
will need to explicitly cast the returned function pointer from FARPROC to the
type needed in this API.) Callback registration interfaces are now type-safe (you
must pass in a function pointer that points to the right kind of function for the
specific callback).

Also note that all callback functions must trap Microsoft Foundation exceptions
before returning to Windows, since exceptions cannot be thrown across callback
boundaries. For more information about exceptions, see Chapter 16 in the Class
Library User's Guide.

Callback Function

Return Value

See Also

The callback function passed to EnumObjects must use the Pascal calling
convention and must be declared FAR.

int CALLBACK EXPORT ObjectFunc(LPSTR IpszLogObject,
LPSTR * IpData);

The ObjectFunc name is a placeholder for the application-supplied function name.
The actual name must be exported as described in the "Remarks" section above.
The parameters are described below:

• IpszLogObject Points to a LOGPEN or LOGBRUSH data structure that
contains information about the logical attributes of the object.

• IpData Points to the application-supplied data passed to the EnumObjects
function.

Return Value
The callback function returns an int. The value of this return is user-defined. If the
callback function returns 0, EnumObjects stops enumeration early.

Specifies the last value returned by the callback function. Its meaning is user­
defined.

: :EnumObjects

CDC::Escape 247

CDC::Escape

Remarks

Return Value

virtual int Escape(int nEscape, int nCount, LPCSTR IpszlnData,
LPVOID IpOutData);

nEscape Specifies the escape function to be performed.

For a complete list of escape functions, see Chapter 5 on printer escapes in
the Microsoft Windows Programmer's Reference, Volume 3 in the Software
Development Kit documentation.

nCount Specifies the number of bytes of data pointed to by IpszlnData.

lpszI nData Points to the input data structure required for this escape.

IpOutData Points to the structure that is to receive output from this escape. The
IpOutData parameter is NULL if no data is returned.

Allows applications to access facilities of a particular device that are not directly
available through GDI. Escape calls made by an application are translated and sent
to the device driver. The nEscape parameter specifies the escape function to be per­
formed. For possible values, see the chapter on printer escapes in the Windows
SDK documentation. Windows version 3.1 substitutes function calls for some
escapes. The following CDC member functions call the 3.1 functions if running
with Windows version 3.1, and otherwise send the printer escapes:

• AbortDoc Terminates a print job. Supersedes the ABORTDOC escape.

• EndDoc Ends a print job. Supersedes the ENDDOC escape.

• EndPage Ends a page. Supersedes the NEWFRAME escape. Unlike
NEWFRAME, this function is always called after printing a page.

• SetAbortProc Sets the abort function for a print job. Supersedes the
SETABORTPROC escape.

• StartDoc Starts a print job. Supersedes the ST ARTDOC escape.

• StartPage Prepares printer driver to receive data. Supercedes the
NEWFRAME and BANDINFO escapes.

Positive if the function is successful, except for the QUERYESCSUPPORT
escape, which only checks for implementation. Zero is returned if the escape is not
implemented, and a negative value is returned if an error occurred. The following
list shows common error values and their meanings:

• SP ERROR General error.

• SP _ OUTOFDISK Not enough disk space is currently available for spooling,
and no more space will become available.

248 CDC::ExcludeClipRect

See Also

• SP OUTOFMEMORY Not enough memory is available for spooling.

• SP _ USERABORT User ended the job through the Print Manager.

CDC::StartDoc, CDC::StartPage, CDC::EndPage, CDC::SetAbortProc,
CDC: :AbortDoc, CDC: :EndDoc, : :Escape

CDC::ExcludeClipRect

Remarks

Return Value

See Also

virtual int ExcludeClipRect(int xl, int yl, int x2, int y2);

virtual int ExcludeClipRect(LPCRECT lpRect);

xl Specifies the logical x-coordinate of the upper-left comer of the rectangle.

yl Specifies the logical y-coordinate of the upper-left comer of the rectangle.

x2 Specifies the logical x-coordinate of the lower-right comer of the rectangle.

y2 Specifies the logical y-coordinate of the lower-right comer of the rectangle.

lpRect Specifies the rectangle. Can also be a CRect object.

Creates a new clipping region that consists of the existing clipping region minus the
specified rectangle. The width of the rectangle, specified by the absolute value of
x2 - xl, must not exceed 32,767 units. This limit applies to the height of the
rectangle as well.

Specifies the new clipping region's type. It can be anyone of the following values,
with meaning as given:

• COMPLEXREGION The region has overlapping borders.

• ERROR No region was created.

• NULLREGION The region is empty.

• SIMPLEREGION The region has no overlapping borders.

CDC: :ExcludeU pdateRgn, : :ExcludeClipRect

CDC::ExtFloodFili 249

CDC::ExcludeUpdateRgn

Remarks

Return Value

See Also

int ExcludeUpdateRgn(CWnd* pWnd);

pWnd Points to the window object whose window is being updated.

Prevents drawing within invalid areas of a window by excluding an updated region
in the window from the clipping region associated with the CDC object.

The type of excluded region. It can be anyone of the following values, with the
meaning as given:

• COMPLEXREGION The region has overlapping borders.

• ERROR No region was created.

• NULLREGION The region is empty.

• SIMPLEREGION The region has no overlapping borders.

CDC: :ExciudeClipRect, : : ExcludeUpdateRgn

CDC::ExtFloodFili

Remarks

BOOL ExtFloodFiIl(int x, int y, COLORREF creolor, UINT nFillType);

x Specifies the logical x -coordinate of the point where filling begins.

y Specifies the logical y-coordinate of the point where filling begins.

creolor Specifies the color of the boundary or of the area to be filled. The
interpretation of creolor depends on the value of nFillType.

nFillType Specifies the type of flood fill to be perfonned. It must be one of the
following values, with the meaning as given:

• FLOODFILLBORDER The fill area is bounded by the color specified by
creolor. This style is identical to the filling performed by FloodFill.

• FLOODFILLSURFACE The fill area is defined by the color specified by
creolor. Filling continues outward in all directions as long as the color is
encountered. This style is useful for filling areas with multicolored
boundaries.

Fills an area of the display surface with the current brush. This member function
provides more flexibility than FloodFill because you can specify a fill type in
nFillType. If nFillType is set to FLOODFILLBORDER, the area is assumed to
be completely bounded by the color specified by creolor. The function begins at

250 CDC::ExtTextOut

Return Value

See Also

the point specified by x and y and fills in all directions to the color boundary. If
nFillType is set to FLOODFILLSURF ACE, the function begins at the point
specified by x and y and continues in all directions, filling all adjacent areas
containing the color specified by crColor.

Only memory-device contexts and devices that support raster-display technology
support ExtFloodFiIl. For more information, see the GetDeviceCaps member
function.

Nonzero if the function is successful; otherwise 0 if the filling could not be
completed, if the given point has the boundary color specified by crColor (if
FLOODFILLBORDER was requested), if the given point does not have the color
specified by crColor (if FLOODFILLSURFACE was requested), or if the point is
outside the clipping region.

CDC: :FloodFiIl, CDC: :GetDeviceCaps, : : ExtFloodFiIl

CDC::ExtTextOut
virtual BOOL ExtTextOut(int x, int y, UINT nOptions, LPCRECT lpRect,

LPCSTR lpszString, UINT nCount, LPINT lpDxWidths);

x Specifies the logical x -coordinate of the character cell for the first character in
the specified string.

y Specifies the logical y-coordinate of the character cell for the first character in
the specified string.

nOptions Specifies the rectangle type. This parameter can be one, both, or neither
of the following values:

• ETO _CLIPPED Specifies that text is clipped to the rectangle.

• ETO _OPAQUE Specifies that the current background color fills the
rectangle. (Y ou can set and query the current background color with the
SetBkColor and GetBkColor member functions.)

lpRect Points to a RECT structure that determines the dimensions of the
rectangle. This parameter can be NULL. You can also pass a CRect object for
this parameter.

lpszString Points to the specified character string. You can also pass a CString
object for this parameter.

Remarks

Return Value

See Also

CDC::FiIIRect 251

nC ount Specifies the number of characters in the string.

lpDxWidths Points to an array of values that indicate the distance between origins
of adjacent character cells. For instance, lpDxWidths[i] logical units will separate
the origins of character cell i and character cell i + 1. If lpDxWidths is NULL,
ExtTextOut uses the default spacing between characters.

Writes a character string within a rectangular region using the currently selected
font. The rectangular region can be opaque (filled with the current background
color) and it can be a clipping region.

If nOptions is 0 and lpRect is NULL, the function writes text to the device context
without using a rectangular region. By default, the current position is not used or
updated by the function. If an application needs to update the current position when
it calls ExtTextOut, the application can call the CDC member function
SetTextAlign with nFlags set to TA_UPDATECP. When this flag is set,
Windows ignores x and y on subsequent calls to ExtTextOut and uses the current
position instead. When an application uses T A _ UPD A TECP to update the current
position, ExtTextOut sets the current position either to the end of the previous line
of text or to the position specified by the last element of the array pointed to by
lpDxWidths, whichever is greater.

Nonzero if the function is successful; otherwise O.

CDC: :SetTextAlign, CDC: : TabbedTextOut, CDC: :TextOut,
CDC::GetBkColor, CDC::SetBkColor, CDC::SetTextColor, ::ExtTextOut,
RECT

CDC::FiIiRect

Remarks

void FillRect(LPCRECT lpRect, CBrush* pBrush);

lpRect Points to a RECT structure that contains the logical coordinates of the
rectangle to be filled. You can also pass a CRect object for this parameter.

pBrush Identifies the brush used to fill the rectangle.

Fills a given rectangle using the specified brush. The function fills the complete
rectangle, including the left and top borders, but it does not fill the right and bottom
borders.

The brush needs to either be created using the CBrush member functions
CreateHatchBrush, CreatePatternBrush, and CreateSolidBrush, or retrieved
by the GetStockObject Windows function. When filling the specified rectangle,
FillRect does not include the rectangle's right and bottom sides. ODI fills a

252 CDC::FiIIRgn

See Also

rectangle up to, but does not include, the right column and bottom row, regardless
of the current mapping mode. FillRect compares the values of the top, bottom,
left, and right members of the specified rectangle. If bottom is less than or equal to
top, or if right is less than or equal to left, the rectangle is not drawn.

CBrush: :CreateHatchBrush, CB rush:: CreatePatternB rush,
CBrush::CreateSolidBrush, ::FillRect, ::GetStockObject, RECT, CBrush

CDC::FiIiRgn

Remarks

Return Value

See Also

BOOL FillRgn(CRgn* pRgn, CBrush* pBrush);

pRgn A pointer to the region to be filled. The coordinates for the given region are
specified in device units.

pBrush Identifies the brush to be used to fill the region.

Fills the region specified by pRgn with the brush specified by pBrush.

The brush needs to either be created using the CBrush member functions
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, or retrieved by
GetStockObject.

Nonzero if the function is successful; otherwise O.

CDC::PaintRgn, CDC::FillRect, CBrush, CRgn, ::FillRgn

CDC::FloodFili

Remarks

BOOL FloodFill(int x, int y, COLORREF creolor);

x Specifies the logical x-coordinate of the point where filling begins.

y Specifies the logical y-coordinate of the point where filling begins.

creolor Specifies the color of the boundary.

Fills an area of the display surface with the current brush. The area is assumed to
be bounded as specified by creolor. The FloodFill function begins at the point
specified by x and y and continues in all directions to the color boundary. Only
memory-device contexts and devices that support raster-display technology support
the FloodFill member function. For information about RC_BITBLT capability,

Return Value

See Also

CDC::FrameRgn 253

see the GetDeviceCaps member function. The ExtFloodFiII function provides
similar capability but greater flexibility.

Nonzero if the function is successful; otherwise 0 is returned if the filling could not
be completed, the given point has the boundary color specified by crC%r, or the
point is outside the clipping region.

CDC::ExtFloodFiII, CDC::GetDeviceCaps, ::FloodFill

CDC::FrameRect

Remarks

See Also

void FrameRect(LPCRECT /pRect, CBrush* pBrush);

/pRect Points to a RECT structure or CRect object that contains the logical
coordinates of the upper-left and lower-right comers of the rectangle. You can
also pass a CRect object for this parameter.

pBrush Identifies the brush to be used for framing the rectangle.

Draws a border around the rectangle specified by /pRect. The function uses the
given brush to draw the border. The width and height of the border is always 1
logical unit. If the rectangle's bottom coordinate is less than or equal to top, or if
right is less than or equal to left, the rectangle is not drawn. The border drawn by
FrameRect is in the same position as a border drawn by the Rectangle member
function using the same coordinates (if Rectangle uses a pen that is 1 logical unit
wide). The interior of the rectangle is not filled by FrameRect.

CBrush, CDC::Rectangle, CDC::FrameRgn, ::FrameRect, RECT

CDC: :FrameRgn
BOOL FrameRgn(CRgn* pRgn, CBrush* pBrush, int nWidth, int nHeight);

pRgn Points to the CRgn object that identifies the region to be enclosed in a
border. The coordinates for the given region are specified in device units.

pBrush Points to the CBrush object that identifies the brush to be used to draw
the border.

254 CDC::FromHandle

Remarks

Return Value

See Also

n Width Specifies the width of the border in vertical brush strokes (in logical units,
or device units if running under Windows version 3.1).

nHeight Specifies the height of the border in horizontal brush strokes (in logical
units, or device units if running under Windows version 3.1).

Draws a border around the region specified by pRgn using the brush specified by
pBrush.

Nonzero if the function is successful; otherwise O.

CDC::Rectangle, CDC::FrameRect, CBrush, CRgn, ::FrameRgn

CDC::FromHandle

Remarks

Return Value

See Also

static CDC* PASCAL FromHandle(HDC hDC);

hDC Contains a handle to a Windows device context.

Returns a pointer to a CDC object when given a handle to a device context. If a
CDC object is not attached to the handle, a temporary CDC object is created and
attached.

The pointer may be temporary and should not be stored beyond immediate use.

CDC: :DeleteTempMap

CDC: :GetAspectRatioFi Iter

Remarks

Return Value

See Also

CSize GetAspectRatioFilter() const;

Retrieves the setting for the current aspect-ratio filter. The aspect ratio is the ratio
formed by a device's pixel width and height. Information about a device's aspect
ratio is used in the creation, selection, and display of fonts. Windows provides a
special filter, the aspect-ratio filter, to select fonts designed for a particular aspect
ratio from all of the available fonts. The filter uses the aspect ratio specified by the
SetMapperFlags member function.

A CSize object representing the aspect ratio used by the current aspect ratio filter.

CDC: :SetMapper Flags, : : GetAspectRatioFilter , CSize

CDC::GetBoundsRect 255

CDC: :GetBkColor

Remarks

Return Value

See Also

COLORREF GetBkColor() const;

Returns the current background color. If the background mode is OPAQUE, the
system uses the background color to fill the gaps in styled lines, the gaps between
hatched lines in brushes, and the background in character cells. The system also
uses the background color when converting bitmaps between color and
monochrome device contexts.

An RGB color value.

CDC::GetBkMode, CDC::SetBkColor, CDC::SetBkMode, ::GetBkColor

CDC: :GetBkMode

Remarks

Return Value

See Also

int GetBkMode() const;

Returns the background mode. The background mode defmes whether the system
removes existing background colors on the drawing surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

The current background mode, which can be OPAQUE, TRANSPARENT, or
TRANSP ARENTl.

CDC::GetBkColor, CDC::SetBkColor, CDC::SetBkMode, ::GetBkMode

CDC::GetBoundsRect
Windows 3.1 Only UINT GetBoundsRect(LPRECT IpRectBounds, UINT flags);.

IpRectBounds Points to a buffer that will receive the current bounding rectangle.
The rectangle is returned in logical coordinates.

flags Specifies whether the bounding rectangle is to be cleared after it is returned.
This parameter can be one of the following values, with the meaning as given:

• DCB _RESET Forces the bounding rectangle to be cleared after it is
returned.

• DCB WINDOWMGR Queries the Windows bounding rectangle instead
of the application's.

256 CDC::GetBrushOrg

Remarks Returns the current accumulated bounding rectangle for the specified device
context.

Return Value

See Also

Specifies the current state of the bounding rectangle if the function is successful. It
can be a combination of the following values, with the meaning as given:

• DCB _ACCUMULATE Bounding rectangle accumulation is occuring.

• DCB _RESET Bounding rectangle is empty.

• DCB _SET Bounding rectangle is not empty.

• DCB ENABLE Bounding accumulation is on.

• DCB DISABLE Bounding accumulation is off.

CDC:: SetBoundsRect, : : GetBoundsRect

CDC: :GetBrushOrg

Remarks

Return Value

See Also

CPoint GetBrushOrg() const;

Retrieves the origin (in device units) of the brush currently selected for the device
context. The initial brush origin is at (0,0) of the client area. The return value
specifies this point in device units relative to the origin of the desktop window.

The current origin of the brush (in device units) as a CPoint object.

CDC::SetBrushOrg, ::GetBrushOrg, CPoint

CDC: :GetChar ABCWidths
Windows 3.1 Only BOOL GetChar ABCWidths(UINT nFirst, UINT nLast,

LP ABC lpabc) const; •

nFirst Specifies the first character in the range of characters from the current font
for which character widths are returned.

nLast Specifies the last character in the range of characters from the current font
for which character widths are returned.

Remarks

Return Value

See Also

CDC::GetCharWidth 257

lpabc Points to an array of ABC structures that receive the character widths when
the function returns. This array must contain at least as many ABC structures as
there are characters in the range specified by the nFirst and nLast parameters.

Retrieves the widths of consecutive characters in a specified range from the current
TrueType font. The widths are returned in logical units. This function succeeds only
with TrueType fonts.

The TrueType rasterizer provides "ABC" character spacing after a specific point
size has been selected. "A" spacing is the distance that is added to the current
position before placing the glyph. "B" spacing is the width of the black part of the
glyph. "c" spacing is added to the current position to account for the white space to
the right of the glyph. The total advanced width is given by A + B + C.

When the GetChar ABCWidths member function retrieves negative "A" or "C"
widths for a character, that character includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should create a font
whose height (as specified in the IfHeight member of the LOGFONT structure) is
equal to the value stored in the ntmSizeEM member of the NEWTEXTMETRIC
structure. (The value of the ntmSizeEM member can be retrieved by calling the
EnumFontFamilies Windows function.)

The ABC widths of the default character are used for characters that are outside the
range of the currently selected font. To retrieve the widths of characters in non­
TrueType fonts, applications should use the GetCharWidth member function.

Nonzero if the function is successful; otherwise O.

::EnumFontFamilies, CDC::GetCharWidth, ::GetCharABCWidths, ABC

CDC: :GetCharWidth
BOOL GetCharWidth(UINT nFirstChar, UINT nLastChar, LPINT IpBuffer)

const;

nFirstChar Specifies the first character in a consecutive group of characters in the
current font.

nLastChar Specifies the last character in a consecutive group of characters in the
current font.

258 CDC::GetClipBox

Remarks

Return Value

See Also

IpBuffer Points to a buffer that will receive the width values for a consecutive
group of characters in the current font.

Retrieves the widths of individual characters in a consecutive group of characters
from the current font, using m _ hAttribDC, the input device context. For example,
if nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the
function retrieves the widths of all lowercase characters. The function stores the
values in the buffer pointed to by IpBuffer. This buffer must be large enough to hold
all of the widths. That is, there must be at least 26 entries in the example given. If a
character in the consecutive group of characters does not exist in a particular font, it
will be assigned the width value of the default character.

Nonzero if the function is successful; otherwise O.

CDC::GetOutputCharWidth, CDC::m_hAttribDC, CDC::m_hDC,
: : GetCharWidth, : :GetChar ABCWidths, CDC: : GetChar ABCWidths

CDC::GetClipBox

Remarks

Return Value

See Also

virtual int GetClipBox(LPRECT IpRect) const;

IpRect Points to the RECT structure or CRect object that is to receive the
rectangle dimensions.

Retrieves the dimensions of the tightest bounding rectangle around the current
clipping boundary. The dimensions are copied to the buffer pointed to by IpRect.

The clipping region's type. It can be anyone of the following values, with the
meaning as given:

• COMPLEXREGION Clipping region has overlapping borders.

• ERR 0 R Device context is not valid.

• NULLREGION Clipping region is empty.

• SIMPLEREGION Clipping region has no overlapping borders.

CDC::SelectClipRgn, ::GetClipBox, RECT

CDC::GetDeviceCaps 259

CDC: :GetCurrentPosition

Remarks

Return Value

See Also

CPoint GetCurrentPosition() const;

Retrieves the current position (in logical coordinates). The current position can be
set with the MoveTo member function.

The current position as a CPoint object.

CDC::MoveTo, CPoint, ::GetCurrentPosition

CDC: :GetDeviceCaps
int GetDeviceCaps(int nlndex) const;

nI ndex Specifies the type of information to return. It can be anyone of the
following values:

• DRIVERVERSION Version number; for example, OxlOO for 1.0.

• TECHNOLOGY Device technology. It can be anyone of the following:

Value Meaning

DT PLOTTER Vector plotter

DT RASDISPLA Y Raster display

DT RASPRINTER Raster printer

DT RASCAMERA Raster camera

DT CHARSTREAM Character stream

DT METAFILE Metafile

DT DISPFILE Display file

• HORZSIZE Width of the physical display (in millimeters).

• VERTSIZE Height of the physical display (in millimeters).

• HORZRES Width of the display (in pixels).

• VERTRES Height of the display (in raster lines).

• LOGPIXELSX Number of pixels per logical inch along the display width.

• LOGPIXELSY Number of pixels per logical inch along the display
height.

• BITSPIXEL Number of adjacent color bits for each pixel.

260 CDC::GetDeviceCaps

• PLANES Number of color planes.

• NUMBRUSHES Number of device-specific brushes.

• NUMPENS Number of device-specific pens.

• NUMFONTS Number of device-specific fonts.

• NUMCOLORS Number of entries in the device's color table.

• ASPECTX Relative width of a device pixel as used for line drawing.

• ASPECTY Relative height of a device pixel as used for line drawing.

• ASPECTXY Diagonal width of the device pixel as used for line drawing.

• PDEVICESIZE Size of the PDEVICE internal data structure.

• CLIPCAPS Clipping capabilities of the device. It can be one of the
following:

Value

CP NONE

CP RECTANGLE

CP REGION

Meaning

Output is not clipped.

Output is clipped to rectangles.

Output is clipped to regions.

• SIZEP ALETTE Number of entries in the system palette. This index is
valid only if the device driver sets the RC _PALETTE bit in the
RASTER CAPS index. It is available only if the driver is written for
Windows version 3.0 or later.

• NUMRESERVED Number of reserved entries in the system palette. This
index is valid only if the device driver sets the RC_PALETTE bit in the
RASTER CAPS index and is available only if the driver is written for
Windows version 3.0 or higher.

• COLORRES Actual color resolution of the device in bits per pixel. This
index is valid only if the device driver sets the RC_PALETTE bit in the
RASTER CAPS index and is available only if the driver is written for
Windows version 3.0 or later.

• RASTERCAPS Value that indicates the raster capabilities of the device.
It can be a combination of the following:

Capability

RC BANDING

RC BIGFONT

RC BITBLT

RC BITMAP64

RC DEVBITS

Meaning

Requires banding support.

Supports fonts larger than 64K.

Capable of transferring bitmaps.

Spports bitmaps larger than 64K.

Supports device bitmaps.

Capability

RC DI BITMAP

RC DIBTODEV

RC FLOODFILL

RC GDI20 OUTPUT - -

RC GDI20 STATE - -
RC NONE

RC_OP_DX_OUTPUT

RC PALETTE

RC SA VEBITMAP

RC SCALING

RC STRETCHBL T

RC STRETCHDIB

CDC::GetDeviceCaps 261

Meaning

Capable of supporting the SetDIBits and
GetDIBits Windows functions.

Capable of supporting the SetDIBitsToDevice
Windows function.

Capable of performing flood fills.

Capable of supporting Windows version 2.0
features.

Includes a state block in the device context.

Supports no raster operations.

Supports dev opaque and DX array.

Specifies a palette-based device.

Capable of saving bitmaps locally.

Capable of scaling.

Capable of performing the StretchBlt member
function.

Capable of performing the StretchDIBits Windows
function.

• CURVECAPS The curve capabilities of the device. It can be a
combination of the following:

Value

CC NONE

CC CIRCLES

CC PIE

CC CHORD

CC ELLIPSES

CC WIDE

CC STYLED

CC WIDESTYLED

CC INTERIORS

CC ROUNDRECT

Meaning

Supports curves.

Supports circles.

Supports pie wedges.

Supports chords.

Supports ellipses.

Supports wide borders.

Supports styled borders.

Supports wide, styled borders.

Supports interiors.

Supports rectangles with rounded comers.

• LINE CAPS Line capabilities the device supports. It can be a combination
of the following:

Value

LC NONE

LC POLYLINE

Meaning

Supports no lines.

Supports polylines.

262 CDC: :GetDeviceCaps

Value

LC MARKER

LC POLYMARKER

LC WIDE

LC STYLED

LC WIDE STYLED

LC INTERIORS

Meaning

Supports markers.

Supports polymarkers.

Supports wide lines.

Supports styled lines.

Supports wide, styled lines.

Supports interiors.

• POL YGONALCAPS Polygonal capabilities the device supports. It can
be a combination of the following:

Value

PC NONE

PC POLYGON

PC RECTANGLE

PC WINDPOLYGON

PC SCANLINE

PC WIDE

PC STYLED

PC WIDESTYLED

PC INTERIORS

Meaning

Supports no polygons.

Supports alternate fill polygons.

Supports rectangles.

Supports winding number fill polygons.

Supports scan lines.

Supports wide borders.

Supports styled borders.

Supports wide, styled borders.

Supports interiors.

• TEXT CAPS Text capabilities the device supports. It can be a combination
of the following:

Value

TC OP CHARACTER

TC OP STROKE

TC CP STROKE

TC CR 90

TC CR ANY

Meaning

Supports character output precision, which indicates
the device can place device fonts at any pixel
location. This is required for any device with device
fonts.

Supports stroke output precision, which indicates
the device can omit any stroke of a device font.

Supports stroke clip precision, which indicates the
device can clip device fonts to a pixel boundary.

Supports 90-degree character rotation, which
indicates the device can rotate characters only 90
degrees at a time.

Supports character rotation at any degree, which
indicates the device can rotate device fonts through
any angle.

Value

TC SF X YINDEP - --

TC SA DOUBLE

TC SA INTEGER

TC SA CONTIN

TC EA DOUBLE

TC IA ABLE

TC UA ABLE

TC SO ABLE

TC RA ABLE

TC VA ABLE

TC RESERVED

CDC::GetDeviceCaps 263

Meaning

Supports scaling independent of x and y directions,
which indicates the device can scale device fonts
separately in x and y directions.

Supports doubled characters for scaling, which
indicates the device can double the size of device
fonts.

Supports integer multiples for scaling, which
indicates the device can scale the size of device
fonts in any integer multiple.

Supports any multiples for exact scaling, which
indicates the device can scale device fonts by any
amount but still preserve the x and y ratios.

Supports double-weight characters, which indicates
the device can make device fonts bold. If this bit is
not set for printer drivers, GDI attempts to create
bold device fonts by printing them twice.

Supports italics, which indicates the device can
make device fonts italic. If this bit is not set, GDI
assumes italics are not available.

Supports underlining, which indicates the device
can underline device fonts. If this bit is not set, GDI
creates underlines for device fonts.

Supports strikeouts, which indicates the device can
strikeout device fonts. If this bit is not set, GDI
creates strikeouts for device fonts.

Supports raster fonts, which indicates that GDI
should enumerate any raster or TrueType fonts
available for this device in response to a call to the
EnumFonts or EnumFontFamilies Windows
functions. If this bit is not set, GDI -supplied raster
or TrueType fonts are not enumerated when these
functions are called.

Supports vector fonts, which indicates that GDI
should enumerate any vector fonts available for this
device in response to a call to the EnumFonts or
EnumFontFamilies Windows functions. This is
significant for vector devices only (that is, for
plotters). Display drivers (which must be able to use
raster fonts) and raster printer drivers always
enumerate vector fonts, because GDI rasterizes
vector fonts before sending them to the driver.

Reserved; must be O.

264 CDC::GetFontData

Remarks Retrieves a wide range of device-specific infonnation about the display device.

Return Value

See Also

The value of the requested capability if the function is successful.

:: GetDeviceCaps

CDC: :GetFontData
Windows 3.1 Only DWORD GetFontData(DWORD dwTable, DWORD dwOffset,

Remarks

LPVOID IpData, DWORD cbData) const; •

dwT able Specifies the name of the metric table to be returned. This parameter can
be one of the metric tables documented in the TrueType Font Files specification
published by Microsoft Corporation. If this parameter is 0, the infonnation is
retrieved starting at the beginning of the font file.

dwOffset Specifies the offset from the beginning of the table at which to begin
retrieving infonnation. If this parameter is 0, the infonnation is retrieved starting
at the beginning of the table specified by the dwT able parameter. If this value is
greater than or equal to the size of the table, GetFontData returns 0.

IpData Points to a buffer that will receive the font infonnation. If this value is
NULL, the function returns the size of the buffer required for the font data
specified in the dwTable parameter.

cbData Specifies the length, in bytes, of the infonnation to be retrieved. If this
parameter is 0, GetFontData returns the size of the data specified in the dwTable
parameter.

Retrieves font-metric infonnation from a scalable font file. The infonnation to
retrieve is identified by specifying an offset into the font file and the length of the
infonnation to return. An application can sometimes use the GetFontData member
function to save a TrueType font with a document. To do this, the application
detennines whether the font can be embedded and then retrieves the entire font file,
specifying ° for the dwTable, dwOffset, and cbData parameters.

Applications can detennine whether a font can be embedded by checking the
otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of
otmfsType is set, embedding is not pennitted for the font. If bit 1 is clear, the font
can be embedded. If bit 2 is set, the embedding is read only. If an application
attempts to use this function to retrieve infonnation for a non-TrueType font, the
GetFontData member function returns -1.

Return Value

See Also

CDC::GetGlyphOutline 265

Specifies the number of bytes returned in the buffer pointed to by IpData if the
function is successful; otherwise -1.

CDC::GetOutiineTextMetrics, ::GetFontData, OUTLINETEXTMETRIC

CDC: :GetGlyphOutline
Windows 3.1 Only DWORD GetGlyphOutline(UINT nChar, UINT nFormat,

LPGL YPHMETRICS lpgm, DWORD cbBuffer, LPVOID IpBuffer,

const MA T2 FAR * Ipmat2) const; +

nC har Specifies the character for which information is to be returned.

nF ormat Specifies the format in which the function is to return information. It can
be one of the following values, or 0:

Value

GGO BITMAP

GGO NATIVE

Meaning

Returns the glyph bitmap. When the function returns, the buffer
pointed to by IpBuffer contains a I-bit-per-pixel bitmap whose
rows start on doubleword boundaries.

Returns the curve data points in the rasterizer's native format,
using device units. When this value is specified, any
transformation specified in Ipmat2 is ignored.

When the value of nFormat is 0, the function fills in a GLYPHMETRICS
structure but does not return glyph-outline data.

lpgm Points to a GLYPHMETRICS structure that describes the placement of
the glyph in the character cell.

cbBuffer Specifies the size of the buffer into which the function copies informa­
tion about the outline character. If this value is 0 and the nF ormat parameter is
either the GGO _BITMAP or GGO _NATIVE values, the function returns the
required size of the buffer.

IpBuffer Points to a buffer into which the function copies information about the
outline character. If nF ormat specifies the GGO _NATIVE value, the informa­
tion is copied in the form of TTPOLYGONHEADER and TTPOLYCURVE
structures. If this value is NULL and nF ormat is either the GGO BITMAP or
GGO _NATIVE value, the function returns the required size of the buffer.

266 CDC::GetKerningPairs

Remarks

Return Value

See Also

Ipmat2 Points to a MA T2 structure that contains a transfonnation matrix for the
character. This parameter cannot be NULL, even when the GGO _NATIVE
value is specified for nF ormat.

Retrieves the outline curve or bitmap for an outline character in the current font. An
application can rotate characters retrieved in bitmap fonnat by specifying a 2-by-2
transfonnation matrix in the structure pointed to by Ipmat2.

A glyph outline is returned as a series of contours. Each contour is defined by
a TTPOL YGONHEADER structure followed by as many TTPOL YCURVE
structures as are required to describe it. All points are returned as POINTFX
structures and represent absolute positions, not relative moves. The starting point
given by the pfxStart member of the TTPOLYGONHEADER structure is the
point at which the outline for a contour begins. The TTPOL YCURVE structures
that follow can be either polyline records or spline records. Polyline records are a
series of points; lines drawn between the points describe the outline of the charac­
ter. Spline records represent the quadratic curves used by TrueType (that is,
quadratic b-splines).

The size, in bytes, of the buffer required for the retrieved infonnation if cbBuffer is
o or IpBuffer is NULL. Otherwise, it is a positive value if the function is
successful, or -1 if there is an error.

CDC: : GetOutlineTextMetrics , : : GetGlyphOutline, GL YPHMETRICS,
TTPOLYGONHEADER,TTPOLYCURVE

CDC::GetKerningPairs
Windows 3.1 Only int GetKerningPairs(int nPairs, LPKERNINGPAIR lpkrnpair) const;.

Remarks

nPairs Specifies the number of KERNING PAIR structures pointed to by
lpkrnpair. The function will not copy more kerning pairs than specified by nPairs.

lpkrnpair Points to an array of KERNINGPAIR structures that receive the
kerning pairs when the function returns. This array must contain at least as many
structures as specified by nPairs. If this parameter is NULL, the function returns
the total number of kerning pairs for the font.

Retrieves the character kerning pairs for the font that is currently selected in the
specified device context.

Return Value

See Also

CDC: :GetOutline TextMetrics 267

Specifies the number of kerning pairs retrieved or the total number of kerning pairs
in the font, if the function is successful. Zero is returned if the function fails or there
are no kerning pairs for the font.

: : GetKerningPairs, KERNINGP AIR

CDC: :GetMapMode

Remarks

Return Value

See Also

int GetMapMode() const;

Retrieves the current mapping mode. See the SetMapMode member function for a
description of the mapping modes.

The mapping mode.

CDC::SetMapMode, ::GetMapMode

CDC: :GetNearestColor

Remarks

Return Value

See Also

COLORREF GetNearestColor(COLORREF creolor) const;

creolor Specifies the color to be matched.

Returns the solid color that best matches a specified logical color. The given device
must be able to represent this color.

An RGB (red, green, blue) color value that defines the solid color closest to the
creolor value that the device can represent.

:: GetN earestColor, CPalette:: GetN earestPaletteIndex

CDC::GetOutlineTextMetrics
Windows 3.1 Only UINT GetOutlineTextMetrics(UINT cbData,

LPOUTLINETEXTMETRIC lpotm) const; +

cbData Specifies the size, in bytes, of the buffer to which information is returned.

268 CDC::GetOutputCharWidth

Remarks

Return Value

See Also

lpatm Points to an OUTLINETEXTMETRIC structure. If this parameter is
NULL, the function returns the size of the buffer required for the retrieved metric
information.

Retrieves metric information for TrueType fonts. The OUTLINETEXTMETRIC
structure contains most of the font metric information provided with the TrueType
format, including a TEXTMETRIC structure. The last four members of the
OUTLINETEXTMETRIC structure are pointers to strings. Applications should
allocate space for these strings in addition to the space required for the other
members. Because there is no system-imposed limit to the size of the strings, the
simplest method for allocating memory is to retrieve the required size by specifying
NULL for lpatm in the first call to the GetOutlineTextMetrics function.

Nonzero if the function is successful; otherwise o.
: : GetTextMetrics, :: GetOutlineTextMetrics, CDC:: GetTextMetrics

CDC: :GetOutputCharWidth

Remarks

Return Value

See Also

BOOL GetOutputCharWidth(UINT nFirstChar, UINT nLastChar,
LPINT lpBuffer) const;

nFirstChar Specifies the first character in a consecutive group of characters in the
current font.

nLastChar Specifies the last character in a consecutive group of characters in the
current font.

lpBuffer Points to a buffer that will receive the width values for a consecutive
group of characters in the current font.

Uses the output device context, m _ hDC, and retrieves the widths of individual
characters in a consecutive group of characters from the current font. For example,
if nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the
function retrieves the widths of all lowercase characters. The function stores the
values in the buffer pointed to by lpBuffer. This buffer must be large enough to hold
all of the widths; that is, there must be at least 26 entries in the example given. If a
character in the consecutive group of characters does not exist in a particular font, it
will be assigned the width value of the default character.

Nonzero if the function is successful; otherwise O.

CDC::GetCharWidth, CDC::m_hAttribDC, CDC::m_hDC, ::GetCharWidth

CDC::GetOutputTabbedTextExtent 269

CDC: :GetOutputTabbedTextExtent

Remarks

Return Value

See Also

CSize GetOutputTabbedTextExtent(LPCSTR IpszString, int nCount,
int nTabPositions, LPINT IpnTabStopPositions) const;

IpszString Points to a character string. You can also pass a CString object for
this parameter.

nCount Specifies the number of characters in the string.

nTabPositions Specifies the number of tab-stop positions in the array pointed to
by IpnTabStopPositions.

IpnTabStopPositions Points to an array of integers containing the tab-stop
positions in logical units. The tab stops must be sorted in increasing order; the
smallest x-value should be the first item in the array. Back tabs are not allowed.

Computes the width and height of a character string using m _ hDC, the output
device context. If the string contains one or more tab characters, the width of the
string is based upon the tab stops specified by IpnTabStopPositions. The function
uses the currently selected font to compute the dimensions of the string. The current
clipping region does not offset the width and height returned by the
GetOutputTabbedTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern
the characters), the sum of the extents of the characters in a string may not be equal
to the extent of the string.

If nTabPositions is 0 and IpnTabStopPositions is NULL, tabs are expanded to
eight average character widths. If nTabPositions is 1, the tab stops will be
separated by the distance specified by the first value in the array to which
IpnTabStopPositions points. If IpnTabStopPositions points to more than a single
value, a tab stop is set for each value in the array, up to the number specified by
nT abP ositions.

The dimensions of the string (in logical units).

CDC::GetTextExtent, CDC::m_hAttribDC, CDC::m_hDC,
CDC::GetTabbedTextExtent, CDC::GetOutputTextExtent,
CDC: :TabbedTextOut, : : GetTabbedTextExtent, CSize

270 CDC::GetOutputTextExtent

CDC: :GetOutputTextExtent

Remarks

Return Value

See Also

CSize GetOutputTextExtent(LPCSTR IpszString, int nCount) const;

IpszString Points to a string of characters. You can also pass a CString object for
this parameter.

nCount Specifies the number of characters in the string.

This member function uses the output device context, m _ hDC, and computes the
width and height of a line of text, using the current font. The current clipping region
does not affect the width and height returned by GetOutputTextExtent.

Since some devices do not place characters in regular cell arrays (that is, they carry
out kerning), the sum of the extents of the characters in a string may not be equal to
the extent of the string.

The dimensions of the string (in logical units) returned in a CSize object

CDC::GetTabbedTextExtent, CDC::m_hAttribDC, CDC::m_hDC,
CDC::GetTextExtent, ::GetTextExtent, CDC::SetTextJustification, CSize

CDC: :GetOutputTextMetrics

Remarks

Return Value

See Also

BOOL GetOutputTextMetrics(LPTEXTMETRIC IpMetrics) const;

IpMetrics Points to the TEXTMETRIC structure that receives the metrics.

Retrieves the metrics for the current font using m _ hDC, the output device context.

Nonzero if the function is successful; otherwise O.

CDC::GetTextAlign, CDC::m_hAttribDC, CDC::m_hDC,
CDC::GetTextMetrics, CDC::GetTextExtent, CDC::GetTextFace,
CDC: :SetTextJustification, : : GetTextMetrics

CDC: :GetPixel
COLORREF GetPixel(int x, int y) const;

COLORREF GetPixel(POINT point) const;

Remarks

Return Value

See Also

CDC::GetROP2 271

x Specifies the logical x -coordinate of the point to be examined.

y Specifies the logical y-coordinate of the point to be examined.

point Specifies the logical x- and y-coordinates of the point to be examined.

Retrieves the RGB color value of the pixel at the point specified by x and y. The
point must be in the clipping region. If the point is not in the clipping region, the
function has no effect and returns -1. Not all devices support the GetPixel function.
For more information, see the RC _ BITBL T raster capability under the
GetDeviceCaps member function.

The GetPixel member function has two forms. The first takes two coordinate
values; the second takes either a POINT structure or a CPoint object.

For either version of the function, an RGB color value for the color of the given
point. It is -1 if the coordinates do not specify a point in the clipping region.

CDC::GetDeviceCaps, CDC::SetPixel, ::GetPixel, POINT, CPoint

CDC: :GetPolyFiliMode

Remarks

Return Value

See Also

int GetPolyFillMode() const;

Retrieves the current polygon-filling mode. See the SetPolyFillMode member
function for a description of the polygon-filling modes.

The current polygon-filled mode, ALTERNATE or WINDING, if the function is
successful.

CDC::SetPolyFillMode, ::GetPolyFillMode

CDC::GetROP2

Remarks

int GetROP20 const;

Retrieves the current drawing mode. The drawing mode specifies how the colors of
the pen and the interior of filled objects are combined with the color already on the
display surface.

272 CDC::GetSafeHdc

Return Value

See Also

The drawing mode. For a list of the drawing mode values, see the SetROP2
member function.

CDC::GetDeviceCaps, CDC::SetROP2, ::GetROP2

CDC: :GetSafeHdc

Remarks

Return Value

HDC GetSafeHdc() const;

Call this member function to get m_hDC, the output device context. This member
function also works with null pointers.

A device context handle.

CDC: :GetStretch BltMode

Remarks

Return Value

See Also

int GetStretchBltMode() const;

Retrieves the current bitmap-stretching mode. The bitmap-stretching mode defines
how information is removed from bitmaps that are stretched or compressed by the
StretchBIt member function. The STRETCH ANDSCANS and
STRETCH _ ORSCANS modes are typically used to preserve foreground pixels in
monochrome bitmaps. The STRETCH _ DELETESCANS mode is typically used
to preserve color in color bitmaps.

The return value specifies the current bitmap-stretching mode­
STRETCH _ ANDSCANS, STRETCH _ DELETESCANS, or
STRETCH ORSCANS-ifthe function is successful.

CDC:: StretchBIt, CDC:: SetStretchBItMode, :: GetStretchBltMode

CDC: :GetTabbedTextExtent
CSize GetTabbedTextExtent(LPCSTR IpszString, int nCount,

int nTabPositions, LPINT IpnTabStopPositions) const;

Remarks

Return Value

See Also

CDC::GetTextAlign 273

IpszString Points to a character string. You can also pass a CString object for
this parameter.

nCount Specifies the number of characters in the string.

nTabPositions Specifies the number of tab-stop positions in the array pointed to
by IpnTabStopPositions.

IpnTabStopPositions Points to an array of integers containing the tab-stop
positions in logical units. The tab stops must be sorted in increasing order; the
smallest x-value should be the first item in the array. Back tabs are not allowed.

Computes the width and height of a character string using m _ hAttribDC, the
attribute device context. If the string contains one or more tab characters, the width
of the string is based upon the tab stops specified by IpnTabStopPositions. The
function uses the currently selected font to compute the dimensions of the string.
The current clipping region does not offset the width and height returned by the
GetTabbedTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern
the characters), the sum of the extents of the characters in a string may not be equal
to the extent of the string.

If nTabPositions is 0 and IpnTabStopPositions is NULL, tabs are expanded to
eight times the average character width. If nTabPositions is 1, the tab stops will be
separated by the distance specified by the first value in the array to which
IpnTabStopPositions points. If IpnTabStopPositions points to more than a single
value, a tab stop is set for each value in the array, up to the number specified by
nTabP ositions.

The dimensions of the string (in logical units).

CDC::GetTextExtent, CDC::GetOutputTabbedTextExtent,
CDC: : GetOutputTextExtent, CDC: : TabbedTextOut,
: : GetTabbedTextExtent, CSize

CDC::GetTextAlign

Remarks

UINT GetTextAlign() const;

Retrieves the status of the text -alignment flags for the device context. The text­
alignment flags determine how the TextOut and ExtTextOut member functions
align a string of text in relation to the string's starting point. The text-alignment

274 CDC::GetTextCharacterExtra

Return Value

See Also

flags are not necessarily single-bit flags and may be equal to O. To test whether a
flag is set, an application should follow these steps:

1. Apply the bitwise-OR operator to the flag and its related flags. The following
list shows the groups of related flags:

• TA_LEFT, TA_CENTER, and TA_RIGHT

• TA_BASELINE, TA_BOTTOM, and TA_TOP

• TA NOUPDATECP and TA UPDATECP - -

2. Apply the bitwise-AND operator to the result and the return value of
GetTextAlign.

3. Test for the equality of this result and the flag.

The status of the text-alignment flags. The return value is one or more of the
following values, with the meaning as given:

• T A _BASELINE Specifies alignment of the x-axis and the baseline of the
chosen font within the bounding rectangle.

• T A_BOTTO M Specifies alignment of the x -axis and the bottom of the
bounding rectangle.

• T A _CENTER Specifies alignment of the y-axis and the center of the
bounding rectangle.

• T A _LEFT Specifies alignment of the y-axis and the left side of the bounding
rectangle.

• T A _ NOUPDATECP Specifies that the current position is not updated.

• T A _RI G HT Specifies alignment of the y-axis and the right side of the
bounding rectangle.

• TA _TOP Specifies alignment of the x-axis and the top of the bounding
rectangle.

• T A _ UPDA TECP Specifies that the current position is updated.

CDC::ExtTextOut, CDC::SetTextAlign, CDC::TextOut, ::GetTextAlign

CDC: :GetTextCharacterExtra

Remarks

int GetTextCharacterExtra() const;

Retrieves the current setting for the amount of intercharacter spacing. GDI adds
this spacing to each character, including break characters, when it writes a line

Return Value

See Also

CDC::GetTextExtent 275

of text to the device context. The default value for the amount of intercharacter
spacing is O.

The amount of the intercharacter spacing.

CDC:: SetTextCharacterExtra, : : GetTextCharacterExtra

CDC: :GetTextColor

Remarks

Return Value

See Also

COLORREF GetTextColor() const;

Retrieves the current text color. The text color is the foreground color of characters
drawn by using the GDI text-output member functions TextOut, ExtTextOut, and
TabbedTextOut.

The current text color as an RGB color value.

CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkMode,
CDC::SetTextColor, ::GetTextColor

CDC: :GetTextExtent

Remarks

CSize GetTextExtent(LPCSTR IpszString, int nCaunt) const;

IpszString Points to a string of characters. You can also pass a CString object for
this parameter.

nC aunt Specifies the number of characters in the string.

Computes the width and height of a line of text using the current font to determine
the dimensions. The information is retrieved from m _ hAttribDC, the attribute
device context. The current clipping region does not affect the width and height
returned by GetTextExtent.

Since some devices do not place characters in regular cell arrays (that is, they carry
out kerning), the sum of the extents of the characters in a string may not be equal to
the extent of the string.

276 CDC::GetTextFace

Return Value

See Also

The dimensions of the string (in logical units) in a CSize object.

CDC::GetTabbedTextExtent, CDC::m_hAttribDC, CDC::m_hDC,
CDC: : GetOutputTextExtent, : : GetTextExtent, CDC: :SetTextJustification,
CSize

CDC: :GetTextFace

Remarks

Return Value

See Also

int GetTextFace(int nCount, LPSTR IpszFacename) const;

nCount Specifies the size of the buffer (in bytes). If the typeface name is longer
than the number of bytes specified by this parameter, the name is truncated.

IpszF acename Points to the buffer for the typeface name.

Copies the typeface name of the current font into a buffer. The typeface name is
copied as a null-terminated string.

The number of bytes copied to the buffer, not including the terminating null
character. It is 0 if an error occurs.

CDC::GetTextMetrics, CDC::SetTextAlign, CDC::TextOut, ::GetTextFace

CDC: :GetTextMetrics
BOOL GetTextMetrics(LPTEXTMETRIC IpMetrics) const;

IpMetrics Points to the TEXTMETRIC structure that receives the metrics.

Remarks

Return Value

See Also

A TEXTMETRIC structure has this form:

typedef struct tagTEXTMETRIC
int tmHeight;
int tmAscent;
int tmDescent;
int tmlnternalLeading;
int tmExternalLeading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
int tmOverhang;
int tmDigitizedAspectX;
int tmDigitizedAspectY;

TEXTMETRIC;

/* tm

CDC::GetViewportExt 277

*/

For more complete information about this structure, see TEXTMETRIC in the
Windows SDK documentation.

Retrieves the metrics for the current font using the attribute device context.

Nonzero if the function is successful; otherwise O.

CDC::GetTextAlign, CDC::m_hAttribDC, CDC::m_hDC,
CDC: : GetOutputTextMetrics, CDC: : GetTextExtent, CDC: : GetTextFace,
CDC: :SetTextJustification, : : GetTextMetrics

CDC: :GetViewportExt

Remarks

Return Value

See Also

CSize GetViewportExt() const;

Retrieves the x- and y-extents of the device context's viewport.

The x- and y-extents (in device units) as a CSize object.

CDC::SetViewportExt, CSize, ::GetViewportExt, CDC::SetWindowExt

278 CDC::GetViewportOrg

CDC: :GetViewportOrg

Remarks

Return Value

See Also

CPoint Get ViewportOrg() const;

Retrieves the x- and y-coordinates of the origin of the viewport associated with the
device context.

The origin of the viewport (in device coordinates) as a CPoint object.

CDC: : GetWindowOrg, CPoint, : :Get ViewportOrg, CDC: :Set ViewportOrg

CDC: :GetWindowExt

Remarks

Return Value

See Also

CSize GetWindowExt() const;

Retrieves the x- and y-extents of the window associated with the device context.

The x- and y-extents (in logical units) as a CSize object.

CDC::SetWindowExt, CSize, ::GetWindowExt, CDC::GetViewportExt

CDC: :GetWindowOrg

Remarks

Return Value

See Also

CPoint GetWindowOrg() const;

Retrieves the x- and y-coordinates of the origin of the window associated with the
device context.

The origin of the window (in logical coordinates) as a CPoint object.

CDC::GetViewportOrg, CDC::SetWindowOrg, CPoint, ::GetWindowOrg

CDC::GrayString
virtual BOOL GrayString(CBrush* pBrush,

BOOL (CALLBACK EXPORT* IpfnOutput)(HDC, LPARAM, int),
LPARAM IpData, int nCount, int x, int y, int nWidth, int nHeight);

Remarks

CDC::GrayString 279

pBrush Identifies the brush to be used for dimming (graying).

lpfnOutput Specifies the procedure-instance address of the application-supplied
callback function that will draw the string. For more information, see the descrip­
tion of the Windows OutputFunc callback function below. If this parameter is
NULL, the system uses the Windows TextOut function to draw the string, and
lpData is assumed to be a long pointer to the character string to be output.

lpData Specifies a far pointer to data to be passed to the output function. If
lpfnOutput is NULL, lpData must be a long pointer to the string to be output.

nCount Specifies the number of characters to be output. If this parameter is 0,
GrayString calculates the length of the string (assuming that lpData is a pointer
to the string). If nCount is -1 and the function pointed to by lpfnOutput returns 0,
the image is shown but not dimmed.

x Specifies the logical x-coordinate of the starting position of the rectangle that
encloses the string.

y Specifies the logical y-coordinate of the starting position of the rectangle that
encloses the string.

n Width Specifies the width (in logical units) of the rectangle that encloses the
string. If nWidth is 0, GrayString calculates the width of the area, assuming
lpData is a pointer to the string.

nH eight Specifies the height (in logical units) of the rectangle that encloses the
string. If nHeight is 0, GrayString calculates the height of the area, assuming
lpData is a pointer to the string.

Draws dimmed (gray) text at the given location by writing the text in a memory
bitmap, dimming the bitmap, and then copying the bitmap to the display. The
function dims the text regardless of the selected brush and background. The
GrayString member function uses the currently selected font. The MM _TEXT
mapping mode must be selected before using this function.

An application can draw dimmed (grayed) strings on devices that support a solid
gray color without calling the GrayString member function. The system color
COLOR _ GRA YTEXT is the solid-gray system color used to draw disabled text.
The application can call the GetSysColor Windows function to retrieve the color
value of COLOR _ GRAYTEXT. If the color is other than ° (black), the applica­
tion can call the SetTextColor member function to set the text color to the color
value and then draw the string directly. If the retrieved color is black, the applica­
tion must call GrayString to dim (gray) the text.

If lpfnOutput is NULL, GDI uses the Windows TextOut function, and lpData is
assumed to be a far pointer to the character to be output. If the characters to be

280 CDC::GrayString

output cannot be handled by the TextOut member function (for example, the string
is stored as a bitmap), the application must supply its own output function. Also
note that all callback functions must trap Microsoft Foundation exceptions before
returning to Windows, since exceptions cannot be thrown across callback bounda­
ries. For more information about exceptions, see Chapter 16 in the Class Library
User's Guide. The callback function passed to GrayString must use the Pascal
calling convention, must be exported with __ export, and must be declared FAR.

When the framework is in preview mode, a call to the GrayString member
function is translated to a TextOut call, and the callback function is not called.

Callback Function

Return Value

See Also

BOOL CALLBACK EXPORT OutputFunc(HDC hDC,
LPARAM IpData, int nCount);

OutputFunc is a placeholder for the application-supplied callback function name.
The callback function (OutputFunc) must draw an image relative to the coordi­
nates (0,0) rather than (x, y). The parameters are described below:

hDC Identifies a memory device context with a bitmap of at least the width and
height specified by nWidth and nHeight to GrayString.

IpData Points to the character string to be drawn.

nCount Specifies the number of characters to output.

Return Value
The callback function's return value must be TRUE to indicate success; otherwise
it is FALSE.

Nonzero if the string is drawn, or ° if either the TextOut function or the
application-supplied output function returned 0, or there was insufficient memory to
create a memory bitmap for dimming.

::GetSysColor, CDC::SetTextColor, CDC::TextOut, ::GrayString

CDC::lnvertRect 281

CDC::lntersectClipRect

Remarks

Return Value

See Also

virtual int IntersectClipRect(int xl, int yl, int x2, int y2);

virtual int IntersectClipRect(LPCRECT IpRect);

xl Specifies the logical x-coordinate of the upper-left comer of the rectangle.

yl Specifies the logical y-coordinate of the upper-left comer of the rectangle.

x2 Specifies the logical x-coordinate of the lower-right comer of the rectangle.

y2 Specifies the logical y-coordinate of the lower-right comer of the rectangle.

IpRect Specifies the rectangle. You can pass either a CRect object or a pointer to
a RECT structure for this parameter.

Creates a new clipping region by forming the intersection of the current region and
the rectangle specified by xl, yl, x2, and y2. GDI clips all subsequent output to fit
within the new boundary. The width and height must not exceed 32,767.

The new clipping region's type. It can be anyone of the following values, with the
meaning as given:

• COMPLEXREGION New clipping region has overlapping borders.

• ERROR Device context is not valid.

• NULLREGION New clipping region is empty.

• SIMPLEREGION New clipping region has no overlapping borders.

: : IntersectClipRect, CRect, RECT

CDC: :lnvertRect

Remarks

void InvertRect(LPCRECT IpRect);

IpRect Points to a RECT that contains the logical coordinates of the rectangle to
be inverted. You can also pass a CRect object for this parameter.

Inverts the contents of the given rectangle. Inversion is a logical NOT operation and
flips the bits of each pixel. On monochrome displays, the function makes white
pixels black and black pixels white. On color displays, the inversion depends on

282 CDC::lnvertRgn

See Also

how colors are generated for the display. Calling InvertRect twice with the same
rectangle restores the display to its previous colors. If the rectangle is empty,
nothing is drawn.

CDC::FillRect, ::InvertRect, CRect, RECT struct

CDC::lnvertRgn

Remarks

Return Value

See Also

BOOL InvertRgn(CRgn* pRgn);

pRgn Identifies the region to be inverted. The coordinates for the region are
specified in device units.

Inverts the colors in the region specified by pRgn. On monochrome displays, the
function makes white pixels black and black pixels white. On color displays, the
inversion depends on how the colors are generated for the display.

Nonzero if the function is successful; otherwise O.

CDC::FillRgn, CDC::PaintRgn, CRgn, ::InvertRgn

CDC::lsPrinting
BOOL IsPrinting() const;

Return Value Nonzero if the CDC object is currently printing; otherwise O.

CDC::LineTo
BOOL LineTo(int x, int y);

BOOL LineTo(POINT point);

x Specifies the logical x -coordinate of the endpoint for the line.

Remarks

Return Value

See Also

CDC::LPtoDP 283

y Specifies the logical y-coordinate of the endpoint for the line.

point Specifies the endpoint for the line. You can pass either a POINT structure
or a CPoint object for this parameter.

Draws a line from the current position up to, but not including, the point specified
by x and y (or point). The line is drawn with the selected pen. The current position
is set to x,y or to point.

Nonzero if the line is drawn; otherwise O.

CDC::MoveTo, CDC::GetCurrentPosition, ::LineTo, CPoint, POINT

CDC::LPtoDP

Remarks

See Also

void LPtoDP(LPPOINT lpPoints, int nCount = 1) const;

void LPtoDP(LPRECT IpRect) const;

IpPoin ts Points to an array of points. Each point in the array is a POINT
structure or a CPoint object.

nCount Specifies the number of points in the array.

IpRect Points to a RECT structure or a CRect object. This parameter is used for
the common case of mapping a rectangle from logical to device units.

Converts logical points into device points. The function maps the coordinates of
each point from GDI's logical coordinate system into a device coordinate system.
The conversion depends on the current mapping mode and the settings of the origins
and extents of the device's window and viewport. The x- and y-coordinates of
points are 2-byte signed integers in the range -32,768 through 32,767. In cases
where the mapping mode would result in values larger than these limits, the system
sets the values to -32,768 and 32,767, respectively.

CDC::DPtoLP, ::LPtoDP, CPoint, POINT, RECT, CRect

284 CDC::MoveTo

CDC::MoveTo

Remarks

Return Value

See Also

CPoint MoveTo(int x, int y);

CPoint MoveTo(POINT point);

x Specifies the logical x-coordinate of the new position.

y Specifies the logical y-coordinate of the new position.

point Specifies the new position. You can pass either a POINT structure or a
CPoint object for this parameter.

Moves the current position to the point specified by x and y (or by point).

The x- and y-coordinates of the previous position as a CPoint object.

CDC::GetCurrentPosition, CDC::LineTo, ::MoveTo, CPoint, POINT

CDC::OffsetClipRgn

Remarks

Return Value

See Also

virtual int OffsetClipRgn(int x, int y);

virtual int OffsetClipRgn(SIZE size);

x Specifies the number of logical units to move left or right.

y Specifies the number of logical units to move up or down.

size Specifies the amount to offset.

Moves the clipping region of the device context by the specified offsets. The
function moves the region x units along the x-axis and y units along the y-axis.

The new region's type. It can be anyone of the following values, with the meanings
as given:

• COMPLEXREGION Clipping region has overlapping borders.

• ERR 0 R Device context is not valid.

• NULLREGION Clipping region is empty.

• SIMPLEREGION Clipping region has no overlapping borders.

CDC:: SelectClipRgn, : :OffsetClipRgn

CDC::OffsetWindowOrg 285

CDC: :OffsetViewportOrg

Remarks

Return Value

See Also

virtual CPoint OffsetViewportOrg(int nWidth, int nHeight);

nWidth Specifies the number of device units to add to the current origin's
x -coordinate.

nHeight Specifies the number of device units to add to the current origin's
y -coordinate.

Modifies the coordinates of the viewport origin relative to the coordinates of the
current viewport origin.

The previous viewport origin (in device coordinates) as a CPoint object.

CDC: :Get ViewportOrg, CDC: :OffsetWindowOrg, CDC: :SetViewportOrg,
:: Offset ViewportOrg, CPoint

CDC: :OffsetWindowOrg

Remarks

Return Value

See Also

CPoint OffsetWindowOrg(int nWidth, int nHeight);

nWidth Specifies the number of logical units to add to the current origin's
x -coordinate.

nHeight Specifies the number of logical units to add to the current origin's
y-coordinate.

Modifies the coordinates of the window origin relative to the coordinates of the
current window origin.

The previous window origin (in logical coordinates) as a CPoint object.

CDC: : GetWindowOrg, CDC: :OffsetViewportOrg, CDC: :SetWindowOrg,
: :OffsetWindowOrg, CPoint

286 CDC::PaintRgn

CDC::PaintRgn

Remarks

Return Value

See Also

BOOL PaintRgn(CRgn* pRgn);

pRgn Identifies the region to be filled. The coordinates for the given region are
specified in device units.

Fills the region specified by pRgn using the current brush.

Nonzero if the function is successful; otherwise O.

CBrush, CDC::SelectObject, CDC::FillRgn, ::PaintRgn, CRgo

CDC::PatBlt
BOOL PatBlt(int x, int y, iot nWidth, int nHeight,

DWORD dwRop);

x Specifies the logical x-coordinate of the upper-left comer of the rectangle that is
to receive the pattern.

y Specifies the logical y-coordinate of the upper-left comer of the rectangle that is
to receive the pattern.

n Width Specifies the width (in logical units) of the rectangle that is to receive the
pattern.

nHeight Specifies the height (in logical units) of the rectangle that is to receive
the pattern.

dwRop Specifies the raster-operation code. Raster-operation codes (ROPs) define
how GDI combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. This parameter may be one of
the following values, with the meanings as given:

• P A TCOPY Copies pattern to destination bitmap.

• P ATINVERT Combines destination bitmap with pattern using the
Boolean XOR operator.

• DSTINVERT Inverts the destination bitmap.

• BLACKNESS Turns all output black.

CDC::Pie 287

• WHITENESS Turns all output white.

Windows 3.1 Only • P A TP AINT Paints the destination bitmap. +

Remarks Creates a bit pattern on the device. The pattern is a combination of the selected
brush and the pattern already on the device. The raster-operation code specified by
dwRop defines how the patterns are to be combined. The raster operations listed for
this function are a limited subset of the full 256 ternary raster-operation codes; in
particular, a raster-operation code that refers to a source cannot be used.

Return Value

See Also

CDC::Pie

Not all device contexts support the PatBIt function. To determine whether a device
context supports PatBlt, call the GetDeviceCaps member function with the
RASTER CAPS index and check the return value for the RC _ BITBL T flag.

Nonzero if the function is successful; otherwise O.

CDC::GetDeviceCaps, ::PatBIt

BOOL Pie(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);

BOOL Pie(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

xl Specifies the x-coordinate of the upper-left comer of the bounding rectangle
(in logical units).

yl Specifies the y-coordinate of the upper-left comer of the bounding rectangle
(in logical units).

x2 Specifies the x-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

y2 Specifies the y-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

x3 Specifies the x-coordinate of the arc's starting point (in logical units). This
point does not have to lie exactly on the arc.

y3 Specifies the y-coordinate of the arc's starting point (in logical units). This
point does not have to lie exactly on the arc.

x4 Specifies the x-coordinate of the arc's endpoint (in logical units). This point
does not have to lie exactly on the arc.

288 CDC::PlayMetaFile

Remarks

Return Value

See Also

y4 Specifies the y-coordinate of the arc's endpoint (in logical units). This point
does not have to lie exactly on the arc.

IpRect Specifies the bounding rectangle. You can pass either a CRect object or a
pointer to a RECT structure for this parameter.

ptStart Specifies the starting point of the arc. This point does not have to lie
exactly on the arc. You can pass either a POINT structure or a CPoint object for
this parameter.

ptEnd Specifies the endpoint of the arc. This point does not have to lie exactly on
the arc. You can pass either a POINT structure or a CPoint object for this
parameter.

Draws a pie-shaped wedge by drawing an elliptical arc whose center and two
endpoints are joined by lines. The center of the arc is the center of the bounding
rectangle specified by xl, yl, x2, and y2 (or by IpRect). The starting and ending
points of the arc are specified by x3, y3, x4, and y4 (or by ptStart and ptEnd). The
arc is drawn with the selected pen, moving in a counterclockwise direction. Two
additional lines are drawn from each endpoint to the arc's center. The pie-shaped
area is filled with the current brush. If x3 equals x4 and y3 equals y4, the result is
an ellipse with a single line from the center of the ellipse to the point (x3, y3) or
(x4, y4). The figure drawn by this function extends up to but does not include the
right and bottom coordinates. This means that the height of the figure is y2 - yl and
the width of the figure is x2 - xl. Both the width and the height of the bounding
rectangle must be greater than 2 units and less than 32,767 units.

Nonzero if the function is successful; otherwise O.

CDC::Chord, ::Pie, RECT, POINT, CRect, CPoint

CDC:: PlayMetaFi Ie

Remarks

Return Value

See Also

BOOL PlayMetaFile(HMETAFILE hMF);

hMF Identifies the metafile to be played.

Plays the contents of the specified metafile on the device context. The metafile can
be played any number of times.

Nonzero if the function is successful; otherwise o.
::PlayMetaFile

CDC::Polyline 289

CDC::Polygon

Remarks

Return Value

See Also

BOOL Polygon(LPPOINT IpPoints, int nCount);

IpPoints Points to an array of points that specify the vertices of the polygon. Each
point in the array is a POINT structure or a CPoint object.

nCount Specifies the number of vertices in the array.

Draws a polygon consisting of two or more points (vertices) connected by lines,
using the current pen. The system closes the polygon automatically, if necessary, by
drawing a line from the last vertex to the first. The current polygon-filling mode can
be retrieved or set by using the GetPolyFillMode and SetPolyFillMode member
functions.

Nonzero if the function is successful; otherwise O.

CDC: : GetPolyFillMode, CDC: : PolyLine , CDC: :PolyPolygon,
CDC::SetPolyFillMode, ::Polygon, CPoint

CDC::Polyline

Remarks

Return Value

See Also

BOOL Polyline(LPPOINT IpPoints, int nCount);

IpPoints Points to an array of POINT structures or CPoint objects to be
connected.

nCount Specifies the number of points in the array. This value must be at least 2.

Draws a set of line segments connecting the points specified by IpPoints. The lines
are drawn from the first point through subsequent points using the current pen.
Unlike the LineTo member function, the Polyline function neither uses nor updates
the current position.

Nonzero if the function is successful; otherwise O.

CDC::LineTo, CDC::Polygon, ::PolyLine, POINT, CPoint

290 CDC::PolyPolygon

CDC: :PolyPolygon

Remarks

Return Value

See Also

BOOL PolyPolygon(LPPOINT IpPoints, LPINT IpPolyCounts, int nCount);

IpPoints Points to an array of POINT structures or CPoint objects that define the
vertices of the polygons.

IpPolyCounts Points to an array of integers, each of which specifies the number
of points in one of the polygons in the IpPoints array.

nCount The number of entries in the IpPolyCounts array. This number specifies
the number of polygons to be drawn. This value must be at least 2.

Creates two or more polygons that are filled using the current polygon-filling mode.
The polygons may be disjoint or overlapping. Each polygon specified in a call to
the PolyPolygon function must be closed. Unlike polygons created by the Polygon
member function, the polygons created by PolyPolygon are not closed
automatically.

The function creates two or more polygons. To create a single polygon, an applica­
tion should use the Polygon member function. The current polygon-filling mode can
be retrieved or set by using the GetPolyFillMode and SetPolyFiIIMode member
functions.

Nonzero if the function is successful; otherwise O.

CDC::GetPolyFiIIMode, CDC::Polygon, CDC::Polyline,
CDC::SetPolyFiIIMode, ::PolyPolygon, POINT, CPoint

CDC::PtVisible

Remarks

virtual BOOL PtVisible(int x, int y) const;

virtual BOOL PtVisible(POINT point) const;

x Specifies the logical x -coordinate of the point.

y Specifies the logical y -coordinate of the point.

point Specifies the point to check in logical coordinates. You can pass either a
POINT structure or a CPoint object for this parameter.

Determines whether the given point is within the clipping region of the device
context.

Return Value

See Also

CDC::RealizePalette 291

Nonzero if the specified point is within the clipping region; otherwise O.

CDC::RectVisible, CDC::SelectClipRgn, CPoint, ::PtVisible, POINT

CDC::QueryAbort
Windows 3.1 Only BOOL Query Abort() const; +

Remarks Calls the abort function installed by the SetAbortProc member function for a
printing application and queries whether the printing should be terminated.

Return Value The return value is TRUE if printing should continue or if there is no abort
procedure. It is FALSE if the print job should be tenninated. The return value is
supplied by the abort function.

See Also CDC::SetAbortProc, ::QueryAbort

CDC:: RealizePalette

Remarks

Return Value

See Also

UINT RealizePalette();

Maps entries from the current logical palette to the system palette. A logical color
palette acts as a buffer between color-intensive applications and the system, allow­
ing an application to use as many colors as needed without interfering with its own
displayed colors or with colors displayed by other windows. When a window has
the input focus and calls RealizePalette, Windows ensures that the window will
display all the requested colors, up to the maximum number simultaneously avail­
able on the screen. Windows also displays colors not found in the window's palette
by matching them to available colors. In addition, Windows matches the colors
requested by inactive windows that call the function as closely as possible to the
available colors. This significantly reduces undesirable changes in the colors dis­
played in inactive windows.

Indicates how many entries in the logical palette were mapped to different entries in
the system palette. This represents the number of entries that this function remapped
to accommodate changes in the system palette since the logical palette was last
realized.

CDC::SelectPalette, CPalette, ::RealizePalette

292 CDC::Rectangle

CDC::Rectangle

Remarks

Return Value

See Also

BOOL Rectangle(int xl, int yl, int x2, int y2);

BOOL Rectangle(LPCRECT IpRect);

xl Specifies the x-coordinate of the upper-left comer of the rectangle (in logical
units).

yl Specifies the y-coordinate of the upper-left comer of the rectangle (in logical
units).

x2 Specifies the x-coordinate of the lower-right comer of the rectangle (in logical
units).

y2 Specifies the y-coordinate of the lower-right comer of the rectangle (in logical
units).

IpRect Specifies the rectangle in logical units. You can pass either a CRect
object or a pointer to a RECT structure for this parameter.

Draws a rectangle using the current pen. The interior of the rectangle is filled using
the current brush. The rectangle extends up to, but does not include, the right and
bottom coordinates. This means that the height of the rectangle is y2 - yl and the
width of the rectangle is x2 - xl. Both the width and the height of a rectangle must
be greater than 2 units and less than 32,767 units.

Nonzero if the function is successful; otherwise O.

::Rectangle, CDC::PolyLine, CDC::RoundRect, RECT, CRect

CDC:: RectVisible

Remarks

virtual BOOL RectVisible(LPCRECT IpRect) const;

IpRect Points to a RECT structure or a CRect object that contains the logical
coordinates of the specified rectangle.

Determines whether any part of the given rectangle lies within the clipping region
of the display context.

Return Value

See Also

CDC::ResetDC 293

Nonzero if some portion of the given rectangle lies within the clipping region;
otherwise O.

CDC::PtVisible, CDC::SelectClipRgn, CRect, ::RectVisible, RECT

CDC: :ReleaseAttribDC

Remarks

See Also

virtual void ReleaseAttribDC();

Call this member function to set m hAttribDC to NULL. This does not cause a
Detach to occur. Only the output device context is attached to the CDC object, and
only it can be detached.

CDC::SetOutputDC, CDC::SetAttribDC, CDC::ReleaseOutputDC,
CDC::m hAttribDC

CDC:: ReleaseOutputDC

Remarks

See Also

virtual void ReleaseOutputDC();

Call this member function to set the m hDC member to NULL. This member
function cannot be called when the output device context is attached to the CDC
object. Use the Detach member function to detach the output device context.

CDC::SetAttribDC, CDC::SetOutputDC, CDC::ReleaseAttribDC,
CDC::m hDC

CDC::ResetDC
Windows 3.1 Only BOOL ResetDC(const DEVMODE FAR* IpDevMode);.

Remarks

IpDevMode A pointer to a Windows DEVMODE structure.

Call this member function to update the device context wrapped by the CDC object.
The device context is updated from the information specified in the Windows
DEVMODE structure. This member function only resets the attribute device
context.

294 CDC::RestoreDC

Return Value

See Also

An application will typically use the ResetDC member function when a window
handles a WM _ DEVMODECHANGE message. You can also use this member
function to change the paper orientation or paper bins while printing a document.

You cannot use this member function to change the driver name, device name or the
output port. When the user changes the port connection or device name, you must
delete the original device context and create a new device context with the new
information.

Before you call this member function, you must ensure that all objects (other than
stock objects) that had been selected into the device context have been selected out.

Nonzero if the function is successful; otherwise O.

CDC::m_hAttribDC, ::ResetDC, WM_DEVMODECHANGE, DEVMODE

CDC:: RestoreDC

Remarks

Return Value

See Also

virtual BOOL RestoreDC(int nSavedDC);

nSavedDC Specifies the device context to be restored. It can be a value returned
by a previous SaveDC function call. If nSavedDC is -1, the most recently saved
device context is restored.

Restores the device context to the previous state identified by nSavedDC.
RestoreDC restores the device context by popping state information off a stack
created by earlier calls to the SaveDC member function. The stack can contain the
state information for several device contexts. If the context specified by nSavedDC
is not at the top of the stack, RestoreDC deletes all state information between the
device context specified by nSavedDC and the top of the stack. The deleted infor­
mation is lost.

Nonzero if the specified context was restored; otherwise O.

CDC::SaveDC, ::RestoreDC

CDC::RoundRect
BOOL RoundRect(int xl, int yl, int x2, int y2, int x3, int y3);

BOOL RoundRect(LPCRECT IpRect, POINT point);

Remarks

Return Value

See Also

CDC::SaveDC 295

xl Specifies the x-coordinate of the upper-left comer of the rectangle (in logical
units).

yl Specifies the y-coordinate of the upper-left comer of the rectangle (in logical
units).

x2 Specifies the x-coordinate of the lower-right comer of the rectangle (in logical
units).

y2 Specifies the y-coordinate of the lower-right comer of the rectangle (in logical
units).

x3 Specifies the width of the ellipse used to draw the rounded comers (in logical
units).

y3 Specifies the height of the ellipse used to draw the rounded comers (in logical
units).

IpRect Specifies the bounding rectangle in logical units. You can pass either a
CRect object or a pointer to a RECT structure for this parameter.

point The x-coordinate of point specifies the width of the ellipse to draw the
rounded comers (in logical units). The y-coordinate of point specifies the height
of the ellipse to draw the rounded comers (in logical units). You can pass either a
POINT structure or a CPoint object for this parameter.

Draws a rectangle with rounded comers using the current pen. The interior of the
rectangle is filled using the current brush. The figure this function draws extends up
to but does not include the right and bottom coordinates. This means that the height
of the figure is y2 - yl and the width of the figure is x2 - xl. Both the height and
the width of the bounding rectangle must be greater than 2 units and less than
32,767 units.

Nonzero if the function is successful; otherwise O.

CDC::Rectangle, ::RoundRect, CRect, RECT, POINT, CPoint

CDC::SaveDC

Remarks

virtual int SaveDC();

Saves the current state of the device context by copying state information (such as
clipping region, selected objects, and mapping mode) to a context stack maintained
by Windows. The saved device context can later be restored by using RestoreDC.

296 CDC::ScaleViewportExt

Return Value

See Also

SaveDC can be used any number of times to save any number of device-context
states.

An integer identifying the saved device context. It is 0 if an error occurs. This
return value can be used to restore the device context by calling RestoreDC.

CDC::RestoreDC, ::SaveDC

CDC: :Scale ViewportExt

Remarks

Return Value

See Also

virtual CSize Scale ViewportExt(int xNum, int xDenom, int yNum,
int yDenom);

xNum Specifies the amount by which to multiply the current x-extent.

xDenom Specifies the amount by which to divide the result of multiplying the
current x-extent by the value of the xNum parameter.

yNum Specifies the amount by which to multiply the current y-extent.

yDenom Specifies the amount by which to divide the result of multiplying the
current y-extent by the value of the yNum parameter.

Modifies the viewport extents relative to the current values. The formulas are
written as follows:

xNewVE =
yNewVE =

xOldVE * xNum
yOldVE * yNum

/ xDenom
/ yDenom

The new viewport extents are calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator.

The previous viewport extents (in device units) as a CSize object.

CDC::GetViewportExt, ::ScaleViewportExt, CSize

CDC::ScaleWindowExt
virtual CSize ScaleWindowExt(int xNum, int xDenom, int yNum,

int yDenom);

xNum Specifies the amount by which to multiply the current x-extent.

Remarks

Return Value

See Also

CDC::ScroIlDC 297

xDenom Specifies the amount by which to divide the result of multiplying the
current x-extent by the value of the xNum parameter.

yNum Specifies the amount by which to multiply the current y-extent.

yDenom Specifies the amount by which to divide the result of multiplying the
current y-extent by the value of the yNum parameter.

Modifies the window extents relative to the current values. The formulas are written
as follows:

xNewWE =

yNewWE =
xOldWE * xNum
yOldWE * yNum

/ xDenom
/ yDenom

The new window extents are calculated by multiplying the current extents by the
given numerator and then dividing by the given denominator.

The previous window extents (in logical units) as a CSize object.

CDC::GetWindowExt, ::ScaleWindowExt, CSize

CDC::ScroIiDC
BOOL ScrollDC(int dx, int dy, LPCRECT IpRectScroll,

LPCRECT IpRectClip, CRgn* pRgnUpdate, LPRECT IpRectUpdate);

dx Specifies the number of horizontal scroll units.

dy Specifies the number of vertical scroll units.

IpRectScroll Points to the RECT structure or CRect object that contains the
coordinates of the scrolling rectangle.

IpRectClip Points to the RECT structure or CRect object that contains the
coordinates of the clipping rectangle. When this rectangle is smaller than the
original one pointed to by IpRectScroll, scrolling occurs only in the smaller
rectangle.

pRgnUpdate Identifies the region uncovered by the scrolling process. The
ScrollDC function defines this region; it is not necessarily a rectangle.

298 CDC::SelectClipRgn

Remarks

Return Value

See Also

IpRectUpdate Points to the RECT structure or CRect object that receives the
coordinates of the rectangle that bounds the scrolling update region. This is the
largest rectangular area that requires repainting. The values in the structure or
object when the function returns are in client coordinates, regardless of the
mapping mode for the given device context.

Scrolls a rectangle of bits horizontally and vertically. If IpRectUpdate is NULL,
Windows does not compute the update rectangle. If both pRgnUpdate and
IpRectUpdate are NULL, Windows does not compute the update region. If
pRgnUpdate is not NULL, Windows assumes that it contains a valid pointer to the
region uncovered by the scrolling process (defined by the ScrollDC member
function). The update region returned in IpRectUpdate can be passed to
CWnd: :InvalidateRgn if required.

An application should use the ScrollWindow member function of class CWnd
when it is necessary to scroll the entire client area of a window. Otherwise, it
should use ScrollDC.

Nonzero if scrolling is executed; otherwise O.

CWnd::lnvalidateRgn, CWnd::ScrollWindow, ::ScrollDC, CRgn, RECT,
CRect

CDC: :SelectClipRgn

Remarks

virtual int SelectClipRgn(CRgn* pRgn);

pRgn Identifies the region to be selected. If this value is NULL, the entire client
area is selected and output is still clipped to the window.

Selects the given region as the current clipping region for the device context. Only a
copy of the selected region is used. The region itself can be selected for any number
of other device contexts, or it can be deleted.

The function assumes that the coordinates for the given region are specified in
device units. Some printer devices support text output at a higher resolution than
graphics output in order to retain the precision needed to express text metrics. These
devices report device units at the higher resolution, that is, in text units. These de­
vices then scale coordinates for graphics so that several reported device units map
to only 1 graphic unit. You should always call the SelectClipRgn function using
text units.

Applications that must take the scaling of graphics objects in the GDI can use the
GETSCALINGFACTOR printer escape to determine the scaling factor. This

Return Value

See Also

CDC::SelectObject 299

scaling factor affects clipping. If a region is used to clip graphics, GDI divides the
coordinates by the scaling factor. If the region is used to clip text, GDI makes no
scaling adjustment. A scaling factor of 1 causes the coordinates to be divided by 2;
a scaling factor of 2 causes the coordinates to be divided by 4; and so on.

The region's type. It can be anyone of the following values, with the meanings as
given:

• COMPLEXREGION New clipping region has overlapping borders.

• ERROR Device context or region is not valid.

• NULLREGION New clipping region is empty.

• SIMPLEREGION New clipping region has no overlapping borders.

CDC::GetClipBox, CDC::Escape, CRgn, ::SelectClipRgn

CDC: :SelectObject

Remarks

CPen* SelectObject(CPen* pPen);

CBrush* SelectObject(CBrush* pBrush);

virtual CFont* SelectObject(CFont* pF ont);

CBitmap* SelectObject(CBitmap* pBitmap);

int SelectObject(CRgn* pRgn);

pPen A pointer to a CPen object to be selected.

pBrush A pointer to a CBrush object to be selected.

pF ont A pointer to a CFont object to be selected.

pBitmap A pointer to a CBitmap object to be selected.

pRgn A pointer to a CRgn object to be selected.

Selects an object into the device context. Class CDC provides five versions special­
ized for particular kinds of GDI objects, including pens, brushes, fonts, bitmaps,
and regions. The newly selected object replaces the previous object of the same
type. For example, if pObject of the general version of SelectObject points to a
CPen object, the function replaces the current pen with the pen specified by
pObject.

300 CDC: :SelectPalette

An application can select a bitmap into memory device contexts only and into only
one memory device context at a time. The format of the bitmap must either be
monochrome or compatible with the device context; if it is not, SelectObject
returns an error.

Windows 3.1 Only For Windows 3.1, the SelectObject function returns the same value whether or not
it is used in a metafile. Under previous versions of Windows, SelectObject
returned a nonzero value for success and 0 for failure when it was used in a
metafile. +

Return Value A pointer to the object being replaced. This is a pointer to an object of one of the
classes derived from CGdiObject, such as CPen, depending on which version of
the function is used. The return value is NULL if there is an error.

See Also

The version of the member function that takes a region parameter performs the
same task as the SelectClipRgn member function. Its return value can be anyone
of the following, with the meanings as given:

• COMPLEXREGION New clipping region has overlapping borders.

• ERROR Device context or region is not valid.

• NULLREGION New clipping region is empty.

• SIMPLEREGION New clipping region has no overlapping borders.

CGdiObject::DeleteObject, CDC::SelectClipRgn, CDC::SelectPalette,
: :SelectObject

CDC: :SelectPalette

Remarks

CPalette* SelectPalette(CPalette* pPalette, BOOL bForceBackground);

pPalette Identifies the logical palette to be selected. This palette must already
have been created with the CPalette member function CreatePalette.

bF orceBackground Specifies whether the logical palette is forced to be a
background palette. If bF orceBackground is nonzero, the selected palette is
always a background palette, regardless of whether the window has the input
focus. If bF orceBackground is 0 and the device context is attached to a window,
the logical palette is a foreground palette when the window has the input focus.

Selects the logical palette that is specified by pPalette as the selected palette object
of the device context. The new palette becomes the palette object used by GDI to
control colors displayed in the device context and replaces the previous palette. An
application can select a logical palette into more than one device context. However,

Return Value

See Also

CDC::SelectStockObject 301

changes to a logical palette will affect all device contexts for which it is selected.
If an application selects a palette into more than one device context, the device
contexts must all belong to the same physical device.

A pointer to a CPalette object identifying the logical palette replaced by the palette
specified by pPalette. It is NULL if there is an error.

CDC::RealizePalette, CPalette, ::SelectPalette

CDC: :SelectStockObject
virtual CGdiObject* SelectStockObject(int nlndex);

nlndex Specifies the kind of stock object desired. It can be one of the following
values, with meanings as given:

• BLACK BRUSH Black brush.

• DKGRA Y _BRUSH Dark gray brush.

• GRAY_BRUSH Gray brush.

• HOLLOW BRUSH Hollow brush.

• L TGRA Y _BRUSH Light gray brush.

• NULL BRUSH Null brush.

• WHITE BRUSH White brush.

• BLACK_PEN Black pen.

• NULL_PEN Null pen.

• WHITE_PEN White pen.

• ANSI_FIXED_FONT ANSI fixed system font.

• ANSI_ VAR_FONT ANSI variable system font.

• DEVICE_DEFAULT_FONT Device-dependent font.

• OEM_FIXED _FONT OEM-dependent fixed font.

• SYSTEM _FONT The system font. By default, Windows uses the system
font to draw menus, dialog-box controls, and other text. In Windows
versions 3.0 and later, the system font is proportional width; earlier versions
of Windows use a fixed-width system font.

302 CDC::SetAbortProc

Remarks

Return Value

See Also

• SYSTEM_FIXED _FONT The fixed-width system font used in Windows
prior to version 3.0. This object is available for compatibility with earlier
versions of Windows.

• DEFAUL T _PALETTE Default color palette. This palette consists of the
20 static colors in the system palette.

Selects a CGdiObject object that corresponds to one of the predefined stock pens,
brushes, or fonts.

A pointer to the CGdiObject object that was replaced if the function is successful.
The actual object pointed to is a CPen, CBrush, or CFont object. If the call is
unsuccessful, the return value is NULL.

CGdiObject: : GetObject

CDC: :SetAbortProc

Remarks

int SetAbortProc(BOOL (CALLBACK EXPORT* lpln)(HDC, int));

lpln A pointer to the abort function to install as the abort procedure. For more
about this callback function, see the "Callback Function" section below.

Installs the abort procedure for the print job. If an application is to allow the print
job to be canceled during spooling, it must set the abort function before the print job
is started with the StartDoc member function. The Print Manager calls the abort
function during spooling to allow the application to cancel the print job or to
process out-of-disk-space conditions. If no abort function is set, the print job will
fail if there is not enough disk space for spooling.

Note that the features of Microsoft Visual C++ simplify the creation of the callback
function passed to SetAbortProc. The address passed to the EnumObjects mem­
ber function is a FAR pointer to a function exported with __ export and with the
Pascal calling convention. In protect-mode applications, you do not have to create
this function with the Windows MakeProcInstance function or free the function
after use with the Windows function FreeProcInstance.

You also do not have to export the function name in an EXPORTS statement in
your application's module-definition file. You can instead use the __ export
function modifier, as in

BOOL CALLBACK __ export AFunction(HDC, int);

to cause the compiler to emit the proper export record for export by name without
aliasing. This works for most needs. For some special cases, such as exporting a

CDC::SetAbortProc 303

function by ordinal or aliasing the export, you still need to use an EXPORTS
statement in a module-definition file.

For compiling Microsoft Foundation programs, you'll normally use the /GA and
/GEs compiler options. The /Gw compiler option is not used with the Microsoft
Foundation classes. (If you do use the Windows function MakeProclnstance, you
will need to explicitly cast the returned function pointer from F ARPROC to the
type needed by this member function.) Callback registration interfaces are now
type-safe (you must pass in a function pointer that points to the right kind of
function for the specific callback).

Also note that all callback functions must trap Microsoft Foundation exceptions
before returning to Windows, since exceptions cannot be thrown across callback
boundaries. For more information about exceptions, see Chapter 16 in the Class
Library User's Guide.

Callback Function

Return Value

The callback function must use the Pascal calling convention, must be exported
with __ export, and must be declared FAR.

BOOL FAR PASCAL __ export AbortFunc(HDC hPr, int code);

The name AbortFunc is a placeholder for the application-supplied function name.
The actual name must be exported as described in the "Remarks" section above.
The parameters are described below:

• hPr Identifies the device context.

• code Specifies whether an error has occurred. It is 0 if no error has occurred.
It is SP _ OUTOFDISK if the Print Manager is currently out of disk space and
more disk space will become available if the application waits. If code is
SP _ OUTOFDISK, the application does not have to abort the print job. If it
does not, it must yield to the Print Manager by calling the PeekMessage or
GetMessage Windows function.

Return Value
The return value of the abort -handler function is nonzero if the print job is to
continue, and 0 if it is canceled.

Specifies the outcome of the SetAbortProc function. Some of the following values
are more probable than others, but all are possible.

• SP ERROR General error.

• SP _ OUTOFDISK Not enough disk space is currently available for spooling,
and no more space will become available.

304 CDC::SetAttribDC

• SP OUTOFMEMORY Not enough memory is available for spooling.

• SP USERABORT User ended the job through the Print Manager.

CDC: :SetAttribDC

Remarks

See Also

virtual void SetAttribDC(HDC hDC);

hDC A Windows device context.

Call this function to set the attribute device context, m _ hAttribDC. This member
function does not attach the device context to the CDC object. Only the output
device context is attached to a CDC object.

CDC::SetOutputDC, CDC::ReleaseAttribDC, CDC::ReleaseOutputDC

CDC: :SetBkColor

Remarks

Return Value

See Also

virtual COLORREF SetBkColor(COLORREF crColor);

crColor Specifies the new background color.

Sets the current background color to the specified color. If the background mode is
OPAQUE, the system uses the background color to fill the gaps in styled lines, the
gaps between hatched lines in brushes, and the background in character cells. The
system also uses the background color when converting bitmaps between color and
monochrome device contexts. If the device cannot display the specified color, the
system sets the background color to the nearest physical color.

The previous background color as an RGB color value. If an error occurs, the return
value is Ox80000000.

CDC::BitBlt, CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkMode,
CDC::StretchBlt, ::SetBkColor

CDC: :SetBkMode
int SetBkMode(int nBkMode);

Remarks

Return Value

See Also

CDC::SetBoundsRect 305

nBkMode Specifies the mode to be set. This parameter can be either of the
following values, with the meanings as given:

• OPAQUE Background is filled with the current background color before the
text, hatched brush, or pen is drawn. This is the default background mode.

• TRANSPARENT Background is not changed before drawing.

Sets the background mode. The background mode defines whether the system
removes existing background colors on the drawing surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

The previous background mode.

CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkColor, ::SetBkMode

CDC: :SetBoundsRect
Windows 3.1 Only UINT SetBoundsRect(LPCRECT IpRectBounds, UINT flags); •

Remarks

Return Value

IpRectBounds Points to a RECT structure or CRect object that is used to set the
bounding rectangle. Rectangle dimensions are given in logical coordinates. This
parameter can be NULL.

flags Specifies how the new rectangle will be combined with the accumulated
rectangle. This parameter may be a combination of the following values:

• DCB _ ACCUMULATE Add the rectangle specified by IpRectBounds to
the bounding rectangle (using a rectangle-union operation).

• DCB DISABLE Tum off bounds accumulation.

• DCB _ENABLE Tum on bounds accumulation. (The default setting for
bounds accumulation is disabled.)

Controls the accumulation of bounding-rectangle information for the specified
device context. Windows can maintain a bounding rectangle for all drawing opera­
tions. This rectangle can be queried and reset by the application. The drawing
bounds are useful for invalidating bitmap caches.

The current state of the bounding rectangle, if the function is successful. Like
flags, the return value can be a combination of DCB _ values, as shown in the
following list:

• DCB ACCUMULATE The bounding rectangle is not empty. This value will
always be set.

306 CDC::SetBrushOrg

• DCB DISABLE Bounds accumulation is off.

• DCB ENABLE Bounds accumulation is on.

See Also CDC::GetBoundsRect, ::SetBoundsRect, RECT, CRect

CDC: :SetBrushOrg

Remarks

Return Value

See Also

CPoint SetBrushOrg(int x, int y);

CPoint SetBrushOrg(POINT point);

x Specifies the x -coordinate (in device units) of the new origin. This value must
be in the range 0-7.

y Specifies the y-coordinate (in device units) of the new origin. This value must
be in the range 0-7.

point Specifies the x- and y-coordinates of the new origin. Each value must be in
the range 0-7. You can pass either a POINT structure or a CPoint object for this
parameter.

Specifies the origin that GDI will assign to the next brush that the application
selects into the device context. The default coordinates for the brush origin are (0,
0). To alter the origin of a brush, call the UnrealizeObject function for the
CBrush object, call SetBrushOrg, and then call the SelectObject member
function to select the brush into the device context. Do not use SetBrushOrg with
stock CBrush objects.

The previous origin of the brush in device units.

CBrush, CDC::GetBrushOrg, CDC::SelectObject,
CGdiObject::UnrealizeObject, ::SetBrushOrg, POINT, CPoint

CDC: :SetMapMode
virtual int SetMapMode(int nM apM ode);

nMapMode Specifies the new mapping mode. It can be anyone of the following
values, with the meanings as given:

Remarks

Return Value

See Also

CDC::SetMapMode 307

• MM _ANISOTROPIC Logical units are converted to arbitrary units with
arbitrarily scaled axes. Setting the mapping mode to MM _ANISOTROPIC
does not change the current window or viewport settings. To change the
units, orientation, and scaling, call the SetWindowExt and SetViewportExt
member functions.

• MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive
x is to the right; positive y is up.

• MM_HIMETRIC Each logical unit is converted to 0.01 millimeter.
Positive x is to the right; positive y is up.

• MM _ISOTROPIC Logical units are converted to arbitrary units with
equally scaled axes; that is, 1 unit along the x-axis is equal to 1 unit along
the y-axis. Use the SetWindowExt and SetViewportExt member functions
to specify the desired units and the orientation of the axes. GDI makes ad­
justments as necessary to ensure that the x and y units remain the same size.

• MM _ LOENGLISH Each logical unit is converted to 0.01 inch. Positive
x is to the right; positive y is up.

• MM_LOMETRIC Each logical unit is converted to 0.1 millimeter.
Positive x is to the right; positive y is up.

• MM _TEXT Each logical unit is converted to 1 device pixel. Positive x is
to the right; positive y is down.

• MM _ TWIPS Each logical unit is converted to 1/20 of a point. (Because a
point is 1/72 inch, a twip is 1/1440 inch.) Positive x is to the right; positive
y is up.

Sets the mapping mode. The mapping mode defines the unit of measure used to
convert logical units to device units; it also defines the orientation of the device's
x- and y-axes. GDI uses the mapping mode to convert logical coordinates into the
appropriate device coordinates. The MM _TEXT mode allows applications to work
in device pixels, where 1 unit is equal to 1 pixel. The physical size of a pixel varies
from device to device. The MM _ HIENGLISH, MM _ HIMETRIC,
MM _LOENGLISH, MM _ LOMETRIC, and MM _ TWIPS modes are useful for
applications that must draw in physically meaningful units (such as inches or
millimeters). The MM_ISOTROPIC mode ensures a 1:1 aspect ratio, which is
useful when it is important to preserve the exact shape of an image. The
MM_ANISOTROPIC mode allows the x- and y-coordinates to be adjusted
independently.

The previous mapping mode.

CDC::SetViewportExt, CDC::SetWindowExt, ::SetMapMode

308 CDC::SetMapperFlags

CDC: :SetMapperFlags

Remarks

Return Value

See Also

DWORD SetMapperFlags(DWORD dwFlag);

dwFlag Specifies whether the font mapper attempts to match a font's aspect
height and width to the device. When this value is ASPECT _ FIL TERING, the
mapper selects only fonts whose x-aspect and y-aspect exactly match those of the
specified device.

Changes the method used by the font mapper when it converts a logical font to a
physical font. An application can use SetMapperFlags to cause the font mapper to
attempt to choose only a physical font that exactly matches the aspect ratio of the
specified device. An application that uses only raster fonts can use the
SetMapperFlags function to ensure that the font selected by the font mapper is
attractive and readable on the specified device. Applications that use scalable
(TrueType) fonts typically do not use SetMapperFlags. If no physical font has an
aspect ratio that matches the specification in the logical font, GDI chooses a new
aspect ratio and selects a font that matches this new aspect ratio.

The previous value of the font-mapper flag.

::SetMapperFlags

CDC: :SetOutputDC

Remarks

See Also

virtual void SetOutputDC(HDC hDC);

hDC A Windows device context.

Call this member function to set the output device context, m _ hDC. This member
function can only be called when a device context has not been attached to the
CDC object. This member function sets m_ hDC but does not attach the device
context to the CDC object.

CDC::SetAttribDC, CDC::ReleaseAttribDC, CDC::ReleaseOutputDC,
CDC::m hDC

CDC::SetPolyFiliMode 309

CDC: :SetPixel

Remarks

Return Value

See Also

COLORREF SetPixel(int x, int y, COLORREF ereolor);

COLORREF SetPixel(POINT point, COLORREF ereolor);

x Specifies the logical x -coordinate of the point to be set.

y Specifies the logical y-coordinate of the point to be set.

ereolor Specifies the color used to paint the point.

point Specifies the logical x- and y-coordinates of the point to be set. You can
pass either a POINT structure or a CPoint object for this parameter.

Sets the pixel at the point specified to the closest approximation of the color
specified by ereolor. The point must be in the clipping region. If the point is
not in the clipping region, the function does nothing. Not all devices support the
SetPixel function. To determine whether a device supports SetPixel, call the
GetDeviceCaps member function with the RASTERCAPS index and check
the return value for the RC _ BITBL T flag.

An RGB value for the color that the point is actually painted. This value can be
different from that specified by ere alar if an approximation of that color is used. If
the function fails (if the point is outside the clipping region), the return value is -1.

CDC: : GetDeviceCaps, CDC: : GetPixel, : :SetPixel, POINT, CPoint

CDC::SetPolyFiIiMode

Remarks

int SetPolyFillMode(int nPolyFillMode);

nPolyFillMode Specifies the new filling mode. This value may be either
ALTERNATE or WINDING. The default mode set in Windows is
ALTERNATE.

Sets the polygon-filling mode. When the polygon-filling mode is ALTERNATE,
the system fills the area between odd-numbered and even-numbered polygon sides
on each scan line. That is, the system fills the area between the first and second
side, between the third and fourth side, and so on. This mode is the default. When
the polygon-filling mode is WINDING, the system uses the direction in which a
figure was drawn to determine whether to fill an area. Each line segment in a
polygon is drawn in either a clockwise or a counterclockwise direction. Whenever

310 CDC::SetROP2

Return Value

See Also

an imaginary line drawn from an enclosed area to the outside of a figure passes
through a clockwise line segment, a count is incremented. When the line passes
through a counterclockwise line segment, the count is decremented. The area is
filled if the count is nonzero when the line reaches the outside of the figure.

The previous filling mode, if successful; otherwise O.

CDC:: GetPolyFillMode, CDC: :PolyPolygon, : :SetPolyFillMode

CDC::SetROP2
int SetROP2(int nDrawMode);

nDrawMode Specifies the new drawing mode. It can be anyone of the following
values, with the meanings as given:

• R2 _BLACK Pixel is always black.

• R2 _ WHITE Pixel is always white.

• R2 _ NOP Pixel remains unchanged.

• R2 NOT Pixel is the inverse of the screen color.

• R2 _ COPYPEN Pixel is the pen color.

• R2_NOTCOPYPEN Pixel is the inverse of the pen color.

• R2_MERGEPENNOT Pixel is a combination of the pen color and the
inverse of the screen color (final pixel = (NOT screen pixel) OR pen).

• R2 MASKPENNOT Pixel is a combination of the colors common to both
the pen and the inverse of the screen (final pixel = (NOT screen pixel) AND
pen).

• R2 MERGENOTPEN Pixel is a combination of the screen color and the
inverse of the pen color (final pixel = (NOT pen) OR screen pixel).

• R2 MASKNOTPEN Pixel is a combination of the colors common to both
the screen and the inverse of the pen (final pixel = (NOT pen) AND screen
pixel).

• R2_MERGEPEN Pixel is a combination of the pen color and the screen
color (final pixel = pen OR screen pixel).

• R2 NOTMERGEPEN Pixel is the inverse of the R2 MERGEPEN
color (final pixel = NOT(pen OR screen pixel)).

• R2 MASKPEN Pixel is a combination of the colors common to both the
pen and the screen (final pixel = pen AND screen pixel).

Remarks

Return Value

See Also

CDC::SetStretchBltMode 311

• R2 NOTMASKPEN Pixel is the inverse of the R2 MASKPEN color
(final pixel = NOT (pen AND screen pixel)).

• R2 _ XORPEN Pixel is a combination of the colors that are in the pen or in
the screen, but not in both (final pixel = pen XOR screen pixel).

• R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color (final
pixel = NOT (pen XOR screen pixel)).

Sets the current drawing mode. The drawing mode specifies how the colors of the
pen and the interior of filled objects are combined with the color already on the
display surface. The drawing mode is for raster devices only; it does not apply to
vector devices. Drawing modes are binary raster-operation codes representing all
possible Boolean combinations of two variables, using the binary operators AND,
OR, and XOR (exclusive OR), and the unary operation NOT.

The previous drawing mode. It can be anyone of the values given in the Windows
SDK documentation.

CDC::GetDeviceCaps, CDC::GetROP2, ::SetROP2

CDC: :SetStretch BltMode

Remarks

int SetStretchBltMode(int nStretchMode);

nStretchMode Specifies the new bitmap-stretching mode. It can be one of the
following values, with the meaning as given:

• STRETCH _ ANDSCANS Uses the AND operator to combine eliminated
lines with the remaining lines. This mode preserves black pixels at the ex­
pense of colored or white pixels.

• STRETCH DELETESCANS Deletes the eliminated lines. Information
in the eliminated lines is not preserved.

• STRETCH _ ORSCANS Uses the OR operator to combine eliminated
lines with the remaining lines. This mode preserves colored or white pixels at
the expense of black pixels.

Sets the bitmap-stretching mode for the StretchBlt member function. The bitmap­
stretching mode defines how information is removed from bitmaps that are
compressed by using the function. The default mode is STRETCH _ ANDSCANS.
The STRETCH _ ANDSCANS and STRETCH _ ORSCANS modes are typically
used to preserve foreground pixels in monochrome bitmaps. The
STRETCH _ DELETES CANS mode is typically used to preserve color in
color bitmaps.

312 CDC::SetTextAlign

Return Value

See Also

The previous stretching mode. It can be STRETCH _ ANDSCANS,
STRETCH _ DELETESCANS, or STRETCH _ ORSCRANS.

CDC::GetStretchBltMode, CDC::StretchBlt, ::SetStretchBltMode

CDC::SetTextAlign
UINT SetTextAlign(UINT nFlags);

nFlags Specifies text-alignment flags. The flags specify the relationship between
a point and a rectangle that bounds the text. The point can be either the current
position or coordinates specified by a text-output function. The rectangle that
bounds the text is defined by the adjacent character cells in the text string. The
nFlags parameter can be one or more flags from the following three categories.
Choose only one flag from each category. The first category affects text alignment
in the x-direction:

• T A_CENTER Aligns the point with the horizontal center of the bounding
rectangle.

• T A_LEFT Aligns the point with the left side of the bounding rectangle.
This is the default setting.

• T A_RIGHT Aligns the point with the right side of the bounding rectangle.

The second category affects text alignment in the y-direction:

• T A_BASELINE Aligns the point with the baseline of the chosen font.

• TA_BOTTOM Aligns the point with the bottom of the bounding
rectangle.

• T A_TOP Aligns the point with the top of the bounding rectangle. This is
the default setting.

The third category determines whether the current position is updated when text is
written:

• TA_NOUPDATECP Does not update the current position after each call
to a text-output function. This is the default setting.

• TA _ UPDATECP Updates the current x-position after each call to a text­
output function. The new position is at the right side of the bounding rectan­
gle for the text. When this flag is set, the coordinates specified in calls to the
TextOut member function are ignored.

Remarks

Return Value

See Also

CDC::SetTextColor 313

Sets the text-alignment flags. The TextOut and ExtTextOut member functions use
these flags when positioning a string of text on a display or device. The flags spec­
ify the relationship between a specific point and a rectangle that bounds the text.
The coordinates of this point are passed as parameters to the TextOut member
function. The rectangle that bounds the text is formed by the adjacent character
cells in the text string.

The previous text-alignment setting, if successful. The low-order byte contains the
horizontal setting and the high-order byte contains the vertical setting; otherwise O.

CDC::ExtTextOut, CDC::GetTextAlign, CDC::TabbedTextOut,
CDC::TextOut, ::SetTextAlign

CDC: :SetTextCharacterExtra

Remarks

Return Value

See Also

int SetTextCharacterExtra(int nCharExtra);

nCharExtra Specifies the amount of extra space (in logical units) to be added to
each character. If the current mapping mode is not MM_TEXT, nCharExtra is
transformed and rounded to the nearest pixel.

Sets the amount of intercharacter spacing. GDI adds this spacing to each character,
including break characters, when it writes a line of text to the device context. The
default value for the amount of intercharacter spacing is O.

The amount of the previous intercharacter spacing.

CDC: : GetTextCharacterExtra, : :SetTextCharacterExtra

CDC: :SetTextColor

Remarks

virtual COLORREF SetTextColor(COLORREF crColor);

crColor Specifies the color of the text as an RGB color value.

Sets the text color to the specified color. The system will use this text color when
writing text to this device context and also when converting bitmaps between color
and monochrome device contexts. If the device cannot represent the specified color,
the system sets the text color to the nearest physical color. The background color for
a character is specified by the SetBkColor and SetBkMode member functions.

314 CDC::SetTextJustification

Return Value

See Also

An RGB value for the previous text color.

CDC::GetTextColor, CDC::BitBlt, CDC::SetBkColor, CDC::SetBkMode,
::SetTextColor

CDC: :SetTextJustification

Remarks

Return Value

See Also

int SetTextjustification(int nBreakExtra, int nBreakCount);

nBreakExtra Specifies the total extra space to be added to the line of text (in
logical units). If the current mapping mode is not MM_TEXT, the value given by
this parameter is converted to the current mapping mode and rounded to the
nearest device unit.

nBreakCount Specifies the number of break characters in the line.

Adds space to the break characters in a string. An application can use the
GetTextMetrics member functions to retrieve a font's break character. After the
SetTextjustification member function is called, a call to a text-output function
(such as TextOut) distributes the specified extra space evenly among the specified
number of break characters. The break character is usually the space character
(ASCII 32), but may be defined by a font as some other character.

The member function GetTextExtent is typically used with SetTextjustification.
GetTextExtent computes the width of a given line before alignment. An applica­
tion can determine how much space to specify in the nBreakExtra parameter by
subtracting the value returned by GetTextExtent from the width of the string after
alignment.

The SetTextjustification function can be used to align a line that contains multiple
runs in different fonts. In this case, the line must be created piecemeal by aligning
and writing each run separately. Because rounding errors can occur during align­
ment, the system keeps a running error term that defines the current error. When
aligning a line that contains multiple runs, GetTextExtent automatically uses this
error term when it computes the extent of the next run. This allows the text-output
function to blend the error into the new run. After each line has been aligned, this
error term must be cleared to prevent it from being incorporated into the next line.
The term can be cleared by calling SetTextjustification with nBreakExtra set
to O.

One if the function is successful; otherwise O.

CDC:: GetMapMode, CDC: : GetTextExtent, CDC: : GetTextMetrics,
CDC::SetMapMode, CDC::TextOut, ::SetTextjustification

CDC::SetViewportOrg 315

CDC: :SetViewportExt

Remarks

Return Value

See Also

virtual CSize SetViewportExt(int ex, int ey);

virtual CSize SetViewportExt(SIZE size);

ex Specifies the x-extent of the viewport (in device units).

ey Specifies the y-extent of the viewport (in device units).

size Specifies the x- and y-extents of the viewport (in device units).

Sets the x- and y-extents of the viewport of the device context. The viewport, along
with the device-context window, defines how GDI maps points in the logical coor­
dinate system to points in the coordinate system of the actual device. In other words,
they define how GDI converts logical coordinates into device coordinates. When
the following mapping modes are set, calls to SetWindowExt and SetViewportExt
are ignored:

MM HIENGLISH
MM HIMETRIC
MM LOENGLISH

MM LOMETRIC
MM TEXT
MM TWIPS

When MM _ISOTROPIC mode is set, an application must call the
SetWindowExt member function before it calls SetViewportExt.

The previous extents of the viewport as a CSize object. When an error occurs, the
x- and y-coordinates of the returned CSize object are both set to O.

CDC::SetWindowExt, ::SetViewportExt, CSize, CDC::GetViewportExt

CDC: :SetViewportOrg
virtual CPoint SetViewportOrg(int x, int y);

virtual CPoint SetViewportOrg(POINT point);

x Specifies the x-coordinate (in device units) of the origin of the viewport. The
value must be within the range of the device coordinate system.

y Specifies the y-coordinate (in device units) of the origin of the viewport. The
value must be within the range of the device coordinate system.

316 CDC::SetWindowExt

Remarks

Return Value

See Also

point Specifies the origin of the viewport. The values must be within the range of
the device coordinate system. You can pass either a POINT structure or a CPoint
object for this parameter.

Sets the viewport origin of the device context. The viewport, along with the device­
context window, defines how GDI maps points in the logical coordinate system to
points in the coordinate system of the actual device. In other words, they define how
GDI converts logical coordinates into device coordinates. The viewport origin
marks the point in the device coordinate system to which GDI maps the window
origin, a point in the logical coordinate system specified by the SetWindowOrg
member function. GDI maps all other points by following the same process required
to map the window origin to the viewport origin. For example, all points in a circle
around the point at the window origin will be in a circle around the point at the
viewport origin. Similarly, all points in a line that passes through the window origin
will be in a line that passes through the viewport origin.

The previous origin of the viewport (in device coordinates) as a CPoint object.

CDC::SetWindowOrg, ::SetViewportOrg, CPoint, POINT,
CDC: :Get ViewportOrg

CDC: :SetWindowExt

Remarks

virtual CSize SetWindowExt(int ex, int ey);

virtual CSize SetWindowExt(SIZE size);

ex Specifies the x-extent (in logical units) of the window.

ey Specifies the y-extent (in logical units) of the window.

size Specifies the x- and y-extents (in logical units) of the window.

Sets the x- and y-extents of the window associated with the device context. The
window, along with the device-context viewport, defines how GDI maps points in
the logical coordinate system to points in the device coordinate system. When the
following mapping modes are set, calls to SetWindowExt and SetViewportExt
functions are ignored:

• MM HIENGLISH

• MM HIMETRIC

• MM LOENGLISH

• MM LOMETRIC

Return Value

See Also

CDC::SetWindowOrg 317

• MM TEXT

• MM TWIPS
When MM _ISOTROPIC mode is set, an application must call the
SetWindowExt member function before calling SetViewportExt.

The previous extents of the window (in logical units) as a CSize object. If an error
occurs, the x- and y-coordinates of the returned CSize object are both set to O.

CDC::GetWindowExt, CDC::SetViewportExt, ::SetWindowExt, CSize

CDC: :SetWindowOrg

Remarks

Return Value

See Also

CPoint SetWindowOrg(int x, int y);

CPoint SetWindowOrg(POINT point);

x Specifies the logical x -coordinate of the new origin of the window.

y Specifies the logical y-coordinate of the new origin of the window.

point Specifies the logical coordinates of the new origin of the window. You can
pass either a POINT structure or a CPoint object for this parameter.

Sets the window origin of the device context. The window, along with the device­
context viewport, defines how GDI maps points in the logical coordinate system to
points in the device coordinate system. The window origin marks the point in the
logical coordinate system from which GDI maps the viewport origin, a point in the
device coordinate system specified by the SetWindowOrg function. GDI maps all
other points by following the same process required to map the window origin to the
viewport origin. For example, all points in a circle around the point at the window
origin will be in a circle around the point at the viewport origin. Similarly, all points
in a line that passes through the window origin will be in a line that passes through
the viewport origin.

The previous origin of the window as a CPoint object.

::SetWindowOrg, ::SetViewportOrg, CPoint, POINT, CDC::GetWindowOrg

318 CDC::StartDoc

CDC::StartDoc

Remarks

Return Value

DOCINFO
Structure
Windows 3.1 Only

Members

See Also

int StartDoc(LPDOCINFO IpDoclnfo);

IpDocI nfo Points to a DOCINFO structure containing the name of the document
file and the name of the output file.

Informs the device driver that a new print job is starting and that all subsequent
StartPage and EndPage calls should be spooled under the same job until an
EndDoc call occurs. This ensures that documents longer than one page will not be
interspersed with other jobs.

For Windows version 3.1, this function replaces the STARTDOC printer escape.
Using this function ensures that documents containing more than one page are not
interspersed with other print jobs.

When running under Windows version 3.0, this member function sends a
ST ARTDOC printer escape.

StartDoc should not be used inside metafiles.

The value -1 if there is an error such as insufficient memory or an invalid port
specification occurs; otherwise a positive value.

A DOCINFO structure has this form:

typedef struct { /* di */
int cbSize;
LPCSTR lpszDocName;
LPCSTR lpszOutput;

} DOCINFO;

The DOCINFO structure contains the input and output filenames used by the
StartDoc function.

cbSize Specifies the size of the structure, in bytes.

IpszDocName Points to a null-terminated string specifying the name of the
document. This string must not be longer than 32 characters, including the null
terminating character.

IpszOutput Points to a null-terminated string specifying the name of an output
file. This allows a print job to be redirected to a file. If this value is NULL, output
goes to the device for the specified device context. •

CDC::Escape, CDC::EndDoc, CDC::AbortDoc

CDC::StretchBlt 319

CDC: :StartPage

Remarks

See Also

int StartPage();

Call this member function to prepare the printer driver to receive data. StartPage
supersedes the NEWFRAME and BANDINFO escapes. For an overview of the
sequence of printing calls, see the StartDoc member function.

The system disables the ResetDC member function between calls to StartPage and
EndPage.

When running under Windows version 3.0, this member function does nothing.

CDC::Escape, CDC::EndPage

CDC::StretchBlt
BOOL StretchBlt(int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc,

int ySrc, int nSrcWidth, int nSrcHeight, DWORD dwRop);

x Specifies the x-coordinate (in logical units) of the upper-left comer of the
destination rectangle.

y Specifies the y-coordinate (in logical units) of the upper-left comer of the
destination rectangle.

n Width Specifies the width (in logical units) of the destination rectangle.

nHeight Specifies the height (in logical units) of the destination rectangle.

pSrcDC Specifies the source device context.

xSrc Specifies the x-coordinate (in logical units) of the upper-left comer of the
source rectangle.

ySrc Specifies the x-coordinate (in logical units) of the upper-left comer of the
source rectangle.

nSrcWidth Specifies the width (in logical units) of the source rectangle.

nSrcHeight Specifies the height (in logical units) of the source rectangle.

dwRop Specifies the raster operation to be performed. Raster operation codes
define how GDI combines colors in output operations that involve a current brush,

320 CDC::StretchBlt

Remarks

a possible source bitmap, and a destination bitmap. This parameter may be one of
the following values, as described below:

• BLACKNESS Turns all output black.

• DSTINVERT Inverts the destination bitmap.

• MERGECOPY Combines the pattern and the source bitmap using the
Boolean AND operator.

• MERGEPAINT Combines the inverted source bitmap with the
destination bitmap using the Boolean OR operator.

• NOTSRCCOPY Copies the inverted source bitmap to the destination.

• NOTSRCERASE Inverts the result of combining the destination and
source bitmaps using the Boolean OR operator.

• PATCOPY Copies the pattern to the destination bitmap.

• P ATINVERT Combines the destination bitmap with the pattern using the
Boolean XOR operator.

• P ATP AINT Combines the inverted source bitmap with the pattern using
the Boolean OR operator. Combines the result of this operation with the
destination bitmap using the Boolean OR operator.

• SRCAND Combines pixels of the destination and source bitmaps using the
Boolean AND operator.

• SRCCOPY Copies the source bitmap to the destination bitmap.

• SRCERASE Inverts the destination bitmap and combines the result with
the source bitmap using the Boolean AND operator.

• SRCINVERT Combines pixels of the destination and source bitmaps
using the Boolean XOR operator.

• SRCP AINT Combines pixels of the destination and source bitmaps using
the Boolean OR operator.

• WHITENESS Turns all output white.

Copies a bitmap from a source rectangle into a destination rectangle, stretching or
compressing the bitmap if necessary to fit the dimensions of the destination rectan­
gle. The function uses the stretching mode of the destination device context (set by
SetStretchBltMode) to determine how to stretch or compress the bitmap.

The StretchBlt function moves the bitmap from the source device given by pSrcDC
to the destination device represented by the device-context object whose member
function is being called. The xSrc, ySrc, nSrcWidth, and nSrcHeight parameters
define the upper-left comer and dimensions of the source rectangle. The x, y,
nWidth, and nHeight parameters give the upper-left comer and dimensions of the

Return Value

See Also

CDC::TabbedTextOut 321

destination rectangle. The raster operation specified by dwRop defines how the
source bitmap and the bits already on the destination device are combined.

The StretchBlt function creates a mirror image of a bitmap if the signs of the
nSrcWidth and nWidth or nSrcHeight and nHeight parameters differ. If nSrcWidth
and n Width have different signs, the function creates a mirror image of the bitmap
along the x-axis. If nSrcHeight and nHeight have different signs, the function
creates a mirror image of the bitmap along the y-axis.

The StretchBIt function stretches or compresses the source bitmap in memory and
then copies the result to the destination. If a pattern is to be merged with the result,
it is not merged until the stretched source bitmap is copied to the destination. If a
brush is used, it is the selected brush in the destination device context. The destina­
tion coordinates are transformed according to the destination device context; the
source coordinates are transformed according to the source device context.

If the destination, source, and pattern bitmaps do not have the same color format,
StretchBIt converts the source and pattern bitmaps to match the destination bit­
maps. The foreground and background colors of the destination device context are
used in the conversion. If StretchBIt must convert a monochrome bitmap to color,
it sets white bits (l) to the background color and black bits (0) to the foreground
color. To convert color to monochrome, it sets pixels that match the background
color to white (1) and sets all other pixels to black (0). The foreground and back­
ground colors of the device context with color are used.

Not all devices support the StretchBIt function. To determine whether a device
supports StretchBIt, call the GetDeviceCaps member function with the
RASTER CAPS index and check the return value for the RC STRETCHBL T
flag.

Nonzero if the bitmap is drawn; otherwise O.

CDC: :BitBIt, CDC:: GetDeviceCaps, CDC: :SetStretchBltMode, :: StretchBIt

CDC::TabbedTextOut
virtual CSize TabbedTextOut(int x, int y, LPCSTR IpszString, int nCount,

int nTabPositions, LPINT IpnTabStopPositions, int nTabOrigin);

x Specifies the logical x -coordinate of the starting point of the string.

y Specifies the logical y-coordinate of the starting point of the string.

322 CDC::TextOut

Remarks

Return Value

See Also

IpszString Points to the character string to draw. You can pass either a pointer to
an array of characters or a CString object for this parameter.

nCount Specifies the number of characters in the string.

nTabP ositions Specifies the number of values in the array of tab-stop positions.

IpnTabStopPositions Points to an array containing the tab-stop positions (in
logical units). The tab stops must be sorted in increasing order; the smallest x­
value should be the first item in the array.

nTabOrigin Specifies the x-coordinate of the starting position from which tabs
are expanded (in logical units).

Writes a character string at the specified location, expanding tabs to the values
specified in the array of tab-stop positions. Text is written in the currently selected
font. If nTabPositions is 0 and IpnTabStopPositions is NULL, tabs are expanded
to eight times the average character width. If nTabPositions is 1, the tab stops are
separated by the distance specified by the first value in the IpnTabStopPositions
array. If the IpnTabStopPositions array contains more than one value, a tab stop is
set for each value in the array, up to the number specified by nT abP ositions.

The nTabOrigin parameter allows an application to call the TabbedTextOut
function several times for a single line. If the application calls the function more
than once with the nTabOrigin set to the same value each time, the function
expands all tabs relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the function. If an
application needs to update the current position when it calls the function, the
application can call the SetTextAlign member function with nFlags set to
T A _ UPDA TECP. When this flag is set, Windows ignores the x and y parameters
on subsequent calls to TabbedTextOut, using the current position instead.

The dimensions of the string (in logical units) as a CSize object.

CDC::GetTabbedTextExtent, CDC::SetTextAlign, CDC::TextOut,
CDC::SetTextColor, ::TabbedTextOut, CSize

CDC::TextOut
virtual BOOL TextOut(int x, int y, LPCSTR IpszString, int nCount);

virtual BOOL TextOut(int x, int y, const CString& str);

x Specifies the logical x-coordinate of the starting point of the text.

Remarks

Return Value

See Also

CDC::UpdateColors 323

y Specifies the logical y-coordinate of the starting point of the text.

lpszString Points to the character string to be drawn.

nCount Specifies the number of bytes in the string.

str A CString object that contains the characters to be drawn.

Writes a character string at the specified location using the currently selected font.
Character origins are at the upper-left comer of the character cell. By default, the
current position is not used or updated by the function. If an application needs to
update the current position when it calls TextOut, the application can call the
SetTextAlign member function with nFlags set to TA _ UPDATECP. When this
flag is set, Windows ignores the x and y parameters on subsequent calls to
TextOut, using the current position instead.

Nonzero if the function is successful; otherwise O.

CDC: : ExtTextOut, CDC: : GetTextExtent, CDC: :SetTextAlign,
CDC::SetTextColor, CDC::TabbedTextOut, ::TextOut

CDC::UpdateColors

Remarks

See Also

void U pdateColors();

Updates the client area of the device context by matching the current colors in the
client area to the system palette on a pixel-by-pixel basis. An inactive window with
a realized logical palette may call UpdateColors as an alternative to redrawing its
client area when the system palette changes. For more information on using color
palettes, see the Windows SDK documentation. The UpdateColors member
function typically updates a client area faster than redrawing the area. However,
because the function performs the color translation based on the color of each pixel
before the system palette changed, each call to this function results in the loss of
some color accuracy.

CDC::RealizePalette, CPalette, ::UpdateColors

324 CDC::m_hAttribDC

Data Members

CDC::m hAttribDC
Remarks

See Also

The attribute device context for this CDC object. By default, this device context is
equal to m _ hDC. In general, CDC GDI calls that request information from the
device context are directed to m_hAttribDC. See the CDC class description for
more on the use of these two device contexts.

CDC::m_hDC, CDC::SetAttribDC, CDC::ReleaseAttribDC

CDC::m hDC
Remarks

See Also

The output device context for this CDC object. By default, m _hDC is equal to
m _ hAttribDC, the other device context wrapped by CDC. In general, CDC GDI
calls that create output go to the m _ hDC device context. You can initialize
m _ hDC and m _ hAttribDC to point to different devices. See the CDC class
description for more on the use of these two device contexts.

CDC::m_hAttribDC, CDC::SetOutputDC, CDC::ReleaseOutputDC

CDialog 325

class CDialog : public CWnd
The CDialog class is the base class used for
displaying dialog boxes on the screen.
Dialog boxes are of two types: modal and
modeless. A modal dialog box must be
closed by the user before the application
continues. A modeless dialog box allows '-C_D_ia_lo--=g _____ ----'

the user to display the dialog box and return
to another task without canceling or removing the dialog box.

A CDialog object is a combination of a dialog template and a CDialog-derived
class. Use App Studio to create the dialog template and store it in a resource; then
use Class Wizard to create a class derived from CDialog.

A dialog box, like any other window, receives messages from Windows. In a dialog
box, you are particularly interested in handling notification messages from the
dialog box's controls since that is how the user interacts with your dialog box.
Class Wizard browses through the potential messages generated by each control in
your dialog box, and you can select which messages you wish to handle.
ClassWizard then adds the appropriate message-map entries and message-handler
member functions to the new class for you. You only need to write application­
specific code in the handler member functions.

If you prefer, you can always write message-map entries and member functions
yourself instead of using Class Wizard.

In all but the most trivial dialog box, you add member variables to your derived
dialog class to store data entered in the dialog box's controls by the user or to
display data for the user. Class Wizard browses through those controls in your
dialog box that can be mapped to data and prompts you to create a member variable
for each control. At the same time, you choose a variable type and permissible
range of values for each variable. Class Wizard adds the member variables to your
derived dialog class.

Class Wizard then writes a data map to automatically handle the exchange of data
between the member variables and the dialog box's controls. The data map provides
functions that initialize the controls in the dialog box with the proper values,
retrieve the data, and validate the data.

To create a modal dialog box, construct an object on the stack using the constructor
for your derived dialog class and then call DoModal to create the dialog window
and its controls. If you wish to create a modeless dialog, call Create in the
constructor of your dialog class.

326 CDialog

You can also create a template in memory by using a DialogBoxResource data
structure as described in the Windows Software Development Kit documentation.
After you construct a CDialog object, call CreateIndirect to create a modeless
dialog box, or call InitModalIndirect and DoModal to create a modal dialog box.

Class Wizard writes the exchange and validation data map in an override of
CWnd::DoDataExchange that ClassWizard adds to your new dialog class. See
the DoDataExchange member function in CWnd for more on the exchange and
validation functionality.

Both the programmer and the framework call DoDataExchange indirectly through
a call to CWnd::UpdateData.

The framework calls UpdateData when the user clicks the OK button to close a
modal dialog box. (The data is not retrieved if the Cancel button is clicked.) The
default implementation of OnInitDialog also calls UpdateData to set the initial
values of the controls. You typically override OnInitDialog to further initialize
controls. OnInitDialog is called after all the dialog controls are created and just
before the dialog box is displayed.

You can call CWnd::UpdateData at any time during the execution of a modal or
modeless dialog box.

If you develop a dialog box by hand, you add the necessary member variables to the
derived dialog-box class yourself, and you add member functions to set or get these
values.

For more on App Studio, see the App Studio User's Guide. For more on
ClassWizard, see Chapter 9 of the App Studio User's Guide, and Chapters 6 and 7
of the Class Library User's Guide.

Call CWinApp::SetDialogBkColor to set the background color for dialog boxes
in your application.

A modal dialog box closes automatically when the user presses the OK or Cancel
buttons or when your code calls the EndDialog member function.

When you implement a modeless dialog box, always override the OnCancel
member function and call DestroyWindow from within it. Don't call the base class
CDialog::OnCancel, because it calls EndDialog, which will make the dialog box
invisible but will not destroy it. You should also override PostNcDestroy for
modeless dialog boxes in order to delete this, since modeless dialog boxes are
usually allocated with new. Modal dialog boxes are usually constructed on the
frame and do not need PostNcDestroy cleanup.

#include <afxwin.h>

CDialog 327

Construction/Destruction - Public Members
CDialog Constructs a CDialog object.

Initialization - Public Members
InitModalIndirect Creates a modal dialog box from a dialog-box template in

memory (not resource-based). The parameters are stored
until the function DoModal is called.

Operations - Public Members
DoModal

MapDialogRect

IsDialogMessage

NextDlgCtrl

PrevDlgCtrl

GotoDlgCtrl

SetDeflD

GetDeflD

SetHelpID

EndDialog

Invokes a modal dialog box and returns when done.

Converts the dialog-box units of a rectangle to screen units.

Determines whether the given message is intended for the
modeless dialog box and, if so, processes it.

Moves the focus to the next dialog-box control in the
dialog box.

Moves the focus to the previous dialog-box control in
the dialog box.

Moves the focus to a specified dialog-box control in the
dialog box.

Changes the default pushbutton control for a dialog box
to a specified pushbutton.

Gets the ID of the default pushbutton control for a
dialog box.

Sets a context -sensitive help ID for the dialog box.

Closes a modal dialog box.

Overridables - Public Members
OnlnitDialog

OnSetFont

OnOK

OnCancel

Override to augment dialog-box initialization.

Override to specify the font that a dialog-box control is to
use when it draws text.

Override to perform the OK button action in a modal dialog
box. The default closes the dialog box and DoModal returns
IDOK.

Override to perform the Cancel button or ESC key action.
The default closes the dialog box and DoModal returns
IDCANCEL.

328 CDialog::CDialog

Construction/Destruction - Protected Members
CDialog Constructs a CDialog object.

Initialization - Protected Members
Create

CreateIndirect

Initializes the CDialog object. Creates a modeless dialog
box and attaches it to the CDialog object.

Creates a modeless dialog box from a dialog-box template in
memory (not resource-based).

Member Functions

CDialog: :CDialog

Protected

Remarks

CDialog(LPCSTR lpszTemplateName, CWnd* pParentWnd = NULL);

CDialog(UINT nIDTemplate, CWnd* pParentWnd = NULL);

CDialog(); •

IpszTemplateName Contains a null-terminated string that is the name of a dialog­
box template resource.

nIDTemplate Contains the ID number of a dialog-box template resource.

pParentWnd Points to the parent or owner window object (of type CWnd) to
which the dialog object belongs. If it is NULL, the dialog object's parent window
is set to the main application window.

To construct a resource-based modal dialog box, invoke either public form of the
constructor. One form of the constructor provides access to the dialog resource by
template name. The other constructor provides access by template ID number,
usually with an IDD _ prefix (for example, IDD_DIALOG 1).

To construct a modal dialog box from a template in memory, first invoke the
parameterless, protected constructor and then call InitModalIndirect.

After you construct a modal dialog box with one of the above methods, call
DoModal.

See Also

CDialog::Create 329

To construct a modeless dialog box, use the protected form of the CDialog
constructor. The constructor is protected because you must derive your own dialog­
box class to implement a modeless dialog box. Construction of a modeless dialog
box is a two-step process. First invoke the constructor; then call the Create
member function to create a resource-based dialog box, or call CreateIndirect to
create the dialog box from a template in memory.

CDialog: :Create, CWnd: : DestroyWindow , CDialog: :InitModalIndirect,
CDialog: :DoModal, :: CreateDialog

CDialog: :Create
Protected

Remarks

BOOL Create(LPCSTR IpszTemplateName, CWnd* pParentWnd = NULL);

BOOL Create(UINT nIDTemplate, CWnd* pParentWnd = NULL); •

IpszTemplateName Contains a null-terminated string that is the name of a dialog­
box template resource.

pParentWnd Points to the parent window object (of type CWnd) to which the
dialog object belongs. If it is NULL, the dialog object's parent window is set to
the main application window.

nIDTemplate Contains the ID number of a dialog-box template resource.

Call Create to create a modeless dialog box using a dialog-box template from a
resource. You can put the call to Create inside the constructor or call it after the
constructor is invoked.

Two forms of the Create member function are provided for access to the dialog­
box template resource by either template name or template ID number (for example,
IDD_DIALOGl).

For either form, pass a pointer to the parent window object. If pParentWnd is
NULL, the dialog box will be created with its parent or owner window set to the
main application window.

The Create member function returns immediately after it creates the dialog box.

Use the WS _VISIBLE style in the dialog-box template if the dialog box should
appear when the parent window is created. Otherwise, you must call
ShowWindow. For further dialog-box styles and their application, see the Windows
Software Development Kit (SDK) documentation and App Studio documentation.

330 CDialog ::Createlndirect

Return Value

See Also

Use the CWnd::DestroyWindow function to destroy a dialog box created by the
Create function.

Both forms return nonzero if dialog box creation and initialization was successful;
otherwise O.

CDialog::CDialog, CWnd::DestroyWindow, CDialog::InitModalIndirect,
CDialog: :DoModal, : :CreateDialog

CDialog: :Createlndirect
Protected

Remarks

Return Value

See Also

BOOL CreateIndirect(const void FAR* IpDialogTemplate,
CWnd* pParentWnd = NULL); •

IpDialogTemplate Points to memory that contains a dialog-box template used to
create the dialog box. This template is in the form of a DialogBoxHeader
structure and control information. For more information on this structure, see the
Software Development Kit for Windows version 3.1.

pParentWnd Points to the dialog object's parent window object (of type CWnd).
If it is NULL, the dialog object's parent window is set to the main application
window.

Call this member function to create a modeless dialog box from a dialog-box
template in memory.

The CreateIndirect member function returns immediately after it creates the
dialog box.

Use the WS_ VISIBLE style in the dialog-box template if the dialog box should
appear when the parent window is created. Otherwise, you must call ShowWindow
to cause it to appear. For more information on how you can specify other dialog­
box styles in the template, see the Windows SDK documentation and the App Studio
User's Guide.

Use the CWnd::DestroyWindow function to destroy a dialog box created by the
CreateIndirect function.

Nonzero if the dialog was created and initialized successfully; otherwise O.

CDialog: :CDialog, CWnd: : DestroyWindow , CDialog: :Create,
:: CreateDialogIndirect

CDialog::EndDialog 331

CDialog: :DoModal

Remarks

Return Value

See Also

virtual int DoModal();

Call this member function to invoke the modal dialog box and return the dialog box
result when done. This member function handles all interaction with the user while
the dialog box is active. This is what makes the dialog box modal; that is, the user
cannot interact with other windows until the dialog box is closed.

If the user clicks one of the pushbuttons in the dialog box, such as OK or Cancel, a
message-handler member function, such as OnOK or OnCancel, is called to
attempt to close the dialog box. The default OnOK member function will validate
and update the dialog-box data and close the dialog box with result IDOK, and the
default OnCancel member function will close the dialog box with result
IDCANCEL without validating or updating the dialog-box data. You can override
these message-handler functions to alter their behavior.

An int value that specifies the value of the nResult parameter that was passed to the
CDialog: :EndDialog member function, which is used to close the dialog box. The
return value is -1 if the function could not create the dialog box, or IDABORT if
some other error occurred.

: :DialogBox

CDialog:: End Dialog

Remarks

See Also

void EndDialog(int nResult);

nResult Contains the value to be returned from the dialog box to the caller of
DoModal.

Call this member function to terminate a modal dialog box. This member function
returns nResult as the return value of DoModal. You must use the EndDialog
function to complete processing whenever a modal dialog box is created.

You can call EndDialog at any time, even in OnInitDialog, in which case you
should close the dialog box before it is shown or before the input focus is set.

EndDialog does not close the dialog box immediately. Instead, it sets a flag that
directs the dialog box to close as soon as the current message handler returns.

CDialog::DoModal, CDialog::OnOK, CDialog::OnCancel

332 CDialog::GetDefID

CDialog: :GetDeflD

Remarks

Return Value

See Also

DWORD GetDeflD() const;

Call the GetDeflD member function to get the ID of the default pushbutton control
for a dialog box. This is usually an OK button.

A 32-bit value (DWORD). If the default pushbutton has an ID value, the high­
order word contains DC HASDEFID and the low-order word contains the ID
value. If the default pushbutton does not have an ID value, the return value is O.

CDialog::SetDeflD, DM _ GETDEFID

CDialog: :GotoDlgCtrl

Remarks

See Also

void GotoDlgCtrl(CWnd* pWndCtrl);

pWndCtrl Identifies the window (control) that is to receive the focus.

Moves the focus to the specified control in the dialog box.

To get a pointer to the control (child window) to pass as pWndCtrl, call the
CWnd: : GetDlgItem member function, which returns a pointer to a CWnd object.

CWnd: : GetDlgItem, CDialog: :PrevDlgCtrl, CDialog: : NextDlgCtrl

CDialog: :lnitModalindirect

Remarks

BOOL InitModalIndirect(HGLOBAL hDialogTemplate);

hD ialogTemp late Contains a handle to global memory containing a dialog-box
template. This template is in the form of a DialogBoxHeader structure and data
for each control in the dialog box. For more information on this structure, see the
Software Development Kit for Windows version 3.l.

Call this member function to initialize a modal dialog object using a dialog-box
template that you construct in memory.

To create a modal dialog indirectly, first allocate a global block of memory and fill
it with the dialog box template. Then call the empty CDialog constructor to
construct the dialog-box object. Next, call InitModalIndirect to store your handle

Return Value

See Also

CDialog: :lsDialogMessage 333

to the in-memory dialog-box template. The Windows dialog box is created and
displayed later, when the DoModal member function is called.

Nonzero if the dialog object was created and initialized successfully; otherwise 0.

: :DialogBoxIndirect, CDialog: :DoModal, CWnd: :DestroyWindow,
DialogBoxResource, CDialog:: CDialog, CDialog: :DoModal

CDialog: :lsDialogMessage

Remarks

Return Value

See Also

BOOL IsDialogMessage(LPMSG IpMsg);

IpMsg Points to an MSG structure that contains the message to be checked.

Call this member function to determine whether the given message is intended for a
modeless dialog box; if it is, this function processes the message. When the
IsDialogMessage function processes a message, it checks for keyboard messages
and converts them to selection commands for the corresponding dialog box. For
example, the TAB key selects the next control or group of controls, and the DOWN

ARROW key selects the next control in a group.

You must not pass a message processed by IsDialogMessage to the
TranslateMessage or DispatchMessage Windows functions because it has
already been processed.

Specifies whether the member function has processed the given message. It is
nonzero if the message has been processed; otherwise 0. If the return is 0, call the
PreTranslateMessage member function of the base class to process the message.
In an override of the CDialog: :PreTranslateMessage member function the code
looks like this :

BOOl CMyDlg::PreTranslateMessage(msg)
{

if(IsDialogMessage(msg))
return TRUE;

else
return CDialog::PreTranslateMessage(msg);

: :DispatchMessage, : : TranslateMessage, : :GetMessage,
CWnd: :PreTranslateMessage, : : IsDialogMessage

334 CDialog: :MapDialogRect

CDialog:: MapDialog Reet

Remarks

See Also

void MapDialogRect(LPRECT IpRect) const;

IpRect Points to a RECT structure or CRect object that contains the dialog-box
coordinates to be converted.

Call to convert the dialog-box units of a rectangle to screen units. Dialog-box units
are stated in terms of the current dialog-box base unit derived from the average
width and height of characters in the font used for dialog-box text. One horizontal
unit is one-fourth of the dialog-box base-width unit, and one vertical unit is one­
eighth of the dialog-box base height unit.

The GetDialogBaseUnits Windows function returns size information for the
system font, but you can specify a different font for each dialog box if you use the
DS _ SETFONT style in the resource-definition file. The MapDialogRect
Windows function uses the appropriate font for this dialog box.

The MapDialogRect member function replaces the dialog-box units in IpRect with
screen units (pixels) so that the rectangle can be used to create a dialog box or
position a control within a box.

::GetDialogBaseUnits, ::MapDialogRect, WM_SETFONT

CDialog: :NextDlgCtrl

Remarks

See Also

void NextDlgCtrl() const;

Moves the focus to the next control in the dialog box. If the focus is at the last
control in the dialog box, it moves to the first control.

CDialog: : Prev DlgCtrl, CDialog:: GotoDlgCtrl

CDialog: :OnCaneel
Protected

Remarks

virtual void OnCancel(); •

The framework calls this member function when the user clicks the Cancel button
or presses the ESC key in a modal or modeless dialog box.

See Also

CDialog::OnlnitDialog 335

Override this member function to perform Cancel button action. The default simply
terminates a modal dialog box by calling EndDialog and causing DoModal to
return IDCANCEL.

If you implement the Cancel button in a modeless dialog box, you must override the
OnCancel member function and call DestroyWindow from within it. Don't call
the base-class member function, because it calls EndDialog, which will make the
dialog box invisible but not destroy it.

CDialog::OnOK, CDialog::EndDialog

CDialog: :OnlnitDialog

Remarks

Return Value

See Also

virtual BOOL OnlnitDialog();

This member function is called in response to the WM _ INITDIALOG message.
This message is sent to the dialog box during the Create, Createlndirect, or
DoModal calls, which occur immediately before the dialog box is displayed.

Override this member function if you need to perform special processing when the
dialog box is initialized. In the overridden version, first call the base class
OnlnitDialog but disregard its return value. You will normally return TRUE from
your overridden member function.

Windows calls the OnlnitDialog function via the standard global dialog-box
procedure common to all Microsoft Foundation Class Library dialog boxes, rather
than through your message map, so you do not need a message-map entry for this
member function.

Specifies whether the application has set the input focus to one of the controls in the
dialog box. If OnlnitDialog returns nonzero, Windows sets the input focus to the
first control in the dialog box. The application can return 0 only if it has explicitly
set the input focus to one of the controls in the dialog box.

CDialog: :Create, CDialog: :Createlndirect, WM _ INITDIALOG

336 CDialog::OnOK

CDialog: :OnOK
Protected

Remarks

See Also

virtual void OnOK();.

Called when the user clicks the OK button (the button with an ID of IDOK).

Override this member function to perform the OK button action. If the dialog box
includes automatic data validation and exchange, the default implementation of this
member function validates the dialog-box data and updates the appropriate
variables in your application.

If you implement the OK button in a modeless dialog box, you must override the
OnOK member function and call DestroyWindow from within it. Don't call the
base-class member function, because it calls EndDialog, which makes the dialog
box invisible but does not destroy it.

CDialog:: OnCancel, CDialog: :EndDialog

CDialog: :OnSetFont

Remarks

See Also

virtual void OnSetFont(CFont* pF ant);

pF ant Specifies a pointer to the font. Used as the default font for all controls in
this dialog box.

Specifies the font a dialog-box control will use when drawing text. The dialog-box
control will use the specified font as the default for all dialog-box controls. App
Studio typically sets the dialog-box font as part of the dialog-box template resource.

WM_SETFONT, CWnd::SetFont

CDialog:: PrevDlgCtrl

Remarks

See Also

void PrevDIgCtrl() const;

Sets the focus to the previous control in the dialog box. If the focus is at the first
control in the dialog box, it moves to the last control in the box.

CDialog: :NextDIgCtrl, CDialog: :GotoDlgCtrl

CDialog::SetHelpID 337

CDialog: :SetDefl D

Remarks

See Also

void SetDeflD(UINT nID);

nID Specifies the ID of the pushbutton control that will become the default.

Changes the default pushbutton control for a dialog box.

CDialog: : GetDeflD

CDialog: :SetHelplD

Remarks

void SetHelpID(UINT nIDR);

nIDR Specifies the context-sensitive help ID.

Sets a context-sensitive help ID for the dialog box.

338 CDialogBar

class CDialogBar : public CControlBar

See Also

The CDialogBar class provides the
functionality of a Windows modeless
dialog box in a control bar. A dialog
bar resembles a dialog box in that it
contains standard Windows controls
that the user can tab between. Another
similarity is that you create a dialog
template to represent the dialog bar.

CDialogBar

Creating and using a dialog bar is similar to creating and using a CForm View
object (see App Studio User's Guide, Chapter 3). First, use App Studio to define a
dialog template with the style WS _ CHILD and no other style. The template must
not have the style WS _VISIBLE. In your application code, call the constructor to
construct the CDialogBar object, then call Create to create the dialog-bar window
and attach it to the CDialogBar object.

#include <afxext.h>

CControlBar, CFormView

Construction/Destruction - Public Members
CDialogBar

Create

Constructs a CDialogBar object.

Creates a Windows dialog bar and attaches it to the
CDialogBar object.

Member Functions

CDialog Bar: :CDialog Bar

Remarks

See Also

CDialogBar();

Constructs a CDialogBar object.

CControlBar

CDialogBar::Create 339

CDialogBar: :Create

Remarks

Return Value

See Also

BOOL Create(CWnd* pParentWnd, LPCSTR lpszTemplateName,
UINT nStyle, UINT nID);

BOOL Create(CWnd* pParentWnd, UINT nIDTemplate, UINT nStyle,
UINT nID);

pParentWnd A pointer to the parent CWnd object.

lpszTemplateName A pointer to the name of the CDialogBar object's dialog-box
resource template.

nStyle The alignment style of the dialog bar. The styles supported and their
meanings are as follows:

• CBRS BOTTOM Control bar is at the bottom of the frame window.

• CBRS NO ALIGN Control bar is not repositioned when the parent is
resized.

• CBRS LEFT Control bar is at the left of the frame window.

• CBRS_RIGHT Control bar is at the right of the frame window.

nID The control ID of the dialog bar.

nID Temp late The resource ID of the CDialogBar object's dialog-box template.

Loads the dialog-box resource template specified by lpszTemplateName or
nIDTemplate, creates the dialog-bar window, sets its style, and associates it with
the CDialogBar object.

Nonzero if successful; otherwise O.

CDialogBar:: CDialogBar

340 CDocltem

class CDocltem : public CObject

See Also

CDocItem is the base class for document items,
which are components of a document's data.
CDocltem objects are used to represent Object
Linking and Embedding (OLE) items in both client
and server documents.

I CObject

Lj CDocltem

Typically you do not use the CDocltem class directly. Instead, you use its derived
classes COleClientltem or COleServerItem.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

COleDocument, COleServerItem, COleClientItem

Operations - Public Members
GetDocument Returns the document that contains the item.

Member Functions

CDocltem: :GetDocument

Remarks

Return Va:ue

See Also

CDocument* GetDocument() const;

Call this function to get the document that contains the item. This function is over­
ridden in the derived classes COleClientItem and COleServerltem to return
pointers to COleClientDoc and COleServerDoc, respectively.

A pointer to the document that contains the item, or NULL if the item is not part of
a document.

COleDocument, COleServer Doc, COleClientDoc

class CDocTemplate : public CCmdTarget
CDocTemplate is an abstract base class that
defines the basic functionality for document
templates. A document template defines the
relationship between three types of classes:

• A document class, which you derive from CDocument.

CDocTemplate 341

CDocTemplate

• A view class, which displays data from the document class listed above. You
can derive this class from CView, CScrollView, CFormView, or CEditView.
(You can also use CEditView directly.)

• A frame window class, which contains the view. For a single document interface
(SDI) application, you derive this class from CFrame Wnd. For a multiple
document interface (MDI) application, you derive this class from
CMDIChildWnd. If you don't need to customize the behavior of the frame
window, you can use CFrameWnd or CMDIChildWnd directly without
deriving your own class.

Your application has one document template for each type of document that it
supports. For example, if your application supports both spreadsheets and text
documents, the application has two document template objects. Each document
template is responsible for creating and managing all the documents of its type.

The document template stores pointers to the CRuntimeClass objects for the
document, view, and frame window classes. These CRuntimeClass objects are
specified when constructing a document template.

The document template contains the ID of the resources used with the document
type (such as menu, icon, or accelerator table resources). The document template
also has strings containing additional information about its document type. These
include the name of the document type (for example, "Worksheet"), the file
extension (for example, ".xls"), and, optionally, other strings used by the
application's user interface, the Windows File Manager, and Object Linking and
Embedding (OLE) support.

Since CDocTemplate is an abstract class, you cannot use the class directly. A
typical application uses one of the two CDocTemplate-derived classes that the
Microsoft Foundation Class Library provides: CSingleDocTemplate, which
implements SDI, and CMultiDocTemplate, which implements MDI. See those
classes for more information on using document templates.

If your application requires a user-interface paradigm that is fundamentally
different from SDI or MDI, you can derive your own class from CDocTemplate.

342 CDocTemplate::GetDocString

See Also CSingleDocTemplate, CMultiDocTemplate, CDocument, CView,
CScrollView, CEditView, CForm View, CFrameWnd, CMDIChildWnd

Operations - Public Members
GetDocString Retrieves a string describing the document type.

Member Functions

CDocTemplate::GetDocString
virtual BOOL GetDocString(CString& rString, enum DocStringlndex index)

const;

rString A reference to a CString object that will contain the string when the
function returns.

index An index of the substring being retrieved from the string describing the
document type. This parameter can have one of the following values:

• CDocTemplate::windowTitle Name that appears in the application
window's title bar (for example, "Microsoft Excel"). Present only in the
document template for SDI applications.

• CDocTemplate::docName Root for the default document name (for
example, "Sheet"). This root, plus a number, is used for the default name of
a new document of this type whenever the user chooses the New command
from the File menu (for example, "Sheetl" or "Sheet2"). If not specified,
"Untitled" is used as the default.

• CDocTemplate::flleNewName Name of this document type. If the
application supports more than one type of document, this string is displayed
in the File New dialog box (for example, "Worksheet"). If not specified, the
document type is inaccessible using the File New command.

• CDocTemplate::fllterName Description of the document type and a
wildcard filter matching documents of this type. This string is displayed in
the List Files Of Type drop-down list in the File Open dialog box (for
example, "Worksheets (*.xls)").lfnot specified, the document type is
inaccessible using the File Open command.

Remarks

Return Value

See Also

CDocTemplate::GetDocString 343

• CDocTemplate: :filterExt Extension for documents of this type (for
example, ".xls"). If not specified, the document type is inaccessible using the
File Open command.

• CDocTemplate::regFileTypeld Identifier for the document type to be
stored in the registration database maintained by Windows. This string is for
internal use only (for example, "ExceIWorksheet"). If not specified, the
document type cannot be registered with the Windows File Manager.

• CDocTemplate::regFileTypeName Name of the document type to be
stored in the registration database. This string may be displayed in dialog
boxes of applications that access the registration database (for example,
"Microsoft Excel Worksheet").

If you are using App Wizard to create a set of starter files, the last four substrings
are present only if you specify a filename extension for your application's
documents when running App Wizard.

Call this function to retrieve a specific substring describing the document type. The
string containing these substrings is stored in the document template and is derived
from a string in the resource file for the application. The framework calls this
function to get the strings it needs for the application's user interface. If you have
specified a filename extension for your application's documents, the framework
also calls this function when adding an entry to the Windows registration database;
this allows documents to be opened from the Windows File Manager.

Call this function only if you are deriving your own class from CDocTemplate.

Nonzero if the specified substring was found; otherwise O.

CMultiDocTemplate:: CMultiDocTemplate,
CSingleDocTemplate: :CSingleDocTemplate,
CWinApp: : RegisterShellFileTypes

344 CDocument

class CDocument : public CCmdTarget
The CDocument class provides the basic
functionality for user-defined document classes.
A document represents the unit of data that the
user typically opens with the File Open com­
mand and saves with the File Save command.

CDocument

CDocument supports standard operations such as creating a document, loading it,
and saving it. The framework manipulates documents using the interface defined by
CDocument.

An application can support more than one type of document; for example, an appli­
cation might support both spreadsheets and text documents. Each type of document
has an associated document template; the document template specifies what re­
sources (for example, menu, icon, or accelerator table) are used for that type of
document. Each document contains a pointer to its associated CDocTemplate
object.

Users interact with a document through the CView object(s) associated with it. A
view renders an image of the document in a frame window and interprets user input
as operations on the document. A document can have multiple views associated
with it. When the user opens a window on a document, the framework creates a
view and attaches it to the document. The document template specifies what type
of view and frame window are used to display each type of document.

Documents are part of the framework's standard command routing and conse­
quently receive commands from standard user-interface components (such as the
File Save menu item). A document receives commands forwarded by the active
view. If the document doesn't handle a given command, it forwards the command
to the document template that manages it.

When a document's data is modified, each of its views must reflect those modifica­
tions. CDocument provides the UpdateAlIViews member function for you to
notify the views of such changes, so the views can repaint themselves as necessary.
The framework also prompts the user to save a modified file before closing it.

To implement documents in a typical application, you must do the following:

• Derive a class from CDocument for each type of document.

• Add member variables to store each document's data.

• Implement member functions for reading and modifying the document's data.
The document's views are the most important users of these member functions.

• Override the Serialize member function in your document class to write and
read the document's data to and from disk.

See Also

CDocument 345

#include <afxwin.h>

CCmdTarget, CView, CDocTemplate

Construction/Destruction - Public Members
CDocument Constructs a CDocurnent object.

Operations - Public Members
AddView Attaches a view to the document.

GetDocTemplate

GetFirst ViewPosition

GetNext View

GetPathName

GetTitle

IsModified

RemoveView

SetModifiedFlag

SetPathName

SetTitle

UpdateAIIViews

Returns a pointer to the document template that
describes the type of the document.

Returns the position of the first in the list of views;
used to begin iteration.

Iterates through the list of views associated with the
document.

Returns the path of the document's data file.

Returns the document's title.

Indicates whether the document has been modified
since it was last saved.

Detaches a view from the document.

Sets a flag indicating that you have modified the
document since it was last saved.

Sets the path of the document's data file.

Sets the document's title.

Notifies all views that document has been modified.

Overridables - Public Members
CanCloseFrame

DeleteContents

OnChangedViewList

OnCloseDocument

OnNewDocument

OnOpenDocument

OnSaveDocument

Advanced overridable; called before closing a
frame window viewing this document.

Called to perform cleanup of the document.

Called after a view is added to or removed from the
document.

Called to close the document.

Called to create a new document.

Called to open an existing document.

Called to save the document to disk.

346 CDocument::AddView

ReportSaveLoadException Advanced overridable; called when an open or save
operation cannot be completed because of an
exception.

SaveModified Advanced overridable; called to ask the user
whether the document should be saved.

Member Functions

CDocument: :AddView

Remarks

See Also

void AddView(CView* p View);

pView Points to the view being added.

Call this function to attach a view to the document. This function adds the specified
view to the list of views associated with the document; the function also sets the
view's document pointer to this document. The framework calls this function when
attaching a newly created view object to a document; this occurs in response to a
File New, File Open, or New Window command or when a splitter window is split.

Call this function only if you are manually creating and attaching a view. Typically
you will let the framework connect documents and views by defining a
CDocTemplate object to associate a document class, view class, and frame
window class.

CDocTemplate, CDocument: : GetFirst ViewPosition,
CDocument: : GetNext View, CDocument: :Remove View,
CView: : GetDocument

CDocument: :CanCloseFrame

Remarks

virtual BOOL CanCloseFrame(CFrameWnd* pFrame);

pFrame Points to the frame window of a view attached to the document.

Called by the framework before a frame window displaying the document is closed.
The default implementation checks if there are other frame windows displaying the

Return Value

See Also

CDocument: :DeleteContents 347

document. If the specified frame window is the last one that displays the document,
the function prompts the user to save the document if it has been modified. Override
this function if you want to perform special processing when a frame window is
closed. This is an advanced overridable.

Nonzero if it is safe to close the frame window; otherwise O.

CDocument: :SaveModified

CDocument: :CDocument

Remarks

See Also

CDocument();

Constructs a CDocument object. The framework handles document creation for
you. Override the OnNewDocument member function to perform initialization on
a per-document basis; this is particularly important in single document interface
(SDI) applications.

CDocument:: OnNewDocument, CDocument: :OnOpenDocument

CDocument:: DeleteContents

Remarks

See Also

virtual void DeleteContents();

Called by the framework to delete the document's data without destroying the
document object itself. It is called just before the document is to be destroyed. It is
also called to ensure that a document is empty before it is reused. This is
particularly important for an SDI application, which uses only one document object;
the document object is reused whenever the user creates or opens another document.
Call this function to implement an Edit Clear All or similar command that deletes
all of the document's data. The default implementation of this function does
nothing. Override this function to delete the data in your document.

CDocument: :OnCloseDocument, CDocument: :OnNewDocument,
CDocument: :OnOpenDocument

348 CDocument::GetDocTemplate

CDocument::GetDocTemplate

Remarks

Return Value

See Also

CDocTemplate* GetDocTemplate() const;

Call this function to get a pointer to the document template for this document type.

A pointer to the document template for this document type, or NULL if the
document is not managed by a document template.

CDocTemplate

CDocument: :GetFirstViewPosition

Remarks

Return Value

See Also

Example

virtual POSITION GetFirstViewPosition() const;

Call this function to get the position of the fIrst view in the list of views associated
with the document.

A POSITION value that can be used for iteration with the GetNextView member
function.

CDocument: : GetNextView

To get the first view in the list of views:

POSITION pas = GetFirstViewPasitian();
CView* pFirstView = GetNextView(pas);

CDocument: :GetNextView

Remarks

virtual CView* GetNextView(POSITION& rPosition) const;

rPosition A reference to a POSITION value returned by a previous call to the
GetNextView or GetFirstViewPosition member functions. This value must not
be NULL.

Call this function to iterate through all of the document's views. The function
returns the view identified by rPosition and then sets rPosition to the POSITION
value of the next view in the list. If the retrieved view is the last in the list, then
rPosition is set to NULL.

Return Value

See Also

CDocument::lsModified 349

A pointer to the view identified by rPosition.

CDocument: :AddView, CDocument: : GetFirstViewPosition,
CDocument: : Remove View, CDocument:: UpdateAlIViews

CDocument: :GetPathName

Remarks

Return Value

See Also

const CString& GetPathName() const;

Call this function to get the fully qualified path of the document's disk file.

The document's fully qualified path. This string is empty if the document has not
been saved or does not have a disk file associated with it.

CDocument: :SetPathName

CDocument: :GetTitle

Remarks

Return Value

See Also

const CString& GetTitle() const;

Call this function to get the document's title, which is usually derived from the
document's filename.

The document's title.

CDocument: :SetTitle

CDocument:: Is Modified

Remarks

Return Value

See Also

BOOL IsModifiedO;

Call this function to determine whether the document has been modified since it was
last saved.

Nonzero if the document has been modified since it was last saved; otherwise O.

CDocument: :SetModifiedFlag, CDocument: :SaveModified

350 CDocument::OnChangedViewList

CDocument: :OnChangedViewList

Remarks

See Also

virtual void OnChangedViewList();

Called by the framework after a view is added to or removed from the document.
The default implementation of this function checks whether the last view is being
removed and, if so, deletes the document. Override this function if you want to
perform special processing when the framework adds or removes a view. For
example, if you want a document to remain open even when there are no views
attached to it, override this function.

CDocument: :AddView, CDocument: : Remove View

CDocument: :OnCloseDocument

Remarks

See Also

virtual void OnCloseDocument();

Called by the framework when the document is closed, typically as part of the
File Close command. The default implementation of this function calls the
DeleteContents member function to delete the document's data and then closes
the frame windows for all the views attached to the document.

Override this function if you want to perform special cleanup processing when the
framework closes a document. For example, if the document represents a record in
a database, you may want to override this function to close the database. You
should call the base class version of this function from your override.

CDocument: :DeleteContents, CDocument: :OnNewDocument,
CDocument: :OnOpenDocument

CDocument: :OnNewDocument

Remarks

virtual BOOL OnNewDocument();

Called by the framework as part of the File New command. The default
implementation of this function calls the DeleteContents member function to
ensure that the document is empty and then marks the new document as clean.
Override this function to initialize the data structure for a new document. You
should call the base class version of this function from your override.

Return Value

See Also

CDocument::OnOpenDocument 351

If the user chooses the File New command in an SDI application, the framework
uses this function to reinitialize the existing document object, rather than creating a
new one. If the user chooses File New in a multiple document interface (MDI)
application, the framework creates a new document object each time and then calls
this function to initialize it. You must place your initialization code in this function
instead of in the constructor for the File New command to be effective in SDI
applications.

Nonzero if the document was successfully initialized; otherwise O.

CDocument: :CDocument, CDocument: :DeleteContents,
CDocument: :OnCloseDocument, CDocument: :OnOpenDocument,
CDocument: :OnSaveDocument

CDocument::OnOpenDocument

Remarks

Return Value

See Also

virtual BOOL OnOpenDocument(const char* pszPathNarne);

pszP athN arne Points to the path of the document to be opened.

Called by the framework as part of the File Open command. The default implemen­
tation of this function opens the specified file, calls the DeleteContents member
function to ensure that the document is empty, calls Serialize to read the file's
contents, and then marks the document as clean. Override this function if you want
to use something other than the archive mechanism or the file mechanism. For
example, you might write an application where documents represent records in a
database rather than separate files.

If the user chooses the File Open command in an SDI application, the framework
uses this function to reinitialize the existing document object, rather than creating a
new one. If the user chooses File Open in an MDI application, the framework
constructs a new document object each time and then calls this function to initialize
it. You must place your initialization code in this function instead of in the
constructor for the File Open command to be effective in SDI applications.

Nonzero if the document was successfully loaded; otherwise O.

CDocument: :DeleteContents, CDocument: :OnCloseDocument,
CDocument: :OnNewDocument, CDocument: :OnSaveDocument,
CDocument: : ReportSaveLoadException, CObject: : Serialize

352 CDocument: :OnSaveDocument

CDocument: :OnSaveDocument

Remarks

Return Value

See Also

virtual BOOL OnSaveDocument(const char* pszPathName);

pszPathName Points to the fully qualified path that the file should be saved to.

Called by the framework as part of the File Save or File Save As command. The
default implementation of this function opens the specified file, calls Serialize to
write the document's data to the file, and then marks the document as clean. Over­
ride this function if you want to perform special processing when the framework
saves a document. For example, you might write an application where documents
represent records in a database rather than separate files.

Nonzero if the document was successfully saved; otherwise O.

CDocument: :OnCloseDocument, CDocument: :OnNewDocument,
CDocument: :OnOpenDocument, CDocument: : ReportSaveLoadException,
CObject:: Serialize

CDocument:: Remove View

Remarks

See Also

void Remove View(CView* p View);

p View Points to the view being removed.

Call this function to detach a view from a document. This function removes the
specified view from the list of views associated with the document; it also sets the
view's document pointer to NULL. This function is called by the framework when
a frame window is closed or a pane of a splitter window is closed.

Call this function only if you are manually detaching a view. Typically you will let
the framework detach documents and views by defining a CDocTemplate object to
associate a document class, view class, and frame window class.

CDocument: :AddView, CDocument: : GetFirstViewPosition,
CDocument: : GetNext View

CDocument::SaveModified 353

CDocument:: ReportSaveLoad Exception

Remarks

See Also

virtual void ReportSaveLoadException(const char* pszPathName,
CException* e, BOOL bSaving, UINT nIDPDefault);

pszPathName Points to name of document that was being saved or loaded.

e Points to the exception that was thrown.

bSaving Flag indicating what operation was in progress; nonzero if the document
was being saved, 0 if the document was being loaded.

nIDPDefault Identifier of the error message to be displayed if the function does
not specify a more specific one.

Called if an exception is thrown (typically a CFileException or
CArchiveException) while saving or loading the document. The default
implementation examines the exception object and looks for an error message that
specifically describes the cause. If a specific message is not found, the general
message specified by the nIDPDefault parameter is used. The function then
displays a message box containing the error message. Override this function if you
want to provide additional, customized failure messages. This is an advanced
overridable.

CDocument: :OnOpenDocument, CDocument: :OnSaveDocument,
CFileException, CArchiveException

CDocument: :SaveModified

Remarks

Return Value

See Also

virtual BOOL SaveModified();

Called by the framework before a modified document is to be closed. The default
implementation of this function displays a message box asking the user whether to
save the changes to the document, if any have been made. Override this function if
your program requires a different prompting procedure. This is an advanced
overridable.

Nonzero if it is safe to continue and close the document; 0 if the document should
not be closed.

CDocument: :CanCloseFrame, CDocument: :IsModified,
CDocument: :OnNewDocument, CDocument:: OnOpenDocument,
CDocument: :OnSaveDocument

354 CDocument::SetModifiedFlag

CDocument: :SetMod ified Flag

Remarks

See Also

void SetModifiedFlag(BOOL bModified = TRUE);

bM odified Flag indicating whether the document has been modified.

Call this function after you have made any modifications to the document. By
calling this function consistently, you ensure that the framework prompts the user to
save changes before closing a document. Typically you should use the default value
of TRUE for the bModified parameter. To mark a document as clean (unmodified),
call this function with a value of FALSE.

CDocument: :IsModified, CDocument: : Save Modified

CDocument: :SetPath Name

Remarks

See Also

virtual void SetPathName(const char* pszPathName);

pszPathName Points to the string to be used as the document's path.

Call this function to specify the fully qualified path of the document's disk file. The
path is added to the most recently used (MRU) file list maintained by the applica­
tion. Note that some documents are not associated with a disk file. Call this function
only if you are overriding the framework's default implementation for opening and
saving files.

CDocument: : GetPathName, CWinApp: : AddToRecentFileList

CDocument: :SetTitle

Remarks

See Also

virtual void SetTitle(const char* pszTitle);

szTitle Points to the string to be used as the document's title.

Call this function to specify the document's title (the string displayed in the title bar
of a frame window). Calling this function updates the titles of all frame windows
that display the document.

CDocument: : GetTitle

CDocument::UpdateAIiViews 355

C Docu ment: : U pdateAllViews

Remarks

See Also

void UpdateAIlViews(CView* pSender, LP ARAM [Hint = OL, CObject*
pHint = NULL);

pSender Points to the view that modified the document, or NULL if all views are
to be updated.

lH int Contains information about the modification.

pHint Points to an object storing information about the modification.

Call this function after the document has been modified. You should call this
function after you call the SetModifiedFlag member function. This function
informs each view attached to the document, except for the view specified by
pSender, that the document has been modified. You typically call this function from
your view class after the user has changed the document through a view.

This function calls the On Update member function for each of the document's
views except the sending view, passing pHint and [Hint. Use these parameters to
pass information to the views about the modifications made to the document. You
can encode information using [Hint and/or you can define a CObject-derived class
to store information about the modifications and pass an object of that class using
pHint. Override the OnUpdate member function in your CView-derived class to
optimize the updating of the view's display based on the information passed.

CDocument: :SetModifiedFlag, CDocument: : GetFirstViewPosition,
CDocument::GetNextView, CView::OnUpdate

356 CDumpContext

class CDumpContext

See Also

The CDumpContext class supports stream-oriented diagnostic output in the form
of human-readable text. You can use afxDump, a predeclared CDumpContext
object, for most of your dumping. The afxDump object is available only in the
Debug version of the Microsoft Foundation Class Library. Several of the memory
diagnostic functions use afxDump for their output. The predefined afxDump
object, conceptually similar to the cerr stream, is connected to stderr under
MS-DOS. Under the Windows environment, the output is routed to the debugger
via the Windows function OutputDebugString.

The CDumpContext class has an overloaded insertion «<) operator for CObject
pointers that dumps the object's data. If you need a custom dump format for a
derived object, override CObject::Dump. Most Microsoft Foundation classes
implement an overridden Dump member function.

Classes that are not derived from CObject, such as CString, CTime, and
CTimeSpan, have their own overloaded CDumpContext insertion operators, as
do often-used structures such as CFileStatus, CPoint, and CRect.

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macros
in the implementation of your class, then CObject: :Dump will print the name of
your CObject-derived class. Otherwise, it will print CObj ect.

The CDumpContext class is available with both the Debug and Release versions
of the library, but the Dump member function is defined only in the Debug version.
Use #ifdef _DEBUG / #endif statements to bracket your diagnostic code, including
your custom Dump member functions.

Before you create your own CDumpContext object, you must create a CFile
object that serves as the dump destination.

