
Designed for

Microsoft· ­
Windows NT·
Windows·95

Complete documentation for
Microsoft Visual C++ version 5.0

MFC Library 8eference,
Part 1

nee Set

Microsoft Press

·c soft®

lSualC+T
MFC Library Reference,
Part1

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ MFC Library Reference / Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-518-0
1. C++ (Computer program language) 2. Microsoft Visual C++.

3. Microsoft foundation class library. I. Microsoft Corporation.
QA76.73.CI53M535 1997
005.26'8--dc21 97-2421

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 2 1 0 9 8 7

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc. FoxPro, Microsoft,
Microsoft Press, MS, MS-DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. Other product and company names mentioned herein
may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Contents

Part 1
Introduction xi

Class Library Overview 1
About the Microsoft Foundation Classes

Root Class: CObject 4

MFC Application Architecture Classes 5

Window, Dialog, and Control Classes 10

Drawing and Printing Classes 17

Simple Data Type Classes 19

Array, List, and Map Classes 20

File and Database Classes 22

Internet and Networking Classes 25

OLE Classes 27

Debugging and Exception Classes 32

Alphabetical Reference to the Microsoft Foundation Class Library 35
CAnimateCtrl 35

CArchive 40

CArchiveException 59

CArray 61

CAsyncMonikerFile 71

CAsyncSocket 80

CBitmap 113

CBitmapButton 123

CBrush 127

CButton 136

CByteArray 145

CCachedDataPathProperty 147

CCheckListBox 149

CClientDC 156

CCmdTarget 158

iii

Contents

iv

CCmdUI 168

CColorDialog 172

CComboBox 177

CCommandLinelnfo 202

CCommonDialog 208

CConnectionPoint 210

CControlBar 214

CCreateContext 222

CCriticalSection 224

CCtrlView 227

CDaoDatabase 229

CDaoException 251

CDaoFieldExchange 256

CDaoQueryDef 260

CDaoRecordset 280

CDaoRecordView 348

CDaoTableDef 354

CDaoWorkspace 378

CDatabase 402

CDataExchange 419
CDataPathProperty 423

CDBException 427

CDBVariant 431

CDC 436

CDialog 563

CDialogBar 575

CDocItem 577

CDockState 579

CDocObjectServer 582

CDocObjectServerItem 586

CDocTemplate 589

CDocument 601
CDragListBox 620

CDumpContext 624

CDWordArray 629

CEdit 631

CEditView 653

CEvent 663

CException 667

CFieldExchange 672

CFile 676

CFileDialog 694

CFileException 704

CFileFind 709

CFindReplaceDialog 721

CFont 728

CFontDialog 737

CFontHolder 743

CForm View 747

CFrameWnd 751

CFtpConnection 770
CFtpFileFind 780

CGdiObject 783

CGopherConnection 790

CGopherFile 794

CGopherFileFind 796

CGopherLocator 800

CHeaderCtrl 803

CHotKeyCtrl 810

CHtmlStream 814

CHttpConnection 822

CHttpFile 825

CHttpFilter 833

CHttpFilterContext 844

CHttpServer 850

CHttpServerContext 860

CImageList 868

CIntemetConnection 881

CIntemetException 884

CIntemetFile 886

CIntemetSession 893

CList 909

CListBox 920

CListCtrl 945

CListView 976
CLongBinary 978

CMap 980

CMapPtrToPtr 986

Contents

v

Contents

vi

CMapPtrTo Word 988

CMapStringToOb 990

CMapStringToPtr 998

CMapStringToString 1000

CMap WordToOb 1002

CMapWordToPtr 1004

CMDIChildWnd 1006

CMDIFrameWnd 1011

CMemFile 1019

CMemoryException 1025

CMemoryState 1026

CMenu 1030

CMetaFileDC 1053

CMiniFrameWnd 1058

CMonikerFile 1060

CMultiDocTemplate 1064

CMultiLock 1067

CMutex 1071

CNotSupportedException 1073

CObArray 1074

CObject 1091

CObList 1099

COleBusyDialog 1116

COleChangeIconDialog 1120

COleChangeSourceDialog 1124

COleClientltem 1129

COleCmdUI 1173

COleControl 1176

COleControlModule 1256

COleConvertDialog 1257

COleCurrency 1263

COleDataObject 1275

COleDataSource 1282

COleDateTime 1293

Index

Part 2
COleDateTimeSpan 1317

COleDialog 1332

COleDispatchDriver 1334

COleDispatchException 1341

COleDocument 1344

COleDropSource 1356

COleDropTarget 1359

COleException 1366

COlelnsertDialog 1368

COleIPFrameWnd 1374

COleLinkingDoc 1377

COleLinksDialog 1381

COleMessageFilter 1384

COleObjectFactory 1391

COlePasteSpecialDialog 1398

COlePropertiesDialog 1405

COlePropertyPage 1410

COleResizeBar 1417

COleSafeArray 1419

COleServerDoc 1431

COleServerItem 1450

COleStreamFile 1470

COleTemplateServer 1474

COleUpdateDialog 1477

COleVariant 1479

CPageSetupDialog 1487

CPaintDC 1495

CPalette 1497

CPen 1503

CPictureHolder 1510

CPoint 1515

CPrintDialog 1521

CPrintInfo 1530

CProgressCtrl 1538

CPropertyPage 1542

CPropertySheet 1551

Contents

vii

Contents

viii

CPropExchange 1563

CPtrArray 1568

CPtrList 1570

CRecentFileList 1572

CRecordset 1576

CRecordView 1633

CRect 1639

CRectTracker 1657

CResourceException 1666

CRgn 1667

CRichEditCntrItem 1681

CRichEditCtrl 1683

CRichEditDoc 1711

CRichEditView 1714

CRuntimeClass 1735

CScrollBar 1737
CScrollView 1744

CSemaphore 1752

CSharedFile 1754

CSingleDocTemplate 1757

CSingleLock 1760

CSize 1763

CSliderCtrl 1767

CSocket 1779

CSocketFile 1785

CSpinButtonCtrl 1787

CSplitterWnd 1794

CStatic 1812

CStatusBar 1818

CStatusBarCtrl 1825

CStdioFile 1833

CString 1837

CStringArray 1863

CStringList 1865

CSyncObject 1867

CTabCtrl 1870

CTime 1882

CTimeSpan 1894

CToolBar 1901

CToolBarCtrl 1913

CToolTipCtrl 1940

CTreeCtrl 1948

CTree View 1974

CTypedPtrArray 1976

CTypedPtrList 1981

CTypedPtrMap 1989

CUIntArray 1993

CUserException 1995

CView 1997

CWaitCursor 2017

CWinApp 2021

CWindowDC 2064

CWinThread 2066

CWnd 2078

CWordArray 2277

MFC Macros and Globals 2279
Data Types 2281

Type Casting of MFC Class Objects 2282

Run-Time Object Model Services 2282

Diagnostic Services 2283

Exception Processing 2285

CString Formatting and Message-Box Display 2287

Application Information and Management 2287

Standard Command and Window IDs 2288

Collection Class Helpers 2289

Record Field Exchange Functions 2290

Dialog Data Exchange Functions for CRecordView and CDaoRecordView 2292

Dialog Data Exchange Functions for OLE Controls 2293

Database Macros 2294

DAO Database Engine Initialization and Termination 2295

OLE Initialization 2295

Application Control 2295

Dispatch Maps 2296

Variant Parameter Type Constants 2296

Type Library Access 2297

Property Pages 2298"