#define DEBUG

#include <afx.h>

CFile, CObject

Construction/Destruction - Public Members
CDumpContext Constructs a CDumpContext object.

Basic Input/Output-Public Members
Flush

operator «

HexDump

Flushes any data in the dump context buffer.

Inserts variables and objects into the dump context.

Dumps bytes in hexadecimal format.

CDumpContext::Flush 357

Status - Public Members
GetDepth

SetDepth

Gets an integer corresponding to the depth of the dump.

Sets the depth of the dump.

Member Functions

CDumpContext: :CDumpContext

Remarks

Example

CDumpContext(CFile* pFile)
throw(CMemoryException, CFileException);

pFile A pointer to the CFile object that is the dump destination.

Constructs an object of class CDumpContext. The afxDump object is constructed
automatically. The output from afxDump is sent to stderr in MS-DOS. Do not
write to the underlying CFile while the dump context is active; otherwise, you will
interfere with the dump. Under the Windows environment, the output is routed to
the debugger via the Windows function OutputDebugString.

extern ehar* pFileName;
CFile f;
if(!f.Open(pFileName. CFile::modeCreate I CFile::modeWrite)) {

afxDump « "Unable to open file" « "\n";
exit(1);

CDumpContext de(&f);

CDumpContext::Flush

Remarks

Example

void Flush()
throw(CFileException);

Forces any data remaining in buffers to be written to the file attached to the
dump context.

afxDump.Flush();

358 CDumpContext::GetDepth

CDumpContext: :GetDepth

Remarks

Return Value

See Also

Example

int GetDepth() const;

Determines if a deep or shallow dump is in process.

The depth of the dump as set by SetDepth.

CDumpContext: :SetDepth

See the example for SetDepth.

CDumpContext::HexDump

Remarks

Example

void HexDump(const char* pszLine, BYTE* pby, int nBytes, int nWidth)
throw(CFileException);

pszLine A string to output at the start of a new line.

pby A pointer to a buffer containing the bytes to dump.

nBytes The number of bytes to dump.

n Width Maximum number of bytes dumped per line (not the width of the
output line).

Dumps an array of bytes formatted as hexadecimal numbers.

char teste] = "This is a test of COumpContext::HexOump\n";
afxOump.HexOump(".", (BYTE*) test, sizeof test, 20);

The output from this program is:

54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 6F 66 20 43 44
75 60 70 43 6F 6E 74 65 78 74 3A 3A 48 65 78 44 75 60 70 0A
00

CDumpContext::operator« 359

CDumpContext: :SetDepth

Remarks

See Also

Example

Operators

void SetDepth(int nNewDepth);

nNewDepth The new depth value.

Sets the depth for the dump. If you are dumping a primitive type or simple CObject
that contains no pointers to other objects, then a value of 0 is sufficient. A value
greater than 0 specifies a deep dump where all objects are dumped recursively. For
example, a deep dump of a collection will dump all elements of the collection. You
may use other specific depth values in your derived classes.

Note Circular references are not detected in deep dumps and can result in infinite
loops.

CObject: :Dump

afxDump.SetDepth(1); II Specifies deep dump
ASSERT(afxDump.GetDepth() == 1);

CDumpContext: :operator «
CDumpContext& operator «(const CObject* pOb)

throw(CFileException);

CDumpContext& operator «(const char FAR* /psz)
throw(CFileException);

CDumpContext& operator «(const void FAR * /p)
throw(CFileException);

CDumpContext& operator «(const void NEAR* np)
throw(CFileException);

CDumpContext& operator «(BYTE by)
throw(CFileException);

360 CDumpContext::operator«

Remarks

Return Value

Example

CDumpContext& operator «(WORD w)
throw(CFileException);

CDumpContext& operator «(DWORD dw)
throw(CFileException);

CDumpContext& operator «(int n)

throw(CFileException);

CDumpContext& operator «(LONG I)
throw(CFileException);

CDumpContext& operator «(UINT n)
throw(CFileException);

Outputs the specified data to the dump context. The insertion operator is overloaded
for CObject pointers as well as for most primitive types. A pointer to char results
in a dump of string contents; a pointer to void results in a hexadecimal dump of the
address only.

If you use the IMPLEMENT _DYNAMIC or IMPLEMENT _SERIAL macros
in the implementation of your class, then the insertion operator, through
CObject::Dump, will print the name of your CObject-derived class. Otherwise,
it will print COb j e ct. If you override the Dump function of the class, then you
can provide a more meaningful output of the object's contents instead of a
hexadecimal dump.

A CDumpContext reference that enables multiple insertions on a single line.

extern CObList li;
CString s = "test";
int i = 7;
long 10 = 1000000000L;
afxDump « "list=" « &li « "string="

« s « "i nt=" « i « "long=" « 1 0 « "\n";

CDWordArray 361

class CDWordArray : public CObject

See Also

The CDWordArray class supports arrays of 32-bit doublewords. The member
functions of CDWordArray are similar to the member functions of class
CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a DWORD.

CObject* CObArray::GetAt(int <nIndex>) canst;

for example, translates to

DWORD CDWardArray::GetAt(int <nIndex>) canst;

CDWordArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of doublewords is stored to an
archive, either with the overloaded insertion «<) operator or with the Serialize
member function, each element is, in tum, serialized. If you need debug output from
individual elements in the array, you must set the depth of the CDumpContext
object to 1 or greater.

#include <afxcoll.h>

CObArray

Construction/Destruction - Public Members
CDWordArray Constructs an empty array for doublewords.

""'CDWordArray Destroys a CDWordArray object.

Bounds - Public ·Members
GetSize

GetUpperBound

SetSize

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Operations - Public Members
FreeExtra

RemoveAII

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

362 CDWordArray

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the doubleword within
the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array
if necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at
a specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

class CEdit : public CWnd
The CEdit class provides the functionality
of a Windows edit control. An edit control
is a rectangular child window in which the
user can enter text.

CEdit 363

You can create an edit control either from a CEdit
~--------------~

dialog template or directly in your code. In
both cases, first call the constructor CEdit
to construct the CEdit object, then call the Create member function to create the
Windows edit control and attach it to the CEdit object. Construction can be a one­
step process in a class derived from CEdit. Write a constructor for the derived
class and call Create from within the constructor.

CEdit inherits significant functionality from CWnd. To set and retrieve text from a
CEdit object, use the CWnd member functions SetWindowText and
GetWindowText, which set or get the entire contents of an edit control, even if it is
a multiline control. Also, if an edit control is multiline, get and set part of the
control's text by calling the CWnd member functions GetLine, SetSel, GetSel,
and ReplaceSel.

If you want to handle Windows notification messages sent by an edit control to its
parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON _ Notification(id, memberFxn)

where id specifies the child window ID of the edit control sending the notification,
and memberFxn is the name of the parent member function you have written to
handle the notification.

The parent's function prototype is as follows:

afx _ msg void memberFxn();

Following is a list of potential message-map entries and a description of the cases in
which they would be sent to the parent:

• ON_EN _ CHANGE The user has taken an action that may have altered text
in an edit control. Unlike the EN_UPDATE notification message, this notifica­
tion message is sent after Windows updates the display.

• ON EN ERRSP ACE The edit control cannot allocate enough memory to
meet a specific request.

364 CEdit

See Also

• ON EN HSCROLL The user clicks an edit control's horizontal scroll bar.
The parent window is notified before the screen is updated.

• ON_EN _ KILLFOCUS The edit control loses the input focus.

• ON_ EN_ MAXTEXT The current insertion has exceeded the specified num­
ber of characters for the edit control and has been truncated. Also sent when an
edit control does not have the ES _ AUTOHSCROLL style and the number of
characters to be inserted would exceed the width of the edit control. Also sent
when an edit control does not have the ES_AUTOVSCROLL style and the
total number of lines resulting from a text insertion would exceed the height of
the edit control.

• ON_ EN_ SETFOCUS Sent when an edit control receives the input focus.

• ON_EN _ UPDATE The edit control is about to display altered text. Sent after
the control has formatted the text but before it screens the text so that the win­
dow size can be altered, if necessary.

• ON EN VSCROLL The user clicks an edit control's vertical scroll bar. The
parent window is notified before the screen is updated.

If you create a CEdit object within a dialog box, the CEdit object is automatically
destroyed when the user closes the dialog box.

If you create a CEdit object from a dialog resource using App Studio, the CEdit
object is automatically destroyed when the user closes the dialog box. If you create
a CEdit object within a window, you may also need to destroy it. If you create the
CEdit object on the stack, it is destroyed automatically. If you create the CEdit
object on the heap by using the new function, you must call delete on the object to
destroy it when the user terminates the Windows edit control. If you allocate any
memory in the CEdit object, override the CEdit destructor to dispose of the
allocations.

#include <afxwin.h>

CWnd, CButton, CComboBox, CListBox, CScrollBar, CStatic, CDialog

Construction/Destruction - Public Members
CEdit Constructs a CEdit control object.

Initialization - Public Members
Create Creates the Windows edit control and attaches it to the

CEdit object.

CEdit 365

Multiple-Line Operations - Public Members
GetLineCount

GetHandle

SetHandle

FmtLines

Linelndex

SetRect

SetRectNP

SetTabStops

Retrieves the number of lines in a multiple-line edit
control.

Retrieves a handle to the memory currently allocated for
a multiple-line edit control.

Sets the handle to the local memory that will be used by a
multiple-line edit control.

Sets the inclusion of soft line-break characters on or off
within a multiple-line edit control.

Retrieves the character index of a line within a multiple­
line edit control.

Sets the formatting rectangle of a multiple-line edit
control and updates the control.

Sets the formatting rectangle of a multiple-line edit
control without redrawing the control window.

Sets the tab stops in a multiple-line edit control.

General Operations - Public Members
CanUndo

GetModify

SetModify

SetReadOnly

GetPasswordChar

GetRect

GetSel

GetLine

GetFirst VisibleLine

EmptyUndoBuffer

LimitText

Determines if an edit-control operation can be undone.

Determines if the contents of an edit control have been
modified.

Sets or clears the modification flag for an edit control.

Sets the read-only state of an edit control.

Retrieves the password character displayed in an edit
control when the user enters text.

Gets the formatting rectangle of an edit control.

Gets the starting and ending character positions of the
current selection in an edit control.

Retrieves a line of text from an edit control.

Determines the topmost visible line in an edit control.

Resets (clears) the undo flag of an edit control.

Limits the length of the text that the user may enter into
an edit control.

366 CEdit: :CanUndo

LineFromChar

LineLength

LineScroll

ReplaceSel

SetPasswordChar

SetSel

Undo

Clear

Copy

Cut

Paste

Retrieves the line number of the line that contains the
specified character index.

Retrieves the length of a line in an edit control.

Scrolls the text of a multiple-line edit control.

Replaces the current selection in an edit control with the
specified text.

Sets or removes a password character displayed in an edit
control when the user enters text.

Selects a range of characters in an edit control.

Reverses the last edit -control operation.

Deletes (clears) the current selection (if any) in the edit
control.

Copies the current selection (if any) in the edit control to
the Clipboard in CF _ TEXT format.

Deletes (cuts) the current selection (if any) in the edit
control and copies the deleted text to the Clipboard in
CF TEXT format.

Inserts the data from the Clipboard into the edit control at
the current cursor position. Data is inserted only if the
Clipboard contains data in CF _TEXT format.

Member Functions

CEdit::CanUndo

Return Value

See Also

BOOL CanUndo() const;

Nonzero if the last edit operation can be undone by a call to the Undo member
function; 0 if it cannot be undone.

CEdit::Undo, EM_CANUNDO

CEdit::Create 367

CEdit::CEdit

Remarks

See Also

CEdit();

Constructs a CEdit object.

CEdit:: Create

CEdit: :Clear

Remarks

See Also

void Clear();

Deletes (clears) the current selection (if any) in the edit control. The deletion per­
formed by Clear can be undone by calling the Undo member function. To delete
the current selection and place the deleted contents into the Clipboard, call the Cut
member function.

CEdit::CanUndo, CEdit::Undo, CEdit::Copy, CEdit::Cut, CEdit::Paste,
WM CLEAR

CEdit: :Copy

Remarks

See Also

void Copy();

Copies the current selection (if any) in the edit control to the Clipboard in
CF TEXT format.

CEdit::Clear, CEdit::Cut, CEdit::Paste, WM_COPY

CEdit::Create
BOOL Create(DWORD dwStyle, const RECT & reet, CWnd* pParentWnd,

UINT nID);

dwStyle Specifies the edit control's style.

368 CEdit::Create

Remarks

Return Value

Edit Styles

reet Specifies the edit control's size and position. Can be a CRect object or
RECT structure.

pParentWnd Specifies the edit control's parent window (usually a CDiaJog or
CModaJDiaJog). It must not be NULL.

nID Specifies the edit control's ID.

You construct a CEdit object in two steps. First, call the CEdit constructor, then
call Create, which creates the Windows edit control and attaches it to the CEdit
object. When Create executes, Windows sends the WM _ NCCREA TE,
WM _ NCCALCSIZE, WM _CREATE, and WM _ GETMINMAXINFO
messages to the edit control. These messages are handled by default by the
OnNcCreate, OnNcCalcSize, OnCreate, and OnGetMinMaxInfo member
functions in the CWnd base class. To extend the default message handling, derive a
class from CEdit, add a message map to the new class, and override the above
message-handler member functions. Override OnCreate, for example, to perform
needed initialization for the new class.

Apply the following window styles to an edit control:

• WS _CHILD Always

• WS_ VISIBLE Usually

• WS _DISABLED Rarely

• WS_GROUP To group controls

• WS _ T ABSTOP To include edit control in the tabbing order

See Create in the CWnd base class for a full description of these window styles.

Create returns nonzero if initialization is successful; 0 if unsuccessful.

You can use any combination of the following edit-control styles for dwStyle:

• ES_AUTOHSCROLL Automatically scrolls text to the right by 10
characters when the user types a character at the end of the line. When the user
presses the ENTER key, the control scrolls all text back to position O.

• ES _ AUTOVSCROLL Automatically scrolls text up one page when the user
presses ENTER on the last line.

• ES CENTER Centers text in a multiline edit control.

• ES _LEFT Aligns text flush left.

• ES LOWERCASE Converts all characters to lowercase as they are typed
into the edit control.

CEdit::Create 369

• ES _ MULTILINE Designates a multiple-line edit control. (The default is
single line.) If the ES _ AUTOVSCROLL style is specified, the edit control
shows as many lines as possible and scrolls vertically when the user presses the
ENTER key. If ES _ AUTOVSCROLL is not given, the edit control shows as
many lines as possible and beeps if ENTER is pressed when no more lines can be
displayed. If the ES _ AUTOHSCROLL style is specified, the multiple-line edit
control automatically scrolls horizontally when the caret goes past the right edge
of the control. To start a new line, the user must press ENTER. If
ES _ AUTOHSCROLL is not given, the control automatically wraps words to
the beginning of the next line when necessary; a new line is also started if ENTER

is pressed. The position of the word wrap is determined by the window size. If
the window size changes, the wordwrap position changes and the text is
redisplayed. Multiple-line edit controls can have scroll bars. An edit control
with scroll bars processes its own scroll-bar messages. Edit controls without
scroll bars scroll as described above and process any scroll messages sent by the
parent window.

• ES_NOHIDESEL Normally, an edit control hides the selection when the
control loses the input focus and inverts the selection when the control receives
the input focus. Specifying ES _ NOHIDESEL deletes this default action.

• ES OEMCONVERT Text entered in the edit control is converted from the
ANSI character set to the OEM character set and then back to ANSI. This
ensures proper character conversion when the application calls the AnsiToOem
Windows function to convert an ANSI string in the edit control to OEM
characters. This style is most useful for edit controls that contain filenames.

• ES_PASSWORD Displays all characters as an asterisk (*) as they are typed
into the edit control. An application can use the SetPasswordChar member
function to change the character that is displayed.

• ES _RIGHT Aligns text flush right in a multiline edit control.

• ES UPPERCASE Converts all characters to uppercase as they are typed into
the edit control.

Windows 3.1 Only • ES READONL Y Prevents the user from entering or editing text in the edit

See Also

control.

• ES _ W ANT RETURN Specifies that a carriage return be inserted when the
user presses the ENTER key while entering text into a multiple-line edit control in
a dialog box. Without this style, pressing the ENTER key has the same effect as
pressing the dialog box's default pushbutton. This style has no effect on a
single-line edit control. •

CEdit::CEdit

370 CEdit::Cut

CEdit::Cut

Remarks

See Also

void Cut();

Deletes (cuts) the current selection (if any) in the edit control and copies the deleted
text to the Clipboard in CF _ TEXT fonnat. The deletion perfonned by Cut can be
undone by calling the Undo member function. To delete the current selection with­
out placing the deleted text into the Clipboard, call the Clear member function.

CEdit::Undo, CEdit::Clear, CEdit::Copy, CEdit::Paste, WM_ CUT

CEdit::EmptyUndoBuffer

Remarks

See Also

void EmptyUndoBuffer();

Resets (clears) the undo flag of an edit control. The edit control will now be unable
to undo the last operation. The undo flag is set whenever an operation within the
edit control can be undone. The undo flag is automatically cleared whenever the
SetWindowText or SetHandle member function is called.

CEdit::CanUndo, CEdit::SetHandle, CEdit::Undo, CWnd::SetWindowText,
EM EMPTYUNDOBUFFER

CEdit::FmtLines

Remarks

BOOL FmtLines(BOOL bAddEOL);

bAddEOL Specifies whether soft line-break characters are to be inserted. A value
of TRUE inserts the characters; a value of FALSE removes them.

Sets the inclusion of soft line-break characters on or off within a multiple-line edit
control. A soft line break consists of two carriage returns and a linefeed inserted at
the end of a line that is broken because of word wrapping. A hard line break con­
sists of one carriage return and a linefeed. Lines that end with a hard line break are
not affected by FmtLines. Windows will only respond if the CEdit object is a
multiple-line edit control. FmtLines only affects the buffer returned by GetHandle
and the text returned by WM _ GETTEXT. It has no impact on the display of the
text within the edit control.

Return Value

See Also

CEdit::GetHandle 371

Nonzero if any fonnatting occurs; otherwise O.

CEdit::GetHandle, CWnd::GetWindowText, EM_FMTLINES

CEdit: :GetFi rstVisibleLine
Windows 3.1 Only int GetFirstVisibleLine() const; +

Remarks An application calls GetFirstVisibleLine to detennine the topmost visible line in
an edit control.

Return Value The zero-based index of the topmost visible line. For single-line edit controls, the
return value is O.

See Also EM GETFIRSTVISIBLELINE

CEdit::GetHandle

Remarks

Return Value

See Also

HLOCAL GetHandle() const;

Retrieves a handle to the memory currently allocated for a multiple-line edit con­
trol. The handle is a local memory handle and may be used by any of the Local
Windows memory functions that take a local memory handle as a parameter.
GetHandle is processed only by multiple-line edit controls. Call GetHandle for a
multiple-line edit control in a dialog box only if the dialog box was created with the
DS _LOCALEDIT style flag set. If the DS _ LOCALEDIT style is not set, you
will still get a nonzero return value, but you will not be able to use the returned
value.

A local memory handle that identifies the buffer holding the contents of the edit
control. If an error occurs, such as sending the message to a single-line edit control,
the return value is O.

CEdit: :SetHandle, EM _ GETHANDLE

372 CEdit::GetLine

CEdit::GetLine

Remarks

Return Value

See Also

int GetLine(int nlndex, LPSTR IpszBuffer) const;

int GetLine(int nlndex, LPSTR IpszBuffer, int nMaxLength) const;

nlndex Specifies the line number to retrieve from a multiple-line edit control. Line
numbers are zero-based; a value of 0 specifies the first line. This parameter is
ignored by a single-line edit control.

IpszBuffer Points to the buffer that receives a copy of the line. The first word of
the buffer must specify the maximum number of bytes that can be copied to the
buffer.

nM axLength Specifies the maximum number of bytes that can be copied to the
buffer. GetLine places this value in the first word of IpszBuffer before making the
call to Windows.

Retrieves a line of text from an edit control and places it in IpszBuffer. This call is
not processed for a single-line edit control. The copied line does not contain a null­
termination character.

The number of bytes actually copied. The return value is 0 if the line number
specified by nI ndex is greater then the number of lines in the edit control.

CEdit::LineLength, CWnd::GetWindowText, EM _ GET LINE

CEdit::GetLineCount

Remarks

Return Value

See Also

int GetLineCount() const;

Retrieves the number of lines in a multiple-line edit control. GetLineCount is only
processed by multiple-line edit controls.

An integer containing the number of lines in the multiple-line edit control. If no text
has been entered into the edit control, the return value is 1.

EM GETLINECOUNT

CEdit::GetRect 373

CEdit::GetModify

Remarks

Return Value

See Also

BOOL GetModify() const;

Determines if the contents of an edit control have been modified. Windows
maintains an internal flag indicating whether the contents of the edit control have
been changed. This flag is cleared when the edit control is first created and may
also be cleared by calling the SetModify member function.

Nonzero if the edit-control contents have been modified; 0 if they have remained
unchanged.

CEdit::SetModify, EM_ GETMODIFY

CEd it: :GetPasswordChar
Windows 3.1 Only char GetPasswordChar() const; +

Remarks An application calls the GetPasswordChar member function to retrieve the pass­
word character displayed in an edit control when the user enters text. If the edit
control is created with the ES _ P ASSW 0 RD sty Ie, the default password character
is set to an asterisk (*).

Return Value Specifies the character to be displayed in place of the character typed by the user.
The return value is NULL if no password character exists.

See Also EM _ GETP ASSWORDCHAR, CEdit: :SetPasswordChar

CEdit: :GetRect

Remarks

See Also

void GetRect(LPRECT IpRect) const;

IpRect Points to the RECT structure that receives the formatting rectangle.

Gets the formatting rectangle of an edit control. The formatting rectangle is the
limiting rectangle of the text, which is independent of the size of the edit -control
window. The formatting rectangle of a multiple-line edit control can be modified by
the SetRect and SetRectNP member functions.

CEdit::SetRect, CEdit::SetRectNP, EM_GETRECT

374 CEdit::GetSel

CEdit: :GetSel

Remarks

Return Value

See Also

DWORD GetSel() const;

void GetSel(int& nStartChar, int& nEndChar) const;

nStartChar Reference to an integer that will receive the position of the first
character in the current selection.

nEndChar Reference to an integer that will receive the position of the first
nonselected character past the end of the current selection.

Gets the starting and ending character positions of the current selection (if any) in
an edit control, using either the return value or the parameters.

The version that returns a DWORD returns a value that contains the starting
position in the low-order word and the position of the first nonselected character
after the end of the selection in the high-order word.

CEdit::SetSel, EM_GETSEL

CEdit::LimitText

Remarks

See Also

void LimitText(int nChars = 0);

nChars Specifies the length (in bytes) of the text that the user can enter. If this
parameter is 0, the text length is set to UINT _MAX bytes. This is the default
behavior.

Limits the length of the text that the user may enter into an edit control. LimitText
limits only the text the user can enter. It has no effect on any text already in the edit
control when the message is sent, nor does it affect the length of the text copied to
the edit control by the SetWindowText member function in CWnd. If an applica­
tion uses the SetWindowText function to place more text into an edit control than
is specified in the call to LimitText, the user can edit the entire contents of the edit
control.

CWnd: :SetWindowText, EM _ LIMIT TEXT

CEdit::Linelndex 375

CEdit::LineFromChar

Remarks

Return Value

See Also

int LineFromChar(int nlndex = -1) const;

nlndex Contains the zero-based index value for the desired character in the text of
the edit control, or contains -1. If nlndex is -1, it specifies the current line, that is,
the line that contains the caret.

Retrieves the line number of the line that contains the specified character index. A
character index is the number of characters from the beginning of the edit control.
This member function is only used by multiple-line edit controls.

The zero-based line number of the line containing the character index specified by
nI ndex. If nI ndex is -1, the number of the line that contains the first character of
the selection is returned. If there is no selection, the current line number is returned.

CEdit::Linelndex, EM_LINEFROMCHAR

CEdit::Linelndex

Remarks

Return Value

See Also

int Linelndex(int nLine = -1) const;

nLine Contains the index value for the desired line in the text of the edit control,
or contains -1. If nLine is -1, it specifies the current line, that is, the line that
contains the caret.

Retrieves the character index of a line within a multiple-line edit control. The
character index is the number of characters from the beginning of the edit control to
the specified line. This member function is only processed by multiple-line edit
controls.

The character index of the line specified in nLine or -1 if the specified line number
is greater than the number of lines in the edit control.

CEdit: :LineFromChar, EM _LINEINDEX

376 CEdit::LineLength

CEdit::LineLength

Remarks

Return Value

See Also

int LineLength(int nLine = -1) const;

nLine Specifies the character index of a character in the line whose length is to be
retrieved. If this parameter is -1, the length of the current line (the line that con­
tains the caret) is returned, not including the length of any selected text within the
line. When LineLength is called for a single-line edit control, this parameter is
ignored.

Retrieves the length of a line in an edit control. Use the LineIndex member
function to retrieve a character index for a given line number within a multiple-line
edit control.

When LineLength is called for a multiple-line edit control, the return value is the
length (in bytes) of the line specified by nLine. When LineLength is called for a
single-line edit control, the return value is the length (in bytes) of the text in the edit
control.

CEdit: :LineIndex, EM _ LINELENGTH

CEdit: :LineScroll

Remarks

See Also

void LineScroll(int nLines, int nChars = 0);

nLines Specifies the number of lines to scroll vertically.

nChars Specifies the number of character positions to scroll horizontally. This
value is ignored if the edit control has either the ES _RIGHT or ES _CENTER
style.

Scrolls the text of a multiple-line edit control. This member function is processed
only by multiple-line edit controls. The edit control does not scroll vertically past
the last line of text in the edit control. If the current line plus the number of lines
specified by nLines exceeds the total number of lines in the edit control, the value
is adjusted so that the last line of the edit control is scrolled to the top of the edit­
control window. LineScroll can be used to scroll horizontally past the last
character of any line.

EM LINES CROLL

CEdit::SetHandle 377

CEdit::Paste

Remarks

See Also

void Paste();

Inserts the data from the Clipboard into the edit control at the current cursor
position. Data is inserted only if the Clipboard contains data in CF _TEXT format.

CEdit::Clear, CEdit::Copy, CEdit::Cut, WM_PASTE

CEdit::ReplaceSel

Remarks

See Also

void ReplaceSel(LPCSTR IpszNewText);

IpszNewText Points to a null-terminated string containing the replacement text.

Replaces the current selection in an edit control with the text specified by
IpszNewText. Replaces only a portion of the text in an edit control. If you want to
replace all of the text, use the CWnd: :SetWindowText member function. If there
is no current selection, the replacement text is inserted at the current cursor
location.

CWnd::SetWindowText, EM _ REPLACESEL

CEdit: :SetHand Ie

Remarks

void SetHandle(HLOCAL hBuffer);

hBuffer Contains a handle to the local memory. This handle must have been
created by a previous call to the LocalAlloc Windows function using the
LMEM_MOVEABLE flag. The memory is assumed to contain a null­
terminated string. If this is not the case, the first byte of the allocated memory
should be set to O.

Sets the handle to the local memory that will be used by a multiple-line edit control.
The edit control will then use this buffer to store the currently displayed text instead
of allocating its own buffer. This member function is processed only by multiple­
line edit controls. Before an application sets a new memory handle, it should use the
GetHandle member function to get the handle to the current memory buffer and
free that memory using the LocalFree Windows function. SetHandle clears the
undo buffer (the CanUndo member function then returns 0) and the internal

378 CEdit::SetModify

See Also

modification flag (the GetModify member function then returns 0). The edit­
control window is redrawn. You can use this member function in a multiple-line
edit control in a dialog box only if you have created the dialog box with the
DS _ LOCALEDIT style flag set.

CEdit::CanUndo, CEdit::GetHandle, CEdit::GetModify, ::LocaIAlloc,
::LocaIFree, EM_SETHANDLE

CEdit::SetModify

Remarks

See Also

void SetModify(BOOL bModified = TRUE);

bModified A value of TRUE indicates that the text has been modified, and a
value of FALSE indicates it is unmodified. By default, the modified flag is set.

Sets or clears the modified flag for an edit control. The modified flag indicates
whether or not the text within the edit control has been modified. It is automatically
set whenever the user changes the text. Its value may be retrieved with the
GetModify member function.

CEdit::GetModify, EM_SETMODIFY

CEdit: :SetPasswordChar

Remarks

See Also

void SetPasswordChar(char ch);

ch Specifies the character to be displayed in place of the character typed by the
user. If ch is 0, the actual characters typed by the user are displayed.

Sets or removes a password character displayed in an edit control when the user
types text. When a password character is set, that character is displayed for each
character the user types. This member function has no effect on a multiple-line
edit control. When the SetPasswordChar member function is called, CEdit will
redraw all visible characters using the character specified by ch. If the edit control
is created with the ES_PASSWORD style, the default password character is set
to an asterisk (*). This style is removed if SetPasswordChar is called with ch set
to 0.

CEdit: : GetPasswordChar , EM _ SETP ASSWORDCHAR

CEdit::SetRect 379

CEdit: :SetReadOnly
Windows 3.1 Only BOOL SetReadOnly(BOOL bReadOnly = TRUE); •

Remarks

Return Value

See Also

bReadOnly Specifies whether to set or remove the read-only state of the edit
control. A value of TRUE sets the state to read-only; a value of FALSE sets the
state to read/write.

An application calls the SetReadOnly member function to set the read-only state of
an edit control. The current setting can be found by testing the ES _ READONL Y
flag in the return value of CWnd::GetStyle.

Nonzero if the operation is successful, or 0 if an error occurs.

EM_SETREADONLY, CWnd::GetStyle

CEdit: :SetRect

Remarks

See Also

void SetRect(LPCRECT IpRect);

IpRect Points to the RECT structure or CRect object that specifies the new
dimensions of the formatting rectangle.

Sets the dimensions of a rectangle using the specified coordinates. This member is
processed only by multiple-line edit controls. Use SetRect to set the formatting
rectangle of a multiple-line edit control. The formatting rectangle is the limiting
rectangle of the text, which is independent of the size of the edit -control window.
When the edit control is first created, the formatting rectangle is the same as the
client area of the edit-control window. By using the SetRect member function, an
application can make the formatting rectangle larger or smaller than the edit-control
window. If the edit control has no scroll bar, text will be clipped, not wrapped, if
the formatting rectangle is made larger than the window. If the edit control contains
a border, the formatting rectangle is reduced by the size of the border. If you adjust
the rectangle returned by the GetRect member function, you must remove the size
of the border before you pass the rectangle to SetRect. When SetRect is called, the
edit control's text is also reformatted and redisplayed.

CRect::CRect, CRect::CopyRect, CRect::operator =,
CRect::SetRectEmpty, CEdit::GetRect, CEdit::SetRectNP, EM_SETRECT

380 CEdit::SetRectNP

CEdit: :SetRectNP

Remarks

See Also

void SetRectNP(LPCRECT IpRect);

IpRect Points to a RECT structure or CRect object that specifies the new
dimensions of the rectangle.

Sets the formatting rectangle of a multiple-line edit control. The formatting rec­
tangle is the limiting rectangle of the text, which is independent of the size of the
edit-control window. SetRectNP is identical to the SetRect member function
except that the edit-control window is not redrawn. When the edit control is first
created, the formatting rectangle is the same as the client area of the edit-control
window. By calling the SetRectNP member function, an application can make the
formatting rectangle larger or smaller than the edit -control window. If the edit
control has no scroll bar, text will be clipped, not wrapped, if the formatting
rectangle is made larger than the window. This member is processed only by
multiple-line edit controls.

CRect::CRect, CRect::CopyRect, CRect::operator =,
CRect: :SetRectEmpty, CEdit: :GetRect, CEdit: :SetRect, EM _ SETRECTNP

CEdit::SetSel
void SetSel(DWORD dwSelection, BOOL bNoScroll = FALSE);

void SetSel(int nStartChar, int nEndChar, BOOL bNoScroll = FALSE);

dwSelection Specifies the starting position in the low-order word and the ending
position in the high-order word. If the low-order word is 0 and the high-order
word is -1, all the text in the edit control is selected. If the low-order word is -1,
any current selection is removed.

Windows 3.1 Only bNoScroll Indicates whether the caret should be scrolled into view. If FALSE,
the caret is scrolled into view. If TRUE, the caret is not scrolled into view. +

nStartChar Specifies the starting position. If nStartChar is 0 and nEndChar is
-1, all the text in the edit control is selected. If nStartChar is -1, any current
selection is removed.

nEndChar Specifies the ending position.

Remarks

See Also

Selects a range of characters in an edit control.

CEdit: :GetSel, CEdit: :ReplaceSel, EM _ SETSEL

CEdit::SetTabStops 381

CEdit::SetTabStops

Remarks

Return Value

See Also

void SetTabStops();

BOOL SetTabStops(const int& cxEachStop);

BOOL SetTabStops(int nTabStops, LPINT rgTabStops);

cxEachStop Specifies that tab stops are to be set at every cxEachStop dialog
units.

nTabStops Specifies the number of tab stops contained in rgTabStops. This
number must be greater than 1.

rgTabStops Points to an array of unsigned integers specifying the tab stops in
dialog units. A dialog unit is a horizontal or vertical distance. One horizontal
dialog unit is equal to one-fourth of the current dialog base width unit, and 1
vertical dialog unit is equal to one-eighth of the current dialog base height unit.
The dialog base units are computed based on the height and width of the current
system font. The GetDialogBaseUnits Windows function returns the current
dialog base units in pixels.

Sets the tab stops in a multiple-line edit control. When text is copied to a multiple­
line edit control, any tab character in the text will cause space to be generated up to
the next tab stop.

To set tab stops to the default size of 32 dialog units, call the parameterless version
of this member function. To set tab stops to a size other than 32, call the version
with the cxEachStop parameter. To set tab stops to an array of sizes, use the
version with two parameters. This member function is only processed by multiple­
line edit controls. SetTabStops does not automatically redraw the edit window. If
you change the tab stops for text already in the edit control, call
CWnd::InvalidateRect to redraw the edit window.

Nonzero if the tabs were set; otherwise O.

: : GetDialogBaseUnits, CWnd::InvalidateRect, EM _ SETT ABSTOPS

382 CEdit::Undo

CEdit::Undo

Remarks

Return Value

See Also

BOOL UndoO;

Use to undo the last edit-control operation. An undo operation can also be undone.
For example, you can restore deleted text with the first call to Undo. As long as
there is no intervening edit operation, you can remove the text again with a second
call to Undo.

For a single-line edit control, the return value is always nonzero. For a multiple-line
edit control, the return value is nonzero if the undo operation is successful, or 0 if
the undo operation fails.

CEdit::CanUndo, EM_UNDO

CEditView 383

class CEditView : public CView

See Also

Like the CEdit class, the CEditView
class provides the functionality of a
Windows edit control. The
CEditView class provides the
following additional functions:

• Printing

• Find and replace

• Cut, copy, paste, clear, and undo

Because class CEditView is derived from class CView, objects of class
CEdit View can be used with documents and document templates.

Each CEdit View control's text is kept in its own global memory object. Your
application can have any number of CEditView controls.

Create objects of type CEditView if you want an edit control with the added
functionality listed above. Derive your own classes from CEditView to add or
modify the basic functionality, or to declare classes that can be added to a document
template.

The default implementation of class CEditView handles the following commands:
ID_EDIT_CUT, ID_EDIT_COPY, ID_EDIT_PASTE, ID_EDIT_CLEAR,
ID_EDIT_UNDO, ID_EDIT_SELECT_ALL, ID_EDIT_FIND,
ID_EDIT_REPLACE, ID_EDIT_REPEAT, and ID_FILE_PRINT.

Objects of type CEditView (or of types derived from CEditView) have the
following limitations:

• CEditView does not implement true WYSIWYG (what you see is what you
get) editing. Where there is a choice between readability on the screen and
matching printed output, CEdit View opts for screen readability.

• CEditView can display text in only a single font. No special character
fonnatting is supported.

• The amount of text a CEdit View can contain is limited. The limits are the same
as for the CEdit control.

#include <afxext.h>

CEdit, CDocument, CDocTemplate, CView

384 CEditView::CEditView

Data Members - Public Members
dwStyleDefault Default style for objects of type CEditView.

Construction/Destruction - Public Members
CEditView Constructs an object of type CEditView.

Attributes-Public Members
GetEditCtrl

GetPrinter Font

GetSelectedText

SetPrinter Font

SetTabStops

Provides access to the CEdit portion of a CEditView
object (the Windows edit control).

Retrieves the current printer font.

Retrieves the current text selection.

Sets a new printer font.

Sets tab stops for both screen display and printing.

Operations - Public Members
FindText

PrintInsideRect

SerializeRaw

Searches for a string within the text.

Renders text inside a given rectangle.

Serializes a CEditView object to disk as raw text.

Overridables - Protected Members
OnFindNext

OnReplaceAII

OnReplaceSel

OnTextNotFound

Finds next occurrence of a text string.

Replaces all occurrences of a given string with a new
string.

Replaces current selection.

Called when a find operation fails to match any
further text.

Member Functions

CEditView: :CEditView

Remarks

CEdit View();

Constructs an object of type CEditView. After constructing the object, you must
call the Create function before the edit control is used. If you derive a class from

See Also

CEditView::GetEditCtrl 385

CEditView and add it to the template using CWinApp::AddDocTemplate, the
framework calls both this constructor and the Create function.

CWnd: :Create, CWinApp: :AddDocTemplate

CEditView: :FindText

Remarks

Return Value

See Also

BOOL FindText(LPCSTR /pszFind, BOOL bNext = TRUE,
BOOL bCase = TRUE);

/pszFind The text to be found.

bNext Specifies the direction of the search. If TRUE, the search direction is
toward the end of the buffer. If FALSE, the search direction is toward the
beginning of the buffer.

bCase Specifies whether the search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

Call the FindText function to search the CEditView object's text buffer. This
function searches the text in the buffer for the text specified by /pszFind, starting at
the current selection, in the direction specified by bNext, and with case sensitivity
specified by bCase. If the text is found, it sets the selection to the found text and
returns a nonzero value. If the text is not found, the function returns O.

You normally do not need to call the FindText function unless you override
OnFindNext, which calls FindText.

Nonzero if the search text is found; otherwise O.

CEditView: :OnFindNext, CEdit View: :OnReplaceAII,
CEdit View: :OnReplaceSel, CEditView: :OnTextNotFound

CEditView: :GetEditCtrl

Remarks

CEdit& GetEditCtrl() const;

Call GetEditCtrl to get a reference to the edit control used by the edit view. This
control is of type CEdit, so you can manipulate the Windows edit control directly
using the CEdit member functions.

386 CEditView: :GetPrinterFont

Return Value

See Also

Warning U sing the CEdit object can change the state of the underlying Windows
edit control. For example, you should not change the tab settings using the
CEdit::SetTabStops function because CEditView caches these settings for use
both in the edit control and in printing. Instead, use CEditView::SetTabStops.

A reference to a CEdit object.

CEdit, CEdit View: :SetTabStops

CEditView: :GetPrinterFont

Remarks

Return Value

See Also

CFont* GetPrinterFont() const;

Call GetPrinterFont to get a pointer to a CFont object that describes the current
printer font. If the printer font has not been set, the default printing behavior of the
CEditView class is to print using the same font used for display.

Use this function to determine the current printer font. If it is not the desired printer
font, use CEditView::SetPrinterFont to change it.

A pointer to a CFont object that specifies the current printer font; NULL if the
printer font has not been set. The pointer may be temporary and should not be
stored for later use.

CEdit View:: SetPrinter Font

CEditView: :GetSelectedText

Remarks

See Also

void GetSelectedText(CString& strResult) const;

strResult A reference to the CString object that is to receive the selected text.

Call GetSelectedText to copy the selected text into a CString object, up to the end
of the selection or the character preceding the first carriage-return character in the
selection.

CEditView: :OnReplaceSel

CEditView::OnReplaceAIi 387

CEditView: :OnFindNext
Protected

Remarks

See Also

virtual void OnFindNext(LPCSTR IpszFind, BOOL bNext, BOOL bCase);.

IpszFind The text to be found.

bNext Specifies the direction of the search. If TRUE, the search direction is
toward the end of the buffer. If FALSE, the search direction is toward the
beginning of the buffer.

bCase Specifies whether the search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

Searches the text in the buffer for the text specified by IpszFind, in the direction
specified by bNext, with case sensitivity specified by bCase. The search starts at
the beginning of the current selection and is accomplished through a call to
FindText. In the default implementation, OnFindNext calls OnTextNotFound if
the text is not found.

Override OnFindNext to change the way a CEditView-derived object searches
text. CEditView calls OnFindNext when the user chooses the Find Next button in
the standard Find dialog box.

CEditView:: OnTextNotFound, CEditView: :FindText,
CEditView: :OnReplaceAll, CEdit View: :OnReplaceSel

CEditView: :OnReplaceAIi
Protected

Remarks

virtual void OnReplaceAll(LPCSTR IpszFind, LPCSTR IpszReplace,

BOOL bCase); •

IpszFind The text to be found.

IpszReplace The text to replace the search text.

bCase Specifies whether search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

CEditView calls OnReplaceAll when the user selects the Replace All button in
the standard Replace dialog box. OnReplaceAll searches the text in the buffer for
the text specified by IpszFind, with case sensitivity specified by bC ase. The search
starts at the beginning of the current selection. Each time the search text is found,
this function replaces that occurrence of the text with the text specified by

388 CEditView: :OnReplaceSel

See Also

IpszReplace. The search is accomplished through a call to FindText. In the default
implementation, OnTextNotFound is called if the text is not found.

Override OnReplaceAIl to change the way a CEditView-derived object replaces
text.

CEditView::OnFindNext, CEditView::OnTextNotFound,
CEditView: :FindText, CEdit View: :OnReplaceSel

CEditView: :OnReplaceSel
Protected

Remarks

See Also

virtual void OnReplaceSel(LPCSTR IpszFind, BOOL bNext, BOOL bCase,
LPCSTR IpszReplace);.

IpszFind The text to be found.

bNext Specifies the direction of the search. If TRUE, the search direction is
toward the end of the buffer. If FALSE, the search direction is toward the
beginning of the buffer.

bCase Specifies whether the search is case sensitive. If TRUE, the search is case
sensitive. If FALSE, the search is not case sensitive.

IpszReplace The text to replace the found text.

CEdit View calls OnReplaceSel when the user selects the Replace button in the
standard Replace dialog box. After replacing the selection, this function searches
the text in the buffer for the next occurrence of the text specified by IpszFind, in the
direction specified by bNext, with case sensitivity specified by bCase. The search is
accomplished through a call to FindText. If the text is not found,
OnTextNotFound is called.

Override OnReplaceSel to change the way a CEditView-derived object replaces
the selected text.

CEditView::OnFindNext, CEditView::OnTextNotFound,
CEdit View: : FindText , CEdit View: :OnReplaceAIl

CEditView::PrintlnsideRect 389

CEditView: :OnTextNotFound
Protected

Remarks

See Also

virtual void OnTextNotFound(LPCSTR lpszFind);.

lpszFind The text to be found.

Override this function to change the default implementation, which calls the
Windows function MessageBeep.

CEdit View: :FindText, CEdit View: :OnFindNext, CEdit View: :OnReplaceAll,
CEdit View: :OnReplaceSel

CEditView::PrintlnsideRect

Remarks

Return Value

See Also

UINT PrintlnsideRect(CDC *pDC, RECT& rectLayout, UINT nlndexStart,
UINT nlndexStop);

pDC Pointer to the printer device context.

rectLayout Reference to a CRect object or RECT structure specifying the
rectangle in which the text is to be rendered.

nlndexStart Index within the buffer of the first character to be rendered.

nlndexStop Index within the buffer of the character following the last character to
be rendered.

Call PrintlnsideRect to print text in the rectangle specified by rectLayout.

If the CEditView control does not have the style ES _ AUTOHSCROLL, text is
wrapped within the rendering rectangle. If the control does have the style
ES _ AUTOHSCROLL, the text is clipped at the right edge of the rectangle.

The rect.bottom element of the rectLayout object is changed so that the
rectangle's dimensions define the part of the original rectangle that is occupied by
the text.

The index of the next character to be printed (i.e., the character following the last
character rendered).

CEdit View: :SetPrinterFont, CEdit View: : GetPrinterFont

390 CEditView: :SerializeRaw

CEditView: :SerializeRaw

Remarks

See Also

void SerializeRaw(CArchive& ar);

ar Reference to the CArchive object that stores the serialized text.

Call SerializeRaw to have a CArchive object read or write the text in the
CEditView object to a text file. SerializeRaw differs from CEditView's internal
implementation of Serialize in that it reads and writes only the text, without
preceding object -description data.

CArchive, CObject: : Serialize

CEditView: :SetPrinterFont

Remarks

See Also

void SetPrinterFont(CFont* pF ant);

pF ant A pointer to an object of type CFont. If NULL, the font used for printing
is based on the display font.

Call SetPrinterFont to set the printer font to the font specified by pFont.

If you want your view to always use a particular font for printing, include a call to
SetPrinterFont in your class's OnPreparePrinting function. This virtual function
is called before printing occurs, so the font change takes place before the view's
contents are printed.

CWnd::SetFont, CFont, CView::OnPreparePrinting

CEditView: :SetTabStops

Remarks

void SetTabStops(int nTabStops);

nTabStops Width of each tab stop, in dialog units.

Call this function to set the tab stops used for display and printing. Only a single
tab-stop width is supported. (CEdit objects support multiple tab widths.) Widths
are in dialog units, which equal one-fourth of the average character width (based on
uppercase and lowercase alphabetic characters only) of the font used at the time of
printing or displaying. You should not use CEdit::SetTabStops because
CEditView must cache the tab-stop value.

See Also

CEditView: :dwStyleDefault 391

This function modifies only the tabs of the object for which it is called. To change
the tab stops for each CEditView object in your application, call each object's
SetTabStops function. dwStyleDefault is a public member variable of type
DWORD.

CWnd: :SetFont, CEditView: :SetPrinterFont

Data Members

CEditView: :dwStyleDefault
Remarks Pass this static member as the dwStyle parameter of the Create function to obtain

the default style for the CEditView object. dwStyleDefault is a public member of
type DWORD.

392 CException

class CException : public CObject
CException is the base class for all exceptions in
the Microsoft Foundation Class Library. The derived
classes and their descriptions are listed below: CException

Class

CMemoryException

CNotSupportedException

CArchiveException

CFileException

CResourceException

COleException

Description

Out-of-memory exception

Request for an unsupported operation

Archive-specific exceptions

File-specific exceptions

Windows resource not found or not creatable

OLE (Object Linking and Embedding) exception

These exceptions are intended to be used with the THROW, THROW_LAST,
TRY, CATCH, AND _ CATCH, and END _ CATCH macros. For more
information on exceptions, see Chapter 16, "Exceptions," in the Class Library
User's Guide.

Use the derived classes to catch specific exceptions. Use CException if you need to
catch all types of exceptions (and then use CObject::IsKindOfto differentiate
among CException-derived classes). All derived CException classes use the
IMPLEMENT _DYNAMIC macro. CException objects are deleted
automatically. Do not delete them yourself.

Because CException is an abstract base class, you cannot create CException
objects; you must create objects of derived classes. If you need to create your own
CException type, use one of the derived classes listed above as a model.

#include <afx.h>

CFile 393

class CFile : public CObject

See Also

CFile is the base class for Microsoft Foundation file
classes. It directly provides unbuffered, binary disk
input/output services, and it indirectly supports text
files and memory files through its derived classes.

I CObject

Lj CFile

CFile works in conjunction with the CArchive class to support serialization of
Microsoft Foundation objects. The hierarchical relationship between this class and
its derived classes allows your program to operate on all file objects through the
polymorphic CFile interface. A memory file, for example, behaves like a disk file.
Use CFile and its derived classes for general-purpose disk I/O. Use of stream or
other Microsoft iostream classes for formatted text sent to a disk file. Normally, a
disk file is opened automatically on CFile construction and closed on destruction.
Static member functions permit you to interrogate a file's status without opening
the file.

#include <afx.h>

CStdioFile, CMemFile

Data Members - Public Members
m hFile Usually contains the operating-system file handle.

Construction/Destruction - Public Members
CFile

Duplicate

Open

Close

Constructs a CFile object from a path or file handle.

Constructs a duplicate object based on this file.

Safely opens a file with an error-testing option.

Closes a file and deletes the object.

Input/Output - Public Members
Read

Write

Flush

Reads (unbuffered) data from a file at the current file position.

Writes (unbuffered) data in a file to the current file position.

Flushes any data yet to be written.

Position - Public Members
Seek

SeekToBegin

SeekToEnd

GetLength

SetLength

Positions the current file pointer.

Positions the current file pointer at the beginning of the file.

Positions the current file pointer at the end of the file.

Obtains the length of the file.

Changes the length of the file.

394 CFile: :CFile

Locking - Public Members
LockRange

UnlockRange

Locks a range of bytes in a file.

Unlocks a range of bytes in a file.

Status - Public Members
GetPosition

GetStatus

Gets the current file pointer.

Obtains the status of this open file.

Static - Public Members
Rename

Remove

GetStatus

SetStatus

Renames the specified file (static function).

Deletes the specified file (static function).

Obtains the status of the specified file (static, virtual function).

Sets the status of the specified file (static, virtual function).

Member Functions

CFile: :CFile
CFile();

CFile(int hFile);

CFile(const char* pszFileName, UINT nOpenFlags)
throw(CFileException);

hFile The handle of a file that is already open.

pszFileName A string that is the path to the desired file. The path may be relative
or absolute.

nOpenFlags Sharing and access mode. Specifies the action to take when opening
the file. You can combine options listed below by using the bitwise-OR (I)
operator. One access permission and one share option are required; the
modeCreate and modeNoInherit modes are optional. The values and meanings
are given below:

• CFile::modeCreate Directs the constructor to create a new file. If the file
exists already, it is truncated to 0 length.

Remarks

CFile::CFile 395

• CFile::modeRead Opens the file for reading only.

• CFile::modeReadWrite Opens the file for reading and writing.

• CFile::modeWrite Opens the file for writing only.

• CFile::modeNoInherit Prevents the file from being inherited by child
processes.

• CFile::shareDenyNone Opens the file without denying other processes
read or write access to the file. Create fails if the file has been opened in
compatibility mode by any other process.

• CFile: :shareDenyRead Opens the file and denies other processes read
access to the file. Create fails if the file has been opened in compatibility
mode or for read access by any other process.

• CFile::shareDenyWrite Opens the file and denies other processes write
access to the file. Create fails if the file has been opened in compatibility
mode or for write access by any other process.

• CFile: :shareExclusive Opens the file with exclusive mode, denying other
processes both read and write access to the file. Construction fails if the file
has been opened in any other mode for read or write access, even by the
current process.

• CFile: :shareCompat Opens the file with compatibility mode, allowing
any process on a given machine to open the file any number of times.
Construction fails if the file has been opened with any of the other sharing
modes.

• CFile: :typeText Sets text mode with special processing for carriage
retum-linefeed pairs (used in derived classes only).

• CFile::typeBinary Sets binary mode (used in derived classes only).

The default constructor does not open a file but rather sets m _ hFile to
CFile::hFileNull. Because this constructor does not throw an exception, it does not
make sense to use TRY jCATCH logic. Use the Open member function, then test
directly for exception conditions. For a discussion of exception-processing strategy,
see Chapter 16 in the Class Library User's Guide.

The constructor with one argument creates a CFile object that corresponds to an
existing operating-system file identified by hFile. No check is made on the access
mode or file type. When the CFile object is destroyed the operating-system file will
not be closed. You must close the file yourself.

The constructor with two arguments creates a CFile object and opens the
corresponding operating-system file with the given path. This constructor combines
the functions of the first constructor and the Open member function. It throws an
exception if there is an error while opening the file. Generally, this means that the
error is unrecoverable and that the user should be alerted.

396 CFile::Close

Example cha r* pFil eName = "test. dat";
TRY
{

CFile f(pFileName, CFile::modeCreate I CFile::modeWrite);

CATCH(CFileException, e)
{

4fifdef _DEBUG
afxDump « "File could not be opened" « e->m_cause « "\n";

4fend if

CFile::Close

Remarks

See Also

virtual void Close()
throw(CFileException);

Closes the file associated with this object and makes the file unavailable for reading
or writing. If you have not closed the file before destroying the object, the destruc­
tor closes it for you. If you used new to allocate the CFile object on the heap, then
you must delete it after closing the file. Close sets m _ hFile to CFile: :hFileNull.

CFile::Open

CFile: :Duplicate

Remarks

virtual CFile* Duplicate() const
throw(CFileException);

Constructs a duplicate CFile object for a given file. This is equivalent to the C
run-time function _ dup.

CFile::GetPosition 397

CFile::Flush

Remarks

virtual void Flush()
throw(CFileException);

Forces any data remaining in the file buffer to be written to the file. The use of
Flush does not guarantee flushing of CArchive buffers. If you are using an archive,
call CArchive: :Flush first.

CFi Ie: :GetLength

Remarks

Return Value

See Also

virtual DWORD GetLength() const
throw(CFileException);

Obtains the current logical length of the file in bytes, not the amount physi­
cally allocated.

The length of the file.

CFile::SetLength

CFile: :GetPosition

Remarks

Return Value

Example

virtual DWORD GetPosition() const
throw(CFileException);

Obtains the current value of the file pointer, which can be used in subsequent
calls to Seek.

The file pointer as a 32-bit doubleword.

extern CFile cfile;
DWORD dwPosition = cfile.GetPosition();

398 CFile::GetStatus

CFile: :GetStatus

Remarks

BOOL GetStatus(CFileStatus& rStatus) const;

static BOOL PASCAL GetStatus(const char* pszFileName,
CFileStatus& rStatus);

rStatus A reference to a user-supplied CFileStatus structure that will receive the
status information. The CFileStatus structure has the following fields with the
meanings as given:

• CTime m ctime The date and time the file was created

• CTime m mtime The date and time the file was last modified

• CTime m atime The date and time the file was last accessed for reading

• LONG m _size The logical size of the file in bytes, as reported by the
MS-DOS commandDIR

• BYTE m_attribute The MS-DOS attribute byte of the file

• char m _ szFullName[_ MAX _PATH] The absolute filename in the
Windows character set. When running under MS-DOS only, m_szFullName
is an OEM character string. (_MAX_PATH is defined in STDLIB.H.)

pszFileName A string in the Windows character set that is the path to the desired
file. When running under MS-DOS only, pszFileName is an OEM character
string. The path may be relative or absolute, but may not contain a network name.

The virtual version of GetStatus retrieves the status of the open file associated with
this CFile object. It does not insert a value into the m _szFullName structure member.

The static version gets the status of the named file and copies the filename to
m _szFullName. This function obtains the file status from the directory entry
without actually opening the file. It is useful for testing the existence and access
rights of a file.

The m attribute is the MS-DOS file attribute. The Microsoft Foundation classes
provide an enum type attribute so that you can specify attributes symbolically:

enum Attribute
normal = 0x00.
readOnly = 0x01.
hidden = 0x02.
system = 0x04.
volume = 0x08.
directory = 0x10.
archive = 0x20
} ;

400 CFile::Open

See Also

Example

Note This function is not available for the CMemFile-derived class.

CFile:: UnlockRange

extern DWORD dwPos;
extern DWORD dwCount;
extern CFile cfile;
cfile.LockRange(dwPos. dwCount);

CFile::Open

Remarks

Return Value

See Also

virtual BOOL Open(const char* pszFileName, UINT nOpenFlags,
CFileException* pError = NULL);

pszFileName A string that is the path to the desired file. The path may be relative
or absolute but may not contain a network name.

nOpenFlags A UINT that defines the file's sharing and access mode. It specifies
the action to take when opening the file. You can combine options by using the
bitwise-OR (I) operator. One access permission and one share option are
required; the modeCreate and modeNoInherit modes are optional. See the
CFile constructor for a list of mode options.

pError A pointer to an existing file-exception object that indicates the completion
status of the open operation.

Open is designed for use with the default CFile constructor. The two funet ions
form a "safe" method for opening a file where a failure is a normal, expected
condition. The constructor is guaranteed to succeed, and Open returns a pointer to
an exception object, bypassing the THROW/TRY/CATCH mechanism.

TRUE if the open was successful; otherwise FALSE. The pError parameter is
meaningful only if FALSE is returned.

CFile::CFile, CFile::Close

Return Value

See Also

Example

CFile::LockRange 399

TRUE if no error, in which case rStatus is valid; otherwise FALSE. FALSE
indicates that the file does not exist.

CFile:: SetStatus, CTime

CFileStatus status;
extern CFile cfile;
if(cfile.GetStatus(status))

{

41ifdef _DEBUG

II virtual member function

afxDump « "File size = " « status.m size « "\n";
1foendif

char* pFileName = "test.dat";
if(CFile: :GetStatus(pFileName, status» II static function

{

41ifdef _DEBUG
afxDump « "Full file name = " « status.m_szFullName « "\n";

41endif

CFile:: LockRange

Remarks

virtual void LockRange(DWORD dwPos, DWORD dwCount)
throw(CFileException);

dwPos The byte offset of the start of the byte range to lock.

dwC ount The number of bytes in the range to lock.

Locks a range of bytes in an open file, throwing an exception if the file is
already locked. Locking bytes in a file prevents access to those bytes by other
processes. You can lock more than one region of a file, but no overlapping regions
are allowed.

When you unlock the region, using the UnlockRange member function, the byte
range must correspond exactly to the region that was previously locked. The
LockRange function does not merge adjacent regions; if two locked regions are
adjacent, you must unlock each region separately.

Under MS-DOS, you must enable file sharing by running SHARE.EXE before
running an application using this member function.

Example CFile f;
CFileException e;
char* pFileName = "test.dat";

CFile::Remove 401

if(!f.Open(pFileName, CFile: :modeCreate I CFile: :modeWrite, &e))
{

1Fi fdef _DEBUG
afxDump « "File could not be opened" « e.m_cause « "\n";

1Fendif

CFile::Read

Remarks

Return Value

See Also

Example

virtual UINT Read(void FAR* IpBuf, UINT nCount)
throw(CFileException);

IpBuJ Pointer to the user-supplied buffer that is to receive the data read from
the file.

nCount The maximum number of bytes to be read from the file. For text-mode
files, carriage return-linefeed pairs are counted as single characters.

Reads data into a buffer from the file associated with the CFile object.

The number of bytes transferred to the buffer. Note that for all CFile classes,
the return value may be less than nCount if the end of file was reached.

CFile::Write

extern CFile cfile;
char pbuf[100];
UINT nBytesRead = cfile.ReadC pbuf, 100);

CFile::Remove
static void PASCAL Remove(const char* pszFileN arne)

throw(CFileException);

pszFileNarne A string that is the path to the desired file. The path may be relative
or absolute but may not contain a network name.

402 CFile::Rename

Remarks This static function deletes the file specified by the path. It will not remove a
directory. The Remove member function throws an exception if the connected file
is open or if the file cannot be removed. This is equivalent to the MS-DOS DEL
command.

Example cha r* pFi 1 eName "test. dat";
TRY
{

CFile::Remove(pFileName);

CATCH(CFileException. e)
{

/Fifdef _DEBUG
afxDump « "File" « pFileName « " cannot be removed\n";

/Fendif

CFile::Rename

Remarks

Example

static void PASCAL Rename(const char* pszOldName,
const char* pszNewName)
throw(CFileException);

pszOldName The old path.

pszNewName The new path.

This static function renames the specified file. Directories cannot be renamed. This
is equivalent to the MS-DOS REN command.

extern char* pOldName;
extern char* pNewName;
TRY
{

CFile::Rename(pOldName. pNewName);
}

CATCH(CFileException. e)
{

/Fifdef _DEBUG
afxDump « "Fil e " « pOl dName « " not found. cause

« e->m_cause « "\n";
lJ:endif

CFile::Seek

Remarks

Return Value

Example

virtual LONG Seek(LONG [Off, UINT nFrom)
throw(CFileException);

[Off Number of bytes to move the pointer.

CFile::SeekToBegin 403

nFrom Pointer movement mode. Must be one of the following values, with the
meaning as given:

• CFile::begin Move the file pointer [Off bytes forward from the beginning
of the file.

• CFile::current Move the file pointer [Off bytes from the current position
in the file.

• CFile: :end Move the file pointer backward fOff bytes from the end of
the file.

Repositions the pointer in a previously opened file. The Seek function permits
random access to a file's contents by moving the pointer a specified amount,
absolutely or relatively. No data is actually read during the seek. When a file is
opened, the file pointer is positioned at offset 0, the beginning of the file.

If the requested position is legal, Seek returns the new byte offset from the
beginning of the file. Otherwise, the return value is undefined and a
CFileException object is thrown.

extern CFile cfile;
LONG lOffset = 1000. lActual;
lActual = cfile.Seek(lOffset. CFile::begin);

CFile::SeekToBegin

Remarks

Example

void SeekToBegin()
throw(CFileException);

Sets the value of the file pointer to the beginning of the file. See k To Beg i n () is
equivalentto See k (0 L, C F i 1 e: : beg in) .

extern CFile cfile;
cfile.SeekToBegin();

404 CFile::SeekToEnd

CFile: :SeekToEnd

Remarks

Return Value

See Also

Example

DWORD SeekToEnd()
throw(CFileException);

Sets the value of the file pointer to the logical end of the file. See k ToE n d () is
equivalenttoCFile::Seek(0L, CFile::end).

The length of the file in bytes.

CFile::GetLength, CFile::Seek, CFile::SeekToBegin

extern CFile cfile;
DWORD dwActual = cfile.SeekToEnd();

CFile: :SetLength

Remarks

Example

virtual void SetLength(const DWORD dwNewLen)
throw(CFileException);

dwNewLen Desired length of the file in bytes. This value may be larger or
smaller than the current length of the file. The file will be extended or truncated
as appropriate.

Changes the length of the file.

Note With CMemFile, this function could throw a CMemoryException object.

extern CFile cfile;
DWORD dwNewLength = 10000;
cfile.SetLength(dwNewLength);

CFile: :SetStatus
static void SetStatus(const char* pszFileName, const CFileStatus& status)

throw(CFileException);

pszFileName A string that is the path to the desired file. The path may be relative
or absolute but may not contain a network name.

Remarks

See Also

Example

CFile::UnlockRange 405

status The buffer containing the new status infonnation. Call the GetStatus
member function to prefill the CFileStatus structure with current values,
then make changes as required. If a value is 0, then the corresponding status
item is not updated. See the GetStatus member function for a description of the
CFileStatus structure.

Sets the status of the file associated with this file location. Under MS-DOS, all
times in the CFileStatus structure, as described in the GetStatus member function,
contain the same value. To set the time, modify the m_mtime field of status. The
SetStatus function will throw an exception under MS-DOS if the file's read-only
attribute is set.

CFile: :GetStatus

char* pFileName = "test.dat";
extern BYTE newAttribute;
CFileStatus status;
CFile::GetStatus(pFileName. status);
status.m_attribute = newAttribute;
CFile::SetStatus(pFileName. status);

CFile: :UnlockRange

Remarks

See Also

Example

virtual void UnlockRange(DWORD dwPos, DWORD dwCount)
throw(CFileException);

dwPos The byte offset of the start of the byte range to unlock.

dwC ount The number of bytes in the range to unlock.

Unlocks a range of bytes in an open file. See the description of the LockRange
member function for details.

Under MS-DOS, you must load SHARE.EXE; otherwise, the function throws a
CFileException object.

Note This function is not available for the CMemFile-derived class.

CFile: :LockRange

extern DWORD dwPos;
extern DWORD dWCount;
extern CFile cfile;
cfile.UnlockRange(dwPos. dwCount);

406 CFile::Write

CFile: :Write

Remarks

See Also

Example

virtual void Write(const void FAR* lpBuj, VINT nCount)
throw(CFileException);

lpBuf A pointer to the user-supplied buffer that contains the data to be written to
the file.

nCount The number of bytes to be transferred from the buffer. For text-mode
files, carriage retum-linefeed pairs are counted as single characters.

Writes data from a buffer to the file associated with the CFile object. Write throws
an exception in response to several conditions including the disk-full condition.

CFile: :Read, CStdioFile:: Write String

extern CFile cfile;
char pbuf[100];
cfile.Write(pbuf. 100);

Data Members

CFile::m hFile
Remarks Contains the operating-system file handle for an open file. ill _ hFile is a public

variable of type VINT.1t contains CFile::ill_hFileNull (an operating-system­
independent empty file indicator) if the handle has not been assigned.

Use of ill _ hFile is not recommended because the member's meaning depends on the
derived class. ill _ hFile is made a public member to conveniently support
nonpolymorphic use of the class.

class CFileDialog : public CDialog
The CFileDialog class encapsulates
the Windows common file dialog box.
Common file dialog boxes provide an
easy way to implement File Open and
File Save As dialog boxes (as well as
other file-selection dialog boxes) in a
manner consistent with Windows
standards.

CFileDialog 407

CFileDialog

You can use CFileDialog "as is" with the constructor provided, or you can derive
your own dialog class from CFileDialog and write a constructor to suit your needs.
In either case, these dialog boxes will behave like standard Microsoft Foundation
class dialog boxes because they are derived from the CDialog class.

To use a CFileDialog object, first create the object using the CFileDialog
constructor. Once the dialog has been constructed, you can set or modify any values
in the m_ofn structure to initialize the values or states of the dialog box's controls.
The m _ ofn structure is of type OPENFILENAME. For more information on this
structure, see the Windows Software Development Kit (SDK) documentation.

After initializing the dialog box's controls, call the DoModal member function to
display the dialog box and allow the user to enter the path and file. DoModal
returns whether the user selected the OK (IDOK) or the Cancel (IDCANCEL)
button.

If DoModal returns IDO K, you can use one of CFileDialog' s public member
functions to retrieve the information input by the user.

CFileDialog includes several protected members that enable you to do custom
handling of share violations, filename validation, and list-box change notification.
These protected members are callback functions that most applications do not need
to use, since default handling is done automatically. Message-map entries for these
functions are not necessary because they are standard virtual functions.

You can use the Windows CommDlgExtendedError function to determine if an
error occurred during initialization of the dialog box and to learn more about the
error.

The destruction of CFileDialog objects is handled automatically. It is not necessary
to call CDialog: :EndDialog.

To allow the user to select multiple files, set the OFN.ALLOW _MULTISELECT
flag before calling DoModal. You need to supply your own filename buffer to
accommodate the returned list of multiple file names. Do this by replacing

408 CFileDialog

m _ ofn.lpstrFile with a pointer to a buffer you have allocated, after constructing the
CFileDialog, but before calling DoModal.

CFileDialog relies on the COMMDLG.DLL file that ships with Windows version
3.1. For details about redistributing COMMDLG.DLL to Windows version 3.0
users, see the Getting Started manual in the Windows version 3.1 SDK.

If you derive a new class from CFileDialog, you can use a message map to handle
any messages. To extend the default message handling, derive a class from CWnd,
add a message map to the new class, and provide member functions for the new
messages. You do not need to provide a hook function to customize the dialog box.

To customize the dialog box, derive a class from CFileDialog, provide a custom
dialog template, and add a message map to process the notification messages from
the extended controls. Any unprocessed messages should be passed to the base
class.

Customizing the hook function is not required.

#include <afxdlgs.h>

Data Members-Public Members
m ofn The Windows OPENFILENAME structure.

Provides access to basic file dialog box parameters.

Construction/Destruction - Public Members
CFileDialog Constructs a CFileDialog object.

Overridables - Public Members
DoModal

GetPathName

GetFileName

GetFileExt

GetFileTitle

GetReadOnlyPref

Displays the dialog box and allows the user to make
a selection.

Returns the full path of the selected file.

Returns the filename of the selected file.

Returns the file extension of the selected file.

Returns the title of the selected file.

Returns the read-only status of the selected file.

Operations - Protected Members
OnShare Violation

OnFileNameOK

OnLBSelChangedNotify

Called when a share violation occurs.

Called to validate the filename entered in the dialog
box.

Called when the list box selection changes.

CFileDialog: :CFileDialog 409

Member Functions

CFileDialog: :CFileDialog

Remarks

CFileDialog(BOOL bOpenFileDialog, LPCSTR IpszDejExt = NULL,
LPCSTR IpszFileName = NULL, DWORD dwFlags =
OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT, LPCSTR
IpszFilter = NULL, CWnd* pParentWnd = NULL);

bOpenFileDialog Set to TRUE to construct a File Open dialog box or FALSE to
construct a File Save As dialog box.

IpszDejExt The default filename extension. If the user does not include an
extension in the Filename edit box, the extension specified by IpszDejExt is
automatically appended to the filename. If this parameter is NULL, no file
extension is appended.

IpszFileN ame The initial filename that appears in the filename edit box. If
NULL, no filename initially appears.

dwFlags A combination of one or more flags that allow you to customize the
dialog box. For a description of these flags, see the OPENFILENAME structure
description in the Windows SDK documentation. If you modify the m _ ofn.Flags
structure member, use a bitwise-OR operator in your changes to keep the default
behavior intact.

IpszFilter A series of string pairs that specify filters you can apply to the file. If
you specify file filters, only selected files will appear in the Files list box. See the
"Remarks" section below for more information on how to work with file filters.

pParentWnd A pointer to the file dialog-box object's parent or owner window.

Call this function to construct a standard Windows file dialog box object. Either a
File Open or File Save As dialog box is constructed, depending on the value of
bOpenFileDialog.

The IpszFilter parameter is used to determine the type of filename a file must have
to be displayed in the file list box. The first string in the string pair describes the
filter; the second string indicates the file extension to use. Multiple extensions may
be specified using';' as the delimiter. The string ends with two' I' characters,
followed by a NULL character. You can also use a CString object for this
parameter.

410 CFileDialog::DoModal

See Also

For example, Microsoft Excel permits users to open files with extensions .XLC
(chart) or .XLS (worksheet), among others. The filter for Excel could be written as:

static char BASED_CODE szFilter[] = "Chart Files (*.xlc) I *.xlc I
Worksheet Files (*.xls) I *.xls I Data Files (*.xlc;*.xls) I *.xlc;
.xls I All Files (.*) I *.* II"

CFileDialog: :DoModal, : : GetOpenFileName, : : GetSaveFileName

CFileDialog: :DoModal

Remarks

Return Value

See Also

virtual int DoModal();

Call this function to display the Windows common file dialog box and allow the
user to browse files and directories and enter a filename.

If you want to initialize the various file dialog-box options by setting members of
the m_ ofn structure, you should do this before calling DoModal, but after the
dialog object is constructed.

When the user clicks the dialog box's OK or Cancel buttons, or selects the Close
option from the dialog box's control menu, control is returned to your application.
You can then call other member functions to retrieve the settings or information the
user inputs into the dialog box.

DoModal is a virtual function derived from class CModalDialog.

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or
Cancel button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine if an error occurred.

CDialog: :DoModal, CFileDialog: :CFileDialog

CFileDialog: :GetFileTitle 411

CFileDialog: :GetFileExt

Remarks

Return Value

See Also

CString GetFileExt() const;

Call this function to retrieve the extension of the filename entered into the dialog
box. For example, if the name of the file entered is DATA.TXT, GetFileExt
returns "TXT".

Ifrn_ofo.Flags has the OFN_ALLOWMULTISELECT flag set, then this
member function only applies to the first name.

The extension of the filename.

CFileDialog:: GetPathNarne, CFileDialog:: GetFileN arne,
CFileDialog:: GetFileTitle

CFileDialog: :GetFileName

Remarks

Return Value

See Also

CStriog GetFileNarne() coost;

Call this function to retrieve the name of the file entered in the dialog box. The
name of the file includes only its prefix, without the path or the extension. For
example, GetFileNarne will return "TEXT" for the file C:\FILES\TEXT.DAT.

If rn _ ofo.Flags has the OFN _ ALLOWMUL TISELECT flag set, then this
member function only applies to the first name.

The name of the file.

CFileDialog: : GetPathN arne, CFileDialog:: GetFileExt,
CFileDialog: : GetFileTitle

CFileDialog: :GetFileTitle

Remarks

CStriog GetFileTitle() coost;

Call this function to retrieve the title of the filename entered in the dialog box. The
title of the filename includes both the name and the extension. For example,
GetFileTitle will return "TEXT.DAT" for the file C:\FILES\TEXT.DAT.

412 CFileDialog: :GetPathName

Return Value

See Also

If rn _ ofD.Flags has the OFN_ ALLOWMUL TISELECT flag set, then this
member function only applies to the first name.

The title of the file.

CFileDialog: : GetPathNarne, CFileDialog: : GetFileNarne,
CFileDialog: : GetFileExt, : : GetFileTitle

CFileDialog: :GetPathName

Remarks

Return Value

See Also

CStriDg GetPathNarne() CODst;

Call this function to retrieve the full path of the file entered in the dialog box. The
path of the filename includes the file's title plus the entire directory path. For
example, GetPathNarne will return "C:\FILES\TEXT.DAT" for the file
C:\FILES\TEXT.DAT.

If rn _ ofD.Flags has the OFN _ ALLOWMUL TISELECT flag set, then this
member function only applies to the first name.

The full path of the file.

CFileDialog:: GetFileN arne, CFileDialog:: GetFileExt,
CFileDialog:: GetFileTitle

CFileDialog: :GetReadOnlyPref

Remarks

Return Value

See Also

BOOL GetReadODlyPref() CODst;

Call this function to determine whether the Read Only check box has been selected
in the Windows standard File Open and File Save As dialog boxes. The Read Only
check box can be hidden by setting the OFN_HIDEREADONLY style in the
CFileDialog constructor.

Non-zero if the Read Only check box in the dialog box is selected; otherwise O.

CFileDialog: :CFileDialog, CFileDialog: : GetPathNarne,
CFileDialog: : GetFileExt

CFileDialog: :OnLBSelChangedNotify 413

CFi Ie Dialog : :On FileNameOK
Protected

Remarks

Return Value

See Also

virtual BOOL OnFileNameOKO; +

Override this function only if you want to provide custom validation of filenames
that are entered into a common file dialog box. This function allows you to reject a
filename for any application-specific reason. Normally, you do not need to use this
function because the framework provides default validation of filenames and
displays a message box if an invalid filename is entered.

If a nonzero value is returned, the dialog box will remain displayed for the user to
enter another filename.

Nonzero if the filename is a valid MS-DOS filename; otherwise O.

OPENFILENAME

CFi leDialog: :On LBSelChangedNotify
Protected virtual void OnLBSelChangedNotify(UINT nIDBox, UINT iCurSel, UINT

nCode); +

nIDBox The ID of the list box or combo box in which the selection occurred.

iCurSel The index of the current selection.

nCode The control notification code.

This parameter must have one of the following values, with the meaning as given:

• CD _ LBSELCHANGE Specifies iCurSel is the selected item in a single­
selection list box.

• CD _ LBSELSUB Specifies that iCurSel is no longer selected in a
multi selection list box.

• CD _ LBSELADD Specifies that iCurSel was selected in a multi selection
list box.

• CD LBSELNOITEMS
rnultiselection list box.

Specifies that no selection exists in a

For more information, see "Filename Dialog Boxes" in the Windows SDK Help.

414 CFileDialog: :OnShareViolation

Remarks This function is called whenever the current selection in a list box is about to
change. Override this function to provide custom handling of selection changes in
the list box. For example, you can use this function to display the access rights or
date-last-modified of each file the user selects.

CFi leDialog: :OnShare Violation
Protected

Remarks

Return Value

See Also

virtual UINT OnShareViolation(LPCSTR IpszPathName); •

IpszP athN ame The path of the file on which the share violation occurred.

Override this function to provide custom handling of share violations. Normally,
you do not need to use this function because the framework provides default
checking of share violations and displays a message box if a share violation occurs.

If you want to disable share violation checking, use the bitwise-OR operator to
combine the flag OFN_ SHAREA W ARE with m _ ofn.Flags.

One of the following values, with the meaning as given:

• OFN_SHAREFALLTHROUGH The filename is returned from the dialog
box.

• OFN SHARENOW ARN No further action needs to be taken.

• OFN SHAREW ARN
this error.

The user receives the standard warning message for

CFileDialog: :OnFileNameOK

CFileDialog::m_ofn 415

Data Members

CFileDialog::m_ofn
Remarks m _ ofo is a structure of type OPENFILENAME. Use this structure to initialize the

appearance of a File Open or File Save As dialog box after it is constructed but
before it is displayed with the DoModal member function. For example, you can
set the IpszTitle member of m _ ofo to the caption you want the dialog box to have.

For more information on this structure, including a listing of its members, see
OPENFILENAME in the Windows SDK documentation.

416 CFileException

class CFileException : public CException

See Also

A CFileException object represents a file­
related exception condition. The
CFileException class includes public data
members that hold the portable cause code and CFileException
the operating-system-specific error number. The
class also provides static member functions for
throwing file exceptions and for returning cause codes for both operating-system
errors and C run-time errors. CFileException objects are constructed and thrown
in CFile member functions and in member functions of derived classes. You can
access these objects within the scope of a CATCH expression. For portability, use
only the cause code to get the reason for an exception. For more information about
exceptions, see Chapter 16, "Exceptions," in the Class Library User's Guide.

#include <afx.h>

CFile

Data Members - Public Members
m cause

m IOsError

Contains portable code corresponding to the exception
cause.

Contains the related operating-system error number.

Construction/Destruction - Public Members
CFileException Constructs a CFileException object.

Code Conversion - Public Members
OsErrorToException

ErrnoToException

Returns a cause code corresponding to an MS-DOS
error code.

Returns cause code corresponding to a run-time
error number.

Helper Functions - Public Members
ThrowOsError

ThrowErrno

Throws a file exception based on an operating-system
error number.

Throws a file exception based on a run-time
error number.

CFileException:: Errno To Exception 417

Member Functions

CFileException: :CFileException

Remarks

See Also

CFileException(int cause = CFileException::none, LONG IOsError = -1);

cause An enumerated type variable that indicates the reason for the exception.
See CFileException::m _cause for a list of the possible values.

IOsError An operating-system-specific reason for the exception, if available. The
IOsError parameter provides more information than cause does.

Constructs a CFileException object that stores the cause code and the operating­
system code in the object. Do not use this constructor directly, but rather call the
global function AfxThrowFileException.

Note The variable IOsError applies only to CFile and CStdioFile objects. The
CMemFile class does not handle this error code. More information specifically
about the operating system is available through the run-time function _ dosexterr
(MS-DOS only).

AfxThrowFileException

CFileException:: Errno ToException

Remarks

Return Value

See Also

Example

static int PASCAL ErrnoToException(int nErrno);

nErrno An integer error code as defined in the run-time include file ERRNO.H.

Converts a given run-time library error value to a CFileException enumerated
error value. See CFileException::m _cause for a list of the possible enumerated
values.

Enumerated value that corresponds to a given run-time library error value.

CFiieException:: OsErrorToException

#include <errno.h>
ASSERT(CFileException: :ErrnoToException(EACCES)

CFileException::accessDenied);

418 CFileException: :OsErrorToException

CFi leException: :OsErrorToException

Remarks

Return Value

See Also

Example

static int PASCAL OsErrorToException(LONG lOsError);

lOsError An operating-system-specific error code.

Returns an enumerator that corresponds to a given lOsError value. If the error code
is unknown, then the function returns CFileException: :generic.

Enumerated value that corresponds to a given operating-system error value.

CFileException: :ErrnoToException

ASSERT(CFileException::OsErrorToException(5) ==
CFileException::accessDenied);

CFileException: :ThrowErrno

Remarks

See Also

Example

static void PASCAL ThrowErrno(int nErrno);

nErrno An integer error code as defined in the run-time include file ERRNO.H.

Constructs a CFileException object corresponding to a given nErrno value, then
throws the exception.

CFileException: : ThrowOsError

#include <errno.h>
CFileException::ThrowErrno(EACCES); II "access denied"

CFileException: :ThrowOsError

Remarks

static void PASCAL ThrowOsError(LONG lOsError);

lOsError An operating-system-specific error code.

Throws a CFileException corresponding to a given lOsError value. If the error
code is unknown, then the function throws an exception coded as
CFileException: :generic.

See Also

Example

CFileException::m_cause 419

CFileException: :ThrowErrno

FileException::ThrowOsError(5); II "access denied"

Data Members

CFileException::m_cause
Remarks Contains values defined by a CFileException enumerated type. This data member

is a public variable of type int. The enumerators and their meanings are as follows:

• CFileException: :none No error occurred.

• CFileException::generic An unspecified error occurred.

• CFileException: :fileNotFound The file could not be located.

• CFileException: : badPath All or part of the path is invalid.

• CFileException::tooManyOpenFiles The pennitted number of open files
was exceeded.

• CFileException: :accessDenied The file could not be accessed.

• CFileException: :invalidFile There was an attempt to use an invalid
file handle.

• CFileException: :removeCurrentDir The current working directory
cannot be removed.

• CFileException::directoryFull There are no more directory entries.

• CFileException::badSeek There was an error trying to set the file pointer.

• CFileException::hardIO There was a hardware error.

• CFileException::sharingViolation SHARE.EXE was not loaded, or a
shared region was locked.

• CFileException: :Iock Violation There was an attempt to lock a region that
was already locked.

• CFileException: :diskFull The disk is full.

• CFileException::endOfFile The end of file was reached.

420 CFileException::mJOsError

Example

Note These CFileException cause enumerators are distinct from the
CArchiveException cause enumerators.

extern char* pFileName;
TRY
{

CFile f(pFileName, CFile::modeCreate I CFile::modeWrite);
}

CATCH(CFileException, e)
{

}

if(e->m_cause == CFileException::fileNotFound
pri ntf("ERROR: Fi 1 e not found\n");

CFileException::m _IOsError
Remarks Contains the operating -system error code for this exception. See your operating­

system technical manual for a listing of error codes. This data member is a public
variable of type LONG.

CFindReplaceDialog 421

class CFindReplaceDialog : public CDialog
The CFindReplaceDialog class
allows you to implement standard
string Find/Replace dialog boxes in
your application. Unlike the other
Windows common dialog boxes,
CFindReplaceDialog objects are
modeless, allowing users to interact CFindReplaceDialog
with other windows while they are on
screen. There are two kinds of
CFindReplaceDialog objects: Find dialog boxes and Find/Replace dialog boxes.
Although the dialog boxes allow the user to input search and search/replace strings,
they do not perform any of the searching or replacing functions. You must add these
to the application.

To construct a CFindReplaceDialog object, use the provided constructor (which
has no arguments). Since this is a modeless dialog box, allocate the object on the
heap using the new operator, rather than on the stack.

Once a CFindReplaceDialog object has been constructed, you must call the
Create member function to create and display the dialog box.

Use the m _fr structure to initialize the dialog box before calling Create. The m _fr
structure is of type FINDREPLACE. For more information on this structure, see
the Windows Software Development Kit (SDK) documentation.

In order for the parent window to be notified of find/replace requests, you must
use the Windows Register Message function and use the
ON_REGISTERED _MESSAGE message-map macro in your frame window
that handles this registered message. You can call any of the member functions
listed in the following "Operations-Public Members" section from the frame
window's callback function.

You can determine if the user has decided to terminate the dialog box with the
Is Terminating member function.

CFindReplaceDialog relies on the COMMDLG.DLL file that ships with Windows
version 3.1. For details about redistributing COMMDLG.DLL to Windows version
3.0 users, see the Getting Started m~ual in the Windows version 3.1 SDK.

To customize the dialog box, derive a class from CFindReplaceDialog, provide
a custom dialog template, and add a message map to process the notification
messages from the extended controls. Any unprocessed messages should be
passed to the base class.

422 CFindReplaceDialog

Customizing the hook function is not required.

#include <afxdlgs.h>

Data Members - Public Members
m fr A structure used to customize a CFindReplaceDialog

object.

Construction/Destruction - Public Members
CFindReplaceDialog Call this function to construct a CFindReplaceDialog

object.

Create Creates and displays a CFindReplaceDialog dialog box.

Operations - Public Members
FindNext

GetN otifier

GetFindString

GetReplaceString

IsTerminating

MatchCase

Match Whole Word

ReplaceAII

ReplaceCurrent

SearchDown

Call this function to determine whether the user wants to
find the next occurrence of the find string.

Call this function to retrieve the FINDREPLACE
structure in your registered message handler.

Call this function to retrieve the current find string.

Call this function to retrieve the current replace string.

Call this function to determine whether the dialog box is
terminating.

Call this function to determine if the user wants to match
the case of the find string exactly.

Call this function to determine whether the user wants to
match entire words only.

Call this function to determine whether the user wants all
occurrences of the string to be replaced.

Call this function to determine whether the user wants the
current word to be replaced.

Call this function to determine whether the user wants the
search to proceed in a downward direction.

CFindReplaceOialog: : Create 423

Member Functions

CFindReplaceDialog: :CFindReplaceDialog

Remarks

See Also

CFindReplaceDialog();

Constructs a CFindReplaceDialog object. CFindReplaceDialog objects are
constructed on the heap with the new operator. See the class description above for
more information on the construction of CFindReplaceDialog objects. Use the
Create member function to display the dialog box.

CFindReplaceDialog: :Create

CFind ReplaceDialog: :Create
BOOL Create(BOOL bFindDialogOnly, LPCSTR IpszFindWhat,

LPCSTR IpszReplaceWith = NULL, DWORD dwFlags = FR _DOWN,
CWnd* pParentWnd = NULL);

bFindDialogOnly Set this parameter to TRUE to display the standard Windows
Find dialog box. Set it to FALSE to display the Windows Find/Replace dialog
box.

IpszFindWhat Specifies the string to search for.

IpszReplaceWith Specifies the default string to replace found strings with.

dwFlags One or more flags you can use to customize the settings of the dialog
box, combined using the bitwise-OR operator. The default value is FR_DOWN,
which specifies that the search is to proceed in a downward direction. See the
FIND REPLACE structure in the Windows SDK for more information on these
flags.

pParentWnd A pointer to the dialog box's parent or owner window. This is the
window that will receive the special message indicating that a find/replace action
is requested. If NULL, the application's main window is used.

424 CFindReplaceDialog::FindNext

Remarks Creates and displays either a Find or Find/Replace dialog box object, depending on
the value of bFindDialogOnly.

See Also

In order for the parent window to be notified of find/replace requests, you must use
the Windows Register Message function whose return value is a message number
unique to the application's instance. Your frame window should have a message
map entry that declares the callback function (OnFindReplace in the example that
follows) that handles this registered message. The following code fragment is an
example of how to do this for a frame window class named CMyFrameWnd:

class CMyFrameWnd : public CFrameWnd
{

protected:
afx_msg LONG LRESULT OnFindReplace(WPARAM wParam. LPARAM

1 Param);

} ;

static UINT NEAR WM_FINREPLACE = : :RegisterMessage(FINDMSGSTRING);

BEGIN_MESSAGE_MAP(CMyFrameWnd. CFrameWnd
IINormal message map entries here.
ON_REGISTERED_MESSAGE(WM_FINDREPLACE. OnFindReplace

END_MESSAGE_MAP

Within your OnFindReplace function, you interpret the intentions of the user and
create the code for the find/replace operations.

CFindReplaceDialog: :CFindReplaceDialog

CFi nd ReplaceDialog:: Fi ndNext

Remarks

Return Value

See Also

BOOL FindNext() const;

Call this function from your callback function to determine whether the user wants
to find the next occurrence of the search string.

Nonzero if the user wants to find the next occurrence of the search string;
otherwise O.

CFindReplaceDialog: : GetFindString, CFindReplaceDialog: :SearchDown

CFindReplaceDialog ::lsTerminating 425

CFi nd ReplaceDialog: :GetFi ndStri ng

Remarks

Return Value

See Also

CString GetFindString() const;

Call this function from your callback function to retrieve the default string to find.

The default string to find.

CFindReplaceDialog: :FindNext, CFindReplaceDialog:: GetReplaceString

CFi nd ReplaceDialog: :GetNotifier

Remarks

Return Value

static CFindReplaceDialog* PASCAL GetNotifier(LPARAM IParam);

IParam The Iparam value passed to the frame window's OnFindReplace
member function.

Call this function to retrieve a pointer to the current Find Replace dialog box. It
should be used within your callback function to access the current dialog box, call
its member functions, and access the m_fr structure.

A pointer to the current dialog box.

CFi nd ReplaceDialog: :GetReplaceString

Return Value

See Also

CString GetReplaceString() const;

The default string to replace found strings with.

CFindReplaceDialog: : GetFindString

CFi nd ReplaceDialog: :lsTermi nati ng

Remarks

BOOL IsTerminating() const;

Call this function within your callback function to determine whether the user has
decided to terminate the dialog box. If this function returns nonzero, you should call
the DestroyWindow member function of the current dialog box and set any dialog

426 CFindReplaceDialog::MatchCase

Return Value

box pointer variable to NULL. Optionally, you can also store the find/replace text
last entered and use it to initialize the next find/replace dialog box.

Nonzero if the user has decided to terminate the dialog box; otherwise o.

CFindReplaceDialog: :MatchCase

Return Value

See Also

BOOL MatchCase() const;

Nonzero if the user wants to find occurrences of the search string that exactly match
the case of the search string; otherwise o.
CFindReplaceDialog: :Match Whole Word

CFi nd ReplaceDialog:: Match WholeWord

Return Value

See Also

BOOL MatchWholeWordO const;

Nonzero if the user wants to match only the entire words of the search string;
otherwise O.

CFindReplaceDialog: :MatchCase

CFi nd ReplaceDialog:: ReplaceAl1

Return Value

See Also

BOOL ReplaceAll() const;

Nonzero if the user has requested that all strings matching the replace string be
replaced; otherwise O.

CFindReplaceDialog: :ReplaceCurrent

CFindReplaceDialog::mJr 427

CFi nd ReplaceDialog:: ReplaceCurrent

Return Value

See Also

BOOL ReplaceCurrent() const;

Nonzero if the user has requested that the currently selected string be replaced with
the replace string; otherwise O.

CFindReplaceDialog: : ReplaceAII

CFind ReplaceDialog: :Search Down

Return Value

BOOL SearchDown() const;

Nonzero if the user wants the search to proceed in a downward direction; 0 if the
user wants the search to proceed in an upward direction.

Data Members

CFindReplaceDialog::m _fr
Remarks m _fr is a structure of type FINDREPLACE. Its members store the characteristics

of the dialog-box object. After constructing a CFindReplaceDialog object, you can
use m _fr to initialize various values in the dialog box. You must initialize the
dialog box's values before calling the Create member function. For more
information on this structure, see the FINDREPLACE structure in the Windows
SDK documentation.

428 CFont

class CFont : public CGdiObject
The CFont class encapsulates a Windows
graphics device interface (ODI) font and
provides member functions for manipulating the
font. To use a CFont object, construct a CFont CFont
object and attach a Windows font to it with '--------------'
CreateFont or CreateFontIndirect, and then
use the object's member functions to manipulate the font.

#include <afxwin.h>

Construction/Destruction - Public Members
CFont Constructs a CFont object.

Initialization - Public Members
CreateFontIndirect

CreateFont

Initializes a CFont object with the characteristics given
in a LOGFONT structure.

Initializes a CFont with the specified characteristics.

Operations - Public Members
FromHandle Returns a pointer to a CFont object when given a

Windows HFONT.

Member Functions

CFont::CFont

Remarks

See Also

CFont();

Constructs a CFont object. The resulting object must be initialized with
CreateFont or CreateFontIndirect before it can be used.

CFont: :CreateFontIndirect, CFont: :CreateFont, : : EnumFonts

CFont::CreateFont 429

CFont: :CreateFont
BOOL CreateFont(int nHeight, int nWidth, int nEscapement,

int nOrientation, int nWeight, BYTE bltalic, BYTE bUnderline,
BYTE cStrikeOut, BYTE nCharSet, BYTE nOutPrecision,
BYTE nClipPrecision, BYTE nQuality, BYTE nPitchAndFamily,
LPCSTR IpszFacename);

nHeight Specifies the desired height (in logical units) of the font. The font height
can be specified in the following ways:

• Greater than 0, in which case the height is transformed into device units and
matched against the cell height of the available fonts.

• Equal to 0, in which case a reasonable default size is used.

• Less than 0, in which case the height is transformed into device units and the
absolute value is matched against the character height of the available fonts.

The absolute value of nHeight must not exceed 16,384 device units after it is
converted. For all height comparisons, the font mapper looks for the largest font
that does not exceed the requested size or the smallest font if all the fonts exceed
the requested size.

nWidth Specifies the average width (in logical units) of characters in the font. If
nWidth is 0, the aspect ratio of the device will be matched against the digitization
aspect ratio of the available fonts to find the closest match, which is determined
by the absolute value of the difference.

nEscapement Specifies the angle (in O.l-degree units) between the escapement
vector and the x -axis of the display surface. The escapement vector is the line
through the origins of the first and last characters on a line. The angle is measured
counterclockwise from the x-axis.

nOrientation Specifies the angle (in O.l-degree units) between the baseline of a
character and the x-axis. The angle is measured counterclockwise from the x-axis
for coordinate systems in which the y-direction is down and clockwise from the x­
axis for coordinate systems in which the y-direction is up.

nWeight Specifies the font weight (in inked pixels per 1000). The common con­
stants are as follows (nWeight can be any integer value from 0 to 1000):

Constant

FW DONTCARE
FW THIN

Value

o
100

430 CFont: :CreateFont

Constant Value

FW EXTRALIGHT 200

FW ULTRALIGHT 200

FW LIGHT 300

FW NORMAL 400

FW REGULAR 400

FW MEDIUM 500

FW SEMIBOLD 600

FW DEMIBOLD 600

FW BOLD 700

FW EXTRABOLD 800

FW ULTRABOLD 800

FW BLACK 900

FW HEAVY 900

These values are approximate; the actual appearance depends on the typeface.
Some fonts have only FW _NORMAL, FW _REGULAR, and FW _BOLD
weights. If FW _DONTCARE is specified, a default weight is used.

bltalic Specifies whether the font is italic.

bUnderline Specifies whether the font is underlined.

cStrikeOut Specifies whether characters in the font are struck out. Specifies a
strikeout font if set to a nonzero value.

nCharSet Specifies the font's character set. The following constants and values
are predefined:

Constant Value

ANSI CHARSET 0

DEFAULT CHARSET 1

SYMBOL CHARSET 2

SHIFTJIS _ CHARSET 128

OEM CHARSET 255

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. An application that uses a
font with an unknown character set must not attempt to translate or interpret

CFont::CreateFont 431

strings that are to be rendered with that font. Instead, the strings should be passed
directly to the output device driver.

The font mapper does not use the DEF AUL T _ CHARSET value. An application
can use this value to allow the name and size of a font to fully describe the logical
font. If a font with the specified name does not exist, a font from any character set
can be substituted for the specified font. To avoid unexpected results, applications
should use the DEFAULT _ CHARSET value sparingly.

nOutPrecision Specifies the desired output precision. The output precision
defines how closely the output must match the requested font's height, width,
character orientation, escapement, and pitch. It can be anyone of the following
values:

OUT CHARACTER PRECIS OUT STRING PRECIS - - - -
OUT DEFAULT PRECIS OUT STROKE PRECIS - - - -
OUT DEVICE PRECIS OUT TT PRECIS - -
OUT RASTER PRECIS - -

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
and OUT _ TT _PRECIS values to control how the font mapper chooses a font
when the system contains more than one font with a given name. For example, if a
system contains a font named Symbol in raster and TrueType form, specifying
OUT _ TT _PRECIS forces the font mapper to choose the TrueType version.
(Specifying OUT_TT_PRECIS forces the font mapper to choose a TrueType
font whenever the specified font name matches a device or raster font, even when
there is no TrueType font of the same name.)

nClipPrecision Specifies the desired clipping precision. The clipping precision
defines how to clip characters that are partially outside the clipping region. It can
be anyone of the following values:

CLIP CHARACTER PRECIS CLIP MASK - -
CLIP DEFAULT PRECIS CLIP STROKE PRECIS - - - -
CLIP ENCAPSULATE CLIP TT ALWAYS
CLIP LH ANGLES

To use an embedded read-only font, an application must specify
CLIP ENCAPSULATE.

To achieve consistent rotation of device, TrueType, and vector fonts, an applica­
tion can use the OR operator to combine the CLIP _LH_ANGLES value with
any of the other nClipPrecision values. If the CLIP_LH_ANGLES bit is set, the
rotation for all fonts depends on whether the orientation of the coordinate system

432 CFont::CreateFont

is left-handed or right-handed. (For more information about the orientation of
coordinate systems, see the description of the nOrientation parameter.) If
CLIP _ LH _ANGLES is not set, device fonts always rotate counterclockwise, but
the rotation of other fonts is dependent on the orientation of the coordinate system.

nQuality Specifies the font's output quality, which defines how carefully the GDI
must attempt to match the logical-font attributes to those of an actual physical
font. It can be one of the following values, with the meaning as given:

• DEF AUL T _QUALITY Appearance of the font does not matter.

• DRAFT _QUALITY Appearance of the font is less important than when
PROOF_QUALITY is used. For GDI raster fonts, scaling is enabled. Bold,
italic, underline, and strikeout fonts are synthesized if necessary.

• PROOF_QUALITY Character quality of the font is more important than
exact matching of the logical-font attributes. For GDI raster fonts, scaling is
disabled and the font closest in size is chosen. Bold, italic, underline, and
strikeout fonts are synthesized if necessary.

nPitchAndF amily Specifies the pitch and family of the font. The two low-order
bits specify the pitch of the font and can be anyone of the following values:

DEFAULT PITCH
FIXED PITCH

VARIABLE PITCH

Applications can add TMPF _TRUETYPE to the nPitchAndFamily parameter to
choose a TrueType font. The four high-order bits of the parameter specify the font
family and can be one of the following values, with the meaning as given:

• FF _DECORATIVE Novelty fonts. Old English, for example.

• FF DONTCARE Don't care or don't know.

• FF _MODERN Fonts with constant stroke width (fixed-pitch), with or
without serifs. Fixed-pitch fonts are usually modem faces. Pica, Elite, and
Courier New are examples.

• FF _ROMAN Fonts with variable stroke width (proportionally spaced)
and with serifs. Times New Roman and Century Schoolbook are examples.

• FF _SCRIPT Fonts designed to look like handwriting. Script and Cursive
are examples.

• FF _SWISS Fonts with variable stroke width (proportionally spaced) and
without serifs. MS Sans Serif is an example.

Remarks

Return Value

See Also

CFont::CreateFontlndirect 433

An application can specify a value for nPitchAndF amity by using the Boolean OR
operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface desired is not available.

IpszFacename A CString or pointer to a null-terminated string that specifies the
typeface name of the font. The length of this string must not exceed 30 characters.
The Windows EnumFontFamilies function can be used to enumerate all
currently available fonts. If IpszF acename is NULL, the GDI uses a device­
independent typeface.

Initializes a CFont object with the specified characteristics. The font can subse­
quently be selected as the font for any device context. The CreateFont function
does not create a new Windows GDI font. It merely selects the closest match from
the fonts available in the GDI's pool of physical fonts. Applications can use the
default settings for most of these parameters when creating a logical font. The
parameters that should always be given specific values are nHeight and
IpszFacename. If nHeight and IpszFacename are not set by the application, the
logical font that is created is device-dependent.

When you finish with the CFont object created by the CreateFont function, first
select the font out of the device context, then delete the CFont object.

Nonzero if successful; otherwise O.

CFont: :CreateFontIndirect, : :CreateFont, : : EnumFontFamilies ,
::EnumFonts

CFont: :CreateFontlndirect

Remarks

BOOL CreateFontIndirect(const LOGFONT FAR* IpLogFont);

IpLogFont Points to a LOGFONT structure that defines the characteristics of the
logical font.

Initializes a CFont object with the characteristics given in a LOGFONT structure
pointed to by IpLogFont. The font can subsequently be selected as the current font
for any device. This font has the characteristics specified in the LOGFONT
structure. When the font is selected by using the CDC::SelectObject or
CMetaFileDC::SelectObject member function, the GDI's font mapper attempts to
match the logical font with an existing physical font. If it fails to find an exact
match for the logical font, it provides an alternative whose characteristics match as
many of the requested characteristics as possible.

434 CFont: :FromHandle

Return Value

LOG FONT
Structure

See Also

When you finish with the CFont object created by the CreateFontlndirect
function, first select the font out of the device context, then delete the CFont object.

Nonzero if successful; otherwise o.

The LOGFONT structure has the following form:

typedef struct tagLOGFONT
int lfHeight;
int lfWidth;
int lfEscapement;
int lfOrientation;
int lfWeight;
BYTE lfltalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE 1 fCha rSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE 1 fOua 1 ity;
BYTE 1 fPitchAndFamil y;
BYTE lfFaceName[LF_FACESIZE];

LOGFONT;

For more complete information about this structure see LOGFONT in the
Microsoft Windows Software Development Kit documentation.

CFont: :CreateFont, CDC: :SelectObject, CGdiObject: :DeleteObject,
CMetaFileDC: :SelectObject, : :CreateFontlndirect

CFont::FromHandle

Remarks

Return Value

static CFont* PASCAL FromHandle(HFONT hFont);

hFont An HFONT handle to a Windows font.

Returns a pointer to a CFont object when given an HFONT handle to a Windows
GDI font object. If a CFont object is not already attached to the handle, a
temporary CFont object is created and attached. This temporary CFont object is
valid only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. Another way of saying this is that
the temporary object is only valid during the processing of one window message.

A pointer to a CFont object if successful; otherwise NULL.

class CFontDialog : public CDialog
The CFontDialog class allows you to
incorporate a font -selection dialog box
into your application. A CFontDialog
object is a dialog box with a list of
fonts that are currently installed in the
system. The user can select a
particular font from the list, and this
selection is then reported back to the
application.

CFontDialog 435

CFontDialog

To construct a CFontDialog object, use the provided constructor or derive a new
subclass and use your own custom constructor.

Once a CFontDialog object has been constructed, you can use the m _ cf structure
to initialize the values or states of controls in the dialog box. The m _ cf structure is
of type CHOOSEFONT. For more information on this structure, see the Windows
Software Development Kit (SDK) documentation.

After initializing the dialog object's controls, call the DoModal member function to
display the dialog box and allow the user to select a font. DoModal returns whether
the user selected the OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDO K, you can use one of CFontDialog' s member functions
to retrieve the information input by the user.

You can use the Windows CommDlgExtendedError function to determine if an
error occurred during initialization of the dialog box to learn more about the error.
For more information on this function, see the Windows SDK documentation.

CFontDialog relies on the COMMDLG.DLL file that ships with Windows version
3.1. For details about redistributing COMMDLG.DLL to Windows version 3.0
users, see the Getting Started manual for the Windows version 3.1 SDK.

To customize the dialog box, derive a class from CFontDialog, provide a custom
dialog template, and add a message-map to process the notification messages from
the extended controls. Any unprocessed messages should be passed to the base
class.

Customizing the hook function is not required.

#include <afxdlgs.h>

436 CFontDialog: :CFontDialog

Data Members - Public Members
m cf A structure used to customize a CFontDialog object.

Construction/Destruction - Public Members
CFontDialog Constructs a CFontDialog object.

Operations - Public Members
DoModal Displays the dialog box and allows the user to make a

selection.

GetCurrentFont Retrieves the name of the currently selected font.

GetFaceName Returns the face name of the selected font.

GetStyleName Returns the style name of the selected font.

GetSize Returns the point size of the selected font.

GetColor Returns the color of the selected font.

GetWeight Returns the weight of the selected font.

IsStrikeOut Determines if the font is displayed with strikeout.

IsUnderline Determines if the font is underlined.

IsBold Determines if the font is bold.

Isltalic Determines if the font is italic.

Member Functions

CFontDialog: :CFontDialog
CFontDialog(LPLOGFONT IplfInitial = NULL,

DWORD dwFlags = CF _EFFECTS I CF _ SCREENFONTS,
CDC* pdcPrinter = NULL,
CWnd* pParentWnd = NULL);

Remarks

See Also

CFontDialog: :CFontDialog 437

IplfInitial A pointer to a LOGFONT data structure that allows you to set some of
the font's characteristics. The LOGFONT type is defined in WINDOWS.H as
follows:

typedef struct tag LOG FONT
{

int
int
int
int
int
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
LOGFONT;

lfHeight;
lfWi dth;
lfEscapement;
lfOrientation;
lfWeight;
lfItalic;
lfUnderline;
1 fStri keOut;
lfCha rSet;
lfOutPrecision;
lfClipPrecision;
lfQuality;
lfPitchAndFamily;
lfFaceName[LF_FACESIZE];

For more information on the LOGFONT structure, see the Windows SDK
documentation.

dwFlags Specifies one or more choose-font flags. One or more preset values can
be combined using the bitwise-OR operator. If you modify the m _ ofo.Flags
structure member, be sure to use a bitwise-OR operator in your changes to keep
the default behavior intact. For details on each of these flags, see the description
of the CHOOSEFONT structure in the Windows SDK documentation.

pdcPrinter A pointer to a printer-device context. If supplied, this parameter points
to a printer-device context for the printer on which the fonts are to be selected.

pParentWnd A pointer to the font dialog box's parent or owner window.

Constructs a CFootDialog object.

CFootDialog: :DoModal

438 CFontDialog: :DoModal

CFontDialog:: DoModal

Remarks

Return Value

See Also

virtual int DoModal();

Call this function to display the Windows common font dialog box and allow the
user to choose a font.

If you want to initialize the various font dialog controls by setting members of the
m _ cf structure, you should do this before calling DoModal, but after the dialog
object is constructed.

If DoModal returns IDO K, you can call other member functions to retrieve the
settings or information input by the user into the dialog box.

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or
Cancel button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine if an error occurred.

CDialog: :DoModal, CFontDialog: :CFontDialog

CFontDialog: :GetColor

Return Value

See Also

COLORREF GetColor() const;

The color of the selected font.

CFontDialog: : GetCurrentFont

CFontDialog: :GetCurrentFont

Remarks

void GetCurrentFont(LPLOGFONT lplf);

lplf A pointer to a LOGFONT structure.

Assigns the characteristics of the currently selected font to the members of a
LOGFONT structure. For more information on the LOGFONT structure, see the

See Also

CFontDialog: :GetWeight 439

Windows SDK documentation. Other CFontDialog member functions are provided
to access individual characteristics of the current font.

CFontDialog: : GetFaceNarne, CFontDialog:: GetStyleNarne

CFontDialog: :GetFaceName

Return Value

See Also

CString GetFaceNarne() const;

The face name of the font selected in the CFontDialog dialog box.

CFontDialog: : GetCurrentFont, CFontDialog: : GetStyleN arne

CFontDialog: :GetSize

Return Value

See Also

int GetSize() const;

The font's point size.

CFontDialog: : GetWeight, CFontDialog: : GetCurrentFont

CFontDialog: :GetStyleName

Return Value

See Also

CString GetStyleNarne() const;

The style name of the font.

CFontDialog: : GetFaceNarne, CFontDialog: : GetCurrentFont

CFontDialog: :GetWeight

Return Value

See Also

int GetWeight() const;

The weight of the selected font.

CFontDialog: : GetCurrentFont, CFontDialog: :IsBold

440 CFontDialog::lsBold

CFontDialog: :lsBold

Return Value

See Also

BOOL IsBold() const;

Nonzero if the selected font has the Bold characteristic enabled; otherwise o.
CFontDialog:: GetCurrentFont

CFontDialog: :Isltalic

Return Value

See Also

BOOL Isltalic() const;

Nonzero if the selected font has the Italic characteristic enabled; otherwise o.
CFontDialog: : GetCurrentFont

CFontDialog: :lsStrikeOut

Return Value

See Also

BOOL IsStrikeOut() const;

Nonzero if the selected font has the Strikeout characteristic enabled; otherwise O.

CFontDialog: : GetCurrentFont

CFontDialog: :lsUnderline

Return Value

See Also

BOOL IsUnderline() const;

Nonzero if the selected font has the Underline characteristic enabled; otherwise o.
CFontDialog: : GetCurrentFont

CFontDialog::m_cf 441

Data Members

CFontDialog::m _ cf
Remarks A structure whose members store the characteristics of the dialog object. After

constructing a CFontDialog object, you can use m _ cf to initialize various values in
the dialog box. You must initialize the dialog box's values before calling the
Create member function. For more information on this structure, see
CHOOSEFONT in the Windows SDK documentation.

442 CFormView

class CFormView : public CScroliView
The CForm View class is the
base class used for views
containing controls. These
controls are laid out based on a
dialog-template resource. Use
CForm View if you want form­
based documents in your
application. These views support
scrolling, as needed, using the
CScrollView functionality.

CFormView

Creating a view based on CForm View is similar to creating a dialog box. To use
CFormView, take the following steps:

1. Design a dialog template.

Use the App Studio dialog editor to design the dialog box. Then, in the Styles
property page, set the following properties:

• In the Style box, select Child (WS _ CHILD on).

• In the Border box, select None (WS _BORDER off).

• Clear the Visible check box (WS _ VISIBLE off).

• Clear the Titlebar check box (WS _CAPTION off).

These steps are necessary because a form view is not a true dialog box. For
more information about creating a dialog-box resource using App Studio, see
Chapter 3, "Using the Dialog Editor," in the App Studio User's Guide.

2. Create a view class.

With your dialog template open, invoke Class Wizard and choose CForm View
as the class type when you are filling in the Add Class dialog box. Class Wizard
creates a CForm View-derived class and connects it to the dialog template you
just designed. This connection is established in the constructor for your class;
Class Wizard generates a call to the base-class constructor,
CForm View: :CForm View, and passes the resource ID of your dialog
template. For example:

CFormView 443

CMyFormView: :CMyFormView()
: CFormView(CMyFormView::IDD)

11{{AFX_DATA_INIT(CMyFormView)
II NOTE: the ClassWizard will add member initialization here

II}}AFX_DATA_INIT

II Other construction code, such as data initialization

Note If you choose not to use Class Wizard, you must define the appropriate ID
you supply to the CForm View constructor (that is, CMy Fa rmV i ew: : 100 is not
predefined). ClassWizard declares I DO as an enum value in the class it creates
for you.

If you want to define member variables in your view class that correspond to the
controls in your form view, use the Edit Variables button in the Class Wizard
dialog box. This allows you to use the dialog data exchange (DDX) mechanism.
If you want to define message handlers for control-notification messages, use the
Add Function button in the Class Wizard dialog box. For more information on
using Class Wizard, see Chapters 6 and 7 of the Class Library User's Guide or
Chapter 9 of the App Studio User's Guide.

3. Override the OnUpdate member function.

The On Update member function is defined by CView and is called to update
the form view's appearance. Override this function to update the member
variables in your view class with the appropriate values from the current
document. Then, if you are using DDX, use the UpdateData member function
defined by CWnd to update the controls in your form view.

The OnInitialUpdate member function (also defined by CView) is called to
perform one-time initialization of the view. CForm View overrides this function
to use DDX to set the initial values of the controls you have mapped using
ClassWizard. Override OnInitialUpdate if you want to perform custom
initialization.

4. Implement a member function to move data from your view to your document.

This member function is typically a message handler for a control-notification
message or for a menu command. If you are using DDX, call the UpdateData
member function to update the member variables in your view class. Then move
their values to the document associated with the form view.

444 CFormView

See Also

5. Override the On Print member function (optional).

The OnPrint member function is defined by CView and prints the view. By
default, printing and print preview are not supported by the CForm View class.
To add printing support, override the OnPrint function in your derived class.
See the VIEWEX sample for more information about how to add printing
capabilities to a view derived from CFormView.

6. Associate your view class with a document class and a frame-window class
using a document template.

Unlike ordinary views, form views do not require you to override the OnDraw
member function defined by CView. This is because controls are able to paint
themselves. Only if you want to customize the display of your form view (for
example, to provide a background for your view) should you override OnDraw. If
you do so, be careful that your updating does not conflict with the updating done by
the controls.

If the view becomes smaller than the dialog template, scroll bars appear
automatically. Views derived from CFormView support only the MM_TEXT
mapping mode.

If you are not using DDX, use the CWnd dialog functions to move data between
the member variables in your view class and the controls in your form view.

For more information about DDX, see Chapter 7 of the Class Library User's
Guide or Chapter 5 in this manual.

#include <afxext.h>

CDialog, CScrollView, CView: :On Update, CView: :OnInitiaIUpdate,
CView: :OnPrint, CWnd:: UpdateData, CScrollView: : ResizeParentToFit

Construction/Destruction - Protected Members
CFormView Constructs a CForm View object.

CFormView::CFormView 445

Member Functions

CFormView: :CFormView

Remarks

See Also

CFormView(LPCSTR lpszTemplateName);

CForm View(UINT nIDTemplate);

lpszTemplateName Contains a null-terminated string that is the name of a dialog­
template resource.

nIDTemplate Contains the ID number of a dialog-template resource.

When you create an object of a type derived from CFormView, invoke one of the
constructors to create the view object and identify the dialog resource on which the
view is based. You can either identify the resource by name (pass a string as the
argument to the constructor) or by its ID (pass an unsigned integer as the
argument).

The form-view window and child controls are not created until CWnd::Create is
called. CWnd::Create is called by the framework as part of the document and
view creation process, which is driven by the document template.

Note Your derived class must supply its own constructor. In the constructor, invoke
the constructor, CForm View: :CForm View, with the resource name or ID as an
argument as shown in the preceding class overview.

CWnd: :Create

446 CFrameWnd

class CFrameWnd : public CWnd
The CFrame Wnd class provides the
functionality of a Windows single document
interface (SDI) overlapped or pop-up frame
window, along with members for managing
the window. To create a useful frame
window for your application, derive a class
from CFrame Wnd. Add member variables

CFrameWnd

to the derived class to store data specific to your application. Implement message­
handler member functions and a message map in the derived class to specify what
happens when messages are directed to the window. There are three ways to
construct a frame window:

• Directly construct it using Create.

• Directly construct it using LoadFrame.

• Indirectly construct it using a document template.

Before you call either Create or LoadFrame, you must construct the frame­
window object on the heap using the C++ new operator. Before calling Create, you
may also register a window class with the AfxRegisterWndClass global function
to set the icon and class styles for the frame.

Use the Create member function to pass the frame's creation parameters as
immediate arguments.

LoadFrame requires fewer arguments than Create, and instead retrieves most of
its default values from resources, including the frame's caption, icon, accelerator
table, and menu. To be accessible by LoadFrame, all these resources must have
the same resource ID (for example, IDR_MAINFRAME).

When a CFrameWnd object contains views and documents, they are created
indirectly by the framework instead of directly by the programmer. The
CDocTemplate object orchestrates the creation of the frame, the creation of the
containing views, and the connection of the views to the appropriate document. The
parameters of the CDocTemplate constructor specify the CRuntimeClass of the
three classes involved (document, frame, and view). A CRuntimeClass object is
used by the framework to dynamically create new frames when specified by the
user (for example, by using the File New command or the multiple document
interface [MDI] Window New command).

A frame-window class derived from CFrameWnd must be declared with
DECLARE_DYNCREATE in order for the above RUNTIME_CLASS
mechanism to work correctly.

CFrameWnd 447

A CFrameWnd contains default implementations to perlonn the following
functions of a main window in a typical application for Windows:

• A CFrameWnd frame window keeps track of a currently active view that is
independent of the Windows active window or the current input focus. When the
frame is reactivated, the active view is notified by calling
CView: :OnActivate View.

• Command messages and many common frame-notification messages, including
those handled by the OnSetFocus, OnHScroll, and On VScroll functions of
CWnd, are delegated by a CFrameWnd frame window to the currently
active view.

• The currently active view (or currently active MDI child frame window in the
case of an MDI frame) can detennine the caption of the frame window. This
feature can be disabled by turning off the FWS _ ADDTOTITLE style bit of the
frame window.

• A CFrame Wnd frame window manages the positioning of the control bars,
views, and other child windows inside the frame window's client area. A frame
window also does idle-time updating of toolbar and other control-bar buttons. A
CFrame Wnd frame window also has default implementations of commands for
toggling on and off the toolbar and status bar.

• A CFrame Wnd frame window manages the main menu bar. When a pop-up
menu is displayed, the frame window uses the VPDA TE _ COMMAND _VI
mechanism to detennine which menu items should be enabled, disabled, or
checked. When the user selects a menu item, the frame window updates the
status bar with the message string for that command.

• A CFrameWnd frame window has an optional accelerator table that
automatically translates keyboard accelerators.

• A CFrame Wnd frame window has an optional help ID set with LoadFrame
that is used for context-sensitive help. A frame window is the main orchestrator
of semimodal states such as context-sensitive help (SHIFf+Fl) and print-preview
modes.

• A CFrameWnd frame window will open a file dragged from the File Manager
and dropped on the frame window. If a file extension is registered and
associated with the application, the frame window responds to the dynamic data
exchange (DDE) open request that occurs when the user opens a data file in the
File Manager or when the ShellExecute Windows function is called.

• If the frame window is the main application window (that is,
CWinApp::myMainWnd), when the user closes the application, the frame
window prompts the user to save any modified documents (for OnClose and
OnQueryEndSession).

448 CFrameWnd

See Also

• If the frame window is the main application window, the frame window is the
context for running WinHelp. Closing the frame window will shut down
WINHELP.EXE if it was launched for help for this application.

Do not use the C++ delete operator to destroy a frame window. Use
CWnd::DestroyWindow instead. The CFrameWnd implementation of
PostNcDestroy will delete the C++ object when the window is destroyed. When
the user closes the frame window, the default OnClose handler will call
DestroyWindow.

#include <afxwin.h>

CWnd, CMDIFrameWnd, CMDIChildWnd

Data Members - Public Members
m bAutoMenuEnable Controls automatic enable and disable functionality for

menu items.

rectDefault Pass this static CRect as a parameter when creating a
CFrame Wnd object to allow Windows to choose the
window's initial size and position.

Construction/Destruction - Public Members
CFrameWnd Constructs a CFrameWnd object.

Initialization - Public Members
Create

LoadFrame

LoadAccelTable

Call to create and initialize the Windows frame window
associated with the CFrame Wnd object.

Call to dynamically create a frame window from
resource information.

Call to load an accelerator table.

Operations - Public Members
ActivateFrame

SetActive View

GetActive View

GetActiveDocument

RecalcLayout

Makes the frame visible and available to the user.

Sets the active CView object.

Returns the active CView object.

Returns the active CDocument object.

Repositions control bars.

CFrameWnd::CFrameWnd 449

Overridables - Public Members
OnSetPreviewMode Sets the application's main frame window into and out

of print-preview mode.

Overridables - Protected Members
OnCreateClient Creates a client window for the frame.

Member Functions

CFrameWnd: :ActivateFrame

Remarks

virtual void ActivateFrame(int nCmdShow = -1);

nCmdShow Specifies the parameter to pass to CWnd::ShowWindow. By
default, the frame is shown and correctly restored.

Call this member function to activate and restore the frame window so that it is
visible and available to the user. This member function is usually called after a non­
user interface event such as a DDE, Object Linking and Embedding (OLE), or
other event that may show the frame window or its contents to the user.

The default implementation activates the frame and brings it to the top of the Z­
order and, if necessary, carries out the same steps for the application's main frame
window.

Override this member function to change how a frame is activated. For example,
you can force MDI child windows to be maximized. Add the appropriate
functionality, then call the base class version with an explicit nCmdShow.

CFrameWnd: :CFrameWnd

Remarks

See Also

CFrame Wnd();

Constructs a CFrameWnd object, but doesn't create the visible frame window.
Call Create to create the visible window.

CFrame Wnd: :Create, CFrame Wnd: : LoadFrame

450 CFrameWnd: :Create

CFrameWnd: :Create

Remarks

BOOL Create(LPCSTR IpszClassName, LPCSTR IpszWindowName,
DWORD dwStyle = WS_OVERLAPPEDWINDOW,
const RECT& reet = rectDefault, CWnd* pParentWnd = NULL,
LPCSTR IpszMenuName = NULL, DWORD dwExStyle = 0,
CCreateContext* pContext = NULL);

IpszClassName Points to a null-tenninated character string that names the
Windows class. The class name can be any name registered with the
AfxRegisterWndClass global function or the RegisterClass Windows function.
If NULL, uses the predefined default CFrame Wnd attributes.

IpszWindowName Points to a null-tenninated character string that represents the
window name. Used as text for the title bar.

dwStyle Specifies the window style attributes. Include the FWS _ ADDTOTITLE
style if you want the title bar to automatically display the name of the document
represented in the window.

See the CWnd::Create member function on page 904 for a full list of window
styles.

reet Specifies the size and position of the window. The rectDefault value allows
the Windows operating system to specify the size and position of the new window.

pParentWnd Specifies the parent window of this frame window. This parameter
should be NULL for top-level frame windows.

IpszMenuName Identifies the name of the menu resource to be used with the
window. Use MAKEINTRESOURCE if the menu has an integer ID instead of a
string. This parameter can be NULL.

dwExStyle Specifies the window extended style attributes.

See the CWnd::CreateEx member function on page 907 for a list of extended
window styles.

pContext Specifies a pointer to a CCreateContext structure. This parameter can
be NULL.

Construct a CFrameWnd object in two steps. First invoke the constructor, which
constructs the CFrame Wnd object, then call Create, which creates the Windows
frame window and attaches it to the CFrame Wnd object. Create initializes the

Return Value

See Also

CFrameWnd::GetActiveView 451

window's class name and window name and registers default values for its style,
parent, and associated menu.

Use LoadFrame rather than Create to load the frame window from a resource
instead of specifying its arguments.

Nonzero if initialization is successful; otherwise O.

CFrame Wnd: :CFrame Wnd, CFrame Wnd: :LoadFrame, CCreateContext,
CWnd: :Create, CWnd: :PreCreate Window

CFrameWnd: :GetActiveDocument

Remarks

Return Value

See Also

virtual CDocument* GetActiveDocument();

Call this member function to obtain a pointer to the current CDocument attached to
the current active view.

A pointer to the current CDocument. If there is no current document, returns
NULL.

CFrame Wnd: : GetActive View

CFrameWnd: :GetActive View

Remarks

Return Value

See Also

CView* GetActive View() const;

Call this member function to obtain a pointer to the active view.

A pointer to the current CView. If there is no current view, returns NULL.

CFrame Wnd: :SetActive View, CFrame Wnd: : GetActiveDocument

452 CFrameWnd: :LoadAccelTable

CFrameWnd:: LoadAccelTable

Remarks

Return Value

See Also

BOOL LoadAccelTable(LPCSTR IpszResourceName);

IpszResourceName Identifies the name of the accelerator resource. Use
MAKEINTRESOURCE if the resource is identified with an integer ID.

Call to load the specified accelerator table. Only one table may be loaded at a time.
Accelerator tables loaded from resources are freed automatically when the
application terminates.

If you call LoadFrame to create the frame window, the framework loads an
accelerator table along with the menu and icon resources, and a subsequent call to
this member function is then unnecessary.

Nonzero if the accelerator table was successfully loaded; otherwise O.

CFrame Wnd: : LoadFrame, : :LoadAccelerators

CFrameWnd:: Load Frame

Remarks

virtual BOOL LoadFrame(UINT nIDResource, DWORD dwDefaultStyle =
WS_OVERLAPPEDWINDOW I FWS_ADDTOTITLE,
CWnd* pParentWnd = NULL, CCreateContext* pContext = NULL);

nIDResource The ID of shared resources associated with the frame window.

dwDefaultStyle The frame's style. Include the FWS_ADDTOTITLE style if you
want the title bar to automatically display the name of the document represented
in the window.

See the CWnd: :Create member function on page 904 for a full list of window
styles.

pParentWnd A pointer to the frame's parent.

pContext A pointer to a CCreateContext structure. This parameter can
be NULL.

Construct a CFrameWnd object in two steps. First invoke the constructor, which
constructs the CFrameWnd object, then call LoadFrame, which loads the
Windows frame window and associated resources and attaches the frame window

See Also

CFrameWnd: :OnCreateClient 453

to the CFrameWnd object. The nIDResouree parameter specifies the menu, the
accelerator table, the icon, and the string resource of the title for the frame window.

Use the Create member function rather than LoadFrame when you want to
specify all of the frame window's creation parameters.

The framework calls LoadFrame when it creates a frame window using a
document template object.

The framework uses the pC ontext argument to specify the objects to be connected
to the frame window, including any contained view objects. You can set the
pC ontext argument to NULL when you call LoadFrame.

CDocTemplate, CFrameWnd::Create, CFrameWnd::CFrameWnd,
CWnd: :PreCreate Window

CFrameWnd: :OnCreateClient
Protected

Remarks

virtual BOOL OnCreateClient(LPCREATESTRUCT [pes,

CCreateContext* pContext); •

[pes A pointer to a Windows CREATESTRUCT structure.

pContext A pointer to a CCreateContext structure.

Called by the framework during the execution of OnCreate. Never call this
function.

The default implementation of this function creates a CView object from the
information provided in pContext, if possible.

Override this function to override values passed in the CCreateContext object or
to change the way controls in the main client area of the frame window are created.
The CCreateContext members you can override are described in the
CCreateContext class.

Note Do not replace values passed in the CREATESTRUCT structure. They are
for informational use only. If you want to override the initial window rectangle, for
example, override the CWnd member function PreCreateWindow.

454 CFrameWnd: :OnSetPreviewMode

CFrameWnd: :OnSetPreviewMode

Remarks

virtual void OnSetPreviewMode(BOOL bPreview,
CPrintPreviewState* pM odeStuJf);

bPreview Specifies whether or not to place the application in print-preview
mode. Set to TRUE to place in print preview, FALSE to restore to cancel the
preview mode.

pModeStuJf A pointer to a CPrintPreviewState structure.

Call this member function to set the application's main frame window into and out
of print-preview mode.

The default implementation disables all standard toolbars and hides the main menu
and the main client window. This turns MDI frame windows into temporary SDI
frame windows.

Override this member function to customize the hiding and showing of control bars
and other frame window parts during print preview. Call the base class
implementation from within the overridden version.

CFrameWnd::RecalcLayout

Remarks

See Also

virtual void RecaIcLayout();

Call this member function to reposition control bars after changing the layout of the
frame window. For example, call it when you tum on or off control bars or add
another control bar. Called by the framework when the standard control bars are
toggled on or off or when the frame window is resized. The default implementation
of this member function calls the CWnd member function RepositionBars to
reposition all the control bars in the frame as well as the main client window
(usually a CView or MDICLIENT).

CWnd: : RepositionBars

CFrameWnd: :rectDefault 455

CFrame Wnd: :SetActive View

Remarks

See Also

void SetActive View(CView* p ViewN ew);

pViewNew Specifies a pointer to a CView object, or NULL for no active view.

Call this member function to set the active view. The framework will call this
function automatically as the user changes the focus to a view within the frame
window . You may explictly call SetActive View to change the focus to the speci­
fied view.

CFrame Wnd: : GetActive View, CView: : On Activate View,
CFrame Wnd: : GetActiveDocument

Data Members

CFrameWnd::m bAutoMenuEnable
Remarks

See Also

When this data member is enabled (which is the default), menu items that don't
have ON UPDATE COMMAND UI or ON COMMAND handlers will be - - - -
automatically disabled when the user pulls down a menu. Menu items that have an
ON COMMAND handler but no ON UPDATE COMMAND UI handler will - - - -
be automatically enabled. When this data member is set, menu items are
automatically enabled in the same way that toolbar buttons are enabled.

This data member simplifies the implementation of optional commands based on the
current selection and reduces the need for an application to write
ON _ UPDATE_COMMAND _ UI handlers for enabling and disabling menu items.

CCmdUI, CCmdTarget

CFrameWnd: :rectDefault
Remarks

See Also

Pass this static CRect as a parameter when creating a window to allow Windows to
choose the window's initial size and position.

CW USEDEFAULT

456 CGdiObject

class CGdiObject : public CObject

See Also

The CGdiObject class provides a base class for
various kinds of Windows graphics device interface
(GDI) objects such as bitmaps, regions, brushes, '-C_G_d_iO----'bi'-ec_t ____ ---'

pens, palettes, and fonts. You never create a
CGdiObject directly. Rather, you create an object from one of its derived classes,
such as CPen or CBrush.

#include <afxwin.h>

CBitmap, CBrush, CFont, CPalette, CPen, CRgn

Data Members - Public Members
m_hObject A HANDLE containing the HBITMAP, HP ALETTE,

HRGN, HBRUSH, HPEN, or HFONT attached to this
object.

Construction/Destruction - Public Members
CGdiObject Constructs a CGdiObject object.

Operations - Public Members
GetSafeHandle

FromHandle

Attach

Detach

DeleteObject

DeleteTempMap

GetObject

CreateStockObject

U nrealizeO bject

Returns m _ hObject unless this is NULL, in which case
NULL is returned.

Returns a pointer to a CGdiObject object given a handle
to a Windows GDI object.

Attaches a Windows GDI object to a CGdiObject
object.

Detaches a Windows GDI object from a CGdiObject
object and returns a handle to the Windows GDI object.

Deletes the Windows GDI object attached to the
CGdiObject object from memory by freeing all system
storage associated with the object.

Deletes any temporary CGdiObject objects created by
FromHandle.

Fills a buffer with data that describes the Windows GDI
object attached to the CGdiObject object.

Retrieves a handle to one of the Windows predefined
stock pens, brushes, or fonts.

Resets the origin of a brush or resets a logical palette.

CGdiObject: :CreateStockObject 457

Member Functions

CGdiObject: :Attach

Remarks

Return Value

See Also

BOOL Attach(HGDIOBJ hObject);

hObject A HANDLE to a Windows GDI object (for example, HPEN or
HBRUSH).

Attaches a Windows GDI object to a CGdiObject object.

Nonzero if attachment is successful; otherwise O.

CGdiObject: :Detach

CGdiObject: :CGdiObject

Remarks

See Also

CGdiObject();

Constructs a CGdiObject object. You never create a CGdiObject directly.
Rather, you create an object from one of its derived classes, such as CPen or
CBrush.

CPen, CBrush, CFont, CBitmap, CRgn, CPaiette

CGdiObject: :CreateStockObject
BOOL CreateStockObject(int nlndex);

nI ndex A constant specifying the type of stock object desired. It can be one of the
following values, with the meanings as given:

• BLACK BRUSH Black brush.

• DKGRA Y _BRUSH Dark gray brush.

• GRAY BRUSH Gray brush.

458 CGdiObject::DeleteObject

Remarks

Return Value

See Also

• HOLLOW BRUSH Hollow brush.

• LTGRAY BRUSH Light gray brush.

• NULL BRUSH Null brush.

• WHITE BRUSH White brush.

• BLACK_PEN Black pen.

• NULL _PEN Null pen.

• WHITE_PEN White pen.

• ANSI _FIXED _FONT ANSI fixed system font.

• ANSI_ VAR_FONT ANSI variable system font.

• DEVICE _ DEF A UL T _FONT Device-dependent font.

• OEM_FIXED_FONT OEM-dependent fixed font.

• SYSTEM_FONT The system font. By default, Windows uses the system
font to draw menus, dialog-box controls, and other text. In Windows
versions 3.0 and later, the system font is proportional width; earlier versions
of Windows use a fixed-width system font.

• SYSTEM_FIXED _FONT The fixed-width system font used in Windows
prior to version 3.0. This object is available for compatibility with earlier
versions of Windows.

• DEFAUL T _PALETTE Default color palette. This palette consists of the
20 static colors in the system palette.

Retrieves a handle to one of the predefined stock Windows GDI pens, brushes, or
fonts, and attaches the GDI object to the CGdiObject object. Call this function
with one of the derived classes that corresponds to the Windows GDI object type,
such as CPen for a stock pen.

Nonzero if the function is successful; otherwise O.

CPen::CPen, CBrush::CBrush, CFont::CFont, CPalette::CPalette

CGd iObject:: DeleteObject

Remarks

BOOL DeleteObjectO;

Deletes the attached Windows GDI object from memory by freeing all system
storage associated with the Windows GDI object. The storage associated with the
CGdiObject object is not affected by this call. An application should not call

See Also

CGdiObject::FromHandle 459

DeleteObject on a CGdiObject object that is currently selected into a device
context. When a pattern brush is deleted, the bitmap associated with the brush is not
deleted. The bitmap must be deleted independently.

CGdiObject: :Detach

CGdiObject::DeleteTempMap

Remarks

See Also

static void PASCAL DeleteTempMap();

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes
any temporary CGdiObject objects created by FromHandle. DeleteTempMap
detaches the Windows GDI object attached to a temporary CGdiObject object
before deleting the CGdiObject object.

CGdiObject: :Detach, CGdiObject: :FromHandle

CGdiObject::Detach

Remarks

Return Value

See Also

HGDIOBJ Detach();

Detaches a Windows GDI object from a CGdiObject object and returns a handle
to the Windows GDI object.

A HANDLE to the Windows GDI object detached; otherwise NULL if no GDI
object is attached.

CGdiObject: : Attach

CGdiObject: :FromHandle

Remarks

static CGdiObject* PASCAL FromHandle(HGDIOBJ hObject);

hObject A HANDLE to a Windows GDI object.

Returns a pointer to a CGdiObject object given a handle to a Windows GDI
object. If a CGdiObject object is not already attached to the Windows GDI object,
a temporary CGdiObject object is created and attached. This temporary

460 CGdiObject::GetObject

Return Value

See Also

CGdiObject object is only valid until the next time the application has idle time in
its event loop, at which time all temporary graphic objects are deleted. Another way
of saying this is that the temporary object is only valid during the processing of one
window message.

A pointer to a CGdiObject that may be temporary or permanent.

CGdiObject: :DeleteTempMap

CGdiObject: :GetObject

Remarks

Return Value

See Also

int GetObject(int nCount, LPVOID lpObject) const;

nCount Specifies the number of bytes to copy into the lpObject buffer.

lpObject Points to a user-supplied buffer that is to receive the information.

Fills a buffer with data that defines a specified object. The function retrieves a data
structure whose type depends on the type of graphic object, as shown by the
following list:

Object Buffer type

CPen LOGPEN

CBrush LOGBRUSH

CFont LOGFONT

CBitmap BITMAP

CPalette int

CRgn Not supported

If the object is a CBitmap object, GetObject returns only the width, height, and
color format information of the bitmap. The actual bits can be retrieved by using
CBitmap: : GetBitmapBits. If the object is a CPalette object, GetObject
retrieves an integer that specifies the number of entries in the palette. The function
does not retrieve the LOGP ALETTE structure that defines the palette. An
application can get information on palette entries by calling
CPalette::GetPaletteEntries.

The number of bytes retrieved; otherwise 0 if an error occurs.

CBitmap::GetBitmapBits, CPalette::GetPaletteEntries

CGdiObject::m_hObject 461

CGdiObject: :GetSafeHandle

Remarks

Return Value

HGDIOBJ GetSafeHandle() const;

Returns m _ hObject unless this is NULL, in which case NULL is returned. This is
part of the general handle interface paradigm and is useful when NULL is a valid
or special value for a handle.

A HANDLE to the attached Windows GDI object; NULL if no object is attached.

CGdiObject::UnrealizeObject

Remarks

Return Value

See Also

BOOL UnrealizeObject();

Resets the origin of a brush or resets a logical palette. While UnrealizeObject is a
member function of the CGdiObject class, it should be invoked only on CBrush or
CPalette objects. For CBrush objects, UnrealizeObject directs the system to
reset the origin of the given brush the next time it is selected into a device context.
If the object is a CPalette object, UnrealizeObject directs the system to realize the
palette as though it had not previously been realized. The next time the application
calls the CDC: : RealizePalette function for the specified palette, the system
completely remaps the logical palette to the system palette. The UnrealizeObject
function should not be used with stock objects. The UnrealizeObject function must
be called whenever a new brush origin is set (by means of the CDC::SetBrushOrg
function). The UnrealizeObject function must not be called for the currently
selected brush or currently selected palette of any display context.

Nonzero if successful; otherwise O.

CDC: : RealizePalette, CDC:: SetBrushOrg

Data Members

CGdiObject::m_hObject
Remarks A HANDLE containing the HBITMAP, HRGN, HBRUSH, HPEN,

HPALETTE, or HFONT attached to this object.

462 CHEdit

class CHEdit : public CEdit
The CHEdit class encapsulates the
functionality of the handwriting edit,
or "hedit," control in Microsoft
Windows for Pen Computing. This
control has all the functionality of a
normal keyboard-based edit control.
It also allows for handwriting
recognition.

CHEdit

An application built with the application framework detects pen-equipped systems
and, by default, registers them as pen enabled. When your application starts up on
one of these systems, all edit controls support general handwriting recognition.

If you have information - such as the type of input expected - that can simplify the
handwriting recognizer's task, you should use CHEdit controls, then set the alpha­
bet code (ALC) style for the kind of data you are expecting. The more narrowly you
define the type of data expected, the better the recognition algorithms work. Note
that if you have a fixed-length entry field, CBEdit controls can help the recognizer
understand where to expect the user to input data.

Take the following steps to create a CHEdit control using App Studio:

1. Create a user-defined control in your dialog box.

2. In the Caption field, enter ALC<x>, where x is a number obtained by combining
the desired ALC styles using the bitwise-OR operator.

The following table shows the values and corresponding common ALC styles
allowed for CHEdit controls:

Value ALe Style

1 Lowercase

2 Uppercase

3 Uppercase or Lowercase

4 Numeric

8 Punctuation

16 Mathematical symbols

32 Monetary symbols

64 Other

3. In the Class field, enter "hedit" (or "bedit" if you are creating a boxed edit
control).

CHEdit 463

4. In the Style field, enter the hexadecimal number obtained by combining the
desired edit styles from the table below using the bitwise-OR operator. The four
most-significant hexadecimal digits should remain Ox500l for a visible child
window with the tab-stop property set.

The following table shows a subset of the edit-control styles allowed for
CHEdit controls (for a complete set of styles, see "Edit Styles" in
CEdit::Create):

Hexadecimal Value

OxOOOl

Ox0002

Ox0004

Ox0008

OxOOlO

Meaning

Center text in control

Right align text in control

Multiline edit control

Uppercase text only

Lowercase text only

If you want to handle Windows notification messages sent by a CHEdit control to
its parent (usually a class derived from CDialog), add a message-map entry and
message-handler function to the parent class for each message.

You will typically add entries for the notifications generated by a standard CEdit
object. These notification handlers are identical to CEdit notification handlers.

Each message-map entry takes the following form:

ON _ CONTROL(notification-message, id, memberFxn)

where notzfication-message specifies the notification message you want to handle,
id specifies the child-window ID of the control sending the notification, and
memberFxn specifies the name of the parent member function you have written to
handle the notification.

The memberFxn prototype for these notification handlers is as follows:

afx _ msg void memberFxn();

The following is a list of applicable notification messages specific to CHEdit
objects:

• HN _ ENDREC The current recognition context was closed. The call to the
recognizer for recognition has terminated.

• HN _DELA YEDRECOGF AIL Delayed recognition has failed. The
attempted recognition was initiated by an application through the member
function StopInkMode, or by the user's tapping on a control.

• HN RCRESULT The hedit control has received a WM RCRESULT
message from the recognizer.

464 CHEdit::CHEdit

#include <afxpen.h>

Construction/Destruction - Public Members
CHEdit

Create

Constructs a CHEdit object.

Creates a CHEdit control.

Operations - Public Members
Getlnflate

GetInkHandle

GetRC

GetUnderline

SetInflate

SetInkMode

SetRC

SetUnderline

StoplnkMode

Gets the inflation rectangle (the rectangle in which handwriting
is recognized).

Gets a handle to captured ink.

Gets a pointer to a recognition context.

Returns the state of the underline mode.

Sets the inflation rectangle (the rectangle in which handwriting
is recognized).

Starts the collection of inking.

Sets a pointer to a recognition context.

Sets the underline mode.

Stops the collection of ink.

Member Functions

CHEdit::CHEdit

Remarks

See Also

CHEdit();

Constructs a CHEdit object.

CHEdit: :Create

CHEdit::Getlnflate 465

CHEdit::Create

Remarks

Return Value

See Also

BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,
UINT nID)

dwStyle Specifies the hedit control's style. See CEdit:: Create for a list of these
styles.

reet Specifies the hedit control's boxed rectangle. Note that the area sensitive to
pen gestures and inking can be modified using SetInflate.

pParentWnd Specifies the hedit control's parent window (usually derived from
CDialog). It must not be NULL.

nID Specifies the edit control ID.

You construct a CHEdit object in two steps. First, construct the CHEdit object,
then call Create, which creates the Windows hedit control and attaches it to the
CHEdit object. To extend the default message handling, derive a class from
CHEdit, add a message map to the new class, and override the appropriate
message-handler member functions.

Nonzero if initialization is successful; otherwise O.

CEdit: :Create, CHEdit: :CHEdit, CHEdit: :SetInfiate

CHEdit::Getlnflate

Remarks

Return Values

BOOL GetInflate(LPRECTOFS IpReetOJs);

IpReetOJs A far pointer to a RECTOFS structure object that receives the infla­
tion offsets. This structure is described in the "RECTOFS Structure" section that
follows.

The returned structure contains offsets from the top, left, bottom, and right sides of
the client rectangle rather than the location or dimensions of the rectangle. Both
positive and negative values are legal for the members of the IpReetOJs argument.

Nonzero if successful; otherwise O.

466 CHEdit::Getlnflate

RECTOFS A RECTOFS structure has this form:
Structure

Members

Comments

See Also

typedef struct tagRECTOFS
{

int dLeft;
int dTop;
int dRight;
int dBottom;

} RECTOFS;

A RECTOFS structure contains a list of offsets from the top, left, bottom, and right
boundaries of the client area of the control. Handwriting is recognized in the rectan­
gle defined by the client rectangle and modified by these offsets. Positive values for
any member indicate that the rectangle should be enlarged (or inflated), and nega­
tive values indicate that the rectangle should be reduced.

dLeft Offset from left side of client rectangle.

dTop Offset from top of client rectangle.

dRight Offset from right side of client rectangle.

dBottom Offset from bottom of client rectangle.

In addition to having the basic characteristics of an edit control, the hedit or bedit
control must make allowances for the input of handwriting. The client rectangle
often needs to be adjusted to a larger size to allow for easier writing.

For example, the Delete gesture typically extends above the selected text it is
deleting. If the gesture is arbitrarily clipped off at the edge of the client window,
recognition accuracy suffers. Likewise, restricting handwriting input to stay within
the lines can also hinder recognition accuracy. To correct this, rectangle offsets are
used in the hedit and bedit controls to make the writing area slightly larger than the
client window size of a normal edit control. The GetInflate and SetInflate member
functions are used to get and set the inflation rectangle.

The inflation need not be symmetrical in every direction (that is, you can inflate one
side of the rectangle more than another).

CHEdit: :SetInflate, WM _ HEDITCTL

CHEdit::GetUnderline 467

CHEdit::GetlnkHandle

Remarks

Return Value

See Also

HPENDATA GetInkHandle();

Obtains a handle to captured ink. If you expect to use this data after the hedit
control is destroyed, you must duplicate this handle because the control's copy is
invalidated on destruction.

A handle to the ink entered by the user. If the control is not in ink mode,
GetInkHandle returns NULL.

::GetPenDatalnfo, WM_HEDITCTL

CHEdit::GetRC

Remarks

Return Value

See Also

BOOL GetRC(LPRC IpRC);

IpRC A far pointer to an RC structure. For a detailed description of the RC
structure, see Microsoft Windows for Pen Computing: Programmer's Reference.

Retrieves the current recognition context.

Nonzero if successful; otherwise O.

CHEdit::SetRC, WM_HEDITCTL

CHEdit::GetUnderline

Remarks

Return Value

See Also

BOOL GetUnderlineO;

Gets the underline mode.

Nonzero if underline mode is set; 0 if underline mode is not set.

CHEdit: :SetUnderline, WM _ HEDITCTL

468 CHEdit::Setlnflate

CH Ed it: :Setl nflate

Remarks

Return Value

See Also

BOOL SetInflate(LPRECTOFS IpRectOfs);

IpRectOfs A far pointer to a RECTOFS structure object that specifies the
inflation offsets. See GetInflate for a description of the RECTOFS structure.

The structure specifies offsets from the top, left, bottom, and right sides of the client
rectangle rather than the location or dimensions of the rectangle. Both positive and
negative values are legal for the members of the IpRectOfs parameter.

Nonzero if successful; otherwise O.

CHEdit: : GetInflate, WM _ HEDITCTL

CHEdit::SetlnkMode

Remarks

Return Value

See Also

BOOL SetInkMode(HPENDATA hPenDatalnitial = NULL);

hPenDatalnitial A handle to the initial pen data.

Starts the collection of inking. You can specify hPenDatalnitial or allow it to
default to NULL. If you specify this data, all offsets must be relative to the top-left
comer of the client rectangle of the hedit control.

Nonzero if successful; otherwise O.

CHEdit: : GetInkHandle, CHEdit: :StoplnkMode, WM _ HEDITCTL

CHEdit::SetRC

Remarks

BOOL SetRC(LPRC IpRC);

IpRC A far pointer to an RC structure. For a detailed description of this structure,
see Microsoft Windows for Pen Computing: Programmer's Reference.

Sets a new recognition context. You might, for example, change the recognition
context to specify numeric values and gestures only (which allows it to ignore the
difference between the letter "0" and the number "0"). The SetRC function can be
used in conjunction with the GetRC function to change one member of the recogni­
tion context.

Return Value

See Also

Nonzero if successful; otherwise O.

CHEdit::GetRC, WM_HEDITCTL

CHEdit::StoplnkMode 469

CHEdit: :SetUnderline

Remarks

Return Value

See Also

BOOL SetUnderline(BOOL bUnderline = TRUE);

bUnderline If TRUE, underline mode is turned on.

Sets the underline mode. Note that to use the underline mode, the hedit control's
border must be off. That is, the WS _BORDER bit of the hedit control must be off.

Nonzero if successful; otherwise O.

CHEdit: : GetUnderline, WM _ HEDITCTL

CHEdit::StoplnkMode

Remarks

Return Value

See Also

BOOL StopInkMode(UINT hep);

hep The action to take after stopping the collection of ink. These actions can be:

• HEP _ RECOG Perform recognition and display the text

• HEP _ NORECOG Remove the ink without performing the recognition

• HEP _ W AITFORT AP Perform recognition on next tap in the control

Stops the collection of ink and specifies the next action for the recognizer.

Nonzero if successful; otherwise O.

CHEdit: :SetInkMode, CHEdit: : GetInkHandle, WM _ HEDITCTL

470 CListBox

class CListBox : public CWnd
The CListBox class provides the
functionality of a Windows list box. A list
box displays a list of items, such as
filenames, that the user can view and select.
In a single-selection list box, the user can
select only one item. In a multiple-selection
list box, a range of items can be selected.

CListBox

When the user selects an item, it is highlighted and the list box sends a notification
message to the parent window. The list box itself automatically displays horizontal
or vertical scroll bars if the list within the box is too large for the list-box window.

You can create a list box either from a dialog template or directly in your code. In
both cases, call the constructor CListBox to construct the CListBox object, then
call the Create member function to create the Windows list-box control and attach
it to the CListBox object. Construction can be a one-step process in a class derived
from CListBox. Write a constructor for the derived class and call Create from
within the constructor. If you want to handle Windows notification messages sent
by a list box to its parent (usually a class derived from CDialog), add a message­
map entry and message-handler member function to the parent class for each
message.

Each message-map entry takes the following form:

ON_ Notification(id, memberFxn)

where id specifies the child window ID of the list-box control sending the
notification and memberFxn is the name of the parent member function you have
written to handle the notification.

The parent's function prototype is as follows:

afx _ msg void memberFxn();

Following is a list of potential message-map entries and a description of the cases in
which they would be sent to the parent:

• ON_LBN_DBLCLK The user double-clicks a string in a list box. Only a list
box that has the LBS _NOTIFY style will send this notification message.

• ON_ LBN_ ERRSP ACE The list box cannot allocate enough memory to meet
the request.

• ON_ LBN _ KILLFOCUS The list box is losing the input focus.

Windows 3.1 Only • ON LBN SELCANCEL The current list-box selection is cancelled. This
message is only sent when a list box has the LBS_NOTIFY style .•

See Also

CListBox 471

• ON_LBN_SELCHANGE The selection in the list box is about to change.
This notification is not sent if the selection is changed by the
CListBox: :SetCurSel member function. This notification applies only to a list
box that has the LBS _NOTIFY style. The LBN_SELCHANGE notification
message is sent for a multiple-selection list box whenever the user presses an
arrow key, even if the selection does not change.

• ON_LBN_SETFOCUS The list box is receiving the input focus.

If you create a CListBox object within a dialog box (through a dialog resource),
the CListBox object is automatically destroyed when the user closes the dialog
box. If you create a CListBox object within a window, you may need to destroy the
CListBox object. If you create the CListBox object on the stack, it is destroyed
automatically. If you create the CListBox object on the heap by using the new
function, you must call delete on the object to destroy it when the user terminates
the Windows list box. If you allocate any memory in the CListBox object, override
the CListBox destructor to dispose of the allocations.

#include <afxwin.h>

CWnd, CButton, CComboBox, CEdit, CScrollBar, CStatic, CDialog

Construction/Destruction - Public Members
CListBox Constructs a CListBox object.

Initialization - Public Members
Create Creates the Windows list box and attaches it to the

CListBox object.

General Operations - Public Members
GetCount Returns the number of strings in a list box.

GetHorizontalExtent Returns the width in pixels that a list box can be scrolled
horizontally.

SetHorizontalExtent Sets the width in pixels that a list box can be scrolled
horizontally.

GetTopIndex Returns the index of the first visible string in a list box.

SetTopIndex Sets the zero-based index of the first visible string in a
list box.

GetltemData Returns the 32-bit value associated with the list-box item.

GetltemDataPtr Returns a pointer to a list-box item.

SetltemData Sets the 32-bit value associated with the list-box item.

472 CListBox

SetItemDataPtr

GetItemRect

SetItemHeight

GetItemHeight

GetSel

GetText

GetTextLen

SetColumn Width

SetTabStops

Sets a pointer to the list-box item.

Returns the bounding rectangle of the list-box item as it is
currently displayed.

Sets the height of items in a list box.

Determines the height of items in a list box.

Returns the selection state of a list-box item.

Copies a list-box item into a buffer.

Returns the length in bytes of a list-box item.

Sets the column width of a multicolumn list box.

Sets the tab-stop positions in a list box.

Single-Selection Operations - Public Members
GetCurSel Returns the zero-based index of the currently selected

string in a list box.

SetCurSel Selects a list-box string.

Multiple-Selection Operations - Public Members
SetSel Selects or deselects a list-box item in a multiple-selection

list box.

GetCaretIndex

SetCaretIndex

GetSelCount

GetSelItems

SelItemRange

Determines the index of the item that has the focus rec­
tangle in a multiple-selection list box.

Set the focus rectangle to the item at the specified index
in a multiple-selection list box.

Returns the number of strings currently selected in a
multiple-selection list box.

Returns the indices of the strings currently selected in a
list box.

Selects or deselects a range of strings in a multiple­
selection list box.

String Operations - Public Members
AddString Adds a string to a list box.

DeleteString

InsertString

ResetContent

Dir

FindString

Deletes a string from a list box.

Inserts a string at a specific location in a list box.

Clears all the entries from a list box.

Adds filenames from the current directory to a list box.

Searches for a string in a list box.

FindStringExact

SelectString

CListBox::AddString 473

Finds the first list-box string that matches a specified
string.

Searches for and selects a string in a single-selection
list box.

Overridables - Public Members
Drawltem

Measureltem

Compareltem

DeleteItem

Called by the framework when a visual aspect of an
owner-draw list box changes.

Called by the framework when an owner-draw list box is
created to determine list-box dimensions.

Called by the framework to determine the position of a
new item in a sorted owner-draw list box.

Called by the framework when the user deletes an item
from an owner-draw list box.

Member Functions

CListBox: :AddString

Remarks

Return Value

See Also

int AddString(LPCSTR Ipszltem);

Ipszltem Points to the null-terminated string that is to be added.

Call this member function to add a string to a list box. If the list box was not
created with the LBS_SORT style, the string is added to the end of the list.
Otherwise, the string is inserted into the list, and the list is sorted. If the list box
was created with the LBS_SORT style but not the LBS_HASSTRINGS style, the
framework sorts the list by one or more calls to the Compareltem member func­
tion. Use InsertString to insert a string into a specific location within the list box.

The zero-based index to the string in the list box. The return value is LB _ERR if
an error occurs; the return value is LB _ ERRSP ACE if insufficient space is
available to store the new string.

CListBox: :InsertString, CListBox: :CompareItem, LB _ ADDSTRING

474 CListBox::CListBox

CListBox: :CListBox

Remarks

See Also

CListBox();

You construct a CListBox object in two steps. First call the constructor CListBox,
then call Create, which initializes the Windows list box and attaches it to the
CListBox.

CListBox: :Create

CListBox: :Compareltem

Remarks

Return Value

See Also

virtual int CompareItem(LPCOMPAREITEMSTRUCT
IpCompareltemStruct);

IpCompareltemStruct A long pointer to a COMPAREITEMSTRUCT
structure.

Called by the framework to determine the relative position of a new item in a sorted
owner-draw list box. By default, this member function does nothing. If you create
an owner-draw list box with the LBS_SORT style, you must override this member
function to assist the framework in sorting new items added to the list box.

Indicates the relative position of the two items described in the
COMPAREITEMSTRUCT structure. It may be any of the following values:

Value

-1

o
1

Meaning

Item 1 sorts before item 2.

Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

See CWnd::OnCompareItem on page 956 for a description of the
COMPAREITEMSTRUCT structure.

WM _ COMP AREITEM, CWnd: :OnCompareItem, CListBox: :Draw Item,
CListBox: :MeasureItem, CListBox: : DeleteItem

CListBox::Create 475

CListBox: :Create

Remarks

Return Value

List-Box Styles

BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,
UINT nID);

dwStyle Specifies the style of the list box.

reet Specifies the list-box size and position. Can be either a CRect object or a
RECT structure.

pParentWnd Specifies the list box's parent window (usually a CDialog or
CModalDialog object). It must not be NULL.

nID Specifies the list box's control ID.

You construct a CListBox object in two steps. First call the constructor, then call
Create, which initializes the Windows list box and attaches it to the CListBox
object. When Create executes, Windows sends the WM_NCCREATE,
WM _CREATE, WM _ NCCALCSIZE, and WM _ GETMINMAXINFO
messages to the list-box control. These messages are handled by default by the
OnNcCreate, OnCreate, OnNcCalcSize, and OnGetMinMaxInfo member
functions in the CWnd base class. To extend the default message handling, derive
a class from CListBox, add a message map to the new class, and override the
preceding message-handler member functions. Override OnCreate, for example,
to perform needed initialization for a new class.

Apply the following window styles to a list-box control:

• WS _CHILD Always

• WS_ VISIBLE Usually

• WS DISABLED Rarely

• WS VSCROLL To add a vertical scroll bar

• WS HSCROLL To add a horizontal scroll bar

• WS _GROUP To group controls

• WS _ T ABSTOP To allow tabbing to this control

See the Create member function in the CWnd base class for a full description of
these window styles.

Nonzero if successful; otherwise O.

You can use any combination of the following list-box styles for dwStyle:

• LBS _ EXTENDEDSEL The user can select multiple items using the SHIFf

key and the mouse or special key combinations.

476 CListBox::Create

• LBS _ HAS STRINGS Specifies an owner-draw list box that contains items
consisting of strings. The list box maintains the memory and pointers for the
strings so the application can use the GetText member function to retrieve the
text for a particular item.

• LBS _ MUL TICOLUMN Specifies a multicolumn list box that is scrolled
horizontally. The SetColumn Width member function sets the width of the
columns.

• LBS _ MUL TIPLESEL String selection is toggled each time the user clicks or
double-clicks the string. Any number of strings can be selected.

• LBS _ NOINTEGRALHEIGHT The size of the list box is exactly the size
specified by the application when it created the list box. Usually, Windows sizes
a list box so that the list box does not display partial items.

• LBS _ NOREDRA W List-box display is not updated when changes are made.
This style can be changed at any time by sending a WM _ SETREDRA W
message.

• LBS _NOTIFY Parent window receives an input message whenever the user
clicks or double-clicks a string.

• LBS _ OWNERDRA WFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box are the same height.

• LBS _ OWNERDRA WV ARIABLE The owner of the list box is responsible
for drawing its contents; the items in the list box are variable in height.

• LBS_SORT Strings in the list box are sorted alphabetically.

• LBS_STANDARD Strings in the list box are sorted alphabetically, and the
parent window receives an input message whenever the user clicks or double­
clicks a string. The list box contains borders on all sides.

• LBS _ USET ABSTOPS Allows a list box to recognize and expand tab charac­
ters when drawing its strings. The default tab positions are 32 dialog units. (A
dialog unit is a horizontal or vertical distance. One horizontal dialog unit is
equal to one-fourth of the current dialog base width unit. The dialog base units
are computed based on the height and width of the current system font. The
GetDialogBaseUnits Windows function returns the current dialog base units in
pixels.)

• LBS W ANTKEYBOARDINPUT The owner of the list box receives
WM _ VKEYTOITEM or WM_ CHARTOITEM messages whenever the user
presses a key while the list box has input focus. This allows an application to
perform special processing on the keyboard input.

Windows 3.1 Only • LBS DISABLENOSCROLL The list box shows a disabled vertical scroll
bar when the list box does not contain enough items to scroll. Without this style,
the scroll bar is hidden when the list box does not contain enough items .•

See Also CListBox::CListBox

CListBox::Dir 477

CListBox: :Deleteltem

Remarks

See Also

virtual void DeleteItem(LPDELETEITEMSTRUCT IpDeleteltemStruct);

IpDeleteItemStruct A long pointer to a Windows DELETEITEMSTRUCT
structure that contains infonnation about the deleted item.

Called by the framework when the user deletes an item from an owner-draw
CListBox object or destroys the list box. The default implementation of this
function does nothing. Override this function to redraw an owner-draw list box as
needed.

See CWnd: :OnDeleteItem on page 961 for a description of the
DELETEITEMSTRUCT structure.

CListBox: :CompareItem, CWnd: :OnDeleteItem, CListBox: :Draw Item,
CListBox: : MeasureItem, : :DeleteItem

CListBox: :DeleteString

Remarks

Return Value

See Also

int DeleteString(UINT nI ndex);

nI ndex Specifies the zero-based index of the string to be deleted.

Deletes an item in a list box.

A count of the strings remaining in the list. The return value is LB _ERR if nI ndex
specifies an index greater then the number of items in the list.

LB _ DELETESTRING, CListBox: :AddString, CListBox: :InsertString

CListBox: :Dir
int Dir(UINT attr, LPCSTR IpszWildCard);

478 CListBox::Drawltem

Remarks

Return Value

See Also

attr Can be any combination of the enum values described in CFile: :GetStatus,
or any combination of the following values:

Value

OxOOOO

OxOOO!

Ox0002

Ox0004

OxOOlO

Ox0020

Ox4000

Ox8000

Meaning

File can be read from or written to.

File can be read from but not written to.

File is hidden and does not appear in a directory listing.

File is a system file.

The name specified by lpszWildCard specifies a directory.

File has been archived.

Include all drives that match the name specified by lpszWildCard.

Exclusive flag. If the exclusive flag is set, only files of the specified type
are listed. Otherwise, files of the specified type are listed in addition to
"normal" files.

lpszWildCard Points to a file-specification string. The string can contain
wildcards (for example, *. *).

Adds a list of filenames and/or drives to a list box.

The zero-based index of the last filename added to the list. The return value is
LB _ERR if an error occurs; the return value is LB _ ERRSP ACE if insufficient
space is available to store the new strings.

CWnd: :DIgDirList, LB _ DIR, CFile: : GetStatus

CListBox: :Drawltem

Remarks

virtual void Drawltem(LPDRA WITEMSTRUCT lpDrawltemStruct);

lpDrawltemStruct A long pointer to a DRA WITEMSTRUCT structure that
contains information about the type of drawing required.

Called by the framework when a visual aspect of an owner-draw list box changes.
The member of the DRA WITEMSTRUCT structure defines the drawing action
that is to be performed.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CListBox object. The application should
restore all graphics device interface (GDI) objects selected for the display context
supplied in lpDrawltemStruct before this member function terminates.

See Also

CListBox::FindStringExact 479

See CWnd: :OnDrawltem on page 964 for a description of the
DRA WITEMSTRUCT structure.

CListBox: :Compareltem, CWnd: :OnDrawltem, : : Drawltem,
CListBox: : Measureltem, CListBox: : Deleteltem

CListBox: :FindString

Remarks

Return Value

See Also

int FindString(int nStartAfter, LPCSTR lpszltem) const;

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If nStartAfter is -1,
the entire list box is searched from the beginning.

lpszltem Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string may contain any combination of
uppercase and lowercase letters.

Finds the first string in a list box that contains the specified prefix without changing
the list-box selection. Use the SelectString member function to both find and select
a string.

The zero-based index of the matching item, or LB _ERR if the search was
unsuccessful.

CListBox: :SelectString, CListBox: :AddString, CListBox: :InsertString,
LB FINDSTRING

CListBox:: Fi ndStri ng Exact
Windows 3.1 Only int FindStringExact(int nlndexStart, LPCSTR IpszFind) const; +

nlndexStart Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nlndexStart. If nlndexStart is -1,
the entire list box is searched from the beginning.

480 CListBox::GetCaretlndex

Remarks

Return Value

See Also

IpszFind Points to the null-tenninated string to search for. This string can contain
a complete filename, including the extension. The search is not case sensitive, so
the string can contain any combination of uppercase and lowercase letters.

An application calls the FindStringExact member function to find the first list-box
string that matches the string specified in IpszFind. If the list box was created with
an owner-draw style but without the LBS _ HAS STRINGS style, the
FindStringExact member function attempts to match the doubleword value against
the value of IpszFind.

The index of the matching item, or LB _ERR if the search was unsuccessful.

CListBox::FindString, LB _FINDSTRING, LB _FINDSTRINGEXACT

CListBox: :GetCaretlndex
Windows 3.1 Only int GetCaretlndex() const; +

Remarks An application calls the GetCaretlndex member function to detennine the index of
the item that has the focus rectangle in a multiple-selection list box. The item may
or may not be selected.

Return Value The zero-based index of the item that has the focus rectangle in a list box. If the list
box is a single-selection list box, the return value is the index of the item that is
selected, if any.

See Also CListBox::SetCaretlndex, LB _ GETCARETINDEX

CListBox: :GetCount

Remarks

Return Value

See Also

int GetCount() const;

Retrieves the number of items in a list box. The returned count is one greater than
the index value of the last item (the index is zero-based).

The number of items in the list box, or LB _ERR if an error occurs.

LB GETCOUNT

CListBox::GetltemData 481

CListBox: :GetCurSel

Remarks

Return Value

See Also

int GetCurSel() const;

Retrieves the zero-based index of the currently selected item, if any, in a single­
selection list box. GetCurSel should not be called for a multiple-selection list box.

The zero-based index of the currently selected item. It is LB _ERR if no item is
currently selected or if the list box is a multiple-selection list box.

LB _ GETCURSEL, CListBox::SetCurSel

CListBox: :GetHorizontal Extent

Remarks

Return Value

See Also

int GetHorizontalExtent() const;

Retrieves from a list box the width in pixels by which the list box can be scrolled
horizontally if the list box has horizontal scroll bars. To respond to
GetHorizontalExtent, the list box must have been defined with the
WS _ HSCROLL style.

The scrollable width of the list box, in pixels.

CListBox: :SetHorizontalExtent, LB _ GETHORIZONTALEXTENT

CListBox: :GetltemData

Remarks

Return Value

See Also

DWORD GetItemData(int nlndex) const;

nlndex Specifies the zero-based index of the item in the list box.

Retrieves the application-supplied doubleword value associated with the specified
list-box item. The doubleword value was the dwltemData parameter of a
SetItemData call.

The 32-bit value associated with the item, or LB _ERR if an error occurs.

CListBox: :AddString, CListBox: : GetItemDataPtr ,
CListBox:: SetItemDataPtr, CListBox: :InsertString, CListBox:: SetItemData,
LB GETITEMDATA

482 CListBox::GetltemDataPtr

CListBox: :GetltemDataPtr

Remarks

Return Value

See Also

void* GetItemDataPtr(int nlndex) const;

nlndex Specifies the zero-based index of the item in the list box.

Retrieves the application-supplied 32-bit value associated with the specified list­
box item as a pointer (void*).

Retrieves a pointer, or -1 if an error occurs.

CListBox: :AddString, CListBox: : GetItemData, CListBox: :InsertString,
CListBox: :SetItemData, LB _ GETITEMDATA

CListBox: :GetltemHeight
Windows 3.1 Only int GetItemHeight(int nlndex) const; +

Remarks

Return Value

See Also

nlndex Specifies the zero-based index of the item in the list box. This parameter
is used only if the list box has the LBS _ OWNERDRA WV ARIABLE style;
otherwise, it should be set to O.

An application calls the GetItemHeight member function to determine the height
of items in a list box.

The height, in pixels, of the items in the list box. If the list box has the
LBS _ OWNERDRA WV ARIABLE style, the return value is the height of the item
specified by nlndex. If an error occurs, the return value is LB _ERR.

LB _ GETITEMHEIGHT, CListBox: :SetItemHeight

CListBox: :Getltem Reet
int GetItemRect(int nlndex, LPRECT IpRect) const;

nlndex Specifies the zero-based index of the item.

IpRect Specifies a long pointer to a RECT data structure that receives the list­
box client coordinates of the item.

Remarks

Return Value

See Also

CListBox::GetSelitems 483

Retrieves the dimensions of the rectangle that bounds a list-box item as it is
currently displayed in the list-box window.

LB ERR if an error occurs.

LB GETITEMRECT

CListBox: :GetSel

Remarks

Return Value

See Also

int GetSel(int nI ndex) const;

nlndex Specifies the zero-based index of the item.

Retrieves the selection state of an item. This member function works with both
single- and multiple-selection list boxes.

A positive number if the specified item is selected; otherwise, it is O. The return
value is LB ERR if an error occurs.

LB _ GETSEL, CListBox::SetSel

CListBox: :GetSelCount

Remarks

Return Value

See Also

int GetSeICount() const;

Retrieves the total number of selected items in a multiple-selection list box.

The count of selected items in a list box. If the list box is a single-selection list box,
the return value is LB ERR.

CListBox::SetSel, LB _ GETSELCOUNT

CListBox: :GetSelitems
int GetSelItems(int nMaxltems, LPINT rglndex) const;

nMaxltems Specifies the maximum number of selected items whose item numbers
are to be placed in the buffer.

484 CListBox::GetText

Remarks

Return Value

See Also

rglndex Specifies a long pointer to a buffer large enough for the number of
integers specified by nMaxltems.

Fills a buffer with an array of integers that specifies the item numbers of selected
items in a multiple-selection list box.

The actual number of items placed in the buffer. If the list box is a single-selection
list box, the return value is LB _ERR.

LB GETSELITEMS

CListBox: :GetText

Remarks

Return Value

See Also

int GetText(int nlndex, LPSTR IpszButJer) const;

void GetText(int nlndex, CString& rString) const;

nlndex Specifies the zero-based index of the string to be retrieved.

IpszButJer Points to the buffer that receives the string. The buffer must have
sufficient space for the string and a terminating null character. The size of the
string can be determined ahead of time by calling the GetTextLen member
function.

rString A reference to a CString object.

Gets a string from a list box. The second form of this member function fills a
CString object with the string text.

The length (in bytes) of the string, excluding the terminating null character. If
nI ndex does not specify a valid index, the return value is LB _ERR.

CListBox::GetTextLen, LB _ GETTEXT

CListBox: :GetTextLen

Remarks

int GetTextLen(int nlndex) const;

nlndex Specifies the zero-based index of the string.

Gets the length of a string in a list-box item.

Return Value

See Also

CListBox: :lnsertString 485

The length of the string in bytes, excluding the tenninating null character. If nI ndex
does not specify a valid index, the return value is LB _ERR.

CListBox: : GetText, LB _ GETTEXTLEN

CListBox: :GetToplndex

Remarks

Return Value

See Also

int GetToplndex() const;

Retrieves the zero-based index of the first visible item in a list box. Initially, item 0
is at the top of the list box, but if the list box is scrolled, another item may be at
the top.

The zero-based index of the first visible item in a list box.

CListBox: :SetToplndex, LB _ GETTOPINDEX

CListBox: :lnsertString

Remarks

Return Value

See Also

int InsertString(int nlndex, LPCSTR lpszltem);

nlndex Specifies the zero-based index of the position to insert the string. If this
parameter is -1, the string is added to the end of the list.

lpszltem Points to the null-tenninated string that is to be inserted.

Inserts a string into the list box. Unlike the AddString member function,
InsertString does not cause a list with the LBS_SORT style to be sorted.

The zero-based index of the position at which the string was inserted. The return
value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new string.

CListBox: :AddString, LB _ INSERTSTRING

486 CListBox: :Measureltem

CListBox: :Measureltem

Remarks

See Also

virtual void MeasureItem(LPMEASUREITEMSTRUCT
IpMeasureltemStruct);

IpMeasureItemStruct A long pointer to a MEASUREITEMSTRUCT structure.

Called by the framework when a list box with an owner-draw style is created.

By default, this member function does nothing. Override this member function and
fill in the MEASUREITEMSTRUCT structure to inform Windows of the list-box
dimensions. If the list box is created with the LBS OWNERDRA WV ARIABLE
style, the framework calls this member function for each item in the list box.
Otherwise, this member is called only once.

For further information about using the OWNERDRA WFIXED style in an owner­
draw list box created with the SubclassDlgItem member function of CWnd, see
the discussion in Technical Note 14 in MSVC\HELP\MFCNOTES.HLP.

See CWnd::OnMeasureItem on page 980 for a description of the
MEASUREITEMSTRUCT structure.

CListBox: :CompareItem, CWnd: :OnMeasureItem, CListBox: :DrawItem,
: :MeasureItem, CListBox: : DeleteItem

CListBox:: ResetContent
void ResetContent();

Remarks Removes all items from a list box.

See Also LB RESETCONTENT

CListBox: :Selltem Range 487

CListBox: :SelectString

Remarks

Return Value

See Also

int SelectString(int nStartAfter, LPCSTR lpszltem);

nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If nStartAfter is -1,
the entire list box is searched from the beginning.

lpszltem Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string may contain any combination of
uppercase and lowercase letters.

Searches for a list-box item that matches the specified string, and if a matching
item is found, it selects the item. The list box is scrolled, if necessary, to bring
the selected item into view. This member function cannot be used with a list box
that has the LBS _ MUL TIPLESEL style. An item is selected only if its initial
characters (from the starting point) match the characters in the string specified
by lpszltem. Use the FindString member function to find a string without selecting
the item.

The index of the selected item if the search was successful. If the search was
unsuccessful, the return value is LB _ERR and the current selection is not changed.

CListBox: :FindString, LB _ SELECTSTRIN G

CListBox: :Selltem Range

Remarks

Return Value

See Also

int SelItemRange(BOOL bSelect, int nFirstltem, int nLastltem);

bSelect Specifies how to set the selection. If bSelect is TRUE, the string is
selected and highlighted; if FALSE, the highlight is removed and the string is no
longer selected.

nFirstltem Specifies the zero-based index of the first item to set.

nLastltem Specifies the zero-based index of the last item to set.

Selects one or more consecutive items in a multiple-selection list box. Use this
member function only with multiple-selection list boxes.

LB ERR if an error occurs.

LB _ SELITEMRANGE, CListBox: : GetSelItems

488 CListBox: :SetCaretlndex

CListBox: :SetCaretlndex
Windows 3.1 Only int SetCaretlndex(int nlndex, BOOL bScroll = TRUE);.

Remarks

Return Value

See Also

nlndex Specifies the zero-based index of the item to receive the focus rectangle in
the list box.

bScroll If this value is 0, the item is scrolled until it is fully visible. If this value is
not 0, the item is scrolled until it is at least partially visible.

An application calls the SetCaretlndex member function to set the focus rectangle
to the item at the specified index in a multiple-selection list box. If the item is not
visible, it is scrolled into view.

LB ERR if an error occurs.

CListBox: : GetCaretlndex, LB _ SETCARETINDEX

CListBox: :SetColumnWidth

Remarks

See Also

void SetColumn Width(int cxWidth);

cxWidth Specifies the width in pixels of all columns.

Sets the width in pixels of all columns in a multicolumn list box (created with the
LBS_MULTICOLUMN style).

LB SETCOLUMNWIDTH

CListBox: :SetCurSel

Remarks

int SetCurSel(int nSelect);

nSelect Specifies the zero-based index of the string to be selected. If nSelect is
-1, the list box is set to have no selection.

Selects a string and scrolls it into view, if necessary. When the new string is
selected, the list box removes the highlight from the previously selected string. Use
this member function only with single-selection list boxes. It cannot be used to set
or remove a selection in a multiple-selection list box.

Return Value

See Also

LB ERR if an error occurs.

LB _ SETCURSEL, CListBox: :GetCurSel

CListBox::SetltemDataPtr 489

CListBox: :SetHorizontal Extent

Remarks

See Also

void SetHorizontalExtent(int cxExtent);

cxExtent Specifies the number of pixels by which the list box can be scrolled
horizontally.

Sets the width, in pixels, by which a list box can be scrolled horizontally. If the size
of the list box is smaller than this value, the horizontal scroll bar will horizontally
scroll items in the list box. If the list box is as large or larger than this value, the
horizontal scroll bar is hidden. To respond to a call to SetHorizontalExtent, the
list box must have been defined with the WS _ HSCROLL style. This member
function is not useful for multicolumn listboxes. For multicolumn list boxes, call the
SetColumn Width member function.

CListBox: : GetHorizontalExtent, LB _ SETHORIZONT ALEXTENT

CListBox: :Setltem Data

Remarks

Return Value

See Also

int SetItemData(int nlndex, DWORD dwltemData);

nlndex Specifies the zero-based index of the item.

dwltemData Specifies the value to be associated with the item.

Sets a 32-bit value associated with the specified item in a list box.

LB ERR if an error occurs.

CListBox: :SetItemDataPtr, CListBox: : GetItemData, LB _ SETITEMDA T A

CListBox: :SetltemDataPtr
int SetItemDataPtr(int nlndex, void* pData);

490 CListBox::SetltemHeight

Remarks

Return Value

See Also

nlndex Specifies the zero-based index of the item.

pData Specifies the pointer to be associated with the item.

Sets the 32-bit value associated with the specified item in a combo box to be the
specified pointer (void*).

LB ERR if an error occurs.

CListBox: :SetltemData, CListBox: : GetltemData,
CListBox: : GetltemDataPtr , LB _ SETITEMDAT A

CListBox: :SetltemHeight
Windows 3.1 Only int SetltemHeight(int nlndex, UINT cyltemHeight); •

Remarks

Return Value

See Also

nlndex Specifies the zero-based index of the item in the list box. This parameter
is used only if the list box has the LBS _ OWNERDRA WV ARIABLE style;
otherwise, it should be set to O.

cyltemH eight Specifies the height, in pixels, of the item.

An application calls the SetltemHeight member function to set the height of items
in a list box. If the list box has the LBS _ OWNERDRA WV ARIABLE style, this
function sets the height of the item specified by nI ndex. Otherwise, this function
sets the height of all items in the list box.

LB _ERR if the index or height is invalid.

CListBox: : GetltemHeight, LB _ SETITEMHEIGHT

CListBox: :SetSel
int SetSel(int nlndex, BOOL bSelect = TRUE);

nlndex Contains the zero-based index of the string to be set. If -1, the selection is
added to or removed from all strings, depending on the value of bSelect.

Remarks

Return Value

See Also

CListBox::SetTabStops 491

bSelect Specifies how to set the selection. If bSelect is TRUE, the string is
selected and highlighted; if FALSE, the highlight is removed and the string is no
longer selected. The specified string is selected and highlighted by default.

Selects a string in a multiple-selection list box. Use this message only with
multiple-selection list boxes.

LB ERR if an error occurs.

CListBox: :GetSel, LB _ SETSEL

CListBox: :SetTabStops

Remarks

void SetTabStops();

BOOL SetTabStops(const int& cxEachStop);

BOOL SetTabStops(int nTabStops, LPINT rgTabStops);

cxEachStop Tab stops are set at every cxEachStop dialog units. See rgTabStops
for a description of a dialog unit.

nTabStops Specifies the number of tab stops to have in the list box.

rgTabStops Points to the first member of an array of integers containing the tab­
stop positions in dialog units. A dialog unit is a horizontal or vertical distance.
One horizontal dialog unit is equal to one-fourth of the current dialog base width
unit, and 1 vertical dialog unit is equal to one-eighth of the current dialog base
height unit. The dialog base units are computed based on the height and width of
the current system font. The GetDialogBaseUnits Windows function returns the
current dialog base units in pixels. The tab stops must be sorted in increasing
order; back tabs are not allowed.

Sets the tab-stop positions in a list box.

To set tab stops to the default size of 2 dialog units, call the parameterless version
of this member function. To set tab stops to a size other than 2, call the version with
the cxEachStop argument.

To set tab stops to an array of sizes, use the version with the rgTabStops and
nTabStops arguments. A tab stop will be set for each value in rgTabStops, up to the
number specified by nTabStops. To respond to a call to the SetTabStops member
function, the list box must have been created with the LBS _ USET ABSTOPS style.

492 CListBox::SetToplndex

Return Value

See Also

Nonzero if all the tabs were set; otherwise O.

LB_SETTABSTOPS, ::GetDialogBaseUnits

CListBox: :SetToplndex

Remarks

Return Value

See Also

int SetToplndex(int nlndex);

nlndex Specifies the zero-based index of the list-box item.

Ensures that a particular list-box item is visible. The system scrolls the list box
until either the list-box item appears at the top of the list box or the maximum scroll
range has been reached.

LB ERR if an error occurs.

CListBox: : GetToplndex, LB _ SETTOPINDEX

CMapPtrToPtr 493

class CMapPtrToPtr : public CObject

See Also

The CMapPtrToPtr class supports maps of void
pointers keyed by void pointers. The member
functions of CMapPtrToPtr are similar to the '-C_M_a'-pP_tr_To_P_tr ___ ------'

member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void. Wherever you
see a CString or a const pointer to char as a function parameter or return value,
substitute a pointer to void.

BOOl CMapStringToOb::lookup(const char* <key>,
CObject*& <rValue>) const;

for example, translates to

BOOl CMapPtrToPtr::lookup(void* <key>, void*& <rValue>) const;

CMapPtrToPtr incorporates the IMPLEMENT _DYNAMIC macro to support
run-time type access and dumping to a CDumpContext object. If you need a dump
of individual map elements (pointer values), you must set the depth of the dump
context to 1 or greater. Pointer-to-pointer maps may not be serialized. When a
CMapPtrToPtr object is deleted, or when its elements are removed, only the
pointers are removed, not the entities they reference.

#include <afxcoll.h>

CMapStringToOb

Construction/Destruction - Public Members
CMapPtrToPtr Constructs a collection that maps void pointers to

void pointers.

Operations - Public Members
Lookup

SetAt

operator []

Looks up a void pointer based on the void pointer key.
The pointer value, not the entity it points to, is used for
the key comparison.

Inserts an element into the map; replaces an existing element
if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

494 CMapPtrToPtr

RemoveKey

RemoveAIl

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapPtrToWord 495

class CMapPtrToWord : public CObject

See Also

The CMapPtrTo Word class supports maps of 16-
bit words keyed by void pointers. The member
functions of CMapPtrToWord are similar to the CMapPtrToWord
member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute WORD. Wherever you see a
CString or a const pointer to char as a function parameter or return value,
substitute a pointer to void.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) const;

for example, translates to

BOOl CMapPtrToWord::lookup(const void* <key>. WORD& <rValue>) const;

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to
support run-time type access and dumping to a CDumpContext object. If you
need a dump of individual map elements, you must set the depth of the dump
context to 1 or greater. Pointer-to-word maps may not be serialized. When a
CMapPtrTo Word object is deleted, or when its elements are removed, the
pointers and the words are removed. The entities referenced by the key pointers
are not removed.

#include <afxcoll.h>

CMapStringToOb

Construction/Destruction - Public Members
CMapPtrTo Word Constructs a collection that maps void pointers to 16-bit

words.

Operations - Public Members
Lookup

SetAt

operator []

Returns a WORD using a void pointer as a key. The pointer
value, not the entity it points to, is used for the key
comparison.

Inserts an element into the map; replaces an existing element
if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

496 CMapPtrToWord

RemoveKey

RemoveAII

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Status - Public Members
GetCollnt

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToOb 497

class CMapStringToOb : public CObject

See Also

CMapStringToOb is a dictionary collection class
that maps unique CString objects to CObject
pointers. Once you have inserted a CString- CMapStringToOb
CObject* pair (element) into the map, you can
efficiently retrieve or delete the pair using a string or a CString value as a key.
You can also iterate over all the elements in the map.

A variable of type POSITION is used for alternate entry access in all map
variations. You can use a POSITION to "remember" an entry and to iterate
through the map. You might think that this iteration is sequential by key value;
it is not. The sequence of retrieved elements is indeterminate.

CMapStringToOb incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. Each element is serialized in tum if a
map is stored to an archive, either with the overloaded insertion «<) operator or
with the Serialize member function. If you need a diagnostic dump of the individual
elements in the map (the CString value and the CObject contents), you must set
the depth of the dump context to 1 or greater.

When a CMapStringToOb object is deleted, or when its elements are removed,
the CString objects and the CObject pointers are removed. The objects referenced
by the CObject pointers are not destroyed.

Map class derivation is similar to list derivation. See the Chapter 13 of the Class
Library User's Guide for a description of the derivation of a special-purpose list
class.

#include <afxcoll.h>

CMapPtrToPtr, CMapPtrTo Word, CMapStringToPtr,
CMapStringToString, CMap WordToOb, CMap WordToPtr

Construction/Destruction - Public Members
CMapStringToOb Constructs a collection that maps CString values to

CObject pointers.

Operations - Public Members
Lookup

SetAt

operator []

Returns a CObject pointer based on a CString value.

Inserts an element into the map; replaces an existing element
if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

498 CMapStringToOb::CMapStringToOb

RemoveKey

RemoveAII

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the fIrst element.

Gets the next element for iterating.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

Member Functions

CMapStringToOb: :CMapStringToOb

Remarks

Example

CMapStringToOb(int nBlockSize = 10);

nBlockSize Specifies the memory-allocation granularity for extending the map.

Constructs an empty CString-to-CObject* map. As the map grows, memory is
allocated in units of nBlockSize entries.

See CObList::CObList for a listing of the CAge class used in all collection
examples.

CMapStringToOb map(20); II Map on the stack with blocksize of 20

CMapStringToOb* pm = new CMapStringToOb; II Map on the heap
II with default blocksize

CMapStringToOb: :GetCount

Return Value

See Also

int GetCount() const;

The number of elements in this map.

CMapStringToOb: :IsEmpty

Example CMapStringToOb map;

map.SetAt("Bart", new CAge(13));
map.SetAt("Homer", new CAge(36));
ASSERT(map.GetCount() == 2);

CMapStringToOb: :GetNextAssoc 499

CMapStringToOb: :GetNextAssoc

Remarks

See Also

Example

void GetNextAssoc(POSITION& rNextPosition, CString& rKey,
CObject*& rValue) const;

rNextPosition Specifies a reference to a POSITION value returned by a previous
GetNextAssoc or GetStartPosition call.

rKey Specifies the returned key of the retrieved element (a string).

rValue Specifies the returned value of the retrieved element (a CObject pointer).

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to
the next element in the map. This function is most useful for iterating through all the
elements in the map. Note that the position sequence is not necessarily the same as
the key value sequence. If the retrieved element is the last in the map, then the new
value of rNextPosition is set to NULL.

CMapStringToOb: : GetStartPosition

CMapStringToOb map;
POSITION pos;
CString key;
CAge* pa;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
II Iterate through the entire map, dumping both name and age.
fore pos = map.GetStartPosition(); pos != NULL;
{

map.GetNextAssoc(pos, key, pa);
#ifdef _DEBUG

#endif
}

afxDump « key « " : " « pa « "\n";

500 CMapStringToOb: :GetStartPosition

The results from this program are as follows:

Lisa: a CAge at $4724 11
Marge : a CAge at $47A8 35
Homer : a CAge at $4766 36
Bart : a CAge at $4504 13

CMapStringToOb: :GetStartPosition

Remarks

Example

POSITION GetStartPosition() const;

Starts a map iteration by returning a POSITION value that can be passed to a
GetNextAssoc call. The iteration sequence is not predictable; therefore, the "first
element in the map" has no special significance.

See the example for the member function GetNextAssoc.

CMapStringToOb: :lsEmpty

Return Value

See Also

Example

BOOL IsEmpty() const;

TRUE if this map contains no elements; otherwise FALSE.

CMapStringToOb: : GetCount

See the example for RemoveAlI.

CMapStringToOb::Lookup

Remarks

Return Value

BOOL Lookup(const char* key, CObject*& rValue) const;

key Specifies the string key that identifies the element to be looked up.

rValue Specifies the returned value from the looked-up element.

Lookup uses a hashing algorithm to quickly find the map element with a key that
matches exactly (CString value).

TRUE if the element was found; otherwise FALSE.

See Also

Example

CMapStringToOb::operator []

CMapStringToOb map;
CAge* pa;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));

CMapStringToOb: : RemoveAIi 501

ASSERT(map.Lookup("Lisa", pa)); II Is "Lisa" in the map?
ASSERT(*pa == CAge(11)); II Is she II?

CMapStri ngToOb: : RemoveAl1

Remarks

See Also

Example

void RemoveAIl();

Removes all the elements from this map and destroys the CString key objects. The
CObject objects referenced by each key are not destroyed. The RemoveAIl
function can cause memory leaks if you do not ensure that the referenced CObject
objects are destroyed. The function works correctly if the map is already empty.

CMapStringToOb: :RemoveKey

{

CMapStringToOb map;

CAge age1(13); II Two objects on the stack
CAge age2(36);
map.SetAt("Bart", &age1);
map.SetAt("Homer", &age2);
ASSERT(map.GetCount() == 2);
map.RemoveAll(); II CObject pointers removed; objects not removed.
ASSERT(map.GetCount() == 0);
ASSERT(map.IsEmpty());

} II The two CAge objects are deleted when they go out of scope.

502 CMapStringToOb::RemoveKey

CMapStringToOb:: RemoveKey

Remarks

Return Value

See Also

Example

BOOL RemoveKey(const char* key);

key Specifies the string used for map lookup.

Looks up the map entry corresponding to the supplied key; then, if the key is found,
removes the entry. This can cause memory leaks if the CObject object is not
deleted elsewhere.

TRUE if the entry was found and successfully removed; otherwise FALSE.

CMapStringToOb::RemoveAlI

CMapStringToOb map;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
map.RemoveKey("Lisa"); II Memory leak: CAge object not

II deleted.
iffi fdef _DEBUG

afxDump.SetDepth(1);
afxDump « "RemoveKey example: " « &map « "\n";

4fendif

The results from this program are as follows:

RemoveKey example: A CMapStringToOb with 3 elements
[Marge] = a CAge at $49A0 35
[Homer] = a CAge at $495E 36
[Bart] = a CAge at $4634 13

CMapStringToOb::SetAt 503

CMapStri ngToOb: :SetAt

Remarks

See Also

Example

void SetAt(const char* key, CObject* newValue)
throw(CMemoryException);

key Specifies the string that is the key of the new element.

newValue Specifies the CObject pointer that is the value of the new element.

The primary means to insert an element in a map. First, the key is looked up. If the
key is found, then the corresponding value is changed; otherwise a new key-value
element is created.

CMapStringToOb: :Lookup, CMapStringToOb: :operator []

CMapStringToOb map;
CAge* pa;

map.SetAt("Bart", new CAge(13
map.SetAt("Lisa", new CAge(11

ffi fdef _DEBUG
afxDump.SetDepth(1);

) ;

); II Map contains 2
II elements.

afxDump « "before Lisa's birthday: " « &map « "\n";
ffendif

if(map.Lookup("Lisa", pa))
{ II CAge 12 pointer replaces CAge 11 pointer.

map.SetAt("Lisa", new CAge(12));
delete pa; II Must delete CAge 11 to avoid memory leak.

}

ffi fdef _DEBUG
afxDump « "after Lisa's birthday: " « &map « "\n";

ffendif

The results from this program are as follows:

before Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $493C 11
[Bart] = a CAge at $4654 13

after Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] a CAge at $49C0 12
[Bart] = a CAge at $4654 13

504 CMapStringToOb::operator []

Operators

CMapStringToOb::operator []

Remarks

See Also

Example

CObject*& operator [](const char* key);

This operator is a convenient substitute for the SetAt member function. Thus it
can be used only on the left side of an assignment statement (an I-value). If there
is no map element with the specified key, then a new element is created. There is
no "right side" (r-value) equivalent to this operator because there is a possibility
that a key may not be found in the map. Use the Lookup member function for
element retrieval.

CMapStringToOb: :SetAt, CMapStringToOb: :Lookup

CMapStringToOb map;

map["Bart"] = new CAge(13);
map["Lisa"] = new CAge(11);

Iii fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "Operator [] example: " « &map « "\n";

Ilendif

The results from this program are as follows:

Operator [] example: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $4A02 11
[Bart] = a CAge at $497E 13

CMapStringToPtr 505

class CMapStringToPtr : public CObject

See Also

The CMapStringToPtr class supports maps of void
pointers keyed by CString objects. The member
functions of CMapStringToPtr are similar to the CMapStringToPtr
member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) const;

for example, translates to

BOOl CMapStringToPtr::lookup(const char* <key>. void*& <rValue>)
const;

CMapStringToPtr incorporates the IMPLEMENT _DYNAMIC macro to
support run-time type access and dumping to a CDumpContext object. If you
need a dump of individual map elements, you must set the depth of the dump
context to 1 or greater. String-to-pointer maps may not be serialized. When a
CMapStringToPtr object is deleted, or when its elements are removed, the
CString key objects and the words are removed.

#include <afxcoll.h>

CMapStringToOb

Construction/Destruction - Public Members
CMapStringToPtr Constructs a collection that maps CString objects to

void pointers.

Operations - Public Members
Lookup

SetAt

operator []

Returns a void pointer based on a CString value.

Inserts an element into the map; replaces an existing
element if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

506 CMapStringToPtr

RemoveKey

RemoveAII

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToString 507

class CMapStringToString : public CObject

See Also

The CMapStringToString class supports maps of
CString objects keyed by CString objects. The
member functions of CMapStringToString are CMapStringToString
similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the CMapStringToOb
reference documentation for member function specifics. Wherever you see a
CObject pointer as a return value or "output" function parameter, substitute a
pointer to char. Wherever you see a CObject pointer as an "input" function
parameter, substitute a pointer to char.

BOOl CMapStringTaOb::laakup(canst char* <key>,
CObject*& <rValue>) canst;

for example, translates to

BOOl CMapStringTaString::laakup(canst char* <key>,
CString& <rValue>) canst;

CMapStringToString incorporates the IMPLEMENT _SERIAL macro to
support serialization and dumping of its elements. Each element is serialized in tum
if a map is stored to an archive, either with the overloaded insertion «<) operator
or with the Serialize member function. If you need a dump of individual CString­
CString elements, you must set the depth of the dump context to 1 or greater.
When a CMapStringToString object is deleted, or when its elements are removed,
the CString objects are removed as appropriate.

#include <afxcoll.h>

CMapStringToOb

Construction/Destruction - Public Members
CMapStringToString Constructs a collection that maps CString objects to

CString objects.

Operations - Public Members
Lookup

SetAt

operator []

Returns a CString using a CString value as a key.

Inserts an element into the map; replaces an existing
element if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

508 CMapStringToString

RemoveKey

RemoveAII

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapWordToOb 509

class CMapWordToOb : public CObject

See Also

The CMapWordToOb class supports maps of
CObject pointers keyed by 16-bit words. The mem-
ber functions of CMapWordToOb are similar to CMapWordToOb
the member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference
documentation for member function specifics. Wherever you see a CString or a
const pointer to char as a function parameter or return value, substitute WORD.

BOOl CMapStringToOb::lookup(const char* <key>.
CObject*& <rValue>) const;

for example, translates to

BOOl CMapWordToOb: :lookup(WORD <key>. CObject*& <rValue>) const;

CMap WordToOb incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. Each element is serialized in tum if a
map is stored to an archive, either with the overloaded insertion «<) operator or
with the Serialize member function. If you need a dump of individual WORD­
CObject elements, you must set the depth of the dump context to 1 or greater.
When a CMapWordToOb object is deleted, or when its elements are removed,
the CObject objects are deleted as appropriate.

#include <afxcoll.h>

CMapStringToOb

Construction/Destruction - Public Members
CMap WordToOb Constructs a collection that maps words to

CO bject pointers.

Operations - Public Members
Lookup

SetAt

operator []

Returns a CObject pointer using a word value as a key.

Inserts an element into the map; replaces an existing
element if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

510 CMapWordToOb

RemoveKey

RemoveAII

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the [lIst element.

Gets the next element for iterating.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapWordToPtr 511

class CMapWordToPtr : public CObject

See Also

The CMap WordToPtr class supports maps of void
pointers keyed by 16-bit words. The member
functions of CMapWordToPtr are similar to the CMapWordToPtr
member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void. Wherever you
see a CString or a const pointer to char as a function parameter or return value,
substitute WORD.

Baal CMapStringToOb: :loakup(canst char* <key>,
CObject*& <rValue>) const;

for example, translates to

BOOl CMapWordTaPtr::laokup(WORD <key>, vaid*& <rValue>) canst;

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to
support run-time type access and dumping to a CDumpContext object. If you
need a dump of individual map elements, you must set the depth of the dump
context to 1 or greater. Word-to-pointer maps may not be serialized. When a
CMap WordToPtr object is deleted, or when its elements are removed, the
words and the pointers are removed. The entities referenced by the pointers
are not removed.

#include <afxcoll.h>

CMapStringToOb

Construction/Destruction - Public Members
CMapWordToPtr Constructs a collection that maps words to void pointers.

Operations - Public Members
Lookup

SetAt

operator []

Returns a void pointer using a word value as a key.

Inserts an element into the map; replaces an existing
element if a matching key is found.

Inserts an element into the map-operator substitution
for SetAt.

512 CMapWordToPtr

RemoveKey

RemoveAII

GetStartPosition

GetNextAssoc

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the [list element.

Gets the next element for iterating.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

class CMDIChildWnd : public CFrameWnd
The CMDIChildWnd class provides
the functionality of a Windows
multiple document interface (MDI)
child window, along with members for
managing the window. An MDI child
window looks much like a typical
frame window, except that the MDI
child window appears inside an MDI
frame window rather than on the

CMDIChildWnd 513

CMDIChildWnd

desktop. An MDI child window does not have a menu bar of its own, but instead
shares the menu of the MDI frame window. The framework automatically changes
the MDI frame menu to represent the currently active MDI child window.

To create a useful MDI child window for your application, derive a class from
CMDIChildWnd. Add member variables to the derived class to store data specific
to your application. Implement message-handler member functions and a message
map in the derived class to specify what happens when messages are directed to the
window. There are three ways to construct an MDI child window:

u Directly construct it using Create.

u Directly construct it using LoadFrame.

u Indirectly construct it through a document template.

Before you call Create or LoadFrame, you must construct the frame-window
object on the heap using the C++ new operator. Before calling Create you may
also register a window class with the AfxRegisterWndClass global function to set
the icon and class styles for the frame. Use the Create member function to pass the
frame's creation parameters as immediate arguments.

LoadFrame requires fewer arguments than Create, and instead retrieves most of
its default values from resources, including the frame's caption, icon, accelerator
table, and menu. To be accessible by LoadFrame, all these resources must have
the same resource ID (for example, IDR_MAINFRAME).

When a CMDIChildWnd object contains views and documents, they are created
indirectly by the framework instead of directly by the programmer. The
CDocTemplate object orchestrates the creation of the frame, the creation of the
containing views, and the connection of the views to the appropriate document. The
parameters of the CDocTemplate constructor specify the CRuntimeClass of the
three classes involved (document, frame, and view). A CRuntimeClass object is
used by the framework to dynamically create new frames when specified by the
user (for example, by using the File New command or the MDI Window New
command).

514 CMDIChildWnd

See Also

A frame-window class derived from CMDIChildWnd must be declared with
DECLARE DYNCREATE in order for the above RUNTIME CLASS - -
mechanism to work correctly.

The CMDIChildWnd class inherits much of its default implementation from
CFrame Wnd. For a detailed list of these features, please refer to the
CFrameWnd class description. The CMDIChildWnd class has the following
additional features:

• In conjunction with the CMultiDocTemplate class, multiple CMDIChildWnd
objects from the same document template share the same menu, saving Windows
system resources.

• The currently active MDI child window menu entirely replaces the MDI frame
window's menu, and the caption of the currently active MDI child window is
added to the MDI frame window's caption. For further examples of MDI child
window functions that are implemented in conjunction with an MDI frame win­
dow, see the CMDIFrameWnd class description.

Do not use the C++ delete operator to destroy a frame window. Use
CWnd::DestroyWindow instead. The CFrameWnd implementation of
PostNcDestroy will delete the C++ object when the window is destroyed. When
the user closes the frame window, the default OnClose handler will call
DestroyWindow.

#include <afxwin.h>

CWnd, CFrameWnd, CMDIFrameWnd

Construction/Destruction - Public Members
CMDIChildWnd Constructs a CMDIChildWnd object.

Initialization - Public Members
Create Creates the Windows MDI child window associated with

the CMDIChildWnd object.

Operations - Public Members
MDIDestroy

MDIActivate

MDIMaximize

MDIRestore

GetMDIFrame

Destroys this MDI child window.

Activates this MDI child window.

Maximizes this MDI child window.

Restores this MDI child window from maximized or
minimized size.

Returns the parent MDI frame of the MDI client window.

CMDIChildWnd::Create 515

Member Functions

CMDIChildWnd: :CMDIChildWnd

Remarks

See Also

CMDIChildWnd();

Call to construct a CMDIChildWnd object. Call Create to create the visible
window.

CMDIChildWnd: :Create

CMDIChildWnd: :Create
BOOL Create(LPCSTR IpszClassName, LPCSTR IpszWindowName,

DWORD dwStyle = WS CHILD I WS VISIBLE I - -
WS_OVERLAPPEDWINDOW, const RECT& reet = rectDefault,
CMDIFrameWnd* pParentWnd = NULL,
CCreateContext* pContext = NULL);

IpszClassName Points to a null-tenninated character string that names the
Windows class (a WNDCLASS structure). The class name can be any name
registered with the AfxRegisterWndClass global function. Should be NULL for
a standard CMDIChildWnd.

IpszWindowName Points to a null-tenninated character string that represents the
window name. Used as text for the title bar.

dwStyle Specifies the window style attributes. The WS _CHILD style is required.

See the Create member function in the CWnd class for a full list of window
styles.

reet Contains the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new CMDIChildWnd.

pParentWnd Specifies the window's parent. If NULL, the main application
window is used.

pContext Specifies a CCreateContext structure. This parameter can be NULL.

516 CMDIChildWnd::GetMDIFrame

Remarks Call this member function to create a Windows MDI child window and attach it to
the CMDIChildWnd object. The currently active MDI child frame window can
determine the caption of the parent frame window. This feature is disabled by
turning off the FWS_ADDTOTITLE style bit of the child frame window.

Return Value

See Also

The framework calls this member function in response to a user command to create
a child window, and the framework uses the pContext parameter to properly
connect the child window to the application. When you call Create, pContext may
be NULL.

Nonzero if successful; otherwise o.
CMDIChildWnd: :CMDIChildWnd, CWnd: :PreCreate Window

CMDICh i IdWnd: :GetMDI Frame

Remarks

See Also

CMDIFrame Wnd* GetMDIFrame();

Call this function to return the MDI parent frame. The frame returned is two parents
removed from the CMDIChildWnd and is the parent of the window of type
MDICLIENT that manages the CMDIChildWnd object. Call the GetParent
member function to return the CMDIChildWnd object's immediate MDICLIENT
parent as a temporary CWnd pointer.

CWnd::GetParent

CMDIChildWnd: :MDIActivate

Remarks

See Also

void MDIActivate();

Call this member function to activate an MDI child window independently of the
MDI frame window. When the frame becomes active, the child window that was
last activated will be activated as well.

CMDIFrame Wnd: :MDIGetActive, CWnd: :OnNcActivate,
CMDIFrameWnd::MDINext, WM_MDIACTIVATE

CMDIChildWnd::MDIRestore 517

CMDIChildWnd: :MDIDestroy

Remarks

See Also

void MDIDestroy();

Call this member function to destroy an MDI child window. The member function
removes the title of the child window from the frame window and deactivates the
child window.

WM_MDIDESTROY, CMDIChildWnd::Create

CMDIChildWnd: :MDIMaximize

Remarks

See Also

void MDIMaximize();

Call this member function to maximize an MDI child window. When a child
window is maximized, Windows resizes it to make its client area fill the client area
of the frame window. Windows places the child window's Control menu in the
frame's menu bar so that the user can restore or close the child window and adds
the title of the child window to the frame-window title.

WM_MDIMAXIMIZE, CMDIChildWnd::MDIRestore

CMDIChildWnd::MDIRestore

Remarks

See Also

void MDIRestore();

Call this member function to restore an MDI child window from maximized or
minimized size.

CMDIChildWnd::MDIMaximize, WM_MDIRESTORE

518 CMDIFrameWnd

class CMDIFrameWnd : public CFrameWnd
The CMDIFrame Wnd class provides
the functionality of a Windows
multiple document interface (MDI)
frame window, along with members
for managing the window. To create a
useful MDI frame window for your
application, derive a class from
CMDIFrameWnd. Add member
variables to the derived class to store

CMDIFrameWnd

data specific to your application. Implement message-handler member functions and
a message map in the derived class to specify what happens when messages are
directed to the window.

You can construct an MDI frame window by calling the Create or LoadFrame
member functions of CFrame Wnd.

Before you call Create or LoadFrame, you must construct the frame window
object on the heap using the C++ new operator. Before calling Create you may
also register a window class with the AfxRegisterWndClass global function to set
the icon and class styles for the frame.

Use the Create member function to pass the frame's creation parameters as
immediate arguments.

LoadFrame requires fewer arguments than Create, and instead retrieves most of
its default values from resources, including the frame's caption, icon, accelerator
table, and menu. To be accessed by LoadFrame, all these resources must have the
same resource ID (for example, IDR _MAINFRAME).

Though MDIFrameWnd is derived from CFrameWnd, a frame window class
derived from CMDIFrameWnd need not be declared with
DECLARE DYNCREATE.

The CMDIFrameWnd class inherits much of its default implementation from
CFrameWnd. For a detailed list of these features, refer to the CFrameWnd class
description. The CMDIFrameWnd class has the following additional features:

• An MDI frame window manages the MDICLIENT window, repositioning it in
conjunction with control bars. The MDI client window is the direct parent of
MDI child frame windows. The WS HSCROLL and WS VSCROLL - -
window styles specified on a CMDIFrameWnd apply to the MDI client
window rather than the main frame window so the user can scroll the MDI client
area (as in the Windows Program Manager, for example).

See Also

CMDIFrameWnd 519

• An MDI frame window owns a default menu that is used as the menu bar when
there is no active MDI child window. When there is an active MDI child, the
MDI frame window's menu bar is automatically replaced by the MDI child
window menu.

• An MDI frame window works in conjunction with the current MDI child
window, if there is one. For instance, command messages are delegated to the
currently active MDI child before the MDI frame window.

• An MDI frame window has default handlers for the following standard Window
menu commands:

ID WINDOW TILE VERT - --
ID WINDOW TILE HORZ - --
ID WINDOW CASCADE - -
ID WINDOW ARRANGE - -
An MDI frame window also has an implementation ofID_ WINDOW_NEW,
which creates a new frame and view on the current document. An application
can override these default command implementations to customize MDI window
handling.

Do not use the C++ delete operator to destroy a frame window. Use
CWnd::DestroyWindow instead. The CFrameWnd implementation of
PostNcDestroy will delete the C++ object when the window is destroyed. When
the user closes the frame window, the default OnClose handler will call
DestroyWindow.

#include <afxwin.h>

CWnd, CFrameWnd, CMDIChildWnd

Construction/Destruction - Public Members
CMDIFrameWnd Constructs a CMDIFrameWnd.

Operations - Public Members
MDIActivate

MDIGetActive

MDIIconArrange

MDIMaximize

Activates a different MDI child window.

Retrieves the currently active MDI child window,
along with a flag indicating whether or not the child
is maximized.

Arranges all minimized document child windows.

Maximizes an MDI child window.

520 CMDIFrameWnd::CMDIFrameWnd

MDINext

MDIRestore

MDISetMenu

MDITile

MDICascade

Activates the child window immediately behind the
currently active child window and places the
currently active child window behind all other child
windows.

Restores an MDI child window from maximized or
minimized size.

Replaces the menu of an MDI frame window, the
Window pop-up menu, or both.

Arranges all child windows in a tiled format.

Arranges all child windows in a cascaded format.

Overridables-Public Members
CreateClient Creates a Windows MDICLIENT window for this

CMDIFrame Wnd. Called by the OnCreate
member function of CWnd.

GetWindowMenuPopup Returns the Window pop-up menu.

Member Functions

CMDIFrameWnd: :CMDIFrameWnd

Remarks

See Also

CMDIFrameWnd();

Call this member function to construct a CMDIFrameWnd object. Call the
Create or LoadFrame member functions to create the visible MDI frame window.

CFrame Wnd: :Create, CFrame Wnd: :LoadFrame

CMDIFrameWnd::CreateClient
virtual BOOL CreateClient(LPCREA TESTRUCT IpCreateStruct,

CMenu* pWindowMenu);

IpCreateStruct A long pointer to a CREATESTRUCT structure.

Remarks

Return Value

See Also

CMDIFrameWnd: :MDIActivate 521

pWindowMenu A pointer to the Window pop-up menu.

Creates the MDI client window that manages the CMDIChildWnd objects.

This member function should be called if you override the OnCreate member
function directly.

Nonzero if successful; otherwise O.

CMDIFrame Wnd: :CMDIFrame Wnd

CMDI FrameWnd: :GetWindowMenu POPUP

Remarks

Return Value

See Also

virtual HMENU GetWindowMenuPopup(HMENU hMenuBar);

hMenuBar The current menu bar.

Call this member function to obtain a handle to the current pop-up menu named
"Window" (the pop-up menu with menu items for MDI window management).

The default implementation looks for a pop-up menu containing standard Window
menu commands such as ID WINDOW NEW and - -
ID WINDOW TILE HORZ. - --

Override this member function if you have a Window menu that doesn't use the
standard menu command IDs.

The Window pop-up menu if one exists; otherwise NULL.

CMDIFrame Wnd: :MDIGetActive

CMDIFrameWnd: :MDIActivate

Remarks

void MDIActivate(CWnd* pWndActivate);

pWndActivate Points to the MDI child window to be activated.

Call this member function to activate a different MDI child window. This member
function sends the WM_MDIACTIVATE message to both the child window
being activated and the child window being deactivated. This is the same message
that is sent if the user changes the focus to an MDI child window by using the
mouse or keyboard.

522 CMDIFrameWnd::MDICascade

See Also

Note An MDI child window is activated independently of the MDI frame window.
When the frame becomes active, the child window that was last activated is sent a
WM_NCACTIVATE message to draw an active window frame and caption bar,
but it does not receive another WM _ MDIACTIV ATE message.

CMDIFrameWnd::MDIGetActive, CMDIFrameWnd::MDINext,
WM_ACTIVATE, WM_NCACTIVATE

CMDIFrameWnd: :MDICascade
void MDICascade();

Windows 3.1 Only void MDICascade(int nType);.

Remarks

See Also

nType Specifies a cascade flag. Only the following flag may be specified:
MDITILE _ SKIPDISABLED, which prevents disabled MDI child windows
from being cascaded.

Call this member function to arrange all the MDI child windows in a cascade
format.

The first version of MDICascade, with no parameters, cascades all MDI child
windows, including disabled ones. The second version optionally does not cascade
disabled MDI child windows if you specify MDITILE _ SKIPDISABLED for the
nType parameter.

CMDIFrame Wnd: :MDIIconArrange, CMDIFrame Wnd: :MDITile,
WM MDICASCADE

CMDIFrameWnd: :MDIGetActive

Remarks

CMDIChildWnd* MDIGetActive(BOOL* pbMaximized = NULL) const;

pbMaximized A pointer to a BOOL return value. Set to TRUE on return if the
window is maximized; otherwise FALSE.

Retrieves the current active MDI child window, along with a flag indicating
whether the child window is maximized.

Return Value

See Also

CMDIFrameWnd::MDINext 523

A pointer to the active MOl child window.

CMDIFrameWnd::MDIActivate, WM_ MDIGET ACTIVE

CMDIFrameWnd: :MDllconArrange

Remarks

See Also

void MDIIconArrange();

Arranges all minimized document child windows. It does not affect child windows
that are not minimized.

CMDIFrameWnd::MDICascade, CMDIFrameWnd::MDITile,
WM MDIICONARRANGE

CMDIFrameWnd: :MDIMaximize

Remarks

See Also

void MDIMaximize(CWnd* pWnd);

p W nd Points to the window to maximize.

Call this member function to maximize the specified MOl child window. When a
child window is maximized, Windows resizes it to make its client area fill the client
window. Windows places the child window's Control menu in the frame's menu bar
so the user can restore or close the child window. It also adds the title of the child
window to the frame-window title. If another MOl child window is activated when
the currently active MOl child window is maximized, Windows restores the
currently active child and maximizes the newly activated child window.

WM _ MDIMAXIMIZE, CMDIFrameWnd: :MDIRestore

CMDIFrameWnd: :MDINext

Remarks

void MDINextO;

Activates the child window immediately behind the currently active child window
and places the currently active child window behind all other child windows. If the

524 CMDIFrameWnd::MDIRestore

See Also

currently active MDI child window is maximized, the member function restores the
currently active child and maximizes the newly activated child.

CMDIFrameWnd::MDIActivate, CMDIFrameWnd::MDIGetActive,
WM MDINEXT

CMDIFrameWnd: :MDIRestore

Remarks

See Also

void MDIRestore(CWnd* pWnd);

pWnd Points to the window to restore.

Restores an MDI child window from maximized or minimized size.

CMDIFrameWnd::MDIMaximize, WM_MDIRESTORE

CMDIFrameWnd: :MDISetMenu

Remarks

Return Value

See Also

CMenu* MDISetMenu(CMenu* pFrameMenu, CMenu* pWindowMenu);

pFrameMenu Specifies the menu of the new frame-window menu. If NULL, the
menu is not changed.

pWindowMenu Specifies the menu of the new Window pop-up menu. If NULL,
the menu is not changed.

Call this member function to replace the menu of an MDI frame window, the
Window pop-up menu, or both. After calling MDISetMenu, an application must
call the DrawMenuBar member function of CWnd to update the menu bar. If this
call replaces the Window pop-up menu, MDI child-window menu items are
removed from the previous Window menu and added to the new Window pop-up
menu. If an MDI child window is maximized and this call replaces the MDI frame­
window menu, the Control menu and restore controls are removed from the previous
frame-window menu and added to the new menu.

Do not call this member function if you use the framework to manage your MDI
child windows.

A pointer to the frame-window menu replaced by this message. The pointer may be
temporary and should not be stored for later use.

CWnd::DrawMenuBar, WM _ MDISETMENU

CMDIFrameWnd::MDITile 525

CMDIFrameWnd: :MDITile
void MDITile();

Windows 3.1 Only void MDITile(int nType);.

Remarks

See Also

nType Specifies a tiling flag. This parameter can be one of the following flags,
with the indicated meaning:

• MDITILE HORIZONTAL Tiles MDI child windows so that one
window appears above another.

• MDITILE SKIPDISABLED Prevents disabled MDI child windows
from being tiled.

• MDITILE VERTICAL Tiles MDI child windows so that one window
appears beside another.

Call this member function to arrange all child windows in a tiled format.

The first version of MDITile, without parameters, tiles the windows vertically
under Windows version 3.1 and arbitrarily under Windows version 3.0. The second
version tiles windows vertically or horizontally, depending on the value of the
nType parameter.

CMDIFrame Wnd: :MDICascade, CMDIFrame Wnd: :MDIIconArrange,
WM MDITILE

526 CMemFile

class CMemFile : public CFile
CMemFile is the CFile-derived class that
supports in-memory files. These in-memory files
behave like binary disk files except that bytes
are stored in RAM. An in-memory file is a CMemFile
useful means of transferring raw bytes or '---------------'
serialized objects between independent proc-
esses. Contiguous memory is automatically allocated in specified increments, and it
is deleted when the object is destroyed. You can access this memory through a
pointer supplied by a member function.

The Duplicate, LockRange, and Unlock Range functions are not implemented
for CMemFile. If you call these functions on a CMemFile object, you will get a
CNotSupportedException. The data member CFile::m_hFile is not used and has
no meaning.

If you derive a class from CMemFile, you must use the protected memory­
allocation functions listed above, overriding them as necessary. If you need global
memory access from the medium model in the Windows operating system, for
example, derive a class with the four protected functions overridden. Your
replacement functions should call the Windows GlobalAlloc family of functions.

#include <afx.h>

Construction/Destruction - Public Members
CMemFile

"'CMemFile

Constructs a memory file using internally allocated memory.

Closes the memory file, freeing allocated memory.

CMemFile::",CMemFile 527

Member Functions

CMemFile: :CMemFile

Remarks

Example

CMemFile(UINT nGrowBytes = 1024)
throw (CFileException, CMemoryException);

nGrowBytes The memory-allocation increment in bytes.

Allocates memory and opens an empty memory file.

CMemFile f; II Ready to use - no Open necessary.

CMemFile::",CMemFile
virtual "'CMemFile();

Remarks Frees all allocated memory associated with this memory file, effectively closing it.

528 CMemoryException

class CMemoryException : public CException
A CMemoryExeeption object represents an
out-of-memory exception condition. No further
qualification is necessary or possible. Memory
exceptions are thrown automatically by new. If
you write your own memory functions, using
malloe, for example, then you are responsible
for throwing memory exceptions.

#include <afx.h>

Construction/Destruction - Public Members

CMemoryException

CMemoryExeeption Constructs a CMemoryExeeption object.

Member Functions

CMemoryException: :CMemoryException

Remarks

See Also

CMemoryExeeption() ;

Constructs a CMemoryExeeption object. Do not use this constructor directly, but
rather call the global function AfxThrowMemoryExeeption. This global function
can succeed in an out-of-memory situation because it constructs the exception
object in previously allocated memory. For more information about exception
processing, see Chapter 16, "Exceptions," in the Class Library User's Guide.

AfxThrowMemoryExeeption

CMemoryState 529

struct CMemoryState
CMemoryState provides a convenient way to detect memory leaks in your
program. A "memory leak" occurs when memory for an object is allocated on the
heap but not deallocated when it is no longer required. Such memory leaks can
eventually lead to out-of-memory errors. To allocate and deallocate memory:

• Use the malloc/free family of functions from the run-time library

• Use the Windows API memory management functions, LocalAlloc/LocalFree
and GlobalAlloc/GlobalFree

• Use the C++ new and delete operators

The CMemoryState diagnostics only help detect memory leaks caused when
memory allocated using the new operator is not deallocated using delete. The other
two groups of memory-management functions are for non-C++ programs, and
mixing them with new and delete in the same program is not recommended. An
additional macro, DEBUG_NEW, is provided to replace the new operator when
you need file and line-number tracking of memory allocations. DEBUG _NEW is
used whenever you would normally use the new operator.

As with other diagnostics, the CMemoryState diagnostics are only available
in debug versions of your program. A debug version must have the _DEBUG
constant defined.

If you suspect your program has a memory leak, you can use the Checkpoint,
Difference, and DumpStatistics functions to find the difference between the
memory state (objects allocated) at two different points in program execution. This
can help you determine if a function is cleaning up all the objects it allocates.

If simply knowing where the imbalance in allocation and deallocation occurs does
not provide enough information, you can use the DumpAIIObjectsSince function
to dump all objects allocated since the previous call to Checkpoint. This dump
shows the order of allocation, the source file and line where the object was
allocated (if you are using DEBUG_NEW for allocation), and the derivation of the
object, its address, and its size. DumpAllObjectsSince also invokes each object's
Dump function to provide information about its current state.

For more information about how to use CMemoryState and other diagnostics, see
the Class Library User's Guide.

Note Declarations of objects of type CMemoryState and calls to member
functions should be bracketed by #if defined(_DEBUG)/#endif directives so that
memory diagnostics will be included only in debugging builds of your program.

530 CMemoryState::Checkpoint

Construction/Destruction - Public Members
CMemoryState

Checkpoint

Constructs a class-like structure that controls memory
checkpoints.

Obtains a snapshot or "checkpoint" of the current
memory state.

Operations - Public Members
Difference

DumpAllObjectsSince

DumpStatistics

Computes the difference between two objects of type
CMemoryState.

Dumps a summary of all currently allocated objects
since a previous checkpoint.

Prints memory allocation statistics for a
CMemoryState object.

Member Functions

CMemoryState: :Checkpoint

Remarks

Example

void Checkpoint();

Takes a snapshot summary of memory and stores it in this CMemoryState object.
The CMemoryState member functions Difference and DumpAllObjectsSince
use this snapshot data.

See the example for the CMemoryState constructor.

CMemoryState: :CMemoryState

Remarks

CMemoryState() ;

Constructs an empty CMemoryState object that must be filled in by the
Checkpoint or Difference member functions.

Example II Includes all CMemoryState functions
CMemoryState msOld, msNew, msDif;
msOld.Checkpoint();
CAge* pagel = new CAge(21);
CAge* page2 = new CAge(22);
msOld.DumpAllObjectsSince();
msNew.Checkpoint();
msDif.Difference(msOld, msNew);
msDif.DumpStatistics();

The results from this program are as follows:

Dumping objects ->
{2} a CObject at $190A
{1} a CObject at $18EA
Object dump complete.
o bytes in 0 Free Blocks
8 bytes in 2 Object Blocks
o bytes in 0 Non-Object Blocks
Largest number used: 8 bytes
Total allocations: 8 bytes

CMemoryState::Difference 531

CMemoryState: :Difference

Remarks

Example

BOOL Difference(const CMemoryState& oldState,
const CMemoryState& newS tate);

o IdS tate The initial memory state as defined by a CMemoryState checkpoint.

newS tate The new memory state as defined by a CMemoryState checkpoint.

Compares two CMemoryState objects, then stores the difference into this
CMemoryState object. Checkpoint must have been called for each of the two
memory-state parameters.

See the example for the CMemoryState constructor.

532 CMemoryState: :DumpAIIObjectsSince

CMemoryState:: DumpAllObjeetsSi nee

Remarks

Example

void DumpAllObjectsSince() const;

Calls the Dump function for all objects of a type derived from class CObject that
were allocated (and are still allocated) since the last Checkpoint call for this
CMemoryState object.

Calling DumpAllObjectsSince with an uninitialized CMemoryState object will
dump out all objects currently in memory.

See the example for the CMemoryState constructor.

CMemoryState:: DumpStatisties

Remarks

void DumpStatistics() const;

Prints a concise memory statistics report from a CMemoryState object that is
filled by the Difference member function. The report, which is printed on the
afxDump device, shows the following:

• Number of "object" blocks (blocks of memory allocated using
CObject::operator new) still allocated on the heap.

• Number of non-object blocks still allocated on the heap.

• The maximum memory used by the program at anyone time (in bytes).

• The total memory currently used by the program (in bytes).

A sample report looks as follows:

o bytes in 0 Free Blocks
8 bytes in 2 Object Blocks
o bytes in 0 Non-Object Blocks
Largest number used: 8 bytes
Total allocations: 8 bytes

• The first line describes the number of blocks whose de allocation was delayed if
afxMemDF was set to delayFreeMemDF. For a description of afxMemDF,
see "Macros and Globals."

• The second line describes how many object blocks still remain allocated on the
heap.

Example

CMemoryState::DumpStatistics 533

• The third line describes how many nonobject blocks (arrays or structures
allocated with new) were allocated on the heap and not deallocated.

• The fourth line gives the maximum memory used by your program at anyone
time.

• The last line lists the total amount of memory used by your program.

See the example for the CMemoryState constructor.

534 CMenu

class CMenu : public CObject

See Also

The CMenu class is an encapsulation of the
Windows HMENU. It provides member functions
for creating, tracking, updating, and destroying a
menu.

I CObject

Y CMenu

Create a CMenu object on the stack frame as a local, then call CMenu' s member
functions to manipulate the new menu as needed. Next, call CWnd::SetMenu to
set the menu to a window, followed immediately by a call to the Detach member
function. The CWnd::SetMenu member function sets the window's menu to the
new menu, causes the window to be redrawn to reflect the menu change, and also
passes ownership of the menu to the window. The call to Detach detaches the
HMENU from the CMenu object, so that when the local CMenu variable passes
out of scope, the CMenu object destructor does not attempt to destroy a menu it no
longer owns. The menu itself is automatically destroyed when the window is
destroyed.

You can use the LoadMenulndirect member function to create a menu from a
template in memory, but a menu created from a resource by a call to LoadMenu is
more easily maintained, and the menu resource itself can be created and modified
by App Studio.

#include <afxwin.h>

CObject

Data Members - Public Members
m hMenu Specifies the handle to the Windows menu attached to

the CMenu object.

Construction/Destruction - Public Members
CMenu Constructs a CMenu object.

Initialization - Public Members
Attach

Detach

FromHandle

GetSafeHmenu

DeleteTempMap

Attaches a Windows menu handle to a CMenu object.

Detaches a Windows menu handle from a CMenu
object and returns the handle.

Returns a pointer to a CMenu object given a Windows
menu handle.

Returns the m _ hMenu wrapped by this CMenu object.

Deletes any temporary CMenu objects created by the
FromHandle member function.

CreateMenu

CreatePopupMenu

LoadMenu

LoadMenulndirect

DestroyMenu

CMenu 535

Creates an empty menu and attaches it to a CMenu
object.

Creates an empty pop-up menu and attaches it to a
CMenu object.

Loads a menu resource from the executable file and
attaches it to a CMenu object.

Loads a menu from a menu template in memory and
attaches it to a CMenu object.

Destroys the menu attached to a CMenu object and
frees any memory that the menu occupied.

Menu Operations - Public Members
DeleteMenu

TrackPopupMenu

Deletes a specified item from the menu. If the menu
item has an associated pop-up menu, destroys the handle
to the pop-up menu and frees the memory used by it.

Displays a floating pop-up menu at the specified
location and tracks the selection of items on the pop-up
menu.

Menu Item Operations - Public Members
AppendMenu

CheckMenultem

EnableMenultem

GetMenultemCount

GetMenultemID

GetMenuState

GetMenuString

GetSubMenu

InsertMenu

ModifyMenu

Appends a new item to the end of this menu.

Places check marks next to or removes check marks
from menu items in the pop-up menu.

Enables, disables, or dims (grays) a menu item.

Determines the number of items in a pop-up or top-level
menu.

Obtains the menu-item identifier for a menu item
located at the specified position.

Returns the status of the specified menu item or the
number of items in a pop-up menu.

Retrieves the label of the specified menu item.

Retrieves a pointer to a pop-up menu.

Inserts a new menu item at the specified position,
moving other items down the menu.

Changes an existing menu item at the specified position.

536 CMenu::AppendMenu

RemoveMenu Deletes a menu item with an associated pop-up menu
from the specified menu.

SetMenuItemBitmaps Associates the specified check-mark bitmaps with a
menu item.

Overridables - Public Members
Drawltem

MeasureItem

Member Functions

CMenu: :AppendMenu

Called by the framework when a visual aspect of an
owner-drawn menu changes.

Called by the framework to determine menu dimensions
when an owner-drawn menu is created.

BOOL AppendMenu(UINT nFlags, UINT nIDNewltem = 0,
LPCSTR IpszNewltem = NULL);

BOOL AppendMenu(UINT nFlags, UINT nIDNewltem,
const CBitmap* pBmp);

nFlags Specifies information about the state of the new menu item when it is
added to the menu. It consists of one or more of the values listed in the "Remarks"
section.

nIDNewltem Specifies either the command ID of the new menu item or, if nFlags
is set to MF _POPUP, the menu handle (HMENU) of a pop-up menu. The
nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF SEPARATOR.

Remarks

CMenu::AppendMenu 537

IpszNewltem Specifies the content of the new menu item. The nFlags parameter is
used to interpret IpszNewltem in the following way:

nFlags

MF OWNERDRA W

MF STRING

MF SEPARATOR

Interpretation of IpszNewItem

Contains an application-supplied 32-bit value that the
application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the
application when it processes WM _ MEASUREITEM
and WM _DRA WITEM messages. The value is stored
in the itemData member of the structure supplied with
those messages.

Contains a pointer to a null-terminated string. This is the
default interpretation.

The IpszNewltem parameter is ignored (not needed).

pBmp Points to a CBitmap object that will be used as the menu item.

Appends a new item to the end of a menu. The application can specify the state of
the menu item by setting values in nFlags. When nIDNewltem specifies a pop-up
menu, it becomes part of the menu to which it is appended. If that menu is de­
stroyed, the appended menu will also be destroyed. An appended menu should be
detached from a CMenu object to avoid conflict. Note that MF _STRING and
MF _ OWNERDRA Ware not valid for the bitmap version of AppendMenu.

The following list describes the flags that may be set in nFlags:

• MF _CHECKED Acts as a toggle with MF _ UNCHECKED to place the
default check mark next to the item. When the application supplies check-mark
bitmaps (see the SetMenuItemBitmaps member function), the "check mark
on" bitmap is displayed.

• MF _UNCHECKED Acts as a toggle with MF _CHECKED to remove a
check mark next to the item. When the application supplies check-mark bitmaps
(see the SetMenuItemBitmaps member function), the "check mark off' bitmap
is displayed.

• MF DISABLED Disables the menu item so that it cannot be selected but
does not dim it.

• MF ENABLED Enables the menu item so that it can be selected and restores
it from its dimmed state.

• MF GRAYED Disables the menu item so that it cannot be selected and dims
it.

• MF MENUBARBREAK Places the item on a new line in static menus or in
a new column in pop-up menus. The new pop-up menu column will be separated
from the old column by a vertical dividing line.

538 CMenu: :Attach

Return Value

See Also

• MF MENUBREAK Places the item on a new line in static menus or in a
new column in pop-up menus. No dividing line is placed between the columns.

• MF _ OWNERDRA W Specifies that the item is an owner-draw item. When
the menu is displayed for the first time, the window that owns the menu receives
a WM _ MEASUREITEM message, which retrieves the height and width of the
menu item. The WM _ DRA WITEM message is the one sent whenever the
owner must update the visual appearance of the menu item. This option is not
valid for a top-level menu item.

• MF _POPUP Specifies that the menu item has a pop-up menu associated with
it. The ID parameter specifies a handle to a pop-up menu that is to be associated
with the item. This is used for adding either a top-level pop-up menu or a
hierarchical pop-up menu to a pop-up menu item.

• MF _SEPARATOR Draws a horizontal dividing line. Can only be used in a
pop-up menu. This line cannot be dimmed, disabled, or highlighted. Other
parameters are ignored.

• MF _STRING Specifies that the menu item is a character string.

Each of the following groups lists flags that are mutually exclusive and cannot be
used together:

• MF _DISABLED, MF _ENABLED, and MF _ GRAYED

• MF _STRING, MF _OWNERDRAW, MF _SEPARATOR, and the bitmap
version

• MF MENUBARBREAK and MF MENUBREAK

• MF CHECKED and MF UNCHECKED

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application should call CWnd::DrawMenuBar.

Nonzero if the function is successful; otherwise o.
CWnd: : DrawMenuBar, CMenu: :InsertMenu, CMenu: :RemoveMenu,
CMenu: :SetMenultemBitmaps, CMenu: :Detach, : : AppendMenu

CMenu: :Attach
BOOL Attach(HMENU hMenu);

hM enu Specifies a handle to a Windows menu.

Remarks

Return Value

See Also

CMenu::CheckMenultem 539

Attaches an existing Windows menu to a CMenu object. This function should not
be called if a menu is already attached to the CMenu object. The menu handle is
stored in the m hMenu data member.

Nonzero if the operation was successful; otherwise O.

CMenu::Detach, CMenu::CMenu

CMenu: :CheckMenultem

Remarks

Return Value

See Also

UINT CheckMenuItem(UINT nIDCheckltem, UINT nCheck);

nIDCheckltem Specifies the menu item to be checked, as determined by nCheck.

nCheck Specifies how to check the menu item and how to determine the item's
position in the menu. The nCheck parameter can be a combination of
MF CHECKED or MF UNCHECKED with MF BYPOSITION or - - -
MF _BYCOMMAND flags. These flags can be combined by using the bitwise­
OR operator. They have the following meanings:

• MF _BYCOMMAND Specifies that the parameter gives the command ID
of the existing menu item. This is the default.

• MF _ BYPOSITION Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

• MF _ CHECKED Acts as a toggle with MF _UNCHECKED to place the
default check mark next to the item.

• MF _UNCHECKED Acts as a toggle with MF _CHECKED to remove a
check mark next to the item.

Adds check marks to or removes check marks from menu items in the pop-up menu.
The nIDCheckltem parameter specifies the item to be modified. The nIDCheckltem
parameter may identify a pop-up menu item as well as a menu item. No special
steps are required to check a pop-up menu item. Top-level menu items cannot be
checked. A pop-up menu item must be checked by position since it does not have a
menu-item identifier associated with it.

The previous state of the item: MF _ CHECKED or MF _ UNCHECKED, or -1 if
the menu item did not exist.

CMenu: : GetMenuState, : :CheckMenuItem

540 CMenu::CMenu

CMenu: :CMenu

Remarks

See Also

CMenu();

The menu is not created until you call one of the create or load member functions of
CMenu, as listed in "See Also."

CMenu: :CreateMenu, CMenu: :CreatePopupMenu, CMenu: :LoadMenu,
CMenu: :LoadMenuIndirect, CMenu: :Attach

CMenu: :CreateMenu

Remarks

Return Value

See Also

BOOL CreateMenu();

Creates a menu and attaches it to the CMenu object. The menu is initially empty.
Menu items can be added by using the AppendMenu or InsertMenu member
function. If the menu is assigned to a window, it is automatically destroyed when
the window is destroyed.

Before exiting, an application must free system resources associated with a menu if
the menu is not assigned to a window. An application frees a menu by calling the
DestroyMenu member function.

Nonzero if the menu was created successfully; otherwise O.

CMenu: :CMenu, CMenu: :DestroyMenu, CMenu: :InsertMenu,
CWnd::SetMenu, ::CreateMenu, CMenu::AppendMenu

CMenu: :CreatePopupMenu

Remarks

BOOL CreatePopupMenu();

Creates a pop-up menu and attaches it to the CMenu object. The menu is initially
empty. Menu items can be added by using the AppendMenu or InsertMenu
member function. The application can add the pop-up menu to an existing menu or
pop-up menu. The TrackPopupMenu member function may be used to display this
menu as a floating pop-up menu and to track selections on the pop-up menu. If the
menu is assigned to a window, it is automatically destroyed when the window is
destroyed. If the menu is added to an existing menu, it is automatically destroyed
when that menu is destroyed.

Return Value

See Also

CMenu::DeleteTempMap 541

Before exiting, an application must free system resources associated with a pop-up
menu if the menu is not assigned to a window. An application frees a menu by call­
ing the DestroyMenu member function.

Nonzero if the pop-up menu was successfully created; otherwise O.

CMenu: :CreateMenu, CMenu: :InsertMenu, CWnd: :SetMenu,
CMenu: : TrackPopupMenu, : :CreatePopupMenu, CMenu: :AppendMenu

CMenu: :DeleteMenu

Remarks

Return Value

See Also

BOOL DeleteMenu(UINT nPosition, UINT nFlags);

nPosition Specifies the menu item that is to be deleted, as determined by nFlags.

nFlags Is used to interpret nPosition in the following way:

nFlags

MF BYCOMMAND

MF BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF BYCOMMAND nor MF BYPOSITION is set. - -
Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Deletes an item from the menu. If the menu item has an associated pop-up menu,
DeleteMenu destroys the handle to the pop-up menu and frees the memory used by
the pop-up menu. Whenever a menu that resides in a window is changed (whether
or not the window is displayed), the application must call CWnd::DrawMenuBar.

Nonzero if the function is successful; otherwise O.

CWnd: :DrawMenuBar, : :DeleteMenu

CMen u:: Delete TempMap

Remarks

static void PASCAL DeleteTempMap();

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes
any temporary CMenu objects created by the FromHandle member function.
DeleteTempMap detaches the Windows menu object attached to a temporary
CMenu object before deleting the CMenu object.

542 CMenu::DestroyMenu

CMenu::DestroyMenu

Remarks

Return Value

See Also

BOOL DestroyMenuO;

Destroys the menu and any Windows operating system resources that were used.
The menu is detached from the CMenu object before it is destroyed. The Windows
DestroyMenu function is automatically called in the CMenu destructor.

Nonzero if the menu is destroyed; otherwise O.

: :DestroyMenu

CMenu::Detach

Remarks

Return Value

See Also

HMENU Detach();

Detaches a Windows menu from a CMenu object and returns the handle. The
m hMenu data member is set to NULL.

The handle, of type HMENU, to a Windows menu, if successful; otherwise NULL.

CMenu: : Attach

CMenu::Drawltem

Remarks

virtual void Drawltem(LPDRA WITEMSTRUCT IpDrawltemStruct);

IpDrawltemStruct A pointer to a DRA WITEMSTRUCT structure that contains
information about the type of drawing required.

Called by the framework when a visual aspect of an owner-drawn menu changes.
The itemAction member of the DRA WITEMSTRUCT structure defines the draw­
ing action that is to be performed. Override this member function to implement
drawing for an owner-draw CMenu object. The application should restore all
graphics device interface (GDI) objects selected for the display context supplied in
IpDrawltemStruct before the termination of this member function.

See CWnd::OnDrawltem on page 964 for a description of the
DRA WITEMSTRUCT structure.

CMenu::EnableMenultem 543

CMenu::EnableMenultem

Remarks

Return Value

See Also

UINT EnableMenultem(UINT nIDEnableltem, UINT nEnable);

nIDEnableItem Specifies the menu item to be enabled, as detennined by
nEnable. This parameter can specify pop-up menu items as well as standard menu
items.

nEnable Specifies the action to take. It can be a combination of
MF _DISABLED, MF _ENABLED, or MF _ GRAYED, with
MF _BYCOMMAND or MF _BYPOSITION. These values can be combined by
using the bitwise-OR operator. These values have the following meanings:

• MF _BYCOMMAND Specifies that the parameter gives the command ID
of the existing menu item. This is the default.

• MF _ BYPOSITION Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

• MF DISABLED Disables the menu item so that it cannot be selected but
does not dim it.

• MF ENABLED Enables the menu item so that it can be selected and
restores it from its dimmed state.

• MF GRAYED Disables the menu item so that it cannot be selected and
dims it.

Enables, disables, or dims a menu item. The CreateMenu, InsertMenu,
ModifyMenu, and LoadMenuIndirect member functions can also set the state
(enabled, disabled, or dimmed) of a menu item.

Using the MF _BYPOSITION value requires an application to use the correct
CMenu. If the CMenu of the menu bar is used, a top-level menu item (an item in
the menu bar) is affected. To set the state of an item in a pop-up or nested pop-up
menu by position, an application must specify the eMenu of the pop-up menu.
When an application specifies the MF _BYCOMMAND flag, Windows checks all
pop-up menu items that are subordinate to the CMenu; therefore, unless duplicate
menu items are present, using the CMenu of the menu bar is sufficient.

Previous state (MF _DISABLED, MF _ENABLED, or MF _GRAYED) or-l if
not valid.

CMenu: : GetMenuState, : : EnableMenultem

544 CMenu::FromHandle

CMenu::FromHandle

Remarks

Return Value

static CMenu* PASCAL FromHandle(HMENU hMenu);

hM enu A Windows handle to a menu.

Returns a pointer to a CMenu object given a Windows handle to a menu. If a
CMenu object is not already attached to the Windows menu object, a temporary
CMenu object is created and attached. This temporary CMenu object is only valid
until the next time the application has idle time in its event loop, at which time all
temporary objects are deleted.

A pointer to a CMenu that may be temporary or permanent.

CMenu: :GetMenultemCount

Remarks

Return Value

See Also

UINT GetMenuItemCount() const;

Determines the number of items in a pop-up or top-level menu.

The number of items in the menu if the function is successful; otherwise -1.

CWnd: : GetMenu, CMenu: : GetMenuItemID, CMenu: : GetSubMenu,
: : GetMenuItemCount

CMenu: :GetMenultemlD

Remarks

Return Value

See Also

UINT GetMenuItemID(int nPos) const;

nPos Specifies the position (zero-based) of the menu item whose ID is being
retrieved.

Obtains the menu-item identifier for a menu item located at the position defined by
nPos.

The item ID for the specified item in a pop-up menu if the function is successful. If
the specified item is a pop-up menu (as opposed to an item within the pop-up menu),
the return value is -1. If nPos corresponds to a SEPARATOR menu item, the
return value is O.

CWnd::GetMenu, CMenu::GetMenuItemCount, CMenu::GetSubMenu

CMenu::GetMenuState 545

CMenu: :GetMenuState

Remarks

Return Value

UINT GetMenuState(UINT nID, UINT nFlags) const;

nID Specifies the menu item ID, as detennined by nFlags.

nFlags Specifies the nature of nID. It can be one of the following values:

• MF _BYCOMMAND Specifies that the parameter gives the command ID
of the existing menu item. This is the default.

• MF _ BYPOSITION Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Returns the status of the specified menu item or the number of items in a pop-up
menu.

The value -1 if the specified item does not exist. If nID identifies a pop-up menu,
the high-order byte contains the number of items in the pop-up menu and the low­
order byte contains the menu flags associated with the pop-up menu. Otherwise the
return value is a mask (Boolean OR) of the values from the following list (this mask
describes the status of the menu item that nID identifies):

• MF _ CHECKED Acts as a toggle with MF _UNCHECKED to place the
default check mark next to the item. When the application supplies check-mark
bitmaps (see the SetMenuItemBitmaps member function), the "check mark
on" bitmap is displayed.

• MF DISABLED Disables the menu item so that it cannot be selected but
does not dim it.

• MF ENABLED Enables the menu item so that it can be selected and restores
it from its dimmed state. Note that the value of this constant is 0; an application
should not test against 0 for failure when using this value.

• MF GRAYED Disables the menu item so that it cannot be selected and dims
it.

• MF MENUBARBREAK Places the item on a new line in static menus or in -
a new column in pop-up menus. The new pop-up menu column will be separated
from the old column by a vertical dividing line.

• MF MENUBREAK Places the item on a new line in static menus or in a
new column in pop-up menus. No dividing line is placed between the columns.

• MF _ SEPARATOR Draws a horizontal dividing line. Can only be used in a
pop-up menu. This line cannot be dimmed, disabled, or highlighted. Other
parameters are ignored.

546 CMenu::GetMenuString

See Also

• MF _UNCHECKED Acts as a toggle with MF _ CHECKED to remove a
check mark next to the item. When the application supplies check -mark bitmaps
(see the SetMenultemBitmaps member function), the "check mark off' bitmap
is displayed. Note that the value of this constant is 0; an application should not
test against 0 for failure when using this value.

: : GetMenuState, CMenu: :CheckMenultem, CMenu: : EnableMenultem

CMenu: :GetMenuString

Remarks

Return Value

See Also

int GetMenuString(UINT nIDltem, LPSTR IpString, int nMaxCount,
UINT nFlags) const;

nIDltem Specifies the integer identifier of the menu item or the offset of the menu
item in the menu, depending on the value of nFlags.

IpString Points to the buffer that is to receive the label. You can pass a CString
object for this parameter.

nMaxCount Specifies the maximum length (in bytes) of the label to be copied. If
the label is longer than the maximum specified in nMaxCount, the extra
characters are truncated.

nFlags Specifies the interpretation of the nIDltem parameter. It can be one of the
following values:

nFlags

MF BYCOMMAND

MF BYPOSITION

Interpretation of nIDltem

Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF _BYCOMMAND nor MF _BYPOSITION is set.

Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

Copies the label of the specified menu item to the specified buffer. The nMaxCount
parameter should be one larger than the number of characters in the label to
accommodate the null character that terminates a string.

Specifies the actual number of bytes copied to the buffer, not including the null
terminator.

CWnd::GetMenu, CMenu::GetMenultemID, ::GetMenuString

CMenu::lnsertMenu 547

CMenu: :GetSafeHmenu
HMENU GetSafeHmenuO const;

Remarks Returns the HMENU wrapped by this CMenu object, or a NULL CMenu pointer.

CMenu: :GetSubMenu

Remarks

Return Value

See Also

CMenu* GetSubMenu(int nPos) const;

nPos Specifies the position of the pop-up menu contained in the menu. Position
values start at 0 for the first menu item. The pop-up menu's identifier cannot be
used in this function.

Retrieves the CMenu object of a pop-up menu.

A pointer to a CMenu object whose m _ hMenu member contains a handle to the
pop-up menu if a pop-up menu exists at the given position; otherwise NULL. If a
CMenu object does not exist, then a temporary one is created. The CMenu pointer
returned should not be stored.

::GetSubMenu

CMenu: :lnsertMenu
BOOL InsertMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem = 0,

LPCSTR IpszNewltem = NULL);

BOOL InsertMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem,
const CBitmap* pBmp);

548 CMenu::lnsertMenu

Remarks

nP osition Specifies the menu item before which the new menu item is to be
inserted. The nFlags parameter can be used to interpret nPosition in the following
ways:

nFlags

MF BYCOMMAND

MF BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of
the existing menu item. This is the default if neither
MF BYCOMMAND nor MF BYPOSITION is set. - -
Specifies that the parameter gives the position of the
existing menu item. The first item is at position O. If
nPosition is -1, the new menu item is appended to the
end of the menu.

nFlags Specifies how nPosition is interpreted and specifies information about the
state of the new menu item when it is added to the menu. For a list of the flags that
may be set, see the AppendMenu member function. To specify more than one
value, use the bitwise-OR operator to combine them with the
MF _ BYCOMMAND or MF _ BYPOSITION flag.

nIDNewltem Specifies either the command ID of the new menu item or, if nFlags
is set to MF _POPUP, the menu handle (HMENU) of the pop-up menu. The
nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF SEPARATOR.

IpszNewltem Specifies the content of the new menu item. The nFlags parameter
can be used to interpret IpszNewltem in the following ways:

nFlags

MF OWNERDRAW

MF STRING

MF SEPARATOR

Interpretation of IpszNewItem

Contains an application-supplied 32-bit value that the
application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the
application in the itemData member of the structure
supplied by the WM _ MEASUREITEM and
WM _ DRA WITEM messages. These messages are sent
when the menu item is initially displayed or is changed.

Contains a long pointer to a null-terminated string. This is
the default interpretation.

The IpszNewltem parameter is ignored (not needed).

pBmp Points to a CBitmap object that will be used as the menu item.

Inserts a new menu item at the position specified by nP osition and moves other
items down the menu. The application can specify the state of the menu item by
setting values in nFlags. Whenever a menu that resides in a window is changed
(whether or not the window is displayed), the application should call
CWnd::DrawMenuBar. When nIDNewltem specifies a pop-up menu, it becomes

Return Value

See Also

CMenu::LoadMenu 549

part of the menu in which it is inserted. If that menu is destroyed, the inserted menu
will also be destroyed. An inserted menu should be detached from a CMenu object
to avoid conflict.

If the active multiple document interface (MDI) child window is maximized and
an application inserts a pop-up menu into the MDI application's menu by calling
this function and specifying the MF _ BYPOSITION flag, the menu is inserted one
position farther left than expected. This happens because the Control menu of
the active MDI child window is inserted into the first position of the MDI frame
window's menu bar. To position the menu properly, the application must add 1
to the position value that would otherwise be used. An application can use the
WM_MDIGETACTIVE message to determine whether the currently active child
window is maximized.

Nonzero if the function is successful; otherwise O.

CMenu: :AppendMenu, CWnd: :DrawMenuBar,
CMenu:: SetMenuItemBitmaps, CMenu: :Detach, : :InsertMenu

CMenu::LoadMenu

Remarks

Return Value

See Also

BOOL LoadMenu(LPCSTR IpszResourceName);

BOOL LoadMenu(UINT nIDResource);

IpszResourceName Points to a null-terminated string that contains the name of
the menu resource to load.

nIDResource Specifies the menu ID of the menu resource to load.

Loads a menu resource from the application's executable file and attaches it to the
CMenu object. Before exiting, an application must free system resources associ­
ated with a menu if the menu is not assigned to a window. An application frees a
menu by calling the Destroy Menu member function.

Nonzero if the menu resource was loaded successfully; otherwise O.

CMenu: :AppendMenu, CMenu: : DestroyMenu , CMenu::LoadMenuIndirect,
::LoadMenu.

550 CMenu::LoadMenulndirect

CMenu: :LoadMenulndirect

Remarks

Return Value

See Also

BOOL LoadMenulndirect(const void FAR* IpMenuTemplate);

IpMen uTemp late Points to a menu template (which is a single
MENUITEMTEMPLA TEHEADER structure and a collection of one or more
MENUITEMTEMPLA TE structures).

The MENUITEMTEMPLA TEHEADER structure has the following generic
form:

typedef struct {
UINT versionNumber;
UINT offset;

MENUITEMTEMPLATEHEADER;

The MENUITEMTEMPLA TE structure has the following generic form:

typedef struct {
UINT mtOption;
UINT mtI D;
char mtString[l];

MENUITEMTEMPLATE;

For more information on the above two structures, see the Windows Software
Development Kit (SDK).

Loads a resource from a menu template in memory and attaches it to the eMenu
object. A menu template is a header followed by a collection of one or more
MENUITEMTEMPLA TE structures, each of which may contain one or more
menu items and pop-up menus. The version number should be O. The mtOption
flags should include MF _END for the last item in a pop-up list and for the last item
in the main list. See the AppendMenu member function for other flags. The mtld
member must be omitted from the MENUITEMTEMPLATE structure when
MF _POPUP is specified in mtOption. The space allocated for the
MENUITEMTEMPLA TE structure must be large enough for mtString to
contain the name of the menu item as a null-terminated string.

Before exiting, an application must free system resources associated with a menu if
the menu is not assigned to a window. An application frees a menu by calling the
DestroyMenu member function.

Nonzero if the menu resource was loaded successfully; otherwise O.

eMenu: :Destroy Menu, eMenu: :LoadMenu, : :LoadMenulndirect,
eMenu: :AppendMenu

CMenu::ModifyMenu 551

CMenu: :Measureltem

Remarks

virtual void MeasureItem(LPMEASUREITEMSTRUCT
IpMeasureItemStruct);

IpMeasureltemStruct A pointer to a MEASUREITEMSTRUCT structure.

Called by the framework when a menu with the owner-draw style is created. By
default, this member function does nothing. Override this member function and fill
in the MEASUREITEM structure to inform the Windows operating system of the
menu's dimensions.

See CWnd: :OnMeasureItem on page 980 for a description of the
MEASUREITEM structure.

CMenu: :ModifyMenu
BOOL ModifyMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem = 0,

LPCSTR IpszNewltem = NULL);

BOOL ModifyMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem,
const CBitmap* pBmp);

nPosition Specifies the menu item to be changed. The nFlags parameter can be
used to interpret nPosition in the following ways:

nFlags

MF BYCOMMAND

MF BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF BYCOMMAND nor MF BYPOSITION is set. - -
Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

nFlags Specifies how nPosition is interpreted and gives information about the
changes to be made to the menu item. For a list of flags that may be set, see the
AppendMenu member function.

nIDNewltem Specifies either the command ID of the modified menu item or, if
nFlags is set to MF _POPUP, the menu handle (HMENU) of a pop-up menu.
The nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF SEPARATOR.

552 CMenu::RemoveMenu

Remarks

Return Value

See Also

ZpszNewltem Specifies the content of the new menu item. The nFZags parameter
can be used to interpret ZpszNewltem in the following ways:

nFlags

MF OWNERDRAW

MF STRING

MF SEPARATOR

Interpretation of IpszNewItem

Contains an application-supplied 32-bit value that the
application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the
application when it processes MF _ MEASUREITEM and
MF DRA WITEM.

Contains a long pointer to a null-terminated string or to a
CString.

The lpszNewltem parameter is ignored (not needed).

pBmp Points to a CBitmap object that will be used as the menu item.

Changes an existing menu item at the position specified by nPosition. The applica­
tion specifies the new state of the menu item by setting values in nFZags. If this
function replaces a pop-up menu associated with the menu item, it destroys the old
pop-up menu and frees the memory used by the pop-up menu. When nIDNewltem
specifies a pop-up menu, it becomes part of the menu in which it is inserted. If that
menu is destroyed, the inserted menu will also be destroyed. An inserted menu
should be detached from a CMenu object to avoid conflict.

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application should call CWnd::DrawMenuBar. To change the
attributes of existing menu items, it is much faster to use the CheckMenuItem and
EnableMenultem member functions.

Nonzero if the function is successful; otherwise O.

CMenu: :AppendMenu, CMenu: :InsertMenu, CMenu: :CheckMenultem,
CWnd: : DrawMenuBar , CMenu: : EnableMenultem,
CMenu: :SetMenuItemBitmaps, CMenu: :Detach, : : ModifyMenu

CMenu: :RemoveMenu
BOOL RemoveMenu(UINT nPosition, UINT nFZags);

nPosition Specifies the menu item to be removed. The nFZags parameter can be
used to interpret nPosition in the following ways:

Remarks

Return Value

See Also

nFlags

MF BYCOMMAND

MF BYPOSITION

CMenu: :SetMenultemBitmaps 553

Interpretation of nPosition

Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF BYCOMMAND nor MF BYPOSITION is set. - -
Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

nFlags Specifies how nPosition is interpreted.

Deletes a menu item with an associated pop-up menu from the menu. It does not
destroy the handle for a pop-up menu, so the menu can be reused. Before calling
this function, the application may call the GetSubMenu member function to
retrieve the pop-up CMenu object for reuse. Whenever a menu that resides in a
window is changed (whether or not the window is displayed), the application must
call CWnd::DrawMenuBar.

Nonzero if the function is successful; otherwise O.

CWnd::DrawMenuBar, CMenu::GetSubMenu, ::RemoveMenu

CMenu::SetMenultemBitmaps

Remarks

BOOL SetMenuItemBitmaps(UINT nPosition, UINT nFlags,
const CBitmap* pBmpUnchecked, const CBitmap* pBmpChecked);

nPosition Specifies the menu item to be changed. The nFlags parameter can be
used to interpret nPosition in the following ways:

nFlags

MF BYCOMMAND

MF BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF BYCOMMAND nor MF BYPOSITION is set. - -
Specifies that the parameter gives the position of the
existing menu item. The first item is at position O.

nFlags Specifies how nPosition is interpreted.

pBmpUnchecked Specifies the bitmap to use for menu items that are not checked.

pBmpChecked Specifies the bitmap to use for menu items that are checked.

Associates the specified bitmaps with a menu item. Whether the menu item is
checked or unchecked, the Windows operating system displays the appropriate
bitmap next to the menu item. If either pBmpUnchecked or pBmpChecked is

554 CMenu: :TrackPopupMenu

Return Value

See Also

NULL, then the Windows operating system displays nothing next to the menu item
for the corresponding attribute. If both parameters are NULL, the Windows
operating system uses the default check mark when the item is checked and removes
the check mark when the item is unchecked. When the menu is destroyed, these
bitmaps are not destroyed; the application must destroy them.

The Windows GetMenuCheckMarkDimensions function retrieves the dimensions
of the default check mark used for menu items. The application uses these values to
determine the appropriate size for the bitmaps supplied with this function. Get the
size, create your bitmaps, then set them.

Nonzero if the function is successful; otherwise O.

: : GetMenuCheckMarkDimensions, : :SetMenuItemBitmaps

CMenu: :TrackPopupMenu
BOOL TrackPopupMenu(UINT nFlags, int x, int y, CWnd* pWnd,

LPCRECT IpRect = 0);

nFlags Specifies a screen-position flag and a mouse-button flag. The screen­
position flag can be one of the following:

• TPM _ CENTERALIGN Centers the pop-up menu horizontally relative to
the coordinate specified by x.

• TPM _LEFT ALIGN Positions the pop-up menu so that its left side is
aligned with the coordinate specified by x.

• TPM_RIGHTALIGN Positions the pop-up menu so that its right side is
aligned with the coordinate specified by x.

The mouse-button flag can be one of the following:

• TPM _ LEFTBUTTON Causes the pop-up menu to track the left mouse
button.

• TPM_RIGHTBUTTON Causes the pop-up menu to track the right
mouse button.

x Specifies the horizontal position in screen coordinates of the pop-up menu.
Depending on the value of the nFlags parameter, the menu can be left-aligned,
right-aligned, or centered relative to this position.

y Specifies the vertical position in screen coordinates of the top of the menu on the
screen.

CMenu::m_hMenu 555

p W nd Identifies the window that owns the pop-up menu. This window receives all
WM_COMMAND messages from the menu. In Windows 3.1, the window does
not receive WM _ COMMAND messages until TrackPopupMenu returns. In
Windows 3.0, the window receives WM _ COMMAND messages before
TrackPopupMenu returns.

IpRect Points to a RECT structure or CRect object that contains the screen
coordinates of a rectangle within which the user can click without dismissing the
pop-up menu. If this parameter is NULL, the pop-up menu is dismissed if the user
clicks outside the pop-up menu. This must be NULL for Windows 3.0.

Windows 3.1 Only The use of the following constants for IpRect is new in Windows 3.1:

Remarks

Return Value

See Also

• TPM CENTERALIGN

• TPM LEFTALIGN

• TPM RIGHTALIGN

• TPM RIGHTBUTTON.

Displays a floating pop-up menu at the specified location and tracks the selection of
items on the pop-up menu. A floating pop-up menu can appear anywhere on the
screen.

Nonzero if the function is successful; otherwise 0.

CMenu: :CreatePopupMenu, CMenu: : GetSubMenu, : :TrackPopupMenu

Data Members

CMenu::m hMenu
Remarks Specifies the HMENU handle of the Windows menu attached to the CMenu

object.

556 CMetaFileDC

class CMetaFileDC : public CDC

See Also

A Windows metafile contains a sequence of
graphics device interface (GDI) commands that
you can replay to create a desired image or text.

To implement a Windows metafile, first create a
CMetaFileDC object. Invoke the

CMetaFileDC

CMetaFileDC constructor, then call the Create member function, which creates a
Windows metafile device context and attaches it to the CMetaFileDC object.

Next send the CMetaFileDC object the sequence of CDC GDI commands that you
intend for it to replay. Only those GDI commands that create output, such as
MoveTo and LineTo, may be used.

After you have sent the desired commands to the metafile, call the Close member
function, which closes the metafile device contexts and returns a metafile handle.
Then dispose of the CMetaFileDC object.

CDC::PlayMetaFile can then use the metafile handle to play the metafile
repeatedly. The metafile can also be manipulated by Windows functions such as
CopyMetaFile, which copies a metafile to disk.

When the metafile is no longer needed, delete it from memory with the
DeleteMetaFile Windows function.

You may also implement the CMetaFileDC object so that it can handle both output
calls and attribute GDI calls such as GetTextExtent. Such a metafile is more
flexible and can more easily reuse general GDI code, which often consists of a mix
of output and attribute calls. The CMetaFileDC class inherits two device contexts,
m _ hDC and m _ hAttribDC, from CDC. The m _ hDC device context handles all
CDC GDI output calls and the m _ hAttribDC device context handles all CDC
GDI attribute calls. Normally, these two device contexts refer to the same device.
In the case of CMetaFileDC, the attribute DC is set to NULL by default.·Create a
second device context that points to the screen, a printer, or device other than a
metafile, then call the SetAttribDC member function to associate the new device
context with m hAttribDC. GDI calls for information will now be directed to the
new m_hAttribDC. Output GDI calls will go to m_hDC, which represents the
metafile.

#include <afxext.h>

CDC

CMetaFileDC::CMetaFileDC 557

Construction/Destruction - Public Members
CMetaFileDC Constructs a CMetaFileDC object.

Initialization - Public Members
Create Creates the Windows metafile device context and attaches

it to the CMetaFileDC object.

Operations - Public Members
Close Closes the device context and creates a metafile handle.

Member Functions

CMetaFi leDC: :Close

Remarks

Return Value

See Also

HMET AFILE Close();

Closes the metafile device context and creates a Windows metafile handle that can
be used to play the metafile by using the CDC::PlayMetaFile member function.
The Windows metafile handle can also be used to manipulate the metafile with
Windows functions such as CopyMetaFile.

Delete the metafile after use by calling the Windows DeleteMetaFile function.

A valid HMET AFILE if the function is successful; otherwise NULL.

CDC: : Play MetaFile, :: CloseMetaFile, :: GetMetaFileBits, :: Copy MetaFile,
:: DeleteMetaFile

CMetaFi leDC: :CMetaFi leDC

Remarks

See Also

CMetaFileDC() ;

Construct a CMetaFileDC object in two steps. First, call CMetaFileDC, then call
Create, which creates the Windows metafile device context and attaches it to the
CMetaFileDC object.

CMetaFileDC:: Create

558 CMetaFileDC::Create

CMetaFi leDC: :Create

Remarks

Return Value

See Also

BOOL Create(LPCSTR IpszFilename = NULL);

IpszFilename Points to a null-terminated character string. Specifies the filename
of the metafile to create. If IpszFilename is NULL, a new in-memory metafile is
created.

Construct a CMetaFileDC object in two steps. First, call the constructor
CMetaFileDC, then call Create, which creates the Windows metafile device
context and attaches it to the CMetaFileDC object.

Nonzero if the function is successful; otherwise o.

CMetaFileDC::CMetaFileDC, CDC::SetAttribDC, ::CreateMetaFile

CMultiDocTemplate 559

class CMultiDocTemplate : public CDocTemplate

See Also

The CMultiDocTemplate class defines a
document template that implements the
multiple document interface (MDI). An
MDI application uses the main frame
window as a workspace in which the user
can open zero or more document frame CMultiDocTemplate
windows, each of which displays a
document. For a more detailed description of the MDI, see The Windows Interface:
An Application Design Guide.

A document template defines the relationship between three types of classes:

• A document class, which you derive from CDocument.

• A view class, which displays data from the document class listed above. You
can derive this class from CView, CScrollView, CFormView, or CEditView.
(You can also use CEditView directly.)

• A frame window class, which contains the view. For an MDI document
template, you can derive this class from CMDIChildWnd, or, if you don't need
to customize the behavior of the document frame windows, you can use
CMDIChildWnd directly without deriving your own class.

An MDI application can support more than one type of document, and documents of
different types can be open at the same time. Your application has one document
template for each document type that it supports. For example, if your MDI
application supports both spreadsheets and text documents, the application has two
CMultiDocTemplate objects.

The application uses the document template(s) when the user creates a new
document. If the application supports more than one type of document, then the
framework gets the names of the supported document types from the document
templates and displays them in a list in the File New dialog box. Once the user has
selected a document type, the application creates a document object, a frame
window object, and a view object and attaches them to each other.

You don't need to call any member functions of CMultiDocTemplate except the
constructor. The framework handles CMultiDocTemplate objects internally.

CDocTemplate, CDocument, CMDIChildWnd, CSingleDocTemplate, CView,
CWinApp

Construction/Destruction - Public Members
CMultiDocTemplate Constructs a CMultiDocTemplate object.

560 CMultiDocTemplate::CMultiDocTemplate

Member Functions

CMultiDocTemplate::CMultiDocTemplate
CMultiDocTemplate(UINT nIDResource, CRuntimeClass* pDocClass,

CRuntimeClass* pFrameClass, CRuntimeClass* pViewClass);

nIDResource Specifies the ID of the resources used with the document type. This
may include menu, icon, accelerator table, and string resources.

The string resource consists of up to seven substrings separated by the '\n'
character (the '\n' character is needed as a place holder if a substring is not
included; however, trailing '\n' characters are not necessary); these substrings
describe the document type. For information about the substrings, see
CDocTemplate: : GetDocString. This string resource is found in the
application's resource file. For example:

II MYCALC. RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN

IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets C*.myc)\n.myc\n
MyCalcSheet\nMyCalc Worksheet"
END

Note that the string begins with a '\n' character; this is because the first substring
is not used for MDI applications and so is not included. You can edit this string
using the String Editor in App Studio; the entire string appears as a single entry in
the String Editor, not as seven separate entries.

For more information about these resource types, see the App Studio User's
Guide.

pDocClass Points to the CRuntimeClass object of the document class. This class
is a CDocument-derived class you define to represent your documents.

pFrameClass Points to the CRuntimeClass object of the frame-window class.
This class can be a CMDIChildWnd-derived class, or it can be
CMDIChildWnd itself if you want default behavior for your document frame
windows.

pViewClass Points to the CRuntimeClass object of the view class. This class is a
CView-derived class you define to display your documents.

Remarks

See Also

Example

CMultiDocTemplate::CMultiDocTemplate 561

Constructs a CMllitiDocTemplate object. Dynamically allocate one
CMllitiDocTemplate object for each document type that your application supports
and pass each one to CWinApp: :AddDocTemplate from the In i tIn s tan c e
member function of your application class.

CDocTemplate::GetDocString, CWinApp::AddDocTemplate,
CWinApp: :Initlnstance, CRllntimeClass, RUNTIME_CLASS

BOOl CMyApp: :Initlnstance()
{

II
II Establish all of the document types
II supported by the application

AddDocTemplate(new CMultiDocTemplate(IDR_SHEETTYPE.
RUNTIME_ClASS(CSheetDoc).
RUNTIME_ClASS(CMDIChildWnd).
RUNTIME_ClASS(CSheetView)));

AddDocTemplate(new CMultiDocTemplate(IDR_NOTETYPE.

I I ...

RUNTIME_ClASS(CNoteDoc).
RUNTIME_ClASS(CMDIChildWnd).
RUNTIME_ClASS(CNoteView)));

562 CNotSu pported Exception

class CNotSupportedException : public CException
A CNotSupportedException object represents an exception that is the result of a
request for an unsupported feature. No further qualification is necessary or
possible.

#include <afx.h>

Construction/Destruction - Public Member
CNotSupportedException Constructs a CNotSupportedException object.

Member Functions

CNotSupported Exception: :CNotSupported Exception

Remarks

See Also

CNotSupportedException() ;

Constructs a CNotSupportedException object. Do not use this constructor
directly, but rather call the global function AfxThrowNotSupportedException.
For more information about exception processing, see Chapter 16, "Exceptions," in
the Class Library User's Guide.

AfxThrowNotSupportedException

CObArray 563

class CObArray : public CObject

See Also

The CObArray class supports arrays of CObject
pointers. These object arrays are similar to C
arrays, but they can dynamically shrink and grow
as necessary. Array indexes always start at position

I CObject

Y CObArray

O. You can decide whether to fix the upper bound or allow the array to expand
when you add elements past the current bound. Memory is allocated contiguously
to the upper bound, even if some elements are null.

The elements of a CObArray object must fit in one 64K segment together with
approximately 100 allocation overhead bytes. If CObject pointers are 16-bit near
pointers (as they are in the small and medium memory models), then an array size
limit is about 32,000 elements, but because there is only one data segment, the
objects themselves will probably exhaust memory before the array does. If
CObject pointers are 32-bit far pointers (as they are in the compact and large
memory models), then an array size limit is about 16,000 elements.

As with a C array, the access time for a CObArray indexed element is constant
and is independent of the array size. CObArray incorporates the
IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. If an array of CObject pointers is stored to an archive, either with the
overloaded insertion operator or with the Serialize member function, each
CObject element is, in tum, serialized along with its array index. If you need a
dump of individual CObject elements in an array, you must set the depth of the
CDumpContext object to 1 or greater. When a CObArray object is deleted, or
when its elements are removed, only the CObject pointers are removed, not the
objects they reference.

Array class derivation is similar to list derivation. For details on the derivation of
a special-purpose list class, see Chapter 13, "Collections," in the Class Library
User's Guide.

Note You must use the IMPLEMENT _SERIAL macro in the implementation
of your derived class if you intend to serialize the array.

#include <afxcoll.h>

CStringArray, CPtrArray, CByteArray, CWordArray, CDWordArray

Construction/Destruction - Public Members
CObArray

""CObArray

Constructs an empty array for CObject pointers.

Destroys a CObArray object.

564 CObArray

Bounds - Public Members
GetSize Gets the number of elements in this array.

GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this array.

Operations - Public Members
FreeExtra

RemoveAIl

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the element pointer within
the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array
if necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

CObArray::Add 565

Member Functions

CObArray: :Add

Remarks

Return Value

See Also

Example

int Add(CObject* newElement)
throw(CMemoryException);

newElement The CObject pointer to be added to this array.

Adds a new element to the end of an array, growing the array by 1. If SetSize has
been used with an nGrowBy value greater than 1, then extra memory may be
allocated. However, the upper bound will increase by only 1.

The index of the added element.

CObArray: :SetAt, CObArray: :SetAtGrow, CObArray: :InsertAt,
CObArray: :operator []

CObArray array;

array.Add(new CAge(21
array.Add(new CAge(40

IFi fdef _DEBUG
afxDump.SetDepth(1);

); II Element 0
); II Element 1

afxDump « "Add example: " « &array « "\n";
fFendif

The results from this program are as follows:

Add example: A CObArray with 2 elements
[0] = a CAge at $442A 21
[1] = a CAge at $4468 40

566 CObArray::CObArray

CObArray: :CObArray

Remarks

See Also

Example

CObArrayO;

Constructs an empty CObject pointer array. The array grows one element
at a time.

CObList::CObList

See the CObList constructor for a listing of the CAge class used in all
collection examples.

CObArray: :~CObArray

Remarks

-CObArrayO;

Destroys a CObArray object but does not destroy the CObject objects that are
referenced in the array.

CObArray:: ElementAt

Remarks

Return Value

See Also

CObject*& ElementAt(int nlndex);

nI ndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

Returns a temporary reference to the element pointer within the array. It is used
to implement the left-side assignment operator for arrays. Note that this is an
advanced function that should be used only to implement special array operators.

A reference to a CObject pointer.

CObArray: :operator []

CObArray::GetSize 567

CObArray: :FreeExtra

Remarks

void FreeExtraO;

Frees any extra memory that was allocated while the array was grown. This
function has no effect on the size or upper bound of the array.

CObArray: :GetAt

Remarks

Return Value

See Also

Example

CObject* GetAt(int nlndex) const;

nI ndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

Returns the array element at the specified index.

The CObject pointer element currently at this index; NULL if no element is
stored at the index.

CObArray::SetAt, CObArray::operator []

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
ASSERT(*(CAge*) array.GetAt(0) == CAge(21));

CObArray: :GetSize

Remarks

See Also

int GetSizeO const;

Returns the size of the array. Since indexes are zero-based, the size is 1 greater
than the largest index.

CObArray::GetUpperBound, CObArray::SetSize

568 CObArray::GetUpperBound

CObArray: :GetUpperBound

Remarks

See Also

Example

int GetUpperBoundO const;

Returns the current upper bound of this array. Because array indexes are zero­
based, this function returns a value 1 less than GetSize. The condition
GetUpperBound() = -1 indicates that the array contains no elements.

CObArray: :GetSize, CObArray: :SetSize

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
ASSERT(array.GetUpperBound() == 1); II Largest index

COb Array: : I nsertAt

Remarks

void InsertAt(int nlndex, CObject* newElement, int nCount = 1)
throw(CMemoryException);

void InsertAt(int nStartlndex, CObArray* pNewArray)
throw(CMemoryException);

nI ndex An integer index that may be greater than the value returned by
GetUpperBound.

newElement The CObject pointer to be placed in this array. A newElement of
value NULL is allowed.

nCount The number of times this element should be inserted (defaults to 1).

nStartlndex An integer index that may be greater than the value returned by
GetUpperBound.

pNewArray Another array that contains elements to be added to this array.

The first version of InsertAt inserts one element (or mUltiple copies of an
element) at a specified index in an array. In the process, it shifts up (by incre­
menting the index) the existing element at this index, and it shifts up all the
elements above it. The second version inserts all the elements from another
CObArray collection, starting at the nStartlndex position. The SetAt function, in
contrast, replaces one specified array element and does not shift any elements.

See Also

Example

CObArray::RemoveAII 569

CObArray: :SetAt, CObArray: : RemoveAt

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1 (will become 2).
array.InsertAt(1, new CAge(30)); II New element 1

4foifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "InsertAt example: " « &array « "\n";

4foendif

The results from this program are as follows:

InsertAt example: A CObArray with 3 elements
[0] = a CAge at $45C8 21
[1] = a CAge at $4646 30
[2] = a CAge at $4606 40

CObArray: : RemoveAl1

Remarks

Example

void RemoveAlIO;

Removes all the pointers from this array but does not actually delete the CObject
objects. If the array is already empty, the function still works. The RemoveAlI
function frees all memory used for pointer storage.

CObArray array;
CAge* pal;
CAge* pa2;

array.Add(pal = new CAge(21)); II Element 0
array.Add(pa2 = new CAge(40)); II Element 1
ASSERT(array.GetSize() == 2);
array.RemoveAll(); II Pointers removed but objects not deleted.
ASSERT(array.GetSize() == 0);
delete pal;
delete pa2; II Cleans up memory.

570 CObArray::RemoveAt

COb Array:: RemoveAt

Remarks

See Also

Example

void RemoveAt(int nlndex, int nCount = 1);

nI ndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

nCount The number of elements to remove.

Removes one or more elements starting at a specified index in an array. In the
process, it shifts down all the elements above the removed element(s). It
decrements the upper bound of the array but does not free memory. If you try to
remove more elements than are contained in the array above the removal point,
then the Debug version of the library asserts. The RemoveAt function removes
the CObject pointer from the array, but it does not delete the object itself.

CObArray: :SetAt, CObArray: :SetAtGrow, CObArray: :InsertAt

CObArray array;
CObject* pa;

array.Add(new CAge(21); II Element 0
array.Add(new CAge(40); II Element
if((pa = array.GetAt(0)) != NULL)
{

array.RemoveAt(0); II Element 1 moves to 0.
delete pa; II Delete the original element at 0.

#ifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "RemoveAt example: " « &array « "\n";

#end if

The results from this program are as follows:

RemoveAt example: A CObArray with 1 elements
[0] = a CAge at $4606 40

CObArray::SetAt 571

CObArray: :SetAt

Remarks

See Also

Example

void SetAt(int nlndex, CObject* newElement);

nlndex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

newElement The object pointer to be inserted in this array. A NULL value
is allowed.

Sets the array element at the specified index. SetAt will not cause the array to
grow. Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If
it is out of bounds, then the Debug version of the library asserts.

CObArray::GetAt, CObArray::SetAtGrow, CObArray::ElementAt,
CObArray: :operator []

CObArray array;
CObject* pa;

array.Add(new CAge(21); II Element 0
array.Add(new CAge(40); II Element 1
if((pa = array.GetAt(0)) != NULL)
{

array.SetAt(0. new CAge(30)); II Replace element 0.
delete pa; II Delete the original element at 0.

1Fifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "SetAt example: " « &array « "\n";

1Fendif

The results from this program are as follows:

SetAt example: A CObArray with 2 elements
[0] = a CAge at $47E0 30
[1] = a CAge at $47A0 40

572 CObArray::SetAtGrow

CObArray: :SetAtGrow

Remarks

See Also

Example

void SetAtGrow(int nlndex, CObject* newElement)
throw(CMemoryException);

nlndex An integer index that is greater than or equal to O.

newElement The object pointer to be added to this array. A NULL value
is allowed.

Sets the array element at the specified index. The array grows automatically if
necessary (that is, the upper bound is adjusted to accommodate the new element).

CObArray: : GetAt, CObArray: :SetAt, CObArray: :ElementAt,
CObArray::operator []

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
array.SetAtGrow(3, new CAge(65)); II Element 2 deliberately

II skipped.
/fifdef _DEBUG

afxDump.SetDepth(1);
afxDump « "SetAtGrow example: " « &array « "\n";

1J:end if

The results from this program are as follows:

SetAtGrow example: A CObArray with 4 elements
[0J a CAge at $47C0 21
[1J a CAge at $4800 40
[2J NULL
[3J a CAge at $4840 65

CObArray: :SetSize
void SetSize(int nNewSize, int nGrowBy = -1)

throw(CMemoryException);

nNewSize The new array size (number of elements). Must be greater than or
equal to O.

Remarks

Operators

CObArray::operator [] 573

nGrowBy The minimum number of element slots to allocate if a size increase is
necessary.

Establishes the size of an empty or existing array; allocates memory if necessary.
If the new size is smaller than the old size, then the array is truncated and all
unused memory is released. The nGrowBy parameter affects internal memory
allocation while the array is growing. Its use never affects the array size as
reported by GetSize and GetUpperBound.

CObArray: :operator []

Remarks

See Also

Example

CObject*& operator [](int nlndex);

CObject* operator [](int nlndex) const;

These subscript operators are a convenient substitute for the SetAt and GetAt
functions. The first operator, invoked for arrays that are not const, may be used
on either the right (r-value) or the left (I-value) of an assignment statement. The
second, invoked for const arrays, may be used only on the right. The Debug
version of the library asserts if the sUbscript (either on the left or right side of an
assignment statement) is out of bounds.

CObArray: :GetAt, CObArray: :SetAt

CObArray array;
CAge* pa;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
pa = (CAge*)array[0]; II Get element 0
ASSERT(*pa == CAge(21)); II Get element 0
array[0] = new CAge(30); II Replace element 0
delete pa;
ASSERT(*(CAge*) array[0] == CAge(30)); II Get new element 0

574 CObject

class CObject
CObject is the principal base class for the Microsoft Foundation Class Library. It
serves as the root not only for library classes such as CFile and CObList, but also
for the classes that you write. CObject provides basic services, including:

• Serialization support

• Run-time class information

• Object diagnostic output

• Compatibility with collection classes

For a detailed description of these features, see Chapters 12 through 15 of the Class
Library User's Guide.

Note that CObject does not support multiple inheritance. Your derived classes can
have only one CObject base class, and that CObject must be leftmost in the
hierarchy. It is permissible, though, to have structures and non-CObject-derived
classes in right-hand multiple-inheritance branches.

You will realize major benefits from CObject derivation if you use some of the
optional macros in your class implementation and declarations. The
DECLARE_DYNAMIC and IMPLEMENT _DYNAMIC macros permit run­
time access to the class name and its position in the hierarchy. This, in tum, allows
meaningful diagnostic dumping. The DECLARE-DYNCREATE and
IMPLEMENT -DYNCREATE macros permit you to create an object of a specific
class at run time. The DECLARE SERIAL and IMPLEMENT SERIAL - -
macros include all the functionality of the previously discussed macros, and they
enable an object to be "serialized" to and from an "archive."

For important information about deriving Microsoft Foundation classes and Visual
C++ classes in general, see "Deriving a Class from CObject" in Chapter 12 of the
Class Library User's Guide.

#include <afx.h>

Construction/Destruction - Public Members
"'CObject

operator new

operator delete

Virtual destructor.

Special new operator.

Special delete operator.

Diagnostics - Public Members
AssertValid

Dump

Validates this object's integrity.

Produces a diagnostic dump of this object.

CObject: :AssertValid 575

Serialization - Public Members
IsSerializable

Serialize

Tests to see if this object can be serialized.

Loads or stores an object from/to an archive.

Miscellaneous - Public Members
GetRuntimeClass

IsKindOf

Returns the CRuntimeClass structure corresponding to
this object's class.

Tests this object's relationship to a given class.

Construction/Destruction - Protected Members
CObject

Private Members
CObject

operator =

Default constructor.

Copy constructor.

Assignment operator.

Member Functions

CObject: :AssertValid

Remarks

virtual void AssertValid() const;

Assert Valid performs a validity check on this object by checking its internal state.
In the Debug version of the library, Assert Valid may assert and thus terminate the
program with a message that lists the line number and filename where the assertion
failed. When you write your own class, you should override the Assert Valid
function to provide diagnostic services for yourself and other users of your class.
The overridden Assert Valid usually calls the Assert Valid function of its base
class before checking data members unique to the derived class.

Because Assert Valid is a const function, you are not permitted to change the
object state during the test. Your own derived class AssertValid functions should
not throw exceptions but rather should assert if they detect invalid object data. The
definition of "validity" depends on the object's class. As a rule, the function should
perform a "shallow check." That is, if an object contains pointers to other objects, it
should check to see if the pointers are not null but should not perform validity
testing on the objects referred to by the pointers.

576 CObject: :CObject

Example See CObList::CObList for a listing of the CAge class used in all CObject
examples.

void CAge::AssertValid() const
{

CObject::AssertValid();
ASSERT(m_years > 0);
ASSERT(m-years < 105);

CObject: :CObject
Protected

Private

Remarks

CObjectO; +

CObject(constCObject& objectSrc); +

objectSrc A reference to another CObject.

These functions are the standard CObject constructors. The default version is
automatically called by the constructor of your derived class. If your class is
serializable (it incorporates the IMPLEMENT_SERIAL macro), then you must
have a default constructor (a constructor with no arguments) in your class
declaration. If you don't need a default constructor, declare a private or protected
"empty" constructor. For more information, see "Deriving a Class from CObject"
in Chapter 12 of the Class Library User's Guide. The standard Visual C++ default
class copy constructor does a member-by-member copy. The presence of the private
CObject copy constructor guarantees a compiler error message if the copy
constructor of your class is needed but not available. You must, therefore, provide a
copy constructor if your class requires this capability.

CObject: :IVCObject

Remarks

virtual CO bject();

This function is the standard CObject destructor. If your derived class must
free allocated memory or do other cleanup work, you must provide your own
destructor. Because CObject is a virtual destructor, Visual C++ ensures that
CObject: : CObject is automatically called as part of the destructor of your class.

Note Your destructor should not throw exceptions or allocate objects.

CObject::GetRuntimeClass 577

CObject::Dump

Remarks

Example

virtual void Dump(CDumpContext& de) const;

de The diagnostic dump context for dumping, usually afxDump.

Dumps the contents of your object to a CDumpContext object. When you write
your own class, you should override the Dump function to provide diagnostic
services for yourself and other users of your class. The overridden Dump usually
calls the Dump function of its base class before printing data members unique to
the derived class. CObject: :Dump prints the class name if your class uses the
IMPLEMENT DYNAMIC or IMPLEMENT SERIAL macro. - -

Note Your Dump function should not print a newline character at the end of its
output.

Dump calls make sense only in the Debug version of the Microsoft Foundation
Class Library. Bracket calls, function declarations, and function implementations
with #ifdef _ DEBUG/#endif statements for conditional compilation. Since Dump
is a const function, you are not permitted to change the object state during the
dump. The CDumpContext insertion «<) operator calls Dump when a CObject
pointer is inserted. Dump permits only "acyclic" dumping of objects. You can
dump a list of objects, for example, but if one of the objects is the list itself, you
will eventually overflow the stack.

void CAge: :Dump(CDumpContext &dc) const
{

CObjeet::Dump(de);
de « "Age = " « m_years;
}

CObject: :GetRuntimeClass

Remarks

virtual CRuntimeClass* GetRuntimeClass() const;

There is one CRuntimeClass structure for each CObject-derived class. The
structure members are as follows:

• const char* m _pszClassName A null-terminated string containing the ASCII
class name.

• int m _ nObjectSize The actual size of the object. If the object has data
members that point to allocated memory, the size of that memory is not included.

578 CObject::lsKindOf

Return Value

See Also

Example

• WORD m wSchema The schema number (-1 for nonserializable classes).
See the IMPLEMENT_SERIAL macro for a description of schema number.

• void (*m_pfnConstruct)(void* p) A pointer to the default constructor of
your class (valid only if the class is serializable).

• CRuntimeClass* m _pBaseClass A pointer to the CRuntimeClass structure
that corresponds to the base class.

This function requires use of the IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macros in the class implementation. You will get
incorrect results otherwise.

A pointer to the CRuntimeClass structure corresponding to this object's class;
never NULL.

CObject: :IsKindOf, RUNTIME_CLASS Macro

CAge a(21);
CRuntimeClass* prt = a.GetRuntimeClass();
ASSERT(strcmp(prt->m_pszClassName, "CAge") == 0);

CObject: :lsKindOf

Remarks

Return Value

See Also

Example

BOOL IsKindOf(const CRuntimeClass* pClass) const;

pClass A pointer to a CRuntimeClass structure associated with your CObject­
derived class.

Tests pClass to see if (1) it is an object of the specified class or (2) it is an object of
a class derived from the specified class. This function only works for classes
declared with the DECLARE DYNAMIC or DECLARE SERIAL macros. Do - -
not use this function extensively because it defeats the Visual C++ polymorphism
feature. Use virtual functions instead.

TRUE if the object corresponds to the class; otherwise FALSE.

CObject: :GetRuntimeClass, RUNTIME_CLASS Macro

CAge a(21); II Must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL
ASSERT(a.IsKindOf(RUNTIME_CLASS(CAge)));
ASSERT(a.IsKindOf(RUNTIME_CLASS(CObject)));

CObject::Serialize 579

CObject: :lsSerializable

Remarks

Return Value

See Also

Example

BOOL IsSerializable() const;

Tests whether this object is eligible for serialization. For a class to be
serializable, its declaration must contain the DECLARE_SERIAL macro,
and the implementation must contain the IMPLEMENT_SERIAL macro.

Note Do not override this function.

TRUE if this object can be serialized; otherwise FALSE.

CObject: : Serialize

CAge a(21);
ASSERT(a.IsSerializable());

CObject: :Serial ize

Remarks

Example

virtual void Serialize(CArchive& ar)

throw(CMemoryException, CArchiveException, CFileException);

ar A CArchive object to serialize to or from.

Reads or writes this object from or to an archive. You must override Serialize for
each class that you intend to serialize. The overridden Serialize must first call the
Serialize function of its base class. You must also use the DECLARE SERIAL
macro in your class declaration, and you must use the IMPLEMENT_SERIAL
macro in the implementation.

Use CArchive: :IsLoading or CArchive: :IsStoring to determine whether the
archive is loading or storing. Serialize is called by CArchive::ReadObject and
CArchive:: WriteObject. These functions are associated with the CArchive
insertion operator «<) and extraction operator (»). For serialization examples,
refer to Chapters 3 and 14 in the Class Library User's Guide.

void CAge::Serialize(CArchive& ar)
{

CObject::Serialize(ar);
if(ar.IsStoring())
ar « m_years;
else
ar » m_years;

580 CObject::operator =

Operators

CObject::operator =
Private

Remarks

void operator =(const CObject& src); •

The standard Visual C++ default class assignment behavior is a member-by­
member copy. The presence of this private assignment operator guarantees a
compiler error message if you assign without the overridden operator. You must,
therefore, provide an assignment operator in your derived class if you intend to
assign objects of your derived class.

CObject::operator delete

Remarks

See Also

void operator delete(void * p);

For the Release version of the library, operator delete simply frees the memory
allocated by operator new. In the Debug version, operator delete participates in an
allocation-monitoring scheme designed to detect memory leaks. If you override
operators new and delete, you forfeit the diagnostic capability.

CObject: : operator new

CObject::operator new

Remarks

void* operator new(size _ t nSize)
throw(CMemoryException);

void* operator new(size_t nSize, const char FAR* IpszFileName, int nLine)
throw(CMemoryException);

For the Release version of the library, operator new performs an optimal memory
allocation in a manner similar to malloc. In the Debug version, operator new
participates in an allocation-monitoring scheme designed to detect memory leaks.

See Also

CObject::operator new 581

If you use the code line

#define new DEBUG_NEW

before any of your implementations in a .CPP file, then the second version of new
will be used, storing the filename and line number in the allocated block for later
reporting. You do not have to worry about supplying the extra parameters; a macro
takes care of that for you. Even if you don't use DEBUG_NEW in Debug mode,
you still get leak detection but without the source-file line-number reporting
described above.

Note If you override this operator, you must also override delete. Do not use the
standard library _new_handler function.

CObject: :operator delete

582 CObList

class CObList : public CObject

See Also

The CObList class supports ordered lists of I CObject
nonunique CObject pointers accessible sequentially '--r-,,~--------'

or by pointer value. CObList lists behave like ~,-C_O_b_Lis_t _____ ----,
doubly-linked lists. A variable of type POSITION is
a key for the list. You can use a POSITION variable as an iterator to sequentially
traverse a list and as a bookmark to hold a place. A position is not the same as an
index, however. Element insertion is very fast at the list head, at the tail, and at a
known POSITION. A sequential search is necessary to look up an element by
value or index. This search can be slow if the list is long.

CObList incorporates the IMPLEMENT _SERIAL macro to support serialization
and dumping of its elements. If a list of CObject pointers is stored to an archive,
either with an overloaded insertion operator or with the Serialize member function,
each CObject element is, in tum, serialized.

If you need a dump of individual CObject elements in the list, you must set the
depth of the dump context to 1 or greater. When a CObList object is deleted, or
when its elements are removed, only the CObject pointers are removed, not the
objects they reference.

You can derive your own classes from CObList. Your new list class, designed to
hold pointers to objects derived from CObject, adds new data members and new
member functions. Note that the resulting list is not strictly type safe because it
allows insertion of any CObject pointer.

Note You must use the IMPLEMENT_SERIAL macro in the implementation of
your derived class if you intend to serialize the list.

#include <afxcoll.h>

CStringList, CPtrList

Construction/Destruction - Public Members
CObList Constructs an empty list for CObject pointers.

Head/Tail Access-Public Members
GetHead

GetTaii

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

COb List 583

Operations - Public Members
RemoveHead

RemoveTaii

Add Head

AddTaii

RemoveAlI

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

Adds an element (or all the elements in another list) to the
tail of the list (makes a new tail).

Removes all the elements from this list.

Iteration - Public Members
GetHeadPosition

GetTailPosition

GetNext

GetPrev

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Retrieval/Modification - Public Members
GetAt

SetAt

RemoveAt

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by position.

Insertion - Public Members
InsertBefore

InsertAfter

Inserts a new element before a given position.

Inserts a new element after a given position.

Searching - Public Members
Find

Findlndex

Gets the position of an element specified by pointer value.

Gets the position of an element specified by a zero-
based index.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

584 CObList::AddHead

Member Functions

CObList: :AddHead

Remarks

Return Value

See Also

Example

POSITION AddHead(CObject* newElement)
throw(CMemoryException);

void AddHead(CObList* pNewList)
throw(CMemoryException);

newElement The CObject pointer to be added to this list.

pNewList A pointer to another CObList list. The elements in pNewList will be
added to this list.

Adds a new element or list of elements to the head of this list. The list may be
empty before the operation.

The first version returns the POSITION value of the newly inserted element.

CObList: :GetHead, CObList: :RemoveHead

CObList list;
list.AddHead(new CAge(21
list.AddHead(new CAge(40

1fifdef _DEBUG
afxDump.SetDepth(1);

); II 21 is now at head.
); II 40 replaces 21 at head.

afxDump « "AddHead example: " « &list « "\n";
1fendif

The results from this program are as follows:

AddHead example: A CObList with 2 elements
a CAge at $44A8 40
a CAge at $442A 21

CObList::CObList 585

CObList: :AddTaii

Remarks

Return Value

See Also

Example

POSITION AddTail(CObject* newElement)
throw(CMemoryException);

void AddTail(CObList* pNewList)
throw(CMemoryException);

newElement The CObject pointer to be added to this list.

pNewList A pointer to another CObList list. The elements inpNewList will be
added to this list.

Adds a new element or list of elements to the tail of this list. The list may be empty
before the operation.

The first version returns the POSITION value of the newly inserted element.

CObList: : GetTail, CObList: :RemoveTaii

CObList list;
list.AddTail(new CAge(21
list.AddTail(new CAge(40

4Fifdef _DEBUG
afxDump.SetDepth(1);

) ;

); II List now contains (21, 40).

afxDump « "AddTail example: " « &list « "\n";
4Fendif

The results from this program are as follows:

AddTail example: A CObList with 2 elements
a CAge at $444A 21
a CAge at $4526 40

CObList: :CObList

Remarks

CObList(int nBlockSize = 10);

nBlockSize The memory-allocation granularity for extending the list.

Constructs an empty CObject pointer list. As the list grows, memory is allocated
in units of nBlockSize entries. If a memory allocation fails, a CMemoryException
is thrown.

586 CObList::Find

Example Below is a listing of the CObject-derived class CAge used in all the collection
examples:

II Simple CObject-derived class for COblist examples
class CAge: public CObject
{

DEClARE_SERIAl(CAge)
private:

int m_years;
public:

CAge() { m_years = 0; }
CAge(int age) { m-years = age; }
CAge(const CAge& a) { m_years = a.m_years; } II Copy constructor
void Serialize(CArchive& ar);
void AssertValid() const;
const CAge& operator=(const CAge& a)
{

m_years = a.m_years; return *this;

BOOl operator==(CAge a)
{

return m_years == a.m-years;

#ifdef _DEBUG
void Dump(CDumpContext& dc) const
{

#end if
} ;

CObject::Dump(dc);
dc « m_years;

Below is an example of CObList constructor usage:

COblist list(20); II list on the stack with blocksize = 20.

COblist* plist = new COblist; II list on the heap with default
II blocksize.

CObList::Find
POSITION Find(CObject* search Value, POSITION startAfter = NULL)

const;

searchValue The object pointer to be found in this list.

startAfter The start position for the search.

Remarks

Return Value

See Also

Example

CObList::Findlndex 587

Searches the list sequentially to find the first CObject pointer matching the
specified CObject pointer. Note that the pointer values are compared, not the
contents of the objects.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the object is not found.

CObList::GetNext, CObList::GetPrev

CObList list;
CAge* pal;
CAge* pa2;
POS ITI ON pos;
list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40));
if((pos = list.Find(pal)) != NULL
{

II List now contains (40. 21).
II Hunt for pal
II starting at head by default.

ASSERT(*(CAge*) list.GetAt(pos) == CAge(21));

CObList: :Findlndex

Remarks

Return Value

See Also

Example

POSITION FindIndex(int nlndex) const;

nlndex The zero-based index of the list element to be found.

Uses the value of nlndex as an index into the list. It starts a sequential scan from
the head of the list, stopping on the nth element.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if nI ndex is negative or too large.

CObList::Find, CObList::GetNext, CObList::GetPrev

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
if((pos = list.FindIndex(0)) != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(40));
}

588 CObList::GetAt

CObList: :GetAt

Remarks

Return Value

See Also

Example

CObject*& GetAt(POSITION position);

CObject* GetAt(POSITION position) const;

position A POSITION value returned by a previous GetHeadPosition or Find
member function call.

A variable of type POSITION is a key for the list. It is not the same as an index,
and you cannot operate on a POSITION value yourself. GetAt retrieves the
CObject pointer associated with a given position. You must ensure that your
POSITION value represents a valid position in the list. If it is invalid, then the
Debug version of the Microsoft Foundation Class Library asserts.

See the return value description for GetHead.

CObList::Find, CObList::SetAt, CObList::GetNext, CObList::GetPrev,
CObList::GetHead

See the example for FindIndex.

CObList::GetCount

Remarks

Return Value

See Also

Example

int GetCount() const;

Gets the number of elements in this list.

An integer value containing the element count.

CObList: : IsEmpty

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
ASSERT(list.GetCount() == 2);

CObList::GetHead 589

CObList: :GetHead

Remarks

Return Value

See Also

Example

CObject*& GetHead();

CObject* GetHead() const;

Gets the CObject pointer that represents the head element of this list. You must
ensure that the list is not empty before calling GetHead. If the list is empty, then
the Debug version of the Microsoft Foundation Class Library asserts. Use IsEmpty
to verify that the list contains elements.

If the list is accessed through a pointer to a const CObList, then GetHead returns
a CObject pointer. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification. If the list is
accessed directly or through a pointer to a CObList, then GetHead returns a
reference to a CObject pointer. This allows the function to be used on either side of
an assignment statement and thus allows the list entries to be modified.

CObList: : GetTail , CObList: : GetTailPosition, CObList: :AddHead,
CObList: :RemoveHead

The following example illustrates the use of GetHead on the left side of an
assignment statement.

const CObList* cplist;

CObList* plist = new CObList;
CAge* pagel = new CAge(21);
CAge* page2 = new CAge(30);
CAge* page3 = new CAge(40);
plist->AddHead(pagel);
plist->AddHead(page2); II List now contains (30, 21).
II The following statement REPLACES the head element.
plist->GetHead() = page3; II List now contains (40, 21).
ASSERT(*(CAge*) plist->GetHead() == CAge(40));
cplist = plist; II cplist is a pointer to a const list.

II cplist->GetHead() = page3; II Does not compile!
ASSERT(*(CAge*) plist-)GetHead() == CAge(40)); II OK

delete pagel;
delete page2;
delete page3;
delete plist; II Cleans up memory.

590 CObList::GetHeadPosition

CObList: :GetHeadPosition

Remarks

Return Value

See Also

Example

POSITION GetHeadPosition() const;

Gets the position of the head element of this list.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the list is empty.

CObList: : GetTailPosition

CObList list;
POS ITI ON pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21).
if((pos = list.GetHeadPosition() != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(40));

CObList: :GetNext

Remarks

Return Value

CObject*& GetNext(POSITION& rPosition);

CObject* GetNext(POSITION& rPosition) const;

rPosition A reference to a POSITION value returned by a previous GetNext,
GetHeadPosition, or other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the next entry in the list. You can use GetN ext in a forward iteration loop
if you establish the initial position with a call to GetHeadPosition or Find.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set
to NULL. It is possible to remove an element during an iteration. See the example
for RemoveAt.

See the return value description for GetHead.

See Also

Example

CObList::GetPrev 591

CObList: :Find, CObList: : GetHeadPosition, CObList: : GetTailPosition,
CObList: : GetPrev , CObList: : GetHead

CObList list;
POSITION pos;
list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
II Iterate through the list in head-to-tail order.

1/:i fdef _DEBUG
for(pos = list.GetHeadPosition(); pos != NULL;)
{

afxDump « list.GetNext(pos) « "\n";
}

1f:endif

The results from this program are as follows:

a CAge at $479C 40
a CAge at $46C0 21

CObList: :GetPrev

Remarks

Return Value

See Also

CObject*& GetPrev(POSITION& rPosition);

CObject* GetPrev(POSITION& rPosition) const;

rPosition A reference to a POSITION value returned by a previous GetPrev or
other member function call.

Gets the list element identified by rPosition, then sets rPosition to the POSITION
value of the previous entry in the list. You can use GetPrev in a reverse iteration
loop if you establish the initial position with a call to GetTailPosition or Find.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the Microsoft Foundation Class Library
asserts. If the retrieved element is the first in the list, then the new value of
rPosition is set to NULL.

See the return value description for GetHead.

CObList: :Find, CObList: : GetTailPosition, CObList: : GetHeadPosition,
CObList::GetNext, CObList::GetHead

592 CObList::GetTaii

Example CObL i st 1 i st;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
II Iterate through the list in tail-to-head order.
fore pos = list.GetTailPosition(); pos != NULL;)
{

Ifi fdef _DEBUG
afxDump « list.GetPrev(pos) « "\n";

ffendif
}

The results from this program are as follows:

a CAge at $421C 21
a CAge at $421C 40

CObList::GetTaii

Remarks

Return Value

See Also

Example

CObject*& GetTail();

CObject* GetTail() const;

Gets the CObject pointer that represents the tail element of this list. You must
ensure that the list is not empty before calling GetTail. If the list is empty, then the
Debug version of the Microsoft Foundation Class Library asserts. Use IsEmpty to
verify that the list contains elements.

See the return value description for GetHead.

CObList: : AddTail, CObList: :AddHead, CObList: :RemoveHead,
CObList: : GetHead

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
ASSERT(*(CAge*) list.GetTail() == CAge(21));

CObList::lnsertAfter 593

CObList: :GetTai I Position

Remarks

Return Value

See Also

Example

POSITION GetTailPosition() const;

Gets the position of the tail element of this list; NULL if the list is empty.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the list is empty.

CObList: : GetHeadPosition, CObList: : GetTail

CObList list;
pas ITI ON pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40. 21).
if((pos = list.GetTailPosition() != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(21));

CObList: :lnsertAfter

Remarks

See Also

POSITION InsertAfter(POSITION position, CObject* newElement)
throw (CMemoryException);

position A POSITION value returned by a previous GetNext, GetPrev, or Find
member function call.

newElement The object pointer to be added to this list.

Adds an element to this list after the element at the specified position.

CObList: :Find, CObList: :InsertBefore

594 CObList: :lnsertBefore

Example CObList list;
POSITION pos1, pos2;
list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21).
if((pos1 = list.GetHeadPosition()) 1= NULL)
{

pos2 = list.InsertAfter(pos1, new CAge(65));

iii fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "InsertAfter example: " « &list « "\n";

lIendif

The results from this program are as follows:

InsertAfter example: A CObList with 3 elements
a CAge at $4A44 40
a CAge at $4A64 65
a CAge at $4968 21

CObList::lnsertBefore

Remarks

Return Value

See Also

POSITION InsertBefore(POSITION position, CObject* newElement)
throw (CMemoryException);

position A POSITION value returned by a previous GetNext, GetPrev, or Find
member function call.

newElement The object pointer to be added to this list.

Adds an element to this list before the element at the specified position.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the list is empty.

CObList: :Find, CObList: :InsertAfter

Example CObList list;
POSITION pos1, pos2;
list.AddHead(new CAge(21));

CObList::RemoveAli 595

list.AddHead(new CAge(40)); II List now contains (40, 21).
if((pos1 = list.GetTailPosition()) != NULL)
{

pos2 = list.InsertBefore(pos1, new CAge(65));

11i fdef _DEBUG
afxDump.SetDepth(1);
afxDump « "InsertBefore example: " « &list « n\n";

1fendif

The results from this program are as follows:

InsertBefore example: A CObList with 3 elements
a CAge at $4AE2 40
a CAge at $4B02 65
a CAge at $49E6 21

CObList: :lsEmpty

Remarks

Return Value

See Also

Example

BOOL IsEmpty() const;

Indicates if this list contains no elements.

TRUE if this list is empty; otherwise FALSE.

CObList: :GetCount

See the example for RemoveAIl.

COb List:: RemoveAl1

Remarks

void RemoveAlI();

Removes all the elements from this list and frees the associated CObList memory.
No error is generated if the list is already empty. When you remove elements from a
CObList, you remove the object pointers from the list. It is your responsibility to
delete the objects themselves.

596 CObList::RemoveAt

Example CObL i st 1 i st;
CAge* pal;
CAge* pa2;
ASSERT(list.IsEmpty(»; II Yes it is.
list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40. 21).
ASSERT(!list.IsEmpty(»; II No it isn't.
list.RemoveAll(); II CAge's aren't destroyed.
ASSERT(list.IsEmpty(»; II Yes it is.
delete pal; II Now delete the CAge objects.
delete pa2;

COb List:: RemoveAt

Remarks

Example

void RemoveAt(POSITION position);

position The position of the element to be removed from the list.

Removes the specified element from this list. When you remove an element from a
CObList, you remove the object pointer from the list. It is your responsibility to
delete the objects themselves. You must ensure that your POSITION value
represents a valid position in the list. If it is invalid, then the Debug version of the
Microsoft Foundation Class Library asserts.

Be careful when removing an element during a list iteration. The following example
shows a removal technique that guarantees a valid POSITION value for GetNext:

CObList list;
POSITION pos1. pos2;
CObject* pa;

list.AddHead(new CAge(21);
list.AddHead(new CAge(40);
list.AddHead(new CAge(65); II List now contains (65 40. 21).
fore pos1 = list.GetHeadPosition(); (pos2 = pos1) != NULL;)
{

if(*(CAge*) list.GetNext(pos1
{

CAge(40

pa = list.GetAt(pos2); II Save the old pointer for
IIdeletion.

list.RemoveAt(pos2);
delete pa; II Deletion avoids memory leak.

#ifdef _DEBUG
afxDump.SetDepth(1);

CObList::RemoveTaii 597

afxDump « "RemoveAt example: " « &list « "\n";
ffendif

The results from this program are as follows:

RemoveAt example: A CObList with 2 elements
a CAge at $4C1E 65
a CAge at $4B22 21

COb List:: RemoveHead

Remarks

Return Value

See Also

Example

CObject* RemoveHead();

Removes the element from the head of the list and returns a pointer to it. You must
ensure that the list is not empty before calling RemoveHead. If the list is empty,
then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

The CObject pointer previously at the head of the list.

CObList: : GetHead, CObList: :AddHead

CObList list;
CAge* pal;
CAge* pa2;

list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40, 21).
ASSERT(*(CAge*) list.RemoveHead() == CAge(40)); II Old head
ASSERT(*(CAge*) list.GetHead() == CAge(21)); II New head
delete pal;
delete pa2;

cObList::RemoveTaii

Remarks

CObject* RemoveTail();

Removes the element from the tail of the list and returns a pointer to it. You must
ensure that the list is not empty before calling RemoveTail. If the list is empty,

598 COb List: :SetAt

Return Value

See Also

Example

then the Debug version of the Microsoft Foundation Class Library asserts. Use
IsEmpty to verify that the list contains elements.

A pointer to the object that was at the tail of the list.

CObList: : GetTail, CObList: : Add Tail

CObList list;
CAge* pal;
CAge* pa2;

list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40. 21).
ASSERT(*(CAge*) list.RemoveTail() == CAge(21)); II Old tail
ASSERT(*(CAge*) list.GetTail() == CAge(40)); II New tail
delete pal;
delete pa2; II Clean up memory.

CObList: :SetAt

Remarks

See Also

Example

void SetAt(POSITION pas, CObject* newElement);

pas The POSITION of the element to be set.

newElement The CObject pointer to be written to the list.

A variable of type POSITION is a key for the list. It is not the same as an index,
and you cannot operate on a POSITION value yourself. SetAt writes the CObject
pointer to the specified position in the list. You must ensure that your POSITION
value represents a valid position in the list. If it is invalid, then the Debug version of
the Microsoft Foundation Class Library asserts.

CObList::Find, CObList::GetAt, CObList::GetNext, CObList::GetPrev

CObList list;
CObject* pa;
POSITION pos;

list.AddHead(new CAge(21);
list.AddHead(new CAge(40); II List now contains (40. 21).

if((pos = list.GetTailPosition()) 1= NULL
{

CObList::SetAt 599

pa = list.GetAt(pos); II Save the old pointer for
Iideletion.

list.SetAt(pos, new CAge(65)); II Replace the tail
Ilelement.

delete pa; II Deletion avoids memory leak.

/Fifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "SetAt example: " « &list « "\n";

/Fend if

The results from this program are as follows:

SetAt example: A CObList with 2 elements
a CAge at $4098 40
a CAge at $4DB8 65

600 COleClientDoc

class COleClientDoc : public COleDocument

See Also

COleClientDoc is the base class for
Object Linking and Embedding
(OLE) client documents. A
client document can contain
COleClientItem objects as well
as any data created by the
client application itself. The COleClientDoc
COleClientItem objects represent
embedded items, which contain data
created by other applications (servers), or linked items, which contain links to files
created by servers.

To use COleClientDoc, derive a class from it and design a data structure for
storing the application's native data as well as embedded or linked items. If you use
CDocItem-derived classes to store the application's native data, you can use the
interface defined by COleDocument to manipulate a document as a collection of
items. This allows you to treat the application's native data in the same way you
treat embedded or linked items.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

COleDocument, COleClientItem

Construction/Destruction - Public Members
COleClientDoc Constructs a COleClientDoc object.

Registration/Revocation - Public Members
RegisterClientDoc

Revoke

Registers a client document with the OLE system
dynamic-link library (DLL).

Revokes the client document registration.

COleClientDoc: :GetPrimarySelectedltem 601

Operations - Public Members
GetPrimarySelectedltem

NotifyRename

Notify Revert

NotifySaved

Returns primary selected item in the document.

Notifies the OLE system DLL that the client
document has been renamed.

Notifies the OLE system DLL that the client
document has reverted to its previous state.

Notifies the OLE system DLL that the client
document has been saved.

Member Functions

COleCI ientDoc: :COleCI ientDoc

Remarks

See Also

COleClientDoc() ;

Creates a COleClientDoc object. It does not register the document with the OLE
system DLL. You must call the RegisterClientDoc member function before you
can create embedded or linked items.

COleClientDoc::RegisterClientDoc

CO leCI ient Doc: : Get Pri marySelected Item

Remarks

Return Value

See Also

virtual COleClientltem* GetPrimarySelectedltem(CView* pView);

p View A pointer to the active view object displaying the document.

Call this function to get the currently selected OLE item in the specified view. If
one and only one COleClientltem object is selected, the function returns a pointer
to it; otherwise the function returns NULL. You must implement the IsSelected
member function in your view class for this function to work.

A pointer to the single, selected OLE item; NULL if there are no OLE items
selected or if there are more than one selected.

CView: :IsSelected

602 COleClientDoc::NotifyRename

COleCI ientDoc:: NotifyRename

Remarks

See Also

void NotifyRename(LPCSTR IpszNewName);

IpszNewName Pointer to the new name of the document. Must be a valid
filename.

Call this function after the user renames the client document. In the case where the
user chooses the Save As command from the File menu, NotifyRename is called
for you by COleClientDoc's implementation of the OnSaveDocument member
function. This function notifies the OLE system DLL.

COleClientDoc::NotifyRevert, COleClientDoc::NotifySaved,
CDocument: :OnSaveDocument, : :OleRenameClientDoc

COleClientDoc: :NotifyRevert

Remarks

See Also

void NotifyRevert();

Call this function after the user reverts the client document, that is, reloads it
without saving changes. This function notifies the OLE system DLL.

COleClientDoc::NotifyRename, COleClientDoc::NotifySaved,
: :OleRevertClientDoc

COleCI ientDoc:: NotifySaved

Remarks

See Also

void N otifySaved();

Call this function after the user saves the client document. In the case where the
user chooses the Save command from the File menu, NotifySaved is called for you
by COleClientDoc's implementation of OnSaveDocument. This function notifies
the OLE system DLL.

COleClientDoc::N otify Rename, COleClientDoc: : Notify Revert,
CDocument: :OnSaveDocument, : :OleSavedClientDoc

COleClientDoc: : Revoke 603

COleCI ientDoc:: Reg isterClientDoc

Remarks

Return Value

See Also

BOOL RegisterClientDoc(LPCSTR IpszTypeName, LPCSTR IpszDoc);

IpszTypeName Pointer to the name of the client document's type, usually the
client application name.

IpszDoc Pointer to the fully qualified name of the client document.

Call this function to register your client document with the OLE system DLL; this
allows the client to interact with server applications. When the user chooses the File
New or File Open commands, RegisterClientDoc is called for you by
COleClientDoc's implementation of OnNewDocument or OnOpenDocument,
respectively.

When a document being copied onto the Clipboard exists only because the client
application is copying Native data that contains objects, the name specified in the
IpszDoc parameter must be "Clipboard."

Nonzero if the document was successfully registered with the OLE system DLL;
otherwise O.

COleClientDoc: :COleClientDoc, CDocument: :OnNewDocument,
CDocument: :OnOpenDocument, : :OleRegisterClientDoc

COleCI ientDoc:: Revoke

Remarks

See Also

void Revoke();

Call this function to revoke a client document, that is, inform the OLE system DLL
that the document is closed. This function is called by the COleClientDoc
destructor, so you rarely need to call it explicitly. Revoke may be called for an
already revoked document with no ill effects. Before you call Revoke, you must
delete or call COleClientltem::Release or COleClientltem::Delete for each
item in the document.

COleClientltem: :Release, COleClientltem: :Delete, : :OleRevokeClientDoc

604 COleClientitem

class COleClientltem : public CDocltem

See Also

The COleClientItem class defines the client
interface to Object Linking and Embedding
(OLE) items. An OLE item represents data
incorporated into a client application's
document but created by a server application;
a document containing OLE items is called a
"compound document."

COleClientltem

An item can be either embedded or linked. If it is embedded, its data is stored in
the compound document. If it is linked, its data is stored as part of a separate file
created by the server application and only a link to that file is stored in the com­
pound document. All items contain information specifying the server application
that should be invoked to edit them.

COleClientItem defines several overridable functions that are called indirectly by
the OLE system dynamic-link library (DLL), usually in response to notifications
from the server application. This allows the server application to inform the client
of changes that the user makes when editing the item.

To use COleClientItem, derive a class from it and implement the On Change
member function. This function defines how the client responds to changes made to
the item.

Each item must be given a name that is unique within the document. An item's
name must be preserved when the document is saved and cannot contain the "/"
or "'\' characters.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

CDocItem, COleClientDoc, COleServerItem

Construction/Destruction - Public Members
COleClientItem Constructs a COleClientItem object.

Creation - Public Members
CreateFromClipboard

CreateInvisibleObject

CreateStaticFromClipboard

CreateLinkFromClipboard

CreateNewObject

CreateCloneFrom

Status - Public Members
GetLastStatus

GetType

GetName

GetSize

GetBounds

IsOpen

COleClientltem 605

Creates an embedded item from the Clipboard.

Creates an invisible embedded item.

Creates an embedded picture of an item from the
Clipboard.

Creates a linked item from the Clipboard.

Creates a new embedded item by launching the
server application.

Creates a duplicate of an existing item.

Returns the status of the last OLE operation.

Returns the type (embedded, linked, or static) of
the item.

Returns the name of the item.

Returns the size of the item.

Returns the bounds of the item's rectangle.

Indicates whether the item is currently attached
to the OLE system DLL.

Data Access - Public Members
EnumFormats

GetData

SetData

RequestData

IsEqual

GetDocument

Enumerates the Clipboard formats supported by
an item.

Gets data from an item in a specified format.

Stores data to an item in a specified format.

Initiates a data request from a server.

Compares two items.

Returns the COleClientDoc object that contains
this item.

Global State-Public Members
In WaitFor Release Indicates whether any item is still waiting for a

server to respond.

606 COleClientitem

Clipboard Helpers - Public Members
CanPaste

CanPasteLink

Indicates whether the Clipboard contains an
embeddable or static OLE item.

Indicates whether the Clipboard contains a
linkable OLE item.

Linked Object Status - Public Members
GetLink UpdateOptions

SetLinkUpdateOptions

Returns the update mode for a linked item
(advanced feature).

Sets the update mode for a linked item (advanced
feature).

General Operations - Public Members
Release

Delete

Draw

DoVerb

Activate

Releases the connection to an OLE linked item
and closes it if it was open. Does not destroy the
server item.

Deletes the item or closes it if it was a linked
item.

Draws the item.

Executes the specified verb.

Opens the item for an operation, then executes
the specified verb.

Advanced Operations - Public Members
Rename

CopyToClipboard

SetTargetDevice

Renames the item.

Copies the item to the Clipboard.

Sets the target device used by the server to draw
the item.

Embedded Object Operations - Public Members
SetHostNames

SetBounds

SetColorScheme

Sets the names the server displays when editing
the item.

Sets the bounding rectangle of the item.

Sets the item's color scheme.

COleClientltem: :Activate 607

Linked Object Operations - Public Members
UpdateLink

CloseLink

ReconnectLink

Updates a link to a server.

Closes a link to a server but does not destroy
the item.

Reconnects a linked item to a server.

Overridables - Protected Members
OnChange

OnRenamed

Called when the server changes the item.
Implementation required.

Called when the server renames a document
containing the item.

Member Functions

COleClientltem: :Activate

Remarks

void Activate(UINT n Verb, BOOL bShow = TRUE,
BOOL bTakeFocus = TRUE, CWnd* pWndContainer = NULL,
LPCRECT IpBounds = NULL);

n Verb Index of the verb to execute; 0 is the primary verb, 1 is the secondary verb,
and so forth.

bShow TRUE if the server window is to be shown; FALSE if the server should
remain active without being visible.

bTakeFocus TRUE if the server should receive the input focus. Relevant only if
bShow is TRUE.

pWndContainer Pointer to the client window object that contains the item.

IpBounds Pointer to a RECT structure or CRect object that contains the
bounding rectangle in which the destination document displays the item. Units are
determined by the device-context mapping mode. Can be NULL.

Call this function to execute the specified verb if you want full control of how the
server will be displayed. For default server behavior, call the Do Verb member
function to execute a verb. Both functions cause the OnDo Verb member function
of COleServerItem to be executed. If the verb specified is Edit, the server

608 COleClientitem: :CanPaste

See Also

application is launched in a separate window and editing occurs asynchronously.
You typically specify the primary verb when the user of the client application
double-clicks the item. The action taken in response to each verb depends on the
server. If the server supports only one action, it takes that action no matter which
value is specified in the n Verb parameter.

COleClientltem::DoVerb, COleServerItem::OnDoVerb, ::OleActivate

COleClientltem: :CanPaste

Remarks

Return Value

See Also

static BOOL PASCAL CanPaste(OLE OPT _RENDER renderopt =
olerender draw, OLECLIPFORMAT cfFormat= 0);

renderopt Flag specifying how the server will render the item. For possible
values, see COleClientltem::CreateNewObject.

cfFormat Specifies the Clipboard data format if renderopt is olerender_format.

Call this function to see if an embedded item can be pasted from the Clipboard. This
function is called for you by the framework when enabling or disabling the Paste
command on the Edit menu.

Nonzero if the Clipboard currently contains an embeddable or static (metafile­
based) OLE item; otherwise O.

COleClientltem: :CanPasteLink, COleClientltem: :CreateFromClipboard,
COleClientltem: :CreateStaticFromClipboard, : :OleQueryCreateFromClip

COleClientltem: :CanPasteLink

Remarks

static BOOL PASCAL CanPasteLink(OLEOPT _RENDER renderopt =
olerender_draw, OLECLIPFORMAT cfFormat = 0);

renderopt Flag specifying how the server will render the item. For possible
values, see COleClientltem: :CreateNewObject.

cfFormat Specifies the Clipboard data format if renderopt is olerender_format.

Call this function to see if a linked item can be pasted from the Clipboard. This
function is called for you by the framework when enabling or disabling the Paste
Link command on the Edit menu.

Return Value

See Also

COleClientltem: :CopyToClipboard 609

Nonzero if the Clipboard currently contains a linkable OLE item; otherwise O.

COleClientItem::CanPaste, COleClientItem::CreateLinkFromClipboard,
: :OleQueryCreateFromClip

COleClientltem: :CloseLink

Remarks

See Also

void CloseLink();

Call this function to close the link between an open linked item and the server
application. This function does not destroy the linked item; the item can be
reconnected later.

COleClientItem: :ReconnectLink, COleClientItem:: UpdateLink, : :OleClose

COleCI ientltem: :COleCI ientltem

Remarks

See Also

COleClientItem(COleClientDoc* pContainerDoc);

pContainerDoc Pointer to the registered client document that will contain
this item.

Constructs a COleClientItem object and adds it to the container document's
collection of document items. You must call one of the following creation member
functions before you use the item: CreateFromClipboard,
CreateInvisibleObject, CreateStaticFromClipboard,
CreateLinkFromClipboard, CreateNewObject, or CreateCloneFrom.

COleClientDoc, COleDocument: : AddItem

COleCI ientltem: :CopyToCI ipboard

Remarks

void CopyToClipboard();

Call this function to copy the item to the Clipboard. Typically, you call this function
when writing message handlers for the Copy or Cut commands from the Edit menu.
You must implement selection in your client application to implement the Copy or

610 COleClientltem: :CreateCloneFrom

See Also

Cut commands. To use this function, you should open and empty the Clipboard, call
CopyToClipboard for the selected item, and then close the Clipboard.

: :OleCopyToClipboard

COleClientltem: :CreateCloneFrom

Remarks

Return Value

See Also

BOOL CreateCloneFrom(COleClientltem* pSrcltem,
LPCSTR IpszltemName);

pSrcltem Pointer to the OLE item to be duplicated.

IpszltemName Pointer to the client name of the new item.

Call this function to create a copy of the specified item. The copy is identical to the
source item but is not connected to the server. You can use this function to support
"undo" or "revert" operations.

Nonzero if successful; otherwise O.

::OleClone

COleCI ientltem: :CreateFromCI ipboard

Remarks

BOOL CreateFromClipboard(LPCSTR IpszltemName,
OLE OPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT cfFormat = 0);

IpszltemName Pointer to the client name of the new item.

renderopt Flag specifying how the server will render the item. For the possible
values, see COleClientItem::CreateNewObject.

cfFormat Specifies the Clipboard data format if renderopt is olerender_format.

Call this function to create an embedded item from the contents of the Clipboard.
You typically call this function from the message handler for the Paste command on
the Edit menu. (The Paste command is enabled by the framework if the CanPaste
member function returns nonzero.) If the function is unsuccessful, try calling
CreateStaticFromClipboard to paste a static (metafile-based) item.

Return Value

See Also

COleClientltem::CreateLinkFromClipboard 611

Nonzero if successful; otherwise O.

COleClientItem: :CreateStaticFromClipboard, COleClientItem:: CanPaste,
: :OleCreateFromClip

COleCI ientltem: :Createlnvisi bleObject

Remarks

Return Value

See Also

BOOL CreatelnvisibleObject(LPCSTR IpszTypeName,
LPCSTR IpszltemName, OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT cfFormat = 0, BOOL bActivate = FALSE);

IpszTypeName Pointer to the type name of the new item to create. This string is
usually obtained from the global function AfxOlelnsertDialog.

IpszltemName Pointer to the client name of the new item.

renderopt Flag specifying how the server will render the item. For the possible
values, see COleClientItem::CreateNewObject.

cfFormat Specifies the Clipboard data format if renderopt is ole render _format.

bActivate Specifies whether to activate the item or not.

Call this function to create an item without displaying the server application to the
user. This is an advanced operation; typically you call CreateNewObject.

Nonzero if successful; otherwise O.

COleClientItem: :CreateNewObject, :: OleCreatelnvisible

COleClientltem::CreateLinkFromClipboard
BOOL CreateLinkFromClipboard(LPCSTR IpszltemName,

OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT cfFormat = 0);

IpszltemName Pointer to the client name of the new item.

renderopt Flag specifying how the server will render the item. For the possible
values, see COleClientItem::CreateNewObject.

cfF ormat Specifies the Clipboard data format if renderopt is olerender _format.

612 COleClientltem: :CreateNewObject

Remarks Call this function to cre~te a linked item from the contents of the Clipboard. You
typically call this function from the message handler for the Paste Link command on
the Edit menu. (The Paste Link command is enabled by the framework if the
CanPasteLink member function returns nonzero.)

Return Value

See Also

Nonzero if successful; otherwise O.

COleClientItem::CanPasteLink, ::OleCreateLinkFromClip

COleClientltem: :CreateNewObject

Remarks

BOOL CreateNewObject(LPCSTR IpszTypeName, LPCSTR IpszltemName,
OLE OPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT cfFormat = 0);

IpszTypeN ame Pointer to the type name of the new item to create. This string is
usually obtained from the global function AfxOlelnsertDialog.

IpszltemName Pointer to the name of the new item.

renderopt Flag specifying how the server will render the item. This parameter may
have one of the following values:

• olerender_draw The item is drawn using COleClientItem::Draw. In
this case the OLE system DLL obtains and manages the presentation data
and stores the Native data for archiving purposes only.

• olerender _none The OLE system DLL does not obtain the presentation
data and does not draw the object. The client calls
COleClientItem: : GetData to retrieve the server data in Native format, and
it is assumed that the client knows how to interpret this format.

• olerender format The client calls COleClientItem: : GetData to
retrieve data in the format specified by cfF ormat. The client then uses the
retrieved data to render the item.

cfFormat Specifies the Clipboard data format if renderopt is olerender_format.

Call this function to create an embedded item; this function launches the server
application to allow the user to create the item. You typically call this function from
the message handler for the Insert New Object command on the Edit menu. To
create a linked item, use the CreateLinkFromClipboard function.

Return Value

See Also

COleClientltem::Delete 613

Nonzero if successful; otherwise O.

AfxOlelnsertDialog, COleClientltem: :CreateLinkFromClipboard,
: :OleCreate

COleCI ientltem: :CreateStaticFromCI ipboard

Remarks

Return Value

See Also

BOOL CreateStaticFromClipboard(LPCSTR IpszltemName,
OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT cfFormat = 0);

IpszltemName Pointer to the client name of the new item.

renderopt Flag specifying how the server will render the item. For possible
values, see COleClientItem::CreateNewObject.

cfFormat Specifies the Clipboard data format if renderopt is olerender_format.

Call this function to create a static (metafile-based) embedded item from the
contents of the Clipboard. You typically call this function from the message handler
for the Paste command on the Edit menu, following an unsuccessful call to
CreateFromClipboard. (The Paste command is enabled by the framework if the
CanPaste member function returns nonzero.)

Nonzero if successful; otherwise O.

COleClientltem: :CreateFromClipboard, : :OleCreateFromClip

COleCI ientltem:: Delete

Remarks

See Also

void Delete();

Call this function to delete the item. If the item is embedded, the native data for the
item is deleted. If the item is an open linked item, this function closes it. Unlike the
Release member function, this function indicates that the item has been perma­
nently removed. The COleClientltem destructor calls Delete for embedded items.

COleClientltem: :Release, : :OleDelete

614 COleClientltem::DoVerb

COleC I ientltem : : Do Verb

Remarks

Return Value

See Also

virtual BOOL Do Verb(UINT n Verb);

n Verb Index of the verb to execute; 0 is the primary verb, 1 is the secondary verb,
and so forth.

Call this function to execute the specified verb. This function uses the Activate
member function to execute the verb; it also catches exceptions thrown as a result
and alerts the user if an error occurs.

You typically specify the primary verb when the user of the client application
double-clicks the item. The action taken in response to each verb depends on the
server. If the server supports only one action, it takes that action no matter which
value is specified in the n Verb parameter.

Nonzero if the verb was sucessfully executed; otherwise O.

COleClientItem: : Activate

COleCI ientltem:: Draw

Remarks

BOOL Draw(CDC* pDC, LPCRECT IpBounds,
LPCRECT IpWBounds = NULL, CDC* pFormatDC = NULL);

pDC Pointer to a CDC object used for drawing the item.

IpBounds Pointer to a CRect object or RECT structure that defines the bounding
rectangle in which to draw the object (in logical units determined by the device
context).

lp WBounds Pointer to a CRect object or RECT structure that defines the
bounding rectangle if pDC specifies a metafile device context. NULL if pDC
points to a screen device context.

pF ormatDC Pointer to a CDC object describing the target device for which
to format the item. This parameter is used only by handler DLLs and is
usually NULL.

Call this function to draw the item into the specified bounding rectangle using the
specified device context. The function uses the metafile representation of the item
created by the OnDraw member function of COleServerItem.

Return Value

See Also

COleClientltem: :GetBounds 615

Typically you use Draw for screen display, passing the screen device context as
pDC. In this case, you need specify only the first two parameters. If you pass a
metafile device context as pDC, the rectangle specified by IpWBounds must contain
the rectangle specified by IpBounds. The pFormatDC parameter is used for
formatting purposes by handler DLLs and must not be a metafile device context.

The IpBounds parameter identifies the rectangle in the target device context
(relative to its current mapping mode). Rendering may involve scaling the picture
and can be used by client applications to impose a view scaling between the
displayed view and the final printed image.

Nonzero if successful; otherwise O.

COleClientItem: :SetBounds, COleServerltem: :OnDraw, : :OleDraw

COleCI ientltem:: En urn Formats

Remarks

Return Value

See Also

OLECLIPFORMAT EnumFormats(OLECLIPFORMAT nFormat) const;

nF ormat Specifies the format returned by the previous call to the EnumFormats
member function. For the first call to this function, this parameter is NULL. This
parameter can be one of the predefined Clipboard fonnats or the value returned by
the native Windows RegisterClipboardFormat function.

Call this function to retrieve the data formats available for the item. Call this
function in a loop to retrieve all the formats, each time passing the fonnat returned
by the previous call.

The next (or first) available format; NULL if no more formats are available.

COleClientltem::GetData, ::OleEnumFormats

COleClientltem: :GetBounds
BOOL GetBounds(LPRECT IpBounds);

IpBounds Pointer to a CRect object or RECT structure that will receive the
bounds information.

616 COleClientltem: : GetData

Remarks Call this function to retrieve the extents of the bounding rectangle for the item on
the target device. The coordinates are in MM _ HIMETRIC units and the top and
left coordinates are always O.

Return Value

See Also

Nonzero if successful; 0 if the item is blank.

COleClientItem: :SetBounds, : :OleQueryBounds

COleClientltem: :GetData

Remarks

Return Value

See Also

HANDLE GetData(OLECLIPFORMAT nFormat, BOOL& bMustDelete);

nF ormat Specifies the format in which data is returned. This parameter can be
one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

bMustDelete A reference to a BOOL value that the function sets to TRUE if you
are responsible for the deletion of the retrieved data (through the Windows
GlobalFree function). If the function sets bMustDelete to FALSE, then you must
copy the data if you need to keep it.

Call this function to retrieve data from the item in the requested format.

A handle to an entity that contains the data. If nFormat is CF _METAFILEPICT
or CF _BITMAP, then this handle is a Windows graphics device interface (GDI)
object handle; otherwise, it is a global memory block handle.

COleClientItem: :RequestData, : :OleGetData

COleCI ientltem: :GetDocument

Remarks

Return Value

See Also

COleClientDoc* GetDocument() const;

Call this function to get a pointer to the document that contains the item. This
allows access to the client document that you passed as an argument to the
COleClientItem constructor.

A pointer to the document that contains the item. NULL if the item is not part of a
document.

COleClientItem: :COleClientItem, COleClientDoc

COleClientltem: :GetName 617

COleClientltem: :GetLastStatus

Remarks

Return Value

OLEST ATUS GetLastStatus() eonst;

Returns the status of the last OLE operation. For member functions that return a
BOOL value of FALSE, GetLastStatus returns more detailed failure information.
Be aware that most OLE member functions throw exceptions for more serious
errors.

See COleExeeption for a list of return values.

COleCI ientltem: :GetLinkUpdateOptions

Remarks

Return Value

See Also

OLE OPT _UPDATE GetLink UpdateOptions();

Call this function to get the current value of the link-update option for the item. This
is an advanced operation.

One of the following values:

• oleupdate _always Update the linked object whenever possible. This option
supports the Automatic link -update radio button in the Links dialog box.

• oleupdate _ onsave Update the linked object when the source document is
saved by the server.

• oleupdate _oneall Update the linked object only on request from the client
application. This option supports the Manual link -update radio button in the
Links dialog box.

:: OleGetLink UpdateOptions

COleClientltem: :GetName

Remarks

Return Value

See Also

CString GetName();

Call this function to get the client name of the item. This is the name passed in when
the object was created or last renamed.

The name of the item.

::OleQueryName

618 COleClientltem: :GetSize

COleClientltem: :GetSize

Remarks

Return Value

See Also

DWORD GetSize();

Call this function to get the number of bytes in the native representation of the item.
You can use this information to determine the space required for saving it.

Number of bytes required to save the item.

::OleQuerySize, CObject::Serialize

COleClientltem: :GetType

Remarks

Return Value

See Also

UINT GetType();

Call this function to determine whether the item is embedded, linked, or static.

An unsigned integer with one of the following values:

• OT LINK The item is a link.

• OT EMBEDDED The item is embedded.

• OT STATIC The item is a static (metafile-based) picture.

: :OleQueryType

COleCI ientltem:: I n WaitForRelease

Remarks

Return Value

static BOOL PASCAL InWaitForRelease();

Call this function from your main window's OnCommand or OnCmdMsg
member function to disable user commands until all servers respond.

Nonzero if this client application is still waiting for a server to complete an
operation; otherwise O.

COleClientltem::OnChange 619

COleClientltem: :lsEqual

Remarks

Return Value

See Also

BOOL IsEqual(COleClientltem* pOther/tern);

pOther/tern Pointer to an OLE item object that is to be compared with this item.

Call this function to compare two OLE items. Embedded items are equal if their
type name, item name, and native data are identical. Linked items are equal if their
type name, item name, and document name are identical.

Nonzero if the items are equal; otherwise O.

::OleEqual

COleClientltem: :lsOpen

Remarks

Return Value

See Also

BOOL IsOpenO;

Call this function to see if the item is connected to the OLE system DLL. Typically,
an item is connected after a successful call to one of the COleClientltem creation
functions.

Nonzero if the item is connected; otherwise O.

COleClientltem: :CreateFromClipboard,
COleClientltem::CreateStaticFromClipboard,
COleClientltem: :CreateLinkFromClipboard,
COleClientltem::CreateNewObject, COleClientltem::CreateCloneFrom,
::OleQueryOpen

COleClientltem: :OnChange
Protected virtual void OnChange(OLE_NOTIFICATION wNotification) = 0;.

wN otification Reason the server changed this item. It can have one of the
following values:

• OLE_ CHANGED The user of the server application modified the linked
item. This notification is not sent for embedded items.

620 COleClientltem: :OnRenamed

Remarks

See Also

• OLE_SAVED The user of the server application saved the document
containing the item.

• OLE_CLOSED The user of the server application closed the document
containing the item.

The OLE_RENAMED notification is handled by the OnRenamed member
function.

Called by the framework when the user of the server application modifies the item
or saves or closes the document containing the item. (If the server application is
written with the Microsoft Foundation Class Library, this function is called in re­
sponse to the Notify member functions of COleServerDoc or COleServerItem.)
There is no default implementation. You must override this function to respond to
changes in the item's state. Typically you update the item's appearance by
invalidating the area in which the item is displayed.

COleClientItem::OnRenamed, COleServerItem::NotifyChanged,
COleServer Doc::N otifyChanged, COleServerDoc: :NotifyClosed,
COleServerDoc::NotifySaved

COleClientltem: :OnRenamed
Protected

Remarks

See Also

virtual void OnRenamed(); +

Called by the framework when the user of the server application renames the
document containing the item. (If the server application is written with the
Microsoft Foundation Class Library, this function is called in response to the
NotifyRename member function of COleServerDoc.) This function is called only
for linked items, not for embedded items. The default implementation does nothing.
Override this function if you want to perform special processing when an item is
renamed.

COleClientItem::OnChange, COleServerDoc::NotifyRename

COleClientltem: :Rename 621

COleClientltem: :ReconnectLink

Remarks

See Also

void ReconnectLink();

Call this function to reestablish a link between an open linked item and the server.
Typically, you call this function after closing a link with the CloseLink member
function. If the item is not open, ReconnectLink does not open it.

COleClientltem: :CloseLink, : :OleReconnect

COleClientltem: :Release

Remarks

See Also

void Release();

Call this function to release the connection to a linked item and close the link if it
was open. It does not destroy the item. Release is called by the COleClientltem
destructor for linked items.

COleClientltem: :Delete, :: OleRelease

COleClientltem: :Rename

Remarks

See Also

void Rename(LPCSTR IpszN ewname);

IpszN ewname Pointer to the new client name for the item.

Call this function to rename the item. The name must be unique within the
document and must be preserved when the document is saved.