Event Maps 2299

Contents

ix

Contents

x

Event Sink Maps 2300

Connection Maps 2300

Registering OLE Controls 2301

Class Factories and Licensing 2302

Persistence of OLE Controls 2303

Internet Server API (IS API) Parse Maps 2303

Internet Server API (ISAPI) Diagnostic Macros 2304

Macros, Global Functions, and Global Variables 2304

ClassWizard Comment Delimiters 2483

Structures, Styles, and Callback Functions 2489
Structures Used by MFC 2489

Styles Used by MFC 2564

Callback Functions Used by MFC 2575

Index


~~~1I~:..J ~ I" ~ '. (~I). ,~" '. 

Introduction 

The Class Library Reference covers the classes, global functions, global variables, 
and macros that make up the Microsoft® Foundation Class Library, version 4.21. 
The Class Hierarchy Chart online details the class relationships in the class library. 

The Class Library Overview lists the classes in helpful categories. Use these lists to 
help locate a class that contains the functionality you are interested in. Visual C++ 
Programmer's Guide online explains how to use the class library to program for 
Microsoft Windows NT®, Microsoft Windows® 95, and other Win32® platforms. 
Practical examples and techniques are supplied in the tutorials in Visual C++ 
Tutorials online. 

The remainder of the Class Library Reference consists of an alphabetical listing of the 
classes and an MFC Macros and Globals section that explains the global functions, 
global variables, and macros used with the class library. 

The individual hierarchy charts included with each class are useful for locating base 
classes. The Class Library Reference usually does not describe inherited member 
functions, inherited operators, and overridden virtual member functions. For 
information on these functions, refer to the base classes depicted in the hierarchy 
diagrams. 

In the alphabetical listing section, each class description includes a member summary 
by category, followed by alphabetical listings of member functions, overloaded 
operators, and data members. 

Public and protected class members are documented only when they are normally 
used in application programs or derived classes. Occasionally, private members are 
listed because they override a public or protected member in the base class. See the 
class header files for a complete listing of class members. 

Some C-Ianguage structures defined by Windows are so widely applicable that their 
descriptions have been reproduced completely in a section following the alphabetical 
reference. 

Please note that the "See Also" sections refer to Win32 API functions by prefacing 
them with the scope resolution operator (::), for example, ::EquaIRect. More 
information on these functions can be found in the Win32 SDK documentation. 

xi 





Class Library Overview 
This overview categorizes and describes the classes in the Microsoft Foundation 
Class Library (MFC) version 4.21. The classes in MFC, taken together, constitute 
an "application framework" -the framework of an application written for the 
Windows API. Your programming task is to fill in the code that is specific to your 
application. 

Class Library Overview 

About the Microsoft Foundation Classes 
The library's classes are presented here in the following categories: 

• Root Class: CObject 

• MFC Application Architecture Classes 

• Application and Thread Support Classes 

• Command Routing Classes 

• Document Classes 

• View Classes (Architecture) 

• Frame Window Classes (Architecture) 

• Document-Template Classes 

• Window, Dialog, and Control Classes 

• Frame Window Classes (Windows) 

• View Classes (Windows) 

• Dialog Box Classes 

• Control Classes 

• Control Bar Classes 

• Drawing and Printing Classes 

• Output (Device Context) Classes 

• Drawing Tool Classes 

• Simple Data Type Classes 

• Array, List, and Map Classes 

• Template Classes for Arrays, Lists, and Maps 

• Ready-to-Use Array Classes 

• Ready-to-Use List Classes 

• Ready-to-Use Map Classes 



Class Library Overview 

2 

• File and Database Classes 

• File I/O Classes 

• DAO Classes 

• ODBC Classes 

• Internet and Networking Classes 

• ISAPI Classes 

• Windows Sockets Classes 

• Win32 Internet Classes 

• OLE Classes 

• OLE Container Classes 

• OLE Server Classes 

• OLE Drag-and-Drop and Data Transfer Classes 

• OLE Common Dialog Classes 

• OLE Automation Classes 

• OLE Control Classes 

• Active Document Classes 

• OLE-Related Classes 

• Debugging and Exception Classes 

• Debugging Support Classes 

• Exception Classes 

The section "General Class Design Philosophy" explains how the Microsoft 
Foundation Class Library was designed. 

The framework is explained in detail in the Visual C++ Programmer's Guide online. 
(See "Using the Classes to Write Applications for Windows," for an overview.) Some 
of the classes listed above are general-purpose classes that can be used outside of the 
framework.and provide useful abstractions such as collections, exceptions, files, and 
strings. 

To see the inheritance of a class, use the Class Hierarchy Chart online. 

In addition to the classes listed in this overview, the Microsoft Foundation Class 
Library contains a number of global functions, global variables, and macros. There is 
an overview and detailed listing of these in the section "MFC Macros and Globals," 
which follows the alphabetical reference to the MFC classes. 



Class Library Overview 

General Class Design Philosophy 
Microsoft Windows was designed long before the C++ language became popular. 
Because thousands of applications use the C-Ianguage Windows application 
programming interface (API), that interface will be maintained for the foreseeable 
future. Any C++ Windows interface must therefore be built on top of the procedural 
C-Ianguage API. This guarantees that C++ applications will be able to coexist with 
C applications. 

The Microsoft Foundation Class Library is an object-oriented interface to Windows 
that meets the following design goals: 

• Significant reduction in the effort to write an application for Windows. 

• Execution speed comparable to that of the C-language API. 

• Minimum code size overhead. 

• Ability to call any Windows C function directly. 

• Easier conversion of existing C applications to C++. 

• Ability to leverage from the existing base of C-Ianguage Windows programming 
experience. 

• Easier use of the Windows API with C++ than with C. 

• Easier-to-use yet powerful abstractions of complicated features such as ActiveX, 
database support, printing, toolbars, and status bars. 

• True Windows API for C++ that effectively uses C++ language features. 

The Application Framework 
The core of the Microsoft Foundation Class Library is an encapsulation of a large 
portion of the Windows API in C++ form. Library classes represent windows, dialog 
boxes, device contexts, common GDI objects such as brushes and pens, controls, 
and other standard Windows items. These classes provide a convenient C++ member 
function interface to the structures in Windows that they encapsulate. For more about 
using these classes, see "Window Object Topics" in the Visual C++ Programmer's 
Guide online. 

But the Microsoft Foundation Class Library also supplies a layer of additional 
application functionality built on the C++ encapsulation of the Windows API. This 
layer is a working application framework for Windows that provides most of the 
common user interface expected of programs for Windows, including toolbars, status 
bars, printing, print preview, database support, and ActiveX support. "Using the 
Classes to Write Applications for Windows" in Visual C++ Programmer's Guide 
online explains the framework in detail, and Visual C++ Tutorials online provides 
the Scribble tutorial, which teaches application-framework programming. 

3 



Class Library Overview 

Relationship to the C-Language API 
The single characteristic that sets the Microsoft Foundation Class Library apart from 
other class libraries for Windows is the very close mapping to the Windows API 
written in the C language. Further, you can generally mix calls to the class library 
freely with direct calls to the Windows API. This direct access does not, however, 
imply that the classes are a complete replacement for that API. Developers must 
still occasionally make direct calls to some Windows functions-SetCursor and 
GetSystemMetrics, for example. A Windows function is wrapped by a class 
member function only when there is a clear advantage to doing so. 

Because you sometimes need to make native Windows function calls, you should 
have access to the C-Ianguage Windows API documentation. This documentation 
is included with Microsoft Visual C++. Two useful books are Advanced Windows, 
by Jeffrey Richter, and Programming Windows 95, by Charles Petzold. Both are 
published by Microsoft Press®. Many of those books' examples can be easily 
converted to the Microsoft Foundation classes. For examples and additional 
information about programming with the Microsoft Foundation Class Library, see 
Inside Visual C++ by David 1. Kruglinski, also published by Microsoft Press. 

Note For an overview of how the Microsoft Foundation Class Library framework operates, 
see "Using the Classes to Write Applications for Windows" in Visual C++ Programmer's Guide 
online. The overview material is no longer located in the Class Library Reference. 

Class Summary by Category 
The following is a brief summary of the classes in the Microsoft Foundation Class 
Library, divided by category to help you locate what you need. In some cases, a class 
is listed in more than one category. To see the inheritance of a class, use the Class 
Hierarchy Chart online. 

Root Class: CObject 

4 

Most of the classes in the Microsoft Foundation Class Library are derived from a 
single base class at the root of the class hierarchy. CObject provides a number of 
useful capabilities to all classes derived from it, with very low overhead. For more 
information about CObject and its capabilities, see "CObject Class Topics" in 
Visual C++ Programmer's Guide online. 

CObject The ultimate base class of most MFC classes. Supports serializing data and 
obtaining run-time information about a class. 

CRuntimeClass Structure used to determine the exact class of an object at run time. 



Class Library Overview 

MFC Application Architecture Classes 
Classes in this category contribute to the architecture of a framework application. 
They supply functionality common to most applications. You fill in the framework to 
add application-specific functionality. Typically, you do so by deriving new classes 
from the architecture classes, then adding new members and/or overriding existing 
member functions. 

AppWizard generates several types of applications, all of which use the application 
framework in differing ways. SDI (single document interface) and MDI (multiple 
document interface) applications make full use of a part of the framework called 
document/view architecture. Other types of applications, such as dialog-based 
applications, form-based applications, and DLLs, use only some of document/view 
architecture features. 

Document/view applications contain one or more sets of documents, views, and 
frame windows. A document-template object associates the classes for each 
document/view/frame set. 

Although you do not have to use document/view architecture in your MFC 
application, there are a number of advantages to doing so. MFC's OLE container 
and server support is based on document/view architecture, as is support for printing 
and print preview. 

All MFC applications have at least two objects: an application object derived 
from CWinApp, and some sort of main window object, derived (often indirectly) 
from CWnd. (Most often, the main window is derived from CFrameWnd, 
CMDIFrameWnd, or CDialog, all of which are derived from CWnd.) 

Applications that use document/view architecture contain additional objects. The 
principal objects are as follows: 

• An application object derived from class CWinApp, as mentioned before. 

• One or more document class objects derived from class CDocument. Document 
class objects are responsible for the internal representation of the data manipulated 
in the view. They may be associated with a data file. 

• One or more view objects derived from class CView. Each view is a window that 
is attached to a document and associated with a frame window. Views display and 
manipulate the data contained in a document class object. 

Document/view applications also contain frame windows (derived from 
CFrameWnd) and document templates (derived from CDocTemplate). 

5 



Class Library Overview 

Application and Thread Support Classes 
Each application has one and only one application object; this object coordinates other 
objects in the running program and is derived from CWinApp. 

The Microsoft Foundation Class Library supports multiple threads of execution within 
an application. All applications must have at least one thread; the thread used by your 
CWinApp object is this "primary" thread. 

CWinThread encapsulates a portion of the operating system's threading capabilities. 
To make using multiple threads easier, MFC also provides synchronization object 
classes to provide a C++ interface to Win32 synchronization objects. 

Application and Thread Classes 
CWinApp Encapsulates the code to initialize, run, and terminate the application. 

You will derive your application object from this class. 

CWinThread The base class for all threads. Use directly, or derive a class from 
CWinThread if your thread performs user-interface functions. CWinApp is 
derived from CWinThread. 

ISAPI Application Classes 
CHttpFilter Filters selected HTTP requests sent to an ISAPI server. 

CHttpServer Extends the functionality of an ISAPI server by processing client 
requests. 

Synchronization Object Classes 
CSyncObject Base class of the synchronization object classes. 

CCriticalSection A synchronization class that allows only one thread within a 
single process to access an object. 

CSemaphore A synchronization class that allows between one and a specified 
maximum number of simultaneous accesses to an object. 

CMutex A synchronization class that allows only one thread within any number 
of processes to access an object. 

CEvent A synchronization class that notifies an application when an event has 
occurred. 

CSingleLock Used in member functions of thread-safe classes to lock on one 
synchronization object. 

CMultiLock Used in member functions of thread-safe classes to lock on one or 
more synchronization objects from an array of synchronization objects. 

Related Classes 

6 

CCommandLineInfo Parses the command line with which your program was 
started. 

CWaitCursor Puts a wait cursor on the screen. Used during lengthy operations. 



Class Library Overview 

CDockState Handles persistent storage of docking state data for control bars. 

CRecentFileList Maintains the most recently used (MRV) file list. 

Command Routing Classes 
As the user interacts with the application by choosing menus or control-bar buttons 
with the mouse, the application sends messages from the affected user-interface object 
to an appropriate command-target object. Command-target classes derived from 
CCmdTarget include CWinApp, CWnd, CDocTemplate, CDocument, CView, and 
the classes derived from them. The framework supports automatic command routing 
so that commands can be handled by the most appropriate object currently active in 
the application. 

An object of class CCmdUI is passed to your command targets' update command VI 
(ON_UPDATE_COMMAND_UI) handlers to allow you to update the state of the 
user interface for a particular command (for instance, to check or remove the check 
from menu items). You call member functions of the CCmdUI object to update the 
state of the VI object. This process is the same whether the VI object associated with a 
particular command is a menu item or a button or both. 

CCmdTarget Serves as the base class for all classes of objects that can receive and 
respond to messages. 

CCmdUI Provides a programmatic interface for updating user-interface objects such 
as menu items or control-bar buttons. The command target object enables, disables, 
checks, and/or clears the user-interface object via this object. 

Document Classes 
Document class objects, created by document-template objects, manage the 
application's data. You will derive a class for your documents from one of these 
classes. 

Document class objects interact with view objects. View objects represent the client 
area of a window, display a document's data, and allow users to interact with it. 
Documents and views are created by a document-template object. 

CDocument The base class for application-specific documents. Derive your 
document class( es) from CDocument. 

COleDocument Vsed for compound document implementation, as well as basic 
container support. Serves as a container for classes derived from CDocItem. This 
class can be used as the base class for container documents and is the base class 
for COleServerDoc. 

COleLinkingDoc A class derived from COleDocument that provides the 
infrastructure for linking. You should derive the document classes for your 

7 



Class Library Overview 

container applications from this class instead of from COleDocument if you 
want them to support links to embedded objects. 

CRichEditDoc Maintains the list of OLE client items that are in the rich edit 
control. Used with CRichEditView and CRichEditCntrItem. 

COleServerDoc Used as the base class for server-application document classes. 
COleServerDoc objects provide the bulk of server support through interactions 
with COleServerItem objects. Visual editing capability is provided using the 
class library's document/view architecture. 

Related Classes 
Document class objects can be persistent%in other words, they can write their state 
to a storage medium and read it back. MFC provides the CArchive class to facilitate 
transferring the document's data to a storage medium. 

CArchive Cooperates with a CFile object to implement persistent storage for objects 
through serialization (see CObject::Serialize). 

Documents can also contain OLE objects. CDocItem is the base class of the server 
and client items. 

CDocItem Abstract base class of COleClientItem and COleServerItem. Objects of 
classes derived from CDocItem represent parts of documents. 

View Classes (Architecture) 
CView and its derived classes are child windows that represent the client area of a 
frame window. Views show data and accept input for a document. 

A view class is associated with a document class and a frame window class using a 
document-template object. 

CView The base class for application-specific views of a document's data. Views 
display data and accept user input to edit or select the data. Derive your view 
class(es) from CView. 

CScrollView The base class for views with scrolling capabilities. Derive your view 
class from CScrollView for automatic scrolling. 

Form and Record Views 

8 

Form views are also scrolling views. They are based on a dialog box template. 

Record views are derived from form views. In addition to the dialog box template, 
they also have a connection to a database. 

CForm View A scroll view whose layout is defined in a dialog box template. Derive 
a class from CForm View to implement a user interface based on a dialog box 
template. 



Class Library Overview 

CDaoRecordView Provides a form view directly connected to a Data Access Object 
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a 
dialog box template. 

CRecordView Provides a form view directly connected to an Open Database 
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is 
based on a dialog box template. 

Control Views 
Control views display a control as their view. 

CCtrlView The base class for all views associated with Windows controls. The 
views based on controls are described below. 

CEditView A view that contains a Windows standard edit control (see CEdit). Edit 
controls support text-editing, searching, replacing, and scrolling capabilities. 

CRichEditView A view that contains a Windows rich edit control (see 
CRichEditCtrl). In addition to the capabilities of an edit control, rich edit controls 
support fonts, colors, paragraph formatting, and embedded OLE objects. 

CListView A view that contains a Windows list control (see CListCtrl). A list 
control displays icons and strings in a manner similar to the right-hand pane of the 
Windows 95 Explorer. 

CTreeView A view that contains a Windows tree control (see CTreeCtrl). A tree 
control displays icons and strings arranged in a hierarchy in a manner similar to the 
left-hand pane of the Windows 95 Explorer. 

Frame Window Classes (Architecture) 
In document/view architecture, frame windows are windows that contain a view 
window. They also support having control bars attached to them. 

In multiple document interface (MDI) applications, the main window is derived from 
CMDIFrameWnd. It indirectly contains the documents' frames, which are 
CMDIChildWnd objects. The CMDIChildWnd objects, in tum, contain the 
documents' views. 

In single document interface (SDI) applications, the main window, derived from 
CFrameWnd, contains the view of the current document. 

CFrameWnd The base class for an SDI application's main frame window. Also the 
base class for all other frame window classes. 

CMDIFrameWnd The base class for an MDI application's main frame window. 

CMDIChildWnd The base class for an MDI application's document frame 
windows. 

COleIPFrame Wnd Provides the frame window for a view when a server document 
is being edited in place. 

9 



Class Library Overview 

Document-Template Classes 
Document-template objects coordinate the creation of document, view, and frame 
window objects when a new document and/or view is created. 

CDocTemplate The base class for document templates. You will never use this class 
directly; instead, you'll use one of the other document-template classes derived 
from this class. 

CMultiDocTemplate A template for documents in the multiple document interface 
(MDI). MDI applications can have multiple documents open at a time. 

CSingleDocTemplate A template for documents in the single document interface 
(SDI). SDI applications have only one document open at a time. 

Related Class 
CCreateContext A structure passed by a document template to window-creation 

functions to coordinate the creation of document, view, and frame-window objects. 

Window, Dialog, and Control Classes 
Class CWnd and its derived classes encapsulate an HWND, a handle to a Windows 
window. CWnd can be used by itself or as a base for deriving new classes. The 
derived classes supplied by the class library represent various kinds of windows. 

CWnd The base class for all windows. You can use one of the classes derived from 
CWnd or derive your own classes directly from it. 

Frame Window Classes (Windows) 

10 

Frame windows are windows that frame an application or a part of an application. 
Frame windows usually contain other windows, such as views, tool bars, and status 
bars. In the case of CMDIFrameWnd, they may contain CMDIChildWnd objects 
indirectly. 

CFrameWnd The base class for an SDI application's main frame window. Also the 
base class for all other frame window classes. 

CMDIFrameWnd The base class for an MDI application's main frame window. 

CMDIChildWnd The base class for an MDI application's document frame 
windows. 

CMiniFrame Wnd A half-height frame window typically seen around floating 
toolbars. 

COleIPFrameWnd Provides the frame window for a view when a server document 
is being edited in place. 



Class Library Overview 

Related Class 
Class CMenu provides an interface through which to access your application's 
menus. It is useful for manipulating menus dynamically at run time; for example, 
when adding or deleting menu items according to context. Although menus are most 
often used with frame windows, they can also be used with dialog boxes and other 
nonchild windows. 

CMenu Encapsulates an HMENU handle to the application's menu bar and pop-up 
menus. 

View Classes (Windows) 
CView and its derived classes are child windows that represent the client area of a 
frame window. Views show data and accept input for a document. 

A view class is associated with a document class and a frame window class using a 
document-template object. 

CView The base class for application-specific views of a document's data. Views 
display data and accept user input to edit or select the data. Derive your view 
class(es) from CView. 

CScrollView The base class for views with scrolling capabilities. Derive your view 
class from CScrollView for automatic scrolling. 

Form and Record Views 
Form views are also scrolling views. They are based on a dialog box template . 

. Record views are derived from form views. In addition to the dialog box template, 
they also have a connection to a database. 

CForm View A scroll view whose layout is defined in a dialog box template. Derive 
a class from CForm View to implement a user interface based on a dialog box 
template. 

CDaoRecordView Provides a form view directly connected to a Data Access Object 
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a 
dialog box template. 

CRecordView Provides a form view directly connected to an Open Database 
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is 
based on a dialog box template. 

Control Views 
Control views display a control as their view. 

CCtrlView The base class for all views associated with Windows controls. The 
views based on controls are described below. 

11 



Class Library Overview 

CEditView A view that contains a Windows standard edit control (see CEdit). Edit 
controls support text-editing, searching, replacing, and scrolling capabilities. 

CRichEditView A view that contains a Windows rich edit control (see 
CRichEditCtrl). In addition to the capabilities of an edit control, rich edit controls 
support fonts, colors, paragraph formatting, and embedded OLE objects. 

CListView A view that contains a Windows list control (see CListCtrl). A list 
control displays a collection of items, each consisting of an icon and a label, in a 
manner similar to the right-hand pane of the Windows 95 Explorer. 

CTreeView A view that contains a Windows tree control (see CTreeCtrl). A tree 
control displays a hierarchical list of icons and labels arranged in a manner similar 
to the left-hand pane of the Windows 95 Explorer. 

Related Classes 
CSplitterWnd allows you to have multiple views within a single frame window. 
CPrintDialog and CPrintlnfo support the print and print preview ability of views. 
CRichEditDoc and CRichEditCntrItem are used with CRichEditView to 
implement OLE container capabilities. 

CSplitterWnd A window that the user can split into multiple panes. These panes 
can be resizable by the user or fixed size. 

CPrintDialog Provides a standard dialog box for printing a file. 

CPrintlnfo A structure containing information about a print or print preview job. 
Used by CView's printing architecture. 

CRichEditDoc Maintains the list of OLE client items that are in a CRichEditView. 

CRichEditCntrItem Provides client-side access to an OLE item stored in a 
CRichEditView. 

Dialog Box Classes 
Class CDialog and its derived classes encapsulate dialog-box functionality. Since a 
dialog box is a special kind of window, CDialog is derived from CWnd. Derive your 
dialog classes from CDialog or use one of the common dialog classes for standard 
dialog boxes, such as opening or saving a file, printing, selecting a font or color, 
initiating a search-and-replace operation, or performing various OLE-related 
operations. 

CDialog The base class for all dialog boxes-both modal and modeless. 

CDataExchange Supplies data exchange and validation information for dialog 
boxes. 

Common Dialogs 

12 

These dialog box classes encapsulate the Windows common dialog boxes. They 
provide easy-to-use implementations of complicated dialog boxes. 



Class Library Overview 

CCommonDialog This is the base class for all common dialog boxes. 

CFileDialog Provides a standard dialog box for opening or saving a file. 

CColorDialog Provides a standard dialog box for selecting a color. 

CFontDialog Provides a standard dialog box for selecting a font. 

CFindReplaceDialog Provides a standard dialog box for a search-and-replace 
operation. 

CPrintDialog Provides a standard dialog box for printing a file. 

CPageSetupDialog Encapsulates the services provided by the Windows common 
Page Setup dialog box with additional support for setting and modifying print 
margins. 

OLE Common Dialogs 
OLE adds several common dialog boxes to Windows. These classes encapsulate the 
OLE common dialog boxes. 

COleDialog Used by the framework to contain common implementations for all 
OLE dialog boxes. All dialog box classes in the user-interface category are derived 
from this base class. COleDialog cannot be used directly. 

COlelnsertDialog Displays the Insert Object dialog box, the standard user interface 
for inserting new OLE linked or embedded items. 

COlePasteSpecialDialog Displays the Paste Special dialog box, the standard user 
interface for implementing the Edit Paste Special command. 

COleLinksDialog Displays the Edit Links dialog box, the standard user interface for 
modifying information about linked items. 

COleChangeIconDialog Displays the Change Icon dialog box, the standard user 
interface for changing the icon associated with an OLE embedded or linked item. 

COleConvertDialog Displays the Convert dialog box, the standard user interface for 
converting OLE items from one type to another. 

COlePropertiesDialog Encapsulates the Windows common OLE Properties dialog 
box. Common OLE Properties dialog boxes provide an easy way to display and 
modify the properties of an OLE document item in a manner consistent with 
Windows standards. 

COleUpdateDialog Displays the Update dialog box, the standard user interface for 
updating all links in a document. The dialog box contains a progress indicator to 
indicate how close the update procedure is to completion. 

COleChangeSourceDialog Displays the Change Source dialog box, the standard 
user interface for changing the destination or source of a link. 

COleBusyDialog Displays the Server Busy and Server Not Responding dialog 
boxes, the standard user interface for handling calls to busy applications. Usually 
displayed automatically by the COleMessageFilter implementation. 

13 



Class Library Overview 

Property Sheet Classes 
The property sheet classes allow your applications to use property sheets, also known 
as "tabbed dialogs." Property sheets are an efficient way to organize a large number of 
controls in a single dialog box. 

CPropertyPage Provides the individual pages within a property sheet. Derive a 
class from CPropertyPage for each page to be added to your property sheet. 

CPropertySheet Provides the frame for multiple property pages. Derive your 
property sheet class from CPropertySheet to implement your property sheets 
quickly. 

COlePropertyPage Displays the properties of an OLE control in a graphical 
interface, similar to a dialog box. 

Related Classes 
These classes are not dialog boxes per se, but they use dialog box templates and have 
much of the behavior of dialog boxes. 

CDialogBar A control bar that is based on a dialog box template. 

CForm View A scroll view whose layout is defined in a dialog box template. Derive 
a class from CForm View to implement a user interface based on a dialog box 
template. 

CDaoRecordView Provides a form view directly connected to a Data Access Object 
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a 
dialog box template. 

CRecordView Provides a form view directly connected to an Open Database 
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is 
based on a dialog box template. 

CPrintlnfo A structure containing information about a print or print preview job. 
Used by the printing architecture of CView. 

Control Classes 
Control classes encapsulate a wide variety of standard Windows controls ranging 
from static text controls to tree controls. In addition, MFC provides some new 
controls, including buttons with bitmaps and control bars. 

The controls whose class names end in "Ctrl" are new in Windows 95 and 
Windows NT version 3 .51. 

Static Display Controls 

14 

CStatic A static-display window. Static controls are used to label, box, or separate 
other controls in a dialog box or window. They may also display graphical images 
rather than text or a box. 



Class Library Overview 

Text Controls 
CEdit An editable-text control window. Edit controls are used to accept textual input 

from the user. 

CRichEditCtrl A control in which the user can enter and edit text. Unlike the 
control encapsulated in CEdit, a rich edit control supports character and paragraph 
formatting and OLE objects. 

Controls Which Represent Numbers 

Buttons 

Lists 

CSliderCtrl A control containing a slider, which the user moves to select a value 
or set of values. 

CSpinButtonCtrl A pair of arrow buttons the user can click to increment or 
decrement a value. 

CProgressCtrl Displays a rectangle that is gradually filled from left to right to 
indicate the progress of an operation. 

CScrollBar A scroll-bar control window. The class provides the functionality of a 
scroll bar, for use as a control in a dialog box or window, through which the user 
can specify a position within a range. 

CButton A button control window. The class provides a programmatic interface for 
a pushbutton, check box, or radio button in a dialog box or window. 

CBitmapButton A button with a bitmap rather than a text caption. 

CListBox A list-box control window. A list box displays a list of items that the user 
can view and select. 

CDragListBox Provides the functionality of a Windows list box; allows the user to 
move list box items, such as filenames and string literals, within the list box. List 
boxes with this capability are useful for an item list in an order other than 
alphabetical, such as include pathnames or files in a project. 

CComboBox A combo-box control window. A combo box consists of an edit 
control plus a list box. 

CCheckListBox Displays a list of items with check boxes, which the user can check 
or clear, next to each item. 

CListCtrl Displays a collection of items, each consisting of an icon and a label, in a 
manner similar to the right-hand pane of the Windows 95 Explorer. 

CTreeCtri Displays a hierarchical list of icons and labels arranged in a manner 
similar to the left-hand pane of the Windows 95 Explorer. 

15 



Class Library Overview 

Toolbars and Status Bars 
CToolBarCtrl Provides the functionality of the Windows toolbar common control. 

Most MFC programs use CToolBar instead of this class. 

CStatusBarCtrl A horizontal window, usually divided into panes, in which an 
application can display status information. Most MFC programs use CStatusBar 
instead of this class. 

Miscellaneous Controls 
CAnimateCtrl Displays a simple video clip. 

CToolTipCtrl A small pop-up window that displays a single line of text describing 
the purpose of a tool in an application. 

CHeaderCtrl Displays titles or labels for columns. 

CTabCtrl A control with tabs on which the user can click, analogous to the dividers 
in a notebook. 

CHotKeyCtrl Enables the user to create a "hot key" combination, which the user 
can press to perform an action quickly. 

Related Classes 
CImageList Provides the functionality of the Windows image list. Image lists are 

used with list controls and tree controls. They can also be used to store and archive 
a set of same-sized bitmaps. 

CCtrlView The base class for all views associated with Windows controls. The 
views based on controls are described below. 

CEditView A view that contains a Windows standard edit control. 

CRichEditView A view that contains a Windows rich edit control. 

CListView A view that contains a Windows list control. 

CTree View A view that contains a Windows tree control. 

Control Bar Classes 
Control bars are attached to a frame window. They contain buttons, status panes, or a 
dialog template. Free-floating control bars, also called tool palettes, are implemented 
by attaching them to a CMiniFrameWnd object. 

Framework Control Bars 

16 

These control bars are an integral part of the MFC framework. They are easier to use 
and more powerful than the Windows control bars because they're integrated with the 
framework. Most MFC applications use these control bars rather than the Windows 
control bars. 

CControlBar The base class for MFC control bars listed in this section. A control 
bar is a window aligned to the edge of a frame window. The control bar contains 



Class Library Overview 

either HWND-based child controls or controls not based on an HWND, such as 
toolbar buttons. 

CToolBar Toolbar control windows that contain bitmap command buttons not based 
on an HWND. Most MFC applications use this class rather than CToolBarCtrl. 

CStatusBar The base class for status-bar control windows. Most MFC applications 
use this class rather than CStatusBarCtrl. 

CDialogBar A control bar that is based on a dialog box template. 

Windows Control Bars 
These control bars are thin wrappers for the corresponding Windows controls. Since 
they're not integrated with the framework, they're harder to use than the control bars 
listed above. Most MFC applications use the control bars listed above. 

CStatusBarCtrl A horizontal window, usually divided into panes, in which an 
application can display status information. 

CToolBarCtrl Provides the functionality of the Windows toolbar common control. 

Related Classes 
CToolTipCtrl A small pop-up window that displays a single line of text describing 

the purpose of a tool in an application. 

CDockState Handles persistent storage of docking state data for control bars. 

Drawing and Printing Classes 
In Windows, all graphical output is drawn on a virtual drawing area called a device 
context (or DC). MFC provides classes to encapsulate the various types of DCs, as 
well as encapsulations for Windows drawing tools such as bitmaps, brushes, palettes, 
and pens. 

Output (Device Context) Classes 
These classes encapsulate the different types of device contexts available in Windows. 

Most of the following classes encapsulate a handle to a Windows device context. 
A device context is a Windows object that contains information about the drawing 
attributes of a device such as a display or a printer. All drawing calls are made through 
a device-context object. Additional classes derived from CDC encapsulate specialized 
device-context functionality, including support for Windows metafiles. 

CDC The base class for device contexts. Used directly for accessing the whole 
display and for accessing nondisplay contexts such as printers. 

CPaintDC A display context used in OnPaint member functions of windows. 
Automatically calls BeginPaint on construction and EndPaint on destruction. 

17 



Class Library Overview 

CClientDC A display context for client areas of windows. Used, for example, to 
draw in an immediate response to mouse events. 

CWindowDC A display context for entire windows, including both the client and 
nonclient areas. 

CMetaFileDC A device context for Windows metafiles. A Windows metafile 
contains a sequence of graphics device interface (GDI) commands that can be 
replayed to create an image. Calls made to the member functions of a 
CMetaFileDC are recorded in a metafile. 

Related Classes 
CPoint Holds coordinate (x, y) pairs. 

CSize Holds distance, relative positions, or paired values. 

CRect Holds coordinates of rectangular areas. 

CRgn Encapsulates a GDI region for manipulating an elliptical, polygonal, or 
irregular area within a window. Used in conjunction with the clipping member 
functions in class CDC. 

CRectTracker Displays and handles the user interface for resizing and moving 
rectangular objects. 

CColorDialog Provides a standard dialog box for selecting a color. 

CFontDialog Provides a standard dialog box for selecting a font. 

CPrintDialog Provides a standard dialog box for printing a file. 

Drawing Tool Classes 

18 

These classes encapsulate drawing tools that are used to draw on a device context. 

CGdiObject The base class for GDI drawing tools. 

CBrush Encapsulates a GDI brush that can be selected as the current brush in a 
device context. Brushes are used for filling interiors of objects being drawn. 

CPen Encapsulates a GDI pen that can be selected as the current pen in a device 
context. Pens are used for drawing the border lines of objects. 

CFont Encapsulates a GDI font that can be selected as the current font in a device 
context. 

CBitmap Encapsulates a GDI bitmap, providing an interface for manipulating 
bitmaps. 

CPalette Encapsulates a GDI color palette for use as an interface between the 
application and a color output device such as a display. 

CRectTracker Displays and handles the user interface for resizing and moving 
rectangular objects. 



Simple Data Type Classes 
The following classes encapsulate drawing coordinates, character strings, and 
time and date information, allowing convenient use of C++ syntax. These objects 
are used widely as parameters to the member functions of Windows classes in the 
class library. Because CPoint, CSize, and CRect correspond to the POINT, SIZE, 
and RECT structures, respectively, in the Win32 SDK, you can use objects of 
these C++ classes wherever you can use these C-Ianguage structures. The classes 
provide useful interfaces through their member functions. CString provides very 
flexible dynamic character strings. CTime, COleDateTime, CTimeSpan, and 
COleTimeSpan represent time and date values. For more information about 
these classes, see the article "Date and Time" in Visual C++ Programmer's 
Guide online. 

The classes that begin with "COle" are encapsulations of data types provided by 
OLE. These data types can be used in Windows programs regardless of whether 
other OLE features are used. 

CString Holds character strings. 

CTime Holds absolute time and date values. 

COleDateTime Wrapper for the OLE automation type DATE. Represents date 
and time values. 

CTimeSpan Holds relative time and date values. 

COleDateTimeSpan Holds relative COleDateTime values, such as the difference 
between two COleDateTime values. 

CPoint Holds coordinate (x, y) pairs. 

CSize Holds distance, relative positions, or paired values. 

CRect Holds coordinates of rectangular areas. 

CImageList Provides the functionality of the Windows image list. Image lists 
are used with list controls and tree controls. They can also be used to store and 
archive a set of same-sized bitmaps. 

COleVariant Wrapper for the OLE automation type VARIANT. Data in 
VARIANTs can be stored in many formats. 

COleCurrency Wrapper for the OLE automation type CURRENCY, a 
fixed-point arithmetic type, with 15 digits before the decimal point and 
4 digits after. 

Class Library Overview 

19 



Class Library Overview 

Array, List, and Map Classes 
For handling aggregates of data, the class library provides a group of collection 
classes-arrays, lists, and "maps" -that can hold a variety of object and predefined 
types. The collections are dynamically sized. These classes can be used in any 
program, whether written for Windows or not. However, they are most useful for 
implementing the data structures that define your document classes in the application 
framework. You can readily derive specialized collection classes from these, or you 
can create them based on the template classes. For more information about these 
approaches, see the article "Collections" in Visual C++ Programmer's Guide online 
and "Template Classes for Arrays, Lists, and Maps" in this overview for a list of the 
template collection classes. 

Arrays are one-dimensional data structures that are stored contiguously in memory. 
They support very fast random access since the memory address of any given element 
can be calculated by multiplying the index of the element by the size of an element 
and adding the result to the base address of the array. But arrays are very expensive 
if you have to insert elements into the array, since the entire array past the element 
inserted has to be moved to make room for the element to be inserted. Arrays can 
grow and shrink as necessary. 

Lists are similar to arrays but are stored very differently. Each element in a list also 
includes a pointer to the previous and next elements, making it a doubly-linked list. 
It's very fast to add or delete items because doing so only involves changing a few 
pointers. However, searching a list can be expensive since all searches need to start 
at one of the list's ends. 

Maps relate a key value to a data value. For instance, the key of a map could be a 
string and the data a pointer into a list. You would ask the map to give you the pointer 
associated with a particular string. Map lookups are fast because maps use hash tables 
for key lookups. Adding and deleting items is also fast. Maps are often used with other 
data structures as auxiliary indices. MFC uses a special kind of map called a "message 
map" to map Windows messages to a pointer to the handler function for that message. 

Template Classes for Arrays, Lists, and Maps 

20 

These collection classes are templates whose parameters determine the types of the 
objects stored in the aggregates. The CArray, CMap, and CList classes use global 
helper functions that must usually be customized. For more information about these 
helper functions, see Collection Class Helpers in the "Macros and Globals" section. 
The typed pointer classes are "wrappers" for other classes in the class library. By 
using these wrappers, you enlist the compiler's type-checking to help you avoid 
errors. For more information on using these classes, see the article "Collections" 
in Visual C++ Programmer's Guide online. 



These classes provide templates you can use to create arrays, lists, and maps using 
any type you like. 

CArray Template class for making arrays of arbitrary types. 

CList Template class for making lists of arbitrary types. 

CMap Template class for making maps with arbitrary key and value types. 

CTypedPtrArray Template class for type-safe arrays of pointers. 

CTypedPtrList Template class for type-safe lists of pointers. 

CTypedPtrMap Template class for type-safe maps with pointers. 

Ready-to-Use Array Classes 
CByteArray Stores elements of type BYTE in an array. 

CDWordArray Stores elements of type DWORD in an array. 

CObArray Stores pointers to objects of class CObject or to objects of classes 
derived from CObject in an array. 

CPtrArray Stores pointers to void (generic pointers) in an array. 

CUIntArray Stores elements of type UINT in an array. 

CWordArray Stores elements of type WORD in an array. 

CStringArray Stores CString objects in an array. 

Ready-to-Use List Classes 
CObList Stores pointers to objects of class CObject or to objects of classes 

derived from CObject in a linked list. 

CPtrList Stores pointers to void (generic pointers) in a linked list. 

CStringList Stores CString objects in a linked list. 

Ready-to-Use Map Classes 
CMapPtrToPtr Uses void pointers as keys for finding other void pointers. 

CMapPtrToWord Uses void pointers as keys for finding data of type WORD. 

CMapStringToOb Uses CString objects as keys for finding CObject pointers. 

CMapStringToPtr Uses CString objects as keys for finding void pointers. 

CMapStringToString Uses CString objects as keys for finding other CString 
objects. 

Class Library Overview 

21 



Class Library Overview 

CMapWordToOb Uses data of type WORD to find CObject pointers. 

CMapWordToPtr Uses data of type WORD to find void pointers. 

File and Database Classes 
These classes allow you to store information to a database or a disk file. There are two 
sets of database classes-DAO and ODBC-which provide similar functionality. The 
DAO group is implemented using the Data Access Object, while the ODBC group is 
implemented using Open Database Connectivity. There are also a set of classes for 
manipulating standard files, ActiveX streams, and HTML streams. 

The following categories of classes support data persistence. 

• File 1/0 Classes 

• DAO Classes 

• ODBC Classes 

File 1/0 Classes 

22 

These classes provide an interface to traditional disk files, in-memory files, ActiveX 
streams, and Windows sockets. All of the classes derived from CFile can be used with 
a CArchive object to perform serialization. 

Use the following classes, particularly CArchive and CFile, if you write your own 
input/output processing. Normally you don't need to derive from these classes. If you 
use the application framework, the default implementations of the Open and Save 
commands on the File menu will handle file 110 (using class CArchive), as long 
as you override your document's Serialize function to supply details about how a 
document "serializes" its contents. For more information about the file classes and 
serialization, see the article "Files in MFC" and the article "Serialization (Object 
Persistence)" in Visual C++ Programmer's Guide online. 

CFile Provides a file interface to binary disk files. 

CStdioFile Provides a CFile interface to buffered stream disk files, usually in text 
mode. 

CMemFile Provides a CFile interface to in-memory files. 

CSharedFile Provides a CFile interface to shared in-memory files. 

COleStreamFile Uses the COM IStream interface to provide CFile access to 
compound files. 

CSocketFile Provides a CFile interface to a Windows Socket. 



Class Library Overview 

Related Classes 
CArchive Cooperates with a CFile object to implement persistent storage for objects 

through serialization (see CObject::Serialize). 

CArchiveException An archive exception. 

CFileException A file-oriented exception. 

CFileDialog Provides a standard dialog box for opening or saving a file. 

CHtmlStream Handles caching HTML output. Functionally similar to CMemFile. 

CRecentFileList Maintains the most recently used (MRU) file list. 

DAO Classes 
These classes work with the other application framework classes to give easy access 
to DAO (Data Access Object) databases, which use the same database engine as 
Microsoft Visual Basic® and Microsoft Access. The DAO classes can also access 
a wide variety of databases for which Open Database Connectivity (ODBC) drivers 
are available. 

Programs that use DAO databases will have at least a CDaoDatabase object and a 
CDaoRecordset object. 

CDaoWorkspace Manages a named, password-protected database session from 
login to logoff. Most programs use the default workspace. 

CDaoDatabase A connection to a database through which you can operate on the 
data. 

CDaoRecordset Represents a set of records selected from a data source. 

CDaoRecordView A view that displays database records in controls. 

CDaoQueryDef Represents a query definition, usually one saved in a database. 

CDaoTableDef Represents the stored definition of a base table or an attached table. 

CDaoException Represents an exception condition arising from the DAO classes. 

CDaoFieldExchange Supports the DAO record field exchange (DFX) routines used 
by the DAO database classes. You will normally not directly use this class. 

Related Classes 
CLongBinary Encapsulates a handle to storage for a binary large object (or BLOB), 

such as a bitmap. CLongBinary objects are used to manage large data objects 
stored in database tables. 

COle Currency Wrapper for the OLE automation type CURRENCY, a fixed-point 
arithmetic type, with 15 digits before the decimal point and 4 digits after. 

23 



Class Library Overview 

COleDateTime Wrapper for the OLE automation type DATE. Represents date and 
time values. 

COleVariant Wrapper for the OLE automation type VARIANT. Data in 
VARIANTs can be stored in many formats. 

ODBC Classes 
These classes work with the other application framework classes to give easy access 
to a wide variety of databases for which Open Database Connectivity (ODBC) drivers 
are available. 

Programs that use ODBC databases will have at least a CDatabase object and a 
CRecordset object. 

CDatabase Encapsulates a connection to a data source, through which you can 
operate on the data source. 

CRecordset Encapsulates a set of records selected from a data source. Recordsets 
enable scrolling from record to record, updating records (adding, editing, and 
deleting records), qualifying the selection with a filter, sorting the selection, and 
parameterizing the selection with information obtained or calculated at run time. 

CRecordView Provides a form view directly connected to a recordset object. The 
dialog data exchange (DDX) mechanism exchanges data between the recordset and 
the controls of the record view. Like all form views, a record view is based on a 
dialog template resource. Record views also support moving from record to record 
in the recordset, updating records, and closing the associated recordset when the 
record view closes. 

CDBException An exception resulting from failures in data access processing. This 
class serves the same purpose as other exception classes in the exception-handling 
mechanism of the class library. 

CFieldExchange Supplies context information to support record field exchange 
(RFX), which exchanges data between the field data members and parameter data 
members of a recordset object and the corresponding table columns on the data 
source. Analogous to class CDataExchange, which is used similarly for dialog 
data exchange (DDX). 

Related Classes 

24 

CLongBinary Encapsulates a handle to storage for a binary large object (or BLOB), 
such as a bitmap. CLongBinary objects are used to manage large data objects 
stored in database tables. 

CDBVariant Allows you to store a value without worrying about the value's data 
type. CDBVariant tracks the data type of the current value, which is stored in a 
union. 



Class Library Overview 

Internet and Networking Classes 
These classes allow you to exchange information with another computer using ISAPI 
or a Windows Socket. There are also a set of classes for creating ISAPI extension 
DLLs and a set of classes for manipulating Windows Sockets. 

The following categories of classes support connectivity. 

• ISAPI Classes 

• Windows Sockets Classes 

o Win32 Internet Classes 

ISAPI Classes 
ISAPI describes an interface for Internet servers. An example of an ISAPI server is 
Windows NT Server running Microsoft Internet Information Server (lIS). 

HTTP filters handle server requests. They can be used to handle the following types 
of applications: 

• Custom authentication schemes 

• Data compression 

o Encryption 

o Logging 

Filter Classes 
CHttpFilter Filters selected HTTP requests sent to an ISAPI server. 

CHttpFilterContext Manages the context for an HTTP filter. This is a helper class 
to handle multiple, concurrent requests of a CHttpFilter object. 

Server Classes 
ISAPI server extensions process server requests, including Common Gateway 
Interface (CGI). 

CHttpServer Extends the functionality of an ISAPI server by processing client 
requests. 

CHttpServerContext Manages the context for an ISAPI server extension. This is a 
helper class to handle multiple, concurrent requests of a CHttpServer object. 

Related Classes 
CHtmlStream Handles caching HTML output. Functionally similar to CMemFile. 

25 



Class Library Overview 

Windows Sockets Classes 
Windows Sockets provide a network protocol-independent way to communicate 
between two computers. These sockets can be synchronous (your program waits 
until the communication is done) or asynchronous (your program continues runJ;1ing 
while the communication is going on). 

CAsyncSocket Encapsulates the Windows Sockets API in a thin wrapper. 

CSocket Higher-level abstraction derived from CAsyncSocket. It operates 
synchronously. 

CSocketFile Provides a CFile interface to a Windows Socket. 

Win32 Internet Classes 

26 

MFC wraps the Win32 Internet (WinInet) and ActiveX technology to make 
Internet programming easier. 

ClnternetSession Creates and initializes one Internet session or several 
simultaneous Internet sessions and, if necessary, describes the connection to 
a proxy server. 

ClnternetConnection Manages your connection to an Internet server. 

ClnternetFile This class and its derived classes allow access to files on remote 
systems that use Internet protocols. 

CHttpConnection Manages your connection to an HTTP server. 

CHttpFile Provides the functionality to find and read files on an HTTP server. 

CGopherFile Provides the functionality to find and read files on a gopher 
server. 

CFtpConnection Manages your connection to an FTP server. 

CGopherConnection Manages your connection to a gopher server. 

CFileFind Performs local and Internet file searches. 

CFtpFileFind Aids in Internet file searches of FTP servers. 

CGopherFileFind Aids in Internet file searches of gopher servers. 

CGopherLocator Gets a gopher "locator" from a gopher server, determines 
the locator's type, and makes the locator available to CGopherFileFind. 

ClnternetException Represents an exception condition related to an Internet 
operation. 



Class Library Overview 

OLE Classes 
The OLE classes work with the other application framework classes to provide 
easy access to the ActiveX API, giving your programs an easy way to provide the 
power of ActiveX to your users. Using ActiveX, you can: 

• Create compound documents, which allow users to create and edit documents 
containing data created by multiple applications, including text, graphics, 
spreadsheets, sound, or other types of data. 

• Create OLE objects that can be embedded in compound documents. 

• Use OLE drag and drop to copy data between applications. 

• Use Automation to control one program with another. 

• Create ActiveX controls and ActiveX control containers (formerly called 
OLE controls and OLE control containers, respectively). 

The following categories of classes support ActiveX: 

• OLE Container Classes 

41 OLE Server Classes 

• OLE Drag-and-Drop and Data Transfer Classes 

• OLE Common Dialog Classes 

• OLE Automation Classes 

• OLE Control Classes 

• Active Document Classes 

• OLE-Related Classes 

To see the inheritance of a class, use the Class Hierarchy Chart online. 

OLE Container Classes 
These classes are used by container applications. Both COleLinkingDoc and 
COleDocument manage collections of COleClientItem objects. Rather than deriving 
your document class from CDocument, you'll derive it from COleLinkingDoc or 
COleDocument, depending on whether or not you want support for links to objects 
embedded in your document. 

Use a COleClientItem object to represent each OLE item in your document that is 
embedded from another document or is a link to another document. 

27 



Class Library Overview 

COleDocument Used for compound document implementation, as well as basic 
container support. Serves as a container for classes derived from CDocItem. This 
class can be used as the base class for container documents and is the base class for 
COleServerDoc. 

COleLinkingDoc A class derived from COleDocument that provides the 
infrastructure for linking. You should derive the document classes for your 
container applications from this class instead of from COleDocument if you want 
them to support links to embedded objects. 

CRichEditDoc Maintains the list of OLE client items that are in the rich edit control. 
Used with CRichEditView and CRichEditCntrItem. 

CDocItem Abstract base class of COleClientItem and COleServerItem. Objects of 
classes derived from CDocItem represent parts of documents. 

COleClientItem A client item class that represents the client's side of the connection 
to an embedded or linked OLE item. Derive your client items from this class. 

CRichEditCntrItem Provides client-side access to an OLE item stored in a rich edit 
control when used with CRichEditView and CRichEditDoc. 

COleException An exception resulting from a failure in OLE processing. This class 
is used by both containers and servers. 

OLE Server Classes 

28 

These classes are used by server applications. Server documents are derived from 
COleServerDoc rather than CDocument. Note that since COleServerDoc is derived 
from COleLinkingDoc, server documents can also be containers that support linking. 

The COleServerItem class represents a document or portion of a document that can 
be embedded in another document or linked to. 

COleIPFrame Wnd and COleResizeBar support in-place editing while the object is 
in a container, and COleTemplateServer supports creation of document/view pairs so 
OLE objects from other applications can be edited. 

COleServerDoc Used as the base class for server-application document classes. 
COleServerDoc objects provide the bulk of server support through interactions 
with COleServerItem objects. Visual editing capability is provided using the class 
library's document/view architecture. 

CDocItem Abstract base class of COleClientItem and COleServerItem. Objects of 
classes derived from CDocItem represent parts of documents. 

COleServerItem Used to represent the OLE interface to COleServerDoc items. 
There is usually one COleServerDoc object, which represents the embedded part 
of a document. In servers that support links to parts of documents, there can be 
many COleServerItem objects, each of which represents a link to a portion of the 
document. 



Class Library Overview 

COleIPFrameWnd Provides the frame window for a view when a server document 
is being edited in place. 

COleResizeBar Provides the standard user interface for in-place resizing. Objects of 
this class are always used in conjunction with COleIPFrameWnd objects. 

COleTemplateServer Used to create documents using the framework's 
document/view architecture. A COleTemplateServer object delegates most of its 
work to an associated CDocTemplate object. 

COleException An exception resulting from a failure in OLE processing. This class 
is used by both containers and servers. 

OLE Drag-and-Drop and Data Transfer Classes 
These classes are used in OLE data transfers. They allow data to be transferred 
between applications by using the Clipboard or through drag and drop. 

COleDropSource Controls the drag-and-drop operation from start to finish. This 
class determines when the drag operation starts and when it ends. It also displays 
cursor feedback during the drag-and-drop operation. 

COleDataSource Used when an application provides data for a data transfer. 
COleDataSource could be viewed as an object-oriented Clipboard object. 