::OleRename

622 COleClientltem::RequestData

COleCI ientltem:: Req uestData

Remarks

See Also

void RequestData(OLECLIPFORMAT nFormat);

nF ormat Specifies the format in which data is returned. This parameter can be
one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

Call this function to retrieve data in a specified format from the server application.
An exception is thrown if the server does not support data requests. The client
application should be connected to the server application when the client calls
RequestData. After RequestData returns, the client can retrieve the data with the
GetData member function, and it can examine information through other member
functions such as GetBounds and GetSize.

COleClientItem: :GetData, COleClientItem: :GetBounds,
COleClientItem:: GetSize, : :OleRequestData

COleClientltem: :SetBounds

Remarks

See Also

void SetBounds(LPCRECT lpRect);

lpRect Pointer to a CRect object or RECT structure that contains the bounds
information.

Call this function to set the bounding rectangle on the target device for the item; this
causes the OnSetBounds member function of the corresponding COleServerItem
object to be called. The coordinates must be in MM _ HIMETRIC units. This func­
tion is only meaningful for embedded items. The size of a linked item is determined
by the source document for the link. The bounding rectangle does not need to have
the same dimensions as the rectangle specified by the Draw member function's
lpBounds parameter. These dimensions may be different because of the view
scaling used by the window in which the item is displayed. The client application
can call SetBounds to make the server reformat the picture to better fit the client's
rectangle.

COleServerItem:: OnSetBounds, : :OleSetBounds

COleClientltem: :SetData 623

COleCI ientltem: :SetColorScheme

Remarks

See Also

void SetColorScheme(const LOGPALETTE FAR* IpLogPalette);

IpLogPalette Pointer to a Windows LOGPALETTE structure.

Call this function to specify a recommended color scheme for the server application
to use while displaying the item; this causes the OnSetColorScheme member
function of the corresponding COleServerItem object to be called. The server
does not have to use the specified palette. The client does not need to call
SetColorScheme every time a server is opened.

The first palette entry in the LOGP ALETTE structure specifies the foreground
color recommended by the client application. The second palette entry specifies the
background color. The first half of the remaining palette entries are fill colors, and
the second half are colors for lines and text. Client applications should specify an
even number of palette entries. When there is an uneven number of entries, the
server interprets the odd entry as a fill color; that is, if there were five entries, three
would be interpreted as fill colors and two as line and text colors. When server
applications render metafiles, they should use the suggested palette.

COleServer Item: :OnSetColorScheme, :: OleSetColorScheme

COleCI ientltem: :SetData

Remarks

See Also

void SetData(OLECLIPFORMAT nFormat, HANDLE hData);

nF ormat Specifies the format in which data is returned. This parameter can be
one of the predefined Clipboard formats or the value returned by the native
Windows RegisterClipboardFormat function.

hData Identifies a memory object that contains the data in the format specified by
the server. Do not free this memory; the server will free it.

Call this function to send data to the server application using the specified format;
this causes the OnSetData member function of the corresponding
COleServerItem object to be called. An exception is thrown if the server cannot
accept the data or the specified data format.

COleServer Item: :OnSetData, :: OleSetData

624 COleClientltem: :SetHostNames

COleClientltem: :SetHostNames

Remarks

See Also

void SetHostNames(LPCSTR IpszHost, LPCSTR IpszHostObj);

IpszH ost Pointer to the name of the client application.

IpszHostObj Pointer to the client's name for the item.

Call this function to specify the name of the client application and the client's name
for the specified object; this calls the OnSetHostNames member function of the
COleServerDoe object that contains the item on the server side. This information
can be used in window titles when the server application edits the item. It is not
necessary to call SetHostNames each time a server is activated.

COleServerDoe: :OnSetHostN ames, : :OleSetHostNames

COleCI ientltem: :SetLi nkUpdateOptions

Remarks

See Also

void SetLinkUpdateOptions(OLEOPT _UPDATE updateOpt);

updateOpt The value of the link-update option for this item. This value must be
one of the following:

• oleupdate _always Update the linked object whenever possible. This
option supports the Automatic link-update radio button in the Links
dialog box.

• oleupdate _ onsave Update the linked object when the source document is
saved by the server.

• oleupdate _oneall Update the linked object only on request from the client
application. This option supports the Manual link -update radio button in the
Links dialog box.

Call this function to set the link -update option for the presentation of the specified
linked item. Typically you should not change the update options chosen by the user
in the Links dialog box.

COleClientItem: : GetLinkUpdateOptions, AfxOleLinksDialog,
: :OleSetLinkUpdateOptions

COleClientltem::UpdateLink 625

COleClientltem: :SetTargetDevice

Remarks

See Also

void SetTargetDevice(HGLOBAL hData);

hData Handle to an OLET ARGETDEVICE structure that describes the target
device. Do not free this structure; the server will free it.

Call this function to specify an item's target output device; this causes the
OnSetTargetDevice member function of the corresponding COleServerltem
object to be called. This function allows a linked or embedded item to be formatted
correctly for a target device, even when the item is rendered on a different device.
A client application should call this function whenever the target device changes so
that servers can be notified to change the rendering of the item if necessary. The
client application should call the UpdateLink member function after calling
SetTargetDevice to ensure that the information is sent to the server and that the
server can make the necessary changes to the item's presentation. The client appli­
cation should call the Draw member function to redraw the item if it receives a
notification from the server that the item has changed. The client does not need to
call SetTargetDevice every time a server is activated.

COleClientltem: :Draw, COleClientItem:: U pdateLink,
COleServer Item: :OnTargetDevice, : :OleSetTargetDevice

COleClientltem::UpdateLink

Remarks

See Also

void UpdateLink();

Call this function to update the item immediately. The user can also manually
update individual links using the Links dialog box.

AfxOleLinksDialog, ::OleUpdate

626 COleDocument

class COleDocument : public CDocument

See Also

COleDocument is the base class for Object
Linking and Embedding (OLE) documents.
COleDocument is derived from
CDocument, allowing your OLE
applications to use the document/view
architecture provided by the Microsoft
Foundation Class Library. In addition, the

COleDocument

COleDocument class defines an interface that treats a document as a collection of
CDocltem objects. This interface is needed by both client and server applications
because their documents must be able to contain OLE items.

You do not use COleDocument directly; instead, use the derived classes
COleClientDoc and COleServerDoc. Use those classes as the base class for
documents in your client and server applications, respectively.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

CDocItem, COleServerDoc, COleClientDoc, COleServerltem,
COleClientltem

Construction/Destruction - Public Members
COleDocument Constructs a COleDocument object.

Operations - Public Members
AddItem

GetNextItem

GetStartPosition

IsOpenClientDoc

IsOpenServerDoc

Removeltem

Adds an item to the list of items maintained by the
document.

Returns all the items in the document when called
iteratively.

Gets the initial position to begin iteration.

Tests if the document is a registered client document.

Tests if the document is a registered server document.

Removes an item from the list of items maintained by
the document.

COleDocument::GetNextltem 627

Member Functions

COleDocument: :Add Item

Remarks

See Also

void AddItem(CDocItem* pltem);

pltem Pointer to the document item being added.

Call this function to add an item to the document. You typically do not need to
call this function explicitly; this function is called by the constructors for
COleClientItem and COleServerItem.

CDocItem, COleDocument: :RemoveItem,
COleServerItem::COleServerItem, COleClientItem::COleClientItem

COleDocument: :COleDocument
COleDocument() ;

Remarks Constructs a COleDocument object.

COle Document : :GetNextltem

Remarks

virtual CDocItem* GetNextItem(POSITION& rPosition);

rPosition A reference to a POSITION value set by a previous call to
GetNextItem; the initial value is returned by the GetStartPosition member
function. This must not be NULL.

Call this function repeatedly to access each of the items in your document. After
each call, the value of rPosition is set to the POSITION value of the next item in
the document. If the retrieved element is the last in the document, the new value of
rPosition is NULL.

628 COleDocument::GetStartPosition

Return Value

See Also

Example

A pointer to the document item at the specified position.

COleDocument::GetStartPosition

II pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
while(pos != NULL)
{

CDocItem *pItem = pDoc->GetNextItem(pos);
II use pltem

COle Document : :GetStartPosition

Remarks

Return Value

See Also

virtual POSITION GetStartPosition() const;

Call this function to get the position of the first item in the document. Pass the value
returned to GetNextltem.

A POSITION value that can be used to begin iterating through the document's
items; NULL if the document is empty.

COleDocument: : GetNextltem

COleDocument:: IsOpenCI ientDoc

Remarks

Return Value

See Also

BOOL IsOpenClientDoc() const;

Call this function to see if the document is a registered client document. Note that a
document can be both a client document and a server document if your application
supports both.

Nonzero if the document is a registered client document; otherwise O.

COleClientDoc: :RegisterClientDoc, COleDocument: :IsOpenServerDoc

COleDocument::Removeltem 629

COleDocument: :lsOpenServerDoc

Remarks

Return Value

See Also

BOOL IsOpenServerDoc() const;

Call this function to see if the document is a registered server document. Note that a
document can be both a client document and a server document if your application
supports both.

Nonzero if the document is a registered server document; otherwise O.

COleServerDoc: :RegisterServerDoc, COleDocument: :IsOpenClientDoc

COleDocument:: Removeltem

Remarks

See Also

void RemoveItem(CDocItem* pltem);

pltem Pointer to the document item to be removed.

Call this function to remove an item from the document. You typically do not need
to call this function explicitly; this function is called by the destructors for
COleClientItem and COleServerItem.

CDocItem, COleServer Item, COleClientItem, COleDocument: : Addltem

630 COleException

class COleException : public CException
A COleException object represents an
exception condition related to an Object Linking
and Embedding (OLE) operation. The
COleException class includes a public data
member that holds the status code indicating the
reason for the exception.

COleException

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding c++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

Data Members-Public Members
m status Contains the status code that indicates the reason for the

exception.

Construction/Destruction - Public Members
COleException Constructs a COleException object.

Member Functions

COle Exception: :COleException
COleException(OLESTATUS status);

status An enumerated type variable that indicates the reason for the exception.
Must be one of the following enumerators:

• OLE_OK Function operated correctly (does not throw an exception).

• OLE_BUSY Tried to execute a member function while another operation
was in progress.

• OLE ERROR STREAM OLE STREAM stream error. - -
• OLE ERROR STATIC Nonstatic item expected.

COleException: :COleException 631

• OLE_ERROR_BLANK Critical data missing.

• OLE_ERROR _ DRAW Error while drawing.

• OLE ERROR METAFILE Invalid metafile.

• OLE_ERROR_ABORT Client chose to abort metafile drawing.

• OLE_ERROR _ CLIPBOARD Failed to get or set Clipboard data.

• OLE_ERROR_FORMAT Requested format not available.

• OLE ERROR GENERIC General error. - -
• OLE_ERROR _ DAT ATYPE Data format not supported.

• OLE_ERROR _PALETTE Invalid color palette.

• OLE ERROR NOT LINK Not a linked item.

• OLE ERROR NOT EMPTY Client document contains items. - --
• OLE_ERROR _SIZE Incorrect buffer size passed to function that places

a string in the caller's buffer.

• OLE ERROR DRIVE Drive letter in document name invalid. - -
• OLE ERROR NETWORK Failed to establish connection to network

share on which the document is located.

• OLE_ERROR_NAME Invalid name (document name, item name, and so
forth) passed to function.

• OLE _ERROR_TEMPLATE Server failed to load template.

• OLE ERROR NEW Server failed to create new document.

• OLE ERROR EDIT Server failed to create embedded instance. - -
• OLE_ERROR _ OPEN Server failed to open document; possible

invalid link.

• OLE_ERROR _NOT_OPEN Item not open for editing.

• OLE ERROR LAUNCH Failed to launch server.

• OLE ERROR COMM Failed to communicate with server. - -
• OLE ERROR TERMINATE Error in termination. - -
• OLE ERROR COMMAND Error in execution. - -
• OLE_ERROR _SHOW Error in showing.

• OLE_ERROR _ DOVERB Error in sending do verb, or invalid verb.

• OLE_ERR OR_ADVISE_NATIVE Item could be missing.

• OLE_ERROR_ADVISE_PICT Item could be missing or server doesn't
understand this format.

• OLE_ERROR _ADVISE_RENAME Server doesn't support rename.

• OLE ERROR POKE NATIVE Failure in poking native data to server.

632 COleException::m _status

Remarks

See Also

• OLE_ERROR _ REQUEST _NATIVE Server failed to render native
data.

• OLE_ERROR_REQUEST_PICT Server failed to render presentation
data.

• OLE_ERROR_SERVER_BLOCKED Trying to block a blocked server,
or trying to revoke a blocked server or document.

• OLE_ERROR _REGISTRATION Server not registered in OLE
registration database.

• OLE_ERROR _ALREADY_REGISTERED Trying to register same
document multiple times.

• OLE ERROR TASK Server or client task invalid. - -
• OLE ERROR OUTOFDA TE Item out of date. - -
• OLE ERROR CANT UPDATE CLIENT Client of embedded - - -

document doesn't accept updates.

• OLE_ERROR_UPDATE Error while trying to update.

• OLE WARN DELETE DATA Caller must delete data when done with
it (warning).

Constructs a COleException object. Do not use this constructor directly; instead
call the global function AfxThrowOleException.

AfxThrowOleException

Data Members

COleException::m_status

Remarks

See Also

OLESTATUS m_status;

This data member holds the status code that indicates the reason for the exception.
This variable is set by the constructor. See the COleException constructor docu­
mentation for a list of OLESTATUS enumerators.

COleException: :COleException

COleServer 633

class COleServer : public CObject

See Also

COleServer is the base class for Object Linking and
Embedding (OLE) servers. One COleServer object
is needed for each type of document a server
application supports; for example, if your server

COleServer

application supports both worksheets and charts, you need to have two COleServer
objects. Use the COleServer class if you are writing a mini-server (that is, a server
application that is only launched by clients to edit embedded items). If you are
writing a full server (that is, a server application that supports loading and saving
files to and from disk), you can use the COleTemplateServer class, which
combines a CDocTemplate object with a server.

COleServer defines several overridable member functions that are called by
the OLE system dynamic-link library (DLL) in response to requests from client
applications. Through these member functions, the client instructs the server to
open embedded items as documents or open the documents that are the source of
linked items.

To use COleServer, derive a class from it and implement the OnCreateDoc and
OnEditDoc member functions, which allow your application to open and edit
embedded items as documents. Derive a class from COleServerDoc to implement
the documents edited by your server application and return objects of that class
from OnCreateDoc and OnEditDoc.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

COleTemplateServer, COleServerDoc, COleServerItem

Construction/Destruction - Public Members
COleServer Constructs a COleServer object.

Registration/Revocation - Public Members
Register

BeginRevoke

Registers the server with the OLE system
DLL.

Begins server shutdown (called by the
destructor).

634 COleServer: :BeginRevoke

Status - Public Members
IsOpen

GetServer N arne

Indicates whether the server is currently
operational and registered.

Returns the name of the server registered
with the OLE system DLL.

Overridables - Protected Members
OnCreateDoc Called to create a document for a new

embedded item. Implementation required.

OnEditDoc Called to create a document to edit an
existing embedded item. Implementation
required.

On OpenDoc Called to open an existing document
containing the source of a linked item.

OnCreateDocFrornTernplateFile Called to create a new document based on
another file.

OnExecute

OnExit

Called to handle dynamic data exchange
(DDE) WM_DDE_EXECUTE messages.

Called to instruct the server to quit.

Member Functions

COleServer: : Beg i n Revoke

Remarks

See Also

void BeginRevoke();

Call this function to close any registered documents and begin the server shutdown
procedure. You typically call this function when the user exits your application.
This function is also called by the COleServer destructor. This function does not
wait for the OLE system DLL to complete the revoke operation; the DLL calls the
implementation member function OnRelease when it is safe for the application
to quit.

:: OleRevokeServer

COleServer::lsOpen 635

COleServer: :COleServer

Remarks

See Also

COleServer(BOOL bLaunchEmbedded);

bLaunchEmbedded TRUE if the server application was launched with the
"/Embedded" command-line argument.

Constructs a COleServer object. The server cannot receive requests from clients
until you call the Register member function.

COleServer: :Register

COleServer: :GetServerName

Remarks

Return Value

See Also

const CString& GetServerName() const;

Call this function to get the name of the server registered with the OLE system
DLL. This is the name that was passed to the Register member function.

The registered name of the server.

COleServer: :Register

COleServer: : IsOpen

Remarks

Return Value

See Also

BOOL IsOpen() const;

Call this function to see if the server is registered with the OLE system DLL.

Returns nonzero if the server has been successfully registered; otherwise O.

COleServer: :Register

636 COleServer::OnCreateDoc

COleServer: :OnCreateDoc
Protected

Remarks

Return Value

See Also

virtual COleServerDoc* OnCreateDoc(LPCSTR IpszTypeNarne,
LPCSTR IpszDoc) = 0; •

IpszTypeN arne Pointer to the type name of the document being created.

IpszDoc Pointer to the name of the document being created; note that this is not a
filename because embedded items are not stored as their own files. This name can
be used to identify the document in window titles.

Called by the framework when a new embedded item is being created, that is, when
the user of a client application executes the Insert New Object command. There is
no default implementation. You must override this function to create a new docu­
ment object of the specified type or return a pointer to an existing document object.
The document object must be an object of a COleServerDoc-derived class.

This function is overriden for you in the derived class COleTemplateServer to use
the document creation facilities of a CDocTemplate object.

If successful, a pointer to a server document; otherwise NULL.

COleServer: :OnEditDoc, COleServerDoc, COleTemplateServer,
COleClientItem::CreateNewObject

COleServer: : On Create Doc From Tern plateFi Ie
Protected

Remarks

virtual COleServerDoc* OnCreateDocFromTemplateFile(LPCSTR
IpszTypeNarne, LPCSTR IpszDoc, LPCSTR IpszTernplate);.

IpszTypeN arne Pointer to the type name of the document being created.

IpszDoc Pointer to the name of the document being created. Note that this is not a
filename because embedded items are not stored as their own files. This name can
be used to identify the document in window titles.

IpszT ernplate Pointer to the fully qualified name of a file on which the new
document should be based.

Called by the framework to create a server document for a new embedded item and
initialize it with the contents of the specified file. The default implementation does
nothing and returns NULL. Override this function if you want to use an existing
file to initialize new embedded items. In such a situation, you must determine your

Return Value

COleServer::OnEditDoc 637

own fonnat for initializing the item from the template file. The document object you
create must be an object of a COleServerDoc-derived class.

Note that the file used as the template for the embedded item is unrelated to the
CDocTemplate classes defined by the Microsoft Foundation Class Library.

If successful, a pointer to a server document; otherwise NULL. Returns NULL if
the server does not support this feature.

COleServer: :OnEditDoc
Protected

Remarks

Return Value

See Also

virtual COleServerDoc* OnEditDoc(LPCSTR lpszTypeName,

LPCSTR lpszDoc) = 0; •

lpszTypeN arne Pointer to the type name of the document being opened.

lpszDoc Pointer to the name of an existing document; note that this is not a
filename because embedded items are not stored as their own files. This name can
be used to identify the document in window titles.

Called by the framework when an existing embedded item is opened for editing,
that is, when the user of a client application edits an embedded item. There is no
default implementation. You must override this function to create a new document
object of the specified type or to return a pointer to an existing document object.
The document object you create must be an object of a COleServerDoc-derived
class. Note that this function is called only for embedded items; the OnOpenDoc
member function is called for linked items.

This function is overriden for you in the derived class COleTemplateServer to use
the document creation facilities of a CDocTemplate object.

If successful, a pointer to a server document; otherwise NULL.

COleServer::OnOpenDoc, COleServerDoc, COleTemplateServer

638 COleServer::OnExecute

COleServer: :On Execute
Protected

Remarks

Return Value

virtual OLESTATUS OnExecute(LPVOID lpCommands); +

lpC ommands Points to a block of memory that contains dynamic data exchange
(DDE) WM _ DDE _EXECUTE command strings.

Called by the framework when the client sends DDE WM_DDE_EXECUTE
command strings to the server document. The default implementation does nothing
and returns OLE ERROR COMMAND. Override this funtion to handle DDE - -
WM _ DDE _EXECUTE messages. Do not delete memory referenced by
lpCommands.

OLE_OK if successful; any other value indicates failure. See the COleException
class for a list of possible values.

COleServer: :On Exit
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnExit(); +

Called by the framework to tell the server to close documents and quit. The default
implementation calls the BeginRevoke member function to start shutting down the
server application. Override this function if you want to perform special processing
when you exit.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleServer: :BeginRevoke

COleServer: :OnOpenDoc
Protected

Remarks

virtual COleServerDoc* OnOpenDoc(LPCSTR lpszDoc); +

lpszDoc Pointer to the filename of an existing document, which is the source of
the linked item.

Called by the framework when an existing linked item is opened; that is, when the
user of a client application edits a linked item. The default implementation does

Return Value

See Also

COleServer::Register 639

nothing and returns NULL. You must override this function if you are supporting
linked items; override this function to open the document with the specified name.

The document object you create must be an object of a COleServerDoc-derived
class. Note that this function is called only for linked items; the OnEditDoc
member function is called for embedded items.

This function is overriden in the derived class COleTemplateServer to open the
document with the specified name using the document-creation facilities of a
CDocTemplate object.

If successful, a pointer to a server document; otherwise NULL.

COleServer::OnEditDoc, COleServerDoc, COleTemplateServer

COleServer::Register

Remarks

Return Value

See Also

BOOL Register(LPCSTR IpszTypeNarne, BOOL bMultilnstance);

IpszTypeN arne Pointer to the name of the server document type. This must be the
type name passed to AfxOleRegisterServerName when registering the server
with the Windows registration database.

bMultiInstance Flag indicating whether multiple instances of the server applica­
tion can be run simultaneously. Pass TRUE if your server is a single document
interface (SDI) application; TRUE causes a separate instance of your application
to run for each client. Pass FALSE if it is a multiple document interface (MDI)
application since one instance of an MDI application can support multiple clients
using separate document windows. Note that mini-servers are typically SDI
applications and full servers are typically MDI applications.

Call this function to register the server with the OLE system DLL so that it can
receive requests from clients. You typically call this function for every
COleServer object your application maintains when the application starts. The
BeginRevoke function terminates the connection with the OLE system DLL.

Note that this operation is separate from the operation needed to create an entry for
the server in the Windows registration database.

Nonzero if the server was successfully registered; otherwise O.

CO leServer: :BeginRevoke, :: 0 leRegisterServer,
AfxOleRegisterServerName

640 COleServerDoc

class COleServerDoc : public COleDocument

See Also

COleServerDoc is the base class for
Object Linking and Embedding
(OLE) server documents. A server
document is a document that can
contain COleServerltem objects,
which represent the server interface to
embedded or linked items. When a
server application is launched by a
client to edit an embedded item, the

COleServerDoc

item is loaded as its own server document; the COleServerDoc object contains just
one COleServerltem object, consisting of the entire document. When a server
application is launched by a client to edit a linked item, an existing document is
loaded from disk; this document has a portion of its contents highlighted to indicate
the linked item.

Note that in server applications that support only embedding, a server document can
contain only a single item. In server applications that support linking, a server
document can contain zero or more linked items.

To use COleServerDoc, derive a class from it and implement the
OnGetEmbeddedltem member function; this function lets your server support
embedded items. Derive a class from COleServerltem to implement the items in
your documents, and return objects of that class from OnGetEmbeddedltem.

To support linked items, COleServerDoc provides the OnGetLinkedltem
member function. You can use the default implementation or override it if you have
your own method to manage document items.

You need one COleServerDoc-derived class for every type of server document
your application supports. For example, if your server application supports
worksheets and charts, you need two COleServerDoc-derived classes.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

COleDocument, COleServer, COleTemplateServer, COleServerltem

COleServerDoc 641

Construction/Destruction - Public Members
COleServer Doc Constructs a COleServerDoc object.

Registration/Revocation - Public Members
RegisterServer Doc

Revoke

Registers the document and informs the OLE system
dynamic-link library (DLL) that it is ready for
communication.

Revokes the server document registration and waits to
finish.

Operations - Public Members
Notify Rename

NotifyRevert

N otifySaved

N otifyClosed

NotifyChanged

Notifies clients that the user has renamed the document.

Notifies clients that the user has reverted the document
to the last saved state.

Notifies clients that the user has saved the document.

Notifies clients that the user has closed the document.

Notifies clients that the user has changed the document.

Overridables - Protected Members
OnGetEmbeddedItem Called to get a COleServerItem that represents the

entire document; used to get an embedded item.
Implementation required.

OnGetLinkedItem Called to return a COleServerItem with the specified
name; used to get a linked item.

OnClose Called when a client requests to close the document.

OnExecute Called when a client sends dynamic data exchange
(DDE) WM _ DDE _EXECUTE strings.

OnSetDocDimensions Called when a client requests to change the document
dimensions.

OnSetHostNames Called when a client sets the window title for an
embedded object.

OnSetColorScheme Called when a client specifies a color palette for the
document.

OnUpdateDocument Called when a server document that is an embedded
item is saved, updating the client's copy of the item.

642 COleServerDoc: :COleServerDoc

Member Functions

COleServerDoc: :COleServerDoc

Remarks

See Also

COleServerDoc();

Constructs a COleServerDoc object; it does not begin communications with the
OLE system DLL. If your server application supports links, you must call the
RegisterServer Doc member function; this informs clients who may be linked to
the document that it is open.

COleServerDoc: :RegisterServer Doc

COleServerDoc: :NotifyChanged

Remarks

See Also

void NotifyChanged();

Call this function to notify all linked items connected to the document that the
document has changed. You typically call this function after the user changes some
global attribute such as the dimensions of the server document. If a client item is
linked to the document with an automatic link, the item is updated to reflect the
changes. In client applications written with the Microsoft Foundation Class Library,
the OnChange member function of COleClientItem is called. Do not call this
function if the document is an embedded item.

COleServerDoc: :NotifyClosed, COleServerDoc: :NotifySaved,
COleClientItem: :OnChange

COleServerDoc:: NotifyClosed

Remarks

void NotifyClosed();

Call this function to notify the client(s) that the document has been closed.
In the case where the user chooses the Close command from the File menu,
NotifyRename is called for you by COleServerDoc's implementation of the

See Also

COleServerDoc:: NotifyRevert 643

OnCloseDocument member function. In client applications written with the
Microsoft Foundation Class Library, the OnChange member function of
COleClientItem is called.

COleServerDoc::NotifyChanged, COleServerDoc::NotifySaved,
COleClientItem: :OnChange, CDocument: :OnCloseDocument

COleServerDoc:: NotifyRename

Remarks

See Also

void NotifyRename(LPCSTR IpszNewName);

IpszNewName Pointer to a string specifying the new name of the server
document; this is typically a fully qualified path.

Call this function after the user renames the server document. In the case where the
user chooses the Save As command from the File menu, NotifyRename is called
for you by COleServerDoc's implementation of the OnSaveDocument member
function. This function notifies the OLE system DLL, which in tum notifies the
clients. In client applications written with the Microsoft Foundation Class Library,
the OnRenamed member function of COleClientltem is called.

:: OleRenameServer Doc, COleServer Doc::N otifySaved,
COleClientItem: :OnRenamed, CDocument: :OnSaveDocument

COleServerDoc:: NotifyRevert

Remarks

See Also

void NotifyRevert();

Call this function to inform the OLE system DLL that the server has restored a
document to its last saved state without closing it; the OLE system DLL notifies the
clients. You typically call this function after the user reverts a server document to
its last saved form. The framework calls this function in COleServerDoc's
implementation of the OnCloseDocument member function if the document has
been modified.

: :OleRevertServerDoc, COleServerDoc: : NotifyRename,
COleServerDoc::NotifySaved, CDocument::OnCloseDocument

644 COleServerDoc: : NotifySaved

COleServerDoc:: NotifySaved

Remarks

See Also

void NotifySaved();

Call this function after the user saves the server document. In the case where the
user chooses the Save command from the File menu, NotifySaved is called for you
by COleServerDoc's implementation of OnSaveDocument. This function notifies
the OLE system DLL, which in tum notifies the clients. In client applications
written with the Microsoft Foundation Class Library, the OnChanged member
function of COleClientItem is called.

::OleSavedServerDoc, COleServerDoc::NotifyChanged,
COleServerDoc::NotifyClosed, COleClientItem::OnChange,
CDocument: :OnSaveDocument

COleServerDoc: :OnClose
Protected

Remarks

Return Value

virtual OLESTATUS OnClose();.

Called by the framework when a client requests that the server document be closed.

OLE _OK if successful; any other value indicates failure. See the COleException
class for a list of possible values.

COleServerDoc: :On Execute
Protected

Remarks

virtual OLESTATUS OnExecute(LPVOID lpCommands);.

lpC ommands Points to a block of memory that contains dynamic data exchange
(DDE) WN_DDE_EXECUTE command strings.

Called by the framework when the client sends DDE WN_DDE_EXECUTE
command strings to the document. The default implementation does nothing and
returns OLE ERROR COMMAND. Override this function to handle DDE - -
WN_ DDE _EXECUTE commands. Do not delete memory referenced by
lpCommands.

Return Value

See Also

COleServerDoc::OnGetLinkedltem 645

OLE_OK if successful; any other value indicates failure. See the COleException
class for a list of possible values.

COleServer: :OnExecute

COleServerDoc: :OnGetEmbeddedltem
Protected

Remarks

Return Value

See Also

virtual COleServerItem* OnGetEmbeddedItemO = 0;.

Called by the framework when a client application invokes the server application to
create or edit an embedded item. There is no default implementation. You must
override this function to return an item representing the entire document. This
should be an instance of a COleServerItem-derived class.

A pointer to an item representing the entire document; NULL if the operation
failed.

COleServer Doc: :OnGetLinkedItem, COleServer Item

COleServerDoc: :OnGetLi nked Item
Protected

Remarks

Return Value

See Also

virtual COleServerItem* OnGetLinkedItem(LPCSTR IpszltemName); •

IpszltemName The name of an existing linked item.

Called by the framework when a client application invokes the server application to
edit a linked item. The default implementation searches for the item with the speci­
fied name in the collection of items contained in the document. Override this func­
tion if you want to implement your own method of storing or retrieving linked items.
The OnGetLinkedItem function is called only for documents that support links. If
the document is an embedded item, the function should return NULL.

A pointer to the specified item; NULL if the item is not found.

COleServer Doc:: OnGetEmbeddedItem, COleServerItem

646 COleServerDoc: :OnSetColorScheme

COleServerDoc: :OnSetColorScheme
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnSetColorScheme(const LOGPALETTE FAR*
IpLogPalette); •

IpLogPalette Pointer to a Windows LOGPALETTE structure.

Called by the framework when a client sets the color palette for this server
document. The default implementation does nothing. Override this function
if you want to use the color palette specified by the client. See
COleClientItem::SetColorScheme for information on how your server
should interpret the colors in the palette.

OLE_OK if successful; any other value indicates failure. See the COleException
class for a list of possible values.

COleClientltem: :SetColorScheme

COleServerDoc: :OnSetDocDimensions
Protected

Remarks

Return Value

See Also

virtual OLE STATUS OnSetDocDimensions(LPCRECT IpRect);.

IpRect A pointer to a RECT structure that contains the new window dimensions.

Called by the framework when a client changes the size of the server's document
window. The default implementation does nothing and returns OLE_OK. Override
this function if your server can resize or move its document windows. This function
is called only for documents that are embedded items.

OLE_OK if successful; any other value indicates failure. See the COleException
class for a list of possible values.

COleClientltem:: SetBounds

COleServerDoc: :RegisterServerDoc 647

COleServerDoc: :OnSetHostNames
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnSetHostNames(LPCSTR IpszHost,
LPCSTR IpszHostObj); +

IpszH ost Pointer to a string that specifies the name of the client application.

IpszHostObj Pointer to a string that specifies the client's name for the document.

Called by the framework when the client sets or changes the host names for this
item. The default implementation does nothing and returns OLE_OK. Override this
function if you need to save these names.

OLE_OK if successful; any other value indicates failure. See the COleException
class for a list of possible values.

COleClientItem: :SetHostNames

COleServerDoc: :OnUpdateDocument
Protected

Remarks

Return Value

See Also

virtual BOOL OnUpdateDocument(); +

Called by the framework when saving a document that is an embedded item, that is,
when updating an item in a compound document. The default implementation calls
the NotifySaved member function and then marks the document as clean. Override
this function if you want to perform special processing when updating an embedded
item.

Nonzero if the document was successfully updated; otherwise O.

COleServerDoc: :NotifySaved, CDocument: :OnSaveDocument

COleServerDoc: : Reg isterServerDoc
BOOL RegisterServerDoc(COleServer* pServer, LPCSTR IpszDoc);

pServer Pointer to an OLE server that is already registered.

IpszDoc Pointer to the fully qualified path of the server document.

648 COleServerDoc: :Revoke

Remarks Call this function to register the document with the OLE system DLL. You need to
call this function only if your server application supports links; this registration lets
clients know that the document is open. Call this function when creating or opening
a named file; however, if you are using COleTemplateServer to implement your
server, RegisterServerDoc is called for you by COleServerDoc's implementation
of OnNewDocument or OnOpenDocument, respectively. There is no need to call
this function if the document represents an embedded item.

Return Value

See Also

Nonzero if the document was successfully registered; otherwise O.

COleServer, COleTemplateServer, CDocument: :OnNewDocument,
CDocument: :OnOpenDocument

COleServerDoc:: Revoke

Remarks

See Also

void Revoke();

Revokes, or shuts down, the server document and waits for any pending operation
to finish. The Revoke member function is called by the COleServer Doc
destructor; it is seldom called explicitly elsewhere.

:: OleRevokeServerDoc

COleServerltem 649

class COleServerltem : public CDocltem

See Also

The COleServerltem class provides the server
interface to Object Linking and Embedding
(OLE) items. A linked item can represent some
or all of a server document. An embedded item
always represents an entire server document.

COleServerltem

The COleServerltem class defines several overridable member functions that are
called by the OLE system dynamic-link library (DLL), usually in response to
requests from the client application. These member functions allow the client
application to indirectly manipulate the item in various ways, such as displaying it,
executing its verbs, or retrieving its data in various fonnats.

To use COleServerltem, derive a class from it and implement the OnDraw and
Serialize member functions. The OnDraw function provides the metafile repre­
sentation of an item, allowing it to be displayed when a client application opens a
compound document. The Serialize function of CObject provides the Native
representation of an item, allowing an embedded item to be transferred between the
server and client applications.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the tenn "item" to distinguish the OLE entity from the corresponding C++
object and the tenn "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

COleClientltem, COleServer, COleServerDoc, COleTemplateServer,
CObject: : Serialize

Status - Public Members
GetDocument

GetltemName

SetItemName

Returns the server document that contains the item.

Returns the name of the item. Used for linked items only.

Sets the name of the item. Used for linked items only.

Operations - Public Members
CopyToClipboard Copies the item to the Clipboard.

NotifyChanged

Revoke

Updates all clients with automatic link update.

Tenninates the connection between the item and the OLE
systemDLL.

650 COleServerltem: :COleServerltem

Construction/Destruction - Protected Members
COleServer Item Constructs a COleServerItem object.

Status - Protected Members
IsConnected Indicates whether the item is currently attached to an

active client.

Overridables - Protected Members
OnShow

OnDraw

OnExtra Verb

OnSetTargetDevice

OnSetBounds

OnGetTextData

OnSetColorScheme

OnEnumFormats

OnGetData

OnSetData

OnDoVerb

Called when the client requests to show the item.

Called when the client requests to draw the item;
implementation required.

Called to execute verbs other than the primary verb.

Called to set the item's target device.

Called to set the item's bounding rectangle.

Called to get item data as a text string.

Called to set the item's color scheme.

Called to enumerate available data formats.

Called to retrieve the item's data.

Called to set the item's data.

Called to execute the primary verb.

Member Functions

COleServerltem: :COleServerltem
Protected

Remarks

See Also

COleServerItem(COleServerDoc* pContainerDoc);.

pContainerDoc Pointer to the document that contains the item.

Constructs a COleServerItem object and adds it to the container document's
collection of document items.

COleDocument: :AddItem

COleServerltem::GetDocument 651

COleServerltem: :CopyToClipboard

Remarks

Return Value

See Also

BOOL CopyToClipboard(BOOL blncludeNative, BOOL blncludeLink);

blncludeNative Set this to TRUE if Native data should be copied to the
Clipboard. Set this to FALSE if your server application supports only links (this
is rare).

blncludeLink Set this to TRUE if ObjectLink data should be copied to the
Clipboard. Set this to FALSE if your server application does not support links.

Call this function to copy the item to the Clipboard. The function first copies the
item to the Clipboard using the formats returned by the OnEnumFormats member
function. These typically include Native format followed by presentation formats.
This causes the Serialize, OnDraw, and OnGetTextData member functions to be
called. The function then checks whether the document containing the item is
connected to a server; if so, the function copies OwnerLink format and, if specified,
ObjectLink format.

Nonzero if the item was successfully copied to the Clipboard; otherwise O.

COleClientltem: :CopyToClipboard, COleServerItem: :OnEnumFormats,
COleServerltem::OnDraw, COleServerltem::OnGetTextData,
CObject:: Serialize

COleServerltem: :GetDocument

Remarks

Return Value

See Also

COleServerDoc* GetDocument() const;

Call this function to get a pointer to the document that contains the item. This
allows access to the server document that you passed as an argument to the
COleServerltem constructor.

A pointer to the document that contains the item, NULL if the item is not part of a
document.

COleServer Item: :COleServer Item, COleServer Doc

652 COleServerltem: :GetltemName

COleServerltem: :GetltemName

Remarks

Return Value

See Also

const CString& GetltemName() const;

Call this function to get the name of the item. You typically call this function only
for linked items.

The name of the item.

COleServerltem::SetltemName, COleServerDoc::OnGetLinkedltem

COleServerltem: :lsConnected
Protected

Remarks

Return Value

BOOL IsConnected() const; +

Call this function to determine if the item is connected to its corresponding
client item.

Nonzero if the item is connected; otherwise O.

COleServerltem:: NotifyChanged

Remarks

See Also

void NotifyChanged();

Call this function after the linked item has been changed. If a client item is linked to
the document with an automatic link, the item is updated to reflect the changes. In
client applications written with the Microsoft Foundation Class Library, the
OnChange member function of COleClientItem is called in response.

COleClientItem::OnChange, COleServerDoc::NotifyChanged

COleServerltem::OnDraw 653

COleServerltem: :OnDo Verb
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnDoVerb(UINT nVerb, BOOL bShow,

BOOL bTakeFocus); •

n Verb Server verb index; 0 is the primary index, 1 is the secondary index, and so
forth.

bShow TRUE if the server should show the item when it performs the operation.

bTakeFocus TRUE if the server should set the input focus.

Called by the framework when the COleClientItem: :Activate function is called.
The default implementation calls the OnShow member function for the primary
verb if bShow is TRUE and calls OnExtraVerb fornonprimary verbs. Override
this function if your primary verb does not show the item. For example, suppose the
item were a sound recording and its primary verb were Play; in this case, you would
not have to display the server application to play back the item.

See the COleException class for a list of return values. The value OLE _OK
indicates that the function operated correctly.

COleClientItem: :Activate, COleServer Item: :OnShow,
COleServerItem: :OnExtra Verb

COleServerltem: :On Draw
Protected

Remarks

Return Value

See Also

virtual BOOL OnDraw(CDC* pDC) = 0;.

pDC A pointer to the CDC object on which to draw the item. This is an output­
only CMetafileDC object; do not call any attribute member functions of CDC for
this parameter.

Called by the framework to render the item into a metafile. The metafile
representation of the item is used by the COleClientItem: :Draw function to
display the item in the client application. There is no default implementation. You
must override this function to draw the item into the device context specified.

Nonzero if the item was successfully drawn; otherwise o.
COleServerItem: :OnGetData, COleClientItem: :Draw

654 COleServerltem::OnEnumFormats

COleServerltem: :On Enum Formats
Protected

Remarks

Return Value

See Also

virtual OLECLIPFORMAT OnEnumFormats(OLECLIPFORMAT
nF ormat) const; •

nF ormat Specifies the fonnat returned by the previous call to the OnEnumFormats
member function. For the first call to OnEnumFormats, this parameter is NULL.
This parameter can be one of the predefined Clipboard fonnats or the value returned
by the Windows RegisterClipboardFormat function.

Called by the framework to detennine what fonnats are available for the item. This
is called in response to the COleClientltem: : EnumFormats function; it is also
called by the OLE system DLL. When called iteratively, this function returns all the
Clipboard fonnats that are supported by this server. The default implementation
returns Native, CF _METAFILEPICT, and CF _TEXT fonnats. Override this
function if you want to specify the fonnats supported by your server; for example, if
you wanted to support the Paste Special command in client applications. Note that if
you want to support the CF _TEXT fonnat, you must override the OnGetTextData
member function.

The next (or first) available fonnat; NULL if no more fonnats are available.

COleClientltem::EnumFormats, COleServerltem::OnGetTextData,
: :OleEnumFormats, : : RegisterClipboardFormats

COleServerltem: : On Extra Verb
Protected

Remarks

Return Value

See Also

virtual OLEST A TUS OnExtra Verb(UINT n Verb); •

n Verb Index of the verb to execute; 1 is the secondary verb, 2 is the tertiary verb,
and so forth.

Called by the framework when a client makes a request to execute a nonprimary
verb. The default implementation returns OLE_ERROR _ DOVERB. Override this
function if the item supports more than one verb. You must provide the names of all
supported verbs to the client applications through the Windows registration
database.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleServerltem::OnShow, COleServerltem::OnDoVerb,
COleClientItem: : Activate

COleServerltem::OnGetTextData 655

COleServerltem: :OnGetData
Protected

Remarks

Return Value

See Also

virtual OLE STATUS OnGetData(OLECLIPFORMAT nFormat,

LPHANDLE IphReturn);.

nF ormat Specifies the fonnat of the data. This parameter can be one of the
predefined Clipboard fonnats or the value returned by the Windows
RegisterClipboardFormats function.

IphReturn Pointer to a handle to the block of memory that contains the requested
data when the function returns.

Called by the framework to retrieve the contents of the item in a specified fonnat.
This is called in response to the COleClientItem: :GetData function. The default
implementation supports Native and metafile fonnats; it uses the implementations of
the Serialize and OnDraw member functions that you provide. This function also
supports the CF _TEXT fonnat if you have overridden the OnGetTextData
member function. Override this function if you want to handle other fonnats.
Allocate a memory object, fill it with the data in the desired fonnat, and return it via
the IphReturn parameter. This is an advanced overridable.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleServerItem::OnGetTextData, COleServerItem::OnSetData,
COleServerItem::OnDraw, CObject::Serialize, COleClientItem::GetData

COleServerltem: :OnGetTextData
Protected

Remarks

Return Value

virtual BOOL OnGetTextData(CString& rStringReturn) const; •

rStringReturn A reference to a CString that receives the text data when the
function returns.

Called by the framework to get the contents of the item in text (CF _TEXT) fonnat.
The default implementation returns FALSE. Override this function if the item can
return its data in text fonn.

Nonzero if text data is supported; otherwise o.

656 COleServerltem: :OnSetBounds

COleServerltem: :OnSetBounds
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnSetBounds(LPCRECT IpRect); •

IpRect A pointer to a RECT structure specifying the new bounding rectangle.

Called by the framework when the COleClientltem::SetBounds function is
called. The default implementation updates the item's bounding rectangle with the
specified rectangle. Override this function to perform special processing when you
change the bounding rectangle for the item.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleClientltem::SetBounds

COleServerltem: :OnSetColorScheme
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnSetColorScheme(const LOGPALETTE FAR*
IpLogPalette); •

IpLogPaIe tte Pointer to a Windows LOGPALETTE structure.

Called by the framework when the COleClientltem::SetColorScheme function is
called. The default implementation does nothing. Override this function if you want
to use the recommended palette.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleClientltem: :SetColorScheme

COleServerltem: :OnSetTargetDevice 657

COleServerltem: :OnSetData
Protected

Remarks

Return Value

See Also

virtual OLEST A TUS OnSetData(OLECLIPFORMAT nF ormat,
HANDLE hData); •

nF ormat Specifies the format of the data. This parameter can be one of the
predefined Clipboard formats or the value returned by the Windows
RegisterClipboardFormats function.

hData Handle to a memory object that contains the data in the specified format.

Called by the framework to provide the server application with the data for the
item, typically when an embedded item is opened for editing. This is called in
response to the COleClientItem: :SetData function; it is also called by the OLE
system DLLs. The default implementation handles only Native format; it calls the
Serialize member function to load the contents of the specified block of memory
into the item. Override this function to process non-Native formats. You must free
the memory object after you have used it.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleClientltem::SetData, COleServerItem::OnGetData, CObject::Serialize

COleServerltem: :OnSetTargetDevice
Protected

Remarks

virtual OLEST A TUS OnSetTargetDevice(LPOLET ARGETDEVICE
lpTargetDevice); •

lpTargetDevice Points to a Windows OLETARGETDEVICE structure that
describes the target device for the item. If NULL, the target device is the video
display. Do not free this structure after you have used it.

Called by the framework to provide the server application with information about
the client application's target device for the item. This is called in response to the
COleClientltem::SetTargetDevice function. The default implementation does
nothing. Override this function if you want to know what kind of device the item
will be rendered on. You can use this information to optimize the format of the
information that you supply the client through the OnGetData member function.

658 COleServerltem: :OnShow

Return Value

See Also

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleServer Item: :OnGetData, COleClientItem:: SetTargetDevice

COleServerltem: :OnShow
Protected

Remarks

Return Value

See Also

virtual OLESTATUS OnShow(BOOL bTakeFocus);.

bTakeFocus TRUE if the item should take the input focus; otherwise FALSE.

Called by the framework to instruct the server application to display the item. This
function is typically called when the user of the client application creates an item or
executes a verb, such as Edit, that requires the item to be shown. The default
implementation activates the first frame window displaying the document that
contains the item and, if bTakeFocus is TRUE, gives the window the focus.
Override this function to make the item visible in the window (for example, by
scrolling) and to select the item, if possible.

See the COleException class for a list of return values. The value OLE_OK
indicates that the function operated correctly.

COleServer Item: :OnDo Verb, COleServerItem:: OnExtra Verb,
COleClientltem: : Activate

COleServerltem:: Revoke

Remarks

See Also

void Revoke();

Call this function to revoke the client's access to the item. You should call this
function when the user of the server application destroys an item. This function does
not return until the revoke operation is complete, but it allows other messages to be
processed while waiting.

: :OleRevokeObject

COleServerltem::SetltemName 659

COleServerltem: :SetltemName

Remarks

See Also

void SetltemName(const char* pszltemName);

pszltemName Pointer to the new name of the item.

Call this function to set the name of the item. You should call this function when
you create a linked item; the name must be unique within the document. When a
server application is invoked to edit a linked item, the application uses this name to
find the item. You do not need to call this function for embedded items.

COleServerltem::GetItemName, COleServerDoc::OnGetLinkedltem

660 COleTemplateServer

class COleTemplateServer : public COleServer

See Also

The COleTemplateServer class defines an
Object Linking and Embedding (OLE) server. It
is derived from the abstract class COleServer;
however, you can use COleTemplateServer COleTemplateServer
directly rather than having to derive a class.
COleTemplateServer uses a CDocTemplate
object to manage the server documents. Use COleTemplateServer when
implementing a full server, that is, a server that can be run as a stand-alone appli­
cation. Full servers are typically multiple document interface (MDI) applications,
although single document interface (SDI) applications are supported. One
COleTemplateServer object is needed for each type of server document an
application supports; that is, if your server application supports both worksheets
and charts, you must have two COleTemplateServer objects.

COleTemplateServer overrides the OnCreateDoc, OnEditDoc, and
OnOpenDoc member functions defined by COleServer. These member functions
are called by the OLE system dynamic-link library (DLL) in response to requests
from client applications. Through these member functions, the OLE system DLL
instructs the server to open embedded items as documents or open the documents
that are the source of linked items. See the descriptions for these functions under
COleServer for more information on when these member functions are called.

COleTemplateServer implements these member functions by using the document­
creation facilities of its associated CDocTemplate object. This lets your server
application take advantage of the document/view architecture provided by the
Microsoft Foundation Class Library. To use COleTemplateServer, create a
CDocTemplate object, specifying a COleServerDoc-derived class as the
document class, and add it to your application by passing it to the
AddDocTemplate member function of CWinApp. To execute the server,
pass the document template to the RunEmbedded member function of
COleTemplateServer.

Note The OLE documentation for Windows version 3.1 refers to embedded and
linked items as "objects" and refers to types of items as "classes." This reference
uses the term "item" to distinguish the OLE entity from the corresponding C++
object and the term "type" to distinguish the OLE category from the C++ class.

#include <afxole.h>

CDocTemplate, COleServer, COleServerDoc, COleServerltem

COleTemplateServer::RunEmbedded 661

Construction/Destruction - Public Members
COleTemplateServer Constructs a COleTemplateServer object.

Operations - Public Members
RunEmbedded Launches the server in embedded mode.

Member Functions

COle TemplateServer: :COle TemplateServer

Remarks

See Also

COleTemplateServer() ;

Constructs a COleTemplateServer object. Call the RunEmbedded member
function to run the server.

COleTemplateServer: :RunEmbedded

COleTemplateServer::RunEmbedded
BOOL RunEmbedded(CDocTemplate* pDocTemplate,

BOOL bMultilnstance, LPCSTR IpszCmdLine);

pDocTemplate Pointer to a CDocTemplate object describing the document type.
The document class should be derived from COleServerDoc.

bMultilnstance Flag indicating whether multiple instances of the server applica­
tion can be run simultaneously. Pass TRUE if your server is an SDI application;
TRUE causes a separate instance of your application to run for each client. Pass
FALSE if it is an MDI application since one instance of an MDI application can
support multiple clients using separate document windows. Note that mini servers
are typically SDI applications and full servers are typically MDI applications.

IpszCmdLine Pointer to the command line.

662 COleTemplateServer::RunEmbedded

Remarks Call this function from the InitInstance member function of your
CWinApp-derived application class, passing the command line from
CWinApp::m _lpCmdLine. This function parses the command line to see

Return Value

See Also

whether the "/Embedding" or "-Embedding" option is present; either option
indicates that the server application was launched by a client application. The
function then registers the server with the OLE system DLL so that it can receive
requests from clients. (If the application was launched as a stand-alone application,
the function registers the server application with the Windows registration database
before registering it with the OLE system DLL.) If a filename appeared after the
"/Embedding" or "-Embedding" option (referring to the source of a linked item),
the function then opens the specified file.

Nonzero if the server was launched successfully; otherwise O.

COleServer::Register, CDocTemplate, COleServerDoc,
CWinApp: :InitInstance, CWinApp::m JpCmdLine

CPaintDC 663

class CPaintDC : public CDC

See Also

The CPaintDC class is a device-context class
derived from CDC. It perfonns a
CWnd: :BeginPaint at construction time and
CWnd: :EndPaint at destruction time. A
CPaintDC object can only be used when
responding to a WM_PAINT message, usually
in your OnPaint message-handler member function.

#include <afxwin.h>

CDC

Data Members - Public Members

CPaintDC

mys Contains the P AINTSTRUCT used to paint the client area.

Construction/Destruction - Public Members
CPaintDC Constructs a CPaintDC connected to the specified CWnd.

Data Members - Protected Members
m hWnd The HWND to which this CPaintDC object is attached.

Member Functions

CPaintDC: :CPaintDC

Remarks

CPaintDC(CWnd* pWnd)
throw(CResourceException);

pWnd Points to the CWnd object to which the CPaintDC object belongs.

Constructs a CPaintDC object, prepares the application window for painting, and
stores the PAINTSTRUCT structure in the m ys member variable. An exception
(of type CResourceException) is thrown if the Windows GetDC call fails. A
device context may not be available if Windows has already allocated all of its
available device contexts. Your application competes for the five common display
contexts available at any given time under the Windows operating system.

664 CPaintDC::m_hWnd

Data Members

CPaintDC::m hWnd
Remarks The HWND to which this CPaintDC object is attached. m _ h Wnd is a protected

variable of type HWND.

CPaintDC::m_ps
Remarks

PAINTSTRUCT
Structure

mys is a public member variable of type PAINTSTRUCT.1t is the
PAINTSTRUCT that is passed to and filled out by CWnd: :BeginPaint. The
PAINTSTRUCT contains information that the application uses to paint the client
area of the window associated with a CPaintDC object. Note that you can access
the device-context handle through the P AINTSTRUCT. However, you can access
the handle more directly through the m _ hDC member variable that CPaintDC
inherits from CDC.

The PAINTSTRUCT structure looks like this:

typedef struet tagPAINTSTRUCT
HOC hde;
Baal fErase;
RECT rePaint;
Baal fRestore;
Baal flneUpdate;
BYTE rgbReserved[16];

PAINTSTRUCT;

The PAINTSTRUCT structure contains information that can be used to paint the
client area of a window.

Members

CPaintDC::m_ps 665

hde Identifies the display context to be used for painting.

fErase Specifies whether the background needs to be redrawn. It is not 0 if the
application should redraw the background. The application is responsible for
drawing the background if a Windows window-class is created without a
background brush (see the description of the hbrBaekground member of the
WNDCLASS structure).

rePaint Specifies the upper-left and lower-right comers of the rectangle in which
the painting is requested.

!Restore Reserved member. It is used internally by Windows.

f1neUpdate Reserved member. It is used internally by Windows.

rgbReserved[16] Reserved member. A reserved block of memory used internally
by Windows.

666 CPalette

class CPalette : public CGdiObject
The CPalette class encapsulates a Windows
color palette. A palette provides an interface
between an application and a color output device
(such as a display device). The interface allows CPalette
the application to take full advantage of the color '------------'
capabilities of the output device without severely
interfering with the colors displayed by other applications. The Windows operating
system uses the application's logical palette (a list of needed colors) and the system
palette (which defines available colors) to determine the colors used.

A CPalette object provides member functions for manipulating the palette referred
to by the object. Construct a CPalette object and use its member functions to create
the actual palette, a graphics device interface (GDI) object, and to manipulate its
entries and other properties.

#include <afxwin.h>

Construction/Destruction - Public Members
CPalette Constructs a CPalette object with no attached

Windows palette. You must initialize the CPalette
object with one of the other member functions before
it can be used.

Initialization - Public Members
CreatePalette Initializes a CPalette object by creating a Windows

color palette and attaching the palette to the
CPalette object.

Operations - Public Members
FromHandle

GetPaletteEntries

SetPaletteEntries

Returns a pointer to a CPalette object when given a
handle to a Windows palette object. If a CPalette
object is not already attached to the Windows palette,
a temporary CPalette object is created and attached.

Retrieves a range of palette entries in a logical
palette.

Sets RGB color values and flags in a range of entries
in a logical palette.

AnimatePalette

GetN earestPaletteIndex

ResizePalette

CPalette::AnimatePalette 667

Replaces entries in the logical palette identified by
the CPalette object. The application does not have to
update its client area because the Windows operating
system maps the new entries into the system palette
immediately.

Returns the index of the entry in the logical palette
that most closely matches a color value.

Changes the size of the logical palette specified by
the CPalette object to the specified number of
entries.

Member Functions

CPalette: :AnimatePalette

Remarks

See Also

void AnimatePalette(UINT nStartIndex, UINT nNumEntries,
LPPALETTEENTRY IpPaletteColors);

nStartIndex Specifies the first entry in the palette to be animated.

nNumEntries Specifies the number of entries in the palette to be animated.

IpPaletteColors Points to the first member of an array of PALETTE ENTRY
structures to replace the palette entries identified by nStartlndex and
nNumEntries.

Replaces entries in the logical palette attached to the CPalette object. When an
application calls AnimatePalette, it does not have to update its client area because
Windows maps the new entries into the system palette immediately. The
AnimatePalette function will only change entries with the PC _RESERVED flag
set in the corresponding palPaletteEntry member of the LOGP ALETTE structure
that is attached to the CPalette object.

CPalette:: CreatePalette, : : AnimatePalette

668 CPalette::CPalette

CPalette: :CPalette

Remarks

See Also

CPalette();

Constructs a CPalette object. The object has no attached palette until you call
CreatePalette to attach one.

CPalette:: CreatePalette

CPalette: :CreatePalette

Remarks

Return Value

See Also

BOOL CreatePalette(LPLOGPALETTE IpLogPalette);

IpLogPalette Points to a LOGPALETTE structure that contains information
about the colors in the logical palette.

The LOGPALETTE structure has the following form:

typedef struct tagLOGPALETTE {
WORD palVersion;
WORD palNumEntries;
PALETTEENTRY palPalEntry[l];

LOGPALETTE;

y

Initializes a CPalette object by creating a Windows logical color palette and
attaching it to the CPalette object.

Nonzero if successful; otherwise O.

: :CreatePalette

CPalette::FromHandle

Remarks

static CPalette* PASCAL FromHandle(HPALETTE hPalette);

hPaIe tte A handle to a Windows GDI color palette.

Returns a pointer to a CPalette object when given a handle to a Windows palette
object. If a CPalette object is not already attached to the Windows palette, a
temporary CPalette object is created and attached. This temporary CPalette object

Return Value

CPalette::GetPaletteEntries 669

is valid only until the next time the application has idle time in its event loop, at
which time all temporary graphic objects are deleted. Another way of saying this is
that the temporary object is only valid during the processing of one window
message.

A pointer to a CPalette object if successful; otherwise NULL.

CPalette: :GetNearestPalettelndex

Remarks

Return Value

See Also

UINT GetNearestPaletteIndex(COLORREF crColor) const;

crC olor Specifies the color to be matched.

Returns the index of the entry in the logical palette that most closely matches the
specified color value.

The index of an entry in a logical palette. The entry contains the color that most
nearly matches the specified color.

: : GetN earestPaletteIndex

CPalette: :GetPaletteEntries

Remarks

Return Value

See Also

UINT GetPaletteEntries(UINT nStartIndex, UINT nNumEntries,
LPPALETTEENTRY IpPaletteColors) const;

nStartIndex Specifies the first entry in the logical palette to be retrieved.

nNumEntries Specifies the number of entries in the logical palette to be retrieved.

IpPaletteColors Points to an array of PALETTEENTRY data structures to
receive the palette entries. The array must contain at least as many data structures
as specified by nNumEntries.

Retrieves a range of palette entries in a logical palette.

The number of entries retrieved from the logical palette; 0 if the function failed.

:: GetPaletteEntries

670 CPalette::ResizePalette

CPalette:: ResizePalette

Remarks

Return Value

See Also

BOOL ResizePalette(UINT nNumEntries);

nNumEntries Specifies the number of entries in the palette after it has been
resized.

Changes the size of the logical palette attached to the CPalette object to the
number of entries specified by nNumEntries. If an application calls ResizePalette
to reduce the size of the palette, the entries remaining in the resized palette are
unchanged. If the application calls ResizePalette to enlarge the palette, the
additional palette entries are set to black (the red, green, and blue values are all 0),
and the flags for all additional entries are set to O.

Nonzero if the palette was successfully resized; otherwise O.

: : ResizePalette

CPalette: :SetPaletteEntries

Remarks

Return Value

See Also

UINT SetPaletteEntries(UINT nStartIndex, UINT nNumEntries,
LPPALETTEENTRY IpPaletteColors);

nStartlndex Specifies the first entry in the logical palette to be set.

nNumEntries Specifies the number of entries in the logical palette to be set.

IpPaletteColors Points to an array of PALETTEENTRY data structures to
receive the palette entries. The array must contain at least as many data structures
as specified by nNumEntries.

Sets RGB color values and flags in a range of entries in a logical palette. If the
logical palette is selected into a device context when the application calls
SetPaletteEntries, the changes will not take effect until the application calls
CDC: : RealizePalette.

The number of entries set in the logical palette; 0 if the function failed.

CDC: : RealizePalette, :: SetPaletteEntries

class CPen : public CGdiObject
The CPen class encapsulates a Windows
graphics device interface (ODI) pen.

#include <afxwin.h>

Construction/Destruction - Public Members
CPen Constructs a CPen object.

Initialization - Public Members

CPen 671

CreatePen

CreatePenlndirect

Initializes a pen with the specified style, width, and color.

Initializes a pen with the style, width, and color given in a
LOGPEN structure.

Operations - Public Members
FromHandle Returns a pointer to a CPen object when given a

Windows HPEN.

Member Functions

CPen::CPen
CPen();

CPen(int nPenStyle, int nWidth, COLORREF creolor)
throw(CResourceException);

nPenStyle Specifies the pen style. This parameter can be one of the following
values:

• PS_SOLID Creates a solid pen.

• PS_DASH Creates a dashed pen. Valid only when the pen width is 1.

• PS _DOT Creates a dotted pen. Valid only when the pen width is 1.

• PS_DASHDOT Creates a pen with alternating dashes and dots. Valid
only when the pen width is 1.

672 CPen: :CreatePen

Remarks

See Also

• PS _ DASHDOTDOT Creates a pen with alternating dashes and double
dots. Valid only when the pen width is 1.

• PS _NULL Creates a null pen.

• PS_INSIDEFRAME Creates a pen that draws a line inside the frame of
closed shapes produced by the Windows GDI output functions that specify a
bounding rectangle (for example, the Ellipse, Rectangle, RoundRect, Pie,
and Chord member functions). When this style is used with Windows GDI
output functions that do not specify a bounding rectangle (for example, the
LineTo member function), the drawing area of the pen is not limited by a
frame.

n Width Specifies the width, in logical units, of the pen. If this value is 0, the width
in device units is always 1 pixel, regardless of the mapping mode.

creolor Contains an RGB color for the pen.

If you use the constructor with no arguments, you must initialize the resulting CPen
object with the CreatePen, CreatePenIndirect, or CreateStockObject member
functions. If you use the constructor that takes arguments, then no further
initialization is necessary. The constructor with arguments can throw an exception
if errors are encountered, while the constructor with no arguments will always
succeed.

CPen: :CreatePen, CPen: :CreatePenIndirect,
CGdiObject::CreateStockObject

CPen: :CreatePen

Remarks

BOOL CreatePen(int nPenStyle, int nWidth, COLORREF creolor);

nPenStyle Specifies the style for the pen. For a list of possible values, see the
nPenStyle parameter to the CPen constructor.

nWidth Specifies the width of the pen (in logical units). If this value is 0, the
width in device units is always 1 pixel, regardless of the mapping mode.

creolor Contains an RGB color for the pen.

Initializes a pen with the specified style, width, and color. The pen can be
subsequently selected as the current pen for any device context. Pens that have a
width greater than 1 pixel should always have either the PS _NULL, PS _SOLID,
or PS_INSIDEFRAME style. If a pen has the PS_INSIDEFRAME style and a
color that does not match a color in the logical color table, the pen is drawn with a

Return Value

See Also

CPen: :CreatePenlndirect 673

dithered color. The PS_SOLID pen style cannot be used to create a pen with a
dithered color. The style PS _ INSIDEFRAME is identical to PS _SOLID if the pen
width is less than or equal to 1.

Nonzero if the function is successful; otherwise O.

CPen::CreatePenIndirect, CPen::CPen

CPen: :CreatePenlndirect
BOOL CreatePenIndirect(LPLOGPEN IpLogPen);

IpLogPen Points to the Windows LOGPEN structure that contains information
about the pen.

Remarks Initializes a pen that has the style, width, and color given in the structure pointed to
by IpLogPen. Pens that have a width greater than 1 pixel should always have either
the PS_NULL, PS_SOLID, or PS_INSIDEFRAME style. If a pen has the
PS _ INSIDEFRAME style and a color that does not match a color in the logical
color table, the pen is drawn with a dithered color. The PS _INSIDEFRAME style
is identical to PS_SOLID if the pen width is less than or equal to 1.

Return Value Nonzero if the function is successful; otherwise O.

LOG PEN Structure A LOGPEN structure has this form:

Members

typedef struct tagLOGPEN { /* 19pn */
UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

The LOGPEN structure defines the style, width, and color of a pen, a drawing
object used to draw lines and borders. The CreatePenIndirect function uses the
LOGPEN structure.

lopnStyle Specifies the pen type. This member can be one of the following
values:

• PS_SOLID Creates a solid pen.

• PS_DASH Creates a dashed pen. (Valid only when the pen width is 1.)

• PS _DOT Creates a dotted pen. (Valid only when the pen width is 1.)

• PS_DASHDOT Creates a pen with alternating dashes and dots. (Valid
only when the pen width is 1.)

674 CPen::FromHandle

Comments

See Also

• PS DASHDOTDOT Creates a pen with alternating dashes and double
dots. (Valid only when the pen width is 1.)

• PS _NULL Creates a null pen.

• PS_INSIDEFRAME Creates a pen that draws a line inside the frame of
closed shapes produced by GDI output functions that specify a bounding
rectangle (for example, the Ellipse, Rectangle, RoundRect, Pie, and
Chord member functions). When this style is used with GDI output
functions that do not specify a bounding rectangle (for example, the LineTo
member function), the drawing area of the pen is not limited by a frame.

If a pen has the PS _ INSIDEFRAME style and a color that does not match a
color in the logical color table, the pen is drawn with a dithered color. The
PS _SOLID pen style cannot be used to create a pen with a dithered color.
The PS_INSIDEFRAME style is identical to PS_SOLID if the pen width
is less than or equal to 1.

When the PS _ INSIDEFRAME style is used with GDI objects produced by
functions other than Ellipse, Rectangle, and RoundRect, the line may not
be completely inside the specified frame.

lopn Width Specifies the pen width, in logical units. If the lopn Width member is
0, the pen is 1 pixel wide on raster devices regardless of the current mapping
mode.

lopnColor Specifies the pen color.

The y value in the POINT structure for the lopn Width member is not used.

CPen::CreatePen, CPen::CPen

CPen::FromHandle

Remarks

Return Value

static CPen* PASCAL FromHandle(HPEN hPen);

hPen HPEN handle to Windows GDI pen.

Returns a pointer to a CPen object given a handle to a Windows GDI pen object. If
a CPen object is not attached to the handle, a temporary CPen object is created and
attached. This temporary CPen object is valid only until the next time the
application has idle time in its event loop, at which time all temporary graphic
objects are deleted. In other words, the temporary object is only valid during the
processing of one window message.

A pointer to a CPen object if successful; otherwise NULL.

CPoint 675

class CPoint : public tagPOINT

POINT Structure

Members

See Also

The CPoint class is similar to the Windows POINT structure and also includes
member functions to manipulate CPoint and POINT structures. A CPoint object
can be used wherever a POINT structure is used. The operators of this class that
interact with a "size" accept either CSize objects or SIZE structures, as the two are
interchangeable.

#include <afxwin.h>

The POINT data structure looks like this:

typedef struct tagPOINT {
int x;
int y;

POINT;

The POINT structure defines the x- and y-coordinates of a point.

x Specifies the x -coordinate of a point.

y Specifies the y-coordinate of a point.

CRect, CSize

Construction/Destruction - Public Members
CPoint Constructs a CPoint.

Operations-Public Members
Offset Adds separate values to the x and y members of the CPoint.

operator ==

operator !=

operator +=

operator -=

Checks for equality between two points.

Checks for inequality between two points.

Offsets a CPoint by a size.

Subtracts a size from the CPoint.

Operators Returning CPoint Values-Public Members
operator +

operator -

Returns a CPoint offset by a size.

Returns a CPoint offset by a negative size.

Operators Returning CSize Values-Public Members
operator - Returns the size difference between two points.

676 CPoint::CPoint

Member Functions

CPoint: :CPoint

Remarks

CPoint();

CPoint(int initX, int initY);

CPoint(POINT initPt);

CPoint(SIZE initSize);

CPoint(DWORD dwPoint);

initX Sets the x member for the CPoint.

initY Sets the y member for the CPoint.

initPt Windows POINT structure or CPoint used to initialize CPoint.

initSize Sets the x and y members equal to the corresponding values in ex and ey
values in initSize.

dwPoint Sets the low-order word to the x member and the high-order word to the
y member.

Constructs a CPoint object. If no arguments are given, x and y members are not
initialized.

CPoint::Offset
void Offset(int xOffset, int yOffset);

void Offset(POINT point);

void Offset(SIZE size);

xOffset Specifies the amount to offset the x member of the CPoint.

yOffset Specifies the amount to offset the y member of the CPoint.

point Specifies the amount (POINT or CPoint) to offset the CPoint.

Remarks

Return Value

Operators

CPoint::operator += 677

size Specifies the amount (SIZE or CSize) to offset the CPoint.

Adds separate values to the x and y members of the CPoint.

A CPoint offset by a POINT, CPoint, CSize, or SIZE.

CPoint::operator ==

Remarks

Return Value

BOOL operator ==(POINT point) const;

point Contains a POINT structure or CPoint object.

Checks for equality between two points.

Nonzero if the points are equal; otherwise O.

CPoint::operator !=

Remarks

Return Value

BOOL operator !=(POINT point) const;

point Contains a POINT structure or CPoint object.

Checks for inequality between two points.

Nonzero if the points are not equal; otherwise O.

CPoint::operator +=

Remarks

void operator +=(SIZE size);

size Contains a SIZE structure or CSize object.

Offsets a CPoint by a size.

678 CPoint::operator-=

CPoint::operator -=

Remarks

void operator -=(SIZE size);

size Contains a SIZE structure or CSize object.

Subtracts a size from the CPoint.

CPoint::operator +

Return Value

CPoint operator +(SIZE size) const;

size Contains a SIZE structure or CSize object.

A CPoint that is offset by a size.

CPoint::operator -

Return Value

CSize operator -(POINT point) const;

CPoint operator -(SIZE size) const;

CPoint operator -() const;

point Contains a POINT structure or CPoint object.

size Contains a SIZE structure or CSize object.

A CSize that is the difference between two points, or returns a CPoint that is offset
by a negative size.

class CPrintDialog : public CDialog
The CPrintDialog class encapsulates
the services provided by the Windows
common dialog box for printing.
Common print dialog boxes provide an
easy way to implement Print and Print
Setup dialog boxes in a manner
consistent with Windows standards.

If you wish, you can rely on the

CPrintDialog 679

CPrintDialog

framework to handle many aspects of the printing process for your application. In
this case, the framework automatically displays the Windows common dialog box
for printing. You can also have the framework handle printing for your application
but override the common Print dialog box with your own Print dialog box. For more
information on using the framework to handle printing tasks, see Chapter 9 of the
Class Library User's Guide.

If you want your application to handle printing without the framework's involve­
ment, you can use the CPrintDialog class "as is" with the constructor provided, or
you can derive your own dialog class from CPrintDialog and write a constructor
to suit your needs. In either case, these dialog boxes will behave like standard
Microsoft Foundation class dialog boxes because they are derived from class
CDialog.

To use a CPrintDialog object, first create the object using the CPrintDialog
constructor. Once the dialog box has been constructed, you can set or modify any
values in the m yd structure to initialize the values of the dialog box's controls.
The myd structure is of type PRINTDLG. For more information on this structure,
see the Windows Software Development Kit (SDK) documentation.

If you do not supply your own handles in m yd for the hDevMode and
hDevNames members, be sure to call the Windows function GlobaIFree for
these handles when you are done with the dialog box.

After initializing the dialog box controls, call the DoModaI member function to
display the dialog box and allow the user to select the path and file. DoModaI
returns whether the user selected the OK (IDOK) or the Cancel (IDCANCEL)
button.

If DoModaI returns IDO K, you can use one of CPrintDialog' s member functions
to retrieve the information input by the user.

The CPrintDialog::GetDefaults member function is useful for retrieving the
current printer defaults without displaying a dialog box. This member function
requires no user interaction.

680 CPrintDialog

You can use the Windows CommDlgExtendedError function to determine if an
error occurred during initialization of the dialog box and to learn more about the
error. For more information on this function, see the Windows SDK documentation.

CPrintDialog relies on the COMMDLG.DLL file that ships with Windows version
3.1. For details about redistributing COMMDLG.DLL to Windows version 3.0
users, see the Getting Started manual for the Windows version 3.1 SDK.

To customize the dialog box, derive a class from CPrintDialog, provide a custom
dialog template, and add a message map to process the notification messages from
the extended controls. Any unprocessed messages should be passed on to the base
class. Customizing the hook function is not required.

To process the same message differently depending on whether the dialog box is
Print or Print Setup, you must derive a class for each dialog box. You must also
override the Windows AttachOnSetup function, which handles the creation of a
new dialog box when the Print Setup button is selected within a Print dialog box.

#include <afxdlgs.h>

Data Members - Public Members
myd A structure used to customize a CPrintDialog object.

Construction/Destruction - Public Members
CPrintDialog Constructs a CPrintDialog object.

Operations - Public Members
DoModal

GetCopies

GetDefaults

GetDeviceN arne

GetDevMode

GetDriver Name

GetFromPage

GetToPage

GetPortName

GetPrinter DC

Displays the dialog box and allows the user to make a
selection.

Retrieves the number of copies requested.

Retrieves device defaults without displaying a dialog box.

Retrieves the name of the currently selected printer device.

Retrieves the DEVMODE structure.

Retrieves the name of the currently selected printer driver.

Retrieves the starting page of the print range.

Retrieves the ending page of the print range.

Retrieves the name of the currently selected printer port.

Retrieves a handle to the printer device context.

PrintAIl

PrintCollate

PrintRange

PrintS election

CPrintDialog: :CPrintDialog 681

Detennines whether to print all pages of the document.

Detennines whether collated copies are requested.

Detennines whether to print only a specified range of pages.

Detennines whether to print only the currently selected items.

Member Functions

CPrintDialog: :CPrintDialog

Remarks

See Also

CPrintDialog(BOOL bPrintSetupOnly, DWORD dwFlags = PD _ ALLP AGES
I PD_USEDEVMODECOPIES I PD_NOPAGENUMS I
PD _ HIDEPRINTTOFILE I PD _ NOSELECTION,
CWnd* pParentWnd = NULL);

bPrintSetupOnly Specifies whether the standard Windows Print dialog box or
Print Setup dialog box is displayed. Set this parameter to TRUE to display the
standard Windows Print Setup dialog box. Set it to FALSE to display the
Windows Print dialog box. If bPrintSetupOnly is FALSE, a Print Setup option
button is still displayed in the Print dialog box.

dwFlags One or more flags you can use to customize the settings of the
dialog box, combined using the bitwise-OR operator. For example, the
PD _ ALLP AGES flag sets the default print range to all pages of the document.
See the PRINTDLG structure in the Windows SDK for more infonnation on
these flags.

pParentWnd A pointer to the dialog box's parent or owner window.

Constructs either a Windows Print or Print Setup dialog object. This member
function only constructs the object. Use the DoModal member function to invoke
the dialog box.

CPrintDialog::DoModal, ::PrintDlg, PRINTDLG

682 CPrintDialog::DoModal

CPrintDialog:: DoModal

Remarks

Return Value

See Also

virtual int DoModal();

Call this function to display the Windows common print dialog box and allow the
user to select various printing options such as the number of copies, page range, and
whether copies should be collated.

If you want to initialize the various print dialog options by setting members of the
m _pd structure, you should do this before calling DoModal, but after the dialog
object is constructed.

After calling DoModal, you can call other member functions to retrieve the settings
or information input by the user into the dialog box.

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or
Cancel button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError
function to determine if an error occurred.

CPrintDialog:: CPrintDialog, CDialog: :DoModal

CPrintDialog: :GetCopies

Remarks

Return Value

See Also

int GetCopies() const;

Call this function after calling DoModal to retrieve the number of copies requested.

The number of copies requested.

CPrintDialog: :PrintCollate

CPrintDialog: :GetDevMode 683

CPrintDialog: :GetDefaults

Remarks

Return Value

See Also

BOOL GetDefaults();

Call this function to retrieve the device defaults of the default printer without
displaying a dialog box. The retrieved values are placed in the m yd structure.

Nonzero if the function was successful; otherwise O.

CPrintDialog::m _pd

CPrintDialog: :GetDeviceName

Remarks

Return Value

See Also

CString GetDeviceName() const;

Call this function after calling DoModal to retrieve the name of the currently
selected printer.

The name of the currently selected printer.

CPrintDialog::GetDriverName, CPrintDialog::GetDevMode,
CPrintDialog: : GetPortName

CPrintDialog: :GetDevMode

Remarks

Return Value

LPDEVMODE GetDevMode() const;

Call this function after calling DoModal to retrieve information about the printing
device.

The DEVMODE data structure, which contains information about the device
initialization and environment of a print driver. You must free the memory taken by
this structure with the Windows GlobalFree function. See PRINTDLG in the
Windows SDK reference for more information about using GlobalFree.

684 CPrintDialog: :GetDriverName

See Also

A DEVMODE data structure has this form:

#include <print.h>
typedef struct tagDEVMODE { /* dm */

char dmDeviceName[CCHDEVICENAME];
UINT dmSpecVersion;
UINT dmDriverVersion;
UINT dmSize;
UINT dmDriverExtra;
DWORD dmFields;
int dmOrientation;
int dmPaperSize;
int dmPaperLength;
int dmPaperWidth;
int dmScale;
int dmCopies;
int dmDefaultSource;
int dmPrintQuality;
int dmColor;
int dmDuplex;
int dmYResolution;
int dmTTOption;

DEVMODE;

For more complete information about this structure, see DEVMODE in the
Windows SDK documentation.

CDC:: GetDeviceCaps

CPrintDialog: :GetDriverName

Remarks

Return Value

See Also

CString GetDriverName() const;

Call this function after calling DoModai to retrieve the name of the currently
selected printer device driver.

The name of the currently selected printer device driver.

CPrintDiaiog: : GetDeviceName, CPrintDiaiog: : GetDevMode,
CPrintDiaiog:: GetPortName

CPrintDialog: :GetPrinterDC 685

CPrintDialog: :GetFromPage

Remarks

Return Value

See Also

int GetFromPage() const;

Call this function after calling DoModal to retrieve the starting page number in the
range of pages to be printed.

The starting page number in the range of pages to be printed.

CPrintDialog: : GetToPage, CPrintDialog: :PrintRange

CPrintDialog: :GetPortName

Remarks

Return Value

See Also

CString GetPortName() const;

Call this function after calling DoModal to retrieve the name of the currently
selected printer port.

The name of the currently selected printer port.

CPrintDialog: : GetDriver Name, CPrintDialog: : GetDeviceName

CPrintDialog: :GetPrinterDC

Remarks

Return Value

HDC GetPrinterDC() const;

If the bPrintSetupOnly parameter of the CPrintDialog constructor was FALSE
(indicating that the Print dialog box is displayed), then GetPrinterDC returns a
handle to the printer device context. You must call the Windows DeleteDC
function to delete the device context when you are done using it.

A handle to the printer device context if successful; otherwise NULL.

686 CPrintDialog::GetToPage

CPri ntDialog: :GetToPage

Remarks

Return Value

See Also

int GetToPage() const;

Call this function after calling DoModal to retrieve the ending page number in the
range of pages to be printed.

The ending page number in the range of pages to be printed.

CPrintDialog:: GetFromPage, CPrintDialog: :PrintRange

CPrintDialog: :PrintAIl

Remarks

Return Value

See Also

BOOL PrintAll() const;

Call this function after calling DoModal to determine whether to print all pages in
the document.

Nonzero if all pages in the document are to be printed; otherwise O.

CPrintDialog: :PrintRange, CPrintDialog: :PrintSelection

CPri ntDialog:: Pri ntCollate

Remarks

Return Value

See Also

BOOL PrintCollate() const;

Call this function after calling DoModal to determine whether the printer should
collate all printed copies of the document.

Nonzero if the user selects the collate check box in the dialog box; otherwise O.

CPrintDialog: : GetCopies

CPrintDialog: :PrintRange

Remarks

BOOL PrintRange() const;

Call this function after calling DoModal to determine whether to print only a range
of pages in the document.

Return Value

See Also

CPrintDialog::m_pd 687

Nonzero if only a range of pages in the document are to be printed; otherwise O.

CPrintDialog: :PrintAlI, CPrintDialog: :PrintSelection,
CPrintDialog::GetFromPage, CPrintDialog::GetToPage

CPrintDialog: :PrintSelection

Remarks

Return Value

See Also

BOOL PrintSelection() const;

Call this function after calling DoModal to determine whether to print only the
currently selected items.

Nonzero if only the selected items are to be printed; otherwise O.

CPrintDialog: :PrintRange, CPrintDialog: :PrintAlI

Data Members

CPrintDialog::m_pd

Remarks

PRINTDLG FAR& m _pd;

A structure whose members store the characteristics of the dialog object. After
constructing a CPrintDialog object, you can use m yd to set various aspects of the
dialog box before calling the DoModal member function. For more information on
the m yd structure, see PRINTDLG in the Windows SDK documentation.

If you modify the m yd data member directly, you will override any default
behavior.

688 CPrintlnfo

struct CPrintlnfo

See Also

CPrintlnfo stores information about a print or print-preview job. The framework
creates an object of CPrintlnfo each time the Print or Print Preview command is
chosen and destroys it when the command is completed.

CPrintlnfo contains information about both the print job as a whole, such as the
range of pages to be printed, and the current status of the print job, such as the page
currently being printed. Some information is stored in an associated CPrintDialog
object; this object contains the values entered by the user in the Print dialog box.

A CPrintlnfo object is passed between the framework and your view class during
the printing process and is used to exchange information between the two. For
example, the framework informs the view class which page of the document to print
by assigning a value to the m _ nCurPage member of CPrintlnfo; the view class
retrieves the value and performs the actual printing of the specified page.

Another example is the case when the length of the document is not known until it is
printed. In this situation, the view class tests for the end of the document each time
a page is printed. When the end is reached, the view class sets the
m _ bContinuePrinting member of CPrintlnfo to FALSE; this informs the
framework to stop the print loop.

CPrintlnfo is used by the member functions of CView that are listed under "See
Also." For more information about the printing architecture provided by the
Microsoft Foundation Class Library, see Chapter 4 in this manual and Chapter 9 of
the Class Library User's Guide.

#include <afxext.h>

CView: :OnBeginPrinting, CView: :OnEndPrinting,
CView: :OnEndPrintPreview, CView: :OnPrepareDC,
CView: :OnPreparePrinting, CView: : On Print

Data Members - Public Members
m yPD Contains a pointer to CPrintDialog object used for the

Print dialog box.

m bPreview Contains a flag indicating whether the document is being
previewed.

m _ bContinuePrinting Contains a flag indicating whether the framework should
continue the print loop.

m _ nCurPage Identifies the number of the page currently being printed.

m _ nNumPreviewPages Identifies the number of pages displayed in the preview
window; either 1 or 2.

m _lpUserData

m rectDraw

m _ strPageDesc

CPrintlnfo: :GetMaxPage 689

Contains a pointer to a user-created structure.

Specifies a rectangle defining the current usable page
area.

Contains a format string for page-number display.

Attributes - Public Members
SetMinPage

SetMaxPage

GetMinPage

GetMaxPage

GetFromPage

GetToPage

Sets the number of the first page of the document.

Sets the number of the last page of the document.

Returns the number of the first page of the document.

Returns the number of the last page of the document.

Returns the number of the first page being printed.

Returns the number of the last page being printed.

Member Functions

CPrintlnfo: :GetFromPage

Remarks

See Also

UINT GetFromPage();

Call this function to retrieve the number of the first page to be printed. This is the
value specified by the user in the Print dialog box, and it is stored in the
CPrintDialog object referenced by the m _pPD member. If the user has not
specified a value, the default is the first page of the document.

CPrintInfo::m _ nCurPage, CPrintInfo::m _pPD, CPrintInfo: : GetToPage

CPrintlnfo: :GetMaxPage

Remarks

See Also

UINT GetMaxPage();

Call this function to retrieve the number of the last page of the document. This value
is stored in the CPrintDialog object referenced by the m _pPD member.

CPrintInfo::m _ nCurPage, CPrintInfo::m _pPD, CPrintInfo: : GetMinPage,
CPrintInfo: :SetMaxPage, CPrintInfo: :SetMinPage

690 CPrintlnfo::GetMinPage

CPrintlnfo::GetMinPage

Remarks

See Also

UINT GetMinPage();

Call this function to retrieve the number of the first page of the document. This
value is stored in the CPrintDialog object referenced by the m yPD member.

CPrintInfo::m _ nCurPage, CPrintInfo::m _pPD, CPrintInfo: : GetMaxPage,
CPrintInfo: :SetMaxPage, CPrintInfo: :SetMinPage

CPrintlnfo: :GetToPage

Remarks

See Also

UINT GetToPage();

Call this function to retrieve the number of the last page to be printed. This is the
value specified by the user in the Print dialog box, and it is stored in the
CPrintDialog object referenced by the m _pPD member. If the user has not
specified a value, the default is the last page of the document.

CPrintInfo::m _ nCurPage, CPrintInfo::m _pPD, CPrintInfo: : GetFromPage

CPri ntlnfo: :SetMaxPage

Remarks

See Also

void SetMaxPage(UINT nMaxPage);

nMaxPage Number of the last page of the document.

Call this function to specify the number of the last page of the document. This value
is stored in the CPrintDialog object referenced by the m yPD member. If the
length of the document is known before it is printed, call this function from your
override of CView: :OnPreparePrinting. If the length of the document depends on
a setting specified by the user in the Print dialog box, call this function from your
override of CView::OnBeginPrinting. If the length of the document is not known
until it is printed, use the m _ bContinuePrinting member to control the print loop.

CPrintInfo::m _ bContinuePrinting, CPrintInfo::m _ nCurPage,
CPrintInfo::m _pPD, CPrintInfo: : GetMinPage, CPrintInfo: : GetToPage,
CPrintInfo: :SetMinPage, CView: :OnBeginPrinting,
CView: :OnPreparePrinting

CPrintlnfo::m_bPreview 691

CPrintlnfo::SetMinPage

Remarks

See Also

void SetMinPage(UINT nMinPage);

nMinPage Number of the first page of the document.

Call this function to specify the number of the first page of the document. Page
numbers normally start at 1. This value is stored in the CPrintDialog object
referenced by the m _pPD member.

CPrintInfo::m _ nCurPage, CPrintInfo::m _pPD, CPrintInfo: : GetMaxPage,
CPrintInfo: : GetMinPage, CPrintInfo: :SetMaxPage

Data Members

CPrintlnfo::m_bContinuePrinting
Remarks

See Also

Contains a flag indicating whether the framework should continue the print loop. If
you are doing print -time pagination, you can set this member to FALSE in your
override of CView: :OnPrepareDC once the end of the document has been
reached. You do not have to modify this variable if you have specified the length of
the document at the beginning of the print job using the SetMaxPage member
function. The m _ bContinuePrinting member is a public variable of type BOOL.

CPrintInfo: :SetMaxPage, CView:: OnPrepareDC

CPrintlnfo::m bPreview
Remarks

See Also

Contains a flag indicating whether the document is being previewed. This is set by
the framework depending on which command the user executed. The Print dialog
box is not displayed for a print-preview job. The m_bPreview member is a public
variable of type BOOL.

CView: : DoPreparePrinting, CView: :OnPreparePrinting

692 CPrintlnfo::mJpUserData

CPrintlnfo::m_lpUserData
Remarks Contains a pointer to a user-created structure. You can use this to store printing­

specific data that you don't want to store in your view class. The m_lpUserData
member is a public variable of type LPVOID.

CPrintlnfo::m_nCurPage
Remarks

See Also

Contains the number of the current page. The framework calls
CView: :OnPrepareDC and CView: :OnPrint once for each page of the
document, specifying a different value for this member each time; its values range
from the value returned by GetFromPage to that returned by GetToPage. Use this
member in your overrides of CView::OnPrepareDC and CView::OnPrint to
print the specified page of the document.

When preview mode is first invoked, the framework reads the value of this member
to determine which page of the document should be previewed initially. You can set
the value of this member in your override of CView: :OnPreparePrinting to
maintain the user's current position in the document when entering preview mode.
The m_nCurPage member is a public variable of type UINT.

CPrintInfo::GetFromPage, CPrintInfo::GetToPage, CView::OnPrepareDC,
CView: :OnPreparePrinting, CView: :OnPrint

C Pri ntl nfo: : m _ n N u m PreviewPages
Remarks

See Also

Contains the number of pages displayed in preview mode; it can be either 1 or 2.
The m _ nNumPreviewPages member is a public variable of type UINT.

CPrintInfo::m _ str PageD esc

CPrintlnfo::m_pPD
Remarks

See Also

Contains a pointer to the CPrintDialog object used to display the Print dialog box
for the print job. The m yPD member is a public variable of type CPrintDialog*.

CPrintDialog

CPrintlnfo::m_strPageDesc 693

CPrintlnfo::m rectDraw
Remarks

See Also

Specifies the usable drawing area of the page in logical coordinates. You may want
to refer to this in your override of CView:: OnPrint. You can use this member to
keep track of what area remains usable after you print headers, footers, etc. The
m _rectDraw member is a public variable of type CRect.

CView: :OnPrint

C Pri ntl nfo: : m _ strPageDesc
Remarks

See Also

Contains a format string used to display the page numbers during print preview; this
string consists of two substrings, one for single-page display and one for double­
page display, each terminated by a '\n' character. The framework uses "Page
%u\nPages %u-%u\n" as the default value. If you want a different format for the
page numbers, specify a format string in your override of
CView::OnPreparePrinting. The m_strPageDesc member is a public variable of
type CString.

CView: :OnPreparePrinting

694 CPtrArray

class CPtrArray : public CObject
The CPtr Array class supports arrays of void
pointers. The member functions of CPtr Array are
similar to the member functions of class CObArray. L...C_P_tr_A_rr~aY _____ ----l

Because of this similarity, you can use the
CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a pointer
to void.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

vaid* CPtrArray::GetAt(int <nlndex>) canst;

CPtr Array incorporates the IMPLEMENT _DYNAMIC macro to support run­
time type access and dumping to a CDumpContext object. If you need a dump of
individual pointer array elements, you must set the depth of the dump context to 1 or
greater. Pointer arrays may not be serialized. When a pointer array is deleted, or
when its elements are removed, only the pointers are removed, not the entities they
reference.

#include <afxcoll.h>

Construction/Destruction - Public Members
CPtrArray

""CPtrArray

Constructs an empty array for void pointers.

Destroys a CPtr Array object.

Bounds - Public Members
GetSize

GetUpperBound

SetSize

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Operations - Public Members
FreeExtra

RemoveAIl

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

CPtrArray 695

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; array is not allowed to grow.

Returns a temporary reference to the element pointer within
the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

696 CPtrList

class CPtrList : public CObject
The CPtrList class supports lists of void pointers.
The member functions of CPtr List are similar to the
member functions of class CObList. Because of this
similarity, you can use the CObList reference

I CObject

Y CPtrList

documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a pointer to void.

CObject*& CObList: :GetHead() canst;

for example, translates to

vaid*& CPtrList::GetHead() canst;

CPtrList incorporates the IMPLEMENT_DYNAMIC macro to support run-time
type access and dumping to a CDumpContext object. If you need a dump of
individual pointer list elements, you must set the depth of the dump context to 1 or
greater. Pointer lists may not be serialized. When a CPtrList object is deleted, or
when its elements are removed, only the pointers are removed, not the entities they
reference.

#include <afxcoll.h>

Construction/Destruction - Public Members
CPtrList Constructs an empty list for void pointers.

Head/Tail Access - Public Members
GetHead

GetTaii

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

Operations - Public Members
RemoveHead

RemoveTaii

AddHead

AddTaii

RemoveAII

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

Adds an element (or all the elements in another list) to the
tail of the list (makes a new tail).

Removes all the elements from this list.

CPtrList 697

Iteration - Public Members
GetHeadPosition Returns the position of the head element of the list.

GetTailPosition Returns the position of the tail element of the list.

GetNext Gets the next element for iterating.

GetPrev Gets the previous element for iterating.

Retrieval/Modification - Public Members
GetAt

SetAt

RemoveAt

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by position.

Insertion - Public Members
InsertBefore

InsertAfter

Inserts a new element before a given position.

Inserts a new element after a given position.

Searching - Public Members
Find

Findlndex

Gets the position of an element specified by pointer value.

Gets the position of an element specified by a zero-
based index.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

698 CRect

class CRect : public tagRECT

REeT Structure

The CRect class is similar to a Windows RECT structure and also includes
member functions to manipulate CRect objects and Windows RECT structures. A
CRect object can be passed as a function parameter wherever an LPRECT or
RECT structure can be passed.

A CRect contains member variables that define the top-left and bottom-right points
of a rectangle. The width or height of the rectangle defined by CRect must not
exceed 32,767 units.

When specifying a CRect, you must be careful to construct it so that the top-left
point is above and to the left of the bottom-right point in the Windows coordinate
system; otherwise, the CRect will not be recognized by some functions, such as
IntersectRect, UnionRect, and PtlnRect. For example, a top left of (10,10) and
bottom right of (20,20) defines a valid rectangle; a top left of (20,20) and bottom
right of (10,10), an empty rectangle.

Use caution when manipulating a CRect with the CDC::DPtoLP and
CDC::LPtoDP member functions. If the mapping mode of a display context is such
that the y-extent is negative, as in MM_LOENGLISH, then CDC::DPtoLP will
transform the CRect so that its top is greater than the bottom. Functions such as
Height and Size will then return negative values for the height of the transformed
CRect.

When using overloaded CRect operators, the first operator must be a CRect; the
second can be either a RECT structure or a CRect object.

#include <afxwin.h>

The RECT data structure looks like this:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

The RECT structure defines the coordinates of the upper-left and lower-right
comers of a rectangle.

Members

See Also

CRect 699

left Specifies the x-coordinate of the upper-left comer of a rectangle.

top Specifies the y-coordinate of the upper-left comer of a rectangle.

right Specifies the x-coordinate of the lower-right comer of a rectangle.

bottom Specifies the y-coordinate of the lower-right comer of a rectangle.

CPoint, CSize

Construction/Destruction - Public Members
CRect Constructs a CRect object.

Operations - Public Members
Width Calculates the width of CRect.

Height Calculates the height of CRect.

Size

TopLeft

BottomRight

IsRectEmpty

IsRectNull

PtlnRect

SetRect

SetRectEmpty

CopyRect

EqualRect

InflateRect

OffsetRect

SubtractRect

IntersectRect

UnionRect

Calculates the size of CRect.

Returns a reference to the top-left point of CRect.

Returns a reference to the bottom-right point of CRect.

Determines whether CRect is empty. CRect is empty if
the width and/or height are O.

Determines if the top, bottom, left, and right member
variables are all equal to O.

Determines whether the specified point lies within CRect.

Sets the dimensions of CRect.

Sets CRect to an empty rectangle (all coordinates equal to
0).

Copies the dimensions of a source rectangle to CRect.

Determines whether CRect is equal to the given rectangle.

Increases or decreases the width and height of CRect.

Moves CRect by the specified offsets.

Subtracts one rectangle from another.

Sets CRect equal to the intersection of two rectangles.

Sets CRect equal to the union of two rectangles.

700 CRect::BottomRight

Operators - Public Members
operator LPCRECT Converts a CRect to an LPCRECT.

operator LPRECT

operator =

operator ==

operator !=

operator +=

operator -=

operator &=

operator 1=

operator +

operator -

operator &

operator 1

Converts a CRect to an LPRECT.

Copies the dimensions of a rectangle to CRect.

Determines whether CRect is equal to a rectangle.

Determines whether CRect is not equal to a rectangle.

Adds the specified offsets to CRect.

Subtracts the specified offsets from CRect.

Sets CRect equal to the intersection of CRect and a
rectangle.

Sets CRect equal to the union of CRect and a rectangle.

Adds the given offsets to CRect and returns the resulting
CRect.

Subtracts the given offsets from CRect and returns the
resulting CRect.

Creates the intersection of CRect and a rectangle and
returns the resulting CRect.

Creates the union of CRect and a rectangle and returns the
resulting CRect.

Member Functions

CRect::BottomRight

Remarks

Return Value

CPoint& BottomRight();

Returns a reference to the bottom-right point of CRect.

CPOINT&, a reference to a CPoint object.

CRect::CRect 701

CRect: :CopyRect

Remarks

See Also

void CopyRect(LPCRECT IpSrcRect);

IpSrcRect Points to the RECT structure or CRect object whose dimensions are
to be copied.

Copies the IpSrcRect rectangle to the CRect object.

::CopyRect, CRect::operator =

CRect::CRect
CRect();

CRect(int I, int t, int r, int b);

CRect(const RECT & srcRect);

CRect(LPCRECT IpSrcRect);

CRect(POINT point, SIZE size);

Specifies the left position of the CRect.

t Specifies the top of the CRect.

r Specifies the right position of the CRect.

b Specifies the bottom of the CRect.

srcRect Refers to the RECT structure with the coordinates for the CRect object.

IpSrcRect Points to the RECT structure with the coordinates for the CRect
object.

point Specifies the origin point for the rectangle to be constructed. Corresponds to
the top-left comer.

size Specifies the displacement from the top-left comer to the bottom-right comer
of the rectangle to be constructed.

702 CRect::EquaIRect

Remarks Constructs a CRect object. The CRect(const RECT &) and
CRect(LPCRECT) constructors perform a CopyRect. The other constructors
initialize the member variables of the object directly.

See Also CRect: :SetRect, CRect: :CopyRect, CRect: :operator =

CRect::EquaIRect

Return Value

See Also

BOOL EqualRect(LPCRECT IpRect) const;

IpRect Points to a RECT structure or CRect object that contains the upper-left
and lower-right comer coordinates of a rectangle.

Nonzero if the two rectangles have the same top, left, bottom, and right values;
otherwise O.

: :EqualRect

CRect::Height

Remarks

Return Value

int Height() const;

Calculates the height of CRect by subtracting the top value from the bottom value.
The resulting value may be negative.

The height of CRect.

CRect::lnflateRect
void InflateRect(int x, int y);

void InflateRect(SIZE size);

x Specifies the amount to increase or decrease the width of CRect. It must be
negative to decrease the width.

Remarks

See Also

CRect::lsRectEmpty 703

y Specifies the amount to increase or decrease the height of CRect. It must be
negative to decrease the height.

size Contains a SIZE or CSize that specifies the amounts to add to the CRect's
height and width.

The parameters of InflateRect are signed values; positive values inflate the CRect
and negative values deflate it. When inflated, the width of CRect is increased by
two times x and its height is increased by two times y.

::InflateRect

C Reet: : Intersect Reet

Remarks

Return Value

See Also

BOOL IntersectRect(LPCRECT IpRectl, LPCRECT IpRect2);

IpRectl Points to a RECT structure or CRect object that contains a source
rectangle.

IpRect2 Points to a RECT structure or CRect object that contains a source
rectangle.

Makes a CRect equal to the intersection of two existing rectangles. The
intersection is the largest rectangle contained in both existing rectangles.

Note The value of the left coordinate must be less than the right and the top less
than the bottom for both IpRectl and IpRect2.

Nonzero if the intersection is not empty; 0 if the intersection is empty.

::IntersectRect, CRect::operator &=, CRect::operator &

CReet: :lsReetEmpty

Remarks

BOOL IsRectEmpty() const;

Determines if CRect is empty. A rectangle is empty if the width and/or height are 0
or negative. Differs from IsRectNull, which determines if the rectangle is NULL.

704 CRect::lsRectNull

Return Value

See Also

Nonzero if CRect is empty; 0 if CRect is not empty.

::IsRectEmpty, CRect::IsRectNull

CRect: :lsRectNull

Remarks

Return Value

See Also

BOOL IsRectNullO const;

Determines if the top, left, bottom, and right values of the CRect are all equal to O.
Differs from IsRectEmpty, which determines if the rectangle is empty.

Nonzero if the CRect object's top, left, bottom, and right values are all equal to 0;
otherwise O.

CRect: :IsRectEmpty

CRect: :OffsetRect

Remarks

void OffsetRect(int x, int y);

void OffsetRect(POINT point);

void OffsetRect(SIZE size);

x Specifies the amount to move left or right. It must be negative to move left.

y Specifies the amount to move up or down. It must be negative to move up.

point Contains a POINT or CPoint specifying both dimensions by which to
move.

size Contains a SIZE or CSize specifying both dimensions by which to move.

Moves CRect by the specified offsets. Moves CRect x units along the x-axis and y
units along the y-axis. The x and y parameters are signed values, so CRect can be
moved left or right and up or down.

CRect::SetRectEmpty 705

CRect::PtlnRect

Remarks

Return Value

See Also

BOOL PtInRect(POINT point) const;

point Contains a POINT structure or CPoint object.

Detennines whether the specified point lies within CRect. A point is within CRect
if it lies on the left or top side or is within all four sides. A point on the right or
bottom side is outside CRect.

Note The value of the left coordinate of CRect must be less than the right and the
top less than the bottom.

Nonzero if the point lies within CRect; otherwise O.

::PtInRect

CRect::SetRect

Remarks

See Also

void SetRect(int xl, int yl, int x2, int y2);

xl Specifies the x-coordinate of the upper-left comer.

yl Specifies the y-coordinate of the upper-left comer.

x2 Specifies the x-coordinate of the lower-right comer.

y2 Specifies the y-coordinate of the lower-right comer.

Sets the dimensions of CRect to the specified coordinates.

CRect::CRect, CRect::SetRectEmpty, ::SetRect

CRect: :SetRectEmpty

Remarks

See Also

void SetRectEmpty();

Creates a NULL rectangle (all coordinates equal to 0).

: :SetRectEmpty

706 CRect::Size

CRect::Size

Return Value

CSize Size() const;

The CRect width and height encapsulated as the cx and cy member variables of a
CSize object.

CRect: :SubtractRect
Windows 3.1 Only BOOL SubtractRect(LPCRECT IpRectSrcl, LPCRECT IpRectSrc2); •

Remarks

Return Value

See Also

IpRectSrcl Points to the RECT structure from which a rectangle is to be
subtracted.

IpRectSrc2 Points to the RECT structure that is to be subtracted from the
rectangle pointed to by the IpRectSrcl parameter.

Makes the dimensions of a CRect object equal to the subtraction of IpRectSrc2
from IpRectSrcl. The rectangle specified by IpRectSrc2 is subtracted from the
rectangle specified by IpRectSrcl only when the rectangles intersect completely in
either the x- or y-direction. For example, if IpRectSrcl were (10,10, 100,100) and
IpRectSrc2 were (50,50, 150,150), the rectangle pointed to by IpRectSrcl would
contain the same coordinates as the originallpRectSrcl when the function returned.
IT IpRectSrcl were (10,10, 100,100) and IpRectSrc2 were (50,10, 150,150),
however, the rectangle pointed to by IpRectSrcl would contain the coordinates
(10,10,50,100) when the function returned.

Nonzero if the function is successful; otherwise 0.

CRect::lntersectRect, ::UnionRect, ::SubtractRect

CRect::TopLeft
CPoint& TopLeft();

Return Value A reference to the top-left point of CRect.

CRect: :operator LPCRECT 707

CRect: :UnionRect

Remarks

Return Value

See Also

BOOL UnionRect(LPCRECT lpRectl, LPCRECT lpRect2);

lpRectl Points to a RECT or CRect that contains a source rectangle.

lpRect2 Points to a RECT or CRect that contains a source rectangle.

Makes the dimensions of CRect equal to the union of the two source rectangles.
The union is the smallest rectangle that contains both source rectangles. The
Windows operating system ignores the dimensions of an empty rectangle; that is, a
rectangle that has no height or has no width.

Note The value of the left coordinate must be less than the right and the top less
than the bottom for both lpRectl and lpRect2.

Nonzero if the union is not empty; 0 if the union is empty.

::UnionRect, CRect::operator 1=, CRect::operator 1

CRect::Width

Remarks

Return Value

Operators

int Width() const;

Calculates the width of CRect by subtracting the left value from the right value.
The width may be negative.

The width of CRect.

CRect::operator LPCRECT
operator LPCRECT() const;

Remarks Converts a CRect to an LPCRECT with no need for the address-of (&) operator.

708 CRect: :operator LPRECT

CRect::operator LPRECT

Remarks

operator LPRECT();

Converts a CRect defined as a constant to an LPRECT with no need for the
address-of (&) operator.

CRect::operator =

Remarks

See Also

void operator =(const RECT& sreReet);

sreReet Refers to a source rectangle. May be a RECT or CRect.

Copies the dimensions of sreReet to CRect.

CRect: :SetRect, : :CopyRect

CRect::operator ==

Remarks

Return Value

See Also

BOOL operator ==(const RECT & reet) const;

reet Refers to a source rectangle. May be a RECT or CRect.

Determines if reet is equal to CRect by comparing the coordinates of their upper­
left and lower-right comers.

If the values of these coordinates are equal, returns nonzero; otherwise O.

: : EqualRect

CRect::operator !=

Remarks

BOOL operator !=(const RECT& reet) const;

reet Refers to a source rectangle. May be a RECT or CRect.

Determines if reet is not equal to CRect by comparing the coordinates of their
upper-left and lower-right comers.

Return Value

See Also

Nonzero if not equal; otherwise O.

CRect: :operator ==

CRect::operator &= 709

CRect::operator +=

Remarks

See Also

void operator +=(POINT point);

point Contains a POINT or CPoint.

Moves CRect by the specified offsets. The point parameter's x and y parameters
are added to CRect.

CRect:: OffsetRect

CRect::operator -=

Remarks

See Also

void operator -=(POINT point);

point Contains a POINT or CPoint.

Moves CRect by the specified offsets. The point parameter's x and y parameters
are subtracted from CRect.

CRect:: OffsetRect

CRect::operator &=

Remarks

See Also

void operator &=(const RECT & reet);

reet Contains a RECT or CRect.

Sets CRect equal to the intersection of CRect and reet. The intersection is the
largest rectangle contained in both rectangles.

Note The value of the left coordinate must be less than the right and the top less
than the bottom for both CRect and reet.

CRect: :IntersectRect

710 CRect::operator 1=

CRect::operator 1=

Remarks

See Also

void operator 1=(const RECT& reet);

reet Contains a CRect or RECT.

Sets CRect equal to the union of CRect and reet. The union is the smallest rec­
tangle that contains both source rectangles. Windows ignores the dimensions of an
empty rectangle; that is, a rectangle that has no height or has no width.

Note The value of the left coordinate must be less than the right and the top less
than the bottom for both CRect and reet.

CRect:: UnionRect

CRect::operator +

Remarks

Return Value

See Also

CRect operator +(POINT point) const;

point Contains a POINT or CPoint.

Returns a new CRect that is equal to CRect displaced by point. The point
parameter's x and y parameters are added to CRect's position.

The CRect resulting from the offset by point.

CRect:: OffsetRect

CRect::operator -

Remarks

Return Value

See Also

CRect operator -(POINT point) const;

point Contains a POINT or CPoint.

A new CRect that is equal to CRect displaced by -point. The point parameter's x
and y parameters are subtracted from CRect' s dimensions.

The CRect resulting from the offset by point.

CRect::OffsetRect

CRect::operator I 711

CRect::operator &

Return Value

See Also

CRect operator &(const RECT & rect2) const;

rect2 Contains a RECT or CRect.

A CRect that is the intersection of CRect and rect2. The intersection is the largest
rectangle contained in both rectangles.

Note The value of the left coordinate must be less than the right and the top less
than the bottom for both CRect and rect2.

CRect: :IntersectRect

CRect::operator I

Return Value

See Also

CRect operator I(const RECT& rect2) const;

rect2 Contains a RECT or CRect.

A CRect that is the union of CRect and rect2. A union is the smallest rectangle
that contains both source rectangles. Windows ignores the dimensions of an empty
rectangle; that is, a rectangle that has no height or has no width.

Note The value of the left coordinate must be less than the right and the top less
than the bottom for both CRect and rect2.

CRect:: UnionRect

712 CResourceException

class CResourceException : public CException
A CResourceException object is generated
when Windows cannot find or allocate a
requested resource. No further qualification is
necessary or possible.

#include <afxwin.h>

Construction/Destruction - Public Members

CResourceException

CResourceException Constructs a CResourceException object.

Member Functions

CResou rceException: :CResourceException

Remarks

See Also

CResourceException();

Constructs a CResourceException object.

Do not use this constructor directly, but rather call the global function
AfxThrowResourceException. For more information about exceptions,
see Chapter 16, "Exceptions," in the Class Library User's Guide.

AfxThrowResourceException

class CRgn : public CGdiObject
The CRgo class encapsulates a Windows
graphics device interface (ODI) region. A region
is an elliptical or polygonal area within a
window. To use regions, you use the member
functions of class CRgo with the clipping
functions defined as members of class CDC. The

eRgn 713

CRgn

member functions of CRgo create, alter, and retrieve information about the region
object for which they are called.

#ioclude <afxwio.h>

Construction/Destruction - Public Members
CRgo Constructs a CRgo object.

Initialization - Public Members
CreateRectRgo Initializes a CRgo object with a rectangular region.

CreateRectRgoIodirect Initializes a CRgo object with a rectangular region
defmed by a RECT structure.

CreateEllipticRgo Initializes a CRgo object with an elliptical region.

CreateEllipticRgoIodirect Initializes a CRgo object with an elliptical region
defined by a RECT structure.

CreatePolygooRgo Initializes a CRgo object with a polygonal region.
The system closes the polygon automatically, if
necessary, by drawing a line from the last vertex to
the first.

CreatePolyPolygooRgo Initializes a CRgo object with a region consisting
of a series of closed polygons. The polygons may be
disjoint or they may overlap.

CreateRouodRectRgo Initializes a CRgn object with a rectangular region
with rounded comers.

CombioeRgo Sets a CRgo object so that it is equivalent to the
union of two specified CRgo objects.

CopyRgo Sets a CRgo object so that it is a copy of a
specified CRgo object.

714 CRgn::CombineRgn

Operations - Public Members
EqualRgn

FromHandle

GetRgnBox

OffsetRgn

PtlnRegion

RectlnRegion

SetRectRgn

Checks two CRgn objects to detennine whether
they are equivalent.

Returns a pointer to a CRgn object when given a
handle to a Windows region.

Retrieves the coordinates of the bounding rectangle
of a CRgn object.

Moves a CRgn object by the specified offsets.

Detennines whether a specified point is in the
region.

Detennines whether any part of a specified
rectangle is within the boundaries of the region.

Sets the CRgn object to the specified rectangular
region.

Member Functions

CRgn: :CombineRgn

Remarks

int CombineRgn(CRgn* pRgnl, CRgn* pRgn2, int nCombineMode);

pRgnl Identifies an existing region.

pRgn2 Identifies an existing region.

nCombineMode Specifies the operation to be perfonned when combining the two
source regions. It can be anyone of the following values:

• RGN_AND Uses overlapping areas of both regions (intersection).

• RGN_ COPY Creates a copy of region 1 (identified by pRgnl).

• RGN_ DIFF Creates a region consisting of the areas of region 1 (identified
by pRgnl) that are not part of region 2 (identified by pRgn2).

• RGN_ OR Combines both regions in their entirety (union).

• RGN_ XOR Combines both regions but removes overlapping areas.

Creates a new GDI region by combining two existing regions. The regions are
combined as specified by nCombineMode. The two specified regions are combined,
and the resulting region handle is stored in the CRgn object. Thus, whatever region

Return Value

See Also

CRgn::CopyRgn 715

is stored in the CRgn object is replaced by the combined region. The size of a
region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is
smaller. Use CopyRgn to simply copy one region into another region.

Specifies the type of the resulting region. It can be one of the following values:

• COMPLEXREGION New region has overlapping borders.

• ERROR No new region created.

• NULLREGION New region is empty.

• SIMPLEREGION New region has no overlapping borders.

CRgn::CopyRgn, ::CombineRgn

CRgn::CopyRgn

Remarks

Return Value

See Also

int CopyRgn(CRgn* pRgnSrc);

pRgnSrc Identifies an existing region.

Copies the region defined by pRgnSrc into the CRgn object. The new region
replaces the region formerly stored in the CRgn object. This function is a special
case of the CombineRgn member function.

Specifies the type of the resulting region. It can be one of the following values:

• COMPLEXREGION New region has overlapping borders.

• ERROR No new region created.

• NULLREGION New region is empty.

• SIMPLEREGION New region has no overlapping borders.

CRgn::CombineRgn, ::CombineRgn

716 CRgn::CreateEllipticRgn

CRgn: :CreateEllipticRgn

Remarks

Return Value

See Also

BOOL CreateEllipticRgn(int xl, int yl, int x2, int y2);

xl Specifies the logical x-coordinate of the upper-left comer of the bounding
rectangle of the ellipse.

y 1 Specifies the logical y -coordinate of the upper -left comer of the bounding
rectangle of the ellipse.

x2 Specifies the logical x-coordinate of the lower-right comer of the bounding
rectangle of the ellipse.

y2 Specifies the logical y-coordinate of the lower-right comer of the bounding
rectangle of the ellipse.

Creates an elliptical region. The region is defined by the bounding rectangle
specified by xl, y 1 , x2, and y2. The region is stored in the CRgn object. The size of
a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever
is smaller. When it has finished using a region created with the CreateElIipticRgn
function, an application should select the region out of the device context and use
the DeleteObject function to remove it.

Nonzero if the operation succeeded; otherwise O.

CRgn: : CreateEllipticRgnlndirect, :: CreateEllipticRgn

CRg n: :CreateEII ipticRg nlnd irect

Remarks

Return Value

See Also

BOOL CreateEllipticRgnlndirect(LPCRECT IpRect);

IpRect Points to a RECT structure or a CRect object that contains the logical
coordinates of the upper -left and lower-right comers of the bounding rectangle of
the ellipse.

Creates an elliptical region. The region is defined by the structure or object pointed
to by IpRect and is stored in the CRgn object. The size of a region is limited to
32,767 by 32,767 logical units or 64K of memory, whichever is smaller. When it
has finished using a region created with the CreateElIipticRgnlndirect function,
an application should select the region out of the device context and use the
DeleteObject function to remove it.

Nonzero if the operation succeeded; otherwise O.

CRgn:: CreateEllipticRgn, :: CreateEllipticRgnlndirect

CRgn::CreatePolygonRgn 717

CRgn: :CreatePolygonRgn

Remarks

Return Value

See Also

BOOL CreatePolygonRgn(LPPOINT lpPoints, int nCount, int nMode);

lpPoints Points to an array of POINT structures or an array of CPoint objects.
Each structure specifies the x-coordinate and y-coordinate of one vertex of the
polygon. The POINT structure has the following fonn:

typedef struct tagPOINT {
int x;
int y;

POINT;

nCount Specifies the number of POINT structures or CPoint objects in the array
pointed to by lpP oints.

nM ode Specifies the filling mode for the region. This parameter may be either
ALTERNATE or WINDING.

Creates a polygonal region. The system closes the polygon automatically, if
necessary, by drawing a line from the last vertex to the first. The resulting region is
stored in the CRgn object. The size of a region is limited to 32,767 by 32,767
logical units or 64K of memory, whichever is smaller.

When the polygon-filling mode is AL TERNA TE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the
system fills the area between the first and second side, between the third and fourth
side, and so on. When the polygon-filling mode is WINDING, the system uses the
direction in which a figure was drawn to determine whether to fill an area. Each
line segment in a polygon is drawn in either a clockwise or a counterclockwise
direction. Whenever an imaginary line drawn from an enclosed area to the outside
of a figure passes through a clockwise line segment, a count is incremented. When
the line passes through a counterclockwise line segment, the count is decremented.
The area is filled if the count is nonzero when the line reaches the outside of the
figure.

When an application has finished using a region created with the
CreatePolygonRgn function, it should select the region out of the device context
and use the DeleteObject function to remove it.

Nonzero if the operation succeeded; otherwise O.

eRgn: :CreatePolyPolygonRgn, : :CreatePolygonRgn

718 CRgn::CreatePolyPolygonRgn

CRgn::CreatePolyPolygonRgn

Remarks

Return Value

See Also

BOOL CreatePolyPolygonRgn(LPPOINT IpPoints, LPINT IpPolyCounts,
int nCount, int nPolyFillMode);

IpPoints Points to an array of POINT structures or an array of CPoint objects that
defines the vertices of the polygons. Each polygon must be explicitly closed
because the system does not close them automatically. The polygons are specified
consecutively. The POINT structure has the following form:

typedef struct tagPOINT {
int x;
i nt y;

POINT;

IpPolyCounts Points to an array of integers. The first integer specifies the number
of vertices in the first polygon in the IpPoints array, the second integer specifies
the number of vertices in the second polygon, and so on.

nCount Specifies the total number of integers in the IpPolyCounts array.

nPolyFillMode Specifies the polygon-filling mode. This value may be either
ALTERNATE or WINDING.

Creates a region consisting of a series of closed polygons. The resulting region is
stored in the CRgn object. The polygons may be disjoint or they may overlap. The
size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between
odd-numbered and even-numbered polygon sides on each scan line. That is, the
system fills the area between the first and second side, between the third and fourth
side, and so on. When the polygon-filling mode is WINDING, the system uses the
direction in which a figure was drawn to determine whether to fill an area. Each
line segment in a polygon is drawn in either a clockwise or a counterclockwise
direction. Whenever an imaginary line drawn from an enclosed area to the outside
of a figure passes through a clockwise line segment, a count is incremented. When
the line passes through a counterclockwise line segment, the count is decremented.
The area is filled if the count is nonzero when the line reaches the outside of the
figure.

When an application has finished using a region created with the
CreatePolyPolygonRgn function, it should select the region out of the device
context and use the DeleteObject function to remove it.

Nonzero if the operation succeeded; otherwise O.

CRgn: :CreatePolygonRgn, CDC: :SetPolyFillMode, : :CreatePolyPolygonRgn

eRgn: :CreateRectRgnlndirect 719

CRgn: :CreateRectRgn

Remarks

Return Value

See Also

BOOL CreateRectRgn(int xl, int yl, int x2, int y2);

xl Specifies the logical x-coordinate of the upper-left comer of the region.

yl Specifies the logical y-coordinate of the upper-left comer of the region.

x2 Specifies the logical x-coordinate of the lower-right comer of the region.

y2 Specifies the logical y-coordinate of the lower-right comer of the region.

Creates a rectangular region that is stored in the CRgn object. The size of a region
is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is
smaller. When it has finished using a region created by CreateRectRgn, an
application should use the DeleteObject function to remove the region.

Nonzero if the operation succeeded; otherwise O.

CRgn: :CreateRectRgnlndirect, CRgn: :CreateRoundRectRgn,
: :CreateRectRgn

CRg n: :CreateRectRgnlnd irect

Remarks

Return Value

See Also

BOOL CreateRectRgnlndirect(LPCRECT lpReet);

lpReet Points to a RECT structure or CRect object that contains the logical
coordinates of the upper-left and lower-right comers of the region. The RECT
structure has the following form:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

Creates a rectangular region that is stored in the CRgn object. The size of a region
is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is
smaller. When it has finished using a region created by CreateRectRgnlndirect,
an application should use the DeleteObject function to remove the region.

Nonzero if the operation succeeded; otherwise O.

CRgn: :CreateRectRgn, CRgn: :CreateRoundRectRgn,
:: CreateRectRgnlndirect

720 CRgn: :CreateRoundRectRgn

CRgn: :CreateRoundRectRgn

Remarks

Return Value

See Also

BOOL CreateRoundRectRgn(int xl, int yl, int x2, int y2, int x3, int y3);

xl Specifies the logical x-coordinate of the upper-left corner of the region.

yl Specifies the logical y-coordinate of the upper-left corner of the region.

x2 Specifies the logical x-coordinate of the lower-right corner of the region.

y2 Specifies the logical y-coordinate of the lower-right corner of the region.

x3 Specifies the width of the ellipse used to create the rounded corners.

y3 Specifies the height of the ellipse used to create the rounded corners.

Creates a rectangular region with rounded corners that is stored in the CRgn object.
The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory,
whichever is smaller. When an application has finished using a region created with
the CreateRoundRectRgn function, it should select the region out of the device
context and use the DeieteObject function to remove it.

Nonzero if the operation succeeded; otherwise O.

CRgn: :CreateRectRgn, CRgn: :CreateRectRgnlndirect,
: :CreateRoundRectRgn

CRgn::CRgn

Remarks

CRgnO;

Constructs a CRgn object. The m _ hObject data member does not contain a valid
Windows GDI region until the object is initialized with one or more of the other
CRgn member functions.

CRgn::EquaIRgn
BOOL EquaiRgn(CRgn* pRgn) const;

pRgn Identifies a region.

Remarks

Return Value

See Also

CRgn::GetRgnBox 721

Detennines whether the given region is equivalent to the region stored in the CRgo
object.

Nonzero if the two regions are equivalent; otherwise O.

::EquaIRgo

CRgn::FromHandle

Remarks

Return Value

static CRgo* PASCAL FromHaodle(HRGN hRgn);

hRgn Specifies a handle to a Windows region.

Returns a pointer to a CRgo object when given a handle to a Windows region. If a
CRgo object is not already attached to the handle, a temporary CRgo object is
created and attached. This temporary CRgo object is valid only until the next time
the application has idle time in its event loop, at which time all temporary graphic
objects are deleted. Another way of saying this is that the temporary object is only
valid during the processing of one window message.

A pointer to a CRgo object. If the function was not successful, the return value is
NULL.

CRgn::GetRgnBox

Remarks

Return Value

iot GetRgoBox(LPRECT IpRect) coost;

IpRect Points to a RECT structure or CRect object to receive the coordinates of
the bounding rectangle. The RECT structure has the following fonn:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

Retrieves the coordinates of the bounding rectangle of the CRgo object.

Specifies the region's type. It can be any of the following values:

• COMPLEXREGION Region has overlapping borders .

• NULLREGION Region is empty.

722 CRgn::OffsetRgn

• ERROR CRgn object does not specify a valid region.

• SIMPLEREGION Region has no overlapping borders.

See Also : : GetRgnBox

CRgn::OffsetRgn

Remarks

Return Value

See Also

int OffsetRgn(int x, int y);

int OffsetRgn(POINT point);

x Specifies the number of units to move left or right.

y Specifies the number of units to move up or down.

point The x-coordinate of point specifies the number of units to move left or right.
The y-coordinate of point specifies the number of units to move up or down. The
point parameter may be either a POINT structure or a CPoint object.

Moves the region stored in the CRgn object by the specified offsets. The function
moves the region x units along the x-axis and y units along the y-axis. The
coordinate values of a region must be less than or equal to 32,767 and greater than
or equal to -32,768. The x and y parameters must be carefully chosen to prevent
invalid region coordinates.

The new region's type. It can be anyone of the following values:

• COMPLEXREGION Region has overlapping borders.

• ERROR Region handle is not valid.

• NULLREGION Region is empty.

• SIMPLEREGION Region has no overlapping borders.

:: OffsetRgn

CRgn::RectlnRegion 723

CRgn::PtlnRegion

Remarks

Return Value

See Also

BOOL PtInRegion(int x, int y) const;

BOOL PtInRegion(POINT point) const;

x Specifies the logical x -coordinate of the point to test.

y Specifies the logical y-coordinate of the point to test.

point The x- and y-coordinates of point specify the x- and y-coordinates of the
point to test the value of. The point parameter can either be a POINT structure or
a CPoint object.

Checks whether the point given by x and y is in the region stored in the CRgn
object.

Nonzero if the point is in the region; otherwise O.

: :PtInRegion

CRgn::RectlnRegion

Remarks

Return Value

See Also

BOOL RectInRegion(LPCRECT IpRect) const;

IpRect Points to a RECT structure or CRect object. The RECT structure has the
following fonn:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;

RECT;

Detennines whether any part of the rectangle specified by IpRect is within the
boundaries of the region stored in the CRgn object.

Nonzero if any part of the specified rectangle lies within the boundaries of the
region; otherwise O.

: : RectInRegion

724 CRgn::SetRectRgn

eRgn: :SetRectRgn

Remarks

See Also

void SetRectRgn(int xl, int yl, int x2, int y2);

void SetRectRgn(LPCRECT IpRect);

xl Specifies the x-coordinate of the upper-left comer of the rectangular region.

y 1 Specifies the y-coordinate of the upper-left comer of the rectangular region.

x2 Specifies the x-coordinate of the lower-right comer of the rectangular region.

y2 Specifies the y-coordinate of the lower-right comer of the rectangular region.

IpRect Specifies the rectangular region. Can be either a pointer to a RECT
structure or a CRect object.

Creates a rectangular region. Unlike CreateRectRgn, however, it does not allocate
any additional memory from the local Windows application heap. Instead, it uses
the space allocated for the region stored in the CRgn object. This means that the
CRgn object must already have been initialized with a valid Windows region
before calling SetRectRgn. The points given by xl, y 1, x2, and y2 specify the
minimum size of the allocated space. Use this function instead of the
CreateRectRgn member function to avoid calls to the local memory manager.

CRgn: :CreateRectRgn, : :SetRectRgn

CRuntimeClass 725

struct CRuntimeClass

See Also

Each class derived from CObject is associated with a CRuntimeClass structure
that you can use to obtain information about an object or its base class at run time.
The ability to determine the class of an object at run time is useful when extra type
checking of function arguments is needed, or when you must write special-purpose
code based on the class of an object. Run-time class information is not supported
directly by the C++ language.

The structure has the following members:

LPCSTR m _lpszClassName
A null-terminated string containing the ASCII class name.

int m _ nObjectSize
The size of the object, in bytes. If the object has data members that point to
allocated memory, the size of that memory is not included.

WORD m wSchema
The schema number (-1 for nonserializable classes). See the
IMPLEMENT_SERIAL macro for a description of the schema number.

void (*m_pfnConstruct)(void* p)
A pointer to the default constructor of your class (valid only if the class supports
dynamic creation).

CRuntimeClass* m _pBaseClass
A pointer to the CRuntimeClass structure that corresponds to the base class.

CObject* CreateObject();
Classes derived from CObject can support dynamic creation, which is the
ability to create an object of a specified class at run time. Document, view, and
frame classes, for example, should support dynamic creation. The
CreateObject member function can be used to implement this function and
create objects for these classes during run time. For more information on
dynamic creation and the CreateObject member, see Chapter 12 of the Class
Library User's Guide.

Note To use the CRuntimeClass structure, you must include the
IMPLEMENT_DYNAMIC, IMPLEMENT_DYNCREATE or
IMPLEMENT_SERIAL macro in the implementation of the class for which you
want to retrieve run-time object information.

CObject::GetRuntimeClass, CObject::IsKindOf, RUNTIME_CLASS,
IMPLEMENT_DYNAMIC, IMPLEMENT _ DYNCREATE,
IMPLEMENT SERIAL

726 CScroliBar

class CScroliBar : public CWnd

See Also

The CScrollBar class provides the
functionality of a Windows scroll-bar
control. You create a scroll-bar control in
two steps. First, call the constructor
CScrollBar to construct the CScrollBar
object, then call the Create member
function to create the Windows scroll-bar
control and attach it to the CScrollBar object.

CScroliBar

If you create a CScrollBar object within a dialog box (through a dialog resource),
the CScrollBar is automatically destroyed when the user closes the dialog box. If
you create a CScrollBar object within a window, you may also need to destroy it.

If you create the CScrollBar object on the stack, it is destroyed automatically. If
you create the CScrollBar object on the heap by using the new function, you must
call delete on the object to destroy it when the user terminates the Windows scroll
bar. If you allocate any memory in the CScrollBar object, override the
CScrollBar destructor to dispose of the allocations.

#include <afxwin.h>

CWnd, CButton, CComboBox, CEdit, CListBox, CStatic, CDialog

Construction/Destruction - Public Members
CScrollBar Constructs a CScrollBar object.

Initialization - Public Members
Create Creates the Windows scroll bar and attaches it to the

CScrollBar object.

CScroIlBar::Create 727

Operations - Public Members
GetScrollPos

SetScrollPos

GetScrollRange

SetScrollRange

ShowScrollBar

EnableScrollBar

Retrieves the current position of a scroll box.

Sets the current position of a scroll box.

Retrieves the current minimum and maximum scroll-bar
positions for the given scroll bar.

Sets minimum and maximum position values for the given
scroll bar.

Shows or hides a scroll bar.

Enables or disables one or both arrows of a scroll bar.

Member Functions

CScroIlBar::Create

Remarks

BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,
UINT nID);

dwStyle Specifies the scroll bar's style.

reet Specifies the scroll bar's size and position. Can be either a RECT structure
or a CRect object.

pParentWnd Specifies the scroll bar's parent window, usually a CDialog object.
It must not be NULL.

nID The scroll bar's control ID.

You construct a CScrollBar object in two steps. First call the constructor, which
constructs the CScrollBar object; then call Create, which creates and initializes
the associated Windows scroll bar and attaches it to the CScrollBar object.

Apply the following window styles to a scroll bar:

• WS _ CHILD Always

• WS_ VISIBLE Usually

• WS _DISABLED Rarely

• WS GROUP To group controls

728 CScroIlBar::Create

Return Value

Scroll·Bar Styles

See Also

See CreateEx in the CWnd base class for a full description of these window
styles.

Nonzero if successful; otherwise O.

You can use any combination of the following scroll-bar styles for dwStyle:

• SBS_BOTTOMALIGN Used with the SBS_HORZ style. The bottom edge
of the scroll bar is aligned with the bottom edge of the rectangle specified in the
Create member function. The scroll bar has the default height for system scroll
bars.

• SBS _ HORZ Designates a horizontal scroll bar. If neither the
SBS _ BOTTOMALIGN nor SBS _TOP ALIGN style is specified, the scroll
bar has the height, width, and position given in the Create member function.

• SBS_LEFTALIGN Used with the SBS_ VERT style. The left edge of the
scroll bar is aligned with the left edge of the rectangle specified in the Create
member function. The scroll bar has the default width for system scroll bars.

• SBS_RIGHTALIGN Used with the SBS_ VERT style. The right edge of the
scroll bar is aligned with the right edge of the rectangle specified in the Create
member function. The scroll bar has the default width for system scroll bars.

• SBS _ SIZEBOX Designates a size box. If neither the
SBS SIZEBOXBOTTOMRIGHTALIGN nor
SBS _ SIZEBOXTOPLEFT ALIGN style is specified, the size box has the
height, width, and position given in the Create member function.

• SBS SIZEBOXBOTTOMRIGHTALIGN Used with the SBS SIZEBOX - -
style. The lower-right comer of the size box is aligned with the lower-right
comer of the rectangle specified in the Create member function. The size box
has the default size for system size boxes.

• SBS_SIZEBOXTOPLEFTALIGN Used with the SBS_SIZEBOX style.
The upper-left comer of the size box is aligned with the upper-left comer of the
rectangle specified in the Create member function. The size box has the default
size for system size boxes.

• SBS_TOPALIGN Used with the SBS_HORZ style. The top edge of the
scroll bar is aligned with the top edge of the rectangle specified in the Create
member function. The scroll bar has the default height for system scroll bars.

• SBS _VERT Designates a vertical scroll bar. If neither the
SBS_RIGHTALIGN nor SBS_LEFTALIGN style is specified, the scroll bar
has the height, width, and position given in the Create member function.

CScrollBar:: CScrollBar

CScroIlBar::GetScroIiPos 729

CScroll Bar: :CScroll Bar

Remarks

See Also

CScroIlBar() ;

Constructs a CScrollBar object. After constructing the object, call the Create
member function to create and initialize the Windows scroll bar.

CScrollBar: :Create

CScroll Bar:: EnableScroll Bar
Windows 3.1 Only BOOL EnableScrollBar(UINT nArrowFlags = ESB_ENABLE_BOTH); •

Remarks

Return Value

See Also

nArrowFlags Specifies whether the scroll arrows are enabled or disabled and
which arrows are enabled or disabled. This parameter can be one of the following
values:

• ESB ENABLE BOTH Enables both arrows of a scroll bar. - -
• ESB DISABLE L TUP Disables the left arrow of a horizontal scroll bar - -

or the up arrow of a vertical scroll bar.

• ESB _DISABLE _ RTDN Disables the right arrow of a horizontal scroll
bar or the down arrow of a vertical scroll bar.

• ESB DISABLE BOTH Disables both arrows of a scroll bar. - -

Enables or disables one or both arrows of a scroll bar.

Nonzero if the arrows are enabled or disabled as specified; otherwise 0, which
indicates that the arrows are already in the requested state or that an error occurred.

CWnd: :EnableScroIlBar, : :EnableScrollBar

CScroIIBar::GetScroIIPos

Remarks

int GetScroIlPos() const;

Retrieves the current position of a scroll box. The current position is a relative
value that depends on the current scrolling range. For example, if the scrolling
range is 100 to 200 and the scroll box is in the middle of the bar, the current
position is 150.

730 CScroIlBar::GetScroIiRange

Return Value

See Also

Specifies the current position of the scroll box if successful; otherwise O.

CScrollBar: :SetScroIlPos, CScrollBar: : GetScrollRange,
CScrollBar: : SetScrollRange, :: GetScrollPos

CScroIIBar::GetScroIIRange

Remarks

See Also

void GetScrollRange(LPINT IpMinPos, LPINT IpMaxPos) const;

IpMinPos Points to the integer variable that is to receive the minimum position.

IpM axP os Points to the integer variable that is to receive the maximum position.

Copies the current minimum and maximum scroll-bar positions for the given scroll
bar to the locations specified by IpMinPos and IpMaxPos. The default range for a
scroll-bar control is empty (both values are 0).

: : GetScrollRange, CScrollBar: :SetScrollRange, CScrollBar: :GetScroIlPos,
CScrollBar: :SetScrollPos

CScroIIBar::SetScroIiPos

Remarks

Return Value

See Also

int SetScrollPos(int nPos, BOOL bRedraw = TRUE);

nP os Specifies the new position for the scroll box. It must be within the scrolling
range.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the new
position. If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is not
redrawn. The scroll bar is redrawn by default.

Sets the current position of a scroll box to that specified by nP os and, if specified,
redraws the scroll bar to reflect the new position. Set bRedraw to FALSE
whenever the scroll bar will be redrawn by a subsequent call to another function to
avoid having the scroll bar redrawn twice within a short interval.

Specifies the previous position of the scroll box if successful; otherwise O.

CScrollBar: :GetScroIlPos, CScrollBar: : GetScrollRange,
CScrollBar: :SetScroIlRange, : :SetScrollPos

CScroIlBar::ShowScroIiBar 731

CScroll Bar: :SetScroll Range

Remarks

See Also

void SetScrollRange(int nMinPos, int nMaxPos, BOOL bRedraw = TRUE);

nMinPos Specifies the minimum scrolling position.

nM axP os Specifies the maximum scrolling position.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the change.
If bRedraw is TRUE, the scroll bar is redrawn; if FALSE, it is not redrawn. It is
redrawn by default.

Sets minimum and maximum position values for the given scroll bar. Set nMinPos
and nMaxPos to 0 to hide standard scroll bars. Do not call this function to hide a
scroll bar while processing a scroll-bar notification message. If a call to
SetScrollRange immediately follows a call to the SetScrollPos member function,
set bRedraw in SetScrollPos to 0 to prevent the scroll bar from being redrawn
twice.

The difference between the values specified by nMinPos and nMaxPos must not be
greater than 32,767. The default range for a scroll-bar control is empty (both
nMinPos and nMaxPos are 0).

CScrollBar: : GetScrollPos, CScrollBar: :SetScroIlPos,
CScroIlBar:: GetScrollRange, :: SetScrollRange

CScroIIBar::ShowScroIIBar
Windows 3.1 Only void ShowScrollBar(BOOL bShow = TRUE); •

Remarks

See Also

bShow Specifies whether the scroll bar is shown or hidden. If this parameter is
TRUE, the scroll bar is shown; otherwise it is hidden.

Shows or hides a scroll bar. An application should not call this function to hide a
scroll bar while processing a scroll-bar notification message.

CScroIlBar:: GetScrollPos, CScrollBar: :GetScrollRange,
CWnd: :ScrollWindow, CScrollBar: :SetScrollPos,
CScrollBar::SetScroIlRange

732 eScrol/View

class CScroliView : public CView
The CScrollView class is a CView
with scrolling capabilities.

You can handle scrolling yourself in
any class derived from CView by
overriding the message-mapped
OnHScroll and On VScroll member
functions. But CScrollView adds the
following features to its CView
capabilities:

CScroliView

• It manages window and viewport sizes and mapping modes.

• It scrolls automatically in response to scroll-bar messages.

To take advantage of automatic scrolling, derive your view class from CScrollView
instead of from CView. When the view is first created, if you want to calculate the
size of the scrollable view based on the size of the document, call the
SetScrollSizes member function from your override of either
CView::OnInitiaIUpdate or CView::OnUpdate. (You must write your own code
to query the size of the document. For an example, see Chapter 8 in the Class
Library User's Guide.)

The call to the SetScrollSizes member function sets the view's mapping mode, the
total dimensions of the scroll view, and the amounts to scroll horizontally and
vertically. All sizes are in logical units. The logical size of the view is usually
calculated from data stored in the document, but in some cases you may want to
specify a fixed size. For examples of both approaches, see
CScrollView: :SetScrollSizes.

You specify the amounts to scroll horizontally and vertically in logical units. By
default, if the user clicks a scroll bar shaft outside of the scroll box, CScrollView
scrolls a "page." If the user clicks a scroll arrow at either end of a scroll bar,
CScrollView scrolls a "line." By default, a page is 1/10 of the total size of the
view; a line is 1/10 of the page size. Override these default values by passing
custom sizes in the SetScrollSizes member function. For example, you might set
the horizontal size to some fraction of the width of the total size and the vertical
size to the height of a line in the current font.

Instead of scrolling, CScrollView can automatically scale the view to the current
window size. In this mode, the view has no scroll bars and the logical view is
stretched or shrunk to exactly fit the window's client area. To use this scale-to-fit
capability, call CScrollView::SetScaleToFitSize. (Call either SetScaleToFitSize
or SetScrollSizes, but not both.)

See Also

CScroliView 733

Before the 0 n D raw member function of your derived view class is called,
CScrollView automatically adjusts the viewport origin for the CPaintDC device­
context object that it passes to 0 n D raw.

To adjust the viewport origin for the scrolling window, CScrollView overrides
CView::OnPrepareDC. This adjustment is automatic for the CPaintDC
device context that CScrollView passes to 0 n D raw, but you must call
CScrollView::OnPrepareDC yourself for any other device contexts you use, such
as a CClientDC. You can override CScrollView::OnPrepareDC to set the pen,
background color, and other drawing attributes, but call the base class to do scaling.

Scroll bars may appear in three places relative to a view, as shown in the following
cases:

• Standard window-style scroll bars can be set for the view using the
WS _ HSCROLL and WS _ VSCROLL styles.

• Scroll-bar controls can also be added to the frame containing the view, in which
case the framework forwards WM HSCROLL and WM VSCROLL - -
messages from the frame window to the currently active view.

• The framework also forwards scroll messages from a CSplitterWnd splitter
control to the currently active splitter pane (a view). When placed in a
CSplitterWnd with shared scroll bars, a CScrollView object will use the
shared ones rather than creating its own.

#include <afxwin.h>

CView, CSplitterWnd

Operations - Public Members
FiIlOutsideRect

GetDeviceScrollPosition

GetDeviceScrollSizes

GetScrollPosition

GetTotalSize

ResizeParentToFit

ScrollToPosition

Fills the area of a view outside the scrolling area.

Gets the current scroll position in device units.

Gets the current mapping mode, the total size, and
the line and page sizes of the scrollable view. Sizes
are in device units.

Gets the current scroll position in logical units.

Gets the total size of the scroll view in logical units.

Causes the size of the view to dictate the size of its
frame.

Scrolls the view to a given point, specified in logical
units.

734 CScrollView: :CScrollView

SetScaleToFitSize

SetScrollSizes

Puts the scroll view into scale-to-fit mode.

Sets the scroll view's mapping mode, total size, and
horizontal and vertical scroll amounts.

Construction/Destruction - Protected Members
CScrollView Constructs a CScrollView object.

Member Functions

CScroliView: :CScroliView
Protected

Remarks

See Also

CScrollView(); •

Constructs a CScrollView object. You must call either SetScrollSizes or
SetScaleToFitSize before the scroll view is usable.

CScrollView: :SetScrollSizes, CScrollView: :SetScaleToFitSize

CScroIIView:: Fi IIOutsideRect

Remarks

See Also

Example

void FillOutsideRect(CDC* pDC, CBrush* pBrush);

pDC Device context in which the filling is to be done.

pBrush Brush with which the area is to be filled.

Call FillOutsideRect to fill the area of the view that appears outside of the
scrolling area. Use FillOutsideRect in your scroll view's OnEraseBkgnd handler
function to prevent excessive background repainting.

CWnd: :OnEraseBkgnd

Baal CScaleView: :OnEraseBkgnd(CDC* pDC)
{

CBrush br(GetSysColor(COLOR_WINDOW));
FillOutsideRect(pDC, &br);
return TRUE; II Erased

CScroliView: :GetDeviceScroliSizes 735

CScrollView: :GetDeviceScroll Position

Remarks

See Also

CPoint GetDevieeSerollPosition() eonst;

Call GetDeviceSerollPosition when you need the current horizontal and vertical
positions of the scroll boxes in the scroll bars. This coordinate pair corresponds to
the location in the document to which the upper-left comer of the view has been
scrolled. This is useful for offsetting mouse-device positions to scroll-view device
positions.

GetDeviceSerollPosition returns values in device units. If you want logical units,
use GetSerollPosition instead.

CSerollView: : GetSerollPosition

CScro IIView: : GetDeviceScro IISizes

Remarks

See Also

void GetDeviceSerollSizes(int& nMapMode, SIZE& sizeTotal,
SIZE& sizePage, SIZE& sizeLine) eonst;

nM apM ode Returns the current mapping mode for this view. For a list of possible
values, see SetSerollSizes.

sizeTotal Returns the current total size of the scroll view in device units.

sizePage Returns the current horizontal and vertical amounts to scroll in each
direction in response to a mouse click in a scroll-bar shaft. The ex member
contains the horizontal amount. The ey member contains the vertical amount.

sizeLine Returns the current horizontal and vertical amounts to scroll in each
direction in response to a mouse click in a scroll arrow. The ex member contains
the horizontal amount. The ey member contains the vertical amount.

GetDeviceSerollSizes gets the current mapping mode, the total size, and the line
and page sizes of the scrollable view. Sizes are in device units. This member
function is rarely called.

CSerollView:: SetSerollSizes, CSerollView: : GetTotalSize

736 CScroliView: :GetScroliPosition

CScroliView: :GetScroll Position

Remarks

See Also

CPoint GetSeroIlPosition() eonst;

Call GetSerollPosition when you need the current horizontal and vertical positions
of the scroll boxes in the scroll bars. This coordinate pair corresponds to the
location in the document to which the upper-left comer of the view has been
scrolled.

GetSerollPosition returns values in logical units. If you want device units, use
GetDeviceSerollPosition instead.

CSerollView:: GetDevieeSerollPosition

CScroliView: :GetTotalSize

Remarks

Return Value

See Also

CSize GetTotaISize() eonst;

Call GetTotalSize to retrieve the current horizontal and vertical sizes of the
scroll view.

The total size of the scroll view in logical units. The horizontal size is in the ex
member of the CSize return value. The vertical size is in the ey member.

CSerollView: : GetDeviceSerollSizes, CSerollView: :SetSerollSizes

CScroIiView:: ResizeParentToFit

Remarks

void ResizeParentToFit(BOOL bShrinkOnly = TRUE);

bShrinkOnly The kind of resizing to perform. The default value, TRUE, shrinks
the frame window if appropriate. Scroll bars will still appear for large views or
small frame windows. A value of FALSE causes the view always to resize the
frame window exactly. This can be somewhat dangerous since the frame window
could get too big to fit inside the multiple document interface (MDI) frame
window or the screen.

Call ResizeParentToFit to let the size of your view dictate the size of its frame
window. This is recommended only for views in MDI child frame windows. Use
ResizeParentToFit in the OnInitialUpdate handler function of your derived

See Also

CScroilView::SetScaleToFitSize 737

CSerollView class. For an example of this member function, see
CSerollView: :SetSerollSizes.

CView: :OnInitiaIUpdate, CSerollView: :SetSerollSizes

CScroIIView::ScroIIToPosition

Remarks

See Also

void SerollToPosition(POINT pt);

pt The point to scroll to, in logical units. The ex member must be a positive value
(greater than or equal to 0, up to the total size of the view). The same is true for
the ey member when the mapping mode is MM _TEXT. The ey member is
negative in mapping modes other than MM _TEXT.

Call SerollToPosition to scroll to a given point in the view. The view will be
scrolled so that this point is at the upper-left comer of the window. This member
function must not be called if the view is scaled to fit.

CSerollView: : GetDeviceSerollPosition, CSerollView: :SetSealeToFitSize,
CSerollView:: SetSerollSizes

CScroIIView::SetScaleToFitSize

Remarks

void SetSealeToFitSize(SIZE sizeT otal);

sizeTotal The horizontal and vertical sizes to which the view is to be scaled. The
scroll view's size is measured in logical units. The horizontal size is contained in
the ex member. The vertical size is contained in the ey member. Both ex and ey
must be greater than or equal to O.

Call SetSealeToFitSize when you want to scale the viewport size to the current
window size automatically. With scroll bars, only a portion of the logical view may
be visible at any time. But with the scale-to-fit capability, the view has no scroll
bars and the logical view is stretched or shrunk to exactly fit the window's client
area. When the window is resized, the view draws its data at a new scale based on
the size of the window.

You'll typically place the call to SetSealeToFitSize in your override of the view's
OnInitialUpdate member function. If you don't want automatic scaling, call the
SetSerollSizes member function instead.

738 CScroliView: :SetScroliSizes

See Also

SetSealeToFitSize can be used to implement a "Zoom to Fit" operation. Use
SetSerollSizes to reinitialize scrolling.

CSerollView:: SetSerollSizes, CView:: OnInitialU pdate

CScrollView: :SetScrollSizes

Remarks

void SetSerollSizes(int nMapMode, SIZE sizeTotal,
eonst SIZE& sizePage = sizeDefault, eonst SIZE& sizeLine = size Default);

nM apM ode The mapping mode to set for this view. Possible values include:

Mapping Mode Logical Unit Positive y-axis Extends ...

MM TEXT 1 pixel Downward

MM HIMETRIC 0.01 mm Upward

MM TWIPS 1/1440 in Upward

MM HIENGLISH 0.001 in Upward

MM LOMETRIC 0.1 mm Upward

MM LOENGLISH 0.01 in Upward

All of these modes are defined by Windows. Two standard mapping modes,
MM _ISOTROPIC and MM _ANISOTROPIC, are not used for CSerollView.
The class library provides the SetSealeToFitSize member function for scaling the
view to window size. Column three in the table above describes the coordinate
orientation.

sizeT otal The total size of the scroll view. The ex member contains the horizontal
extent. The ey member contains the vertical extent. Sizes are in logical units. Both
ex and ey must be greater than or equal to O.

sizePage The horizontal and vertical amounts to scroll in each direction in
response to a mouse click in a scroll-bar shaft. The ex member contains the
horizontal amount. The ey member contains the vertical amount.

sizeLine The horizontal and vertical amounts to scroll in each direction in
response to a mouse click in a scroll arrow. The ex member contains the
horizontal amount. The ey member contains the vertical amount.

Call SetSerollSizes when the view is about to be updated. Call it in your override
of the OnUpdate member function to adjust scrolling characteristics when, for
example, the document is initially displayed or when it changes size.

See Also

Example

CScroIiView::SetScroIiSizes 739

You will typically obtain size information from the view's associated document by
calling a document member function, perhaps called Get My Doc S i z e, that you
supply with your derived document class. The following code shows this approach:

SetScrollSizes(nMapMode. GetDocument()->GetMyDocSize());

Alternatively, you might sometimes need to set a fixed size, as in the following
code:

SetScrollSizes(nMapMode. CSize(100. 100));

You must set the mapping mode to any of the Windows mapping modes except
MM_ISOTROPIC or MM_ANISOTROPIC. If you want to use an
unconstrained mapping mode, call the SetScaleToFitSize member function instead
of SetScrollSizes.

CScrollView: :SetScaleToFitSize, CScrollView: :GetDeviceScrollSizes,
CScrollView::GetTotaISize

void CScaleView: :OnUpdate(
{

II
II Implement a GetDocSize() member function in
II your document class; it returns a CSize.
SetScrollSizes(MM_LOENGLISH. GetDocument()->GetDocSize());
ResizeParentToFit(); II Default bShrinkOnly argument
I I ...

740 CSingleDocTemplate

class CSingleDocTemplate : public CDocTemplate

See Also

The CSingleDocTemplate class defines a
document template that implements the
single document interface (SDI). An SDI
application uses the main frame window to
display a document; only one document can
be open at a time. For a more detailed
description of the SDI, see The Windows
Interface: An Application Design Guide.

CSingleDocTemplate

A document template defines the relationship between three types of classes:

• A document class, which you derive from CDocument.

• A view class, which displays data from the document class listed above. You
can derive this class from CView, CScrollView, CFormView, or CEditView.
(You can also use CEditView directly.)

• A frame window class, which contains the view. For an SDI document template,
you can derive this class from CFrameWnd, or, if you don't need to customize
the behavior of the main frame window, you can use CFrame Wnd directly
without deriving your own class.

An SDI application typically supports one type of document, so it has only one
CSingleDocTemplate object. Only one document can be open at a time.

You don't need to call any member functions of CSingleDocTemplate except the
constructor. The framework handles CSingleDocTemplate objects internally.

CDocTemplate, CDocument, CFrame Wnd, CMultiDocTemplate,
CView, CWinApp

Construction/Destruction - Public Members
CSingleDocTemplate Constructs a CSingleDocTemplate object.

CSingleDocTemplate: :CSingleDocTemplate 741

Member Functions

CSingleDocTemplate::CSingleDocTemplate
CSingleDocTemplate(UINT nIDResource, CRuntimeClass* pDocClass,

CRuntimeClass* pFrameClass, CRuntimeClass* pViewClass);

nIDResource Specifies the ID of the resources used with the document type. This
may include menu, icon, accelerator table, and string resources.

The string resource consists of up to seven substrings separated by the '\n'
character (the '\n' character is needed as a placeholder if a substring is not
included; however, trailing '\n' characters are not necessary); these substrings
describe the document type. For information about the substrings, see
CDocTemplate::GetDocString. This string resource is found in the
application's resource file. For example:

II MYCALC.RC
STRINGTABLE PRELOAD OISCAROABLE
BEGIN

lOR_MAINFRAME "MyCalc Windows Application\nSheet\nWorksheet\n
Worksheets (*.myc)\n.myc\nMyCalcSheet\n MyCalc Worksheet"
END

You can edit this string using the String Editor in App Studio; the entire string
appears as a single entry in the String Editor, not as seven separate entries.

For more information about these resource types, see the App Studio User's
Guide.

pDocClass Points to the CRuntimeClass object of the document class. This class
is a CDocument-derived class you define to represent your documents.

pFrameClass Points to the CRuntimeClass object of the frame window class.
This class can be a CFrameWnd-derived class, or it can be CFrameWnd itself
if you want default behavior for your main frame window.

pViewClass Points to the CRuntimeClass object of the view class. This class is a
CView-derived class you define to display your documents.

742 CSingleDocTemplate::CSingleDocTemplate

Remarks Constructs a CSingleDocTemplate object. Dynamically allocate a
CSingleDocTemplate object and pass it to CWinApp::AddDocTemplate from
the I nit Ins tan c e member function of your application class.

See Also CDocTemplate: : GetDocString, CWinApp: : AddDocTemplate,
CWinApp: :InitInstance, CRuntimeClass, RUNTIME_CLASS

Example BOOl CMyApp:: Initlnstance()
{

II
II Establish the document type
II supported by the application

AddOocTemplate(new CSingleOocTemplate(lOR_MAINFRAME.

II '"

RUNTIME_ClASS(CSheetOoc).
RUNTIME_ClASS(CFrameWnd).
RUNTIME_ClASS(CSheetView)));

CSize 743

class CSize : public tagSIZE

SIZE Structure

Members

See Also

The CSize class is similar to the Windows SIZE structure, which implements a
relative coordinate or position. Because CSize derives from tagSIZE, CSize
objects may be used as SIZE structures. The operators of this class that interact
with a "size" accept either CSize objects or SIZE structures.

The ex and ey members of SIZE (and CSize) are public. In addition, CSize
implements member functions to manipulate the SIZE structure.

#include <afxwin.h>

A SIZE structure has this form:

typedef struet tagSIZE {
int ex;
int ey;

SIZE;

ex Specifies the x-extent when a function returns.

ey Specifies the y-extent when a function returns.

Some extended functions of Windows version 3.1 place viewport extents, window
extents, text extents, bitmap dimensions, and the aspect-ratio filter in the SIZE
structure.

CReet, CPoint

Construction/Destruction - Public Members
CSize Constructs a CSize object.

Operators - Public Members
operator ==

operator !=

operator +=

operator -=

Checks for equality between CSize and a size.

Checks for inequality between CSize and a size.

Adds a size to CSize.

Subtracts a size from CSize.

Operators Returning CSize Values - Public Members
operator +

operator -

Adds two sizes.

Subtracts two sizes.

744 CSize::CSize

Member Functions

CSize::CSize

Remarks

Operators

CSize();

CSize(int initCX, int initCY);

CSize(SIZE initSize);

CSize(POINT initPt);

CSize(DWORD dwSize);

initCX Sets the ex member for the CSize.

initCY Sets the ey member for the CSize.

initSize SIZE structure or CSize object used to initialize CSize.

initPt POINT structure or CPoint object used to initialize CSize.

dwSize DWORD used to initialize CSize. The low-order word is the ex member
and the high-order word is the ey member.

Constructs a CSize object. If no arguments are given, ex and ey members are not
initialized.

CSize::operator ==

Remarks

Return Value

BOOL operator ==(SIZE size) eonst;

Checks for equality between two sizes.

Nonzero if the sizes are equal; otherwise O.

CSize: :operator !=

Remarks

Return Value

BOOL operator !=(SIZE size) const;

Checks for inequality between two sizes.

Nonzero if the sizes are not equal; otherwise O.

CSize::operator +=

Remarks

void operator +=(SIZE size);

Adds a size to a CSize.

CSize::operator -=

Remarks

void operator -=(SIZE size);

Subtracts a size from a CSize.

CSize::operator +

Return Value

CSize operator +(SIZE size) const;

A CSize that is the sum of two sizes.

CSize::operator -

Return Value

CSize operator -(SIZE size) const;

CSize operator -() const;

A CSize that is the difference between two sizes.

CSize::operator - 745

746 CSplitterWnd

class CSplitterWnd : public CWnd
The CSplitterWnd class provides the
functionality of a splitter window, which is
a window that contains multiple panes. A
pane is usually an application-specific
object derived from CView, but it can be
any CWnd object that has the appropriate
child window ID.

CSplitterWnd

A CSplitterWnd object is usually embedded in a parent CFrameWnd or
CMDIChildWnd object. Create a CSplitterWnd object using the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's OnCreateClient member function.

3. From within the overridden OnCreateClient, call CSplitterWnd's constructor,
then the Create or CreateStatic member function.

Call the Create member function to create a dynamic splitter window. A dynamic
splitter window typically is used to create and scroll a number of individual panes,
or views, of the same document. The framework automatically creates an initial
pane for the splitter; then the framework creates, resizes, and disposes of additional
panes as the user operates the splitter window's controls.

When you call Create, you specify a minimum row height and column width that
determine when the panes are too small to be fully displayed. After you call
Create, you can adjust these minimums by calling the SetColumnlnfo and
SetRowlnfo member functions.

Also use the SetColumnlnfo and SetRowlnfo member functions to set an "ideal"
width for a column and "ideal" height for a row. When the framework displays a
splitter window, it first displays the parent frame, then the splitter window. The
framework then lays out the panes in columns and rows according to their ideal
dimensions, working from the upper-left to lower-right comer of the splitter
window's client area.

All panes in a dynamic splitter window must be of the same class. Familiar
applications that support dynamic splitter windows include Microsoft Word and
Microsoft Excel.

Use the CreateStatic member function to create a static splitter window. The user
can change only the size of the panes in a static splitter window, not their number or
order.

See Also

CSplitterWnd 747

You must specifically create all the static splitter's panes when you create the static
splitter. Make sure you create all the panes before the parent frame's
OnCreateClient member function returns, or the framework will not display the
window correctly.

The CreateStatic member function automatically initializes a static splitter with a
minimum row height and column width of O. After you call Create, adjust these
minimums by calling the SetColumnlnfo and SetRowlnfo member functions. Also
use SetColumnlnfo and SetRowlnfo after you call CreateStatic to indicate
desired ideal pane dimensions.

The individual panes of a static splitter often belong to different classes. For
examples of static splitter windows, see the App Studio graphics editor and the
Windows File Manager.

A splitter window supports special scroll bars (apart from the scroll bars that panes
may have). These scroll bars are children of the CSplitterWnd object and are
shared with the panes.

You create these special scroll bars when you create the splitter window. For
example, a CSplitterWnd that has one row, two columns, and the
WS _ VSCROLL style will display a vertical scroll bar that is shared by the two
panes. When the user moves the scroll bar, WM _ VSCROLL messages are sent to
both panes. When the panes set the scroll-bar position, the shared scroll bar is set.

For further information on splitter windows, see Technical Note 29 in
MSVC\HELP\MFCNOTES.HLP. For more information on how to create
dynamic splitter windows, see the Scribble sample application in Chapter 8
of the Class Library User's Guide, and the VIEWEX example in the
MFc\sAMPLES\ VIEWEX subdirectory.

include <afxext.h>

CWnd

Construction-Public Members
CSplitterWnd

Create

CreateStatic

CreateView

Call to construct a CSplitterWnd object.

Call to create a dynamic splitter window and attach
it to the CSplitterWnd object.

Call to create a static splitter window and attach it to
the CSplitterWnd object.

Call to create a pane in a splitter window.

748 CSpl itterWnd: :Create

Operations-Public Members
GetRowCount

GetColumnCount

GetRowInfo

SetRowInfo

GetColumnInfo

SetColumnInfo

GetPane

IsChildPane

IdFromRowCol

RecalcLayout

Member Functions

CSpl itterWnd: :Create

Returns the current pane row count.

Returns the current pane column count.

Returns information on the specified row.

Call to set the specified row information.

Returns information on the specified column.

Call to set the specified column information.

Returns the pane at the specified row and column.

Call to determine if the window is currently a child
pane of this splitter window.

Returns the child window ID of the pane at the
specified row and column.

Call to redisplay the splitter window after adjusting
row or column size.

BOOL Create(CWnd* pParentWnd, int nMaxRows, int nMaxCols,
SIZE sizeMin, CCreateContext* pContext, DWORD dwStyle = WS _CHILD I
WS _ VISIBLE IWS _ HSCROLL I WS _ VSCROLL I
SPLS_DYNAMIC_SPLIT, UINT nID = AFX_IDW_PANE_FIRST);

pParentWnd The parent frame window of the splitter window.

nMaxRows The maximum number of rows in the splitter window. This value must
not exceed 2.

nMaxCols The maximum number of columns in the splitter window. This value
must not exceed 2.

sizeMin Specifies the minimum size at which a pane may be displayed.

pContext A pointer to a CCreateContext structure. In most cases, this can be the
pContext passed to the parent frame window.

Remarks

Return Value

See Also

CSplitterWnd::CreateStatic 749

dwStyle Specifies the window style.

nID The child window 1D of the window. The 1D can be
AFX_IDW _PANE_FIRST unless the splitter window is nested inside another
splitter window.

To create a dynamic splitter window, first call the constructor, then call the Create
member function.

You can embed a CSplitterWnd in a parent CFrameWnd or CMDIChildWnd
object by taking the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's OnCreateClient member function.

3. Call the CSplitterWnd constructor and the Create member function from
within the overridden OnCreateClient.

When you create a splitter window from within a parent frame, pass the parent
frame's pContext parameter to the splitter window. Otherwise, this parameter can
beNDLL.

The initial minimum row height and column width of a dynamic splitter window are
set by the sizeMin parameter. These minimums, which determine if a pane is too
small to be shown in its entirety, can be changed with the SetRowInfo and
SetColumnInfo member functions.

For more on dynamic splitter windows, see Chapter 4 in this manual, Technical
Note 29 in MFCNOTES.HLP, and the CSplitterWnd class overview.

Nonzero if successful; otherwise O.

CSplitterWnd, CSplitter Wnd: :CreateStatic, CFrame Wnd:: OnCreateClient,
CMDIChildWnd: :OnCreateClient, CSplitterWnd: :SetRowInfo,
CSplitterWnd::SetColumnInfo, CSplitterWnd::CreateView

CSplitterWnd: :CreateStatic
BOOL CreateStatic(CWnd* pParentWnd, int nRows, int nCols,

DWORD dwStyle = WS CHILD I WS VISIBLE, DINT nID = - -
AFX _ IDW _PANE_FIRST);

pParentWnd The parent frame window of the splitter window.

nRows The number of rows. This value must not exceed 16.

750 CSplitterWnd: :CreateStatic

Remarks

Return Value

See Also

nCols The number of columns. This value must not exceed 16.

dwStyle Specifies the window style.

nID The child window ID of the window. The ID can be
AFX_IDW _PANE_FIRST unless the splitter window is nested inside another
splitter window.

To create a static splitter window, first call the constructor, then call the
CreateStatic member function.

A CSplitterWnd is usually embedded in a parent CFrameWnd or
CMDIChildWnd object by taking the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's OnCreateClient member function.

3. Call the CSplitterWnd constructor and the CreateStatic member function
from within the overridden OnCreateClient.

A static splitter window contains a fixed number of panes, often from different
classes.

When you create a static splitter window, you must at the same time create all its
panes. The Create View member function is usually used for this purpose, but you
can create other nonview classes as well.

The initial minimum row height and column width for a static splitter window is O.
These minimums, which determine when a pane is too small to be shown in its
entirety, can be changed with the SetRowInfo and SetColumnInfo member
functions.

To add scroll bars to a static splitter window, add the WS_HSCROLL and
WS_ VSCROLL styles to dwStyle.

See Chapter 4 in this manual, Technical Note 29 in MFCNOTES.HLP, and the
CSplitterWnd class description for more on static splitter windows.

Nonzero if successful; otherwise O.

CSplitterWnd, CSplitterWnd: :Create, CFrame Wnd: :OnCreateClient,
CMDIChildWnd: :OnCreateClient, CSplitterWnd: :SetRowInfo,
CSplitterWnd: :SetColumnInfo, CSplitterWnd: : Create View

CSplitterWnd: :CSplitterWnd 751

CSpl itterWnd: :Create View

Parameters

Remarks

Return Value

See Also

virtual BOOL CreateView(int row, int col, CRuntimeClass* pViewClass,
SIZE size/nit, CCreateContext* pContext);

row Specifies the splitter window row in which to place the new view.

col Specifies the splitter window column in which to place the new view.

p ViewC lass Specifies the CRuntimeClass of the new view.

size! nit Specifies the initial size of the new view.

pContext A pointer to a creation context used to create the view (usually the
pContext passed into the parent frame's overridden OnCreateClient member
function in which the splitter window is being created).

Call this member function to create the panes for a static splitter window. All panes
of a static splitter window must be created before the framework displays the
splitter.

The framework also calls this member function to create new panes when the user
of a dynamic splitter window splits a pane, row, or column.

Nonzero if successful; otherwise O.

CSplitterWnd::Create

CSplitterWnd: :CSplitterWnd

Remarks

See Also

CSplitter W nd();

Construct a CSplitterWnd object in two steps. First call the constructor, which
creates the CSplitterWnd object, then call the Create member function, which
creates the splitter window and attaches it to the CSplitterWnd object.

CSplitterWnd::Create

752 CSplitterWnd::GetColumnCount

CSplitterWnd: :GetColumnCount

Return Value

See Also

int GetColumnCount();

Returns the current number of columns in the splitter. For a static splitter this will
also be the maximum number of columns.

CSplitterWnd::GetRowCount

CSplitterWnd: :GetColumnlnfo

Remarks

See Also

void GetColumnInfo(int col, int& cxCur, int& cxMin);

col Specifies a column.

cxCur A reference to an int to be set to the current width of the column.

cxMin A reference to an int to be set to the current minimum width of the column.

Call this member function to obtain information about the specified column.

CSplitterWnd::SetColumnInfo, CSplitterWnd::GetRowInfo

CSplitterWnd: :GetPane

Return Value

See Also

CWnd* GetPane(int row, int col);

row Specifies a row.

col Specifies a column.

Returns the pane at the specified row and column. The returned pane is usually a
CView-derived class.

CSplitter Wnd: :IdFromRowCol, CSplitter Wnd: : IsChiidPane

CSplitterWnd::ldFromRowCol 753

CSplitterWnd: :GetRowCount

Return Value

See Also

int GetRowCount();

Returns the current number of rows in the splitter window. For a static splitter
window, this will also be the maximum number of rows.

CSplitterWnd::GetColumnCount

CSplitterWnd: :GetRowlnfo

Remarks

Return Value

See Also

void GetRowlnfo(int row, int& cyCur, int& cyMin);

row Specifies a row.

cyCur Reference to int to be set to the current height of the row in pixels.

cyMin Reference to int to be set to the current minimum height of the row in
pixels.

Call this member function to obtain information about the specified row.

The cyCur parameter is filled with the current height of the specified row, and
cyMin is filled with the minimum height of the row.

CSplitterWnd: :SetRowlnfo, CSplitterWnd: : GetColumnlnfo

CSplitterWnd::ldFromRowCol

Remarks

Return Value

See Also

int IdFromRowCol(int row, int col);

row Specifies the splitter window row.

col Specifies the splitter window column.

Call this member function to obtain the child window ID for the pane at the
specified row and column. This member function is used for creating nonviews as
panes and may be called before the pane exists.

The child window ID for the pane.

CSplitterWnd: : GetPane, CSplitter Wnd: :IsChildPane

754 CSplitterWnd: :lsChiidPane

CSpl itterWnd : : IsCh i Id Pane

Remarks

Return Value

See Also

BOOL IsChildPane(CWnd* pWnd, int& row, int& col);

pWnd A pointer to a CWnd object to be tested.

row Reference to an int in which to store row number.

col Reference to an int in which to store a column number.

Call this member function to determine whether pWnd is currently a child pane of
this splitter window.

If nonzero, pWnd is currently a child pane of this splitter window, and row and col
are filled in with the position of the pane in the splitter window. If p W nd is not a
child pane of this splitter window, 0 is returned.

CSplitterWnd::GetPane

CSpl itterWnd:: RecalcLayout

Remarks

See Also

void RecalcLayout();

Call this member function to correctly redisplay the splitter window after you have
adjusted row and column sizes with the SetRowlnfo and SetColumnlnfo member
functions. If you change row and column sizes as part of the creation process before
the splitter window is visible, it is not necessary to call this member function.

The framework calls this member function whenever the user resizes the splitter
window or moves a split.

CSplitterWnd::SetRowlnfo, CSplitterWnd::SetColumnlnfo

CSplitterWnd: :SetColumnlnfo
void SetColumnlnfo(int col, int ex/deal, int exMin);

col Specifies a splitter window column.

ex/ deal Specifies an ideal width for the splitter window column in pixels.

exM in Specifies a minimum width for the splitter window column in pixels.

Remarks

See Also

CSplitterWnd: :SetRowlnfo 755

Call this member function to set a new minimum width and ideal width for a
column. The column minimum value determines when the column will be too small
to be fully displayed.

When the framework displays the splitter window, it lays out the panes in columns
and rows according to their ideal dimensions, working from the upper-left to lower­
right comer of the splitter window's client area.

CSplitterWnd::GetRowlnfo, CSplitterWnd::RecalcLayout

CSplitterWnd: :SetRowlnfo

Remarks

See Also

void SetRowlnfo(int row, int cyJdeal, int cyMin);

row Specifies a splitter window row.

cyJdeal Specifies an ideal height for the splitter window row in pixels.

cyMin Specifies a minimum height for the splitter window row in pixels.

Call this member function to set a new minimum height and ideal height for a row.
The row minimum value determines when the row will be too small to be fully
displayed.

When the framework displays the splitter window, it lays out the panes in columns
and rows according to their ideal dimensions, working from the upper-left to lower­
right comer of the splitter window's client area.

CSplitterWnd: : GetRowlnfo, CSplitterWnd: :SetColumnlnfo,
CSplitter Wnd: : RecalcLayout

756 CStatic

class CStatic : public CWnd

See Also

The CStatic class provides the
functionality of a Windows static control.
A static control is a simple text field, box,
or rectangle that can be used to label, box,
or separate other controls. A static control
takes no input and provides no output.

Create a static control in two steps. First,

CStatic

call the constructor CStatic to construct the CStatic object, then call the Create
member function to create the static control and attach it to the CStatic object.

If you create a CStatic object within a dialog box (through a dialog resource), the
CStatic object is automatically destroyed when the user closes the dialog box. If
you create a CStatic object within a window, you may also need to destroy it. A
CStatic object created on the stack within a window is automatically destroyed. If
you create the CStatic object on the heap by using the new function, you must call
delete on the object to destroy it when the user terminates the Windows static
control.

#include <afxwin.h>

CWnd, CButton, CComboBox, CEdit, CListBox, CScrollBar, CDialog

Construction/Destruction - Public Members
CStatic Constructs a CStatic object.

Initialization - Public Members
Create Creates the Windows static control and attaches it to the CStatic

object.

Operations - Public Members
SetIcon

GetIcon

Associates an icon with an icon resource.

Retrieves the handle of the icon associated with an icon resource.

CStatic::Create 757

Member Functions

CStatic: :Create

Remarks

Return Value

Static Styles

BOOL Create(LPCSTR IpszText, DWORD dwStyle, const RECT& reet,
CWnd* pParentWnd, UINT nID = Oxffff);

IpszText Specifies the text to place in the control. If NULL, no text will be
visible.

dwStyle Specifies the static control's window style.

reet Specifies the position and size of the static control. It can be either a RECT
structure or a CRect object.

pParentWnd Specifies the CStatic parent window, usually a CDialog object. It
must not be NULL.

nID Specifies the static control's control ID.

Construct a CStatic object in two steps. First call the constructor CStatic, then call
Create, which creates the Windows static control and attaches it to the CStatic
object. Apply the following window styles to a static control:

• WS _ CHILD Always

• WS _ VISIBLE Usually

• WS _DISABLED Rarely

See Create in the CWnd base class for a full description of these window styles.

Nonzero if successful; otherwise O.

You can use any combination of the following static control styles for dwStyle:

• SS_BLACKFRAME Specifies a box with a frame drawn with the same
color as window frames. The default is black.

• SS _ BLACKRECT Specifies a rectangle filled with the color used to draw
window frames. The default is black.

• SS _CENTER Designates a simple rectangle and displays the given text
centered in the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the beginning
of the next centered line.

758 CStatic::Create

See Also

• SS _ GRA YFRAME Specifies a box with a frame drawn with the same color
as the screen background (desktop). The default is gray.

• SS _ GRA YRECT Specifies a rectangle filled with the color used to fill the
screen background. The default is gray.

• SS_ICON Designates an icon displayed in the dialog box. The given text is
the name of an icon (not a filename) defined elsewhere in the resource file. The
nWidth and nHeight parameters are ignored; the icon automatically sizes itself.

• SS _LEFT Designates a simple rectangle and displays the given text flush-left
in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the
next flush-left line.

• SS _LEFTNOWORDWRAP Designates a simple rectangle and displays the
given text flush-left in the rectangle. Tabs are expanded, but words are not
wrapped. Text that extends past the end of a line is clipped.

• SS _ NO PREFIX Unless this style is specified, the Windows operating system
will interpret any ampersand (&) characters in the control's text to be
accelerator prefix characters. In this case, the ampersand (&) is removed and the
next character in the string is underlined. If a static control is to contain text
where this feature is not wanted, SS _ NO PREFIX may be added. This static­
control style may be included with any of the defined static controls. You can
combine SS _ NOPREFIX with other styles by using the bitwise-OR operator.
This is most often used when filenames or other strings that may contain an
ampersand (&) need to be displayed in a static control in a dialog box.

• SS _RIGHT Designates a simple rectangle and displays the given text flush­
right in the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the beginning
of the next flush-right line.

• SS _SIMPLE Designates a simple rectangle and displays a single line of text
flush-left in the rectangle. The line of text cannot be shortened or altered in any
way. (The control's parent window or dialog box must not process the
WM _ CTLCOLOR message.)

• SS _ USERITEM Specifies a user-defined item.

• SS _ WHITEFRAME Specifies a box with a frame drawn with the same color
as the window background. The default is white.

• SS _ WHITERECT Specifies a rectangle filled with the color used to fill the
window background. The default is white.

CStatic:: CStatic

CStatic: :CStatic

Remarks

See Also

CStatic();

Constructs a CStatic object.

CStatic::Create

CStatic: :Getlcon
Windows 3.1 Only HICON GetIconO const; •

CStatic::Setlcon 759

Return Value Returns the handle of the icon associated with an icon resource. This function
should be called only for CStatic objects that represent icons created with the
SS_ICON style.

See Also STM_GETICON, CStatic::SetIcon

CStatic: :Setlcon
Windows 3.1 Only HICON SetIcon(HICON hIcon); •

Remarks

Return Value

See Also

hI con Identifies the icon to associate with an icon resource.

Associates an icon with an icon resource. This is a CStatic object created with the
SS_ICON style.

The handle of the icon that was previously associated with the icon resource; 0 if an
error occurred.

STM_SETICON, ::Loadlcon, CStatic::GetIcon

760 CStatusBar

class CStatusBar : public CControlBar

See Also

A CStatusBar object is a control bar
with a row of text output panes, or
"indicators." The output panes
commonly are used as message lines
and as status indicators. Examples
include the menu help-message lines
that briefly explain the selected menu
command and the indicators that show
the status of the SCROLL LOCK,

NUM LOCK, and other keys.

CStatusBar

The framework stores indicator information in an array with the leftmost indicator
at position O. When you create a status bar, you use an array of string IDs that the
framework associates with the corresponding indicators. You can then use either a
string ID or an index to access an indicator.

By default, the fIrst indicator is "stretchy": it takes up the status-bar length not used
by the other indicator panes, so that the other panes are right-aligned.

To create a status bar, follow these steps:

1. Construct the CStatusBar object.

2. Call the Create function to create the status-bar window and attach it to the
CStatusBar object.

3. Call Setlndicators to associate a string ID with each indicator.

There are three ways to update the text in a status-bar pane:

1. Call SetWindowText to update the text in pane 0 only.

2. Call SetText in the status bar's ON UPDATE COMMAND UI handler. - - -
3. Call SetPaneText to update the text for any pane.

#include <afxext.h>

CControlBar, CWnd: :SetWindowText, CStatusBar: :Setlndicators

Construction/Destruction - Public Members
CStatusBar

Create

Setlndicators

Constructs a CStatusBar object.

Creates the Windows status bar, attaches it to the
CStatusBar object, and sets the initial font and bar height.

Sets indicator IDs.

CStatusBar::Create 761

Attributes - Public Members
CommandToIndex Gets index for a given indicator ID.

GetltemID Gets indicator ID for a given index.

GetltemRect Gets display rectangle for a given index.

GetPaneText Gets indicator text for a given index.

SetPaneText Sets indicator text for a given index.

GetPaneInfo Gets indicator ID, style, and width for a given index.

SetPaneInfo Sets indicator ID, style, and width for a given index.

Member Functions

CStatusBar: :CommandTol ndex

Remarks

Return Value

See Also

int CommandToIndex(UINT nIDFind) const;

nIDFind String ID of the indicator whose index is to be retrieved.

Gets the indicator index for a given ID. The index of the first indicator is O.

The index of the indicator if successful; -1 if not successful.

CStatusBar: : GetltemID

CStatusBar: :Create
BOOL Create(CWnd* pParentWnd,

DWORD dwStyle = WS _CHILD I WS _VISIBLE I CBRS _BOTTOM,
UINT nID = AFX_IDW _STATUS_BAR);

pParentWnd Pointer to the CWnd object whose Windows window is the parent
of the status bar.

762 CStatusBar::CStatusBar

Remarks

Return Value

See Also

dwStyle The status-bar style. In addition to the standard Windows styles, these
styles are supported:

• CBRS_TOP Control bar is at top of frame window.

• CBRS BOTTOM Control bar is at bottom of frame window.

• CBRS NOALIGN Control bar is not repositioned when the parent
is resized.

nID The tool bar's child-window ID.

Creates a status bar (a child window) and associates it with the CStatusBar object.
Also sets the initial font and sets the status bar's height to a default value.

Nonzero if successful; otherwise O.

CStatusBar: :Setlndicators

CStatus Bar: :CStatus Bar

Remarks

See Also

CStatusBar();

Constructs a CStatusBar object, creates a default status-bar font if necessary, and
sets the font characteristics to default values.

CStatusBar: :Create

CStatusBar: :GetltemlD

Remarks

Return Value

See Also

DINT GetItemID(int nI ndex) const;

nI ndex Index of the indicator whose ID is to be retrieved.

Returns the ID of the indicator specified by nlndex.

The ID of the indicator specified by nI ndex.

CStatusBar: :CommandToIndex

CStatusBar::GetPaneText 763

CStatusBar: :GetltemRect

Remarks

See Also

void GetItemRect(int nlndex, LPRECT IpRect) const;

nI ndex Index of the indicator whose rectangle coordinates are to be retrieved.

IpRect Points to a RECT structure or a CRect object that will receive the
coordinates of the indicator specified by nlndex.

Copies the coordinates of the indicator specified by nI ndex into the structure
pointed to by IpRect. Coordinates are in pixels relative to the upper-left comer of
the status bar.

CStatllsBar::CommandToIndex, CStatllsBar::GetPaneInfo

CStatusBar: :GetPanelnfo

Remarks

See Also

void GetPaneInfo(int nlndex, UINT& nID, UINT& nStyle, int& cxWidth)
const;

nI ndex Index of the pane whose information is to be retrieved.

nID Reference to a UINT that is set to the ID of the pane.

nStyle Reference to a UINT that is set to the style of the pane.

cxWidth Reference to an integer that is set to the width of the pane.

Sets nID, nStyle, and cxWidth to the ID, style, and width of the indicator pane at
the location specified by nlndex.

CStatllsBar: :SetPaneInfo, CStatllsBar: : GetItemID,
CStatllsBar: : GetItemRect

CStatusBar: :GetPane Text
void GetPaneText(int nlndex, CString& s) const;

nI ndex Index of the pane whose text is to be retrieved.

s Reference to a CString object to which the pane's text is copied.

764 CStatusBar::Setindicators

Remarks Copies the pane's text to the CString object.

See Also CStatusBar: :SetPaneText

CStatusBar: :Setlndicators

Remarks

Return Value

See Also

BOOL Setlndicators(const UINT FAR* IpIDArray, int nIDCount);

IpIDArray Pointer to an array of IDs.

nIDCount Number of elements in the array pointed to by IpIDArray.

Sets each indicator's ID to the value specified by the corresponding element of the
array IpIDArray, loads the string resource specified by each ID, and sets the
indicator's text to the string.

Nonzero if successful; otherwise O.

CStatusBar: :CStatusBar, CStatusBar: :Create, CStatusBar: :SetPaneInfo,
CStatusBar: :SetPaneText

CStatusBar: :SetPanelnfo

Remarks

void SetPaneInfo(int nlndex, UINT nID, UINT nStyle, int cxWidth);

nlndex Index of the indicator pane whose style is to be set.

nID New ID for the indicator pane.

nStyle New style for the indicator pane.

cxWidth New width for the indicator pane.

Sets the specified indicator pane to a new ID, style, and width.

The following indicator styles are supported:

• SBPS_NOBORDERS No 3-D border around the pane.

• SBPS_POPOUT Reverse border so that text "pops out."

• SBPS DISABLED Do not draw text.

See Also

CStatusBar::SetPaneText 765

• SBPS STRETCH Stretch pane to fill unused space. Only one pane per status
bar can have this style.

• SBPS _NORMAL No stretch, borders, or pop-out.

CStatusBar: : GetPaneInfo

CStatusBar::SetPaneText

Remarks

Return Value

See Also

BOOL SetPaneText(int nlndex, LPCSTR lpszNewText,
BOOL bUpdate = TRUE);

nlndex Index of the pane whose text is to be set.

lpszN ewText Pointer to the new pane text.

bUpdate If TRUE, the pane is invalidated after the text is set.

Sets the pane text to the string pointed to by lpszNewText.

Nonzero if successful; otherwise O.

CStatusBar: : GetPaneText

766 CStdioFile

class CStdioFile : public CFile
A CStdioFile object represents a C run-time
stream file as opened by the fopen function.
Stream files are buffered and can be opened in
either text mode (the default) or binary mode. CStdioFile
Text mode provides special processing for L--______ -----'

carriage retum-linefeed pairs. When you write a
newline character (OxOA) to a text-mode CStdioFile object, the byte pair (OxOA,
OxOD) is sent to the file. When you read, the byte pair (OxOA, OxOD) is translated
to a single OxOA byte.

The CFile functions Duplicate, LockRange, and UnlockRange are not
implemented for CStdioFile. If you call these functions on a CStdioFile, you will
get a CNotSupportedException.

#include <afx.h>

Data Members - Public Members
Contains a pointer to an open file.

Construction/Destruction - Public Members
CStdioFile Constructs a CStdioFile object from a path or file pointer.

Text Read/Write - Public Members
ReadString

WriteString

Reads a single line of text.

Writes a single line of text.

CStdioFile::CStdioFile 767

Member Functions

CStdioFile: :CStdioFile

Remarks

CStdioFile();

CStdioFile(FILE* pOpenStream);

CStdioFile(const char* pszFileName, UINT nOpenFlags)
throw(CFileException);

pOpenStream Specifies the file pointer returned by a call to the C run-time
function fopen.

pszFileName Specifies a string that is the path to the desired file. The path can
be relative or absolute.

nOpenFlags Sharing and access mode. Specifies the action to take when the file
is opened. You can combine options by using the bitwise-OR (I) operator. One
access permission and a text-binary specifier are required; the create and
noInherit modes are optional. See CFile: :CFile for a list of mode options. The
share flags do not apply.

The default version of the constructor works in conjunction with the CFile::Open
member function to test errors. The one-parameter version constructs a CStdioFile
object from a pointer to a file that is already open. Allowed pointer values include
the predefined input/output file pointers stdin, stdout, or stderr. The two­
parameter version constructs a CStdioFile object and opens the corresponding
operating-system file with the given path. CFileException is thrown if the file
cannot be opened or created.

768 CStdioFile::ReadString

Example char* pFileName = "test.dat";
CStdioFile f1;
if(!fl.Open(pFileName,

CFile: :modeCreate I CFile: :modeWrite I CFile: :typeText)) {
4foifdef _DEBUG

afxDump « "Unable to open file" « "\n";
4foendif
exit(1);

CStdioFile f2(stdout);
TRY
{

CStdioFile f3(pFileName,
CFile::modeCreate I CFile::modeWrite I CFile::typeText);

CATCH(CFileException, e)
{

4foifdef _DEBUG
afxDump « "File could not be opened" « e->m_cause « "\n";

1fendif

CStd io File: : ReadStri ng

Remarks

Return Value

virtual char FAR* ReadString(char FAR* lpsz, UINT nMax)
throw(CFileException);

lpsz Specifies a pointer to a user-supplied buffer that will receive a null­
tenninated text string.

nM ax Specifies the maximum number of characters to read. Should be one less
than the size of the lpsz buffer.

Reads text data into a buffer, up to a limit of nMax-l characters, from the file
associated with the CStdioFile object. Reading is stopped by a carriage
retum-linefeed pair. If, in that case, fewer than nMax-l characters have been read,
a newline character is stored in the buffer. A null character (\0') is appended in
either case. CFile::Read is also available for text-mode input, but it does not
tenninate on a carriage retum-linefeed pair.

A pointer to the buffer containing the text data; NULL if end-of-file was reached.

Example extern CStdioFile f;
char buf[100];

f.ReadString(buf, 100);

CStdioFile::m-pStream 769

CStdioFile::WriteString

Remarks

Example

virtual void WriteString(const char FAR * lpsz)
throw(CFileException);

lpsz Specifies a pointer to a buffer containing a null-terminated text string.

Writes data from a buffer to the file associated with the CStdioFile object. The
terminating null character ('\0') is not written to the file. A newline character is
written as a carriage return-linefeed pair. WriteString throws an exception in
response to several conditions, including the disk-full condition.

This is a text-oriented write function available only to CStdioFile and its
descendents. CFile::Write is also available, but rather than terminating on a null
character, it writes the requested number of bytes to the file.

extern CStdioFile f;
char buf[] = "test string";

f.WriteString(buf);

Data Members

CStdioFile::m_pStream
Remarks The m _pStream data member is the pointer to an open file as returned by the C

run-time function fopen. It is NULL if the file has never been opened or has been
closed.

770 CString

class CString
A CString object consists of a variable-length sequence of characters. The
CString class provides a variety of functions and operators that manipulate
CString objects using a syntax similar to that of Basic. Concatenation and
comparison operators, together with simplified memory management, make
CString objects easier to use than ordinary character arrays. The increased
processing overhead is not significant. The CString "Application Notes" section
offers useful information on:

• CString Exception Cleanup

• CString Argument Passing

The maximum size of a CString object is MAXINT (32,767) characters. The
const char* operator gives direct access to the characters in a CString object,
which makes it look like a C-language character array. Unlike a character array,
however, the CString class has a built-in memory-allocation capability. This
allows string objects to grow as a result of concatenation operations. No attempt
is made to fold CString objects. If you make two CString objects containing
Chi c ago, for example, the characters in Chi c ago are stored in two places.
The CString class is not implemented as a Microsoft Foundation Class Library
collection class, although CString objects can certainly be stored as elements
in collections.

The overloaded const char* conversion operator allows CString objects to be
freely substituted for character pointers in function calls. The CString(const
char* psz) constructor allows character pointers to be substituted for CString
objects. Use the GetBuffer and ReleaseBuffer member functions when you need
to directly access a CString as a nonconstant pointer to char (char* instead of a
const char*).

CString objects follow "value semantics." A CString object represents a unique
value. Think of a CString as an actual string, not as a pointer to a string. Where
possible, allocate CString objects on the frame rather than on the heap. This saves
memory and simplifies parameter passing.

#include <afx.h>

Construction/Destruction - Public Members
CString

-CString

Constructs CString objects in various ways.

Destroys a CString object.

CString 771

The String as an Array-Public Members
GetLength Returns the number of characters in a CString object.

IsEmpty Tests whether the length of a CString object is O.

Empty Forces a string to have 0 length.

GetAt Returns the character at a given position.

operator [] Returns the character at a given position -operator
substitution for GetAt.

SetAt Sets a character at a given position.

operator const char* () Directly accesses characters stored in a
CString object.

Assignment/Concatenation - Public Members
operator =
operator +

operator +=

Assigns a new value to a CString object.

Concatenates two strings and returns a new string.

Concatenates a new string to the end of an
existing string.

Comparison - Public Members
operator ==, <, etc.

Compare

CompareNoCase

Collate

Comparison operators (ASCII, case sensitive).

Compares two strings (ASCII, case sensitive).

Compares two strings (ASCII, case insensitive).

Compares two strings with proper language­
dependent ordering.

Extraction - Public Members
Mid

Left

Right

Spanlncluding

SpanExcluding

Extracts the middle part of a string (like the Basic
MID$ command).

Extracts the left part of a string (like the Basic
LEFT$ command).

Extracts the right part of a string (like the Basic
RIGHT$ command).

Extracts a substring that contains only the characters
in a set.

Extracts a substring that contains only the characters
not in a set.

772 CString

Other Conversions - Public Members
MakeUpper

MakeLower

MakeReverse

Converts all the characters in this string to
uppercase characters.

Converts all the characters in this string to
lowercase characters.

Reverses the characters in this string.

Searching - Public Members
Find

ReverseFind

FindOneOf

Finds a character or substring inside a larger string.

Finds a character inside a larger string; starts from
the end.

Finds the first matching character from a set.

Archive/Dump - Public Members
operator «

operator »

Inserts a CString object to an archive or
dump context.

Extracts a CString object from an archive.

Buffer Access - Public Members
GetBuffer

GetBufferSetLength

ReleaseBuffer

Returns a pointer to the characters in the CString.

Returns a pointer to the characters in the CString,
truncating to the specified length.

Yields control of the buffer returned by GetBuffer.

Windows-Specific-Public Members
LoadString

AnsiToOem

OemToAnsi

Loads an existing CString object from a
Windows resource.

Makes an in-place conversion from the ANSI
character set to the OEM character set.

Makes an in-place conversion from the OEM
character set to the ANSI character set.

CString::Coliate 773

Member Functions

CStri ng: :AnsiToOem

Remarks

See Also

Example

void AnsiToOem();

Converts all the characters in this CString object from the ANSI character set to
the OEM character set. See the IBM PC Extended Character Set table and the
ANSI table in the Microsoft Windows Programmer's Reference. This function is
available only in the Windows compiled version of the Microsoft Foundation Class
Library, and it is declared in AFX.H only if _WINDOWS is defined.

CString: :OemToAnsi

CStri ng s ('\265'); / / Octal ANSI code for '112'
s.AnsiToOem();
ASSERT(s == "\253"); II Octal OEM code for '112'

CString: :Collate

Remarks

Return Value

See Also

Example

int Collate(const char* psz) const;

psz The other string used for comparison.

Performs a locale-specific comparison of two strings; uses the run-time
function strcoll. Compare performs a faster, ASCII-only comparison. A CString
object can be used as the argument because the class provides the appropriate
conversion operator.

The function returns 0 if the strings are identical, -1 if this CString object is less
than psz, or 1 if this CString object is greater than psz.

CString: :Compare, CString: :CompareNoCase

CString sl("abc");
CString s2("abd");

ASSERT(s1.Collate(s2 -1);

774 CString::Compare

CString::Compare

Remarks

Return Value

See Also

Example

int Comparee const char* psz) const;

psz The other string used for comparison.

Compares this CString object with another string, character by character; uses the
run-time function strcmp. If you need a language-specific comparison, use the
Collate member function.

The function returns 0 if the strings are identical, -1 if this CString object is less
than pSZ, or 1 if this CString object is greater than psz.

CString: :CompareNoCase, CString:: Collate

CString sl("abc");

CString s2("abd");
ASSERT(sl.Compare(s2) == -1); II Compare with another CString.
ASSERT(s1.Compare("abe") == -1); 1/ Compare with a char * string.

CString: :CompareNoCase

Remarks

Return Value

See Also

Example

int CompareNoCase(const char* psz) const;

psz The other string used for comparison.

Compares this CString object with another string, character by character; uses the
run-time function stricmp. The algorithm for deciding case applies only to ASCII
characters: 'A' == 'a' -> 'Z' == 'z'. If you need a language-specific comparison, use
the Collate member function.

The function returns 0 if the strings are identical (ignoring case), -1 if this CString
object is less than psz (ignoring case), or 1 if this CString object is greater than psz
(ignoring case).

CString:: Compare, CString:: Collate

CString sl("abc");
CString s2("ABO");

ASSERT(sl.CompareNoCase(s2) == -1); II Compare with a CString.
ASSERT(s1.Compare("ABE") == -1); 1/ Compare with a char * string.

CString::CString 775

CString::CString

Remarks

See Also

CString();

CString(const CString& stringSrc)
throw(CMemoryException);

CString(const char* psz)
throw(CMemoryException);

CString(char ch, int nRepeat = 1)
throw(CMemoryException);

CString(const char* pch, int nLength)
throw(CMemoryException);

CString(const char FAR* lpsz)
throw(CMemoryException);

CString(const char FAR * lpch, int nLength)
throw(CMemoryException);

stringSrc An existing CString object to be copied into this CString object.

psz A null-tenninated string to be copied into this CString object.

ch A single character to be repeated nRepeat times.

nRepeat The repeat count for ch.

pch A pointer to an array of characters of length nLength, not null-tenninated.

nLength A count of the number of characters in pch.

lpsz A far pointer to a null-tenninated ASCII string.

lpch A far pointer to an array of characters of length nLength.

Each of these constructors initializes a new CString object with the specified data.
Because the constructors copy the input data into new allocated storage, you should
be aware that memory exceptions may result. Note that some of these constructors
act as conversion functions. This allows you to substitute, for example, a char*
where a CString object is expected.

CString: :operator =, "CString Exception Cleanup," page 791

776 CString:: CString

Example CString s 1; II Empty string
CString s2("cat") ; II From a C string 1 itera 1
CString s3 = s2; II Copy constructor
CString s4(s2 + " " + s3) ; II From a string expression

CString s5(I x I) ; II s5 = "x"
CString s6(I x I, 6) ; II s6 = "xxxxxx"

CString city = "Philadelphia"; II NOT the assignment operator

CString: :~CString
""'CString() ;

Remarks Releases allocated memory used to store the string's character data.

CString::Empty

Remarks

See Also

Example

void Empty();

Makes this CString object an empty string and frees memory as appropriate.

CString::IsEmpty, "CString Exception Cleanup," page 791

CStri ng sl("abc");
CString s2;
sl.Empty();
ASSERT(sl == s2);

CStri ng : : Fi nd
int Find(char ch) const;

int Find(const char* pszSub) const;

ch A single character to search for.

pszSub A substring to search for.

Remarks

Return Value

See Also

Example

CString::GetAt 777

Searches this string for the fIrst match of a substring. The function is overloaded to
accept both single characters (similar to the run-time function strchr) and strings
(similar to strstr).

The zero-based index of the first character in this CString object that matches the
requested substring or characters; -1 if the substring or character is not found.

CString: :ReverseFind, CString: :FindOneOf

CString s("abcdef");
ASSERT(s.Find('c') == 2);
ASSERT(s.Find("de") == 3);

CString: :FindOneOf

Remarks

Return Value

See Also

Example

int FindOneOf(const char* pszCharSet) const;

pszCharSet String containing characters for matching.

Searches this string for the fIrst character that matches any character contained
in pszCharSet.

The zero-based index of the first character in this string that is also in pszCharSet;
-1 if there is no match.

CString: :Find

CString s("abcdef");

ASSERT(s.FindOneOf("xd") == 3); II 'd' is first match

CString::GetAt

Remarks

char GetAt(int nlndex) const;

nlndex Zero-based index of the character in the CString object. The nlndex
parameter must be greater than or equal to 0 and less than the value returned by
GetLength. The Debug version of the Microsoft Foundation Class Library
validates the bounds of nlndex; the Release version will not.

You can think of a CString object as an array of characters. The GetAt member
function returns a single character specifIed by an index number. The overloaded
subscript ([]) operator is a convenient alias for GetAt.

778 CString::GetBuffer

Return Value

See Also

Example

A char containing the character at the specified position in the string.

CString: :SetAt, CString: : GetLength, CString: :operator []

CString s("abcdef");
ASSERT(s.GetAt(2) == 'c');

CString: :GetBuffer

Remarks

Return Value

See Also

Example

char* GetBuffer(int nMinBufLength)
throw(CMemoryException);

nMinBufLength The minimum size of the CString character buffer in bytes. You
do not need to allow space for a null terminator.

Returns a pointer to the internal character buffer for the CString object. The
returned pointer to char is not const and thus allows direct modification of
CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you
must call ReleaseBuffer before using any other CString member functions. The
address returned by GetBuffer is invalid after the call to ReleaseBuffer or any
other CString operation. The buffer memory will be freed automatically when the
CString object is destroyed. Note that if you keep track of the string length
yourself, you need not append the terminating null byte. You must, however,
specify the final string length when you release the buffer with ReleaseBuffer, or
you can pass -1 for the length and ReleaseBuffer will perform a strlen on the
buffer to determine its length.

A char pointer to the object's (usually null-terminated) ASCII character buffer.

CString: : GetBufferSetLength, CString: : ReleaseBuffer

CString s;
char* p = s.GetBuffer(10); II Allocate space for 10 characters.
s = "abcdefg"; II p is still valid because length of s is 7

II characters.
p[l] = 'B'; II Change 'b' to 'B'.

iffi fdef _DEBUG
afxDump « "char* p " « (void*) p « ":" « p « "\n";

iffend if
char* q = s.GetBuffer(12); II Get a new, larger buffer.
II q is a different address from p, but the string is the same.

CString: :GetBufferSetLength 779

1Fifdef _DEBUG
afxDump « "char* q " « (void*) q « ":" « q « "\n";

1Fendif
s += "hij"; II String length is still smaller than 12.

1Fifdef _DEBUG
afxDump « "char* q " « (void*) q « ":" « q « "\n";

1Fendif
s += "klmnop"; II Now it is larger than 12, so the characters

II are moved, and q is no longer valid.
1Fifdef _DEBUG

afxDump « "char* q " « (void*) q « ":" « q « "\n";
afxDump « "CString s " « s « "\n"; II s contains

1Fendif
s.ReleaseBuffer();

II "aBcdefghijklmnop".

CString: :GetBufferSetLength

Remarks

Return Value

See Also

char* GetBufferSetLength(int nNewLength)
throw(CMemoryException);

nNewLength The exact size of the CString character buffer in bytes.

Returns a pointer to the internal character buffer for the CString object, truncating
or growing its length if necessary to exactly match the length specified in
nNewLength. The returned pointer to char is not const and thus allows direct
modification of CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you
must call ReleaseBuffer before using any other CString member functions. The
address returned by GetBuffer is invalid after the call to ReleaseBuffer or any
other CString operation. The buffer memory will be freed automatically when the
CString object is destroyed.

Note that if you keep track of the string length yourself, you need not append the
terminating null byte. You must, however, specify the final string length when you
release the buffer with ReleaseBuffer, or you can pass -1 for the length and
ReleaseBuffer will perform a strlen on the buffer to determine its length.

A char pointer to the object's (usually null-terminated) ASCII character buffer.

CString: : GetBuffer , CString: : ReleaseBuffer

780 CString::GetLength

CString: :GetLength

Remarks

See Also

Example

int GetLength() const;

Returns a count of the characters in this CString object. The count does not include
a null terminator.

CString: :IsEmpty

CString s("abcdef");
ASSERT(s.GetLength() == 6);

CString: :lsEmpty

Remarks

Return Value

See Also

Example

BOOL IsEmpty() const;

Tests a CString object for the empty condition.

TRUE if the CString object has 0 length; otherwise FALSE.

CString: : GetLength

CString s;
ASSERT(s.IsEmpty());

CString::Left

Remarks

CString Left(int nCount) const
throw(CMemoryException);

nCount The number of characters to extract from this CString object.

Extracts the first (that is, leftmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then
the entire string is extracted. Left is similar to the Basic LEFT$ command (except
that indexes are zero-based).

Return Value

See Also

Example

CString::MakeLower 781

A CString object containing a copy of the specified range of characters. Note that
the returned CString object may be empty.

CString: :Mid, CString: :Right

CString s("abcdef");
ASSERT(s.Left(3) == "abc");

CString: :LoadString

Remarks

Return Value

Example

BOOL LoadString(UINT nID)
throw(CMemoryException);

nID A Windows string resource ID.

Reads a Windows string resource, identified by nID, into an existing CString
object. The maximum string size is 255 characters. This function is declared in
AFX.H only if _WINDOWS is defined. Its use requires the Windows-compiled
version of the Microsoft Foundation classes, and it is normally used with
AFXWIN.H.

TRUE if resource load was successful; otherwise FALSE.

#define IDS_FILENOTFOUND 1
CString s;
s.LoadString(IDS_FILENOTFOUND);

CString: :MakeLower

Remarks

See Also

Example

void MakeLower();

Converts this CString object to a lowercase string.

CString::MakeUpper

CString s("ABC");
s.MakeLower();
ASSERT(s == "abc");

782 CString::MakeReverse

CStri ng : : Make Reverse

Remarks

Example

void MakeReverse();

Reverses the order of the characters in this CString object.

CString s("abc");
s.MakeReverse();
ASSERT(s == "eba");

CString: :MakeUpper

Remarks

See Also

Example

void MakeUpper();

Converts this CString object to an uppercase string.

CString: : MakeLower

CString s("abc");
s.MakeUpper();
ASSERT(s == "ABC");

CString: :Mid

Remarks

CString Mid(int nFirst) const
throw(CMemoryException);

CString Mid(int nFirst, int nCount) const
throw(CMemoryException);

nFirst The zero-based index of the first character in this CString object that is to
be included in the extracted substring.

nCount The number of characters to extract from this CString object. If this
parameter is not supplied, then the remainder of the string is extracted.

Extracts a substring of length nCount characters from this CString object, starting
at position nFirst (zero-based). The function returns a copy of the extracted
substring. Mid is similar to the Basic MID$ command (except that indexes are
zero-based).

Return Value

See Also

Example

CString: :ReleaseBuffer 783

A CString object that contains a copy of the specified range of characters. Note
that the returned CString object may be empty.

CString::Left, CString::Right

CString s("abcdef");
ASSERT(s.Mid(2. 3) == "cde");

CString::OemToAnsi

Remarks

See Also

Example

void OemToAnsi();

Converts all the characters in this CString object from the OEM character set to
the ANSI character set. See the IBM PC Extended Character Set table and the
ANSI table in the Microsoft Windows Programmer's Reference. This function is
available only in the Windows-compiled library of the Microsoft Foundation
classes and is declared in AFX.H only if _WINDOWS is defined.

CString: :AnsiToOem

CStri ng s ('\253'); / / Octa 1 OEM code for '112'
s. OemToAnsi ();
ASSERT(s == "\265"); / / Octal ANSI code for '112'

CString: :ReleaseBuffer

Remarks

void ReleaseBuffer(int nNewLength = -1);

nNewLength The new length of the string in characters, not counting a null
terminator. If the string is null-terminated, the -1 default value sets the CString
size to the current length of the string.

Use ReleaseBuffer to end use of a buffer allocated by GetBuffer. If you know that
the string in the buffer is null-terminated, you can omit the nNewLength argument.
If your string is not null-terminated, then use nNewLength to specify its length. The
address returned by GetBuffer is invalid after the call to ReleaseBuffer or any
other CString operation.

784 CString::ReverseFind

See Also CString: : GetBuffer

Example CStri ng s;
char* p = s.GetBuffer(1024);
s = "abc";
ASSERT(s.GetLength() == 3); II String length = 3
s.ReleaseBuffer(); II Surplus memory released, p is now invalid.
ASSERT(s.GetLength() == 3); II Length still 3

CString: :ReverseFind

Remarks

Return Value

See Also

Example

int ReverseFind(char ch) const;

ch The character to search for.

Searches this CString object for the last match of a substring. The function is
similar to the run-time function strrchr.

The index of the last character in this CString object that matches the requested
character; -1 if the character is not found.

CString: :Find, CString: :FindOneOf

CString s("abcabc");
ASSERT(s.ReverseFind('b') == 4);

CString::Right

Remarks

Return Value

CString Right(int nCount) const
throw(CMemoryException);

nCount The number of characters to extract from this CString object.

Extracts the last (that is, rightmost) nCount characters from this CString object
and returns a copy of the extracted substring. If nCount exceeds the string length,
then the entire string is extracted. Right is similar to the Basic RIGHT$ command
(except that indexes are zero-based).

A CString object that contains a copy of the specified range of characters. Note
that the returned CString object may be empty.

See Also

Example

CString::Mid, CString::Left

CSt ri ng s ("abcdef");
ASSERT(s.Right(3) == "def");

CString::SpanExcluding 785

CString::SetAt

Remarks

See Also

void SetAt(int nlndex, char ch);

nlndex Zero-based index of the character in the CString object. The nlndex
parameter must be greater than or equal to 0 and less than the value returned by
GetLength. The Debug version of the Microsoft Foundation Class Library will
validate the bounds of nI ndex; the Release version will not.

ch The character to insert. Must not be \0'.

You can think of a CString object as an array of characters. The SetAt member
function overwrites a single character specified by an index number. SetAt will not
enlarge the string if the index exceeds the bounds of the existing string.

CString::GetAt, CString::operator []

CString: :SpanExcluding

Remarks

Return Value

See Also

CString SpanExcluding(const char* pszCharSet) const
throw(CMemoryException);

pszCharSet A string interpreted as a set of characters.

Extracts the largest substring that excludes only the characters in the specified set
pszCharSet; starts from the first character in this CString object. If the first
character of the string is included in the character set, then SpanExcluding returns
an empty string.

A copy of the substring that contains only characters not in pszCharSet.

CString:: Spanlncluding

786 CString: :Spanlncluding

CString: :Spanlncluding

Remarks

Return Value

See Also

Operators

CString Spanlncluding(const char* pszCharSet) const
throw(CMemoryException);

pszCharSet A string interpreted as a set of characters.

Extracts the largest substring that contains only the characters in the specified
set pszCharSet; starts from the first character in this CString object. If the first
character of the string is not in the character set, then Spanlncluding returns an
empty string.

A copy of the substring that contains only characters in pszCharSet.

CString: :SpanExcluding

CString::operator =

Remarks

const CString& operator =(const CString& stringSrc)
throw(CMemoryException);

const CString& operator =(const char* psz)
throw(CMemoryException);

const CString& operator =(char ch)
throw(CMemoryException);

The CString assignment (=) operator reinitializes an existing CString object with
new data. If the destination string (that is, the left side) is already large enough to
store the new data, no new memory allocation is performed. You should be aware
that memory exceptions may occur whenever you use the assignment operator
because new storage is often allocated to hold the resulting CString object.

See Also

Example

CString: :CString

CString sl, s2;

sl = "cat";
s2 = s 1 ;
sl "the " + s 1 ;
sl = 'x' ;

CString::operator «, » 787

II Empty CString objects

II sl = "cat"
II sl and s2 each = "cat"
II Or expressions
II Or just individual characters

CString::operator const char* ()

Remarks

Return Value

operator const char* () const;

This useful casting operator provides an efficient method to access the null­
terminated C string contained in a CString object. No characters are copied; only
a pointer is returned. Be careful with this operator. If you change a CString object
after you have obtained the character pointer, you may cause a reallocation of
memory that invalidates the pointer.

A character pointer if the cast was successful; otherwise a null pointer.

CString::operator «, »

Remarks

friend CArchive& operator «(CArchive& ar, const CString& string)
throw(CArchiveException);

friend CArchive& operator »(CArchive& ar, CString& string)
throw(CArchiveException);

friend CDumpContext& operator «(CDumpContext& dc,
const CString& string);

The CString insertion «<) operator supports diagnostic dumping and storing to an
archive. The extraction (») operator supports loading from an archive.

The CDumpContext operators are valid only in the Debug version of the
Microsoft Foundation Class Library.

788 CString::operator +

Example I I Operator «, » exampl e
extern CArchive ar;
CString s("abc");

lfifdef _DEBUG
afxDump «s; II Prints the value (abc)
afxDump «&s; II Prints the address

lfendif

if(ar.lsLoading()
ar » s;

else
ar « s;

CString: :operator +

Remarks

Return Value

See Also

friend CString operator +(const CString& string 1, const CString& string2)
throw(CMemoryException);

friend CString operator +(const CString& string, char ch)
throw(CMemoryException);

friend CString operator +(char ch, const CString& string)
throw(CMemoryException);

friend CString operator +(const CString& string, const char* psz)
throw(CMemoryException);

friend CString operator +(const char* psz, const CString& string)
throw(CMemoryException);

The + concatenation operator joins two strings and returns a CString object. One
of the two argument strings must be a CString object. The other can be a character
pointer or a character. You should be aware that memory exceptions may occur
whenever you use the concatenation operator since new storage may be allocated to
hold temporary data. You must ensure that the maximum length limit is not
exceeded. The Debug version of the Microsoft Foundation Class Library asserts
when it detects strings that are too long.

A CString object that is the temporary result of the concatenation. This return
value makes it possible to combine several concatenations in the same expression.

CString: : operator +=

Example CStri ng sl("abc");
CString s2("def");
ASSERT((s1 + s2) == "abcdef");
CString s3;

CString Comparison Operators 789

s3 = CString("abc") + "def" ; II Correct
II s3 = "abc" + "def"; II Wrong! One of the arguments must be a CString.

CString::operator +=

Remarks

See Also

Example

const CString& operator +=(const CString& string)
throw(CMemoryException);

const CString& operator +=(char ch)
throw(CMemoryException);

const CString& operator +=(const char* psz)
throw(CMemoryException);

The += concatenation operator joins characters to the end of this string. The
operator accepts another CString object, a character pointer, or a single character.
You should be aware that memory exceptions may occur whenever you use this
concatenation operator because new storage may be allocated for characters added
to this CString object. You must ensure that the maximum length limit is not
exceeded. The Debug version of the Microsoft Foundation Class Library asserts
when it detects strings that are too long.

CString::operator +

CString s("abc");
ASSERT((s += "def") == "abcdef");

CString Comparison Operators
BOOL operator ==(const CString& s1, const CString& s2);

BOOL operator ==(const CString& s1, const char* s2);

BOOL operator ==(const char* s1, const CString& s2);

BOOL operator !=(const CString& s1, const CString& s2);

BOOL operator !=(const CString& s1, const char* s2);

790 CString::operator []

Remarks

Return Value

Example

BOOL operator !=(const char* sl, const CString& s2);

BOOL operator « const CString& sl, const CString& s2);

BOOL operator « const CString& sl, const char* s2);

BOOL operator « const char* sl, const CString& s2);

BOOL operator >(const CString& sl, const CString& s2);

BOOL operator >(const CString& sl, const char* s2);

BOOL operator >(const char* sl, const CString& s2);

BOOL operator <=(const CString& sl, const CString& s2);

BOOL operator <=(const CString& sl, const char* s2);

BOOL operator <=(const char* sl, const CString& s2);

BOOL operator >=(const CString& sl, const CString& s2);

BOOL operator >=(const CString& sl, const char* s2);

BOOL operator >=(const char* sl, const CString& s2);

These comparison operators compare two CString objects, and they compare a
CString object with an ordinary null-terminated C string. The operators are a
convenient substitute for the case-sensitive Compare member function.

TRUE if the strings meet the comparison condition; otherwise FALSE.

CStri ng 5l("abc");

CString 52("abd");

ASSERT(51 < 52); II Operator i5 overloaded for both.

ASSERT("ABC" < 51); II CString and char*
ASSERT(52 > "abe");

CString: :operator []

Remarks

char operator [](int nlndex) const;

You can think of a CString object as an array of characters. The overload subscript
([]) operator returns a single character specified by the zero-based index in nlndex.
This operator is a convenient substitute for the GetAt member function. You can
use the subscript ([]) operator on the right side of an expression (r-value
semantics), but you cannot use it on the left side of an expression (I-value

See Also

Example

Application Notes 791

semantics). That is, you can use this operator to get characters in a CString, but
you cannot use it to set characters in the CString.

CString: :GetAt, CString: :SetAt

CString s("abc");
ASSERT(s[1] == 'b');

Application Notes

CString Exception Cleanup

Example

Memory Leaks
If you notice that the Microsoft Foundation Class Library diagnostic memory
allocator is reporting leaks for non-CObject memory blocks, check your exception­
processing logic to see if CString objects are being cleaned up properly. The
CString class is typical in that its constructor and member functions allocate
memory that must be freed by the destructor. CString is unique, however, in that
instances are often allocated on the frame rather than on the heap. When a frame­
allocated CString object goes out of scope, its destructor is called invisibly
without need for a delete statement. Whether you explicitly destroy an object or
not, you must be sure that the destructor call is not bypassed by uncaught
exceptions. For frame-allocated (and heap-allocated) CString objects, use a
CA TCH statement to channel execution through the end of the function that
contains the CString allocation.

This is an example of incorrect programming.

void TestFunction1()
{

CString sl = "test";
OtherFunction(); II OtherFunction may raise an exception.

II This point not passed if an exception occurred.
II sl's destructor called here (frees character storage for
II "test")

You must add TRY ICA TCH code to free the string character data in response to
memory exceptions.

792 Application Notes

Now the program has been improved to properly handle exceptions.

void TestFunction2()
{

CString sl;
TRY
{

sl = "test";
OtherFunction(); II OtherFunction may raise an exception.

CATCH(CException, e)
{

sl. Empty();
THROW_LAST()

CString Argument Passing
Argument-Passing Conventions

II Frees up associated data

When you define a class interface, you must determine the argument-passing
convention for your member functions. There are some standard rules for passing
and returning CString objects. If you follow these rules, you will have efficient,
correct code.

Strings as Function Inputs
If a string is an input to a function, in most cases it is best to declare the string
function parameter as const char*. Convert to a CString object as necessary
within the function using constructors and assignment operators. If the string
contents are to be changed by a function, declare the parameter as a nonconstant
CString reference (CString&).

Strings as Function Outputs
Normally you can return CString objects from functions since CString objects
follow value semantics like primitive types. To return a read-only string, use a
constant CString reference (const CString&).

Example class CName
{

private:

public CObject

CString m_firstName;
char m_middlelnit;
CString m_lastName;

public:
CName () {}

Application Notes 793

void SetData(canst char* fn, canst char mi, canst char* In)
{

} ;

m_firstName = fn;
m_middlelnit = mi;
m_lastName = In;

void GetData(CString& cfn, char mi, CString& cln)
{

}

cfn = m_firstName;
mi = m_middlelnit;
cln = m_lastName;

CString GetLastName()
{

return m_lastName;

CName name;
CString last, first;
char middle;
name.SetData("John", '0', "Public");
ASSERT(name.GetLastName() == "Public");
name.GetData(first, middle, last);
ASSERT((fi rst == "John") && (1 ast == "Publ i c"));

return 0;

794 CStringArray

class CStringArray : public CObject
The CStringArray class supports arrays of CString
objects. The member functions of CStringArray are
similar to the member functions of class CObArray. '--C_S_tr_in.=..9A_r_ra...:...y ____ --'

Because of this similarity, you can use the
CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a return value, substitute a CString. Wherever you see a
CObject pointer as a function parameter, substitute a const pointer to char.

CObject* CObArray::GetAt(int <nlndex>) const;

for example, translates to

CString CStringArray: :GetAt(int <nlndex>) const;

and

void SetAt(int <nlndex>. CObject* <newElement>)

translates to

void SetAt(int <nlndex>. const char* <newElement>)

CStringArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of CString objects is stored
to an archive, either with an overloaded insertion operator or with the Serialize
member function, each element is, in tum, serialized. If you need a dump of
individual string elements in the array, you must set the depth of the dump context
to 1 or greater. When a CString array is deleted, or when its elements are removed,
string memory is freed as appropriate.

#include <afxcoll.h>

Construction/Destruction - Public Members
CStringArray

-CStringArray

Constructs an empty array for CString objects.

Destroys a CStringArray object.

Bounds - Public Members
GetSize

GetUpperBound

SetSize

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

CStringArray 795

Operations - Public Members
FreeExtra

RemoveAIl

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; array not allowed to grow.

Returns a temporary reference to the element pointer within
the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array if necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at a
specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

796 CStringList

class CStringList : public CObject
The CStringList class supports lists of CString
objects. All comparisons are done by value, meaning
that the characters in the string are compared instead L-C_S_tr_in=9L_is_t ____ ---'
of the addresses of the strings. The member functions
of CStringList are similar to the member functions of class CObList. Because of
this similarity, you can use the CObArray reference documentation for member
function specifics. Wherever you see a CObject pointer as a return value,
substitute a CString. Wherever you see a CObject pointer as a function parameter,
substitute a const pointer to char.

CObject*& CObList::GetHead() canst;

for example, translates to

CString& CStringList::GetHead() canst;

and

POSITION AddHead(CObject* <newElement>);

translates to

POSITION AddHead(canst char* <newElement>);

CStringList incorporates the IMPLEMENT _SERIAL macro to support
serialization and dumping of its elements. If a list of CString objects is stored to an
archive, either with an overloaded insertion operator or with the Serialize member
function, each CString element is, in turn, serialized.

If you need a dump of individual CString elements, you must set the depth of the
dump context to 1 or greater. When a CStringList object is deleted, or when its
elements are removed, the CString objects are deleted as appropriate.

#include <afxcoll.h>

Construction/Destruction - Public Members
CStringList Constructs an empty list for CString objects.

Head/Tail Access - Public Members
GetHead

GetTaii

Returns the head element of the list (cannot be empty).

Returns the tail element of the list (cannot be empty).

CStringList 797

Operations - Public Members
RemoveHead

RemoveTaii

AddHead

AddTaii

RemoveAIl

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

Adds an element (or all the elements in another list) to the
tail of the list (makes a new tail).

Removes all the elements from this list.

Iteration - Public Members
GetHeadPosition

GetTailPosition

GetNext

GetPrev

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Retrieval/Modification - Public Members
GetAt

SetAt

RemoveAt

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list as specified by position.

Insertion - Public Members
InsertBefore

InsertAfter

Inserts a new element before a given position.

Inserts a new element after a given position.

Searching - Public Members
Find

Findlndex

Gets the position of an element specified by string value.

Gets the position of an element specified by a zero­
based index.

Status - Public Members
GetCount

IsEmpty

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

798 Clime

class CTime

See Also

A CTime object represents an absolute time and date. The CTime class
incorporates the ANSI time _ t data type and its associated run-time functions,
including the ability to convert to and from a Gregorian date and 24-hour time.
CTime values are based on universal coordinated time (UCT), which is equivalent
to Greenwich mean time (GMT). The local time zone is controlled by the TZ
environment variable. For more information on the time _ t data type and the run­
time functions that are used by CTime, see the Run-Time Library Reference.
Note that CTime was the strftime function, which is not supported for Windows
dynamic-link libraries (DLL). Therefore, CTime cannot be used in Windows
DLLs. A companion class, CTimeSpan, represents a time interval-the difference
between two CTime objects.

The CTime and CTimeSpan classes are not designed for derivation. Because there
are no virtual functions, the size of CTime and CTimeSpan objects is exactly 4
bytes. Most member functions are inline.

#include <afx.h>

Run-time functions: asctime, _ftime, gmtime, locaitime, strftime, time

Construction/Destruction - Public Members
CTime

GetCurrentTime

Constructs CTime objects in various ways.

Creates a CTime object that represents the current time
(static member function).

Extraction - Public Members
GetTime

GetYear

GetMonth

GetDay

GetHour

GetMinute

Returns a time _ t that corresponds to this CTime object.

Returns the year that this CTime object represents.

Returns the month that this CTime object represents
(1 through 12).

Returns the day that this CTime object represents
(1 through 31).

Returns the hour that this CTime object represents
(0 through 23).

Returns the minute that this CTime object represents
(0 through 59).

GetSecond

GetDayOfW eek

CTime::CTime 799

Returns the second that this CTime object represents
(0 through 59).

Returns the day of the week (1 for Sunday, 2 for Monday,
and so forth).

Conversion - Public Members
GetGmtTm

GetLocalTm

Format

FormatGmt

Breaks down a CTime object into components­
based on VCT.

Breaks down a CTime object into components­
based on the local time zone.

Converts a CTime object into a formatted string­
based on the local time zone.

Converts a CTime object into a formatted string­
based on VCT.

Operators - Public Members
operator =
operator +, -

operator +=, -=

operator ==, < , etc.

Assigns new time values.

Add and subtract CTimeSpan and CTime objects.

Add and subtract a CTimeSpan object to and from
this CTime object.

Compare two absolute times.

Archive/Dump-Public Members
operator «

operator »

Member Functions

CTime::CTime
CTime();

Outputs a CTime object to CArchive or
CDumpContext.

Inputs a CTime object from CArchive.

CTime(const CTime& timeSrc);

CTime(time _ t time);

800 CTime::CTime

Remarks

Example

CTime(int nYear, int nMonth, int nDay, int nHour, int nMin, int nSec);

CTime(WORD wDosDate, WORD wDosTime);

timeSrc Indicates a CTime object that already exists.

time Indicates a time value.

nYear, nMonth, nDay, nHour, nMin, nSec Indicate year, month, day, hour,
minute, and second.

wDosDate, wDosTime Indicate the date and time obtained through the MS-DOS
functions _ dos _getftime and _ dos _getdate.

All these constructors create a new CTime object initialized with the specified
absolute time, based on the current time zone. Each constructor is described below:

• CTime(); Constructs a CTime object with a 0 (illegal) value. Note that 0 is
an invalid time. This constructor allows you to define CTime object arrays.
You should initialize such arrays with valid times prior to use.

• CTime(const CTime&); Constructs a CTime object from another
CTime value.

• CTime(time _ t); Constructs a CTime object from a time _ t type.

• CTime(int, int, etc.); Constructs a CTime object from local time
components with each component constrained to the following ranges:

Component Range

nYear 1970-2038

nMonth 1-12

nDay 1-31

nHour 0-23

nMin 0-59

nSec 0-59

This constructor makes the appropriate conversion to VCT. The Debug version of
the Microsoft Foundation Class Library asserts if one or more of the time-day
components is out of range. It is your responsibility to validate the arguments prior
to calling.

time_t osBinaryTime; II C run-time time (defined in <time.h»
time(&osBinaryTime) II Get the current time from the

II operating system.
CTime timel; II Empty CTime. (0 is illegal time value.)
CTime time2 = timel; II Copy constructor.
CTime time3(osBinaryTime); II CTime from C run-time time
CTime time4(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999

CTime::GetCurrentTime 801

CTime::Format

Remarks

Return Value

See Also

Example

CString Format(const char* pFormat);

pF ormat Specifies a fonnatting string similar to the printf fonnatting string. See
the run-time function strftime for details.

Generates a fonnatted string that corresponds to this CTime object. The time value
is converted to local time.

A CString that contains the fonnatted time.

CTime: :FormatGmt

CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
CString s = t.Format("%A, %B %d, %Y");
ASSERT(s == "Friday, March 19,1999");

CTime::FormatGmt

Remarks

Return Value

See Also

Example

CString FormatGmt(const char* pF ormat);

pF ormat Specifies a fonnatting string similar to the printf fonnatting string. See
the run-time function strftime for details.

Generates a fonnatted string that corresponds to this CTime object. The time value
is not converted and thus reflects VeT.

A CString that contains the fonnatted time.

CTime: :Format

See the example for Format.

CTi me: :GetCu rrentTi me

Remarks

Example

static CTime PASCAL GetCurrentTime();

Returns a CTime object that represents the current time.

CTime t = CTime::GetCurrentTime();

802 CTime::GetDay

CTime::GetDay

Remarks

See Also

Example

int GetDay() const;

Returns the day of the month, based on local time, in the range 1 through 31.

CTime: : GetDayOfW eek

CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
ASSERT(t.GetDay() == 19);
ASSERT(t.GetMonth() == 3);
ASSERT(t.GetYear() == 1999);

CTime: :GetDayOfWeek

Remarks

int GetDayOfW eek() const;

Returns the day of the week based on local time; 1 = Sunday, 2 = Monday, ... ,
7 = Saturday.

CTime::GetGmtTm

Remarks

Return Value

struct tm* GetGmtTm(struct tm* ptm = NULL) const;

ptm Points to a buffer that will receive the time data. If this pointer is NULL, an
internal, statically allocated buffer is used. The data in this default buffer is
overwritten as a result of calls to other CTime member functions.

Gets a struct tm that contains a decomposition of the time contained in this CTime
object. GetGmtTm returns UeT.

A pointer to a filled-in struct tm as defined in the include file TIME.H. The
members and the values they store are as follows:

• tm sec Seconds

• tm min Minutes

• tm hour Hours (0-23)

• tm_mday Day of month (1-31)

• tm mOD Month (0-11; January = 0)

Example

CTime::GetLocaITm 803

• tm_year Year (actual year minus 1900)

• tm_wday Day of week (1-7; Sunday = 1)

• tm _yday Day of year (0-365; January 1 = 0)

• tm isdst Always 0

Note The year in struct tm is in the range 70 to 138; the year in the CTime
interface is in the range 1970 to 2038 (inclusive).

See the example for GetLocalTm.

CTime::GetHour

Remarks

Example

int GetHour() const;

Returns the hour, based on local time, in the range 0 through 23.

CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
ASSERT(t.GetSecond() == 0);
ASSERT(t.GetMinute() == 15);
ASSERT(t.GetHour() == 22);

CTime::GetLocaITm

Remarks

Return Value

Example

struct tm* GetLocalTm(struct tm* ptm = NULL) const;

ptm Points to a buffer that will receive the time data. If this pointer is NULL, an
internal, statically allocated buffer is used. The data in this default buffer is
overwritten as a result of calls to other CTime member functions.

Gets a struct tm containing a decomposition of the time contained in this CTime
object. GetLocalTm returns local time.

A pointer to a filled-in struct tm as defined in the include file TIME.H. See
GetGmtTm for the structure layout.

CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
struct tm* osTime; II A pointer to a structure containing time

II elements.
osTime = t.GetLocalTm(NULL);
ASSERT(osTime->tm_mon == 2); II Note zero-based month!

804 CTime::GetMinute

CTime::GetMinute

Remarks

Example

int GetMinute() const;

Returns the minute, based on local time, in the range 0 through 59.

See the example for GetHour.

CTime::GetMonth

Remarks

Example

int GetMonth() const;

Returns the month, based on local time, in the range 1 through 12 (l = January).

See the example for GetDay.

CTi me: :GetSecond

Remarks

Example

int GetSecond() const;

Returns the second, based on local time, in the range 0 through 59.

See the example for GetHour.

CTime::GetTime

Remarks

See Also

Example

time _ t GetTime() const;

Returns a time _ t value for the given CTime object.

CTime: :CTime

CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
time_t osBinaryTime = t.GetTime(); II time_t defined in <time.h>
printf("time_t = %ld\n". osBinaryTime);

CTime::operator +, • 805

CTime::GetYear

Remarks

Example

Operators

int GetYear() const;

Returns the year, based on local time, in the range 1970 to 2038.

See the example for GetDay.

CTime::operator =

Remarks

See Also

Example

const CTime& operator =(const CTime& timeSrc);

const CTime& operator =(time _ t t);

These overloaded assignment operators copy the source time into this CTime
object. The internal time storage in a CTime object is independent of time zone.
Time-zone conversion is not necessary during assignment.

CTime: :CTime

time_t osBinaryTime; II C run-time time (defined in <time.h»
CTime tl = osBinaryTime; II Assignment from time_t
CTime t2 = tl; II Assignment from CTime

CTime::operator +, -

Remarks

CTime operator +(CTimeSpan timeSpan) const;

CTime operator -(CTimeSpan timeS pan) const;

CTimeSpan operator -(CTime time) const;

CTime objects represent absolute time. CTimeSpan objects represent relative
time. The first two operators allow you to add and subtract CTimeSpan objects to
and from CTime objects. The third allows you to subtract one CTime object from
another to yield a CTimeSpan object.

806 CTime::operator +=,-=

Example CTime tl(1999, 3,19,22,15,0); II 10:15PM March 19,1999
CTime t2(1999, 3, 20, 22, 15, 0); II 10:15PM March 20, 1999
CTimeSpan ts = t2 - tl; II Subtract 2 CTimes
ASSERT(ts.GetTotalSeconds() == 86400L);
ASSERT((tl + ts) == t2); II Add a CTimeSpan to a CTime.
ASSERT((t2 - ts) == tl); II Subtract a CTimeSpan from a CTime.

CTime::operator +=, -=

Remarks

Example

const CTime& operator +=(CTimeSpan timeSpan);

const CTime& operator -=(CTimeSpan timeSpan);

These operators allow you to add and subtract a CTimeSpan object to and from
this CTime object.

CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
t += CTimeSpan(0, 1, 0, 0); II 1 hour exactly
ASSERT(t.GetHour() == 23);

CTime Comparison Operators

Remarks

Example

BOOL operator ==(CTime time) const;

BOOL operator !=(CTime time) const;

BOOL operator « CTime time) const;

BOOL operator >(CTime time) const;

BOOL operator <=(CTime time) const;

BOOL operator >=(CTime time) const;

These operators compare two absolute times and return TRUE if the condition is
true; otherwise FALSE.

CTime t1 = CTime::GetCurrentTime();
CTime t2 = t1 + CTimeSpan(0, 1, 0, 0);
ASSERT(t1 1= t2);
ASSERT(t1 < t2);
ASSERT(t1 <= t2);

II 1 hour later

CTime: :operators «, » 807

CTime::operators «, »

Remarks

See Also

Example

friend CDumpContext& operator «(CDumpContext& dc, CTime time);

friend CArchive& operator «(CArchive& ar, CTime time);

friend CArchive& operator »(CArchive& ar, CTime& rtime);

The CTime insertion «<) operator supports diagnostic dumping and storing to an
archive. The extraction (») operator supports loading from an archive.

When you send a CTime object to the dump context, the local time is displayed in
readable date-time format.

CArchive, CDumpContext

CTime t(1999. 3. 19. 22. 15. 0); II 10:15PM March 19. 1999
afxDump« t« "\n"; II Prints 'CTime("Fri Mar 19 22:15:00 1999")'.

extern CArchive ar;
if(ar.lsLoading()

ar » t;
else

ar « t;

808 CTimeSpan

class CTimeSpan

See Also

A CTimeSpan object represents a relative time span. The CTimeSpan class
incorporates the ANSI time _ t data type and its associated run-time functions.
These functions convert seconds to various combinations of days, hours,
minutes, and seconds. A CTimeSpan object keeps time in seconds. Because
the CTimeSpan object is stored as a signed number in 4 bytes, the maximum
allowed span is approximately ± 68 years.

A companion class, CTime, represents an absolute time. A CTimeSpan is the
difference between two CTime values. The CTime and CTimeSpan classes
are not designed for derivation. Because there are no virtual functions, the size of
both CTime and CTimeSpan objects is exactly 4 bytes. Most member functions
are inline.

#include <afx.h>

Run-time functions: asctime, _ ftime, gmtime, localtime, strftime, time

Construction/Destruction - Public Members
CTimeSpan Constructs CTimeSpan objects in various ways.

Extraction - Public Members
GetDays

GetHours

GetTotalHours

GetMinutes

GetTotalMinutes

GetSeconds

GetTotalSeconds

Returns the number of complete days in this
CTimeSpan.

Returns the number of hours in the current day
(-23 through 23).

Returns the total number of complete hours in this
CTimeSpan.

Returns the number of minutes in the current hour
(-59 through 59).

Returns the total number of complete minutes in this
CTimeSpan.

Returns the number of seconds in the current minute
(-59 through 59).

Returns the total number of complete seconds in this
CTimeSpan.

CTimeSpan::CTimeSpan 809

Conversion - Public Members
Format Converts a CTimeSpan into a fonnatted string.

Operators - Public Members
operator =
operator +, -

operator +=, -=

operator ==, <, etc.

Assigns new time-span values.

Add and subtract CTimeSpan objects.

Add and subtract a CTimeSpan object to and from this
CTimeSpan.

Compare two relative time values.

Archive/Dump - Public Members
operator «

operator »

Outputs a CTimeSpan object to CArchive or
CDumpContext.

Inputs a CTimeSpan object from CArchive.

Member Functions

CTimeSpan: :CTimeSpan

Remarks

CTimeSpan() ;

CTimeSpan(const CTimeSpan& timeSpanSrc);

CTimeSpan(time _ t time);

CTimeSpan(LONG IDays, int nHours, int nMins, int nSecs);

timeSpanSrc A CTimeSpan object that already exists.

time A time t time value.

IDays, nHours, nMins, nSecs Days, hours, minutes, and seconds, respectively.

All these constructors create a new CTimeSpan object initialized with the
specified relative time. Each constructor is described below:

• CTimeSpan(); Constructs an uninitialized CTimeSpan object.

• CTimeSpan(const CTimeSpan&); Constructs a CTimeSpan object from
another CTimeSpan value.

810 CTimeSpan::Format

Example

• CTimeSpan(time _ t); Constructs a CTimeSpan object from a time _ t type.
This value should be the difference between two absolute time t values.

• CTimeSpan(LONG, int, int, int); Constructs a CTimeSpan object from
components with each component constrained to the following ranges:

Component

[Days

nHours

nMins

nSecs

Range

0-25,000 (approximately)

0-23

0-59

0-59

Note that the Debug version of the Microsoft Foundation Class Library asserts if
one or more of the time-day components is out of range. It is your responsibility to
validate the arguments prior to calling.

CTimeSpan ts1; II Uninitialized time value
CTimeSpan ts2a(ts1); II Copy constructor
CTimeSpan ts2b = ts1; II Copy constructor again
CTimeSpan ts3(100); II 100 seconds
CTimeSpan ts4(0, 1, 5, 12); II 1 hour, 5 minutes, and 12 seconds

eli meSpan:: Format

Remarks

CString Format(const char* pF ormat);

pF ormat A formatting string similar to the printf formatting string. Formatting
codes, preceded by a percent (%) sign, are replaced by the corresponding
CTimeSpan component. Other characters in the formatting string are copied
unchanged to the returned string. The value and meaning of the formatting codes
for Format are listed below:

• %D Total days in this CTimeSpan

• %H Hours in the current day

• %M Minutes in the current hour

• %S Seconds in the current minute

• %% Percent sign

Generates a formatted string that corresponds to this CTimeSpan. The Debug
version of the library checks the formatting codes and asserts if the code is not in
the table above.

Return Value

Example

CTimeSpan::GetMinutes 811

A CString object that contains the fonnatted time.

CTimeSpan ts(3, I, 5, 12); II 3 days, 1 hour, 5 min, and 12 see
CString s = tS.Format("Total days: %0, hours: %H, mins: %M, sees: %S"

) ;

ASSERT(s == "Total days: 3, hours: 01, mi ns: 05, sees: 12");

CTimeSpan: :GetDays

Remarks

Example

LONG GetDays() const;

Returns the number of complete days. This value may be negative if the time span
is negative.

CTimeSpan ts(3, I, 5, 12); II 3 days, 1 hour, 5 min, and 12 see
ASSERTC ts.GetOays() == 3);

CTimeSpan: :GetHours

Remarks

Example

int GetHours() const;

Returns the number of hours in the current day. The range is -23 through 23.

CTimeSpan ts(3, I, 5, 12); II 3 days, 1 hour, 5 min, and 12 see
ASSERT(tS.GetHours() == 1);
ASSERT(ts.GetMinutes() == 5);
ASSERT(ts.GetSeeonds() == 12);

CTimeSpan: :GetMinutes

Remarks

Example

int GetMinutes() const;

Returns the number of minutes in the current hour. The range is -59 through 59.

See the example for GetHours.

812 CTimeSpan: :GetSeconds

CTimeSpan: :GetSeconds

Remarks

Example

int GetSeconds() const;

Returns the number of seconds in the current minute. The range is -59 through 59.

See the example for GetHours.

CTimeSpan::GetTotaIHours

Remarks

Example

LONG GetTotaIHours() const;

Returns the total number of complete hours in this CTimeSpan.

CTimeSpan ts(3. 1. 5. 12); II 3 days. 1 hour. 5 min. and 12 sec
ASSERT(ts.GetTotalHours() == 73);
ASSERT(ts.GetTotalMinutes() == 4385);
ASSERT(ts.GetTotalSeconds() == 263112);

CTimeSpan: :GetTotal Mi nutes

Remarks

Example

LONG GetTotaIMinutes() const;

Returns the total number of complete minutes in this CTimeSpan.

See the example for GetTotalHours.

CTimeSpan: :GetTotalSeconds

Remarks

Example

LONG GetTotaISeconds() const;

Returns the total number of complete seconds in this CTimeSpan.

See the example for GetTotalHours.

CTimeSpan::operator +=, -= 813

Operators

CTimeSpan::operator =

Remarks

See Also

Example

const CTimeSpan& operator =(const CTimeSpan& timeSpanSrc);

The overloaded assignment operator copies the source CTimeSpan timeSpanSrc
object into this CTimeSpan object.

CTimeSpan: :CTimeSpan

CTimeSpan ts1;
CTimeSpan ts2(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ts1 = ts2;
ASSERT(ts1 == ts2);

CTimeSpan::operator +, -

Remarks

Example

CTimeSpan operator +(CTimeSpan timeS pan) const;

CTimeSpan operator -(CTimeSpan timeS pan) const;

These two operators allow you to add and subtract CTimeSpan objects to and from
each other.

CTimeSpan ts1(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
CTimeSpan ts2(100); II 100 seconds
CTimeSpan ts3 = ts1 + ts2;
ASSERT(ts3.GetSeconds() == 52); II 6 mins, 52 sees

CTimeSpan::operator +=, -=

Remarks

const CTimeSpan& operator +=(CTimeSpan timeSpan);

const CTimeSpan& operator -=(CTimeSpan timeS pan);

These operators allow you to add and subtract a CTimeSpan object to and from
this CTimeSpan.

814 CTimeSpan Comparison Operators

Example CTimeSpan tsl(10); I I 10 seconds
CTimeSpan ts2(100); II 100 seconds
ts2 -= ts1;
ASSERT(ts2.GetTotalSeconds() == 90);

CTimeSpan Comparison Operators

Remarks

Example

BOOL operator ==(CTimeSpan timeSpan) const;

BOOL operator !=(CTimeSpan timeSpan) const;

BOOL operator « CTimeSpan timeSpan) const;

BOOL operator >(CTimeSpan timeSpan) const;

BOOL operator <=(CTimeSpan timeSpan) const;

BOOL operator >=(CTimeSpan timeSpan) const;

These operators compare two relative time values. They return TRUE if the
condition is true; otherwise FALSE.

CTimeSpan ts1(100);
CTimeSpan ts2(110);
ASSERT((ts1 != ts2) && (ts1 < ts2) && (ts1 <= ts2));

CTimeSpan::operators «, »

Remarks

friend CDumpContext& operator «(CDumpContext& dc,
CTimeSpan timeSpan);

friend CArchive& operator «(CArchive& ar, CTimeSpan timeSpan);

friend CArchive& operator »(CArchive& ar, CTimeSpan& timeSpan);

The CTimeSpan insertion «<) operator supports diagnostic dumping and storing
to an archive. The extraction (») operator supports loading from an archive.

When you send a CTimeSpan object to the dump context, the value is displayed in
a human-readable format that shows days, hours, minutes, and seconds.

Example

CTimeSpan::operators «,» 815

CTimeSpan ts(3, I, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
1foifdef _DEBUG
afxDump « ts « "\n";
1foendif
II Prints 'CTimeSpan(3 days, 1 hours, 5 minutes and 12 seconds)'

extern CArchive ar;
if(ar.IsLoading())

ar » ts;
else

ar « ts;

816 CToolBar

class CToolBar : public CControlBar
Objects of the class CToolBar are
control bars that have a row of
bitmapped buttons and optional
separators. The buttons can act like
pushbuttons, check-box buttons, or
radio buttons. CToolBar objects are
usually embedded members of frame­
window objects derived from the class
CFrameWnd or CMDIFrameWnd.

To create a toolbar from within a frame-window object, follow these steps:

1. Construct the CToolBar object.

2. Call the Create function to create the Windows toolbar and attach it to the
CToolBar object.

3. Call LoadBitmap to load the bitmap that contains the toolbar button images.

4. Call SetButtons to set the button style and associate each button with an image
in the bitmap.

All the button images in the toolbar are taken from one bitmap, which must contain
one image for each button. All images must be the same size; the default is 16
pixels wide and 15 pixels high. Images must be side by side in the bitmap.

The SetButtons function takes a pointer to an array of control IDs and an integer
that specifies the number of elements in the array. The function sets each button's
ID to the value of the corresponding element of the array and assigns each button an
image index, which specifies the position of the button's image in the bitmap. If an
array element has the value ID _ SEP ARA TOR, no image index is assigned.

The order of the images in the bitmap is typically the order in which they are drawn
on the screen, but you can use the SetButtonInfo function to change the relation­
ship between image order and drawing order.

All buttons in a toolbar are the same size. The default is 24 x 22 pixels, in
accordance with The Windows Interface: An Application Design Guide. Any
additional space between the image and button dimensions is used to fonn a border
around the image.

Each button has one image. The various button states and styles (pressed, up, down,
disabled, disabled down, and indetenninate) are generated from that one image.
Although bitmaps can be any color, you can achieve the best results with images in
black and shades of gray.

See Also

CToolBar 817

Toolbar buttons imitate pushbuttons by default. However, toolbar buttons can also
imitate check-box buttons or radio buttons. Check-box buttons have three states:
checked, cleared, and indeterminate. Radio buttons have only two states: checked
and cleared.

To create a check-box button, assign it the style TBBS _CHECKBOX or use a
CCmdUI object's SetCheck member function in an
ON_UPDATE_COMMAND_UI handler. Calling SetCheck turns a pushbutton
into a check-box button. Pass SetCheck an argument of 0 for unchecked, 1 for
checked, or 2 for indeterminate.

To create a radio button, call a CCmdUI object's SetRadio member function from
an ON_UPDATE_COMMAND_UI handler. Pass SetRadio an argument of 0 for
unchecked or nonzero for checked. In order to provide a radio group's mutually
exclusive behavior, you must have ON_UPDATE _ COMMAND _ UI handlers for
all of the buttons in the group.

CControlBar, CTooIBar:: Create, CToolBar: :LoadBitmap,
CToolBar: :SetButtons, CCmdUI: :SetCheck, CCmdUI: :SetRadio

Construction/Destruction - Public Members
CToolBar

Create

SetSizes

SetHeight

LoadBitmap

SetButtons

Constructs a CToolBar object.

Creates the Windows toolbar and attaches it to the
CToolBar object.

Sets the sizes of buttons and their bitmaps.

Sets the height of the toolbar.

Loads the bitmap containing bitmap-button images.

Sets button styles and an index of button images within
the bitmap.

Attributes - Public Members
CommandToIndex

GetItemID

GetItemRect

GetButtonInfo

SetButtonInfo

Returns the index of a button with the given command ID.

Returns the command ID of a button or separator at the
given index.

Gets the display rectangle for the item at the given index.

Gets a button's ID, style, and image number.

Sets a button's ID, style, and image number.

818 CTooIBar::CommandTolndex

Member Functions

CTooIBar::CommandTolndex

Remarks

Return Value

See Also

int CommandToIndex(UINT nIDFind);

nID Find Command ID of a toolbar button.

Returns the index of the first toolbar button, starting at position 0, whose command
ID matches nIDFind.

The index of the button, or -1 if no button has the given command ID.

CToolBar: : GetltemId

CTooIBar::Create

Remarks

Return Value

See Also

BOOL Create(CWnd* pParentWnd, DWORD dwStyle = WS _CHILD I
WS_ VISIBLE I CBRS_TOP, UINT nID = AFX_IDW _TOOLBAR);

pParentWnd Pointer to the window that is the toolbar's parent.

dwStyle The toolbar style. Additional toolbar styles supported are:

• CBRS_TOP Control bar is at top of the frame window.

• CBRS BOTTOM Control bar is at bottom of the frame window.

• CBRS NOALIGN Control bar is not repositioned when the parent is
resized.

nID The toolbar's child-window ID.

Creates a Windows toolbar (a child window) and associates it with the CToolBar
object. Also sets the toolbar height to a default value.

Nonzero if successful; otherwise 0.

CToolBar: :CTooIBar, CToolBar: :LoadBitmap, CToolBar: :SetButtons

CTooIBar::GetltemID 819

CTooIBar::CTooIBar

Remarks

See Also

CToolBar();

Constructs a CToolBar object and sets the default sizes.

Call Create to create the toolbar window.

CTooIBar:: Create

CTooIBar::GetButtonlnfo

Remarks

See Also

void GetButtonlnfo(int nlndex, UINT& nID, UINT& nStyle, int& ilmage)
const;

nlndex Index of the toolbar button or separator whose infonnation is to be
retrieved.

nID Reference to a UINT that is set to the command ID of the button.

nStyle Reference to a UINT that is set to the style of the button.

ilmage Reference to an integer that is set to the index of the button's image
within the bitmap.

Gets the control ID, style, and image index of the toolbar button or separator at the
location specified by nlndex. Those values are assigned to the variables referenced
by nID, nStyle, and ilmage. The image index is the position of the image within
the bitmap that contains images for all the toolbar buttons. The first image is at
position O.

If nlndex specifies a separator, iImage is set to the separator width in pixels.

CToolBar: :SetButtonlnfo, CToolBar: : GetItemID

CTooIBar::GetltemID
UINT GetItemID(int nlndex) const;

nlndex Index of the item (button or separator) whose ID is to be retrieved.

820 CTooIBar::GetltemRect

Remarks Returns the command ID of the button or separator specified by nI ndex. Separators
returnID SEPARATOR.

Return Value

See Also

The command ID of the button or separator specified by nI ndex.

CToolBar: :CommandToIndex, CControlBar: :GetCount

CTool Bar: :Getltem Reet

Remarks

See Also

void GetItemRect(int nlndex, LPRECT lpRect);

nlndex Index of the item (button or separator) whose rectangle coordinates are to
be retrieved.

lpRect Address of the RECT structure that will contain the item's coordinates.

Fills the RECT structure whose address is contained in lpRect with the coordinates
of the button or separator specified by nI ndex. Coordinates are in pixels relative to
the upper-left comer of the toolbar.

Use GetItemRect to get the coordinates of a separator you want to replace with a
combo box or other control.

CToolBar: :CommandToIndex

CToolBar: :LoadBitmap

Remarks

Return Value

See Also

BOOL LoadBitmap(LPCSTR lpszResourceName);

BOOL LoadBitmap(DINT nIDResource);

lpszResourceName Pointer to the resource name of the bitmap to be loaded.

nIDResource Resource ID of the bitmap to be loaded.

Loads the bitmap specified by lpszResourceName or nIDResource. The bitmap
should contain one image for each toolbar button. If the images are not of the
standard size (16 pixels wide and 15 pixels high), call SetSizes to set the button
sizes and their images.

Nonzero if successful; otherwise O.

CToolBar: :Create, CToolBar: :SetButtons, CToolBar: :SetSizes

CTooIBar::SetButtons 821

CTooIBar::SetButtonlnfo

Remarks

See Also

void SetButtonInfo(int nlndex, UINT nID, UINT nStyle, int iImage);

nlndex Index of the button or separator whose information is to be set.

nID The value to which the button's command ID is set.

nStyle The new button style. The following button styles are supported:

• TBBS_BUTTON Standard pushbutton (default)

• TBBS SEPARATOR Separator

• TBBS CHECKBOX Auto check-box button

ilmage New index for the button's image within the bitmap.

Sets the button's command ID, style, and image number. For separators, which
have the style TBBS_SEPARATOR, this function sets the separator's width in
pixels to the value stored in ilmage.

For information on bitmap images and buttons, see the class overview and
CToolBar: :LoadBitmap.

CToolBar: : GetB uttonInfo , CToolBar: : LoadBitmap

CTooIBar::SetButtons

Remarks

BOOL SetButtons(const UINT FAR* IpIDArray, int nIDCount);

IpIDArray Pointer to an array of command IDs.

nIDCount Number of elements in the array pointed to by IpIDArray.

Sets each toolbar button's command ID to the value specified by the corresponding
element of the array IpIDArray. If an element of the array has the value
ID _ SEPARATOR, a separator is created in the corresponding position of the
toolbar. This function also sets each button's style to TBBS _BUTTON and each
separator's style to TBBS_SEPARATOR, and assigns an image index to each
button. The image index specifies the position of the button's image within the
bitmap.

822 CTooIBar::SetHeight

Return Value

See Also

You do not need to account for separators in the bitmap because this function does
not assign image indexes for separators. If your toolbar has buttons at positions 0,
1, and 3 and a separator at position 2, the images at positions 0, 1, and 2 in your
bitmap are assigned to the buttons at positions 0, 1, and 3, respectively.

If /p/DArray is NULL, this function allocates space for the number of items
specified by n/DCount. Use SetButtonInfo to set each item's attributes.

Nonzero if successful; otherwise 0.

CToolBar: :Create, CToolBar: :SetButtonInfo

CTooIBar::SetHeight

Remarks

See Also

void SetHeight(int cyHeight);

cyHeight The height in pixels of the toolbar.

Sets the toolbar's height to the value, in pixels, specified in cyHeight.

After calling SetSizes, use this function to override the standard toolbar height. If
the height is too small, the buttons will be clipped at the bottom.

If this function is not called, the framework uses the size of the button to determine
the toolbar height.

CToolBar: :SetSizes, CToolBar: :SetButtonInfo, CTooIBar:: SetButtons

CTooIBar::SetSizes

Remarks

void SetSizes(Size sizeButton, Size size/mage);

sizeButton The size in pixels of each button.

size/mage The size in pixels of each image.

Sets the toolbar's buttons to the size, in pixels, specified in sizeButton. The
size/mage parameter must contain the size, in pixels, of the images in the toolbar's
bitmap. The dimensions in sizeButton must be sufficient to hold the image plus 3

See Also

CTooIBar::SetSizes 823

pixels on each side for the button outline. This function also sets the toolbar height
to fit the buttons.

Call this function only for toolbars that do not follow The Windows Interface: An
Application Design Guide recommendations for button and image sizes.

CToolBar: :LoadBitmap, CToolBar: :SetButtonlnfo, CToolBar: :SetButtons,
CToolBar: :SetHeight

824 CUlntArray

class CUlntArray : public CObject
The CUIntArray class supports arrays of unsigned
integers. An unsigned integer, or UINT, differs from
words and doublewords in that the physical size of a '-C_U_ln_tA_rr---'ay'---___ ---'
UINT can change depending on the target operating
environment. Under Windows version 3.1, a UINT is the same size as a WORD.
Under Windows NT, a UINT is the same size as a doubleword. The member
functions of CUIntArray are similar to the member functions of class CObArray.
Because of this similarity, you can use the CObArray reference documentation for
member function specifics. Wherever you see a CObject pointer as a function
parameter or return value, substitute a UINT.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

UINT CUlntArray: :GetAt(int <nlndex>) canst;

CUIntArray incorporates the IMPLEMENT _DYNAMIC macro to support run­
time type access and dumping to a CDumpContext object. If you need a dump of
individual unsigned integer elements, you must set the depth of the dump context to
1 or greater. Unsigned integer arrays may not be serialized.

#include <afxcoll.h>

Construction/Destruction - Public Members
CUIntArray

-CUIntArray

Constructs an empty array for unsigned integers.

Destroys a CUIntArray object.

Bounds - Public Members
GetSize

GetUpperBound

SetSize

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Operations - Public Members
FreeExtra

RemoveAIl

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

CUlntArray 825

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; the array is not allowed
to grow.

Returns a temporary reference to the element pointer within
the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array if
necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at
a specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

826 CUserException

class CUserException : public CException

See Also

A CUserException is thrown to stop an end­
user operation. Use CUserException when you
want to use the throw/catch exception mecha-
nism for application-specific exceptions. "User" CUserException
in the class name can be interpreted as "my user
did something exceptional that I need to
handle." A CUserException is usually thrown after calling the global function
AfxMessageBox to notify the user that an operation has failed. When you write an
exception handler, handle the exception specially since the user usually has already
been notified of the failure. The framework throws this exception in some cases. To
throw a CUserException yourself, alert the user and then call the global function
AfxThrowUserException. In this example, a function with operations that may
fail alerts the user and throws a CUserException. The calling function catches the
exception and handles it specially:

void DoSomeOperation(
{

II Processing
II If something goes wrong ...
AfxMessageBox("The x operation failed");
AfxThrowUserException();

BOOl TrySomething(
{

}

TRY
{

II Could throw a CUserException or other exception.
DoSomeOperation();

CATCH(CUserException, e
{

return FALSE; II User already notified.
}

AND CATCH(CException, e)
{

II For other exception types, notify user here.
AfxMessageBox("Some operation failed");
return FALSE;

END CATCH
return TRUE; II No exception thrown.

#include <afxwin.h>

CException, AfxMessageBox, AfxThrowUserException

CVBControl 827

class CVBControl : public CWnd
Class CVBControl allows you to take
advantage of the large number of custom
controls available for the Visual Basic
programming system and Visual C++. You
can load controls, get their properties, set
their properties, change their screen
location, and perform many other

CVBControl

operations. Within your application, every VBX control, such as a dialog box or
scroll bar, becomes an object of class CVBControl.

You can use VBX controls either in dialog boxes or application windows. For
more information on programming with VBX controls using class CVBControl,
see Chapter 17 of the Class Library User's Guide and Technical Note 27 in
MSVC\HELP\MFCNOTES.HLP.

#include <afxwin.h>

#include <afxext.h>

Data Members - Public Members
m nError Contains a VBX or control-defined error value when a

CVBControl "get" or "set" member function (such as
GetNumProperty) generates an error.

Construction/Destruction - Public Members
CVBControl Constructs a CVBControl object.

Initialization - Public Members
Create Creates the control after it has been constructed.

Property Access - Public Members
GetFloatProperty

GetNumProperty

GetPictureProperty

GetStr Property

SetFloatProperty

Gets the floating-point value assigned to a floating-point
property.

Gets the integer value assigned to an integer-valued
control property.

Gets a handle to a picture that is assigned to a picture
property.

Gets the string assigned to a string property of a control.

Sets a floating-point property to the specified value.

828 CVBControl

SetNumProperty

SetPictureProperty

SetStrProperty

Sets an integer-valued property to the specified value.

Sets a picture property to a specified picture.

Sets a string property to the specified string.

Attributes-Public Members
GetEventlndex

GetEventName

GetNumEvents

GetNumProps

GetPropFlags

GetPropIndex

GetPropName

GetPropType

GetVBXClass

IsPropArray

Returns the index number associated with the specified
event.

Returns the name of the event associated with the
specified index number.

Returns the number of events associated with the control.

Returns the number of properties associated with the
control.

Returns a 32-bit value that specifies the property flags for
the control.

Returns the index number assigned to a control property.

Returns the name of the property associated with the
specified index number.

Returns the type of the property.

Returns the name of the control class.

Checks whether the specified property is an array.

Methods - Public Members
AddItem

Move

Refresh

RemoveItem

Adds items to a list managed by a list-box control or
combo-box control.

Moves a control to a specified location and resizes the
control at the same time.

Updates a control to reflect changes that have been made
to the control or to the environment.

Removes an item from a list managed by the control.

Operations - Public Members
BeginNewVBHeap

CloseChannel

GetChannel

OpenChannel

Causes the creation of a new VBX -control heap when the
next VBX control is created.

Disassociates the file associated with the specified
channel number.

Retrieves a pointer to a CFile object currently associated
with the specified file channel number.

Associates a file with a file channel number.

CVBControl: :CloseChannel 829

Member Functions

CVBControl: :Addltem

Remarks

See Also

void AddItem(LPCSTR lpszltem, LONG lIndex);

lpszltem The string associated with the item in the list.

lIndex The index number of the item in the list.

Call this function to add items to a list in a list box or combo box in a VBX control.
This function mimics Visual Basic's AddItem method. For additional information,
see the Visual Basic Programmer's Guide.

CVBControl: : RemoveItem, CVBControl: : Refresh

CVBControl:: Beg i nNewVBHeap

Remarks

static void BeginNewVBHeap();

Starts a new VBX -control heap space when the next VBX control is created. All
VBX controls that are created after this function is called will be placed in a new
heap space. Use this function only if you suspect that a VBX control is running out
of memory.

The CVBControl object itself is not allocated in the VBX heap space. Only the
extra data needed by the control, such as its properties, are allocated. For complex
VBX controls, such as graphs or grids, or for large numbers of VBX controls, there
may be insufficient heap space to store all of the property data. BeginNewVBHeap
allows you to allocate extra heaps as needed. For additional information, see
Chapter 17 of the Class Library User's Guide and Technical Note 27 in
MSVC\HELP\MFCNOTES.HLP.

CVBControl: :CloseChannel
static BOOL PASCAL CloseChannel(WORD wChannel);

wChannel The number of the channel that is to be closed.

830 CVBControl: :Create

Remarks Call this function to disassociate a file from the specified channel number.

Return Value

See Also

Typically, you use CloseChannel to close a channel that has been opened using the
CVBControl::OpenChannel member function. CloseChannel does not physically
close a file- it only disassociates a file from its channel number.

Nonzero if the function was successful; otherwise O.

CVBControl: :OpenChannel, CVBControl: : GetChannel

CVBControl: :Create

Remarks

BOOL Create(LPCSTR IpszWindowName, DWORD dwStyle,
const RECT& reet, CWnd* pParentWnd, UINT nlD,
CFile* pFile = NULL, BOOL bAutoDelete = FALSE);

IpszWindowName A string containing the VBX filename, the control name, and
the window text for the controL This string must have the following format: "VBX
Jile;eontrol name;window text". For example, "THREED.VBX;Check 3D;Check
this Box".

dwStyle The window style of the controL

reet The rectangle that is to contain the controL This can either be a standard
RECT structure or a CRect object.

pParentWnd A pointer to the parent window of the controL

nlD The control's ID. This is usually specified with a #define statement in a
header file.

pFile A pointer to the file containing saved information for the attributes of the
controL This will usually be NULL for manually created controls.

bAutoDelete Indicates whether the control should be automatically deleted on
exit. Set this parameter to TRUE if you want the control to be automatically
deleted. Otherwise set this parameter to FALSE and delete the control explicitly.

Call this member function to create the VBX controL Before using Create, you
must use the CVBControl constructor to construct the object. In most cases, the
dwStyle parameter should be NULL to allow the use of the window styles specified
by the controL For advanced usage, you can override the control's specification and
use one of the many window styles defined in the Windows environment or a
bitwise combination of more than one style. The WS _ CHILD style is automati­
cally included with any styles specified, so using WS _ CHILD disables the default

Return Value

See Also

CVBControl: :GetChannel 831

styles and adds no other styles. For a complete list of window styles and their
meanings, see CWnd::Create.

The file pointed to by pFile contains a binary representation of the initial values of
a control's properties. The format of this file varies for each control. App Studio
generates this binary information as part of a DLGINIT resource for controls
loaded into a dialog box or form view. Since the framework automatically creates
controls loaded in this manner, it is not necessary to call Create. The framework
does not provide a means of generating these binary files, so this parameter will
most often be NULL. If pFile is not NULL, dwStyle must be NULL for the control
to operate properly. For more information on the format of this file, see Chapter 17
of the Class Library User's Guide and Technical Note 27 in
MSVC\HELP\MFCNOTES .HLP.

Nonzero if the control was successfully created; otherwise O.

CVBControl: :CVBControl

CVBControl: :CVBControl

Remarks

See Also

CVBControl();

Call this function to construct a VBX control. Constructing a VB X-control object
does not display the object. You must call the Create member function after calling
the constructor to create the control. Use CWnd::ShowWindow to display the
control if it is not displayed by default.

CVBControl: :Create

CVBControl: :GetChannel

Remarks

Return Value

See Also

static CFile* PASCAL GetChannel(WORD wChannel);

wChannel The channel number associated with the desired file.

Call this function to determine which file is currently associated with a channel
number. For more information on channel numbers, see
CVBControl::OpenChannel.

A pointer to the CFile object currently associated with the file number wChannel.

CVBControl: :CloseChannel, CVBControl: :OpenChannel

832 CVBControl: :GetEventlndex

CVBControl: :GetEventlndex

Return Value

See Also

int GetEventIndex(LPCSTR IpszEventName) const;

IpszEventName The name associated with the event whose index you want
returned.

The index number associated with the event specified by IpszEventName.

CVBControl: : GetEventName, CVBControl: : GetProplndex

CVBControl: :GetEventName

Return Value

See Also

LPCSTR GetEventName(int nlndex) const;

nI ndex The index number associated with the event whose name you want
returned.

The name of the event associated with the index number nlndex.

CVBControl: : GetEventIndex, CVBControl: : GetPropName

CVBControl: :GetFloatProperty

Remarks

float GetFloatProperty(int nProplndex, int index = 0);

float GetFloatProperty(LPCSTR IpszPropName, int index = 0);

nProplndex The index of the floating-point property whose value you want
returned.

index Specifies the index of the array element whose value you want returned if
the property is an array of floating-point numbers. The default index is O.

IpszPropName The name of the floating-point property whose value you want
returned.

Call this function to retrieve the floating-point value assigned to a floating-point
control property. The property can be referenced either through its index,
nProplndex, or through its name, IpszPropName.

Return Value

See Also

CVBControl: :GetNumProperty 833

The floating-point value of the property, or the floating-point value of a specified
array element if the property is an array.

CVBControl: : GetNumProperty , CVBControl: : GetStrProperty ,
CVBControl: : GetPictureProperty

CVBControl: :GetNumEvents

Return Value

See Also

int GetNumEvents() const;

The number of events associated with the control.

CVBControl: : GetNumProps

CVBControl: :GetNumProperty

Remarks

Return Value

See Also

LONG GetNumProperty(int nProplndex, int index = 0);

LONG GetNumProperty(LPCSTR IpszPropName, int index = 0);

nPropI ndex The index of the integer property whose value you want returned.

index Specifies the index of the array element whose value you want returned if
the property is an array of integers. The default index is O.

IpszPropN ame The name of the integer property whose value you want returned.

Call this function to retrieve the value assigned to an integer-valued or Boolean
control property. The property can be referenced either through its index,
nPropI ndex, or through its name, IpszPropN ame.

The integer value of the property, or the integer value of a specified array element if
the property is an array.

CVBControl::GetFloatProperty, CVBControl::GetStrProperty,
CVBControl: : GetPictureProperty

834 CVBControl: :GetNumProps

CVBControl: :GetNumProps

Return Value

See Also

int GetNumProps() const;

The number of properties the control has.

CVBControl: : GetNumEvents

CVBControl: :GetPictureProperty

Remarks

Return Value

See Also

HPIC GetPictureProperty(int nProplndex, int index = 0);

HPIC GetPictureProperty(LPCSTR IpszPropNarne, int index = 0);

nProplndex The index number of the property whose value you want returned.

index Specifies the index of the array element whose pointer you want returned if
the property is an array of picture pointers. The default index is O.

IpszPropN arne The name of the property whose value you want returned.

Call this function to retrieve a handle to a picture that is assigned to a picture
property. The property can be referenced either through its index, nProplndex, or
through its name, IpszPropN arne.

A handle to the picture associated with the property, or the handle value of a
specified array element if the property is an array.

CVBControl: : GetFloatProperty , CVBControl: :GetStr Property,
CVBControl:: GetN umProperty

CVBControl: :GetPropFlags

Remarks

See Also

DWORD GetPropFlags(int nlndex) const;

nI ndex The index number of the property whose flags you want returned.

Returns a 32-bit value specifying the property flags for the property.

CVBControl:: GetN umProps

CVBControl::GetPropType 835

CVBControl: :GetProplndex

Remarks

Return Value

See Also

int GetPropIndex(LPCSTR IpszPropNarne) const;

IpszPropN arne The name of the property whose index you want returned.

Allows you to use an index number instead of a string containing the name of the
property to refer to a particular property of any instance of a single type of control.

The integer index assigned to the control property.

CVBControl: : GetPropName, CVBControl: : GetEventIndex

CVBControl: :GetPropName

Return Value

See Also

LPCSTR GetPropName(int nlndex) const;

nI ndex The index number of the property whose name you want returned.

The name of the property associated with the specified index.

CVBControl: : GetPropIndex, CVBControl: : GetEventName

CVBControl: :GetProp Type

Return Value

DINT GetPropType(int nlndex) const;

nI ndex The index number of the property whose type you want returned.

The type of the property associated with nlndex. The property type can have one of
the following values, as defined in AFXEXT.H:

Type Value Get/Set Function to Use

DT HSZ OxOl Get/SetStrProperty

DT SHORT Ox02 Get/SetNumProperty

DT LONG Ox03 Get/SetNumProperty

DT BOOL Ox04 Get/SetNumProperty

DT COLOR Ox05 Get/SetNumProperty

DT ENUM Ox06 Get/SetNumProperty

836 CVBControl: :GetStrProperty

See Also

Type Value Get/Set Function to Use

DT REAL Ox07 Get/SetFloatProperty

DT XPOS Ox08 Get/SetNumProperty

DT XSIZE Ox09 Get/SetNumProperty

DT YPOS OxOA Get/SetNumProperty

DT YSIZE OxOB Get/SetNumProperty

DT PICTURE OxOC Get/SetPictureProperty

CVBControl:: GetFloatProperty, CVBControl: : GetStrProperty ,
CVBControl:: GetPictureProperty, CVBControl: : GetNumProperty

CVBControl: :GetStrProperty

Remarks

Return Value

See Also

CString GetStrProperty(int nProplndex, int index = 0);

CString GetStrProperty(LPCSTR IpszPropNarne, int index = 0);

nPropI ndex The index number of the property whose value you want returned.

index Specifies the index of the array element whose value you want returned if
the property is an array of strings. The default index is O.

IpszPropN arne The name of the property whose value you want returned.

Call this function to retrieve a string property of a VBX control. The property can
be referenced either through its index, nProplndex, or through its name,
IpszPropN arne.

The string assigned to the specified property. If the property is an array of strings,
the string assigned to the specified array element is returned.

CVBControl:: GetFloatProperty, CVBControl: : GetPictureProperty ,
CVBControl: : GetNumProperty

CVBControl::Move 837

CVBControl: :GetVBXClass

Remarks

Return Value

See Also

LPCSTR GetVBXClass() const;

Returns the class name that is used during the Create call. When a control
is created, the window class used will have a "Thunder" prefix added to the
class name.

The name of the control class.

CVBControl: :Create

CVBControl: :lsPropArray

Remarks

Return Value

See Also

BOOL IsPropArray(int nlndex) const;

nI ndex The index number of the property.

Checks whether the property associated with nI ndex is a property array. A property
array is a property that consists of an array of values.

Nonzero if the property associated with nlndex is an array; otherwise O.

CVBControl: : GetPropType

CVBControl: :Move

Remarks

void Move(RECT& reet);

reet A rectangle specifying the new location and size of the control.

Call this function to move a VBX control to the location specified by reet. The
upper-left comer of the control is moved to the coordinates rect.left and rect.top,
and the control is resized to fit within the rectangle.

838 CVBControl: :OpenChannel

CVBControl: :OpenChannel

Remarks

See Also

static void PASCAL OpenChannel(CFile* pFile, WORD wChannel);

pFile A pointer to the file that is to be associated with the specified channel
number.

wChannel The channel number you want associated with the specified file.

Call this function to associate the file pointed to by pFile with the wChannel file
number. The three member functions Open Channel, CloseChannel, and
GetChannel provide a mechanism through which controls can access files as they
normally do in Visual Basic-through file numbers. Use these functions to handle
control properties that access files. For example, if a control is able to send the
contents of a list box to disk, these three member functions are typically used to
support the necessary file I/O.

CVBControl: :CloseChannel, CVBControl: : GetChannel

CVBControl:: Refresh

Remarks

See Also

void Refresh();

Call this function to update a VBX control to reflect changes that have been made
to the control or to the environment. For example, if a list box contains a list of files
in the current directory, and a new file was created in that directory, Refresh will
regenerate the list of files in the list box to show the new file. This function mimics
Visual Basic's Refresh method. For additional information, see the Visual Basic
Programmer's Guide.

CVBControl: :AddItem, CVBControl: : RemoveItem

CVBControl:: Removeltem
void RemoveItem(LONG IIndex);

II ndex The index number of the item you want removed from the list.

Remarks

See Also

CVBControl: :SetNumProperty 839

Call this function to remove an item from a list box or combo box in a VBX
control. This function mimics Visual Basic's RemoveItem method. For additional
information, see the Visual Basic Programmer's Guide.

CVBControl: :AddItem, CVBControl: : Refresh

CVBControl: :SetFloatProperty

Remarks

Return Value

See Also

BOOL SetFloatProperty(int nProplndex, float value, int index = 0);

BOOL SetFloatProperty(LPCSTR IpszPropName, float value, int index = 0);

nPropI ndex The index number of the property whose value you want to set.

value The new floating-point value for the property.

index Specifies the index of the array element whose value you want to set if the
property is an array of floating-point numbers. The default index is O.

IpszPropN arne The name of the property whose value you want to set.

Sets a floating-point property to the value specified by value. The property can be
referenced either through its index, nPropI ndex, or through its name,
IpszPropN arne.

Nonzero if the function was successful; otherwise O.

CVBControl::SetStrProperty, CVBControl::SetPictureProperty,
CVBControl::SetNumProperty

CVBControl: :SetNumProperty
BOOL SetNumProperty(int nProplndex, LONG IValue, int index = 0);

BOOL SetNumProperty(LPCSTR IpszPropName, LONG IValue,
int index = 0);

nProplndex The index number of the property whose value you want to set.

IValue The new value for the property.

840 CVBControl: :SetPictureProperty

Remarks

Return Value

See Also

index Specifies the index of the array element whose value you want to set if the
property is an array of integers. The default index is O.

IpszPropN arne The name of the property whose value you want to set.

Sets an integer-valued property to the value specified by IValue. The property can
be referenced either through its index, nProplndex, or through its name,
IpszPropN arne.

Nonzero if the function was successful; otherwise O.

CVBControl:: SetStrProperty, CVBControl:: SetPictureProperty,
CVBControl:: SetFloatProperty

CVBControl: :SetPictureProperty

Remarks

Return Value

See Also

BOOL SetPictureProperty(int nProplndex, HPIC hPic, int index = 0);

BOOL SetPictureProperty(LPCSTR IpszPropNarne, HPIC hPic,
int index = 0);

nProplndex The index of the property whose value you want to set.

hPic A handle to a picture you want to assign to the specified property.

index Specifies the index of the array element whose value you want to set if the
property is an array of picture pointers. The default index is O.

IpszPropN arne The name of the property whose value you want to set.

Sets a picture property to a specified picture identified by hPic. The property can be
referenced either through its index, nProplndex, or through its name,
IpszPropN arne.

Nonzero if the function was successful; otherwise O.

CVBControl: :SetStrProperty, CVBControl: :SetNumProperty,
CVBControl: : SetFloatProperty

CVBControl::m_nError 841

CVBControl: :SetStrProperty

Remarks

Return Value

See Also

BOOL SetStrProperty(int nProplndex, LPCSTR IpszValue, int index = 0);

BOOL SetStrProperty(LPCSTR IpszPropName, LPCSTR IpszValue,
int index = 0);

nProplndex The index number of the property whose value you want to set.

IpszValue The new string value for the property.

index Specifies the index of the array element whose value you want to set if the
property is an array of strings. The default index is O.

IpszPropName The name of the property whose value you want to set.

Sets a string property to the string specified by lpsz Value. The property can be
referenced either through its index nProplndex, or through its name,
IpszPropName.

Nonzero if the function was successful; otherwise O.

CVBControl::SetNumProperty, CVBControl::SetPictureProperty,
CVBControl: :SetFloatProperty

Data Members

CVBControl::m nError
Remarks m _ nError is a public variable of type int. This data member contains a VBX or

control-defined error value when a CVBControl "get" or "set" member function
(such as GetPropType) generates an error. This data member can be used to
identify and take action on a wide range of errors, such as "insufficient memory."
Normally, however, it is not necessary to check for errors on these operations.

The value of m nError is set to the Visual Basic error code associated with the
error. For a list of these error codes, see the Visual Basic Programmer's Guide.

842 CView

class CView : public CWnd
The CView class provides the basic
functionality for user-defined view classes.
A view is attached to a document and acts
as an intermediary between the document
and the user: the view renders an image of
the document on the screen or printer and
interprets user input as operations upon the
document.

A view is a child of a frame window. More than one view can share a frame
window, as in the case of a splitter window. The relationship between a view class,
a frame window class, and a document class is established by a CDocTemplate
object. When the user opens a new window or splits an existing one, the framework
constructs a new view and attaches it to the document.

A view can be attached to only one document, but a document can have multiple
views attached to it at once-for example, if the document is displayed in a splitter
window or in multiple child windows in a multiple document interface (MDI)
application. Your application can support different types of views for a given
document type; for example, a word-processing program might provide both a
complete text view of a document and an outline view that shows only the section
headings. These different types of views can be placed in separate frame windows
or in separate panes of a single frame window if you use a splitter window.

A view may be responsible for handling several different types of input, such as
keyboard input or mouse input, as well as commands from menus, toolbars, or
scroll bars. A view receives commands forwarded by its frame window. If the view
does not handle a given command, it forwards the command to its associated
document. Like all command targets, a view handles messages via a message map.

The view is responsible for displaying and modifying the document's data but not
for storing it. The document provides the view with the necessary details about its
data. You can let the view access the document's data members directly, or you can
provide member functions in the document class for the view class to call.

When a document's data changes, the view responsible for the changes typically
calls the CDocument::UpdateAlIViews function for the document, which notifies
all the other views by calling the OnUpdate member function for each. The default
implementation of On Update invalidates the view's entire client area. You can
override it to invalidate only those regions of the client area that map to the
modified portions of the document.

See Also

CView 843

To use CView, derive a class from it and implement the OnDraw member function
to perform screen display. You can also use OnDraw to perform printing and print
preview. The framework handles the print loop for printing and previewing your
document.

A view handles scroll-bar messages in its OnHScroll and On VScroll member
functions. You can implement scroll-bar message handling in these functions, or
you can use the derived class CScroIlView to handle scrolling for you.

Besides CScrollView, the Microsoft Foundation Class Library provides two other
classes derived from CView:

• CFormView, a scrollable view that contains dialog-box controls and is based
on a dialog template resource.

• CEdit View, a view that provides a simple multiline text editor. You can use a
CEditView object as a control in a dialog box as well as a view on a document.

The CView class also has a derived class named CPreviewView, which is used by
the framework to perform print previewing. This class provides support for the
features unique to the print-preview window, such as a toolbar, single- or double­
page preview, and zooming, that is, enlarging the previewed image. You don't need
to call or override any of CPreviewView's member functions unless you want to
implement your own interface for print preview (for example, if you want to
support editing in print preview mode). See Technical Note 30 in
MSVC\HELP\MFCNOTES.HLP for more details on customizing print preview.

include <afxwin.h>

CWnd, CFrameWnd, CSplitterWnd, CDC, CDocTemplate, CDocument,
CFormView, CEditView, CScrollView

Operations - Public Members
DoPreparePrinting

GetDocument

Displays Print dialog box and creates printer device
context; call when overriding the OnPreparePrinting
member function.

Returns the document associated with the view.

Overridables - Public Members
IsSelected Tests whether a document item is selected. Required for

Object Linking and Embedding (OLE) support.

Constructors - Protected Members
CView Constructs a CView object.

844 CView::CView

Overridables-Protected Members
OnActivate View

OnBeginPrinting

OnDraw

OnEndPrinting

OnEndPrintPreview

OnlnitialUpdate

OnPrepareDC

On Prepare Printing

OnPrint

OnUpdate

Called when a view is activated.

Called when a print job begins; override to allocate
graphics device interface (GDI) resources.

Called to render an image of the document for screen
display, printing, or print preview. Implementation
required.

Called when a print job ends; override to deallocate GDI
resources.

Called when preview mode is exited.

Called after a view is first attached to a document.

Called before the OnDraw member function is called for
screen display or the On Print member function is called
for printing or print preview.

Called before a document is printed or previewed;
override to initialize Print dialog box.

Called to print or preview a page of the document.

Called to notify a view that its document has been
modified.

Member Functions

CView::CView
Protected

Remarks

See Also

CView();+

Constructs a CView object. The framework calls the constructor when a new frame
window is created or a window is split. Override the OnlnitialUpdate member
function to initialize the view after the document is attached.

CView: :OnlnitialUpdate

CView: :GetDocument 845

CView: :DoPreparePrinting

Remarks

Return Value

See Also

BOOL DoPreparePrinting(CPrintInfo* pInfo);

pInfo Points to a CPrintInfo structure that describes the current print job.

Call this function from your override of OnPreparePrinting to invoke the Print
dialog box and create a printer device context.

This function's behavior depends on whether it is being called for printing or print
preview (specified by the m_bPreview member of the pInfo parameter). If a file is
being printed, this function invokes the Print dialog box, using the values in the
CPrintInfo structure that pInfo points to; after the user has closed the dialog box,
the function creates a printer device context based on settings the user specified in
the dialog box and returns this device context through the pI nfo parameter. This
device context is used to print the document.

If a file is being previewed, this function creates a printer device context using the
current printer settings; this device context is used for simulating the printer during
preview.

Nonzero if printing or print preview can begin; 0 if the operation has been
cancelled.

CPrintInfo, CView: :OnPreparePrinting

CView: :GetDocument

Remarks

Return Value

See Also

CDocument* GetDocument() const;

Call this function to get a pointer to the view's document. This allows you to call
the document's member functions.

A pointer to the CDocument object associated with the view. NULL if the view is
not attached to a document.

CDocument

846 CView::lsSelected

CView: :lsSelected

Remarks

Return Value

See Also

virtual BOOL IsSelected(const CObject* pDocltem) const;

pDocltem Points to the document item being tested.

Called by the framework to check whether the specified document item is selected.
The default implementation of this function returns FALSE. Override this function
if you're implementing selection using CDocltem objects. You must override this
function if your view contains Object Linking and Embedding (OLE) items. See
Chapter 18 in the Class Library User's Guide for more information on OLE.

Nonzero if the specified document item is selected; otherwise O.

CDocltem, COleClientltem

CView: :OnActivate View
Protected

Remarks

See Also

virtual void OnActivateView(BOOL bActivate, CView* pActivateView,
CView* pDeactiveView);.

bActivate Indicates whether the view is being activated or deactivated.

pActivateView Points to the view object that is being activated.

pDeactive View Points to the view object that is being deactivated.

Called by the framework when a view is activated or deactivated. The default
implementation of this function sets the focus to the view being activated. Override
this function if you want to perform special processing when a view is activated or
deactivated. For example, if you want to provide special visual cues that distinguish
the active view from the inactive views, you would examine the bActivate
parameter and update the view's appearance accordingly.

The pActivate View and pDeactive View parameters point to the same view if the
application's main frame window is activated with no change in the active view­
for example, if the focus is being transferred from another application to this one,
rather than from one view to another within the application. This allows a view to
rerealize its palette, if needed.

CWnd::OnActivate

CView::OnDraw 847

CView::OnBeginPrinting
Protected

Remarks

See Also

virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* pInto); •

pDC Points to the printer device context.

pInfo Points to a CPrintInfo structure that describes the current print job.

Called by the framework at the beginning of a print or print preview job, after
OnPreparePrinting has been called. The default implementation of this function
does nothing. Override this function to allocate any GDI resources, such as pens or
fonts, needed specifically for printing. Select the GDI objects into the device
context from within the OnPrint member function for each page that uses them. If
you are using the same view object to perform both screen display and printing, use
separate variables for the GDI resources needed for each display; this allows you to
update the screen during printing.

You can also use this function to perform initializations that depend on properties of
the printer device context. For example, the number of pages needed to print the
document may depend on settings that the user specified from the Print dialog box
(such as page length). In such a situation, you cannot specify the document length in
the OnPreparePrinting member function, where you would normally do so; you
must wait until the printer device context has been created based on the dialog box
settings. OnBeginPrinting is the first overridable function that gives you access to
the CDC object representing the printer device context, so you can set the document
length from this function. Note that if the document length is not specified by this
time, a scroll bar is not displayed during print preview.

CView: :OnEndPrinting, CView: :OnPreparePrinting, CView: :OnPrint

CView: :OnDraw
Protected

Remarks

virtual void OnDraw(CDC* pDC) = 0; •

pDC Points to the device context to be used for rendering an image of the
document.

Called by the framework to render an image of the document. The framework calls
this function to perform screen display, printing, and print preview, passing a
different device context in each case. There is no default implementation.

You must override this function to display your view on the document. You can
make graphic device interface (GDI) calls using the CDC object that the pDC
parameter points to. You can select GDI resources, such as pens or fonts, into the

848 CView::OnEndPrinting

See Also

device context before drawing and then deselect them afterwards. Often your
drawing code can be device-independent; that is, it doesn't require information
about what type of device is displaying the image.

To optimize drawing, you can find out if a given rectangle will be drawn or not by
calling the Rect Visible member function of the device context. If you need to
distinguish between normal screen display and printing, call the IsPrinting member
function of the device context.

CDC::IsPrinting, CDC::RectVisible, CView::OnPrint, CWnd::OnCreate,
CWnd: :OnDestroy, CWnd: :PostNcDestroy

CView::OnEndPrinting
Protected

Remarks

See Also

virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);.

pDC Points to the printer device context.

pInfo Points to a CPrintInfo structure that describes the current print job.

Called by the framework after a document has been printed or previewed. The
default implementation of this function does nothing. Override this function to free
any GDI resources you allocated in the OnBeginPrinting member function.

CView: :OnBeginPrinting

CView: :On End PrintPreview
Protected

Remarks

virtual void OnEndPrintPreview(CDC* pDC, CPrintInfo* pInfo,
POINT point, CPreviewView* pView);.

pDC Points to the printer device context.

pInfo Points to a CPrintInfo structure that describes the current print job.

point Specifies the point on the page that was last displayed in preview mode.

p View Points to the view object used for previewing.

Called by the framework when the user exits print preview mode. The default
implementation of this function calls the OnEndPrinting member function and
restores the main frame window to the state it was in before print preview began.

See Also

CView: :OnPrepareDC 849

Override this function to perfonn special processing when preview mode is
tenninated. For example, if you want to maintain the user's position in the
document when switching from preview mode to nonnal display mode, you can
scroll to the position described by the point parameter and the m _ nCurPage
member of the CPrintInfo structure that the pInfo parameter points to.

Always call the base class version of OnEndPrinting from your override, typically
at the end of the function.

CPrintInfo, CView: :OnEndPrinting

CView: :OnlnitialUpdate
Protected

Remarks

See Also

virtual void OnInitiaIUpdate(); •

Called by the framework after the view is first attached to the document, but before
the view is initially displayed. The default implementation of this function calls the
OnUpdate member function with no hint infonnation (that is, using the default
values of 0 for the lHint parameter and NULL for the pHint parameter). Override
this function to perfonn anyone-time initialization that requires infonnation about
the document. For example, if your application has fixed-sized documents, you can
use this function to initialize a view's scrolling limits based on the document size. If
your application supports variable-sized documents, use OnUpdate to update the
scrolling limits every time the document changes.

CView::OnUpdate

CView: :OnPrepareDC
Protected virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);.

pDC Points to the device context to be used for rendering an image of the
document.

pInfo Points to a CPrintInfo structure that describes the current print job if
OnPrepareDC is being called for printing or print preview; the m _ nCurPage
member specifies the page about to be printed. This parameter is NULL if
OnPrepareDC is being called for screen display.

850 CView::OnPreparePrinting

Remarks Called by the framework before the OnDraw member function is called for screen
display and before the OnPrint member function is called for each page during
printing or print preview. The default implementation of this function does nothing
if the function is called for screen display. However, this function is overridden in
derived classes, such as CScrollView, to adjust attributes of the device context;
consequently, you should always call the base class implementation at the
beginning of your override.

See Also

If the function is called for printing, the default implementation examines the page
information stored in the pInfo parameter. If the length of the document has not
been specified, OnPrepareDC assumes the document to be one page long and
stops the print loop after one page has been printed. The function stops the print
loop by setting the m _ bContinuePrinting member of the structure to FALSE.

Override OnPrepareDC for any of the following reasons:

• To adjust attributes of the device context as needed for the specified page. For
example, if you need to set the mapping mode or other characteristics of the
device context, do so in this function.

• To perform print-time pagination. Normally you specify the length of the
document when printing begins, using the OnPreparePrinting member
function. However, if you don't know in advance how long the document is (for
example, when printing an undetermined number of records from a database),
override OnPrepareDC to test for the end of the document while it is being
printed. When there is no more of the document to be printed, set the
m _ bContinuePrinting member of the CPrintInfo structure to FALSE.

• To send escape codes to the printer on a page-by-page basis. To send escape
codes from OnPrepareDC, call the Escape member function of the pDC
parameter.

Call the base class version of OnPrepareDC at the beginning of your override.

CDC::Escape, CPrintInfo, CView::OnBeginPrinting, CView::OnDraw,
CView: :OnPreparePrinting, CView: :OnPrint

CView: :OnPreparePrinting
Protected virtual BOOL OnPreparePrinting(CPrintInfo* pInfo); •

pInfo Points to a CPrintInfo structure that describes the current print job.

Remarks

Return Value

See Also

Example

CView::OnPrint 851

Called by the framework before a document is printed or previewed. The default
implementation does nothing.

You must override this function to enable printing and print preview. Call the
DoPreparePrinting member function, passing it the pInfo parameter, and then
return its return value; DoPreparePrinting displays the Print dialog box and
creates a printer device context. If you want to initialize the Print dialog box with
values other than the defaults, assign values to the members of pInfo. For example,
if you know the length of the document, pass the value to the SetMaxPages
member function of pInfo before calling DoPreparePrinting. This value is
displayed in the To: box in the Range portion of the Print dialog box.

DoPreparePrinting does not display the Print dialog box for a preview job. If you
want to bypass the Print dialog box for a print job, check that the m _ bPreview
member of pInfo is FALSE and then set it to TRUE before passing it to
DoPreparePrinting; reset it to FALSE afterwards.

If you need to perform initializations that require access to the CDC object
representing the printer device context (for example, if you need to know the page
size before specifying the length of the document), override the OnBeginPrinting
member function.

Nonzero to begin printing; 0 if the print job has been cancelled.

CPrintlnfo, CView: :DoPreparePrinting, CView: :OnBeginPrinting,
CView: :OnPrepareDC, CView: : On Print

The following is an override of OnPreparePrinting provided by App Wizard if you
select the printing option when you create a set of starter files. This override is
sufficient unless you want to initialize the Print dialog box.

void CMyView::OnPreparePrinting(CPrintlnfo *plnfo)
{

return DoPreparePrinting(plnfo);

CView: :OnPrint
Protected virtual void OnPrint(CDC* pDC, CPrintlnfo* pInfo);.

pDC Points to the printer device context.

pInfo Points to a CPrintlnfo structure that describes the current print job.

852 CView::OnPrint

Remarks Called by the framework to print or preview a page of the document. For each page
being printed, the framework calls this function immediately after calling the
OnPrepareDC member function. The page being printed is specified by the

See Also

Example

m _ nCurPage member of the CPrintlnfo structure that pInto points to. The default
implementation calls the OnDraw member function and passes it the printer device
context.

Override this function for any of the following reasons:

• To allow printing of multipage documents. Render only the portion of the
document that corresponds to the page currently being printed. If you're using
OnDraw to perform the rendering, you can adjust the viewport origin so that
only the appropriate portion of the document is printed.

• To make the printed image look different from the screen image (that is, if your
application is not WYSIWYG). Instead of passing the printer device context to
OnDraw, use the device context to render an image using attributes not shown
on the screen.

If you need GDI resources for printing that you don't use for screen display,
select them into the device context before drawing and deselect them afterwards.
These GDI resources should be allocated in OnBeginPrinting and released in
OnEndPrinting.

• To implement headers or footers. You can still use OnDraw to do the rendering
by restricting the area that it can print on.

Note that the m_rectDraw member of the pInto parameter describes the printable
area of the page in logical units.

Do not call OnPrepareDC in your override of OnPrint; the framework calls
OnPrepareDC automatically before calling OnPrint.

CView: :OnBeginPrinting, CView: :OnEndPrinting, CView: : OnPrepareDC ,
CView: :OnDraw

The following is a skeleton for an overridden OnPrint function:

void CMyView::OnPrint(CDC *pDC, CPrintlnfo *plnfo
{

}

II Print headers andlor footers, if desired.
II Find portion of document corresponding to plnfo->m_nCurPage.
OnDraw(pDC);

CView::OnUpdate 853

CView::OnUpdate
Protected

Remarks

See Also

virtual void OnUpdate(CView* pSender, LPARAM IHint, CObject* pHint);.

pSender Points to the view that modified the document, or NULL if all views are
to be updated.

IHint Contains information about the modifications.

pHint Points to an object storing information about the modifications.

Called by the framework after the view's document has been modified; this function
is called by CDocument::UpdateAIIViews and allows the view to update its
display to reflect those modifications. It is also called by the default implementation
of OnlnitialUpdate. The default implementation invalidates the entire client area,
marking it for painting when the next WM _PAINT message is received. Override
this function if you want to update only those regions that map to the modified
portions of the document. To do this you must pass information about the
modifications using the hint parameters.

To use IHint, define special hint values, typically a bitmask or an enumerated type,
and have the document pass one of these values. To use pHint, derive a hint class
from CObject and have the document pass a pointer to a hint object; when
overriding OnUpdate, use the CObject::IsKindOfmember function to determine
the run-time type of the hint object.

Typically you should not perform any drawing directly from OnUpdate.lnstead,
determine the rectangle describing, in device coordinates, the area that requires
updating; pass this rectangle to CWnd: : InvalidateRect. This causes painting to
occur the next time a WM _PAINT message is received.

If IHint is 0 and pHint is NULL, the document has sent a generic update
notification. If a view receives a generic update notification, or if it cannot decode
the hints, it should invalidate its entire client area.

CDocument:: UpdateAIIViews, CView: :OnlnitiaIUpdate, CWnd: :Invalidate,
CWnd: :InvalidateRect

854 CWinApp

class CWinApp : public CCmdTarget
The CWinApp class is the base class from
which you derive a Windows application object.
An application object provides member functions
for initializing your application (and each
instance of it) and for running the application.

CWinApp

Each application that uses the Microsoft Foundation classes can only contain one
object derived from CWinApp. This object is constructed when other C++ global
objects are constructed and is already available when Windows calls the WinMain
function, which is supplied by the Microsoft Foundation Class Library. Declare
your derived CWinApp object at the global level.

When you derive an application class from CWinApp, override the InitInstance
member function to create your application's main window object. In addition to the
CWinApp member functions, the Microsoft Foundation Class Library provides the
following global functions to access your CWinApp object and other global
information:

• AfxGetApp Obtains a pointer to the CWinApp object.

• AfxGetInstanceHandle Obtains a handle to the current application instance.

• AfxGetResourceHandle Obtains a handle to the application's resources.

• AfxGetAppName Obtains a pointer to a string containing the application's
name. Alternately, if you have a pointer to the CWinApp object, use
m _pszExename to get the application's name.

For more information about these global functions, see "Macros and Globals" in
this manual.

See Chapter 2 of this manual for more on the CWinApp class, including an
overview of:

• CWinApp-derived code written by App Wizard.

• CWinApp' s role in the execution sequence of your application.

• CWinApp' s default member function implementations.

• CWinApp' s key overridables.

#include <afxwin.h>

CWinApp 855

Data Members - Public Members
m _pszAppName

m hlnstance

m hPrevlnstance

m _lpCmdLine

m nCmdShow

myMainWnd

m _ bHelpMode

m _pszExeName

m _pszHelpFilePath

m _pszProfileName

Specifies the name of the application.

Identifies the current instance of the application.

Identifies the previous instance of the application.

Points to a null-terminated string that specifies the
command line for the application.

Specifies how the window is to be shown initially.

Holds a pointer to the application's main window.
For an example of how to initialize m yMain Wnd,
see InitInstance.

Indicates if the user is in Help context mode
(typically invoked with SHIFf+Fl).

The module name of the application.

The path to the application's Help file.

The application's .INI filename.

Construction/Destruction - Public Members
CWinApp Constructs a CWinApp object.

Operations-Public Members
LoadCursor

LoadStandardCursor

LoadOEMCursor

Loadlcon

LoadStandardlcon

LoadOEMlcon

LoadVBXFile

UnloadVBXFile

GetProfilelnt

WriteProfilelnt

Loads a cursor resource.

Loads a Windows predefined cursor that the IDC _
constants specify in WINDOWS.H.

Loads a Windows OEM predefined cursor that the
OCR_constants specify in WINDOWS.H.

Loads an icon resource.

Loads a Windows predefined icon that the IDI_
constants specify in WINDOWS.H.

Loads a Windows OEM predefined icon that the
OIC _ constants specify in WINDOWS.H.

Loads a VBX control file.

Unloads a VBX control file.

Retrieves an integer from an entry in the
application's .INI file.

Writes an integer to an entry in the application's
.INI file.

856 CWinApp

GetProfileString Retrieves a string from an entry in the application's
.INI file.

WriteProfileString Writes a string to an entry in the application's
.INI file.

AddDocTemplate Adds a document template to the application's list
of available document templates.

OpenDocumentFile Called by the framework to open a document from a
file.

AddToRecentFileList Adds a filename to the most recently used (MRU)
file list.

GetPrinterDeviceDefaults Retrieves the printer device defaults.

Overridables - Public Members
InitApplication Override to perform any application-level

initialization.

InitInstance Override to perform Windows instance
initialization, such as creating your window objects.

Run Runs the default message loop. Override to
customize the message loop.

OnIdle Override to perform application-specific idle-time
processing.

ExitInstance Override to clean up when your application
terminates.

PreTranslateMessage Filters messages before they are dispatched to the
Windows functions TranslateMessage and
DispatchMessage.

SaveAllModified Prompts the user to save all modified documents.

DoMessageBox Implements AfxMessageBox for the application.

ProcessMessageFilter Intercepts certain messages before they reach the
application.

ProcessWndProcException Intercepts all unhandled exceptions thrown by the
application's message and command handlers.

Do WaitCursor Turns the wait cursor on and off.

OnDDECommand Called by the framework in response to a dynamic
data exchange (DDE) execute command.

WinHelp Calls the WinHelp Windows function.

CWinApp::AddDocTemplate 857

Initialization - Protected Members
LoadStdProfileSettings

SetDialogBkColor

EnableVBX

EnableShellOpen

RegisterShellFileTypes

Loads standard .INI file settings and enables the
MR U file list feature.

Sets the default background color for dialog boxes
and message boxes.

Enables the use of VBX custom controls in the
application.

Allows the user to open data files from the
Windows File Manager.

Registers all the application's document types with
the Windows File Manager.

Command Handlers - Protected Members
OnFileNew

OnFileOpen

OnFilePrintSetup

OnContextHelp

OnHelp

OnHelpIndex

OnHelpUsing

Member Functions

CWinApp::AddDocTemplate

Implements the ID _ FILE _NEW command.

Implements the ID_FILE_OPEN command.

Implements the ID _FILE_PRINT_SETUP
command.

Handles Shift+FI Help within the application.

Handles FI Help within the application (using the
current context).

Handles the ID HELP INDEX command and - -
provides a default Help topic.

Handles the ID HELP USING command. - -

void AddDocTemplate(CDocTemplate* pT emplate);

pTemplate A pointer to the CDocTemplate to be added.

858 CWinApp: :AddToRecentFileList

Remarks Call this member function to add a document template to the list of available
document templates that the application maintains. You should add all document
templates to an application before you call RegisterShellFileTypes.

See Also CWinApp::RegisterSheIlFileTypes, CMultiDocTemplate,
CSingleDocTemplate

CWi nApp: :AddTo RecentFi leList

Remarks

See Also

virtual void AddToRecentFileList(const char* pszPathName);

pszPathName The path of the file.

Call this member function to add pszPathName to the MRU file list. You should
call the LoadStdProfileSettings member function to load the current MRU file list
before you use this member function.

The framework calls this member function when it opens a file or executes the Save
As command to save a file with a new name.

CWinApp: :LoadStdProfileSettings

CWinApp::CWinApp

Remarks

CWinApp(const char* pszAppName = NULL);

pszAppName A null-terminated string that contains the application name that
Windows uses. If this argument is not supplied or is NULL, CWinApp uses the
resource string AFX _IDS _ APP _ TITLE or the filename of the executable file.

Constructs a CWinApp object and passes pszAppN ame to be stored as the
application name. You should construct one global object of your CWinApp­
derived class. You can have only one CWinApp object in your application. The
constructor stores a pointer to the CWinApp object so that WinMain can call the
object's member functions to initialize and run the application.

CWinApp::DoWaitCursor 859

CWi nApp:: DoMessageBox

Remarks

Return Value

See Also

virtual int DoMessageBox(LPCSTR IpszPrompt, UINT nType,
UINT nIDPrompt);

IpszPrompt Address of text in the message box.

nType The message box style.

nIDPrompt An index to a Help context string.

The framework calls this member function to implement a message box for the
global function AfxMessageBox. Do not call this member function to open a
message box; use AfxMessageBox instead.

Override this member function to customize your application-wide processing of
AfxMessageBox calls.

Returns the same values as AfxMessageBox.

AfxMessageBox, : :MessageBox

CWi nApp: : Do WaitCu rsor

Remarks

See Also

virtual void DoWaitCursor(int nCode);

nCode If this parameter is 0, the original cursor is restored. If 1, a wait cursor
appears. If -1, the wait cursor ends.

Called by the framework to implement CCmdTarget: :Begin WaitCursor,
CCmdTarget: :EndWaitCursor, and CCmdTarget: :Restore WaitCursor.
Implements an hourglass cursor. DoW aitCursor maintains a reference count.
When positive, the hourglass cursor is displayed.

If your code changes the cursor, call DoW a i t Cur S 0 r (0) to restore the cursor to
the state the framework is maintaining.

Override this member function to change the wait cursor or to do additional
processing while the wait cursor is displayed.

CCmdTarget::BeginWaitCursor, CCmdTarget::EndWaitCursor,
CCmdTarget: :Restore WaitCursor

860 CWinApp::EnableSheIiOpen

CWinApp::EnableSheIIOpen
Protected

Remarks

See Also

void EnableShellOpen(); •

Call this function, typically from your Initlnstance override, to enable your
application's users to open data files when they double-click the files from within
the Windows File Manager. Call the RegisterShellFileTypes member function in
conjunction with this function, or provide a .REG file with your application for
manual registration of document types.

CWinApp: :OnDDECommand, CWinApp: : RegisterShellFileTypes

CWinApp::EnableVBX
Protected

Remarks

See Also

void Enable VBX(); •

Call this member function from within the Initlnstance member function to enable
the use of VBX controls within your application.

CWinApp: : LoadVBXFile , CWinApp:: UnloadVBXFile

CWi nApp: : Exitl nstance

Remarks

Return Value

See Also

virtual int Exitlnstance();

Called by the framework from within the Run member function to exit this instance
of the application. Do not call this member function from anywhere but within the
Run member function.

The default implementation of this function writes framework options to the
application's .INI file. Override this function to clean up when your application
terminates.

The application's exit code; 0 indicates no errors, and values greater than 0 indicate
an error. This value is used as the return value from WinMain.

CWinApp: :Run, CWinApp: : Initlnstance

CWinApp::GetProfilelnt 861

CWi nApp: :GetPri nterDeviceDefaults

Remarks

Return Value

See Also

BOOL GetPrinterDeviceDefalllts(PRINTDLG FAR* pPrintDIg);

pPrintDIg A far pointer to a PRINTDLG structure.

Call this member function to prepare a printer device context for printing. Retrieves
the current printer defaults from the Windows .INI file as necessary, or uses the last
printer configuration set by the user in Print Setup.

Nonzero if successful; otherwise O.

PRINTDLG, CPrintDialog

CWi nApp: :GetProfi lelnt

Remarks

UINT GetProfileInt(LPCSTR IpszSection, LPCSTR IpszEntry, int nDefault);

IpszSection Points to a null-terminated string that specifies the section containing
the entry.

IpszEntry Points to a null-terminated string that contains the entry whose value is
to be retrieved.

nDefault Specifies the default value to return if the framework cannot find the
entry. This value can be an unsigned value in the range 0 through 65,535 or a
signed value in the range -32,768 through 32,767.

Call this member function to retrieve the value of an integer from an entry within a
specified section of the application's .INI file.

This member function is not case sensitive, so the strings in the IpszSection and
IpszEntry parameters may differ in case.

Return Value The integer value of the string that follows the specified entry if the function is
successful. The return value is the value of the nDefault parameter if the function
does not find the entry. The return value is 0 if the value that corresponds to the
specified entry is not an integer.

Windows 3.1 Only This member function supports hexadecimal notation for the value in the .INI file.
When you retrieve a signed integer, you should cast the value into an int. +

See Also CWinApp::GetProfileString, CWinApp::WriteProfilelnt,
:: GetPrivateProfileInt

862 CWinApp: :GetProfileString

CWinApp: :GetProfileString

Remarks

Return Value

See Also

CString GetProfileString(LPCSTR IpszSection, LPCSTR IpszEntry,
LPCSTR IpszDeJault = NULL);

IpszSection Points to a null-terminated string that specifies the section containing
the entry.

IpszEntry Points to a null-terminated string that contains the entry whose string is
to be retrieved. This value must not be NULL.

IpszDeJault Points to the default string value for the given entry if the entry
cannot be found in the initialization file.

Call this member function to retrieve the string associated with an entry within the
specified section in the application's .INI file.

The return value is the string from the application's .INI file or IpszDeJault if the
string cannot be found. The maximum string length supported by the framework is
_MAX _PATH. If IpszDeJault is NULL, the return value is an empty string.

CWinApp: : GetProfileInt, CWinApp:: WriteProfileString

CWinApp: :lnitApplication

Remarks

Return Value

See Also

virtual BOOL InitApplication();

Windows allows several copies of the same program to run at the same time. There
are two types of application initialization:

1. One-time application initialization that is done the first time the program runs.

2. Instance initialization that runs each time a copy of the program runs, including
the first time.

This function is called by the version of WinMain that the framework provides.
Override InitApplication to implement one-time initialization such as Windows
class registration. Override InitInstance to implement per-instance initialization.

Nonzero if initialization is successful; otherwise O.

CWinApp: : InitInstance

CWinApp::LoadCursor 863

CWi nApp: : I n itl nstance

Remarks

Return Value

See Also

virtual BOOL Initlnstance();

Windows allows several copies of the same program to run at the same time.
Application initialization is conceptually divided into two sections: one-time
application initialization that is done the first time the program runs, and instance
initialization that runs each time a copy of the program runs, including the first
time. The framework's implementation of WinMain calls this function.

Override Initlnstance to initialize each new instance of your application running
under Windows. Typically, you override Initlnstance to construct your main
window object and set the m_pMainWnd data member to point to that window.
For more information on overriding this member function, see Chapter 2, "Using
the Classes to Write Applications for Windows."

Nonzero if initialization is successful; otherwise O.

CWinApp: : InitApplication

CWinApp: :LoadCursor

Remarks

Return Value

See Also

HCURSOR LoadCursor(LPCSTR IpszResourceName) const;

HCURSOR LoadCursor(UINT nIDResource) const;

IpszResourceName Points to a null-terminated string that contains the name of
the cursor resource. You can use a CString for this argument.

nIDResource ID number of the cursor resource.

Loads the cursor resource named by IpszResourceName or specified by
nIDResource from the current executable file. LoadCursor loads the cursor into
memory only if it has not been previously loaded; otherwise, it retrieves a handle of
the existing resource. Use the LoadStandardCursor or LoadOEMCursor
member function to access the predefined Windows cursors.

A handle to a cursor. If unsuccessful, returns NULL.

CWinApp::LoadStandardCursor, CWinApp::LoadOEMCursor,
: :LoadCursor

864 CWinApp::Loadlcon

CWinApp::Loadlcon

Remarks

Return Value

See Also

HICON LoadIcon(LPCSTR IpszResourceName) const;

HICON LoadIcon(UINT nIDResource) const;

IpszResourceName Points to a null-terminated string that contains the name of
the icon resource. You can also use a CString for this argument.

nIDResource ID number of the icon resource.

Loads the icon resource named by IpszResourceName or specified by nIDResource
from the executable file. LoadIcon loads the icon only if it has not been previously
loaded; otherwise, it retrieves a handle of the existing resource. You can use the
LoadStandardIcon or LoadOEMIcon member function to access the predefined
Windows icons.

A handle to an icon. If unsuccessful, returns NULL.

CWinApp: :LoadStandardIcon, CWinApp: :LoadOEMIcon, : :LoadIcon

CWinApp::LoadOEMCursor

Remarks

Return Value

See Also

HCURSOR LoadOEMCursor(UINT nIDCursor) const;

nIDCursor An OCR_manifest constant identifier that specifies a predefined
Windows cursor. You must have #define OEMRESOURCE before #include
<afxwin.h> to gain access to the OCR_constants in WINDOWS.H.

Loads the Windows predefined cursor resource specified by nIDCursor. Use the
LoadOEMCursor or LoadStandardCursor member function to access the
predefined Windows cursors.

A handle to a cursor. If unsuccessful, returns NULL.

CWinApp: :LoadCursor, CWinApp: :LoadStandardCursor, : :LoadCursor

CWinApp: :LoadStandardCursor 865

CWinApp::LoadOEMlcon

Remarks

Return Value

See Also

HICON LoadOEMlcon(UINT nIDlcon) const;

nIDlcon An OIC _ manifest constant identifier that specifies a predefined
Windows icon. You must have #define OEMRESOURCE before #include
afxwin.h to access the OIC constants in WINDOWS.H.

Loads the Windows predefined icon resource specified by nIDlcon. Use the
LoadOEMlcon or LoadStandardlcon member function to access the predefined
Windows icons.

A handle to an icon. If unsuccessful, returns NULL.

CWinApp: : LoadStandardlcon, CWinApp: : LoadIcon, : : Loadlcon

CWinApp:: LoadStandardCursor
HCURSOR LoadStandardCursor(LPCSTR lpszCursorName) const;

lpszCursorName An IDC _ manifest constant identifier that specifies a predefined
Windows cursor. These identifiers are defined in WINDOWS.H. The following
list shows the possible predefined values and meanings for lpszCursorName:

• IDC ARROW Standard arrow cursor

• IDC IBEAM Standard text-insertion cursor

• IDC _ WAIT Hourglass cursor used when Windows performs a time-
consuming task

• IDC CROSS Cross-hair cursor for selection

• IDC _UP ARROW Arrow that points straight up

• IDC SIZE Cursor to use to resize a window

• IDC ICON Cursor to use to drag a file

• IDC SIZENWSE Two-headed arrow with ends at upper left and lower
right

• IDC SIZENESW Two-headed arrow with ends at upper right and lower
left

• IDC SIZEWE Horizontal two-headed arrow

• IDC SIZENS Vertical two-headed arrow

866 CWinApp::LoadStandardlcon

Remarks Loads the Windows predefined cursor resource that IpszCursorName specifies. Use
the LoadStandardCursor or LoadOEMCursor member function to access the
predefined Windows cursors.

Return Value

See Also

A handle to a cursor. If unsuccessful, returns NULL.

CWinApp::LoadOEMCursor, CWinApp::LoadCursor, ::LoadCursor

CWinApp::LoadStandardlcon

Remarks

Return Value

See Also

HICON LoadStandardIcon(LPCSTR IpszlconName) const;

IpszlconName A manifest constant identifier that specifies a predefined Windows
icon. These identifiers are defined in WINDOWS.H. The following list shows the
possible predefined values and meanings for IpszlconName:

• IDI _ APPLICATION Default application icon

• IDI _HAND Hand-shaped icon used in serious warning messages

• IDI _QUESTION Question-mark shape used in prompting messages

• IDI _ EXCLAMATION Exclamation point shape used in warning
messages

• IDI _ASTERISK Asterisk shape used in informative messages

Loads the Windows predefined icon resource that IpszI conN ame specifies. Use the
LoadStandardIcon or LoadOEMIcon member function to access the predefined
Windows icons.

A handle to an icon. If unsuccessful, returns NULL.

CWinApp: :LoadOEMIcon, CWinApp: :LoadIcon, : :LoadIcon

CWinApp::LoadStdProfileSettings
Protected

Remarks

See Also

void LoadStdProfileSettings(); •

Call this member function from within the InitInstance member function to enable
and load the current MRU file list and the last preview state.

CWinApp: : AddToRecentFileList

CWinApp::LoadVBXFile 867

CWi nApp:: LoadVBXFi Ie

Remarks

Return Value

See Also

HMODULE LoadVBXFile(LPCSTR IpszFileName);

IpszFileName Points to a null-tenninated string that specifies the name of the
VBX custom-control dynamic-link library (DLL).

Call this member function to load the specified VBX custom-control DLL.
Typically, the framework automatically calls this member function to load the
proper DLL when a VBX control is created. When the control is destroyed, the
framework discards the DLL.

The framework will first attempt to load a VBX file when the corresponding control
is created in a dialog box. If the VBX file is not available, the control will not
appear in the dialog box, and your application may fail if your code tries to access
the missing control.

To verify the existence of a VBX file, call LoadVBXFile in your Initlnstance
member function and take appropriate action if the file is missing. If the VBX file
exists, call UnloadVBXFile to return to the framework's automatic loading and
unloading of VBX files.

You may also use LoadVBXFile and UnloadVBXFiIe to optimize the
perfonnance of frequently used controls. If you call LoadVBXFile before a control
is created, the framework will no longer load and discard the VBX file each time
the control is created and destroyed.

If you call LoadVBXFile, it is then your responsibility to call UnloadVBXFile,
either after the control is destroyed or in the Exitlnstance member function when
your application tenninates.

The HMODULE returned by the LoadLibrary Windows function. If an error
occurs when loading the VBX custom-control DLL, the return value is an error
value less than the constant value HINST ANCE ERROR. If the DLL is not a
proper VBX file, or the custom-control DLL could not be initialized, the error value
is 14.

CVBControl, CWinApp: :Enable VBX, CWinApp:: UnloadVBXFile,
: :LoadLibrary

868 CWinApp::OnContextHelp

CWi nApp: :OnContextHel p
Protected

Remarks

See Also

afx _ msg void OnContextHelp(); •

You must add an

ON_COMMAND(ID_CONTEXT_HELP, OnContextHelp)

statement to your CWinApp class message map and also add an accelerator table
entry, typically SHIFf+Fl, to enable this member function.

OnContextHelp puts the application into Help mode. The cursor changes to an
arrow and a question mark, and the user can then move the mouse pointer and press
the left mouse button to select a dialog box, window, menu, or command button.
This member function retrieves the Help context of the object under the cursor and
calls the Windows function WinHelp with that Help context.

CWinApp::OnHelp, CWinApp::WinHelp

CWi nApp: :On DDECommand

Remarks

Return Value

See Also

virtual BOOL OnDDECommand(char* pszCommand);

pszCommand Points to a DDE command string received by the application.

Called by the framework when the main frame window receives a DDE execute
message. The default implementation checks whether the command is a request to
open a document and, if so, opens the specified document. The Windows File
Manager usually sends such DDE command strings when the user double-clicks a
data file. Override this function to handle other DDE execute commands, such as
the command to print.

Nonzero if the command is handled; otherwise O.

CWinApp: : EnableShellOpen

CWinApp::OnFilePrintSetup 869

CWi nApp: :On Fi leNew
Protected

Remarks

See Also

afx _ msg void OnFileNew(); •

You must add an

statement to your CWinApp class message map to enable this member function.

If enabled, this function handles execution of the File New command.

See Technical Note 22 in MSVC\HELP\MFCNOTES.HLP for information on
default behavior and guidance on how to override this member function.

CWinApp: :OnFileOpen

CWinApp::OnFileOpen
Protected

Remarks

See Also

afx _ msg void OnFileOpen(); •

You must add an

statement to your CWinApp class message map to enable this member function.

If enabled, this function handles execution of the File Open command.

For information on default behavior and guidance on how to override this member
function, see Technical Note 22.

CWinApp: :OnFileNew

CWi nApp: :On Fi lePrintSetup
Protected afx _ msg void OnFilePrintSetup(); •

870 CWinApp::OnHelp

Remarks You must add an

See Also

statement to your CWinApp class message map to enable this member function.

If enabled, this function handles execution of the File Print command.

For information on default behavior and guidance on how to override this member
function, see Technical Note 22.

CWinApp: :OnFileNew

CWinApp::OnHelp
Protected

Remarks

See Also

afx _ msg void OnHelp(); •

You must add an

statement to your CWinApp class message map to enable this member function.
Usually you will also add an accelerator-key entry for the Fl key. Enabling the Fl

key is only a convention, not a requirement.

If enabled, called by the framework when the user presses the Fl key.

The default implementation of this message-handler function determines the Help
context that corresponds to the current window, dialog box, or menu item and then
calls WINHELP.EXE. If no context is currently available, the function uses the
default context.

Override this member function to set the Help context to something other than the
window, dialog box, menu item, or toolbar button that currently has the focus. Call
WinHelp with the desired Help context ID.

CWinApp::OnContextHelp, CWinApp::OnHelpUsing,
CWinApp: :OnHelplndex, CWinApp:: Win Help

CWinApp::Onldle 871

CWinApp::OnHelplndex
Protected

Remarks

See Also

afx _ msg void OnHelplndex(); +

You must add an

statement to your CWinApp class message map to enable this member function.

If enabled, the framework calls this message-handler function when the user of your
application selects the Help Index command to invoke WinHelp with the standard
HELP_INDEX topic.

CWinApp::OnHelp, CWinApp::OnHelpUsing, CWinApp::WinHelp

CWinApp::OnHelpUsing
Protected

Remarks

See Also

afx_msg void OnHelpUsing(); +

You must add an

statement to your CWinApp class message map to enable this member function.

The framework calls this message-handler function when the user of your
application selects the Help Using command to invoke the Win Help application
with the standard HELP _ HELPONHELP topic.

CWinApp: :OnHelp, CWinApp: :OnHelplndex, CWinApp:: WinHelp

CWinApp::Onldle
virtual BOOL Onldle(LONG lCount);

lCount A counter incremented each time Onldle is called when the application's
message queue is empty. This count is reset to 0 each time a new message is
processed. You can use the lCount parameter to determine the relative length of
time the application has been idle without processing a message.

872 CWinApp::Onldle

Remarks Override this member function to perform idle-time processing. Ooldle is called in
the default message loop when the application's message queue is empty. Use your
override to call your own background idle-handler tasks.

Return Value

Example

Ooldle should return 0 to indicate that no idle processing time is required. The
lCount parameter is incremented each time Ooldle is called when the message
queue is empty and resets to 0 each time a new message is processed. You can call
your different idle routines based on this count.

The following summarizes idle loop processing:

1. If the message loop in the Microsoft Foundation Class Library checks the
message queue and finds no pending messages, it calls 0 n I d 1 e for the
application object and supplies 0 as the lCount argument.

2. 0 n I d 1 e performs some processing and returns a nonzero value to indicate it
should be called again to do further processing.

3. The message loop checks the message queue again. If no messages are pending,
it calls On I d 1 e again, incrementing the lCount argument.

4. Eventually, On I d 1 e finishes processing all its idle tasks and returns O. This tells
the message loop to stop calling On I d 1 e until the next message is received from
the message queue, at which point the idle cycle restarts with the argument set
to o.

Do not perform lengthy tasks during Ooldle because your application cannot
process user input until Ooldle returns.

Note The default implementation of Ooldle updates command user-interface
objects such as menu items and toolbar buttons, and it performs internal data
structure cleanup. Therefore, if you override Ooldle, you must call
CWioApp::Ooldle with the lCount in your overridden version. First call all base­
class idle processing (that is, until the base class Ooldle returns 0). If you need to
perform work before the base-class processing completes, review the base-class
implementation to select the proper lCount during which to do your work.

Nonzero to receive more idle processing time; 0 if no more idle time is needed.

The following example shows how to process two idle tasks using the lCount
argument to prioritize the tasks. The first task is high priority, and you should do it
whenever possible. The second task is less important and should be done only when
there is a long pause in user input. Note the call to the base-class version of
Ooldle.

BOOl CMyApp::OnIdle(lONG lCount)
{

CWinApp::OpenDocumentFile 873

BOOl bMore = CWinApp::OnIdle(lCount);

if (lCount == 0)
{

TRACE("App idle for short period of time\n");
bMore = TRUE;
}

else if (lCount == 10)
{

TRACE("App idle for longer amount of time\n");
bMore = TRUE;

else if (lCount == 100)
{

TRACE("App idle for even longer amount of time\n");
bMore = TRUE;

else if (lCount == 1000)
{

}

TRACE("App idle for quite a long period of time\n");
II bMore is not set to TRUE, no longer need idle
II IMPORTANT: bMore is not set to FALSE since CWinApp::OnIdle may
II have more idle tasks to complete.

return bMore;
II return TRUE as long as there is any more idle tasks

CWi nApp: :Open DocumentFi Ie

Remarks

Return Value

virtual CDocument* OpenDocumentFile(LPCSTR lpszFileN arne);

lpszFileNarne The name of the file to be opened.

The framework calls this member function to open the named CDocument file for
the application. If a document with that name is already open, the first frame
window that contains that document will be activated. If an application supports
multiple document templates, the framework uses file extension to find the
appropriate document template to attempt to load the document. If successful, the
document template then creates a frame window and view for the document.

A pointer to a CDocument if successful; otherwise NULL.

874 CWinApp::PreTranslateMessage

CWi nApp:: Pre TranslateMessage

Remarks

Return Value

See Also

virtual BOOL PreTranslateMessage(MSG* pMsg);

pMsg A pointer to an MSG structure that contains the message to process.

Override this function to filter window messages before they are dispatched to the
Windows functions TranslateMessage and DispatchMessage. The default
implementation performs accelerator-key translation, so you must call the
CWinApp: :PreTranslateMessage member function in your overridden version.

Nonzero if the message was fully processed in PreTranslateMessage and
should not be processed further. Zero if the message should be processed in the
normal way.

: :DispatchMessage, : :TranslateMessage

CWi nApp:: ProcessMessageFi Iter

Remarks

Return Value

See Also

virtual BOOL ProcessMessageFilter(int code, LPMSG IpMsg);

code Specifies a hook code. This member function uses the code to determine how
to process IpMsg.

IpMsg A pointer to a Windows MSG structure.

The framework's hook function calls this member function to filter and respond to
certain Windows messages. A hook function processes events before they are sent
to the application's normal message processing.

If you override this advanced feature, be sure to call the base-class version to
maintain the framework's hook processing.

Nonzero if the message is processed; otherwise O.

MessageProc, WH _ MSGFIL TER

CWinApp::RegisterSheIiFileTypes 875

CWinApp:: Process Wnd ProcException

Remarks

Return Value

See Also

virtual LRESULT ProcessWndProcException(CException* e,
const MSG* pMsg);

e A pointer to an uncaught exception.

pMsg An MSG structure that contains information about the windows message
that caused the framework to throw an exception.

The framework calls this member function whenever the handler does not catch an
exception thrown in one of your application's message or command handlers.

Do not call this member function directly.

The default implementation of this member function creates a message box. If the
uncaught exception originates with a menu, toolbar, or accelerator command
failure, the message box displays a "Command failed" message; otherwise, it
displays an "Internal application error" message.

Override this member function to provide global handling of your exceptions. Only
call the base functionality if you wish the message box to be displayed.

The value that should be returned to Windows. Normally this is OL for windows
messages, lL (TRUE) for command messages.

CWnd:: WindowProc, CException

CWinApp::RegisterSheIiFileTypes
Protected

Remarks

void RegisterShellFileTypes(); •

Call this function to register all of your application's document types with the
Windows File Manager. This allows the user to open a data file created by your
application by double-clicking it from within File Manager. Call this member
function after you call AddDocTemplate for each of the document templates in
your application. Also call the EnableShellOpen member function when you call
this member function.

This function iterates through the list of CDocTemplate objects that the application
maintains and, for each document template, adds entries to the registration database
that Windows maintains for file associations. File Manager uses these entries to

876 CWinApp::Run

See Also

open a data file when the user double-clicks it. This eliminates the need to ship a
.REG file with your application.

If the registration database already associates a given filename extension with
another file type, no new association is created. See the CDocTemplate class for
the format of strings necessary to register this information.

CDocTemplate, CWinApp: :EnableShellOpen, CWinApp: :AddDocTemplate

CWinApp::Run

Remarks

Return Value

See Also

virtual int Run();

Provides a default message loop. Run acquires and dispatches Windows messages
until the application receives a WM_QUIT message. If the application's message
queue currently contains no messages, Run calls Onldle to perform idle-time
processing. Incoming messages go to the PreTranslateMessage member function
for special processing and then to the Windows function TranslateMessage for
standard keyboard translation; finally, the DispatchMessage Windows function is
called. Run is rarely overridden, but you can override it to provide special
behavior.

An int value that is returned by WinMain.

WM _ QUIT, : :DispatchMessage, : :TranslateMessage,
CWinApp: :PreTranslateMessage

CWinApp: :SaveAIiModified

Remarks

Return Value

virtual BOOL SaveAllModified();

Called by the framework to save all documents when the application's main frame
window is to be closed, or through a WM _ QUERYENDSESSION message.

The default implementation of this member function calls the SaveModified
member function in tum for all modified documents within the application.

Nonzero if safe to terminate the application; 0 if not safe to terminate the
application.

CWinApp::WinHelp 877

CWinApp: :SetDialog BkColor
Protected

Remarks

void SetDialogBkColor(COLORREF clrCtlBk = RGB(192, 192, 192),
COLORREF clrCtlText = RGB(O, 0, 0)); •

clrCtlBk The dialog background color for the application.

clrCtlText The dialog control color for the application.

Call this member function from within the InitInstance member function to set the
default background and text color for dialog boxes and message boxes within your
application.

CWinApp::UnloadVBXFile

Remarks

Return Value

See Also

BOOL UnloadVBXFile(LPCSTR IpszFileName);

IpszFileName Points to a null-terminated string that specifies the name of the
VBX custom-control dynamic-link library (DLL).

Call this member function to unload the specified VBX custom-control DLL. For
more information, see the LoadVBXFile member function.

Nonzero if successful; otherwise O.

CVBControl, CWinApp: :LoadVBXFile, CWinApp: :Enable VBX

CWinApp::WinHelp
virtual void WinHelp(DWORD dwData, UINT nCmd = HELP_CONTEXT);

dwData Specifies additional data. The value used depends on the value of the
nCmd parameter.

nCmd Specifies the type of help requested. For a list of possible values and how
they affect the dwData parameter, see the WinHelp Windows function.

878 CWinApp::WriteProfilelnt

Remarks Call this member function to invoke the WinHelp application. The framework also
calls this function to invoke the WinHelp application. The framework will
automatically close the WinHelp application when your application terminates.

See Also CWinApp::OnContextHelp, CWinApp::OnHelpUsing, CWinApp::OnHelp,
CWinApp: :OnHelplndex, :: WinHelp

CWi nApp: :WriteProfi lei nt

Remarks

Return Value

See Also

BOOL WriteProfilelnt(LPCSTR IpszSection, LPCSTR IpszEntry,
int nValue);

IpszSection Points to a null-terminated string that specifies the section containing
the entry. If the section does not exist, it is created. The name of the section is
case independent; the string may be any combination of uppercase and lowercase
letters.

IpszEntry Points to a null-terminated string that contains the entry into which the
value is to be written. If the entry does not exist in the specified section, it is
created.

n Value Contains the value to be written.

Call this member function to write the specified value into the specified section of
the application's .INI file.

Nonzero if successful; otherwise O.

CWinApp: : GetProfilelnt, CWinApp:: WriteProfileString

CWi nApp: :WriteProfileString
BOOL WriteProfileString(LPCSTR IpszSection, LPCSTR IpszEntry,

LPCSTR IpszValue);

IpszSection Points to a null-terminated string that specifies the section containing
the entry. If the section does not exist, it is created. The name of the section is
case independent; the string may be any combination of uppercase and lowercase
letters.

Remarks

Return Value

See Also

CWinApp::m_hlnstance 879

IpszEntry Points to a null-tenninated string that contains the entry into which the
value is to be written. If the entry does not exist in the specified section, it is
created.

IpszValue Points to the string to be written.

Call this member function to write the specified string into the specified section of
the application's .INI file.

Nonzero if successful; otherwise O.

CWinApp: : GetProfileString, CWinApp:: WriteProfilelnt

Data Members

CWi nApp:: m _ bHelpMode
Remarks TRUE if the application is in Help context mode (conventionally invoked with

SHIFf+Fl); otherwise FALSE. In Help context mode, the cursor becomes a question
mark and the user can move it about the screen. Examine this flag if you want to
implement special handling when in the Help mode. m _ bHelpMode is a public
variable of type BOOL.

CWi nApp: : m _hi nstance
Remarks Corresponds to the hlnstance parameter passed by Windows to WinMain. The

m _ hlnstance data member is a handle to the current instance of the application
running under Windows. This is returned by the global function
AfxGetlnstanceHandle. m_ hlnstance is a public variable of type HINST ANCE.

880 CWinApp::m_hPrevlnstance

CWi nApp: : m _ h Prevl nstance
Remarks Corresponds to the hPrevlnstance parameter passed by Windows to WinMain.

Identifies the previous instance of the application. The m _ hPrevlnstance data
member has the value NULL if this is the first instance of the application that is
running. m _ hPrevInstance is a public variable of type HINSTANCE.

CWinApp::m_lpCmdLine
Remarks Corresponds to the IpCmdLine parameter passed by Windows to WinMain. Points

to a null-terminated string that specifies the command line for the application. Use
m _lpCmdLine to access any command-line arguments the user entered when the
application was started. m _lpCmdLine is a public variable of type LPSTR.

CWinApp::m_nCmdShow
Remarks Corresponds to the nCmdShow parameter passed by Windows to WinMain. You

should pass m _ nCmdShow as an argument when you call ShowWindow for your
application's main window. m _ nCmdShow is a public variable of type int.

CWinApp::m _pMainWnd
Remarks

See Also

Use this data member to store a pointer to your application's main window object.
The Microsoft Foundation Class Library will automatically terminate your
application when the window referred to by myMainWnd is closed. If you don't
store a valid CWnd pointer here, many default framework implementations will not
work correctly. m_pMainWnd is a public variable of type CWnd*.

Typically, you set this member variable when you override InitInstance.

CWinApp: : InitInstance

CWinApp::m_pszProfileName 881

CWinApp::m _pszAppName
Remarks Specifies the name of the application. The application name can come from the

parameter passed to the CWinApp constructor, or, if not specified, to the resource
string with the ID of AFX _IDS _ APP _TITLE. If the application name is not found
in the resource, it comes from the program's .EXE filename. Returned by the global
function AfxGetAppName. m _pszAppName is a public variable of type const
char*.

CWinApp::m _pszExeName
Remarks Contains the name of the application's executable file without an extension. Unlike

m _pszAppName, this name cannot contain blanks. rn _pszExeNarne is a public
variable of type const char*.

CWi nApp: : m _pszHel p Fi Ie Path
Remarks Contains the path to the application's Help file. The framework expects a single

Help file, which must have the same name as the application but with a .HLP
extension. rn _pszHelpFilePath is a public variable of type const char*.

CWi nApp: : m _pSZ Profi leName
Remarks

See Also

Contains the name of the application's .INI file. rn j1szProfileN arne is a public
variable of type const char*.

CWinApp: : GetProfileString, CWinApp: : GetProfileInt,
CWinApp:: WriteProfileInt, CWinApp:: WriteProfileString

882 CWindowDC

class CWindowDC : public CDC

See Also

The CWindowDC class is derived from CDC.
It calls the Windows functions GetWindowDC
at construction time and ReleaseDC at
destruction time. This means that a
CWindowDC object accesses the entire screen
area of a CW nd (both client and nonclient
areas).

#include <afxwin.h>

CDC

Construction/Destruction - Public Members
CWindowDC Constructs a CWindowDC object.

Data Members - Protected Members

CWindowDC

m hWnd The HWND to which this CWindowDC is attached.

Member Functions

CWindowDC: :CWindowDC

Remarks

See Also

CWindowDC(CWnd* pWnd)
throw(CResourceException);

pWnd The window whose client area the device-context object will access.

Constructs a CWindowDC object that accesses the entire screen area (both client
and nonclient) of the CWnd object pointed to by pWnd. The constructor calls the
Windows function GetDC. An exception (of type CResourceException) is thrown
if the Windows GetDC call fails. A device context may not be available if
Windows has already allocated all of its available device contexts. Your
application competes for the five common display contexts available at any given
time under Windows.

CDC, CClientDC, CWnd

CWindowDC::m_hWnd 883

Data Members

CWindowDC::m hWnd
Remarks The HWND of the CWnd pointer is used to construct the CWindowDC object.

m _ h Wnd is a protected variable of type HWND.

884 CWnd

class CWnd : public CCmdTarget

See Also

The CWnd class provides the base function­
ality of all window classes in the Microsoft
Foundation Class Library. A CWnd object is
distinct from a Windows window, but the two CWnd
are tightly linked. A CWnd object is created L..-______ ---'

or destroyed by the CWnd constructor and
destructor. The Windows window, on the other hand, is a data structure internal to
Windows that is created by a Create member function and destroyed by the CWnd
virtual destructor. The DestroyWindow function destroys the Windows window
without destroying the object. The CWnd class and the message-map mechanism
hide the WndProc function. Incoming Windows notification messages are auto­
matically routed through the message map to the proper OoM essage CWnd
member functions. You override an OoMessage member function to handle a
member's particular message in your derived classes.

The CWnd class also lets you create a Windows child window for your applica­
tion. Derive a class from CWnd, then add member variables to the derived class to
store data specific to your application. Implement message-handler member
functions and a message map in the derived class to specify what happens when
messages are directed to the window.

You create a child window in two steps. First, call the constructor CWnd to
construct the CWnd object, then call the Create member function to create the
child window and attach it to the CWnd object. When the user terminates your
child window, destroy the CWnd object, or call the DestroyWindow member
function to remove the window and destroy its data structures.

Within the Microsoft Foundation Class Library, further classes are derived from
CWnd to provide specific window types. Many of these classes, including
CFrameWnd, CMDIFrameWnd, CMDIChildWnd, CView, and CDialog, are
designed for further derivation. The control classes derived from CWnd, such as
CButton, can be used directly or can be used for further derivation of classes.

#include <afxwin.h>

CDialog, CFrameWnd, CView

CWnd 885

Data Members - Public Members
m hWnd Indicates the HWND attached to this CWnd.

Construction/Destruction - Public Members
CWnd

DestroyWindow

Constructs a CWnd object.

Destroys the attached Windows window.

Initialization - Public Members
Create

PreCreate Window

Calc WindowRect

GetStyle

GetExStyle

Attach

Detach

Subclass Window

FromHandle

FromHandlePermanent

DeleteTempMap

GetSafeHwnd

Creates and initializes the child window
associated with the CWnd object.

Called before the creation of the Windows
window attached to this CWnd object.

Called to calculate the window rectangle from the
client rectangle.

Returns the current window style.

Returns the window's extended sty Ie.

Attaches a Windows handle to a CWnd object.

Detaches a Windows handle from a CWnd object
and returns the handle.

Attaches a window to a CWnd object and makes
it route messages through the CWnd' s message
map.

Returns a pointer to a CWnd object when given a
handle to a window. If a CWnd object is not
attached to the handle, a temporary CWnd object
is created and attached.

Returns a pointer to a CWnd object when given a
handle to a window. If a CWnd object is not
attached to the handle, NULL is returned.

Called automatically by the CWinApp idle-time
handler and deletes any temporary CWnd objects
created by FromHandle.

Returns m _h Wnd, or NULL if the this pointer is
NULL.

886 CWnd

Window State Functions - Public Members
IsWindowEnabled

Enable Window

GetActive Window

SetActive Window

GetCapture

SetCapture

GetFocus

SetFocus

GetDesktop Window

Determines if the window is enabled for mouse
and keyboard input.

Enables or disables mouse and keyboard input.

Retrieves the active window.

Activates the window.

Retrieves the CWnd that has the mouse capture.

Causes all subsequent mouse input to be sent to
theCWnd.

Retrieves the CWnd that currently has the input
focus.

Claims the input focus.

Retrieves the Windows desktop window.

Window Size and Position - Public Members
GetWindowPlacement

SetWindowPlacement

IsIconic

IsZoomed

MoveWindow

SetWindowPos

ArrangeIconic Windows

BringWindowToTop

GetWindowRect

GetClientRect

Retrieves the show state and the normal (re­
stored), minimized, and maximized positions
ofa window.

Sets the show state and the normal (restored),
minimized, and maximized positions for a
window.

Determines whether CWnd is minimized (iconic).

Determines whether CWnd is maximized.

Changes the position and/or dimensions of
CWnd.

Changes the size, position, and ordering of child,
pop-up, and top-level windows.

Arranges all the minimized (iconic) child
windows.

Brings CWnd to the top of a stack of overlapping
windows.

Gets the screen coordinates of CWnd.

Gets the dimensions of the CWnd client area.