COleDropTarget Represents the target of a drag-and-drop operation. A 
COleDropTarget object corresponds to a window on screen. It determines whether 
to accept any data dropped onto it and implements the actual drop operation. 

COleDataObject Used as the receiver side to COleDataSource. COleDataObject 
objects provide access to the data stored by a COleDataSource object. 

OLE Common Dialog Classes 
These classes handle common OLE tasks by implementing a number of standard OLE 
dialog boxes. They also provide a consistent user interface for OLE functionality. 

COleDialog Used by the framework to contain common implementations for all 
OLE dialog boxes. All dialog box classes in the user-interface category are derived 
from this base class. COleDialog cannot be used directly. 

COleInsertDialog Displays the Insert Object dialog box, the standard user interface 
for inserting new OLE linked or embedded items. 

COlePasteSpecialDialog Displays the Paste Special dialog box, the standard user 
interface for implementing the Edit Paste Special command. 

COleLinksDialog Displays the Edit Links dialog box, the standard user interface for 
modifying information about linked items. 

29 



Class Library Overview 

COleChangeIconDialog Displays the Change Icon dialog box, the standard user 
interface for changing the icon associated with an OLE embedded or linked item. 

COleConvertDialog Displays the Convert dialog box, the standard user interface for 
converting OLE items from one type to another. 

COlePropertiesDialog Encapsulates the Windows common OLE Properties dialog 
box. Common OLE Properties dialog boxes provide an easy way to display and 
modify the properties of an OLE document item in a manner consistent with 
Windows standards. 

COleUpdateDialog Displays the Update dialog box, the standard user interface for 
updating all links in a document. The dialog box contains a progress indicator to 
indicate how close the update procedure is to completion. 

COleChangeSourceDialog Displays the Change Source dialog box, the standard 
user interface for changing the destination or source of a link. 

COleBusyDialog Displays the Server Busy and Server Not Responding dialog 
boxes, the standard user interface for handling calls to busy applications. Usually 
displayed automatically by the COleMessageFilter implementation. 

OLE Automation Classes 
These classes support automation clients (applications that control other applications). 
Automation servers (applications that can be controlled by other applications) are 
supported through dispatch maps. 

COleDispatchDriver Used to call automation servers from your automation client. 
Class Wizard uses this class to create type-safe classes for automation servers that 
provide a type library. 

COleDispatchException An exception resulting from an error during OLE 
automation. Automation exceptions are thrown by automation servers and caught 
by automation clients. 

OLE Control Classes 

30 

These are the primary classes you'll use when writing OLE controls. The 
COleControlModule class in an OLE control module is like the CWinApp class 
in an application. Each module implements one or more OLE controls; these controls 
are represented by COleControl objects. These controls communicate with their 
containers using CConnectionPoint objects. 

The CPictureHolder and CFontHolder classes encapsulate COM interfaces for 
pictures and fonts, while the COlePropertyPage and CPropExchange classes help 
you implement property pages and property persistence for your control. 



Class Library Overview 

COleControlModule Replaces the CWinApp class for your OLE control module. 
Derive from the COleControlModule class to develop an OLE control module 
object. It provides member functions for initializing your OLE control's module. 

COleControl Derive from the COleControl class to develop an OLE control. 
Derived from CWnd, this class inherits all the functionality of a Windows 
window object plus additional OLE-specific functionality, such as event firing 
and the ability to support methods and properties. 

CConnectionPoint The CConnectionPoint class defines a special type of 
interface used to communicate with other OLE objects, called a "connection 
point." A connection point implements an outgoing interface that is able 
to initiate actions on other objects, such as firing events and change 
notifications. 

CPictureHolder Encapsulates the functionality of a Windows picture object and 
the IPicture COM interface; used to implement the custom Picture property 
of an OLE control. 

CFontHolder Encapsulates the functionality of a Windows font object and the 
IFont COM interface; used to implement the stock Font property of an OLE 
control. 

COlePropertyPage Displays the properties of an OLE control in a graphical 
interface, similar to a dialog box. 

CPropExchange Supports the implementation of property persistence for your 
OLE controls. Analogous to CDataExchange for dialog boxes. 

CMonikerFile Takes a moniker, or a string representation that it can make into 
a moniker, and binds it synchronously to the stream for which the moniker is 
a name. 

CAsyncMonikerFile Works similarly to CMonikerFile; however, it binds the 
moniker asynchronously to the stream for which the moniker is a name. 

CDataPathProperty Implements an OLE control property that can be loaded 
asynchronously. 

CCachedDataPathProperty Implements an OLE control property transferred 
asynchronously and cached in a memory file. 

COleCmdUI Allows an ActiveX document to receive commands that originate 
in its container's user interface (such as FileNew, Open, Print, and so on), and 
allows a container to receive commands that originate in the ActiveX document's 
user interface. 

COleSafeArray Works with arrays of arbitrary type and dimension. 

31 



Class Library Overview 

Active Document Classes 
Active documents can be displayed either in the entire client window of a Web 
browser, such as Internet Explorer 3.0, or in an ActiveX container-such as the 
Microsoft Office Binder-that supports ActiveX documents. 

CDocObjectServer Maps the ActiveX document interfaces, and initializes and 
activates an ActiveX document object. 

CDocObjectServerItem Implements OLE server verbs specifically for ActiveX 
document servers. 

OLE-Related Classes 
These classes provide a number of different services, ranging from exceptions to file 
input and output. 

COleObjectFactory Used to create items when requested from other containers. 
This class serves as the base class for more specific types of factories, including 
COleTemplateServer. 

COleMessageFiIter Used to manage concurrency with OLE Lightweight Remote 
Procedure Calls (LRPC). 

COleStreamFiIe Uses the COM IStream interface to provide CFiIe access to 
compound files. This class (derived from CFiIe) enables MFC serialization to use 
OLE structured storage. 

CRectTracker Used to allow moving, resizing, and reorientation of in-place items. 

Debugging and Exception Classes 

32 

These classes provide support for debugging dynamic memory allocation and for 
passing exception information from the function where the exception is thrown to the 
function where it's caught. 

Use classes CDumpContext and CMemoryState during development to assist with 
debugging, as described in "MFC Debugging Support." Use CRuntimeClass to 
determine the class of any object at run time, as described in the article "CObject 
Class: Accessing Run-Time Class Information." Both articles are in Visual c++ 
Programmer's Guide online. The framework uses CRuntimeClass to create objects 
of a particular class dynamically. 



Class Library Overview 

Debugging Support Classes 
MFC provides the following classes to help you debug dynamic memory allocation 
problems. 

CDumpContext Provides a destination for diagnostic dumps. 

CMemoryState Structure that provides snapshots of memory use. Also used to 
compare earlier and later memory snapshots. 

Exception Classes 
The class library provides an exception-handling mechanism based on class 
CException. The application framework uses exceptions in its code; you can also 
use them in yours. For more information, see the article "Exceptions" in Visual C++ 
Programmer's Guide online. You can derive your own exception types from 
CException. 

MFC provides an exception class from which you can derive your own exception as 
well as exception classes for all of the exceptions it supports. 

CException The base class for exceptions. 

CArchiveException An archive exception. 

CDaoException An exception resulting from a failure in a DAO database operation. 

CDBException An exception resulting from a failure in ODBC database processing. 

CFileException A file-oriented exception. 

CMemoryException An out-of-memory exception. 

CNotSupportedException An exception resulting from using an unsupported 
feature. 

COleException An exception resulting from a failure in OLE processing. This class 
is used by both containers and servers. 

COleDispatchException An exception resulting from an error during automation. 
Automation exceptions are thrown by automation servers and caught by 
automation clients. 

CResourceException An exception resulting from a failure to load a Windows 
resource. 

CUserException An exception used to stop a user-initiated operation. Typically the 
user has been notified of the problem before this exception is thrown. 

33 





CAnimateCtrl 

CAnimateCtrl 

The CAnimateCtrl class provides the functionality of the Windows common 
animation control. This control (and therefore the CAnimateCtrl class) is available 
only to programs running under Windows 95 and Windows NT version 3.51 and later. 

An animation control is a rectangular window that displays a clip in AVI (Audio 
Video Interleaved) format-the standard Windows video/audio format. An AVI clip 
is a series of bitmap frames, like a movie. 

Animation controls can play only simple"AVI clips. Specifically, the clips to be played 
by an animation control must meet the following requirements: 

• There must be exactly one video stream and it must have at least one frame. 

• There can be at most two streams in the file (typically the other stream, if present, 
is an audio stream, although the animation control ignores audio information). 

• The clip must either be uncompressed or compressed with RLE8 compression. 

• No palette changes are allowed in the video stream. 

You can add the AVI clip to your application as an AVI resource, or it can accompany 
your application as a separate AVI file. 

Since your thread continues executing while the AVI clip is displayed, one common 
use for an animation control is to indicate system activity during a lengthy operation. 
For example, the Find dialog box of the Windows 95 Explorer displays a moving 
magnifying glass as the system searches for a file. 

If you create a CAnimateCtrl object within a dialog box or from a dialog resource 
using the dialog editor, it will be automatically destroyed when the user closes the 
dialog box. 

If you create a CAnimateCtrl object within a window, you may need to destroy it. If 
you create the CAnimateCtrl object on the stack, it is destroyed automatically. If you 
create the CAnimateCtrl object on the heap by using the new function, you must call 
delete on the object to destroy it. If you derive a new class from CAnimateCtrl and 
allocate any memory in that class, override the CAnimateCtrl destructor to dispose 
of the allocations. 

For more information on using CAnimateCtrl, see Technical Note 60 online. 

CAnimateCtrl 

35 



CAnimateCtrl: :CAnimateCtrl 

#inciude <afxcmn.h> 

See Also: Animation Control Styles in CAnimateCtrl::Create, ON_CONTROL 

CAnimateCtrl Class Members 
Construction 

CAnimateCtrl 

Initialization 

Create 

Operations 

Open 

Play 

Seek 

Stop 

Close 

Constructs a CAnimateCtrl object. 

Creates an animation control and attaches it to a CAnimateCtrl object. 

Opens an A VI clip from a file or resource and displays the first frame. 

Plays the A VI clip without sound. 

Displays a selected single frame of the A VI clip. 

Stops playing the A VI clip. 

Closes the A VI clip that was previously opened. 

Member Functions 
CAnimateCtrl: : CAnimateCtrl 

Remarks 

CAnimateCtrl( ); 

Constructs a CAnimateCtri object. You must call the Create member function before 
you can perform any other operations on the object you create. 

See Also: CAnimateCtrl::Create 

CAnimateCtrl: :Close 
BOOL Close( ); 

Return Value 

Remarks 

36 

Nonzero if successful; otherwise zero. 

Use the Close member function to close the AVI clip that was previously opened in 
the animation control (if any) and remove it from memory. 

See Also: CAnimateCtrl::Open 



CAnimateCtrl: : Create 
BOOL Create( DWORD dwStyle, const RECT & reet, CWnd* pParentWnd, 

.. UINT nID ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

dwStyle Specifies the animation control's style. Apply any combination of the 
window and animation control styles described under Remarks to the control. 

reet Specifies the animation control's position and size. It can be either a CRect 
object or a RECT structure. 

pParentWnd Specifies the animation control's parent window, usually a CDialog. 
It must not be NULL. 

nID Specifies the animation control's ID. 

You construct a CAnimateCtrl in two steps. First call the constructor, then call 
Create, which creates the animation control and attaches it to the CAnimateCtrl 
object. 

Apply the following window styles to an animation control. 

• WS_CHILD Always 

• WS_ VISIBLE Usually 

• WS_DISABLED Rarely 

In addition to the window styles listed above, you may want to apply one or more of 
the following animation control styles to an animation control: 

• ACS_CENTER Centers the AVI clip in the animation control's window and 
leaves the animation control's size and position unchanged when the AVI clip is 
opened. If this style is not specified, the control will be resized when the AVI clip 
is opened to the size of the images in the AVI clip. 

• ACS_TRANSPARENT Causes the AVI clip to be drawn using a transparent 
background rather than the background color specified in the AVI clip. 

• ACS_AUTOPLAY Causes the AVI clip to start playing as soon as it is opened. 
When the clip is done playing, it will automatically be repeated. 

See Also: CAnimateCtrl::CAnimateCtrl, CAnimateCtrl::Open, 
CAnimateCtrl: :Play, CAnimateCtrl: :Seek 

CAnimateCtrl:: Create 

37 



CAnimateCtrl: :Open 

CAnimateCtrl: : Open 
BOOL Open( LPCTSTR IpszFileName ); 
BOOL Open( UINT nID ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

IpszFileName A CString object or a pointer to a null-terminated string that contains 
either the name of the AVI file or the name of an AVI resource. If this parameter is 
NULL, the system closes the AVI clip that was previously opened for the 
animation control, if any. 

nID The AVI resource identifier. If this parameter is NULL, the system closes the 
AVI clip that was previously opened for the animation control, if any. 

Call this function to open an AVI clip and display its first frame. 

If the animation control has the ACS_AUTOPLAY style, the animation control will 
automatically start playing the clip immediately after it opens it. It will continue to 
play the clip in the background while your thread continues executing. When the clip 
is done playing, it will automatically be repeated. 

If the animation control has the ACS_CENTER style, the AVI clip will be centered in 
the control and the size of the control will not change. If the animation control does 
not have the ACS_CENTER style, the control will be resized when the AVI clip is 
opened to the size of the images in the AVI clip. The position of the top left corner of 
the control will not change, only the size of the control. 

If the animation control has the ACS_TRANSPARENT style, the first frame will be 
drawn using a transparent background rather than the background color specified in 
the animation clip. 

See Also: CAnimateCtrl::Close, CAnimateCtrl::Create 

CAnimateCtrl: : Play 
BOOL Play( UINT nFrom, UINT nTo, UINT nRep ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

38 

nFrom Zero-based index of the frame where playing begins. Value must be less than 
65,536. A value of 0 means begin with the first frame in the AVI clip. 



Remarks 

nTo Zero-based index of the frame where playing ends. Value must be less than 
65,536. A value of -1 means end with the last frame in the AVI clip. 

nRep Number of times to replay the AVI clip. A value of -1 means replay the file 
indefinitely. 

Call this function to play an AVI clip in an animation control. The animation control 
will play the clip in the background while your thread continues executing. If the 
animation control has ACS_TRANSPARENT style, the AVI clip will be played using 
a transparent background rather than the background color specified in the animation 
clip. 

See Also: CAnimateCtrl: :Open, CAnimateCtrl: :Stop, CAnimateCtrl: :Seek, 
CAnimateCtrl:: Create 

CAnimateCtrl: :Seek 
BOOL Seek( UINT nTo ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nTo Zero-based index of the frame to display. Value must be less than 65,536. A 
value of 0 means display the first frame in the AVI clip. A value of -1 means 
display the last frame in the AVI clip. 

Call this function to statically display a single frame of your AVI clip. If the 
animation control has ACS_TRANSPARENT style, the AVI clip will be drawn using 
a transparent background rather than the background color specified in the animation 
clip. 

See Also: CAnimateCtrl::Open, CAnimateCtrl::Play, CAnimateCtrl::Create 

CAnimateCtrl: :Stop 
BOOL Stop( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise zero. 

Call this function to stop playing an AVI clip in an animation control. 

See Also: CAnimateCtrl: :Play 

CAnimateCtrl::Stop 

39 



CAre hive 

CArchive 

40 

CArchive does not have a base class. 

The CArchive class allows you to save a complex network of objects in a permanent 
binary form (usually disk storage) that persists after those objects are deleted. Later 
you can load the objects from persistent storage, reconstituting them in memory. This 
process of making data persistent is called "serialization." 

You can think of an archive object as a kind of binary stream. Like an input/output 
stream, an archive is associated with a file and permits the buffered writing and 
reading of data to and from storage. An input/output stream processes sequences 
of ASCII characters, but an archive processes binary object data in an efficient, 
nonredundant format. 

You must create a CFile object before you can create a CArchive object. In addition, 
you must ensure that the archive's load/store status is compatible with the file's open 
mode. You are limited to one active archive per file. 

When you construct a CArchive object, you attach it to an object of class CFile 
(or a derived class) that represents an open file. You also specify whether the archive 
will be used for loading or storing. A CArchive object can process not only primitive 
types but also objects of CObject-derived classes designed for serialization. A 
serializable class usually has a Serialize member function, and it usually uses the 
DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as described under 
class CObject. 

The overloaded extraction (») and insertion «<) operators are convenient archive 
programming interfaces that support both primitive types and CObject-derived 
classes. 

CArchive also supports programming with the MFC Windows Sockets classes 
CSocket and CSocketFile. The IsBufferEmpty member function supports that 
usage. 

For more information on CArchive, see the articles "Serialization (Object 
Persistence)" and "Windows Sockets: Using Sockets with Archives" in Visual C++ 
Programmer's Guide online. 

#include <afx.h> 

See Also: CFile, CObject, CSocket, CSocketFile 



CArchive Class Members 
Data Members 

Construction 

CArchive 

Abort 

Close 

Basic Input/Output 

Flush 

operator » 

operator « 

Read 

Write 

WriteString 

ReadString 

Status 

GctFile 

GetObjectSchema 

SetObjectSchema 

IsLoading 

IsStoring 

IsBufferEmpty 

Object Input/Output 

ReadObject 

WriteObject 

MapObject 

SetStoreParams 

SetLoadParams 

ReadClass 

Write Class 

Serialize Class 

Points to the CDocument object being serialized. 

Creates a CArchive object. 

Closes an archive without throwing an exception. 

Flushes unwritten data and disconnects from the CFile. 

Flushes unwritten data from the archive buffer. 

Loads objects and primitive types from the archive. 

Stores objects and primitive types to the archive. 

Reads raw bytes. 

Writes raw bytes. 

Writes a single line of text. 

Reads a single line of text. 

Gets the CFile object pointer for this archive. 

Called from the Serialize function to determine the version of the 
object that is being deserialized. 

Sets the object schema stored in the archive object. 

Determines whether the archive is loading. 

Determines whether the archive is storing. 

Determines whether the buffer has been emptied during a Windows 
Sockets receive process. 

Calls an object's Serialize function for loading. 

Calls an object's Serialize function for storing. 

Places objects in the map that are not serialized to the file, but that are 
available for subobjects to reference. 

Sets the hash table size and the block size of the map used to identify 
unique objects during the serialization process. 

Sets the size to which the load array grows. Must be called before any 
object is loaded or before MapObject or ReadObject is called. 

Reads a class reference previously stored with WriteClass. 

Writes a reference to the CRuntimeClass to the CArchive. 

Reads or writes the class reference to the CArchive object depending 
on the direction of the CArchive. 

CArchive 

41 



CArchive::Abort 

Member Functions 
CArchive: :Abort 

Remarks 

void Abort ( ); 

Call this function to close the archive without throwing an exception. The CArchive 
destructor will normally call Close, which will flush any data that has not been saved 
to the associated CFiIe object. This can cause exceptions. 

When catching these exceptions, it is a good idea to use Abort, so that destructing 
the CArchive object doesn't cause further exceptions. When handling exceptions, 
CArchive: :Abort will not throw an exception on failures because, unlike 
CArchive::Close, Abort ignores failures. 

If you used new to allocate the CArchive object on the heap, then you must delete it 
after closing the file. 

See Also: CArchive::Close, CFile::Close 

CArchive: :CArchive 
CArchive( CFiIe* pFile, UINT nMode, int nBujSize = 4096, void* IpBuJ = NULL ); 

throw( CMemoryException, CArchiveException, CFileException); 

Parameters 

42 

pFile A pointer to the CFile object that is the ultimate source or destination of the 
persistent data. 

nMode A flag that specifies whether objects will be loaded from or stored to the 
archive. The nMode parameter must have one of the following values: 

• CArchive::load Loads data from the archive. Requires only CFile read 
permission. 

o CArchive::store Saves data to the archive. Requires CFiIe write permission. 

• CArchive::bNoFlushOnDelete Prevents the archive from automatically 
calling Flush when the archive destructor is called. If you set this flag, you are 
responsible for explicitly calling Close before the destructor is called. If you do 
not, your data will be corrupted. 

nBujSize An integer that specifies the size of the internal file buffer, in bytes. Note 
that the default buffer size is 4096 bytes. If you routinely archive large objects, you 
will improve performance if you use a larger buffer size that is a multiple of the file 
buffer size. 



Remarks 

Example 

IpBuJ An optional pointer to a user-supplied buffer of size nBujSize. If you do not 
specify this parameter, the archive allocates a buffer from the local heap and frees 
it when the object is destroyed. The archive does not free a user-supplied buffer. 

Constructs a CArchive object and specifies whether it will be used for loading or 
storing objects. You cannot change this specification after you have created the 
archive. 

You may not use CFile operations to alter the state of the file until you have closed 
the archive. Any such operation will damage the integrity of the archive. You may 
access the position of the file pointer at any time during serialization by obtaining 
the archive's file object from the GetFile member function and then using the 
CFile::GetPosition function. You should call CArchive::Flush before obtaining 
the position of the file pointer. 

extern char* pFileName; 
CFile f; 
char buf[512]; 
if( !f.Open( pFileName. CFile::modeCreate I CFile::modeWrite ) ) { 

1Fifdef _DEBUG 
afxDump « "Unable to open file" « "\n"; 
exit( 1 ); 

#endif 

CArchive ar( &f. CArchive::store. 512. buf ); 

See Also: CArchive::Close, CArchive::Flush, CFile::Close 

CArchive: :Close 

Remarks 

void Close( ); 
throw( CArchiveException, CFileException ); 

Flushes any data remaining in the buffer, closes the archive, and disconnects the 
archive from the file. No further operations on the archive are permitted. After you 
close an archive, you can create another archive for the same file or you can close 
the file. 

The member function Close ensures that all data is transferred from the archive to the 
file, and it makes the archive unavailable. To complete the transfer from the file to the 
storage medium, you must first use CFile::Close and then destroy the CFile object. 

See Also: CArchive: :Flush, CArchive: :Abort 

CArchive::Close 

43 



CArchive::Flush 

CArchive: :Flush 

Remarks 

void Flush( ); 
throw( CFileException); 

Forces any data remaining in the archive buffer to be written to the file. 

The member function Flush ensures that all data is transferred from the archive to the 
file. You must call CFile::Close to complete the transfer from the file to the storage 
medium. 

See Also: CArchive::Close, CFile::Flush, CFile::Close 

CArchive: : GetFile 
CFile* GetFile( ) const; 

Return Value 

Remarks 

Example 

A constant pointer to the CFile object in use. 

Gets the CFile object pointer for this archive. You must flush the archive before 
using GetFile. 

extern CArchive ar; 
canst CFile* fp = ar.GetFile(); 

See Also: CArchive: :Flush 

CArchive::GetObjectSchema 
UINT GetObjectSchema(); 

Return Value 

Remarks 

44 

During deserialization, the version of the object being read. 

Call this function from the Serialize function to determine the version of the object 
that is currently being deserialized. Calling this function is only valid when the 
CArchive object is being loaded (CArchive: :IsLoading returns nonzero). It should 
be the first call in the Serialize function and called only once.· A return value of 
(UINT)-l indicates that the version number is unknown). 

A CObject-derived class may use VERSIONABLE_SCHEMA combined (using 
bitwise OR) with the schema version itself (in the IMPLEMENT_SERIAL macro) 
to create a "versionable object," that is, an object whose Serialize member function 



CArchive: :IsB ufferEmpty 

Example 

can read multiple versions. The default framework functionality (without 
VERSIONABLE_SCHEMA) is to throw an exception when the version is 
mismatched. 

IMPLEMENT_SERIAL(CMyObject. CObject. VERSIONABLE_SCHEMAI1) 

void CMyObject::Serialize(CArchive& ar) 
{ 

if (ar.lsLoading()) 
{ 

int nVersion = ar.GetObjectSchema(); 

switch(nVers;on) 
{ 

case 0: 
II read in previous 
II this object 
break; 

case 1: 

version of 

II read in current version of 
II this object 
break; 

default : 

else 
{ 

II report unknown version of 
II this object 
break; 

II Normal storing code goes here 

See Also: CObject: :Serialize, CObject: :IsSerializable, IMPLEMENT_SERIAL, 
DECLARE_SERIAL, CArchive::IsLoading 

CArchi ve: :IsB ufferEmpty 
BOOL IsBufferEmpty( ) const; 

Return Value 

Remarks 

Nonzero if the archive's buffer is empty; otherwise O. 

Call this member function to determine whether the archive object's internal buffer is 
empty. This function is supplied to support programming with the MFC Windows 
Sockets class CSocketFile. You do not need to use it for an archive associated with a 
CFile object. 

45 



CArchive::IsLoading 

The reason for using IsBufferEmpty with an archive associated with a CSocketFile 
object is that the archive's buffer might contain more than one message or record. 
After receiving one message, you should use IsBufferEmpty to control a loop that 
continues receiving data until the buffer is empty. For more information, see the 
Receive member function of class CAsyncSocket and the MFC Advanced Concepts 
sample CHATSRVR, which shows how to use IsBufferEmpty. 

For more information, see the article "Windows Sockets: Using Sockets with 
Archives" in Visual C++ Programmer's Guide online. 

See Also: CSocketFile, CAsyncSocket: :Receive 

CArchive: :IsLoading 
BOOL IsLoading( ) const; 

Return Value 

Remarks 

Example 

Nonzero if the archive is currently being used for loading; otherwise 0. 

Determines whether the archive is loading data. This member function is called by the 
Serialize functions of the archived classes. 

i nt i; 
extern CArchive ar; 
if( ar.IsLoading() 

ar » i; 
else 

ar«i; 

See Also: CArchive::IsStoring 

CArchive: :IsStoring 
BOOL IsStoring( ) const; 

Return Value 

Remarks 

46 

Nonzero if the archive is currently being used for storing; otherwise 0. 

Determines whether the archive is storing data. This member function is called by the 
Serialize functions of the archived classes. 

If the IsStoring status of an archive is nonzero, then its IsLoading status is 0, and 
vice versa. 



Example 
i nt i: 
extern CArchive ar: 
if( ar.IsStoring() 

ar « i: 
else 

ar » i: 

See Also: CArchive: :IsLoading 

CArchive: :MapObject 
void MapObject( const CObject* pOb ); 

Parameters 

Remarks 

Example 

pOb A constant pointer to the object being stored. 

Call this member function to place objects in the map that are not really serialized to 
the file, but that are available for subobjects to reference. For example, you might not 
serialize a document, but you would serialize the items that are part of the document. 
By calling MapObject, you allow those items, or subobjects, to reference the 
document. Also, serialized sub items can serialize their m_pDocument back pointer. 

You can call MapObject when you store to and load from the CArchive object. 
MapObject adds the specified object to the internal data structures maintained by the 
CArchive object during serialization and deserialization, but unlike ReadObject and 
WriteObject, it does not call serialize on the object. 

II MyDoc.h 
II Document should have DECLARE_SERIAL and IMPLEMENT_SERIAL 

class CMyDocument : public CDocument 
{ 

CObList m_listOfSubItems: 

DECLARE_SERIAL(CMyDocument) 
} : 

II MyDoc.cpp 

IMPLEMENT_SERIAL(CMyDocument, CObject, 1) 

void CMyDocument::Serialize(CArchive& ar) 
{ 

CArchivc::MapObject 

47 



CArchive: :MapObject 

48 

if Car.lsStoringC)) 
{ 

II TODO: add storing code here 

else 
{ 

II TODO: add loading code here 

ar.MapObjectCthis); 
Iiserialize the subitems in the document; 
Iithey will be able to serialize their m_pDoc 
Ilback pointer 
m_listOfSubltems.Serialize(ar); 

IISubltem.h 
class CSubltem public CObject 
{ 

public: 

} ; 

CSubltemCCMyDocument * pDoc) 
{ m_pDoc = pDoc; } 

II back pointer to owning document 
CMyDocument* m_pDoc; 
WORD m_i; II other item data 

virtual void SerializeCCArchive& ar); 

IISubltem.cpp 
void CSubltem::Serialize(CArchive& ar) 
{ 

if (ar.lsStoringC)) 
{ 

II will serialize a reference 
lito the "mapped" document pointer 
a r « m_pDoc; 
a r « m_ i ; 

else 
{ 

} 

II will load a reference to 
lithe "mapped" document pointer 
a r » m_pDoc; 
a r » m_ i ; 

See Also: CArchive: :ReadObject, CArchive:: WriteObject 



CArchive: :ReadClass 

CArchive: :Read 
UINT Read( void* lpBuj, UINT IlMax); 

throw( CFileException ); 

Return Value 
An unsigned integer containing the number of bytes actually read. If the return value 
is less than the number requested, the end of file has been reached. No exception is 
thrown on the end-of-file condition. 

Parameters 

Remarks 

Example 

lpElt! A pointer to a user-supplied buffer that is to receive the data read from the 
archive. 

IlMax An unsigned integer specifying the number of bytes to be read from the 
archive. 

Reads a specified number of bytes from the archive. The archive does not interpret the 
bytes. 

You can use the Read member function within your Serialize function for reading 
ordinary structures that are contained in your objects. 

extern CArchive ar; 
char pb[100]; 
UINT nr = ar.Read( pb. 100 ); 

CArchive: :ReadClass 
CRuntimeClass* ReadClass( const CRuntimeClass* pClassRefRequested = NULL, 

10+ UINT* pSchema = NULL, DWORD* obTag = NULL ); 
throw CArchiveException; 
throw CNotSupportedException; 

Return Value 
A pointer to the CRuntimeClass structure. 

Parameters 
pClassRefRequested A pointer to the CRuntimeClass structure that corresponds 

to the class reference requested. Can be NULL. 

pSchema A pointer to a schema of the run-time class previously stored. 

obTag A number that refers to an object's unique tag. Used internally by the 
implementation of ReadObject. Exposed for advanced programming only; 
obTag normally should be NULL. 

49 



CArchive::ReadObject 

Remarks 
Call this member function to read a reference to a class previously stored with 
WriteClass. 

If pClassRefRequested is not NULL, ReadClass verifies that the archived class 
information is compatible with your runtime class. If it is not compatible, ReadClass 
will throw a CArchiveException. 

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL; 
otherwise, ReadClass will throw a CNotSupportedException. 

If pSchema is NULL, the schema of the stored class can be retrieved by calling 
CArchive::GetObjectSchema; otherwise, *pSchema will contain the schema of the 
run-time class that was previously stored. 

You can use SerializeClass instead of ReadClass, which handles both reading and 
writing of the class reference. 

See Also: CArchive:: WriteClass, CArchive: :GetObjectSchema, 
CArchive::SetObjectSchema, CArchiveException, CNotSupportedException, 
CArchive::SerializeClass 

CArchive: : ReadObject 
CObject* ReadObject( const CRuntimeClass* pClass ); 

throw( CFileException, CArchiveException, CMemoryException); 

Return Value 
A CObject pointer that must be safely cast to the correct derived class by using 
CObject: :IsKindOf. 

Parameters 

Remarks 

50 

pClass A constant pointer to the CRuntimeClass structure that corresponds to the 
object you expect to read. 

Reads object data from the archive and constructs an object of the appropriate type. 

This function is normally called by the CArchive extraction (») operator overloaded 
for a CObject pointer. ReadObject, in turn, calls the Serialize function of the 
archived class. 

If you supply a nonzero pClass parameter, which is obtained by the 
RUNTIME_CLASS macro, then the function verifies the run-time class of the 
archived object. This assumes you have used the IMPLEMENT_SERIAL macro in 
the implementation of the class. 

See Also: CArchive::WriteObject, CObject::IsKindOf 



CArchi ve: :SerializeClass 

CArchive: : ReadString 
Bool ReadString(CString& rString ); 
LPTSTR ReadString( LPTSTR lpsz, UINT nMax ); 

throw( CArchiveException ); 

Return Value 
In the version that returns Bool, TRUE if successful; FALSE otherwise. 

In the version that returns an LPTSTR, a pointer to the buffer containing the text 
data; NULL if end-of-file was reached. 

Parameters 

Remarks 

rString A reference to a CString that will contain the resultant string after it is read 
from the file associated with the CArchive object. 

lpsz Specifies a pointer to a user-supplied buffer that will receive a null-terminated 
text string. 

llMax Specifies the maximum number of characters to read. Should be one less than 
the size of the lpsz buffer. 

Call this member function to read text data into a buffer from the file associated with 
the CArchive object. In the version of the member function with the nMax parameter, 
the buffer will hold up to a limit of nMax-l characters. Reading is stopped by a 
carriage return-linefeed pair. Trailing newline characters are always removed. A null 
character ('\0') is appended in either case. 

CArchive::Read is also available for text-mode input, but it does not terminate on a 
carriage return-linefeed pair. 

See Also: CArchive: :Read, CArchive:: Write, CArchive:: WriteString, 
CArchiveException 

CArchive: :SerializeClass 
void SerializeClass( const CRuntimeClass* pRuntimeClass ); 

Parameters 

Remarks 

pRuntimeClass A pointer to a run-time class object for the base class. 

Call this member function when you want to store and load the version information of 
a base class. Serialize Class reads or writes the reference to a class to the CArchive 
object, depending on the direction of the CArchive. Use SerializeClass in place of 
ReadClass and WriteClass as a convenient way to serialize base-class objects; 
Serialize Class requires less code and fewer parameters. 

51 



CArchi ve: :SetLoadParams 

Example 

Like ReadClass, SerializeClass verifies that the archived class information is 
compatible with your runtime class. If it is not compatible, SerializeClass will throw 
a CArchiveException. 

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL; 
otherwise, SerializeClass will throw a CNotSupportedException. 

Use the RUNTIME_CLASS macro to retrieve the value for the pRuntimeClass 
parameter. The base class must have used the IMPLEMENT_SERIAL macro. 

class CBaseClass : public CObject { ... }; 
class CDerivedClass : public CBaseClass { ... }; 
void CDerivedClass::Serialize(CArchive& ar) 
{ 

if (ar.IsStoring(» 
{ 

Ilnormal code for storing contents 
Ilof this object 

else 
{ 

} 

Ilnormal code for reading contents 
Ilof this object 

Ilallow the base class to serialize along 
Ilwith its version information 
ar.SerializeClass(RUNTIME_CLASS(CBaseClass»; 
CBaseClass::Serialize(ar); 

See Also: CArchive::ReadClass, CArchive::WriteClass, 
CArchive: :GetObjectSchema, CArchive: :SetObjectSchema, CArchiveException, 
CN otSupportedException 

CArchive:: SetLoadParams 
void SetLoadParams( UINT nGrowBy = 1024); 

Parameters 

Remarks 

52 

nGrowBy The minimum number of element slots to allocate if a size increase is 
necessary. 

Call SetLoadParams when you are going to read a large number of CObject-derived 
objects from an archive. CArchive uses a load array to resolve references to objects 
stored in the archive. SetLoadParams allows you to set the size to which the load 
array grows. 

You must not call SetLoadParams after any object is loaded, or after MapObject or 
ReadObject is called. 



CArchi ve: :SetStoreParams 

Example 
class CMyLargeDocument : public CDocument { ... }; 
void CMyLargeDocument::Serialize(CArchive& ar) 
{ 

if (ar.lsStoring(» 
ar.SetStoreParams(); II use large defaults 

else 
ar.SetLoadParams(); 

if (ar.lsStoring(» 
{ 

II code for storing CMyLargeDocument 

else 
{ 

II code for loading CMyLargeDocument 

See Also: CArchive::SetStoreParams 

CArchi ve: : SetObj ectSchema 
void SetObjectSchema( UINT nSchema ); 

Parameters 

Remarks 

nSchema Specifies the object's schema. 

Call this member function to set the object schema stored in the archive object to 
nSchema. The next call to GetObjectSchema will return the value stored in nSchema. 

Use SetObjectSchema for advanced versioning; for example, when you want to force 
a particular version to be read in a Serialize function of a derived class. 

See Also: CArchive::GetObjectSchema 

CArchive::SetStoreParams 
void SetStoreParams( UINT nHashSize = 2053, UINT nBlockSize = 128); 

Parameters 

Remarks 

nHashSize The size of the hash table for interface pointer maps. Should be a prime 
number. 

nBlockSize Specifies the memory-allocation granularity for extending the 
parameters. Should be a power of 2 for the best performance. 

Use SetStoreParams when storing a large number of CObject-derived objects in an 
archive. 

53 



CArchive::Write 

Example 

SetStoreParams allows you to set the hash table size and the block size of the map 
used to identify unique objects during the serialization process. 

You must not call SetStoreParams after any objects are stored, or after MapObject 
or WriteObject is called. 

class CMyLargeDocument : public CDocument { ... }; 
void CMyLargeDocument::Serialize(CArchive& ar) 
{ 

if (ar.lsStoring(» 
ar.SetStoreParams(); II use large defaults 

else 
ar.SetLoadParams(); 

if (ar.lsStoring(» 
{ 

II code for storing CMyLargeDocument 

else 
{ 

II code for loading CMyLargeDocument 

See Also: CArchive: :SetLoadParams 

CArchive::Write 
void Write( const void* IpBuf, UINT nMax); 

throw( CFileException); 

Parameters 

Remarks 

Example 

54 

IpBuJ A pointer to a user-supplied buffer that contains the data to be written to the 
archive. 

nMax An integer that specifies the number of bytes to be written to the archive. 

Writes a specified number of bytes to the archive. The archive does not format the 
bytes. 

You can use the Write member function within your Serialize function to write 
ordinary structures that are contained in your objects. 

extern CArchive ar; 
char pb[100]; 
ar.Write( pb. 100 ); 

See Also: CArchive: :Read 



CArchive: :WriteObject 

CArchive:: WriteClass 
void WriteClass( const CRuntimeClass* pClassRej); 

Parameters 

Remarks 

pClassRej A pointer to the CRuntimeClass structure that corresponds to the class 
reference requested. 

Use WriteClass to store the version and class information of a base class during 
serialization of the derived class. WriteClass writes a reference to the 
CRuntimeClass for the base class to the CArchive. Use CArchive::ReadClass to 
retrieve the reference. 

Write Class verifies that the archived class information is compatible with your 
runtime class. If it is not compatible, WriteClass will throw a CArchiveException. 

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL; 
otherwise, WriteClass will throw a CNotSupportedException. 

You can use Serialize Class instead of WriteClass, which handles both reading and 
writing of the class reference. 

See Also: CArchive::ReadClass, CArchive::GetObjectSchema, 
CArchive: :SetObjectSchema, CArchive: :SerializeClass, CArchiveException, 
CNotSupportedException. 

CArchive:: WriteObject 
void WriteObject( const CObject* pOb ); 

throw( CFileException, CArchiveException ); 

Parameters 

Remarks 

pOb A constant pointer to the object being stored. 

Stores the specified CObject to the archive. 

This function is normally called by the CArchive insertion «<) operator overloaded 
for CObject. WriteObject, in turn, calls the Serialize function of the archived class. 

You must use the IMPLEMENT_SERIAL macro to enable archiving. WriteObject 
writes the ASCII class name to the archive. This class name is validated later during 
the load process. A special encoding scheme prevents unnecessary duplication of the 
class name for multiple objects of the class. This scheme also prevents redundant 
storage of objects that are targets of more than one pointer. 

55 



CArchive::WriteString 

The exact object encoding method (including the presence of the ASCII class name) 
is an implementation detail and could change in future versions of the library. 

Note. Finish creating, deleting, and updating all your objects before you begin to archive them. 
Your archive will be corrupted if you mix archiving with object modification. 

See Also: CArchive::ReadObject 

CArchive:: WriteString 
void WriteString( LPCTSTR lpsz); 

throw( CFileException); 

Parameters 

Remarks 

lpsz Specifies a pointer to a buffer containing a null-terminated text string. 

Use this member function to write data from a buffer to the file associated with the 
CArchive object. The terminating null character ('\0') is not written to the file; nor is a 
newline automatically written. 

WriteString throws an exception in response to several conditions, including the 
disk-full condition. 

Write is also available, but rather than terminating on a null character, it writes the 
requested number of bytes to the file. 

See Also: CArchive:: Write, CArchive: :Read, CArchive: : ReadString, 
CFileException 

Operators 
CArchive: : operator « 

56 

friend CArchive& operator «( CArchive& ar, const CObject* pOb ); 
throw( CArchiveException, CFileException); 

CArchive& operator «( BYTE by); 
throw( CArchiveException, CFileException); 

CArchive& operator «( WORD w ); 
throw( CArchiveException, CFileException ); 

CArchive& operator «( int i ); 
throw( CArchiveException, CFileException); 

CArchive& operator «( LONG I); 
throw( CArchiveException, CFileException ); 



CArchive& operator «( DWORD dw); 
throw( CArchiveException, CFileException ); 

CArchive& operator «( floatj); 
throw( CArchiveException, CFileException); 

CArchive& operator «( double d ); 
throw( CArchiveException, CFileException ); 

Return Value 

Remarks 

Example 

A CArchive reference that enables multiple extraction operators on a single line. 

Stores the indicated object or primitive type to the archive. 

If you used the IMPLEMENT_SERIAL macro in your class implementation, then 
the insertion operator overloaded for CObject calls the protected WriteObject. This 
function, in turn, calls the Serialize function of the class. 

long 1; 
i nt i; 
extern CArchive ar; 
if( ar.IsStoring() ) 
ar«l«i; 

See Also: CArchive::WriteObject, CObject::Serialize 

CArchive::operator » 
friend CArchive& operator »( CArchive& ar, CObject *& pOb); 

throw( CArchiveException, CFileException, CMemoryException); 
friend CArchive& operator »( CArchive& ar, const CObject *& pOb); 

throw( CArchiveException, CFileException, CMemoryException); 
CArchive& operator »( BYTE& by); 

throw( CArchiveException, CFileException); 
CArchive& operator »( WORD& w ); 

throw( CArchiveException, CFileException); 
CArchive& operator »( int& i ); 

throw( CArchiveException, CFileException); 
CArchive& operator »( LONG& I); 

throw( CArchiveException, CFileException); 
CArchive& operator »( DWORD& dw ); 

throw( CArchiveException, CFileException); 
CArchive& operator »( float& j); 

throw( CArchiveException, CFileException); 
CArchive& operator »( double& d); 

throw( CArchiveException, CFileException ); 

CArchive::operator » 

57 



CArchive: :m_pDocument 

Return Value 

Remarks 

Example 

A CArchive reference that enables multiple insertion operators on a single line. 

Loads the indicated object or primitive type from the archive. 

If you used the IMPLEMENT_SERIAL macro in your class implementation, then 
the extraction operators overloaded for CObject call the protected ReadObject 
function (with a nonzero run-time class pointer). This function, in turn, calls the 
Serialize function of the class. 

i nt i; 
extern CArchive ar; 
if( ar.IsLoading() ) 

ar » ;; 

See Also: CArchive::ReadObject, CObject::Serialize 

Data Members 
CArchive: :m_pDocument 
Remarks 

58 

Set to NULL by default, this pointer to a CDocument can be set to anything the 
user of the CArchive instance wants. A common usage of this pointer is to convey 
additional information about the serialization process to all objects being serialized. 
This is achieved by initializing the pointer with the document (a CDocument-derived 
class) that is being serialized, in such a way that objects within the document can 
access the document if necessary. This pointer is also used by COleClientItem 
objects during serialization. 

The framework sets m_pDocument to the document being serialized when a 
user issues a File Open or Save command. If you serialize an Object Linking and 
Embedding (OLE) container document for reasons other than File Open or Save, 
you must explicitly set m_pDocument. For example, you would do this when 
serializing a container document to the Clipboard. 

See Also: CDocument, COleClientItem 



CArchi veException 

CArchiveException 

A CArchiveException object represents a serialization exception condition. The 
CArchiveException class includes a public data member that indicates the cause of 
the exception. 

CArchiveException objects are constructed and thrown inside CArchive member 
functions. You can access these objects within the scope of a CATCH expression. 
The cause code is independent of the operating system. For more information about 
exception processing, see the article "Exceptions" in Visual C++ Programmer's 
Guide online. 

#include <afx.h> 

See Also: CArchive, AfxThrow ArchiveException, Exception Processing 

CArchiveException Class Members 
Data Members 

Indicates the exception cause. 

Construction 

CArchiveException Constructs a CArchiveException object. 

Member Functions 
CArchi veException: : CArchi veException 

CArchiveException( int cause = CArchiveException::none); 

Parameters 
cause An enumerated type variable that indicates the reason for the exception. 

For a list of the enumerators, see the m_cause data member. 

CArchiveException 

59 



CArchiveException: :m_cause 

Remarks 
Constructs a CArchiveException object, storing the value of cause in the object. 
You can create a CArchiveException object on the heap and throw it yourself or 
let the global function AfxThrowArchiveException handle it for you. 

Do not use this constructor directly; instead, call the global function 
AfxThrow ArchiveException. 

Data Members 
CArchiveException: :m_cause 
Remarks 

60 

Specifies the cause of the exception. This data member is a public variable of type int. 
Its values are defined by a CArchiveException enumerated type. The enumerators 
and their meanings are as follows: 

• CArchiveException::none No error occurred. 

• CArchiveException::generic Unspecified error. 

• CArchiveException::readOnly Tried to write into an archive opened for 
loading. 

• CArchiveException::endOfFile Reached end of file while reading an object. 

• CArchiveException: :writeOnly Tried to read from an archive opened for 
storing. 

• CArchiveException::badlndex Invalid file format. 

• CArchiveException::badClass Tried to read an object into an object of the 
wrong type. 

• CArchiveException::badSchema Tried to read an object with a different version 
of the class. 

Note These CArchiveException cause enumerators are distinct from the CFileException 
cause enumerators. 



CArray 

template< class TYPE, class ARG_TYPE > class CArray : public CObject 

Parameters 

Remarks 

TYPE Template parameter specifying the type of objects stored in the array. TYPE 
is a parameter that is returned by CArray. 

ARG_TYPE Template parameter specifying the argument type used to access objects 
stored in the array. Often a reference to TYPE. ARG_TYPE is a parameter that is 
passed to CArray. 

The CArray class supports arrays that are similar to C arrays, but can dynamically 
shrink and grow as necessary. 

Array indexes always start at position O. You can decide whether to fix the upper 
bound or allow the array to expand when you add elements past the current bound. 
Memory is allocated contiguously to the upper bound, even if some elements 
are null. 

As with a C array, the access time for a CArray indexed element is constant and is 
independent of the array size. 

Tip Before using an array, use SetSize to establish its size and allocate memory for it. If you 
do not use SetSize, adding elements to your array causes it to be frequently reallocated and 
copied. Frequent reallocation and copying are inefficient and can fragment memory. 

If you need a dump of individual elements in an array, you must set the depth of the 
CDumpContext object to 1 or greater. 

Certain member functions of this class call global helper functions that must be 
customized for most uses of the CArray class. See the topic "Collection Class 
Helpers" in the MFC Macros and Globals section. 

When elements are removed from a CArray object, the helper function 
DestructElements is called. When elements are added, the helper function 
ConstructElements is called. 

Array class derivation is similar to list derivation. 

CArray 

61 



CArray 

For more information on using CArray, see the article "Collections" in Visual C++ 
Programmer's Guide online. 

#include <afxtempl.h> 

See Also: CObArray, DestructElements, ConstructElements, "Collection Class 
Helpers" 

CArray Class Members 

62 

Construction 

CArray 

Attributes 

GetSize 

GetUpperBound 

SetSize 

Operations 

FreeExtra 

RemoveAlI 

Element Access 

GetAt 

SetAt 

ElementAt 

GetData 

Growing the Array 

SetAtGrow 

Add 

Append 

Copy 

Insertion/Removal 

InsertAt 

RemoveAt 

Operators 

operator [] 

Constructs an empty array. 

Gets the number of elements in this array. 

Returns the largest valid index. 

Sets the number of elements to be contained in this array. 

Frees all unused memory above the current upper bound. 

Removes all the elements from this array. 

Returns the value at a given index. 

Sets the value for a given index; array not allowed to grow. 

Returns a temporary reference to the element pointer within the array. 

Allows access to elements in the array. Can be NULL. 

Sets the value for a given index; grows the array if necessary. 

Adds an element to the end of the array; grows the array if necessary. 

Appends another array to the array; grows the array if necessary 

Copies another array to the array; grows the array if necessary. 

Inserts an element (or all the elements in another array) at a specified 
index. 

Removes an element at a specific index. 

Sets or gets the element at the specified index. 



Member Functions 
CArray::Add 

int Add( ARG_TYPE newElement); 
throw( CMemoryException); 

Return Value 
The index of the added element. 

Parameters 

Remarks 

Example 

ARG_TYPE Template parameter specifying the type of arguments referencing 
elements in this array. 

newElement The element to be added to this array. 

Adds a new element to the end of an array, growing the array by 1. If SetSize has been 
used with an nGrowBy value greater than 1, then extra memory may be allocated. 
However, the upper bound will increase by only 1. 

II example for CArray::Add 
CArray<CPoint,CPoint> ptArray; 

CPoint pt(10,20); 
ptArray.Add(pt); II Element 0 
ptArray.Add(CPoint(30,40»; II Element 1 

See Also: CArray::SetAt, CArray::SetAtGrow, CArray::lnsertAt, 
CArray::operator [] 

CArray: : Append 
int Append( const CArray& src); 

Return Value 
The index of the first appended element. 

Parameters 

Remarks 

src Source of the elements to be appended to an array. 

Call this member function to add the contents of one array to the end of another. 
The arrays must be of the same type. 

If necessary, Append may allocate extra memory to accommodate the elements 
appended to the array. 

See Also: CArray::Copy 

CArray: :Append 

63 



CArray: :CArray 

CArray::CArray 

Remarks 

CArray( ); 

Constructs an empty array. The array grows one element at a time. 

See Also: CObArray::CObArray 

CArray: : Copy 
void Copy( const CArray& src); 

Parameters 

Remarks 

src Source of the elements to be copied to an array. 

Use this member function to copy the elements of one array to another. 

Call this member function to overwrite the elements of one array with the elements of 
another array. 

Copy does not free memory; however, if necessary, Copy may allocate extra memory 
to accommodate the elements copied to the array. 

See Also: CArray: :Append 

CArray: : ElementAt 
TYPE& ElementAt( int nlndex); 

Return Value 
A reference to an array element. 

Parameters 

Remarks 

64 

TYPE Template parameter specifying the type of elements in the array. 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

Returns a temporary reference to the specified element within the array. It is used to 
implement the left-side assignment operator for arrays. 

See Also: CArray: :operator [] 



CArray: : FreeExtra 

Remarks 

void FreeExtra( ); 

Frees any extra memory that was allocated while the array was grown. This function 
has no effect on the size or upper bound of the array. 

CArray::GetAt 
TYPE GetAt( int nIlldex) const; 

Return Value 
The array element currently at this index. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of the array elements. 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

Returns the array element at the specified index. 

Note Passing a negative value or a value greater than the value returned by GetUpperBound 
will result in a failed assertion. 

See Also: CArray::SetAt, CArray::operator [], ConstructElements 

CArray:: GetData 
const TYPE* GetData() const; 
TYPE* GetData( ); 

Return Value 
A pointer to an array element. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of the array elements. 

Use this member function to gain direct access to the elements in an array. If no 
elements are available, GetData returns a null value. 

While direct access to the elements of an array can help you work more quickly, use 
caution when calling GetData; any errors you make directly affect the elements of 
your array. 

See Also: CArray::GetAt, CArray::SetAt, CArray::ElementAt 

CArray: :GetData 

65 



CArray: :GetSize 

CArray: : GetSize 
int GetSize( ) const; 

Remarks 
Returns the size of the array. Since indexes are zero-based, the size is 1 greater than 
the largest index. 

See Also: CArray::GetUpperBound, CArray::SetSize 

CArray: : GetUpperBound 
int GetUpperBound() const; 

Remarks 
Returns the current upper bound of this array. Because array indexes are zero-based, 
this function returns a value 1 less than GetSize. 

The condition GetUpperBound( ) = -1 indicates that the array contains no elements. 

See Also: CArray::GetSize, CArray::SetSize 

CArray: : InsertAt 
void InsertAt( int nlndex, ARG_TYPE newElement, int nCount = 1 ); 

throw( CMemoryException ); 
void InsertAt( int nStartlndex, CArray* pNewArray ); 

throw( CMemoryException); 

Parameters 

Remarks 

66 

nlndex An integer index that may be greater than the value returned by 
GetUpperBound. 

ARG _TYPE Template parameter specifying the type of elements in this array. 

newElement The element to be placed in this array. 

nCount The number of times this element should be inserted (defaults to 1). 

nStartlndex An integer index that may be greater than the value returned by 
GetUpperBound. 

pNewArray Another array that contains elements to be added to this array. 

The first version of InsertAt inserts one element (or multiple copies of an element) 
at a specified index in an array. In the process, it shifts up (by incrementing the index) 
the existing element at this index, and it shifts up all the elements above it. 

The second version inserts all the elements from another CArray collection, starting 
at the nStartIndex position. 



Example 

The SetAt function, in contrast, replaces one specified array element and does not 
shift any elements. 

II example for CArray::lnsertAt 

CArray<CPoint,CPoint> ptArray; 

ptArray.Add(CPoint(10,20»; II Element 0 
ptArray.Add(CPoint(30,40»; II Element 1 (will become element 2) 
ptArray.lnsertAt(l, CPoint(50,60»; II New element 1 

See Also: GetUpperBound, CArray::SetAt, CArray::RemoveAt 

CArray: : RemoveAll 

Remarks 

void RemoveAll(); 

Removes all the elements from this array. If the array is already empty, the function 
still works. 

CArray::RemoveAt 
void RemoveAt( int nlndex, int nCount = 1 ); 

Parameters 

Remarks 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

nCount The number of elements to remove. 

Removes one or more elements starting at a specified index in an array. In the process, 
it shifts down all the elements above the removed element(s). It decrements the upper 
bound of the array but does not free memory. 

If you try to remove more elements than are contained in the array above the removal 
point, then the Debug version of the library asserts. 

See Also: CArray: :SetAt, CArray: :SetAtGrow, CArray: :InsertAt 

CArray::RemoveAt 

67 



CArray:: SetAt 

CArray::SetAt 
void SetAt( iot nlndex, ARG_TYPE newElement); 

Parameters 

Remarks 

nlndex An integer index that is greater than or equal to 0 and less than or equal to 
the value returned by GetUpperBouod. 

ARG_TYPE Template parameter specifying the type of arguments used for 
referencing array elements. 

newElement The new element value to be stored at the specified position. 

Sets the array element at the specified index. SetAt will not cause the array to grow. 
Use SetAtGrow if you want the array to grow automatically. 

You must ensure that your index value represents a valid position in the array. If it is 
out of bounds, then the Debug version of the library asserts. 

See Also: CArray::GetAt, CArray::SetAtGrow, CArray::ElemeotAt, 
CArray: :operator [] 

CArray: : SetAtGrow 
void SetAtGrow( iot nlndex, ARG_TYPE newElement); 

throw( CMemoryExceptioo); 

Parameters 

Remarks 

Example 

68 

nlndex An integer index that is greater than or equal to O. 

ARG_TYPE Template parameter specifying the type of elements in the array. 

newElement The element to be added to this array. A NULL value is allowed. 

Sets the array element at the specified index. The array grows automatically if 
necessary (that is, the upper bound is adjusted to accommodate the new element). 

II example for CArray::SetAtGrow 
CArray<CPoint,CPoint> ptArray; 

ptArray.Add(CPoint(10,20»;11 Element 0 
ptArray.Add(CPoint(30,40»;11 Element 1 

II Element 2 deliberately skipped 
ptArray.SetAtGrow(3, CPoint(50,60»; II Element 3 

See Also: CArray::GetAt, CArray::SetAt, CArray::ElemeotAt, 
CArray: :operator [] 



CArray::SetSize 
void SetSize( int nNewSize, int nGrowBy = -1 ); 

throw( CMemory Exception); 

Parameters 

Remarks 

nNewSize The new array size (number of elements). Must be greater than or 
equal to O. 

nGrowBy The minimum number of element slots to allocate if a size increase is 
necessary. 

Establishes the size of an empty or existing array; allocates memory if necessary. 

If the new size is smaller than the old size, then the array is truncated and all unused 
memory is released. 

Use this function to set the size of your array before you begin using the array. 
If you do not use SetSize, adding elements to your array causes it to be frequently 
reallocated and copied. Frequent reallocation and copying are inefficient and can 
fragment memory. 

The nGrowBy parameter affects internal memory allocation while the array is 
growing. Its use never affects the array size as reported by GetSize and 
GetUpperBound. If the default value is used, MFC allocates memory in a way 
calculated to avoid memory fragmentation and optimize efficiency for most cases. 

See Also: CArray::GetUpperBound, CArray::GetSize 

Operators 
CArray::operator [ ] 