CWnd 887

Window Access Functions-Public Members
ChildWindowFromPoint

FindWindow

GetNextWindow

GetTop Window

GetWindow

GetLastActivePopup

IsChild

GetParent

SetParent

WindowFromPoint

GetDlgItem

GetDlgCtrlID

GetDescendantWindow

Determines which, if any, of the child windows
contains the specified point.

Returns the handle of the window, which is
identified by its window name and window class.

Returns the next (or previous) window in the
window manager's list.

Returns the first child window that belongs to the
CWnd.

Returns the window with the specified relationship
to this window.

Determines which pop-up window owned by
CWnd was most recently active.

Indicates whether CWnd is a child window or
other direct descendant of the specified window.

Retrieves the parent window of CWnd (if any).

Changes the parent window.

Identifies the window that contains the given
point.

Retrieves the control with the specified ill from
the specified dialog box.

If the CWnd is a child window, calling this
function returns its ID value.

Searches all descendant windows and returns the
window with the specified ID.

SendMessageToDescendants Sends a message to all descendant windows of the

GetParentFrame

U pdateDialogControls

UpdateData

window.

Returns the CWnd object's parent frame window.

Call to update the state of dialog buttons and other
controls.

Initializes or retrieves data from a dialog box.

Update/Painting Functions - Public Members
BeginPaint

EndPaint

LockWindowUpdate

Prepares CWnd for painting.

Marks the end of painting.

Disables or reenables drawing in the given
window.

888 CWnd

GetDC

GetDCEx

RedrawWindow

GetWindowDC

ReleaseDC

Update Window

SetRedraw

GetUpdateRect

GetUpdateRgn

Invalidate

InvalidateRect

InvalidateRgn

ValidateRect

ValidateRgn

ShowWindow

Is WindowVisible

ShowOwnedPopups

EnableScrollBar

Retrieves a display context for the client area.

Retrieves a display context for the client area, and
enables clipping while drawing.

Updates the specified rectangle or region in the
client area.

Retrieves the display context for the whole
window, including the caption bar, menus, and
scroll bars.

Releases client and window device contexts,
freeing them for use by other applications.

Updates the client area.

Allows changes in CWnd to be redrawn or
prevents changes from being redrawn.

Retrieves the coordinates of the smallest rectangle
that completely encloses the CWnd update
region.

Retrieves the CWnd update region.

Invalidates the entire client area.

Invalidates the client area within the given
rectangle by adding that rectangle to the current
update region.

Invalidates the client area within the given region
by adding that region to the current update region.

Validates the client area within the given
rectangle by removing the rectangle from the
current update region.

Validates the client area within the given region
by removing the region from the current update
region.

Shows or hides the window.

Determines if the window is visible.

Shows or hides all pop-up windows owned by
the window.

Enables or disables one or both arrows of a
scroll bar.

CWnd 889

Coordinate Mapping Functions- Public Members
Map WindowPoints

ClientToScreen

ScreenToClient

Converts (maps) a set of points from the
coordinate space of the CWnd to the coordinate
space of another window.

Converts the client coordinates of a given point or
rectangle on the display to screen coordinates.

Converts the screen coordinates of a given point
or rectangle on the display to client coordinates.

Window Text Functions-Public Members
SetWindowText

GetWindowText

GetWindowTextLength

SetFont

GetFont

Sets the window text or caption title (if it has one)
to the specified text.

Returns the window text or caption title (if it has
one).

Returns the length of the window's text or caption
title.

Sets the current font.

Retrieves the current font.

Scrolling Functions - Public Members
GetScrollPos

GetScrollRange

ScrollWindow

ScrollWindowEx

SetScrollPos

SetScrollRange

ShowScrollBar

EnableScrollBarCtrl

GetScrollBarCtrl

RepositionBars

Retrieves the current position of a scroll box.

Copies the current minimum and maximum scroll­
bar positions for the given scroll bar.

Scrolls the contents of the client area.

Scrolls the contents of the client area. Similar to
ScrollWindow, with additional features.

Sets the current position of a scroll box and, if
specified, redraws the scroll bar to reflect the new
position.

Sets minimum and maximum position values for
the given scroll bar.

Displays or hides a scroll bar.

Enables or disables a sibling scroll-bar control.

Returns a sibling scroll-bar control.

Repositions control bars in the client area.

Drag-Drop Functions - Public Members
DragAcceptFiles Indicates the window will accept dragged files.

890 CWnd

Caret Functions - Public Members
CreateCaret

CreateSolid Caret

CreateGrayCaret

GetCaretPos

SetCaretPos

HideCaret

ShowCaret

Creates a new shape for the system caret and gets
ownership of the caret.

Creates a solid block for the system caret and
gets ownership of the caret.

Creates a gray block for the system caret and gets
ownership of the caret.

Retrieves the client coordinates of the caret's
current position.

Moves the caret to a specified position.

Hides the caret by removing it from the display
screen.

Shows the caret on the display at the caret's
current position. Once shown, the caret begins
flashing automatically.

Dialog-Box Item Functions - Public Members
CheckDlgButton

CheckRadioButton

GetCheckedRadioButton

DlgDirList

DlgDirListComboBox

DlgDirSelect

DlgDirSelectComboBox

GetDlgItemInt

GetDlgItemText

GetNextDlgGroupItem

Places a check mark next to or removes a check
mark from a button control.

Checks the specified radio button and removes
the check mark from all other radio buttons in the
specified group of buttons.

Returns the ID of the currently checked radio
button in a group of buttons.

Fills a list box with a file or directory listing.

Fills the list box of a combo box with a file or
directory listing.

Retrieves the current selection from a list box.

Retrieves the current selection from the list box
of a combo box.

Translates the text of a control in the given dialog
box to an integer value.

Retrieves the caption or text associated with a
control.

Searches for the next (or previous) control within
a group of controls.

GetNextDIgTabltem

IsDIgButtonChecked

SendDIgItemMessage

SetDIgltemInt

SetDIgltemText

SubclassDIgltem

CWnd 891

Retrieves the first control with the
WS_TABSTOP style that follows (or precedes)
the specified control.

Detennines whether a button control is checked.

Sends a message to the specified control.

Sets the text of a control to the string that repre­
sents an integer value.

Sets the caption or text of a control in the speci­
fied dialog box.

Attaches a Windows control to a CWnd object
and makes it route messages through the
CWnd's message map.

Menu Functions - Public Members
GetMenu

SetMenu

DrawMenuBar

GetSystemMenu

HiliteMenultem

Retrieves a pointer to the specified menu.

Sets the menu to the specified menu.

Redraws the menu bar.

Allows the application to access the Control
menu for copying and modification.

Highlights or removes the highlighting from a
top-level (menu-bar) menu item.

Timer Functions- Public Members
SetTimer

KillTimer

Installs a system timer that sends a
WM _TIMER message when triggered.

Kills a system timer.

Alert Functions - Public Members
Flash Window

MessageBox

Flashes the window once.

Creates and displays a window that contains an
application-supplied message and caption.

Window Message Functions - Public Members
PreTranslateMessage U sed by CWinApp to filter window messages

before they are dispatched to the
TranslateMessage and DispatchMessage
Windows functions.

892 CWnd

SendMessage

PostMessage

Sends a message to the CWnd object and does
not return until it has processed the message.

Places a message in the application queue, then
returns without waiting for the window to
process the message.

Clipboard Functions - Public Members
ChangeClipboardChain

SetClipboardViewer

Open Clipboard

GetClipboardOwner

GetOpenClipboardWindow

GetClipboardViewer

Removes CWnd from the chain of Clipboard
viewers.

Adds CWnd to the chain of windows that are
notified whenever the contents of the Clipboard
are changed.

Opens the Clipboard. Other applications will not
be able to modify the Clipboard until the
Windows CloseClipboard function is called.

Retrieves a pointer to the current owner of the
Clipboard.

Retrieves a pointer to the window that currently
has the Clipboard open.

Retrieves a pointer to the first window in the
chain of Clipboard viewers.

Initialization - Protected Members
CreateEx Creates a Windows overlapped, pop-up, or child

window and attaches it to a CWnd object.

Operations - Protected Members
GetCurrentMessage

Default

Returns a pointer to the message this window is
currently processing. Should only be called
when in an OnM essage message-handler
member function.

Calls the default window procedure, which
provides default processing for any window
messages that an application does not process.

CWnd 893

Overridables - Protected Members
GetSuperWndProcAddr

WindowProc

DefWindowProc

PostN cDestroy

OnChiidNotify

DoDataExchange

Accesses the default WndProc of a subc1assed
window.

Provides a window procedure for a CWnd. The
default dispatches messages through the
message map.

Calls the default window procedure, which
provides default processing for any window
messages that an application does not process.

This virtual function is called by the default
OnN cDestroy function after the window has
been destroyed.

Called by a parent window to give a notifying
control a chance to respond to a control notifica-
tion.

For dialog data exchange and validation. Called
by UpdateData.

Initialization Message Handlers - Protected Members
OnInitMenu

OnInitMenuPopup

Called when a menu is about to become active.

Called when a pop-up menu is about to become
active.

System Message Handlers - Protected Members
OnSysChar Called when a keystroke translates to a system

character.

OnSysCommand

OnSysDeadChar

OnSysKeyDown

OnSysKeyUp

OnCompacting

OnDevModeChange

Called when the user selects a command from
the Control menu, or when the user selects the
Maximize or Minimize button.

Called when a keystroke translates to a system
dead character (such as accent characters).

Called when the user holds down the ALT key
and then presses another key.

Called when the user releases a key that was
pressed while the ALT key was held down.

Called when Windows detects that system
memory is low.

Called for all top-level windows when the user
changes device-mode settings.

894 CWnd

OnFontChange

OnPaletteIsChanging

OnPaletteChanged

OnSysColorChange

On WindowPosChanging

On WindowPosChanged

OnDropFiles

OnSpoolerStatus

OnTirneChange

On WinlniChange

Called when the pool of font resources changes.

Informs other applications when an application
is going to realize its logical palette.

Called to allow windows that use a color palette
to realize their logical palettes and update their
client areas.

Called for all top-level windows when a change
is made in the system color setting.

Called when the size, position, or Z-order is
about to change as a result of a call to
SetWindowPos or another window­
management function.

Called when the size, position, or Z-order has
changed as a result of a call to Set WindowPos
or another window-management function.

Called when the user releases the left mouse
button over a window that has registered itself
as the recipient of dropped files.

Called from Print Manager whenever a job is
added to or removed from the Print Manager
queue.

Called for all top-level windows after the
system time changes.

Called for all top-level windows after the
Windows initialization file, WIN.INI, is
changed.

General Message Handlers-Protected Members
OnCornrnand

OnActivate

OnActivateApp

OnCancelMode

Called when the user selects a command.

Called when CWnd is being activated or
deactivated.

Called when the application is about to be
activated or deactivated.

Called to allow CWnd to cancel any internal
modes, such as mouse capture.

OnChiidActivate

OnClose

OnCreate

OnCtlColor

OnDestroy

OnEnable

OnEndSession

OnEnterldle

OnEraseBkgnd

OnGetMinMaxInfo

OnIconEraseBkgnd

OnKillFocus

OnMenuChar

OnMenuSelect

OnMove

OnPaint

OnParentNotify

OnQueryDraglcon

OnQueryEndSession

CWnd 895

Called for multiple document interface (MDI)
child windows whenever the size or position of
CWnd changes or CWnd is activated.

Called as a signal that CWnd should be closed.

Called as a part of window creation.

Called if CWnd is the parent of a control when
the control is about to be drawn.

Called when CWnd is being destroyed.

Called when CWnd is enabled or disabled.

Called when the session is ending.

Called to inform an application's main window
procedure that a modal dialog box or a menu is
entering an idle state.

Called when the window background needs
erasing.

Called whenever Windows needs to know the
maximized position or dimensions, or the
minimum or maximum tracking size.

Called when CWnd is minimized (iconic) and
the background of the icon must be filled before
painting the icon.

Called immediately before CWnd loses the
input focus.

Called when the user presses a menu mnemonic
character that doesn't match any of the prede­
fined mnemonics in the current menu.

Called when the user selects a menu item.

Called after the position of the CWnd has been
changed.

Called to repaint a portion of the window.

Called when a child window is created or
destroyed, or when the user clicks a mouse
button while the cursor is over the child
window.

Called when a minimized (iconic) CWnd is
about to be dragged by the user.

Called when the user chooses to end the
Windows session.

896 CWnd

OnQueryNewPalette

OnQueryOpen

OnSetFocus

OnShowWindow

On Size

Informs CWnd that it is about to receive the
input focus.

Called when CWnd is an icon and the user
requests that the icon be opened.

Called after CWnd gains the input focus.

Called when CWnd is to be hidden or shown.

Called after the size of CWnd has changed.

Control Message Handlers - Protected Members
OnCharToltem

OnCompareltem

OnDeleteltem

OnDrawltem

OnGetDlgCode

OnMeasureltem

On VKeyToltem

Called by a child list box with the
LBS _ W ANTKEYBOARDINPUT style in
response to a WM _ CHAR message.

Called to determine the relative position of a
new item in a child sorted owner-draw combo
box or list box.

Called when an owner-draw child list box or
combo box is destroyed or when items are
removed from the control.

Called when a visual aspect of an owner-draw
child button control, combo-box control, list­
box control, or menu needs to be drawn.

Called for a control so the control can process
arrow-key and TAB-key input itself.

Called for an owner-draw child combo box, list
box, or menu item when the control is created.
CWnd informs Windows of the dimensions of
the control.

Called by a list box owned by CWnd in
response to a WM _ KEYDOWN message.

Input Message Handlers - Protected Members
OnChar

OnDeadChar

OnHScroll

Called when a keystroke translates to a
nonsystem character.

Called when a keystroke translates to a
nonsystem dead character (such as accent
characters).

Called when the user clicks the horizontal
scroll bar of CWnd.

OnKeyDown

OnKeyUp

OnLButtonDblClk

OnLButtonDown

OnLButtonUp

OnMButtonDblClk

OnMButtonDown

OnMButtonUp

OnMouseActivate

OnMouseMove

OnRButtonDblClk

OnRButtonDown

OnRButtonUp

OnSetCursor

OnTimer

OnVScroll

CWnd 897

Called when a nonsystem key is pressed.

Called when a nonsystem key is released.

Called when the user double-clicks the left
mouse button.

Called when the user presses the left mouse
button.

Called when the user releases the left mouse
button.

Called when the user double-clicks the middle
mouse button.

Called when the user presses the middle mouse
button.

Called when the user releases the middle mouse
button.

Called when the cursor is in an inactive
window and the user presses a mouse button.

Called when the mouse cursor moves.

Called when the user double-clicks the right
mouse button.

Called when the user presses the right mouse
button.

Called when the user releases the right mouse
button.

Called if mouse input is not captured and the
mouse causes cursor movement within a
window.

Called after each interval specified in
SetTimer.

Called when the user clicks the window's
vertical scroll bar.

Nonclient-Area Message Handlers - Protected Members
OnNcActivate

OnNcCalcSize

Called when the nonclient area needs to be
changed to indicate an active or inactive state.

Called when the size and position of the client
area need to be calculated.

898 CWnd

OnNcCreate

OnNcDestroy

OnNcHitTest

OnNcLButtonDblClk

OnNcLButtonDown

OnNcLButtonUp

OnNcMButtonDblClk

OnNcMButtonDown

OnNcMButtonUp

OnNcMouseMove

OnNcPaint

OnNcRButtonDblClk

OnNcRButtonDown

OnNcRButtonUp

Called prior to OnCreate when the nonc1ient
area is being created.

Called when the nonc1ient area is being
destroyed.

Called by Windows every time the mouse is
moved if CWnd contains the cursor or has
captured mouse input with SetCapture.

Called when the user double-clicks the left
mouse button while the cursor is within a
nonclient area of CWnd.

Called when the user presses the left mouse
button while the cursor is within a nonclient
area of CWnd.

Called when the user releases the left mouse
button while the cursor is within a nonc1ient
area of CWnd.

Called when the user double-clicks the middle
mouse button while the cursor is within a
nonclient area of CWnd.

Called when the user presses the middle mouse
button while the cursor is within a nonc1ient
area of CWnd.

Called when the user releases the middle mouse
button while the cursor is within a nonc1ient
area of CWnd.

Called when the cursor is moved within a
nonclient area of CWnd.

Called when the nonc1ient area needs painting.

Called when the user double-clicks the right
mouse button while the cursor is within a
nonclient area of CWnd.

Called when the user presses the right mouse
button while the cursor is within a nonc1ient
area of CWnd.

Called when the user releases the right mouse
button while the cursor is within a nonc1ient
area of CWnd.

CWnd 899

MOl Message Handlers - Protected Members
OnMDIActivate Called when an MDI child window is activated

or deactivated.

Clipboard Message Handlers-Protected Members
OnAskCbFormatName

OnChangeCbChain

OnDestroyClipboard

OnDrawClipboard

OnHScrollClipboard

OnPaintClipboard

On Render AIlFormats

OnRenderFormat

OnSizeClipboard

On VScrollClipboard

Called by a Clipboard viewer application when
a Clipboard owner will display the Clipboard
contents.

Notifies that a specified window is being
removed from the chain.

Called when the Clipboard is emptied through
a call to the Windows EmptyClipboard
function.

Called when the contents of the Clipboard
change.

Called when a Clipboard owner should scroll
the Clipboard image, invalidate the appropriate
section, and update the scroll-bar values.

Called when the client area of the Clipboard
viewer needs repainting.

Called when the owner application is being
destroyed and needs to render all its formats.

Called for the Clipboard owner when a
particular format with delayed rendering needs
to be rendered.

Called when the size of the client area of the
Clipboard-viewer window has changed.

Called when the owner should scroll the
Clipboard image, invalidate the appropriate
section, and update the scroll-bar values.

900 CWnd: :ArrangelconicWindows

Member Functions

CWnd: :ArrangelconicWindows

Remarks

Return Value

See Also

UINT ArrangeIconic Windows();

Arranges all the minimized (iconic) child windows. This member function also
arranges icons on the desktop window, which covers the entire screen. The
GetDesktop Window member function retrieves a pointer to the desktop window
object. To arrange iconic MDI child windows in an MDI client window, call
CMDIFrameWnd::MDIIconArrange.

The height of one row of icons if the function is successful; otherwise O.

CWnd::GetDesktopWindow, CMDIFrameWnd::MDIIconArrange,
: :ArrangeIconic Windows

CWnd: :Attach

Remarks

Return Value

See Also

BOOL Attach(HWND hWndNew);

hWndNew Specifies a handle to a Windows window.

Attaches a Windows window to a CWnd object.

Nonzero if successful; otherwise O.

CWnd: :Detach, CWnd::m _ h Wnd, CWnd: :SubclassWindow

CWnd::BeginPaint

Remarks

CDC* BeginPaint(LPPAINTSTRUCT IpPaint);

IpPaint Points to the PAINTSTRUCT structure that is to receive painting
information.

Prepares CWnd for painting and fills a P AINTSTRUCT data structure with
information about the painting. The paint structure contains a RECT data structure

Return Value

See Also

CWnd::CalcWindowRect 901

that has the smallest rectangle that completely encloses the update region and a flag
that specifies whether the background has been erased. The update region is set by
the Invalidate, InvalidateRect, or InvalidateRgn member functions and by the
system after it sizes, moves, creates, scrolls, or performs any other operation that
affects the client area. If the update region is marked for erasing, BeginPaint sends
an WM _ ONERASEBKGND message.

Do not call the BeginPaint member function except in response to a WM _PAINT
message. Each call to the BeginPaint member function must have a matching call
to the EndPaint member function. If the caret is in the area to be painted, the
BeginPaint member function automatically hides the caret to prevent it from being
erased.

Identifies the device context for CWnd. The pointer may be temporary and should
not be stored beyond the scope of EndPaint.

CWnd: :EndPaint, CWnd: :Invalidate, CWnd: : InvalidateRgn, : :BeginPaint,
CPaintDC

CWnd::BringWindowToTop

Remarks

See Also

void BringWindowToTop();

Brings CWnd to the top of a stack of overlapping windows. In addition,
BringWindowToTop activates pop-up, top-level, and MDI child windows. The
BringWindowToTop member function should be used to uncover any window that
is partially or completely obscured by any overlapping windows. Calling this
function is similar to calling the SetWindowPos function to change a window's
position in the Z order. The BringWindowToTop function does not change the
window style to make it a top-level window of the desktop.

: : BringWindowToTop

CWnd: :CalcWindowRect

Remarks

virtual void CalcWindowRect(LPRECT IpClientRect);

IpClientRect The client rectangle.

Call this member function to compute the required size of the window rectangle
based on the desired client-rectangle size. The resulting window rectangle

902 CWnd::ChangeClipboardChain

See Also

(contained in lpClientRect) can then be passed to the Create member function to
create a window whose client area is the desired size.

Called by the framework to size windows prior to creation.

A client rectangle is the smallest rectangle that completely encloses a client area. A
window rectangle is the smallest rectangle that completely encloses the window.

: : AdjustWindowRect

CWnd: :ChangeClipboardChain

Remarks

Return Value

See Also

BOOL ChangeClipboardChain(HWND hWndNext);

hWndNext Identifies the window that follows CWnd in the Clipboard-viewer
chain.

Removes CWnd from the chain of Clipboard viewers and makes the window
specified by hWndNext the descendant of the CWnd ancestor in the chain.

Nonzero if successful; otherwise 0.

CWnd: :SetClipboardViewer, : :ChangeClipboardChain

CWnd: :CheckDlg Button

Remarks

See Also

void CheckDlgButton(int nIDButton, UINT nCheck);

nIDButton Specifies the button to be modified.

nCheck Specifies the action to take. If nCheck is nonzero, the CheckDlgButton
member function places a check mark next to the button; if 0, the check mark is
removed. For three-state buttons, if nCheck is 2, the button state is indeterminate.

Selects (places a check mark next to) or clears (removes a check mark from) a
button, or it changes the state of a three-state button. The CheckDlgButton
function sends a BM _ SETCHECK message to the specified button.

CWnd: :IsDlgButtonChecked, CButton: :SetCheck, : :CheckDlgButton

CWnd: :ChiidWindowFromPoint 903

CWnd: :CheckRadioButton

Remarks

See Also

void CheckRadioButton(int nIDFirstButton, int nIDLastButton,
int nIDCheckButton);

nIDFirstButton Specifies the integer identifier of the first radio button in the
group.

nIDLastButton Specifies the integer identifier of the last radio button in the
group.

nIDCheckButton Specifies the integer identifier of the radio button to be checked.

Selects (adds a check mark to) a given radio button in a group and clears (removes
a check mark from) all other radio buttons in the group. The CheckRadioButton
function sends a BM _ SETCHECK message to the specified radio button.

CWnd: : GetCheckedRadioButton, CButton: :SetCheck, :: CheckRadioButton

CWnd: :ChiidWindowFromPoint

Remarks

Return Value

See Also

CWnd* ChiidWindowFromPoint(POINT point) const;

point Specifies the client coordinates of the point to be tested.

Determines which, if any, of the child windows belonging to CWnd contains the
specified point.

Identifies the child window that contains the point. It is NULL if the given point
lies outside of the client area. If the point is within the client area but is not
contained within any child window, CWnd is returned.

This member function will return a hidden or disabled child window that contains
the specified point. More than one window may contain the given point. However,
this function returns only the CWnd* of the first window encountered that contains
the point. The CWnd* that is returned may be temporary and should not be stored
for later use.

CWnd:: WindowFromPoint, : :ChiidWindowFromPoint

904 CWnd::ClientToScreen

CWnd: :ClientToScreen

Remarks

See Also

void ClientToScreen(LPPOINT lpPoint) const;

void ClientToScreen(LPRECT lpReet) const;

lpPoint Points to a POINT structure or CPoint object that contains the client
coordinates to be converted.

lpReet Points to a RECT structure or CRect object that contains the client
coordinates to be converted.

Converts the client coordinates of a given point or rectangle on the display to screen
coordinates. The ClientToScreen member function uses the client coordinates in
the POINT or RECT structure or the CPoint or CRect object pointed to by
lpPoint or lpReet to compute new screen coordinates; it then replaces the
coordinates in the structure with the new coordinates. The new screen coordinates
are relative to the upper-left comer of the system display. The ClientToScreen
member function assumes that the given point or rectangle is in client coordinates.

CWnd: : Screen To Client, : :ClientToScreen

CWnd: :Create
virtual BOOL Create(LPCSTR lpszClassName, LPCSTR lpszWindowName,

DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID,
CCreateContext* pContext = NULL);

lpszClassName Points to a null-terminated character string that names the
Windows class (a WNDCLASS structure). The class name can be any name
registered with the global AfxRegisterWndClass function or any of the
predefined control-class names. If NULL, uses the default CWnd attributes.

lpszWindowName Points to a null-terminated character string that contains the
window name.

dwStyle Specifies the window style attributes. See below for a description of the
possible values.

reet The size and position of the window, in client coordinates of pParentWnd.

pParentWnd The parent window.

Remarks

Return Value

Window Styles

CWnd: :Create 905

nID The ID of the child window.

pC on text The create context of the window.

Creates a Windows child window and attaches it to the CWnd object. You
construct a child window in two steps. First, invoke the constructor, which
constructs the CWnd object. Then call Create, which creates the Windows child
window and attaches it to CWnd. Create initializes the window's class name and
window name and registers values for its style, parent, and ID.

Nonzero if successful; otherwise O.

• WS BORDER Creates a window that has a border.

• WS _ CAPTION Creates a window that has a title bar (implies the
WS_BORDER style). This style cannot be used with the WS_DLGFRAME
style.

• WS CHILD Creates a child window. Cannot be used with the WS POPUP - -
style.

• WS _ CLIPCHILDREN Excludes the area occupied by child windows when
you draw within the parent window. Used when you create the parent window.

• WS _ CLIPSIBLINGS Clips child windows relative to each other; that is,
when a particular child window receives a paint message, the
WS _ CLIPSIBLINGS style clips all other overlapped child windows out of the
region of the child window to be updated. (If WS _ CLIPSIBLINGS is not given
and child windows overlap, when you draw within the client area of a child
window, it is possible to draw within the client area of a neighboring child
window.) For use with the WS _CHILD style only.

• WS _DISABLED Creates a window that is initially disabled.

• WS DLGFRAME Creates a window with a double border but no title.

• WS _GROUP Specifies the first control of a group of controls in which the
user can move from one control to the next with the arrow keys. All controls
defined with the WS _ GROUP style after the first control belong to the same
group. The next control with the WS _GROUP style ends the style group and
starts the next group (that is, one group ends where the next begins).

• WS HSCROLL Creates a window that has a horizontal scroll bar.

• WS MAXIMIZE Creates a window of maximum size.

• WS MAXIMIZEBOX Creates a window that has a Maximize button.

• WS _MINIMIZE Creates a window that is initially minimized. For use with
the WS _OVERLAPPED style only.

• WS MINIMIZEBOX Creates a window that has a Minimize button.

906 CWnd::CreateCaret

See Also

• WS _OVERLAPPED Creates an overlapped window. An overlapped window
usually has a caption and a border.

• WS _ OVERLAPPED WINDOW Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS _ THICKFRAME, WS _ MINIMIZEBOX, and WS _ MAXIMIZEBOX
styles.

• WS_POPUP Creates a pop-up window. Cannot be used with the
WS _ CHILD style.

• WS_POPUPWINDOW Creates a pop-up window with the WS_BORDER,
WS_POPUP, and WS_SYSMENU styles. The WS_CAPTION style must be
combined with the WS_POPUPWINDOW style to make the Control menu
visible.

• WS SYSMENU Creates a window that has a Control-menu box in its title
bar. Used only for windows with title bars.

• WS _ T ABSTOP Specifies one of any number of controls through which the
user can move by using the TAB key. The TAB key moves the user to the next
control specified by the WS _ T ABSTOP style.

• WS THICKFRAME Creates a window with a thick frame that can be used
to size the window.

• WS _VISIBLE Creates a window that is initially visible.

• WS VSCROLL Creates a window that has a vertical scroll bar.

CWnd::CWnd, CWnd::CreateEx

CWnd: :CreateCaret

Remarks

void CreateCaret(CBitmap* pBitmap);

pBitmap Identifies the bitmap that defines the caret shape.

Creates a new shape for the system caret and claims ownership of the caret. The
bitmap must have previously been created by the CBitmap: :CreateBitmap
member function, the CreateDIBitmap Windows function, or the
CBitmap::LoadBitmap member function. CreateCaret automatically destroys
the previous caret shape, if any, regardless of which window owns the caret. Once
created, the caret is initially hidden. To show the caret, the ShowCaret member
function must be called.

See Also

CWnd::CreateEx 907

The system caret is a shared resource. CWnd should create a caret only when it has
the input focus or is active. It should destroy the caret before it loses the input focus
or becomes inactive.

CBitmap::CreateBitmap, ::CreateDIBitmap, ::DestroyCaret,
CBitmap: :LoadBitmap, CWnd: :ShowCaret, : :CreateCaret

CWnd: :CreateEx
Protected BOOL CreateEx(DWORD dwExStyle, LPCSTR IpszClassName,

LPCSTR IpszWindowName, DWORD dwStyle, int x, int y, int nWidth,
int nHeight, HWND hwndParent, HMENU nIDorHMenu,
LPSTR IpParam = NULL); •

dwExStyle Specifies the extended style of the CWnd being created. See the
"Extended Window Styles" section below for a description of the possible values.

IpszClassName Points to a null-terminated character string that names the
Windows class (a WNDCLASS structure). The class name can be any name
registered with the global AfxRegisterWndClass function or any of the
predefined control-class names. It must not be NULL.

IpszWindowName Points to a null-terminated character string that contains the
window name.

dwStyle Specifies the window style attributes. See CWnd::Create for a
description of the possible values.

x Specifies the initial x-position of the CWnd window.

y Specifies the initial top position of the CWnd window.

nWidth Specifies the width (in device units) of the CWnd window.

nHeight Specifies the height (in device units) of the CWnd window.

hwndParent Identifies the parent or owner window of the CWnd window being
created. Use NULL for top-level windows.

908 CWnd::CreateEx

Remarks

Return Value

Extended Window
Styles

Windows 3.1 Only

See Also

nIDorHM enu Identifies a menu or a child-window identifier. The meaning
depends on the style of the window.

IpParam Points to a value that is passed to the window through the
CREATESTRUCT structure.

Creates an overlapped, pop-up, or child window with the extended style specified in
dwExStyle. The CreateEx parameters specify the WNDCLASS, window title,
window style, and (optionally) initial position and size of the window. CreateEx
also specifies the window's parent (if any) and ID. When CreateEx executes,
Windows sends the WM_GETMINMAXINFO, WM_NCCREATE,
WM_NCCALCSIZE, and WM_CREATE messages to the window.

To extend the default message handling, derive a class from CWnd, add a message
map to the new class, and provide member functions for the above messages.
Override OnCreate, for example, to perform needed initialization for a new class.
Override further OnM essage message handlers to add further functionality to your
derived class.

If the WS _VISIBLE style is given, Windows sends the window all the messages
required to activate and show the window. If the window style specifies a title bar,
the window title pointed to by the IpszWindowName parameter is displayed in the
title bar. The dwStyle parameter can be any combination of window styles.

Nonzero if successful; otherwise O.

• WS EX DLGMODALFRAME Designates a window with a double border
that may (optionally) be created with a title bar when you specify the
WS _ CAPTION style flag in the dwStyle parameter.

• WS_EX_NOPARENTNOTIFY Specifies that a child window created with
this style will not send the WM_PARENTNOTIFY message to its parent
window when the child window is created or destroyed.

• WS _ EX _ ACCEPTFILES Specifies that a window created with this style
accepts drag-and-drop files.

• WS_EX_TOPMOST Specifies that a window created with this style should
be placed above all nontopmost windows and stay above them even when the
window is deactivated. An application can use the SetWindowPos member
function to add or remove this attribute.

• WS_EX_TRANSPARENT Specifies that a window created with this style is
to be transparent. That is, any windows that are beneath the window are not
obscured by the window. A window created with this style receives
WM _ PAINT messages only after all sibling windows beneath it have been
updated .•

::CreateWindowEx

CWnd::CreateSolidCaret 909

CWnd: :CreateGrayCaret

Remarks

See Also

void CreateGrayCaret(int nWidth, int nHeight);

n Width Specifies the width of the caret (in logical units). If this parameter is 0,
the width is set to the system-defined window-border width.

nHeight Specifies the height of the caret (in logical units). If this parameter is 0,
the height is set to the system-defined window-border height.

Creates a gray rectangle for the system caret and claims ownership of the caret. The
caret shape can be a line or a block. The parameters nWidth and nHeight specify
the caret's width and height (in logical units); the exact width and height (in pixels)
depend on the mapping mode. The system's window-border width or height can be
retrieved by the GetSystemMetrics Windows function with the
SM _ CXBORDER and SM _ CYBORDER indexes. Using the window-border
width or height ensures that the caret will be visible on a high-resolution display.

The CreateGrayCaret member function automatically destroys the previous caret
shape, if any, regardless of which window owns the caret. Once created, the caret is
initially hidden. To show the caret, the ShowCaret member function must be
called. The system caret is a shared resource. CWnd should create a caret only
when it has the input focus or is active. It should destroy the caret before it loses the
input focus or becomes inactive.

::DestroyCaret, ::GetSystemMetrics, CWnd::ShowCaret, ::CreateCaret

CWnd: :CreateSolidCaret

Remarks

void CreateSolidCaret(int nWidth, int nHeight);

nWidth Specifies the width of the caret (in logical units). If this parameter is 0,
the width is set to the system-defined window-border width.

nHeight Specifies the height of the caret (in logical units). If this parameter is 0,
the height is set to the system-defined window-border height.

Creates a solid rectangle for the system caret and claims ownership of the caret.
The caret shape can be a line or block. The parameters nWidth and nHeight specify
the caret's width and height (in logical units); the exact width and height (in pixels)
depend on the mapping mode. The system's window-border width or height can be
retrieved by the GetSystemMetrics Windows function with the

910 CWnd::CWnd

See Also

SM _ CXBORDER and SM _ CYBORDER indexes. Using the window-border
width or height ensures that the caret will be visible on a high-resolution display.

The CreateSolidCaret member function automatically destroys the previous caret
shape, if any, regardless of which window owns the caret. Once created, the caret is
initially hidden. To show the caret, the ShowCaret member function must be
called. The system caret is a shared resource. CWnd should create a caret only
when it has the input focus or is active. It should destroy the caret before it loses the
input focus or becomes inactive.

: :DestroyCaret, : : GetSystemMetrics, CWnd: :ShowCaret, : :CreateCaret

CWnd::CWnd

Remarks

See Also

CWndO;

Constructs a CWnd object. The Windows window is not created and attached until
the CreateEx or Create member function is called.

CWnd::CreateEx, CWnd::Create

CWnd::Default
Protected

Remarks

Return Value

See Also

LRESUL T Default(); •

Calls the default window procedure. The default window procedure provides default
processing for any window message that an application does not process. This
member function ensures that every message is processed.

Depends on the message sent.

CWnd: :DefWindowProc, : : DefWindowProc

CWnd::DestroyWindow 911

CWnd:: DefWi ndowProc
Protected

Remarks

Return Value

See Also

virtual LRESULT DefWindowProc(UINT message, WPARAM wParam,
LPARAM IParam); •

message Specifies the Windows message to be processed.

wParam Specifies additional message-dependent information.

IP aram Specifies additional message-dependent information.

Calls the default window procedure, which provides default processing for any
window message that an application does not process. This member function
ensures that every message is processed. It should be called with the same
parameters as those received by the window procedure.

Depends on the message sent.

CWnd::Default, ::DefWindowProc

CWnd::DeleteTempMap

Remarks

See Also

static void PASCAL DeleteTempMap();

Called automatically by the idle time handler of the CWinApp object. Deletes any
temporary CWnd objects created by the FromHandle member function.

CWnd::FromHandle

CWnd::DestroyWindow

Remarks

virtual BOOL DestroyWindow();

Destroys the Windows window attached to the CWnd object. The
DestroyWindow member function sends appropriate messages to the window to
deactivate it and remove the input focus. It also destroys the window's menu,
flushes the application queue, destroys outstanding timers, removes Clipboard
ownership, and breaks the Clipboard-viewer chain if CWnd is at the top of the
viewer chain. It sends WM _DESTROY and WM _ NCDESTROY messages to
the window. It does not destroy the CWnd object.

912 CWnd::Detach

Return Value

See Also

If the window is the parent of any windows, these child windows are automatically
destroyed when the parent window is destroyed. The DestroyWindow member
function destroys child windows first and then the window itself. The
DestroyWindow member function also destroys modeless dialog boxes created by
CDialog:: Create.

If the CWnd being destroyed is a child window and does not have the
WS_EX_NOPARENTNOTIFY style set, then the WM_PARENTNOTIFY
message is sent to the parent.

Nonzero if the window is destroyed; otherwise 0.

CWnd: :OnDestroy, CWnd: :Detach, : : DestroyWindow

CWnd::Detach

Remarks

Return Value

See Also

HWND Detach();

Detaches a Windows handle from a CWnd object and returns the handle.

A HWND to the Windows object.

CWnd::Attach

CWnd::DlgDirList
int DlgDirList(LPSTR IpPathSpec, int nIDListBox, int nIDStaticPath,

UINT nFileType);

IpPathSpec Points to a null-terminated string that contains the path or filename.
DlgDirList modifies this string, which should be long enough to contain the
modifications. For more information, see the following "Remarks" section.

nIDListBox Specifies the identifier of a list box. If nIDListBox is 0, DlgDirList
assumes that no list box exists and does not attempt to fill one.

nIDStaticPath Specifies the identifier of the static-text control used to display the
current drive and directory. If nIDStaticPath is 0, DlgDirList assumes that no
such text control is present.

Remarks

Return Value

See Also

CWnd::DlgDirList 913

nFileType Specifies the attributes of the files to be displayed. It can be any
combination of the following values:

• DDL READWRITE Read-write data files with no additional attributes.

• DDL _ READONL Y Read-only files.

• DDL HIDDEN Hidden files.

• DDL SYSTEM System files.

• DDL DIRECTORY Directories.

• DDL ARCHIVE Archives.

• DDL_POSTMSGS LB_DIR flag. If the LB_DIR flag is set, Windows
places the messages generated by DlgDirList in the application's queue;
otherwise, they are sent directly to the dialog-box procedure.

• DDL _DRIVES Drives. If the DDL _DRIVES flag is set, the
DDL_EXCLUSIVE flag is set automatically. Therefore, to create a
directory listing that includes drives and files, you must call DlgDirList
twice: once with the DDL_DRIVES flag set and once with the flags for the
rest of the list.

• DDL _EXCLUSIVE Exclusive bit. If the exclusive bit is set, only files of
the specified type are listed; otherwise normal files and files of the specified
type are listed.

Fills a list box with a file or directory listing. DlgDirList sends
LB_RESETCONTENT and LB_DIR messages to the list box. It fills the list box
specified by nIDListBox with the names of all files that match the path given by
IpPathSpec. The IpPathSpec parameter has the following form:

IT drive:] IT [\u] directory [\idirectory] ... \u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and
filename is a valid filename that must contain at least one wildcard. The wildcards
are a question mark (?), which means match any character, and an asterisk (*),
meaning match any number of characters.

If you specify a O-length string for IpP athSpec, or if you specify only a directory
name but do not include any file specification, the string will be changed to "*.*". If
IpPathSpec includes a drive and/or directory name, the current drive and directory
are changed to the designated drive and directory before the list box is filled. The
text control identified by nIDStaticPath is also updated with the new drive and/or
directory name. After the list box is filled, IpPathSpec is updated by removing the
drive and/or directory portion of the path.

Nonzero if the function is successful; otherwise O.

CWnd: :DlgDirListComboBox, : :DlgDirList

914 CWnd::DlgDirListComboBox

CWnd:: Dig DirListComboBox
int DlgDirListComboBox(LPSTR IpPathSpec, int nIDComboBox,

int nIDStaticPath, UINT nFileType);

IpPathSpec Points to a null-terminated string that contains the path or filename.
DlgDirListComboBox modifies this string, which should be long enough to
contain the modifications. For more information, see the following "Remarks"
section.

nIDComboBox Specifies the identifier of a combo box in a dialog box. If
nIDComboBox is 0, DlgDirListComboBox assumes that no combo box exists
and does not attempt to fill one.

nIDStaticPath Specifies the identifier of the static-text control used to display the
current drive and directory. If nIDStaticPath is 0, DlgDirListComboBox
assumes that no such text control is present.

nFileType Specifies DOS file attributes of the files to be displayed. It can be any
combination of the following values:

• DDL READ WRITE Read-write data files with no additional attributes.

• DDL _ READONL Y Read-only files.

• DDL HIDDEN Hidden files.

• DDL SYSTEM System files.

• DDL DIRECTORY Directories.

• DDL ARCHIVE Archives.

• DDL_POSTMSGS CB_DIR flag. If the CB_DIR flag is set, Windows
places the messages generated by DlgDirListComboBox in the
application's queue; otherwise, they are sent directly to the dialog-box
procedure.

• DDL_DRIVES Drives. If the DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set automatically. Therefore, to create a
directory listing that includes drives and files, you must call
DlgDirListComboBox twice: once with the DDL _DRIVES flag set and
once with the flags for the rest of the list.

• DDL _EXCLUSIVE Exclusive bit. If the exclusive bit is set, only files of
the specified type are listed; otherwise normal files and files of the specified
type are listed.

Remarks

Return Value

See Also

CWnd::DlgDirSelect 915

Fills the list box of a combo box with a file or directory listing.
DlgDirListComboBox sends CB _ RESETCONTENT and CB _ DIR messages to
the combo box. It fills the list box of the combo box specified by nIDComboBox
with the names of all files that match the path given by IpPathSpec. The
IpP athSpec parameter has the following form:

IT drive:] IT [\u] directory [\idirectory] ... \u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and
filename is a valid filename that must contain at least one wildcard. The wildcards
are a question mark (?), which means match any character, and an asterisk (*),
which means match any number of characters.

If you specify a zero-length string for IpPathSpec, or if you specify only a directory
name but do not include any file specification, the string will be changed to "*. *". If
IpPathSpec includes a drive and/or directory name, the current drive and directory
are changed to the designated drive and directory before the list box is filled. The
text control identified by nIDStaticPath is also updated with the new drive and/or
directory name. After the combo-box list box is filled, IpPathSpec is updated by
removing the drive and/or directory portion of the path.

Specifies the outcome of the function. It is nonzero if a listing was made, even an
empty listing. A 0 return value implies that the input string did not contain a valid
search path.

CWnd: :DlgDirList, CWnd: :DlgDirSelect, : :DlgDirListComboBox

CWnd::DlgDirSelect

Remarks

BOOL DlgDirSelect(LPSTR IpString, int nIDListBox);

IpString Points to a buffer that is to receive the current selection in the list box.

nIDListBox Specifies the integer ID of a list box in the dialog box.

Retrieves the current selection from a list box. It assumes that the list box has been
filled by the DlgDirList member function and that the selection is a drive letter, a
file, or a directory name. The DlgDirSelect member function copies the selection to
the buffer given by IpString. If there is no selection, IpString does not change.

916 CWnd::DlgDirSelectComboBox

Return Value

See Also

DlgDirSelect sends LB _ GETCURSEL and LB _ GETTEXT messages to the list
box. It does not allow more than one filename to be returned from a list box. The
list box must not be a multiple-selection list box.

Nonzero if successful; otherwise O.

CWnd: :DlgDirList, CWnd: :DlgDirListComboBox,
CWnd: :DlgDirSelectComboBox, : :DlgDirSelect

CWnd:: Dig DirSelectComboBox

Remarks

Return Value

See Also

BOOL DlgDirSelectComboBox(LPSTR IpString, int nIDComboBox);

IpString Points to a buffer that is to receive the selected path.

nIDComboBox Specifies the integer ID of the combo box in the dialog box.

Retrieves the current selection from the list box of a combo box. It assumes that the
list box has been filled by the DlgDirListComboBox member function and that the
selection is a drive letter, a file, or a directory name. The DlgDirSelectComboBox
member function copies the selection to the specified buffer. If there is no selection,
the contents of the buffer are not changed.

DlgDirSelectComboBox sends CB _ GETCURSEL and CB _ GETLBTEXT
messages to the combo box. It does not allow more than one filename to be returned
from a combo box.

Nonzero if successful; otherwise O.

CWnd: :DlgDirListComboBox, : :DlgDirSelectComboBox

CWnd:: DoDataExchange
Protected

Remarks

virtual void DoDataExchange(CDataExchange* pDX);

pDX A pointer to a CDataExchange object.

Called by the framework to exchange and validate dialog data.

Never call this function directly. It is called by the UpdateData member function.
Call UpdateData to initialize a dialog box's controls or retrieve data from a dialog

See Also

CWnd::DoDataExchange 917

box. When you derive an application-specific dialog class from CDialog, you need
to override this member function if you wish to utilize the framework's automatic
data exchange and validation. Class Wizard will write an overridden version of this
member function for you containing the desired "data map" of dialog data exchange
(DDX) and validation (DDV) global function calls.

To automatically generate an overridden version of this member function, first
create a dialog resource with App Studio, then derive an application-specific dialog
class. Then invoke Class Wizard and use it associate variables, data, and validation
ranges with various controls in the new dialog box. Class Wizard then writes the
overridden DoDataExchange, which contains a data map. The following is an
example DDX/DDV code block generated by ClassWizard:

void CPenWidthsDlg::DoDataExchange(CDataExchange* pOX)
{

CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(CPenWidthsDlg)

DDV_MinMaxlnt(pDX, m_nThinWidth, 1, 20);

DDV_MinMaxlnt(pDX, m_nThickWidth, 1, 20);
//}}AFX_DATA_MAP

Class Wizard will maintain the code within the / / { { and / /} } delimiters. You should
not modify this code.

The DoDataExchange overridden member function must precede the macro
statements in your source file.

For more information on dialog data exchange and validation, see Chapter 7 of the
Class Library User's Guide, or see Chapter 9 oftheApp Studio User's Guide. For
a description of the DDX_ and DDV _ macros generated by ClassWizard, see
Technical Note 26 in MSVC\HELP\MFCNOTES.HLP.

CWnd::UpdateData

918 CWnd::DragAcceptFiles

CWnd: :DragAcceptFiles
Windows 3.1 Only void DragAcceptFiles(BOOL bAccept = TRUE); •

Remarks

See Also

bAccept Flag that indicates whether dragged files are accepted.

Call this member function from within the main window in your application's
CWinApp: : InitInstance function to indicate that your main window and all child
windows accept dropped files from the Windows File Manager.

To discontinue receiving dragged files, call the member function with bAccept
equal to FALSE.

: :DragAcceptFiles, WM _ DROPFILES

CWnd: :DrawMenuBar

Remarks

See Also

void DrawMenuBar();

Redraws the menu bar. If a menu bar is changed after Windows has created the
window, call this function to draw the changed menu bar.

: : DrawMenuBar

CWnd:: EnableScroll Bar
Windows 3.1 Only BOOL EnableScrollBar(int nSBFlags, UINT nArrowFlags =

ESB_ENABLE_BOTH); •

nSBFlags Specifies the scroll-bar type. Can have one of the following values:

• SB BOTH Enables or disables the arrows of the horizontal and vertical
scroll bars associated with the window.

• SB HORZ Enables or disables the arrows of the horizontal scroll bar
associated with the window.

• SB VERT Enables or disables the arrows of the vertical scroll bar
associated with the window.

Remarks

Return Value

See Also

CWnd::EnableWindow 919

nArrowFlags Specifies whether the scroll-bar arrows are enabled or disabled and
which arrows are enabled or disabled. Can have one of the following values:

• ESB_ENABLE_BOTH Enables both arrows of a scroll bar (default).

• ESB DISABLE L TUP Disables the left arrow of a horizontal scroll bar - -
or the up arrow of a vertical scroll bar.

• ESB _DISABLE _ RTDN Disables the right arrow of a horizontal scroll
bar or the down arrow of a vertical scroll bar.

• ESB DISABLE BOTH Disables both arrows of a scroll bar. - -

Enables or disables one or both arrows of a scroll bar.

Nonzero if the arrows are enabled or disabled as specified. Otherwise it is 0, which
indicates that the arrows are already in the requested state or that an error occurred.

CWnd: :ShowScroIlBar, CScrollBar: :EnableScrollBar

CWnd:: EnableScroll BarCtrl

Remarks

See Also

void EnableScrollBarCtrl(int nBar, BOOL bEnable = TRUE);

nBar The scroll-bar identifier.

bEnable Specifies whether the scroll-bar is to be enabled or disabled.

Call this member function to enable or disable the scroll bar for this window. If the
window has a sibling scroll-bar control, that scroll bar is used; otherwise the
window's own scroll bar is used.

CWnd: : GetScrollBarCtrl

CWnd: :EnableWindow
BOOL EnableWindow(BOOL bEnable = TRUE);

bEnable Specifies whether the given window is to be enabled or disabled. If this
parameter is TRUE, the window will be enabled. If this parameter is FALSE, the
window will be disabled.

920 CWnd::EndPaint

Remarks Enables or disables mouse and keyboard input. When input is disabled, input such
as mouse clicks and keystrokes is ignored. When input is enabled, the window
processes all input. If the enabled state is changing, the WM _ENABLE message is
sent before this function returns. If disabled, all child windows are implicitly
disabled, although they are not sent WM _ENABLE messages.

Return Value

See Also

A window must be enabled before it can be activated. For example, if an
application is displaying a modeless dialog box and has disabled its main window,
the main window must be enabled before the dialog box is destroyed. Otherwise,
another window will get the input focus and be activated. If a child window is
disabled, it is ignored when Windows tries to determine which window should get
mouse messages. By default, a window is enabled when it is created. An application
can specify the WS _DISABLED style in the Create or CreateEx member
function to create a window that is initially disabled. After a window has been
created, an application can also use the Enable Window member function to enable
or disable the window. An application can use this function to enable or disable a
control in a dialog box. A disabled control cannot receive the input focus nor can a
user access it.

Indicates the state before the Enable Window member function was called. The
return value is nonzero if the window was previously disabled. The return value is 0
if the window was previously enabled or an error occurred.

: :Enable Window, CWnd: :OnEnable

CWnd::EndPaint

Remarks

See Also

void EndPaint(LPPAINTSTRUCT lpPaint);

lpPaint Points to a P AINTSTRUCT structure that contains the painting
information retrieved by the BeginPaint member function.

Marks the end of painting in the given window. The EndPaint member function is
required for each call to the BeginPaint member function, but only after painting is
complete. If the caret was hidden by the BeginPaint member function, EndPaint
restores the caret to the screen.

CWnd::BeginPaint, ::EndPaint, CPaintDC

CWnd::FlashWindow 921

CWnd::FindWindow

Remarks

Return Value

See Also

static CWnd* PASCAL FindWindow(LPCSTR IpszClassName,
LPCSTR IpszWindowName);

IpszClassName Points to a null-terminated string that specifies the window's
class name (a WNDCLASS structure). If IpszClassName is NULL, all class
names match.

IpszWindowName Points to a null-terminated string that specifies the window
name (the window's title). If IpszWindowName is NULL, all window names
match.

Returns the top-level CWnd whose window class is given by IpszClassName and
whose window name, or title, is given by IpszWindowName. This function does not
search child windows.

Identifies the window that has the specified class name and window name. It is
NULL if no such window is found. The CWnd* may be temporary and should not
be stored for later use.

: :FindWindow

CWnd::FlashWindow

Remarks

BOOL FlashWindow(BOOL blnvert);

blnvert Specifies whether the CWnd is to be flashed or returned to its original
state. The CWnd is flashed from one state to the other if blnvert is TRUE. If
blnvert is FALSE, the window is returned to its original state (either active or
inactive).

Flashes the given window once. For successive flashing, create a system timer and
repeatedly call FlashWindow. Flashing the CWnd means changing the appearance
of its title bar as if the CWnd were changing from inactive to active status, or vice
versa. (An inactive title bar changes to an active title bar; an active title bar
changes to an inactive title bar.) Typically, a window is flashed to inform the user
that it requires attention but that it does not currently have the input focus.

The blnvert parameter should be FALSE only when the window is getting the input
focus and will no longer be flashing; it should be TRUE on successive calls while
waiting to get the input focus. This function always returns nonzero for minimized
windows. If the window is minimized, Flash Window will simply flash the
window's icon; blnvert is ignored for minimized windows.

922 CWnd::FromHandle

Return Value

See Also

Nonzero if the window was active before the call to the FlashWindow member
function; otherwise O.

: :Flash Window

CWnd::FromHandle

Return Value

See Also

static CWnd* PASCAL FromHandle(HWND hWnd);

h Wnd An HWND of a Windows window.

Returns a pointer to a CWnd object when given a handle to a window. If a CWnd
object is not attached to the handle, a temporary CWnd object is created and at­
tached. The pointer may be temporary and shouldn't be stored beyond immedi-
ate use.

CWnd: :DeleteTempMap

CWnd: :FromHandlePermanent

Remarks

Return Value

See Also

static CWnd* PASCAL FromHandlePermanent(HWND hWnd);

h Wnd An HWND of a Windows window.

Returns a pointer to a CWnd object when given a handle to a window. If a CWnd
object is not attached to the handle, NULL is returned.

This function, unlike FromHandle, does not create temporary objects.

A pointer to a CWnd object.

CWnd: :FromHandle

CWnd::GetCaretPos 923

CWnd: :GetActiveWindow

Remarks

Return Value

See Also

static CWnd* PASCAL GetActiveWindow();

Retrieves a pointer to the active window. The active window is either the window
that has the current input focus or the window explicitly made active by the
SetActive Window member function.

The active window or NULL if no window was active at the time of the call. The
pointer may be temporary and should not be stored for later use.

CWnd: :SetActive Window, : : GetActive Window

CWnd: :GetCapture

Remarks

Return Value

See Also

static CWnd* PASCAL GetCapture();

Retrieves the window that has the mouse capture. Only one window has the mouse
capture at any given time. A window receives the mouse capture when the
SetCapture member function is called. This window receives mouse input whether
or not the cursor is within its borders.

Identifies the window that has the mouse capture. It is NULL if no window has the
mouse capture. The return value may be temporary and should not be stored for
later use.

CWnd::SetCapture, ::GetCapture

CWnd: :GetCaretPos

Remarks

Return Value

See Also

static CPoint PASCAL GetCaretPos();

Retrieves the client coordinates of the caret's current position and returns them as a
CPoint. The caret position is given in the client coordinates of the CWnd window.

CPoint object containing the coordinates of the caret's position.

: : GetCaretPos

924 CWnd::GetCheckedRadioButton

CWnd: :GetChecked Rad ioButton

Remarks

Return Value

See Also

int GetCheckedRadioBlltton(int nIDFirstButton, int nIDLastButton);

nIDFirstButton Specifies the integer identifier of the first radio button in the
group.

nIDLastButton Specifies the integer identifier of the last radio button in the
group.

Retrieves the ID of the currently checked radio button in the specified group.

ID of the checked radio button, or ° if none is selected.

CWnd: :CheckRadioBlltton

CWnd: :GetCI ientRect

Remarks

See Also

void GetClientRect(LPRECT IpRect) const;

IpRect Points to a RECT structure or a CRect object to receive the client
coordinates. The left and top members will be 0. The right and bottom members
will contain the width and height of the window.

Copies the client coordinates of the CWnd client area into the structure pointed to
by IpRect. The client coordinates specify the upper-left and lower-right comers of
the client area. Since client coordinates are relative to the upper-left comers of the
CWnd client area, the coordinates of the upper-left comer are (0,0).

CWnd:: Get WindowRect, : : GetClientRect

CWnd: :GetCI ipboardOwner

Remarks

Return Value

See Also

static CWnd* PASCAL GetClipboardOwner();

Retrieves the current owner of the Clipboard. The Clipboard can still contain data
even if it is not currently owned.

Identifies the window that owns the Clipboard if successful; otherwise, NULL. The
returned pointer may be temporary and shouldn't be stored for later use.

CWnd:: GetClipboardViewer, : : GetClipboardOwner

CWnd: :GetDC 925

CWnd: :GetClipboardViewer

Remarks

Return Value

See Also

Return Value

static CWnd* PASCAL GetClipboardViewer();

Retrieves the first window in the Clipboard-viewer chain.

Identifies the window currently responsible for displaying the Clipboard if
successful; otherwise NULL (for example, if there is no viewer). The returned
pointer may be temporary and should not be stored for later use.

CWnd::GetClipboardOwner, ::GetClipboardViewer

Returns a pointer to the message the window is currently processing. Should only
be called when in an OoM essage handler.

CWnd: :GetDC

Remarks

Return Value

See Also

CDC* GetDC();

Retrieves a pointer to a common, class, or private device context for the client area
depending on the class style specified for the CWnd. For common device contexts,
GetDC assigns default attributes to the context each time it is retrieved. For class
and private contexts, GetDC leaves the previously assigned attributes unchanged.
The device context can be used in subsequent graphics device interface (GDI)
functions to draw in the client area.

Unless the device context belongs to a window class, the ReleaseDC member
function must be called to release the context after painting. Since only five
common device contexts are available at any given time, failure to release a device
context can prevent other applications from accessing a device context. A device
context belonging to the CWnd class is returned by the GetDC member function if
CS_CLASSDC, CS_OWNDC, or CS_PARENTDC was specified as a style in
the WNDCLASS structure when the class was registered.

Identifies the device context for the CWnd client area if successful; otherwise, the
return value is NULL. The pointer may be temporary and should not be stored for
later use.

CWnd::ReleaseDC, ::GetDC, CClientDC

926 CWnd::GetDCEx

CWnd: :GetDCEx
Windows 3.1 Only CDC* GetDCEx(CRgn* prgnClip, DWORD flags); •

Remarks

prgnC lip Identifies a clipping region that may be combined with the visible region
of the client window.

flags Can have one of the following preset values:

• DCX CACHE Returns a device context from the cache rather than the
OWNDC or CLASSDC window. Overrides CS OWNDC and
CS CLASSDC.

• DCX _ CLIPCHILDREN Excludes the visible regions of all child
windows below the CWnd window.

• DCX _ CLIPSIBLINGS Excludes the visible regions of all sibling
windows above the CWnd window.

• DCX _ EXCLUDERGN Excludes the clipping region identified by
prgnC lip from the visible region of the returned device context.

• DCX_INTERSECTRGN Intersects the clipping region identified by
prgnClip within the visible region of the returned device context.

• DCX _ LOCKWINDOWUPDATE Allows drawing even if there is a
LockWindowUpdate call in effect that would otherwise exclude this
window. This value is used for drawing during tracking.

• DCX _ P ARENTCLIP Uses the visible region of the parent window and
ignores the parent window's WS _ CLIPCHILDREN and
WS_PARENTDC style bits. This value sets the device context's origin to
the upper-left comer of the CWnd window.

• DCX _WINDOW Returns a device context that corresponds to the
window rectangle rather than the client rectangle.

Retrieves the handle of a device context for the CWnd window. The device context
can be used in subsequent GDI functions to draw in the client area. This function,
which is an extension to the GetDC function, gives an application more control
over how and whether a device context for a window is clipped. Unless the device
context belongs to a window class, the ReleaseDC function must be called to
release the context after drawing. Since only five common device contexts are
available at any given time, failure to release a device context can prevent other
applications from gaining access to a device context.

Return Value

See Also

CWnd::GetDesktopWindow 927

In order to obtain a cached device context, an application must specify
DCX _ CACHE. If DCX _ CACHE is not specified and the window is neither
CS _ OWNDC nor CS _ CLASSDC, this function returns NULL. A device context
with special characteristics is returned by the GetDCEx function if the
CS _ CLASSDC, CS _ OWNDC, or CS _ P ARENTDC style was specified in the
WNDCLASS structure when the class was registered. For more information about
these characteristics, see the description of the WNDCLASS structure in the
Windows Programmer's Reference, Volume 3.

The device context for the specified window if the function is successful; otherwise
NULL.

CWnd::BeginPaint, CWnd::GetDC, CWnd::GetWindowDC,
CWnd::ReleaseDC, ::GetDCEx

CWnd: :GetDescendantWindow

Remarks

Return Value

See Also

CWnd* GetDescendantWindow(int nID) const;

nID Specifies the identifier of the control or child window to be retrieved.

Call this member function to find the descendant window specified by the given ID.
This member function searches the entire tree of child windows, not just those that
are immediate children.

A pointer to a CWnd object, or NULL if no child window is found.

CWnd: : GetParentFrame, CWnd: :IsChild, CWnd: : GetDlgItem

CWnd: :GetDesktopWindow

Remarks

Return Value

See Also

static CWnd* PASCAL GetDesktopWindow();

Returns the Windows desktop window. The desktop window covers the entire
screen and is the area on top of which all icons and other windows are painted.

Identifies the Windows desktop window. This pointer may be temporary and should
not be stored for later use.

: : GetDesktop Window

928 CWnd::GetDlgCtrIlD

CWnd: :GetDlgCtrliD

Remarks

Return Value

See Also

int GetDlgCtrIID() const;

Returns the window or control ID value for any child window, not just that of a
control in a dialog box. Since top-level windows do not have an ID value, the return
value of this function is invalid if the CWnd is a top-level window.

The numeric identifier of the CWnd child window if the function is successful;
otherwise O.

: : GetDlgCtrlID

CWnd: :GetDlgltem

Remarks

Return Value

See Also

CWnd* GetDlgItem(int nID) const;

nID Specifies the identifier of the control or child window to be retrieved.

Retrieves a pointer to the specified control or child window in a dialog box or
other window. The pointer returned is usually cast to the type of control identified
by nID.

A pointer to the given control or child window. If no control with the integer ID
given by the nID parameter exists, the value is NULL. The returned pointer may be
temporary and should not be stored.

CWnd::Create, CWnd::GetWindow, CWnd::GetDescendantWindow,
CWnd::GetWindow, ::GetDlgItem

CWnd: :GetDlgltemlnt
UINT GetDlgItemInt(int nID, BOOL* IpTrans = NULL,

BOOL bSigned = TRUE) const;

nID Specifies the integer identifier of the dialog-box control to be translated.

IpTrans Points to the Boolean variable that is to receive the translated flag.

bSigned Specifies whether the value to be retrieved is signed.

Remarks

Return Value

See Also

CWnd::GetDlgltemText 929

Retrieves the text of the control identified by nID. It translates the text of the
specified control in the given dialog box into an integer value by stripping any extra
spaces at the beginning of the text and converting decimal digits. It stops the
translation when it reaches the end of the text or encounters any nonnumeric
character.

If bSigned is TRUE, GetDlgItemlnt checks for a minus sign (-) at the beginning
of the text and translates the text into a signed number. Otherwise, it creates an
unsigned value. It sends a WM _ GETTEXT message to the control.

Specifies the translated value of the dialog-box item text. Since 0 is a valid return
value, IpTrans must be used to detect errors. If a signed return value is desired, cast
it as an int type. The function returns 0 if the translated number is greater than
32,767 (for signed numbers) or 65,535 (for unsigned).

When errors occur, such as encountering nonnumeric characters and exceeding the
above maximum, GetDlgItemlnt copies 0 to the location pointed to by IpTrans. If
there are no errors, IpTrans receives a nonzero value. If IpTrans is NULL,
GetDlgItemlnt does not warn about errors.

CWnd: : GetDlgltemText, : : GetDlgItemlnt

CWnd: :GetDlgltemText

Remarks

Return Value

See Also

int GetDlgItemText(int nID, LPSTR IpStr, int nMaxCount) const;

nID Specifies the integer identifier of the control whose title is to be retrieved.

IpStr Points to the buffer to receive the control's title or text.

nMaxCount Specifies the maximum length (in bytes) of the string to be copied to
IpStr. If the string is longer than nMaxCount, it is truncated.

Retrieves the title or text associated with a control in a dialog box. The
GetDlgItemText member function copies the text to the location pointed to by
IpStr and returns a count of the number of bytes it copies.

Specifies the actual number of bytes copied to the buffer, not including the
terminating null character. The value is 0 if no text is copied.

CWnd::GetDlgItem, CWnd::GetDlgItemlnt, ::GetDlgItemText,
WM GETTEXT

930 CWnd: :GetExStyle

CWnd: :GetExStyle

Return Value

See Also

DWORD GetExStyle() const;

The window's extended style.

CWnd::GetStyle, ::GetExStyle, ::GetWindowLong

CWnd: :GetFocus

Remarks

Return Value

See Also

static CWnd* PASCAL GetFocusO;

Retrieves a pointer to the CWnd that currently has the input focus.

A pointer to the window that has the current focus, or NULL if there is no focus
window. The pointer may be temporary and should not be stored for later use.

CWnd::GetActiveWindow, CWnd::GetCapture, CWnd::SetFocus,
::GetFocus

CWnd: :GetFont

Remarks

Return Value

See Also

CFont* GetFont() const;

Gets the current font for this window.

A pointer to the current font. The pointer may be temporary and should not be
stored for later use.

CWnd::SetFont, WM_GETFONT, CFont

CWnd: :GetLastActivePopup

Remarks

CWnd* GetLastActivePopup() const;

This function determines which pop-up window owned by CWnd was most
recently active.

Return Value

See Also

CWnd: :GetNextDlgGroupltem 931

Identifies the most recently active pop-up window. The return value will be the
window itself if any of the following conditions are met:

• The window itself was most recently active

• The window does not own any pop-up windows

• The window is not a top-level window or is owned by another window

The pointer may be temporary and should not be stored for later use.

: : GetLastActivePopup

CWnd: :GetMenu

Remarks

Return Value

See Also

CMenu* GetMenu() const;

Retrieves a pointer to the menu for this window. This function should not be used
for child windows because they do not have a menu.

Identifies the menu. The value is NULL if CWnd has no menu. The return value is
undefined if CWnd is a child window. The returned pointer may be temporary and
should not be stored for later use.

::GetMenu

CWnd: :GetNextDlgGroupltem

Remarks

CWnd* GetNextDlgGroupltem(CWnd* pWndCtl, BOOL bPrevious =
FALSE) const;

pWndCtl Identifies the control to be used as the starting point for the search.

bPrevious Specifies how the function is to search the group of controls in the
dialog box. If TRUE, the function searches for the previous control in the group;
if FALSE, it searches for the next control in the group.

Searches for the previous (or next) control within a group of controls in a dialog
box. A group of controls begins with a control that was created with the
WS _GROUP style and ends with the last control that was not created with the
WS _ GROUP style. By default, the GetNextDlgGroupltem member function

932 CWnd ::GetNextDlgTabltem

Return Value

See Also

returns a pointer to the next control in the group. If pWndCtl identifies the first
control in the group and bPrevious is TRUE, GetNextDlgGroupItem returns a
pointer to the last control in the group.

Pointer to the previous (or next) control in the group if the member function is
successful. The returned pointer may be temporary and should not be stored for
later use.

CWnd: : GetNextDlgTabItem, : : GetNextDlgGroupItem

CWnd: :GetNextDlgTabltem

Remarks

Return Value

See Also

CWnd* GetNextDlgTabItem(CWnd* pWndCtl, BOOL bPrevious = FALSE)
const;

pWndCtl Identifies the control to be used as the starting point for the search.

bPrevious Specifies how the function is to search the dialog box. If TRUE, the
function searches for the previous control in the dialog box; if FALSE, it searches
for the next control.

Retrieves a pointer to the first control that was created with the WS _ T ABSTOP
style and that precedes (or follows) the specified control.

Pointer to the previous (or next) control that has the WS_TABSTOP style, if the
member function is successful. The returned pointer may be temporary and should
not be stored for later use.

CWnd: : GetNextDlgGroupItem, : : GetNextDlgTabItem

CWnd: :GetNextWi ndow
CWnd* GetNextWindow(UINT nFlag = GW _HWNDNEXT) const;

nF lag Specifies whether the function returns a pointer to the next window or the
previous window. It can be either GW _HWNDNEXT, which returns the window
that follows the CWnd object on the window manager's list, or
GW _HWNDPREV, which returns the previous window on the window
manager's list.

Remarks

Return Value

See Also

CWnd::GetParent 933

Searches for the next (or previous) window in the window manager's list. The
window manager's list contains entries for all top-level windows, their associated
child windows, and the child windows of any child windows. If CWnd is a top­
level window, the function searches for the next (or previous) top-level window; if
CWnd is a child window, the function searches for the next (or previous) child
window.

Identifies the next (or the previous) window in the window manager's list if the
member function is successful. The returned pointer may be temporary and should
not be stored for later use.

: : GetNextWindow

CWnd: :GetOpenClipboardWindow
Windows 3.1 Only static CWnd* PASCAL GetOpenClipboardWindowO; +

Remarks Retrieves the handle of the window that currently has the Clipboard open.

Return Value The handle of the window that currently has the Clipboard open if the function is
successful; otherwise NULL.

See Also CWnd::GetClipboardOwner, CWnd::GetClipboardViewer,
CWnd: : Open Clipboard, : : GetOpenClipboardWindow

CWnd: :GetParent

Remarks

Return Value

See Also

CWnd* GetParent() const;

Retrieves the parent window (if any).

Identifies the parent window if the member function is successful. Otherwise, the
value is NULL, which indicates an error or no parent window. The returned pointer
may be temporary and should not be stored for later use.

: : GetParent

934 CWnd: :GetParentFrame

CWnd: :GetParentFrame

Remarks

Return Value

See Also

CFrameWnd* GetParentFrame() const;

Call this member function to retrieve the parent frame window. The member
function searches up the parent chain until a CFrameWnd (or derived class) object
is found.

A pointer to a frame window if successful; otherwise NULL.

CWnd::GetDescendantWindow, CWnd::GetParent,
CFrame Wnd: : GetActive View

CWnd: :GetSafeHwnd

Return Value

HWND GetSafeHwnd() const;

Returns the window handle for a window. Returns NULL if the CWnd is not
attached to a window or if it is used with a NULL CWnd pointer.

CWnd: :GetScroll BarCtrl

Remarks

Return Value

See Also

virtual CScrollBar* GetScrollBarCtrl(int nBar) const;

nBar Specifies the type of scroll bar. The parameter can take one of the following
values:

• SB _ HORZ Retrieves the position of the horizontal scroll bar.

• SB _VERT Retrieves the position of the vertical scroll bar.

Call this member function to obtain a pointer to the specified sibling scroll bar or
splitter window. This member function does not operate on scroll bars created when
the WS _ HSCROLL or WS _ VSCROLL bits are set during the creation of a
window. The CWnd implementation of this function simply returns NULL.
Derived classes, such as CView, implement the described functionality.

A sibling scroll-bar control, or NULL if none.

CWnd::EnableScrollBarCtrl

CWnd::GetScroIiRange 935

CWnd: :GetScroll Pos

Remarks

Return Value

See Also

int GetScrollPos(int nBar) const;

nBar Specifies the scroll bar to examine. The parameter can take one of the
following values:

• SB HORZ Retrieves the position of the horizontal scroll bar.

• SB VERT Retrieves the position of the vertical scroll bar.

Retrieves the current position of the scroll box of a scroll bar. The current position
is a relative value that depends on the current scrolling range. For example, if the
scrolling range is 50 to 100 and the scroll box is in the middle of the bar, the
current position is 75.

Specifies the current position of the scroll box in the scroll bar if successful;
otherwise O.

: : GetScrollPos, CScrollBar:: GetScrollPos

CWnd: :GetScroll Range

Remarks

See Also

void GetScrollRange(int nBar, LPINT lpMinPos, LPINT lpMaxPos) const;

nBar Specifies the scroll bar to examine. The parameter can take one of the
following values:

• SB HORZ Retrieves the position of the horizontal scroll bar.

• SB VERT Retrieves the position of the vertical scroll bar.

lpMinPos Points to the integer variable that is to receive the minimum position.

lpMaxPos Points to the integer variable that is to receive the maximum position.

Copies the current minimum and maximum scroll-bar positions for the given scroll
bar to the locations specified by lpMinPos and lpMaxPos. If CWnd does not have
a scroll bar, then the GetScrollRange member function copies a to lpM inP os and
lpMaxPos. The default range for a standard scroll bar is a to 100. The default range
for a scroll-bar control is empty (both values are 0).

: : GetScrollRange

936 CWnd::GetStyle

CWnd: :GetStyle

Return Value

See Also

DWORD GetStyle() const;

The window's style.

::GetWindowLong, CWnd::CreateEx

CWnd: :GetSuperWndProcAddr
Protected

Return Value

virtual WNDPROC* GetSuperWndProcAddr(); +

The address in which to store the default WndProc for this class.

CWnd: :GetSystemMenu

Remarks

CMenu* GetSystemMenu(BOOL bRevert) const;

bRevert Specifies the action to be taken. If bRevert is FALSE, GetSystemMenu
returns a handle to a copy of the Control menu currently in use. This copy is
initially identical to the Control menu but can be modified. If bRevert is TRUE,
GetSystemMenu resets the Control menu back to the default state. The previous,
possibly modified, Control menu, if any, is destroyed. The return value is
undefined in this case.

Allows the application to access the Control menu for copying and modification.
Any window that does not use GetSystemMenu to make its own copy of the
Control menu receives the standard Control menu. The pointer returned by this
function can be used with the CMenu::AppendMenu, CMenu::InsertMenu, or
CMenu::ModifyMenu functions to change the Control menu.

The Control menu initially contains items identified with various ID values such as
SC _CLOSE, SC _MOVE, and SC _SIZE. Items on the Control menu generate
WM _SYSCOMMAND messages. All predefined Control-menu items have ID
numbers greater than OxFOOO. If an application adds items to the Control menu, it
should use ID numbers less than FOOO.

Windows may automatically dim items on the standard Control menu. CWnd can
carry out its own checking or dimming by responding to the WM _ INITMENU
messages, which are sent before any menu is displayed.

Return Value

See Also

CWnd::GetUpdateRect 937

Identifies a copy of the Control menu if bRevert is FALSE. If bRevert is TRUE,
the return value is undefined. The returned pointer may be temporary and should not
be stored for later use.

CMenu: :AppendMenu, CMenu: :InsertMenu, CMenu: :ModifyMenu,
::GetSystemMenu

CWnd::GetTopWindow

Remarks

Return Value

See Also

CWnd* GetTopWindowO const;

Searches for the top-level child window that belongs to CWnd. If CWnd has no
children, this function returns NULL.

Identifies the top-level child window in a CWnd linked list of child windows. If no
child windows exist, the value is NULL. The returned pointer may be temporary
and should not be stored for later use.

: :GetTop Window

CWnd: :GetUpdateRect

Windows 3.1 Only

Remarks

BOOL GetUpdateRect(LPRECT IpRect, BOOL bErase = FALSE);

IpRect Points to a CRect object or RECT structure that is to receive the client
coordinates of the update that encloses the update region.

Set this parameter to NULL to determine whether an update region exists within
the CWnd. If IpRect is NULL, the GetUpdateRect member function returns
nonzero if an update region exists and 0 if one does not. This provides a way to
determine whether a WM _PAINT message resulted from an invalid area. Do not
set this parameter to NULL in Windows version 3.0 and earlier. +

bErase Specifies whether the background in the update region is to be erased.

Retrieves the coordinates of the smallest rectangle that completely encloses the
update region. If CWnd was created with the CS _ OWNDC style and the mapping
mode is not MM _TEXT, the GetUpdateRect member function gives the rectangle
in logical coordinates. Otherwise, GetUpdateRect gives the rectangle in client
coordinates. If there is no update region, GetUpdateRect sets the rectangle to be
empty (sets all coordinates to 0).

938 CWnd::GetUpdateRgn

Return Value

See Also

The bErase parameter specifies whether GetUpdateRect should erase the
background of the update region. If bErase is TRUE and the update region is not
empty, the background is erased. To erase the background, GetUpdateRect sends
the WM _ ERASEBKGND message. The update rectangle retrieved by the
BeginPaint member function is identical to that retrieved by the GetUpdateRect
member function. The BeginPaint member function automatically validates the
update region, so any call to GetUpdateRect made immediately after a call to
BeginPaint retrieves an empty update region.

Specifies the status of the update region. The value is nonzero if the update region is
not empty; otherwise O. If the lpRect parameter is set to NULL, the return value is
nonzero if an update region exists; otherwise O.

CWnd::BeginPaint, ::GetUpdateRect, CWnd::OnPaint,
CWnd: : RedrawWindow

CWnd: :GetUpdateRgn

Remarks

Return Value

See Also

int GetUpdateRgn(CRgn* pRgn, BOOL bErase = FALSE);

pRgn Identifies the update region.

bErase Specifies whether the background will be erased and nonclient areas of
child windows will be drawn. If the value is FALSE, no drawing is done.

Retrieves the update region into a region identified by pRgn. The coordinates of this
region are relative to the upper-left comer (client coordinates). The BeginPaint
member function automatically validates the update region, so any call to
GetUpdateRgn made immediately after a call to BeginPaint retrieves an empty
update region.

Specifies a short-integer flag that indicates the type of resulting region. The value
can take anyone of the following:

• SIMPLEREGION The region has no overlapping borders.

• COMPLEXREGION The region has overlapping borders.

• NULLREGION The region is empty.

• ERROR No region was created.

CWnd::BeginPaint, ::GetUpdateRgn

CWnd: :GetWindowDC 939

CWnd: :GetWindow

Return Value

See Also

CWnd* GetWindow(UINT nCmd) const;

nCmd Specifies the relationship between CWnd and the returned window. It can
take one of the following values:

• GW CHILD Identifies the CWnd first child window.

• GW _HWNDFIRST If CWnd is a child window, returns the first sibling
window. Otherwise, it returns the first top-level window in the list.

• GW _HWNDLAST If CWnd is a child window, returns the last sibling
window. Otherwise, it returns the last top-level window in the list.

• GW HWNDNEXT Returns the next window on the window manager's
list.

• GW HWNDPREV Returns the previous window on the window
manager's list.

• GW OWNER Identifies the CWnd owner.

Returns a pointer to the window requested, or NULL if none. The returned pointer
may be temporary and should not be stored for later use.

CWnd::GetParent, CWnd::GetNextWindow, ::GetWindow

CWnd: :GetWindowDC

Remarks

CDC* GetWindowDCO;

Retrieves the display context for the entire window, including caption bar, menus,
and scroll bars. A window display context permits painting anywhere in CWnd,
since the origin of the context is the upper-left comer of CWnd instead of the client
area. Default attributes are assigned to the display context each time it retrieves the
context. Previous attributes are lost. GetWindowDC is intended to be used for
special painting effects within the CWnd nonclient area. Painting in nonclient areas
of any window is not recommended.

The GetSystemMetrics Windows function can be used to retrieve the dimensions
of various parts of the nonclient area, such as the caption bar, menu, and scroll bars.
After painting is complete, the ReleaseDC member function must be called to
release the display context. Failure to release the display context will seriously
affect painting requested by applications due to limitations on the number of device
contexts that can be open at the same time.

940 CWnd: :GetWindowPlacement

Return Value

See Also

Identifies the display context for the given window if the function is successful;
otherwise NULL. The returned pointer may be temporary and should not be stored
for later use.

::GetSystemMetrics, CWnd::ReleaseDC, ::GetWindowDC, CWnd::GetDC,
CWindowDC

CWnd: :GetWindowPlacement
Windows 3.1 Only BOOL GetWindowPlacement(WINDOWPLACEMENT FAR* lpwndpl)

Remarks

Return Value

See Also

const; +

lpwndpl Points to the WINDOWPLACEMENT structure that receives the show
state and position information.

Retrieves the show state and the normal (restored), minimized, and maximized
positions of a window. The flags member of the WINDOWPLACEMENT
structure retrieved by this function is always O. If CWnd is maximized, the
showCmd member of WINDOWPLACEMENT is SW SHOWMAXIMIZED.
If the window is minimized, it is SW _SHOWMINIMIZED.1t is
SW SHOWNORMAL otherwise.

Nonzero if the function is successful; otherwise O.

CWnd: :SetWindowPlacement, : : GetWindowPlacement

CWnd: :GetWindowRect

Remarks

See Also

void GetWindowRect(LPRECT IpRect) const;

IpRect Points to a CRect object or a RECT structure that will receive the screen
coordinates of the upper-left and lower-right corners.

Copies the dimensions of the bounding rectangle of the CWnd object to the
structure pointed to by IpRect. The dimensions are given in screen coordinates
relative to the upper-left corner of the display screen. The dimensions of the
caption, border, and scroll bars, if present, are included.

CWnd::GetClientRect, CWnd::MoveWindow, CWnd::SetWindowPos,
::GetWindowRect

CWnd::GetWindowTextLength 941

CWnd: :GetWindowText

Remarks

Return Value

See Also

int GetWindowText(LPSTR IpszStringBuf, int nMaxCount) const;

void GetWindowText(CString& rString) const;

IpszStringBuJ Points to the buffer that is to receive the copied string of the
window's title.

nMaxCount Specifies the maximum number of characters to be copied to the
buffer. If the string is longer than the number of characters specified in
nMaxCount, it is truncated.

rString A CString object that is to receive the copied string of the window's title.

Copies the CWnd caption title (if it has one) into the buffer pointed to by
IpszStringBuJ or into the destination string rString. If the CWnd object is a control,
the GetWindowText member function copies the text within the control instead of
copying the caption. This member function causes the WM _ GET TEXT message
to be sent to the CWnd object.

Specifies the length, in bytes, of the copied string, not including the terminating null
character. It is 0 if CWnd has no caption or if the caption is empty.

CWnd::SetWindowText, WM _ GETTEXT, CWnd::GetWindowTextLength

CWnd: :GetWindowTextLength

Remarks

Return Value

See Also

int GetWindowTextLength() const;

Returns the length of the CWnd object caption title. If CWnd is a control, the
GetWindowTextLength member function returns the length of the text within the
control instead of the caption. This member function causes the
WM _ GETTEXTLENGTH message to be sent to the CWnd object.

Specifies the text length, not including any null-termination character. The value is
o if no such text exists.

: : GetWindowTextLength, WM _ GETTEXTLENGTH,
CWnd: : GetWindowText

942 CWnd::HideCaret

CWnd: :HideCaret

Remarks

See Also

void HideCaret();

Hides the caret by removing it from the display screen. Although the caret is no
longer visible, it can be displayed again by using the ShowCaret member function.
Hiding the caret does not destroy its current shape. Hiding is cumulative. If
HideCaret has been called five times in a row, the ShowCaret member function
must be called five times before the caret will be shown.

CWnd: :ShowCaret, : :HideCaret

CWnd: :HiliteMenultem

Remarks

Return Value

See Also

BOOL HiliteMenuItem(CMenu* pMenu, UINT nIDHiliteltem, UINT nHilite);

pMenu Identifies the top-level menu that contains the item to be highlighted.

nIDHiliteltem Specifies the menu item to be highlighted, depending on the value
of the nHilite parameter.

nHilite Specifies whether the menu item is highlighted or the highlight is
removed. It can be a combination of MF HILITE or MF UNHILITE with - -
MF BYCOMMAND or MF BYPOSITION. The values can be combined - -
using the bitwise-OR operator. These values have the following meanings:

• MF _BYCOMMAND Interprets nIDHiliteltem as the menu-item ID (the
default interpretation).

• MF _ BYPOSITION Interprets nIDHiliteltem as the zero-based offset of
the menu item.

• MF _ HILITE Highlights the item. If this value is not given, the highlight
is removed from the item.

• MF _ UNHILITE Removes the highlight from the item.

Highlights or removes the highlight from a top-level (menu-bar) menu item. The
MF _ HILITE and MF _ UNHILITE flags can be used only with this member
function; they cannot be used with the ModifyMenu member function.

Specifies whether the menu item was highlighted. Nonzero if the item was
highlighted; otherwise O.

CMenu: : ModifyMenu , : : HiliteMenuItem

CWnd::lnvalidateRect 943

CWnd: :Invalidate

Remarks

See Also

void Invalidate(BOOL bErase = TRUE);

bErase Specifies whether the background within the update region is to be erased.

Invalidates the entire client area of CWnd. The client area is marked for painting
when the next WM _ PAINT message occurs. The region can also be validated
before a WM _PAINT message occurs by the ValidateRect or ValidateRgn
member function.

The bErase parameter specifies whether the background within the update area is to
be erased when the update region is processed. If bErase is TRUE, the background
is erased when the BeginPaint member function is called; if bErase is FALSE, the
background remains unchanged. If bErase is TRUE for any part of the update
region, the background in the entire region, not just in the given part, is erased.
Windows sends a WM _PAINT message whenever the CWnd update region is not
empty and there are no other messages in the application queue for that window.

CWnd: :BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
: : InvalidateRect

CWnd: :lnvalidateRect

Remarks

void InvalidateRect(LPCRECT IpRect, BOOL bErase = TRUE);

IpRect Points to a CRect object or a RECT structure that contains the rectangle
(in client coordinates) to be added to the update region. If IpRect is NULL, the
entire client area is added to the region.

bErase Specifies whether the background within the update region is to be erased.

Invalidates the client area within the given rectangle by adding that rectangle to the
CWnd update region. The invalidated rectangle, along with all other areas in the
update region, is marked for painting when the next WM _PAINT message is sent.
The invalidated areas accumulate in the update region until the region is processed
when the next WM _PAINT call occurs, or until the region is validated by the
ValidateRect or ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is to
be erased when the update region is processed. If bErase is TRUE, the background
is erased when the BeginPaint member function is called; if bErase is FALSE, the

944 CWnd::lnvalidateRgn

See Also

background remains unchanged. If bErase is TRUE for any part of the update
region, the background in the entire region is erased, not just in the given part.
Windows sends a WM _PAINT message whenever the CWnd update region is not
empty and there are no other messages in the application queue for that window.

CWnd: : BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
: : InvalidateRect

CWnd: :lnvalidateRgn

Remarks

See Also

void InvalidateRgn(CRgn* pRgn, BOOL bErase = TRUE);

pRgn Identifies the region to be added to the update region. The region is assumed
to have client coordinates. If this parameter is NULL, the entire client area is
added to the update region.

bErase Specifies whether the background within the update region is to be erased.

Invalidates the client area within the given region by adding it to the current update
region of CWnd. The invalidated region, along with all other areas in the update
region, is marked for painting when the WM _PAINT message is next sent. The
invalidated areas accumulate in the update region until the region is processed when
a WM _ PAINT message is next sent, or until the region is validated by the
ValidateRect or ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is to
be erased when the update region is processed. If bErase is TRUE, the background
is erased when the BeginPaint member function is called; if bErase is FALSE, the
background remains unchanged. If bErase is TRUE for any part of the update
region, the background in the entire region, not just in the given part, is erased.
Windows sends a WM _PAINT message whenever the CWnd update region is not
empty and there are no other messages in the application queue for that window.
The given region must have been previously created by one of the region functions.

CWnd: :BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
: : InvalidateRgn

CWnd::lslconic 945

CWnd::lsChiid

Remarks

Return Value

See Also

BOOL IsChild(const CWnd* pWnd) const;

p W nd Identifies the window to be tested.

Indicates whether the window specified by p W nd is a child window or other direct
descendant of CWnd. A child window is the direct descendant of CWnd if the
CWnd object is in the chain of parent windows that leads from the original pop-up
window to the child window.

Specifies the outcome of the function. The value is nonzero if the window identified
by pWnd is a child window of CWnd; otherwise O.

::IsChild

CWnd: :lsDlgButtonChecked

Remarks

Return Value

See Also

DINT IsDlgButtonChecked(int nIDButton) const;

nIDButton Specifies the integer identifier of the button control.

Determines whether a button control has a check mark next to it. If the button is a
three-state control, the member function determines if it is dimmed, checked, or
neither.

Nonzero if the given control is checked, and 0 if it is not checked. Only radio
buttons and check boxes can be checked. For three-state buttons, the return value
can be 2 if the button is indeterminate. This member function returns 0 for a
pushbutton.

: :IsDlgButtonChecked, CButton: :GetCheck

CWnd::lslconic

Remarks

Return Value

See Also

BOOL IsIconic() const;

Specifies whether CWnd is minimized (iconic).

Nonzero if CWnd is minimized; otherwise O.

::IsIconic

946 CWnd::lsWindowEnabled

CWnd: :lsWindowEnabled

Remarks

Return Value

See Also

BOOL IsWindowEnabled() const;

Specifies whether CWnd is enabled for mouse and keyboard input.

Nonzero if CWnd is enabled; otherwise O.

: :Is Window Enabled

CWnd: :lsWindowVisible

Remarks

Return Value

See Also

BOOL IsWindowVisible() const;

Determines the visibility state of the given window. A window possesses a visibility
state indicated by the WS _VISIBLE style bit. When this style bit is set with a call
to the ShowWindow member function, the window is displayed and subsequent
drawing to the window is displayed as long as the window has the style bit set. Any
drawing to a window that has the WS_ VISIBLE style will not be displayed if the
window is covered by other windows or is clipped by its parent window.

Nonzero if CWnd is visible (has the WS _VISIBLE style bit set, and parent
window is visible). Since the return value reflects the state of the WS _VISIBLE
style bit, the return value may be nonzero even though CWnd is totally obscured by
other windows.

CWnd::ShowWindow, ::IsWindowVisible

CWnd: :lsZoomed

Remarks

Return Value

See Also

BOOL IsZoomed() const;

Determines whether CWnd has been maximized.

Nonzero if CWnd is maximized; otherwise O.

::IsZoomed

CWnd::LockWindowUpdate 947

CWnd::KiIITimer

Remarks

Return Value

See Also

BOOL KillTimer(int nIDEvent);

nIDEvent The value of the timer event passed to SetTimer.

Kills the timer event identified by nIDEvent from the earlier call to SetTimer. Any
pending WM _TIMER messages associated with the timer are removed from the
message queue.

Specifies the outcome of the function. The value is nonzero if the event was killed.
It is 0 if the KillTimer member function could not find the specified timer event.

CWnd::SetTimer, ::KiIlTimer

CWnd: :LockWindowUpdate
Windows 3.1 Only BOOL LockWindowUpdateO; +

Remarks Disables or reenables drawing in the given window. A locked window cannot be
moved. Only one window can be locked at a time.

Return Value

See Also

If an application with a locked window (or any locked child windows) calls the
GetDC, GetDCEx, or BeginPaint Windows function, the called function returns a
device context whose visible region is empty. This will occur until the application
unlocks the window by calling the LockWindowUpdate member function.

While window updates are locked, the system keeps track of the bounding rectangle
of any drawing operations to device contexts associated with a locked window.
When drawing is reenabled, this bounding rectangle is invalidated in the locked
window and its child windows to force an eventual WM _PAINT message to
update the screen. If no drawing has occurred while the window updates were
locked, no area is invalidated.

The LockWindowUpdate member function does not make the given window
invisible and does not clear the WS _VISIBLE style bit.

Nonzero if the function is successful. It is 0 if a failure occurs or if the
LockWindowUpdate function has been used to lock another window.

CWnd::GetDCEx, ::LockWindowUpdate

948 CWnd::MapWindowPoints

CWnd: :MapWindowPoints
Windows 3.1 Only void MapWindowPoints(CWnd* pwndTo, LPRECT lpRect) const; +

Remarks

See Also

void MapWindowPoints(CWnd* pwndTo, LPPOINT lpPoint, UINT nCount)
const;

pwndT ° Identifies the window to which points are converted. If this parameter is
NULL, the points are converted to screen coordinates.

IpRect Specifies the rectangle whose points are to be converted.

IpPoint A pointer to an array of POINT structures that contain the set of points to
be converted.

nCount Specifies the number of POINT structures in the array pointed to by
IpPoint.

Converts (maps) a set of points from the coordinate space of the CWnd to the
coordinate space of another window.

CWnd::ClientToScreen, CWnd::ScreenToClient, ::MapWindowPoints

CWnd: :MessageBox

Remarks

int MessageBox(LPCSTR lpszText, LPCSTR lpszCaption = NULL,
UINT nType = MB_OK);

IpszText Points to a CString object or null-terminated string containing the
message to be displayed.

IpszCaption Points to a CString object or null-terminated string to be used for
the message-box caption. If IpszCpption is NULL, the default caption "Error"
is used.

nType Specifies the contents and behavior of the message box.

Creates and displays a window that contains an application-supplied message and
caption, plus a combination of the predefined icons and pushbuttons described in the
"Message-Box Styles" list. This manual shows this list in the AfxMessageBox
global function description. Use the global function AfxMessageBox instead of this
member function to implement a message box in your application.

Return Value

See Also

CWnd::MoveWindow 949

Specifies the outcome of the function. It is 0 if there is not enough memory to create
the message box.

: :MessageBox, AfxMessageBox

CWnd: :MoveWindow

Remarks

See Also

void MoveWindow(int x, int y, int nWidth, int nHeight,
BOOL bRepaint = TRUE);

void MoveWindow(LPCRECT IpRect, BOOL bRepaint = TRUE);

x Specifies the new position of the left side of the CWnd.

y Specifies the new position of the top of the CWnd.

n Width Specifies the new width of the CWnd.

nHeight Specifies the new height of the CWnd.

bRepaint Specifies whether CWnd is to be repainted. If TRUE, CWnd receives
a WM _PAINT message in its OnPaint message handler as usual. If this
parameter is FALSE, no repainting of any kind occurs. This applies to the client
area, to the nonclient area (including the title and scroll bars), and to any part of
the parent window uncovered as a result of Cwnd 's move. When this parameter is
FALSE, the application must explicitly invalidate or redraw any parts of CWnd
and parent window that must be redrawn.

IpRect The CRect object or RECT structure that specifies the new size and
position.

Changes the position and dimensions. For a top-level CWnd object, the x and y
parameters are relative to the upper-left comer of the screen. For a child CWnd
object, they are relative to the upper-left comer of the parent window's client area.
The MoveWindow function sends the WM_GETMINMAXINFO message.
Handling this message gives CWnd the opportunity to modify the default values for
the largest and smallest possible windows. If the parameters to the Move Window
member function exceed these values, the values can be replaced by the minimum
or maximum values in the WM GETMINMAXINFO handler.

CWnd::SetWindowPos, WM_GETMINMAXINFO, ::MoveWindow

950 CWnd: :OnActivate

CWnd: :OnActivate
Protected

Remarks

See Also

afx_msg void OnActivate(UINT nState, CWnd* pWndOther,
BOOL bMinimized); •

nState Specifies whether the CWnd is being activated or deactivated. It can be
one of the following values:

• W A_INACTIVE The window is being deactivated.

• W A _ACTIVE The window is being activated through some method other
than a mouse click (for example, by use of the keyboard interface to select
the window).

• W A _ CLICKACTIVE The window is being activated by a mouse click.

pWndOther Pointer to the CWnd being activated or deactivated. The pointer can
be NULL, and it may be temporary.

bMinimized Specifies the minimized state of the CWnd being activated or
deactivated. A value of TRUE indicates the window is minimized.

If TRUE, the CWnd is being activated; otherwise deactivated.

Called when a CWnd object is being activated or deactivated. First, the main
window being deactivated has OnActivate called, and then the main window being
activated has OnActivate called.

If the CWnd object is activated with a mouse click, it will also receive an
OnMouseActivate member function call.

WM_MOUSEACTIVATE, WM_NCACTIVATE, WM_ACTIVATE

CWnd: :OnActivateApp
Protected afx_msg void OnActivateApp(BOOL bActive, HTASK hTask);.

bActive Specifies whether the CWnd is being activated or deactivated. TRUE
means the CWnd is being activated. FALSE means the CWnd is being
deactivated.

hTask Specifies a task handle. If bActive is TRUE, the handle identifies the task
that owns the CWnd being deactivated. If bActive is FALSE, the handle
identifies the task that owns the CWnd being activated.

Remarks

See Also

CWnd::OnCanceIMode 951

Called for all top-level windows of the task being activated and for all top-level
windows of the task being deactivated.

WM ACTIVATEAPP

CWnd: :OnAskCbFormatName
Protected

Remarks

See Also

afx_msg void OnAskCbFormatName(UINT nMaxCount,
LPSTR IpszString); +

nMaxCount Specifies the maximum number of bytes to copy.

IpszString Points to the buffer where the copy of the format name is to be stored.

Called when the Clipboard contains a data handle for the CF _ OWNERDISPLA Y
format (that is, when the Clipboard owner will display the Clipboard contents). The
Clipboard owner should provide a name for its format. Override this member
function and copy the name of the CF _ OWNERDISPLA Y format into the
specified buffer, not exceeding the maximum number of bytes specified.

WM ASKCBFORMATNAME

CWnd: :OnCancelMode
Protected

Remarks

See Also

afx_msg void OnCanceIMode(); +

Called to inform CWnd to cancel any internal mode. If the CWnd object has the
focus, its OnCancelMode member function is called when a dialog box or message
box is displayed. This gives the CWnd the opportunity to cancel modes such as
mouse capture.

The default implementation responds by calling the ReleaseCapture Windows
function. Override this member function in your derived class to handle other
modes.

CWnd: :Default, : :ReleaseCapture, WM _ CANCELMODE

952 CWnd::OnChangeCbChain

CWnd: :OnChangeCbChain
Protected

Remarks

See Also

afx_msg void OnChangeCbChain(HWND hWndRemove,
HWND hWndAfter); •

hWndRemove Specifies the window handle that is being removed from the
Clipboard-viewer chain.

hWndAfter Specifies the window handle that follows the window being removed
from the Clipboard-viewer chain.

Called for each window in the Clipboard-viewer chain to notify it that a window is
being removed from the chain. Each CWnd object that receives an
OnChangeCbChain call should use the SendMessage Windows function to send
the WM _ CHANGECBCHAIN message to the next window in the Clipboard­
viewer chain (the handle returned by SetClipboardViewer). If hWndRemove is the
next window in the chain, the window specified by hWndAfter becomes the next
window, and Clipboard messages are passed on to it.

CWnd: :ChangeClipboardChain, : :SendMessage

CWnd: :OnChar
Protected afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags); •

nChar Contains the virtual-key code value of the key.

nRepCnt Contains the repeat count, the number of times the keystroke is repeated
when user holds down the key.

nFlags Contains the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

11-12

13

14

15

Description of nFlags

Scan code (OEM-dependent value).

Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

U sed internally by Windows.

Context code (1 if the ALT key is held down while the key is pressed;
otherwise 0).

Previous key state (1 if the key is down before the call; 0 if the key is up).

Transition state (1 if the key is being released; 0 if the key is being pressed).

Remarks

See Also

CWnd: :OnCharToltem 953

Called when a keystroke translates to a nonsystem character. This function is called
before the OnKeyUp member function and after the OnKeyDown member
function are called. OnChar contains the value of the keyboard key being pressed
or released. Since there is not necessarily a one-to-one correspondence between
keys pressed and OnChar calls generated, the information in nFlags is generally
not useful to applications. The information in nFlags applies only to the most recent
call to the OnKeyUp member function or the OnKeyDown member function that
precedes the call to OnChar.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

WM_CHAR, WM_KEYDOWN, WM_KEYUP

CWnd: :OnCharToltem
Protected

Remarks

Return Value

See Also

afx _msg int OnCharToItem(UINT nChar, CListBox* pListBox,
UINT nI ndex); •

nChar Specifies the value of the key pressed by the user.

pListBox Specifies a pointer to the list box. It may be temporary.

nI ndex Specifies the current caret position.

Called when a list box with the LBS _ W ANTKEYBOARDINPUT style sends its
owner a WM _ CHARTOITEM message in response to a WM _ CHAR message.

Specifies the action that the application performed in response to the call. A return
value of -2 indicates that the application handled all aspects of selecting the item
and wants no further action by the list box. A return value of -1 indicates that the
list box should perform the default action in response to the keystroke. A return
value of 0 or greater specifies the zero-based index of an item in the list box and
indicates that the list box should perform the default action for the keystroke on the
given item.

WM_CHAR, WM_CHARTOITEM

954 CWnd::OnChiidActivate

CWnd: :OnChiidActivate
Protected

Remarks

See Also

afx_msg void OnChildActivate();.

If the CWnd object is a multiple document interface (MDI) child window,
OnChildActivate is called when the user clicks the window's title bar or when the
window is activated, moved, or sized.

CWnd::SetWindowPos, WM _ CHILDACTIV ATE

CWnd: :OnChiidNotify
Protected

Remarks

Return Value

virtual BOOL OnChildNotify(UINT message, WPARAM wParam,
LP ARAM IP aram, LRESUL T* pLResult);

message A Windows message number sent to a parent window.

wParam The wparam associated with the message.

IP aram The lparam associated with the message.

pLResult A pointer to a value to be returned from the parent's window procedure.
This pointer will be NULL if no return value is expected.

Called by this window's parent window when it receives a notification message that
applies to this window. Never call this member function directly.

The default implementation of this member function returns 0, which means that the
parent should handle the message. Override this member function to extend the
manner in which a control responds to notification messages.

Nonzero if this window handles the message sent to its parent; otherwise O.

CWnd: :OnClose
Protected

Remarks

See Also

afx _ msg void OnClose(); •

Called as a signal that the CWnd or an application is to terminate. The default
implementation calls DestroyWindow.

CWnd::DestroyWindow, WM_CLOSE

CWnd::OnCompacting 955

CWnd: :OnCommand
Protected

Remarks

Return Value

See Also

virtual BOOL OnCommand(WPARAM wParam, LPARAM IParam);.

wParam Identifies the command ID of the menu item or control.

IParam The low-order word of IParam identifies the control that sends the
message if the message is from a control. Otherwise, the low-order word is O.
The high-order word of IParam specifies the notification message if the message
is from a control. If the message is from an accelerator, the high-order word is 1.
If the message is from a menu, the high-order word is O.

Called when the user selects an item from a menu, when a child control sends a
notification message, or when an accelerator keystroke is translated. OnCommand
processes the message map for control notification and ON_COMMAND entries,
and calls the appropriate member function. Override this member function in your
derived class to handle the WM _ COMMAND message. An override will not
process the message map unless the base class OnCommand is called.

An application returns nonzero if it processes this message; otherwise O.

WM _COMMAND, CCmdTarget::OnCmdMsg

CWnd: :OnCompacting
Protected

Remarks

See Also

afx_msg void OnCompacting(UINT nCpuTime);.

nCpuTime Specifies the ratio of CPU time currently spent by Windows compact­
ing memory to CPU time spent performing other operations. For example, 8000h
represents 50 percent of CPU time spent compacting memory.

Called for all top-level windows when Windows detects that more than 12.5 percent
of system time over a 30- to 60-second interval is being spent compacting memory.
This indicates that system memory is low. When a CWnd object receives this call,
it should free as much memory as possible, taking into account the current level of
activity of the application and the total number of applications running in Windows.
The application can call the GetNumTasks Windows function to determine how
many applications are running.

::GetNumTasks, WM_COMPACTING

956 CWnd ::OnCompareltem

CWnd: :OnCompareltem
Protected afx _ msg int OnCompareItem(int nIDCtl,

LPCOMPAREITEMSTRUCT IpCompareltemStruct);.

Windows 3.1 Only nIDCtl The identifier of the control that sent the WM COMPAREITEM

Remarks

Return Value

message .•

IpCompareltemStruct Contains a long pointer to a COMPAREITEMSTRUCT
data structure that contains the identifiers and application-supplied data for two
items in the combo or list box.

Specifies the relative position of a new item in a child sorted owner-draw combo or
list box. If a combo or list box is created with the CBS SORT or LBS SORT - -
style, Windows sends the combo-box or list-box owner a WM _ COMPAREITEM
message whenever the application adds a new item.

Two items in the combo or list box are reformed in a COMPAREITEMSTRUCT
structure pointed to by IpCompareltemStruct. OnCompareItem should return a
value that indicates which of the items should appear before the other. Typically,
Windows makes this call several times until it finds the new item's exact position.

If the hwndItem member of the COMP AREITEMSTRUCT structure belongs
to a CListBox or CComboBox object, then the Compareltem virtual function
of the appropriate class is called. Override CComboBox::CompareItem or
CListBox::CompareItem in your derived CListBox or CComboBox class to
do the item comparison.

Indicates the relative position of the two items. It may be any of the following
values:

Value

-1

o

Meaning

Item 1 sorts before item 2.

Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

COMPAREITEM· A COMP AREITEMSTRUCT data structure has this form:
STRUCT Structure

typedef struct tagCOMPAREITEMSTRUCT
UINT CtlType;
UINT CtlID;
HWND hwnd Item;
UINT itemIDl;
DWORD itemDatal;
UINT itemID2;
DWORD itemData2;

COMPAREITEMSTRUCT;

Members

See Also

CWnd::OnCreate 957

The COMPAREITEMSTRUCT members are as follows:

CtlType ODT_LISTBOX (which specifies an owner-draw list box) or
ODT _ COMBOBOX (which specifies an owner-draw combo box).

CtiID The control ID for the list box or combo box.

hwndItem The window handle of the control.

itemIDl The index of the first item in the list box or combo box being compared.

itemDatal Application-supplied data for the first item being compared. This
value was passed in the call that added the item to the combo or list box.

itemID2 Index of the second item in the list box or combo box being compared.

itemData2 Application-supplied data for the second item being compared. This
value was passed in the call that added the item to the combo or list box.

WM _ COMPAREITEM, CListBox: :CompareItem,
CComboBox: :CompareItem

CWnd: :OnCreate
Protected

Remarks

Return Value

afx_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);.

IpCreateStruct Points to a CREATESTRUCT structure that contains
information about the CWnd object being created.

Called when an application requests that the Windows window be created by
calling the Create or CreateEx member function. The CWnd object receives
this call after the window is created but before it becomes visible. OnCreate is
called before the Create or CreateEx member function returns. Override this
member function to perform any needed initialization of a derived class. The
CREATESTRUCT structure contains copies of the parameters used to create
the window.

OnCreate must return 0 to continue the creation of the CWnd object. If the
application returns -1, the window will be destroyed.

958 CWnd::OnCreate

CREATESTRUCT
Structure

Members

A CREATESTRUCT structure has the following form:

typedef struet tagCREATESTRUCT
void FAR* lpCreateParams;
HINSTANCE hlnstanee;
HMENU hMenu;
HWND hwndParent;
i nt ey;
int ex;
i nt y;

int x;
LONG style;
LPCSTR lpszName;
LPCSTR lpszClass;
DWORD dwExStyle;

CREATESTRUCT;

The CREATESTRUCT members are as follows:

IpCreateParams Points to data to be used to create the window.

hlnstanee Identifies the module-instance handle of the module that owns the new
window.

hMenu Identifies the menu to be used by the new window. If a child window,
contains the integer ID.

hwndParent Identifies the window that owns the new window. This member is
NULL if the new window is a top-level window.

ey Specifies the height of the new window.

ex Specifies the width of the new window.

y Specifies the y-coordinate of the upper-left comer of the new window.
Coordinates are relative to the parent window if the new window is a child
window; otherwise, coordinates are relative to the screen origin.

x Specifies the x-coordinate of the upper-left comer of the new window.
Coordinates are relative to the parent window if the new window is a child
window; otherwise, coordinates are relative to the screen origin.

style Specifies the new window's style.

IpszName Points to a null-terminated string that specifies the new window's
name.

See Also

CWnd: :OnCtlColor 959

IpszClass Points to a null-terminated string that specifies the new window's
Windows class name (a WNDCLASS structure).

dwExStyle Specifies the extended style for the new window.

CWnd::CreateEx, CWnd::OnNcCreate, WM_CREATE, CWnd::Default,
CWnd: :FromHandle

CWnd: :OnCtlColor
Protected

Remarks

afx_msg HBRUSH OnCtiColor(CDC* pDC, CWnd* pWnd,
UINT nCtlColor); •

pDC Contains a pointer to the display context for the child window. May be
temporary.

p W nd Contains a pointer to the control asking for the color. May be temporary.

nCtlColor Contains one of the following values, specifying the type of control:

• CTLCOLOR BTN Button control

• CTLCOLOR DLG Dialog box

• CTLCOLOR EDIT Edit control

• CTLCOLOR LISTBOX List-box control

• CTLCOLOR MSGBOX Message box

• CTLCOLOR SCROLLBAR Scroll-bar control

• CTLCOLOR STATIC Static control

Called when a child control is about to be drawn. Most controls send this message
to their parent (usually a dialog box) to prepare the pDC for drawing the control
using the correct colors.

To change the text color, call the SetTextColor member function with the desired
red, green, and blue (RGB) values. To change the background color of a single­
line edit control, set the brush handle in both the CTLCOLOR_EDIT and
CTLCOLOR_MSGBOX message codes, and call the CDC::SetBkColor
function in response to the CTLCOLOR_EDIT code.

960 CWnd::OnDeadChar

Return Value

See Also

OnCtiColor will not be called for the list box of a drop-down combo box because
the drop-down list box is actually a child of the combo box and not a child of the
window. To change the color of the drop-down list box, create a CComboBox with
an override of OnCtlColor that checks for CTLCOLOR LISTBOX in the
nCtlColor parameter. In this handler, the SetBkColor member function must be
used to set the background color for the text.

OnCtlColor must return a handle to the brush that is to be used for painting the
control background.

CDC::SetBkColor, WM_CTLCOLOR

CWnd: :On DeadChar
Protected

Remarks

afx _ msg void OnDeadChar(UINT nChar, UINT nRepCnt, UINT nFlags); •

nChar Specifies the dead-key character value.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad (1 if it
is an extended key; otherwise 0).

Not used.

Used internally by Windows.

Context code (l if the ALT key is held down while the key is pressed;
otherwise 0).

Previous key state (1 if the key is down before the call, 0 if the key is up).

Transition state (1 if the key is being released, 0 if the key is being pressed).

Called when the OnKeyUp member function and the OnKeyDown member
functions are called. This member function can be used to specify the character
value of a dead key. A dead key is a key, such as the umlaut (double-dot) character,
that is combined with other characters to form a composite character. For example,
the umlaut -0 character consists of the dead key, umlaut, and the 0 key.

An application typically uses OnDeadChar to give the user feedback about each
key pressed. For example, an application can display the accent in the current

See Also

CWnd::OnDeleteltem 961

character position without moving the caret. Since there is not necessarily a one-to­
one correspondence between keys pressed and OnDeadChar calls, the information
in nFlags is generally not useful to applications. The information in nFlags applies
only to the most recent call to the OnKeyUp member function or the OnKeyDown
member function that precedes the OnDeadChar call.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

WM DEAD CHAR

CWnd: :On Deleteltem
Protected

Remarks

afx_ msg void OnDeleteItem(int nIDCtl,
LPDELETEITEMSTRUCT IpDeleteltemStruct); •

nIDCtl The identifier of the control that sent the WM _DELETEITEM message.

IpDeleteltemStruct Specifies a long pointer to a DELETEITEMSTRUCT data
structure that contains information about the deleted list-box item. This structure
is described later.

Called to inform the owner of an owner-draw list box or combo box that the
list box or combo box is destroyed or that items have been removed by
CComboBox: :DeleteString, CListBox: :DeleteString,
CComboBox: : ResetContent, or CListBox: : ResetContent.

If the hwndItem member of the DELETEITEMSTRUCT structure belongs to a
combo box or list box, then the DeleteItem virtual function of the appropriate class
is called. Override the DeleteItem member function of the appropriate control's
class to delete item-specific data.

DELETEITEM· A DELETEITEMSTRUCT data structure has this form:
STRUCT Structure

typedef struct tagDELETEITEMSTRUCT
UINT CtlType
UINT CtlID;
UINT itemID;
HWND hwndItem;
DWORD itemData;

DELETEITEMSTRUCT;

962 CWnd::OnDestroy

Members The DELETEITEMSTRUCT members are as follows:

See Also

CtiType Contains ODT _ LISTBOX (which specifies an owner-draw list box) or
ODT _ COMBOBOX (which specifies an owner-draw combo box).

CtiID Contains the control ID for the list box or combo box.

itemID Contains the index of the item in the list box or combo box being
removed.

hwndItem Contains the window handle of the control.

itemData Contains the value passed to the control by CComboBox: :AddString,
CComboBox: :InsertString, CListBox: :AddString, or
CListBox: :InsertString.

CComboBox: :DeleteString, CListBox: :DeleteString,
CComboBox: :ResetContent, CListBox: :ResetContent, WM _ DELETEITEM,
CListBox: : DeleteItem, CComboBox: : DeleteItem

CWnd::OnDestroy
Protected

Remarks

See Also

afx_msg void OnDestroy();.

Called to inform the CWnd object that it is being destroyed. OnDestroy is called
after the CWnd object is removed from the screen. OnDestroy is called first for
the CWnd being destroyed, then for the child windows of CWnd as they are
destroyed. It can be assumed that all child windows still exist while OnDestroy
runs. If the CWnd object being destroyed is part of the Clipboard-viewer chain (set
by calling the SetClipboardViewer member function), the CWnd must remove
itself from the Clipboard-viewer chain by calling the ChangeClipboardChain
member function before returning from the OnDestroy function.

CWnd::ChangeClipboardChain, CWnd::DestroyWindow,
CWnd::SetClipboardViewer

CWnd: :OnDrawClipboard 963

CWnd: :OnDestroyClipboard
Protected

Remarks

See Also

afx _ msg void OnDestroyClipboard(); •

Called for the Clipboard owner when the Clipboard is emptied through a call to the
EmptyClipboard Windows function.

: :EmptyClipboard, WM _ DESTROYCLIPBOARD

CWnd: :OnDevModeChange
Protected

Remarks

See Also

afx_msg void OnDevModeChange(LPSTR IpDeviceName);.

IpDeviceName Points to the device name specified in the Windows initialization
file, WIN.INI.

Called for all top-level CWnd objects when the user changes device-mode settings.
Applications that handle the WM _ DEVMODECHANGE message may reinitial­
ize their device-mode settings. Applications that use the Windows ExtDeviceMode
function to save and restore device settings typically do not process this function.
This function is not called when the user changes the default printer from Control
Panel. In this case, the On WinlniChange function is called.

WM DEVMODECHANGE

CWnd: :OnDrawClipboard
Protected

Remarks

See Also

afx _ msg void OnDrawClipboard(); •

Called for each window in the Clipboard-viewer chain when the contents of
the Clipboard change. Only applications that have joined the Clipboard-viewer
chain by calling the SetClipboardViewer member function need to respond to
this call. Each window that receives an OnDrawClipboard call should call the
SendMessage Windows function to pass a WM _ DRA WCLIPBOARD message
on to the next window in the Clipboard-viewer chain. The handle of the next
window is returned by the SetClipboardViewer member function; it may be
modified in response to an OnChangeCbChain member function call.

::SendMessage, CWnd::SetClipboardViewer, WM _ CHANGECBCHAIN,
WM DRA WCLIPBOARD

964 CWnd::OnDrawltem

CWnd: :On Drawltem
Protected afx _ msg void OnDrawltem(int nIDCtl,

LPDRA WITEMSTRUCT IpDrawltemStruct); •

Windows 3.1 Only nIDCtl Contains the identifier of the control that sent the WM DRA WIT EM

Remarks

message. If a menu sent the message, nIDCtl contains O .•

IpDrawltemStruct Specifies a long pointer to a DRA WITEMSTRUCT structure
that has information about the item to be drawn and the type of drawing required.

Called for the owner of an owner-draw button control, combo-box control, list-box
control, or menu when a visual aspect of the control or menu has changed. The
itemAction member of the DRAWITEMSTRUCT structure defines the drawing
operation that is to be performed. The data in this member allows the owner of the
control to determine what drawing action is required. Before returning from proc­
essing this message, an application should ensure that the device context identified
by the hDC member of the DRA WITEMSTRUCT structure is restored to the
default state.

If the hwndltem member belongs to a CButton, CMenu, CListBox or
CComboBox object, then the Drawltem virtual function of the appropriate class is
called. Override the Draw Item member function of the appropriate control's class
to draw the item.

DRAWITEM- A DRA WITEMSTRUCT structure has this form:
STRUCT Structure

Members

typedef struct tagORAWITEMSTRUCT
UINT CtlType;
UINT CtlIO;
UINT itemIO;
UINT itemAction;
UINT itemState;
HWNO hwnd Item;
HOC hOC;
RECT rcltem;
OWORO- i temOata;

ORAWITEMSTRUCT;

The DRA WITEMSTRUCT members are as follows:

CtiType The control type. The values for control types are as follows:

• ODT BUTTON Owner-draw button

• ODT COMBOBOX Owner-draw combo box

• ODT LISTBOX Owner-draw list box

• ODT MENU Owner-draw menu

CWnd::OnDrawltem 965

CtiID The control ID for a combo box, list box, or button. This member is not
used for a menu.

itemID The menu-item ID for a menu or the index of the item in a list box or
combo box. For an empty list box or combo box, this member is a negative value,
which allows the application to draw only the focus rectangle at the coordinates
specified by the rcItem member even though there are no items in the control.
The user can thus be shown whether the list box or combo box has the input focus.
The setting of the bits in the itemAction member determines whether the
rectangle is to be drawn as though the list box or combo box has input focus.

itemAction Defines the drawing action required. This will be one or more of the
following bits:

• ODA DRAWENTIRE This bit is set when the entire control needs to be
drawn.

• ODA_FOCUS This bit is set when the control gains or loses input focus.
The itemS tate member should be checked to determine whether the control
has focus.

• ODA_SELECT This bit is set when only the selection status has changed.
ItemState should be checked to determine the new selection state.

itemState Specifies the visual state of the item after the current drawing action
takes place. That is, if a menu item is to be dimmed, the state flag
ODS _ GRAYED will be set. The state flags are as follows:

• ODS CHECKED This bit is set if the menu item is to be checked. This
bit is used only in a menu.

• ODS DISABLED This bit is set if the item is to be drawn as disabled.

• ODS_FOCUS This bit is set if the item has input focus.

• ODS GRAYED This bit is set if the item is to be dimmed. This bit is used
only in a menu.

• 0 DS SELECTED This bit is set if the item's status is selected.

hwndItem Specifies the window handle of the control for combo boxes, list
boxes, and buttons. Specifies the handle of the menu (HMENU) that contains the
item for menus.

hDC Identifies a device context. This device context must be used when
performing drawing operations on the control.

966 CWnd::OnDropFiles

See Also

rcltem A rectangle in the device context specified by the hDC member that
defines the boundaries of the control to be drawn. Windows automatically clips
anything the owner draws in the device context for combo boxes, list boxes, and
buttons, but it does not clip menu items. When drawing menu items, the owner
must not draw outside the boundaries of the rectangle defined by the rcltem
member.

itemData For a combo box or list box, this member contains the value that was
passed to the list box by one of the following:

CComboBox: :AddString
CComboBox: :InsertString
CListBox: :AddString
CListBox: :InsertString

For a menu, this member contains the value that was passed to the menu by one of
the following:

CMenu: :AppendMenu
CMenu: :InsertMenu
CMenu: :ModifyMenu

WM_DRAWITEM, CButton::Drawltem, CMenu::Drawltem,
CListBox: :Drawltem, CComboBox: :Draw Item

CWnd: :OnDropFiles
Windows 3.1 Only afx_msg void OnDropFiles(HDROP hDroplnfo);.
Protected

Remarks

See Also

hDroplnfo A pointer to an internal data structure that describes the dropped files.
This handle is used by the DragFinish, DragQueryFile, and DragQueryPoint
Windows functions to retrieve information about the dropped files.

Called when the user releases the left mouse button over a window that has
registered itself as the recipient of dropped files. Typically, a derived class will be
designed to support dropped files and it will register itself during window
construction.

CWnd: :DragAcceptFiles, WM _ DROPFILES, : :DragAcceptFiles,
: :DragFinish, : :DragQueryFile, : : DragQueryPoint

CWnd::OnEndSession 967

CWnd: :On Enable
Protected

Remarks

See Also

afx _ msg void OnEnable(BOOL bEnable); •

bEnable Specifies whether the CWnd object has been enabled or disabled. This
parameter is TRUE if the CWnd has been enabled; it is FALSE if the CWnd
has been disabled.

Called when an application changes the enabled state of the CWnd object.
OnEnable is called before the Enable Window member function returns, but
after the window enabled state (WS _DISABLED style bit) has changed.

CWnd::EnableWindow, WM_ENABLE

CWnd: :On EndSession
Protected

Remarks

See Also

afx_msg void OnEndSession(BOOL bEnding);.

bEnding Specifies whether or not the session is being ended. It is TRUE if the
session is being ended; otherwise FALSE.

Called after the CWnd object has returned a nonzero value from an
OnQueryEndSession member function call. The OnEndSession call informs
the CWnd object whether the session is actually ending. If bEnding is TRUE,
Windows can terminate any time after all applications have returned from process­
ing this call. Consequently, have an application perfonn all tasks required for
termination within OnEndSession. You do not need to call the DestroyWindow
member function or PostQuitMessage Windows function when the session is
ending.

CWnd::DestroyWindow, CWnd::OnQueryEndSession, ::ExitWindows,
::PostQuitMessage, WM_ QUERYENDSESSION, CWnd::Default,
WM ENDSESSION

968 CWnd::OnEnterldle

CWnd: :OnEnterldle
Protected

Remarks

See Also

afx_IDsg void OnEnterIdle(UINT nWhy, CWnd* pWho);.

n Why Specifies whether the message is the result of a dialog box or a menu being
displayed. This parameter can be one of the following values:

• MSGF _DIALOGBOX The system is idle because a dialog box is being
displayed.

• MSGF _MENU The system is idle because a menu is being displayed.

pWho Specifies a pointer to the dialog box (if nWhy is MSGF _DIALOGBOX),
or the window that contains the displayed menu (if nWhy is MSGF _MENU).
This pointer may be temporary and should not be stored for later use.

A call to OnEnterIdle informs an application's main window procedure that a
modal dialog box or a menu is entering an idle state. A modal dialog box or menu
enters an idle state when no messages are waiting in its queue after it has processed
one or more previous messages.

WM ENTERIDLE

CWnd: :OnEraseBkgnd
Protected

Remarks

afx_IDsg BOOL OnEraseBkgnd(CDC* pDC);.

pDC Specifies the device-context object.

Called when the CWnd object background needs erasing (for example, when
resized). It is called to prepare an invalidated region for painting.

The default implementation erases the background using the window class back­
ground brush specified by the hbrBackground member of the window class
structure. If the hbrBackground member is NULL, your overridden version of
OnEraseBkgnd should erase the background color. Your version should also align
the origin of the intended brush with the CWnd coordinates by first calling
UnrealizeObject for the brush, and then selecting the brush.

An overridden OnEraseBkgnd should return nonzero in response to
WM _ERASEBKGND if it processes the message and erases the background; this
indicates that no further erasing is required. If it returns 0, the window will remain
marked as needing to be erased. (Typically, this means that the fErase member
of the PAINTSTRUCT structure will be TRUE.) Windows assumes the back-

Return Value

See Also

CWnd::OnGetDlgCode 969

ground is computed with the MM _TEXT mapping mode. If the device context is
using any other mapping mode, the area erased may not be within the visible part
of the client area.

Nonzero if it erases the background; otherwise O.

WM _ ICONERASEBKGND, CGdiObject:: UnrealizeObject,
WM ERASEBKGND

CWnd: :OnFontChange
Protected

Remarks

See Also

afx _ msg void OnFontChange(); •

All top-level windows in the system receive an OnFontChange call after the
application changes the pool of font resources. An application that adds or
removes fonts from the system (for example, through the AddFontResource
or RemoveFontResource Windows function) should send the
WM_FONTCHANGE message to all top-level windows. To send this message,
use the SendMessage Windows function with the hWnd parameter set to OxFFFF.

: :AddFontResource, : :RemoveFontResource, : :SendMessage,
WM FONTCHANGE

CWnd: :OnGetDlgCode
Protected

Remarks

Return Value

afx _ msg UINT OnGetDlgCode(); •

Normally, Windows handles all arrow-key and TAB-key input to a CWnd control.
By overriding OnGetDlgCode, a CWnd control can choose a particular type of
input to process itself. The default OnGetDlgCode functions for the predefined
control classes return a code appropriate for each class.

One or more of the following values, indicating which type of input the application
processes:

• DLGC_BUTTON Button (generic).

• DLGC _ DEFPUSHBUTTON Default pushbutton.

• DLGC HASSETSEL EM _ SETSEL messages.

970 CWnd::OnGetMinMaxlnfo

See Also

• DLGC UNDEFPUSHBUTTON No default pushbutton processing. (An
application can use this flag with DLGC _BUTTON to indicate that it processes
button input but relies on the system for default pushbutton processing.)

• DLGC RADIOBUTTON Radio button.

• DLGC STATIC Static control.

• DLGC _ WANT ALLKEYS All keyboard input.

• DLGC_WANTARROWS Arrow keys.

• DLGC _ W ANTCHARS WM _CHAR messages.

• DLGC _ W ANTMESSAGE All keyboard input. The application passes this
message on to the control.

• DLGC W ANTT AB TAB key.

WM GETDLGCODE

CWnd: :OnGetMinMaxlnfo
Protected

Remarks

MINMAXINFO
Structure

afx_msg void OnGetMinMaxInfo(MINMAXINFO FAR* IpMMI);.

IpMMI Points to a MINMAXINFO structure that contains information about a
window's maximized size and position and its minimum and maximum tracking
size. For more about this structure, see the "MINMAXINFO Structure" section.

Called whenever Windows needs to know the maximized position or dimensions, or
the minimum or maximum tracking size. The maximized size is the size of the
window when its borders are fully extended. The maximum tracking size of the
window is the largest window size that can be achieved by using the borders to size
the window. The minimum tracking size of the window is the smallest window size
that can be achieved by using the borders to size the window. Windows fills in an
array of points specifying default values for the various positions and dimensions.
The application may change these values in OnGetMinMaxInfo.

The MINMAXINFO structure has the following form:

typedef struct tagMINMAXINFO {
POINT ptReserved;
POINT ptMaxS;ze;
POINT ptMaxPos;t;on;
POINT ptMinTrackS;ze;
POINT ptMaxTrackS;ze;

MINMAXINFO;

Members

See Also

CWnd::OnHScroll 971

The MINMAXINFO members are as follows:

ptReserved Reserved for internal use.

ptMaxSize Specifies the maximized width (point.x) and the maximized height
(point.y) of the window.

ptMaxPosition Specifies the position of the left side of the maximized window
(point.x) and the position of the top of the maximized window (point.y).

ptMinTrackSize Specifies the minimum tracking width (point.x) and the
minimum tracking height (point.y) of the window.

ptMaxTrackSize Specifies the maximum tracking width (point.x) and the
maximum tracking height (point.y) of the window.

WM GETMINMAXINFO

CWnd: :OnHScroll
Protected afx_msg void OnHScroll(UINT nSBCode, UINT nPos,

CScrollBar* pScrollBar); •

nSBCode Specifies a scroll-bar code that indicates the user's scrolling request.
This parameter can be one of the following:

• SB LEFT Scroll to far left.

• SB LINELEFT Scroll left.

• SB LINERIGHT Scroll right.

• SB PAGEL EFT Scroll one page left.

• SB _ P AGERIGHT Scroll one page right.

• SB _RIGHT Scroll to far right.

• SB _ THUMBPOSITION Scroll to absolute position. The current position
is specified by the nPos parameter.

• SB _ THUMBTRACK Drag scroll box to specified position. The current
position is specified by the nP os parameter.

nPos Specifies the scroll-box position if the scroll-bar code is
SB _ THUMB POSITION or SB _ THUMBTRACK; otherwise not used.
Depending on the initial scroll range, nP os may be negative and should be cast
to an int if necessary.

972 CWnd::OnHScroIiClipboard

Remarks

See Also

pScrollBar If the scroll message came from a scroll-bar control, contains a
pointer to the control. If the user clicked a window's scroll bar, this parameter is
NULL. The pointer may be temporary and should not be stored for later use.

Called when the user clicks a window's horizontal scroll bar. The
SB _ THUMB TRACK scroll-bar code typically is used by applications that give
some feedback while the scroll box is being dragged. If an application scrolls the
contents controlled by the scroll bar, it must also reset the position of the scroll box
with the SetScrollPos member function.

CWnd::SetScrollPos, WM_ VSCROLL, WM_HSCROLL

CWnd: :OnHScroliClipboard
Protected

Remarks

See Also

afx _ msg void OnHScrollClipboard(CWnd* pClipAppWnd, UINT nSBCode,
UINT nPos);.

pClipAppWnd Specifies a pointer to a Clipboard-viewer window. The pointer
may be temporary and should not be stored for later use.

nSBCode Specifies one of the following scroll-bar codes in the low-order word:

• SB _BOTTOM Scroll to lower right.

• SB ENDSCROLL End scroll.

• SB LINEDOWN Scroll one line down.

• SB _LINEUP Scroll one line up.

• SB _ PAGEDOWN Scroll one page down.

• SB _ P AGEUP Scroll one page up.

• SB _ THUMBPOSITION Scroll to the absolute position. The current
position is provided in nP os.

• SB _TOP Scroll to upper left.

nPos Contains the scroll-box position if the scroll-bar code is
SB_THUMBPOSITION; otherwise not used.

The Clipboard owner's OnHScrollClipboard member function is called by the
Clipboard viewer when the Clipboard data has the CF _ OWNERDISPLA Y format
and there is an event in the Clipboard viewer's horizontal scroll bar. The owner
should scroll the Clipboard image, invalidate the appropriate section, and update the
scroll-bar values.

CWnd::On VScrollClipboard, WM _ HSCROLLCLIPBOARD

CWnd::OnlnitMenuPopup 973

CWnd: :OnlconEraseBkgnd
Protected

Remarks

See Also

afx _ msg void OnIconEraseBkgnd(CDC* pDC); •

pDC Specifies the device-context object of the icon. May be temporary and
should not be stored for later use.

Called for a minimized (iconic) CWnd object when the background of the icon
must be filled before painting the icon. CWnd receives this call only if a class icon
is defined for the window default implementation; otherwise OnEraseBkgnd is
called. The DefWindowProcmember function fills the icon background with the
background brush of the parent window.

CWnd::OnEraseBkgnd, WM_ICONERASEBKGND

CWnd: :OnlnitMenu
Protected

Remarks

See Also

afx_msg void OnInitMenu(CMenu* pMenu);.

pM enu Specifies the menu to be initialized. May be temporary and should not be
stored for later use.

Called when a menu is about to become active. The call occurs when the user clicks
an item on the menu bar or presses a menu key. Override this member function to
modify the menu before it is displayed. OnInitMenu is only called when a menu is
first accessed; OnInitMenu is called only once for each access. This means, for
example, that moving the mouse across several menu items while holding down the
button does not generate new calls. This call does not provide information about
menu items.

CWnd::OnInitMenuPopup, WM_INITMENU

CWnd: :OnlnitMenuPopup
Protected afx_msg void OnInitMenuPopup(CMenu* pPopupMenu, UINT nlndex,

BOOL bSysMenu); •

pPopupMenu Specifies the menu object of the pop-up menu. May be temporary
and should not be stored for later use.

974 CWnd::OnKeyDown

Remarks

See Also

nI ndex Specifies the index of the pop-up menu in the main menu.

bSysMenu TRUE if the pop-up menu is the Control menu; otherwise FALSE.

Called when a pop-up menu is about to become active. This allows an application to
modify the pop-up menu before it is displayed without changing the entire menu.

CWnd: :OnInitMenu, WM _ INITMENUPOPUP

CWnd: :OnKeyDown
Protected

Remarks

afx _ msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags); •

nChar Specifies the virtual-key code of the given key.

nRepCnt Repeat count (the number of times the keystroke is repeated as a result
of the user holding down the key).

nFlags Specifies the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value).

Extended key, such as a function key or a key on the numeric keypad (1 if
it is an extended key).

Not used.

Used internally by Windows.

Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

Previous key state (1 if the key is down before the call, 0 if the key is up).

Transition state (1 if the key is being released, 0 if the key is being
pressed).

For a WM_KEYDOWN message, the key-transition bit (bit 15) is 0 and the
context-code bit (bit 13) is O.

Called when a nonsystem key is pressed. A nonsystem key is a keyboard key that is
pressed when the ALT key is not pressed or a keyboard key that is pressed when
CWnd has the input focus. Because of auto-repeat, more than one OnKeyDown
call may occur before an OnKeyUp member function call is made. The bit that
indicates the previous key state can be used to determine whether the OnKeyDown
call is the first down transition or a repeated down transition.

See Also

CWnd::OnKeyUp 975

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

CWnd: :OnKeyUp
Protected

Remarks

afx_ffisg void OnKeyUp(UINT nChar, UINT nRepCnt, UINT nFlags);.

nChar Specifies the virtual-key code of the given key.

nRepCnt Repeat count (the number of times the keystroke is repeated as a result
of the user holding down the key).

nFlags Specifies the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad (l if
it is an extended key; otherwise 0).

Not used.

Used internally by Windows.

Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

Previous key state (1 if the key is down before the call, 0 if the key is up).

Transition state (1 if the key is being released, 0 if the key is being
pressed).

For a WM_KEYUP message, the key-transition bit (bit 15) is 1 and the context­
code bit (bit 13) is O.

Called when a nonsystem key is released. A nonsystem key is a keyboard key that
is pressed when the ALT key is not pressed or a keyboard key that is pressed when
the CWnd has the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

976 CWnd::OnKiIIFocus

See Also

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

WM_CHAR, WM_KEYUP, CWnd::Default, WM_KEYDOWN

CWnd::OnKiIiFocus
Protected

Remarks

See Also

afx_msg void OnKillFocus(CWnd* pNewWnd);.

pNewWnd Specifies a pointer to the window that receives the input focus (may be
NULL or may be temporary).

Called immediately before losing the input focus. If the CWnd object is displaying
a caret, the caret should be destroyed at this point.

CWnd: :SetFocus, WM_ KILLFOCUS

CWnd: :OnLButtonDblClk
Protected

Remarks

afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point); •

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user double-clicks the left mouse button. Only windows that have
the CS _ DBLCLKS WNDCLASS style will receive OnLButtonDblClk calls.
This is the default for Microsoft Foundation class windows. Windows calls
OnLButtonDblClk when the user presses, releases, and then presses the left
mouse button again within the system's double-click time limit. Double-clicking the

See Also

CWnd::OnLButtonUp 977

left mouse button actually generates four events: WM_LBUTTONDOWN,
WM_LBUTTONUP messages, the WM_LBUTTONDBLCLK call, and another
WM _ LBUTTONUP message when the button is released.

CWnd::OnLButtonDown, CWnd::OnLButtonUp,
WM LBUTTONDBLCLK

CWnd: :OnLButtonDown
Protected

Remarks

See Also

afx_msg void OnLButtonDown(UINT nFlags, CPoint point); •

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the cTRLkey is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user presses the left mouse button.

CWnd::OnLButtonDblClk, CWnd::OnLButtonUp, WM _ LBUTTONDOWN

CWnd: :OnLButtonUp
Protected afx_msg void OnLButtonUp(UINT nFlags, CPoint point); •

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK SHIFT Set if the SHIFT key is down.

978 CWnd::OnMButtonDbIClk

Remarks

See Also

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user releases the left mouse button.

CWnd::OnLButtonDbIClk, CWnd::OnLButtonDown, WM _ LBUTTONUP

CWnd::OnMButtonDbIClk
Protected

Remarks

See Also

afx_msg void OnMButtonDblClk(UINT nFlags, CPointpoint);.

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user double-clicks the middle mouse button. Only windows that
have the CS _ DBLCLKS WNDCLASS style will receive OnMButtonDblClk
calls. This is the default for all Microsoft Foundation class windows. Windows
generates an OnMButtonDblClk call when the user presses, releases, and then
presses the middle mouse button again within the system's double-click time limit.
Double-clicking the middle mouse button actually generates four events:
WM _ MBUTTONDOWN and WM _ MBUTTONUP messages, the
WM _ MBUTTONDBLCLK call, and another WM _ MBUTTONUP message.

CWnd::OnMButtonDown, CWnd::OnMButtonUp,
WM MBUTTONDBLCLK

CWnd::OnMButtonUp 979

CWnd: :OnMButtonDown
Protected

Remarks

See Also

afx _ msg void OnMButtonDown(UINT nFZags, CPoint point); •

nFZags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user presses the middle mouse button.

CWnd::OnMButtonDbIClk, CWnd::OnMButtonUp,
WM MBUTTONDOWN

CWnd: :OnMButtonUp
Protected

Remarks

See Also

afx_msg void OnMButtonUp(UINT nFZags, CPointpoint);.

nFZags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user releases the middle mouse button.

CWnd: :OnMButtonDbIClk, CWnd: :OnMButtonDown, WM _ MBUTTONUP

980 CWnd::OnMDIActivate

CWnd: :OnMDIActivate
Protected

Remarks

See Also

afx _ msg void OnMDIActivate(BOOL bActivate, CWnd* pActivateWnd,
CWnd* pDeactivateWnd);.

bActivate TR UE if the child is being activated and FALSE if it is being
deactivated.

pActivateWnd Contains a pointer to the MDI child window to be activated. When
received by an MDI child window, pActivateWnd contains a pointer to the child
window being activated. This pointer may be temporary and should not be stored
for later use.

pDeactivateWnd Contains a pointer to the MDI child window being deactivated.
This pointer may be temporary and should not be stored for later use.

Called for the child window being deactivated and the child window being
activated. An MDI child window is activated independently of the MDI frame
window. When the frame becomes active, the child window that was last activated
with a OnMDIActivate call receives an WM _ NCACTIV ATE message to draw
an active window frame and caption bar, but it does not receive another
OnMDIActivate call.

CMDIFrameWnd::MDIActivate, WM_MDIACTIVATE

CWnd: :OnMeasureltem
Protected afx _ msg void OnMeasureItem(int nIDCtl,

LPMEASUREITEMSTRUCT lpMeasureltemStruct); •

Windows 3.1 Only nIDCtl The ID of the control. •

Remarks

lpMeasureltemStruct Points to a MEASUREITEMSTRUCT data structure that
contains the dimensions of the owner-draw control.

Called by the framework for the owner of an owner-draw button, combo box, list
box, or menu item when the control is created.

Override this member function and fill in the MEASUREITEMSTRUCT data
structure pointed to by lpMeasureltemStruct and return; this infonns Windows of
the dimensions of the control and allows Windows to process user interaction with
the control correctly.

CWnd::OnMeasureltem 981

If a list box or combo box is created with the LBS OWNERDRA WV ARIABLE
or CBS _ OWNERDRA WV ARIABLE style, the framework calls this function for
the owner for each item in the control; otherwise this function is called once.
Windows initiates the call to OnMeasureItem for the owner of combo boxes and
list boxes created with the OWNERDRA WFIXED style before sending the
WM _ INITDIALOG message. As a result, when the owner receives this call,
Windows has not yet determined the height and width of the font used in the
control; function calls and calculations that require these values should occur in the
main function of the application or library.

If the item being measured is a CMenu, CListBox or CComboBox object, then
the MeasureItem virtual function of the appropriate class is called. Override the
MeasureItem member function of the appropriate control's class to calculate and
set the size of each item.

MEASUREITEM· A MEASUREITEMSTRUCT data structure has the following form:
STRUCT Structure

Members

typedef struct tagMEASUREITEMSTRUCT {
UINT CtlType;
UINT CtlID;
UINT itemID;
UINT itemWidth;
UINT itemHeight;
DWORD i temData

MEASUREITEMSTRUCT;

Failure to fill out the proper members in the MEASUREITEMSTRUCT structure
will cause improper operation of the control.

The MEASUREITEMSTRUCT members are as follows:

CtlType Contains the control type. The values for control types are as follows:

• ODT COMBOBOX Owner-draw combo box

• ODT LISTBOX Owner-draw list box

• ODT MENU Owner-draw menu

CtlID Contains the control ID for a combo box, list box, or button. This member
is not used for a menu.

itemID Contains the menu-item ID for a menu or the list-box-item ID for a
variable-height combo box or list box. This member is not used for a fixed-height
combo box or list box, or for a button.

item Width Specifies the width of a menu item. The owner of the owner-draw
menu item must fill this member before it returns from the message.

982 CWnd::OnMenuChar

See Also

item Height Specifies the height of an individual item in a list box or a menu.
Before it returns from the message, the owner of the owner-draw combo box, list
box, or menu item must fill out this member. The maximum height of a list box
item is 255.

itemData For a combo box or list box, this member contains the value that was
passed to the list box by one of the following:

CComboBox: :AddString
CComboBox: :InsertString
ListBox: :AddString
ListBox: :InsertString

For a menu, this member contains the value that was passed to the menu by one of
the following:

CMenu: : AppendMenu
CMenu: :InsertMenu
CMenu: : ModifyMenu

CMenu: : MeasureItem, CListBox: : MeasureItem,
CComboBox: :MeasureItem, WM _ MEASUREITEM

CWnd: :OnMenuChar
Protected

Remarks

afx_ msg LRESUL T OnMenuChar(UINT nChar, UINT nFlags,
CMenu* pMenu); •

nChar Specifies the ASCII character that the user pressed.

nFlags Contains the MF _POPUP flag if the menu is a pop-up menu. It contains
the MF _ SYSMENU flag if the menu is a Control menu.

pM enu Contains a pointer to the selected CMenu. The pointer may be temporary
and should not be stored.

Called when the user presses a menu mnemonic character that doesn't match any of
the predefined mnemonics in the current menu. It is sent to the CWnd that owns the
menu. OnMenuChar is also called when the user presses ALT and any other key,
even if the key does not correspond to a mnemonic character. In this case, pM enu
points to the menu owned by the CWnd, and nFlags is o.

Return Value

See Also

CWnd::OnMenuSelect 983

The high-order word of the return value should contain one of the following
command codes:

Value

o
Description

Tells Windows to discard the character that the user pressed and creates a
short beep on the system speaker.

Tells Windows to close the current menu.

2 Informs Windows that the low-order word of the return value contains the item
number for a specific item. This item is selected by Windows.

The low-order word is ignored if the high-order word contains 0 or 1. Applications
should process this message when accelerator (shortcut) keys are used to select
bitmaps placed in a menu.

WM MENUCHAR

CWnd: :OnMenuSelect
Protected afx _ msg void OnMenuSelect(UINT nltemID, UINT nFlags,

HMENU hSysMenu);.

nltemID Identifies the item selected. If the selected item is a menu item, nltemID
contains the menu-item ID. If the selected item contains a pop-up menu, nltemID
contains the pop-up menu handle.

nFlags Contains a combination of the following menu flags:

• MF _BITMAP Item is a bitmap.

• MF CHECKED Item is checked.

• MF DISABLED Item is disabled.

• MF GRAYED Item is dimmed.

• MF MOUSESELECT Item was selected with a mouse.

• MF OWNERDRA W Item is an owner-draw item.

• MF _POPUP Item contains a pop-up menu.

• MF _SEPARATOR Item is a menu-item separator.

• MF SYSMENU Item is contained in the Control menu.

hSysMenu If nFlags contains MF _SYSMENU, identifies the menu associated
with the message; otherwise unused.

984 CWnd::OnMouseActivate

Remarks If the CWnd object is associated with a menu, OnMenuSelect is called when the
user selects a menu item. If nFlags contains OxFFFF and hSysMenu contains 0,
Windows has closed the menu because the user pressed the ESC key or clicked
outside the menu.

See Also WM MENUSELECT

CWnd: :OnMouseActivate
Protected

Remarks

afx_msg int OnMouseActivate(CWnd* pDesktopWnd, UINT nHitTest,
UINT message); •

pDesktopWnd Specifies a pointer to the top-level parent window of the window
being activated. The pointer may be temporary and should not be stored.

nHitTest Specifies the hit-test area code. A hit test is a test that determines the
location of the cursor.

message Specifies the mouse message number.

Called when the cursor is in an inactive window and the user presses a mouse
button. The default implementation passes this message to the parent window before
any processing occurs. If the parent window returns TRUE, processing is halted.

For a description of the individual hit-test area codes, see the OnNcHitTest
member function.

Return Value Specifies whether to activate the CWnd and whether to discard the mouse event. It
must be one of the following values:

Windows 3.1 Only • MA_ACTIVATE Activate CWnd object.

See Also

• MA_NOACTIVATE Do not activate CWnd object.

• MA _ ACTIV ATEANDEA T Activate CWnd object and discard the mouse
event.

• MA NOACTIVATEANDEAT Do not activate CWnd object and discard
the mouse event. •

CWnd::OnNcHitTest, WM_MOUSEACTIVATE

CWnd::OnMove 985

CWnd: :OnMouseMove
Protected

Remarks

See Also

afx _ msg void OnMouseMove(UINT nFlags, CPoint point); •

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinate of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the mouse cursor moves. If the mouse is not captured, the
WM_MOUSEMOVE message is received by the CWnd object beneath the
mouse cursor; otherwise, the message goes to the window that has captured the
mouse.

CWnd::SetCapture, CWnd::OnNCHitTest, WM_MOUSEMOVE

CWnd: :OnMove
Protected

Remarks

See Also

afx _ msg void OnMove(int x, int y); •

x Specifies the new x-coordinate location of the upper-left comer of the client
area. This new location is given in screen coordinates for overlapped and pop-up
windows, and parent-client coordinates for child windows.

y Specifies the new y-coordinate location of the upper-left comer of the client
area. This new location is given in screen coordinates for overlapped and pop-up
windows, and parent-client coordinates for child windows.

Called after the CWnd object has been moved.

WM MOVE

986 CWnd::OnNcActivate

CWnd: :OnNcActivate
Protected

Remarks

Return Value

See Also

afx_msg BOOL OnNcActivate(BOOL bActive);.

bActive Specifies when a caption bar or icon needs to be changed to indicate an
active or inactive state. The bActive parameter is TRUE if an active caption or
icon is to be drawn. It is FALSE for an inactive caption or icon.

Called when the nonclient area needs to be changed to indicate an active or inactive
state. The default implementation draws the title bar and title-bar text in their active
colors if bActive is TRUE and in their inactive colors if bActive is FALSE.

Nonzero if Windows should proceed with default processing; 0 to prevent the
caption bar or icon from being deactivated.

CWnd::Default, WM_NCACTIVATE

CWnd: :OnNcCalcSize
Protected

Remarks

afx_msg void OnNcCalcSize(BOOL bCalcValidRects,
NCCALCSIZE_PARAMS FAR* lpncsp);.

bCalcValidRects Specifies whether the application should specify which part of
the client area contains valid information. Windows will copy the valid
information to the specified area within the new client area. If this parameter is
TRUE, the application should specify which part of the client area is valid.

lpncsp Points to a NCCALCSIZE _ P ARAMS data structure that contains
information an application can use to calculate the new size and position of the
CWnd rectangle (including client area, borders, caption, scroll bars, and so on).

Called when the size and position of the client area needs to be calculated. By
processing this message, an application can control the contents of the window's
client area when the size or position of the window changes.

Regardless of the value of bCalcValidRects, the first rectangle in the array
specified by the rgrc structure member of the NCCALCSIZE _ PARAMS
structure contains the coordinates of the window. For a child window, the
coordinates are relative to the parent window's client area. For top-level windows,
the coordinates are screen coordinates. An application should modify the rgrc[O]
rectangle to reflect the size and position of the client area. The rgrc[l] and rgrc[2]
rectangles are valid only if bCalcValidRects is TRUE. In this case, the rgrc[l]
rectangle contains the coordinates of the window before it was moved or resized.

MCCALCSIZE
PARAMS -
Structure
Windows 3.1 Only

Members

See Also

CWnd::OnNcCreate 987

The rgrc[2] rectangle contains the coordinates of the window's client area before
the window was moved. All coordinates are relative to the parent window or screen.

The default implementation calculates the size of the client area based on the
window characteristics (presence of scroll bars, menu, and so on), and places the
result in lpncsp.

An NCCALCSIZE PARAMS structure has this form:

typedef struct tagNCCALCSIZE_PARAMS
RECT rgrc[3];
WINDOWPOS FAR* lppos;

} NCCALCSIZE_PARAMS;

The NCCALCSIZE _ P ARAMS structure contains information that an application
can use while processing the WM_NCCALCSIZE message to calculate the size,
position, and valid contents of the client area of a window .•

An NCCALCSIZE _ PARAMS structure has the following members:

rgrc Specifies an array of rectangles. The first contains the new coordinates of a
window that has been moved or resized. The second contains the coordinates of
the window before it was moved or resized. The third contains the coordinates of
the client area of a window before it was moved or resized. If the window is a
child window, the coordinates are relative to the client area of the parent window.
If the window is a top-level window, the coordinates are relative to the screen.

Ippos Points to a WINDOWPOS structure that contains the size and position
values specified in the operation that caused the window to be moved or resized.

WM_NCCALCSIZE, CWnd::MoveWindow, CWnd::SetWindowPos

CWnd: :OnNcCreate
Protected

Remarks

Return Value

See Also

afx_msg BOOL OnNcCreate(LPCREATESTRUCT IpCreateStruct);.

IpCreateStruct Points to the CREATESTRUCT data structure for CWnd.

Called prior to the WM _ CREATE message when the CWnd object is first
created.

Nonzero if the nonclient area is created. It is 0 if an error occurs; the Create
function will return failure in this case.

CWnd::CreateEx, WM_NCCREATE

988 CWnd::OnNcDestroy

CWnd: :OnNcDestroy
Protected

Remarks

See Also

afx_msg void OnNcDestroy();.

Called by the framework when the nonclient area is being destroyed, and is the last
member function called when the Windows window is destroyed. The default
implementation performs some cleanup, then calls the virtual member function
PostNcDestroy. Override PostNcDestroy if you want to perform your own
cleanup, such as a delete this operation. If you override OnNcDestroy, you must
call OnNcDestroy in your base class to ensure that any memory internally
allocated for the window is freed.

CWnd::DestroyWindow, CWnd::OnNcCreate, WM_NCDESTROY,
CWnd::Default, CWnd::PostNcDestroy

CWnd: :OnNcHitTest
Protected

Remarks

Return Value

afx_msg UINT OnNcHitTest(CPoint point); •

point Contains the x- and y-coordinates of the cursor. These coordinates are
always screen coordinates.

Called for the CWnd object that contains the cursor (or the CWnd object that used
the SetCapture member function to capture the mouse input) every time the mouse
is moved.

One of the following values, which indicate the current mouse position:

• HTBORDER In the border of a window that does not have a sizing border.

• HTBOTTOM In the lower horizontal border of the window.

• HTBOTTOMLEFT In the lower-left comer of the window border.

• HTBOTTOMRIGHT In the lower-right comer of the window border.

• HTCAPTION In a title-bar area.

• HTCLIENT In a client area.

• HTERROR On the screen background or on a dividing line between
windows (same as HTNOWHERE except that the DefWndProc Windows
function produces a system beep to indicate an error).

• HTGROWBOX In a size box.

• HTHSCROLL In the horizontal scroll bar.

• HTLEFT In the left border of the window.

CWnd: :OnNcLButtonDblClk 989

• HTMAXBUTTON In a Maximize button.

• HTMENU In a menu area.

• HTMINBUTTON In a Minimize button.

• HTNOWHERE On the screen background or on a dividing line between
windows.

• HTREDUCE In a Minimize button.

• HTRIGHT In the right border of the window.

• HTSIZE In a size box (same as HTGROWBOX).

• HTSYSMENU In a Control menu or in a Close button in a child window.

• HTTO P In the upper horizontal border of the window.

• HTTOPLEFT In the upper-left comer of the window border.

• HTTOPRIGHT In the upper-right comer of the window border.

• HTTRANSPARENT In a window currently covered by another window.

• HTVSCROLL In the vertical scroll bar.

• HTZOOM In a Maximize button.

See Also CWnd::GetCapture, WM_NCHITTEST

CWnd: :OnNcLButtonDblClk
Protected

Remarks

See Also

afx_msg void OnNcLButtonDblClk(UINT nHitTest, CPoint point); •

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user double-clicks the left mouse button while the cursor is within
a nonclient area of CWnd. If appropriate, the WM _ SYSCOMMAND message is
sent.

WM _ NCLBUTTONDBLCLK, CWnd::OnNcHitTest

990 CWnd::OnNcLButtonDown

CWnd: :OnNcLButtonDown
Protected

Remarks

See Also

afx_msg void OnNcLBllttonDown(UINT nHitTest, CPoint point);.

nHitTest Specifies the hit-test code. A hit test is a test that detennines the location
of the cursor.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user presses the left mouse button while the cursor is within a
nonclient area of the CWnd object. If appropriate, the WM _ SYSCOMMAND is
sent.

CWnd: :OnNcHitTest, CWnd: :OnNcLBllttonDblClk,
CWnd::OnNcLBllttonUp, CWnd::OnSysCommand,
WM_NCLBUTTONDOWN, CWnd::Defalllt

CWnd: :OnNcLButtonUp
Protected

Remarks

See Also

afx_ msg void OnNcLBllttonUp(UINT nHitTest, CPoint point); •

nHitTest Specifies the hit-test code. A hit test is a test that detennines the location
of the cursor.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user releases the left mouse button while the cursor is within a
nonclient area. If appropriate, WM _ SYSCOMMAND is sent.

CWnd: :OnNcHitTest, CWnd: :OnNcLBllttonDown,
CWnd::OnSysCommand, WM_NCLBUTTONUP

CWnd::OnNcMButtonUp 991

CWnd: :OnNcMButtonDblClk
Protected

Remarks

See Also

afx _ msg void OnNcMButtonDblClk(UINT nHitTest, CPoint point); •

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user double-clicks the middle mouse button while the cursor is
within a nonclient area.

CWnd: :OnNcHitTest, CWnd: :OnNcMButtonDown,
CWnd::OnNcMButtonUp, WM_NCMBUTTONDBLCLK

CWnd: :OnNcMButtonDown
Protected

Remarks

See Also

afx _ msg void OnNcMButtonDown(UINT nHitTest, CPoint point); •

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user presses the middle mouse button while the cursor is within a
nonclient area.

CWnd: :OnNcHitTest, CWnd: :OnNcMButtonDbIClk,
CWnd::OnNcMButtonUp, WM_NCMBUTTONDOWN

CWnd: :OnNcMButtonUp
Protected afx_msg void OnNcMButtonUp(UINT nHitTest, CPoint point);.

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

992 CWnd::OnNcMouseMove

Remarks

See Also

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user releases the middle mouse button while the cursor is within a
nonclient area.

CWnd::OnNcHitTest, CWnd::OnNcMButtonDbIClk,
CWnd::OnNcMButtonDown, WM_NCMBUTTONUP

CWnd: :OnNcMouseMove
Protected

Remarks

See Also

afx _ msg void OnNcMouseMove(UINT nHitTest, CPoint point); +

nHitTest Specifies the hit-test code. A hit test is a test that determines the location
of the cursor.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the cursor is moved within a nonclient area. If appropriate, the
WM_SYSCOMMAND message is sent.

CWnd::OnNcHitTest, CWnd::OnSysCommand, WM_NCMOUSEMOVE

CWnd::OnNcPaint
Protected

Remarks

See Also

afx_msg void OnNcPaint(); +

Called when the nonclient area needs to be painted. The default implementation
paints the window frame. An application can override this call and paint its own
custom window frame. The clipping region is always rectangular, even if the shape
of the frame is altered.

WM NCPAINT

CWnd::OnNcRButtonUp 993

CWnd: :OnNcRButtonDblClk
Protected

Remarks

See Also

afx_IDsg void OnNcRButtonDblClk(UINT nHitTest, CPoint point); •

nHitTest Specifies the hit-test code. A hit test determines the cursor's location.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user double-clicks the right mouse button while the cursor is within
a nonclient area of CWnd.

CWnd: :OnNcHitTest, CWnd: :OnNcRButtonDown,
CWnd::OnNcRButtonUp, WM _ NCRBUTTONDBLCLK

CWnd: :OnNcRButtonDown
Protected

Remarks

See Also

afx_IDsg void OnNcRButtonDown(UINT nHitTest, CPointpoint);.

nHitTest Specifies the hit-test code. A hit test determines the cursor's location.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

Called when the user presses the right mouse button while the cursor is within a
nonclient area.

CWnd: :OnNcHitTest, CWnd: :OnNcRButtonDblClk,
CWnd::OnNcRButtonUp, WM _ NCRBUTTONDOWN

CWnd: :OnNcRButtonUp
Protected afx_IDsg void OnNcRButtonUp(UINT nHitTest, CPoint point);.

nHitTest Specifies the hit-test code. A hit test determines the cursor's location.

point Specifies a CPoint object that contains the x- and y-screen coordinates of
the cursor position. These coordinates are always relative to the upper-left comer
of the screen.

994 CWnd::OnPaint

Remarks Called when the user releases the right mouse button while the cursor is within a
nonc1ient area.

See Also CWnd::OnNcHitTest, CWnd::OnNcRButtonDbIClk,
CWnd::OnNcRButtonDown, WM _ NCRBUTTONUP

CWnd::OnPaint
Protected afx _ msg void OnPaint(); •

Remarks Called when Windows or an application makes a request to repaint a portion of an
application's window. The WM _PAINT message is sent when the
UpdateWindow or RedrawWindow member function is called.

Windows 3.1 Only A window may receive internal paint messages as a result of calling the
RedrawWindow member function with the RDW _ INTERNALPAINT flag set.
In this case, the window may not have an update region. An application should call
the GetUpdateRect member function to determine whether the window has an
update region. If GetUpdateRect returns 0, the application should not call the
BeginPaint and EndPaint member functions.

See Also

It is an application's responsibility to check for any necessary internal repainting or
updating by looking at its internal data structures for each WM _PAINT message
because a WM _PAINT message may have been caused by both an invalid area
and a call to the RedrawWindow member function with the
RDW _INTERNALPAINT flag set. An internal WM_PAINT message is sent
only once by Windows. After an internal WM _PAINT message is sent to a
window by the Update Window member function, no further WM _PAINT
messages will be sent or posted until the window is invalidated or until the
RedrawWindow member function is called again with the
RDW _ INTERN ALP AINT flag set. •

CWnd::BeginPaint, CWnd::EndPaint, CWnd::RedrawWindow, CPaintDC

CWnd::OnPaintClipboard
Protected afx_msg void OnPaintClipboard(CWnd* pClipAppWnd,

HGLOBAL hPaintStruct); •

pClipAppWnd Specifies a pointer to the Clipboard-application window. The
pointer may be temporary and should not be stored for later use.

Remarks

See Also

CWnd::OnPaletteChanged 995

hPaintStruct Identifies a PAINTSTRUCT data structure that defines what part
of the client area to paint.

A Clipboard owner's OnPaintClipboard member function is called by a Clipboard
viewer when the Clipboard owner has placed data on the Clipboard in the
CF _ OWNERDISPLA Y format and the Clipboard viewer's client area needs
repainting. To determine whether the entire client area or just a portion of it needs
repainting, the Clipboard owner must compare the dimensions of the drawing area
given in the repaint member of the P AINTSTRUCT structure to the dimensions
given in the most recent OnSizeClipboard member function call.

OnPaintClipboard should use the GlobalLoek Windows function to lock the
memory that contains the PAINTSTRUCT data structure and unlock that memory
with the GlobalUnloek Windows function before it exits.

: :GlobaILoek, : :GlobaIUnloek, CWnd: :OnSizeClipboard,
WM PAINTCLIPBOARD

CWnd: :OnPaletteChanged
Protected

Remarks

See Also

afx_msg void OnPaletteChanged(CWnd* pFocusWnd);.

pFocusWnd Specifies a pointer to the window that caused the system palette to
change. The pointer may be temporary and should not be stored.

Called for all top-level windows after the window with input focus has realized its
logical palette thereby changing the system palette. This call allows a window
without the input focus that uses a color palette to realize its logical palette and
update its client area. The OnPaletteChanged member function is called for all
top-level and overlapped windows, including the one that changed the system
palette and caused the WM_PALETTECHANGED message to be sent. If any
child window uses a color palette, this message must be passed on to it. To avoid an
infinite loop, the window shouldn't realize its palette unless it determines that
pFocusWnd does not contain a pointer to itself.

: : RealizePalette, WM _ PALETTECHANGED, CWnd: :OnPaletteIsChanging,
CWnd: :OnQueryNewPalette

996 CWnd::OnPalettelsChanging

CWnd: :On PalettelsChang i ng
Windows 3.1 Only
Protected

Remarks

See Also

afx_IDsg void OnPaietteIsChanging(CWnd* pRealizeWnd);.

pRealizeWnd Specifies the window that is about to realize its logical palette.

Informs applications that an application is going to realize its logical palette.

CWnd::OnPaietteChanged, CWnd::OnQueryNewPaiette,
: :OnPaletteIsChanging

CWnd: :OnParentNotify
Protected

Remarks

afx_IDsg void OnParentNotify(UINT message, LPARAM IParam);.

message Specifies the event for which the parent is being notified. It can be any
of these values:

• WM _ CREATE The child window is being created.

• WM _DESTROY The child window is being destroyed.

• WM _ LBUTTONDOWN The user has placed the mouse cursor over the
child window and clicked the left mouse button.

• WM _ MBUTTONDOWN The user has placed the mouse cursor over the
child window and clicked the middle mouse button.

• WM_RBUTTONDOWN The user has placed the mouse cursor over the
child window and clicked the right mouse button.

IParam If message is WM_CREATE or WM_DESTROY, specifies the
window handle of the child window in the low-order word and the identifier of the
child window in the high-order word; otherwise IParam contains the x- and y­
coordinates of the cursor. The x-coordinate is in the low-order word and the y­
coordinate is in the high-order word.

A parent's OnParentNotify member function is called when its child window is
created or destroyed, or when the user clicks a mouse button while the cursor is
over the child window. When the child window is being created, the system calls
OnParentNotify just before the Create member function that creates the window
returns. When the child window is being destroyed, the system calls
OnParentNotify before any processing takes place to destroy the window.
OnParentNotify is called for all ancestor windows of the child window, including
the top-level window.

See Also

CWnd: :OnQueryEndSession 997

All child windows except those that have the WS_EX_NOPARENTNOTIFY
style send this message to their parent windows. By default, child windows in a
dialog box have the WS _EX _ NOP ARENTNOTIFY style unless the child
window was created without this style by calling the CreateEx member function.

CWnd::OnCreate, CWnd::OnDestroy, CWnd::OnLButtonDown,
CWnd::OnMButtonDown, CWnd::OnRButtonDown, WM_PARENTNOTIFY

CWnd: :OnQueryDraglcon
Protected

Remarks

Return Value

See Also

afx_msg HCURSOR OnQueryDraglconO; +

Called by a minimized (iconic) window that does not have an icon defined for its
class. The system makes this call to obtain the cursor to display while the user drags
the minimized window. If an application returns the handle of an icon or cursor, the
system converts it to black-and-white. If an application returns a handle, the handle
must identify a monochrome cursor or icon compatible with the display driver's
resolution. The application can call the CWinApp::LoadCursor or
CWinApp::Loadlcon member functions to load a cursor or icon from the
resources in its executable file and to obtain this handle.

A doubleword value that contains a cursor or icon handle in the low-order word.
The cursor or icon must be compatible with the display driver's resolution. If the
application returns NULL, the system displays the default cursor. The default
return value is NULL.

CWinApp::LoadCursor, CWinApp::Loadlcon, WM_QUERYDRAGICON

CWnd: :OnQueryEndSession
Protected

Remarks

Return Value

See Also

afx _ msg BOOL OnQueryEndSession(); +

Called when the user chooses to end the Windows session or when an application
calls the ExitWindows Windows function. If any application returns 0, the
Windows session is not ended. Windows stops calling OnQueryEndSession as
soon as one application returns ° and sends the WM _ ENDSESSION message with
a parameter value of FALSE for any application that has already returned nonzero.

Nonzero if an application can be conveniently shut down; otherwise 0.

::ExitWindows, CWnd::OnEndSession, WM _ QUERYENDSESSION

998 CWnd ::OnQueryNewPalette

CWnd: :OnQueryNewPalette
Protected

Remarks

Return Value

See Also

afx_msg BOOL OnQueryNewPaletteO; +

Called when the CWnd object is about to receive the input focus, giving the CWnd
an opportunity to realize its logical palette when it receives the focus.

Nonzero if the CWnd realizes its logical palette; otherwise O.

CWnd::Default, CWnd::OnPaletteChanged, WM_QUERYNEWPALETTE

CWnd: :OnQueryOpen
Protected

Remarks

Return Value

See Also

afx_msg BOOL OnQueryOpenO; +

Called when the CWnd object is minimized and the user requests that the CWnd
be restored to its preminimized size and position. While in OnQueryOpen, CWnd
should not perform any action that would cause an activation or focus change (for
example, creating a dialog box).

Nonzero if the icon can be opened, or 0 to prevent the icon from being opened.

WM_QUERYOPEN

CWnd: :OnRButtonDblClk
Protected afx _ msg void OnRButtonDblClk(UINT nFlags, CPoint point); +

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFT key is down.

point Specifies the x- and y-coordinates of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Remarks

See Also

CWnd::OnRButtonDown 999

Called when the user double-clicks the right mouse button. Only windows that have
the CS _ DBLCLKS WNDCLASS style can receive OnRBllttonDblClk calls.
This is the default for windows within the Microsoft Foundation Class Library.
Windows calls OnRBllttonDblClk when the user presses, releases, and then again
presses the right mouse button within the system's double-click time limit. Double­
clicking the right mouse button actually generates four events:
WM_RBUTTONDOWN and WM_RBUTTONUPmessages, the
OnRBllttonDblClk call, and another WM_RBUTTONUP message when the
button is released.

CWnd::OnRBllttonDown, CWnd::OnRBllttonUp,
WM RBUTTONDBLCLK

CWnd::OnRButtonDown
Protected

Remarks

See Also

afx _ msg void OnRBllttonDown(UINT nFlags, CPoint point); •

nFlags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK RBUTTON Set if the right mouse button is down.

• MK _SHIFT Set if the SHIFf key is down.

point Specifies the x- and y-coordinates of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user presses the right mouse button.

CWnd::OnRBllttonDblClk, CWnd::OnRBllttonUp, WM_RBUTTONDOWN

1000 CWnd::OnRButtonUp

CWnd: :OnRButtonUp
Protected

Remarks

See Also

afx_msg void OnRButtonUp(UINT nFZags, CPointpoint);.

nFZags Indicates whether various virtual keys are down. This parameter can be
any combination of the following values:

• MK CONTROL Set if the CTRL key is down.