TYPE& operator []( int nlndex); 
TYPE operator []( int nlndex) const; 

Parameters 

Remarks 

TYPE Template parameter specifying the type of elements in this array. 

nlndex Index of the element to be accessed. 

These sUbscript operators are a convenient substitute for the SetAt and GetAt 
functions. 

CArray::operator [ ] 

69 



CArray::operator [] 

70 

The first operator, called for arrays that are not const, may be used on either the right 
(r-value) or the left (I-value) of an assignment statement. The second, called for const 
arrays, may be used only on the right. 

The Debug version of the library asserts if the SUbscript (either on the left or right side 
of an assignment statement) is out of bounds. 

See Also: CArray: :GetAt, CArray: :SetAt, CArray: :ElementAt 



CAsyncMonikerFile 

CAsyncMonikerFile 

CAsyncMonikerFile provides functionality for the use of asynchronous monikers 
in ActiveX controls (formerly OLE controls). Derived from CMonikerFile, which 
in turn is derived from COleStreamFile, CAsyncMonikerFile uses the IMoniker 
interface to access any data stream asynchronously, including loading files 
asynchronously from a URL. The files can be datapath properties of ActiveX controls. 

Asynchronous monikers are used primarily in Internet-enabled applications and 
ActiveX controls to provide a responsive user-interface during file transfers. A prime 
example of this is the use of CDataPathProperty to provide asynchronous properties 
for ActiveX controls. The CDataPathProperty object will repeatedly get a callback 
to indicate availability of new data during a lengthy property exchange process. 

For more information about how to use asynchronous monikers and ActiveX controls 
in Internet applications, see the following articles in Visual C++ Programmer's Guide 
online: 

• Internet First Steps: Asynchronous Monikers 

• Internet First Steps: ActiveX Controls 

#include <afxole.h> 

See Also: CMonikerFile, CDataPathProperty, Asynchronous Versus Synchronous 
Monikers in the OLE Programmer's Reference in the Win32 SDK 

CAsyncMonikerFile Class Members 
Construction 

CAsyncMonikerFile 

Operations 

GetBinding 

GetFormatEtc 

Constructs a CAsyncMonikerFile object. 

Retrieves a pointer to the asynchronous transfer binding. 

Retrieves the format of the data in the stream. 

CAsyncMonikerFile 

71 



CAsyncMonikerFile: :CAsyncMonikerFile 

Overridables 

Close 

CreateBindStatusCallback 

GetBindlnfo 

GetPriority 

OnDataA vailable 

OnLowResource 

OnProgress 

OnStartBinding 

OnStopBinding 

Open 

Closes and releases all resources. 

Creates a COM object that implements IBindStatusCallback. 

Called by the OLE system library to request information on the 
type of bind to be created. 

Called by the OLE system library to get the priority of the binding. 

Called to provide data as it becomes available to the client during 
asynchronous bind operations. 

Called when resources are low. 

Called to indicate progress on the data downloading process. 

Called when binding is starting up. 

Called when asynchronous transfer is stopped. 

Opens a file asynchronously. 

Member Functions 
CAsyncMonikerFile: : CAsyncMonikerFile 

CAsyncMonikerFile( ); 

Remarks 
Constructs a CAsyncMonikerFile object. It does not create the IBindHost interface. 
IBindHost is used only if you provide it in the Open member function. 

For a description of the IBindHost interface, see the ActiveX SDK. 

See Also: CDataPathProperty, CAsyncMonikerFile: :Open 

CAsyncMonikerFile: : Close 
virtual void Close( ); 

Remarks 
Call this function to close and release all resources. Can be called on unopened or 
already closed files. 

See Also: CAsyncMonikerFile: :Open 

CAsyncMonikerFile::CreateBindStatusCallback 
virtual IUnknown* CreateBindStatusCallback( IUnknown* pUnkControlling); 

Return Value 

72 

If pUnkControlling is not NULL, the function returns a pointer to the inner 
IUnknown on a new COM object supporting IBindStatusCallback. If 



CAsyncMonikerFile: :GetB indInfo 

pUnkControlling is NULL, the function returns a pointer to an IUnknown on a 
new COM object supporting IBindStatusCallback. 

Parameters 

Remarks 

pUnkControlling A pointer to the controlling unknown (the outer IUnknown) 
or NULL if aggregation is not being used. 

CAsyncMonikerFile requires a COM object that implements IBindStatusCallback. 
MFC implements such an object, and it is aggregatable. You can override 
CreateBindStatusCallback to return your own COM object. Your COM object 
can aggregate MFC's implementation by calling 
CAsyncMonikerFile::CreateBindStatusCallback with the controlling unknown 
of your COM object. 

Alternately, your COM object can de]egate to MFC's implementation by calling 
CAsyncMonikerFile::CreateBindStatusCallback( NULL). 

CAsyncMonikerFile::Open calls CreateBindStatusCallback( NULL). 

For details about the asynchronous binding, see "How Asynchronous Binding and 
Storage Work" in the OLE Programmer s Reference in the Win32 SDK. For a 
discussion of aggregation, see "Aggregation" in the OLE Programmer's Reference 
in the Win32 SDK. 

CAsyncMonikerFile: : GetBindInfo 
virtual DWORD GetBindlnfo( ) const; 

Return Value 

Remarks 

Retrieves the settings for IBindStatusCallBack. For a description of the 
IBindStatusCallback interface, see the ActiveX SDK. 

Called from the client of an asynchronous moniker to tell the asynchronous moniker 
how it wants to bind. The default implementation sets the binding to be asynchronous, 
to use a storage medium (a stream), and to use the data-push model. Override this 
function if you want to change the behavior of the binding. 

One reason for doing this would be to bind using the data-pull model instead of the 
data-push model. In a data-pull model, the client drives the bind operation, and the 
moniker only provides data to the client when it is read. In a data-push model, the 
moniker drives the asynchronous bind operation and continuously notifies the 
client whenever new data is available. 

73 



CAsyncMonikerFile::GetBinding 

CAsyncMonikerFile: : GetBinding 
IBinding* GetBinding( ) const; 

Return Value 

Remarks 

A pointer to the IBinding interface provided when asynchronous transfer begins. 
Returns NULL if for any reason the transfer cannot be made asynchronously. 

Call this function to retrieve a pointer to the asynchronous transfer binding. This 
allows you to control the data transfer process through the IBinding interface, for 
example, with IBinding::Abort, IBinding::Pause, and IBinding::Resume. 

For a description of the IBinding interface, see the ActiveX SDK. 

CAsyncMonikerFile::GetFormatEtc 
FORMATETC* GetFormatEtc( ) const; 

Return Value 

Remarks 

A pointer to the Windows structure FORMATETC for the currently opened stream. 
Returns NULL if the moniker has not been bound, if it is not asynchronous, or if the 
asynchronous operation has not begun. 

Call this function to retrieve the format of the data in the stream. 

CAsyncMonikerFile: : GetPriority 
virtual long GetPriority( ) const; 

Return Value 

Remarks 

74 

The priority at which the asynchronous transfer will take place. One of the standard 
thread priority flags: THREAD _PRIORITY _ABOVE_NORMAL, 
THREAD _PRIORITY _BELOW_NORMAL, 
THREAD _PRIORITY_HIGHEST, THREAD _PRIORITY _IDLE, 
THREAD_PRIORITY_LOWEST, THREAD_PRIORITY_NORMAL, and 
THREAD_PRIORITY_TIME_CRITICAL. See the Windows function 
SetThreadPriority for a description of these values. 

Called from the client of an asynchronous moniker as the binding process starts to 
receive the priority given to the thread for the binding operation. GetPriority should 
not be called directly. THREAD_PRIORITY_NORMAL is returned by the default 
implementation. 



CAsyncMonikerFile: :OnDataA vailable 

CAsyncMonikerFile: : OnDataAvailable 
virtual void OnDataAvaiiable( DWORD dwsize, DWORD bscfFlag ); 

Parameters 

Remarks 

Example 

dwsize The cumulative amount (in bytes) of data available since the beginning of 
the binding. Can be zero, indicating that the amount of data is not relevant to the 
operation, or that no specific amount became available. 

bscfFlag A BSCF enumeration value. Can be one or more of the following values: 

• BSCF _FIRSTDATANOTIFICATION Identifies the first call to 
OnDataAvailable for a given bind operation. 

• BSCF _INTERMEDIATEDATANOTIFICATION Identifies an intermediary 
call to OnDataAvailable for a bind operation. 

• BSCF _LASTDATANOTIFICATION Identifies the last call to 
OnDataAvailable for a bind operation. 

An asynchronous moniker calls OnDataAvailable to provide data to the client as it 
becomes available, during asynchronous bind operations. The default implementation 
of this function does nothing. See the following example for a sample implementation. 

II refer to CDataPathProperty. 
void CAsyncMyTextProperty::OnDataAvailable(CFile* pfile. 
~ DWORD dwSize. DWORD grfBSCF) 
{ 

if «grfBSCF & BSCF_FIRSTDATANOTIFICATION) != 0) 
{ 

m_dwReadBefore = 0; 
m_strText.Empty(); 

DWORD dwArriving = dwSize - m_dwReadBefore; 

if (dwArriving > 0) 
{ 

int nLen = m_strText.GetLength(); 
ASSERT(nLen == m_dwReadBefore); 
LPTSTR psz = m_strText.GetBuffer(nLen + dwArriving); 
pFile->Read(psz + nLen. dwArriving); 
m_strText.ReleaseBuffer(nLen + dwArriving); 
m_dwReadBefore = dwSize; 
GetControl()->Invalidate(); 

See Also: CDataPathProperty 

75 



CAsyncMonikerFile: :OnLowResource 

CAsyncMonikerFile: :OnLowResource 

Remarks 

virtual void OnLowResource(); 

Called by the moniker when resources are low. The default implementation calls 
GetBinding( )-> Abort( ). 

CAsyncMonikerFile:: OnProgress 
virtual void OnProgress( ULONG ulProgress, ULONG ulProgressMax, 

~ ULONG ulStatusCode, LPCTSTR szStatusText ); 

Parameters 

Remarks 

76 

ulProgress Indicates the current progress of the bind operation relative to the 
expected maximum indicated in ulProgressMax. 

ulProgressMax Indicates the expected maximum value of ulProgress for the duration 
of calls to OnProgress for this operation. 

ulStatusCode Provides additional information regarding the progress of the bind 
operation. Valid values are taken from the BINDSTATUS enumeration. See 
Remarks for possible values. 

szStatusText Information about the current progress, depending on the value of 
ulStatusCode. See Remarks for possible values. 

Called by the moniker repeatedly to indicate the current progress of this bind 
operation, typically at reasonable intervals during a lengthy operation. 

Possible values for ulStatusCode (and the szStatusText for each value) are: 

BINDSTATUS_FINDINGRESOURCE The bind operation is finding the resource 
that holds the object or storage being bound to. The szStatusText provides the 
display name of the resource being searched for (for example, 
.. www.microsoft.com .. ). 

BINDSTATUS_CONNECTING The bind operation is connecting to the resource 
that holds the object or storage being bound to. The szStatusText provides the 
display name of the resource being connected to (for example, an IP address). 

BINDSTATUS_SENDINGREQUEST The bind operation is requesting the object 
or storage being bound to. The szStatusText provides the display name of the object 
(for example, a file name). 

BINDSTATUS_REDIRECTING The bind operation has been redirected to a 
different data location. The szStatusText provides the display name of the new data 
location. 



CAsyncMonikerFile: :OnStopBinding 

BINDSTATUS_USINGCACHEDCOPY The bind operation is retrieving the 
requested object or storage from a cached copy. The szStatusText is NULL. 

BINDSTATUS_BEGINDOWNLOADDATA The bind operation has begun 
receiving the object or storage being bound to. The szStatusText provides the 
display name of the data location. 

BINDSTATUS_DOWNLOADINGDATA The bind operation continues to receive 
the object or storage being bound to. The szStatusText provides the display name of 
the data location. 

BINDSTATUS_ENDDOWNLOADDATA The bind operation has finished 
receiving the object or storage being bound to. The szStatusText provides the 
display name of the data location. 

BINDSTATUS_CLASSIDAVAILABLE An instance of the object being bound to 
is just about to be created. The szStatusText provides the CLSID of the new object 
in string format, allowing the client an opportunity to cancel the bind operation, if 
desired. 

CAsyncMonikerFile: :OnStartBinding 

Remarks 

virtual void OnStartBinding(); 

Override this function in your derived classes to perform actions when binding is 
starting up. This function is called back by the moniker. The default implementation 
does nothing. 

See Also: CAsyncMonikerFile: :OnStopBinding 

CAsyncMonikerFile::OnStopBinding 
virtual void OnStopBinding( HRESULT hresult, LPCTSTR szError ); 

Parameters 

Remarks 

hresult An HRESULT that is the error or warning value. 

szErrort A character string describing the error. 

Called by the moniker at the end of the bind operation. Override this function to 
perform actions when the transfer is stopped. By default, the function releases 
IBinding. 

For a description of the IBinding interface, see the ActiveX SDK. 

See Also: CAsyncMonikerFile: :OnStartBinding 

77 



CAsyncMonikerFile:: Open 

CAsyncMonikerFile: :Open 
virtual BOOL Open( LPCTSTR IpszURL, CFileException* pError = NULL ); 
virtual BOOL Open( IMoniker* pMoniker, CFileException* pError = NULL ); 
virtual BOOL Open( LPCTSTR lpszURL, IBindHost* pBindHost, 

... CFileException* pError = NULL ); 
virtual BOOL Open( IMoniker* pMoniker, IBindHost* pBindHost, 

... CFileException* pError = NULL ); 
virtual BOOL Open( LPCTSTR IpszURL, IServiceProvider* pServiceProvider, 

... CFileException* pError = NULL ); 
virtual BOOL Open( IMoniker* pMoniker, IServiceProvider* pServiceProvider, 

... CFileException* pError = NULL); 
virtual BOOL Open( LPCTSTR lpszURL, IUnknown* pUnknown, 

... CFileException* pError = NULL ); 
virtual BOOL Open( IMoniker* pMoniker, IUnknown* pUnknown, 

... CFileException* pError = NULL ); 

Return Value 
Nonzero if the file is opened successfully; otherwise O. 

Parameters 

78 

IpszURL A pointer to file to be opened asynchronously. The file can be any valid 
URL or filename. 

pError A pointer to the file exceptions. In the event of an error, it will be set to the 
cause. 

pMoniker A pointer to the asynchronous moniker interface IMoniker, a precise 
moniker that is the combination of the document's own moniker, which you can 
retrieve with IOleClientSite::GetMoniker( OLEWHICHMK_CONTAINER), and 
a moniker created from the path name. The control can use this moniker to bind, 
but this is not the moniker the control should save. 

pBindHost A pointer to the IBindHost interface that will be used to create the 
moniker from a potentially relative pathname. If the bind host is invalid or does not 
provide a moniker, the call defaults to Open( lpszFileName, pError ). For a 
description of the IBindHost interface, see the ActiveX SDK. 

pServiceProvider A pointer to the IServiceProvider interface. If the service provider 
is invalid or fails to provide the service for IBindHost, the call defaults to 
Open( lpszFileName, pError ). 

pUnknown A pointer to the IUnknown interface. If IServiceProvider is found, the 
function queries for IBindHost. If the service provider is invalid or fails to provide 
the service for IBindHost, the call defaults to Open( IpszFileName, pError ). 



Remarks 
Call this member function to open a file asynchronously. This call initiates the 
binding process. 

You can use a URL or a filename for the IpszURL parameter. For example: 

CMyAsyncMonFile mamf; 
mamf.Open(_T( .. http://www.microsoft.com .. )); 

-Of-

CMyAsyncMonFile mamf; 
mamf.Open(_T("file:c:\mydata.dat"»; 

See Also: CAsyncMonikerFile::CAsyncMonikerFile 

CAsyncMonikerFile: :Open 

79 



CAsyncSocket 

CAsyncSocket 

A CAsyncSocket object represents a Windows Socket-an endpoint of network 
communication. Class CAsyncSocket encapsulates the Windows Sockets API, 
providing an object-oriented abstraction for programmers who want to use 
Windows Sockets in conjunction with MFC. 

This class is based on the assumption that you understand network communications. 
You are responsible for handling blocking, byte-order differences, and conversions 
between Unicode and multibyte character set (MBCS) strings. If you want a more 
convenient interface that manages these issues for you, see class CSocket. 

To use a CAsyncSocket object, call its constructor, then call the Create function to 
create the underlying socket handle (type SOCKET), except on accepted sockets. 
For a server socket call the Listen member function, and for a client socket call the 
Connect member function. The server socket should call the Accept function upon 
receiving a connection request. Use the remaining CAsyncSocket functions to carry 
out communications between sockets. Upon completion, destroy the CAsyncSocket 
object if it was created on the heap; the destructor automatically calls the Close 
function. The SOCKET data type is described in the article "Windows Sockets: 
Background" in Visual C++ Programmer's Guide online. 

For more information, see "Windows Sockets: Using Class CAsyncSocket" and 
related articles in Visual C++ Programmer's Guide online, as well as "Overview of 
Windows Sockets 2" and "Windows Sockets Programming Considerations" in the 
Win32 SDK documentation. 

#include <afxsock.h> 

See Also: CSocket, CSocketFile 

CAsyncSocket Class Members 

80 

Construction 

CAsyncSocket 

Create 

Constructs a CAsyncSocket object. 

Creates a socket. 



Attributes 

Attach 

Detach 

FromHandle 

GetLastError 

GetPeerName 

GetSockName 

GetSockOpt 

SetSockOpt 

Operations 

Accept 

AsyncSelect 

Bind 

Close 

Connect 

IOCtl 

Listen 

Receive 

ReceiveFrom 

Send 

SendTo 

ShutDown 

Attaches a socket handle to a CAsyncSocket object. 

Detaches a socket handle from a CAsyncSocket object. 

Returns a pointer to a CAsyncSocket object, given a socket 
handle. 

Gets the error status for the last operation that failed. 

Gets the address of the peer socket to which the socket is 
connected. 

Gets the local name for a socket. 

Retrieves a socket option. 

Sets a socket option. 

Accepts a connection on the socket. 

Requests event notification for the socket. 

Associates a local address with the socket. 

Closes the socket. 

Establishes a connection to a peer socket. 

Controls the mode of the socket. 

Establishes a socket to listen for incoming connection requests. 

Receives data from the socket. 

Receives a datagram and stores the source address. 

Sends data to a connected socket. 

Sends data to a specific destination. 

Disables Send and/or Receive calls on the socket. 

Overridable Notification Functions 

OnAccept 

OnClose 

OnConnect 

OnOutOmandData 

OnReceive 

OnSend 

Data Members 

Notifies a listening socket that it can accept pending connection 
requests by calling Accept. 

Notifies a socket that the socket connected to it has closed. 

Notifies a connecting socket that the connection attempt is 
complete, whether successfully or in error. 

Notifies a receiving socket that there is out-of-band data to be 
read on the socket, usually an urgent message. 

Notifies a listening socket that there is data to be retrieved by 
calling Receive. 

Notifies a socket that it can send data by calling Send. 

Indicates the SOCKET handle attached to this CAsyncSocket 
object. 

CAsyncSocket 

81 



CAsyncSocket: :Accept 

Member Functions 
CAsyncSocket: :Accept 

virtual BOOL Accept( CAsyncSocket& rConnectedSocket, 
... SOCKADDR* lpSockAddr = NULL, int* lpSockAddrLen = NULL); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEFAULT The lpSockAddrLen argument is too small (less than the size of 
a SOCKADDR structure). 

• WSAEINPROGRESS A blocking Windows Sockets call is in progress. 

• WSAEINVAL Listen was not invoked prior to accept. 

• WSAEMFILE The queue is empty upon entry to accept and there are no 
descriptors available. 

• WSAENOBUFS No buffer space is available. 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEOPNOTSUPP The referenced socket is not a type that supports 
connection-oriented service. 

• WSAEWOULDBLOCK The socket is marked as nonblocking and no 
connections are present to be accepted. 

Parameters 

82 

rConnectedSocket A reference identifying a new socket that is available for 
connection. 

lpSockAddr A pointer to a SOCKADDR structure that receives the address of the 
connecting socket, as known on the network. The exact format of the lpSockAddr 
argument is determined by the address family established when the socket was 
created. If lpSockAddr and/or lpSockAddrLen are equal to NULL, then no 
information about the remote address of the accepted socket is returned. 

lpSockAddrLen A pointer to the length of the address in lpSockAddr in bytes. The 
lpSockAddrLen is a value-result parameter: it should initially contain the amount 
of space pointed to by lpSockAddr; on return it will contain the actual length (in 
bytes) of the address returned. 



CAsyncSocket: :AsyncSelect 

Remarks 
Call this member function to accept a connection on a socket. This routine extracts 
the first connection in the queue of pending connections, creates a new socket with 
the same properties as this socket, and attaches it to rConnectedSocket. If no pending 
connections are present on the queue, Accept returns zero and GetLastError returns 
an error. The accepted socket (rCollllectedSocket) cannot be used to accept more 
connections. The original socket remains open and listening. 

The argument lpSockAddr is a result parameter that is filled in with the address of the 
connecting socket, as known to the communications layer. Accept is used with 
connection-based socket types such as SOCK_STREAM. 

See Also: CAsyncSocket::Bind, CAsyncSocket::Connect, CAsyncSocket::Listen, 
CAsyncSocket:: Create, :: WSAAsyncSelect 

CAsyncSocket: :AsyncSelect 
BOOL AsyncSelect( long [Event = FD_READ I FD_ WRITE I FD_OOB I 

1.+ FD_ACCEPT I FD_CONNECT I FD_CLOSE); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEINVAL Indicates that one of the specified parameters was invalid. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

Parameters 
lEvent A bitmask which specifies a combination of network events in which the 

application is interested. 

• FD_READ Want to receive notification of readiness for reading. 

• FD_ WRITE Want to receive notification when data is available to be read. 

• FD_OOB Want to receive notification of the arrival of out-of-band data. 

• FD_ACCEPT Want to receive notification of incoming connections. 

• FD_CONNECT Want to receive notification of connection results. 

• FD_CLOSE Want to receive notification when a socket has been closed by 
a peer. 

83 



CAsyncSocket: :Attach 

Remarks 
Call this member function to request event notification for a socket. This function is 
used to specify which MFC callback notification functions will be called for the 
socket. AsyncSelect automatically sets this socket to nonblocking mode. For more 
information, see the article "Windows Sockets: Socket Notifications" in Visual C++ 
Programmer s Guide online and "Overview of Windows Sockets 2" and "Windows 
Sockets Programming Considerations" in the Win32 SDK documentation. 

See Also: CAsyncSocket::GetLastError, ::WSAAsyncSelect 

CAsyncSocket: : Attach 
BOOL Attach( SOCKET hSocket, long IEvent = FD_READ I FD_ WRITE I 

-. FD_OOB I FD_ACCEPT I FD_CONNECT I FD_CLOSE); 

Return Value 
Nonzero if the function is successful. 

Parameters 

Remarks 

hSocket Contains a handle to a socket. 

IEvent A bitmask which specifies a combination of network events in which the 
application is interested. 

• FD_READ Want to receive notification of readiness for reading. 

• FD_ WRITE Want to receive notification when data is available to be read. 

• FD_OOB Want to receive notification of the arrival of out-of-band data. 

• FD_ACCEPT Want to receive notification of incoming connections. 

• FD_CONNECT Want to receive notification of connection results. 

• FD_CLOSE Want to receive notification when a socket has been closed by 
a peer. 

Call this member function to attach the hSocket handle to an CAsyncSocket object. 
The SOCKET handle is stored in the object's m_hSocket data member. 

See Also: CAsyncSocket: :Detach 

CAsyncSocket: :Bind 
BOOL Bind( UINT nSocketPort, LPCTSTR lpszSocketAddress = NULL); 
BOOL Bind (const SOCKADDR* IpSockAddr, int nSockAddrLen); 

Return Value 

84 

Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member function: 



CAsyncSocket: :CAsyncSocket 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEADDRINUSE The specified address is already in use. (See the 
SO_REUSEADDR socket option under SetSockOpt.) 

• WSAEFAULT The nSockAddrLen argument is too small (less than the size of a 
SOCKADDR structure). 

• WSAEINPROGRESS A blocking Windows Sockets call is in progress. 

• WSAEAFNOSUPPORT The specified address family is not supported by this 
port. 

• WSAEINVAL The socket is already bound to an address. 

• WSAENOBUFS Not enough buffers available, too many connections. 

• WSAENOTSOCK The descriptor is not a socket. 

Parameters 

Remarks 

nSocketPort The port identifying the socket application. 

IpszSocketAddress The network address, a dotted number such as "128.56.22.8". 

IpSockAddr A pointer to a SOCKADDR structure that contains the address to assign 
to this socket. 

nSockAddrLen The length of the address in IpSockAddr in bytes. 

Call this member function to associate a local address with the socket. This routine is 
used on an unconnected datagram or stream socket, before subsequent Connect or 
Listen calls. Before it can accept connection requests, a listening server socket must 
select a port number and make it known to Windows Sockets by calling Bind. Bind 
establishes the local association (host address/port number) of the socket by assigning 
a local name to an unnamed socket. 

See Also: CAsyncSocket::Connect, CAsyncSocket::Listen, 
CAsyncSocket: :GetSockName, CAsyncSocket: :SetSockOpt, 
CAsyncSocket:: Create 

CAsyncSocket: :CAsyncSocket 

Remarks 

CAsyncSocket( ); 

Constructs a blank socket object. After constructing the object, you must call its 
Create member function to create the SOCKET data structure and bind its address. 

85 



CAsyncSocket: :Close 

(On the server side of a Windows Sockets communication, when the listening socket 
creates a socket to use in the Accept call, you do not call Create for that socket.) 

See Also: CAsyncSocket: :Create 

CAsyncSocket: :Close 

Remarks 

virtual void Close( ); 

This function closes the socket. More precisely, it releases the socket descriptor, so 
that further references to it will fail with the error WSAENOTSOCK. If this is the 
last reference to the underlying socket, the associated naming information and queued 
data are discarded. The socket object's destructor calls Close for you. 

For CAsyncSocket, but not for CSocket, the semantics of Close are affected by the 
socket options SO_LINGER and SO_DONTLINGER. For further information, see 
member function GetSockOpt and "Overview of Windows Sockets 2" and "Windows 
Sockets Programming Considerations" in the Win32 SDK documentation. 

See Also: CAsyncSocket: :Accept, CAsyncSocket:: CAsyncSocket, 
CAsyncSocket: :IOCtI, CAsyncSocket: :GetSockOpt, CAsyncSocket: :SetSockOpt, 
CAsyncSocket: :AsyncSelect 

CAsyncSocket: :Connect 
BOOL Connect( LPCTSTR IpszHostAddress, UINT nHostPort ); 
BOOL Connect( const SOCKADDR * IpSockAddr, int nSockAddrLen ); 

Return Value 

86 

Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. If this indicates an error code of 
WSAEWOULDBLOCK, and your application is using the overridable callbacks, 
your application will receive an OnConnect message when the connect operation is 
complete. The following errors apply to this member function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEADDRINUSE The specified address is already in use. 

• WSAEINPROGRESS A blocking Windows Sockets call is in progress. 

• WSAEADDRNOTAVAIL The specified address is not available from the 
local machine. 



CAsyncSocket:: Connect 

• WSAEAFNOSUPPORT Addresses in the specified family cannot be used 
with this socket. 

• WSAECONNREFUSED The attempt to connect was rejected. 

• WSAEDESTADDRREQ A destination address is required. 

• WSAEFAULT The nSockAddrLen argument is incorrect. 

• WSAEINVAL The socket is not already bound to an address. 

• WSAEISCONN The socket is already connected. 

• WSAEMFILE No more file descriptors are available. 

• WSAENETUNREACH The network cannot be reached from this host at this 
time. 

• WSAENOBUFS No buffer space is available. The socket cannot be connected. 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAETIMEDOUT Attempt to connect timed out without establishing a 
connection. 

• WSAEWOULDBLOCK The socket is marked as nonblocking and the 
connection cannot be completed immediately. 

Parameters 

Remarks 

IpszHostAddress The network address of the socket to which this object is 
connected: a machine name such as "ftp.rnicrosoft.com", or a dotted number such 
as "128.56.22.8". 

nHostPort The port identifying the socket application. 

IpSockAddr A pointer to a SOCKADDR structure that contains the address of the 
connected socket. 

nSockAddrLen The length of the address in IpSockAddr in bytes. 

Call this member function to establish a connection to an unconnected stream or 
datagram socket. If the socket is unbound, unique values are assigned to the local 
association by the system, and the socket is marked as bound. Note that if the address 
field of the name structure is all zeroes, Connect will return zero. To get extended 
error information, call the GetLastError member function. 

For stream sockets (type SOCK_STREAM), an active connection is initiated to the 
foreign host. When the socket call completes successfully, the socket is ready to 
send/receive data. 

For a datagram socket (type SOCK_DGRAM), a default destination is set, which 
will be used on subsequent Send and Receive calls. 

See Also: CAsyncSocket: :Accept, CAsyncSocket: :Bind, 
CAsyncSocket: :GetSockName, CAsyncSocket: :Create, 
CAsyncSocket: :AsyncSelect 

87 



CAsyncSocket::Create 

CAsyncSocket: : Create 
BOOL Create( UINT nSocketPort = 0, int nSocketType = SOCK_STREAM, 

'+ long lEvent = FD_READ I FD_ WRITE I FD_OOB I FD_ACCEPT I 
'+ FD_CONNECT I FD_CLOSE, LPCTSTR IpszSocketAddress = NULL); 

Return Value 
) Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEAFNOSUPPORT The specified address family is not supported. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAEMFILE No more file descriptors are available. 

• WSAENOBUFS No buffer space is available. The socket cannot be created. 

• WSAEPROTONOSUPPORT The specified port is not supported. 

• WSAEPROTOTYPE The specified port is the wrong type for this socket. 

• WSAESOCKTNOSUPPORT The specified socket type is not supported in 
this address family. 

Parameters 

88 

nSocketPort A well-known port to be used with the socket, or 0 if you want 
Windows Sockets to select a port. 

nSocketType SOCK_STREAM or SOCK_DGRAM. 

lEvent A bitmask which specifies a combination of network events in which the 
application is interested. 

• FD_READ Want to receive notification of readiness for reading. 

• FD _WRITE Want to receive notification of readiness for writing. 

• FD_OOB Want to receive notification of the arrival of out-of-band data. 

• FD_ACCEPT Want to receive notification of incoming connections. 

• FD_CONNECT Want to receive notification of completed connection. 

• FD_CLOSE Want to receive notification of socket closure. 

IpszSockAddress A pointer to a string containing the network address of the 
connected socket, a dotted number such as "128.56.22.8". 



CAsyncSocket: :FromHandle 

Remarks 
Call the Create member function after constructing a socket object to create the 
Windows socket and attach it. Create then calls Bind to bind the socket to the 
specified address. The following socket types are supported: 

• SOCK_STREAM Provides sequenced, reliable, full-duplex, connection-based 
byte streams. Uses the Transmission Control Protocol (TCP) for the Internet 
address family. 

• SOCK_DGRAM Supports datagrams, which are connectionless, unreliable 
packets of a fixed (typically small) maximum length. Uses the User Datagram 
Protocol (UDP) for the Internet address family. 

Note The Accept member function takes a reference to a new, empty CSocket object as 
its parameter. You must construct this object before you call Accept. Keep in mind that if 
this socket object goes out of scope, the connection closes. Do not call Create for this new 
socket object. 

For more information about stream and datagram sockets, see the articles "Windows 
Sockets: Background" and "Windows Sockets: Ports and Socket Addresses" in 
Visual C++ Programmer's Guide online and "Overview of Windows Sockets 2" and 
"Windows Sockets Programming Considerations" in the Win32 SDK documentation. 

See Also: CAsyncSocket: :Accept, CAsyncSocket: :Bind, 
CAsyncSocket:: Connect, CAsyncSocket:: GetSockN arne, CAsyncSocket: :IOCtl, 
CAsyncSocket: :Listen, CAsyncSocket: :Receive, CAsyncSocket: :Send, 
CAsyncSocket: :ShutDown 

CAsyncSocket: :Detach 

Remarks 

SOCKET Detach( ); 

Call this member function to detach the SOCKET handle in the rn_hSocket data 
member from the CAsyncSocket object and set rn_hSocket to NULL. 

See Also: CAsyncSocket::Attach 

CAsyncSocket: : FromHandle 
static CAsyncSocket* PASCAL FrornHandle( SOCKET hSocket ); 

Return Value 
A pointer to an CAsyncSocket object, or NULL if there is no CAsyncSocket object 
attached to hSocket. 

Parameters 
hSocket Contains a handle to a socket. 

89 



CAsyncSocket: : GetLastError 

Remarks 
Returns a pointer to a CAsyncSocket object. When given a SOCKET handle, if a 
CAsyncSocket object is not attached to the handle, the member function returns NULL. 

See Also: CSocket: :FromHandle, CAsyncSocket: :Attach, 
CAsyncSocket: :Detach 

CAsyncSocket: : GetLastError 
static int GetLastError(); 

Return Value 

Remarks 

The return value indicates the error code for the last Windows Sockets API routine 
performed by this thread. 

Call this member function to get the error status for the last operation that failed. 
When a particular member function indicates that an error has occurred, 
GetLastError should be called to retrieve the appropriate error code. See the 
individual member function descriptions for a list of applicable error codes. 

For more information about the error codes, see "Overview of Windows Sockets 2" 
and "Windows Sockets Programming Considerations" in the Win32 SDK 
documentation. 

See Also: :: WSASetLastError 

CAsyncSocket: : GetPeerN arne 
BOOL GetPeerName( CString& rPeerAddress, UINT& rPeerPort); 
BOOL GetPeerName( SOCKADDR* IpSockAddr, int* IpSockAddrLen); 

Return Value 

90 

Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEFAULT The IpSockAddrLen argument is not large enough. 

• WSAEINPROGRESS A blocking Windows Sockets call is in progress. 

• WSAENOTCONN The socket is not connected. 

• WSAENOTSOCK The descriptor is not a socket. 



CAsyncSocket: : GetSockName 

Parameters 

Remarks 

rPeerAddress Reference to a CString object that receives a dotted number IP 
address. 

rPeerPort Reference to a UINT that stores a port. 

IpSockAddr A pointer to the SOCKADDR structure that receives the name of the 
peer socket. 

IpSockAddrLen A pointer to the length of the address in IpSockAddr in bytes. On 
return, the IpSockAddrLen argument contains the actual size of IpSockAddr 
returned in bytes. 

Call this member function to get the address of the peer socket to which this socket is 
connected. 

See Also: CAsyncSocket: :Bind, CAsyncSocket:: Connect, 
CAsyncSocket:: Create, CAsyncSocket: :GetSockName 

CAsyncSocket: : GetSockN arne 
BOOL GetSockName( CString& rSocketAddress, UINT& rSocketPort); 
BOOL GetSockName( SOCKADDR* IpSockAddr, int* IpSockAddrLen ); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEFAULT The IpSockAddrLen argument is not large enough. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEINVAL The socket has not been bound to an address with Bind. 

Parameters 
rSocketAddress Reference to a CString object that receives a dotted number IP 

address. 

rSocketPort Reference to a UINT that stores a port. 

IpSockAddr A pointer to a SOCKADDR structure that receives the address of the 
socket. 

IpSockAddrLen A pointer to the length of the address in IpSockAddr in bytes. 

91 



CAsyncSocket::GetSockOpt 

Remarks 
Call this member function to get the local name for a socket. This call is especially 
useful when a Connect call has been made without doing a Bind first; this call 
provides the only means by which you can determine the local association which has 
been set by the system. For more information, see "Overview of Windows Sockets 2" 
and "Windows Sockets Programming Considerations" in the Win32 SDK 
documentation. 

See Also: CAsyncSocket: :Bind, CAsyncSocket: : Create, 
CAsyncSocket: : GetPeerName 

CAsyncSocket: : GetSockOpt 
BOOL GetSockOpt( int nOptionName, void* IpOption Value, int* IpOptionLen, 

1+ int nLevel = SOL_SOCKET ); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. If an option was never set with SetSockOpt, then 
GetSockOpt returns the default value for the option. The following errors apply to 
this member function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEFAULT The IpOptionLen argument was invalid. 

• WSAEINPROGRESS A blocking Windows Soc~ets operation is in progress. 

• WSAENOPROTOOPT The option is unknown or unsupported. In particular, 
SO_BROADCAST is not supported on sockets of type SOCK_STREAM, while 
SO_ACCEPTCONN, SO_DONTLINGER, SO_KEEPALIVE, SO_LINGER, 
and SO_OOBINLINE are not supported on sockets of type SOCK_DGRAM. 

• WSAENOTSOCK The descriptor is not a socket. 

Parameters 

92 

nOptionName The socket option for which the value is to be retrieved. 

IpOption Value A pointer to the buffer in which the value for the requested option 
is to be returned. The value associated with the selected option is returned in the 
buffer lpOptionValue. The integer pointed to by IpOptionLen should originally 
contain the size of this buffer in bytes; and on return, it will be set to the size of the 
value returned. For SO_LINGER, this will be the size of a LINGER structure; for 
all other options it will be the size of a BOOL or an int, depending on the option. 
See the list of options and their sizes in the Remarks section. 

IpOptionLen A pointer to the size of the lpOption Value buffer in bytes. 



Remarks 

CAsyncSocket: :GetSockOpt 

nLevel The level at which the option is defined; the only supported levels are 
SOL_SOCKET and IPPROTO_TCP. 

Call this member function to retrieve a socket option. GetSockOpt retrieves the 
current value for a socket option associated with a socket of any type, in any state, 
and stores the result in IpOption Value. Options affect socket operations, such as the 
routing of packets, out-of-band data transfer, and so on. 

The following options are supported for GetSockOpt. The Type identifies the type 
of data addressed by IpOption Value. The TCP _NODELAY option uses level 
IPPROTO_TCP; all other options use level SOL_SOCKET. 

Value Type Meaning 

SO_ACCEPTCONN 

SO_BROADCAST 

SO_DEBUG 

SO_DONTLINGER 

SO_DONTROUTE 

SO_ERROR 

SO_KEEPALIVE 

SO_LINGER 

SO_OOBINLINE 

SO_RCVBUF 

SO_REUSEADDR 

SO_SNDBUF 

SO_TYPE 

TCP _NODELA Y 

BOOL 

BOOL 

BOOL 

BOOL 

BOOL 

int 

BOOL 

struct LINGER 

BOOL 

int 

BOOL 

int 

int 

BOOL 

Socket is listening. 

Socket is configured for the transmission of 
broadcast messages. 

Debugging is enabled. 

If true, the SO_LINGER option is disabled. 

Routing is disabled. 

Retrieve error status and clear. 

Keep-alives are being sent. 

Returns the current linger options. 

Out-of-band data is being received in the normal 
data stream. 

Buffer size for receives. 

The socket can be bound to an address which is 
already in use. 

Buffer size for sends. 

The type of the socket (for example, 
SOCK_STREAM). 

Disables the Nagle algorithm for send 
coalescing. 

Berkeley Software Distribution (BSD) options not supported for GetSockOpt are: 

Value Type Meaning 

SO_RCVLOWAT int Receive low water mark. 

SO_RCVTIMEO int Receive timeout. 

SO_SNDLOWAT int Send low water mark. 

SO_SNDTIMEO int Send timeout. 

IP_OPTIONS Get options in IP header. 

TCP_MAXSEG int Get TCP maximum segment size. 

93 



CAsyncSocket: :IOCtl 

Calling GetSockOpt with an unsupported option will result in an error code of 
WSAENOPROTOOPT being returned from GetLastError. 

See Also: CAsyncSocket::SetSockOpt 

CAsyncSocket: :IOCtl 
BOOL IOCtI( long [Command, DWORD* [pArgument ); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEINVAL lCommand is not a valid command, or lpArgument is not an 
acceptable parameter for lCommand, or the command is not applicable to the type 
of socket supplied. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAENOTSOCK The descriptor is not a socket. 

Parameters 

Remarks 

94 

lCommand The command to perform on the socket. 

lpArgument A pointer to a parameter for lCommand. 

Call this member function to control the mode of a socket. This routine can be used 
on any socket in any state. It is used to get or retrieve operating parameters associated 
with the socket, independent of the protocol and communications subsystem. The 
following commands are supported: 

• FIONBIO Enable or disable nonblocking mode on the socket. The IpArgument 
parameter points at a DWORD, which is nonzero if nonblocking mode is to be 
enabled and zero if it is to be disabled. If AsyncSelect has been issued on a socket, 
then any attempt to use IOCtI to set the socket back to blocking mode will fail 
with WSAEINVAL. To set the socket back to blocking mode and prevent the 
WSAEINVAL error, an application must first disable AsyncSelect by calling 
AsyncSelect with the IEvent parameter equal to 0, then call IOCtI. 

• FIONREAD Determine the maximum number of bytes that can be read with 
one Receive call from this socket. The IpArgument parameter points at a DWORD 
in which IOCtI stores the result. If this socket is of type SOCK_STREAM, 
FIONREAD returns the total amount of data which can be read in a single 



CAsyncSocket: :Listen 

Receive; this is normally the same as the total amount of data queued on the 
socket. If this socket is of type SOCK_DGRAM, FIONREAD returns the size of 
the first datagram queued on the socket. 

• SIOCATMARK Determine whether all out-of-band data has been read. This 
applies only to a socket of type SOCK_STREAM which has been configured for 
in-line reception of any out-of-band data (SO_OOBINLINE). If no out-of-band 
data is waiting to be read, the operation returns nonzero. Otherwise it returns 0, and 
the next Receive or ReceiveFrom performed on the socket will retrieve some or all 
of the data preceding the "mark"; the application should use the SIOCATMARK 
operation to determine whether any data remains. If there is any normal data 
preceding the "urgent" (out-of-band) data, it will be received in order. (Note that 
a Receive or ReceiveFrom will never mix out-of-band and normal data in the 
same call.) The lpArgument parameter points at a DWORD in which IOCtl stores 
the result. 

This function is a subset of ioctlO as used in Berkeley sockets. In particular, there is 
no command which is equivalent to FIOASYNC, while SIOCATMARK is the only 
socket-level command which is supported. 

See Also: CAsyncSocket::AsyncSelect, CAsyncSocket::Create, 
CAsyncSocket: :GetSockOpt, CAsyncSocket: :SetSockOpt 

CAsyncSocket: :Listen 
BOOL Listen( int nConnectionBacklog = 5); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEADDRINUSE An attempt has been made to listen on an address in use. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAEINVAL The socket has not been bound with Bind or is already connected. 

• WSAEISCONN The socket is already connected. 

• WSAEMFILE No more file descriptors are available. 

• WSAENOBUFS No buffer space is available. 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEOPNOTSUPP The referenced socket is not of a type that supports the 
Listen operation. 

95 



CAsyncSocket: :OnAccept 

Parameters 

Remarks 

nConnectionBacklog The maximum length to which the queue of pending 
connections can grow. Valid range is from 1 to 5. 

Call this member function to listen for incoming connection requests. To accept 
connections, the socket is first created with Create, a backlog for incoming 
connections is specified with Listen, and then the connections are accepted with 
Accept. Listen applies only to sockets that support connections, that is, those of type 
SOCK_STREAM. This socket is put into "passive" mode where incoming 
connections are acknowledged and queued pending acceptance by the process. 

This function is typically used by servers (or any application that wants to accept 
connections) that could have more than one connection request at a time: if a 
connection request arrives with the queue full, the client will receive an error with an 
indication of WSAECONNREFUSED. 

Listen attempts to continue to function rationally when there are no available ports 
(descriptors). It will accept connections until the queue is emptied. If ports become 
available, a later call to Listen or Accept will refill the queue to the current or most 
recent "backlog," if possible, and resume listening for incoming connections. 

See Also: CAsyncSocket::Accept, CAsyncSocket::Connect, 
CAsyncSocket:: Create 

CAsyncS ocket: : OnAccept 
virtual void OnAccept( int nErrorCode ); 

Parameters 

Remarks 

96 

nErrorCode The most recent error on a socket. The following error codes applies to 
the OnAccept member function: 

• 0 The function executed successfully . 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

Called by the framework to notify a listening socket that it can accept pending 
connection requests by calling the Accept member function. For more information, 
see the article "Windows Sockets: Socket Notifications" in Visual C++ Programmer's 
Guide online. 

See Also: CAsyncSocket::Accept, CAsyncSocket::GetLastError, 
CAsyncSocket: :OnClose, CAsyncSocket: :OnConnect, 
CAsyncSocket: :OnOutOffiandData, CAsyncSocket: :OnReceive, 
CAsyncSocket: :OnSend 



CAsyncSocket: :OnConnect 

CAsyncSocket: : OnClose 
virtual void OnClose( int nErrorCode); 

Parameters 

Remarks 

nErrorCode The most recent error on a socket. The following error codes apply to 
the OnClose member function: 

o 0 The function executed successfully. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAECONNRESET The connection was reset by the remote side. 

• WSAECONNABORTED The connection was aborted due to timeout or other 
failure. 

Called by the framework to notify this socket that the connected socket is closed by 
its process. For more information, see the article "Windows Sockets: Socket 
Notifications" in Visual C++ Programmer's Guide online. 

See Also: CAsyncSocket::Close, CAsyncSocket::GetLastError, 
CAsyncSocket: :OnAccept, CAsyncSocket: :OnConnect, 
CAsyncSocket: :OnOutOffiandData, CAsyncSocket: :OnReceive, 
CAsyncSocket:: OnSend 

CAsyncSocket: : OnConnect 
virtual void OnConnect( int nErrorCode); 

Parameters 
nErrorCode The most recent error on a socket. The following error codes apply to 

the OnConnect member function: 

• 0 The function executed successfully. 

• WSAEADDRINUSE The specified address is already in use. 

• WSAEADDRNOTAVAIL The specified address is not available from the 
local machine. 

• WSAEAFNOSUPPORT Addresses in the specified family cannot be used 
with this socket. 

• WSAECONNREFUSED The attempt to connect was forcefully rejected. 

• WSAEDESTADDRREQ A destination address is required. 

• WSAEFAULT The lpSockAddrLen argument is incorrect. 

• WSAEINVAL The socket is already bound to an address. 

97 



CAsyncSocket: :OnOutOfBandData 

Remarks 

• WSAEISCONN The socket is already connected. 

• WSAEMFILE No more file descriptors are available. 

• WSAENETUNREACH The network cannot be reached from this host at 
this time. 

• WSAENOBUFS No buffer space is available. The socket cannot be 
connected. 

• WSAENOTCONN The socket is not connected. 

• WSAENOTSOCK The descriptor is a file, not a socket. 

• WSAETIMEDOUT The attempt to connect timed out without establishing 
a connection. 

Called by the framework to notify this connecting socket that its connection attempt is 
completed, whether successfully or in error. 

Important In CSocket, the OnSend and OnConnect notification functions are never called. 

To send data, you simply call Send, which won't return until all the data has been sent. The 
use of the notification to complete this task is an MFC implementation detail for CSocket. For 
connections, you simply call Connect, which will return when the connection is completed 
(either successfully or in error). How connection notifications are handled is also an MFC 
implementation detail. 

For more information, see the article "Windows Sockets: Socket Notifications" in 
Visual C++ Programmer's Guide online. 

See Also: CAsyncSocket:: Connect, CAsyncSocket:: GetLastError, 
CAsyncSocket: :OnAccept, CAsyncSocket:: On Close, 
CAsyncSocket::OnOutOmandData, CAsyncSocket::OnReceive, 
CAsyncSocket: :OnSend 

CAsyncSocket: :OnOutOfBandData 
virtual void onOutOmandData( int nErrorCode ); 

Parameters 

Remarks 

98 

nErrorCode The most recent error on a socket. The following error codes apply to 
the onOutOmandData member function: 

• 0 The function executed successfully. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

Called by the framework to notify the receiving socket that the sending socket has 
out-of-band data to send. Out-of-band data is a logically independent channel that 



CAsyncSocket: :OnSend 

is associated with each pair of connected sockets of type SOCK_STREAM. The 
channel is generally used to send urgent data. 

MFC supports out-of-band data, but users of class CAsyncSocket are discouraged 
from using it. The easier way is to create a second socket for passing such data. For 
more information about out-of-band data, see the article "Windows Sockets: Socket 
Notifications" in Visual C++ Programmer's Guide online and "Overview of Windows 
Sockets 2" and "Windows Sockets Programming Considerations" in the Win32 SDK 
documentation. 

See Also: CAsyncSocket::GetLastError, CAsyncSocket::OnAccept, 
CAsyncSocket: :On Close, CAsyncSocket: :On Connect, 
CAsyncSocket: :OnReceive, CAsyncSocket: :OnSend 

CAsyncSocket: : OnRecei ve 
virtual void OnReceive( int nErrorCode ); 

Parameters 

Remarks 

nErrorCode The most recent error on a socket. The following error codes apply to 
the OnReceive member function: 

• 0 The function executed successfully. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

Called by the framework to notify this socket that there is data in the buffer that can be 
retrieved by calling the Receive member function. For more information, see the article 
"Windows Sockets: Socket Notifications" in Visual C++ Programmer's Guide online. 

See Also: CAsyncSocket::GetLastError, CAsyncSocket::OnAccept, 
CAsyncSocket:: On Close, CAsyncSocket:: On Connect, 
CAsyncSocket: :OnOutOfBandData, CAsyncSocket: :OnSend, 
CAsyncSocket: : Receive 

CAsyncSocket: :OnSend 
virtual void OnSend( int nErrorCode ); 

Parameters 
nErrorCode The most recent error on a socket. The follow~ng error codes apply to 

the OnSend member function: 

• 0 The function executed successfully. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

99 



CAsyncSocket: :Recei ve 

Remarks 
Called by the framework to notify the socket that it can now send data by calling the 
Send member function. 

Important In CSocket, the OnSend and OnConnect notification functions are never called. 

To send data, you simply call Send, which won't return until all the data has been sent. The 
use of the notification to complete this task is an MFC implementation detail for CSocket. For 
connections, you simply call Connect, which will return when the connection is completed 
(either successfully or in error). How connection notifications are handled is also an MFC 
implementation detail. 

For more information, see the article "Windows Sockets: Socket Notifications" 
in Visual C++ Programmer's Guide online. 

See Also: CAsyncSocket: : GetLastError, CAsyncSocket: :OnAccept, 
CAsyncSocket: :On Close, CAsyncSocket:: On Connect, 
CAsyncSocket: :OnOutOfBandData, CAsyncSocket: :OnReceive, 
CAsyncSocket: :Send 

CAsyncSocket: :Recei ve 
virtual int Receive( void* IpBuf, int nBufLen, int nFlags = 0 ); 

Return Value 

100 

If no error occurs, Receive returns the number of bytes received. If the connection has 
been closed, it returns O. Otherwise, a value of SOCKET_ERROR is returned, and a 
specific error code can be retrieved by calling GetLastError. The following errors 
apply to this member function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAENOTCONN The socket is not connected. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type 
SOCK_STREAM. 

• WSAESHUTDOWN The socket has been shut down; it is not possible to call 
Receive on a socket after ShutDown has been invoked with nHow set to 0 or 2. 

• WSAEWOULDBLOCK The socket is marked as nonblocking and the Receive 
operation would block. 



CAsyncSocket: :Receive 

• WSAEMSGSIZE The datagram was too large to fit into the specified buffer and 
was truncated. 

• WSAEINVAL The socket has not been bound with Bind. 

• WSAECONNABORTED The virtual circuit was aborted due to timeout or other 
failure. 

• WSAECONNRESET The virtual circuit was reset by the remote side. 

Parameters 

Remarks 

lpBuJ A buffer for the incoming data. 

nBufLen The length of IpBuJin bytes. 

nFlags Specifies the way in which the call is made. The semantics of this function 
are determined by the socket options and the nFlags parameter. The latter is 
constructed by combining any of the following values with the C++ OR operator: 

• MSG_PEEK Peek at the incoming data. The data is copied into the buffer but 
is not removed from the input queue . 

• MSG_OOB Process out-of-band data (see "Windows Sockets Programming 
Considerations" in the Win32 SDK documentation for a discussion of this 
topic). 

Call this member function to receive data from a socket. This function is used for 
connected stream or datagram sockets and is used to read incoming data. 

For sockets of type SOCK_STREAM, as much information as is currently available 
up to the size of the buffer supplied is returned. If the socket has been configured for 
in-line reception of out-of-band data (socket option SO_OOBINLINE) and 
out-of-band data is unread, only out-of-band data will be returned. The application 
can use the IOCtl SIOCATMARK option or OnOutOmandData to determine 
whether any more out-of-band data remains to be read. 

For datagram sockets, data is extracted from the first enqueued datagram, up to the 
size of the buffer supplied. If the datagram is larger than the buffer supplied, the 
buffer is filled with the first part of the datagram, the excess data is lost, and Receive 
returns a value of SOCKET_ERROR with the error code set to WSAEMSGSIZE. If 
no incoming data is available at the socket, a value of SOCKET_ERROR is returned 
with the error code set to WSAEWOULDBLOCK. The OnReceive callback 
function can be used to determine when more data arrives. 

If the socket is of type SOCK_STREAM and the remote side has shut down the 
connection gracefully, a Receive will complete immediately with 0 bytes received. If 
the connection has been reset, a Receive will fail with the error 
WSAECONNRESET. 

See Also: CAsyncSocket: :AsyncSeiect, CAsyncSocket:: Create, 
CAsyncSocket: :ReceiveFrom, CAsyncSocket: :Send 

101 



CAsyncSocket: :Recei veFrom 

CAsyncSocket: : ReceiveFrom 
int ReceiveFrom( void* IpBuf, int nBufLen, CString& rSocketAddress, 

... UINT& rSocketPort, int nFlags = 0); 
int ReceiveFrom( void* IpBuf, int nBufLen, SOCKADDR* IpSockAddr, 

... int* IpSockAddrLen, int nFlags = 0 ); 

Return Value 
If no error occurs, ReceiveFrom returns the number of bytes received. If the 
connection has been closed, it returns O. Otherwise, a value of SOCKET_ERROR 
is returned, and a specific error code can be retrieved by calling GetLastError. The 
following errors apply to this member function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEFAULT The IpSockAddrLen argument was invalid: the IpSockAddr buffer 
was too small to accommodate the peer address. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAEINVAL The socket has not been bound with Bind. 

• WSAENOTCONN The socket is not connected (SOCK_STREAM only). 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type 
SOCK_STREAM. 

• WSAESHUTDOWN The socket has been shut down; it is not possible to call 
ReceiveFrom on a socket after ShutDown has been invoked with nHow set to 
o or 2. 

• WSAEWOULDBLOCK The socket is marked as nonblocking and the 
ReceiveFrom operation would block. 

• WSAEMSGSIZE The datagram was too large to fit into the specified buffer and 
was truncated. 

• WSAECONNABORTED The virtual circuit was aborted due to timeout or other 
failure. 

• WSAECONNRESET The virtual circuit was reset by the remote side. 

Parameters 

102 

IpBuJ A buffer for the incoming data. 

nBufLen The length of IpBuJ in bytes. 

rSocketAddress Reference to a CString object that receives a dotted number IP 
address. 

rSocketPort Reference to a UINT that stores a port. 



Remarks 

CAsyncSocket: :Recei veFrom 

lpSockAddr A pointer to a SOCKADDR structure that holds the source address 
upon return. 

IpSockAddrLen A pointer to the length of the source address in IpSockAddr in bytes. 

nFlags Specifies the way in which the call is made. The semantics of this function 
are determined by the socket options and the nFlags parameter. The latter is 
constructed by combining any of the following values with the C++ OR operator: 

• MSG_PEEK Peek at the incoming data. The data is copied into the buffer but 
is not removed from the input queue . 

• MSG_OOB Process out-of-band data (see "Windows Sockets Programming 
Considerations" in the Win32 SDK documentation for a discussion of this topic). 

Call this member function to receive a datagram and store the source address in the 
SOCKADDR structure or in rSocketAddress. This function is used to read incoming 
data on a (possibly connected) socket and capture the address from which the data 
was sent. 

For sockets of type SOCK_STREAM, as much information as is currently available 
up to the size of the buffer supplied is returned. If the socket has been configured 
for in-line reception of out-of-band data (socket option SO_OOBINLINE) and 
out-of-band data is unread, only out-of-band data will be returned. The application 
can use the IOCtl SIOCATMARK option or OnOutOfBandData to determine 
whether any more out-of-band data remains to be read. The lpSockAddr and 
IpSockAddrLen parameters are ignored for SOCK_STREAM sockets. 

For datagram sockets, data is extracted from the first enqueued datagram, up to the 
size of the buffer supplied. If the datagram is larger than the buffer supplied, the 
buffer is filled with the first part of the message, the excess data is lost, and 
ReceiveFrom returns a value of SOCKET_ERROR with the error code set to 
WSAEMSGSIZE. 

If IpSockAddr is nonzero, and the socket is of type SOCK_DGRAM, the network 
address of the socket which sent the data is copied to the corresponding SOCKADDR 
structure. The value pointed to by IpSockAddrLen is initialized to the size of this 
structure, and is modified on return to indicate the actual size of the address stored 
there. If no incoming data is available at the socket, the ReceiveFrom call waits 
for data to arrive unless the socket is nonblocking. In this case, a value of 
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK. 
The OnReceive callback can be used to determine when more data arrives. 

If the socket is of type SOCK_STREAM and the remote side has shut down the 
connection gracefully, a ReceiveFrom will complete immediately with 0 bytes 
received. 

See Also: CAsyncSocket: :AsyncSelect, CAsyncSocket:: Create, 
CAsyncSocket: :Receive, CAsyncSocket: :Send 

103 



CAsyncSocket: :Send 

CAsyncSocket: : Send 
virtual int Send( const void* IpBuf, int nBufLen, int nFlags = 0 ); 

Return Value 

104 

If no error occurs, Send returns the total number of characters sent. (Note that this can 
be less than the number indicated by nBufLen.) Otherwise, a value of 
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling 
GetLastError. The following errors apply to this member function: 

• WSANOTINITIALISED A successful AfxSocketlnit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEACCES The requested address is a broadcast address, but the appropriate 
flag was not set. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAEFAULT The IpBufargument is not in a valid part of the user address 
space. 

• WSAENETRESET The connection must be reset because the Windows Sockets 
implementation dropped it. 

• WSAENOBUFS The Windows Sockets implementation reports a buffer 
deadlock. 

• WSAENOTCONN The socket is not connected. 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type 
SOCK_STREAM. 

• WSAESHUTDOWN The socket has been shut down; it is not possible to call 
Send on a socket after ShutDown has been invoked with nHow set to 1 or 2. 

• WSAEWOULDBLOCK The socket is marked as nonblocking and the requested 
operation would block. 

• WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is 
larger than the maximum supported by the Windows Sockets implementation. 

• WSAEINVAL The socket has not been bound with Bind. 

• WSAECONNABORTED The virtual circuit was aborted due to timeout or other 
failure. 

• WSAECONNRESET The virtual circuit was reset by the remote side. 



CAsyncSocket: :SendTo 

Parameters 

Remarks 

lpBuJ A buffer containing the data to be transmitted. 

nBufLen The length of the data in lpBuJ in bytes. 

nFlags Specifies the way in which the call is made. The semantics of this function 
are determined by the socket options and the nFlags parameter. The latter is 
constructed by combining any of the following values with the C++ OR operator: 

• MSG_DONTROUTE Specifies that the data should not be subject to routing. 
A Windows Sockets supplier can choose to ignore this flag; see also the 
discussion of the SO_DONTROUTE option in "Windows Sockets 
Programming Considerations" in the Win32 SDK documentation. 

• MSG_OOB Send out-of-band data (SOCK_STREAM only). 

Call this member function to send data on a connected socket. Send is used to write 
outgoing data on connected stream or datagram sockets. For datagram sockets, care 
must be taken not to exceed the maximum IP packet size of the underlying subnets, 
which is given by the iMaxUdpDg element in the WSADATA structure returned 
by AfxSocketlnit. If the data is too long to pass atomically through the underlying 
protocol, the error WSAEMSGSIZE is returned via GetLastError, and no data is 
transmitted. 

Note that for a datagram socket the successful completion of a Send does not indicate 
that the data was successfully delivered. 

On CAsyncSocket objects of type SOCK_STREAM, the number of bytes written 
can be between I and the requested length, depending on buffer availability on both 
the local and foreign hosts. 

See Also: CAsyncSocket:: Create, CAsyncSocket: :Receive, 
CAsyncSocket: :ReceiveFrom, CAsyncSocket: :SendTo 

CAsyncSocket: : SendTo 
int SendTo( const void* lpBuf, int nBufLen, UINT nHostPort, 

.. LPCTSTR lpszHostAddress = NULL, int nFlags = 0 ); 
int SendTo( const void* lpBuf, int nBufLen, const SOCKADDR* lpSockAddr, 

.. int nSockAddrLen, int nFlags = 0 ); 

Return Value 
If no error occurs, SendTo returns the total number of characters sent. (Note that 
this can be less than the number indicated by nBujLen.) Otherwise, a value of 
SOCKET_ERROR is returned, and a specific error code can be retrieved by 
calling GetLastError. The following errors apply to this member function: 

105 



CAsyncSocket: :SendTo 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEACCES The requested address is a broadcast address, but the appropriate 
flag was not set. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAEFAULT The lpBuJor lpSockAddr parameters are not part of the user 
address space, or the lpSockAddr argument is too small (less than the size of a 
SOCKADDR structure). 

• WSAENETRESET The connection must be reset because the Windows Sockets 
implementation dropped it. 

• WSAENOBUFS The Windows Sockets implementation reports a buffer 
deadlock. 

• WSAENOTCONN The socket is not connected (SOCK_STREAM only). 

• WSAENOTSOCK The descriptor is not a socket. 

• WSAEOPNOTSUPP MSG_ OOB was specified, but the socket is not of type 
SOCK_STREAM. 

• WSAESHUTDOWN The socket has been shut down; it is not possible to call 
SendTo on a socket after ShutDown has been invoked with nHow set to 1 or 2. 

• WSAEWOULDBLOCK The socket is marked as nonblocking and the requested 
operation would block. 

• WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is 
larger than the maximum supported by the Windows Sockets implementation. 

• WSAECONNABORTED The virtual circuit was aborted due to timeout or other 
failure. 

• WSAECONNRESET The virtual circuit was reset by the remote side. 

• WSAEADDRNOTAVAIL The specified address is not available from the local 
machine. 

• WSAEAFNOSUPPORT Addresses in the specified family cannot be used with 
this socket. 

• WSAEDESTADDRREQ A destination address is required. 

• WSAENETUNREACH The network cannot be reached from this host at this 
time. 

Parameters 
lpBuJ A buffer containing the data to be transmitted. 

nBufLen The length of the data in lpBuJ in bytes. 

106 



Remarks 

CAsyncSocket:: SendTo 

nHostPort The port identifying the socket application. 

lpszHostAddress The network address of the socket to which this object is 
connected: a machine name such as "ftp.microsoft.com," or a dotted number such 
as "128.56.22.8". 

nFlags Specifies the way in which the call is made. The semantics of this function 
are determined by the socket options and the nFlags parameter. The latter is 
constructed by combining any of the following values with the C++ OR operator: 

• MSG_DONTROUTE Specifies that the data should not be subject to routing. 
A Windows Sockets supplier can choose to ignore this flag; see also the 
discussion of the SO_DONTROUTE option in "Windows Sockets 
Programming Considerations" in the Win32 SDK documentation. 

• MSG_OOB Send out-of-band data (SOCK_STREAM only). 

lpSockAddr A pointer to a SOCKADDR structure that contains the address of the 
target socket. 

nSockAddrLen The length of the address in lpSockAddr in bytes. 

Call this member function to send data to a specific destination. SendTo is used on 
datagram or stream sockets and is used to write outgoing data on a socket. For 
datagram sockets, care must be taken not to exceed the maximum IP packet size of the 
underlying subnets, which is given by the iMaxUdpDg element in the WSADATA 
structure filled out by AfxSocketInit. If the data is too long to pass atomically 
through the underlying protocol, the error WSAEMSGSIZE is returned, and no 
data is transmitted. 

Note that the successful completion of a SendTo does not indicate that the data was 
successfully delivered. 

SendTo is only used on a SOCK_DGRAM socket to send a datagram to a specific 
socket identified by the lpSockAddr parameter. 

To send a broadcast (on a SOCK_DGRAM only), the address in the lpSockAddr 
parameter should be constructed using the special IP address 
INADDR_BROADCAST (defined in the Windows Sockets header file 
WINSOCK.H) together with the intended port number. Or, if the lpszHostAddress 
parameter is NULL, the socket is configured for broadcast. It is generally inadvisable 
for a broadcast datagram to exceed the size at which fragmentation can occur, which 
implies that the data portion of the datagram (excluding headers) should not exceed 
512 bytes. 

See Also: CAsyncSocket::Create, CAsyncSocket::Receive, 
CAsyncSocket: : ReceiveFrom, CAsyncSocket: :Send 

107 



CAsyncSocket:: SetSockOpt 

CAsyncSocket: : SetSockOpt 
BOOL SetSockOpt( iot nOptionName, coost void* lpOptionValue, iot nOptionLen, 

.. iot nLevel = SOL_SOCKET ); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketIoit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEFAULT lpOption Value is not in a valid part of the process address space. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAEINVAL nLevel is not valid, or the information in lpOption Value is not 
valid. 

• WSAENETRESET Connection has timed out when SO_KEEPALIVE is set. 

• WSAENOPROTOOPT The option is unknown or unsupported. In particular, 
SO_BROADCAST is not supported on sockets of type SOCK_STREAM, while 
SO_DONTLINGER, SO_KEEPALIVE, SO_LINGER, and SO_OOBINLINE 
are not supported on sockets of type SOCK_DGRAM. 

• WSAENOTCONN Connection has been reset when SO_KEEPALIVE is set. 

• WSAENOTSOCK The descriptor is not a socket. 

Parameters 

Remarks 

108 

nOptionName The socket option for which the value is to be set. 

lpOption Value A pointer to the buffer in which the value for the requested option is 
supplied. 

nOptionLen The size of the lpOption Value buffer in bytes. 

nLevel The level at which the option is defined; the only supported levels are 
SOL_SOCKET and IPPROTO_TCP. 

Call this member function to set a socket option. SetSockOpt sets the current value 
for a socket option associated with a socket of any type, in any state. Although options 
can exist at multiple protocol levels, this specification only defines options that exist 
at the uppermost "socket" level. Options affect socket operations, such as whether 
expedited data is received in the normal data stream, whether broadcast messages can 
be sent on the socket, and so on. 



CAsyncSocket:: SetSockOpt 

There are two types of socket options: Boolean options that enable or disable a 
feature or behavior, and options which require an integer value or structure. To enable 
a Boolean option, lpOption Value points to a nonzero integer. To disable the option 
lpOption Value points to an integer equal to zero. nOptionLell should be equal to 
sizeof(BOOL) for Boolean options. For other options, lpOption Value points to the 
integer or structure that contains the desired value for the option, and nOptionLen is 
the length of the integer or structure. 

SO_LINGER controls the action taken when un sent data is queued on a socket and 
the Close function is called to close the socket. For more information, see "Windows 
Sockets Programming Considerations" in the Win32 SDK documentation. 

By default, a socket cannot be bound (see Bind) to a local address which is already 
in use. On occasion, however, it may be desirable to "reuse" an address in this way. 
Since every connection is uniquely identified by the combination of local and remote 
addresses, there is no problem with having two sockets bound to the same local 
address as long as the remote addresses are different. 

To inform the Windows Sockets implementation that a Bind call on a socket should 
not be disallowed because the desired address is already in use by another socket, the 
application should set the SO_REUSEADDR socket option for the socket before 
issuing the Bind call. Note that the option is interpreted only at the time of the Bind 
call: it is therefore unnecessary (but harmless) to set the option on a socket which is 
not to be bound to an existing address, and setting or resetting the option after the 
Bind call has no effect on this or any other socket. 

An application can request that the Windows Sockets implementation enable the use 
of "keep-alive" packets on Transmission Control Protocol (TCP) connections by 
turning on the SO_KEEPALIVE socket option. (For information about "keep-alive" 
packets, see "Windows Sockets Programming Considerations" in the Win32 SDK 
documentation.) A Windows Sockets implementation need not support the use of 
keep-alives: if it does, the precise semantics are implementation-specific but should 
conform to section 4.2.3.6 of RFC 1122: "Requirements for Internet Hosts­
Communication Layers." If a connection is dropped as the result of "keep-alives" the 
error code WSAENETRESET is returned to any calls in progress on the socket, and 
any subsequent calls will fail with WSAENOTCONN. 

The TCP _NODELAY option disables the Nagle algorithm. The Nagle algorithm 
is used to reduce the number of small packets sent by a host by buffering 
unacknowledged send data until a full-size packet can be sent. However, for some 
applications this algorithm can impede performance, and TCP _NODELAY can be 
used to tum it off. Application writers should not set TCP _NODELAY unless the 
impact of doing so is well-understood and desired, since setting TCP _NODELAY 
can have a significant negative impact on network performance. TCP _NODELAY is 
the only supported socket option which uses level IPPROTO_TCP; all other options 
use level SOL_SOCKET. 

109 



CAsyncSocket:: SetSockOpt 

110 

Some implementations of Windows Sockets supply output debug information if 
the SO_DEBUG option is set by an application. 

The following options are supported for SetSockOpt. The Type identifies the 
type of data addressed by IpOptionValue. 

Value 

SO_BROADCAST 

SO_DEBUG 

SO_DONTLINGER 

SO_DONTROUTE 

SO_KEEPALIVE 

SO_LINGER 

SO _ OOBINLINE 

SO_RCVBUF 

SO_REUSEADDR 

SO_SNDBUF 

TCP _NODELAY 

Type 

BOOL 

BOOL 

BOOL 

BOOL 

BOOL 

struct LINGER 

BOOL 

int 

BOOL 

int 

BOOL 

Meaning 

Allow transmission of broadcast 
messages on the socket. 

Record debugging information. 

Don't block Close waiting for unsent 
data to be sent. Setting this option is 
equivalent to setting SO_LINGER 
with Conoff set to zero. 

Don't route: send directly to interface. 

Send keep-alives. 

Linger on Close if unsent data is 
present. 

Receive out-of-band data in the normal 
data stream. 

Specify buffer size for receives. 

Allow the socket to be bound to an 
address which is already in use. 
(See Bind.) 

Specify buffer size for sends. 

Disables the Nagle algorithm for send 
coalescing. 

Berkeley Software Distribution (BSD) options not supported for 
SetSockOpt are: 

Value Type Meaning 

SO_ACCEPTCONN BOOL Socket is listening 

SO_ERROR int Get error status and clear. 

SO_RCVLOWAT int Receive low water mark. 

SO_RCVTIMEO int Receive timeout 

SO_SNDLOWAT int Send low water mark. 

SO_SNDTIMEO int Send timeout. 

SO_TYPE int Type of the socket. 

IP_OPTIONS Set options field in IP header. 

See Also: CAsyncSocket: :AsyncSelect, CAsyncSocket: :Bind, 
CAsyncSocket:: Create, CAsyncSocket:: GetSockOpt, CAsyncSocket: :IOCtl 



CAsyncSocket:: ShutDown 

CAsyncSocket: : ShutDown 
BOOL ShutDown( int nHow = sends ); 

Return Value 
Nonzero if the function is successful; otherwise 0, and a specific error code can be 
retrieved by calling GetLastError. The following errors apply to this member 
function: 

• WSANOTINITIALISED A successful AfxSocketInit must occur before using 
this API. 

• WSAENETDOWN The Windows Sockets implementation detected that the 
network subsystem failed. 

• WSAEINVAL nHow is not valid. 

• WSAEINPROGRESS A blocking Windows Sockets operation is in progress. 

• WSAENOTCONN The socket is not connected (SOCK_STREAM only). 

• WSAENOTSOCK The descriptor is not a socket. 

Parameters 

Remarks 

nHow A flag that describes what types of operation will no longer be allowed, using 
the following enumerated values: 

• receives = 0 

• sends = 1 

• both = 2 

Call this member function to disable sends and/or receives on the socket. ShutDown 
is used on all types of sockets to disable reception, transmission, or both. If nHow is 0, 
subsequent receives on the socket will be disallowed. This has no effect on the lower 
protocol layers. 

For Transmission Control Protocol (TCP), the TCP window is not changed and 
incoming data will be accepted (but not acknowledged) until the window is exhausted. 
For User Datagram Protocol (UDP), incoming datagrams are accepted and queued. In 
no case will an ICMP error packet be generated. If nHow is 1, subsequent sends are 
disallowed. For TCP sockets, a FIN will be sent. Setting nHow to 2 disables both 
sends and receives as described above. 

Note that ShutDown does not close the socket, and resources attached to the socket 
will not be freed until Close is called. An application should not rely on being able 
to reuse a socket after it has been shut down. In particular, a Windows Sockets 
implementation is not required to support the use of Connect on such a socket. 

See Also: CAsyncSocket::Connect, CAsyncSocket::Create 

111 



CAsyncSocket: : m_hSocket 

Data Members 
CAsyncSocket: :m_hSocket 
Remarks 

112 

Contains the SOCKET handle for the socket encapsulated by this CAsyncSocket 
object. 



CBitmap 

The CBitmap class encapsulates a Windows graphics device interface (GDI) bitmap 
and provides member functions to manipulate the bitmap. To use a CBitmap object, 
construct the object, attach a bitmap handle to it with one of the initialization member 
functions, and then call the object's member functions. 

For more information on using graphic objects like CBitmap, see "Graphic Objects" 
in Visual C++ Programmer's Guide online. 

#include <afxwin.h> 

CBitmap Class Members 
Construction 

CBitmap 

Initialization 

LoadBitmap 

LoadOEMBitmap 

LoadMappedBitmap 

CreateBitmap 

CreateBitmapIndirect 

CreateCompatibleBitmap 

CreateDiscardableBitmap 

Attributes 

GetBitmap 

operator HBITMAP 

Constructs a CBitmap object. 

Initializes the object by loading a named bitmap resource from 
the application's executable file and attaching the bitmap to 
the object. 

Initializes the object by loading a predefined Windows bitmap 
and attaching the bitmap to the object. 

Loads a bitmap and maps colors to current system colors. 

Initializes the object with a device-dependent memory bitmap 
that has a specified width, height, and bit pattern. 

Initializes the object with a bitmap with the width, height, and 
bit pattern (if one is specified) given in a BITMAP structure. 

Initializes the object with a bitmap so that it is compatible with 
a specified device. 

Initializes the object with a discardable bitmap that is 
compatible with a specified device. 

Fills a BITMAP structure with information about the bitmap. 

Returns the Windows handle attached to the CBitmap object. 

CBitmap 

113 



CBitmap: :CBitmap 

Operations 

FromHandle 

SetBitmapBits 

GetBitmapBits 

SetBitmapDimension 

GetBitmapDimension 

Returns a pointer to a CBitmap object when given a handle to 
a Windows HBITMAP bitmap. 

Sets the bits of a bitmap to the specified bit values. 

Copies the bits of the specified bitmap into the specified buffer. 

Assigns a width and height to a bitmap in a.l-millimeter units. 

Returns the width and height of the bitmap. The height and 
width are assumed to have been set previously by the 
SetBitmapDimension member function. 

Member Functions 
CBitmap: :CBitmap 

Remarks 

CBitmap( ); 

Constructs a CBitmap object. The resulting object must be initialized with one of the 
initialization member functions. 

See Also: CBitmap::LoadBitmap, CBitmap::LoadOEMBitmap, 
CBitmap: :CreateBitmap, CBitmap: :CreateBitmapIndirect, 
CBitmap:: CreateCompatibleBitmap, CBitmap:: CreateDiscardableBitmap 

CBitmap: :CreateBitmap 
BOOL CreateBitmap( int n Width, int nHeight, UINT nPlanes, UINT nBitcount, 

1+ const void* lpBits ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

114 

n Width Specifies the width (in pixels) of the bitmap. 

nHeight Specifies the height (in pixels) of the bitmap. 

nPlanes Specifies the number of color planes in the bitmap. 

nBitcount Specifies the number of color bits per display pixel. 

lpBits Points to a short-integer array that contains the initial bitmap bit values. 
If it is NULL, the new bitmap is left uninitialized. 

Initializes a device-dependent memory bitmap that has the specified width, height, 
and bit pattern. 



CBitmap::CreateBitmapIndirect 

For a color bitmap, either the nPlanes or nBitcount parameter should be set to 1. If 
both of these parameters are set to 1, CreateBitmap creates a monochrome bitmap. 

Although a bitmap cannot be directly selected for a display device, it can be selected 
as the current bitmap for a "memory device context" by using CDC::SelectObject 
and copied to any compatible device context by using the CDC::BitBlt function. 

When you finish with the CBitmap object created by the CreateBitmap function, 
first select the bitmap out of the device context, then delete the CBitmap object. 

For more information, see the description of the bmBits field in the BITMAP 
structure. The BITMAP structure is described under the 
CBitmap::CreateBitmapIndirect member function. 

See Also: CDC: :SelectObject, CGdiObject: :DeleteObject, CDC: :BitBlt, 
::CreateBitmap 

CBitmap::CreateBitmapIndirect 
BOOL CreateBitmapIndirect( LPBITMAP IpBitmap); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpBitmap Points to a BITMAP structure that contains information about the bitmap. 

Initializes a bitmap that has the width, height, and bit pattern (if one is specified) 
given in the structure pointed to by IpBitmap. Although a bitmap cannot be directly 
selected for a display device, it can be selected as the current bitmap for a memory 
device context by using CDC::SelectObject and copied to any compatible device 
context by using the CDC::BitBlt or CDC::StretchBlt function. (The CDC::PatBIt 
function can copy the bitmap for the current brush directly to the display device 
context.) 

If the BITMAP structure pointed to by the IpBitmap parameter has been filled in by 
using the GetObject function, the bits of the bitmap are not specified and the bitmap 
is uninitialized. To initialize the bitmap, an application can use a function such as 
CDC::BitBIt or ::SetDIBits to copy the bits from the bitmap identified by the first 
parameter of CGdiObject::GetObject to the bitmap created by 
CreateBitmapIndirect. 

When you finish with the CBitmap object created with CreateBitmapIndirect 
function, first select the bitmap out of the device context, then delete the CBitmap 
object. 

See Also: CDC::SelectObject, CDC::BitBlt, CGdiObject::DeleteObject, 
CGdiObject:: GetObject, :: CreateBitmapIndirect 

115 



CBitmap: :CreateCompatibleBitmap 

CBitmap: :CreateCompatibleBitmap 
BOOL CreateCompatibleBitmap( CDC* pDC, int n Width, int nHeight ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pDC Specifies the device context. 

nWidth Specifies the width (in pixels) of the bitmap. 

nHeight Specifies the height (in pixels) of the bitmap. 

Initializes a bitmap that is compatible with the device specified by pDC. The bitmap 
has the same number of color planes or the same bits-per-pixel format as the specified 
device context. It can be selected as the current bitmap for any memory device that is 
compatible with the one specified by pDC. 

If pDC is a memory device context, the bitmap returned has the same format as the 
currently selected bitmap in that device context. A "memory device context" is a 
block of memory that represents a display surface. It can be used to prepare images in 
memory before copying them to the actual display surface of the compatible device. 

When a memory device context is created, GDI automatically selects a monochrome 
stock bitmap for it. 

Since a color memory device context can have either color or monochrome bitmaps 
selected, the format of the bitmap returned by the CreateCompatibleBitmap function 
is not always the same; however, the format of a compatible bitmap for a nonmemory 
device context is always in the format of the device. 

When you finish with the CBitmap object created with the 
CreateCompatibleBitmap function, first select the bitmap out of the device context, 
then delete the CBitmap object. 

See Also: : :CreateCompatibleBitmap, CGdiObject: :DeleteObject 

CBitmap: :CreateDiscardableBitmap 
BOOL CreateDiscardableBitmap( CDC* pDC, int n Width, int nHeight ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
pDC Specifies a device context. 

n Width Specifies the width (in bits) of the bitmap. 

116 



CBitmap: :GetBitmap 

Remarks 

nHeight Specifies the height (in bits) of the bitmap. 

Initializes a discardable bitmap that is compatible with the device context identified 
by pDC. The bitmap has the same number of color planes or the same bits-per-pixel 
format as the specified device context. An application can select this bitmap as the 
current bitmap for a memory device that is compatible with the one specified by pDC. 

Windows can discard a bitmap created by this function only if an application has 
not selected it into a display context. If Windows discards the bitmap when it is not 
selected and the application later attempts to select it, the CDC::SelectObject 
function will return NULL. 

When you finish with the CBitmap object created with the CreateDiscardableBitmap 
function, first select the bitmap out of the device context, then delete the CBitmap 
object. 

See Also: ::CreateDiscardableBitmap, CGdiObject::DeleteObject 

CBitmap: : FromHandle 
static CBitmap* PASCAL FromHandle( HBITMAP hBitmap ); 

Return Value 
A pointer to a CBitmap object if successful; otherwise NULL. 

Parameters 

Remarks 

hBitmap Specifies a Windows GDI bitmap. 

Returns a pointer to a CBitmap object when given a handle to a Windows GDI 
bitmap. If a CBitmap object is not already attached to the handle, a temporary 
CBitmap object is created and attached. This temporary CBitmap object is valid 
only until the next time the application has idle time in its event loop, at which time 
all temporary graphic objects are deleted. Another way of saying this is that the 
temporary object is only valid during the processing of one window message. 

CBitmap: : GetBitmap 
int GetBitmap( BITMAP* pBitMap ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
pBitMap Pointer to a BITMAP structure. Must not be NULL. 

117 



CBitmap: :GetBitmapBits 

Remarks 
Call this member function to retrieve information about a CBitmap object. This 
information is returned in the BITMAP structure referred to by pBitmap. 

See Also: BITMAP 

CBitmap: : GetB itmapB its 
DWORD GetBitmapBits( DWORD dwCount, LPVOID IpBits ) const; 

Return Value 
The actual number of bytes in the bitmap, or 0 if there is an error. 

Parameters 

Remarks 

dwCount Specifies the number of bytes to be copied. 

IpBits Points to the buffer that is to receive the bitmap. The bitmap is an array 
of bytes. The bitmap byte array conforms to a structure where horizontal scan 
lines are multiples of 16 bits. 

Copies the bit pattern of the CBitmap object into the buffer that is pointed to by 
lpBits. The dwCount parameter specifies the number of bytes to be copied to the 
buffer. Use CGdiObject::GetObject to determine the correct dwCount value for 
the given bitmap. 

See Also: CGdiObject: :GetObject, : : GetBitmapBits 

CBitmap:: GetBitmapDimension 
CSize GetBitmapDimension( ) const; 

Return Value 

Remarks 

118 

The width and height of the bitmap, measured in O.I-millimeter units. The height 
is in the cy member of the CSize object, and the width is in the cx member. If the 
bitmap width and height have not been set by using SetBitmapDimension, the 
return value is O. 

Returns the width and height of the bitmap. The height and width are assumed to 
have been set previously by using the SetBitmapDimension member function. 

See Also: CBitmap::SetBitmapDimension 



CBitmap: :LoadMappedBitmap 

CBitmap: :LoadBitmap 
BOOL LoadBitmap( LPCTSTR IpszResollrceName); 
BOOL LoadBitmap( UINT nIDResollrce ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpszResollrceName Points to a null-terminated string that contains the name of 
the bitmap resource. 

nIDResource Specifies the resource ID number of the bitmap resource. 

Loads the bitmap resource named by IpszResollrceName or identified by the ID 
number in nIDResollrce from the application's executable file. The loaded bitmap is 
attached to the CBitmap object. 

If the bitmap identified by IpszResollrceName does not exist or if there is insufficient 
memory to load the bitmap, the function returns O. 

An application must call the CGdiObject: :DeleteObject function to delete any 
bitmap loaded by the LoadBitmap function. 

The following bitmaps were added to Windows versions 3.1 and later: 

OBM_UPARRROWI 
OBM_DNARROWI 
OBM_RGARROWI 
OBM_LFARROWI 

These bitmaps are not found in device drivers for Windows versions 3.0 and earlier. 
For a complete list of bitmaps and a display of their appearance, see the Win32 
Programmer's Reference. 

See Also: CBitmap::LoadOEMBitmap, ::LoadBitmap, 
CGdiObject: :DeleteObject 

CBitmap::LoadMappedBitmap 
BOOL LoadMappedBitmap( UINT nIDBitmap, UINT nFlags = 0, 

... LPCOLORMAP IpColorMap = NULL, int nMapSize = 0 ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
nIDBitmap The ID of the bitmap resource. 

nFlags A flag for a bitmap. Can be zero or CMB_MASKED. 

119 



CBitmap: :LoadOEMBitmap 

Remarks 

lpColorMap A pointer to a COLORMAP structure that contains the color 
information needed to map the bitmaps. If this parameter is NULL, the function 
uses the default color map. 

nMapSize The number of color maps pointed to by lpColorMap. 

Call this member function to load a bitmap and map the colors to the current system 
colors. By default, LoadMappedBitmap will map colors commonly used in button 
glyphs. 

For information about creating a mapped bitmap, see the Windows function 
::CreateMappedBitmap and the COLORMAP structure in the Win32 
Programmer's Reference. 

See Also: ::LoadBitmap, ::CreateMappedBitmap 

CBitmap: : LoadOEMBitmap 
BOOL LoadOEMBitmap( UINT nIDBitmap ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

120 

nIDBitmap ID number of the predefined Windows bitmap. The possible values are 
listed below from WINDOWS.H: 

OBM_BTNCORNERS OBM_OLD_RESTORE 

OBM_BTSIZE OBM_OLD_RGARROW 

OBM_CHECK OBM_OLD_UPARROW 

OBM_CHECKBOXES OBM_OLD_ZOOM 

OBM_CLOSE OBM_REDUCE 

OBM_COMBO OBM_REDUCED 

OBM_DNARROW OBM_RESTORE 

OBM_DNARROWD OBM_RESTORED 

OBM_DNARROWI OBM_RGARROW 

OBM_LFARROW OBM_RGARROWD 

OBM_LFARROWD OBM_RGARROWI 

OBM_LFARROWI OBM_SIZE 

OBM_MNARROW OBM_UPARROW 

OBM_OLD_CLOSE OBM_UPARROWD 

OBM_OLD_DNARROW OBM_UPARROW 

OBM_OLD_LFARROW OBM_ZOOM 

OBM_OLD_REDUCE OBM_ZOOMD 



Remarks 
. Loads a predefined bitmap used by Windows. 

Bitmap names that begin with OBM_ OLD represent bitmaps used by Windows 
versions prior to 3.0. 

Note that the constant OEMRESOURCE must be defined before including 
WINDOWS.H in order to use any of the OBM_ constants. 

See Also: CBitmap::LoadBitmap, ::LoadBitmap 

CBitmap::operator HBITMAP 
operator HBITMAP( ) const; 

Return Value 

Remarks 

If successful, a handle to the Windows GDI object represented by the CBitmap 
object; otherwise NULL. 

Use this operator to get the attached Windows GDI handle of the CBitmap object. 
This operator is a casting operator, which supports direct use of an HBITMAP 
object. 

For more information about using graphic objects, see "Graphic Objects" in the 
Win32 Programmer's Reference. 

CBitmap:: SetBitmapBits 
DWORD SetBitmapBits( DWORD dwCount, const void* lpBits ); 

Return Value 
The number of bytes used in setting the bitmap bits; 0 if the function fails. 

Parameters 

Remarks 

dwCount Specifies the number of bytes pointed to by lpBits. 

lpBits Points to the BYTE array that contains the bit values to be copied to the 
CBitmap object. 

Sets the bits of a bitmap to the bit values given by lpBits. 

See Also: : :SetBitmapBits 

CBitmap::SetBitmapBits 

121 



CBitmap::SetBitmapDimension 

CBitmap::SetBitmapDimension 
CSize SetBitmapDimension( int nWidth, int nHeight); 

Return Value 
The previous bitmap dimensions. Height is in the ey member variable of the 
CSize object, and width is in the ex member variable. 

Parameters 

Remarks 

122 

n Width Specifies the width of the bitmap (in O.I-millimeter units). 

nHeight Specifies the height of the bitmap (in O.I-millimeter units). 

Assigns a width and height to a bitmap in O.I-millimeter units. The GDI does 
not use these values except to return them when an application calls the 
GetBitmapDimension member function. 

See Also: CBitmap: : GetBitmapDimension 



CBitmapButton 

Use the CBitmapButton class to create pushbutton controls labeled with bitmapped 
images instead of text. CBitmapButton objects contain up to four bitmaps, which 
contain images for the different states a button can assume: up (or normal), down 
(or selected), focused, and disabled. Only the first bitmap is required; the others 
are optional. 

Bitmap-button images include the border around the image as well as the image itself. 
The border typically plays a part in showing the state of the button. For example, the 
bitmap for the focused state usually is like the one for the up state but with a dashed 
rectangle inset from the border or a thick solid line at the border. The bitmap for the 
disabled state usually resembles the one for the up state but has lower contrast (like a 
dimmed or grayed menu selection). 

These bitmaps can be of any size, but all are treated as if they were the same size as 
the bitmap for the up state. 

Various applications demand different combinations of bitmap images: 

Up Down Focused Disabled Application 

x Bitmap 

x x Button without WS_TABSTOP style 

x x x x Dialog button with all states 

x x x Dialog button with WS_TABSTOP style 

When creating a bitmap-button control, set the BS_OWNERDRAW style to 
specify that the button is owner-drawn. This causes Windows to send the 
WM_MEASUREITEM and WM_DRAWITEM messages for the button; the 
framework handles these messages and manages the appearance of the button for you. 

To create a bitmap-button control in a window's client area, follow these steps: 

1. Create one to four bitmap images for the button. 

2. Construct the CBitmapButton object. 

3. Call the Create function to create the Windows button control and attach it to the 
CBitmapButton object. 

CBitmapButton 

123 



CBitmapButton 

4. Call the LoadBitmaps member function to load the bitmap resources after the 
bitmap button is constructed. 

To include a bitmap-button control in a dialog box, follow these steps: 

1. Create one to four bitmap images for the button. 

2. Create a dialog template with an owner-draw button positioned where you want the 
bitmap button. The size of the button in the template does not matter. 

3. Set the button's caption to a value such as "MYIMAGE" and define a symbol for 
the button such as IDC_MYIMAGE. 

4. In your application's resource script, give each of the images created for the button 
an ID constructed by appending one of the letters "U," "D," "F," or "X" (for up, 
down, focused, and disabled) to the string used for the button caption in step 3. For 
the button caption "MYIMAGE," for example, the IDs would be "MYIMAGEU," 
"MYIMAGED," "MYIMAGEF," and "MYIMAGEX." You must specify the ID 
of your bitmaps within double quotes. Otherwise the resource editor will assign 
an integer to the resource and MFC will fail when loading the image. 

5. In your application's dialog class (derived from CDialog), add a CBitmapButton 
member object. 

6. In the CDialog object's OnInitDialog routine, call the CBitmapButton object's 
AutoLoad function, using as parameters the button's control ID and the CDialog 
object's this pointer. 

If you want to handle Windows notification messages, such as BN_CLICKED, sent 
by a bitmap-button control to its parent (usually a class derived from CDialog), add 
to the CDialog-derived object a message-map entry and message-handler member 
function for each message. The notifications sent by a CBitmapButton object are the 
same as those sent by a CButton object. 

The class CToolBar takes a different approach to bitmap buttons. 

For more information on CBitmapButton, see "Control Topics" in Visual C++ 
Programmer s Guide online. 

#include <afxext.h> 

CBitmapButton Class Members 

124 

Construction 

CBitmapButton Constructs a CBitmapButton object. 

LoadBitmaps Initializes the object by loading one or more named bitmap resources from 
the application's resource file and attaching the bitmaps to the object. 

AutoLoad Associates a button in a dialog box with an object of the CBitmapButton 
class, loads the bitmap(s) by name, and sizes the button to fit the bitmap. 



CBitmapButton::LoadBitmaps 

Operations 

SizeToContent Sizes the button to accommodate the bitmap. 

Member Functions 
CBitmapButton: : AutoLoad 

BOOL AutoLoad( UINT nID, CWnd* pParent); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nID The button's control ID. 

pParent Pointer to the object that owns the button. 

Associates a button in a dialog box with an object of the CBitmapButton class, 
loads the bitmap(s) by name, and sizes the button to fit the bitmap. 

Use the AutoLoad function to initialize an owner-draw button in a dialog box 
as a bitmap button. Instructions for using this function are in the remarks for the 
CBitmapButton class. 

See Also: CBitmapButton: :LoadBitmaps, CBitmapButton: :SizeToContent 

CBitmapButton: :CBitmapButton 

Remarks 

CBitmapButton( ); 

Creates a CBitmapButton object. 

After creating the C++ CBitmapButton object, call CButton::Create to create the 
Windows button control and attach it to the CBitmapButton object. 

See Also: CBitmapButton: :LoadBitmaps, CBitmapButton: :AutoLoad, 
CBitmapButton: :SizeToContent, CButton:: Create 

CBitmapButton::LoadBitmaps 
BOOL LoadBitmaps( LPCTSTR lpszBitmapResource, LPCTSTR 

... lpszBitmapResourceSel = NULL, LPCTSTR lpszBitmapResourceFocus = NULL, 

... LPCTSTR lpszBitmapResourceDisabled = NULL ); 

125 



CBitmapButton: :SizeToContent 

BOOL LoadBitmaps( UINT nIDBitmapResource, UINT nIDBitmapResourceSel = 0, 
1+ UINT nIDBitmapResourceFocus = 0, UINT nIDBitmapResourceDisabled = 0 ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpszBitmapResource Points to the null-terminated string that contains the name of the 
bitmap for a bitmap button's normal or "up" state. Required. 

IpszBitmapResourceSel Points to the null-terminated string that contains the name of 
the bitmap for a bitmap button's selected or "down" state. May be NULL. 

IpszBitmapResourceFocus Points to the null-terminated string that contains the name 
of the bitmap for a bitmap button's focused state. May be NULL. 

IpszBitmapResourceDisabled Points to the null-terminated string that contains the 
name of the bitmap for a bitmap button's disabled state. May be NULL. 

nIDBitmapResource Specifies the resource ID number of the bitmap resource for a 
bitmap button's normal or "up" state. Required. 

nIDBitmapResourceSel Specifies the resource ID number of the bitmap resource for 
a bitmap button's selected or "down" state. May be O. 

nIDBitmapResourceFocus Specifies the resource ID number of the bitmap resource 
for a bitmap button's focused state. May be o. 

nIDBitmapResourceDisabled Specifies the resource ID number of the bitmap 
resource for a bitmap button's disabled state. May be O. 

Use this function when you want to load bitmap images identified by their resource 
names or ID numbers, or when you cannot use the AutoLoad function because, for 
example, you are creating a bitmap button that is not part of a dialog box. 

See Also: CBitmapButton: :AutoLoad, CBitmapButton: :SizeToContent, 
CButton: : Create, CBitmap: :LoadBitmap 

CBitmapButton:: SizeToContent 
void SizeToContent(); 

Remarks 
Call this function to resize a bitmap button to the size of the bitmap. 

See Also: CBitmapButton: :LoadBitmaps, CBitmapButton: :AutoLoad 

126 



CBrush 

The CBrush class encapsulates a Windows graphics device interface (GDI) brush. 
To use a CBrush object, construct a CBrush object and pass it to any CDC member 
function that requires a brush. 

Brushes can be solid, hatched, or patterned. 

For more information on CBrush, see "Graphic Objects" in Visual C++ 
Programmer's Guide online. 

#include <afxwin.h> 

See Also: CBitmap, CDC 

CBrush Class Members 
Construction 

CBrush 

Initialization 

CreateSolidBrush 

CreateHatchBrush 

CreateBrushlndirect 

CreatePatternBrush 

CreateDIBPatternBrush 

CreateSysColorBrush 

Operations 

FromHandle 

Attributes 

GetLogBrush 

operator HBRUSH 

Constructs a CBrush object. 

Initializes a brush with the specified solid color. 

Initializes a brush with the specified hatched pattern and color. 

Initializes a brush with the style, color, and pattern specified in 
a LOGBRUSH structure. 

Initializes a brush with a pattern specified by a bitmap. 

Initializes a brush with a pattern specified by a 
device-independent bitmap (DIB). 

Creates a brush that is the default system color. 

Returns a pointer to a CBrush object when given a handle to a 
Windows HBRUSH object. 

Gets a LOGBRUSH structure. 

Returns the Windows handle attached to the CBrush object. 

CBrush 

127 



CBrush: :CBrush 

Member Functions 
CBrush: :CBrush 

CBrush( ); 
CBrush( COLORREF erColor ); 

throw( CResourceException ); 
CBrush( int nlndex, COLORREF erColor ); 

throw( CResourceException); 
CBrush( CBitmap* pBitmap); 

throw( CResourceException ); 

Parameters 

Remarks 

128 

erColor Specifies the foreground color of the brush as an RGB color. If the brush is 
hatched, this parameter specifies the color of the hatching. 

nlndex Specifies the hatch style of the brush. It can be anyone of the following 
values: 

• HS_BDIAGONAL Downward hatch (left to right) at 45 degrees 

• HS_CROSS Horizontal and vertical crosshatch 

• HS_DIAGCROSS Crosshatch at 45 degrees 

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees 

• HS_HORIZONTAL Horizontal hatch 

• HS_ VERTICAL Vertical hatch 

pBitmap Points to a CBitmap object that specifies a bitmap with which the brush 
paints. 

Has four overloaded constructors. The constructor with no arguments constructs an 
uninitialized CBrush object that must be initialized before it can be used. 

If you use the constructor with no arguments, you must initialize the resulting CBrush 
object with CreateSolidBrush, CreateHatchBrush, CreateBrushIndirect, 
CreatePatternBrush, or CreateDIBPatternBrush. If you use one of the constructors 
that takes arguments, then no further initialization is necessary. The constructors with 
arguments can throw an exception if errors are encountered, while the constructor 
with no arguments will always succeed. 

The constructor with a single COLORREF parameter constructs a solid brush with 
the specified color. The color specifies an RGB value and can be constructed with the 
RGB macro in WINDOWS.H. 



CBrush::CreateDIBPatternBrush 

The constructor with two parameters constructs a hatch brush. The nlndex parameter 
specifies the index of a hatched pattern. The crColor parameter specifies the color. 

The constructor with a CBitmap parameter constructs a patterned brush. The 
parameter identifies a bitmap. The bitmap is assumed to have been created by 
using CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect, 
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap. The minimum 
size for a bitmap to be used in a fill pattern is 8 pixels by 8 pixels. 

See Also: CBrush::CreateSolidBrush, CBrush::CreateHatchBrush, 
CBrush: :CreateBrushIndirect, CBrush:: CreatePatternBrush, 
CBrush::CreateDIBPatternBrush, CGdiObject::CreateStockObject 

CBrush: : CreateBrushlndirect 
BOOL CreateBrushIndirect( const LOGBRUSH* lpLogBrush ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

lpLogBrush Points to a LOGBRUSH structure that contains information about the 
brush. 

Initializes a brush with a style, color, and pattern specified in a LOGBRUSH 
structure. The brush can subsequently be selected as the current brush for any 
device context. 

A brush created using a monochrome (1 plane, 1 bit per pixel) bitmap is drawn using 
the current text and background colors. Pixels represented by a bit set to 0 will be 
drawn with the current text color. Pixels represented by a bit set to 1 will be drawn 
with the current background color. 

See Also: CBrush::CreateDIBPatternBrush, CBrush::CreatePatternBrush, 
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush, 
CGdiObject:: CreateStockObject, CGdiObject: :DeleteObject, 
:: CreateBrushIndirect 

CBrush::CreateDIBPatternBrush 
BOOL CreateDIBPatternBrush( HGLOBAL hPackedDIB, UINT nUsage ); 
BOOL CreateDIBPatternBrush( const void* lpPackedDIB, UINT nUsage); 

Return Value 
Nonzero if successful; otherwise O. 

129 



CB rush: :CreateDIBPattemBrush 

Parameters 

Remarks 

130 

hPackedDIB Identifies a global-memory object containing a packed 
device-independent bitmap (DIB). 

nUsage Specifies whether the bmiColors[] fields of the BITMAPINFO data 
structure (a part of the "packed DIB") contain explicit RGB values or indices into 
the currently realized logical palette. The parameter must be one of the following 
values: 

• DIB_PAL_ COLORS The color table consists of an array of 16-bit indexes. 

• DIB_RGB_COLORS The color table contains literal RGB values. 

The following value is available only in the second version of this member 
function: 

• DIB_PAL_INDICES No color table is provided. The bitmap itself contains 
indices into the logical palette of the device context into which the brush is to be 
selected. 

/pPackedDIB Points to a packed DIB consisting of a BITMAPINFO structure 
immediately followed by an array of bytes defining the pixels of the bitmap. 

Initializes a brush with the pattern specified by a device-independent bitmap (DIB). 
The brush can subsequently be selected for any device context that supports raster 
operations. 

The two versions differ in the way you handle the DIB: 

• In the first version, to obtain a handle to the DIB you call the Windows 
::GlobaIAlIoc function to allocate a block of global memory and then fill the 
memory with the packed DIB. 

• In the second version, it is not necessary to call ::GlobaIAlloc to allocate memory 
for the packed DIB. 

A packed DIB consists of a BITMAPINFO data structure immediately followed by 
the array of bytes that defines the pixels of the bitmap. Bitmaps used as fill patterns 
should be 8 pixels by 8 pixels. If the bitmap is larger, Windows creates a fill pattern 
using only the bits corresponding to the first 8 rows and 8 columns of pixels in the 
upper-left comer of the bitmap. 

When an application selects a two-color DIB pattern brush into a monochrome 
device context, Windows ignores the colors specified in the DIB and instead displays 
the pattern brush using the current text and background colors of the device context. 
Pixels mapped to the first color (at offset 0 in the DIB color table) of the DIB are 
displayed using the text color. Pixels mapped to the second color (at offset 1 in the 
color table) are displayed using the background color. 



CBrush::CreateHatchBrush 

For information about using the following Windows functions, see the Win32 SDK 
Programmer's Reference: 

• ::CreateDIBPatternBrush (This function is provided only for compatibility 
with applications written for versions of Windows earlier than 3.0; use the 
: : CreateD IBPatternBrushPt function.) 

• ::CreateDIBPatternBrushPt (This function should be used for Win32-based 
applications.) 

• ::GlobaIAlloc 

See Also: CBrush::CreatePatternBrush, CBrush::CreateBrushIndirect, 
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush, 
CGdiObject: :CreateStockObject, CDC: :SelectObject, 
CGdiObject: :DeleteObject, CDC:: GetBrushOrg, CDC: :SetBrushOrg 

CBrush: :CreateHatchBrush 
BOOL CreateHatchBrush( int nlndex, COLORREF crColor ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nlndex Specifies the hatch style of the brush. It can be anyone of the following 
values: 

• HS_BDIAGONAL Downward hatch (left to right) at 45 degrees 

• HS_ CROSS Horizontal and vertical crosshatch 

• HS_DIAGCROSS Crosshatch at 45 degrees 

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees 

• HS_HORIZONTAL Horizontal hatch 

• HS_ VERTICAL Vertical hatch 

crColor Specifies the foreground color of the brush as an RGB color (the color of 
the hatches). See COLORREF in the Win32 SDK documentation for more 
information. 

Initializes a brush with the specified hatched pattern and color. The brush can 
subsequently be selected as the current brush for any device context. 

See Also: CBrush:: CreateBrushIndirect, CBrush:: CreateD IBPatternBrush, 
CBrush:: CreatePatternBrush, CBrush:: CreateSolidBrush, 
CGdiObject::CreateStockObject, ::CreateHatchBrush 

131 



CBrush: :CreatePattemBrush 

CBrush: :CreatePatternBrush 
BOOL CreatePatternBrush( CBitmap* pBitmap ); 

Return Value 
Nonzero if successful~ otherwise O. 

Parameters 

Remarks 

pBitmap Identifies a bitmap. 

Initializes a brush with a pattern specified by a bitmap. The brush can subsequently be 
selected for any device context that supports raster operations. The bitmap identified 
by pBitmap is typically initialized by using the CBitmap::CreateBitmap, 
CBitmap:: CreateBitmapIndirect, CBitmap: :LoadBitmap, or 
CBitmap: :CreateCompatibleBitmap function. 

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger, 
Windows will only use the bits corresponding to the first 8 rows and columns of 
pixels in the upper-left comer of the bitmap. 

A pattern brush can be deleted without affecting the associated bitmap. This means the 
bitmap can be used to create any number of pattern brushes. 

A brush created using a monochrome bitmap (l color plane, 1 bit per pixel) is drawn 
using the current text and background colors. Pixels represented by a bit set to 0 are 
drawn with the current text color. Pixels represented by a bit set to 1 are drawn with 
the current background color. 

For information about using ::CreatePatternBrush, a Windows function, see the 
Win32 SDK Programmer's Reference. 

See Also: CBitmap, CBrush::CreateBrushIndirect, 
CBrush: :CreateDIBPatternBrush, CBrush:: CreateHatchBrush, 
CBrush::CreateSolidBrush, CGdiObject::CreateStockObject 

CBrush:: CreateSolidBrush 
BOOL CreateSolidBrush( COLORREF crColor ); 

Return Value 
Nonzero if successful~ otherwise O. 

Parameters 

132 

crColor A COLORREF structure that specifies the color of the brush. The color 
specifies an RGB value and can be constructed with the RGB macro in 
WINDOWS.H. 



CBrush: :CreateSysColorBrush 

Remarks 
Initializes a brush with a specified solid color. The brush can subsequently be selected 
as the current brush for any device context. 

When an application has finished using the brush created by CreateSolidBrush, it 
should select the brush out of the device context. 

See Also: CBrush:: CreateBrushIndirect, CBrush: :CreateDIBPatternBrush, 
CBrush:: CreateHatchBrush, CBrush: :CreatePatternBrush, : :CreateSolidBrush, 
CGdiObject::DeleteObject 

CBrush:: CreateSysColorBrush 
BOOL CreateSysColorBrush( int nlndex ); 

Return Value 
Nonzero if successful; otherwise o. 

Parameters 

Remarks 

nlndex Specifies the hatch style of the brush. It can be anyone of the following 
values: 

• HS_BDIAGONAL Downward hatch (left to right) at 45 degrees 

• HS_CROSS Horizontal and vertical crosshatch 

• HS_DIAGCROSS Crosshatch at 45 degrees 

• HS_FDIAGONAL Upward hatch (left to right) at 45 degrees 

• HS_HORIZONTAL Horizontal hatch 

• HS_ VERTICAL Vertical hatch 

Initializes a brush color. The brush can subsequently be selected as the current brush 
for any device context. 

When an application has finished using the brush created by CreateSysColorBrush, 
it should select the brush out of the device context. 

See Also: CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush, 
CBrush: :CreateHatchBrush, CBrush:: CreatePatternBrush, 
::CreateSolidBrush, CBrush::CreateSolidBrush, ::GetSysColorBrush, 
CGdiObject: :DeleteO bject 

133 



CBrush: :FromHandle 

CBrush: : FromHandle 
static CBrush* PASCAL FromHandle( HBRUSH hBrush ); 

Return Value 
A pointer to a CBrush object if successful; otherwise NULL. 

Parameters 

Remarks 

hBrush HANDLE to a Windows GDI brush. 

Returns a pointer to a CBrush object when given a handle to a Windows HBRUSH 
object. If a CBrush object is not already attached to the handle, a temporary CBrush 
object is created and attached. This temporary CBrush object is valid only until the 
next time the application has idle time in its event loop. At this time, all temporary 
graphic objects are deleted. In other words, the temporary object is valid only during 
the processing of one window message. 

For more information about using graphic objects, see "Graphic Objects" in the 
Win32 SDK Programmer's Reference. 

CBrush: : GetLogBrush 
int GetLogBrush( LOGBRUSH* pLogBrush ); 

Return Value 
If the function succeeds, and pLogBrush is a valid pointer, the return value is the 
number of bytes stored into the buffer. 

If the function succeeds, and pLogBrush is NULL, the return value is the number 
of bytes required to hold the information the function would store into the buffer. 

If the function fails, the return value is O. 

Parameters 

Remarks 

Example 

134 

pLogBrush Points to a LOGBRUSH structure that contains information about the 
brush. 

Call this member function to retrieve the LOGBRUSH structure. The LOGBRUSH 
structure defines the style, color, and pattern of a brush. 

For example, call GetLogBrush to match the particular color or pattern of a bitmap. 

LOGBRUSH logbrush; 
brushExisting.GetLogBrush( &logbrush ); 
CBrush brushOther( logbrush.lbColor); 

See Also: LOG BRUSH,: :GetObject 



CBrush::operator HBRUSH 

CBrush::operator HBRUSH 
operator HBRUSH() const; 

Return Value 

Remarks 

If successful, a handle to the Windows GDI object represented by the CBrush object; 
otherwise NULL. 

Use this operator to get the attached Windows GD! handle of the CBrush object. This 
operator is a casting operator, which supports direct use of an HBRUSH object. 

For more information about using graphic objects, see "Graphic Objects" in the 
Win32 SDK Programmer's Reference. 

135 



CButton 

CButton 

136 

The CButton class provides the functionality of Windows button controls. A button 
control is a small, rectangular child window that can be clicked on and off. Buttons 
can be used alone or in groups and can either be labeled or appear without text. A 
button typically changes appearance when the user clicks it. 

Typical buttons are the check box, radio button, and pushbutton. A CButton object 
can become any of these, according to the button style specified at its initialization by 
the Create member function. 

In addition, the CBitmapButton class derived from CButton supports creation of 
button controls labeled with bitmap images instead of text. A CBitmapButton can 
have separate bitmaps for a button's up, down, focused, and disabled states. 

You can create a button control either from a dialog template or directly in your code. 
In both cases, first call the constructor CButton to construct the CButton object; then 
call the Create member function to create the Windows button control and attach it to 
the CButton object. 

Construction can be a one-step process in a class derived from CButton. Write a 
constructor for the derived class and call Create from within the constructor. 

If you want to handle Windows notification messages sent by a button control to 
its parent (usually a class derived from CDialog), add a message-map entry and 
message-handler member function to the parent class for each message. 

Each message-map entry takes the following form: 

ON_Notification( id, memberFxn ) 

where id specifies the child window ID of the control sending the notification and 
memberFxn is the name of the parent member function you have written to handle 
the notification. 

The parent's function prototype is as follows: 

afx_msg void memberFxn( ); 

Potential message-map entries are as follows: 



Map entry Sent to parent when ... 

ON_BN_CLICKED 

ON_BN_DOUBLECLICKED 

The user clicks a button. 

The user double-clicks a button. 

If you create a CButton object from a dialog resource, the CButton object is 
automatically destroyed when the user closes the dialog box. 

If you create a CButton object within a window, you may need to destroy it. If you 
create the CButton object on the heap by using the new function, you must call delete 
on the object to destroy it when the user closes the Windows button control. If you 
create the CButton object on the stack, or it is embedded in the parent dialog object, 
it is destroyed automatically. 

#include <afxwin.h> 

See Also: CWnd, CComboBox, CEdit, CListBox, CScrollBar, CStatic, 
CBitmapButton, CDialog 

CButton Class Members 
Construction 

CButton 

Initialization 

Create 

Operations 

GetState 

SetState 

GetCheck 

SetCheck 

GetButtonStyle 

SetButtonStyle 

Getlcon 

Setlcon 

GetBitmap 

SetBitmap 

GetCursor 

SetCursor 

Overridables 

DrawItem 

Constructs a CButton object. 

Creates the Windows button control and attaches it to the CButton object. 

Retrieves the check state, highlight state, and focus state of a button 
control. 

Sets the highlighting state of a button control. 

Retrieves the check state of a button control. 

Sets the check state of a button control. 

Retrieves information about the button control style. 

Changes the style of a button. 

Retrieves the handle of the icon previously set with Setlcon. 

Specifies an icon to be displayed on the button. 

Retrieves the handle of the bitmap previously set with SetBitmap. 

Specifies a bitmap to be displayed on the button. 

Retrieves the handle of the cursor image previously set with SetCursor. 

Specifies a cursor image to be displayed on the button. 

Override to draw an owner-drawn CButton object. 

CButton 

137 



CButton::CButton 

Member Functions 
CButton::CButton 

Remarks 

CButton( ); 

Constructs a CButton object. 

See Also: CButton::Create 

CButton: : Create 
BOOL Create( LPCTSTR lpszCaption, DWORD dwStyle, 

.. const RECT& reet, CWnd* pParentWnd, UINT nID ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

138 

lpszCaption Specifies the button control's text. 

dwStyle Specifies the button control's style. Apply any combination of button styles 
to the button. 

reet Specifies the button control's size and position. It can be either a CRect object 
or a RECT structure. 

pParentWnd Specifies the button control's parent window, usually a CDialog. 
It must not be NULL. 

nID Specifies the button control's ID. 

You construct a CButton object in two steps. First call the constructor, then call 
Create, which creates the Windows button control and attaches it to the CButton 
object. 

If the WS_ VISIBLE style is given, Windows sends the button control all the 
messages required to activate and show the button. 

Apply the following window styles to a button control: 

• WS_CHILD Always 

• WS_ VISIBLE Usually 

• WS_DISABLED Rarely 



CButton::GetButtonStyle 

• WS_GROUP To group controls 

• WS_TABSTOP To include the button in the tabbing order 

See Also: CButton::CButton 

CButton::DrawItem 
virtual void DrawItem( LPDRAWITEMSTRUCT IpDrawltemStruct); 

Parameters 

Remarks 

IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure. The 
structure contains information about the item to be drawn and the type of drawing 
required. 

Called by the framework when a visual aspect of an owner-drawn button has changed. 
An owner-drawn button has the BS_OWNERDRAW style set. Override this member 
function to implement drawing for an owner-drawn CButton object. The application 
should restore all graphics device interface (ODI) objects selected for the display 
context supplied in IpDrawltemStruct before the member function terminates. 

Also see the BS_ style values. 

See Also: CButton: :SetButtonStyle, WM_DRA WITEM 

CButton: : GetBitmap 
HBITMAP GetBitmap( ) const; 

Return Value 

Remarks 

A handle to a bitmap. NULL if no bitmap is previously specified. 

Call this member function to get the handle of a bitmap, previously set with 
SetBitmap, that is associated with a button. 

See Also: CButton::SetBitmap, CBitmapButton::LoadBitmaps, "Bitmaps" online 

CButton: : GetButtonStyle 
UINT GetButtonStyle( ) const; 

Return Value 
Returns the button styles for this CButton object. 

Remarks 
This function returns only the BS_ style values, not any of the other window styles. 

139 



CButton::GetCheck 

CButton: : GetCheck 
int GetCheck( ) const; 

Return Value 

Remarks 

The return value from a button control created with the BS_AUTOCHECKBOX, 
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_CHECKBOX, 
BS_RADIOBUTTON, or BS_3STATE style is one of the following values: 

Value Meaning 

o Button state is unchecked. 

1 Button state is checked. 

2 Button state is indeterminate (applies only if the button has the BS_3STATE 
or BS_AUT03STATE style). 

If the button has any other style, the return value is O. 

Retrieves the check state of a radio button or check box. 

See Also: CButton::GetState, CButton::SetState, CButton::SetCheck, 
BM_GETCHECK 

CB utton: : GetCursor 
HCURSOR GetCursor( ); 

Return Value 

Remarks 

A handle to a cursor image. NULL if no cursor is previously specified. 

Call this member function to get the handle of a cursor, previously set with 
SetCursor, that is associated with a button. 

See Also: CButton::SetCursor, CBitmapButton::LoadBitmaps, "Bitmaps" online 

CButton: : GetIcon 
HICON Getlcon() const; 

Return Value 

Remarks 

140 

A handle to an icon. NULL if no icon is previously specified. 

Call this member function to get the handle of an icon, previously set with Setlcon, 
that is associated with a button. 

See Also: CButton::Setlcon, CBitmapButton::LoadBitmaps, "Bitmaps" online 



CButton: : GetS tate 
UINT GetState() const; 

Return Value 

Remarks 

Specifies the current state of the button control. You can use the following masks 
against the return value to extract information about the state: 

Mask 

Ox0003 

Ox0004 

Ox0008 

Meaning 

Specifies the check state (radio buttons and check boxes only). A 0 indicates the 
button is unchecked. A I indicates the button is checked. A radio button is 
checked when it contains a bullet (.). A check box is checked when it contains 
an X. A 2 indicates the check state is indeterminate (three-state check boxes 
only). The state of a three-state check box is indeterminate when it contains a 
halftone pattern. 

Specifies the highlight state. A nonzero value indicates that the button is 
highlighted. A button is highlighted when the user clicks and holds the left 
mouse button. The highlighting is removed when the user releases the mouse 
button. 

Specifies the focus state. A nonzero value indicates that the button has the focus. 

Retrieves the state of a radio button or check box. 

See Also: CButton::GetCheck, CButton::SetCheck, CButton::SetState, 
BM_GETSTATE 

CButton: :SetBitmap 
HBITMAP SetBitmap( HBITMAP hBitmap ); 

Return Value 
The handle of a bitmap previously associated with the button. 

Parameters 

Remarks 

hBitmap The handle of a bitmap. 

Call this member function to associate a new bitmap with the button. 

The bitmap will be automatically placed on the face of the button, centered by default. 
If the bitmap is too large for the button, it will be clipped on either side. You can 
choose other alignment options, including the following: 

• BS_TOP 

• BS_LEFT 

• BS_RIGHT 

CButton::SetBitmap 

141 



CButton::SetButtonStyle 

• BS_CENTER 

• BS_BOTTOM 

• BS_VCENTER 

Unlike CBitmapButton, which uses four bitmaps per button, SetBitmap uses only 
one bitmap per the button. When the button is pressed, the bitmap appears to shift 
down and to the right. 

See Also: CButton: :GetBitmap, CBitmapButton, 
CBitmapButton: :LoadBitmaps, "Bitmaps" online 

CButton: :SetButtonStyle 
void SetButtonStyle( UINT nStyle, BOOL bRedraw = TRUE ); 

Parameters 

Remarks 

nStyle Specifies the button style. 

bRedraw Specifies whether the button is to be redrawn. A nonzero value redraws the 
button. A 0 value does not redraw the button. The button is redrawn by default. 

Changes the style of a button. 

Use the GetButtonStyle member function to retrieve the button style. The low-order 
word of the complete button style is the button-specific style. 

CButton: :SetCheck 
void SetCheck( int nCheck ); 

Parameters 

Remarks 

142 

nCheck Specifies the check state. This parameter can be one of the following: 

Value Meaning 

o Set the button state to unchecked. 

2 

Set the button state to checked. 

Set the button state to indeterminate. This value can be used only if the button 
has the BS_3STATE or BS_AUT03STATE style. 

Sets or resets the check state of a radio button or check box. This member function 
has no effect on a pushbutton. 

See Also: CButton: :GetCheck, CButton: :GetState, CButton: :SetState, 
BM_SETCHECK 



CButton: :SetCursor 
HCURSOR SetCursor( HCURSOR hCursor ); 

Return Value 
The handle of a cursor previously associated with the button. 

Parameters 

Remarks 

hCursor The handle of a cursor. 

Call this member function to associate a new cursor with the button. 

The cursor will be automatically placed on the face of the button, centered by 
default. If the cursor is too large for the button, it will be clipped on either side. 
You can choose other alignment options, including the following: 

• BS_TOP 

• BS_LEFT 

• BS_RIGHT 

• BS_CENTER 

• BS_BOTTOM 

• BS_ VCENTER 

Unlike CBitmapButton, which uses four bitmaps per button, SetCursor uses only 