• MK LBUTTON Set if the left mouse button is down.

• MK MBUTTON Set if the middle mouse button is down.

• MK _SHIFT Set if the SHIFf key is down.

point Specifies the x-and y -coordinates of the cursor. These coordinates are
always relative to the upper-left comer of the window.

Called when the user releases the right mouse button.

CWnd: :OnRButtonDbIClk, CWnd: :OnRButtonDown, WM _ RBUTTONUP

CWnd: :OnRenderAIIFormats
Protected

Remarks

See Also

afx _ msg void OnRender AIIFormats(); •

The Clipboard owner's OnRender AIIFormats member function is called when the
owner application is being destroyed. The Clipboard owner should render the data
in all the formats it is capable of generating and pass a data handle for each format
to the Clipboard by calling the SetClipboardData Windows function. This ensures
that the Clipboard contains valid data even though the application that rendered the
data is destroyed. The application should call the Open Clipboard member function
before calling the SetClipboardData Windows function and call the
CloseClipboard Windows function afterward.

: :CloseClipboard, CWnd: :OpenClipboard, : :SetClipboardData,
CWnd::OnRenderFormat, WM _ RENDERALLFORMATS

CWnd::OnSetCursor 1001

CWnd: :OnRenderFormat
Protected

Remarks

See Also

afx_msg void OnRenderFormat(UINT nFormat);»

nFormat Specifies the Clipboard format.

The Clipboard owner's OnRenderFormat member function is called when a
particular format with delayed rendering needs to be rendered. The receiver should
render the data in that format and pass it to the Clipboard by calling the
SetClipboardData Windows function. Do not call the Open Clipboard member
function or the CloseClipboard Windows function from within
OnRenderFormat.

:: Close Clipboard, CWnd: :OpenClipboard, : :SetClipboardData,
WM_RENDERFORMAT

CWnd: :OnSetCursor
Protected

Remarks

Return Value

See Also

afx_msg BOOL OnSetCursor(CWnd* p Wnd, UINT nHitTest,
UINT message);»

p Wnd Specifies a pointer to the window that contains the cursor. The pointer may
be temporary and should not be stored for later use.

nHitTest Specifies the hit-test area code. The hit test determines the cursor's
location.

message Specifies the mouse message number.

Called if mouse input is not captured and the mouse causes cursor movement within
the CWnd object. The default implementation calls the parent window's
OnSetCursor before processing. If the parent window returns TRUE, further
processing is halted. Calling the parent window gives the parent window control
over the cursor's setting in a child window. The default implementation sets the
cursor to an arrow if it is not in the client area or to the registered-class cursor if
it is.

If nHitTest is HTERROR and message is a mouse button-down message, the
MessageBeep member function is called. The message parameter is 0 when
CWnd enters menu mode.

Nonzero to halt further processing, or 0 to continue.

CWnd::OnNcHitTest, WM_SETCURSOR

1002 CWnd: :OnSetFocus

CWnd: :OnSetFocus
Protected

Remarks

See Also

afx_IDsg void OnSetFocus(CWnd* pOldWnd);.

pOldWnd Contains the CWnd object that loses the input focus (may be NULL).
The pointer may be temporary and should not be stored for later use.

Called after gaining the input focus. To display a caret, CWnd should call the
appropriate caret functions at this point.

WM SETFOCUS

CWnd: :OnShowWindow
Protected

Remarks

See Also

afx_IDsg void OnShowWindow(BOOL bShow, UINT nStatus);.

bShow Specifies whether a window is being shown. It is TRUE if the window is
being shown; it is FALSE if the window is being hidden.

nStatus Specifies the status of the window being shown. It is 0 if the message is
sent because of a ShowWindow member function call; otherwise nStatus is one
of the following:

• SW _ P ARENTCLOSING Parent window is closing (being made iconic)
or a pop-up window is being hidden.

• SW _ P ARENT OPENING Parent window is opening (being displayed) or
a pop-up window is being shown.

Called when the CWnd object is about to be hidden or shown. A window is hidden
or shown when the ShowWindow member function is called, when an overlapped
window is maximized or restored, or when an overlapped or pop-up window is
closed (made iconic) or opened (displayed on the screen). When an overlapped
window is closed, all pop-up windows associated with that window are hidden.

WM SHOWWINDOW

CWnd: :OnSizeClipboard 1003

CWnd: :OnSize
Protected

Remarks

See Also

afx_IDsg void OnSize(UINT nType, int ex, int ey);.

nType Specifies the type of resizing requested. This parameter can be one of the
following values:

• SIZE MAXIMIZED Window has been maximized.

• SIZE MINIMIZED Window has been minimized.

• SIZE_RESTORED Window has been resized, but neither
SIZE_MINIMIZED nor SIZE_MAXIMIZED applies.

• SIZE_MAXHIDE Message is sent to all pop-up windows when some
other window is maximized.

• SIZE_MAXSHOW Message is sent to all pop-up windows when some
other window has been restored to its former size.

ex Specifies the new width of the client area.

ey Specifies the new height of the client area.

Called after the window's size has changed. If the SetScrollPos or Move Window
member function is called for a child window from OnSize, the bRedraw parameter
of SetScrollPos or Move Window should be nonzero to cause the CWnd to be
repainted.

CWnd::MoveWindow, CWnd::SetScrollPos, WM_SIZE

CWnd: :OnSizeCI ipboard
Protected afx_IDsg void OnSizeClipboard(CWnd* pClipAppWnd, HGLOBAL hReet);.

pClipAppWnd Identifies the Clipboard-application window. The pointer may be
temporary and should not be stored.

hReet Identifies a global memory object. The memory object contains a RECT
data structure that specifies the area for the Clipboard owner to paint.

1004 CWnd: :OnSpoolerStatus

Remarks The Clipboard owner's OnSizeClipboard member function is called by the
Clipboard viewer when the Clipboard contains data with the
CF _ OWNERDISPLA Y attribute and the size of the client area of the Clipboard­
viewer window has changed. The OnSizeClipboard member function is called
with a null rectangle (0,0,0,0) as the new size when the Clipboard application is
about to be destroyed or minimized. This permits the Clipboard owner to free its
display resources. Within OnSizeClipboard, an application must use the
GlobalLock Windows function to lock the memory that contains the RECT data
structure. Have the application unlock that memory with the GlobalUnlock
Windows function before it yields or returns control.

See Also ::GlobaILock, ::GlobaIUnlock, ::SetClipboardData,
CWnd::SetClipboardViewer, WM _SIZECLIPBOARD

CWnd: :OnSpoolerStatus
Protected

Remarks

See Also

afx_msg void OnSpoolerStatus(UINT nStatus, UINT nJobs);.

nStatus Specifies the SP _JOBST ATUS flag.

nJ obs Specifies the number of jobs remaining in the Print Manager queue.

Called from Print Manager whenever a job is added to or removed from the Print
Manager queue. This call is for informational purposes only.

WM SPOOLERSTATUS

CWnd: :OnSysChar
Protected afx _ msg void OnSysChar(UINT nChar, UINT nRepCnt, UINT nFlags); •

nChar Specifies the ASCII-character key code of a Control-menu key.

nRepCnt Specifies the repeat count (the number of times the keystroke is repeated
as a result of the user holding down the key).

Remarks

See Also

CWnd ::OnSysColorChange 1005

nFlags The nFlags parameter can have these values:

Value

0-7

8

9-10

11-12

13

14

15

Meaning

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held down while the key is pressed;
otherwise 0).

Previous key state (1 if the key is down before the message is sent, 0 if the
key is up).

Transition state (1 if the key is being released, 0 if the key is being pressed).

Called if CWnd has the input focus and the WM _ SYSKEYUP and
WM_SYSKEYDOWN messages are translated. It specifies the virtual-key code
of the Control-menu key. When the context code is 0, WM_SYSCHAR can pass
the WM _ SYSCHAR message to the TranslateAccelerator Windows function,
which will handle it as though it were a normal key message instead of a Control­
menu key message. This allows accelerator keys to be used with the active window
even if the active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

: : TranslateAccelerator , WM _ SYSKEYDOWN, WM _ SYSKEYUP,
WM SYSCHAR

CWnd: :OnSysColorChange
Protected

Remarks

See Also

afx _ msg void OnSysColorChange(); •

Called for all top-level windows when a change is made in the system color setting.
Windows calls OnSysColorChange for any window that is affected by a system
color change. Applications that have brushes that use the existing system colors
should delete those brushes and re-create them with the new system colors.

: :SetSysColors, WM _ SYSCOLORCHANGE

1006 CWnd::OnSysCommand

CWnd: :OnSysCommand
Protected

Windows 3.1 Only

Remarks

afx_msg void OnSysCommand(UINT nID, LPARAM IParam);.

nID Specifies the type of system command requested. This parameter can be one
of the following values, with meanings as given:

• SC _ CLOSE Close the CWnd object.

• SC _ HOTKEY Activate the CWnd object associated with the application­
specified hot key. The low-order word of IParam identifies the HWND of
the window to activate.

• SC_HSCROLL Scroll horizontally.

• SC _ KEYMENU Retrieve a menu through a keystroke.

• SC_MAXIMIZE (or SC_ZOOM) Maximize the CWnd object.

• SC _MINIMIZE (or SC _ICON) Minimize the CWnd object.

• SC _ MOUSEMENU Retrieve a menu through a mouse click.

• SC_MOVE Move the CWnd object.

• SC NEXTWINDOW Move to the next window.

• SC PREVWINDOW Move to the previous window.

• SC _RESTORE Restore window to normal position and size.

• SC _ SCREENSA VE Executes the screen-saver application specified in
the [boot] section of the SYSTEM.INI file.

• SC _SIZE Size the CWnd object.

• SC T ASKLIST Execute or activate the Windows Task Manager
application.

• SC VSCROLL Scroll vertically.

• SC _ HOTKEY Activate the window associated with the application­
specified hot key. The low-order word of IParam identifies the window to
activate.

• SC _SCREENSA VE Execute the screen-save application specified in the
Desktop section of Control Panel. •

IParam If a Control-menu command is chosen with the mouse contains the cursor
coordinates. The low-order word contains the x-coordinate, and the high-order
word contains the y -coordinate. Otherwise this parameter is not used.

Called when the user selects a command from the Control menu, or when the user
selects the Maximize or the Minimize button. By default, OnSysCommand carries
out the Control-menu request for the predefined actions specified in the preceding

See Also

CWnd: :OnSysDeadChar 1007

table. In WM _SYSCOMMAND messages, the four low-order bits of the nID
parameter are used internally by Windows. When an application tests the value of
nID, it must combine the value OxFFFO with the nID value by using the bitwise­
AND operator to obtain the correct result.

The menu items in a Control menu can be modified with the GetSystemMenu,
AppendMenu, InsertMenu, and ModifyMenu member functions. Applications
that modify the Control menu must process WM _ SYSCOMMAND messages, and
any WM _ SYSCOMMAND messages not handled by the application must be
passed on to OnSysCommand. Any command values added by an application must
be processed by the application and cannot be passed to OnSysCommand.

An application can carry out any system command at any time by passing a
WM _ SYSCOMMAND message to OnSysCommand. Accelerator (shortcut)
keystrokes that are defined to select items from the Control menu are translated into
OnSysCommand calls; all other accelerator keystrokes are translated into
WM _COMMAND messages.

WM SYSCOMMAND

CWnd: :OnSysDeadChar
Protected afx _ msg void OnSysDeadChar(UINT nChar, UINT nRepCnt,

UINT nFlags); •

nChar Specifies the dead-key character value.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Meaning

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad
(l if it is an extended key; otherwise 0).

Not used.

U sed internally by Windows.

Context code (1 if the AL T key is held down while the key is pressed;
otherwise 0).

Previous key state (1 if the key is down before the call, 0 if the key is up).

Transition state (l if the key is being released, 0 if the key is being pressed).

1008 CWnd: :OnSysKeyDown

Remarks Called if the CWnd object has the input focus when the OnSysKeyUp or
OnSysKeyDown member function is called. It specifies the character value of a
dead key.

See Also CWnd::OnSysKeyDown, CWnd::OnSysKeyUp, WM_SYSDEADCHAR,
CWnd::OnDeadChar

CWnd: :OnSysKeyDown
Protected

Remarks

afx _ msg void OnSysKeyDown(UINT nChar, UINT nRepCnt,
UINT nFlags);.

nChar Specifies the virtual-key code of the key being pressed.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Meaning

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

Not used.

U sed internally by Windows.

Context code (1 if the AL T key is held down while the key is pressed, 0
otherwise) .

Previous key state (I if the key is down before the message is sent, 0 if the
key is up).

Transition state (1 ifthe key is being released, 0 if the key is being pressed).

For OnSysKeyDown calls, the key-transition bit (bit 15) is 0. The context-code
bit (bit 13) is 1 if the ALT key is down while the key is pressed; it is ° if the
message is sent to the active window because no window has the input focus.

If the CWnd object has the input focus, the OnSysKeyDown member function is
called when the user holds down the AL T key and then presses another key. If no
window currently has the input focus, the active window's OnSysKeyDown
member function is called. The CWnd object that receives the message can
distinguish between these two contexts by checking the context code in nFlags.
When the context code is 0, the WM _ SYSKEYDOWN message received by
OnSysKeyDown can be passed to the TranslateAccelerator Windows function,

See Also

CWnd::OnSysKeyUp 1009

which will handle it as though it were a normal key message instead of a system­
key message. This allows accelerator keys to be used with the active window even
if the active window does not have the input focus.

Because of auto-repeat, more than one OnSysKeyDown call may occur before the
WM _ SYSKEYUP message is received. The previous key state (bit 14) can be
used to determine whether the OnSysKeyDown call indicates the first down
transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

: : TranslateAccelerator , WM _ SYSKEYUP, WM _ SYSKEYDOWN

CWnd: :OnSysKeyUp
Protected afx _ msg void OnSysKeyUp(UINT nChar, UINT nRepCnt, UINT nFlags); •

nChar Specifies the virtual-key code of the key being pressed.

nRepCnt Specifies the repeat count.

nFlags Specifies the scan code, key-transition code, previous key state, and
context code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Meaning

Scan code (OEM-dependent value). Low byte of high-order word.

Extended key, such as a function key or a key on the numeric keypad
(1 if it is an extended key; otherwise 0).

Not used.

U sed internally by Windows.

Context code (1 if the ALT key is held down while the key is pressed, 0
otherwise).

Previous key state (1 if the key is down before the message is sent, 0 if the
key is up).

Transition state (1 if the key is being released, 0 if the key is being pressed).

For OnSysKeyUp calls, the key-transition bit (bit 15) is 1. The context-code bit
(bit 13) is 1 if the ALT key is down while the key is pressed; it is 0 if the message
is sent to the active window because no window has the input focus.

1010 CWnd::OnTimeChange

Remarks If the CWnd object has the focus, the OnSysKeyUp member function is called
when the user releases a key that was pressed while the ALT key was held down. If
no window currently has the input focus, the active window's OnSysKeyUp
member function is called. The CWnd object that receives the call can distinguish
between these two contexts by checking the context code in nFlags. When the
context code is 0, the WM _ SYSKEYUP message received by OnSysKeyUp can
be passed to the TranslateAccelerator Windows function, which will handle it as
though it were a normal key message instead of a system-key message. This allows
accelerator (shortcut) keys to be used with the active window even if the active
window does not have the input focus.

See Also

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CTRL keys on the main section of the keyboard; the INS, DEL, HOME,

END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric
keypad; and the slash (/) and ENTER keys in the numeric keypad. Some other
keyboards may support the extended-key bit in nFlags.

For non-U.S. Enhanced 102-key keyboards, the right ALT key is handled as the
CTRL+ALT key combination. The following shows the sequence of messages and
calls that result when the user presses and releases this key:

Sequence Function Accessed Message Passed

1. WM KEYDOWN VK CONTROL

2. WM KEYDOWN VK MENU

3. WM KEYUP VK CONTROL

4. WM SYSKEYUP VK MENU

: : TranslateAccelerator , WM _ SYSKEYDOWN, WM _ SYSKEYUP

CWnd: :OnTimeChange
Protected

Remarks

See Also

afx _ msg void OnTimeChange(); •

Called after the system time is changed. Have any application that changes the
system time send this message to all top-level windows. To send the
WM_TIMECHANGE message to all top-level windows, an application can use
the SendMessage Windows function with its hwnd parameter set to
HWND BROADCAST.

::SendMessage, WM_TIMECHANGE

CWnd::OnVKeyToltem 1011

CWnd: :OnTimer
Protected

Remarks

See Also

afx_msg void OnTimer(UINT nIDEvent);.

nIDEvent Specifies the identifier of the timer.

Called after each interval specified in the SetTimer member function used to install
a timer. The DispatchMessage Windows function sends a WM _TIMER message
when no other messages are in the application's message queue.

CWnd: :SetTimer, WM _TIMER

CWnd: :On VKeyToltem
Protected

Remarks

Return Value

See Also

afx _ msg int On VKeyToItem(UINT nKey, CListBox* pListBox,
UINT nI ndex); •

nKey Specifies the virtual-key code of the key that the user pressed.

pListBox Specifies a pointer to the list box. The pointer may be temporary and
should not be stored for later use.

nI ndex Specifies the current caret position.

If the CWnd object owns a list box with the LBS _ W ANTKEYBOARDINPUT
style, the list box will send the WM _ VKEYTOITEM message in response to a
WM _KEYDOWN message. This member function is called only for list boxes
that have the LBS _ HAS STRINGS style.

Specifies the action that the application performed in response to the message. A
return value of -2 indicates that the application handled all aspects of selecting the
item and requires no further action by the list box. A return value of -1 indicates
that the list box should perform the default action in response to the keystroke. A
return value of 0 or greater specifies the zero-based index of an item in the list box
and indicates that the list box should perform the default action for the keystroke on
the given item.

1012 CWnd::OnVScroll

CWnd: :On VScroll
Protected

Remarks

See Also

afx_msg void OnVScroll(UINT nSBCode, UINT nPos,
CScrollBar* pScrollBar); •

nSBCode Specifies a scroll-bar code that indicates the user's scrolling request.
This parameter can be one of the following:

• SB BOTTOM Scroll to bottom.

• SB ENDSCROLL End scroll.

• SB LINEDOWN Scroll one line down.

• SB _LINEUP Scroll one line up.

• SB_PAGEDOWN Scroll one page down.

• SB_PAGEUP Scroll one page up.

• SB _ THUMB POSITION Scroll to the absolute position. The current
position is provided in nP os.

• SB_THUMBTRACK Drag scroll box to specified position. The current
position is provided in nP os.

• SB_TOP Scroll to top.

nPos Contains the current scroll-box position if the scroll-bar code is
SB _ THUMB POSITION or SB _ THUMB TRACK; otherwise not used.
Depending on the initial scroll range, nPos may be negative and should be cast to
an int if necessary.

pScrollBar If the scroll message came from a scroll-bar control, contains a
pointer to the control. If the user clicked a window's scroll bar, this parameter is
NULL. The pointer may be temporary and should not be stored for later use.

Called when the user clicks the window's vertical scroll bar. OnVScroll typically
is used by applications that give some feedback while the scroll box is being
dragged. If On VScroll scrolls the contents of the CWnd object, it must also reset
the position of the scroll box with the SetScrollPos member function.

CWnd::SetScroIlPos, CWnd::OnHScroll, WM_ VSCROLL

CWnd: :OnWindowPosChanged 1013

CWnd: :OnVScrollClipboard
Protected

Remarks

See Also

afx_msg void OnVScrollClipboard(CWnd* pClipAppWnd, UINT nSBCode,
UINT nPos);.

pC/ipAppWnd Specifies a pointer to a Clipboard-viewer window. The pointer
may be temporary and should not be stored for later use.

nSBCode Specifies one of the following scroll-bar values:

• SB BOTTOM Scroll to bottom.

• SB ENDSCROLL End scroll.

• SB LINEDOWN Scroll one line down.

• SB _LINEUP Scroll one line up.

• SB_PAGEDOWN Scroll one page down.

• SB_PAGEUP Scroll one page up.

• SB _ THUMB POSITION Scroll to the absolute position. The current
position is provided in nP os.

• SB_TOP Scroll to top.

nPos Contains the scroll-box position if the scroll-bar code is
SB _ THUMBPOSITION; otherwise nPos is not used.

The Clipboard owner's OnVScrollClipboard member function is called by the
Clipboard viewer when the Clipboard data has the CF _ OWNERDISPLA Y format
and there is an event in the Clipboard viewer's vertical scroll bar. The owner
should scroll the Clipboard image, invalidate the appropriate section, and update the
scroll-bar values.

CWnd: : Invalidate, CWnd: :OnHScrollClipboard, CWnd: :InvalidateRect,
WM _ VSCROLLCLIPBOARD, CWnd::Default

CWnd: :OnWindowPosChanged
Windows 3.1 Only
Protected

afx_msg void OnWindowPosChanged(WINDOWPOS FAR* lpwndpos);.

lpwndpos Points to a WINDOWPOS data structure that contains information
about the window's new size and position.

1014 CWnd::OnWindowPosChanging

Remarks Called when the size, position, or Z-order has changed as a result of a call to the
SetWindowPos member function or another window-management function. The
default implementation sends the WM_SIZE and WM_MOVE messages to the
window. These messages are not sent if an application handles the
On WindowPosChanged call without calling its base class. It is more efficient to
perform any move or size change processing during the call to
On WindowPosChanged without calling its base class.

See Also WM WINDOWPOSCHANGED

CWnd: :On Wi ndowPosChang i ng
Windows 3.1 Only afx_msg void OnWindowPosChanging(WINDOWPOS FAR* lpwndpos);.
Protected

Remarks

WINDOWPOS
Structure
Windows 3.1 Only

lpwndpos Points to a WINDOWPOS data structure that contains information
about the window's new size and position.

Called when the size, position, or Z-order is about to change as a result of a call to
the SetWindowPos member function or another window-management function. An
application can prevent changes to the window by setting or clearing the
appropriate bits in the flags member of the WINDOWPOS structure. For a
window with the WS _ OVERLAPPED or WS _ THICKFRAME style, the default
implementation sends a WM _ GETMINMAXINFO message to the window. This
is done to validate the new size and position of the window and to enforce the
CS _ BYTEALIGNCLIENT and CS _ BYTEALIGN client styles. An application
can override this functionality by not calling its base class.

A WINDOWPOS data structure has this form:

typedef struet tagWINDOWPOS { /* wp */
HWND hwnd;
HWND hwndlnsertAfter;
i nt x;
; nt y;

int ex;
i nt ey;
UINT flags;

WINDOWPOS;

The WINDO WPOS structure contains information about the size and position of a
window .•

Members

See Also

CWnd::OnWinlniChange 1015

A WINDOWPOS structure has the following members:

hwnd Identifies the window.

hwndInsertAfter Identifies the window behind which this window is placed.

x Specifies the position of the left edge of the window.

y Specifies the position of the right edge of the window.

ex Specifies the window width.

ey Specifies the window height.

flags Specifies window-positioning options. This member can be one of the
following values:

• SWP _ DRA WFRAME Draws a frame (defined in the class description
for the window) around the window. The window receives a
WM_NCCALCSIZE message.

• SWP HIDEWINDOW Hides the window.

• SWP NOACTIVATE Does not activate the window.

• SWP _NOMOVE Retains current position (ignores the x and y members).

• SWP _NOOWNERZORDER Does not change the owner window's
position in the Z-order.

• SWP _NOSIZE Retains current size (ignores the ex and ey members).

• SWP _ NOREDRA W Does not redraw changes.

• SWP NOREPOSITION Same as SWP NOOWNERZORDER.

• SWP _NOZORDER Retains current ordering (ignores the
hwndInsertAfter member).

• SWP _SHOWWINDOW Displays the window.

CWnd::On WindowPosChanged, WM _ WINDOWPOSCHANGING

CWnd::OnWinlniChange
Protected afx_IDsg void OnWinlniChange(LPCSTR IpszSection);.

IpszSection Points to a string that specifies the name of the section that has
changed. (The string does not include the square brackets that enclose the section
name.)

1016 CWnd::OpenClipboard

Remarks Called after a change has been made to the Windows initialization file, WIN.lNI.

See Also

The SystemParametersInfo Windows function calls On WinIniChange after an
application uses the function to change a setting in the WIN.lNI file. To send the
WM_ WININICHANGE message to all top-level windows, an application can use
the SendMessage Windows function with its hwnd parameter set to
HWND BROADCAST.

If an application changes many different sections in WIN.lNI at the same time, the
application should send one WM _ WININICHANGE message with lpszSection
set to NULL. Otherwise, an application should send WM _ WININICHANGE
each time it makes a change to WIN.lNI.

If an application receives an On WinIniChange call with lpszSection set to NULL,
the application should check all sections in WIN.lNI that affect the application.

: :SendMessage, : :SystemParametersInfo, WM _ WININICHANGE

CWnd: :OpenClipboard

Remarks

Return Value

See Also

BOOL OpenClipboardO;

Opens the Clipboard. Other applications will not be able to modify the Clipboard
until the CloseClipboard Windows function is called. The current CWnd object
will not become the owner of the Clipboard until the EmptyClipboard Windows
function is called.

Nonzero if the Clipboard is opened via CWnd, or 0 if another application or
window has the Clipboard open.

::CloseClipboard, ::EmptyClipboard, ::OpenClipboard

CWnd:: PostMessage
BOOL PostMessage(UINT message, WP ARAM wParam = 0,

LPARAM lParam = 0);

message Specifies the message to be posted.

wParam Specifies additional message information. The content of this parameter
depends on the message being posted.

Remarks

Return Value

See Also

CWnd::PreCreateWindow 1017

IP aram Specifies additional message information. The content of this parameter
depends on the message being posted.

Places a message in the window's message queue and then returns without waiting
for the corresponding window to process the message. Messages in a message
queue are retrieved by calls to the GetMessage or PeekMessage Windows
function. The Windows PostMessage function can be used to access another
application.

Nonzero if the message is posted; otherwise O.

: : GetMessage, : :PeekMessage, : :PostMessage, : :PostAppMessage,
CWnd::SendMessage

CWnd: :PostNcDestroy
Protected

Remarks

See Also

virtual void PostNcDestroy(); +

Called by the default OnNcDestroy member function after the window has been
destroyed. Derived classes can use this function for custom cleanup such as the
deletion of the this pointer.

CWnd::OnNcDestroy

CWnd: :PreCreateWindow

Remarks

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

cs A CREATESTRUCT structure.

Called by the framework before the creation of the Windows window attached to
this CWnd object.

Never call this function directly.

The default implementation of this function checks for a NULL window class name
and substitutes an appropriate default.

Override this member function to modify the CREATESTRUCT structure before
the window is created. If you override this member function, you should examine
the source code to determine whether or not you need to invoke the base class
implementation.

1018 CWnd::PreTranslateMessage

Return Value

See Also

Nonzero if the window creation should continue; 0 to indicate creation failure.

CWnd::Create, CREATESTRUCT

CWnd:: Pre TranslateMessage

Remarks

Return Value

See Also

virtual BOOL PreTranslateMessage(MSG* pMsg);

pMsg Points to a MSG structure that contains the message to process.

U sed by class CWinApp to translate window messages before they are dispatched
to the TranslateMessage and DispatchMessage Windows functions.

Nonzero if the message was translated and should not be dispatched; 0 if the
message was not translated and should be dispatched.

: :TranslateMessage, : : IsDialogMessage, CWinApp: :PreTranslateMessage

CWnd:: RedrawWi ndow
Windows 3.1 Only BOOL RedrawWindow(LPCRECT IpRectUpdate = NULL,

CRgn* prgnUpdate = NULL, UINT flags = RDW _INVALIDATE I
RDW _UPDATENOW I RDW _ERASE);.

IpRectUpdate Points to a RECT structure containing the coordinates of the
update rectangle. This parameter is ignored if prgnUpdate contains a valid region
handle.

prgnUpdate Identifies the update region. If both prgnUpdate and IpRectUpdate
are NULL, the entire client area is added to the update region.

flags The following flags are used to invalidate the window:

• RDW ERASE Causes the window to receive a WM ERASEBKGND - -
message when the window is repainted. The RDW _ INVALIDATE flag
must also be specified; otherwise RDW _ERASE has no effect.

• RDW _FRAME Causes any part of the nonclient area of the window that
intersects the update region to receive a WM _ NCPAINT message. The
RDW _ INV ALIDA TE flag must also be specified; otherwise
RDW FRAME has no effect.

CWnd::RedrawWindow 1019

• RDW INTERNALPAINT Causes a WM_PAINT message to be posted
to the window regardless of whether the window contains an invalid region.

• RDW _INVALIDATE Invalidate /pRectUpdate or prgnUpdate (only one
may be not NULL). If both are NULL, the entire window is invalidated.

The following flags are used to validate the window:

• RDW NOERASE Suppresses any pending WM_ERASEBKGND
messages.

• RDW NOFRAME Suppresses any pending WM_NCPAINT messages.
This flag must be used with RDW _ VALIDATE and is typically used with
RDW _NOCHILDREN. This option should be used with care, as it could
prevent parts of a window from painting properly.

• RDW _ NOINTERNALP AINT Suppresses any pending internal
WM_PAINT messages. This flag does not affect WM_PAINT messages
resulting from invalid areas.

• RDW _VALIDATE Validates /pRectUpdate or prgnUpdate (only one
may be not NULL). If both are NULL, the entire window is validated. This
flag does not affect internal WM _PAINT messages.

The following flags control when repainting occurs. Painting is not performed by
the RedrawWindow function unless one of these bits is specified.

• RDW _ERASENOW Causes the affected windows (as specified by the
RDW _ALLCHILDREN and RDW _NO CHILDREN flags) to receive
WM_NCPAINT and WM_ERASEBKGND messages, if necessary,
before the function returns. WM _PAINT messages are deferred.

• RDW _UPDATENOW Causes the affected windows (as specified by the
RDW _ ALLCHILDREN and RDW _ NO CHILDREN flags) to receive
WM_NCPAINT, WM_ERASEBKGND, and WM_PAINT messages, if
necessary, before the function returns.

By default, the windows affected by the RedrawWindow function depend on
whether the specified window has the WS _ CLIPCHILDREN style. The child
windows of WS _ CLIPCHILDREN windows are not affected. However, those
windows that are not WS _ CLIPCHILDREN windows are recursively validated
or invalidated until a WS CLIPCHILDREN window is encountered. The
following flags control which windows are affected by the RedrawWindow
function:

• RDW _ALLCHILDREN Includes child windows, if any, in the repainting
operation.

• RDW NOCHILDREN Excludes child windows, if any, from the
repainting operation.

1020 CWnd::ReleaseDC

Remarks Updates the specified rectangle or region in the given window's client area.

When the RedrawWindow member function is used to invalidate part of the
desktop window, that window does not receive a WM _PAINT message. To repaint
the desktop, an application should use CWnd:: ValidateRgn,
CWnd::InvalidateRgn, CWnd::UpdateWindow, or ::RedrawWindow.

CWnd:: ReleaseDC

Remarks

Return Value

See Also

int ReleaseDC(CDC* pDC);

pDC Identifies the device context to be released.

Releases a device context, freeing it for use by other applications. The effect of the
ReleaseDC member function depends on the device-context type. The application
must call the ReleaseDC member function for each call to the GetWindowDC
member function and for each call to the GetDC member function.

Nonzero if successful; otherwise O.

CWnd::GetDC, CWnd::GetWindowDC, ::ReleaseDC

CWnd:: Reposition Bars

Remarks

See Also

void RepositionBars(UINT nIDFirst, UINT nIDLast, UINT nIDLeftOver);

nIDFirst Specifies ID of first of a range of control bars to reposition and resize.

nIDLast Specifies ID of last of a range of control bars to reposition and resize.

nIDLeftOver Specifies ID of pane that fills the rest of the client area.

Called to reposition and resize control bars in the client area of a window. The
nIDFirst and nIDLast parameters define a range of control-bar IDs to be
repositioned in the client area. nIDLeftOver specifies the ID of the child window
(normally the view) which is repositioned and resized to fill the rest of the client
area not filled by control bars.

CFrame Wnd: : RecalcLayout

CWnd::ScroIiWindow 1021

CWnd: :Screen ToClient

Remarks

See Also

void ScreenToClient(LPPOINT lpPoint) const;

void ScreenToClient(LPRECT lpRect) const;

lpPoint Points to a CPoint object or POINT structure that contains the screen
coordinates to be converted.

lpRect Points to a CRect object or RECT structure that contains the screen
coordinates to be converted.

Converts the screen coordinates of a given point or rectangle on the display to client
coordinates. The ScreenToClient member function replaces the screen coordinates
given in lpPoint or lpRect with client coordinates. The new coordinates are relative
to the upper-left comer of the CWnd client area.

CWnd: :ClientToScreen, : :ScreenToClient

CWnd: :ScroliWindow

Remarks

void ScrollWindow(int xAmount, int yAmount, LPCRECT lpRect = NULL,
LPCRECT lpClipRect = NULL);

xAmount Specifies the amount, in device units, of horizontal scrolling. This
parameter must be a negative value to scroll to the left.

yAmount Specifies the amount, in device units, of vertical scrolling. This
parameter must be a negative value to scroll up.

lpRect Points to a CRect object or RECT structure that specifies the portion of
the client area to be scrolled. If lpRect is NULL, the entire client area is scrolled.
The caret is repositioned if the cursor rectangle intersects the scroll rectangle.

lpClipRect Points to a CRect object or RECT structure that specifies the
clipping rectangle to scroll. Only bits inside this rectangle are scrolled. Bits
outside this rectangle are not affected even if they are in the lpRect rectangle. If
IpClipRect is NULL, no clipping is performed on the scroll rectangle.

Scrolls the contents of the client area of the current CWnd object. If the caret is in
the CWnd being scrolled, ScrollWindow automatically hides the caret to prevent it
from being erased and then restores the caret after the scroll is finished. The caret
position is adjusted accordingly.

1022 CWnd: :ScrollWindowEx

See Also

The area uncovered by the ScrolIWindow member function is not repainted but is
combined into the current CWnd object's update region. The application will
eventually receive a WM _PAINT message notifying it that the region needs
repainting. To repaint the uncovered area at the same time the scrolling is done, call
the UpdateWindow member function immediately after calling ScrolIWindow.

If IpRect is NULL, the positions of any child windows in the window are offset by
the amount specified by xAmount and yAmount, and any invalid (unpainted) areas
in the CWnd are also offset. ScrolIWindow is faster when IpRect is NULL. If
IpRect is not NULL, the positions of child windows are not changed, and invalid
areas in CWnd are not offset. To prevent updating problems when IpRect is not
NULL, call the UpdateWindow member function to repaint CWnd before calling
ScrolIWindow.

CWnd::UpdateWindow, ::ScroIIWindow

CWnd: :ScroliWindowEx
Windows 3.1 Only int ScrolIWindowEx(int dx, int dy, LPCRECT IpRectScroll, LPCRECT

IpRectClip, CRgn* prgnUpdate, LPRECT IpRectUpdate, UINT [lags); •

dx Specifies the amount, in device units, of horizontal scrolling. This parameter
must have a negative value to scroll to the left.

dy Specifies the amount, in device units, of vertical scrolling. This parameter must
have a negative value to scroll up.

IpRectScroll Points to a RECT structure that specifies the portion of the client
area to be scrolled. If this parameter is NULL, the entire client area is scrolled.

IpRectClip Points to a RECT structure that specifies the clipping rectangle to
scroll. This structure takes precedence over the rectangle pointed to by
IpRectScroll. Only bits inside this rectangle are scrolled. Bits outside this
rectangle are not affected even if they are in the IpRectScroll rectangle. If this
parameter is NULL, no clipping is performed on the scroll rectangle.

prgnUpdate Identifies the region that is modified to hold the region invalidated by
scrolling. This parameter may be NULL.

IpRectUpdate Points to a RECT structure that will receive the boundaries of the
rectangle invalidated by scrolling. This parameter may be NULL.

Remarks

Return Value

See Also

CWnd: :ScroliWindowEx 1023

flags Can have one of the following values:

• SW _ERASE When specified with SW _INVALIDATE, erases the newly
invalidated region by sending a WM_ERASEBKGND message to the
window.

• SW _INVALIDATE Invalidates the region identified by prgnUpdate after
scrolling.

• SW SCROLLCHILDREN Scrolls all child windows that intersect the
rectangle pointed to by IpRectScroll by the number of pixels specified in dx
and dy. Windows sends a WM_MOVE message to all child windows that
intersect IpRectScroll, even if they do not move. The caret is repositioned
when a child window is scrolled and the cursor rectangle intersects the scroll
rectangle.

Scrolls the contents of a window's client area. This function is similar to the
ScrollWindow function, with some additional features. If SW _ INVALIDATE and
SW _ERASE are not specified, the ScrollWindowEx member function does not
invalidate the area that is scrolled away from. If either of these flags is set,
ScrollWindowEx invalidates this area. The area is not updated until the application
calls the UpdateWindow member function, calls the RedrawWindow member
function (specifying RDW _ UPDA TENOW or RDW _ ERASENOW), or
retrieves the WM _PAINT message from the application queue.

If the window has the WS _ CLIPCHILDREN style, the returned areas specified
by prgnUpdate and IpRectUpdate represent the total area of the scrolled window
that must be updated, including any areas in child windows that need updating. If
the SW _SCROLLCHILDREN flag is specified, Windows will not properly
update the screen if part of a child window is scrolled. The part of the scrolled child
window that lies outside the source rectangle will not be erased and will not be
redrawn properly in its new destination. Use the DeferWindowPos Windows
function to move child windows that do not lie completely within the IpRectScroll
rectangle. The cursor is repositioned if the SW _ SCROLLCHILDREN flag is set
and the caret rectangle intersects the scroll rectangle.

All input and output coordinates (for IpRectScroll, IpRectClip, IpRectUpdate, and
prgnUpdate) are assumed to be in client coordinates, regardless of whether the
window has the CS_OWNDC or CS_CLASSDC class style. Use the LPtoDP and
DPtoLP Windows functions to convert to and from logical coordinates, if needed.

The return value is SIMPLEREGION (rectangular invalidated region),
COMPLEXREGION (nonrectangular invalidated region; overlapping rectangles),
or NULLREGION (no invalidated region), if the function is successful; otherwise
the return value is ERROR.

CWnd::RedrawWindow, CDC::ScroIlDC, CWnd::ScroIlWindow,
CWnd:: Update Window, : :DeferWindowPos, : :ScrollWindowEx

1024 CWnd: :SendDlgltemMessage

CWnd::SendDlgltemMessage

Remarks

Return Value

See Also

LRESUL T SendDlgItemMessage(int nID, UINT message,
WPARAM wParam = 0, LPARAM IParam = 0);

nID Specifies the identifier of the dialog control that will receive the message.

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

IP aram Specifies additional message-dependent information.

Sends a message to a control. The SendDlgItemMessage member function does
not return until the message has been processed. Using SendDlgItemMessage is
identical to obtaining a CWnd* to the given control and calling the SendMessage
member function.

Specifies the value returned by the control's window procedure, or 0 if the control
was not found.

CWnd: :SendMessage, : :SendDlgItemMessage

CWnd: :SendMessage

Remarks

Return Value

See Also

LRESUL T SendMessage(UINT message, WPARAM wParam = 0,
LPARAM IParam = 0);

message Specifies the message to be sent.

wParam Specifies additional message-dependent information.

IP aram Specifies additional message-dependent information.

Sends the specified message to this window. The SendMessage member function
calls the window procedure directly and does not return until that window
procedure has processed the message. This is in contrast to the PostMessage
member function, which places the message into the window's message queue and
returns immediately.

The result of the message processing; its value depends on the message sent.

: :InSendMessage, CWnd: :PostMessage, CWnd: :SendDlgItemMessage,
: :SendMessage

CWnd::SetCapture 1025

CWnd: :Send Message ToDescendants

Remarks

void SendMessageToDescendants(UINT message, WPARAM wParam = 0,
LPARAM IParam = 0, BOOL bDeep = TRUE);

message Specifies the message to be sent.

wParam Specifies additional message-dependent infonnation.

IParam Specifies additional message-dependent infonnation.

bDeep Specifies the level to which to search. If TRUE, search all children; if
FALSE, search only immediate children.

Call this member function to send the specified Windows message to all descendant
windows. If the bDeep parameter is FALSE, the message is sent just to the
immediate children of the window; otherwise the message is sent to all descendant
windows.

CWnd: :SetActiveWindow

Remarks

Return Value

See Also

CWnd* SetActiveWindow();

Makes CWnd the active window. The SetActiveWindow member function should
be used with care since it allows an application to arbitrarily take over the active
window and input focus. Nonnally, Windows takes care of all activation.

The window that was previously active. The returned pointer may be temporary and
should not be stored for later use.

::SetActiveWindow, CWnd::GetActiveWindow

CWnd::SetCapture

Remarks

CWnd* SetCaptureO;

Causes all subsequent mouse input to be sent to the current CWnd object
regardless of the position of the cursor. When CWnd no longer requires all mouse
input, the application should call the ReleaseCapture function so that other
windows can receive mouse input.

1026 CWnd::SetCaretPos

Return Value

See Also

A pointer to the window object that previously received all mouse input. It is
NULL if there is no such window. The returned pointer may be temporary and
should not be stored for later use.

: :ReleaseCapture, : :SetCapture, CWnd: : GetCapture

CWnd: :SetCaretPos

Remarks

See Also

static void PASCAL SetCaretPos(POINT point);

point Specifies the new x- and y-coordinates (in client coordinates) of the caret.

Sets the position of the caret. The SetCaretPos member function moves the caret
only if it is owned by a window in the current task. SetCaretPos moves the caret
whether or not the caret is hidden. The caret is a shared resource. A window should
not move the caret if it does not own the caret.

CWnd::GetCaretPos, ::SetCaretPos

CWnd: :SetClipboardViewer

Remarks

Return Value

See Also

HWND SetClipboardViewer();

Adds this window to the chain of windows that are notified (by means of the
WM_DRAWCLIPBOARD message) whenever the content of the Clipboard is
changed. A window that is part of the Clipboard-viewer chain must respond to
WM_DRAWCLIPBOARD, WM_CHANGECBCHAIN, and
WM _DESTROY messages and pass the message to the next window in the chain.
This member function sends a WM _ DRA W CLIPBO ARD message to the
window. Since the handle to the next window in the Clipboard-viewer chain has not
yet been returned, the application should not pass on the
WM_DRAWCLIPBOARD message that it receives during the call to
SetClipboardViewer. To remove itself from the Clipboard-viewer chain, an
application must call the ChangeClipboardChain member function.

A handle to the next window in the Clipboard-viewer chain if successful.
Applications should save this handle (it can be stored as a member variable) and
use it when responding to Clipboard-viewer chain messages.

CWnd: :ChangeClipboardChain, : :SetClipboardViewer

CWnd::SetFocus 1027

CWnd: :SetDlgltemlnt

Remarks

See Also

void SetDlgItemInt(int nID, UINT nValue, BOOL bSigned = TRUE);

nID Specifies the integer ID of the control to be changed.

n Value Specifies the integer value used to generate the item text.

bSigned Specifies whether the integer value is signed or unsigned. If this
parameter is TRUE, n Value is signed. If this parameter is TRUE and n Value is
less than 0, a minus sign is placed before the first digit in the string. If this
parameter is FALSE, n Value is unsigned.

Sets the text of a given control in a dialog box to the string representation of a
specified integer value. SetDlgItemInt sends a WM _ SETTEXT message to the
given control.

CWnd: : GetDlgItemInt, : :SetDlgItemInt, WM _ SETTEXT

CWnd: :SetDlgltemText

Remarks

See Also

void SetDlgItemText(int nID, LPCSTR IpszString);

nID Identifies the control whose text is to be set.

IpszString Points to a CString object or null-terminated string that contains the
text to be copied to the control.

Sets the caption or text of a control owned by a window or dialog box.
SetDlgItemText sends a WM _ SETTEXT message to the given control.

: :SetDlgItemText, WM _ SETTEXT, CWnd: : GetDlgItemText

CWnd: :SetFocus

Remarks

CWnd* SetFocusO;

Claims the input focus. The input focus directs all subsequent keyboard input to this
window. The window, if any, that previously had the input focus loses it. The
SetFocus member function sends a WM _ KILLFOCUS message to the window

1028 CWnd: :SetFont

Return Value

See Also

that loses the input focus and a WM _ SETFOCUS message to the window that
receives the input focus. It also activates either the window or its parent. If the
current window is active but doesn't have the focus (that is, no window has the
focus), any key pressed will produce the messages WM _ SYSCHAR,
WM_SYSKEYDOWN, or WM_SYSKEYUP.

A pointer to the window object that previously had the input focus. It is NULL if
there is no such window. The returned pointer may be temporary and should not be
stored.

::SetFocus, CWnd::GetFocus

CWnd: :SetFont

Remarks

See Also

void SetFont(CFont* pFant, BOOL bRedraw = TRUE);

pF ant Specifies the new font.

bRedraw If TRUE, redraw the CWnd object.

Sets the window's current font to the specified font. If bRedraw is TRUE, the
window will also be redrawn.

CWnd::GetFont, WM_SETFONT

CWnd::SetMenu

Remarks

Return Value

See Also

BOOL SetMenu(CMenu* pMenu);

pM enu Identifies the new menu. If this parameter is NULL, the current menu is
removed.

Sets the current menu to the specified menu. Causes the window to be redrawn to
reflect the menu change. SetMenu will not destroy a previous menu. An application
should call the CMenu::DestroyMenu member function to accomplish this task.

Nonzero if the menu is changed; otherwise O.

CMenu: :DestroyMenu, CMenu: :LoadMenu, : :SetMenu, CWnd: : GetMenu

CWnd::SetScroIiPos 1029

CWnd: :SetParent

Remarks

Return Value

See Also

CWnd* SetParent(CWnd* pWndNewParent);

pWndNewParent Identifies the new parent window.

Changes the parent window of a child window. If the child window is visible,
Windows performs the appropriate redrawing and repainting.

A pointer to the previous parent window object if successful. The returned pointer
may be temporary and should not be stored for later use.

::SetParent, CWnd::GetParent

CWnd: :SetRedraw

Remarks

See Also

void SetRedraw(BOOL bRedraw = TRUE);

bRedraw Specifies the state of the redraw flag. If this parameter is TRUE, the
redraw flag is set; if FALSE, the flag is cleared.

An application calls SetRedraw to allow changes to be redrawn or to prevent
changes from being redrawn. This member function sets or clears the redraw flag.
While the redraw flag is cleared, the contents will not be updated after each change
and will not be repainted until the redraw flag is set. For example, an application
that needs to add several items to a list box can clear the redraw flag, add the items,
and then set the redraw flag. Finally, the application can call the Invalidate or
InvalidateRect member function to cause the list box to be repainted.

WM SETREDRA W

CWnd: :SetScroll Pos
int SetScrollPos(int nBar, int nPos, BOOL bRedraw = TRUE);

nBar Specifies the scroll bar to be set, using one of the following values:

• SB _ HORZ Sets the position of the scroll box in the horizontal scroll bar
of the window.

• SB VERT Sets the position of the scroll box in the vertical scroll bar of
the window.

1030 CWnd::SetScroIiRange

Remarks

Return Value

See Also

nP os Specifies the new position of the scroll box. It must be within the scrolling
range.

bRedraw Specifies whether the scroll bar should be repainted to reflect the new
scroll-box position. If this parameter is TRUE, the scroll bar is repainted; if
FALSE, the scroll bar is not repainted.

Sets the current position of a scroll box and, if requested, redraws the scroll bar to
reflect the new position of the scroll box. Setting bRedraw to FALSE is useful
whenever the scroll bar will be redrawn by a subsequent call to another function.

The previous position of the scroll box.

: :SetScrollPos, CWnd: : GetScrollPos, CScrollBar: :SetScrollPos

CWnd: :SetScroll Range

Remarks

See Also

void SetScrollRange(int nBar, int nMinPos, int nMaxPos,
BOOL bRedraw = TRUE);

nBar Specifies the scroll bar to be set. This parameter can be one of the following
values:

• SB H 0 RZ Sets the range of the horizontal scroll bar of the window.

• SB VERT Sets the range of the vertical scroll bar of the window.

nM inP os Specifies the minimum scrolling position.

nM axP os Specifies the maximum scrolling position.

bRedraw Specifies whether the scroll bar should be redrawn to reflect the change.
If bRedraw is TRUE, the scroll bar is redrawn; if FALSE, the scroll bar is not
redrawn.

Sets minimum and maximum position values for the given scroll bar. It can also be
used to hide or show standard scroll bars. An application should not call this
function to hide a scroll bar while processing a scroll-bar notification message. If
the call to SetScrollRange immediately follows a call to the SetScrollPos member
function, the bRedraw parameter in the SetScrollPos member function should be 0
to prevent the scroll bar from being drawn twice. The default range for a standard
scroll bar is 0 through 100. The default range for a scroll bar control is empty (both
the nMinPos and nMaxPos values are 0). The difference between the values
specified by nMinPos and nMaxPos must not be greater than INT_MAX.

CWnd: :SetScrollPos, : :SetScrollRange, CWnd: : GetScrollRange

CWnd::SetWindowPlacement 1031

CWnd: :SetTimer

Remarks

Return Value

See Also

DINT SetTimer(DINT nIDEvent, DINT nElapse, void
(CALLBACK EXPORT* IpfnTimer)(HWND, DINT, DINT, DWORD));

nIDEvent Specifies a nonzero timer identifier.

nElapse Specifies the time-out value, in milliseconds.

IpfnTimer Specifies the address of the application-supplied Ti merProc callback
function that processes the WM _TIMER messages. If this parameter is NDLL,
the WM _ TIMER messages are placed in the application's message queue and
handled by the CWnd object.

Installs a system timer. A time-out value is specified, and every time a time-out
occurs, the system posts a WM _TIMER message to the installing application's
message queue or passes the message to an application-defined TimerProc
callback function. The lpfnTimer callback function need not be named Time r Pro c,
but it must be defined as follows and return O.

void CALLBACK EXPORT TimerProc(
HWND hWnd. Ilhandle of CWnd that called SetTimer
UINT nMsg. IIWM_TIMER
UINT nIDEvent Iitimer identification
DWORD dwTime Iisystem time

) ;

Timers are a limited global resource; therefore it is important that an application
check the value returned by the SetTimer member function to verify that a timer is
actually available.

The timer identifier of the new timer if the function is successful. An application
passes this value to the Kill Timer member function to kill the timer. Nonzero if
successful; otherwise O.

WM_TIMER, CWnd::KiIlTimer, ::SetTimer, CWnd::FromHandle

CWnd: :SetWindowPlacement
Windows 3.1 Only BOOL SetWindowPlacement(const WINDOWPLACEMENT FAR*

lpwndpl); •

lpwndpl Points to a WINDOWPLACEMENT structure that specifies the new
show state and positions.

1032 CWnd: :SetWindowPlacement

Remarks Sets the show state and the nonnal (restored), minimized, and maximized positions
for a window.

Return Value

WINDOWPLACE·
MENT Structure
Windows 3.1 Only

Members

Nonzero if the function is successful; otherwise O.

A WINDOWPLACEMENT data structure has this fonn:

typedef struct tagWINDOWPLACEMENT
UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

WINDOWPLACEMENT;

/* wndpl */

The WINDOWPLACEMENT structure contains infonnation about the placement
of a window on the screen .•

The WINDOWPLACEMENT structure has the following members:

length Specifies the length, in bytes, of the structure.

flags Specifies flags that control the position of the minimized window and the
method by which the window is restored. This member can be one or both of the
following flags:

• WPF _SETMINPOSITION Specifies that the x- and y-positions of the
minimized window may be specified. This flag must be specified if the
coordinates are set in the ptMinPosition member.

• WPF _ RESTORETOMAXIMIZED Specifies that the restored window
will be maximized, regardless of whether it was maximized before it was
minimized. This setting is valid only the next time the window is restored. It
does not change the default restoration behavior. This flag is valid only when
the SW _SHOWMINIMIZED value is specified for the showCmd
member.

showCmd Specifies the current show state of the window. This member may be
one of the following values:

• SW _HIDE Hides the window and passes activation to another window.

• SW _MINIMIZE Minimizes the specified window and activates the top­
level window in the system's list.

• SW _RESTORE Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its original size and
position (same as SW _ SHOWNORMAL).

See Also

CWnd::SetWindowPos 1033

• SW _SHOW Activates a window and displays it in its current size and
position.

• SW SHOWMAXIMIZED Activates a window and displays it as a
maximized window.

• SW SHOWMINIMIZED Activates a window and displays it as an icon.

• SW _ SHOWMINNOACTIVE Displays a window as an icon. The
window that is currently active remains active.

• SW _SHOWNA Displays a window in its current state. The window that
is currently active remains active.

• SW _SHOWNOACTIVATE Displays a window in its most recent size
and position. The window that is currently active remains active.

• SW _SHOWNORMAL Activates and displays a window. If the window
is minimized or maximized, Windows restores it to its original size and
position (same as SW _RESTORE).

ptMinPosition Specifies the position of the window's top-left comer when the
window is minimized.

ptMaxPosition Specifies the position of the window's top-left comer when the
window is maximized.

rcNormalPosition Specifies the window's coordinates when the window is in the
normal (restored) position.

CWnd: : GetWindowPlacement, : :SetWindowPlacement

CWnd: :SetWindowPos
BOOL SetWindowPos(const CWnd* pWndlnsertAfter, int x, int y, int ex,

int cy, DINT nFlags);

pWndlnsertAfter Identifies the CWnd object that will precede this CWnd object
in the Z-order. This parameter can be a pointer to a CWnd or one of the following
values:

• wndBottom Places the window at the bottom of the Z-order. If this CWnd
is a topmost window, the window loses its topmost status; the system places
the window at the bottom of all other windows.

• wndTop Places the window at the top of the Z-order.

1034 CWnd::SetWindowPos

Windows 3.1 Only

Remarks

• wndTopMost Places the window above all nontopmost windows. The
window maintains its topmost position even when it is deactivated.

• wndNoTopMost Repositions the window to the top of all nontopmost
windows (that is, behind all topmost windows). This flag has no effect if the
window is already a nontopmost window .•

See the following "Remarks" section for rules about how this parameter is used.

x Specifies the new position of the left side of the window.

y Specifies the new position of the top of the window.

ex Specifies the new width of the window.

ey Specifies the new height of the window.

nFlags Specifies sizing and positioning options. This parameter can be a
combination of the following:

• SWP _ DRA WFRAME Draws a frame (defined when the window was
created) around the window.

• SWP HIDEWINDOW Hides the window.

• SWP _NOACTIVATE Does not activate the window. If this flag is not
set, the window is activated and moved to the top of either the topmost or the
nontopmost group (depending on the setting of the pWndlnsertAfter
parameter) .

• SWP _NOMOVE Retains current position (ignores the x andy
parameters) .

• SWP _ NOREDRA W Does not redraw changes. If this flag is set, no
repainting of any kind occurs. This applies to the client area, the nonclient
area (including the title and scroll bars), and any part of the parent window
uncovered as a result of the moved window. When this flag is set, the
application must explicitly invalidate or redraw any parts of the window and
parent window that must be redrawn.

• SWP _NOSIZE Retains current size (ignores the ex and ey parameters).

• SWP _NOZORDER Retains current ordering (ignores pWndlnsertAfter).

• SWP _SHOWWINDOW Displays the window.

Call this member function to change the size, position, and Z-order of child, pop-up,
and top-level windows.

Windows are ordered on the screen according to their Z-order; the window at the
top of the Z-order appears on top of all other windows in the order.

CWnd::SetWindowPos 1035

All coordinates for child windows are client coordinates (relative to the upper-left
comer of the parent window's client area).

A window can be moved to the top of the Z-order either by setting the
pWndlnsertAfter parameter to &wndTopMost and ensuring that the
SWP _NOZORDER flag is not set or by setting a window's Z-order so that it is
above any existing topmost windows. When a nontopmost window is made topmost,
its owned windows are also made topmost. Its owners are not changed. A topmost
window is no longer topmost if it is repositioned to the bottom (&wndBottom) of
the Z-order or after any nontopmost window. When a topmost window is made
nontopmost, all of its owners and its owned windows are also made nontopmost
windows.

If neither SWP _ NOACTIV ATE nor SWP _ NOZORDER is specified (that is,
when the application requests that a window be simultaneously activated and placed
in the specified Z-order), the value specified inpWndlnsertAfter is used only in the
following circumstances:

• Neither &wndTopMost nor &wndNoTopMost is specified in the
pWndlnsertAfter parameter.

• This window is not the active window.

An application cannot activate an inactive window without also bringing it to the
top of the Z-order. Applications can change the Z-order of an activated window
without restrictions.

A nontopmost window may own a topmost window, but not vice versa. Any
window (for example, a dialog box) owned by a topmost window is itself made a
topmost window to ensure that all owned windows stay above their owner.

Windows 3.1 Only With Windows version 3.1, windows can be moved to the top of the Z-order and
locked there by setting their WS _ EX_TOPMOST styles. Such a topmost window
maintains its topmost position even when deactivated. For example, selecting the
WinHelp Always On Top command makes the Help window topmost, and it then
remains visible when you return to your application.

To create a topmost window, call SetWindowPos with the pWndlnsertAfter
parameter equal to &wndTopMost, or set the WS _EX_TOPMOST style when
you create the window.

If the Z-order contains any windows with the WS_EX_TOPMOST style, a
window moved with the &wndTopMost value is placed at the top of all
nontopmost windows, but below any topmost windows. When an application
activates an inactive window without the WS _EX_TOPMOST bit, the window is
moved above all nontopmost windows but below any topmost windows.

1036 CWnd::SetWindowText

Return Value

See Also

If SetWindowPos is called when the pWndlnsertAfter parameter is &wndBottom
and CWnd is a topmost window, the window loses its topmost status
(WS_EX_TOPMOST is cleared), and the system places the window at the bottom
of the Z-order .•

Nonzero if the function is successful; otherwise O.

::DeferWindowPos, ::SetWindowPos

CWnd: :SetWindowText

Remarks

See Also

void SetWindowText(LPCSTR IpszString);

IpszString Points to a CString object or null-terminated string to be used as the
new title or control text.

Sets the window's title to the specified text. If the window is a control, the text
within the control is set. This function causes a WM _ SETTEXT message to be
sent to this window.

CWnd: : GetWindowText, : :SetWindowText

CWnd: :ShowCaret

Remarks

See Also

void ShowCaret();

Shows the caret on the screen at the caret's current position. Once shown, the
caret begins flashing automatically. The ShowCaret member function shows the
caret only if it has a current shape and has not been hidden two or more times
consecutively. If the caret is not owned by this window, the caret is not shown.

Hiding the caret is cumulative. If the HideCaret member function has been called
five times consecutively, ShowCaret must be called five times to show the caret.
The caret is a shared resource. The window should show the caret only when it has
the input focus or is active.

CWnd::HideCaret, ::ShowCaret

CWnd::ShowScroIlBar 1037

CWnd: :ShowOwnedPopups

Remarks

See Also

void ShowOwnedPopups(BOOL bShow = TRUE);

bShow Specifies whether pop-up windows are to be shown or hidden. If this
parameter is TRUE, all hidden pop-up windows are shown. If this parameter is
FALSE, all visible pop-up windows are hidden.

Shows or hides all pop-up windows owned by this window.

: :ShowOwnedPopups

CWnd: :ShowScroll Bar

Remarks

See Also

void ShowScrollBar(UINT nBar, BOOL bShow = TRUE);

nBar Specifies whether the scroll bar is a control or part of a window's nonc1ient
area. If it is part of the nonclient area, nBar also indicates whether the scroll bar
is positioned horizontally, vertically, or both. It must be one of the following:

• SB BOTH Specifies the horizontal and vertical scroll bars of the window.

• SB HORZ Specifies that the window is a horizontal scroll bar.

• SB VERT Specifies that the window is a vertical scroll bar.

bShow Specifies whether Windows shows or hides the scroll bar. If this
parameter is TRUE, the scroll bar is shown; otherwise the scroll bar is hidden.

Shows or hides a scroll bar. An application should not call ShowScrollBar to hide
a scroll bar while processing a scroll-bar notification message.

: :ShowScrollBar, CScrollBar: :ShowScrollBar

1038 CWnd::ShowWindow

CWnd: :ShowWindow

Remarks

Return Value

See Also

BOOL ShowWindow(int nCmdShow);

nCmdShow Specifies how the CWnd is to be shown. It must be one of the
following values:

• SW _HIDE Hides this window and passes activation to another window.

• SW _MINIMIZE Minimizes the window and activates the top-level
window in the system's list.

• SW _RESTORE Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its original size and
position.

• SW _SHOW Activates the window and displays it in its current size and
position.

• SW SHOWMAXIMIZED Activates the window and displays it as a
maximized window.

• SW SHOWMINIMIZED Activates the window and displays it as an
Icon.

• SW _ SHOWMINNOACTIVE Displays the window as an icon. The
window that is currently active remains active.

• SW _ SHOWNA Displays the window in its current state. The window that
is currently active remains active.

• SW _SHOWNOACTIVATE Displays the window in its most recent size
and position. The window that is currently active remains active.

• SW _SHOWNORMAL Activates and displays the window. If the window
is minimized or maximized, Windows restores it to its original size and
position.

Sets the visibility state of the window. ShowWindow must be called only once per
application for the main window with CWinApp::m _nCmdShow. Subsequent
calls to ShowWindow must use one of the values listed above instead of the one
specified by m _ nCmdShow.

Nonzero if the window was previously visible; 0 if the CWnd was previously
hidden.

::ShowWindow, CWnd::OnShowWindow, CWnd::ShowOwnedPopups,
WM SHOWWINDOW

CWnd: :SubclassWindow 1039

CWnd: :SubclassDlgltem

Remarks

Return Value

See Also

BOOL SubclassDlgUem(UINT nlD, CWnd* pParent);

nlD The control's ID.

pParent The control's parent (usually a dialog box).

Call this member function to "dynamically subclass" a control created from a
dialog template and attach it to this CWnd object. When a control is dynamically
subclassed, windows messages will route through the CWnd's message map and
call message handlers in the CWnd' s class first. Messages that are passed to the
base class will be passed to the default message handler in the control.

This member function attaches the Windows control to a CWnd object and
replaces the control's WndProc and AfxWndProc functions. The function stores
the old WndProc in the location returned by the GetSuperWndProcAddr
member function. You must override the GetSuperWndProcAddr member
function for every unique window class to provide a place to store the old
WndProc.

Nonzero if the function is successful; otherwise O.

CWnd: : GetSuperWndProcAddr , CWnd: :DefWindowProc, :: WndProc,
CWnd::SubclassWindow, CWnd::Attach

CWnd: :SubclassWindow

Remarks

BOOL SubclassWindow(HWND hWnd);

h W nd A handle to the window.

Call this member function to "dynamically subclass" a window and attach it to this
CWnd object. When a window is dynamically subclassed, windows messages will
route through the CWnd's message map and call message handlers in the CWnd's
class first. Messages that are passed to the base class will be passed to the default
message handler in the window.

This member function attaches the Windows control to a CWnd object and
replaces the window's WndProc and AfxWndProc functions. The function stores
the old WndProc in the location returned by the GetSuperWndProcAddr
member function. You must override the GetSuperWndProcAddr member
function for every unique window class to provide a place to store the old
WndProc.

1040 CWnd::UpdateData

Return Value

See Also

Nonzero if the function is successful; otherwise O.

CWnd: : GetSuperWndProcAddr , CWnd: :DefWindowProc, :: WndProc,
CWnd::SubclassDlgltem, CWnd::Attach

CWnd: :UpdateData

Remarks

Return Value

See Also

BOOL UpdateData(BOOL bSaveAndValidate = TRUE);

bSaveAndValidate Flag that indicates whether dialog box is being initialized
(FALSE) or data is being retrieved (TRUE).

Call this member function to initialize data in a dialog box, or to retrieve and
validate dialog data.

The framework automatically calls UpdateData with bSaveAndValidate set to
FALSE when a modal dialog box is created in the default implementation of
CDialog: :OnInitDialog. The call occurs before the dialog box is visible. The
default implementation of CDialog::OnOK calls this member function with
bSaveAndValidate set to TRUE to retrieve the data, and if successful, will close
the dialog box. (If the Cancel button is clicked in the dialog box, the dialog box is
closed without the data being retrieved.)

Nonzero if the operation is successful; otherwise O. If bSaveAndValidate is TRUE,
then a return value of nonzero means that the data is successfully validated.

CWnd: : DoDataExchange

CWnd:: UpdateDialogControls

Remarks

void UpdateDialogControls(CCmdTarget* pTarget,
BOOL bDisablelfNoHndler);

pTarget Points to the main frame window of the application, and used for routing
update messages.

bDisablelfNoHndler Flag that indicates whether a control that has no update
handler should be automatically displayed as disabled.

Call this member function to update the state of dialog buttons and other controls in
a dialog box or window that uses the ON_UPDATE _ COMMAND _ UI callback
mechanism.

See Also

CWnd::ValidateRect 1041

If a child control does not have a handler and bDisableljNoHndler is TRUE, then
the child control will be disabled.

The framework calls this member function for controls in dialog bars or tool bars as
part of the application's idle processing.

CFrame Wnd::m bAutoMenuEnable

CWnd: :UpdateWindow

Remarks

See Also

void UpdateWindow();

Updates the client area by sending a WM _PAINT message if the update region is
not empty. The UpdateWindow member function sends a WM_PAINT message
directly, bypassing the application queue. If the update region is empty,
WM PAINT is not sent.

:: Update Window, CWnd: :RedrawWindow

CWnd: :ValidateRect

Remarks

See Also

void ValidateRect(LPCRECT IpRect);

IpRect Points to a CRect object or RECT structure that contains client
coordinates of the rectangle to be removed from the update region. If IpRect is
NULL, the entire window is validated.

Validates the client area within the given rectangle by removing the rectangle from
the update region of the window. The BeginPaint member function automatically
validates the entire client area. Neither the ValidateRect nor ValidateRgn
member function should be called if a portion of the update region needs to be
validated before WM_ PAINT is next generated. Windows continues to generate
WM _PAINT messages until the current update region is validated.

CWnd: :BeginPaint, :: ValidateRect, CWnd:: ValidateRgn

1042 CWnd::ValidateRgn

CWnd: :ValidateRgn

Remarks

See Also

void ValidateRgn(CRgn* pRgn);

pRgn Identifies a region that defines the area to be removed from the update
region. If this parameter is NULL, the entire client area is removed.

Validates the client area within the given region by removing the region from the
current update region of the window. The given region must have been created
previously by a region function. The region coordinates are assumed to be client
coordinates. The BeginPaint member function automatically validates the entire
client area. Neither the ValidateRect nor the ValidateRgn member function
should be called if a portion of the update region must be validated before the next
WM _PAINT message is generated.

:: ValidateRgn, CWnd:: ValidateRect

CWnd: :WindowFromPoint

Remarks

Return Value

See Also

static CWnd* PASCAL WindowFromPoint(POINT point);

point Specifies a CPoint object or POINT data structure that defines the point to
be checked.

Retrieves the window that contains the specified point; point must specify the
screen coordinates of a point on the screen. WindowFromPoint does not retrieve a
hidden, disabled, or transparent window, even if the point is within the window. An
application should use the ChiidWindowFromPoint member function for a
nonrestrictive search.

A pointer to the window object in which the point lies. It is NULL if no window
exists at the given point. The returned pointer may be temporary and should not be
stored for later use.

:: WindowFromPoint, CWnd: :ChiidWindowFromPoint

CWnd::m_hWnd 1043

CWnd: :WindowProc
Protected

Remarks

Return Value

virtual LRESUL T WindowProc(UINT message, WP ARAM wParam,
LP ARAM IParam);

message Specifies the Windows message to be processed.

wParam Provides additional information used in processing the message. The
parameter value depends on the message.

IP aram Provides additional information used in processing the message. The
parameter value depends on the message.

Provides a Windows procedure (WindowProc) for a CWnd object. It dispatches
messages through the window's message map.

The return value depends on the message.

Data Members

CWnd::m hWnd
Remarks

See Also

The handle of the Windows window attached to this CWnd. The m h Wnd data
member is a public variable of type HWND.

CWnd::Attach, CWnd::Detach, CWnd::FromHandle

1044 CWordArray

class CWordArray : public CObject
The CWordArray class supports arrays of 16-bit
words. The member functions of CWordArray are
similar to the member functions of class CObArray. ,-C_W_o_rd_A_rr_a,,--Y ____ ----'

Because of this similarity, you can use the
CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a
WORD.

CObject* CObArray: :GetAt(int <nlndex>) canst;

for example, translates to

WORD CWardArray::GetAt(int <nlndex>) canst;

CWordArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of words is stored to an
archive, either with an overloaded insertion operator or with the Serialize member
function, each element is, in tum, serialized. If you need a dump of individual
elements in the array, you must set the depth of the dump context to 1 or greater.

#include <afxcoll.h>

Construction/Destruction - Public Members
CWordArray

-CWordArray

Constructs an empty array for words.

Destroys a CW ordArray object.

Bounds-Public Members
GetSize

GetUpperBound

SetSize

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this array.

Operations - Public Members
FreeExtra

RemoveAIl

Frees all unused memory above the current upper bound.

Removes all the elements from this array.

CWordArray 1045

Element Access - Public Members
GetAt

SetAt

ElementAt

Returns the value at a given index.

Sets the value for a given index; array is not allowed to
grow.

Returns a temporary reference to the element pointer
within the array.

Growing the Array-Public Members
SetAtGrow

Add

Sets the value for a given index; grows the array if
necessary.

Adds an element to the end of the array; grows the array
if necessary.

Insertion/Removal-Public Members
InsertAt

RemoveAt

Inserts an element (or all the elements in another array) at
a specified index.

Removes an element at a specific index.

Operators - Public Members
operator [] Sets or gets the element at the specified index.

1046 Macros and Globals

Macros and Globals

The Microsoft Foundation Class Library can be divided into two major sections: 1)
the Foundation classes and 2) macros and globals. If a function or variable is not a
member of a class, it is a global function or variable.

The Microsoft Foundation macros and globals, which are designed to assist both
MS-DOS and Windows programmers, offer functionality in the following
categories:

• Data types

• Run-time object-model services

• Diagnostic services

• Exception processing

• CString formatting and message-box display

• Message maps

• Application information and management

• Support for Object Linking and Embedding (OLE)

• Standard commands and window IDs

The first part of this section briefly discusses each of the above categories and lists
each global and macro in the category, along with a short description of what it
does. Following this is a complete alphabetical listing of all the global functions,
global variables, and macros in the Microsoft Foundation classes.

The main supporting reference for the "Macros and Globals" section is the Class
Library User's Guide. This is usually the first place you will look to find more
information on macros and globals. When necessary, the appropriate chapter of the
Class Library User's Guide is mentioned with the function or macro description.

Note All global functions start with the prefix "Afx." All global variables start
with the prefix "afx." Macros do not start with any particular prefix, but they are
all uppercase.

Data Types

Macros and Globals 1047

This section lists the data types most commonly used in the Microsoft Foundation
Class Library. Most of these data types are exactly the same as those in the
Windows Software Development Kit (SDK) version 3.1, while others are unique to
the Microsoft Foundation Class Library.

Commonly used Windows SDK and Microsoft Foundation class data types are as
follows:

• BOOL A Boolean value.

• BYTE An 8-bit unsigned integer.

• COLORREF A 32-bit value used as a color value.

• DWORD A 32-bit unsigned integer or the address of a segment and its
associated offset.

• LONG A 32-bit signed integer.

• LPARAM A 32-bit value passed as a parameter to a window procedure or
callback function.

• LPCSTR A 32-bit pointer to a constant character string.

• LPSTR A 32-bit pointer to a character string.

• LPVOID A 32-bit pointer to an unspecified type.

• LRESUL T A 32-bit value returned from a window procedure or callback
function.

• UINT A 16-bit unsigned integer in Windows version 3.0 and later; a 32-bit
unsigned integer in Win32.

• WNDPROC A 32-bit pointer to a window procedure.

• WORD A 16-bit unsigned integer.

• WP ARAM A value passed as a parameter to a window procedure or callback
function; 16 bits in Windows version 3.0 and later; 32-bits in Win32.

Data types unique to the Microsoft Foundation Class Library include:

• POSITION A value used to denote the position of an element in a collection;
used by Microsoft Foundation collection classes.

• LPCRECT A 32-bit pointer to a constant (nonmodifiable) RECT structure.

For a list of the less common data types, see the Windows SDK reference.

1048 Macros and Globals

Run-Time Object Model Services
The classes CObject and CRuntimeClass encapsulate several object services,
including access to run-time class information, serialization, and dynamic object
creation. All classes derived from CObject inherit this functionality.

Access to run-time class information enables you to determine information about an
object's class at run time. The ability to determine the class of an object at run time
is useful when extra type-checking of function arguments is needed and when you
must write special-purpose code based on the class of an object. Run-time class
information is not supported directly by the C++ language.

Serialization is the process of reading or writing an object's contents to and from a
file. You can use serialization to store an object's contents even after the
application exits. The object can then be read from the file when the application is
restarted. Such data objects are said to be "persistent."

Dynamic object creation enables you to create an object of a specified class at run
time. For example, document, view, and frame objects must support dynamic
creation because the framework needs to create them dynamically.

The following table lists the Microsoft Foundation Class Library macros that
support run-time class information, serialization, and dynamic creation. For more
information on these run-time object services, see Chapter 12 of the Class Library
User's Guide. For more information on serialization, see Chapter 14 of the Class
Library User's Guide.

Run-Time Object Model Services
DECLARE DYNAMIC Enables access to run-time class information

(must be used in the class declaration).

DECLARE DYNCREATE

DECLARE SERIAL

IMPLEMENT DYNAMIC

Enables dynamic creation and access to run-time
class information (must be used in the class
declaration).

Enables serialization and access to run-time
class information (must be used in the class
declaration).

Enables access to run-time class information
(must be used in the class implementation).

IMPLEMENT DYNCREATE Enables dynamic creation and access to run-time
information (must be used in the class
implementation).

IMPLEMENT SERIAL

RUNTIME CLASS

Diagnostic Services

Macros and Globals 1049

Permits serialization and access to run-time class
information (must be used in the class
implementation).

Returns the CRuntimeClass structure that
corresponds to the named class.

The Microsoft Foundation Class Library provides a range of diagnostic services
that make debugging your programs easier. These diagnostic services include
macros and global functions that allow you to track your program's memory
allocations, dump the contents of objects during run time, and print debugging
messages during run time. The macros and global functions for diagnostic services
are grouped into the following categories:

• General diagnostic macros

• General diagnostic functions and variables

• Object diagnostic functions

These macros and functions are available for all classes derived from CObject in
the Debug and Release versions of the Microsoft Foundation Class Library.
However, all except DEBUG _NEW and VERIFY do nothing in the Release
version.

In the Debug library, all allocated memory blocks are bracketed with a series of
"guard bytes." If these bytes are disturbed by an errant memory write, then the
diagnostic routines can report a problem. If you include the line

#define new DEBUG_NEW

in your implementation file, all calls to new will store the filename and
line number where the memory allocation took place. The function
CMemoryState::DumpAllObjectsSince will display this extra information,
allowing you to identify memory leaks. Refer also to the class CDumpContext
for additional information on diagnostic output.

For a general discussion of diagnostic facilities, see Chapter 15, "Diagnostics," in
the Class Library User's Guide. For more information on the use of some of the
key memory diagnostic functions, see the section "Detecting Memory Leaks" in
Chapter 15 of the Class Library User's Guide.

1050 Macros and Globals

General Diagnostic Macros
ASSERT

ASSERT VALID

DEBUG NEW

TRACE

TRACEO

TRACE!

TRACE2

TRACE3

VERIFY

Prints a message and then aborts the program if
the specified expression evaluates to FALSE in
the Debug version of the library.

Tests the internal validity of an object by calling
its AssertValid member function; typically
overridden from CObject.

Provides a filename and line number for all
object allocations in Debug mode to help find
memory leaks.

Provides printf-like capability in the Debug
version of the library.

Similar to TRACE but takes a format string
with no arguments.

Similar to TRACE but takes a format string
with a single argument.

Similar to TRACE but takes a format string
with two arguments.

Similar to TRACE but takes a format string
with three arguments.

Similar to ASSERT but evaluates the expression
in the Release version of the library as well as in
the Debug version.

General Diagnostic Functions and Variables
afxDump

afxMemDF

afxTraceEnabled

afxTraceFlags

AfxCheckMemory

AfxDump

Global variable that sends CDumpContext
information to the debugger output window or to
the debug terminal.

Global variable that controls the behavior of the
debugging memory allocator.

Global variable used to enable or disable output
from the TRACE macro

Global variable used to tum on the built-in
reporting features of the Microsoft Foundation
Class Library.

Checks the integrity of all currently allocated
memory.

Call this function while in the debugger to dump
the state of an object while debugging.

AfxEnableMemoryTracking

AfxIsMemoryBlock

AfxIs ValidAddress

AfxIs ValidString

AfxSetAllocHook

Object Diagnostic Functions
AfxDoFor AIIClasses

AfxDoFor AIIObjects

Macros and Globals 1051

Turns memory tracking on and off.

Verifies that a memory block has been properly
allocated.

Verifies that a memory address range is within
the program's bounds.

Determines whether a pointer to a string is valid.

Enables the calling of a function on each
memory allocation.

Performs a specified function on all CObject­
derived classes that support run-time type
checking.

Performs a specified function on all CObject­
derived objects that were allocated with new.

Exception Processing

See Also

When a program executes, a number of abnormal conditions and errors called
"exceptions" can occur. These may include running out of memory, resource
allocation errors, and failure to find files.

The Microsoft Foundation Class Library uses an exception-handling scheme that is
modeled closely after the one proposed by the ANSI standards committee for C++.
This involves setting up an exception handler before calling a function that may
encounter an abnormal situation. If the function encounters an abnormal condition,
it throws an exception and control is passed to the exception handler.

Several macros included with the Microsoft Foundation Class Library set up
exception handlers. A number of other global functions help to throw specialized
exceptions and terminate programs, if necessary. These macros and global functions
fall into the following categories:

• Exception macros, which structure your exception handler

• Exception-throwing functions, which generate exceptions of specific types

• Termination functions, which cause program termination

For examples and more details, see Chapter 16, "Exceptions," in the Class Library
User's Guide. You can also refer to class CException.

CException

1052 Macros and Globals

Exception Macros
TRY

CATCH

AND CATCH

END CATCH

THROW

THROW LAST

Exception-Throwing Functions
AfxThrow ArchiveException

AfxThrowFileException

AfxThrowMemoryException

AfxThrowNotSupportedException

AfxThrowOleException

AfxThrowResourceException

AfxThrowUserException

Termination Functions
AfxAbort

Designates a block of code for exception
processing.

Designates a block of code for catching an
exception from the preceding TRY block.

Designates a block of code for catching
additional exception types from the
preceding TRY block.

Ends the last CATCH or AND CATCH
code block.

Throws a specified exception.

Throws the currently handled exception to
the next outer handler.

Throws an archive exception.

Throws a file exception.

Throws a memory exception.

Throws a not-supported exception.

Throws an OLE exception.

Throws a Windows resource-not-found
exception.

Throws an exception in a user-initiated
program action.

Called to terminate an application when a
fatal error occurs.

CString Formatting and Message-Box Display

See Also

A number of functions are provided to format and parse CString objects. You can
use these functions in any situation where you have to manipulate CString objects,
but they are particularly useful for formatting strings that will appear in message­
box text.

This group of functions also includes a global routine for displaying a message box.

Refer to class CString for more information about CString objects.

CString

Macros and Globals 1053

CString Functions
AfxFormatStringl Substitutes a given string for the format characters "% 1"

in a string contained in the string table.

AfxFormatString2

AfxMessageBox

Message Maps

Substitutes two strings for the format characters "% 1" and
"%2" in a string contained in the string table.

Displays a message box.

Since Windows is a message-oriented operating system, a large portion of
programming for the Windows environment involves message handling. Each time
an event such as a keystroke or mouse click occurs, a message is sent to the
application, which must then handle the event.

The Microsoft Foundation Class Library offers a programming model optimized for
message-based programming. In this model, "message maps" are used to designate
which functions handle which messages for a particular class. Message maps
contain one or more macros that specify which messages are handled by which
functions. For example, a message-map containing an ON _COMMAND macro
might look something like the following:

BEGIN_MESSAGE_MAP(CMyDoc, CDocument)
II{{AFX_MSG_MAP(CMyDoc)
ON_COMMAND(ID_MYCMD, OnMyCommand)
II ... More entries to handle additional commands
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

The ON_COMMAND macro is used to handle command messages generated by
menus, buttons, and accelerator keys. Macros are available to map the following:

Windows Messages
• Control notifications

• User-defined messages

Command Messages
• Registered user-defined messages

• User-interface update messages

• VBX event messages

Although message-map macros are important, you generally won't have to use them
directly. This is because ClassWizard automatically creates message-map entries in

1054 Macros and Globals

your source files when you use it to associate message-handling functions with
messages. Any time you want to edit or add a message-map entry, you can use
Class Wizard.

However, since message maps are such an important part of the Microsoft
Foundation Class Library, you should understand what they do, and documentation
is therefore provided for them.

To support message maps, the Microsoft Foundation Class Library provides the
following macros:

Message-Map Declaration and Demarcation
DECLARE_MESSAGE_MAP Declares that a message map will be used

in a class to map messages to functions
(must be used in the class declaration).

BEGIN MESSAGE MAP - -

END MESSAGE MAP - -

Message-Mapping Macros
ON COMMAND

ON CONTROL

ON MESSAGE

ON REGISTERED MESSAGE - -

ON UPDATE COMMAND UI - - -

ON VBXEVENT

Begins the definition of a message map
(must be used in the class implementation).

Ends the definition of a message map
(must be used in the class implementation).

Indicates which function will handle a
specified command message.

Indicates which function will handle a
specified control-notification message.

Indicates which function will handle a
user-defined message.

Indicates which function will handle a
registered user-defined message.

Indicates which function will handle a
specified user-interface update command
message.

Indicates which function will handle a
specified VBX control event message.

For more information on message maps and the above message-map macros, see
Chapter 6 of the Class Library User's Guide. For more information on how to use
Class Wizard, see Chapter 9 of the App Studio User's Guide.

Macros and Globals 1055

Application Information and Management

See Also

When you write an application, you create a single CWinApp-derived object. At
times, you may wish to get information about this object outside the CWinApp­
derived object.

CWinApp

The Microsoft Foundation Class Library provides the following global functions to
help you accomplish these tasks:

Application Information and Management
AfxGetApp Returns a pointer to the application's

single CWinApp object.

AfxGetAppName

AfxGetInstanceHandle

AfxGetResourceHandle

AfxRegisterWndClass

AfxRegister VB Event

AfxSetResourceHandle

Returns a string containing the
application's name.

Returns an HINST ANCE representing
this instance of the application.

Returns an HINST ANCE where the
application loads its default resources; use
this to access the application's resources
directly.

Registers a Windows window class to
supplement those registered automatically
by the library.

Registers a VB event of a specified name
and returns an atom identifying the event.

Sets the HINST ANCE handle where the
default resources of the application are
loaded.

OLE Support
A number of functions are provided to help you write programs that use the
Windows Object Linking and Embedding (OLE) mechanism. You can use these
functions to provide the standard OLE user interface for client applications as well
as a helper for automatic server registration.

In addition to these global functions, the Microsoft Foundation Class Library
contains several classes that help you implement OLE functionality in your

1056 Macros and Globals

See Also

program. See Chapter 18 of the Class Library User's Guide and Techical Note 8
(which can be found in MSVC\HELP\MFCNOTES.HLP) for more information on
using the OLE classes.

To use these macros and global functions, add the following directive at the top of
your program or in your STDAFX.H header file:

#include <afxole.h>

CWinApp

OLE Client Functions
AfxOleInsertDialog

AfxOleLinksDialog

AfxOleSetEditMenu

OLE Server Functions
AfxOleRegisterServer Name

Allows the user to choose an item type from a
list of registered server applications.

Allows the user to update the client's OLE links.

Implements the user interface for the type name
Object command, allowing users to invoke verbs
on OLE items.

Registers an application as an OLE server.

Standard Commands and Window IDs
The Microsoft Foundation Class Library defines a number of standard command
and window IDs in AFXRES.H. These IDs are most commonly used within App
Studio and Class Wizard to map messages to your handler functions. All standard
commands have an ID _ prefix. For example, when you use App Studio's menu
editor, you normally bind the File Open menu item to the standard
ID FILE OPEN command ID. - -
For most standard commands, application code does not need to refer to the
command ID because the framework itself handles the commands through message­
maps in its primary framework classes (CWinApp, CView, CDocument, and so
forth).

In addition to standard command IDs, a number of other standard IDs are defined
which have a prefix of AFX _ ID. These IDs include standard window IDs (prefix
AFX_IDW _), string IDs (prefix AFX_IDS_), and several other types.

IDs that begin with the AFX _ ID prefix are rarely used by programmers, but you
might, however, need to refer to these IDs when overriding framework functions
which themselves refer to the AFX IDs.

AfxCheckMemory 1057

IDs are not individually documented in this reference. However, you can find more
information on them in Technical Notes 20, 21, and 22, which can be found in
MSVC\HELP\MFCNOTES.HLP.

Note The header file AFXRES.H is indirectly included in AFXWIN.H. You must
explicitly include the statement

#include afxres.h

in your application's resource script (.RC) file.

Macros, Global Functions, and Global Variables

AfxAbort

Remarks

void AfxAbort();

The default termination function supplied by the Microsoft Foundation Class
Library. AfxAbort is called internally by Microsoft Foundation Class Library
member functions when there is a fatal error, such as an uncaught exception that
cannot be handled. You can call AfxAbort in the rare case when you encounter a
catastrophic error from which you cannot recover.

AfxCheckMemory

Remarks

BOOL AfxCheckMemory();

This function validates the free memory pool and prints error messages as required.
If the function detects no memory corruption, it prints nothing.

All memory blocks currently allocated on the heap are checked, including those
allocated by new but not those allocated by direct calls to underlying memory
allocators such as the malloc function or the GlobalAlIoc Windows function. If
any block is found to be corrupted, a message is printed to the debugger output.

1058 AfxDoForAIIClasses

Return Value

Example

If you include the line

#define new DEBUG_NEW

in a program module, then subsequent calls to AfxCheckMemory show the
filename and line number where the memory was allocated.

Note If your module contains one or more implementations of serializable classes,
then you must put the fld e fin e line after the last IMPLEMENT_SERIAL macro
invocation.

Nonzero if no memory errors; otherwise O.

CAge* pcage = new CAge(21);
Age* page = new Age(22);
«(char) pcage) - 1) = 99;
«(char) page) - 1) = 99;
AfxCheckMemory();

II CAge is derived from CObject.
II Age is NOT derived from CObject.

II Corrupt preceding guard byte
II Corrupt preceding guard byte

The results from the program are as follows:

memory check error at $0067495F = $63, should be $FD
DAMAGE: before Non-Object block at $00674960
Non-Object allocated at file test02.cxx(48)
Non-Object located at $00674960 is 2 bytes long
memory check error at $00674905 = $63, should be $FD
DAMAGE: before Object block at $00674906
Object allocated at file test02.cxx(47)
Object located at $00674906 is 6 bytes long

Note This function only works in the Debug version of the Foundation library.

AfxDoForAIiClasses
void AfxDoForAlIClasses(void (*pfn)(const CRuntimeClass* pClass,

void* pContext), void* pContext);

pfn Points to an iteration function to be called for each class. The function
arguments are a pointer to a CRuntimeClass object and a void pointer to extra
data that the caller supplies to the function.

Remarks

afxDump 1059

pContext Points to optional data that the caller can supply to the iteration
function. This pointer can be NULL.

Calls the specified iteration function for all CObject-derived classes in the
application's memory space that support run-time type checking using the macros
DECLARE_DYNAMIC, DECLARE_DYNCREATE, or
DECLARE_SERIAL. The pointer that is passed to AfxDoFor AllClasses in
pContext is passed to the specified iteration function each time it is called.

Note This function only works in the Debug version of the Microsoft Foundation
Class Library.

AfxDoFor AIiObjects

Remarks

afxDump

Remarks

void AfxDoForAllObjects(void (*pfn)(CObject* pObject, void* pContext),
void* pContext);

pfn Points to an iteration function to execute for each object. The function
arguments are a pointer to a CObject and a void pointer to extra data that the
caller supplies to the function.

pContext Points to optional data that the caller can supply to the iteration
function. This pointer can be NULL.

Executes the specified iteration function for all objects derived from CObject that
have been allocated with new. Stack, global, or embedded objects are not
enumerated. The pointer passed to AfxDoFor AllObjects in pC ontext is passed to
the specified iteration function each time it is called.

Note This function only works in the Debug version of the Foundation library.

CDumpContext afxDump;

Use this variable to provide basic object-dumping capability in your application.
afxDump is a predefined CDumpContext object that allows you to send
CDumpContext information to the debugger output window or to a debug
terminal. Typically, you supply afxDump as a parameter to the CObject::Dump

1060 AfxDump

See Also

Example

AfxDump

Remarks

See Also

member function. You can also use the DBWin program (in the Windows SDK) to
view the output of afxDump.

In Windows version 3.0 and later, afxDump output is sent to the debugger, if
present. In MS-DOS, afxDump output is sent to stderr.

This variable is defined only in the Debug version of the Microsoft Foundation
Class Library. For more information on afxDump, see Chapter 15 of the Class
Library User's Guide and Technical Notes 7 and 12, which can be found in
MSVC\HELP\MFCNOTES.HLP.

Note This function only works in the Debug version of the Foundation library.

CObject: :Dump

CPerson myPerson = new CPerson;
II set some fields of the CPerson object ...
I I ..
II now dump the contents
iIi fdef _DEBUG
afxDump « "Dumping myPerson:\n";
myPerson->DumpC afxDump);
afxDump « "\n";
ilendif

void AfxDump(const CObject* pOb);

pOb A pointer to an object of a class derived from CObject.

Call this function while in the debugger to dump the state of an object while
debugging. AfxDump calls an object's Dump member function and sends the
information to the location specified by the afxDump variable. AfxDump is
available only in the Debug version of the Microsoft Foundation Class Library.

Your program code should not call AfxDump, but should instead call the Dump
member function of the appropriate object.

For example, the following command prints the state of the current object when you
enter it at the> prompt in the Code View® command window:

? AfxDump(this)

CObject: :Dump, afxDump

AfxFormatString1 1061

AfxEnableMemoryTracking

Remarks

Return Value

BOOL AfxEnableMemoryTracking(BOOL bTrack);

bTrack Setting this value to TRUE turns on memory tracking; FALSE turns it
off.

Diagnostic memory tracking is normally enabled in the Debug version of the
Microsoft Foundation Class Library. Use this function to disable tracking on
sections of your code that you know are allocating blocks correctly.

For more information on AfxEnableMemoryTracking, see Chapter 15 of the
Class Library User's Guide.

Note This function only works in the Debug version of the Microsoft Foundation
Class Library.

The previous setting of the tracking-enable flag.

AfxFormatString1

Remarks

See Also

void AfxFormatStringl(CString& rString, UINT nIDS, LPCSTR lpszl);

rString A reference to a CString object that will contain the resultant string after
the substitution is performed.

nIDS The resource ID of the template string on which the substitution will be
performed.

lpszl A string that will replace the format characters "% 1" in the template string.

Loads the specified string resource and substitutes the characters "% 1" for the
string pointed to by lpszl. The newly formed string is stored in rString. For
example, if the string in the string table is "File % 1 not found", and lpszl is equal
to "C:\MYFILE.TXT", then rString will contain the string "File C:\MYFILE.TXT
not found". This function is useful for formatting strings sent to message boxes and
other windows.

If the format characters "% 1" appear in the string more than once, multiple
substitutions will be made.

AfxFormatString2

1062 AfxFormatString2

AfxFormatString2

Remarks

See Also

AfxGetApp

Remarks

Return Value

void AfxFormatString2(CString& rString, UINT nIDS, LPCSTR lpszl,
LPCSTR Ipsz2);

rString A reference to the CString that will contain the resultant string after the
substitution is performed.

nIDS The string table ID of the template string on which the substitution will be
performed.

lpszl A string that will replace the format characters "% 1" in the template string.

Ipsz2 A string that will replace the format characters "%2" in the template string.

Loads the specified string resource and substitutes the characters "% 1" and "%2"
for the strings pointed to by lpszl and Ipsz2. The newly formed string is stored in
rString. For example, if the string in the string table is "File % 1 not found in
directory %2", lpszl points to "MYFILE.TXT", and Ipsz2 points to "C:\MYDIR",
then rString will contain the string "File MYFILE. TXT not found in directory
C:\MYDIR".

If the format characters "% 1" or "%2" appear in the string more than once,
multiple substitutions will be made. They do not have to be in numerical order.

AfxFormatStringl

CWinApp* AfxGetApp();

The pointer returned by this function can be used to access application information
such as the main message-dispatch code or the topmost window.

A pointer to the single CWinApp object for the application.

AfxGetResourceHandle 1063

AfxGetAppName

Remarks

Return Value

const char* AfxGetAppNameO;

The string returned by this function can be used for diagnostic messages or as a root
for temporary string names.

A null-terminated string containing the application's name.

AfxGetlnstanceHandle

Remarks

Return Value

See Also

HINST ANCE AfxGetInstanceHandle();

This function allows you to retrieve the instance handle of the current application.
Unlike AfxGetResourceHandle, AfxGetlnstanceHandle always returns the
HINST AN CE of your executable (.EXE). AfxGetResourceHandle can return an
instance handle to either your application's .EXE or a resource dynamic-link
library (DLL).

An HINST ANCE to the current instance of the application.

AfxGetResourceHandle, AfxSetResourceHandle

AfxGetResourceHandle

Remarks

Return Value

See Also

HINST ANCE AfxGetResourceHandle();

Use the HINSTANCE handle returned by this function to access the application's
resources directly, for example, in calls to the Windows function FindResource.

An HINSTANCE handle where the default resources of the application are loaded.

AfxGetlnstanceHandle, AfxSetResourceHandle

1064 AfxlsMemoryBlock

AfxlsMemoryBlock

Remarks

Return Value

See Also

Example

BOOL AfxIsMemoryBlock(const void* p, UINT nBytes,
LONG* plRequestNumber = NULL);

p Points to the block of memory to be tested.

nBytes Contains the length of the memory block in bytes.

plRequestNumber Points to a long integer that will be filled in with the memory
block's allocation sequence number. The variable pointed to by plRequestNumber
will only be filled in if AfxIsMemoryBlock returns nonzero.

Tests a memory address to make sure it represents a currently active memory block
that was allocated by the diagnostic version of new. It also checks the specified size
against the original allocated size. If the function returns nonzero, the allocation
sequence number is returned in plRequestNumber. This number represents the
order in which the block was allocated relative to all other new allocations.

Nonzero if the memory block is currently allocated and the length is correct;
otherwise O.

AfxIs V alidAddress

CAge* pcage = new CAge(21); II CAge is derived from CObject.
ASSERT(AfxlsMemoryBlock(pcage, sizeof(CAge)))

AfxlsValidAddress

Remarks

BOOL AfxIsValidAddress(const void FAR* lp, UINT nBytes,
BOOL bReadWrite = TRUE);

lp Points to the memory address to be tested.

nBytes Contains the number of bytes of memory to be tested.

bReadWrite Specifies whether the memory is both for reading and writing
(TRUE) or just reading (FALSE).

Tests any memory address to ensure that it is contained entirely within the
program's memory space. The address is not restricted to blocks allocated by new.

Return Value

See Also

afxMemDF 1065

Nonzero if the specified memory block is contained entirely within the program's
memory space; otherwise O.

AfxIsMemory Block, AfxIs ValidStriog

AfxlsValidString

Remarks

Return Value

See Also

afxMemDF

Remarks

Example

BOOL AfxIsValidStriog(LPCSTR lpsz, iot nLength = -1);

lpsz The pointer to test.

nLength Specifies the length of the string to be tested, in bytes. A value of -1
indicates that the string will be null-terminated.

Use this function to determine whether a pointer to a string is valid.

Nonzero if the specified pointer does not point to a string of the specified size;
otherwise O.

AfxIsMemoryBlock, AfxIsValidAddress

iot afxMemDF;

This variable is accessible from a debugger or your program and allows you to tune
allocation diagnostics. It can have the following values as specified by the
enumeration afxMemDF:

• allocMemDF Turns on debugging allocator (default setting in Debug library).

• delayFreeMemDF Delays freeing memory. While your program frees a
memory block, the allocator does not return that memory to the underlying
operating system. This will place maximum memory stress on your program.

• checkAlwaysMemDF Calls AfxCheckMemory every time memory is
allocated or freed. This will significantly slow memory allocations and
deallocations.

afxMemDF = allocMemDF I checkAlwaysMemDF;

1066 AfxMessageBox

AfxMessageBox

Remarks

Return Value

int AfxMessageBox(LPCSTR IpszText, UINT nType = MB_OK,
UINT nIDHelp = 0);

int AFXAPI AfxMessageBox(UINT nIDPrompt, UINT nType = MB _OK,
UINT nIDHelp = (UINT) -1);

IpszText Points to a CString object or null-terminated string containing the
message to be displayed in the message box.

nType The style of the message box (see the list of message-box styles below).

nIDHelp The Help-context ID for the message; 0 indicates no Help context.

nIDPrompt A unique ID used to reference a string in the string table.

Displays a message box on the screen. The first form of this overloaded function
displays a text string pointed to by IpszText in the message box and uses nIDHelp
to describe a Help context. The Help context is used to jump to an associated Help
topic when the user presses the Help key (typically Fl).

The second form of the function uses the string resource with the ID nIDPrompt to
display a message in the message box. The associated Help page is found through
the value of nIDHelp. If nIDHelp is not specified, the string resource ID,
nIDPrompt, is used for the Help context. For more information about defining Help
contexts, see Chapter 10 of the Class Library User's Guide and Technical Note 28,
which can be found in MSVC\HELP\MFCNOTES.HLP.

Zero if there is not enough memory to display the message box; otherwise one of
the following values is returned:

• IDABORT The Abort button was selected.

• IDCAN CEL The Cancel button was selected.

• IDIGNORE The Ignore button was selected.

• IDNO The No button was selected.

• IDOK The OK button was selected.

• IDRETRY The Retry button was selected.

• IDYES The Yes button was selected.

If a message box has a Cancel button, the IDCANCEL value will be returned if
either the ESC key is pressed or the Cancel button is selected. If the message box
has no Cancel button, pressing the ESC key has no effect.

Message-Box
Styles

AfxMessageBox 1067

The message-box style given in the nType parameter can be anyone of the
following predefined constants:

Message-Box Types
• MB _ ABORTRETRYIGNORE The message box contains three

pushbuttons: Abort, Retry, and Ignore.

• MB _OK The message box contains one pushbutton: OK.

• MB _ OKCANCEL The message box contains two pushbuttons: OK and
Cancel.

• MB _ RETRYCANCEL The message box contains two pushbuttons: Retry
and Cancel.

• MB _ YESNO The message box contains two pushbuttons: Yes and No.

• MB YESNOCANCEL The message box contains three pushbuttons: Yes,
No, and Cancel.

Message-Box Modality
• MB _ APPLMODAL The user must respond to the message box before

continuing work in the current window. However, the user can move to the
windows of other applications and work in those windows.
MB APPLMODAL is the default if neither MB SYSTEMMODAL nor - -
MB_TASKMODAL is specified.

• MB _ SYSTEMMODAL All applications are suspended until the user
responds to the message box. System-modal message boxes are used to notify
the user of serious, potentially damaging errors that require immediate attention.
They should be used sparingly.

• MB _ T ASKMODAL Similar to MB _ APPLMODAL, but not useful within
a Microsoft Foundation class application. This flag is reserved for a calling
application or library that does not have a window handle available.

Message-Box Icons
• MB ICONEXCLAMATION

message box.
An exclamation-point icon appears in the

• MB ICONINFORMA TION An icon consisting of an "i" in a circle appears
in the message box.

• MB _ ICONQUESTION A question-mark icon appears in the message box.

• MB ICONSTOP A stop-sign icon appears in the message box.

1068 AfxOlelnsertDialog

See Also

Message-Box Default Buttons
• MB DEFBUTTONI The first button is the default. Note that the first button

is always the default unless MB _ DEFBUTTON2 or MB _ DEFBUTTON3 is
specified.

• MB DEFBUTTON2 The second button is the default.

• MB DEFBUTTON3 The third button is the default.

The functions AfxFormatStringl and AfxFormatString2 can be useful to format
text that appears in a message box.

CWnd: :MessageBox

AfxOlelnsertDialog

Remarks

Return Value

BOOL AfxOielnsertDiaiog(CString& name);

name A reference to a CString object that will store the type name chosen by the
user.

Displays the Insert Object dialog box, which allows the user to insert a new
embedded OLE item in a document. The dialog prompts the user to choose an OLE
object or item type from a list of registered server applications and then invokes the
specified application for the user to create the item. When the user exits the server
application, an embedded item is inserted into the document. Call this function to
implement the Insert Object command.

You must have the following statement in your client's application resource script
(.RC) file:

1f inc 1 u d e < a f x ole c 1 • r c >

To add this include file to your .RC file, you should choose the Set Include item on
App Studio's File menu and add "#include <afxolecl.rc>" to the list of compile­
time directives.

Nonzero if the user selected an item type; otherwise O.

AfxOleRegisterServerName 1069

AfxOleLinksDialog

Remarks

Return Value

BOOL AfxOleLinksDialog(COleClientDoc* pDoc);

pDoc A pointer to the OLE client document that contains the links.

Displays the Links dialog box, which displays all the OLE linked objects in the
document and allows the user to update, cancel, or modify linked items. Call this
function to implement the edit links command. Allows the user to update this
client's OLE links.

You must have the following statement in your client's application resource script
(.RC) file:

Hi ncl ude <afxol ecl . rc>

To add this include file to your .RC file, you should choose the Set Include item on
App Studio's File menu and add "#include <afxolecl.rc>" to the list of compile­
time directives.

Nonzero if successful; otherwise O.

AfxOleRegisterServerName

Remarks

BOOL AfxOleRegisterServerName(LPCSTR IpszTypeNarne,
LPCSTR IpszLocalTypeN arne);

IpszTypeNarne The internal name of the document type supported by the OLE
server. This name is used internally by the OLE system DLLs and the Windows
registration database. This name cannot contain spaces.

IpszLocalTypeNarne A user-visible name of the document type supported by the
OLE server. This name may be displayed by applications using the registration
database. This name can contain spaces.

Registers the application as an OLE server with the Windows registration database
and allows the server to be launched if a client application requests it. This function
updates the registration database with the current location of the application's
executable file and, if the server has no registered verbs, specifies Edit as the
primary verb.

1070 AfxOleSetEditMenu

Return Value

See Also

You typically call this function only if you are writing a miniserver; if you are
writing a full server, use the COleTemplateServer class to perform the
registration for you. Call this function from the I nit Ins tan c e member function
of your CWinApp-derived class.

Nonzero if successful; otherwise O.

COleTemplateServer: :RunEmbedded

AfxOleSetEditMenu

Remarks

void AfxOleSetEditMenu(COleClientItem* pClient, CMenu* pMenu,
UINT iMenu/tem, UINT nIDVerbMin);

pClient A pointer to the client OLE item.

pMenu A pointer to the menu object that is to be updated.

iMenultem The index of the menu item that is to be updated.

nIDVerbMin The command ID that corresponds to the primary verb.

Implements the user interface for the type name Object command. If the server
recognizes only a primary verb, the menu item becomes "verb typename Object"
and the nIDVerbMin command is sent when the user chooses the command. If the
server recognizes several verbs, then the menu item becomes "typename Object"
and a submenu listing all the verbs appears when the user chooses the command.
When the user chooses a verb from the submenu, nIDVerbMin is sent if the first
verb is chosen, nIDVerbMin + 1 is sent if the second verb is chosen, and so forth.

The default COleClientDoc implementation automatically handles this feature.

You must have the following statement in your client's application resource script
(.RC) file:

If inc 1 u d e < a f x ole c 1 . r c >

To add this include file to your .RC file, you should choose the Set Include item on
App Studio's File menu and add "#include <afxolecl.rc>" to the list of compile­
time directives.

AfxRegisterWndClass 1071

AfxRegisterVBEvent

Remarks

Return Value

See Also

UINT AfxRegisterVBEvent(LPCSTR IpszEventName);

IpszEventName The name of the VB event.

Registers a VB event of a specified name and returns an atom identifying the event.
This function is usually used to define VB events for message mapping using a
global initializer. For example:

UINT NEAR VBN_MYEVENT = AfxRegisterVBEvent("MyEvent");

An atom identifying the event.

ON VBXEVENT

AfxRegisterWndClass

Remarks

const char* AfxRegisterWndClass(UINT nClassStyle,
HCURSOR hCursor = 0, HBRUSH hbrBackground = 0, HICON hlcon = 0);

nClassStyle Specifies the Windows class style or combination of styles for the
window class. This parameter can be any valid window style or control style, or a
combination of styles created by using the bitwise-OR (I) operator. For a list of
class styles, see the WNDCLASS structure in the Windows SDK documentation.

hCursor Specifies a handle to the cursor resource to be installed in each window
created from the window class.

hbrBackground Specifies a handle to the brush resource to be installed in each
window created from the window class.

hlcon Specifies a handle to the icon resource to be installed in each window
created from the window class.

The Microsoft Foundation Class Library automatically registers several standard
window classes for you. Call this function if you want to register your own window
classes.

1072 AfxSetAliocHook

Return Value

See Also

A null-terminated string containing the class name. You can pass this class name to
the Create member function in CWnd or other CWnd-derived classes to create a
window. The name is generated by the Microsoft Foundation Class Library.

Note The return value is a pointer to a static buffer. To save this string, assign it to
a CString variable.

CWnd: :Create, CWnd: :PreCreateWindow

AfxSetAliocHook

Remarks

Return Value

AFX _ ALLOC _HOOK AfxSetAlIocHook(AFX _ALLOC _HOOK
pinAl/ocR ook);

pinAl/ocR ook Specifies the name of the function to call. See below for the
prototype of an allocation function.

Sets a hook that enables calling of the specified function before each memory block
is allocated. The hook function is described below.

Hook Function
The Microsoft Foundation Class Library debug-memory allocator can call a user­
defined hook function to allow the user to monitor a memory allocation and to
control whether the allocation is permitted. Allocation hook functions are
prototyped as:

BOOL AlIocHook(size_t nSize, BOOL bObject, LONG IRequestNumber);

nSize The size of the proposed memory allocation.

bObject TRUE if the allocation is for a CObject-derived object.

IRequestNumber The memory allocation's sequence number.

Nonzero if you want to permit the allocation; otherwise o.

AfxThrowFileException 1073

AfxSetResourceHandle

Remarks

See Also

void AfxSetResourceHandle(HINSTANCE hlnstResource);

hlnstResource The instance or module handle to a .EXE or DLL file from which
the application's resources are loaded.

Use this function to set the HINST ANCE handle that determines where the default
resources of the application are loaded.

AfxGetInstanceHandle, AfxGetResourceHandle

AfxThrowArchiveException

Remarks

See Also

void AfxThrowArchiveException(int cause);

cause Specifies an integer that indicates the reason for the exception. For a list of
the possible values, see CArchiveException::m _cause.

Throws an archive exception.

CArchiveException, THROW

AfxThrowFileException

Remarks

See Also

void AfxThrowFileException(int cause, LONG IOsError = -1);

cause Specifies an integer that indicates the reason for the exception. For a list of
the possible values, see CFileException::m _cause.

IOsError Contains the operating-system error number (if available) that states the
reason for the exception. See your operating-system manual for a listing of error
codes.

Throws a file exception. You are responsible for determining the cause based on the
operating-system error code.

CFileException: :ThrowOsError, THROW

1074 AfxThrowMemoryException

AfxThrowMemoryException

Remarks

See Also

void AfxThrowMemoryException();

Throws a memory exception. Call this function if calls to underlying system
memory allocators (such as malloc and the GlobalAlloc Windows function) fail.
You do not need to call it for new because new will throw a memory exception
automatically if the memory allocation fails.

CMemoryException, THROW

AfxThrowNotSupportedException

Remarks

See Also

void AfxThrowNotSupportedException();

Throws an exception that is the result of a request for an unsupported feature.

CNotSupportedException, THROW

AfxThrowOleException

Remarks

See Also

void AfxThrowOleException(OLESTATUS status);

status Indicates the reason for the exception. For a list of the possible values, see
COleException::m _status.

Throws an OLE exception.

COleException, THROW

AfxThrowResourceException

Remarks

See Also

void AfxThrowResourceException();

Throws a resource exception. This function is normally called when a Windows
resource cannot be loaded.

CResourceException, THROW

afxTraceFlags 1075

AfxThrowUserException

Remarks

See Also

void AfxThrowU ser Exception();

Throws an exception to stop an end-user operation. This function is normally called
immediately after AfxMessageBox has reported an error to the user.

CUserException, THROW, AfxMessageBox

afxTraceEnabled

Remarks

See Also

BOOL afxTraceEnabled;

A global variable used to enable or disable output from the TRACE macro.

By default, output from the TRACE macro is disabled. Set afxTraceEnabled to a
nonzero value if you want TRACE macros in your program to produce output. Set
it to 0 if you don't want TRACE macros in your program to produce output.

Usually, the value of afxTraceEnabled is set in your AFX.INI file. Alternately,
you can set the value of afxTraceEnabled with the TRACER.EXE utility. For
more information on afxTraceEnabled, see Technical Note 7, which can be found
in MSVC\HELP\MFCNOTES.HLP.

afxTraceFlags, TRACE

afxTraceFlags

Remarks

int afxTraceFlags;

Used to tum on the built-in reporting features of the Microsoft Foundation Class
Library.

This variable can be set under program control or while using the debugger. Each
bit of afxTraceFlags selects a trace reporting option. You can tum anyone of these
bits on or off as desired using TRACER.EXE. There is never a need to set these
flags manually.

1 076 AND_CATCH

See Also

The following is a list of the bit patterns and the resulting trace report option:

• OxOl Multiapplication debugging. This will prefix each TRACE output with
the name of the application and affects both the explicit TRACE output of your
program as well as the additional report options described below.

• Ox02 Main message pump. Reports each message received in the main
CWinApp message-handling mechanism. Lists the window handle, the message
name or number, wParam, and IParam.

The report is made after the Windows GetMessage call but before any message
translation or dispatch occurs.

Dynamic data exchange (DDE) messages will display additional data that can
be used for some debugging scenarios in OLE.

This flag only displays messages that are posted-not those that are sent.

• Ox04 Main message dispatch. Like option Ox02 above but applies to messages
dispatched in CWnd:: WindowProc, and therefore handles both posted and sent
messages that are about to be dispatched.

• Ox08 WM _COMMAND dispatch. A special case used for extended
WM _ COMMAND/OnCommand handling to report progress of the
command-routing mechanism.

Also reports which class receives the command (when there is a matching
message-map entry), and when classes don't receive a command (when there is
no matching message map entry). This report is especially useful to track the
flow of command messages in multiple document interface (MDI) applications.

• OxlO OLE tracing. Reports significant OLE notifications or requests.

Tum this option on for an OLE client or server to track communication between
the OLE DLLs and an OLE application.

For more information, see Technical Note 7, which can be found in
MSVC\HELP\MFCNOTES.HLP.

afxTraceEnabled, TRACE

AND CATCH
AND _ CATCH(exception_class, exception_object yointer _name)

exception_class Specifies the exception type to test for. For a list of standard
exception classes, see class CException.

Remarks

See Also

ASSERT

Remarks

ASSERT 1077

exception_object yointer _name A name for an exception-object pointer that will
be created by the macro. You can use the pointer name to access the exception
object within the AND _ CATCH block. This variable is declared for you.

Defines a block of code for catching additional exception types thrown in a
preceding TRY block. Use the CATCH macro to catch one exception type, then
the AND _ CATCH macro to catch each subsequent type.

The exception-processing code can interrogate the exception object, if appropriate,
to get more information about the specific cause of the exception. Invoke the
THROW_LAST macro within the AND _CATCH block to shift processing to the
next outer exception frame. AND _ CATCH marks the end of the preceding
CATCH or AND CATCH block.

Note The AND _ CATCH block is defined as a C++ scope (delineated by curly
braces). If you declare variables in this scope, remember that they are accessible
only within that scope. This also applies to the exception_objectyointer _name
variable.

TRY, CATCH, THROW, END_CATCH, THROW_LAST, CException

ASSERT(booleanExpression)

booleanExpression Specifies an expression (including pointer values) that
evaluates to nonzero or 0.

Evaluates its argument. If the result is 0, the macro prints a diagnostic message and
aborts the program. If the condition is nonzero, it does nothing.

The diagnostic message has the form:

assertion failed in file <name> in line <num>

where name is the name of the source file, and num is the line number of the
assertion that failed in the source file.

In the Release version of the Microsoft Foundation Class Library, ASSERT does
not evaluate the expression and thus will not interrupt the program. If the

1 078 ASSERT_VALID

See Also

Example

expression must be evaluated regardless of environment, use the VERIFY macro in
place of ASSERT.

Note This function is available only in the Debug version of the Microsoft
Foundation Class Library.

VERIFY

CAge* pcage = new CAge(21); II CAge is derived from CObject.
ASSERT(pcage!= NULL)
ASSERT(pcage->IsKindOf(RUNTIME_CLASS(CAge)))
II Terminates program only if pcage is NOT a CAge*.

ASSERT VALID

Remarks

See Also

ASSERT _ V ALID(pObject)

pObject Specifies an object of a class derived from CObject that has an
overriding version of the Assert Valid member function.

Use to test your assumptions about the validity of an object's internal state.
ASSERT _ VALID calls the Assert Valid member function of the object passed as
its argument.

In the Release version of the Microsoft Foundation Class Library,
ASSERT _V ALID does nothing. In the Debug version, it validates the pointer,
checks against NULL, and calls the object's own AssertValid member functions.
If any of these tests fails, this displays an alert message in the same manner as
ASSERT.

Note This function is available only in the Debug version of the Microsoft
Foundation Class Library.

For more information and examples, see Chapter 15 of the Class Library User's
Guide.

ASSERT, VERIFY, CObject, CObject::AssertValid

CATCH 1079

BEGIN MESSAGE MAP

Remarks

See Also

Example

CATCH

Remarks

BEGIN_MESSAGE_MAP(the Class, baseClass)

theClass Specifies the name of the class whose message map this is.

baseClass Specifies the name of the base class of theClass.

Use the BEGIN _MESSAGE_MAP macro to begin the definition of your message
map.

In the implementation (.CPP) file that defines the member functions for your class,
start the message map with the BEGIN_MESSAGE _MAP macro, then add macro
entries for each of your message-handler functions (see the listing under "Message
Maps" on page 1053), and complete the message map with the
END MESSAGE MAP macro. - -

For more information on message maps and the BEGIN_MESSAGE _MAP
macro, see Chapter 6 of the Class Library User's Guide.

DECLARE_MESSAGE_MAP, END_MESSAGE_MAP

BEG1N_MESSAGE_MAP(CMyWindow, CFrameWnd
//{{AFX_MSG_MAP(CMyWindow)
ON_WM_PA1 NT()
ON_COMMANO(10M_ABOUT, OnAbout
/ /} }AFX_MSG_MAP

ENO_MESSAGE_MAP()

CATCH(exception_class, exception_object yointer _name)

exception _class Specifies the exception type to test for. For a list of standard
exception classes, see class CException.

exception_object yointer _name Specifies a name for an exception-object pointer
that will be created by the macro. You can use the pointer name to access the
exception object within the CATCH block. This variable is declared for you.

Use this macro to define a block of code that catches the first exception type thrown
in the preceding TRY block. The exception-processing code can interrogate the
exception object, if appropriate, to get more information about the specific cause of

1080 DEBUG_NEW

See Also

the exception. Invoke the THROW_LAST macro to shift processing to the next
outer exception frame.

If exception_class is the class CException, then all exception types will be caught.
You can use the CObject: :IsKindOf member function to determine which specific
exception was thrown. A better way to catch several kinds of exceptions is to use
sequential AND _ CATCH statements, each with a different exception type.

The exception object pointer is created by the macro. You do not need to declare it
yourself.

Note The CATCH block is defined as a C++ scope (delineated by curly braces). If
you declare variables in this scope, remember that they are accessible only within
that scope. This also applies to exception_object yointer _name.

For more information on exceptions and the CATCH macro, see Chapter 16 of the
Class Library User's Guide.

TRY, AND_CATCH, END_CATCH, THROW, THROW_LAST,
CException

DEBUG NEW

Remarks

#define new DEBUG NEW

Assists in finding memory leaks. You can use DEBUG _NEW everywhere in your
program that you would ordinarily use the new operator to allocate heap storage.

In Debug mode (when the _DEBUG symbol is defined), DEBUG_NEW keeps
track of the filename and line number for each object that it allocates. Then, when
you use the CMemoryState: :DumpAlIObjectsSince member function, each
object allocated with DEBUG_NEW is shown with the filename and line number
where it was allocated.

To use DEBUG_NEW, insert the following directive into your source files:

#define new DEBUG_NEW

Once you insert this directive, the preprocessor will insert DEBUG_NEW
wherever you use new, and the Microsoft Foundation Class Library does the rest.
When you compile a release version of your program, DEBUG _NEW resolves to a
simple new operation, and the filename and line number information is not
generated.

DECLARE_DYNCREATE 1081

For more information on the DEBUG_NEW macro, see Chapter 15 of the Class
Library User's Guide.

DECLARE DYNAMIC

Remarks

See Also

DECLARE_DYNAMIC(class_name)

class_name The actual name of the class (not enclosed in quotation marks).

When deriving a class from CObject, this macro adds the ability to access run-time
information about an object's class.

Add the DECLARE_DYNAMIC macro to the header (.R) module for the class,
then include that module in all .CPP modules that need access to objects of this
class.

If you use the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros
as described, you can then use the RUNTIME_CLASS macro and the
CObject::IsKindOf function to determine the class of your objects at run time.

If DECLARE_DYNAMIC is included in the class declaration, then
IMPLEMENT _DYNAMIC must be included in the class implementation.

For more information on the DECLARE_DYNAMIC macro, see Chapter 12 of
the Class Library User's Guide.

IMPLEMENT_DYNAMIC, DECLARE_DYNCREATE,
DECLARE_SERIAL, RUNTIME_CLASS, CObject::IsKindOf

DECLARE DYNCREATE

Remarks

DECLARE_DYNCREATE(class_name)

class _ name The actual name of the class (not enclosed in quotation marks).

Use the DECLARE_DYNCREATE macro to enable objects ofCObject-derived
classes to be created dynamically at run time. The framework uses this ability to
create new objects dynamically, for example, when it reads an object from disk
during serialization. Document, view, and frame classes should support dynamic
creation because the framework needs to create them dynamically.

See Also

Add the DECLARE _ DYNCREATE macro in the .R module for the class, then
include that module in all .CPP modules that need access to objects of this class.

IfDECLARE_DYNCREATE is included in the class declaration, then
IMPLEMENT _ DYNCREATE must be included in the class implementation.

For more information on the DECLARE _ DYNCREA TE macro, see Chapter 12
of the Class Library User's Guide.

DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC,
IMPLEMENT_DYNCREATE, RUNTIME_CLASS, CObject::IsKindOf

DECLARE MESSAGE MAP

Remarks

See Also

Example

DECLARE_MESSAGE_MAP()

Each CCmdTarget-derived class in your program must provide a message map to
handle messages. Use the DECLARE_MESSAGE_MAP macro at the end of
your class declaration. Then, in the .CPP file that defines the member functions for
the class, use the BEGIN_MESSAGE_MAP macro, macro entries for each of
your message-handler functions (see the listing under "Message Maps" on page
1053), and the END_MESSAGE_MAP macro.

For more information on message maps and the DECLARE_MESSAGE _MAP
macro, see Chapter 6 of the Class Library User's Guide.

BEGIN_MESSAGE_MAP, END_MESSAGE_MAP

class CMyWnd : public CFrameWnd
{

II Member declarations

} ;

Note If you declare any member after DECLARE _MESSAGE_MAP, you must
specify a new access type (public, private, protected) for them.

END_CATCH 1083

DECLARE SERIAL

Remarks

See Also

DECLARE _ SERIAL(class_name)

class_name The actual name of the class (not enclosed in quotation marks).

DECLARE_SERIAL generates the C++ header code necessary for a CObject­
derived class that can be serialized. Serialization is the process of writing or
reading the contents of an object to and from a file.

Use the DECLARE_SERIAL macro in a.R module, then include that module in
all .CPP modules that need access to objects of this class. For more information, see
Chapter 12 of the Class Library User's Guide.

If DECLARE_SERIAL is included in the class declaration, then
IMPLEMENT_SERIAL must be included in the class implementation. The
DECLARE_SERIAL macro includes all the functionality of
DECLARE DYNAMIC and DECLARE DYNCREATE. - -

For more information on the DECLARE_SERIAL macro, see Chapter 12 of the
C lass Library User's Guide.

DECLARE_DYNAMIC, IMPLEMENT_SERIAL, RUNTIME_CLASS,
CObject: :IsKindOf

END CATCH

Remarks

See Also

END CATCH

Marks the end of the last CATCH or AND CATCH block.

For more information on the END_CATCH macro, see Chapter 16 of the Class
Library User's Guide.

TRY, CATCH, THROW, AND_CATCH, THROW_LAST

END MESSAGE MAP

Remarks

See Also

END_MESSAGE_MAP()

Use the END _MESSAGE_MAP macro to end the definition of your message
map.

For more information on message maps and the END _MESSAGE_MAP macro,
see Chapter 6 of the Class Library User's Guide.

DECLARE_MESSAGE_MAP, BEGIN_MESSAGE_MAP, Message Map
Function Categories

IMPLEMENT DYNAMIC

Remarks

See Also

IMPLEMENT_DYNAMIC(class_name, base_class_name)

class_name The actual name of the class (not enclosed in quotation marks).

base _class_name The name of the base class (not enclosed in quotation marks).

Generates the C++ code necessary for a dynamic CObject-derived class with
run-time access to the class name and position within the hierarchy. Use the
IMPLEMENT_DYNAMIC macro in a .CPP module, then link the resulting
object code only once.

For more information, see Chapter 12 of the Class Library User's Guide.

DECLARE_DYNAMIC, RUNTIME_CLASS, CObject: :IsKindOf

IMPLEMENT DYNCREATE
IMPLEMENT_DYNCREATE(class_name, base_class_name)

class_name The actual name of the class (not enclosed in quotation marks).

base _class _ name The actual name of the base class (not enclosed in quotation
marks).

Remarks

See Also

IMPLEMENT_SERIAL 1085

Use the IMPLEMENT DYNCREATE macro with the
DECLARE _ DYNCREATE macro to enable objects of CObject-derived classes
to be created dynamically at run time. The framework uses this ability to create new
objects dynamically, for example, when it reads an object from disk during
serialization. Add the IMPLEMENT DYNCREATE macro in the class
implementation file. For more information, see Chapter 12 of the Class Library
User's Guide.

If you use the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE
macros, you can then use the RUNTIME_CLASS macro and the
CObject: :IsKindOf member function to determine the class of your objects at
run time.

IfDECLARE_DYNCREATE is included in the class declaration, then
IMPLEMENT _DYNCREATE must be included in the class implementation.

DECLARE _ DYNCREATE, RUNTIME_CLASS, CObject::IsKindOf

IMPLEMENT SERIAL

Remarks

See Also

IMPLEMENT_SERIAL(class_name, base_class_name, wSchema)

class_name The actual name of the class (not enclosed in quotation marks).

base_class _ name The name of the base class (not enclosed in quotation marks).

wSchema A UINT "version number" that will be encoded in the archive to
enable a deserializing program to identify and handle data created by earlier
program versions. The class schema number must not be -1.

Generates the C++ code necessary for a dynamic CObject-derived class with run­
time access to the class name and position within the hierarchy. Use the
IMPLEMENT_SERIAL macro in a .CPP module; then link the resulting object
code only once.

For more information, see Chapter 12 of the Class Library User's Guide.

DECLARE_SERIAL, RUNTIME_CLASS, CObject: :IsKindOf

1086 ON_COMMAND

ON COMMAND

Remarks

See Also

Example

ON_ COMMAND(id, memberFxn)

id The command ID.

memberFxn The name of the message-handler function to which the command is
mapped.

This macro is usually inserted in a message map by ClassWizard or manually. It
indicates which function will handle a command message from a command user­
interface object such as a menu item or toolbar button.

When a command-target object receives a Windows WM_ COMMAND message
with the specified ID, ON_COMMAND will call the member function
memberFxn to handle the message.

There should be exactly one ON_ COMMAND macro statement in your message
map for every menu or accelerator command that must be mapped to a message­
handler function.

For more information and examples, see Chapter 6 of the Class Library User's
Guide.

ON UPDATE COMMAND UI - - -
BEGIN_MESSAGE_MAPC CMyDoc. CDocument

II{{AFX_MSG_MAPC CMyDoc)
ON_COMMANDC ID_MYCMD. OnMyCommand)
II ... More entries to handle additional commands
I/} }AFX_MSG_MAP

END_MESSAGE_MAPC)

ON CONTROL
ON_ CONTROL(wNotifyCode, id, memberFxn)

wNotifyCode The notification code of the control.

id The command ID.

memberFxn The name of the message-handler function to which the command is
mapped.

Remarks

See Also

ON_MESSAGE 1087

Indicates which function will handle a custom-control notification message. Control
notification messages are those sent from a control to its parent window.

There should be exactly one ON_CONTROL macro statement in your message
map for every control notification message that must be mapped to a message­
handler function.

For more information and examples, see Chapter 6 of the Class Library User's
Guide.

ON_MESSAGE, ON_REGISTERED _MESSAGE, ON_ VBXEVENT

ON MESSAGE

Remarks

See Also

Example

ON _ MESSAGE(message, memberFxn)

message The message ID.

memberFxn The name of the message-handler function to which the message is
mapped.

Indicates which function will handle a user-defined message. User-defined
messages are usually defined in the range WM _USER to Ox7FFF. User-defined
messages are any messages that are not standard Windows WM _MESSAGE
messages. There should be exactly one ON_MESSAGE macro statement in your
message map for every user-defined message that must be mapped to a message­
handler function.

For more information and examples, see Chapter 6 of the Class Library User's
Guide.

ON_UPDATE_COMMAND_UI, ON_CONTROL,
ON_REGISTERED_MESSAGE, ON_VBXEVENT, ON_COMMAND

#define WM_MYMESSAGE (WM_USER + 1)
BEGIN_MESSAGE_MAP(CMyWnd. CMyParentWndClass

II{{AFX_MSG_MAP(CMyWnd
ON_MESSAGE(WM_MYMESSAGE. OnMyMessage)
II ... Possibly more entries to handle additional messages
I/} JAFX_MSG_MAP

END_MESSAGE_MAP()

1088 ON_REGISTERED_MESSAGE

ON REGISTERED MESSAGE

Remarks

See Also

Example

ON_REGISTERED_MESSAGE(nMessageVariable, memberFxn)

nMessageVariable The registered window-message ID variable.

memberFxn The name of the message-handler function to which the message is
mapped.

The Windows RegisterWindowMessage function is used to define a new window
message that is guaranteed to be unique throughout the system. This macro
indicates which function will handle the registered message.

The variable nMessageVariable should be declared with the NEAR modifier.

For more information and examples, see Chapter 6 of the Class Library User's
Guide.

ON_MESSAGE, ON_UPDATE_COMMAND_UI, ON_CONTROL,
ON_ VBXEVENT, ON_COMMAND, ::RegisterWindowMessage

const UINT NEAR wm_Find = RegisterWindowMessage(FINDMSGSTRING
BEGIN_MESSAGE_MAP(CMyWnd, CMyParentWndClass)

//{{AFX_MSG_MAP(CMyWnd)
ON_REGISTERED_MESSAGE(wm_Find, OnFind
II ... Possibly more entries to handle additional messages
/ /} }AFX_MSG_MAP

END_MESSAGE_MAP()

ON UPDATE COMMAND UI

Remarks

ON_UPDATE_COMMAND_UI(id, memberFxn)

id The message ID.

memberFxn The name of the message-handler function to which the message is
mapped.

This macro is usually inserted in a message map by Class Wizard to indicate which
function will handle a user-interface update command message.

There should be exactly one ON_UPDATE _COMMAND _ UI macro statement in
your message map for every user-interface update command that must be mapped to
a message-handler function.

See Also

RUNTIME_CLASS 1089

For more information and examples, see Chapter 6 of the Class Library User's
Guide.

ON_MESSAGE, ON_REGISTERED_MESSAGE, ON_CONTROL,
ON _ VBXEVENT , ON_COMMAND, CCmdUI

ON VBXEVENT

Remarks

See Also

ON_ VBXEVENT(wNotifyCode, id, memberFxn)

wNotifyCode The notification code of the VBX event.

id The message ID.

memberFxn The name of the message-handler function to which the message is
mapped.

This macro is usually inserted in a message map by Class Wizard. It indicates which
function will handle a message from a VBX control. There should be exactly one
macro statement in your message map for every VBX -control message mapped to a
message-handler function.

For more information and examples, see Chapter 6 of the Class Library User's
Guide.

ON_MESSAGE,ON_UPDATE_COMMAND_UI,ON_CONTROL,
ON_COMMAND, ON_REGISTERED_MESSAGE, AfxRegisterVBEvent

RUNTIME CLASS

Remarks

RUNTIME _ CLASS(class_name)

class_name The actual name of the class (not enclosed in quotation marks).

Use this macro to get the run-time class structure from the name of a C++ class.

RUNTIME_CLASS returns a pointer to a CRuntimeClass structure for the class
specified by class_name. Only CObject-derived classes declared with
DECLARE_DYNAMIC, DECLARE _ DYNCREATE, or
DECLARE_SERIAL will return pointers to a CRuntimeClass structure.

1090 THROW

See Also

Example

THROW

Remarks

See Also

For more information, see Chapter 12 of the Class Library User's Guide.

DECLARE_DYNAMIC, DECLARE_DYNCREATE, DECLARE_SERIAL,
CObject: : GetRuntimeClass , CRuntimeClass

CRuntimeClass* prt = RUNTIME_CLASS(CAge);
ASSERT(lstrcmp(prt->m_lpszClassName. "CAge") == 0);

THROW(exception_objectyointer)

exception_object yointer Points to an exception object derived from
CException.

Throws the specified exception. THROW interrupts program execution, passing
control to the associated CATCH block in your program. If you have not provided
the CATCH block, then control is passed to a Microsoft Foundation Class Library
module that prints an error message and exits.

For more information, see Chapter 16 of the Class Library User's Guide.

TRY, CATCH, THROW, THROW_LAST , AND_CATCH, END_CATCH,
AfxThrow ArchiveException, AfxThrowFileException,
AfxThrowMemoryException, AfxThrowNotSupportedException,
AfxThrowOleException, AfxThrowResourceException,
AfxThrowUserException

THROW LAST

Remarks

See Also

THROW_LAST()

Throws the exception back to the next outer CA TCH block.

This macro allows you to throw a locally created exception. If you try to throw an
exception that you have just caught, it will normally go out of scope and be deleted.
With THROW_LAST, the exception is passed correctly to the next CATCH
handler.

For more information, see Chapter 16 of the Class Library User's Guide.

TRY, CATCH, THROW, AND_CATCH, END_CATCH

TRACE

Remarks

See Also

Example

TRACEO

Remarks

TRACEO 1091

TRACE(exp)

exp Specifies a variable number of arguments that are used in exactly the same
way that a variable number of arguments are used in the run-time function printf.

Provides similar functionality to the printf function by sending a formatted string to
a dump device such as a file or debug monitor. Like printf for C programs under
MS-DOS, the TRACE macro is a convenient way to track the value of variables as
your program executes. In the Debug environment, the TRACE macro output goes
to afxDump. In the Release environment, it does nothing.

Note This macro is available only in the Debug version of the Microsoft
Foundation Class Library.

For more information, see Chapter 15 of the Class Library User's Guide.

TRACEO, TRACE!, TRACE2, TRACE3, AfxDump, afxTraceEnabled

int i = 1;
char sz[] = "one";
TRACE("Integer = %d, String = %s\n", i, sz);
/ / Output: 'I nteger = I, Stri ng = one'

TRACEO(exp)

exp A format string as used in the run-time function printf.

Similar to TRACE, but places the trace string in a code segment rather than
DGROUP, thus using less DGROUP space. TRACEO is one variant of a group of
trace macros that you can use for debug output. This group includes TRACEO,
TRACE!, TRACE2, and TRACE3. The difference between these macros is the
number of parameters taken. TRACEO only takes a format string and can be used
for simple text messages. TRACE! takes a format string plus one argument-a
variable to be dumped. Likewise, TRACE2 and TRACE3 take two and three
parameters after the format string, respectively.

1092 TRACE1

Example

See Also

TRACE1

Remarks

Example

TRACE2

Remarks

Example

TRACEO does nothing if you have compiled a release version of your application.
As with TRACE, it only dumps data to afxDump if you have compiled a debug
version of your application.

Note This macro is available only in the Debug version of the Microsoft
Foundation Class Library.

TRACE0("Start Dump of MyClass members:");

TRACE, TRACEl, TRACE2, TRACE3

TRACEl(exp, paraml)

exp A format string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

See TRACEO for a description of the TRACEl macro.

i nt i = 1;
T RA C E l("I n t e g e r = % d \ n", i);
/ / Output: 'Integer = l'

TRACE2(exp, paraml, param2)

exp A format string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

param2 The name of the variable whose value should be dumped.

See TRACEO for a description of the TRACE2 macro.

i nt i = 1;
char sz[] = "one";
TRACE2("Integer = %d, String = %s\n", i, sz);
/ / Output: 'Integer = 1, Stri ng = one'

TRACE3

Remarks

TRY

Remarks

See Also

VERIFY

Remarks

VERIFY 1093

TRA CE3(exp, paraml , param2, param3)

exp A fonnat string as used in the run-time function printf.

paraml The name of the variable whose value should be dumped.

param2 The name of the variable whose value should be dumped.

param3 The name of the variable whose value should be dumped.

See TRACEO for a description of the TRACE3 macro.

TRY

Use this macro to set up a TRY block. A TRY block identifies a block of code that
might throw exceptions. Those exceptions are handled in the following CATCH
and AND _ CATCH blocks. Recursion is allowed: exceptions may be passed to an
outer TRY block, either by ignoring them or by using the THROW_LAST macro.

For more infonnation, see Chapter 16 of the Class Library User's Guide.

THROW, CATCH, AND_CATCH, END_CATCH

VERIFY(booleanExpression)

booleanExpression Specifies an expression (including pointer values) that
evaluates to nonzero or 0.

In the Debug version of the Microsoft Foundation Class Library, the VERIFY
macro evaluates its argument. If the result is 0, the macro prints a diagnostic
message and halts the program. If the condition is nonzero, it does nothing.

1094 VERIFY

See Also

The diagnostic message has the fonn:

assertion failed in file <name> in line <num>

where name is the name of the source file and num is the line number of the
assertion that failed in the source file.

In the Release version of the Microsoft Foundation Class Library, VERIFY
evaluates the expression but does not print or interrupt the program. For example, if
the expression is a function call, the call will be made.

ASSERT

Index

!= (inequality operator)
CPoint class 677
CRect class 708
CSize class 745

& (intersection operator)
CRect class 709, 711

&= (assignment of intersection operator)
CRect class 709

+ (addition operator)
CTime class 806
CTimeSpan class 813

+ ,- operators
CTime class 806
CTimeSpan class 813

+= (assignment of addition operator)
CPoint class 677
CRect class 709
CSize class 745
CString class 789
CTime class 806
CTimeSpan class 813

+=, -= operator
CTime class 807
CTimeSpan class 813

-= (assignment of subtraction operator)
CRect class 709
CSize class 745

[] (subscript operator)
CObArray class 573
CString class 790

.BMP file 118

.HM file 118

.HPJ file 118

.RTFfi1e 115,117-118
:: functions See Global functions
« (insertion operator)

CArchive class 138
CDumpContext class 359

< <, > > operator
CString class 787

= (assignment operator)
CObject class 580
CTimeSpan class 813

== (equality operator)
CPoint class 677
CRect class 708
CSize class 744

1= (assignment of union operator)
CRect class 708

» (extraction operator)
CArchive class 139
CString class 787
CTime class 807
CTimeSpan class 814

32-bit values

A

retrieving combo-box item 205
setting combo-box item 212

AbortDoc member function
CDC class 229

Aborting print job 231, 303
Accelerator keys

as source of commands 54
translation 874

Accelerator table and frame windows 76-77
accessDenied member function

CFileException class 419
Activate member function

COleClientItem class 607
ActivateFrame member function

CFrameWnd class 449
Active view, and CFrameWnd class 446
Add member function

CObArray class 565
AddDocTemplate member function

CWinApp class 34, 857
AddHead member function

CObList class 584
Adding

CWnd to Clipboard viewer chain 1028
element to array 565
elements to list to lists 585
filenames list to list box of combo box 201
filenames to list boxes 479
lists or elements to lists 584
menu items 549
size to CSize 745
strings

to list box of combo box 196, 208
to list boxes 474,487

time spans 813

1095

1096 Index

AddItem member function
COleDocument class 627
CVBControl class 829

Addition operator
CPoint class 678
CRect class 709-710
CSize class 745
CString class 788
CTime class 805
CTimeSpan class 813

AddString member function
CComboBox class 196
CListBox class 473

AddTail member function
CObList class 585

AddToRecentFileList member function
CWinApp class 858

AddView member function
CDocument class 346

afx_msg keyword 63
AFX_MSG_MAP delimiter 60, 66
AfxAbort 1057
AfxCheckMemory 1057
AfxDoForAllClasses 1058
AfxDoForAllObjects 1059
AfxDump 1060

and TRACE macro 1091
and TRACEO macro 1091
and TRACE1 macro 1092
and TRACE2 macro 1092
and TRACE3 macro 1093
described 122, 127

AfxEnableMemoryTracking 1061
AfxFonnatStringl 1061

and AfxMessageBox 1066
AfxFonnatString2 1063

and AfxMessageBox 1066
AfxGetApp 1066

and CWinApp class 854
described 35

AfxGetAppN arne 1064
and CWinApp class 854

AfxGetInstanceHandle 1063
and CWinApp class 854

AfxGetResourceHandle 1064
and CWinApp class 854

AfxIsMemoryBlock 1063
AfxIs V alidAddress 1064
Afxls V alidString 1065
afxMemDF 1065
AfxMessageBox 1066

and exceptions 1075
AfxOleInsertDialog 1068
AfxOleLinksDialog 1069

AfxOleRegisterServerName 1069
AfxOleSetEditMenu 1070
AfxRegisterVBEvent 1071
AfxRegisterWindowClass

and frame window styles 77
AfxRegisterWndClass 1071

and CFrame Wnd class 446
and CMDIChildWnd class 513
described 42-43

AfxSetAllocHook 1072
AfxSetResourceHandle 1073
AfxSetTenninate function 128
AfxTenninate function 128
AfxThrow ArchiveException 1073
AfxThrowFileException 1073
AfxThrow MemoryException 1074
AfxThrow N otSupportedException 1074
AfxThrowOleException 1074
AfxThrow ResourceException 1074
AfxThrow U serException 1075
afxTraceEnabled 1075
afxTraceFlags 1075
ALC styles, in CHEdit class 462
Allocation

diagnostics 1066
memory, and AfxSetAllocHook function 1072

allocMemDF 1066
ALLOW _MULTISELECT flag

in CFileDialog class 407
AL T key, called

when pressed with another key 1009
with release of key pressed with ALT 1010

AND_CATCH 1076
AnimatePalette member function

CPalette class 667
ANSI, converting characters to OEM character set 773
AnsiToOem member function

CString class 773
App Studio

and CHEdit class 462
creating dialog boxes 97
described 23
in CDialog class 325

Appending, menu items 537
AppendMenu member function

CMenu class 53
CWnd: :GetSystemMenu 936

Application architecture classes, listed 5
Application class See CWinApp class
Application data

and CDocument 79
and documents 79
and serializing 80
displaying in a view 82

Application framework
and application-specific code 28
described 19
functionality provided 24
message handling 51
support for predefined commands 55

Application object
CWinApp class 854

Application status indicators
CStatusBar class 760

Application window, main
and CFrameWnd class 446

Applications
accessing device facilities unavailable through GDI 247
allowing access to Control menu for copying and

modification 936
called when creating CWnd object 958
creating and displaying messages 950
CWnd, called when changing enabled state 970
fonts, called upon changing 972
information and management 1055
list boxes, returning on application response 955
owner's, called when destroyed 1001
redrawing or preventing redrawing of changes 1031
retrieving

pointer to 1063
name of 1064

sessions, ending, called to inform CWnd 970
specifying

action performed in response to message 10 12
whether given window is visible 948

Windows
accessing command-line arguments entered at

start 880
cleaning up at termination 860
constructor 858
filtering messages 874
handle to current instance 879
handle to previous instance 880
idle-time processing 871
instance initializing 863
loading cursor resource 863-866
making main window visible 880
name 881
one-time initializing 862
providing default message loop 876
storing pointer to main window object 880

AppWizard
and CDocument 79
and creating documents and views 79
and CView 79
and CWinApp class 29
and serializing 81
creating frame window 73

AppWizard (continued)
creating message maps 60
described 22
HLP subdirectory 118

Arc member function
CDC class 230

Archives
data, determining if

loading 135
storing 135

flushing buffer to file 134
getting CFile pointer 134
loading object or primitive type 139
reading from

object data 136
specified number of bytes 136

serialization exceptions
constructing objects 140
specifying cause 141

Index 1097

storing object or primitive type 137-138
writing, specified number of bytes to 137

Arcs, elliptical drawing 230
Argument passing conventions

CString class 792
ArrangeIconic Windows member function

CWnd class 900
Arranging minimized document child windows 523
Array classes 125
Arrays

adding element to 565
bytes, dumping hexadecimally formatted 358
described 125
destroying 566
elements

adding at end 565
inserting one in specified index 568
removing elements 570
returning at specified index 567
returning reference to pointer 566
setting at specified index 571-572

establishing size 572
freeing extra memory 567
indexes, setting elements to specified 571
removing pointers from 569
returning size of 567
returning upper bound 568
returns reference to element pointer 566
subscript operators 573

Aspect-ratio filter, retrieving setting 254
ASSERT macro 127,1977
ASSERT_VALID macro 1078
AssertValid member function

and ASSERT_VALID macro 1078
CObject class 122,575

1098 Index

Assignment of addition operator
CPoint class 677
CRect class 709
CSize class 745
CString class 789
CTime class 806
CTimeSpan class 813

Assignment of intersection operator
CRect class 709

Assignment of union operator
CRect class 710

Assignment operator
CObject class 580
CRect class 708
CSize class 744-745
CString class 786
CTime class 805
CTimeSpan class 813

Attach member function
CDC class 231
CGdiObject class 457
CMenu class 538
CWnd class 900

Attaching Windows GDI object to CGdiObject 457
AutoLoad member function

CBitmapButton class 160

B
Background

CWnd, called when needing erasing 971
mode, getting 255

bActivate parameter, and active view 76
badClass member function

CArchiveException class 141
badlndex member function

CArchiveException class 141
badPath member function

CFileException class 419
badSchema member function

CArchiveException class 141
BEGIN_MESSAGE_MAP macro 60-61,1079
BeginNewVBHeap member function

CVBControl class 829
BeginPaint member function 44, 644

CWnd class 900
BeginRevoke member function

COleServer class 634
Begin WaitCursor member function

CCmdTarget class 181
Bit patterns, creating for specified devicet 286
BitBlt member function 149-150

CDC class 232

Bitmap button control
CBitmapButton class 158

Bitmaps
associating with menu items 555
CBitmap class 148
constructing CBitmap objects 149
copying

to current device context 232
bit pattern to buffer 154

initializing
compatible with device specified by pDC 152
device-dependent memory bitmap 149
discardable 153
having lpBitmap structure 150

moving 320
predefined, loading 156
resource, loading 155
returning pointer to CBitmap object 154
setting bits to specified values 157
stretching mode, retrieving 273
width, height, getting 154
width, specifying 157

BLACKRECT structure 757
BN_CLICKED notification 101
Borders, drawing around

rectangles 253
regions 253

BottomRight member function
CRect class 700

Boxed handwriting edit
CBEdit class 142

Boxes, setting highlighting 174
Boxes, buttons

getting
check state 172
current state 173

setting, check state 174
BringWindowToTop member function

CWnd class 901
Brushes

available in device context, enumerating 245
CBrush class 162
CBrush object, returning pointer to 167
constructing uninitialized 163
current, retrieving origin 256
filling

display area with current 249,252
rectangles with specified 251
regions with 252
specified region 286

in device context, enumerating 245
initializing

DIE-specified pattern 165
hatch pattern and color 166

Brushes (continued)
initializing (continued)

LOGBRUSH-specified pattern 164
pattern specified by bitmap 166
solid color 167

predefined, retrieving handle to 457
resetting 461
setting, origin for G01 assignment 308

Buffered files 766
Buffers

archive, flushing 134
filling with data that defines object 460
flushing

files 398
to dump context 357

internal character, returning pointer for CString object
778

writing data to CFile object file 408
Button control

calling owner when visual aspect of control or menu
changes 966

CButton class 168
check marking, dimming 902
determining check-marking 946
notification messages 168

Button control, bitmapped
CBitmapButton class 158

AutoLoad member function 158
creating 158
images 158

Buttons
check-marking 903
creating

constructor 170
control 170

styles
changing 174
getting 172

Buttons, boxes
called when control created 980
calling owner when visual aspect of control or menu

changes 966
check-marked, getting 10 of radio button 924

Bytes

c

dumping array of hexadecimally formatted 358
file length 398
locking range in open file 401

CALCRECT structure 241
Calculating

height of CRect 702
nonclient area 986

Calculating (continued)
width of CRect 707

CalcWindowRect member function
CWnd class 901

Callback function 245, 279, 303
Cancel button

and AfxMessageBox 1066
CanCloseFrame member function

COocument class 346
CanPaste member function

COleClientItem class 608
CanPasteLink member function

COleClientItem class 608
CanUndo member function

CEdit class 366
Captions

dialog boxes, retrieving, CWnd 930
setting to specified text 1040

CArchive class
described 11, 123, 131
member functions

CArchive 132-133
Close 134
Flush 132, 134, 397
GetFile 134
1sLoading 135,579
1sStoring 135,579
Read 136
ReadObject 136, 579
Write 137
WriteObject 137, 579

operators 138-139
CArchive constructor 132
CArchive object

Index 1099

closing and disconnecting from file 134
creating 132
destroying 133

CArchiveException class
data members

m_cause 141
described 12, 140
member functions

badClass 141
bad1ndex 141
badSchema 141
CArchiveException 140
endOfFile 141
generic 141
none 141
readOnly 141
write Only 141

CArchiveException constructor 140

1100 Index

Carets
coordinates, retrieving, CWnd 923
displaying

after gaining input focus 1003
at current position 1040

gray, creating 909
hiding 942
moving to position specified by point 1028
solid, creating 909
system, creating new shape, CWnd 906

Casting operator 787
CATCH macro 128,1079
CBEdit class 107-108

described 8, 142
member functions

CBEdit 143
CharOffset 143
CharPosition 144
Create 144
DefaultFont 145
GetBoxLayout 145
SetBoxLayout 147

CBEdit constructor 143
CBitmap, width, height, getting 154
CBitmap class

described 10, 148
member functions

CBitmap 149
CreateBitmap 149, 164, 166,906
CreateBitmapIndirect 150, 164, 166
CreateCompatibleBitmap 152, 164, 166
CreateDiscardableBitmap 153
FromHandle 154
GetBitmapBits 154,460
GetBitmapDimension 154
LoadBitmap 155, 164, 166,906
LoadOEMBitmap 156
SetBitmapBits 157
SetBitmapDimension 157

CBitmap constructor 149, 163
CBitmap object

copying bit pattern to buffer 154
creating 149
returning pointer 154

CBitmapButton class 107-108
described 9, 158
member functions

AutoLoad 160
CBitmapButton 160
LoadBitmaps 161
SizeToContent 161

CBitmapButton constructor 160

CBrush class
described 10, 162
member functions

CBrush 163
CreateBrushIndirect 164
CreateDIBPatternBrush 165
CreateHatchBrush 166
CreatePatternBrush 166
CreateSolidBrush 167
FromHandle 167
UnrealizeObject 968

CBrush constructor 163
CBrush object, creating uninitialized 163
CBS_DROPDOWN 191
CBS_DROPDOWNLIST 191
CBS_SIMPLE 191
CButton class 106

described 8, 168
member functions

CButton 170
Create 170
DrawItem 172
GetButtonStyle 172
GetCheck 172
GetState 173
SetButtonStyle 174
SetCheck 174
SetS tate 175

notification messages 168
setting highlight state 175

CButton constructor 170
CButton object

control 170
creating 170

CByteArray 12, 176
CClient objects, creating 178
CClientDC class

data members
m_hWnd 179

described 10,44,178
member functions

CClientDC 178
CClientDC constructor 178
CClientDC objects, handles 179
CCmdTarget class

described 5, 180
member functions

Begin WaitCursor 181
EndWaitCursor 181
OnCmdMsg 59, 181
Restore W aitCursor 182

CCmdUI class
described 5, 183

CCmdUI class (continued)
member functions

ContinueRouting 184
Enable 184
SetCheck 185
SetRadio 185
SetText 185

SetText member function 760
CCmdUI structure

described 68
member functions

Enable 69
CColorDialog class 106

data members
clrSavedCustom 190
m_cc 190

described 8, 186
member functions

CColorDialog 187
DoModal 188
GetColor 188
OnColorOK 189
SetCurrentColor 189

CColorDialog constructor 188
CComboBox class 106

described 8, 191
edit control

copies current selection to Clipboard 197
deleting selection 196
inserting Clipboard data into 209
selecting characters in 211
text, limiting length 208

items
getting number of 203
retrieving associated application-supplied 32-bit

value 205
setting associated with 32-bit value 212

list box
adding string to 196
removing all items from 210
searching for string in 210
selecting string in 210
showing or hiding specified 213

member functions
AddString 196
CComboBox 196
Clear 196
CompareItem 197
Copy 197
Create 198
Cut 200
Deleteltem 200
DeleteString 200,961

CComboBox class (continued)
member functions (continued)

Dir 201
Drawltem 201
FindString 202
FindStringExact 202
GetCount 203
GetCurSel 203
GetDroppedControlRect 204
GetDroppedState 204
GetEditSel 204
GetExtendedUI 205
GetltemData 205
GetltemDataPtr 206
GetItemHeight 206
GetLBText 207
GetLBTextLen 207
InsertString 208
LimitText 208
Measureltem 209
Paste 209
ResetContent 210,961
SelectString 210
SetCurSel 210
SetEditSel 211
SetExtendedUI 211
SetltemData 212
SetltemDataPtr 212
SetltemHeight 213
ShowDropDown 213

CComboBox constructor 196
CComboBox object, creating 198
CControlBar class 111,216

data members
m_bAutoDelete 216

described 9,216
member functions

GetCount 216
CCreateContext structure 6
CCreateException, class description 217
CDataExchange class 7, 102,219
CDC class

Index 1101

allowing applications to access device facilities 247
bit pattern, creating 286
bitmap-stretching 272
bitmaps, moving 320
CGdiObject object, selecting 302
character strings

computing 272
writing, with tab stops 322

clipping region
creating 248
selecting given region as current 298

1102 Index

CDC class (continued)
colors

retrieving current text 276
retrieving RGB value of specified pixel 271
returning closest to device capability 267
setting background 306
setting text 314
updating client area with current 324

converting logical to device points 284
copying bitmap 232
creating

bit pattern on device 286
clipping region 282

current position, retrieving 259
data members

m_hAttribDC 324
m_hDC 324

described 9, 220
device contexts

creating for specified device 236
deleting 238
saving current state 295

display device, getting information on 259
drawing

dimmed text 279
ellipses 243
elliptical arcs 230
filled polygons 290
icons 240
line segments 289
lines to points 283
mode, retrieving 272
pie-shaped wedge 287
polygons consisting of points 289
rectangles in focus style 240
rectangles with current pen 292
rectangles with rounded comers 294
setting current mode 310

ending print job page 244
filling

display area with current brush 249,252
rectangle using specified brush 251
specified region with brush 286

fonts
altering mapper 308
copying typeface name into buffer 277
retrieving character widths 257
retrieving metrics for current 277

information contexts, creating 237
intercharacter spacing setting 275
mapping mode, retrieving 267
mapping point coordinates 239

CDC class (continued)
member functions

AbortDoc 229
Arc 230
Attach 231
BitBlt 150,232
CDC 234
Chord 234
CreateCompatibleDC 235
CreateDC 236
CreateIC 237
DeleteDC 238
DeleteTempMap 239
Detach 239
DPtoLP 239
DrawFocusRect 240
DrawIcon 240
DrawText 241
Ellipse 243
EndDoc 244
EndPage 244
EnumObjects 245
Escape 247
ExcludeClipRect 248
Exc1udeUpdateRgn 249
ExtFloodFil 249
ExtFloodFill 249
ExtTextOut 250
FillRect 251
FillRgn 252
FloodFill 252
FrameRect 253
FrameRgn 253
FromHandle 254
GetAspectRatioFilter 254
GetBkColor 255
GetBkMode 255
GetBoundsRect 255
GetBrushOrg 256
GetCharABCWidths 256
GetCharWidth 257
GetClipBox 258
GetCurrentPosition 259
GetDeviceCaps 259
GetFontData 264
GetGlyphOutline 265
GetKerningPairs 266
GetMapMode 267
GetNearestColor 267
GetOutlineTextMetrics 267
GetOutputCharWidth 268
GetOutputTabbedTextExtent 269
GetOutputTextExtent 270

CDC class (continued)
member functions (continued)

GetOutputTextMetrics 270
GetPixel 270
GetPolyFillMode 271
GetROP2 271
GetSafeHdc 272
GetStretchBltMode 272
GetTabbedTextExtent 272
GetTextAlign 273
GetTextCharacterExtra 274
GetTextColor 275
GetTextExtent 275
GetTextFace 276
GetTextMetrics 276
GetViewportExt 277
GetViewportOrg 278
GetWindowExt 278
GetWindowOrg 278
GrayString 278
IntersectClipRect 281
InvertRect 281
InvertRgn 282
IsPrinting 282
LineTo 282
LPtoDP 283
MoveTo 284
OffsetClipRgn 284
OffsetViewportOrg 285
OffsetWindowOrg 285
PaintRgn 286
PatBlt 286
Pie 287
Play MetaFile 288, 557
Polygon 289
Polyline 289
PolyPolygon 290
PtVisible 290
Query Abort 291
RealizePalette 291,461,670
Rectangle 292
RectVisible 292
ReleaseAttribDC 293
ReleaseOutputDC 293
ResetDC 293
RestoreDC 294
RoundRect 294
SaveDC 295
Scale ViewportExt 296
Scale WindowExt 296
ScrollDC 297
SelectClipRgn 298
SelectObject 149-150, 153,299,433
SelectPalette 300

CDC class (continued)
member functions (continued)

SelectStockObjec 301
SelectStockObject 301
SetAbortProc 302
SetAttribDC 304
SetBkColor 304
SetBkMode 304
SetBoundsRect 305
SetBrushOrg 306,461
SetMapMode 308
SetMapperFlags 308
SetOutputDC 308
SetPixel 309
SetPolyFillMode 309
SetROP2 310
SetStretchBltMode 311
SetTextAlign 312
SetTextCharacterExtra 313
SetTextColor 313
SetTextJustification 314
SetViewportExt 315
SetViewportOrg 315
SetWindowExt 316
SetWindowOrg 317
StartDoc 318
StartPage 319
StretchBlt 319
TabbedTextOut 321
TextOut 322
UpdateColors 323

metafile, playing on device 288
modifying

viewport extents 296
window origin 285
windows extents 296

moving, clipping region 284
palettes, logical

Index 1103

mapping entries to system palette 291
selecting 300

pens, brushes available, enumerating 245
pixels, setting at specified point 309
polygon-filling mode

retrieving 272
setting 309

position, current, moving to point 284
print job, informing device driver of new 319
printer driver, preparing to receive data 320
printing

installing abort procedure for job 303
terminating job 231, 244

rectangles
bounding, retrieving dimensions around clipping

boundary 258

1104 Index

CDC class (continued)
rectangles (continued)

determining if within clipping region 292
drawing borders around 253
drawing text in 241
drawing with rounded comers 294
inverting contexts 282
scrolling 297

regions
drawing border around 253
filing with specified brush 286
filling with specified brush 252
inverting contents 283
preventing drawing within invalid area 249
writing character strings withint 250

restoring Windows device context to previous state 294
retrieving

aspect-radio filtersetting 254
current brush origin 256
window origin coordinates 279

returning
background mode 255
current background color 255

selecting, object into current device context 299
setting

background mode 306
bitmap-stretching mode 311
current drawing mode 310
intercharacter spacing 313
mapping mode 308

specifying next brush origin 308
terminating print job 231, 244
text

computing line dimensions 276
setting alignment flags 312
setting color 314
setting justification 314

text-alignment flag status, retrieving 274
viewports

modifying origin 285
retrieving device contexts' extents 278
retrieving origin coordinates associated with device

context 279
setting origins of device context 316
setting x- and y-extents of device context 316

windows
retrieving coordinates associated with device

context 279
setting origin 318
setting x- and y-extents 317

writing character strings at specified location 323
CDC constructor 234
CDC objects, creating and attaching memory device

context 235

CDialog class
and Class Wizard 97
component of dialog box 96
deleting object 101
described 7, 325
focus control 332, 334, 336
font control 336
Foundation Class Library derived classes 106
member functions

CDialog 328
Create 99, 109,329
Createlndirect 330
DoDataExchange 102
DoModal 100, 103, 109,331
EndDialog 101, 105,331
GetDefiD 332
GotoDlgCtrl 332
InitModalIndirect 332
IsDialogMessage 333
MapDialogRect 334
NextDlgCtrl 334
OnCancel 101, 103, 105,334
OnlnitDialog 101, 105, 109-110,335
OnOK 101, 105,336
OnSetFont 336
PrevDlgCtrl 336
SetDefiD 337
SetFocus 109
SetHeipID 337
SubclassDlgItem 110-111
UpdateData 100, 102

message-checking 333
push button control, default 337
screen unit conversion control 334
standard dialog-box procedure 335
standard Foundation dialog-box procedure 331

CDialog class/modeless dialog box
creating 328

CDialog constructor 328
CDialogBar class 107, 113

described 9,338
member functions

CDialogBar 338
Create 339

CDialogBar constructor 338
CDocItem class

described 15,340
member functions

GetDocument 340
CDocTemplate class

and CFrame Wnd class 446
and creating frame windows 74
described 6, 341
in CDMIChildWnd class 513

CDocTemplate class (continued)
member functions

GetDocString 342
CDocument class

and application data 79
and AppWizard 79
and ClassWizard 79
and print preview 91
and printing 91
default command routing 57
described 6,21, 78, 344
member functions

AddView 346
CanCloseFrame 346
CDocument 347
DeleteContents 347
GetDocTemplate 348
GetFirstViewPosition 348
GetNextView 348
GetPathName 349
GetTitle 349
IsModified 349
OnChangedViewList 350
OnCloseDocument 350
OnNewDocument 38, 350
OnOpenDocument 38, 351
OnSaveDocument 352
Remove View 352
ReportSaveLoadException 353
SaveModified 353
SetModifiedFlag 354
SetPathN arne 354
SetTitle 354
UpdateAIIViews 356

relationship with view 78
CDocument constructor 348
CDumpContext class

described 11,121,356,1060
member functions

CDumpContext 357
Flush 357
GetDepth 358
HexDump 358
SetDepth 359

operators 359
CDumpContext constructor 357
CDumpContext object

creating 357
CDWordArray class 12,361
CEdit class

described 8, 363
member functions

CanUndo 366
CEdit 367

CEdit class (continued)
member functions (continued)

Clear 367
Copy 367
Create 367
Cut 370
EmptyUndoBuffer 370
FmtLines 370
GetFirstVisibleLine 371
GetHandle 371
GetLine 372
GetLineCount 372
GetModify 373
GetPasswordChar 373
GetRect 373
GetSel 374
LimitText 374
LineFromChar 375
LineIndex 375
LineLength 376
LineScroll 376
Paste 377
ReplaceSel 377
SetHandle 377
SetModify 378
SetPasswordChar 378
SetReadOnly 379
SetRect 379
SetRectNP 380
SetSel 380
SetTabStops 381
Undo 382

notification messages 363
CEdit constructor 367
CEdit object 367
CEditView class 83, 90

data members
dwStyleDefault 391

described 7, 383, 843
member functions

CEditView 384
FindText 385
GetEditCtrl 385
GetPrinterFont 386
GetSelectedText 386
OnFindNext 387
OnReplaceAll 387
OnReplaceSel 388
OnTextNotFound 389
PrintInsideRect 389
SerializeRaw 390
SetPrinterFont 390
SetTabStops 390

CEditView constructor 384

Index 1105

1106 Index

CException class 12, 128,392
CFile class

and bypassing serializing 81
data members

m_hFile 406
m_hFileNull 408

described 11, 123-124,393
member functions

CFi1e 394
Close 134, 396
Duplicate 396
Flush 398
GetLength 397
GetPosition 132, 397
GetStatus 398
LockRange 399
Open 400, 767
Read 401,768
Remove 401
Rename 402
Seek 403
SeekToBegin 403
SeekToEnd 404
SetLength 404
SetStatus 404
UnlockRange 405
Write 406, 769

CFile constructor
CArchive: :CArchive 131-134
CFile: :CFile 394
CStdioFile::CStdioFile 767-769

CFile object
closing associated file 396
creating

safe method 400
constructor 394

duplicating 396
reading data into buffer 401
retrieving file status 404

CFileDialog class 106
data members

m_ofn 415
described 7, 407
member functions

CFileDialog 409
DoModa141O
GetFileExt 411
GetFileN arne 411
GetFileTitle 411
GetPathN arne 412
GetReadOnlyPref 412
OnFileNameOK 413
OnLBSelChangedN otify 413
OnShare Violation 414

CFileDialog constructor 409
CFileException class

data members
CFileException 417
ErrnoToException 417
m_cause 417,419
m_lOsError 420
OsErrorToException 418
ThrowErrno 418
ThrowOsError 418

described 12,416
enumerators 419
member functions

accessDenied 419
badPath 419
badSeek 419
CFileException 417
directoryFull 419
diskFull 419
endOfFile 419
ErrnoToException 417
fileNotFound 419
generic 418,419
hardIO 419
invalidFile 419
lockViolation 419
none 419
OsErrorToException 418
removeCurrentDir 419
sharingViolation 419
ThrowErrno 418
ThrowOsError 418
tooManyOpenFiles 419

operating-system error codes 418
CFileException constructor 417
CFileException data member

CFileException class 417
CFileException object 417 -418
CFindReplace class 106
CFindReplaceDialog class

data members
m_fr 427

described 8, 421
member functions

CFindReplaceDialog 423
Create 423
FindNext 424
GetFindString 425
GetNotifier 425
GetReplaceString 425
IsTerminating 425
MatchCase 426
MatchWholeWord 426
ReplaceAll 426

CFindReplaceDialog class (continued)
member functions (continued)

ReplaceCurrent 427
SearchDown 427

CFindReplaceDialog constructor 423
CFont class

data members
CFont 428
CreateFont 429
CreateFontlndirect 433
FromHandle 434

described 10, 428
member functions

CFont 428
CreateFont 429
CreateFontlndirect 433
FromHandle 434

CFont constructor 428
CFont data member

CFont class 428
CFont object

creating constructor 428
handle to 434
initializing

LOGFONT -specified characteristics 433
specified characteristics 429

CFontDialog class 106
data members

m_cf 441
described 8, 435
member functions

CFontDialog 436
DoModal 438
GetColor 438
GetCurrentFont 438
GetFaceName 439
GetSize 439
GetStyleName 439
GetWeight 439
IsBold 440
IsItalic 440
IsStrikeOut 440
Is Underline 440

CFontDialog constructor 436
CForrnView class 83,90

described 7, 442, 842
Dialog data exchange (DDX) 442
member functions

CForrn View 445
member variables and controls 442

CForrn View constructor 445
CFrame Wnd, accelerator table, loading 452

CFrame Wnd class
and CMainFrame 73
and frame window 73
and frame window creation 74
data members

m_bAutoMenuEnable 455
rectDefault 455

default command routing 57
described 7, 21, 40, 446
in CSplitterWnd class 746
member functions

ActivateFrame 449
CFrame Wnd 449
Create 450
GetActiveDocument 451
GetActive View 451
LoadAccelTable 452
LoadFrame 43, 452
OnCreateClient 453
OnSetPreviewMode 454
Reca1cLayout 454
SetActive View 455

CFrameWnd constructor 449
CFrame Wnd object, creating

attaching 450
constructor 449

CGdiOBject

Index 1107

resetting brush origin or logical palette 461
CGdiObject class

data members
m_hObject 461

described 10, 456
member functions

Attach 457
CGdiObject 457
CreateStockObject 457
DeleteObject 336, 458
DeleteTempMap 459
Detach 459
FromHandle 459
GetObject 460
GetSafeHandle 461
UnrealizeObject 461

CGdiObject constructor 457
CGdiObject objects

brushes, resetting 461
creating 457
deleting 458-459
detaching Windows GDI object from 459
filling buffer with data definition 460
handles 462
palettes, resetting 461
retrieving handle to 457