one cursor per the button. When the button is pressed, the cursor appears to shift 
down and to the right. 

See Also: CButton::GetCursor, CBitmapButton::LoadBitmaps, "Bitmaps" 
online 

CButton: :Setlcon 
HICON Setlcon( HICON hIcon ); 

Return Value 
The handle of an icon previously associated with the button. 

Parameters 
hlcon The handle of an icon. 

Remarks 
Call this member function to associate a new icon with the button. 

CButton::SetIcon 

143 



CButton::SetState 

The icon will be automatically placed on the face of the button, centered by default. 
If the icon is too large for the button, it will be clipped on either side. You can choose 
other alignment options, including the following: 

• BS_TOP 

• BS_LEFT 

• BS_RIGHT 

• BS_CENTER 

• BS_BOTTOM 

• BS_ VCENTER 

Unlike CBitmapButton, which uses four bitmaps per button, SetIcon uses only one 
icon per the button. When the button is pressed, the icon appears to shift down and to 
the right. 

See Also: CButton::GetIcon, CBitmapButton::LoadBitmaps, "Bitmaps" online 

CB utton: : SetState 
void SetState( BOOL bHighlight); 

Parameters 

Remarks 

144 

bHighlight Specifies whether the button is to be highlighted. A nonzero value 
highlights the button; a 0 value removes any highlighting. 

Sets the highlighting state of a button control. 

Highlighting affects the exterior of a button control. It has no effect on the check state 
of a radio button or check box. 

A button control is automatically highlighted when the user clicks and holds the left 
mouse button. The highlighting is removed when the user releases the mouse button. 

See Also: CButton: :GetState, CButton: :SetCheck, CButton: :GetCheck, 
BM_SETSTATE 



CByteArray 

The CByteArray class supports dynamic arrays of bytes. 

The member functions of CByteArray are similar to the member functions of 
class CObArray. Because of this similarity, you can use the CObArray reference 
documentation for member function specifics. Wherever you see a CObject pointer 
as a function parameter or return value, substitute a BYTE. 

CObject* CObArray::GetAt( int <nlndex> ) canst; 

for example, translates to 

BYTE CByteArray::GetAt( int <nlndex> ) canst; 

CByteArray incorporates the IMPLEMENT_SERIAL macro to support 
serialization and dumping of its elements. If an array of bytes is stored to an archive, 
either with the overloaded insertion «<) operator or with the Serialize member 
function, each element is, in turn, serialized. 

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you 
do not use SetSize, adding elements to your array causes it to be frequently reallocated and 
copied. Frequent reallocation and copying are inefficient and can fragment memory. 

If you need debug output from individual elements in the array, you must set the depth 
of the CDumpContext object to 1 or greater. 

For more information on using CByteArray, see the article "Collections" in 
Visual C++ Programmer's Guide online. 

#include <afxcoll.h> 

See Also: CObArray 

CByteArray Class Members 
Construction 

CByteArray 

Bounds 

GetSize 

GetUpperBound 

SetSize 

Constructs an empty array for bytes. 

Gets the number of elements in this array. 

Returns the largest valid index. 

Sets the number of elements to be contained in this array. 

CByteArray 

145 



CByteArray 

146 

Operations 

FreeExtra 

RemoveAll 

Element Access 

GetAt 

SetAt 

ElementAt 

GetData 

Growing the Array 

SetAtGrow 

Add 

Append 

Copy 

Insertion/Removal 

InsertAt 

RemoveAt 

Operators 

operator [] 

Frees all unused memory above the current upper bound. 

Removes all the elements from this array. 

Returns the value at a given index. 

Sets the value for a given index; array not allowed to grow. 

Returns a temporary reference to the byte within the array. 

Allows access to elements in the array. Can be NULL. 

Sets the value for a given index; grows the array if necessary. 

Adds an element to the end of the array; grows the array if necessary. 

Appends another array to the array; grows the array if necessary. 

Copies another array to the array; grows the array if necessary. 

Inserts an element (or all the elements in another array) at a specified 
index. 

Removes an element at a specific index. 

Sets or gets the element at the specified index. 



CCachedDataPathProperty 

CCachedDataPathProperty 

CCachedDataPathProperty 

Class CCachedDataPathProperty implements an OLE control property transferred 
asynchronously and cached in a memory file. A memory file is stored in RAM rather 
than on disk and is useful for fast temporary transfers. 

Along with CAysncMonikerFile and CDataPathProperty, 
CCachedDataPathProperty provides functionality for the use of asynchronous 
monikers in OLE controls. With CCachedDataPathProperty objects, you to transfer 
data asynchronously from a URL or file source and store it in a memory file via the 
m_Cache public variable. All the data is stored in the memory file, and there is no 
need to override OnDataAvailable unless you want to watch for notifications and 
respond. For example, if you are transferring a large .GIF file and want to notify 
your control that more data has arrived and it should redraw itself, override 
OnDataAvailable to make the notification. 

The class CCachedDataPathProperty is derived from CDataPathProperty. 

For more information about how to use asynchronous monikers and ActiveX controls 
in Internet applications, see the following topics in Visual C++ Programmer's Guide 
online: 

• Internet First Steps: ActiveX Controls 

• Internet First Steps: Asynchronous Monikers 

#include <afxctl.h> 

See Also: CDataPathProperty 

147 



CCachedDataPathProperty: :m_ Cache 

CCachedDataPathProperty Class Members 
Data Members 

m_Cache CMemFile object in which to cache data. 

Data Members 
CCachedDataPathProperty: :m_ Cache 

Remarks 

148 

CMemFile m_Cache; 

Contains the class name of the memory file into which data is cached. A memory file 
is stored in RAM rather than on disk. 

See Also: CDataPathProperty 



CCheckListB ox 

CCheckListBox 

The CCheckListBox class provides the functionality of a Windows checklist box. 
A "checklist box" displays a list of items, such as filenames. Each item in the list has 
a check box next to it that the user can check or clear. 

CCheckListBox is only for owner-drawn controls because the list contains more 
than text strings. At its simplest, a checklist box contains text strings and check boxes, 
but you do not need to have text at all. For example, you could have a list of small 
bitmaps with a check box next to each item. 

To create your own checklist box, you must derive your own class from 
CCheckListBox. To derive your own class, write a constructor for the derived class, 
then call Create. 

If your checklist box is a default checklist box (a list of strings with the default-sized 
checkboxes to the left of each), you can use the default CCheckListBox::DrawItem 
to draw the checklist box. Otherwise, you must override the 
CListBox::CompareItem function and the CCheckListBox::DrawItem and 
CCheckListBox: :MeasureItem functions. 

You can create a checklist box either from a dialog template or directly in your code. 

#include <afxwin.h> 

See Also: CListBox 

CCheckListBox Class Members 
Construction 

CCheckListBox 

Create 

Constructs a CCheckListBox object. 

Creates the Windows checklist box and attaches it to the 
CCheckListBox object. 

CCheckListBox 

149 



CCheckListBox: :CCheckListBox 

Attributes 

SetCheckStyle 

GetCheckStyle 

SetCheck 

GetCheck 

Enable 

IsEnabled 

OnGetCheckPosition 

Overridables 

DrawItem 

MeasureItem 

Sets the style of the control's check boxes. 

Gets the style of the control's check boxes. 

Sets the state of an item's check box. 

Gets the state of an item's check box. 

Enables or disables a checklist box item. 

Determines whether an item is enabled. 

Called by the framework to get the position 
of an item's check box. 

Called by the framework when a visual aspect 
of an owner-draw list box changes. 

Called by the framework when a list box with 
an owner-draw style is created. 

Member Functions 
CCheckListBox: :CCheckListBox 

Remarks 

150 

CCheckListBox( ); 

Constructs a CCheckListBox object. 

You construct a CCheckListBox object in two steps. First define a class derived 
from CCheckListBox, then call Create, which initializes the Windows checklist 
box and attaches it to the CCheckListBox object. For example: 

class CMyChecklistBox : public CChecklistBox 
{ 

DEClARE_DYNAMIC(CMyChecklistBox) 

II Constructors 
public: 

CMyChecklistBox(); 
BaOl Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, 
.. UINT nID); 

See Also: CCheckListBox:: Create 



CCheckListBox: :Create 

CCheckListBox: : Create 
BOOL Create( DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

dwStyle Specifies the style of the checklist box. The style must be either 
LBS_OWNERDRAWFIXED (all items in the list are the same height) or 
LBS_OWNERDRAWVARIABLE (items in the list are of varying heights). 
This style can be combined with other list-box styles. 

reet Specifies the checklist-box size and position. Can be either a CRect object or 
a RECT structure. 

pParentWnd Specifies the checklist box's parent window (usually a CDialog object). 
It must not be NULL. 

nID Specifies the checklist box's control rD. 

You construct a CCheckListBox object in two steps. First define a class derived from 
CCheckListBox, then call Create, which initializes the Windows checklist box and 
attaches it to the CCheckListBox. See CCheckListBox::CCheckListBox for a 
sample. 

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE, 
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the 
checklist-box control. 

These messages are handled by default by the OnNcCreate, OnCreate, 
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base class. 
To extend the default message handling, add a message map to the your derived class 
and override the preceding message-handler member functions. Override OnCreate, 
for example, to perform needed initialization for a new class. 

Apply the following window styles to a checklist-box control: 

• WS_CHILD Always 

• WS_ VISIBLE Usually 

• WS_DISABLED Rarely 

• WS_ VSCROLL To add a vertical scroll bar 

• WS_HSCROLL To add a horizontal scroll bar 

• WS_GROUP To group controls 

• WS_TABSTOP To allow tabbing to this control 

See Also: CCheckListBox::CCheckListBox 

151 



CCheckListBox: :Draw Item 

CCheckListBox: :Draw Item 
virtual void Drawltem( LPDRAWITEMSTRUCT IpDrawltemStruct); 

Parameters 

Remarks 

IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that contains 
information about the type of drawing required. 

Called by the framework when a visual aspect of an owner-drawn checklist box 
changes. The itemAction and itemState members of the DRAWITEMSTRUCT 
structure define the drawing action that is to be performed. 

By default, this function draws a default checkbox list, consisting of a list of strings 
each with a default-sized checkbox to the left. The checkbox list size is the one 
specified in Create. 

Override this member function to implement drawing of owner-draw checklist boxes 
that are not the default, such as checklist boxes with lists that aren't strings, with 
variable-height items, or with checkboxes that aren't on the left. The application 
should restore all graphics device interface (GDI) objects selected for the display 
context supplied in IpDrawltemStruct before the termination of this member function. 

If checklist box items are not all the same height, the checklist box style (specified in 
Create) must be LBS_OWNERVARIABLE, and you must override the 
Measureltem function. 

See Also: CCheckListBox::Create, CCheckListBox::MeasureItem 

CCheckListBox: : Enable 
void Enable( int nlndex, BOOL bEnabled = TRUE ); 

Parameters 

Remarks 

nlndex Index of the checklist box item to be enabled. 

bEnabled Specifies whether the item is enabled or disabled. 

Call this function to enable or disable a checklist box item. 

See Also: CCheckListBox::IsEnabled 

CCheckListBox: : GetCheck 
int GetCheck( int nlndex ); 

Return Value 
Zero if the item is not checked, 1 if it is checked, and 2 if it is indeterminate. 

152 



CCheckListBox: :MeasureItem 

Parameters 

Remarks 

nlndex Index of the item whose check status is to be retrieved. 

Call this function to determine the check state of an item. 

See Also: CCheckListBox:: OnGetCheckPosition, CCheckListBox:: SetCheck, 
CCheckListBox: :SetCheckStyle, CCheckListBox:: GetCheckStyle 

CCheckListBox: : GetCheckStyle 
UINT GetCheckStyle(); 

Return Value 

Remarks 

The style of the control's check boxes. 

Call this function to get the checklist box's style. For information on possible styles, 
see SetCheckStyle. 

See Also: CCheckListBox::OnGetCheckPosition, CCheckListBox::SetCheck, 
CCheckListBox: :SetCheckStyle, CCheckListBox: :GetCheck 

CCheckListBox: : IsEnabled 
BOOL IsEnabled( int nlndex); 

Return Value 
Nonzero if the item is enabled; otherwise O. 

Parameters 
nlndex Index of the item. 

Remarks 
Call this function to determine whether an item is enabled. 

See Also: CCheckListBox: :Enable 

CCheckListBox: : MeasureItem 
virtual void MeasureItem( LPMEASUREITEMSTRUCT IpMeasureltemStruct ); 

Parameters 
IpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure. 

Remarks 
Called by the framework when a checklist box with anon-default style is created. 

153 



CCheckListBox: :OnGetCheckPosition 

By default, this member function does nothing. Override this member function 
and fill in the MEASUREITEMSTRUCT structure to inform Windows of 
the dimensions of checklist-box items. If the checklist box is created with the 
LBS_OWNERDRAWVARIABLE style, the framework calls this member 
function for each item in the list box. Otherwise, this member is called only 
once. 

See Also: CCheckListBox::Create, CCheckListBox::DrawItem 

CCheckListB OX: : OnGetCheckPosition 
virtual CRect OnGetCheckPosition( CRect reet/tern, CRect reetCheekBox ); 

Return Value 
The position and size of an item's check box. 

Parameters 

Remarks 

154 

reet/tern The position and size of the list item. 

reetCheekBox The default position and size of an item's check box. 

The framework calls this function to get the position and size of the check box in 
an item. 

The default implementation only returns the default position and size of the check 
box (reetCheekBox). By default, a check box is aligned in the upper-left comer of 
an item and is the standard check box size. There may be cases where you want the 
check boxes on the right, or want a larger or smaller check box. In these cases, 
override OnGetCheckPosition to change the check box position and size within 
the item. 

For example, the following function overrides the default and puts the check box 
on the right of the item, makes it the same height as the item (minus a pixel offset 
at the top and bottom), and makes it the standard check box width: 

CRect CMyCheckListBox::OnGetCheckPosition(CRect rectltem, 
... CRect rectCheckBox) 
{ 

CRect rectMyCheckBox; 
rectMyCheckBox.top = rectltem.top -1; 
rectMyCheckBox.bottom = rectltem.bottom -1; 
rectMyCheckBox.right = rectltem.right -1; 
rectMyCheckBox.left = rectltem.right -1 - rectCheckBox.Width(); 
return rectMyCheckBox; 

See Also: CCheckListBox: :SetCheck, CCheckListBox:: SetCheckStyle, 
CCheckListBox: :GetCheck, CCheckListBox: : GetCheckStyle 



CCheckListBox: :SetCheckStyle 

CCheckListBox: :SetCheck 
void SetCheck( int nlndex, int nCheck ); 

Parameters 

Remarks 

nlndex Index of the item whose check box is to be set. 

nCheck State of the check box: 0 for clear, 1 for checked, and 2 for indeterminate. 

Call this function to set the check box of the item specified by nlndex. 

See Also: CCheckListBox::SetCheckStyle, CCheckListBox::GetCheck, 
CCheckListBox: : GetCheckStyle 

CCheckListBox:: SetCheckStyle 
void SetCheckStyle( UINT nStyle ); 

Parameters 

Remarks 

nStyle Determines the style of check boxes in the checklist box. 

Call this function to set the style of check boxes in the checklist box. Valid styles are: 

• BS_CHECKBOX 

• BS_AUTOCHECKBOX 

o BS_AUT03STATE 

• BS_3STATE 

For information on these styles, see "Button Styles." 

See Also: CCheckListBox: :SetCheck, CCheckListBox: :GetCheck, 
CCheckListBox: :GetCheckStyle 

155 



CClientDC 

CClientDC 

CClientDC 

The CClientDC class is derived from CDC and takes care of calling the Windows 
functions GetDC at construction time and ReleaseDC at destruction time. This means 
that the device context associated with a CClientDC object is the client area of a 
window. 

For more information on CClientDC, see "Device Contexts" in Visual C++ 
Programmer s Guide online. 

#include <afxwin.h> 

See Also: CDC 

CClientDC Class Members 
Construction 

CCIientDC 

Data Members 

Constructs a CCIientDC object connected to the CWnd. 

The HWND of the window for which this CCIientDC is valid. 

Member Functions 
CClientDC: :CClientDC 

CClientDC( CWnd* p Wnd ); 
throw( CResourceException); 

Parameters 

Remarks 

156 

p Wnd The window whose client area the device context object will access. 

Constructs a CClientDC object that accesses the client area of the CWnd pointed to 
by p Wnd. The constructor calls the Windows function GetDC. 



CClientDC: :m_h Wnd 

An exception (of type CResourceException) is thrown if the Windows GetDC call 
fails. A device context may not be available if Windows has already allocated all of its 
available device contexts. Your application competes for the five common display 
contexts available at any given time under Windows. 

Data Members 
CClientDC::m hWnd 
Remarks 

The HWND of the CWnd pointer used to construct the CClientDC object. m_hWnd 
is a protected variable. 

157 



CCmdTarget 

CCmdTarget 

CCmdTarget is the base class for the Microsoft Foundation Class Library 
message-map architecture. A message map routes commands or messages to the 
member functions you write to handle them. (A command is a message from a menu 
item, command button, or accelerator key.) 

Key framework classes derived from CCmdTarget include CView, CWinApp, 
CDocument, CWnd, and CFrameWnd. If you intend for a new class to handle 
messages, derive the class from one of these CCmdTarget-derived classes. You 
will rarely derive a class from CCmdTarget directly. 

For an overview of command targets and OnCmdMsg routing, see "Command 
Targets," "Command Routing," and "Mapping Messages" in Visual C++ 
Programmer's Guide online. 

CCmdTarget includes member functions that handle the display of an hourglass 
cursor. Display the hourglass cursor when you expect a command to take a noticeable 
time interval to execute. 

Dispatch maps, similar to message maps, are used to expose OLE automation 
IDispatch functionality. By exposing this interface, other applications (such as 
Visual Basic) can call into your application. For more information on the IDispatch 
interfaces, see "Creating the IDispatch Interface" and "Dispatch Interface and API 
Functions" in the Win32 SDK OLE Programmer's Reference. 

#include <afxwin.h> 

See Also: CCmdUI, CDocument, CDocTemplate, CWinApp, CWnd, CView, 
CFrame Wnd, COleDispatchDriver 

CCmdTarget Class Members 
Attributes 

FromIDispatch 

GetIDispatch 

IsResultExpected 

158 

Returns a pointer to the CCmdTarget object associated with the 
IDispatch pointer. 

Returns a pointer to the IDispatch object associated with the 
CCmdTarget object. 

Returns nonzero if an automation function should return a value. 



CCmdTarget: :Begin WaitCursor 

Operations 

Begin WaitCursor 

EnableAutomation 

EndWaitCursor 

Restore WaitCursor 

Overridables 

OnCmdMsg 

OnFinalRelease 

Displays the cursor as an hourglass cursor. 

Allows OLE automation for the CCmdTarget object. 

Returns to the previous cursor. 

Restores the hourglass cursor. 

Routes and dispatches command messages. 

Cleans up after the last OLE reference is released. 

Member Functions 
CCmdTarget: :Begin WaitCursor 

Remarks 

Example 

void BeginWaitCursor(); 

Call this function to display the cursor as an hourglass when you expect a command 
to take a noticeable time interval to execute. The framework calls this function to 
show the user that it is busy, such as when a CDocument object loads or saves itself 
to a file. 

The actions of Begin WaitCursor are not always effective outside of a single message 
handler as other actions, such as OnSetCursor handling, could change the cursor. 

Call EndWaitCursor to restore the previous cursor. 

II The following example illustrates the most common case 
II of displaying the hourglass cursor during some lengthy 
II processing of a command handler implemented in some 
II CCmdTarget-derived class, such as a document or view. 

void CMyView::OnSomeCommand() 
{ 

BeginWaitCursor(): II display the hourglass cursor 

II do some lengthy processing 

EndWaitCursor(): II remove the hourglass cursor 
} 

II The next example illustrates RestoreWaitCursor. 
void CMyView::OnSomeCommand() 
{ 

159 



CCmdTarget: :Begin WaitCursor 

160 

BeginWaitCursor(); II display the hourglass cursor 

II do some lengthy processing 

II The dialog box will normally change the cursor to 
II the standard arrow cursor, and leave the cursor in 
II as the standard arrow cursor when the dialog box is 
II closed. 
CMyDialog dlg; 
dlg.DoModal (); 

II It is necessary to call RestoreWaitCursor here in order 
II to change the cursor back to the hourglass cursor. 
RestoreWaitCursor(); 

II do some more lengthy processing 

EndWaitCursor(); II remove the hourglass cursor 

II In the above example, the dialog was clearly invoked between 
II the pair of calls to BeginWaitCursor and EndWaitCursor. 
II Sometimes it may not be clear whether the dialog is invoked 
II in between a pair of calls to BeginWaitCursor and EndWaitCursor. 
II It is permissable to call RestoreWaitCursor, even if 
II BeginWaitCursor was not previously called. This case is 
II illustrated below, where CMyView::AnotherFunction does not 
II need to know whether it was called in the context of an 
II hourglass cursor. 
void CMyView::AnotherFunction() 
{ 

} 

II some processing 

CMyDialog dlg; 
dlg.DoModal(); 
RestoreWaitCursor(); 

II some more processing 

II If the dialog is invoked from a member function of 
II some non-CCmdTarget, then you can call CWinApp::DoWaitCursor 
II with a 0 parameter value to restore the hourglass cursor. 
void CMyObject::AnotherFunction() 
{ 

CMyDialog dlg; 
dlg.DoModal(); 
AfxGetApp()->DoWaitCursor(0); II same as CCmdTarget::RestoreWaitCursor 

See Also: CWaitCursor, CCmdTarget::EndWaitCursor, 
CCmdTarget: :Restore WaitCursor, CWinApp: :Do WaitCursor 



CCmdTarget: :EndWaitCursor 

CCmdTarget: : EnableAutomation 

Remarks 

void EnableAutomation( ); 

Call this function to enable OLE automation for an object. This function is typically 
called from the constructor of your object and should only be called if a dispatch map 
has been declared for the class. For more information on automation see the articles 
"Automation Clients" and "Automation Servers" in Visual C++ Programmer's Guide 
online. 

See Also: DECLARE_DISPATCH_MAP, DECLARE_OLECREATE 

CCmdTarget: : EndWaitCursor 

Remarks 

Example 

void EndWaitCursor( ); 

Call this function after you have called the Begin WaitCursor member function to 
return from the hourglass cursor to the previous cursor. The framework also calls this 
member function after it has called the hourglass cursor. 

II The following example illustrates the most common case 
II of displaying the hourglass cursor during some lengthy 
II processing of a command handler implemented in some 
II CCmdTarget-derived class, such as a document or view. 

void CMyView::OnSomeCommand() 
{ 

BeginWaitCursor(); II display the hourglass cursor 

II do some lengthy processing 

EndWaitCursor(); II remove the hourglass cursor 

II The next example illustrates RestoreWaitCursor. 
void CMyView::OnSomeCommand() 
{ 

BeginWaitCursor(); II display the hourglass cursor 

II do some lengthy processing 

II The dialog box will normally change the cursor to 
II the standard arrow cursor, and leave the cursor in 
II as the standard arrow cursor when the dialog box is 
1/ closed. 
CMyDialog dlg; 
d 1 g . DoModa 1 ( ) ; 

161 



CCmdTarget: :FromIDispatch 

II It is necessary to call RestoreWaitCursor here in order 
II to change the cursor back to the hourglass cursor. 
RestoreWaitCursor(); 

II do some more lengthy processing 

EndWaitCursor(); II remove the hourglass cursor 

II In the above example, the dialog was clearly invoked between 
II the pair of calls to BeginWaitCursor and EndWaitCursor. 
II Sometimes it may not be clear whether the dialog is invoked 
II in between a pair of calls to BeginWaitCursor and EndWaitCursor. 
II It is permissable to call RestoreWaitCursor, even if 
II BeginWaitCursor was not previously called. This case is 
II illustrated below, where CMyView::AnotherFunction does not 
II need to know whether it was called in the context of an 
II hourglass cursor. 
void CMyView::AnotherFunction() 
{ 

} 

II some processing 

CMyDialog dlg; 
dlg.DoModal (); 
RestoreWaitCursor(); 

II some more processing 

II If the dialog is invoked from a member function of 
II some non-CCmdTarget, then you can call CWinApp::DoWaitCursor 
II with a 0 parameter value to restore the hourglass cursor. 
void CMyObject: :AnotherFunction() 
{ 

CMyDialog dlg; 
dlg.DoModal (); 
AfxGetApp()->DoWaitCursor(0); II same as CCmdTarget::RestoreWaitCursor 

See Also: CWaitCursor, CCmdTarget: :Begin WaitCursor, 
CCmdTarget: :Restore WaitCursor, CWinApp: :Do WaitCursor 

CCmdTarget: : FromIDispatch 
static CCmdTarget* FromIDispatch( LPDISPATCH IpDispatch ); 

Return Value 
A pointer to the CCmdTarget object associated with IpDispatch. This function 
returns NULL if the IDispatch object is not recognized as a Microsoft Foundation 
Class IDispatch object. 

Parameters 
IpDispatch A pointer to an IDispatch object. 

162 



CCmdTarget: :IsResultExpected 

Remarks 
Call this function to map an IDispatch pointer, received from automation member 
functions of a class, into the CCmdTarget object that implements the interfaces of 
the IDispatch object. 

The result of this function is the inverse of a call to the member function 
GetlDispatch. 

See Also: CCmdTarget::GetlDispatch, COleDispatchDriver 

CCmdTarget: : GetIDispatch 
LPDISPATCH GetlDispatch( BOOL bAddRef); 

Return Value 
The IDispatch pointer associated with the object. 

Parameters 

Remarks 

bAddRef Specifies whether to increment the reference count for the object. 

Call this member function to retrieve the IDispatch pointer from an automation 
method that either returns an IDispatch pointer or takes an IDispatch pointer 
by reference. 

For objects that call EnableAutomation in their constructors, making them 
automation enabled, this function returns a pointer to the Foundation Class 
implementation of IDispatch that is used by clients who communicate via the 
IDispatch interface. Calling this function automatically adds a reference to the 
pointer, so it is not necessary to make a call to IUnknown::AddRef. 

See Also: CCmdTarget::EnableAutomation, COleDispatchDriver, 
IUnknown: : Release 

CCmdTarget: : IsResultExpected 
BOOL IsResultExpected( ); 

Return Value 

Remarks 

Nonzero if an automation function should return a value; otherwise O. 

Use IsResultExpected to ascertain whether a client expects a return value from 
its call to an automation function. The OLE interface supplies information to MFC 
about whether the client is using or ignoring the result of a function call, and MFC 
in turn uses this information to determine the result of a call to IsResultExpected. 
If production of a return value is time- or resource-intensive, you can increase 
efficiency by calling this function before computing the return value. 

163 



CCmdTarget: :OnCmdMsg 

This function returns 0 only once so that you will get valid return values from other 
automation functions if you call them from the automation function that the client 
has called. 

IsResultExpected returns a nonzero value if called when an automation function 
call is not in progress. 

See Also: CCmdTarget: : GetlDispatch , CCmdTarget: :EnableAutomation 

CCmdTarget:: OnCmdMsg 
virtual BOOL OnCmdMsg( UINT nID, int nCode, void* pExtra, 

~ AFX_CMDHANDLERINFO* pHandlerlnfo ); 

Return Value 
Nonzero if the message is handled; otherwise O. 

Parameters 

Remarks 

Example 

164 

nID Contains the command ID. 

nCode Identifies the command notification code. 

pExtra Used according to the value of nCode. 

pHandlerlnfo If not NULL, OnCmdMsg fills in the pTarget and pmf members of 
the pHandlerInfo structure instead of dispatching the command. Typically, this 
parameter should be NULL. 

Called by the framework to route and dispatch command messages and to handle the 
update of command user-interface objects. This is the main implementation routine 
of the framework command architecture. 

At run time, OnCmdMsg dispatches a command to other objects or handles the 
command itself by calling the root class CCmdTarget::OnCmdMsg, which does 
the actual message-map lookup. For a complete description of the default command 
routing, see "Message Handling and Mapping Topics" in Visual C++ Programmer's 
Guide online. 

On rare occasions, you may want to override this member function to extend the 
framework's standard command routing. Refer to Technical Note 21 online for 
advanced details of the command-routing architecture. 

II This example illustrates extending the framework's standard command 
II route from the view to objects managed by the view. This example 
II is from an object-oriented drawing application, similar to the 
II DRAWCLI sample application, which draws and edits "shapes". 

BOOl CMyView::OnCmdMsg(UINT nID, int nCode, void* pExtra, 
AFX_CMDHANDlERINFO* pHandlerlnfo) 

{ 



CCmdTarget: : Restore WaitCursor 

II Extend the framework's command route from the view to 
II the application-specific CMyShape that is currently selected 
II in the view. m_pActiveShape is NULL if no shape object 
II is currently selected in the view. 
if ((m_pActiveShape != NULL) 

&& m_pActiveShape-)OnCmdMsg(nID, nCode, pExtra, pHandlerInfo)) 
return TRUE; 

II If the object(s) in the extended command route don't handle 
II the command, then let the base class OnCmdMsg handle it. 
return CView::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo); 

II The command handler for ID_SHAPE_COLOR (menu command to change 
II the color of the currently selected shape) was added to 
II the message map of CMyShape (note, not CMyView) using ClassWizard. 

II The menu item will be automatically enabled or disabled, depending 
lion whether a CMyShape is currently selected in the view, that is, 
II depending on whether CMyView::m_pActiveView is NULL. It is not 
II necessary to implement an ON_UPDATE_COMMAND_UI handler to enable 
II or disable the menu item. 

BEGIN_MESSAGE_MAP(CMyShape, CCmdTarget) 
11{{AFX_MSG_MAP(CMyShape) 
ON_COMMAND(ID_SHAPE_COLOR, OnShapeColor) 
I/}} AFX_MSG_MAP 

END_MESSAGE_MAP() 

See Also: CCmdUI 

CCmdTarget: : OnFinalRelease 

Remarks 

virtual void OnFinalRelease( ); 

Called by the framework when the last OLE reference to or from the object is 
released. Override this function to provide special handling for this situation. The 
default implementation deletes the object. 

See Also: COleServerItem 

CCmdTarget: :Restore WaitCursor 

Remarks 

void RestoreWaitCursor(); 

Call this function to restore the appropriate hourglass cursor after the system cursor 
has changed (for example, after a message box has opened and then closed while in 
the middle of a lengthy operation). 

165 



CCmdTarget: :Restore WaitCursor 

Example 

166 

II The following example illustrates the most common case 
II of displaying the hourglass cursor during some lengthy 
II processing of a command handler implemented in some 
II CCmdTarget-derived class, such as a document or view. 

void CMyView::OnSomeCommand() 
{ 

BeginWaitCursor(); II display the hourglass cursor 

II do some lengthy processing 

EndWaitCursor(); II remove the hourglass cursor 

II The next example illustrates RestoreWaitCursor. 
void CMyView::OnSomeCommand() 
{ 

} 

BeginWaitCursor(); II display the hourglass cursor 

II do some lengthy processing 

II The dialog box will normally change the cursor to 
II the standard arrow cursor, and leave the cursor in 
II as the standard arrow cursor when the dialog box is 
II closed. 
CMyDialog dlg; 
dlg.DoModal (); 

II It is necessary to call RestoreWaitCursor here in order 
II to change the cursor back to the hourglass cursor. 
RestoreWaitCursor(); 

II do some more lengthy processing 

EndWaitCursor(); II remove the hourglass cursor 

II In the above example, the dialog was clearly invoked between 
II the pair of calls to BeginWaitCursor and EndWaitCursor. 
II Sometimes it may not be clear whether the dialog is invoked 
II in between a pair of calls to BeginWaitCursor and EndWaitCursor. 
II It is permissable to call RestoreWaitCursor, even if 
II BeginWaitCursor was not previously called. This case is 
II illustrated below. where CMyView::AnotherFunction does not 
II need to know whether it was called in the context of an 
II hourglass cursor. 
void CMyView::AnotherFunction() 
{ 

II some processing ... 



CMyDialog dlg: 
dlg.DoModal(): 
RestoreWaitCursor(); 

II some more processing 

II If the dialog is invoked from a member function of 
II some non-CCmdTarget, then you can call CWinApp::DoWaitCursor 
II with a 0 parameter value to restore the hourglass cursor. 
void CMyObject::AnotherFunction() 
{ 

CMyDialog dlg; 
dlg.DoModal(): 

CCmdTarget: :Restore WaitCursor 

AfxGetApp()-)DoWaitCursor(0): II same as CCmdTarget::RestoreWaitCursor 

See Also: CWaitCursor, CCmdTarget: :EndWaitCursor, 
CCmdTarget::BeginWaitCursor, CWinApp::DoWaitCursor 

167 



CCmdUI 

CCmdUI 

168 

CCmdUI does not have a base class. 

The CCmdUI class is used only within an ON_UPDATE_COMMAND_UI handler 
in a CCmdTarget-derived class. 

When a user of your application pulls down a menu, each menu item needs to know 
whether it should be displayed as enabled or disabled. The target of a menu command 
provides this information by implementing an ON_UPDATE_COMMAND_UI 
handler. Use ClassWizard to browse the command user-interface objects in your 
application and create a message-map entry and function prototype for each handler. 

When the menu is pulled down, the framework searches for and calls each 
ON_UPDATE_COMMAND_UI handler, each handler calls CCmdUI member 
functions such as Enable and Check, and the framework then appropriately displays 
each menu item. 

A menu item can be replaced with a control-bar button or other command 
user-interface object without changing the code within the 
ON_UPDATE_COMMAND_Ulhandler. 

The following table summarizes the effect CCmdUI's member functions have on 
various command user-interface items. 

User-Interface Item Enable SetCheck SetRadio SetText 

Menu item Enables or Checks (x) or Checks using Sets item text 
disables unchecks dot (e) 

Toolbar button Enables or Selects, unselects, Same as (Not applicable) 
disables or indeterminate SetCheck 

Status-bar pane Makes text Sets pop-out or Same as Sets pane text 
visible or normal border SetCheck 
invisible 

Normal button in Enables or Checks or Same as Sets button text 
CDialogBar disables un checks check SetCheck 

box 

Normal control in Enables or (Not applicable) (Not applicable) Sets window text 
CDialogBar disables 

For more on the use of this class, see "Constructing the User Interface" in Visual C++ 
Tutorials online and "How to Update User-Interface Objects" in Visual C++ 
Programmer's Guide online. 

#include <afxwin.h> 

See Also: CCmdTarget 



CCmdUI Class Members 
Data Members 

m_nID 

m_nIndex 

m_pMenu 

m_pSubMenu 

m_pOther 

Operations 

Enable 

SetCheck 

SetRadio 

SetText 

ContinueRouting 

The ID of the user-interface object. 

The index of the user-interface object. 

Points to the menu represented by the CCmdUI object. 

Points to the contained sub-menu represented by the CCmdUI object. 

Points to the window object that sent the notification. 

Enables or disables the user-interface item for this command. 

Sets the check state of the user-interface item for this command. 

Like the SetCheck member function, but operates on radio groups. 

Sets the text for the user-interface item for this command. 

Tells the command-routing mechanism to continue routing the current 
message down the chain of handlers. 

Member Functions 
CCmdUI: : ContinueRouting 

Remarks 

void ContinueRouting(); 

Call this member function to tell the command-routing mechanism to continue routing 
the current message down the chain of handlers. 

This is an advanced member function that should be used in conjunction with an 
ON_COMMAND_EX handler that returns FALSE. For more information, see 
Technical Note 21 online. 

CCmdUI: :Enable 
virtual void Enable( BOOL bOn = TRUE ); 

Parameters 

Remarks 

bOn TRUE to enable the item, FALSE to disable it. 

Call this member function to enable or disable the user-interface item for this 
command. 

See Also: CCmdUI::SetCheck 

CCmdUI: :Enable 

169 



CCmdUI: :SetCheck 

CCmdUI: : SetCheck 
virtual void SetCheck( int nCheck = 1 ); 

Parameters 

Remarks 

nCheck Specifies the check state to set. If 0, unchecks; if 1, checks; and if 2, sets 
indeterminate. 

Call this member function to set the user-interface item for this command to the 
appropriate check state. This member function works for menu items and toolbar 
buttons. The indeterminate state applies only to toolbar buttons. 

See Also: CCmdUI: :SetRadio 

CCmdUI::SetRadio 
virtual void SetRadio( BOOL bOn = TRUE ); 

Parameters 

Remarks 

bOn TRUE to enable the item; otherwise FALSE. 

Call this member function to set the user-interface item for this command to the 
appropriate check state. This member function operates like SetCheck, except that it 
operates on user-interface items acting as part of a radio group. Unchecking the other 
items in the group is not automatic unless the items themselves maintain the 
radio-group behavior. 

See Also: CCmdUI::SetCheck 

CCmdUI::SetText 
virtual void SetText( LPCTSTR lpszText); 

Parameters 
lpszText A pointer to a text string. 

Remarks 
Call this member function to set the text of the user-interface item for this command. 

See Also: CCmdUI: :Enable 

170 



Data Members 
CCmdUI: :m_nID 
Remarks 

The 10 of the menu item, toolbar button, or other user-interface object represented by 
the CCmdUI object. 

CCmdUI: :m_nIndex 
Remarks 

The index of the menu item, toolbar button, or other user-interface object represented 
by the CCmdUI object. 

CCmdUI: :m_pMenu 
Remarks 

Pointer (of CMenD type) to the menu represented by the CCmdUI object. NULL if 
the item is not a menu. 

See Also: CMenD 

CCmdUI: :m_pSubMenu 
Remarks 

Pointer (of CMenD type) to the contained sub-menu represented by the CCmdUI 
object. NULL if the item is not a menu. If the sub menu is a pop-up, m_nID 
contains the 10 of the first item in the pop-up menu. For more information, see 
Technical Note 21 online. 

See Also: CMenD 

CCmdUI: :m_pOther 
Remarks 

Pointer (of type CWnd) to the window object, such as a tool or status bar, that sent 
the notification. NULL if the item is a menu or a non-CWnd object. 

See Also: CWnd 

CCmdUI: :m_pOther 

171 



CColorDialog 

CColorDialog 

172 

The CColorDialog class allows you to incorporate a color-selection dialog box into 
your application. A CColorDialog object is a dialog box with a list of colors that are 
defined for the display system. The user can select or create a particular color from the 
list, which is then reported back to the application when the dialog box exits. 

To construct a CColorDialog object, use the provided constructor or derive a new 
class and use your own custom constructor. 

Once the dialog box has been constructed, you can set or modify any values in the 
m_cc structure to initialize the values of the dialog box's controls. The m_cc structure 
is of type CHOOSECOLOR. 

After initializing the dialog box's controls, call the DoModal member function to 
display the dialog box and allow the user to select a color. DoModal returns the user's 
selection of either the dialog box's OK (IDOK) or Cancel (IDCANCEL) button. 

If DoModal returns IDOK, you can use one of CColorDialog's member functions to 
retrieve the information input by the user. 

You can use the Windows CommDlgExtendedError function to determine whether 
an error occurred during initialization of the dialog box and to learn more about the 
error. 

CColorDialog relies on the COMMDLG.DLL file that ships with Windows versions 
3.1 and later. 

To customize the dialog box, derive a class from CColorDialog, provide a custom 
dialog template, and add a message map to process the notification messages from the 
extended controls. Any unprocessed messages should be passed to the base class. 

Customizing the hook function is not required. 

Note On some installations the CColorDialog object will not display with a gray background if 
you have used the framework to make other CDialog objects gray. 



CColorDialog: :CColorDialog 

For more information on using CColorDialog, see "Common Dialog Classes" 
in Visual C++ Programmer's Guide online. 

#include <afxdlgs.h> 

CColorDialog Class Members 
Data Members 

Construction 

CColorDialog 

Operations 

DoModal 

GetColor 

GetSavedCustomColors 

SetCurrentColor 

Overridables 

OnColorOK 

A structure used to customize the settings of the 
dialog box. 

Constructs a CColorDialog object. 

Displays a color dialog box and allows the user to 
make a selection. 

Returns a COLORREF structure containing the values 
of the selected color. 

Retrieves custom colors created by the user. 

Forces the current color selection to the specified color. 

Override to validate the color entered into the 
dialog box. 

Member Functions 
CColorDialog: :CColorDialog 

CColorDialog( COLORREF elr/nit = 0, DWORD dwFlags = 0, 
... CWnd* pParentWnd = NULL ); 

Parameters 
elr/nit The default color selection. If no value is specified, the default is RGB(O,O,O) 

(black). 

dwFlags A set of flags that customize the function and appearance of the dialog box. 
For more information, see the CHOOSECOLOR structure in the Win32 SDK 
documentation. 

pParentWnd A pointer to the dialog box's parent or owner window. 

173 



CColorDialog: :DoModal 

Remarks 
Constructs a CColorDialog object. 

See Also: CDialog::DoModal 

CColorDialog: :DoModal 
virtual int DoModal( ); 

Return Value 

Remarks 

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and 
IDCANCEL are constants that indicate whether the user selected the OK or Cancel 
button. 

If IDCANCEL is returned, you can call the Windows CommDIgExtendedError 
function to determine whether an error occurred. 

Call this function to display the Windows common color dialog box and allow the 
user to select a color. 

If you want to initialize the various color dialog-box options by setting members of 
the m_cc structure, you should do this before calling DoModal but after the 
dialog-box object is constructed. 

After calling DoModaI, you can call other member functions to retrieve the settings 
or information input by the user into the dialog box. 

See Also: CDialog::DoModal, CColorDialog::CColorDialog 

CColorDialog: : GetColor 
COLORREF GetColor( ) const; 

Return Value 

Remarks 

174 

A COLORREF value that contains the ROB information for the color selected in the 
color dialog box. 

Call this function after calling DoModal to retrieve the information about the color 
the user selected. 

See Also: CColorDialog: :SetCurrentColor 



CColorDialog: :OnColorOK 

CColorDialog: : GetSavedCustomColors 
static COLORREF * GetSavedCustomColors(); 

Return Value 

Remarks 

A pointer to an array of 16 ROB color values that stores custom colors created by 
the user. 

CColorDialog objects permit the user, in addition to choosing colors, to define up 
to 16 custom colors. The GetSavedCustomColors member function provides access 
to these colors. These colors can be retrieved after DoModal returns IDOK. 

Each of the 16 ROB values in the returned array is initialized to ROB(255,255,255) 
(white). The custom colors chosen by the user are saved only between dialog box 
invocations within the application. If you wish to save these colors between 
invocations of the application, you must save them in some other manner, such 
as in an initialization (.INI) file. 

See Also: CColorDialog::GetColor 

CColorDialog: :OnColorOK 
virtual BOOL OnColorOK(); 

Return Value 

Remarks 

Nonzero if the dialog box should not be dismissed; otherwise 0 to accept the color 
that was entered. 

Override this function only if you want to provide custom validation of the color 
entered into the dialog box. This function allows you to reject a color entered by a 
user into a common color dialog box for any application-specific reason. Normally, 
you do not need to use this function because the framework provides default 
validation of colors and displays a message box if an invalid color is entered. 

Use the GetColor member function to get the ROB value of the color. 

If 0 is returned, the dialog box will remain displayed in order for the user to enter 
another filename. 

175 



CColorDialog::SetCurrentColor 

CColorDialog:: SetCurrentColor 
void SetCurrentColor( COLORREF clr ); 

Parameters 

Remarks 

clr An RGB color value. 

Call this function after calling DoModal to force the current color selection to the 
color value specified in clr. This function is called from within a message handler or 
OnColorOK. The dialog box will automatically update the user's selection based on 
the value of the clr parameter. 

See Also: CColorDialog::GetColor, CColorDialog::OnColorOK 

Data Members 
CColorDialog: :m_cc 

Remarks 

176 

CHOOSECOLOR m_cc; 

A structure of type CHOOSECOLOR, whose members store the characteristics and 
values of the dialog box. After constructing a CColorDialog object, you can use 
m_cc to set various aspects of the dialog box before calling the DoModal member 
function. 



CComboBox 

CComboBox 

The CComboBox class provides the functionality of a Windows combo box. 

A combo box consists of a list box combined with either a static control or edit 
control. The list-box portion of the control may be displayed at all times or may 
only drop down when the user selects the drop-down arrow next to the control. 

The currently selected item (if any) in the list box is displayed in the static or edit 
control. In addition, if the combo box has the drop-down list style, the user can 
type the initial character of one of the items in the list, and the list box, if visible, 
will highlight the next item with that initial character. 

The following table compares the three combo-box styles. 

Style 

Simple 

Drop-down 

Drop-down list 

When is list box visible? 

Always 

When dropped down 

When dropped down 

Static or edit control? 

Edit 

Edit 

Static 

You can create a CComboBox object from either a dialog template or directly in 
your code. In both cases, first call the constructor CComboBox to construct the 
CComboBox object; then call the Create member function to create the control 
and attach it to the CComboBox object. 

If you want to handle Windows notification messages sent by a combo box to its 
parent (usually a class derived from CDialog), add a message-map entry and 
message-handler member function to the parent class for each message. 

Each message-map entry takes the following form: 

ON_Notification( id, memberFxn ) 

where id specifies the child-window ID of the combo-box control sending the 
notification and memberFxn is the name of the parent member function you have 
written to handle the notification. 

The parent's function prototype is as follows: 

afx_msg void memberFxn(); 

CComboBox 

177 



CComboBox 

178 

The order in which certain notifications will be sent cannot be predicted. In particular, 
a CBN_SELCHANGE notification may occur either before or after a 
CBN_ CLOSEUP notification. 

Potential message-map entries are the following: 

• ON_CBN_CLOSEUP (Windows 3.1 and later.) The list box of a combo box 
has closed. This notification message is not sent for a combo box that has the 
CBS_SIMPLE style. 

• ON_CBN_DBLCLK The user double-clicks a string in the list box of a 
combo box. This notification message is only sent for a combo box with the 
CBS_SIMPLE style. For a combo box with the CBS_DROPDOWN or 
CBS_DROPDOWNLIST style, a double-click cannot occur because a 
single click hides the list box. 

• ON_CBN_DROPDOWN The list box of a combo box is about to drop down 
(be made visible). This notification message can occur only for a combo box 
with the CBS_DROPDOWN or CBS_DROPDOWNLIST style. 

• ON_CBN_EDITCHANGE The user has taken an action that may have 
altered the text in the edit-control portion of a combo box. Unlike the 
CBN_EDITUPDATE message, this message is sent after Windows updates the 
screen. It is not sent if the combo box has the CBS_DROPDOWNLIST style. 

• ON_CBN_EDITUPDATE The edit-control portion of a combo box is about to 
display altered text. This notification message is sent after the control has formatted 
the text but before it displays the text. It is not sent if the combo box has the 
CBS_DROPDOWNLIST style. 

• ON_CBN_ERRSPACE The combo box cannot allocate enough memory to meet 
a specific request. 

• ON_CBN_SELENDCANCEL (Windows 3.1 and later.) Indicates the user's 
selection should be canceled. The user clicks an item and then clicks another 
window or control to hide the list box of a combo box. This notification message 
is sent before the CBN_ CLOSEUP notification message to indicate that the 
user's selection should be ignored. The CBN_SELENDCANCEL or 
CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP 
notification message is not sent (as in the case of a combo box with the 
CBS_SIMPLE style). 

• ON_CBN_SELENDOK The user selects an item and then either presses the 
ENTER key or clicks the DOWN ARROW key to hide the list box of a combo box. 
This notification message is sent before the CBN_ CLOSEUP message to indicate 
that the user's selection should be considered valid. The CBN_SELENDCANCEL 
or CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP 
notification message is not sent (as in the case of a combo box with the 
CBS_SIMPLE style). 

• ON_CBN_KILLFOCUS The combo box is losing the input focus. 



• ON_CBN_SELCHANGE The selection in the list box of a combo box is about 
to be changed as a result of the user either clicking in the list box or changing the 
selection by using the arrow keys. When processing this message, the text in the 
edit control of the combo box can only be retrieved via GetLBText or another 
similar function. GetWindowText cannot be used . 

• ON_CBN_SETFOCUS The combo box receives the input focus. 

If you create a CComboBox object within a dialog box (through a dialog resource), 
the CComboBox object is automatically destroyed when the user closes the 
dialog box. 

If you embed a CComboBox object within another window object, you do not need 
to destroy it. If you create the CComboBox object on the stack, it is destroyed 
automatically. If you create the CComboBox object on the heap by using the new 
function, you must call delete on the object to destroy it when the Windows combo 
box is destroyed. 

#include <afxwin.h> 

See Also: CWnd, CButton, CEdit, CListBox, CScrollBar, CStatic, CDialog 

CComboBox Class Members 
Construction 

CComboBox 

Initialization 

Create 

InitStorage 

General Operations 

GetCount 

GetCurSel 

SetCurSel 

GetEditSel 

SetEditSel 

SetItemData 

SetItemDataPtr 

Constructs a CComboBox object. 

Creates the combo box and attaches it to the CComboBox 
object. 

Preallocates blocks of memory for items and strings in the 
list-box portion of the combo box. 

Retrieves the number of items in the list box of a combo box. 

Retrieves the index of the currently selected item, if any, in the 
list box of a combo box. 

Selects a string in the list box of a combo box. 

Gets the starting and ending character positions of the current 
selection in the edit control of a combo box. 

Selects characters in the edit control of a combo box. 

Sets the 32-bit value associated with the specified item in a 
combo box. 

Sets the 32-bit value associated with the specified item in a 
combo box to the specified pointer (void*). 

(continued) 

CComboBox 

179 



CComboBox 

General Operations (continued) 

180 

GetItemData 

GetItemDataPtr 

GetToplndex 

SetToplndex 

SetHorizontaIExtent 

GetHorizontaIExtent 

SetDroppedWidth 

GetDroppedWidth 

Clear 

Copy 

Cut 

Paste 

LimitText 

SetItemHeight 

GetItemHeight 

GetLBText 

GetLBTextLen 

ShowDropDown 

GetDroppedControlRect 

GetDroppedState 

SetExtendedUI 

GetExtendedUI 

Retrieves the application-supplied 32-bit value associated with 
the specified combo-box item. 

Retrieves the application-supplied 32-bit value associated with 
the specified combo-box item as a pointer (void*). 

Returns the index of the first visible item in the list-box portion 
of the combo box. 

Tells the list-box portion of the combo box to display the item 
with the specified index at the top. 

Sets the width in pixels that the list-box portion of the combo 
box can be scrolled horizontally. 

Returns the width in pixels that the list-box portion of the combo 
box can be scrolled horizontally. 

Sets the minimum allowable width for the drop-down list-box 
portion of a combo box. 

Retrieves the minimum allowable width for the drop-down 
list-box portion of a combo box. 

Deletes (clears) the current selection (if any) in the edit control. 

Copies the current selection (if any) onto the Clipboard in 
CF _TEXT format. 

Deletes (cuts) the current selection, if any, in the edit control and 
copies the deleted text onto the Clipboard in CF _TEXT format. 

Inserts the data from the Clipboard into the edit control at the 
current cursor position. Data is inserted only if the Clipboard 
contains data in CF _TEXT format. 

Limits the length of the text that the user can enter into the edit 
control of a combo box. 

Sets the height of list items in a combo box or the height of the 
edit-control (or static-text) portion of a combo box. 

Retrieves the height of list items in a combo box. 

Gets a string from the list box of a combo box. 

Gets the length of a string in the list box of a combo box. 

Shows or hides the list box of a combo box that has the 
CBS_DROPDOWN or CBS_DROPDOWNLIST style. 

Retrieves the screen coordinates of the visible (dropped-down) 
list box of a drop-down combo box. 

Determines whether the list box of a drop-down combo box is 
visible (dropped down). 

Selects either the default user interface or the extended user 
interface for a combo box that has the CBS_DROPDOWN or 
CBS_DROPDOWNLIST style. 

Determines whether a combo box has the default user interface 
or the extended user interface. 



CComboBox: :AddString 

General Operations (continued) 

GetLocale 

SetLocale 

String Operations 

AddString 

DeleteString 

InsertString 

ResetContent 

Dir 

FindString 

FindStringExact 

SelectString 

Overridables 

DrawItem 

Measureltem 

Compareltem 

Deleteltem 

Retrieves the locale identifier for a combo box. 

Sets the locale identifier for a combo box. 

Adds a string to the end of the list in the list box of a combo box 
or at the sorted position for list boxes with the CBS_SORT style. 

Deletes a string from the list box of a combo box. 

Inserts a string into the list box of a combo box. 

Removes all items from the list box and edit control of a 
combo box. 

Adds a list of filenames to the list box of a combo box. 

Finds theJirst string that contains the specified prefix in the list 
box of a combo box. 

Finds the first list-box string (in a combo box) that matches the 
specified string. 

Searches for a string in the list box of a combo box and, if the 
string is found, selects the string in the list box and copies the 
string to the edit control. 

Called by the framework when a visual aspect of an owner-draw 
combo box changes. 

Called by the framework to determine combo box dimensions 
when an owner-draw combo box is created. 

Called by the framework to determine the relative position of a 
new list item in a sorted owner-draw combo box. 

Called by the framework when a list item is deleted from an 
owner-draw combo box. 

Member Functions 
CComboBox: : AddString 

iot AddStriog( LPCTSTR ipszString); 

Return Value 
If the return value is greater than or equal to 0, it is the zero-based index to the string 
in the list box. The return value is CB_ERR if an error occurs; the return value is 
CB_ERRSPACE if insufficient space is available to store the new string. 

Parameters 
ipszString Points to the null-tenninated string that is to be added. 

181 



CComboBox::CComboBox 

Remarks 
Adds a string to the list box of a combo box. If the list box was not created with the 
CBS_SORT style, the string is added to the end of the list. Otherwise, the string is 
inserted into the list, and the list is sorted. 

To insert a string into a specific location within the list, use the InsertString member 
function. 

See Also: CComboBox: :InsertString, CComboBox: :DeleteString, 
CB_ADDSTRING 

CComboBox: :CComboBox 

Remarks 

CComboBox( ); 

Constructs a CComboBox object. 

See Also: CComboBox::Create 

CComboBox: :Clear 
void Clear( ); 

Remarks 
Deletes (clears) the current selection, if any, in the edit control of the combo box. 

To delete the current selection and place the deleted contents onto the Clipboard, use 
the Cut member function. 

See Also: CComboBox::Copy, CComboBox::Cut, CComboBox::Paste, 
WM_CLEAR 

CComboBox: :CompareItem 
virtual int Compareltem( LPCOMPAREITEMSTRUCT IpCompareltemStruct ); 

Return Value 

182 

Indicates the relative position of the two items described in the 
COMPAREITEMSTRUCT structure. It can be any of the following values: 

Value 

-1 

o 
1 

Meaning 

Item 1 sorts before item 2. 

Item 1 and item 2 sort the same. 

Item 1 sorts after item 2. 

See CWnd::OnCompareltem for a description of COMPAREITEMSTRUCT. 



CComboBox::Create 

Parameters 

Remarks 

lpCompareItemStruet A long pointer to a COMPAREITEMSTRUCT structure. 

Called by the framework to determine the relative position of a new item in the 
list-box portion of a sorted owner-draw combo box. By default, this member function 
does nothing. If you create an owner-draw combo box with the LBS_SORT style, you 
must override this member function to assist the framework in sorting new items 
added to the list box. 

See Also: WM_COMPAREITEM, CComboBox::DrawItem, 
CComboBox: :MeasureItem, CComboBox: :DeleteItem 

CComboBox: :Copy 

Remarks 

void Copy( ); 

Copies the current selection, if any, in the edit control of the combo box onto the 
Clipboard in CF _TEXT format. 

See Also: CComboBox: :Clear, CComboBox: :Cut, CComboBox: :Paste, 
WM_COPY 

CComboBox: : Create 
BOOL Create( DWORD dwStyle, const RECT& reet, CWnd* pParentWlld, UINT nID); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

dwStyle Specifies the style of the combo box. Apply any combination of combo-box 
styles to the box. 

reet Points to the position and size of the combo box. Can be a RECT structure or a 
CRect object. 

pParentWnd Specifies the combo box's parent window (usually a CDialog). It must 
not be NULL. 

nID Specifies the combo box's control ID. 

You construct a CComboBox object in two steps. First call the constructor, then call 
Create, which creates the Windows combo box and attaches it to the CComboBox 
object. 

183 



CComboBox: :Cut 

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE, 
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the combo box. 

These messages are handled by default by the OnNcCreate, OnCreate, 
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base class. 
To extend the default message handling, derive a class from CComboBox, add a 
message map to the new class, and override the preceding message-handler member 
functions. Override OnCreate, for example, to perform needed initialization for a 
new class. 

Apply the following window styles to a combo-box control. : 

• WS_CHILD Always 

• WS_ VISIBLE Usually 

• WS_DISABLED Rarely 

• WS_ VSCROLL To add vertical scrolling for the list box in the combo box 

• WS_HSCROLL To add horizontal scrolling for the list box in the combo box 

• WS_GROUP To group controls 

• WS_TABSTOP To include the combo box in the tabbing order 

See Also: CComboBox::CComboBox, "Combo-Box Styles" 

CComboBox::Cut 

Remarks 

void Cut(); 

Deletes (cuts) the current selection, if any, in the combo-box edit control and copies 
the deleted text onto the Clipboard in CF _TEXT format. 

To delete the current selection without placing the deleted text onto the Clipboard, call 
the Clear member function. 

See Also: CComboBox::Clear, CComboBox::Copy, CComboBox::Paste, 
WM_CUT 

CComboB OX: : DeleteItem 
virtual void DeleteItem( LPDELETEITEMSTRUCT IpDeleteltemStruct ); 

Parameters 

184 

IpDeleteltemStruct A long pointer to a Windows DELETEITEMSTRUCT structure 
that contains information about the deleted item. See CWnd::OnDeleteItem for a 
description of this structure. 



Remarks 
Called by the framework when the user deletes an item from an owner-draw 
CComboBox object or destroys the combo box. The default implementation of this 
function does nothing. Override this function to redraw the combo box as needed. 

See Also: CComboBox::CompareItem, CComboBox::DrawItem, 
CComboBox::MeasureItem, WM_DELETEITEM 

CComboBox: : DeleteString 
int DeleteString( UINT nlndex); 

Return Value 
If the return value is greater than or equal to 0, then it is a count of the strings 
remaining in the list. The return value is CB_ERR if llIlldex specifies an index 
greater then the number of items in the list. 

Parameters 

Remarks 

nIlldex Specifies the index to the string that is to be deleted. 

Deletes a string in the list box of a combo box. 

See Also: CComboBox: :InsertString, CComboBox: :AddString, 
CB_DELETESTRING 

CComboBox: :Dir 
int Dir( UINT aUr, LPCTSTR IpszWildCard); 

Return Value 
If the return value is greater than or equal to 0, it is the zero-based index of the last 
filename added to the list. The return value is CB_ERR if an error occurs; the return 
value is CB_ERRSPACE if insufficient space is available to store the new strings. 

Parameters 
aUr Can be any combination of the enum values described in CFile::GetStatus or 

any combination of the following values: 

• DDL_READWRITE File can be read from or written to. 

• DDL_READONLY File can be read from but not written to. 

• DDL_HIDDEN File is hidden and does not appear in a directory listing. 

• DDL_SYSTEM File is a system file. 

• DDL_DIRECTORY The name specified by lpszWildCard specifies a 
directory. 

CComboBox::Dir 

185 



CComboBox: :Draw Item 

Remarks 

• DDL_ARCHIVE File has been archived. 

• DDL_DRIVES Include all drives that match the name specified by 
lpsz WildCard. 

• DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files of 
the specified type are listed. Otherwise, files of the specified type are listed in 
addition to "normal" files. 

lpsz WildCard Points to a file-specification string. The string can contain wildcards 
(for example, *. *). 

Adds a list of filenames and/or drives to the list box of a combo box. 

See Also: CWnd::DIgDirList, CB_DIR, CFile::GetStatus 

CComboBox::DrawItem 
virtual void DrawItem( LPDRAWITEMSTRUCT IpDrawltemStruct); 

Parameters 

Remarks 

IpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure that contains 
information about the type of drawing required. 

Called by the framework when a visual aspect of an owner-draw combo box changes. 
The itemAction member of the DRAWITEMSTRUCT structure defines the drawing 
action that is to be performed. See CWnd::OnDrawItem for a description of this 
structure. 

By default, this member function does nothing. Override this member function to 
implement drawing for an owner-draw CComboBox object. Before this member 
function terminates, the application should restore all graphics device interface (GDI) 
objects selected for the display context supplied in IpDrawltemStruct. 

See Also: CComboBox::CompareItem, WM_DRAWITEM, 
CComboBox: :MeasureItem, CComboBox: :Deleteltem 

CComboBox: : FindString 
int FindString( int nStartAfter, LPCTSTR IpszString ) const; 

Return Value 

186 

If the return value is greater than or equal to 0, it is the zero-based index of the 
matching item. It is CB_ERR if the search was unsuccessful. 



CComboBox: :FindStringExact 

Parameters 

Remarks 

nStartAfter Contains the zero-based index of the item before the first item to be 
searched. When the search reaches the bottom of the list box, it continues from the 
top of the list box back to the item specified by nStartAfter. If -1, the entire list box 
is searched from the beginning. 

lpszString Points to the null-terminated string that contains the prefix to search for. 
The search is case independent, so this string can contain any combination of 
uppercase and lowercase letters. 

Finds, but doesn't select, the first string that contains the specified prefix in the list 
box of a combo box. 

See Also: CComboBox: :SelectString, CComboBox: :SetCurSel, 
CB_FINDSTRING 

CComboBox: : FindStringExact 
int FindStringExact( int nlndexStart, LPCTSTR lpszFind ) const; 

Return Value 
The zero-based index of the matching item, or CB_ERR if the search was 
unsuccessful. 

Parameters 

Remarks 

nlndexStart Specifies the zero-based index of the item before the first item to be 
searched. When the search reaches the bottom of the list box, it continues from the 
top of the list box back to the item specified by nlndexStart. If nlndexStart is -1, 
the entire list box is searched from the beginning. 

lpszFind Points to the null-terminated string to search for. This string can contain a 
complete filename, including the extension. The search is not case sensitive, so this 
string can contain any combination of uppercase and lowercase letters. 

Call the FindStringExact member function to find the first list-box string (in a 
combo box) that matches the string specified in lpszFind. 

If the combo box was created with an owner-draw style but without the 
CBS_HAS STRINGS style, FindStringExact attempts to match the doubleword 
value against the value of lpszFind. 

See Also: CComboBox::FindString, CB_FINDSTRINGEXACT 

187 



CComboBox::GetCount 

CComboB ox: : GetCount 
int GetCount( ) const; 

Return Value 

Remarks 

The number of items. The returned count is one greater than the index value of the last 
item (the index is zero-based). It is CB_ERR if an error occurs. 

Call this member function to retrieve the number of items in the list-box portion of a 
combo box. 

See Also: CB_GETCOUNT 

CComboBox: : GetCurSel 
int GetCurSel( ) const; 

Return Value 

Remarks 

The zero-based index of the currently selected item in the list box of a combo box, 
or CB_ERR if no item is selected. 

Call this member function to determine which item in the combo box is selected. 
GetCurSel returns an index into the list. 

See Also: CComboBox::SetCurSel, CB_GETCURSEL 

CComboBox: : GetDroppedControlRect 
void GetDroppedControlRect( LPRECT lprect) const; 

Parameters 

Remarks 

lprect Points to the RECT structure that is to receive the coordinates. 

Call the GetDroppedControlRect member function to retrieve the screen coordinates 
of the visible (dropped-down) list box of a drop-down combo box. 

See Also: CB_GETDROPPEDCONTROLRECT 

CComboBox: : GetDroppedState 
BOOL GetDroppedState( ) const; 

Return Value 
Nonzero if the list box is visible; otherwise O. 

188 



CComboBox: :GetExtendedUI 

Remarks 
Call the GetDroppedState member function to determine whether the list box of a 
drop-down combo box is visible (dropped down). 

See Also: CB_SHOWDROPDOWN, CB_GETDROPPEDSTATE 

CComboBox: : GetDroppedWidth 
int GetDroppedWidth( ) const; 

Return Value 

Remarks 

If successful, the minimum allowable width, in pixels; otherwise, CB_ERR. 

Call this function to retrieve the minimum allowable width, in pixels, of the list 
box of a combo box. This function only applies to combo boxes with the 
CBS_DROPDOWN or CBS_DROPDOWNLIST style. 

By default, the minimum allowable width of the drop-down list box is O. The 
minimum allowable width can be set by calling SetDroppedWidth. When the I 
ist-box portion of the combo box is displayed, its width is the larger of the 
minimum allowable width or the combo box width. 

See Also: CComboBox::SetDroppedWidth, CB_GETDROPPEDWIDTH 

CComboBox: : GetEditSel 
DWORD GetEditSel( ) const; 

Return Value 

Remarks 

A 32-bit value that contains the starting position in the low-order word and the 
position of the first nonselected character after the end of the selection in the 
high-order word. If this function is used on a combo box without an edit control, 
CB_ERR is returned. 

Gets the starting and ending character positions of the current selection in the edit 
control of a combo box. 

See Also: CComboBox::SetEditSel, CB_GETEDITSEL 

CComboBox:: GetExtendedUI 
BOOL GetExtendedUI( ) const; 

Return Value 
Nonzero if the combo box has the extended user interface; otherwise O. 

189 



CComboBox: : GetHorizontalExtent 

Remarks 
Call the GetExtendedUI member function to determine whether a combo box has the 
default user interface or the extended user interface. The extended user interface can 
be identified in the following ways: 

• Clicking the static control displays the list box only for combo boxes with the 
CBS_DROPDOWNLIST style. 

• Pressing the DOWN ARROW key displays the list box (F4 is disabled). 

Scrolling in the static control is disabled when the item list is not visible (arrow keys 
are disabled). 

See Also: CComboBox::SetExtendedUI, CB_GETEXTENDEDUI 

CComboBox: : GetHorizontalExtent 
UINT GetHorizontalExtent( ) const; 

Return Value 

Remarks 

The scrollable width of the list-box portion of the combo box, in pixels. 

Retrieves from the combo box the width in pixels by which the list-box portion of the 
combo box can be scrolled horizontally. This is applicable only if the list-box portion 
of the combo box has a horizontal scroll bar. 

See Also: CListBox::SetHorizontalExtent, CB_GETHORIZONTALEXTENT 

CComboBox: : GetItemData 
DWORD GetltemData( int nlndex ) const; 

Return Value 
The 32-bit value associated with the item, or CB_ERR if an error occurs. 

Parameters 

Remarks 

190 

nlndex Contains the zero-based index of an item in the combo box's list box. 

Retrieves the application-supplied 32-bit value associated with the specified 
combo-box item. The 32-bit value can be set with the dwltemData parameter of a 
SetltemData member function call. Use the GetltemDataPtr member function if 
the 32-bit value to be retrieved is a pointer (void*). 

See Also: CComboBox::SetltemData, CComboBox::GetltemDataPtr, 
CComboBox::SetltemDataPtr, CB_GETITEMDATA 



CComboBox: : GetLBText 

CComboBox: : GetItemDataPtr 
void* GetltemDataPtr( int nlndex) const; 

Return Value 
Retrieves a pointer, or -1 if an error occurs. 

Parameters 

Remarks 

nlndex Contains the zero-based index of an item in the combo box's list box. 

Retrieves the application-supplied 32-bit value associated with the specified 
combo-box item as a pointer (void*). 

See Also: CComboBox: :SetltemDataPtr, CComboBox: :GetltemData, 
CComboBox::SetltemData, CB_GETITEMDATA 

CComboBox: : GetItemHeight 
int GetltemHeight( int nlndex ) const; 

Return Value 
The height, in pixels, of the specified item in a combo box. The return value is 
CB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the component of the combo box whose height is to be retrieved. 
If the nlndex parameter is -1, the height of the edit-control (or static-text) 
portion of the combo box is retrieved. If the combo box has the 
CBS_OWNERDRAWVARIABLE style, nlndex specifies the zero-based index of 
the list item whose height is to be retrieved. Otherwise, nlndex should be set to O. 

Call the GetltemHeight member function to retrieve the height of list items in, a 
combo box. 

See Also: CComboBox: :SetItemHeight, WM_MEASUREITEM, 
CB_GETITEMHEIGHT 

CComboBox: : GetLBText 
int GetLBText( int nlndex, LPTSTR lpszText) const; 
void GetLBText( int nlndex, CString& rString ) const; 

Return Value 
The length (in bytes) of the string, excluding the terminating null character. If nlndex 
does not specify a valid index, the return value is CB_ERR. 

191 



CComboBox: :GetLBTextLen 

Parameters 

Remarks 

nlndex Contains the zero-based index of the list-box string to be copied. 

IpszText Points to a buffer that is to receive the string. The buffer must have 
sufficient space for the string and a terminating null character. 

rString A reference to a CString. 

Gets a string from the list box of a combo box. The second form of this member 
function fills a CString object with the item's text. 

See Also: CComboBox::GetLBTextLen, CB_GETLBTEXT 

CComboBox: : GetLBTextLen 
int GetLBTextLen( int nlndex ) const; 

Return Value 
The length of the string in bytes, excluding the terminating null character. If nlndex 
does not specify a valid index, the return value is CB_ERR. 

Parameters 
nlndex Contains the zero-based index of the list-box string. 

Remarks 
Gets the length of a string in the list box of a combo box. 

See Also: CComboBox::GetLBText, CB_GETLBTEXTLEN 

CComboBox: : GetLocale 
LCID GetLocaJe( ) const; 

Return Value 

Remarks 

192 

The locale identifier (LCID) value for the strings in the combo box. 

Retrieves the locale used by the combo box. The locale is used, for example, to 
determine the sort order of the strings in a sorted combo box. 

See Also: CComboBox: :SetLocaJe, : :GetStringType W, 
: : GetSystemDefaultLCID, : : GetUserDefaultLCID 



CComboBox:: InitStorage 

CComboBox: : GetTopIndex 
int GetTopIndex( ) const; 

Return Value 

Remarks 

The zero-based index of the first visible item in the list-box portion of the combo box 
if successful, CB _ERR otherwise. 

Retrieves the zero-based index of the first visible item in the list-box portion of the 
combo box. Initially, item 0 is at the top of the list box, but if the list box is scrolled, 
another item may be at the top. 

See Also: CComboBox::SetTopIndex, CB_GETTOPINDEX 

CComboBox: : InitStorage 
int InitStorage( int nltems, UINT nBytes); 

Return Value 
If successful, the maximum number of items that the list-box portion of the combo 
box can store before a memory reallocation is needed, otherwise CB_ERR, meaning 
not enough memory is available. 

Parameters 

Remarks 

nltems Specifies the number of items to add. 

nBytes Specifies the amount of memory, in bytes, to allocate for item strings. 

Allocates memory for storing list box items in the list-box portion of the combo box. 
Call this function before adding a large number of items to the list-box portion of the 
CComboBox. 

Windows 95 only: The wParam parameter is limited to 16-bit values. This means 
list boxes cannot contain more than 32,767 items. Although the number of items is 
restricted, the total size of the items in a list box is limited only by available memory. 

This function helps speed up the initialization of list boxes that have a large number 
of items (more than 100). It preallocates the specified amount of memory so that 
subsequent AddString, InsertString, and Dir functions take the shortest possible 
time. You can use estimates for the parameters. If you overestimate, some extra 
memory is allocated; if you underestimate, the normal allocation is used for items 
that exceed the preallocated amount. 

See Also: CComboBox::CComboBox, CComboBox::Create, 
CComboBox: :ResetContent, CB_INITSTORAGE 

193 



CComboBox: :InsertString 

CComboBox: : InsertString 
int InsertString( int nlndex, LPCTSTR IpszString); 

Return Value 
The zero-based index of the position at which the string was inserted. The return value 
is CB_ERR if an error occurs. The return value is CB_ERRSPACE if insufficient 
space is available to store the new string. 

Parameters 

Remarks 

nlndex Contains the zero-based index to the position in the list box that will receive 
the string. If this parameter is -1, the string is added to the end of the list. 

IpszString Points to the null-terminated string that is to be inserted. 

Inserts a string into the list box of a combo box. Unlike the AddStringmember 
function, the InsertString member function does not cause a list with the 
CBS_SORT style to be sorted. 

See Also: CComboBox: :AddString, CComboBox: :DeleteString, 
CComboBox: :ResetContent, CB_INSERTSTRING 

CComboBox: : LimitText 
BOOL LimitText( int nMaxChars); 

Return Value 
Nonzero if successful. If called for a combo box with the style 
CBS_DROPDOWNLIST or for a combo box without an edit control, the 
return value is CB_ERR. 

Parameters 

Remarks 

194 

nMaxChars Specifies the length (in bytes) of the text that the user can enter. If this 
parameter is 0, the text length is set to 65,535 bytes. 

Limits the length in bytes of the text that the user can enter into the edit control of a 
combo box. 

If the combo box does not have the style CBS_AUTOHSCROLL, setting the text 
limit to be larger than the size of the edit control will have no effect. 

LimitText only limits the text the user can enter. It has no effect on any text already 
in the edit control when the message is sent, nor does it affect the length of the text 
copied to the edit control when a string in the list box is selected. 

See Also: CB_LIMITTEXT 



CComboBox:: ResetContent 

CComboBox: : Measureltem 
virtual void MeasureItem( LPMEASUREITEMSTRUCT IpMeasureltemStruct); 

Parameters 

Remarks 

IpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure. 

Called by the framework when a combo box with an owner-draw style is created. 

By default, this member function does nothing. Override this member function 
and fill in the MEASUREITEMSTRUCT structure to inform Windows of the 
dimensions of the list box in the combo box. If the combo box is created with the 
CBS_OWNERDRAWVARIABLE style, the framework calls this member function 
for each item in the list box. Otherwise, this member is called only once. 

Using the CBS_OWNERDRAWFIXED style in an owner-draw combo box created 
with the SubclassDlgItem member function of CWnd involves further programming 
considerations. See the discussion in Technical Note 14 online. 

See CWnd::OnMeasureItem for a description of the MEASUREITEMSTRUCT 
structure. 

See Also: CComboBox: :CompareItem, CComboBox: :DrawItem, 
WM_MEASUREITEM, CComboBox: :DeleteItem 

CComboBox: :Paste 

Remarks 

void Paste( ); 

Inserts the data from the Clipboard into the edit control of the combo box at the 
current cursor position. Data is inserted only if the Clipboard contains data in 
CF _TEXT format. 

See Also: CComboBox::Clear, CComboBox::Copy, CComboBox::Cut, 
WM_PASTE 

CComboBox: : ResetContent 
void ResetContent( ); 

Remarks 
Removes all items from the list box and edit control of a combo box. 

See Also: CB_RESETCONTENT 

195 



CComboBox: :SelectString 

CComboBox: :SelectString 
int SelectString( int nStartAfter, LPCTSTR IpszString ); 

Return Value 
The zero-based index of the selected item if the string was found. If the search was 
unsuccessful, the return value is CB_ERR and the current selection is not changed. 

Parameters 

Remarks 

nStartAfter Contains the zero-based index of the item before the first item to be 
searched. When the search reaches the bottom of the list box, it continues from the 
top of the list box back to the item specified by nStartAfter. If -1, the entire list box 
is searched from the beginning. 

IpszString Points to the null-terminated string that contains the prefix to search for. 
The search is case independent, so this string can contain any combination of 
uppercase and lowercase letters. 

Searches for a string in the list box of a combo box, and if the string is found, selects 
the string in the list box and copies it to the edit control. 

A string is selected only if its initial characters (from the starting point) match the 
characters in the prefix string. 

Note that the SelectString and FindString member functions both find a string, but 
the SetectString member function also selects the string. 

See Also: CComboBox::FindString, CB_SELECTSTRING 

CComboBox: :SetCurSel 
int SetCurSel( int nSelect ); 

Return Value 
The zero-based index of the item selected if the message is successful. The return 
value is CB_ERR if nSelect is greater than the number of items in the list or if nSelect 
is set to -1, which clears the selection. 

Parameters 

Remarks 

196 

nSelect Specifies the zero-based index of the string to select. If -1, any current 
selection in the list box is removed and the edit control is cleared. 

Selects a string in the list box of a combo box. If necessary, the list box scrolls the 
string into view (if the list box is visible). The text in the edit control of the combo 
box is changed to reflect the new selection. Any previous selection in the list box 
is removed. 



CComboBox: :SetEditSel 

See Also: CComboBox::GetCurSel, CB_SETCURSEL 

CComboBox:: SetDroppedWidth 
int SetDroppedWidth( UINT n Width ); 

Return Value 
If successful, the new width of the list box, otherwise CB_ERR. 

Parameters 

Remarks 

n Width The minimum allowable width of the list-box portion of the combo box, 
in pixels. 

Call this function to set the minimum allowable width, in pixels, of the list box of a 
combo box. This function only applies to combo boxes with the CBS_DROPDOWN 
or CBS_DROPDOWNLIST style. 

By default, the minimum allowable width of the drop-down list box is O. When the 
list-box portion of the combo box is displayed, its width is the larger of the minimum 
allowable width or the combo box width. 

See Also: CComboBox: : GetDroppedWidth, CB_SETDROPPEDWIDTH 

CComboBox:: SetEditSel 
BOOL SetEditSel( int nStartChar, int nEndChar ); 

Return Value 
Nonzero if the member function is successful; otherwise O. It is eB_ERR if 
CComboBox has the CBS_DROPDOWNLIST style or does not have a list box. 

Parameters 

Remarks 

nStartChar Specifies the starting position. If the starting position is set to -1, then 
any existing selection is removed. 

nEndChar Specifies the ending position. If the ending position is set to -1, then all 
text from the starting position to the last character in the edit control is selected. 

Selects characters in the edit control of a combo box. 

The positions are zero-based. To select the first character of the edit control, you 
specify a starting position of O. The ending position is for the character just after the 
last character to select. For example, to select the first four characters of the edit 
control, you would use a starting position of 0 and an ending position of 4. 

See Also: CComboBox::GetEditSel, CB_SETEDITSEL 

197 



CComboBox:: SetExtendedUI 

CCornboBox:: SetExtendedUI 
int SetExtendedUI( BOOL bExtended = TRUE ); 

Return Value 
CB_OKAY if the operation is successful, or CB_ERR if an error occurs. 

Parameters 

Remarks 

bExtended Specifies whether the combo box should use the extended user interface 
or the default user interface. A value of TRUE selects the extended user interface; 
a value of FALSE selects the standard user interface. 

Call the SetExtendedUI member function to select either the default user interface 
or the extended user interface for a combo box that has the CBS_DROPDOWN or 
CBS_DROPDOWNLIST style. 

The extended user interface can be identified in the following ways: 

• Clicking the static control displays the list box only for combo boxes with the 
CBS_DROPDOWNLIST style. 

• Pressing the DOWN ARROW key displays the list box (F4 is disabled). 

Scrolling in the static control is disabled when the item list is not visible (the arrow 
keys are disabled). 

See Also: CComboBox::GetExtendedUI, CB_SETEXTENDEDUI 

CCornboBox:: SetHorizontalExtent 
void SetHorizontalExtent( UINT nExtent); 

Parameters 

Remarks 

198 

nExtent Specifies the number of pixels by which the list-box portion of the combo 
box can be scrolled horizontally. 

Sets the width, in pixels, by which the list-box portion of the combo box can be 
scrolled horizontally. If the width of the list box is smaller than this value, the 
horizontal scroll bar will horizontally scroll items in the list box. If the width of 
the list box is equal to or greater than this value, the horizontal scroll bar is hidden 
or, if the combo box has the CBS_DISABLENOSCROLL style, disabled. 

See Also: CComboBox: : GetHorizontalExtent, 
CB_SETHORIZONTALEXTENT 



CComboBox:: SetltemDataPtr 

CComboBox: :SetItemData 
int SetItemData( int IlIndex, DWORD dwltemData); 

Return Value 
CB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Contains a zero-based index to the item to set. 

dwltemData Contains the new value to associate with the item. 

Sets the 32-bit value associated with the specified item in a combo box. Use the 
SetItemDataPtr member function if the 32-bit item is to be a pointer. 

See Also: CComboBox: : GetItemData, CComboBox: : GetItemDataPtr, 
CComboBox: :SetltemDataPtr, CB_SETITEMDATA, CComboBox: :AddString, 
CComboBox: : InsertString 

CComboBox:: SetItemDataPtr 
int SetltemDataPtr( int nlndex, void* pData ); 

Return Value 
CB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Contains a zero-based index to the item. 

pData Contains the pointer to associate with the item. 

Sets the 32-bit value associated with the specified item in a combo box to be the 
specified pointer (void*). This pointer remains valid for the life of the combo box, 
even though the item's relative position within the combo box might change as items 
are added or removed. Hence, the item's index within the box can change, but the • 
pointer remains reliable. 

See Also: CComboBox::GetltemData, CComboBox::GetltemDataPtr, 
CComboBox: :SetItemData, CB_SETITEMDATA, CComboBox: :AddString, 
CComboBox: :InsertString 

199 



CComboBox: :SetItemHeight 

CComboBox:: SetItemHeight 
int SetItemHeight( int nlndex, UINT cyltemHeight ); 

Return Value 
CB_ERR if the index or height is invalid; otherwise O. 

Parameters 

Remarks 

nlndex Specifies whether the height of list items or the height of the edit-control 
(or static-text) portion of the combo box is set. 

If the combo box has the CBS_OWNERDRAWVARIABLE style, nlndex 
specifies the zero-based index of the list item whose height is to be set; otherwise, 
nlndex must be 0 and the height of all list items will be set. 

If nlndex is -1, the height of the edit-control or static-text portion of the combo box 
is to be set. 

cyltemHeight Specifies the height, in pixels, of the combo-box component identified 
by nlndex. 

Call the SetItemHeight member function to set the height of list items in a combo 
box or the height of the edit-control (or static-text) portion of a combo box. 

The height of the edit-control (or static-text) portion of the combo box is set 
independently of the height of the list items. An application must ensure that the 
height of the edit-control (or static-text) portion is not smaller than the height of 
a particular list-box item. 

See Also: CComboBox::GetItemHeight, WM_MEASUREITEM, 
CB_SETITEMHEIGHT 

CComboBox:: SetLocale 
LCID SetLocale( LCID nNewLocale); 

Return Value 
The previous locale identifier (LCID) value for this combo box. 

Parameters 

Remarks 

200 

nNewLocale The new locale identifier (LCID) value to set for the combo box. 

Sets the locale identifier for this combo box. If SetLocale is not called, the default 
locale is obtained from the system. This system default locale can be modified by 
using Control Panel's Regional (or International) application. 

See Also: CComboBox::GetLocale 



CComboBox::ShowDropDown 

CComboBox:: SetTopIndex 
int SetTopIndex( int IlIndex ); 

Return Value 
Zero if successful, or LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the list-box item. 

Ensures that a particular item is visible in the list-box portion of the combo box. 

The system scrolls the list box until either the item specified by IlIndex appears at the 
top of the list box or the maximum scroll range has been reached. 

See Also: CComboBox: : GetTopIndex, CB_SETTOPINDEX 

CComboBox:: Show DropDown 
void ShowDropDown( BOOL bShowlt = TRUE ); 

Parameters 

Remarks 

bShowlt Specifies whether the drop-down list box is to be shown or hidden. A value 
of TRUE shows the list box. A value of FALSE hides the list box. 

Shows or hides the list box of a combo box that has the CBS_DROPDOWN or 
CBS_DROPDOWNLIST style. By default, a combo box of this style will show the 
list box. 

This member function has no effect on a combo box created with the CBS_SIMPLE 
style. 

See Also: CB_SHOWDROPDOWN 

201 



CCommandLinelnfo 

CCommandLineInfo 
CCommandLineInfo does not have a base class. 

The CCommandLineInfo class aids in parsing the command line at application 
startup. 

An MFC application will typically create a local instance of this class in the 
InitInstance function of its application object. This object is then passed to 
CWinApp::ParseCommandLine, which repeatedly calls ParseParam to fill the 
CCommandLineInfo object. The CCommandLineInfo object is then passed to 
CWinApp::ProcessShellCommand to handle the command-line arguments 
and flags. 

You can use this object to encapsulate the following command-line options and 
parameters: 

Command·line argument 

app 

app filename 

app /p filename 

app /pt filename printer driver port 

app /dde 

app /Automation 

app !Embedding 

Command executed 

New file. 

Open file. 

Print file to default printer. 

Print file to the specified printer. 

Start up and await DDE command. 

Start up as an OLE automation server. 

Start up to edit an embedded OLE item. 

Derive a new class from CCommandLineInfo to handle other flags and parameter 
values. Override ParseParam to handle the new flags. 

#include <afxwin.h> 

See Also: CWinApp::ParseCommandLine, CWinApp::ProcessShellCommand 

CCommandLineInfo Class Members 
Construction 

CommandLinelnfo 

Operations 

ParseParam 

202 

Constructs a default CCommandLinelnfo 
object. 

Override this callback to parse individual 
parameters. 



CCommandLineInfo: :ParseParam 

Data Members 

m_bShowSplash 

m_bRunEmbedded 

m_bRunAutomated 

m_nShellCommand 

m_strFileName 

m_strPrinterName 

m_strDriverName 

m_strPortName 

Indicates if a splash screen should be shown. 

Indicates the command-line !Embedding option was found. 

Indicates the command-line IAutomation option was found. 

Indicates the shell command to be processed. 

Indicates the filename to be opened or printed; empty if the shell 
command is New or DOE. 

Indicates the printer name if the shell command is Print To; 
otherwise empty. 

Indicates the driver name if the shell command is Print To; 
otherwise empty. 

Indicates the port name if the shell command is Print To; 
otherwise empty. 

Member Functions 
CCommandLineInfo: : CCommandLineInfo 

Remarks 

CCommandLineInfo( ); 

This constructor creates a CCommandLineInfo object with default values. The 
default is to show the splash screen (m_bShowSplash = TRUE) and to execute 
the New command on the File menu (m_nShellCommand = NewFile). 

The application framework calls ParseParam to fill data members of this object. 

See Also: CCommandLineInfo: :ParseParam 

CCommandLineInfo: :ParseParam 
virtual void ParseParam( LPCTSTR IpszParam, BOOL bFlag, BOOL bLast); 

Parameters 

Remarks 

IpszParam The parameter or flag. 

bFlag Indicates whether IpszParam is a parameter or a flag. 

bLast Indicates if this is the last parameter or flag on the command line. 

The framework calls this function to parse/interpret individual parameters from the 
command line. CWinApp::ParseCommandLine calls ParseParam once for each 

203 



CCommandLinelnfo: :m_bRunAutomated 

parameter or flag on the command line, passing the argument to lpszParam. If the 
first character of the parameter is a '.' or a '/" then it is removed and bFlag is set to 
TRUE. When parsing the final parameter, bLast is set to TRUE. 

The default implementation of this function recognizes the following flags: Ip, Ipt, 
Idde, IAutomation, and /Embedding, as shown in the following table: 

Command-line argument 

app 

app filename 

app Ip filename 

app Ipt filename printer driver port 

app Idde 

app IAutomation 

app /Embedding 

Command executed 

New file. 

Open file. 

Print file to default printer. 

Print file to the specified printer. 

Start up and await DDE command. 

Start up as an OLE automation server. 

Start up to edit an embedded OLE item. 

This information is stored in m_bRunAutomated, m_bRunEmbedded, and 
m_nShellCommand. Flags are marked by either a forward-slash '/' or hyphen '.'. 

The default implementation puts the first non-flag parameter into m_strFileName. 
In the case of the Ipt flag, the default implementation puts the second, third, and 
fourth non-flag parameters into m_strPrinterName, m_strDriverName, and 
m_strPortName, respectively. 

The default implementation also sets m_bShowSplash to TRUE only in the case of a 
new file. In the case of a new file, the user has taken action involving the application 
itself. In any other case, including opening existing files using the shell, the user 
action involves the file directly. In a document-centric standpoint, the splash screen 
does not need to announce the application starting up. 

Override this function in your derived class to handle other flag and parameter values. 

See Also: CWinApp: :ParseCommandLine 

Data Members 
CCommandLineInfo: :m_bRunAutoniated 
Remarks 

204 

Indicates that the IAutomation flag was found on the command line. If TRUE, this 
means start up as an OLE automation server. 

See Also: CCommandLineInfo::ParseParam, 
CWinApp::ProcessShellCommand 



CCommandLinelnfo: :m_nShellCommand 

CCommandLineInfo: :m_bRunEmbedded 
Remarks 

Indicates that the !Embedding flag was found on the command line. If TRUE, this 
means start up for editing an embedded OLE item. 

See Also: CCommandLinelnfo: :m_bShowSplash, 
CWinApp::ProcessShellCommand 

CCommandLineInfo: :m_bShowSplash 
Remarks 

Indicates that the splash screen should be displayed. If TRUE, this means the 
splash screen for this application should be displayed during startup. The 
default implementation of ParseParam sets this data member to TRUE if 
m_nShellCommand is equal to CCommandLinelnfo::FileNew. 

See Also: CCommandLinelnfo: :m_bRunAutomated, 
CCommandLinelnfo: :m_bRunEmbedded, 
CCommandLinelnfo: :m_nShellCommand, CCommandLinelnfo: :ParseParam, 
CWinApp::ProcessShellCommand 

CCommandLineInfo: :m_nShell Command 
Remarks 

Indicates the shell command for this instance of the application. 

The type for this data member is the following enumerated type, which is defined 
within the CCommandLinelnfo class. 

enum{ 

} ; 

Fil eNew. 
FileOpen. 
FilePrint. 
Fil ePri ntTo. 
FileDDE. 
FileNothing = -1 

For a brief description of these values, see the following list. 

• CCommandLinelnfo::FileNew Indicates that no filename was found on the 
command line . 

• CCommandLinelnfo::FileOpen Indicates that a filename was found on the 
command line and that none of the following flags were found on the command 
line: /p, /pt, /dde. 

205 



CCornrnandLineInfo: :rn_strFileN arne 

Example 

• CCommandLineInfo: : FilePrint Indicates that the /p flag was found on the 
command line. 

• CCommandLineInfo::FilePrintTo Indicates that the /pt flag was found on the 
command line. 

• CCommandLineInfo::FileDDE Indicates that the /dde flag was found on the 
command line. 

• CCommandLineInfo::FileNothing Turns off the display of a new MDI child 
window on startup. By design, AppWizard generated MDI applications display 
a new child window on startup. To turn off this feature, an application can 
use CCommandLineInfo::FileNothing as the shell command when calling 
ProcessSheIlCommand. ProcessSheIlCommand is called by the InitInstance() 
of all CWinApp derived classes. 

Baal CMyWinApp::lnitlnstance() 
{ 

II Parse command line for standard shell commands. DOE. file open 
CCommandlinelnfo cmdlnfo; 
ParseCommandline(cmdlnfo); 

II DON'T display a new MOl child window during startup!!! 
cmdlnfo.m_nShellCommand = CCommandlinelnfo::FileNothing; 

II Dispatch commands specified on the command line 
if (!ProcessShellCommand(cmdlnfo» 

return FALSE; 

} ; 

See Also: CCommandLineInfo: : m_strFileName , 
CCommandLineInfo: :m_strPrinterName, 
CCommandLineInfo: :m_strDriverName, 
CCommandLineInfo: :m_strPortName, CWinApp: :ProcessSheIlCommand 

CCornrnandLineInfo: :rn_strFileN arne 
Remarks 

206 

Stores the value of the first non-flag parameter on the command line. This parameter 
is typically the name of the file to open. 

See Also: CCommandLineInfo: :m_strPrinterName, 
CCommandLineInfo: :m_strDriverN ame, 
CCommandLineInfo: :m_strPortName, CWinApp: :ProcessSheIlCommand 



CComrnandLinelnfo:: rn_strPrinterN arne 

CCornrnandLinelnfo: :rn_strDriverN arne 
Remarks 

Stores the value of the third non-flag parameter on the command line. This parameter 
is typically the name of the printer driver for a Print To shell command. The default 
implementation of ParseParam sets this data member only if the /pt flag was found 
on the command line. 

See Also: CCommandLinelnfo::m_strFileName, 
CCommandLinelnfo::m_strPrinterName, 
CCommandLinelnfo: :m_strPortName, CWinApp: :ProcessShellCommand 

CCornrnandLinelnfo: :rn_strPortN arne 
Remarks 

Stores the value of the fourth non-flag parameter on the command line. This 
parameter is typically the name of the printer port for a Print To shell command. 
The default implementation of ParseParam sets this data member only if the 
/pt flag was found on the command line. 

See Also: CCommandLinelnfo: :m_strFileName, 
CCommandLinelnfo::m_strPrinterName, 
CCommandLinelnfo: :m_strDriverName, CWinApp: :ProcessShellCommand 

CCornrnandLineInfo::rn_strPrinterNarne 
Remarks 

Stores the value of the second non-flag parameter on the command line. This 
parameter is typically the name of the printer for a Print To shell command. The 
default implementation of ParseParam sets this data member only if the /pt flag 
was found on the command line. 

See Also: CCommandLinelnfo::m_strFileName, 
CCommandLinelnfo::m_strDriverName, 
CCommandLinelnfo: :m_strPortName, CWinApp: :ProcessShellCommand 

207 



CCommonDialog 

CCommonDialog 

CCommonDialog is the base class for classes that encapsulate functionality of the 
Windows common dialogs: 

• CFiIeDialog 

• CFontDialog 

• CColorDialog 

• CPageSetupDialog 

• CPrintDialog 

• CFindReplaceDialog 

• COleDialog 

#incIude <afxdIgs.h> 

See Also: CFiIeDialog, CFontDialog, CColorDialog, CPageSetupDialog, 
CPrintDialog, CFindReplaceDialog, COleDialog 

CCommonDialog Class Members 
Construction 

CCommonDialog Constructs a CCommonDialog object. 

208 



CCommonDiaiog::CCommonDiaiog 

Member Functions 
CCommonDialog: :CCommonDialog 

CCommonDialog( CWnd* pParentWnd ); 

Parameters 

Remarks 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the dialog object's parent window is set to 
the main application window. 

Constructs a CCommonDialog object. See CDialog::CDialog for complete 
information. 

See Also: CDialog::CDialog 

209 



CConnectionPoint 

CConnectionPoint 

210 

The CConnectionPoint class defines a special type of interface used to communicate 
with other OLE objects, called a "connection point." Unlike normal OLE interfaces, 
which are used to implement and expose the functionality of an OLE control, a 
connection point implements an outgoing interface that is able to initiate actions on 
other objects, such as firing events and change notifications. 

A connection consists of two parts: the object calling the interface, called the 
"source," and the object implementing the interface, called the "sink." By exposing 
a connection point, a source allows sinks to establish connections to itself. Through 
the connection point mechanism, a source object obtains a pointer to the sink's 
implementation of a set of member functions. For example, to fire an event 
implemented by the sink, the source can call the appropriate method of the sink's 
implementation. 

By default, a COleControl-derived class implements two connection points: one 
for events and one for property change notifications. These connections are used, 
respectively, for event firing and for notifying a sink (for example, the control's 
container) when a property value has changed. Support is also provided for OLE 
controls to implement additional connection points. For each additional connection 
point implemented in your control class, you must declare a "connection part" that 
implements the connection point. If you implement one or more connection points, 
you also need to declare a single "connection map" in your control class. 

The following example demonstrates a simple connection map and one connection 
point for the Samp 1 e OLE control, consisting of two fragments of code: the first 
portion declares the connection map and point; the second implements this map and 
point. The first fragment is inserted into the declaration of the control class, under the 
protected section: 

II Connection point for ISample interface 
BEGIN_CONNECTION_PART(CSampleCtrl. SampleConnPt) 

CONNECTION_IID(IID_ISampleSink) 
END_CONNECTION_PART(SampleConnPt) 



The BEGIN_CONNECTION_PART and END_CONNECTION_PART macros 
declare an embedded class, XSampl eConnPt (derived from CConnectionPoint) that 
implements this particular connection point. If you want to override any 
CConnectionPoint member functions, or add member functions of your own, declare 
them between these two macros. For example, the CONNECTION_lID macro 
overrides the CConnectionPoint::GetIID member function when placed between 
these two macros. 

The second code fragment is inserted into the implementation file (.CPP) of your 
control class. This code implements the connection map, which includes the additional 
connection point, Samp 1 eConn Pt: 

BEGIN_CONNECTION_MAP(CSampleCtrl. COleControl) 
CONNECTION_PART(CSampleCtrl. IID_ISampleSink. SampleConnPt) 

END_CONNECTION_MAP() 

Once these code fragments have been inserted, the Sample OLE control exposes a 
connection point for the ISampleSink interface. 

Typically, connection points support "multicasting"; the ability to broadcast to 
multiple sinks connected to the same interface. The following code fragment 
demonstrates how to accomplish multicasting by iterating through each sink on a 
connection point: 

void CSampleCtrl::CallSinkFunc() 
{ 

const CPtrArray* pConnections m_xSampleConnPt.GetConnections(); 
ASSERT(pConnections 1= NULL); 

int cConnections = pConnections-)GetSize(); 
ISampleSink* pSampleSink; 
for (int i = 0; i < cConnections; i++) 
{ 

pSampleSink = (ISampleSink*)(pConnections-)GetAt(i)); 
ASSERT(pSampleSink 1= NULL); 
pSampleSink-)SinkFunc(); 

This example retrieves the current set of connections on the Sampl eConnPt connection 
point with a call to CConnect i onPoi nt: : GetConnect i ons.1t then iterates through the 
connections and calls I Sam p 1 e Sin k: : Sin k Fun c on every active connection. 

For more information on using CConnectionPoint, see the article "Connection 
Points" in Visual C++ Programmer's Guide online. 

#include <afxctl.h> 

CConnectionPoint 

211 



CConnectionPoint::GetConnections 

CConnectionPoint Class Members 
Operations 

GetConnections 

Overridables 

GetContainer 

GetIlD 

GetMaxConnections 

OnAdvise 

Retrieves all connection points in a connection map. 

Retrieves the container of the control that owns the 
connection map. 

Retrieves the interface ID of a connection point. 

Retrieves the maximum number of connection points 
supported by a control. 

Called by the framework when establishing or breaking 
connections. 

Member Functions 
CConnectionPoint: : GetConnections 

const CPtrArray* GetConnections(); 

Return Value 

Remarks 

A pointer to an array of active connections (sinks). Each pointer in this array 
can be safely converted to a pointer to the sink interface using a cast operator. 

Call this function to retrieve all active connections for a connection point. 

See Also: CConnectionPoint::GetMaxConnections 

CConnectionPoint: : GetContainer 
virtual LPCONNECTIONPOINTCONTAINER GetContainer( ) = 0; 

Return Value 

Remarks 

212 

If successful, a pointer to the container; otherwise NULL. 

Called by the framework to retrieve the IConnectionPointContainer for 
the connection point. This function is typically implemented by the 
BEGIN_CONNECTION_PART macro. 

See Also: BEGIN_CONNECTION_PART 



CConnectionPoint: :OnAdvise 

CConnectionPoint: : GetIID 
virtual REFIID GetIID() = 0; 

Return Value 

Remarks 

A reference to the connection point's interface ID. 

Called by the framework to retrieve the interface ID of a connection point. 

Override this function to return the interface ID for this connection point. 

See Also: CONNECTION_lID 

CConnectionPoint: : GetMaxConnections 
virtual int GetMaxConnections(); 

Return Value 

Remarks 

The maximum number of connections supported by the control, or -1 if 
no limit. 

Called by the framework to retrieve the maximum number of connections 
supported by the connection point. The default implementation returns -1, 
indicating no limit. 

Override this function if you want to limit the number of sinks that can connect 
to your control. 

See Also: CConnectionPoint::GetConnections 

CConnectionPoint: : OnAdvise 
virtual void OnAdvise( BOOL bAdvise ); 

Parameters 

Remarks 

bAdvise TRUE, if a connection is being established; otherwise FALSE. 

Called by the framework when a connection is being established or broken. 
The default implementation does nothing. 

Override this function if you want notification when sinks connect to or 
disconnect from your connection point. 

213 



CControlBar 

CControlBar 

CControlBar is the base class for the control-bar classes CStatusBar, CToolBar, 
CDialogBar, and COleResizeBar. A control bar is a window that is usually aligned 
to the left or right of a frame window. It may contain child items that are either 
HWND-based controls, which are Windows windows that generate and respond to 
Windows messages, or non-HWND-based items, which are not windows and are 
managed by application code or framework code. List boxes and edit controls are 
examples of HWND-based controls; status-bar panes and bitmap buttons are 
examples of non-HWND-based controls. 

Control-bar windows are usually child windows of a parent frame window and 
are usually siblings to the client view or MDI client of the frame window. A 
CControlBar object uses information about the parent window's client rectangle 
to position itself. It then informs the parent window as to how much space remains 
unallocated in the parent window's client area. 

For more information on CControlBar, see the article "Control Bar Topics" 
in Visual c++ Programmer's Guide online and Technical Note 31 online, 
"Control Bars." 

#include <afxext.h> 

See Also: CToolBar, CDialogBar, CStatusBar 

CControlBar Class Members 

214 

Data Members 

m_bAutoDelete 

Attributes 

GetBarStyle 

SetBarStyle 

GetCount 

GetDockingFrame 

If nonzero, the CControlBar object is deleted when the Windows 
control bar is destroyed. 

Retrieves the control bar style settings. 

Modifies the control bar style settings. 

Returns the number of non-HWND elements in the control bar. 

Returns a pointer to the frame to which a control bar is docked. 



CControlBar::Ca1cDynamicLayout 

Attributes (continued) 

GetDockingFrame 

IsFloating 

CalcFixedLayout 

CalcDynamicLayout 

Overridables 

OnUpdateCmdUI 

Operations 

EnableDocking 

Returns a pointer to the frame to which a control bar is docked. 

Returns a nonzero value if the control bar in question is a floating 
control bar. 

Returns the size of the control bar as a CSize object. 

Returns the size of a dynamic control bar as a CSize object. 

Calls the Command UI handlers. 

Allows a control bar to be docked or floating. 

Member Functions 
CControlB ar: : CalcDynamicLayout 

virtual CSize CalcDynamicLayout( int nLength, DWORD dwMode); 

Return Value 
The control bar size, in pixels, of a CSize object. 

Parameters 
nLength The requested dimension of the control bar, either horizontal or vertical, 

depending on dwMode. 

dwMode The following predefined flags are used to determine the height and width 
of the dynamc control bar. Use the bitwise-OR (I) operator to combine the flags. 

Layout mode flags What it means 

Indicates whether the control bar should be stretched to the size 
of the frame. Set if the bar is not a docking bar (not available for 
docking). Not set when the bar is docked or floating (available 
for docking). If set, LM_STRETCH ignores nLength and returns 
dimensions based on the LM_HORZ state. LM_STRETCH works 
similarly to the the bStretch parameter used in CalcFixedLayout; 
see that member function for more information about the 
relationship between stretching and orientation. 

Indicates that the bar is horizontally or vertically oriented. Set if the 
bar is horizontally oriented, and if it is vertically oriented, it is not 
set. LM_HORZ works similarly to the the bHorz parameter used in 
CalcFixedLayout; see that member function for more information 
about the relationship between stretching and orientation. 

(continued) 

215 



CControlBar: :Ca1cFixedLayout 

Remarks 

(continued) 

Layout mode flags 

LM_LENGTHY 

LM_COMMIT 

What it means 

Most Recently Used Dynamic Width. Ignores nLength parameter 
and uses the remembered most recently used width. 

Horizontal Docked Dimensions. Ignores nLength parameter and 
returns the dynamic size with the largest width. 

Vertical Docked Dimensions. Ignores nLength parameter and 
returns the dynamic size with the largest height. 

Set if nLength indicates height (Y -direction) instead of width. 

Resets LM_MRUWIDTH to current width of floating control bar. 

The framework calls this member function to calculate the dimensions of a dynamic 
toolbar. 

Override this member function to provide your own dynamic layout in classes you 
derive from CControlBar. MFC classes derived from CControlBar, such as 
CToolbar, override this member function and provide their own implementation. 

See Also: CControlBar:: CalcFixedLayout, CToolbar 

CControlB ar: : CalcFixedLayout 
virtual CSize CalcFixedLayout( BOOL bStretch, BOOL bHorz ); 

Return Value 
The control bar size, in pixels, of a CSize object. 

Parameters 

Remarks 

216 

bStretch Indicates whether the bar should be stretched to the size of the frame. The 
bStretch parameter is nonzero when the bar is not a docking bar (not available for 
docking) and is 0 when it is docked or floating (available for docking). 

bHorz Indicates that the bar is horizontally or vertically oriented. The bHorz 
parameter is nonzero if the bar is horizontally oriented and is 0 if it is vertically 
oriented. 

Call this member function to calculate the horizontal size of a control bar. 

Control bars such as tool bars can stretch horizontally or vertically to accommodate 
the buttons contained in the control bar. 

If bStretch is TRUE, stretch the dimension along the orientation provided by bHorz. 
In other words, if bHorz is FALSE, the control bar is stretched vertically. If bStretch 
is FALSE, no stretch occurs. The following table shows the possible permutations, 
and resulting control-bar styles, of bStretch and bHorz. 



CControlBar: :Enab1eDocking 

Docking/Not 
bStretch bHorz Stretching Orientation docking 

TRUE TRUE Horizontal Horizontally Not docking 
stretching oriented 

TRUE FALSE Vertical Vertically Not docking 
stretching oriented 

FALSE TRUE No stretching Horizontally Docking 
available oriented 

FALSE FALSE No stretching Vertically Docking 
available oriented 

See Also: CControIBar:: CalcDynamicLayout 

CControlBar: : EnableDocking 
void EnableDocking( DWORD dwStyle ); 

Parameters 

Remarks 

dwStyle Specifies whether the control bar supports docking and the sides of its parent 
window to which the control bar can be docked, if supported. Can be one or more 
of the following: 

• CBRS_ALIGN_TOP Allows docking at the top of the client area. 

• CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area. 

• CBRS_ALIGN_LEFT Allows docking on the left side of the client area. 

• CBRS_ALIGN_RIGHT Allows docking on the right side of the client area. 

• CBRS_ALIGN_ANY Allows docking on any side of the client area. 

• CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a single 
mini -frame window. 

If 0 (that is, indicating no flags), the control bar will not dock. 

Call this function to enable a control bar to be docked. The sides specified must match 
one of the sides enabled for docking in the destination frame window, or the control 
bar cannot be docked to that frame window. 

See Also: CFrameWnd::EnableDocking, CFrameWnd::DockControIBar, 
CFrame Wnd: :FloatControIBar, CControlBar: :SetBarStyle 

217 



CControlBar: :GetBarSty Ie 

CControlBar::GetBarStyle 
DWORD GetBarStyle( ); 

Return Value 

Remarks 

The current CBRS_ (control bar styles) settings for the control bar. See 
CControlBar: :SetBarStyle for the complete list of available styles. 

Call this function to determine which CBRS_ (control bar styles) settings 
are currently set for the control bar. Does not handle WS_ (window style) 
styles. 

See Also: CControIBar::SetBarStyle 

CControlB ar: : GetCount 
int GetCount( ) const; 

Return Value 

Remarks 

The number of non-HWND items on the CControlBar object. This function 
returns 0 for a CDialogBar object. 

Returns the number of non-HWND items on the CControlBar object. The type of 
the item depends on the derived object: panes for CStatusBar objects, and buttons 
and separators for CToolBar objects. 

See Also: CToolBar: :SetButtons, CStatusBar: :SetIndicators, CStatusBar, 
CToolBar, CDialogBar 

CControlBar: : GetDockingFrame 
CFrameWnd* GetDockingFrame() const; 

Return Value 

Remarks 

218 

A pointer to a frame window if successful; otherwise NULL. 

Call this member function to obtain a pointer to the current frame window to which 
your control bar is docked. 

For more information about dockable control bars, see 
CControlBar: :EnableDocking and CFrame Wnd: :DockControIBar. 

See Also: CControlBar: :EnableDocking, CFrame Wnd: :DockControlBar 



CControlBar::OnUpdateCmdUI 

CControlBar: : IsFloating 
BOOL IsFloating( ) const; 

Return Value 

Remarks 

Nonzero if the control bar is floating; otherwise O. 

Call this member function to determine whether the control bar is floating or 
docked. 

To change the state of a control bar from docked to floating, call 
CFrame Wnd: :FloatControIBar. 

See Also: CFrame Wnd: :FloatControlBar 

CControlBar: :OnUpdateCmdUI 
virtual void OnUpdateCmdUI( CFrameWnd* pTarget, 

.. BOOL bDisableIjNoHndler ) = 0; 

Parameters 

Remarks 

pTarget Points to the main frame window of the application. This pointer is used 
for routing update messages. 

bDisableIfNoHndler Flag that indicates whether a control that has no update 
handler should be automatically displayed as disabled. 

This member function is called by the framework to update the status of the toolbar 
or status bar. 

To update an individual button or pane, use the ON_UPDATE_COMMAND_UI 
macro in your message map to set an update handler appropriately. See 
ON_UPDATE_COMMAND_UI for more information about using this macro. 

OnUpdateCmdUI is called by the framework when the application is idle. The 
frame window to be updated must be a child window, at least indirectly, of a visible 
frame window. OnUpdateCmdUI is an advanced overridable. 

See Also: ON_UPDATE_COMMAND_UI, Technical Note 31 online: 
"Control Bars" 

219 



CControlBar: :SetBarSty Ie 

CControIBar::SetBarStyle 
void SetBarStyle( DWORD dwStyle ); 

Parameters 

Remarks 

220 

dwStyle The desired styles for the control bar. Can be one or more of the following: 

• CBRS_ALIGN_TOP Allows the control bar to be docked to the top of the 
client area of a frame window. 

• CBRS_ALIGN_BOTTOM Allows the control bar to be docked to the bottom 
of the client area of a frame window. 

• CBRS_ALIGN_LEFT Allows the control bar to be docked to the left side of 
the client area of a frame window. 

• CBRS_ALIGN_RIGHT Allows the control bar to be docked to the right side 
of the client area of a frame window. 

• CBRS_ALIGN_ANY Allows the control bar to be docked to any side of the 
client area of a frame window. 

• CBRS_BORDER_TOP Causes a border to be drawn on the top edge of the 
control bar when it would be visible. 

• CBRS_BORDER_BOTTOM Causes a border to be drawn on the bottom 
edge of the control bar when it would be visible. 

• CBRS_BORDER_LEFT Causes a border to be drawn on the left edge of the 
control bar when it would be visible. 

• CBRS_BORDER_RIGHT Causes a border to be drawn on the right edge of 
the control bar when it would be visible. 

• CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a single 
mini-frame window. 

• CBRS_TOOLTIPS Causes tool tips to be displayed for the control bar. 

• CBRS_FLYBY Causes message text to be updated at the same time as 
tool tips. 

Call this function to set the desired CBRS_ styles for the control bar. Does not affect 
the WS_ (window style) settings. 

See Also: CControIBar::GetBarStyle 



CControlB ar: :m_bAutoDelete 

Data Members 
CControlBar: :m_bAutoDelete 
Remarks 

m_bAutoDelete is a public variable of type BOOL. If it is nonzero when the 
Windows control-bar object is destroyed, the CControlBar object is deleted. 

A control-bar object is usually embedded in a frame-window object. In this case, 
m_bAutoDelete is 0 because the embedded control-bar object is destroyed when 
the frame window is destroyed. 

Set this variable to a nonzero value if you allocate a CControlBar object on the 
heap and you do not plan to call delete. 

See Also: CWnd::DestroyWindow 

221 



CCreateContext 

CCreateContext 

222 

CCreateContext does not have a base class. 

The framework uses the CCreateContext structure when it creates the frame 
windows and views associated with a document. When creating a window, the values 
in this structure provide information used to connect the components that make up a 
document and the view of its data. You will only need to use CCreateContext if you 
are overriding parts of the creation process. 

A CCreateContext structure contains pointers to the document, the frame window, 
the view, and the document template. It also contains a pointer to a CRuntimeClass 
that identifies the type of view to create. The run-time class information and the 
current document pointer are used to create a new view dynamically. The following 
table suggests how and when each CCreateContext member might be used: 

Member 

m_pNewViewClass 

m_pCurrentDoc 

m_pNewDocTemplate 

m_pCurrentFrame 

What it is for 

CRuntimeClass of the new view to create. 

The existing document to be associated with the new view. 

The document template associated with the creation of a new 
MDI frame window. 

The original view upon which additional views are modeled, 
as in the creation of a splitter window's views or the creation 
of a second view on a document. 

The frame window upon which additional frame windows are 
modeled, as in the creation of a second frame window on a 
document. 

When a document template creates a document and its associated components, it 
validates the information stored in the CCreateContext structure. For example, a 
view should not be created for a nonexistent document. 

Note All of the pointers in CCreateContext are optional and can be NULL if unspecified or 
unknown. 

CCreateContext is used by the member functions listed under "See Also." 
Consult the descriptions of these functions for specific information if you plan 
to override them. 

Here are a few general guidelines: 

• When passed as an argument for window creation, as in CWnd::Create, 
CFrameWnd::Create, and CFrameWnd::LoadFrame, the create context 
specifies what the new window should be connected to. For most windows, 
the entire structure is optional and a NULL pointer can be passed. 



• For overridable member functions, such as CFrameWnd::OnCreateClient, 
the CCreateContext argument is optional. 

• For member functions involved in view creation, you must provide enough 
information to create the view. For example, for the first view in a splitter 
window, you must supply the view class information and the current document. 

In general, if you use the framework defaults, you can ignore CCreateContext. If 
you attempt more advanced modifications, the Microsoft Foundation Class Library 
source code or the sample programs, such as VIEWEX, will guide you. If you do 
forget a required parameter, a framework assertion will tell you what you forgot. 

For more information on CCreateContext, see the MFC sample VIEWEX. 

#include <afxext.h> 

See Also: CFrameWnd::Create, CFrameWnd::LoadFrame, 
CFrameWnd::OnCreateClient, CSplitterWnd::Create, 
CSplitterWnd::CreateView, CWnd::Create 

CCreateContext 

223 



CCriticalSection 

CCriticalSection 

224 

i--

An object of class CCriticalSection represents a "critical section"-
a synchronization object that allows one thread at a time to access a resource or 
section of code. Critical sections are useful when only one thread at a time can be 
allowed to modify data or some other controlled resource. For example, adding 
nodes to a linked list is a process that should only be allowed by one thread at a 
time. By using a CCriticalSection object to control the linked list, only one 
thread at a time can gain access to the list. 

Critical sections are used instead of mutexes when speed is critical and the resource 
will not be used across process boundaries. For more information on using mutexes 
in MFC, see CMutex. 

To use a CCriticalSection object, construct the CCriticalSection object when it is 
needed. You can then access the critical section when the constructor returns. Call 
Unlock when you are done accessing the critical section. 

To access a resource controlled by a CCriticalSection object in this manner, first 
create a variable of either type CSingleLock or type CMultiLock in your resource's 
access member function. Then call the lock object's Lock member function (for 
example, CSingleLock: :Lock). At this point, your thread will either gain access to 
the resource, wait for the resource to be released and gain access, or wait for the 
resource to be released and time out, failing to gain access to the resource. In any case, 
your resource has been accessed in a thread-safe manner. To release the resource, use 
the lock object's Unlock member function (for example, CSingleLock::Unlock), or 
allow the lock object to fall out of scope. 

Alternatively, you can create a CCriticalSection object stand-alone, and access it 
explicitly before attempting to access the controlled resource. This method, while 
clearer to someone reading your source code, is more prone to error as you must 
remember to lock and unlock the critical section before and after access. 

For more information on using CCriticalSection objects, see the article 
"Multithreading: How to Use the Synchronization Classes" in Visual C++ 
Programmer's Guide online. 

#include <afxmt.h> 

See Also: CMutex 



CCriticalSection:: Lock 

CCriticalSection Class Members 
Construction 

CCriticalSection 

Methods 

Unlock 

Lock 

Constructs a CCriticalSection object. 

Releases the CCriticalSection object. 

Use to gain access to the CCriticalSection object. 

Member Functions 
CCriticalSection: :CCriticalSection 

Remarks 

CCriticalSection( ); 

Constructs a CCriticalSection object. To access or release a CCriticalSection object, 
create a CMultiLock or CSingleLock object and call its Lock and Unlock member 
functions. If the CCriticalSection object is being used stand-alone, call its Unlock 
member function to release it. 

CCriticalSection: :Lock 
BOOL Lock(); 
BOOL Lock( DWORD dwTimeout ); 

Return Value 
Nonzero if the function was successful; otherwise O. 

Parameters 

Remarks 

dwTimeout Lock ignores this parameter value. 

Call this member function to gain access to the critical section object. Lock is 
a blocking call that will not return until the critical section object is signaled 
(becomes available). 

If timed waits are necessary, you can use a CMutex object instead of a 
CCriticalSection object. 

See Also: CSingleLock::Lock, CMultiLock::Lock 

225 



CCriticaISection:: Unlock 

CCriticalSection:: Unlock 
virtual BOOL Unlock(); 

Return Value 

Remarks 

226 

Nonzero if the CCriticalSection object was owned by the thread and the release was 
successful; otherwise O. 

Releases the CCriticalSection object for use by another thread. If the 
CCriticalSection is being used stand-alone, Unlock must be called immediately after 
completing use of the resource controlled by the critical section. If a CSingleLock or 
CMultiLock object is being used, CCriticaISection::Unlock will be called by the 
lock object's Unlock member function. 



CCtrlView 

The class CCtrlView and its derivatives, CEditView, CListView, CTreeView, and 
CRichEditView, adapt the document-view architecture to the new common controls 
supported by Windows 95 and Windows NT versions 3.51 and later. For more 
information on the document-view architecture, see "DocumentlView Architecture 