1108 Index

CGdiObject objects (continued)
returning

handle to 461
pointer with GDI object handle 459

selecting 299, 302
ChangeClipboardChain member function

CWnd class 902
Changing

CWnd object position and dimensions 951
file length 404
fonts, called when 972
menu items 553
window, size, position, ordering 1037

Character sets
ANSI, converting to OEM 773
OEM, converting to ANSI 783

Characters
dead-key, returning value 961
edit control, getting started, ending character

positions 374
index, of line, retrieving within multiple-line edit

control 375
retrieving line number from multiple-line edit control 375
mnemonic, called when user presses 982
number of positions to scroll horizonally 376
passwords, setting or removing in edit control 378
retrieving current font width 257
returning count of characters in CString object 780
searching for first match in string 777
selecting, combo box edit control 211
setting

intercharacter spacing 313
retrieving intercharacter spacing 275
range in edit control 380

soft line break, inserting in multiple-line edit control 370
strings

computing 272
returning character specified by index 777

writing strings
to specified location 322-323
to regions 250

CharOffset member function
CBEdit class 143

CharPosition member function
CBEdit class 144

Check box
CB utton class 168

Check boxes
getting check state 172
setting check state 174

Check marks, adding or removing in pop-up menu 540
Check-mark control, CWnd button control 946
Check-marking, button control 902
checkAlwaysMemDF 1066

CheckDlgButton member function
CWnd class 902

Checking
equality between sizes 744
inequality between sizes 745

CheckMenuItem member function
CMenu class 539

Checkpoint member function
CMemoryState class 530

CheckRadioButton member function
CWnd class 903

CHEdit class 107-108
described 8, 462
member functions

CHEdit 464
Create 465
Getlnflate 465
GetlnkHandle 467
GetRC 467
GetUnderline 467
Setlnflate 468
SetlnkMode 468
SetRC 468
SetUnderline 469
StopInkMode 469

CHEdit constructor 464
Child windows

activating next child 523
and CWnd class 884
called

on activation or deactivation 980
upon creation or destruction 996
when about to be drawn 960
when changing size or position 954

changing
parent 1031
size, position, ordering 1037

creating
and attaching 515
constructor 515

determining which contains specified point 903
flashing once 921
handling activation message 516
identifying 946
managed by frame window 75
MDI

activating 521
arranging in cascade 522
arranging in tiled format 525
destroying 517
maximizing 517,523
restoringe 517,524
returning current 522

message handling, and frame window 76

Child windows (continued)
minimized, arranging 900
top-level, searching for 937
Windows, creating

attaching to CWnd object 904
constructor 910

ChildWindowFrornPoint member function
CWnd class 903

Chord member function
CDC class 234

Chords, drawing 234
Classes

collection, described 124
control

creating derived 110
CString described 126
hierarchy chart xvi
special collection, compatibility 125
styles, Windows, and AfxRegisterWndClass 1071

Class Wizard
and

.CPP files 98

.H files 98
CDocument 79
creating documents and views 79
CView 79

code that it supplies 66
command binding 65
Control property 104
creating

dialog boxes 97
dialog class with 97

defining message handlers 52
described 23-24
editing message maps 57, 65
in CDialog class 325
mapping

dialog class member variables 97
Windows messages 97

message handlers 60
typical scenarios for using 66

Clean-up
documents 89
views 89

Clear member function
CComboBox class 196
CEdit class 367

Clearing edit control
selection 367
undo flag 370

Client coordinate, converting to screen coordinates 904
Client applications, OLE

classes for writing 15

Client applications, OLE (continued)
document classes 600
item classes 604

Client areas
called

after size changed 1004
when needing repainting 995

Index 1109

when size changed and Clipboard contains data 1004
converting screen coordinates of Point or Rect to client

coordinates 1021
copying client coordinates into specified structure 924
device contexts, constructor 178
invalidating

entire 943
within given rectangle 943
within given region 945

painting window associated with CPaintDC object 664
scrolling 1022
updating matching colors 324
updating 1041
validating within given region 1042

ClientToScreen member function
CWnd class 904

Clipboard
and

OLE 608-611
OLE servers 651
views 84

called for each window in viewer chain when contents
change 965

calling owner when emptied 965
combo box edit control

copying current selection to 197
copying deleted selection to 200
inserting date 209

copying edit control selection to 367
CWnd, called with event in vertical scroll bar 1014
format, specifying 1002
opening 10 16
owner

called when application is destroyed 1001
retrieving 924

using 47
Clipboard viewers

called
for displaying Clipboard contents 953
for each window in chain when Clipboard contents

change 965
when client area needs repainting 995
when client area size changed 1004

chain
adding current CWnd to 1028
retrieving first window in 926

1110 Index

Clipboard viewers (continued)
horizontal scrolling 976
removing CWnd from chain 902
removing windows from chain 954

Clipping region
creating 248, 282
device contexts, specifying whether point is within 290
moving 284
rectangles, determining if within 292
selecting given region as current 298
smallest bounding rectangle dimensions 258

CListBox class 106
adding strings 474
bounding rectangle, retrieving dimensions 484
deleting items 479
described 8,470
getting string length 486
items

ensuring visibility 495
removing 488
retrieves zero-based index of currently selected 483
retrieving index of first visible 487
retrieving index of 483
retrieving number of 482
retrieving selection state 485
retrieving total selected 485
searching for matching 489
selecting consecutive 489
setting associated 32-bit values 492

member functions
AddString 474
CListBox 475
CompareItem 475
Create 476
DeleteItem 479
DeleteString 479,962
Dir 479
Drawltem 480
FindString 481
FindStringExact 481
GetCaretIndex 482
GetCount 482
GetCurSel 483
GetHorizontalExtent 483
GetItemData 483
GetltemDataPtr 484
GetltemHeight 484
GetItemRect 484
GetSel 485
GetSelCount 485
GetSelItems 485
GetText 486
GetTextLen 486
GetToplndex 487

CListBox class (continued)
member functions (continued)

InsertString 487
Measureltem 488
ResetContent 488, 962
SelectString 489
SelItemRange 489
SetCaretIndex 491
SetColumn Width 491
SetCurSel 491
SetHorizontalExtent 492
SetItemData 492
SetItemDataPtr 489
SetItemHeight 490
SetSel 490
SetTabStops 491
SetToplndex 492

multicolumn list box, selecting width 491
notification messages 470
retrieving horizontal scroll event 483
scrolling

selected strings 491
setting width 492

selecting strings in multiple-selection 493
setting tab-stop positions 494

CListBox constructor 474
CListBox objects

creating
constructor 475
specifying style 476

Close member function
and bypassing serializing 82
CArchive class 134
CFile class 394
CMetaFileDC class 557

CloseChannel member function
CVBControl class 829

CloseLink member function
COleClientltem class 609

Closing files
CFile object 394
memory 527

clrSavedCustom data member
CColorDialog class 190

CMainFrame class 73
CMapPtrToPtr class 13, 493
CMapPtrToWord class 13,495
CMapStringToOb class

compatibility 125
described 13,497
member functions

CMapStringToOb 498
GetCount 498
GetNextAssoc 499

CMapStringToOb class (continued)
member functions (continued)

GetStartPosition 500
IsEmpty 500
Lookup 500
RemoveAll 501
RemoveKey 502
SetAt 503

operators 504
CMapStringToOb constructor 498

CMapStringToOb objects, constructing 498
CMapStringToPtr class 13,505
CMapStringToString class 13,507
CMapWordToOb class

compatibility 125
described 13,509

CMapWordToPtr class 13,511
CMDIChildWnd class

and frame window 73-74
default command routing 57
described 7,21,41,513
in CSplitterWnd class 746
member functions

CMDIChildWnd 515
Create 515
GetMDIFrame 516
MDIActivate 516
MDIDestroy 517
MDIMaximize 517
MDIRestore 517

CMDIChildWnd constructor 515
CMDIChildWnd object, creating constructor 515
CMDIFrameWnd class

and CMainFrame 73
and frame window 73
and ID_ WINDOW_NEW 77
and New Window command 77
default command routing 57
described 7, 21, 40
member functions

CMDIFrameWnd 520
MDIActivate 521,980
MDICascade 522
MDIGetActive 522
MDIIconArrange 523,900
MDIMaximize 523
MDINext 523
MDIRestore 524
MDISetMenu 524
MDITile 525

CMDIFrameWnd constructor 520
CMDIFrameWnd object, creating 520

CMemFile class
described 11, 124,526
member functions

CMemFile 527
CMemFile constructor 527
CMemoryException class

described 12
member functions

CMemoryException 528
CMemoryException constructor 528
CMemoryException objects, creating 528
CMemoryState class 11

member functions
Checkpoint 530
CMemoryState 530
Difference 531
DumpAllObjectsSince 532
DumpStatistics 532

CMemoryState constructor 530
CMenu class

data members
m_hMenu 555

described 9,534
member functions

AppendMenu 536,936
Attach 538
CheckMenuItem 539
CMenu 540
CreateMenu 540
CreatePopupMenu 540
DeleteMenu 541
De1eteTempMap 541
DestroyMenu 542, 1028
Detach 542
DrawItem 542
EnableMenuItem 543
FromHandle 544
GetMenuItemCount 544
GetMenuItemID 544
GetMenuState 545
GetMenuString 546
GetSafeHmenu 545
GetSubMenu 547
InsertMenu 547,936
LoadMenu 551
LoadMenuIndirect 550
MeasureItem 551
ModifyMenu 551,936
RemoveMenu 552
SetMenuItemBitmaps 553
TrackPopupMenu 554

CMenu constructor 540

Index 1111

1112 Index

CMenu object
creating constructor 541
destroying menus 544
detaching menus 544
loading 551
retrieving from pop-up 549

CMetaFileDC class
described 10,45,556
member functions

Close 557
CMetaFileDC 557
Create 558
SelectObject 149, 150, 153,433

CMetaFileDC constructor 557
CMetaFileDC object, creating

constructor 557
device context 558

CMultiDocTemplate class
and CMDIChildWnd class 513
described 6,21,33,559
example 34
member functions

CMultiDocTemplate 560
CMultiDocTemplate constructor 560
CN otSupportedException class

described 12,562
in class CStdioFile 766
member functions

CNotSupportedException 562
CNotSupportedException constructor 562
CObArray class

compatibility 125
described 13, 563
member functions

Add 565
CObArray 566
ElementAt 566
FreeExtra 567
GetAt 567
GetSize 567
GetUpperBound 568
InsertAt 568
operator 573
RemoveAll 569
RemoveAt 570
SetAt 571
SetAtGrow 572
SetSize 572

operators 573
CObArray constructor 566
CObject class

compatibility with special collection classes 125
described 4, 574, 1048

CObject class (continued)
diagnostic dump context 121
dump, validity checking 575
getting run-time structure 578
member functions

AssertValid 122,575
CObject 576
Dump 359,577
GetRuntimeClass 577
IsKindOf 136, 578
IsSerializable 579
operator 580
Serialize 579

object
diagnostics 121
persistence 123

operators 581
performing optimal memory allocation new 581
serialization 124
validity checking 122

CObject constructor 576
CObject objects

creating 576
destroying 576
dumping to 578
reading or writing to archive 580
testing

for class 579
eligiblity for serializatione 580

CObject pointer, array
constructing empty 566
destroying 566

CObject pointer lists
adding element

after specified position 593
before specified position 594

creating 585
getting

number of elements in 588
head element position 590
next element position 590
pointer representing head element 589
previous element position 591
tail element position 592-593

indicating if containing no elements 595
removing

all elements from 595
head element from 597
specified element from 596
tail element from 597

retrieving pointer to given position 588
searching for first matching pointer 586
writing pointer to specified position 598

CObject pointers
arrays, adding element to end of 565
lists, scanning index for specified element 587

CObList class
compatibility 125
described 13, 582
member functions

AddHead 584
AddTail 585
CObList 498,575,585
Find 586
FindIndex 587
GetAt 588
GetCount 588
GetHead 589
GetHeadPosition 590
GetNext 590
GetPrev 591
GetTail 592
GetTailPosition 593
InsertAfter 593
InsertBefore 594
IsEmpty 595
RemoveAll 595
RemoveAt 596
RemoveHead 597
RemoveTail 597
SetAt 598

CObList constructor 498, 585
CObList member function

CObList class 575
COleClientDoc class

described 15, 600
member functions

COleClientDoc 601
GetPrimarySelectedItem 601
NotifyRename 602
NotifyRevert 602
NotifySaved 602
RegisterClientDoc 603
Revoke 603

COleClientDoc constructor 601
COleClientItem class

described 15,604
member functions

Activate 607
CanPaste 608
CanPasteLink 608
CloseLink 609
COleClientItem 609
CopyToClipboard 609
CreateCloneFrom 610
CreateFromClipboard 610

COleClientItem class (continued)
member functions (continued)

CreateInvisibleObject 611
CreateLinkFromClipboard 611
CreateNewObject 612
CreateStaticFromClipboard 613
Delete 613
DoVerb 614
Draw 614
EnumFormats 615
GetBounds 615
GetData 616
GetDocument 616
GetLastStatus 617
GetLinkUpdateOptions 617
GetName 617
GetSize 618
GetType 618
In WaitForRelease 618
IsEqual 619
IsOpen 619
OnChange 619
OnRenamed 620
ReconnectLink 621
Release 621
Rename 621
RequestData 622
SetBounds 622
SetColorScheme 623
SetData 623
SetHostNames 624
SetLinkUpdateOptions 624
SetTargetDevice 625
UpdateLink 625

COleClientItem constructor 609
COleDocument class

described 14,626
member functions

AddItem 627
COleDocument 627
GetNextItem 627
GetStartPosition 628
IsOpenClientDoc 628
IsOpenServerDoc 629
RemoveItem 629

COleDocument constructor 627
COleException class

data members
m_status 632

described 12, 16, 630
member functions

COleException 630
COleException constructor 630

Index 1113

1114 Index

COleServer class
described 15, 633
member functions

BeginRevoke 634
COleServer 635
GetServerNarne 635
IsOpen 635
OnCreateDoc 636
OnCreateDocFromTemplateFile 636
OnEditDoc 637
OnExecute 638
OnExit 638
OnOpenDoc 638
Register 639

COleServer constructor 635
COleServerDoc class

described 15, 640
member functions

COleServerDoc 642
NotifyChanged 642
NotifyClosed 642
NotifyRename 643
NotifyRevert 643
NotifySaved 644
OnClose 644
OnExecute 644
OnGetEmbeddedltem 645
OnGetLinkedltem 645
OnSetColorScheme 646
OnSetDocDimensions 646
OnSetHostNames 647
OnUpdateDocument 647
RegisterServerDoc 647
Revoke 648

COleServerDoc constructor 642
COleServerItem class

described 15, 649
member functions

COleServerItem 650
CopyToClipboard 651
GetDocument 651
GetltemName 652
IsConnected 652
NotifyChanged 652
OnDoVerb 653
OnDraw 653
OnEnumFormats 654
OnExtra Verb 654
OnGetData 655
OnGetTextData 655
OnSetBounds 656
OnSetColorScheme 656
OnSetData 657

COleServerItem class (continued)
member functions (continued)

OnSetTargetDevice 657
OnShow 658
Revoke 658
SetltemN arne 659

COleServerItem constructor 650
COleTemplateServer class

described 15,660
member functions

COleTemplateServer 661
RunEmbedded 661

COleTemplateServer constructor 661
Collate member function

CString class 773
Collection classes

arrays described 125
described 124
listed 12
lists described 125
maps described 125

Collections
CMapPtrToPtr class 493
CMapPtrToWord class 495
CMapStringToOb class 497
CMapStringToPtr class 505
CMapStringToString class 507
CMapWordToOb class 509
CMapWordToPtr class 511

Color
CColorDialog class 186
CDC class 220

Color palette
CPalette class 666

Colors
background

returning current for device context 255
setting 306

brushes, creating 167
called when child-system control class about to be

drawn 960
inverting in specified region 283
matching current to update client area 324
palettes, setting RGB values and flags in logical

palette 670
retrieving RGB value of specified pixels 271
returning, closest to specified logical color 267
system setting, called when change made 1006
text

retrieving current 276
setting 314

CombineRgn member function
CRgn class 714

Combo boxes
called when control created 980
CComboBox class 191
comparing items in 956
control

calling owner when visual aspect or menu
changes 966

filling with directory listing 914
creating

attaching 198
constructor 196

destroying, called to inform owner 962
edit control

deleting selection and copying to Clipboard 200
deleting selection 196
getting position of current selection 204
inserting Clipboard data into 209
limiting text length 208
selecting characters in 211

items
retrieving associated application-supplied 32-bit

value 205
setting associated with 32-bit value 212

list box
adding list of filenames to 201
adding string to 196
deleting string in 200
finds first string containing specified prefix 202
getting string from 207
inserting string into 208
items in, getting number 203
returning selected items 203
searching for string in 210
selecting string in 210
showing or hiding specified 213

listing all items from 210
notification messages 191
retrieving current selection from list box 916

Command binding 65-66
Command prompt strings, displaying 69
Command routing

default 57
described 57
example 58
overriding the default 59

Command targets
described 56, 180
handling commands 57

Commands
and user-interface objects 54
described 51-53
Edit menu, listed 55
File menu, listed 55
Help menu, listed 55

Commands (continued)
how they are

generated 56
handled 56-57

IDs 54
illustrated 54
message handlers 65
message-map entry 62
OLE, listed 55
predefined

ID conventions 55
listed 55

standard
ID conventions 55
listed 55

View menu, listed 55
Window menu, listed 55

Commands, handling
in CDocument 82
in document 82

CommandToIndex member function
CStatusBar class 761
CToolBar class 818

COMMDLG.DLL

Index 1115

in CFileDialog class 407
CommDlgExtendedError Windows function

in CFileDialog class 407
Common file dialog box classes 106, 407
COMMON.RC 23
Compare member function

CString class 774
CompareItem member function

CComboBox class 197
CListBox class 474

COMP AREITEMSTRUCT structure 956
CompareNoCase member function

CString class 774
Comparing

absolute time, CTime comparison operators 806
items in combo boxes 956
strings 773-774
time, two relative values, CTimeSpan comparison

operators 814
Comparison operators

CString class 789
Compatibility, with special collection classes 125
Computing

string's width, height 272
text's line width, height 276

Concatenation operator 788-789
const operator

CString class 787
const char* 0 operator

CString class 787

1116 Index

Constructors
CArchive 132
CArchiveException 140
CBEdit 143
CBitmap 149
CBitmapButton 160
CBrush 163
CButton 170
CClientDC 178
CColorDialog 187
CComboBox 196
CDC 234
CDialog 328
CDialogBar 338
CDocument 347
CDumpContext 357
CEdit 367
CEditView 384
CFile 394
CFileDialog 409
CFileException 417
CFindReplaceDia10g 423
CFont 428
CFontDialog 436
CForm View 445
CFrameWnd 449
CGdiObject 457
CHEdit 464
CListBox 474
CMapStringToOb 498
CMDIChildWnd 515
CMDIFrameWnd 520
CMemFile 527
CMemoryException 528
CMemoryState 530
CMenu 540
CMetaFileDC 557
CMultiDocTemplate 560
CNotSupportedException 562
CObArray 566
CObject 576
CObList 585
COleClientDoc 601
COleClientltem 609
COleDocument 627
COleException 630
COleServer 635
COleServerDoc 642
COleServerItem 650
COleTemplateServer 661
CPaintDC 663
CPalette 668
CPen 671
CPoint 676

Constructors (continued)
CPrintDialog 681
CRect 701
CResourceException 712
CRgn 720
CScrollBar 729
CScrollView 734
CSingleDocTemplate 741
CSize 744
CSplitterWnd 751
CStatic 759
CStatusBar 762
CStdioFile 767
CString 775
CTime 799
CTimeSpan 809
CToolBar 819
CVBControl 831
CView 844
CWinApp 858
CWindowDC 882
CWnd 910

Context-sensitive help 114
and App Wizard 118
bitmaps 118
.RTF files 118
starter files 118
user access 114

ContinueR outing member function
CCmdUI class 184

Control bars 111
and frame window 75
and MDICLIENTwindow 75
CControl bar class, positioning 215
described 41,215
managing, and frame window 76
positioning in parent window 111

Control menu
allowing application access to 936
called when user selects command from 1007

Control notifications
described 52
message handlers, example 65
message-map entry 62

Controls 41
Conventions, used in this document 3
Converting

characters
ANSI to OEM character set 773
OEM to ANSI character set 783

client coordinates to screen coordinates 904
CString object

to lowercase 781
to uppercase 782

Converting (continued)
dialog units of rectangle to screen units 334
error codes, run-time library to CFileException values 417
logical to device points 284
points, device into logical 239
rectangles, between CRect and LPRECT 708

Coordinates, retrieving carets 923
Copy command, implementing 48
Copy member function

CComboBox class 197
CEdit class 367

Copying
allowing application access to Control menu for 936
bitmaps, to current device context 232
CTimeSpan object 813
CWnd's caption title into specified buffer 941
dimensions of bounding rectangle of CWnd object 940
edit control selection to Clipboard 367
fonts, current typeface name into buffer 277
menu item label to buffer 546
rectangles, to CRect 701
regions, into CRgn object 715
scroll bar 730, 935
to Clipboard, combo-box edit control selection 197

Copy Metafile Windows function
and CMetaFileDC class 556

CopyRect member function
CRect class 701

CopyRgn member function
CRgn class 715

CopyToClipboard member function
COleClientItem class 609
COleServerItem class 651

Counting
elements in lists 588
items in list box 482
number of elements in maps 498

CPaintDC class
and view drawing 83
data members

m_hWnd 664
m_ps 664

described 9,44, 663
member functions

CPaintDC 663
m_hWnd 664
m_ps 664

CPaintDC constructor 663
CPaintDC objects

creating, CPaintDC: :CPaintDC 663
painting client area, CPaintDC::m_ps 664

CPalette class
described 10,666

CPalette class (continued)
member functions

AnimatePalette 667
CPalette 668
CreatePalette 668
FromHandle 668
GetN earestPaletteIndex 669
GetPaletteEntries 460, 669
ResizePalette 670
SetPaletteEntries 670

CPalette constructor 668
CPalette object

creating, initializing 668
resizing logical palette attached to 670
returning pointer to 668

CPen class
described 10,671
member functions

CPen 671
Create Pen 672
CreatePenIndirect 673
FromHandle 674

CPen constructor 671
CPen object

creating
constructor 671
initializing 672

returning pointer to 675
CPoint class

Index 1117

adding separate values to x and y members 676
described 14,675
member functions

CPoint 676
Offset 676
operator 677, 678
operator == 677

operators 677, 678
CPoint constructor 676
CPoint object, creating 676
CPreviewDC class 91
CPreviewView class 91,842
CPrintDialog class 106

and CPrintInfo structure 688
data members

m_pd 687
described 8, 679
member functions

CPrintDialog 681
DoModal682
GetCopies 682
GetDefaults 683
GetDeviceName 683
GetDevMode 683
GetDriverName 684

1118 Index

CPrintDialog class (continued)
member functions (continued)

GetFromPage 685
GetPortN arne 685
GetPrinterDC 685
GetToPage 686
PrintAll 686
PrintCollate 686
PrintRange 686
PrintS election 687

CPrintDialog constructor 681
CPrintInfo class

data members
m_bContinuePrinting 691
m_bPreview 691
m_lpUserData 692
m_nCurPage 692
m_nNumPreviewPages 692
m_pPD 692
m_rectDraw 693
m_strPageDesc 693

member functions
GetFromPage 689
GetMaxPage 689
GetMinPage 690
GetToPage 690
SetMaxPage 690
SetMinPage 691

CPrintInfo structure 6
CPtrArray class 13,694
CPtrList class 13, 696
Create member function

and CWnd class 884
CBEdit class 144
CButton class 168, 170
CComboBox class 198
CDialog class 99, 109,329
CDialogBar class 339
CEdit class 367
CFindReplaceDialog class 423
CFrameWnd class 446,450
CHEdit class 465
CListBox class 475
CMDIChildWnd class 515
CMetaFileDC class 558
CScrollBar class 727
CSplitterWnd class 748
CStatic class 757
CStatusBar class 761
CToolBar class 818
CVBControl class 830
CWnd class 39, 42-43, 904

CreateBitmap member function
CBitmap class 149, 166,906

CreateBitmapIndirect member function
CBitmap class 150, 166

CreateBrushIndirect member function
CBrush class 164

CreateCaret member function
CW nd class 906

CreateCloneFrom member function
COleClientItem class 610

CreateCompatibleBitmap member function
CBitmap class 152, 166

CreateCompatibleDC member function
CDC class 235

CreateDC member function
CDC class 236

CreateDIBPattemBrush member function
CBrush class 165

CreateDiscardableBitmap member function
CBitmap class 153

CreateEllipticRgn member function
CRgn class 716

CreateEllipticRgnIndirect member function
CRgn class 716

CreateEx member function
CWnd class 907

CreateFont data member
CFont class 429

CreateFont member function
CFont class 429

CreateFontIndirect data member
CFont class 433

CreateFontIndirect member function
CFont class 433

CreateFromClipboard member function
COleClientltem class 610

CreateGrayCaret member function
CWnd class 909

CreateHatchBrush member function
CBrush class 166

CreateIC member function
CDC class 237

CreateIndirect member function 325
CDialog class 330

CreateInvisibleObject member function
COleClientItem class 611

CreateLinkFromClipboard member function
COleClientItem class 611

Create Menu member function
CMenu class 540

CreateNewObject member function
COleClientItem class 612

CreateObject member function
CRuntime class 725

CreatePalette member function
CPalette class 668

CreatePatternBrush member function
CBrush class 166

CreatePen member function
CPen class 672

CreatePen member function
CPen class 46-47

CreatePenlndirect member function
CPen class 673

CreatePolygonRgn member function
CRgn class 717

CreatePolyPolygonRgn member function
CRgn class 718

CreatePopupMenu member function
CMenu class 540

CreateRectRgn member function
CRgn class 719

CreateRectRgnlndirect member function
CRgn class 719

CreateRoundRectRgn member function
CRgn class 720

CreateSolidBrush member function
CBrush class 167

CreateSolidCaret member function
CWnd class 909

CreateStatic member function
CSplitterWnd class 746, 749

CreateStaticFromClipboard member function
COleClientItem class 613

CreateStockObject member function
CGdiObject class 457

CREATESTRUCT structure 958, 987
Create View member function

CSplitterWnd class 751
Creating

bitmaps
device-compatible 152
device-dependent memory 149
discardable 153
specified structure 150

brushes
uninitialized object 163
with bitmap-specified pattern 166
with DIB-specified pattern 165
with hatch style 166
with specified structure 164

CArchive object 132
CArchiveException objects 140
carets

gray 909
new shape 906
solid 909

CBitmap objectp 149
CBrush object 163

Creating (continued)
CButton object

constructor 170
control 170

CClientDC objects 178
CComboBox constructor 196
CDumpContext object 357
CEdit object 367
CFile object 394, 400
CFileException object 417
CFrameWnd object 449-450
CGdiObject object 457
child windows, constructor 515

Index 1119

CListBox objects 475-476
CMDIChildWnd object, and attaching 515
CMDIFrameWnd object 520
CMemoryException objects 528
CMenu object, contstructor 541
CMetaFileDC object

constructor 557
device context 558

CObject objects 576
CObject pointer array 566
CObject pointer lists 585
combo boxes, and attaching 198
CPaintDC objects 663
CPalette object, initializing 668
CPen objects

constructor 671
initializing 672

CPoint object 676
CRect object 701
CResourceException object 712
CRgn object, constructor 720
CSize object 744
CStatic object

attaching 757
constructor 759

CStdioFile objects 767
CString objects 775
CString-to-CObject map 498
CTime object 799
CTimeSpan object 809
CWinApp object, and constructor 858
CWindowDC object 882
CWnd object called when 958
device contexts 236
dialog box

modeless 328,330
object 329
with Class Wizard 97

document 74
elliptical regions 716

1120 Index

Creating (continued)
fonts

constructor 428
initializing with given structure 433
initializing with specified characteristics 429

frame window 74
menus

empty 541
pop-up 541

pens, with specified structure 674
rectangles, NULL 705
regions

by combination 714
polygonal 717
rectangular 719-720
series of polygonal 718

scroll bars
constructor 729
initializing 727

view 74
windows 43

child window 904, 910
with extended style 907

CRect class
creating NULL rectangle 705
described 14,698
dimensions, setting 705
member functions

BottomRight 700
CopyRect 701
CRect 701
EqualRect 702
Height 702
InflateRect 702
IntersectRect 703
IsRectEmpty 703
IsRectNull 704
OffsetRect 704
PtInRect 705
SetRect 705
SetRectEmpty 705
Size 706
SubtractRect 706
TopLeft 706
UnionRect 707
Width 707

operators 707-711
CRect constructor 701
CRect object, creating 701
CResourceException class

described 12, 712
member functions

CResourceException 712
CResourceException constructor 712

CResourceException object, creating 712
CRgn class

described 10, 713
member functions

CombineRgn 714
CopyRgn 715
CreateEllipticRgn 716
CreateEllipticRgnIndirect 716
CreatePolygonRgn 717
CreatePolyPolygonRgn 718
CreateRectRgn 719
CreateRectRgnIndirect 719
CreateRoundRectRgn 720
CRgn 720
EqualRgn 720
FromHandle 721
GetRgnBox 721
OffsetRgn 722
PtInRegion 723
RectInRegion 723
SetRectRgn 724

CRgn constructor 720
CRgn object

checking
equivalent 720
if coordinates are within 723
if specified rectangle is within 723

copying region into 715
creating

by combination 714
constructor 720

handles 721
moving stored region 722
retrieving bounding rectangle coordinates 721

CRuntimeClass class
and archive objects 123
and CFrame Wnd class 446
and creating frame windows 74
described 11, 725, 1048, 1059
in CMDIChildWnd class 513
member functions

CreateObject 725
structure, and RUNTIME_CLASS macro 1089

CScrollBar class 106
described 8, 726
member functions

Create 727
CScrollBar 729
EnableScrollBar 729
GetScrollPos 729
GetScrollRange 730
SetIndicators 113
SetScrollPos 730

CScrollBar class (continued)
member functions (continued)

SetScrollRange 731
ShowScrollBar 731

CScrollBar constructor 729
CScrollBar object, creating

constructor 729
initializing 727

CScrollView class 83
and view scrolling 86
described 732, 842, 7
member functions

CScrollView 734
FillOutsideRect 734
GetDeviceScrollPosition 735
GetDeviceScrollSizes 735
GetScrollPosition 736
GetTotalSize 736
ResizeParentToFit 736
ScrollToPosition 737
SetScaleToFitSize 737
SetScrollSizes 738

CScrollView constructor 734
CSing1eDocTemplate class

described 6,21,33, 740
member functions

CSingleDocTemplate 741
CSingleDocTemplate constructor 741
CSize class

described 14, 743
member functions

CSize 744
operators 744-745

CSize constructor 744
CSize object, creating 744
CSplitterWnd class

described 9,88, 746
member functions

Create 748
CreateStatic 749
Create View 751
CSplitterWnd 751
GetColumnCount 752
GetColumnInfo 752
GetPane 752
GetRowCount 753
GetRowlnfo 753
IdFromRowCol 753
IsChildPane 754
RecalcLayout 754
SetColumnlnfo 754
SetRowlnfo 755

CSplitterWnd constructor 751

CStatic class 106
described 8, 756
member functions

Create 757
CStatic 759
GetIcon 759
SetIcon 759

CStatic constructor 759
CStatic object, creating

attaching 757
constructor 759

CStatusBar class 107
and CMainFrame 73
described 9, 760
indicator panes 113
member functions

CommandTolndex 761
Create 761
CStatusBar 762
GetltemID 762
GetItemRect 763
GetPanelnfo 763
GetPaneText 763
Setlndicators 764
SetPanelnfo 764
SetPaneText 765

separators 113
SetIndicators member function 760
SetPaneText member function 760

CStatusBar constructor 762
CStdioFile

buffering 766
carriage returns 766
exceptions 766
file modes 766
run-time stream file 766
similarity to open function 766
unimplemented functions 766

CStdioFile class
data members

m_pStream 769
described 11, 124, 766
member functions

CStdioFile 767
ReadString 768
Write String 769

CStdioFile constructor 767
CStdioFile objects

creating 767

Index 1121

reading text into buffer from associated file 768
writing data from buffer to associated file 769
writing data from buffer to associated file 769

1122 Index

CString class
argument passing conventions 792
assignment operator 786
casting operator 787
comparison operators 789
concatenation operator 788-789
described 14, 126, 770
diagnostic dumping and storing to archive 787
exception cleanup 791
formatting and parsing CString objects 1052
insert and extract operator «,» 787
member functions

AnsiToOem 773
Collate 773
Compare 774
CompareNoCase 774
CString 775-776
Empty 776
Find 776
FindOneOf 777
GetAt 777
GetBuffer 778
GetBufferSetLength 779
GetLength 780
IsEmpty 780
Left 780
LoadString 781
MakeLower 781
MakeReverse 782
MakeUpper 782
Mid 782
OemToAnsi 783
ReleaseBuffer 783
ReverseFind 784
Right 784
SetAt 785
SpanExcluding 785
SpanIncluding 786

operators 786-792
strings as function inputs 792
subscript operator [] 790

CString constructor 775
CString objects

converting
characters from ANSI to OEM character set 773
characters from OEM to ANSI character set 783
to lowercase 781
to uppercase 782

creating 775
destroying 776
extracting

first characters from and returning copy 780
largest substring excluding specified

characters 785-786

CString objects (continued)
extracting (continued)

last characters and returning copy 784
substring of specified length and returning copy 782

making empty string 776
overwriting specified charactert 785
reading Windows string resource into 781
reinitializing with new data 786
returning

count of characters in 780
pointer to internal character buffer and matching

length 779
reversing character order in 782
searching, for last substring match 784
terminating use of buffer 783
testing for empty condition 780

CStringArray class 13, 794
CStringList class 13, 796
CTime class

described 14, 126, 798
member functions

CTime 799
Format 801-802
FormatGmt 801-802
GetCurrentTime 801-802
GetDay 802
GetDayOfW eek 802
GetGmtTm 802
GetHour 802
GetLocalTm 803
GetMinute 804
GetMonth 804
GetSecond 804
GetTime 804
GetYear 805

operators 799,801-808
CTime constructor 799
CTime object

adding and subtracting CTimeSpan object 807
creating 799
getting

struct tm returning local time 804
struct tm, returning UCT 803
time_t value 805

returning current time 801-802
CTimeSpan class

described 14, 126,808
member functions

CTimeSpan 809
Format 810
GetDays 811
GetHours 811
GetMinutes 811
GetSeconds 812

CTimeSpan class (continued)
member functions (continued)

GetTotalHours 812
GetTotalMinutes 812
GetTotalSeconds 812

operators 809- 814
CTimeSpan constructor 809
CTimeSpan object, creating 809
CTimeSpan operators 813

comparing two relative time values, CTimeSpan
comparison operators 814

copying source object 813
creating CTimeSpan object 809
days, getting 811
diagnostic dumping and storing to archive 814
generating formatted string corresponding to

CTimeSpan 810
hours

in current days 811
getting total 812

minutes
in current hour 811
getting total 812

seconds
in current minute 812
getting total 812

years, getting 806
CToolBar class

and CMainFrame 73
bitmaps for buttons 112
described 9, 107,816
member functions

CommandToIndex 818
Create 818
CToolBar 819
GetButtonInfo 819
GetItemID 819
GetItemRect 820
LoadBitmap 820
SetButtonInfo 821
SetButtons 821
SetHeight 822
SetSizes 822

CToolBar constructor 819
CUIntArray 13 See also CObArray
Current position

carets
displaying 1036
getting 923

scroll bar
getting 935
setting 1029

Cursors
called

on press of mouse button 984

Index 1123

when moved within nonclient area 992
loading, predefined, Windows applications 864-865
specified, loading in Windows applications 863

CUserException class 12,826
Cut command, implementing 48
Cut member function

CComboBox class 200
CEdit class 370

Cutting, Windows Edit control selection 370
CVBControl class

data members
m_nError 841

described 9, 107-108, 827
member functions

AddItem 829
BeginNewVBHeap 829
CloseChannel 829
Create 830
CVBControl 831
GetChannel 831
GetEventIndex 832
GetEventName 832
GetFloatProperty 832
GetNumEvents 833
GetNumProperty 833
GetNumProps 834
GetPictureProperty 834
GetPropFlags 834
GetPropIndex 835
GetPropName 835
GetPropType 835
GetStrProperty 836
GetVBXClass 837
IsPropArray 837
Move 837
Open Channel 838
Refresh 838
RemoveItem 838
SetFloatProperty 839
SetNumProperty 839
SetPictureProperty 840
SetStrProperty 841

CVBControl constructor 831
CView class

accessing document 80
and App Wizard 79
and ClassWizard 79
and CPrintInfo structure 688
and frame windows 71
and print preview 91

1124 Index

CView class (continued)
and printing 85,91
and scaling 85
and scrolling 85
and user input 84
default command routing 57
drawing 83
described 6-7,21,71,78,842
displaying data 82
member functions

CView 844
DoPreparePrinting 845
GetDocument 845
IsSelected 846
OnActivate View 846
OnBeginPrinting 847
OnDraw 44, 45, 847
OnEndPrinting 848
OnEndPrintPreview 848
OnlnitialUpdate 38, 849
OnPrepareDC 44, 849
OnPreparePrinting 850
OnPrint 851
OnUpdate 853

relationship with document 78
CView constructor 844
CWinApp class

and App Wizard 29
data members

m_bHelpMode 879
m_hlnstance 879
m_hPrevlnstance 880
m_IpCmdLine 880
m_nCmdShow 880, 1042
m_pMain Wnd 880
m_pszAppName 881
m_pszExeName 881
m_pszHelpFilePath 881
m_pszProfileN arne 881

described 5,21, 29, 32, 854
member functions

AddDocTemplate 857
AddToRecentFileList 858
CWinApp 858
DoMessageBox 859
DoWaitCursor 859
DragAcceptFiles 32
EnableShellOpen 32, 860
Enable VBX 860
Exitlnstance 30, 860
GetPrinterDeviceDefaults 861
GetProfilelnt 861
GetProfileString 862
InitApplication 862

CWinApp class (continued)
member functions (continued)

InitInstance 863
LoadCursor 863, 997
Loadlcon 240,864,997
LoadOEMCursor 864
LoadOEMIcon 241, 865
LoadStandardCursor 865
LoadStandardIcon 241,866
LoadStdProfi1eSettings 33,866
LoadVBXFile 867
OnContextHelp 116, 868
OnDDECommand 868
OnFileNew 869
OnFileOpen 869
OnFilePrintSetup 869
OnHelp 115, 870
OnHelplndex 115 871
OnHelpUsing 871
Onldle 31,47,239,871
OpenDocumentFile 873
PreTranslateMessage 874
ProcessMessageFilter 874
ProcessWndProcException 12,875
RegisterShellFileTypes 32, 875
Run 31,51,56,876
SaveAllModified 876
SetDialogBkColor 877
UnloadVBXFile 877
WinHelp 115-117,877
WriteProfilelnt 878
WriteProfileString 878

retrieving a pointer to 1062
retrieving information about 1056

CWinApp constructor 858
CWinApp object, creating constructor 858
CWindowDC class

data members
CWindowDC 882
m_hWnd 883

described 10, 44, 882
member functions

CWindowDC 882
CWindowDC constructor 882
CWindowDC data member

CWindowDC class 883
CWindowDC object, creating 882
CWindowDCO, member of CWindowDC 882
CWnd class

applications
called when destroyed 1001
confirming choice to terminate 954
informing main window procedure that dialog box

entering idle state 971

CWnd class (continued)
applications (continued)

redrawing or preventing redrawing of changes 1031
buttons, boxes

calling owner when visual aspect of control or menu
changes 966

called when control created 980
called

for displaying Clipboard contents 953
for mouse capture 989
when device-mode settings changed 965
when sessions end 970

caption titles
copying into specified buffer 941
returning length 941

capture, called by CWnd 989
carets

displaying 1040
moving to position specified by point 1028

client areas
called after size changed 1004
invalidating 943
retrieving pointer to display context 926
updatings 1041
validating within rectangle 1041

Clipboard
opening 10 16
viewers, called with event in vertical scroll bar 1014

combo boxes, comparing items in 956
Control menu, called when Maximize or Minimize button

selected 1007
control, specifying input type 972
converting

client coordinates to screen coordinates 904
screen coordinates of point or rect to client

coordinates 1022
copying caption into specified buffer 941
cursor

called on press of mouse button 984
called when input is not captured 1002
called when moved 985, 993
retrieving CWnd 923

CWinApp message translator 1018
data members

m_hWnd 1043
described 7,4~884,931,933-937, 1001,1006
determining maximization 948
device contexts, releasing 1020
dialog boxes, searching for previous or next

control 931-932
enabling or disables mouse or keyboard input 919
fonts, setting 1030
handles, getting safe 935

CWnd class (continued)
HWND

and CWnd class 39
attaching 1043

input

Index 1125

causing all susbsequent to be sent to current CWnd
object 1027

enabling or disabling 919
specifying whether CWnd is enabled for 948

input focus
called after gaining 1003
called when ALT and another key pressed 1009
called with release of key pressed with AL T 10 I 0
claiming 1029
specifying character value of dead key 1008
specifying virtual-key code of Control menu key 1005

invalidating client area 943
keyboard

enabling or disabling input 919-920
key, returning active 954

list boxes
called with keyboard input 1012
retrieving current selection 915
returning application response 955

member functions
ArrangeIconic Windows 900
Attach 900
BeginPaint 664,900
BringWindowToTop 901
CalcWindowRect 901
ChangeClipboardChain 902
CheckDlgButton 902
CheckRadioButton 903
ChildWindowFromPoint 903
ClientToScreen 904
Create 39,42-43,904
CreateCaret 906
CreateEx 907
CreateGrayCaret 909
CreateSolidCaret 909
CWnd 910
Default 43,910
DefWindowProc 911
DeleteTempMap 911
DestroyWindow 43, 330, 911
Detach 44,912
DlgDirList 912
DlgDirListComboBox 914
DlgDirSelect 915
DlgDirSelectComboBox 916
DoDataExchange 916
DragAcceptFiles 918
DrawMenuBar 538,541,548,551,553,918

1126 Index

CWnd class (continued)
member functions (continued)

EnableScrollBar 918
EnableScrollBarCtrl 919
Enable Window 919
EndPaint 920
FindWindow 921
Flash Window 921
FromHandle 922
FromHandlePermanent 922
GetActive Window 923
GetCapture 923
GetCaretPos 923
GetCheckedRadioButton 924
GetClientRect 924
GetClipboardOwner 924
GetClipboardViewer 926
GetDC 238,925-926
GetDCEx 927
GetDescendantWindow 928
GetDesktop Window 928
GetDlgCtrlID 929
GetDlgItem 104, 928-929
GetDlgItemInt 929
GetDlgItemText 930
GetExStyle 931
GetFocus 931
GetFont 931
GetLastActivePopup 931
GetMenu 932
GetNextDlgGroupltem 932
GetNextDlgTabItem 933
GetNextWindow 933
GetOpenClipboardWindow 934
GetParent 934
GetParentFrame 935
GetSafeHwnd 935
GetScrollBarCtrl 935
GetScrollPos 936
GetScrollRange 936
GetStyle 936
GetSuperWndProcAddr 936
GetSystemMenu 936
GetTopWindow 937
GetUpdateRect 937
GetUpdateRgn 938
GetWindow 939
GetWindowDC 939
GetWindowRect 940
GetWindowText 941
GetWindowTextLength 941
HideCaret 942
HiliteMenuItem 942
Invalidate 943

CWnd class (continued)
member functions (continued)

InvalidateRect 381,943
InvalidateRgn 945
IsChild 946
IsDlgButtonChecked 946
IsIconic 946
IsWindowEnabled 948
IsWindowVisible 948
IsZoomed 948
KillTimer 949
MessageBox 950
MoveWindow 951
OnActivate 952
OnActivateApp 952
OnAskCbFormatName 953
OnCance1Mode 953
OnChangeCbChain 954
OnChar 954
OnCharToltem 955
OnChildActivate 954
OnChildNotify 954
OnClose 43, 954
OnCommand 955
OnCompacting 955
OnCompareItem 956
OnCreate 958
OnCtlColor 960
OnDeadChar 961
OnDeleteltem 962
OnDestroy 964
OnDestroyClipboard 965
OnDevModeChange 965
OnDrawClipboard 965
OnDrawItem 966
OnDropFiles 969
OnEnable 970
OnEndSession 970
OnEnterIdle 971
OnEraseBkgnd 971
OnFontChange 972
OnGetDlgCode 972
OnGetMinMaxInfo 973
OnHScroll 975
OnHScrollClipboard 976
OnIconEraseBkgnd 977
OnInitMenu 977
OnInitMenuPopup 977
OnKeyDown 978
OnKeyUp 979
OnKillFocus 980
OnLButtonDblClk 980
OnLButtonDown 977
OnLButtonUp 977

CWnd class (continued)
member functions (continued)

OnMButtonDblClk 978
OnMButtonDown 979
OnMButtonUp 979
OnMDIActivate 980
OnMeasureltem 980
OnMenuChar 982
OnMenuSelect 983
OnMouseActivate 984
OnMouseMove 985
OnMove 985
OnNcActivate 986
OnNcCalcSize 986
OnNcCreate 987
OnNcDestroy 43 989, 1017
OnNcHitTest 989
OnNcLButtonDblClk 990
OnNcLButtonDown 991
OnNcLButtonUp 991
OnNcMButtonDblClk 992
OnNcMButtonDown 992
OnNcMButtonUp 992
OnNcMouseMove 993
OnNcPaint 993
OnNcRButtonDblClk 994
OnNcRButtonDown 994
OnNcRButtonUp 994
OnPaint 995
OnPaintClipboard 995
OnPaletteChanged 995
OnPaletteIsChanging 996
OnParentNotify 996
OnQueryDragIcon 997
OnQueryEndSession 997
OnQueryNewPalette 999
OnQueryOpen 999
OnRButtonDblClk 999
OnRB uttonDown 1000
OnRButtonUp 1001
OnRenderAllFormats 1001
OnRenderFormat 1002
OnSetCursor 1002
OnSetFocus 1003
OnShowWindow 1003
OnSize 1004
OnSizeClipboard 1004
OnSpoolerStatus 1005
OnSysChar 1005
OnSysColorChange 1006
OnSysCommand 1007
OnSysDeadChar 1008
OnSysKeyDown 1009
OnSysKeyUp 1010

CWnd class (continued)
member functions (continued)

OnTimeChange 10 11
OnTimer 1012
OnVKeyToltem 1012
On VScroll 10 13
OnVScrollClipboard 1014
OnWindowPosChanged 1014
On WindowPosChanging 1015
OnWinlniChange 1016
OpenClipboard 1016
PostMessage 1016
PostNcDestroy 43, 1017
PreCreate Window 1017
PreTranslateMessage 1018
RedrawWindow 1018

Index 1127

ReleaseDC 239, 1020
RepositionBars 1020
ScreenToClient 1022
ScrollWindow 1022
ScrollWindowEx 1023
SendDlgItemMessage 1026
SendMessage 64, 1024
SendMessageToDescendants 1027
SetActive Window 1027
SetCapture 1027
SetCaretPos 1028
SetClipboardViewer 1028
SetDIgltemlnt 1029
SetDIgltemText 1029
SetFocus 1029
SetFont 1030
SetMenu 1030
SetParent 1031
SetRedraw 1031
SetScrollPos 1031
SetScrollRange 1033
SetTimer 1035
SetWindowPlacement 1035
SetWindowPos 1037
SetWindowText 377, 760, 1036
ShowCaret 1036
ShowOwnedPopups 1041
ShowScrollBar 1041
ShowWindow 881,1042
SubclassDIgltem 1043
SubclassWindow 1043
UpdateData 1044
UpdateDialogControls 1045
UpdateWindow 1041
ValidateRect 1041
ValidateRgn 1042
WindowFromPoint 1042
WindowProc 1043

1128 Index

CWnd class (continued)
menu

item, called when control created 980
mnemonic character, called when user presses 982
setting current to specified 1030

message handling upon selection of item 955
messages, sending to specified control 1026
mouse

capture, retrieving 923
enabling or disabling input 919
input, causing all subsequent to be sent to current

object 1027
mouse button, left

called when double-clicked 976, 989
called when pressed 977, 990
called when released 977, 990

mouse button, middle
called when double-clicked 978, 993
called when pressed 979,993
called when released 979,993

mouse button, right
called when double-clicked 993,998
called when pressed 993,999
called when released 993, 1000

mouse cursor
called when input isn't captured 1002
called when moved 985

nonclient area
calculating size 986
called when destroyed 986
called when needing painting 993

nonsystem key
input, called on 978
release, called on 979

overlapping, creating 907
painting

called when repainting 995
marking end 920
preparing for 900

palettes, called after changed 995
pop-up

changing size, position, ordering 1037
creating with extended style 907
determining most recently active 931

Print Manager, called when job added or deleting from
queue 1005

procedure, providing 1043
removing windows from Clipboard-viewer chain 954
retrieving, pointer 931
returning specified class 921
scroll bars

hiding 1041
setting range of position values 1033
vertical, called when clicked 1013

CWnd class (continued)
scroll boxes, setting to specified position 1031
scrolling 1022
searching 933

for next dialog group 931-932
for next window 932-933
name-specified 921
window-manager's list 939

setting
caption title to specified text 1036
control text owned by CWnd 1029
control text to specified integer value 1029

style, returning 936
system time, called after change 1011
validating client area 1042
visibility, determining 948
window-manager's list, searching for windows 939
windows

containing given point, identifying 1042
making active 1027
pop-up, showing or hiding 1041
specifying memory compaction time 955

Windows initialization file, called after change made 1016
Windows windows

attaching to CWnd object 900
returning maximized position or dimensions, or

tracking size range 973
windows, child

called on activation or deactivation 980
changing parent 1031
constructor 910
creating and attaching to object 904
creating with extended style 907

WS_TABSTOP style control, retrieving pointer 933
CWnd constructor 910
CWnd objects

button control, determining if check-marked 946
called

after CWnd moved 985
when activating or deactivating 952
when about to be shown or hidden 1003
when application creates 958
when background needs erasing 971
when enabled state is changed 970

changing position and dimensions 951
copying dimensions of bounding rectangle 940
creating, called prior to WM_ CREATE rectangle 940
deleting temporary 911
destroying, called to inform 964
detaching Windows handle 912
displaying CWnd 1042
enabling for mouse and keyboard input 948
iconized, called when user requests open window 999
ID, returning 929

CWnd objects (continued)
input focus, called before losing 980
menu items, called when user selects 983
messages, placing in queue 1016
minimized, called when background must be filled

before painting 977
minimizing 946
providing Windows procedure for 1043
returning pointer to when given handle to window 922
scrolling 1022
with focus, displaying dialog or message boxes 953

CWordArray class 13, 1044

D
Data

archive
determining if loading 135
determining if storing 135

displaying in a view 82
Data map 103
Data members

CArchiveException class 141
CClientDC class 179
CColorDialog class 191
CControlBar class 216
CDC class 324
CEditView class 391
CFile class 406
CFileDialog class 415
CFileException class 419
CFindReplaceDialog class 427
CFontDialog class 441
CFrameWnd class 455
CGdiObject class 461
CMenu class 558
COleException class 632
CPaintDC class 664
CPrintDialog class 687
CPrintInfo class 691
CStdioFile class 769
CVBControl class 842
CWinApp class 879
CWindowDC class 883
CWnd class 1043

Data types 1047
Data validation, dialog box 103
Data, application

and CDocument 79
and documents 79
and serializing 80

Days
hours in current, getting 811
of month 803

Days (continued)
of week 803
span, getting 811

DDE requests, and File Manager 77
DDX (dialog data exchange) 100-101
Dead keys

defined 960
returning character value 961
specifying character value 1008

DEBUG_NEW macro 1080
Debugging

and AfxSetAllocHook function 1072
and afxTraceEnabled 1075
and afxTraceFlags 1075
ASSERT macro 1077
ASSERT_VALID macro 1078
CDumpContext class 356
DEBUG_NEW macro 1080
diagnostics 1066
dumping objects 1060, 1061
TRACE macro 1091
TRACEO macro 1091
TRACEI macro 1092
TRACE2 macro 1092
TRACE3 macro 1093
VERIFY macro 1093

Index 1129

DECLARE_DYNAMIC macro 122,1081
DECLARE_DYNCREATE macro 122,1081

and CFrameWnd class 446
and CMDIChildWnd class 513

DECLARE_MESSAGE_MAP macro 1082
DECLARE_SERIAL macro 122,1083
Default member function

and destroying frame windows 74
CWnd class 43, 910

DefaultFont member function
CBEdit class 145

DefWindowProc member function
CWnd class 911

delayFreeMemDF 1066
Delete member function

COleClientItem class 613
delete operator

CObject class 580
delete operator, C++

and window classes 43
DeleteContents member function

and document clean-up 90
CDocument class 347

DeleteDC member function
CDC class 238

DeleteItem member function
CComboBox class 200
CListBox class 477

1130 Index

DELETElTEMSTRUCT structure 961
DeleteMenu member function

CMenu class 541
DeleteObject member function 336

CGdiObject class 458
CDialog::onSetFont 336

DeleteString member function 961
CComboBox class 200

CWind::OnDeleteItem 961
CListBox class 479

CWnd::OnDeleteItem 962
DeleteTempMap member function

CDC class 239
CGdiObject class 459
CMenu class 541
CWnd class 911

Deleting
CGdiObject object 458-459
combo box edit control selection 196, 200
device contexts attahed to CDC object 238
edit control selection 367, 370
files, specified by path 401
items from list or combo boxes, called when 962
menu items 542
strings

from list boxes 479
list box in combo box 200

temporary CWnd objects 911
Windows DC attached to CDC object 238

Desktop window
described 73
returning 928

Destroying
CArchive object 133
CObject object 576
CObject pointer array 566
CString object 776
CWnd object, called to inform 964
frame window 74
list or combo box, called to inform owner 962
MDl child windows 517
menus 544
window objects 43
Windows windows, attached to CWnd 911

DestroyMenu member function 1030
CMenu class 542

CWnd::SetMenu 1028
DestroyWindow member function 74,326

and CMDlChildWnd class 513
and CWnd class 884

CDialog::Create 330
CDialog: :Createlndirect 330

and destroying frame windows 74
CWnd class 43, 329-330, 884, 911

Destructors
~CArchive 133
~CMemFile 527
~CObArray 566
~CObject 576
~CString 776

Detach member function
CDC class 239
CGdiObject class 459
CMenu class 534, 542
CWnd class 44,912

Detaching, Windows
GDlobject 459
menu from CMenu object 544

Determining equality between two rectangles 702
Device context classes, listed 9
Device contexts

and view drawing 83
bit pattern, creating 286
brushes, enumerating available 245
brushes, retrieving origin of current 256
CDC class 220
client area, retrieving pointer to 926
clipping region, specifying whether point is within 290
copying bitmap to current 232
creating, CDC object 235-236
described 44
informing of new print job 319
metafile, closing and creating handle to play 557
palettes, selecting logical, CDC::SelectPalette 300
pens, brushes, enumerating available 245
releasing 1020
retrieving x- and y-coordinates

of associated window 279
viewport origin 279
windows orgin 279

saving current state 295
selecting object into 299
setting

window origing 318
viewport origins 316

text-alignment flags, retrieving status 274
viewports

retrieving x- and y-extentst 278
setting x- and y-extents 316

Windows, restoring to previous state 294
Device contexts, checking BitBlt support 232
Devices

applications, allowing access to 247
contexts, creating 236
creating

information context for 237
memory device context 235

Diagnostic
classes, listed 11
dumping 808
time spans, dumping and storing to archive 814

Diagnostic services
assertions 127
defined 1049
global functions and variables 1050
macros 1050
memory diagnostics 127
object diagnostic functions 1051
output 127

Diagnostics
CDumpContext class 356
dump context 121
memory tracking 1062
support provided by CObject class 121

Dialog bar
as modeless dialog box 114
compared with toolbar 113
deriving classes 114
described 95, 111, 113

Dialog box, common file
CFileDialog class 407

Dialog box, Insert Object 1068
Dialog box, Links 1069
Dialog-box objects, creating 329
Dialog boxes

access to controls 103
and App Studio 95
and class CDialog 95
and ClassWizard 95
called to inform main window when entering

idle state 971
characteristics, specified by template 96
closing 101
components 96
controls

creating by hand 109
creating with App Studio 109
corresponding classes 106
returning pointer to specified 929

converting units of rectangle to screen units 334
Create member function 99
creating and displaying 99
CWnd, called to cancel other modes 953
data

map 103
validation 103

default command routing 57
described 41,95
exchanging data with dialog object 100
focus control 332, 334, 336
fonts, for drawing text 336

Dialog boxes (continued)
handling Windows messages 100
initializing 100
life cycle 98
message-checking 333
modal

and modeless 96
creating 99
destroying 10 1
terminating 331
vs. modeless 98

modeless
creating 99,328,330
destroying 10 1

procedure for creating 97

Index 1131

push button control, getting ID 332
retrieving associated caption or text 930
searching for previous or next control 931
setting background color 99
standard procedure 335
testing 97
translating text of specified control into integer value 929

Dialog classes, listed 7
Dialog data exchange (DDX) 100-104

and validation, CDialog class 325
data map 103
Technical note 103

Dialog data validation
Technical note 103

Dialog object, exchanging data with dialog box 100
Dialog-bar buttons, updating 67, 183
Dialog-template resource, component of dialog box 96
DialogBoxResource structure

in CDialog class 325
Difference member function

CMemoryState class 531
Dir member function

CComboBox class 201
CListBox class 477

Directories
adding to list boxes 479
putting in combo boxes 914
putting in list boxes 912

directoryFull member function
CFileException class 419

diskFull member function
CFileException class 419

Display contexts, retrieving for entire window 939
Display devices, returning information about 259
DlgDirList member function

CWnd class 912
DlgDirListComboBox member function

CWnd class 914

1132 Index

DlgDirSelect member function
CWnd class 915

DlgDirSelectComboBox member function
CWnd class 916

Document frame windows 21
Document templates

and CMDIChildWnd class 513
creating 34
described 21,33,341,344
for MDI applications 559
for SDI applications 740
relationship to other classes 35

Documents
and application data 79
and CDocTemplate class 74
and CRuntimeClass 74
clean-up 89
closing 351
creating 34, 36, 351
default command routing 57
deleting contents 348
described 21,71,344
document templates and 341,559, 740
for OLE clients 600
for OLE servers 640
initializing 89
multiple 86
notifying views of changes 356, 853
OLE base class 626
opening 352
print preview of 91
printing 91
relationship

to other classes 35
with views 77-78,344

saving 353
serializing 344
strings describing type information 342

DoDataExchange member function
CDialog class 102
CWnd class 916

DoMessageBox member function
CWinApp class 859

DoModal member function 325
CColorDialog class 189
CDialog class 100, 103, 109,331
CFileDialog class 410
CFontDialog class 438
CPrintDialog class 682

DoPreparePrinting member function
CView class 845

Do Verb member function
COleClientltem class 614

Do WaitCursor member function
CWinApp class 859

DPtoLP member function
CDC class 239

Drag and drop
and CFrameWnd class 446
support proved by CWinApp class 32

DragAcceptFiles member function
CWnd class 32,918

Dragging, minimized CWnd 997
Draw member function

COleClientltem class 614
DrawFocusRect member function

CDC class 240
DrawIcon member function

CDC class 240
Drawing

borders around rectangles 253
CDC class 220
chords 234
dimmed text 279
ellipses 243
elliptical arcs 230
formatted text in rectangle 241
icons on CDC device 240
in a view 83
line segments 289
lines 283
pie-shaped wedges 287
polygons 289-290
preventing in invalid window area 249
rectangles 292

style indicating focus 240
with rounded comers 294

retrieving, current mode 272
setting mode 310
text, setting font in dialog boxes 336
using CView class 847

Drawing classes See GDI classes
Drawing object classes, listed 10
Drawltem member function

CButton class 172
CComboBox class 201
CListBox class 478
CMenu class 542

DRA WITEMSTRUCT structure 966
DrawMenuBar member function

CWnd class 918
CMenu::AppendMenu 538
CMenu::DeleteMenu 541
CMenu::lnsertMenu 548
CMenu::ModifyMenu 552
CMenu::RemoveMenu 553

DrawText member function
CDC class 241

Drives, adding to list boxes 479
Dump member function

CObject class 577
CDumpContext::operator« 360

DumpAllObjectsSince member function
CMemoryState class 532

Dumping
array of hexadecimal-formatted bytes 358
determining if deep or shallow 358
flushing data to file attached to dump context 357
objects to CObject objects 578
setting depth 358

Dumping, diagnostics
CDumpContext class 356

DumpStatistics member function
CMemoryState class 532

Duplicate member function
CFile class 396

Duplicating, CFile object 396
dwStyleDefault data member

CEditView class 391
Dynamic object creation

and DECLARE_DYNCREA TE macro 1081
IMPLEMENT _DYNCREATE macro 1084

Dynamic splitter window
CSplitterWnd class 746

Dynamic subclassing 111

E
E operator, operator

CTime class 807
Edit control

CEdit class 363
CEditView class 383
characters, selecting range 380
combo boxes, getting position of current selection 204
current selection

getting starting, ending character positions 374
replacing with text 377

determining if contents modified 373
getting formatting rectangle 373
line, retrieveing length 376
maximum text length, specifying 374
modification flag setting, clearing 378
notification messages 363
operations, undoing 366
password character, setting, removing 378
pasting data toe 377
undoing last operation 382

Edit menu, commands listed 55

ElementAt member function
CObArray class 566

Ellipse member function
CDC class 243

Ellipses
arcs, drawing 230
creating region 716
drawing 243

Elliptical arcs, drawing 230
Embedded items, OLE

AfxOleInsertDialog function 1068
editing 637,645
inserting 610,612,636, 1068

Empty member function
CString class 776

EmptyUndoBuffer member function
CEdit class 370

Enable member function
CCmdUI class 69, 184

EnableMenuItem member function
CMenu class 543

EnableScrollBar member function
CScrollBar class 729
CWnd class 918

EnableScrollBarCtrl member function
CWnd class 919

EnableShellOpen member function
CWinApp class 32, 860

Enable VBX member function
CWinApp class 860

Enable Window member function
CWnd class 919

Enabling menu items 545
END_CATCH macro 1083
END_MESSAGE_MAP macro 60, 1084
EndDialog member function

CDialog class 101, 105,326,331
EndDoc member function

CDC class 244
Ending, session, when called 997
endOfFile member function

CArchiveException class
CArchiveException: :m_cause 141

CFileException class
CFileException: :m_cause 419

EndPage member function
CDC class 244

EndPaint member function
CWnd class 44,920

EndWaitCursor member function
CCmdTarget class 181

EnumFormats member function
COleClientltem class 615

Index 1133

1134 Index

EnumObjects member function
CDC class 245

Equality operator
CPoint class 677
CRect class 708
CSize class 744

EqualRect member function
CRect class 702

EqualRgn member function
CRgn class 720

ErrnoToException data member
CFileException class 417

ErrnoToException member function
CFileException class 417

Errors, converting
converting, run-time library values to CFileException

values 417
operating system 420

ESC key, and AfxMessageBox 1066
Escape member function

CDC class 247
Exception classes, listed 12
Exception handling 128
Exception processing 1051

exception throwing functions 1052
macros 1052
termination functions 1052

exception_objeccpointecname variable
and CATCH macro 1079
AND_CATCH macro 1076

Exceptions 392
AfxThrowArchiveException function 1073
AfxThrowFileException function 1073
AfxThrowMemoryException 1074
AfxThrow NotSupportedException 1074
AfxThrowOleException 1074
AfxThrowResourceException 1074
AfxThrowUserException 1075
AND_CATCH macro 1076
CArchiveException class 140
CATCH macro 1079
CFileException object, creating 417
CFileException class 416
CMemoryException class 528
CNotSupportedException class 562
COleException class 630
CResourceException class 712
CStdioFile class 766
CU serException class 826
END_CATCH 1083
possible causes 128
processing 1051
termination functions 1052
THROW macro 1090

Exceptions (continued)
THROW_LAST macro 1090
throwing 418, 1052
TRY macro 1093

ExcludeClipRect member function
CDC class 248

ExcludeUpdateRgn member function
CDC class 249

Exitlnstance member function
CWinApp class 860

Exitlnstance member function, CWinApp class
called by WinMain 29
described 30

ExtFloodFil member function
CDC class

CDC::ExtFloodFill 249
ExtFloodFill member function

CDC class 249
CDC: :ExtFloodFill 249

Extraction operator
CArchive class 139
CString class 787
CTime class 807
CTimeSpan class 814

ExtTextOut member function
CDC class 250

F
Fl help 116
File classes

CStdioFile 766
described 124
listed 11

File dialog box, common
CFileDialog class 407

File exceptions
CFileException class 416

File handling
CFile class 393

File Manager
and CFrameWnd class 446
and DDE requests 77
and frame window 77
drag-and-drop support, provided by CWinApp class 32

File menu commands, listed 55
File New command 74

and document initialization 90
and MDI applications 86
creating frame windows 73

File Open command
and document initialization 90
and serializing 81
creating frame windows 73

File Open dialog
CFileDialog class 407

File pointers
current position, obtaining 397
repositioning 403
setting value

to beginning of file 403
to logical end of file 404

File Save
and serializing 80
handled by document 82

File Save As
and serializing 80
handled by document 82

File Save As dialog
CFileDialog class 407

Filenames, adding to list box of combo box 210
fileNotFound member function

CFileException class
CFileException: :m_cause 419

Files
beginning, setting file pointers to 403
buffers, flushing 397
closing, associated with CFile object 396
creating, constructor 394
CStdioFile class 766
deleting, specified by path 401
directories, putting in

list boxes 912
combo boxes 914

duplicating CFile object 396
end, setting file pointers to 404
length

changing 404
obtaining in bytes 397

locking, range of bytes 399
memory

closing 527
opening 527

opening, for CFile objects 400
operating system handlee 406
pointers

getting current position 397
repositioning 403
setting value to beginning of file 403
setting value to logical end of file 404

reading data into buffers 401
renaming 402
status

CFile object 398
setting 404

unlocking range of bytes 405
writing, associated with CFile object 406

FillOutsideRect member function
CScrollView class 734

FillRect member function
CDC class 251

FillRgn member function
CDC class 252

Find member function
CObList class 586
CString class 776

FindIndex member function
CObList class 587

Finding strings, in list boxes 481
FindNext member function

CFindReplaceDialog class 424
FindOneOf member function

CString class 777
FindString member function

CComboBox class 202
CListBox class 479

FindStringExact member function
CComboBox class 202
CListBox class 479

FindText member function
CEditView class 385

FindWindow member function
CWnd class 921

Flags
edit control undo, resetting 370
text-alignment

retrieving 273
specifying 312

Flashing
carets 1040
window once 921

Flash Window member function
CWnd class 921

FloodFill member function
CDC class 252

Flush member function
CArchive class 134

CFile::Flush 397
CDumpContext class 357
CFile class 398

Flushing
buffers to dump context 357
file buffers 397

FmtLines member function
CEdit class 370

Focus control, dialog boxes
moving to specified control 332
next 334
previous 336

Index 1135

1136 Index

Fonts
aspect-ratio filter 254
called upon change 972
CDC class 220
CFont class 428
CFontDialog class 435
copying typeface name into buffer 277
creating, constructor 428
current, retrieving 931
dialog boxes 336
initializing

LOGFONT -specified characteristics 433
specified characteristics 429

mapper, altering, CDC::SetMapperFlags 308
predefined, retrieving handle to 457
retrieving

character widths 257
retrieving metrics for current 277

returning pointer to CFont object 434
setting CWnd 1030

Format member function
CTime class 801-802
CTimeSpan class 810

FormatGmt member function
CTime class 801-802

Formats, Clipboard, called for delayed rendering 1002
Formatting rectangle, edit control

setting 379
getting 373

Foundation Class Library See Microsoft Foundation Class
Library

Frame windows
and active view 76
and CDocTemplate class 74
and child message routing 76
and control bars 75
and CRuntimeClass 74
and current view 76
and dynamic construction 74
and File Manager 77
and FWS_ADDTOTITLE style 77
and managing child windows 75
and MDICLIENT window 75
and RUNTIME_CLASS 74
and WS_HSCROLL and WS_ VSCROLL styles 77
closing, while document is open 347
creating 74,520

attaching 450
constructor 449
illustrated 36

default command routing 57
described 21, 71
destroying 74

Frame windows (continued)
document

creating 74
described 73
templates and 341,559, 740

loading accelerator table 452
main 73
relationship to other classes 35
replacing menu of MDI 524
styles 77

FrameRect member function
CDC class 253

FrameRgn member function
CDC class 253

FreeExtra member function
CObArray class 567

FromHandle data member
CFont class 434

FromHandle member function
CBitmap class 154
CBrush class 167
CDC class 254
CFont class 434
CGdiObject class 459
CMenu class 546
CPalette class 668
CPen class 675
CRgn class 721
CWnd class 922

FromHandlePermanent member function
CWnd class 922

Full servers 660
FWS_ADDTOTITLE, and frame window 77

G
GDI (graphic device interface)

classes 10
listed 45
using 46

device contexts, specifying origin for next brush
assignment 308

objects, attaching 457
raster-operation codes (list) 232

General-purpose classes, listed 11
generic member function

CArchiveException class
CArchiveException: :m_cause 141

CFileException class
CFileException::m_cause 419
CFileException: :OsErrorToException 418
CFileException: :ThrowOsError 418

GetActiveDocument member function
CFrameWnd class 451

GetActive View member function
CFrame Wnd class 451

GetActive Window member function
CW nd class 923

GetAspectRatioFilter member function
CDC class 254

GetAt member function
CObArray class 567
CObList class 588
CString class 777

GetBitmapBits member function
CBitmap class 154

CGdiObject::GetObject 460
GetBitmapDimension member function

CBitmap class 154
GetBkColor member function

CDC class 255
GetBkMode member function

CDC class 255
GetBounds member function

COleClientltem class 615
GetBoundsRect member function

CDC class 255
GetBoxLayout member function

CBEdit class 145
GetBrushOrg member function

CDC class 256
GetBuffer member function

CString class 778
GetBufferSetLength member function

CString class 779
GetButtonInfo member function

CToolBar class 819
GetButtonStyle member function

CButton class 172
GetCapture member function

CWnd class 923
GetCaretIndex member function

CListBox class 480
GetCaretPos member function

CWnd class 923
GetChannel member function

CVBControl class 831
GetCharABCWidths member function

CDC class 256
GetCharWidth member function

CDC class 257
GetCheck member function

CButton class 172
GetCheckedRadioButton member function

CWnd class 924
GetClientRect member function

CWnd class 924

GetClipboardOwner member function
CWnd class 924

GetClipboardViewer member function
CWnd class 925

GetClipBox member function
CDC class 258

GetColor member function
CColorDialog class 188
CFontDialog class 438

GetColumnCount member function
CSplitterWnd class 752

GetColumnlnfo member function
CSplitterWnd class 752

GetCopies member function
CPrintDialog class 682

GetCount member function
CComboBox class 203
CControlBar class 216
CListBox class 480
CMapStringToOb class 498
CObList class 588

GetCurrentFont member function
CFontDialog class 438

GetCurrentPosition member function
CDC class 259

GetCurrentTime member function
CTime class 801

GetCurSel member function
CComboBox class 203
CListBox class 481

GetData member function
and view drawing 84
COleClientItem class 616

GetDay member function
CTime class 802

GetDayOfW eek member function
CTime class 802

GetDays member function
CTimeSpan class 811

GetDC member function 44
CWnd class 925

CDC::DeleteDC 238
GetDCEx member function

CWnd class 926
GetDefaults member function

CPrintDialog class 683
GetDeflD member function

CDialog class 332
GetDepth member function

CDumpContext class 358
GetDescendantWindow member function

CWnd class 927
GetDesktop Window member function

CWnd class 928

Index 1137

1138 Index

GetDeviceCaps member function
CDC class 259

GetDeviceName member function
CPrintDialog class 683

GetDeviceScrollPosition member function
CScrollView class 735

GetDeviceScrollSizes member function
CScrollView class 735

GetDevMode member function
CPrintDialog class 683

GetDIgCtrllD member function
CWnd class 928

GetDIgltem member function
CWnd class 104,928

GetDIgltemlnt member function
CWnd class 928

GetDIgltemText member function
CWnd class 929

GetDocString member function
CDocTemplate class 342

GetDocTemplate member function
CDocument class 348

GetDocument member function
CDocItem class 340
COleClientltem class 616
COleServerItem class 651
CView class 845

GetDriverNarne member function
CPrintDialog class 684

GetDroppedControlRect member function
CComboBox class 204

GetDroppedState member function
CComboBox class 204

GetEditCtrl member function
CEditView class 385

GetEditSel member function
CComboBox class 204

GetEventIndex member function
CVBControl class 832

GetEventName member function
CVBControl class 832

GetExStyle member function
CWnd class 930

GetExtendedUI member function
CComboBox class 205

GetFaceName member function
CFontDialog class 439

GetFile member function
and bypassing serializing 82
CAre hive class 134

GetFileExt member function
CFileDialog class 411

GetFileN arne member function
CFileDialog class 411

GetFileTitle member function
CFileDialog class 411

GetFindString member function
CFindReplaceDialog class 425

GetFirstViewPosition member function
CDocument class 348

GetFirstVisibleLine member function
CEdit class 371

GetFloatProperty member function
CVBControl class 832

GetFocus member function
CWnd class 930

GetFont member function
CWnd class 930

GetFontData member function
CDC class 264

GetFromPage member function
CPrintDialog class 685
CPrintlnfo class 689

GetGlyphOutline member function
CDC class 265

GetGmtTm member function
CTime class 802

GetHandle member function
CEdit class 371

GetHead member function
CObList class 589

GetHeadPosition member function
CObList class 590

GetHorizontalExtent member function
CListBox class 481

GetHour member function
CTime class 803

GetHours member function
CTimeSpan class 811

GetIcon member function
CStatic class 759

GetInflate member function
CHEdit class 465

GetlnkHandle member function
CHEdit class 467

GetItemData member function
CComboBox class 205
CListBox class 481

GetItemDataPtr member function
CComboBox class 206
CListBox class 482

GetItemHeight member function
CComboBox class 206
CListBox class 482

GetltemID member function
CStatusBar class 762
CToolBar class 819

GetltemName member function
COleServerItem class 652

GetltemRect member function
CListBox class 482
CStatusBar class 763
CToolBar class 820

GetKemingPairs member function
CDC class 266

GetLastActivePopup member function
CWnd class 930

GetLastStatus member function
COleClientltem class 617

GetLBText member function
CComboBox class 207

GetLBTextLen member function
CComboBox class 207

GetLength member function
CFile class 397
CString class 780

GetLine member function
CEdit class 372

GetLineCount member function
CEdit class 372

GetLinkUpdateOptions member function
COleClientltem class 617

GetLocalTm member function
CTime class 803

GetMapMode member function
CDC class 267

GetMaxPage member function
CPrintlnfo class 689

GetMDIFrame member function
CMDIChildWnd class 516

GetMenu member function
CWnd class 931

GetMenultemCount member function
CMenu class 544

GetMenultemID member function
CMenu class 544

GetMenuState member function
CMenu class 545

GetMenuString member function
CMenu class 546

GetMinPage member function
CPrintlnfo class 690

GetMinute member function
CTime class 804

GetMinutes member function
CTimeSpan class 811

GetModify member function
CEdit class 373

GetMonth member function
CTime class 804

GetName member function
COleClientltem class 617

GetNearestColor member function
CDC class 267

GetNearestPalettelndex member function
CPalette class 669

GetNext member function
CObList class 590

GetNextAssoc member function
CMapStringToOb class 499

GetNextDlgGroupltem member function
CWnd class 931

GetNextDlgTabltem member function
CWnd class 932

GetNextltem member function
COleDocument class 627

GetNextView member function
CDocument class 348

GetNextWindow member function
CWnd class 933

GetNotifier member function
CFindReplaceDialog class 425

GetNumEvents member function
CVBControl class 833

GetNumProperty member function
CVBControl class 833

GetNumProps member function
CVBControl class 834

GetObject member function

Index 1139

CGdiObject class 460
GetOpenClipboardWindow member function

CWnd class 933
GetOutlineTextMetrics member function

CDC class 267
GetOutputCharWidth member function

CDC class 268
GetOutputTabbedTextExtent member function

CDC class 269
GetOutputTextExtent member function

CDC class 270
GetOutputTextMetrics member function

CDC class 270
GetPaletteEntries member function

CPalette class 669
CGdiObject::GetObject 460

GetPane member function
CSplitterWnd class 752

GetPaneInfo member function
CStatusBar class 763

GetPaneText member function
CStatusBar class 764

GetParent member function
CWnd class 933

1140 Index

GetParentFrame member function
CWnd class 934

GetPasswordChar member function
CEdit class 373

GetPathName member function
CDocument class 349
CFileDialog class 412

GetPictureProperty member function
CVBControl class 834

GetPixel member function
CDC class 270

GetPolyFillMode member function
CDC class 271

GetPortName member function
CPrintDialog class 685

GetPosition member function
CFile class 397

GetPrev member function
CObList class 591

GetPrimarySelectedltem member function
COleClientDoc class 601

GetPrinterDC member function
CPrintDialog class 685

GetPrinterDeviceDefaults member function
CWinApp class 861

GetPrinterFont member function
CEditView class 386

GetProfileInt member function
CWinApp class 861

GetProfileString member function
CWinApp class 862

GetPropFlags member function
CVBControl class 834

GetPropIndex member function
CVBControl class 835

GetPropName member function
CVBControl class 835

GetPropType member function
CVBControl class 835

GetRC member function
CHEdit class 467

GetReadOnlyPref member function
CFileDialog class 412

GetRect member function
CEdit class 373

GetReplaceString member function
CFindReplaceDialog class 425

GetRgnBox member function
CRgn class 721

GetROP2 member function
CDC class 271

GetRowCount member function
CSplitterWnd class 753

GetRowInfo member function
CSplitterWnd class 753

GetRuntimeClass member function
CObject class 577

GetSafeHandle member function
CGdiObject class 461

GetSafeHdc member function
CDC class 273

GetSafeHmenu member function
CMenu class 545

GetSafeHwnd member function
CWnd class 934

GetScrollBarCtrl member function
CWnd class 934

GetScrollPos member function
CScrollBar class 729
CWnd class 935

GetScrollPosition member function
CScrollView class 736

GetScrollRange member function
CScrollBar class 730
CWnd class 935

GetSecond member function
CTime class 804

GetSeconds member function
CTimeSpan class 812

GetSel member function
CEdit class 374
CListBox class 483

GetSelCount member function
CListBox class 483

GetSelectedText member function
CEditView class 386

GetSelItems member function
CListBox class 483

GetServerName member function
COleServer class 635

GetSize member function
CFontDialog class 439
CObArray class 567
COleClientItem class 618

GetStartPosition member function
CMapStringToOb class 500
COleDocument class 628

GetState member function
CButton class 173

GetStatus member function
CFile class 398

GetStretchBltMode member function
CDC class 272

GetStrProperty member function
CVBControl class 836

GetStyle member function
CWnd class 936

GetStyleName member function
CFontDialog class 439

GetSubMenu member function
CMenu class 547

GetSuperWndProcAddr member function
CWnd class 936

GetSystemMenu member function
CWnd class 936

GetTabbedTextExtent member function
CDC class 272

GetTail member function
CObList class 592

GetTailPosition member function
CObList class 593

GetText member function
CListBox class 484

GetTextAlign member function
CDC class 273

GetTextCharacterExtra member function
CDC class 274

GetTextColor member function
CDC class 275

GetTextExtent member function
CDC class 275

GetTextFace member function
CDC class 276

GetTextLen member function
CListBox class 484

GetTextMetrics member function
CDC class 276

GetTime member function
CTime class 804

GetTitle member function
CDocument class 349

GetToPage member function
CPrintDialog class 686
CPrintlnfo class 691

GetTopIndex member function
CListBox class 485

GetTopWindow member function
CWnd class 937

GetTotalHours member function
CTimeSpan class 812

GetTotalMinutes member function
CTimeSpan class 812

GetTotalSeconds member function
CTimeSpan class 812

GetTotalSize member function
CScrollView class 736

GetType member function
COleClientItem class 618

GetUnderline member function
CHEdit class 467

GetUpdateRect member function
CWnd class 937

GetUpdateRgn member function
CWnd class 938

GetUpperBound member function
CObA rray class 568
CObArray class 568

GetVBXClass member function
CVBControl class 837

GetViewportExt member function
CDC class 277

GetViewportOrg member function
CDC class 278

GetWeight member function
CFontDialog class 439

GetWindow member function
CWnd class 939

GetWindowDC member function
CWnd class 939

GetWindowExt member function
CDC class 278

GetWindowOrg member function
CDC class 278

GetWindowPlacement member function
CWnd class 940

GetWindowRect member function
CWnd class 940

GetWindowText member function
CWnd class 941

GetWindowTextLength member function
CWnd class 941

GetYear member function
CTime class 805

Global functions
AfxMessageBox 1066
AfxOleInsertDialog 1068
AfxOleLinksDialog 1069
AfxOleRegisterServerName 1069
AfxOleSetEditMenu 1070
AfxRegisterVBEvent 1071
AfxRegisterWndClass 1071
AfxSetAllocHook 1072
AfxSetResourceHandle 1073

Index 1141

AfxThrow ArchiveException 1073
AfxThrowFileException 1073
AfxThrowMemoryException 1074
AfxThrow N otSupportedException 1074
AfxThrowOleException 1074
AfxThrow ResourceException 1074
AfxThrowUserException 1075
GlobalAlloc (Windows function) 1057, 1074

Global functions and variables 1057

1142 Index

Global variables
afxTraceEnabled 1075
afxTraceFlags 1075

GotoDlgCtrl member function
CDialog class 332

Graphic objects See GDI classes
Graphics device interface

CDC class 220
GRA YRECT structure

CStatic::Create 757
GrayString member function

CDC class 278

H
Handler functions 23
Handlers See Message handlers
Handles

CClientDC objects 179
detaching, Windows DGI objects 459
GDI objects 457
operating system 407
retrieving, to stock Windows GDI objects 457
specifying to Windows menu 539
Windows, detaching from CWnd object 912
Windows applications

current instance 879
previous instance 880

Windows GDI objects 459,461-462
Handwriting recognition

CHEdit class 462
hardIO member function

CFileException class
CFileException: :m_cause 419

Heap, deallocating
document memory 89
view memory 89

Height member function
CRect class 702

Help, authoring 120
Help Compiler 117,120
Help contexts 117

and message box 1066
creation 118

Help Index command 115
Help menu 55, 115
Help project file 118
Help subsystem of framework

AppWizard support 115
components 115
Help menu 115
MAKEHM.EXE tool 115
message handlers for 115
message-map entries for 115

HexDump member function
CDumpContext class 358

hFileNull member function
CFile class

CFile::Close 397
HideCaret member function

CWnd class 942
Hiding

carets 942
CWnd, called when 1003
list box of combo box 213
scroll bars 1041

Highlighting
getting button control 173
setting button control 175
top-level menu items 942

HiliteMenultem member function
CWnd class 942

HINSTANCE, retrieving 1064
HLP subdirectory 118
HMENU

CMenu class 534
HN_DELA YEDRECOGFAIL 462
HN_ENDREC 462
HN_RCRESULT 462
Hours, getting 804

minutes in current 811
total 812
in current day 811

HR member function
CNotSupportedException class 562

Icons
called

if about to be dragged by user 997
when background must be filled before painting 977
when user requests open window 999

drawing on CDC device 240
minimized document child windows, arranging 523

ID _ resource IDs 119
ID_CONTEXT_HELP command 117
ID_EDIT_CLEAR

CEditView class 383
ID_EDIT_COPY

CEditView class 383
ID_EDIT_CUT

CEditView class 383
ID_EDIT_FIND

CEditView class 383
ID_EDIT_PASTE

CEditView class 383

ID_EDIT_REPEAT
CEditView class 383

ID_EDIT_REPLACE
CEditView class 383

ID _EDIT _SELECT_ALL
CEditView class 383

ID_EDIT_UNDO
CEditView class 383

ID_FILE_OPEN command
and serializing 81

ID _FILE_PRINT
CEditView class 383

ID _HELP command 116
ID_HELP _INDEX command 115
ID_HELP _USING command 115
ID_ WINDOW_NEW

and CMDIFrameWnd class 77
IDABORT

and AfxMessageBox 1066
IDCANCEL

and AfxMessageBox 1066
IDD _ resource IDs 119
Identifying, child windows 946
IdFromRowCol member function

CSplitterWnd class 753
IDIGNORE

and AfxMessageBox 1066
Idle state, called to inform main window 971
Idle-loop processing 31
Idle-time processing, Windows applications 871
IDNO

and AfxMessageBox 1066
IDOK

and AfxMessageBox 1066
IDP _ resource IDs 119
IDR_ resource IDs 119
IDR_MAINFRAME

in CMDIChildWnd class 513
IDRETRY

and AfxMessageBox 1066
IDW _ resource IDs 119
IDYES

and AfxMessageBox 1066
IMPLEMENT_DYNAMIC macro 122, 1084
IMPLEMENT_DYNCREATE macro 122, 1084
IMPLEMENT_SERIAL macro 122,1085
Inequality operator

CPoint class 677
CRect class 708
CSize class 745

InflateRect member function
CRect class 702

Inflating rectangles 702
Information contexts, creating for specified device 237

InitApplication member function
CWinApp class 29,862

Initializing
documents 89

Index 1143

menus, called when about to become active 977
views 89
Windows applications

instance 863
one-time 862

InitInstance member function, CWinApp class 854, 863
and App Wizard 30
called by WinMain 29

InitModalIndirect member function 325
CDialog class 326, 332

Input control, specifying for CWnd 972
Input focus

called
after gaining 1003
after window has realized logical palette 995
before losing 980
when ALT and another key pressed 1009
when CWnd about to receive 999
with release of key pressed with ALT 10 10

claiming 1029
specifying

character value of dead key 1008
virtual-key code of Control menu key 1005

Input/Output
CStdioFile class 766

Insert Object
command 1068
dialog box 1068

Insert and extract operators
CString::operators «,» 787

InsertAfter member function
CObList class 593

InsertAt member function
CObArray class 568

InsertBefore member function
CObList class 594

Inserting
Clipboard data into edit control 377
element in array 568
new menu items 549

Insertion operator
CArchive class 138
CDumpContext class 359

InsertMenu member function
CMenu class 547

CWnd::GetSystemMenu 936
InsertString member function

CComboBox class 208
CListBox class 485

Installing, timers at specified intervals 1012

1144 Index

Instance handles, retrieving 1056, 1064
Integers, translating dialog box control text into 929
IntersectClipRect member function

CDC class 281
Intersection operator

CRect class 709
IntersectRect member function

CRect class 703
Invalidate member function

CWnd class 943
InvalidateRect member function

CWnd class 943
CEdit::SetTabStops 381

InvalidateRgn member function
CWnd class 944

Invalidating, client areas
entire 943
within given rectangle 943
within given region 945

invalidFile member function
CFileException class

CFileException: :m_cause 419
Inverting

rectangle contents 282
region colors 283

InvertRect member function
CDC class 281

InvertRgn member function
CDC class 282

In WaitForRelease member function
COleClientItem class 618

IsBold member function
CFontDialog class 440

IsChild member function
CWnd class 945

IsChildPane member function
CSplitterWnd class 754

IsConnected member function
COleServerItem class 652

IsDialogMessage member function
CDialog class 333

IsDlgButtonChecked member function
CWnd class 945

IsEmpty member function
CMapStringToOb class 500
CObList class 595
CString class 780

IsEqual member function
COleClientItem class 619

IsIconic member function
CWnd class 945

IsItalic member function
CFontDialog class 440

IsKindOf member function
CObject class 578

CArchive: : ReadObject 136
IsLoading member function

CArchive class 135
CObject::Serialize 579

IsModified member function
CDocument class 349

IsOpen member function
COleClientItem class 619
COleServer class 635

IsOpenClientDoc member function
COleDocument class 628

IsOpenServerDoc member function
COleDocument class 629

IsPrinting member function
CDC class 282

IsPropArray member function
CVBControl class 837

IsRectEmpty member function
CRect class 703

IsRectNull member function
CRect class 704

IsSelected member function
CView class 846

IsSerializable member function
CObject class 579

IsStoring member function
CArchive class 135

CObject::Serialize 579
IsStrikeOut member function

CFontDialog class 440
IsTerminating member function

CFindReplaceDialog class 425
IsUnderline member function

CFontDialog class 440
IsWindowEnabled member function

CWnd class 946
IsWindowVisible member function

CWnd class 946
IsZoomed member function

CWnd class 946
Iteration functions 1059-1060

J
Justification, text, setting 314

K
Keyboard, input

enabling or disabling 919
returning active key 954
specifying whether CWnd is enabled for 948

Keys, nonsystem
called on input 978
called on release 979

KillTimer member function
CWnd class 947

L
LBS_NOTIFY 470
Leaks, memory

and DEBUG_NEW macro 1080
Left member function

CString class 780
Length, files

changing 404
getting 397

LimitText member function
CComboBox class 208
CEdit class 374

Line, numbers, retrieving from multiple-line edit control 372
LineFromChar member function

CEdit class 375
LineIndex member function

CEdit class 375
LineLength member function

CEdit class 376
Lines

drawing from current position 283
length in edit control 376
numbers, retrieving from edit control 375

LineScroll member function
CEdit class 376

LineTo member function
CDC class 282

Linked items, OLE
closing 609
editing 638, 645
inserting 611
Links dialog box, implementing 1069
reconnecting 621
updating 617, 624-625

Links dialog box 1069
List boxes

adding filenames to 479
called

when control created 980
called with keyboard input 1012

CListBox 470
comparing items in 956
creating

constructor 475
specifying style 476

destroying, called to inform owner 962
filling with directory listingt 912

List boxes (continued)
finding specified string 481
getting string from 486
items

deleting 479
ensuring visibility 495

Index 1145

first visible, retrieving indes of 487
index of, retrieving 483
number of, retrieving 482
removing 488
retrieves zero-based index of currently selected 483
searching for match to string 489
selecting consecutive 489
selection state of, retrieving
setting associated 32-bit values 492
total selected 485

multicolumn, selecting width 491
multiple-selection, selecting strings in 493
notification messages 470
of combo boxes

retrieving current selection 916
returning selected items 203

retrieving
bounding rectangle dimensions 484
current selection 915
horizontal scrolling event 483

returning on application response 955
scrolling

selected stringsl 491
setting width 492

strings
adding 474,487
getting 486
length, getting 486

List classes 125
Lists

adding
element or list to tail 585
new list or element to head 584

creating 585
described 125
elements

adding after specified position 593
adding before specified position 594
getting pointer representing head element 589
head, getting position 590
indicating if empty 595
next, getting position 590
number of, getting 588
previous, getting position 591
removing all 595
removing head 597
removing tail 597
scanning index for 587

1146 Index

Lists (continued)
elements (continued)

specified, removing 596
tail, getting position 593
tail, getting 592
writing pointer to specified position 598

retrieving pointer to given position 588
searching for first matching CObject pointer 586

LoadAccelTable member function
CFrameWnd class 452

LoadBitmap member function
CBitmap class 155

CBrush: :CreatePattemBrush 166
CWnd::CreateCaret 906

CToolBar class 820
LoadBitmaps member function

CBitmapButton class 161
LoadCursor member function

CWinApp class 863
CWnd::OnQueryDragIcon 997

LoadFrame member function
and CMDIChildWnd class 513
and frame window creation 74
CFrameWnd class 43,446,452

LoadIcon member function
CWinApp class 864

CDC::DrawIcon 240
CWnd::OnQueryDragIcon 997

Loading
accelerator tables 452
bitmap resources 155
menu resources 551
object or primitive type from archive 139
predefined cursor resources, Windows

applications 864-865
Windows applications

icon resource 865-866
specified cursor resource 863

Loading objects,CArchive class 131
LoadMenu member function

CMenu class 534, 549
LoadMenulndirect member function

CMenu class 534, 550
LoadOEMBitmap member function

CBitmap class 156
LoadOEMCursor member function

CWinApp class 864
LoadOEMIcon member function

CWinApp class 865
CDC::DrawIcon 240

LoadStandardCursor member function
CWinApp class 865

LoadStandardIcon member function
CWinApp class 866

CDC::DrawIcon 240
LoadStdProfileSettings member function

CWinApp class 33, 866
LoadString member function

CString class 781
LoadVBXFile member function

CWinApp class 867
Locking, range of bytes in open file 401
LockRange member function

CFile class 399
LockViolation member function

CFileException class
CFileException: :m_cause 419

LockWindowUpdate member function
CWnd class 947

Logical palette
CPalette class 666

Lookup member function
CMapStringToOb class 500

LPCRECT operator
CRect class 707

LPRECT operator
CRect class 698, 708

LPRECT structure
CDC: :Arc 230
CDC: :Chord 234
CRect::CRect 701
CRect::operator LPRECT 708

LPtoDP member function
CDC class 283

M
m_bAutoDelete data member

CControlBar class 216
m_bAutoMenuEnable data member

CFrameWnd class 455
m_bContinuePrinting data member

CPrintInfo class 691
m_bHelpMode data member

CWinApp class 879
m_bPreview data member

CPrintInfo class 691
m_cause data member

CArchiveException class 141
CFileException class 419

CFileException: : ErrnoToException 417
m_cc data member

CColorDialog class 190
m_cf data member

CFontDialog class 441

m_fr data member
CFindReplaceDialog class 427

m_hAttribDC data member
and metafiles 556
CDC class 324

m_hDC data member
and metafiles 556
CDC class 324

m_hFile data member
CFile class 406

m_hFileNull data member
CFile class

CFile::m_hFile 408
m_hInstance data member

CWinApp class 879
m_hMenu data member

CMenu class 555
m_hObject data member

CGdiObject class 461
m_hPrev Instance data member

CWinApp class 880
m_hWnd data member

CClientDC class 179
CPaintDC class 664
CWindowDC class 883
CWnd class 1043

m_l0sError data member
CFileException class 420

m_lpCmdLine data member
CWinApp class 880

m_lpUserData data member
CPrintInfo class 692

m_nCmdShow data member
CWinApp class 880

CWnd::ShowWindow 1038
m_nCurPage data member

CPrintInfo class 692
m_nError data member

CVBControl class 841
m_nNumPreviewPages data member

CPrintInfo class 692
m_ofn data member

CFileDialog class 415
m_pd data member

CPrintDialog class 687
m_pMain Wnd data member

CWinApp class 880
m_pPD data member

CPrintInfo class 692
m_ps data member

CPaintDC class 664
m_ps member function

CPaintDC class 664
m_ps, member of CPaintDC 664

m_pStream data member
CStdioFile class 769

m_pszAppN arne data member
CWinApp class 881

m_pszExeN arne data member
CWinApp class 854, 881

m_pszHelpFilePath data member
CWinApp class 881

m_pszProfileName data member
CWinApp class 881

m_rectDraw data member
CPrintlnfo class 693

m_status data member
COleException class 632

m_strPageDesc data member
CPrintlnfo class 693

Macros
AND_CATCH 1076
ASSERT 1077
ASSERT _ VALID 1078
BEGIN_MESS AGE_MAP 1079
CATCH 1079
DEBUG_NEW 1080
DECLARE_DYNAMIC 1081
DECLARE_DYNCREATE 1081
DECLARE_MESSAGE_MAP 1082
DECLARE_SERIAL 1083
END_CATCH 1083
END_MESSAGE_MAP 1084
IMPLEMENT_DYNAMIC 1084
IMPLEMENT_DYNCREATE 1084
IMPLEMENT_SERIAL 1085
ON_COMMAND 1086
ON_CONTROL 1086
ON_MESSAGE 1087
ON_REGISTERED_MESSAGE 1088
ON_UPDATE_COMMAND_UI 1088
ON_ VBXEVENT 1089
RUNTIME_CLASS 1089
THROW 1090
THROW_LAST 1090
TRACE 1091
TRACEO 1091
TRACE 1 1092
TRACE2 1092
TRACE3 1093
TRY 1093
VERIFY 1093

Main application window
and CFrame Wnd class 446

Main frame windows
described 21, 73

MAINFRM.CPP 73
MAINFRM.H 73

Index 1147

1148 Index

MAKEHELP.BATfile 118
MAKEHM.EXE 117
MAKEHM.EXE file 118
MAKEHM.EXE tool 115
MakeLower member function

CString class 781
Make Reverse member function

CString class 782
MakeUpper member function

CString class 782
malloc

AfxThrow MemoryException 1074
Managing

accelerators and frame window 76
active view and frame window 76
control bars and frame window 76
current view and frame window 76
MDI menu bar and frame window 76
status bar and frame window 76
toolbar buttons and frame window 76

Map classes 125
MapDialogRect member function

CDialog class 334
Mapping

device contexts, logical palettes to system palettes 291
dialog class member variables, with ClassWizard 97
fonts, logical to physical 308
mode, retrieving current 267
point coordinates 239
setting mode 308
Windows messages, with ClassWizard 97

Maps
constructing CString-to-CObject 498
described 125
finding element with matching key 500
getting number of elements 498
inserting elements 503-504
interation, starting 500
iterating through all elements 499
looking up entry corresponding to supplied key 502
removing elements and destroying CString key

objects 501
testing if empty 500

MapWlndowPoints member function
CWnd class 948

MatchCase member function
CFindReplaceDialog class 426

Match Whole Word member function
CFindReplaceDialog class 426

Maximization, determining CWnd 948
Maximizing, MD I child windows 517
MB_ABORTRETRYIGNORE 1066
MB_APPLMODAL

and AfxMessageBox 1066

MB_DEFBUTTON1
and AfxMessageBox 1066

MB_DEFBUTTON2
and AfxMessageBox 1066

MB_DEFBUTTON3
and AfxMessageBox 1066

MB_ICONEXCLAMATION
and AfxMessageBox 1066

MB_ICONINFORMATION
and AfxMessageBox 1066

MB_ICONQUESTION
and AfxMessageBox 1066

MB_ICONSTOP
and AfxMessageBox 1066

MB_OK
and AfxMessageBox 1066

MB_OKCANCEL
and AfxMessageBox 1066

MB_RETRYCANCEL
and AfxMessageBox 1066

MB_SYSTEMMODAL
and AfxMessageBox 1066

MB_TASKMODAL
and AfxMessageBox 1066

MB_YESNO
and AfxMessageBox 1066

MB_YESNOCANCEL
and AfxMessageBox 1066

MDI
and CMainFrame 73
child window

activating 521
CMDIChildWnd class 513

client windows, arranging in cascade 522
menu bar, and frame window, managing 76

MDI applications
and frame windows 71,83,86
and managing child windows 75
and multiple views 87
described 20
document templates for 559
illustrated 33
window classes 40

MDIActivate member function
CMDIChildWnd class 516
CMDIFrameWnd class 521

MDICascade member function
CMDIFrameWnd class 522

MDICLIENT window
and control bars 75
and managing child windows 75
and WS_HSCROLL and WS_ VSCROLL styles 77

MDIDestroy member function
CMDIChildWnd class 517

MDIGetActive member function
CMDIFrameWnd class 522

MDIIconArrange member function
CMDIFrameWnd class 523

CWnd::ArrangeIconicWindows 900
MDIMaximize member function

CMDIChildWnd class 517
CMDIFrameWnd class 523

MDINext member function
CMDIFrameWnd class 523

MDIRestore member function
CMDIChildWnd class 517
CMDIFrameWnd class 524

MDISetMenu member function
CMDIFrameWnd class 524

MDITile member function
CMDIFrame Wnd class 525

MeasureItem member function
CComboBox class 209
CListBox class 488
CMenu class 553

MEASUREITEMSTRUCT structure
CWnd::OnMeasureItem 980

Member functions See individual classes
Memory

allocating 1049, 1058, 1065
checking 1058
compaction, specifying time currently spent in 955
diagnostic services 127
fIles

closing 527
opening 527

handles, retrieving for multiple-line edit control 371
leaks, testing CObject objects 791
low, detecting 955
testing 1065
tracking 1062

Memory allocation
arrays, freeing extra memory 567
CObject class, optimizing allocation, new 581
freeing memory 581
memory files

closinge 527
opening 527

multiple-line edit control handles, retrieving 371
setting handle to local memory 377

Memory allocation debugging
and AfxSetAllocHook function 1072

Memory diagnostics
CDumpContext class 356

Memory leaks, diagnosing
CMemoryState class 529

Menu items
and views 82
updating 67, 183

Index 1149

Menu resources, and MDI child windows 77
Menus

and frame window, managing 76
as source of commands 54
bars, redrawing 918
called when about to become active 977
calling owner when menu changes 966
control

allowing application access 936
called when Maximize or Minimize button

selected 1007
creating

empty 541
pop-up 541

CWnd
called when item selected 955
retrieving pointer to 932

deleting items 542
destroying specified 544
detaching from CMenu object 544
Edit menu, commands 55
File menu, commands 55
Help menu, commands 55
highlighting, activating or removing from

top-level items 942
items

adding 549
appending new 537
associating bitmaps with 555
called when user selects 983
changing 553
copying label to 546
determining number 546
enabling 545
items to be checked, specifying 540
position of active, specifying 546
removing 554
specifying status 545

MDI, replacing 524
mnemonic character, called when user presses 982
pop-up

called when about to become active 977
check mark control 540
creating 541
determining number of items 546
displaying floating 556
replacing 524
retrieving CMenu object 549

1150 Index

Menus (continued)
resources, loading

and attaching to CMenu object 551
from menu template and attaching to CMenu

object 552
setting current to specified 1030
template, loading resource and attaching to CMenu

object 552
View menu, commands 55
Window menu, commands 55
Windows, specifying handle to 539

Message boxes
and exceptions 1075
called when about to be drawn 960
displaying 1052
formatting strings for 1062, 1063
styles, and AfxMessageBox 1066
with AfxMessageBox function 1066

Message handlers
defined 52
described 23,40
command 65
control notification 65
Windows message 64

example 64
naming conventions 64

how they are called 56
overriding 64

Message handling
BEGIN_MESSAGE_MAP macro 1079
DECLARE_MESSAGE_MAP macro 1082
END_MESS AGE_MAP macro 1084
ON_COMMAND macro 1086
ON_CONTROL macro 1086
ON_MESSAGE macro 1087

Message loop, illustrated 31
Message maps

and command targets 180
BEGIN_MESSAGE_MAP macro 1079
DECLARE_MESSAGE_MAP macro 1082
described 53, 57, 1054
END_MESS AGE_MAP macro 1084
entries for

commands 62
control notifications 62
register Windows messages 62
update commands 62
user-defined messages 62
VBX control events 62
Windows messages 62

example 60
how they are searched 60
macros 1055
ON_COMMAND macro 1086

Message maps (continued)
ON_CONTROL macro 1086
ON_MESSAGE macro 1087
ON_UPDATE_COMMAND_UI macro 1088
ON_ VBXEVENT macro 1089
searching base class's map 61
types of entries 62

Message-driven programming 51
MessageBox member function

CWnd class 948
Messages

and command targets 180
applications, creating and displaying 950
boxes, called with displaying 953
called when CWnd first created 987
calling default window procedure 910-911
categories 52
commands 52
control notification 52
CWnd, placing message in queue 1016
described 51
determining whether intended for modeless

dialog box 333
handling 1053
how

generated 56
handled 57

idle-time processing 872
providing Windows procedure for 1043
sending

to specified control 1026
to window 1026

used to translate CWinApp window messages 1018
Windows 52, 82
Windows applications

filteringe 874
providing default loop 876

Metafiles
closing device context and creating handle to play 557
CMetaFileDC class 556
playing on given device 288

MFCNOTES.HLP 117
Microsoft Foundation Class Library

chart xvi
overview 3, 19
relationship to Windows API 17

Mid member function
CString class 782

Mini-servers 633
Minutes, getting 805

total 812
in current hour 811

Modal dialog box
CDialog class 325

Modeless dialog box
CDialog class 325

Modification flag, setting for edit control 378
Modifying

menu items 553
viewport extents 296
window extents 296

ModifyMenu member function
CMenu class 551
CWnd::GetSystemMenu 936

Months, getting 805
Most recently used file list See MRU file list
Mouse

called when released in nonclient area 991
capture, retrieving 923

Mouse button
called

left 977, 980, 990-992
middle 978-979,992
right 994,999-1001
when clicked over child window 996

tracking pop-up menu item selection 556
Move member function

CVBControl class 837
MoveTo member function

CDC class 284
Move Window member function

CWnd class 949
Moving

clipping region 284
current point position 284
CWnd, called when 985
rectangles 704, 709
regions 722

MRU file list, CWinApp support 33
MS-DOS device names, conventions 237
Multiple Document Interface

and CMainFrame 73
and CMDIChildWnd class 513
and frame windows 71, 73, 86
and managing child windows 75

Multiple document interface applications See MDI
applications

Multiple-line edit control
character

index, retrieving line number 375
line index 375

formatting rectangle, setting dimensions 379-780
line numbers, retrieving 372
number of lines, retrieving 372
retrieving local memory handle 371
scrolling text 376

Multiple-line edit control (continued)
setting

tab stops 381
handle to local memory 377

Index 1151

soft line-break characters, inserting 370

N
Naming conventions

command IDs 55
message handlers, for Windows messages 64

new
AfxThrowMemoryException 1074

new operator
CObject class 580

new operator, C++
and window classes 43
debug version 127

New Window command 74
and CMDIFrame Wnd class 77
and multiple views 87

NextDlgCtri member function
CDialog class 334

Nonclient areas
calculating size 986
called when

destroyed 989
mouse button pressed in 991
needing painting 993

none member function
CArchiveException class

CArchiveException: :m_cause 141
CFileException class

CFileException: :m_cause 419
Nonsystem key, when called 978-979
Notification messages 158

button control 168
combo box 191
edit control 363
list box control 470

NotifyChanged member function
COleServerDoc class 642
COleServerItem class 652

NotifyClosed member function
COleServerDoc class 642

N otifyRename member function
COleClientDoc class 602
COleServerDoc class 643

NotifyRevert member function
COleClientDoc class 602
COleServerDoc class 643

NotifySaved member function
COleClientDoc class 602
COleServerDoc class 644

1152 Index

o
Objects

C++, type identification 122, 725
creating 576
destroying 576
diagnostics 121
dynanic creation 1048
dumping 1049, 1060-1061
dumping to CObject objects 578
File, CStdioFile 766
getting run-time structure 578
persistence, supported by CObject class 123
reading or writing to archive 580
testing for class 579
testing if eligible for serialization 580
validity checking 575

OEM, converting characters to ANSI character set
CString::OemToAnsi 783

OemToAnsi member function
CString class 783

Offset member function
CPoint class 676

OffsetClipRgn member function
CDC class 284

OffsetRect member function
CRect class 704

OffsetRgn member function
CRgn class 722

OffsetViewportOrg member function
CDC class 285

OffsetWindowOrg member function
CDC class 285

OLE
AfxOleInsertDialog function 1068
AfxOleLinksDialog function 1069
AfxOleRegisterServerName function 1069
AfxOleSetEditMenu function 1070
client applications

classes for writing 15
document classes 600
item classes 604

commands, listed 55
document base class 626
embedded items

editing 637, 645
inserting 610,612, 636

exceptions 630
global

client functions 1056
server functions 1056

Insert Object dialog box 1068

OLE (continued)
linked items 645

closing 609
editing 638
inserting 611
Links dialog box 1069
reconnecting 621
updating 617, 624-625

presentation data, implementing 653-654, 656
resource files needed 1068-1069
server applications

classes for writing 15
document classes 640
full 660
instance registration 635,639,661
item classes 649
launching 661
mini 633
registering 1069
revoking 634
server classes 633, 660

typename Object command
AfxOleSetEditMenu function 1070

verbs
AfxOleSetEditMenu function 1070
implementing 653-654
invoking 607, 614

ON_BN_CLICKED 168
ON_BN_DOUBLECLICKED 168
ON_CBN_CLOSEUP 191
ON_CBN_DBLCLK 191
ON_CBN_DROPDOWN 191
ON_CBN_EDITCHANGE 191
ON_CBN_EDITUPDATE 191
ON_CBN_ERRSPACE 191
ON_CBN_KILLFOCUS 191
ON_CBN_SELCHANGE 191
ON_CBN_SELENDCANCEL 191
ON_CBN_SELENDOK 191
ON_ CBN_SETFOCUS 191
ON_COMMAND 62, 1053, 1086
ON_CONTROL 1086
ON_EN_CHANGE 363
ON_EN~RRSPACE 363
ON_EN_HSCROLL 363
ON_EN_KILLFOCUS 363
ON_EN_MAXTEXT 363
ON_EN_SETFOCUS 363
ON_EN_UPDATE 363
ON_EN_ VSCROLL 363
ON_LBN_DBLCLK 470
ON_LBN_ERRSPACE 470
ON_LBN_KILLFOCUS 470
ON_LBN_SELCANCEL 470

ON_LBN_SELCHANGE 470
ON_LBN_SETFOCVS 470
ON_MESSAGE 62, 1087
ON_REGISTERED_MESSAGE 62,1088
ON_VPDATE_COMMAND _VI

and CCmdVI objects 183
described 62,67-68, 1088

ON_ VBXEVENT 62, 1089
ON_ WM_xxxx 62
ON_xxxx 62
OnActivate member function

CWnd class 950
OnActivateApp member function

CWnd class 950
OnActivate View member function

and active view 76
CView class 846

OnAskCbFormatName member function
CWnd class 951

OnBeginPrinting member function
CView class 847

OnCancel member function 325
CDialog class 334, 101, 103, 105

OnCancelMode member function
CWnd class 951

OnChange member function
COleClientItem class 619

OnChangeCbChain member function
CWnd class 952

OnChangedViewList member function
CDocument class 350

OnChar member function
CWnd class 952

OnCharToItem member function
CWnd class 953

OnChildActivate member function
CWnd class 954

OnChildNotify member function
CWnd class 954

OnClose member function
and CMDIChildWnd class 513
and destroying frame windows 74
COleServerDoc class 644
CWnd class 43, 954

OnCloseDocument member function
CDocument class 351

OnCmdMsg member function
CCmdTarget class 59, 181

OnCoiorOK member function
CColorDialog class 189

OnCommand member function
CWnd class 955

OnCompacting member function
CWnd class 955

OnCompareItem member function
CWnd class 956

OnContextHelp member function
CWinApp class 116,868

OnCreate member function
and CMainFrame 73
CWnd class 957

OnCreateClient member function
CFrameWnd class 453
creating a splitter window 746

OnCreateDoc member function

Index 1153

COleServer class 636
OnCreateDocFromTemplateFile member function

COleServer class 636
OnCtlColor member function

CWnd class 959
OnDDECommand member function

CWinApp class 868
OnDeadChar member function

CWnd class 960
OnDeleteItem member function

CWnd class 961
OnDestroy member function

CWnd class 962
OnDestroyClipboard member function

CWnd class 963
OnDevModeChange member function

CWnd class 963
OnDo Verb member function

COleServerItem class 653
OnDraw member function

and view drawing 83, 84
COleServerItem class 653
CView class 44-45,847

OnDrawClipboard member function
CWnd class 963

OnDrawItem member function
CWnd class 964

OnDropFiles member function
CWnd class 966

One-stage construction 46
OnEditDoc member function

COleServer class 637
OnEnable member function

CWnd class 967
OnEndPrinting member function

CView class 848
OnEndPrintPreview member function

CView class 848
OnEndSession member function

CWnd class 967
OnEnterIdle member function

CWnd class 968

1154 Index

OnEnumFormats member function
COleServerItem class 654

OnEraseBkgnd member function
CWnd class 968

OnExecute member function
COleServer class 638
COleServerDoc class 644

OnExit member function
COleServer class 638

OnExtra Verb member function
COleServerItem class 654

OnFileNameOK member function
CFileDialog class 413

OnFileNew member function
CWinApp class 869

OnFileOpen member function
CWinApp class 869

OnFilePrintSetup member function
CWinApp class 869

OnFindNext member function
CEditView class 387

OnFontChange member function
CWnd class 969

OnGetData member function
COleServerItem class 656

OnGetDlgCode member function
CWnd class 972

OnGetEmbeddedltem member function
COleServerDoc class 645

OnGetLinkedltem member function
COleServerDoc class 645

OnGetMinMaxlnfo member function
CWnd class 970

OnGetTextData member function
COleServerltem class 655

OnHelp member function
CWinApp class 115, 870

OnHelplndex member function
CWinApp class 115,871

OnHelpUsing member function
CWinApp class 871

OnHScroll member function
and view scrolling 86
CWnd class 971

OnHScrollClipboard member function
CWnd class 972

OnIconEraseBkgnd member function
CWnd class 973

Onldle member function
CWinApp class 31,47,871

CWinApp::Onldle 871
OnlnitDialog member function

CDialog class 335, 101, 105, 109-110

OnlnitialUpdate member function 82
and view initialization 90
CView class 38, 849

OnlnitMenu member function
CWnd class 973

OnlnitMenuPopup member function
CWnd class 973

OnKeyDown member function
CWnd class 974

OnKeyUp member function
CWnd class 975

OnKillFocus member function
CWnd class 976

OnLBSelChangedNotify member function
CFileDialog class 413

OnLButtonDblClk member function
CWnd class 976

OnLButtonDown member function
CWnd class 977

OnLButtonUp member function
CWnd class 977

Online help 114
OnMButtonDblClk member function

CWnd class 978
OnMButtonDown member function

CWnd class 979
OnMButtonUp member function

CWnd class 979
OnMDIActivate member function

CWnd class 980
OnMeasureltem member function

CWnd class 980
OnMenuChar member function

CWnd class 982
OnMenuSelect member function

CWnd class 983
OnMouseActivate member function

CWnd class 984
OnMouseMove member function

CWnd class 985
OnMove member function

CWnd class 985
OnNcActivate member function

CWnd class 986
OnNcCalcSize member function

CWnd class 986
OnNcCreate member function

CWnd class 987
OnNcDestroy member function

and destroying frame windows 74
CWnd class 43, 988

OnNcHitTest member function
CWnd class 988

OnNcLButtonDblClk member function
CWnd class 989

OnNcLButtonDown member function
CWnd class 990

OnNcLButtonUp member function
CWnd class 990

OnNcMButtonDblClk member function
CWnd class 991

OnNcMButtonDown member function
CW nd class 991

OnNcMButtonUp member function
CWnd class 991

OnNcMouseMove member function
CWnd class 992

OnNcPaint member function
CWnd class 993

OnNcRButtonDblClk member function
CWnd class 993

OnNcRButtonDown member function
CWnd class 993

OnNcRButtonUp member function
CWnd class 993

OnNewDocument member function
and document initialization 90
CDocument class 38, 350

OnOK member function
CDialog class 101, 105,336

OnOpenDoc member function
COleServer class 638

OnOpenDocument member function
and bypassing serializing 82
and document initialization 90
CDocument class 38, 351

OnPaint member function
CWnd class 994

OnPaintClipboard member function
CWnd class 994

CWnd::OnPaintClipboard 994
OnPaletteChanged member function

CWnd class 995
OnPaletteIsChanging member function

CWnd class 996
OnParentNotify member function

CWnd class 996
OnPrepareDC member function

CScrollView version 732
CView class 44, 849

OnPreparePrinting member function 82
CView class 850

OnPrint member function
CView class 851

OnQueryDraglcon member function
CWnd class 997

OnQueryEndSession member function
CWnd class 997

OnQueryNewPalette member function
CWnd class 998

OnQueryOpen member function
CWnd class 998

OnRButtonDblClk member function
CWnd class 998

OnRButtonDown member function
CWnd class 999

OnRButtonUp member function
CWnd class 1000

OnRenamed member function
COleClientItem class 620

OnRenderAllFormats member function
CWnd class 1000

OnRenderFormat member function
CWnd class 1001

OnReplaceAll member function
CEditView class 387

OnReplaceSel member function
CEditView class 388

OnSaveDocument member function
and bypassing serializing 82
CDocument class 352

OnSetBounds member function
COleServerItem class 656

OnSetColorScheme member function
COleServerDoc class 646
COleServerItem class 656

OnSetCursor member function
CWnd class 1001

OnSetData member function
COleServerItem class 657

OnSetDocDimensions member function
COleServerDoc class 646

OnSetFocus member function
CWnd class 1002

OnSetFont member function
CDialog class 336

OnSetHostNames member function
COleServerDoc class 647

OnSetPreview Mode member function
CFrame Wnd class 454

OnSetTargetDevice member function
COleServerItem class 657

OnShare Violation member function
CFileDialog class 413

OnShow member function
COleServerItem class 659

OnShowWindow member function
CWnd class 1002

OnSize member function
CWnd class 1003

Index 1155

1156 Index

OnSizeClipboard member function
CWnd class 1003

OnSpoolerStatus member function
CWnd class 1004

OnSysChar member function
CWnd class 1004

OnSysColorChange member function
CWnd class 1005

OnSysCommand member function
CWnd class 1006

OnSysDeadChar member function
CWnd class 1007

OnSysKeyDown member function
CWnd class 1008

OnSysKeyUp member function
CWnd class 1009

OnTextNotFound member function
CEditView class 389

OnTimeChange member function
CWnd class 1010

OnTimer member function
CWnd class 1011

OnUpdate member function 82
and view drawing 83
and view initialization 90
CView class 853

OnUpdateDocument member function
COleServerDoc class 647

On VKeyToItem member function
CWnd class 1011

On VScroll member function
and view scrolling 86
CWnd class 1012

On VScrollClipboard member function
CWnd class 1013

On WindowPosChanged member function
CWnd class 1013

On WindowPosChanging member function
CWnd class 1014

On WinIniChange member function
CWnd class 1015

Open member function
and bypassing serializing 82
CFile class 400

Open Channel member function
CVBControl class 838

OpenClipboard member function
CWnd class 1016

OpenDocumentFile member function
CWinApp class 873

OPENFILENAME structure
in CFileDialog class 407

Opening
Clipboard 1016
files 402, 527

Operating system
error codes

CFileException: :CFileException 417
CFileException::m_lOsError 420
CFileException: :OsErrorToException 418
CFileException: :ThrowOsError 418

handle for open file, CFile: :m_hFile 408
Operators

!= (inequality operator)
CPoint class 677
CRect class 708
CSize class 745

& (intersection operator)
CRect class 709, 711

&= (assignment of intersection operator)
CRect class 709

+ (addition operator)
CTime class 806
CTimeSpan class 813

+,- operators
CTime class 806
CTimeSpan class 813

+= (assignment of addition operator)
CPoint class 677
CRect class 709
CSize class 745
CString class 789
CTime class 806
CTimeSpan class 813

+=, -= operator
CPoint class 678
CRect class 709-710
CSize class 745
CString class 787
CTime class 806-807
CTimeSpan class 813

-= (assignment of subtraction operator)
CRect class 709
CSize class 745

[] (subscript operator)
CObArray class 573
CString class 790

:: functions See Global functions
« (insertion operator)

CArchive class 138
CDumpContext class 359

«, » operator
CString class 787

= (assignment operator)
CObject class 580
CTimeSpan class 813

Operators (continued)
== (equality operator)

CPoint class 677
CRect class 708
CSize class 744

1= (assignment of union operator)
CRect class 708

» (extraction operator)
CArchive class 139
CString class 787
CTime class 807
CTimeSpan class 814

addition operator
CPoint class 678
CRect class 709
CSize class 745
CString class 788
CTime class 805
CTimeSpan class 813

assignment
CObject class 580
CRect class 708
CString class 786
CTime class 806
CTimeSpan class 813

assignment of addition
CPoint class 677
CRect class 709
CSize class 745
CString class 789
CTime class 806
CTimeSpan class 813

assignment of intersection
CRect class 709

assignment of union
CRect class 710

CObject
freeing memory allocated by new 581
performing optimal memory allocation 581
private assignment operator 581

const operator
CString class 787

const char* ()
CString class 787

const operator
CString class 787

CPoint class 678
CRect class 710-711
CSize class 745
delete

CObject class 580

Operators (continued)
equality

CPoint class 677
CRect class 708
CSize class 744

extraction
CArchive class 139
CString class 787
CTime class 807
CTimeSpan class 814

inequality
CPoint class 677
CRect class 708
CSize class 745

inequality operator
CRect class 708

insertion
CArchive class 138
CDumpContext class 359

intersection operator
CRect class 709

LPCRECT
CRect class 707

LPRECT
CRect class 708

new
CObject class 581

subscript
CObArray class 573
CString class 790

subtraction operator
CRect class 709-710

union operator
CMapStringToOb class 504
CRect class 708, 710
CString class 790

OsErrorToException data member
CFileException class 418

OsErrorToException member function
CFileException class 418

OutputDebugString Windows function
CDumpContext class 356

Overriding message handlers 64

p
Painting

called
to prepare invalidated region 971
when repainting CWnd 995

Index 1157

1158 Index

Painting (continued)
client area associated with CPaintDC object 664
CWnd, called when client area needs repainting 995
icon background 977
non client areas, called when needing 993
preparing CWnd for 900
windows, marking end 920

PaintRgn member function
CDC class 286

PAINTSTRUCT structure
CPaintDC::CPaintDC 663
CPaintDC: :m_ps 664
CWnd::BeginPaint 900
CWnd::EndPaint 920
CWnd::OnPaintClipboard 995

Palette
CDC class 220
CPalette class 666

Palettes
creating CPalette object, initializing 668
CWnd, called when receiving input focus 999
logical

mapping entries to system palette 291
replacing entries 667
retrieving closest matching entry 669
retrieving range of entries 669
setting ROB color values and flags 670

resetting 461
resizing 670
returning pointer to CPalette object 668
selecting logical 300
system, called after change 995

Parent windows
called when child window created or destroyed 996
changing parent of child 1031
retrieving 934

Password character, setting or removing in edit control 378
Paste command, implementing 48
Paste member function

CComboBox class 209
CEdit class 377

Pasting, Clipboard data into edit control 377
PatBlt member function

CDC class 286
Pens

available in device context, enumerating 245
CHEdit class 462
CPen class 671
creating

constructor 671
initializing 672,674

handles 675
in device context, enumerating 245

Pens (continued)
predefined, retrieving handle to 457
setting drawing mode 310

Persistence, support provided by CObject class 123
Pie-shaped wedges, creating 287
Pie member function

CDC class 287
Pixels

retrieving ROB color valuesl 271
setting at specified point 309

PlayMetaFile member function
CDC class 288

CMetaFileDC::Close 557
POINT structure

CDC::Arc 230
CDC::Chord 234
CDC::DPtoLP 239
CDC::DrawIcon 240
CDC::OetPixel 271
CDC::LineTo 283
CDC::LPtoDP 284
CDC::MoveTo 284
CDC::Pie 287
CDC::Polygon 289
CDC::PolyPolygon 290
CDC::PtVisible 290
CDC::RoundRect 294
CDC::SetBrushOrg 308
CDC::SetPixel 309
CDC::SetViewportOrg 316
CDC::SetWindowOrg 318
CDialog: :IsDialogMessage 333
CPen: :CreatePenIndirect 674
CPoint class 675
CPoint::CPoint 676
CPoint::Offset 676
CPoint: : operator 677-678
CPoint::operator== 677
CRect::BottomRight 700
CRect::OffsetRect 704
CRect::operator+ 709
CRect::operator+= 709
CRect::operator- 710
CRect::operator-= 709
CRect: :PtInRect 705
CRgn: :CreatePolygonRgn 717
CRgn::CreatePolyPolygonRgn 718
CRgn::OffsetRgn 722
CRgn: :PtInRegion 723
CSize::CSize 744
CWnd: :ClientToScreen 904
CWnd::OnOetMinMaxInfo 973
CWnd::ScreenToClient 1022
CWnd::WindowFromPoint 1042

Pointers
arrays, removing from 569
CFile object, getting for archive 134
CWnd

retrieving to active 923
object when given handle to window 922

returning
display context for client area 926
to CBrush object 167
to CWnd 931-932
to dialog box control 929
to first control 932

testing 1066
to open file ~eturned by C run-time function fopen 769

Points
adding separate values to x and y members 676
checking

equality between two 677
inequality between two 677
if within region 723

converting logical to device 284
determining if within rectangles 705
identifying window containing given 1042
mapping coordinates from device to logical system 239
negatively offsetting by a size 678
offsetting by a size 677
rectangles, referencing

bottom right 700
top left 706

specified, determining which child window contains 903
subtracting a size 677

Polygon member function
CDC class 289

Polygons
creating

multiple filled 290
regions 717

drawing 289
filling mode, retrieving current 272
regions, creating series of 718
setting, filling mode 309

Polyline member function
CDC class 289

PolyPolygon member function
CDC class 290

Pop-up
windows, determining most recently active 931
menus

called when about to become active 977
determining number of items 546
displaying floating, with item tracking 556
obtaining item identifier 546
retrieving CMenu object 549
specifying status of items 545

Position, retrieving current 259
PostMessage member function

CWnd class 10 16
PostNcDestroy member function 325

and CMDIChildWnd class 513
and destroying frame windows 74
CWnd class 43,1017

PreCreateWindow member function
and frame window styles 77
CWnd class 1017

Index 1159

Presentation data, OLE, implementing 653-656
PreTranslateMessage member function

CWinApp class 874
CWnd class 1018

PrevDlgCtrl member function
CDialog class 336

Preview See Print preview
Print preview

and CPrintlnfo structure 688
and CView 91
and documents 91
described 842, 848

PrintAll member function
CPrintDialog class 686

PrintCollate member function
CPrintDialog class 686

Printer escapes
CDC class 220

Printing
aborting current job 231
and CPrintlnfo structure 688
and documents 91
and views 85, 91
CPrintDialog class 679
described 845,847-848,850-851
ending

job 244
page 244

informing device driver of new job 319
installing abort procedure in job 303
job, called when adding or deleting from queue 1005
preparing printer driver to receive data 320

PrintlnsideRect member function
CEditView class 389

PrintRange member function
CPrintDialog class 686

PrintS election member function
CPrintDialog class 687

Private assignment operator 581
ProcessMessageFilter member function

CWinApp class 874
Process WndProcException member function

CWinApp class 128,875
Prompt strings, displaying 69

1160 Index

PtlnRect member function
CRect class 705

PtInRegion member function
CRgn class 723

PtVisible member function
CDC class 290

Pushbutton
CButton class 168

Pushbutton control, dialog boxes
changing default 337
getting default ID 332

Q
Query Abort member function

CDC class 291

R
Radio button

CButton class 168
Radio buttons

check-marking 903
CWnd, retrieving ID of check-marked 924
getting check state 172
setting

check state 174
highlighting control 173

Raster opertions 235
Raster-operation codes (list) 232
Read member function

and bypassing serializing 82
CArchive class 136
CFile class 401

CStdioFile::ReadString 768
Reading

archives
object data 136
specified number of bytes 136

data in CFile object file buffers 401
object to archive 580
text data into buffer from file associated with CStdioFile

object 768
ReadObject member function

CArchive class 136
CObject::Serialize 579

ReadOnly member function
CArchiveException class

CArchiveException::m3ause 141
ReadString member function

CStdioFile class 768

RealizePalette member function
CDC class 291

CGdiObject::UnrealizeObject 461
CPalette: :SetPaletteEntries 670

Reca1cLayout member function
CFrame Wnd class 454
CSplitterWnd class 754

ReconnectLink member function
COleClientltem class 621

RECT structure
CButton::Create 170
CComboBox::Create 198
CDC::DPtoLP 239
CDC::DrawFocusRect 240
CDC::DrawText 241
CDC::ExtTextOut 250
CDC::FillRect 251
CDC::FrameRect 253
CDC::GetClipBox 258
CDC::IntersectClipRect 282
CDC: : InvertRect 282
CDC::LPtoDP 284
CDC::Pie 287
CDC: : Rectangle 292
CDC::RectVisible 292
CDC: : RoundRect 294
CDC::ScrollDC 297
CDialog::MapDialogRect 334
CEdit::GetRect 373
CEdit::SetRect 379
CEdit::SetRectNP 380
CListBox::Create 476
CListBox::GetltemRect 484
CMenu::TrackPopupMenu 556
CRect class 698
CRect::CopyRect 701
CRect::CRect 701
CRect: : EqualRect 702
CRect: :IntersectRect 703
CRect::operator& 709
CRect::operator&= 709
CRect::operatorl 710
CRect::operatorl= 710
CRect::UnionRect 707
CRgn: :CreateEllipticRgnIndirect 716
CRgn::CreateRectRgnIndirect 719
CRgn::GetRgnBox 721
CRgn: :RectlnRegion 723
CRgn::SetRectRgn 724
CScrollBar::Create 727
CStatic::Create 757
CWnd::BeginPaint 900
CWnd::ClientToScreen 904

CWnd::GetClientRect 924
CWnd::GetUpdateRect 937
CWnd::GetWindowRect 940
CWnd::lnvalidateRect 943
CWnd::MoveWindow 951
CWnd::OnNcCalcSize 986
CWnd: :OnSizeClipboard 1004
CWnd::ScreenToClient 1022
CWnd::ScrollWindow 1022
CW nd:: ValidateRect 1041

Rectangle member function
CDC class 292

Rectangles
bitmaps, moving from source to destination 320
bounding

copying dimensions 940
list boxes, retrieving dimensions 484
of CRgn object, retrieving 721
retrieving dimensions around clipping boundary 258

calculating width of CRect 707
checking if within region 723
converting between CRect and LPRECT 708
copies dimensions of scrRect to CRect 708
copying to CRect 701
creating

CRect object 701
new clipping region 248
NULL 705

CWnd, validating client area 1041
determing

size 706
equality between two 702
equality to CRect 708
if empty 703
if top, left, bottom and right values equal 0 704
if within clipping region 292
inequality 708
whether specified point lies within 705

drawing
borders 253
sty Ie indicating focus 240
text in 241
with current pen 292
with rounded comers 294

enclosing update region, retrieving coordinates 937
filling with specified brush 251
formatting

setting in edit control 380
gray, creating for system caret 909
height, calculating 702
inflating or deflating 702
intersecting CRect with rect2 70910
invalidating client areas within 943
inverting contents 282

Rectangles (continued)
making

Index 1161

CRect equal to intersection of two rectangles 703
dimensions equal to intersection of two rectangles 707

moving 704, 709
referencing

bottom right point 700
top left pointt 706

regions, creating 719-720, 724
returning new rect equal to CRect plus point 709-710
scrolling 297
setting

CRect to equal intersection with rect 709
dimensions 705,379
equal to union with fect 710

structure, copying client coordinates of CWnd client
area into 924

RectDefault data member
CFrameWnd class 455

RectlnRegion member function
CRgn class 723

RectVisible member function
CDC class 292

Redrawing
allowing or preventing changes 1031
menu bars 918

RedrawWindow member function
CWnd class 1018

Refresh member function
CVBControl class 838

Region
CRgn class 713

Regions
checking

equivalent 720
if coordinates are within 723
if rectangle within CRgn object 723

combining 714
copying 715
creating

by combination 714
constructor 720
rectangular 719-720
series of polygonal 718

drawing borders around 253
elliptical, creating 716
filling, with brush 252, 286
handles 721
invalidating client areas within 945
moving 722
polygonal, creating 717
preventing drawing within areas 249
rectangular, creating 724
retrieving bounding rectangle coordinates 721

1162 Index

Regions (continued)
update

retrieving coordinates of smallest rectangle that
encloses 937

retrieving into specfified region 938
writing character strings withint 250

Register member function
COleServer class 639

RegisterClass function 42
RegisterClass Windows function

and AfxRegisterWndClass 1071
RegisterClientDoc member function

COleClientDoc class 603
Registered Windows Messages, message-map entry 62
Registering

client documents 603
OLE server

applications 1069
instances 639

server
documents 647
instances 661

window classes 42, 1056
RegisterServerDoc member function

COleServerDoc class 647
RegisterShellFileTypes member function

CWinApp class 32, 875
RegisterWindowMessage Windows function

and ON_REGISTERED_MESSAGE macro 1088
Registration database

document types, and document templates 342
Windows, and Afx01eRegisterServerName 1069

Release member function
COleClientltem class 621

ReleaseAttribDC member function
CDC class 293

ReleaseBuffer member function
CString class 783

ReleaseDC member function 44
CWnd class 1020

CDC::DeleteDC 238
ReleaseOutputDC member function

CDC class 293
Releasing device contents 1020
Remove member function

CFile class 401
RemoveAll member function

CMapStringToOb class 501
CObArray class 569
CObList class 595

RemoveAt member function
CObArray class 570
CObList class 596

RemoveCurrentDir member function
CFileException class

CFileException: :m_cause 419
RemoveHead member function

CObList class 597
Removeltem member function

COleDocument class 629
CVBControl class 838

RemoveKey member function
CMapStringToOb class 502

RemoveMenu member function
CMenu class 552

RemoveTail member function
CObList class 597

Remove View member function
CDocument class 352

Removing
elements from arrays 570
items from list boxes 488
menu items 554
pointers from arrays 569

Rename member function
CFile class 402
COleClientItem class 621

Renaming files 402
ReplaceAll member function

CFindReplaceDialog class 426
ReplaceCurrent member function

CFindReplaceDialog class 427
ReplaceSel member function

CEdit class 377
Replacing text in edit control 377
ReportSaveLoadException member function

CDocument class 353
RepositionBars member function

CWnd class 1020
Repositioning file pointers 405
RequestData member function

COleClientItem class 622
ResetContent member function

CComboBox class 210
CWnd::OnDeleteltem 961

CListBox class 486
CWnd::OnDeleteltem 961

ResetDC member function
CDC class 293

Resetting edit control undo flag 370
ResizePalette member function

CPalette class 670
ResizeParentToFit member function

CScrollView class 736
Resizing logical palettes 670

Resource handles
getting and setting 1056
retrieving 1064

Resource IDs, conventions 43, 119
RESOURCE.H file 118
Resources

and AfxSetResourceHandle function 1073
and AfxThrowResourceException 1074
and CButton class 168
and CComboBox class 191
and CFrameWnd class 446
and CListBox class 470
and message box 1066
document templates and 341
loading from EXE or DLL, and AfxSetResourceHandle

function 1073
menu, and MDI child windows 77
retrieving handles of 1064

RestoreDC member function
CDC class 294

Restore WaitCursor member function
CCmdTarget class 182

Restoring
MDI child window 524
Windows device context to previous state 294

Retrieving
character line index 375
Clipboard owner 924
deleting, from list boxes 479
finding, in list boxes 481
retrieving index of fIrst visible 487
list boxes

getting length 486
getting 486
scrolling selected 491
searching for matching 489
scroll-bar thumb current position 729
selecting 493

menu items, copying 548
ReverseFind member function

CString class 784
Revoke member function

COleClientDoc class 603
COleServerDoc class 648
COleServerItem class 658

Revoking, server documents 648
Right member function

CString class 784
RoundRect member function

CDC class 294
Run member function

called by WinMain 29
CWinApp class 876
described 31,51,56

Index 1163

Run-time structures, getting for CObject-derived class 578
Run-time object

creation
and DECLARE_DYNCREATE macro 1081
IMPLEMENT_DYNCREATE macro 1084

model services
dynamic object creation 1048
macros 1048
serialization 1048

Run-time type identification
support provided by CObject class 122
using CRuntimeClass 725

RunEmbedded member function
COleTemplateServer class 661

RUNTIME_CLASS macro 34,1089
and CMDIChildWnd class 513
and frame window 74

s
SaveAllModified member function

CWinApp class 876
SaveDC member function

CDC class 295
SaveModifIed member function

CDocument class 353
Saving

device context current state 295
objects, CArchive class 131

Scale ViewportExt member function
CDC class 296

ScaleWindowExt member function
CDC class 296

Scaling
CView class 85
views 85

Schema number
and CRuntimeClass 725

Screen display, using CView class 847
ScreenToClient member function

CWnd class 1021
Scroll bar control

CScrollBar class 726
Scroll bars

and splitter windows 746
copying

current minimum 935
current minimum and maximum positions 936
position to specified locations 730

creating
constructor 729
initializing 727

displaying 1041
hiding 1041

1164 Index

Scroll bars (continued)
horizontal

called when event occurs in Clipboard viewer's 976
called when user clicks 975

setting position range, CWnd::SetScrollRange 731,1033
thumb

retrieving current postion 729
setting position 730

vertical
called when clicked 10 13
called with event in 10 14

Scroll boxes
retrieving 935
retrieving current position 935
setting to specified position 1031

Scroll-bar thumb, retrieveing current position 729
ScrollDC member function

CDC class 297
Scrolling

CDC class 220
CView class 85
CWnd 1022
horizontally, called when user clicks on bar 975
list boxes

setting width 492
retrieving event 483

text 376
views 85

ScrollToPosition member function
CScrollView class 737

ScrollWindow member function
CWnd class 1021

ScrollWindowEx member function
CWnd class 1022

SDI
and CMainFrame 73

SDI applications
and CFrameWnd class 446
and frame window 71, 73
described 20
document templates for 740
window classes 40

SearchDown member function
CFindReplaceDialog class 427

Searching
dialog box controls, previous 931
for first matching CObject pointer 586
for specified window 921
for strings, list box of combo box 210
strings

first character match 777
first substring match 776
in list box of combo box 202

window-manager's 933

Seconds, getting 805,812
Seek member function

and bypass serializing 82
CFile class 403

SeekToBegin member function
CFile class 403

SeekToEnd member function
CFile class 404

Se1ectClipRgn member function
CDC class 298

SelectGdiObject member function
CDC class

CBitmap::CreateBitmap 149
CBitmap: :CreateBitmaplndirect 150
CBitmap: :CreateDiscardableBitmap 153
CFont::CreateFontIndirect 433

Selecting, consecutive items in list box 489
Selection

and OLE 601
CView support 846

Se1ectObject member function
CDC class 299

CBitmap::CreateBitmap 149
CBitmap: :CreateBitmaplndirect 150
CBitmap: :CreateDiscardableBitmap 153
CFont::CreateFontIndirect 433

CMetaFileDC class
CBitmap: : CreateBitmap 149
CBitmap::CreateBitmaplndirect 150
CBitmap: :CreateDiscardableBitmap 153
CFont::CreateFontlndirect 433

SelectObject member function, CDC class 47
SelectPalette member function

CDC class 300
SelectStockObject member function

CDC class
CDC::SelectStockObject 301

SelectString member function
CComboBox class 210
CListBox class 487

SelItemRange member function
CListBox class 487

SendDlgItemMessage member function
CWnd class 1024

Sending, messages to windows 1026
SendMessage member function

CWnd class 64, 1026
SendMessageToDescendants member function

CWnd class 1025
Serialization 1048

as a form of object persistence 123
CArchive class 131
described 123-124
testing objects for eligibility 579

Serialization exceptions, archives
specifying cause 141
constructing objects 140

Serialize member function 80
and bypassing serializing 81
and CDocument 79
CObject class 579

SerializeRaw member function
CEditView class 390

Serializing 80
and App Wizard 81
bypassing serializing 81
objects

and DECLARE_SERIAL macro 1083
IMPLEMENT_SERIAL macro 1085

Server applications, OLE
classes for writing 15
document classes 640
full 660
instance registration 635, 639, 661
item classes 649
launching 661
mini 633
revoking 634
server classes 633, 660

Sessions
called to inform CWnd of end 970
called when ending 997

SetAbortProc member function
CDC class 302

SetActive View member function
CFrame Wnd class 455

SetActive Window member function
CWnd class 1025

SetAt member function
CMapStringToOb class 503
CObArray class 571
CObList class 598
CString class 785

SetAtGrow member function
CObArray class 572

SetAttribDC member function
CDC class 304

SetBitmapBits member function
CBitmap class 157

SetBitmapDimension member function
CBitmap class 157

SetBkColor member function
CDC class 304

SetBkMode member function
CDC class 304

SetBounds member function
COleClientltem class 622

SetBoundsRect member function
CDC class 305

SetBoxLayout member function
CBEdit class 147

SetBrushOrg member function
CDC class 306

CGdiObject::UnrealizeObject 461
SetButtonInfo member function

CToolBar class 821
SetButtons member function

CToolBar class 821
SetButtonStyle member function

CButton class 174
SetCapture member function

CWnd class 1025
SetCaretlndex member function

CListBox class 488
SetCaretPos member function

CWnd class 1026
SetCheck member function

CButton class 174
CCmdUI class 185

SetClipboardViewer member function
CWnd class 1026

SetColorScheme member function
COleClientItem class 623

SetColumnInfo member function
CSplitterWnd class 754

SetColumn Width member function
CListBox class 488

SetCurrentColor member function
CColorDialog class 189

SetCurSel member function
CComboBox class 210
CListBox class 488

SetData member function
COleClientItem class 623

SetDefiD member function
CDialog class 337

SetDepth member function
CDumpContext class 359

SetDialogBkColor member function
CWinApp class 877

SetDlgltemInt member function
CWnd class 1027

SetDlgltemText member function
CWnd class 1027

SetEditSel member function
CComboBox class 211

SetExtendedUI member function
CComboBox class 211

SetFloatProperty member function
CVBControl class 839

Index 1165

1166 Index

SetFocus member function
CDialog class 109
CWnd class 1027

SetFont member function
CWnd class 1028

SetHandle member function
CEdit class 377

SetH eight member function
CToolBar class 822

SetHelpID member function
CDialog class 337

SetHorizontalExtent member function
CListBox class 489

SetHostNames member function
COleClientltem class 624

Setlcon member function
CStatic class 759

Setlndicators member function
CScrollBar class 113
CStatusBar class 764

SetInflate member function
CHEdit class 468

SetInkMode member function
CHEdit class 468

SetltemData member function
CComboBox class 212
CListBox class 489

SetltemDataPtr member function
CComboBox class 212
CListBox class 489

SetltemHeight member function
CComboBox class 213
CListBox class 490

SetltemName member function
COleServerItem class 659

SetLength member function
CFile class 404

SetLink U pdateOptions member function
COleClientltem class 624

SetMapMode member function
CDC class 306

SetMapperFlags member function
CDC class 308

SetMaxPage member function
CPrintInfo class 690

SetMenu member function
CMenu class 534
CWnd class 1028

SetMenultemBitmaps member function
CMenu class 558

SetMinPage member function
CPrintlnfo class 691

SetModifiedFlag member function
CDocument class 354

SetModify member function
CEdit class 378

SetNumProperty member function
CVBControl class 839

SetOutputDC member function
CDC class 308

SetPaletteEntries member function
CPalette class 670

SetPaneInfo member function
CStatusBar class 764

SetPaneText member function
CStatusBar class 765

SetParent member function
CWnd class 1029

SetPasswordChar member function
CEdit class 378

SetPathName member function
CDocument class 354

SetPictureProperty member function
CVBControl class 840

SetPixel member function
CDC class 309

SetPolyFillMode member function
CDC class 309

SetPrinterFont member function
CEditView class 390

SetRadio member function
CCmdUI class 185

SetRC member function
CHEdit class 468

SetReadOnly member function
CEdit class 379

SetRect member function
CEdit class 379
CRect class 705

SetRectEmpty member function
CRect class 705

SetRectNP member function
CEdit class 380

SetRectRgn member function
CRgn class 724

SetRedraw member function
CWnd class 1031

SetROP2 member function
CDC class 310

SetRow Info member function
CSplitterWnd class 755

SetScaleToFitSize member function
CScrollView class 737

SetScrollPos member function
CScrollBar class 730
CW nd class 1029

SetScrollRange member function
CScrollBar class 731
CWnd class 1030

SetScrollSizes member function
CScrollView class 738

SetSel member function
CEdit class 380
CListBox class 490

SetSize member function
CObArray class 572

SetSizes member function
CToolBar class 822

SetS tate member function
CButton class 175

SetStatus member function
CFile class 404

SetStretchBltMode member function
CDC class 311

SetStrProperty member function
CVBControl class 841

SetTabStops member function
CEdit class 381
CEditView class 390
CListBox class 491

SetTargetDevice member function
COleClientltem class 625

SetText member function
CCmdUI class 185

SetTextAlign member function
CDC class 312

SetTextCharacterExtra member function
CDC class 313

SetTextColor member function
CDC class 313

SetTextJustification member function
CDC class 314

SetTimer member function
CWnd class 1031

Setting
background mode 306
bitmap bits to values 157
bitmap-stretching mode 311
characters, range in edit control 380
colors

background 306
text 314

CWnd control caption or text 1029
depth of dump 358
device contexts, x- and y-extents for associated

windows 317
drawing mode 310
dump depth 358
files, status 406
fonts, CWnd 1030

Index 1167

Setting (continued)
formatting rectangle of multiple-line edit control 379-380
intercharacter spacing 313
mapping mode 308
menus, current to specified 1030
passwords 378
pixels at specified point 309
polygon-filling mode 309
scroll bar position range 731, 1033
scroll-bar thumb position 730
system timer 1035
windows, size, position, ordering 1037

SetTitle member function
CDocument class 354

SetToplndex member function
CListBox class 492

SetUnderline member function
CHEdit class 469

SetViewportExt member function
CDC class 315

SetViewportOrg member function
CDC class 315

SetWindowExt member function
CDC class 316

SetWindowOrg member function
CDC class 317

SetWindowPlacement member function
CWnd class 1031

SetWindowPos member function
CWnd class 1033

SetWindowText member function
CWnd class 1036

CEdit::ReplaceSel 377
SharingViolation member function

CFileException class
CFileException: :m_cause 419

Shell registration
performed by CWinApp class 32

ShellExecute Windows function
and CFrame Wnd class 446

Shift+Fl help 117
ShowCaret member function

CWnd class 1036
ShowDropDown member function

CComboBox class 213
Showing, list box of combo box 213
ShowOwnedPopups member function

CWnd class 1037
ShowScrollBar member function

CScrollBar class 731
CWnd class 1037

ShowWindow member function
CWnd class 1038

CWinApp: :m_nCmdShow 880

1168 Index

Single document interface
and CFrame Wnd class 446
and CMainFrame 73
and frame window 71, 73

Single document interface applications See SDI applications
Size

adding to CSize 745
arrays

establishing 572
returning 567

checking
equality between sizes 744
inequality between sizes 745

creating CSize object 744
returning

difference between two 745
returning sum of two 745

subtracting 745
Size member function

CRect class 706
SIZE structure

CSize class 743
SizeToContent member function

CBitmapButton class 161
Spacing, intercharacter, retrieving setting 275
SpanExcluding member function

CString class 785
SpanIncluding member function

CString class 786
Splitter windows 88

CSplitterWnd class 746
Standard commands 1056
StartDoc member function

CDC class 318
StartPage member function

CDC class 319
Static control

creating
attaching 757
constructor 759

CStatic class 756
Static splitter window

CSplitterWnd class 746
Status

fIles
getting 399
setting 406

menu items, specifying 545
Status bar

CStatusBar class 760
described 95, 111
displaying information in 69
indicator panes 113

Status bar (continued)
managing, and frame window 76
separators 113

Status-bar panes
updating 183,67

stderr, MS-DOS
CDumpContext class 356

Stdio files 766
Stock objects, retrieving handle to,

CGdiObject::CreateStockObject 457
StopInkMode member function

CREdit class 469
Storing

object or primitive type 138
specified object to 137

Storing objects
CArchive class 131

Stream files 766
StretchBlt member function

CDC class 319
Strings

adding
list boxes 474
to list box of combo box 196
to list boxes, items 485

character
retrieving width, height 272
writing to regions 250
writing 322-323

comparing two 773-774
converting

characters from ANSI to OEM character set 773
characters from OEM to ANSI character set 783
CString object to lowercase 781
CString object to uppercase 782

corresponding to CTime object
converted 801-802
unconverted 801-802

corresponding to CTimeSpan, generating 810
extracting

first characters from CString object and
returning copy 780

from CString object the largest substring excluding
specified characters 785-786

last characters from CString object and
returning copy 784

substring of specified length and returning copy 782
formatting 1062-1063
getting, from list box of combo box 207
inserting, list box of combo box 208
justifying 314
list box in combo box 200
making CString object an empty string 776

Strings (continued)
manipulating, CString class 770
overwriting specified character 785
reading specified Windows string resource 781
returning

character specified by index 777
count of characters in CString object 780
pointer to internal character buffer and matching

length 779
pointer to internal character buffer for CString

object 778
reversing character order in CString object 782
searching

CString object for last substring match 784
first character match 777
first substring match 776
list box of combo box 202

searching for
list box of combo box 210
list box of combo box 210

setting to specified integer value 1029
support provided by CString class 126
terminating use of buffer 783
testing 1066

CString object for empty condition 780
pointers to 1066

Styles
button

changing 174
getting 172

message box, and AfxMessage Box 1066
windows 936

SubclassDlgItem member function
CDialog class 110-111
CWnd class 1039

Subclassing, dynamic 111
Subclass Window member function

CWnd class 1039
Subscript operator

CObArray class 573
CString class 790

Subtracting
sizes 745
time spans 813

Subtraction operator
CRect class 709, 710

SubtractRect member function
CRect class 706

System, time, called after change 1011
System palette

CPalette class 666

T
Tab stops, setting

edit control 381
list boxes 494

TabbedTextOut member function
CDC class 321

Technical Note 28 117
Template (dialog resource) 96
Terminating dialog boxes, modal 331
Termination

AfxAbort 1058
Testing, objects for class derivation 579
Text

alignment flags, retrieving status 274
caption titles, returning length 941
colors

retrieving current 276
setting 314

computing line dimensions 276
CWnd, setting 1029
dialog boxes, retrieving 930
drawing dimmed 279
formatted, drawing in rectangle 241
getting from list boxes 486
lines, retrieving number of 372

Index 1169

replacing current selection in edit control 377
scrolling in multiple-line edit control 376
setting

alignment flags 312
caption title to specified 1040
justification 314
to specified integer value 1029

specifying length in an edit control 374
window captions, copying into specified buffer 941
writing string at specified location 322

TextOut member function
CDC class 322

THROW macro 128, 1090
THROW_LAST macro 1090
ThrowErmo data member

CFileException class 418
ThrowErmo member function

CFileException class 418
ThrowOsError data member

CFileException class 418
ThrowOsError member function

CFileException class 418
Time

absolute, representing 806
adding and subtracting CTimeSpan object 807
comparing absolute, CTime comparison operators 806
creating CTime object 799
CTime class 798

1170 Index

Time (continued)
current 801-802
day

of month 803
of week 803

diagnostic dumping and storing to archive 808
generating formatted string

converted 801-802
unconverted 801-802

getting
struct tm with local time decomposition 804
struct tm with UCT decomposition 803
time_t value for CTime object 805

hours, getting 804
minutes, getting 805
months, getting 805
seconds, getting 805
source, copying into CTime object 806
span, adding and subtracting 813
system, called after change 1011

Timers
called at specified intervals 1012
killing specified event 949
system, installing 1035

Title, window, and frame window 77
Toolbar

as source of commands 54
buttons and commands 112
controls 112
described 95, 111-112
processing of mouse clicks 112
substitutes for menu commands 112

Toolbar buttons
managing, and frame window 76
updating 67, 183

tooManyOpenFiles member function
CFileException class 419

TopLeft member function
CRect class 706

TRACE macro 1091
described 127
enabled 1075

TRACEO 1091
TRACE 1 1092
TRACE2 1092
TRACE3 1093
TRACER.EXE 1075
TrackPopupMenu member function

CMenu class 554
Translating

CWinApp message s before dispatched to
DispatchMessage function 1018

text, of specified dialog box control into integer value 929
TranslateAccelerator Windows function 1005

TRY macro 1093
TTime operator

CTime class 801-802
Two-phase construction 43
Two-stage construction 46
Type identification

support provided by CObject class 122
using CRuntimeClass 725

Type information, for document classes 342
typename Object command

AfxOleSetEditMenu function 1070

u
Undo flag

clearing, resetting 370
returning edit operations status 366

Undo member function
CEdit class 382

Undoing, last operation in edit control 382
Union operator

CMapStringToOb class 504
CRect class 708, 710
CString class 790

UnionRect member function
CRect class 707

UnloadVBXFile member function
CWinApp class 877

Unlocking, files, range of bytes in 405
UnlockRange member function

CFile class 405
UnrealizeObject member function

CBrush class
CWnd::OnEraseBkgnd 971

CGdiObject class 461
Update commands, message-map entry 62
Update handlers 67-68
Update region, retrieving

coordinates of smallest rectangle that encloses 937
into specified region 938

UpdateAllViews member function
and view drawing 83
CDocument class 355

UpdateColors member function
CDC class 323

UpdateData member function
CDialog class 100, 102
CWnd class 1040

UpdateDialogControls member function
CWnd class 1040

UpdateLink member function
COleClientltem class 625

UpdateWindow member function
CWnd class 1041

Updating
client areas, CWnd::UpdateWindows 1041
user-interface objects 67

Updating user-interface objects 183
User-defined messages, message-map entry 62
User-interface objects, updating 67
Using Help command 115

v
ValidateRect member function

CWnd class 1041
ValidateRgn member function

CWnd class 1042
Validating, client area within given rectangle 1041-1042
Validity checking

objects 575
support provided by CObject class 122

VB event
and AfxRegisterVBEvent 1071

VBX control events, message-map entry 62
VBX Controls 108

event handling 1053
ON_ VBXEVENT macro 1089

Verbs, OLE
AfxOleSetEditMenu function 1070
implementing 653-654
invoking 607, 614

VERIFY macro 127,1093
View classes, listed 7
View menu commands, listed 55
Viewports

CDC class 220
modifying

extents 296
origin 285

retrieving
device contexts' extents 278
origin coordinates associated with device context 279

setting

Views

origin of device context 316
x- and y-extent 316

accessing document 80
activating 846
adjusting device contexts 850
and

CDocTemplate 74
CRuntimeClass 74
frame windows 71
FWS_ADDTOTITLE style 77
print preview 91
printing 85,91
scaling 85

Views (continued)
and (continued)

scrolling 85
user input 84

attaching to documents 347
creating 34,36, 74, 442
default command routing 57
described 21,41,71,344,842
detaching from documents 353
displaying data 82

Index 1171

document templates and 341,559, 740
initializing 849
multiple, and MDI applications 87
relationship

to other classes 35
with document 78

role in framework 842
updating 849,853

Visual Basic

w

controls, using 827
event, and AFxRegisterVBEvent 1071
ON_ VBXEVENT macro 1089

Weeks, days, getting 803
WHITERECT structure

CStatic::Create 757
Width member function

CRect class 707
WIN .INI, called after change made 10 16
Window classes

described 21,39-40,42
listed 6
types of message handled 53

Window IDs 1057
Window messages, message-map entry 62
Window objects

creating 43
destroying 43
using 44

Window menu commands, listed 55
WindowFromPoint member function

CWnd class 1042
WindowProc member function 56

CWnd class 1043
Windows

activating or deactivating 952
active,CWnd object, returning pointer to 923
applications, creating and displaying message 950
bitmaps, loading 156
called

for Clipboard owner when Clipboard contents
emptied 965

1172 Index

Windows (continued)
called (continued)

when activating for different task 952
when device-mode settings change 965

captions
copying into specified buffer 941
returning length 941

carets, getting current position 923
changing

position and dimensions 951
size, position, ordering 1037

Clipboard
called for each window in viewer chain when contents

change 965
viewer, getting first window in 926

closing, signalling confirmation 954
colors, called when change made 1006
containing given point, identifying 1042
creating, containing application-supplied message 950
CWnd class 884

displaying 1042
making active 1027
retrieving 930

default procedure, calling 910-911
display context, retrieving 939
displaying 1042
enabling for mouse and keyboard input 948
flashing once 921
fonts, called when changing 972
frame 449

See also Frame windows
creating 520
replacing menu of MDI 524

GDIobjects
attaching 457
detaching 459
deleting from memory 458
retrieving handle to 457

handles 912,934
hiding, called when 1003
iconic, specifying 946
initialization file, called after change made 1016
input control, CWnd 972
manager's 932
manager's list, searching for next or previous 932
MDI, activating different child window 521
memory compacting specification 955
menus

returning pointer to CWnd's 932
specifying handle to 539

messages
calling default procedure 910-911
described 23,40
sending 1026

Windows (continued)
minimized, called if about to be dragged 997
modifying extents 296
nonclient area, called when needing change to indicate

state 986
open, called when user requests 999
origin

modifying 285
retrieving coordinates 279

overlapping, bringing CWnd to top of stack 901
parent, retrieving 933
pop-up, associated with CWnd object, showing

or hiding 1041
retrieving, coordinates associated with device context 279
setting

origin of device context 318
x- and y-extents 317

title, and frame window 77
topmost 1063

Windows applications
accessing command-line arguments entered at start 881
cleaning up at termination 860
creating object, constructor 858
handle

to current instance 880
to previous instance 881

icon resource, loading
predefined 865-866
specified 864

idle-time processing 872
instance initializing 863
loading

Windows predefined cursor resource 864-865
specifed cursor resource 863

making main window visible 880
messages

filtering 874
providing default loop 876

name 881
one-time initializing 862

storing pointer to main window object 880
Windows class styles

and AfxRegisterWndClass 1071
Windows Edit control

creating and attaching to CEdit object 367
current selection

clearing 367
copying 367
cutting, deleting 370

undo flag, resetting 370
Windows for Pen Computing

CHEdit class 462
classes supporting 108

Windows messages
and Class Wizard 97
and documents 82
and views 82
described 52
mapping to classes 105
message handlers 63

example 64
Windows registration database

AfxOleRegisterServerN ame 1069
Windows windows

attaching to CWnd object 900
called to know maximumized position of dimensions 973
desktop, returning 928
destroying 911

Windows, child
activating next child 523
arranging

in tiled format 525
arranging minimized 900

called
on activation or deactivation 980
upon creation or destruction 996
when about to be drawn 960
when about to be drawn 960
when changing size or position 954

changing
size, position, ordering 1037
parent 1031

creating
and attaching 515
attaching to CWnd object 904
constructor 515,910

CWnd, returning ID 929
determining which contains specified point 903
handling activation message 516
identifying 946
MDI

activating 521
arranging in cascade 522
destroying 517
maximizing 517, 523
restoring 517
returning current 522

minimized, arranging 523
restoring 524
searching, for top level 937

WinHelp, and CFrameWnd class 446
WinHelp member function

CWinApp class 115-117,877
WINHELP.EXE 116
WinMain function

and CWinApp class 854
Windows programming 29

WM_CHANGECBCHAIN message
CWnd::OnChangeCbChain 954
CWnd: :SetClipboardViewer 1028

WM_CHAR message
CWnd::OnCharToltem 955
CWnd::OnGetDlgCode 972

WM_CHARTOITEM message
CListBox::Create 476

WM_CHILDACTIVATE message
CWnd::OnChildActivate 954

WM_COMMAND message
CWnd::OnCommand 955
CWnd::OnSysCommand 1007

WM_COMPAREITEM message
CWnd::OnCompareltem 956

WM_CREATE message
CButton: : Create 170
CComboBox::Create 198
CEdit::Create 367
CListBox::Create 476
CWnd::CreateEx 907
CWnd::OnNcCreate 987

WM_CTLCOLOR message
CStatic::Create 757
CWnd::OnCtlColor 960

WM_DESTROY message
CWnd::DestroyWindow 911
CWnd: :SetClipboardViewer 1028

WM_DESTROYCLIPBOARD message
CWnd: :OnDestroyClipboard 965

WM_DEVMODECHANGE message
CWnd::OnDevModeChange 965

WM_DRA WCLIPBOARD message
CWnd: :OnDrawClipboard 965
CWnd: :SetClipboardViewer 1028

WM_DRA WITEM message
CButton::Create 170
CMenu::AppendMenu 537

WM_ENABLE message
CWnd::EnableWindow 919

WM_ENDSESSION message
CWnd::OnQueryEndSession 997

WM_ENTERIDLE message
CWnd: :CreateEx 907

WM_ERASEBKGND message
CWnd::GetUpdateRect 937
CWnd::OnEraseBkgnd 971
CWnd::OnIconEraseBkgnd 977

WM_FONTCHANGE message
CWnd::OnFontChange 972

WM_GETDLGCODE message
CDialog: :IsDialogMessage 333
CWnd::OnGetDlgCode 972

Index 1173

1174 Index

WM_GETMINMAXINFO message
CButton::Create 170
CComboBox::Create 198
CEdit::Create 367
CListBox::Create 476
CWnd::CreateEx 907

WM_GETTEXT message
CEdit::FmtLines 370
CWnd::GetDlgltemInt 929

WM_HSCROLL
and splitter windows 746

WM_INITDIALOG message
CDialog::Create 329
CDialog: :Createlndirect 330
CDialog::OnlnitDialog 335
CWnd::OnMeasureltem 980

WM_INITMENU message
CWnd::GetSystemMenu 936

WM_KEYDOWN message
CWnd::OnSysKeyUp 1010
CWnd::OnVKeyToltem 1012

WM_KEYUP message
CWnd::OnSysKeyUp 1010

WM_KILLFOCUS message
CWnd::SetFocus 1029

WM_LBUTTONDBLCLK message
CWnd::OnLButtonDblClk 980

WM_LBUTTONDOWN message
CWnd::OnLButtonDblClk 980

WM_MBUTTONDBLCLK message
CWnd::OnMButtonDblClk 978

WM_MBUTTONDOWN message
CWnd::OnMButtonDblClk 978

WM_MDIACTIVATE message
CMDIFrameWnd::MDIActivate 521

WM_MEASUREITEM message
CButton::Create 170
CMenu::AppendMenu 537

WM_MENUCHAR message
CWnd::OnMenuChar 982

WM_MOUSEACTIV ATE message
CWnd::OnMouseActivate 984

WM_MOUSEMOVE message
CWnd::OnMouseMove 985

WM_NCACTIVATE message
CMDIFrameWnd::MDIActivate 521
CWnd::OnMDIActivate 980
CWnd::OnNcActivate 986

WM_NCCALCSIZE message
CButton::Create 170
CComboBox::Create 198
CEdit: : Create 367
CListBox::Create 476
CWnd::CreateEx 907

WM_NCCREATE message
CButton::Create 170
CComboBox::Create 198
CEdit::Create 367
CListBox::Create 476
CWnd::CreateEx 907
CWnd::OnNcCreate 987

WM_NCDESTROY message
CWnd::DestroyWindow 911
CWnd::OnNcDestroy 989

WM_NCHITTEST message
CWnd::OnNcHitTest 989

WM_ONERASEBKGND message
CWnd::BeginPaint 900

WM_PAINT
and view drawing 83
CPaintDC class 663

WM_PAINT message
CWnd::BeginPaint 900
CWnd::OnPaint 995
CWnd::ScrollWindow 1022
CWnd::ValidateRect 1041

WM_PARENTNOTIFY message
CWnd::DestroyWindow 911

WM_QUERYDRAGICON message
CWnd::OnQueryDragIcon 997

WM_QUERYENDSESSION message
CWnd::OnQueryEndSession 997

WM_QUERYNEWPALETTE message
CWnd::OnQueryNewPalette 999

WM_QUERYOPEN message
CWnd::OnQueryOpen 999

WM_QUIT message
CWinApp::Run 877

WM_RBUTTONDBLCLK message
CWnd::OnRButtonDblClk 999

WM_RBUTTONDOWN message
CWnd::OnRButtonDblClk 999

WM_RCRESULT 462
WM_SETCURSOR message

CWnd: :OnSetCursor 1002
WM_SETFOCUS message

CWnd::SetFocus 1029
WM_SETFONT message

CDialog::Create 329
CDialog::Createlndirect 330
CDialog::OnSetFont 336

WM_SETREDRA W message
CListBox::Create 476

WM_SYSCHAR message
CWnd::SetFocus 1029

WM_SYSCOMMAND message
CWnd::GetSystemMenu 936
CWnd::OnCommand 955

WM_SYSCOMMAND message (continued)
CWnd::OnNcLButtonDbIClk 990
CWnd::OnNcLButtonDown 991
CWnd::OnNcLButtonUp 991
CWnd::OnNcMouseMove 993
CWnd::OnSysCommand 1007

WM_SYSKEYDOWN message
CWnd::OnSysChar 1005
CWnd::OnSysKeyDown 1009
CWnd::SetFocus 1029

WM_SYSKEYUP message
CWnd::OnSysChar 1005
CWnd::OnSysKeyDown 1009
CWnd::OnSysKeyUp 1010
CWnd::SetFocus 1029

WM_TIMECHANGE message
CWnd::OnTimeChange 1011

WM_ TIMER message
CWnd::KillTimer 949
CWnd::SetTimer 1035

WM_ VKEYTOITEM message
CListBox::Create 476
CWnd::OnVKeyToltem 1012

WM_ VSCROLL, and splitter windows 746
WM_ WININICHANGE message

CWnd::OnWinlniChange 1016
WndProc Windows function 42

and CWnd class 884
Write member function

and bypassing serializing 82
CArchive class 137
CFile class 406

CStdioFile::WriteString 769
WriteObject member function

CArchive class 137
CObject::Serialize 579

writeOnly member function
CArchiveException class

CArchiveException: :m3ause 141
WriteProfilelnt member function

CWinApp class 878
WriteProfileString member function

CWinApp class 878
Write String member function

CStdioFile class 769
Writing

character strings, to regions 250
data from buffer to CFile object-associated file 406
data from buffer to file associated with CStdioFi1e

object 769
object to archive 580
to archives 137

WS_HSCROLL
and frame windows 77
and splitter windows 746

WS_VSCROLL

v

and frame windows 77
and splitter windows 746

Years, getting 806

Index 1175

@
Recyclable

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-63

11111111 II
* 3 5 743 *