Topics" in Visual C++ Programmer's Guide online. 

#inc1ude <afxwin.h> 

See Also: CTreeView, CListView, CRichEditView 

CCtrlView Class Members 
Construction 

CCtrlView 

Data Members 

m_strClass 

m_dwDefaultStyle 

Constructs a CCtrlView object. 

Contains the Windows class name for the view class. 

Contains the default style for the view class. 

Member Functions 
CCtrlView: :CCtrlView 

CCtrlView( LPCTSTR lpszClass, DWORD dwStyle ); 

Parameters 
lpszClass Windows class name of the view class. 

dwStyle Style of the view class. 

CCtrlView 

227 



CCtrlView: :m_dwDefaultStyle 

Remarks 
Constructs a CCtrlView object. The framework calls the constructor when a new 
frame window is created or a window is split. Override CView::OnInitiaIUpdate 
to initialize the view after the document is attached. Call CWnd::Create or 
CWnd::CreateEx to create the Windows object. 

See Also: CWnd: :PreCreate Window 

Data Members 
CCtrlView::m_dwDefaultStyle 

DWORD m_dwDefaultStyle; 

Remarks 
Contains the default style for the view class. This style is applied when a window 
is created. 

See Also: CCtrlView::m_strClass 

CCtrlView: :m_strClass 
CString m_strClass; 

Remarks 
Contains the Windows class name for the view class. 

See Also: CCtrIView::m_dwDefaultStyle 

228 



CDaoDatabase 

Usage 

A CDaoDatabase object represents a connection to a database through which you 
can operate on the data. For information about the database formats supported, see 
the GetName member function. You can have one or more CDaoDatabase objects 
active at a time in a given "workspace," represented by a CDaoWorkspace object. 
The workspace maintains a collection of open database objects, called the Databases 
collection. 

Note The MFC DAD database classes are distinct from the MFC database classes based 
on ODSC. All DAD database class names have the "CDao" prefix. Class CDaoDatabase 
supplies an interface similar to that of the DDSC class CDatabase. The main difference is that 
CDatabase accesses the DSMS through Dpen Database Connectivity (DDSC) and an DDSC 
driver for that DSMS. CDaoDatabase accesses data through a Data Access Dbject (DAO) 
based on the Microsoft Jet database engine. In general, the MFC classes based on DAD are 
more capable than the MFC classes based on DDSC; the DAD-based classes can access data, 
including through DDSC drivers, via their own database engine. The DAD-based classes also 
support Data Definition Language (DOL) operations, such as adding tables via the classes, 
without having to call DAD directly. 

You can create database objects implicitly, when you create recordset objects. But you 
can also create database objects explicitly. To use an existing database explicitly with 
CDaoDatabase, do either of the following: 

• Construct a CDaoDatabase object, passing a pointer to an open CDaoWorkspace 
object. 

• Or construct a CDaoDatabase object without specifying the workspace (MFC 
creates a temporary workspace object). 

To create a new Microsoft Jet (.MDB) database, construct a CDaoDatabase object 
and call its Create member function. Do not call Open after Create. 

To open an existing database, construct a CDaoDatabase object and call its Open 
member function. 

Any of these techniques appends the DAO database object to the workspace's 
Databases collection and opens a connection to the data. When you then construct 
CDaoRecordset, CDaoTableDef, or CDaoQueryDef objects for operating on 
the connected database, pass the constructors for these objects a pointer to your 
CDaoDatabase object. When you finish using the connection, call the Close 

CDaoDatabase 

229 



CDaoDatabase 

member function and destroy the CDaoDatabase object. Close closes any recordsets 
you have not closed previously. 

Transactions 
Database transaction processing is supplied at the workspace level- see the 
BeginTrans, CommitTrans, and Rollback member functions of class 
CDaoWorkspace. For more information, see the article "DAO Workspace: 
Managing Transactions" in Visual C++ Programmer's Guide online. 

OOBC Connections 
The recommended way to work with ODBC data sources is to attach external tables 
to a Microsoft Jet (.MDB) database. For more information, see the article "DAO 
External: Working with External Data Sources" in Visual C++ Programmer's 
Guide online. 

Collections 
Each database maintains its own collections of tabledef, querydef, recordset, and 
relation objects. Class CDaoDatabase supplies member functions for manipulating 
these objects. 

Note The objects are stored in DAO, not in the MFC database object. MFC supplies classes 
for tabledef, querydef, and recordset objects but not for relation objects. 

For more information about CDaoDatabase, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. 

#include <afxdao.h> 

See Also: CDao Workspace, CDaoRecordset, CDaoTableDef, CDaoQueryDef, 
CDatabase, CDaoException 

CDaoDatabase Class Members 

230 

Data Members 

m_p Workspace 

m_pDAODatabase 

Construction 

CDaoDatabase 

Attributes 

CanTransact 

CanUpdate 

A pointer to the CDaoWorkspace object that contains the 
database and defines its transaction space. 

A pointer to the underlying DAO database object. 

Constructs a CDaoDatabase object. Call Open to connect the 
object to a database. 

Returns nonzero if the database supports transactions. 

Returns nonzero if the CDaoDatabase object is up datable 
(not read-only). 



Attributes (continued) 

GetConnect Returns the connect string used to connect the CDaoDatabase object 
to a database. Used for ODBC. 

GetName Returns the name of the database currently in use. 

GetQueryTimeout Returns the number of seconds after which database query operations 
will time out. Affects all subsequent open, add new, update, and edit 
operations and other operations on ODBC data sources (only) such as 
Execute calls. 

GetRecordsAffected Returns the number of records affected by the last update, edit, or add 
operation or by a call to Execute. 

Get Version Returns the version of the database engine associated with the 
database. 

IsOpen Returns nonzero if the CDaoDatabase object is currently connected 
to a database. 

SetQueryTimeout Sets the number of seconds after which database query operations 
(on ODBC data sources only) will time out. Affects all subsequent 
open, add new, update, and delete operations. 

Operations 

Close 

Create 

CreateRelation 

DeleteQueryDef 

DeleteRelation 

DeleteTableDef 

Execute 

GetQueryDefCount 

GetQuery Definfo 

GetRelationCount 

GetRelationlnfo 

GetTableDefCount 

GetTableDefinfo 

Open 

Closes the database connection. 

Creates the underlying DAO database object and initializes the 
CDaoDatabase object. 

Defines a new relation among the tables in the database. 

Deletes a querydef object saved in the database's QueryDefs 
collection. 

Deletes an existing relation between tables in the database. 

Deletes the definition of a table in the database. This deletes the actual 
table and all of its data. 

Executes an action query. Calling Execute for a query that returns 
results throws an exception. 

Returns the number of queries defined for the database. 

Returns information about a specified query defined in the database. 

Returns the number of relations defined between tables in the 
database. 

Returns information about a specified relation defined between tables 
in the database. 

Returns the number of tables defined in the database. 

Returns information about a specified table in the database. 

Establishes a connection to a database. 

CDaoDatabase 

231 



CDaoDatabase: :CanTransact 

Member Functions 
CDaoDatabase: : Can Transact 

BOOL CanTransact( ); 
throw( CDaoException, CMemoryException ); 

Return Value 

Remarks 

Nonzero if the database supports transactions; otherwise O. 

Call this member function to determine whether the database allows transactions. 
Transactions are managed in the database's workspace. For information about 
transactions, see the article "DAO Workspace: Managing Transactions" in 
Visual C++ Programmer's Guide online. 

See Also: CDao Workspace: :BeginTrans, CDao Workspace: :CommitTrans, 
CDao Workspace: :Rollback 

CDaoDatabase: :Can Update 
BOOL CanUpdate( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if the CDaoDatabase object allows updates; otherwise 0, indicating either 
that you passed TRUE in bReadOnly when you opened the CDaoDatabase object 
or that the database itself is read-only. See the Open member function. 

Call this member function to determine whether the CDaoDatabase object allows 
updates. For information about database updatability, see the article "DAO Recordset: 
Recordset Operations" in Visual C++ Programmer's Guide online and see the topic 
"Updatable Property" in DAO Help. 

CDaoDatabase: :CDaoDatabase 
CDaoDatabase( CDao Workspace* p Workspace = NULL ); 

Parameters 

232 

p Workspace A pointer to the CDao Workspace object that will contain the new 
database object. If you accept the default value of NULL, the constructor creates 
a temporary CDaoWorkspace object that uses the default DAO workspace. You 
can get a pointer to the workspace object via the m_p Workspace data member. 



CDaoDatabase: :Close 

Remarks 
Constructs a CDaoDatabase object. After constructing the object, if you are creating a 
new Microsoft Jet (.MDB) database, call the object's Create member function. If you 
are, instead, opening an existing database, call the object's Open member function. 

When you finish with the object, you should call its Close member function and then 
destroy the CDaoDatabase object. 

You might find it convenient to embed the CDaoDatabase object in your document 
class. 

Note A CDaoDatabase object is also created implicitly if you open a CDaoRecordset object 
without passing a pointer to an existing CDaoDatabase object. This database object is closed 
when you close the recordset object. 

For information about workspaces, see the article "DAO Workspace." For information 
about using CDaoDatabase objects, see the article "DAO Database." These articles 
are in Visual C++ Programmer's Guide online. 

CDaoDatabase: :Close 

Remarks 

virtual void Close( ); 

Call this member function to disconnect from a database and close any open 
recordsets, tabledefs, and querydefs associated with the database. It is good practice 
to close these objects yourself before you call this member function. Closing a 
CDaoDatabase object removes it from the Databases collection in the associated 
workspace. Because Close does not destroy the CDaoDatabase object, you can 
reuse the object by opening the same database or a different database. 

Caution Call the Update member function (if there are pending edits) and the Close member 
function on all open record set objects before you close a database. If you exit a function that 
declares CDaoRecordset or CDaoDatabase objects on the stack, the database is closed, any 
unsaved changes are lost, all pending transactions are rolled back, and any pending edits to 
your data are lost. 

Caution If you try to close a database object while any recordset objects are open, or if you try 
to close a workspace object while any database objects belonging to that specific workspace 
are open, those recordset objects will be closed and any pending updates or edits will be rolled 
back. If you try to close a workspace object while any database objects belonging to it are open, 
the operation closes all database objects belonging to that specific workspace object, which 
may result in unclosed recordset objects being closed. If you do not close your database object, 
MFC reports an assertion failure in debug builds. 

233 



CDaoDatabase: :Create 

If the database object is defined outside the scope of a function, and you exit the 
function without closing it, the database object will remain open until explicitly closed 
or the module in which it is defined is out of scope. 

For more information about CDaoDatabase objects, see the article "DAO Database" 
in Visual C++ Programmer's Guide online. For related information, see the topic 
"Close Method" in DAO Help. 

See Also: CDaoDatabase::Open, CDaoRecordset::Close, 
CDao Workspace: :Close, CDaoQueryDef:: Close, CDaoTableDef: :Close 

CDaoDatabase: : Create 
virtual void Create( LPCTSTR IpszName, LPCTSTR lpszLocale = dbLangGeneral, 

10+ int dwOptions = 0 ); 
throw( CDaoException, CMemoryException); 

Parameters 

234 

IpszName A string expression that is the name of the database file that you are creating. 
It can be the full path and filename, such as "C:\\MYDB.MDB". You must supply a 
name. If you do not supply a filename extension, .MDB is appended. If your network 
supports the uniform naming convention (UNC), you can also specify a network 
path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB". Only Microsoft 
Jet (.MDB) database files can be created using this member function. (Double 
backslashes are required in string literals because "\" is the C++ escape character.) 

IpszLocale A string expression used to specify collating order for creating the 
database. The default value is dbLangGeneral. Possible values are: 

• dbLangGeneral English, German, French, Portuguese, Italian, and Modern 
Spanish 

• dbLangArabic Arabic 

• dbLangCyriIlic Russian 

• dbLangCzech Czech 

• dbLangDutch Dutch 

• dbLangGreek Greek 

• dbLangHebrew Hebrew 

• dbLangHungarian Hungarian 

• dbLanglcelandic Icelandic 

• dbLangNordic Nordic languages (Microsoft Jet database engine 
version 1.0 only) 

• dbLangNorwdan Norwegian and Danish 



CDaoDatabase: :CreateRelation 

Remarks 

• dbLangPolish Polish 

• dbLangSpanish Traditional Spanish 

• dbLangSwedfin Swedish and Finnish 

• dbLangThrkish Turkish 

dwOptions An integer that indicates one or more options. Possible values are: 

o dbEncrypt Create an encrypted database. 

• dbVersion10 Create a database with Microsoft Jet database version 1.0. 

• db Version11 Create a database with Microsoft Jet database version 1.1. 

• dbVersion20 Create a database with Microsoft Jet database version 2.0. 

• dbVersion30 Create a database with Microsoft Jet database version 3.0. 

If you omit the encryption constant, an unencrypted database is created. You can 
specify only one version constant. If you omit a version constant, a database that 
uses the Microsoft Jet database version 3.0 is created. 

Caution If a database is not encrypted, it is possible, even if you implement user/password 
security, to directly read the binary disk file that constitutes the database. 

To create a new Microsoft Jet (.MDB) database, call this member function after you 
construct a CDaoDatabase object. Create creates the database file and the underlying 
DAO database object and initializes the C++ object. The object is appended to the 
associated workspace's Databases collection. The database object is in an open state; 
do not call Open after Create. 

Note With Create, you can create only Microsoft Jet (.MOB) databases. You cannot create 
ISAM databases or DOBe databases. 

For information about databases, see the article "DAO Database" in Visual C++ 
Programmer's Guide online. For related information, see the topic "CreateDatabase 
Method" in DAO Help. 

See Also: CDaoDatabase:: CDaoDatabase 

CDaoDatabase: :CreateRelation 
void CreateRelation( LPCTSTR lpszName, LPCTSTR lpszTable, 

... LPCTSTR lpszForeignTable, long lAttributes, LPCTSTR lpszField, 

... LPCTSTR lpszForeignField); 
throw( CDaoException, CMemory Exception); 

void CreateRelation( CDaoRelationlnfo& relinfo ); 
throw( CDaoException, CMemoryException); 

235 



CDaoDatabase:: CreateRelation 

Parameters 

Remarks 

236 

lpszName The unique name of the relation object. The name must start with a letter 
and can contain a maximum of 40 characters. It can include numbers and 
underscore characters but cannot include punctuation or spaces. 

lpszTable The name of the primary table in the relation. If the table does not exist, 
MFC throws an exception of type CDaoException. 

lpszForeignTable The name of the foreign table in the relation. If the table does not 
exist, MFC throws an exception of type CDaoException. 

lAttributes A long value that contains information about the relationship type. You 
can use this value to enforce referential integrity, among other things. You can use 
the bitwise-OR operator (I) to combine any of the following values (as long as the 
combination makes sense): 

• dbRelationUnique Relationship is one-to-one. 

• dbRelationDontEnforce Relationship is not enforced (no referential 
integrity). 

• dbRelationInherited ~elationship exists in a noncurrent database that 
contains the two attached tables. 

• dbRelationUpdateCascade Updates will cascade (for more on cascades, see 
Remarks). 

• dbRelationDeleteCascade Deletions will cascade. 

lpszField A pointer to a null-terminated string containing the name of a field in the 
primary table (named by lpszTable). 

lpszForeignField A pointer to a null-terminated string containing the name of a field 
in the foreign table (named by lpszForeignTable). 

relinfo A reference to a CDaoRelationInfo object that contains information about 
the relation you want to create. 

Call this member function to establish a relation between one or more fields in a 
primary table in the database and one or more fields in a foreign table (another table in 
the database). The relationship cannot involve a query or an attached table from an 
external database. 

Use the first version of the function when the relation involves one field in each of the 
two tables. Use the second version when the relation involves multiple fields. The 
maximum number of fields in a relation is 14. 

This action creates an underlying DAo. relation object, but this is an MFC 
implementation detail since MFC's encapsulation of relation objects is contained 
within class CDaoDatabase. MFC does not supply a class for relations. 



CDaoDatabase: :DeleteRelation 

If you set the relation object's attributes to activate cascade operations, the database 
engine automatically updates or deletes records in one or more other tables when 
changes are made to related primary key tables. 

For example, suppose you establish a cascade delete relationship between a Customers 
table and an Orders table. When you delete records from the Customers table, records 
in the Orders table related to that customer are also deleted. In addition, if you 
establish cascade delete relationships between the Orders table and other tables, 
records from those tables are automatically deleted when you delete records from the 
Customers table. 

For related information, see the topic "CreateRelation Method" in DAO Help. 

See Also: CDaoDatabase: :DeleteRelation 

CDaoDatabase: : DeleteQuery Def 
void DeleteQueryDef( LPCTSTR /pszName); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

/pszName The name of the saved query to delete. 

Call this member function to delete the specified querydef% saved query % from the 
CDaoDatabase object's QueryDefs collection. Afterwards, that query is no longer 
defined in the database. 

For information about creating querydef objects, see class CDaoQueryDef. A 
querydef object becomes associated with a particular CDaoDatabase object when 
you construct the CDaoQueryDef object, passing it a pointer to the database object. 

For information about querydefs, see the article "DAO QueryDef' in Visual C++ 
Programmer's Guide online. For related information, see the topic "Delete Method" 
in DAO Help. 

See Also: CDaoQueryDef::Create, CDaoDatabase::CreateRelation, 
CDaoTableDef:: Create 

CDaoDatabase: : DeleteRelation 
void DeleteRelation( LPCTSTR /pszName); 

throw( CDaoException, CMemoryException); 

Parameters 
IpszName The name of the relation to delete. 

237 



CDaoDatabase: :DeleteTableDef 

Remarks 
Call this member function to delete an existing relation from the database object's 
Relations collection. Afterwards, the relation no longer exists. 

For related information, see the topic "Delete Method" in DAO Help. 

See Also: CDaoDatabase::CreateRelation, CDaoTableDef::Create, 
CDaoQueryDef: : Create 

CDaoDatabase: : DeleteTableDef 
void DeleteTableDef( LPCTSTR IpszName ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszName The name of the tabledef to delete. 

Call this member function to delete the specified table and all of its data from the 
CDaoDatabase object's TableDefs collection. Afterwards, that table is no longer 
defined in the database. 

Warning Be very careful not to delete system tables. 

For information about creating tabledef objects, see class CDaoTableDef. A tabledef 
object becomes associated with a particular CDaoDatabase object when you 
construct the CDaoTableDef object, passing it a pointer to the database object. 

For information about tabledefs, see the article "DAO TableDef' in Visual C++ 
Programmer s Guide online. For related information, see the topic "Delete Method" 
in DAO Help. 

See Also: CDaoTableDef::Create, CDaoQueryDef::Create, 
CDaoDatabase:: CreateRelation 

CDaoDatabase: : Execute 
void Execute( LPCTSTR IpszSQL, int nOptions = 0 ); 

throw( CDaoException, CMemoryException); 

Parameters 

238 

IpszSQL Pointer to a null-terminated string containing a valid SQL command to 
execute. 

nOptions An integer that specifies options relating to the integrity of the query. You 
can use the bitwise-OR operator (I) to combine any of the following constants 



Remarks 

CDaoDatabase: :Execute 

(provided the combination makes sense-for example, you would not combine 
dblnconsistent with dbConsistent): 

• dbDenyWrite Deny write permission to other users. 

• dblnconsistent (Default) Inconsistent updates. 

• db Consistent Consistent updates. 

• dbSQLPassThrough SQL pass-through. Causes the SQL statement to be 
passed to an ODBC data source for processing. 

• dbFailOnError Roll back updates if an error occurs. 

• dbSeeChanges Generate a run-time error if another user is changing data you 
are editing. 

Note If both dblnconsistent and dbConsistent are included or if neither is included, the 
result is the default. For an explanation of these constants, see the topic "Execute Method" 
in DAD Help. 

Call this member function to run an action query or execute an SQL statement on the 
database. Execute works only for action queries or SQL pass-through queries that do 
not return results. It does not work for select queries, which return records. 

For a definition and information about action queries, see the topics "Action Query" 
and "Execute Method" in DAO Help. 

Tip Given a syntactically correct Sal statement and proper permissions, the Execute member 
function will not fail even if not a single row can be modified or deleted. Therefore, always use 
the dbFaiiOnError option when using the Execute member function to run an update or delete 
query. This option causes MFC to throw an exception of type CDaoException and rolls back all 
successful changes if any of the records affected are locked and cannot be updated or deleted. 
Note that you can always call GetRecordsAffected to see how many records were affected. 

Call the GetRecordsAffected member function of the database object to determine 
the number of records affected by the most recent Execute call. For example, 
GetRecordsAffected returns information about the number of records deleted, 
updated, or inserted when executing an action query. The count returned will not 
reflect changes in related tables when cascade updates or deletes are in effect. 

Execute does not return a recordset. Using Execute on a query that selects records 
causes MFC to throw an exception of type CDaoException. (There is no 
ExecuteSQL member function analogous to CDatabase::ExecuteSQL.) 

For more information about using the Execute member function, see the article 
"DAO Querydef: Using Querydefs" in Visual C++ Programmer's Guide online. 

239 



CDaoDatabase: :GetConnect 

CDaoDatabase: : GetConnect 
CString GetConnect( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The connect string if Open has been called successfully on an ODBC data source; 
otherwise, an empty string. For a Microsoft Jet (.MDB) database, the string is always 
empty unless you set it for use with the dbSQLPassThrough option used with the 
Execute member function or used in opening a recordset. 

Call this member function to retrieve the connect string used to connect the 
CDaoDatabase object to an ODBC or ISAM database. The string provides 
information about the source of an open database or a database used in a pass-through 
query. The connect string is composed of a database type specifier and zero or more 
parameters separated by semicolons. For additional information about connect strings 
in DAO, see the topic "Connect Property" in DAO Help. 

Important Using the MFC DAD classes to connect to a data source via ODBC is less efficient 
than connecting via an attached table. For more information, see the article "DAD External: 
Working with External Data Sources" in Visual C++ Programmer's Guide online. 

Note The connect string is used to pass additional information to ODBC and certain ISAM 
drivers as needed. It is not used for .MDB databases. For Microsoft Jet database base tables, 
the connect string is an empty string ('III) except when you use it for an Sal pass-through query 
as described under Return Value above. 

See the Open member function for a description of how the connect string is created. 
Once the connect string has been set in the Open call, you can later use it to check the 
setting to determine the type, path, user ID, Password, or ODBC data source of the 
database. 

For connect string syntax, see the topic "Connect Property" in DAO Help. 

CDaoDatabase: : GetN arne 
CString GetName(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

240 

The full path and filename for the database if successful; otherwise, an empty 
CString. 

Call this member function to retrieve the name of the currently open database, which 
is the name of an existing database file or registered ODBC data source name. If your 



CDaoDatabase: :GetQueryDefCount 

network supports the unifonn naming convention (UNC), you can also specify a 
network path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". 
(Double backslashes are required in string literals because "\" is the C++ escape 
character. ) 

You might, for example, want to display this name in a heading. If an error occurs 
while retrieving the name, MFC throws an exception of type CDaoException. 

Important For better performance when accessing external databases, it is recommended 
that you attach external database tables to a Microsoft Jet engine database (.MDB) rather than 
connecting directly to the data source. 

The database type is indicated by the file or directory that the path points to, as 
follows: 

Path name points to .. 

.MDB file 

.DDF file 

Directory containing .DBF file(s) 

Directory containing .xLS file 

Directory containing .DBF files(s) 

Directory containing .PDX file(s) 

Directory containing appropriately 
formatted text database files 

Database type 

Microsoft Jet database (Microsoft Access) 

B trieve® database 

dBASE® database 

Microsoft Excel database 

Microsoft FoxPro® database 

Paradox® database 

Text format database 

For ODBC databases, such as Microsoft SQL Server and Oracle®, the database's 
connect string identifies a data source name (DSN) registered by ODBC. 

For more about attaching external tables, see the article "DAO External: Attaching 
External Tables" in Visual C++ Programmer's Guide online. 

See Also: CDatabase: :Open, CDatabase: :GetConnect 

CDaoDatabase: : GetQuery DefCount 
short GetQueryDefCount(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of queries defined in the database. 

Call this member function to retrieve the number of queries defined in the database's 
QueryDefs collection. GetQueryDefCount is useful if you need to loop through all 
querydefs in the QueryDefs collection. To obtain infonnation about a given query in 
the collection, see GetQueryDeflnfo. 

241 



CDaoDatabase:: GetQuery Deflnfo 

For information about queries and querydef objects, see the articles "DAO Queries" 
and "DAO QueryDef." Both articles are in Visual C++ Programmer's Guide online. 

CDaoDatabase: : GetQueryDefInfo 
void GetQueryDeflnfo( int nlndex, CDaoQueryDeflnfo& querydefinfo, 

'+ DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO ); 
throw( CDaoException, CMemoryException ); 

void GetQueryDeflnfo( LPCTSTR lpszName, CDaoQueryDeflnfo& querydefinfo, 
'+ DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

242 

nlndex The index of the predefined query in the database's QueryDefs collection, 
for lookup by index. 

querydefinfo A reference to a CDaoQueryDeflnfo object that returns the 
information requested. 

dwlnfoOptions Options that specify which information about the recordset to 
retrieve. The available options are listed here along with what they cause the 
function to return about the recordset: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Type 

• AFX_DAO_SECONDARY_INFO Primary information plus: Date Created, 
Date of Last Update, Returns Records, Updatable 

• AFX_DAO_ALL_INFO Primary and secondary information plus: SQL, 
Connect, ODBCTimeout 

lpszName A string containing the name of a query defined in the database, for 
lookup by name. 

Call this member function to obtain various kinds of information about a query 
defined in the database. Two versions of the function are supplied so you can select 
a query either by index in the database's QueryDefs collection or by the name of 
the query. 

For a description of the information returned in querydefinfo, see the 
CDaoQuery Deflnfo structure. This structure has members that correspond to the 
items of information listed above in the description of dwlnfoOptions. If you request 
one level of information, you get any prior levels of information as well. 

For information about queries and querydef objects, see the articles "DAO Queries" 
and "DAO QueryDef." Both articles are in Visual C++ Programmer's Guide online. 

See Also: CDaoDatabase::GetQueryDefCount 



CDaoDatabase: : GetRecordsAffected 

CDaoDatabase: : GetQueryTimeout 
short GetQueryTimeout(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A short integer containing the timeout value in seconds. 

Call this member function to retrieve the current number of seconds to allow before 
subsequent operations on the connected database are timed out. An operation might 
time out due to network access problems, excessive query processing time, and so on. 
While the setting is in effect, it affects all open, add new, update, and delete operations 
on any recordsets associated with this CDaoDatabase object. You can change the 
current timeout setting by calling SetQueryTimeout. Changing the query timeout 
value for a recordset after opening does not change the value for the recordset. For 
example, subsequent Move operations do not use the new value. The default value 
is initially set when the database engine is initialized. 

The default value for query timeouts is taken from the Windows registry. If there is 
no registry setting, the default is 60 seconds. Not all databases support the ability to 
set a query timeout value. If you set a query timeout value of 0, no timeout occurs; 
and communication with the database may hang. This behavior may be useful during 
development. If the call fails, MFC throws an exception of type CDaoException. 

For more information about database objects, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"QueryTimeout Property" in DAO Help. 

See Also: CDao Workspace: :SetLoginTimeout 

CDaoDatabase: : GetRecordsAffected 
long GetRecordsAffected( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A long integer containing the number of records affected. 

Call this member function to determine the number of records affected by the most 
recent call of the Execute member function. The value returned includes the number 
of records deleted, updated, or inserted by an action query run with Execute. The 
count returned will not reflect changes in related tables when cascade updates or 
deletes are in effect. 

243 



CDaoDatabase:: GetRelationCount 

For more information about database objects, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"RecordsAffected Property" in DAO Help. 

CDaoDatabase: : GetRelationCount 
short GetRelationCount(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of relations defined between tables in the database. 

Call this member function to obtain the number of relations defined between tables in 
the database. GetRelationCount is useful if you need to loop through all defined 
relations in the database's Relations collection. To obtain information about a given 
relation in the collection, see GetRelationlnfo. 

To illustrate the concept of a relation, consider a Suppliers table and a Products table, 
which might have a one-to-many relationship. In this relationship, one supplier can 
supply more than one product. Other relations are one-to-one and many-to-many. 

For more information about database objects, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. 

CDaoDatabase: : GetRelationInfo 
void GetRelationlnfo( int nlndex, CDaoRelationlnfo& relinfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

void GetRelationlnfo( LPCTSTR IpszName, CDaoRelationlnfo& relinfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 

244 

nlndex The index of the relation object in the database's Relations collection, for 
lookup by index. 

relinfo A reference to a CDaoRelationlnfo object that returns the information 
requested. 

dwlnfoOptions Options that specify which information about the relation to retrieve. 
The available options are listed here along with what they cause the function to 
return about the relation: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Table, Foreign Table 

• AFX_DAO_SECONDARY_INFO Attributes, Field Information 



CDaoDatabase:: GetTableDefCount 

Remarks 

The Field Information is a CDaoRelationFieldInfo object containing the fields 
from the primary table involved in the relation. 

IpszName A string containing the name of the relation object, for lookup by name. 

Call this member function to obtain information about a specified relation in the 
database's Relations collection. Two versions of this function provide access either 
by index or by name. For a description of the information returned in relinfo, see the 
CDaoRelationInfo structure. This structure has members that correspond to the 
items of information listed above in the description of dwlnfoOptions. If you request 
information at one level, you also get information at any prior levels as well. 

Note If you set the relation object's attributes to activate cascade operations 
(dbRelationUpdateCascades or dbRelationDeleteCascades), the Microsoft Jet database 
engine automatically updates or deletes records in one or more other tables when changes 
are made to related primary key tables. For example, suppose you establish a cascade delete 
relationship between a Customers table and an Orders table. When you delete records from 
the Customers table, records in the Orders table related to that customer are also deleted. In 
addition, if you establish cascade delete relationships between the Orders table and other 
tables, records from those tables are automatically deleted when you delete records from the 
Customers table. 

For more information about database objects, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. 

See Also: CDaoDatabase: : GetRelationCount 

CDaoDatabase: : GetTableDefCount 
short GetTableDefCount( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of tabledefs defined in the database. 

Call this member function to retrieve the number of tables defined in the database. 
GetTableDefCount is useful if you need to loop through all tabledefs in the 
database's TableDefs collection. To obtain information about a given table in the 
collection, see GetTableDeflnfo. 

For more information about tables and tabledef objects, see the article "DAO 
TableDef' in Visual C++ Programmer's Guide online. 

245 



CDaoDatabase:: GetTableDeflnfo 

CDaoDatabase: : GetTableDefinfo 
void GetTableDefInfo( int nlndex, CDaoTableDefInfo& tabledefinfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

void GetTableDefInfo( LPCTSTR lpszName, CDaoTableDefInfo& tabledefinfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

246 

nlndex The index of the tabledef object in the database's TableDefs collection, for 
lookup by index. 

tabledefinfo A reference to a CDaoTableDefinfo object that returns the information 
requested. 

dwlnfoOptions Options that specify which information about the table to retrieve. 
The available options are listed here along with what they cause the function to 
return about the relation: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Updatable, Attributes 

• AFX_DAO_SECONDARY_INFO Primary information plus: Date Created, 
Date Last Updated, Source Table Name, Connect 

• AFX_DAO_ALL_INFO Primary and secondary information plus: Validation 
Rule, Validation Text, Record Count 

IpszName The name of the tabledef object, for lookup by name. 

Call this member function to obtain various kinds of information about a table defined 
in the database. Two versions of the function are supplied so you can select a table 
either by index in the database's TableDefs collection or by the name of the table. 

For a description of the information returned in tabledefinfo, see the 
CDaoTableDefinfo structure. This structure has members that correspond to the 
items of information listed above in the description of dwlnfoOptions. If you request 
information at one level, you get information for any prior levels as well. 

Warning The AFX_DAO_ALLJNFO option provides information that can be slow to obtain. 
In this case, counting the records in the table could be very time consuming if there are many 
records. 

For more information about tables and tabledef objects, see the article "DAO 
TableDef' in Visual C++ Programmer's Guide online. 

See Also: CDaoDatabase: : GetTableDefCount 



CDaoDatabase: :Open 

CDaoDatabase: : GetVersion 
CString GetVersion( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString that indicates the version of the database file associated with the object. 

Call this member function to determine the version of the Microsoft Jet database file. 
The value returned represents the version number in the form "major.minor"; for 
example, "3.0". The product version number (for example, 3.0) consists of the version 
number (3), a period, and the release number (0). The versions to date are 1.0, 1.1, 
2.0, and 3.0. 

For more information about database objects, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"Version Property" in DAO Help. 

CDaoDatabase: :IsOpen 
BOOL IsOpen( ) const; 

Return Value 

Remarks 

Nonzero if the CDaoDatabase object is currently open; otherwise 0. 

Call this member function to determine whether the CDaoDatabase object is 
currently open on a database. 

For more information about database objects, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. 

See Also: CDatabase: :Open 

CDaoDatabase: :Open 
virtual void Open( LPCTSTR IpszName, BOOL bExclusive = FALSE, 

... BOOL bReadOnly = FALSE, LPCTSTR lpszConnect = _T("")); 
throw( CDaoException, CMemoryException); 

Parameters 
lpszName A string expression that is the name of an existing Microsoft Jet (.MDB) 

database file. If the filename has an extension, it is required. If your network 
supports the uniform naming convention (UNC), you can also specify a network 
path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double 
backslashes are required in string literals because "\" is the C++ escape character.) 

247 



CDaoDatabase: :Open 

Remarks 

248 

Some considerations apply when using IpszName. If it: 

• Refers to a database that is already open for exclusive access by another user, 
. MFC throws an exception of type CDaoException. Trap that exception to let 
your user know that the database is unavailable. 

• Is an empty string ("") and IpszConnect is "ODBC;", a dialog box listing all 
registered ODBC data source names is displayed so the user can select a 
database. You should avoid direct connections to ODBC data sources; use an 
attached table instead. For information, see the article "DAO External: Working 
with External Data Sources" in Visual C++ Programmer's Guide online. 

• Otherwise does not refer to an existing database or valid ODBC data source 
name, MFC throws an exception of type CDaoException. 

Note For details about DAD error codes, see the DADERR.H file. For related information, 
see the topic "Trappable Data Access Errors" in DAD Help. 

bExclusive A Boolean value that is TRUE if the database is to be opened for 
exclusive (nonshared) access and FALSE if the database is to be opened for shared 
access. If you omit this argument, the database is opened for shared access. 

bReadOnly A Boolean value that is TRUE if the database is to be opened for 
read-only access and FALSE if the database is to be opened for read/write access. 
If you omit this argument, the database is opened for read/write access. All 
dependent recordsets inherit this attribute. 

IpszConnect A string expression used for opening the database. This string 
constitutes the ODBC connect arguments. You must supply the exclusive and 
read-only arguments to supply a source string. For syntax, see the topic "Connect 
Property" in DAO Help. If the database is a Microsoft Jet datab(lse (.MDB), this 
string is empty (""). The syntax for the default value - _T("") - provides 
portability for Unicode as well as ANSI builds of your application. 

You must call this member function to initialize a newly constructed CDaoDatabase 
object that represents an existing database. Open associates the database with the 
underlying DAO object. You cannot use the database object to construct recordset, 
tabledef, or querydef objects until it is initialized. Open appends the database object 
to the associated workspace's Databases collection. 

Use the parameters as follows: 

• If you are opening a Microsoft Jet (.MDB) database, use the IpszName parameter 
and pass an empty string for the IpszConnect parameter or pass a password string 
of the form ";PWD=password" if the database is password-protected (.MDB 
databases only). 

• If you are opening an ODBC data source, pass a valid ODBC connect string in 
IpszConnect and an empty string in lpszName. 



CDaoDatabase: :SetQueryTimeout 

For related information, see the topic "OpenDatabase Method" in DAO Help. 

Important For better performance when accessing external databases, including ISAM 
databases and DOBe data sources, it is recommended that you attach external database 
tables to a Microsoft Jet engine database (.MOB) rather than connecting directly to the 
data source. 

It is possible for a connection attempt to time out if, for example, the DBMS host 
is unavailable. If the connection attempt fails, Open throws an exception of type 
CDaoException. 

The remaining remarks apply only to ODBC databases: 

If the database is an ODBC database and the parameters in your Open call do not 
contain enough information to make the connection, the ODBC driver opens a dia]og 
box to obtain the necessary information from the user. When you call Open, your 
connect string, lpszConnect, is stored privately and is available by calling the 
GetConnect member function. 

If you wish, you can open your own dialog box before you call Open to get 
information from the user, such as a password, then add that information to the 
connect string you pass to Open. Or you might want to save the connect string 
you pass (perhaps in the Windows registry) so you can reuse it the next time your 
application calls Open on a CDaoDatabase object. 

You can also use the connect string for multiple levels of login authorization (each for 
a different CDaoDatabase object) or to convey other database-specific information. 

For related information about connect strings, see the topic "Connect Property" in 
DAO Help. 

See Also: CDatabase::CDatabase, CDatabase::Close 

CDaoDatabase: :SetQueryTimeout 
void SetQueryTimeout( short nSeconds ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

nSeconds The number of seconds to allow before a query attempt times out. 

Call this member function to override the default number of seconds to allow before 
subsequent operations on the connected database time out. An operation might time 
out due to network access problems, excessive query processing time, and so on. Call 
SetQueryTimeout prior to opening your recordset or prior to calling the recordset's 
AddNew, Update, or Delete member functions if you want to change the query 
timeout value. The setting affects all subsequent Open, AddNew, Update, and Delete 

249 



CDaoDatabase: :m_pDAODatabase 

calls to any recordsets associated with this CDaoDatabase object. Changing the 
query timeout value for a recordset after opening does not change the value for the 
recordset. For example, subsequent Move operations do not use the new value. 

The default value for query timeouts is 60 seconds. Not all databases support the 
ability to set a query timeout value. If you set a query timeout value of 0, no timeout 
occurs; the communication with the database may hang. This behavior may be useful 
during development. 

For related information, see the topic "QueryTimeout Property" in DAO Help. 

See Also: CDao Workspace: :SetLoginTimeout 

Data Members 
CDaoDatabase: :m_pDAODatabase 
Remarks 

Contains a pointer to the OLE interface for the DAO database object underlying the 
CDaoDatabase object. Use this pointer if you need to access the DAO interface 
directly. 

For more information about DAO databases, see the article "DAO Database" in 
Visual C++ Programmer's Guide online. For information about calling DAO 
directl y, see Technical Note 54 online. 

CDaoDatabase: :m_p Workspace 
Remarks 

250 

Contains a pointer to the CDao Workspace object that contains the database object. 
Use this pointer if you need to access the workspace directly-for example, to 
obtain pointers to other database objects in the workspace's Databases collection. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. 



CDaoException 

A CDaoException objectrepresents an exception condition arising from the MFC 
database classes based on data access objects (DAO). The class includes public data 
members you can use to determine the cause of the exception. CDaoException 
objects are constructed and thrown by member functions of the DAO database classes. 

Note The DAO database classes are distinct from the MFC database classes based on Dpen 
Database Connectivity (DDSC). All DAO database class names have the "CDao" prefix. You 
can still access ODSC data sources with the DAD classes. In general, the MFC classes based 
on DAO are more capable than the MFC classes based on DDSC; the DAD-based classes can 
access data, including through DDSe drivers, via their own database engine. The DAD-based 
classes also support Data Definition Language (DDL) operations, such as adding tables via the 
classes, without having to call DAO directly. For information on exceptions thrown by the DDSe 
classes, see CDBException. 

You can access exception objects within the scope of a CATCH expression. You can 
also throw CDaoException objects from your own code with the 
AfxThrowDaoException global function. 

In MFC, all DAO errors are expressed as exceptions, of type CDaoException. When 
you catch an exception of this type, you can use CDaoException member functions 
to retrieve information from any DAO error objects stored in the database engine's 
Errors collection. As each error occurs, one or more error objects are placed in the 
Errors collection. (Normally the collection contains only one error object; if you are 
using an ODBC data source, you are more likely to get multiple error objects.) When 
another DAO operation generates an error, the Errors collection is cleared, and the 
new error object is placed in the Errors collection. DAO operations that do not 
generate an error have no effect on the Errors collection. 

For DAO error codes, see the file DAOERR.H. For related information, see the topic 
"Trappable Data Access Errors" in DAO Help. 

For more information about exception handling in general, or about CDaoException 
objects, see the articles "Exceptions" and "Exceptions: Database Exceptions" in 
Visual C++ Programmer's Guide online. The second article contains example code 
that illustrates exception handling in DAO. 

#include <afxdao.h> 

See Also: CException 

CDaoException 

251 



CDaoException: :CDaoException 

CDaoException Class Members 
Data Members 

m_scode 

m_nAfxDaoError 

m_pErrorlnfo 

Construction 

CDaoException 

Operations 

GetErrorCount 

GetErrorlnfo 

The SCODE value associated with the error. 

Contains an extended error code for any error in the MFC DAO classes. 

A pointer to a CDaoErrorlnfo object that contains information about 
one DAO error object. 

Constructs a CDaoException object. 

Returns the number of errors in the database engine's Errors collection. 

Returns error information about a particular error object in the Errors 
collection. 

Member Functions 
CDaoException: : CDaoException 

CDaoException( ); 

Remarks 

252 

Constructs a CDaoException object. Ordinarily, the framework creates exception 
objects when its code throws an exception. You seldom need to construct an exception 
object explicitly. If you want to throw a CDaoException from your own code, call the 
global function AfxThrowDaoException. 

However, you might want to explicitly create an exception object if you are making 
direct calls to DAO via the DAO interface pointers that MFC classes encapsulate. In 
that case, you might need to retrieve error information from DAO. Suppose an error 
occurs in DAO when you call a DAO method via, say, the DAODatabases interface 
to a workspace's Databases collection. To retrieve the DAO error information: 

1. Construct a CDaoException object. 

2. Call the exception object's GetErrorCount member function to determine how 
many error objects are in the database engine's Errors collection. (Normally only 
one, unless you are using an ODBC data source.) 

3. Call the exception object's GetErrorlnfo member function to retrieve one specific 
error object at a time, by index in the collection, via the exception object. Think of 
the exception object as a proxy for one DAO error object. 



CDaoException: : GetErrorInfo 

4. Examine the current CDaoErrorInfo structure that GetErrorInfo returns in the 
m_pErrorInfo data member. Its members provide information on the DAO error. 

5. In the case of an ODBC data source, repeat steps 3 and 4 as needed, for more error 
objects. 

6. If you constructed the exception object on the heap, delete it with the delete 
operator when you finish. 

For more information about handling errors in the MFC DAO classes, see the article 
"Exceptions: Database Exceptions" in Visual C++ Programmer's Guide online. 

CDaoException: : GetErrorCount 
short GetErrorCount(); 

Return Value 

Remarks 

The number of DAO error objects in the database engine's Errors collection. 

Call this member function to retrieve the number of DAO error objects in the database 
engine's Errors collection. This information is useful for looping through the Errors 
collection to retrieve each of the one or more DAO error objects in the collection. To 
retrieve an error object by index or by DAO error number, call the GetErrorInfo 
member function. 

Note Normally there is only one error object in the Errors collection. If you are working with an 
ODBC data source, however, there could be more than one. 

CDaoException: : GetErrorlnfo 
void GetErrorInfo( int nlndex); 

Parameters 

Remarks 

nlndex The index of the error information in the database engine's Errors collection, 
for lookup by index. 

Call this member function to obtain the following kinds of information about the 
exception: 

• Error Code 

• Source 

• Description 

• Help File 

• Help Context 

253 



CDaoException::m_nAfxDaoError 

GetErrorInfo stores the information in the exception object's m_pErrorInfo data 
member. For a brief description of the information returned, see m_pErrorInfo. If 
you catch an exception of type CDaoException thrown by MFC, the m_pErrorInfo 
member will already be filled in. If you choose to call DAO directly, you must call the 
exception object's GetErrorInfo member function yourself to fill m_pErrorInfo. 
For a more detailed description, see the CDaoErrorlnfo structure. 

For information about DAO exceptions, and example code, see the article 
"Exceptions: Database Exceptions." For more about getting information from DAO 
object collections, see the article "DAO Collections: Obtaining Information About 
DAO Objects. Both articles are in Visual C++ Programmer's Guide online. 

See Also: CDaoException:: GetErrorCount 

Data Members 
CDaoException: :m_nAfxDaoError 
Remarks 

254 

Contains an MFC extended error code. This code is supplied in cases where a specific 
component of the MFC DAO classes has erred. 

Possible values are: 

• NO_AFX_DAO_ERROR The most recent operation did not result in an MFC 
extended error. However, the operation could have produced other errors from 
DAO or OLE, so you should check m_pErrorlnfo and possibly m_scode. 

• AFX_DAO_ERROR_ENGINE_INITIALIZATION MFC could not 
initialize the Microsoft Jet database engine. OLE might have failed to initialize, 
or it might have been impossible to create an instance of the DAO database 
engine object. These problems usually suggest a bad installation of either DAO 
or OLE. 

• AFX_DAO_ERROR_DFX_BIND An address used in a DAO record field 
exchange (DFX) function call does not exist or is invalid (the address was not 
used to bind data). You might have passed a bad address in a DFX call, or the 
address might have become invalid between DFX operations. 

• AFX_DAO_ERROR_OBJECT_NOT_OPEN You attempted to open a 
recordset based on a querydef or a tabledef object that was not in an open state. 

For more information about DFX, see the article "DAO Record Field Exchange 
(DFX)" in Visual C++ Programmer's Guide online. 

See Also: CDaoException::GetErrorCount, CDaoException::GetErrorlnfo 



CDaoException: :m_scode 

CDaoException: :m_pErrorInfo 
Remarks 

Contains a pointer to a CDaoErrorInfo structure that provides information on the 
DAO error object that you last retrieved by calling GetErrorInfo. This object 
contains the following information: 

CDaoErrorlnfo member Information Meaning 

m_lErrorCode Error Code The DAO error code 

m_strSource Source The name of the object or application that 
originally generated the error 

m_strDescription Description A descriptive string associated with the error 

m_strHelpFile Help File A path to a Windows Help file in which the user 
can get information about the problem 

m_IHelpContext Help Context The context ID for a topic in the DAD Help file 

For full details about the information contained in the CDaoErrorInfo object, see the 
CDaoErrorInfo structure. 

See Also: CDaoException: :m_scode, CDaoException: :m_nAfxDaoError 

CDaoException: :m_scode 
Remarks 

Contains a value of type SCODE that describes the error. This is an OLE code. You 
will seldom need to use this value because, in almost all cases, more specific MFC or 
DAO error information is available in the other CDaoException data members. 

For information about SCODE, see the topic "Structure of OLE Error Codes" in the 
Win32 SDK, OLE Programmer's Reference, Volume 1. The SCODE data type maps 
to the HRESULT data type. 

See Also: CDaoException: :m_pErrorInfo, CDaoException: :m_nAfxDaoError 

255 



CDaoFieldExchange 

CDaoFieldExchange 

256 

CDaoFieldExchange does not have a base class. 

The CDaoFieldExchange class supports the DAO record field exchange (DFX) 
routines used by the DAO database classes. Use this class if you are writing data 
exchange routines for custom data types; otherwise, you will not directly use this 
class. DFX exchanges data between the field data members of your CDaoRecordset 
object and the corresponding fields of the current record on the data source. DFX 
manages the exchange in both directions, from the data source and to the data source. 
See Technical Note 53 online for information about writing custom DFX routines. 

Note The DAD database classes are distinct from the MFC database classes based on Dpen 
Database Connectivity (DOBC). All DAD database class names have the "COao" prefix. You 
can still access DOBC data sources with the DAO classes. In general, the MFC classes based 
on DAD are more capable than the MFC classes based on DOBC. The DAD-based classes can 
access data, including through DOBC drivers, via their own database engine. They also support 
Data Definition Language (DOL) operations, such as adding tables via the classes instead of 
having to call OAO yourself. 

Note DAD record field exchange (OFX) is very similar to record field exchange (RFX) in the 
DOBC-based MFC database classes (CDatabase, CRecordset). If you understand RFX, you 
will find it easy to use OFX. 

A CDaoFieldExchange object provides the context information needed for DAO 
record field exchange to take place. CDaoFieldExchange objects support a number 
of operations, including binding parameters and field data members and setting 
various flags on the fields of the current record. DFX operations are performed on 
recordset-class data members of types defined by the enum FieldType in 
CDaoFieldExchange. Possible FieldType values are: 

• CDaoFieldExchange: :outputColumn for field data members. 

• CDaoFieldExchange: :param for parameter data members. 

The IsValidOperation member function is provided for writing your own custom 
DFX routines. You will use SetFieldType frequently in your 
CDaoRecordset::DoFieldExchange functions. For details about the DFX global 
functions, see "Record Field Exchange Functions." For information about writing 
custom DFX routines for your own data types, see Technical Note 53 online. 

For information about DFX, see the article "DAO Record Field Exchange (DFX)" 
in Visual C++ Programmer's Guide online. 

#incIude <afxdao.h> 

See Also: CDaoRecordset 



CDaoFieldExchange: :ls V alidOperation 

CDaoFieldExchange Class Members 
Data Members 

Member Functions 

IsValidOperation 

SetFieldType 

The DFX operation being performed by the 
current call to the record set' s DoFieldExchange 
member function. 

A pointer to the recordset on which DFX operations 
are being performed. 

Returns nonzero if the current operation is appropriate 
for the type of field being updated. 

Specifies the type of recordset data member -
column or parameter-represented by all 
subsequent calls to DFX functions until the next 
call to SetFieldType. 

Member Functions 
CDaoFieldExchange: : Is ValidOperation 

BOOL IsValidOperation( ); 

Return Value 

Remarks 

Nonzero if the current operation is appropriate for the type of field being 
updated. 

If you write your own DFX function, call IsValidOperation at the beginning 
of your function to determine whether the current operation can be performed 
on a particular field data member type (a CDaoFieldExchange::outputColumn 
or a CDaoFieldExchange::param). Some of the operations performed by the 
DFX mechanism apply only to one of the possible field types. Follow the model 
of the existing DFX functions. 

For more information about DFX, see the article "DAO Record Field Exchange 
(DFX)" in Visual C++ Programmer's Guide online. For additional information 
on writing custom DFX routines, see Technical Note 53 online. 

See Also: CDaoFieldExchange::SetFieldType 

257 



CDaoFieldExchange:: SetFieldType 

CDaoFieldExchange: :SetFieldType 
void SetFieldType( UINT nFieldType); 

Parameters 

Remarks 

nFieldType A value of the enum FieldType, declared in CDaoFieldExchange, 
which can be either of the following: 

• CDaoFieldExchange: :outputColumn 

• CDaoFieldExchange: :param 

Call SetFieldType in your CDaoRecordset class's DoFieldExchange override. 
Normally, ClassWizard writes this call for you. If you write your own function and 
are using the wizard to write your DoFieldExchange function, add calls to your own 
function outside the field map. If you do not use the wizard, there will not be a field 
map. The call precedes calls to DFX functions, one for each field data member of your 
class, and identifies the field type as CDaoFieldExchange: :outputColumn. 

If you parameterize your recordset class, you should add DFX calls for all parameter 
data members (outside the field map) and precede these calls with a call to 
SetFieldType. Pass the value CDaoFieldExchange::param. (You can, instead, use 
a CDaoQueryDef and set its parameter values.) 

In general, each group of DFX function calls associated with field data members 
or parameter data members must be preceded by a call to SetFieldType. The 
nFieldType parameter of each SetFieldType call identifies the type of the data 
members represented by the DFX function calls that follow the SetFieldType call. 

For more information about DFX, see the article "DAO Record Field Exchange 
(DFX)" in Visual C++ Programmer's Guide online. 

See Also: CDaoFieldExchange: :Is Valid Operation, 
CDaoRecordset: :DoFieldExchange 

Data Members 
CDaoFieldExchange: :m_nOperation 
Remarks 

258 

Identifies the operation to be performed on the CDaoRecordset object associated 
with the field exchange object. The CDaoFieldExchange object supplies the context 
for a number of different DFX operations on the record set. 



CDaoFieldExchange: :m_prs 

Note The PSEUDO NULL value described under the MarkForAddNew and SetFieldNull 
operations below is a value used to mark fields Null. The DAD record field exchange 
mechanism (DFX) uses this value to determine which fields have been explicitly marked Null. 
PSEUDO NULL is not required for COleDateTime and COleCurrency fields. 

For more information about DFX and these operations, see the article "DAO Record 
Field Exchange (DFX)" in Visual C++ Programmer's Guide online. 

Possible values of m_nOperation are: 

Operation 

AddToParameterList 

AddToSelectList 

BindField 

BindParam 

Fixup 

AllocCache 

StoreField 

LoadField 

FreeCache 

SetFieldN ull 

MarkForAddNew 

MarkForEdit 

SetDirty Field 

DumpField 

MaxDFXOperation 

Description 

Builds the PARAMETERS clause of the SQL statement. 

Builds the SELECT clause of the SQL statement. 

Binds a field in the database to a memory location in your application. 

Sets parameter values for the recordset's query. 

Sets the Null status for a field. 

Allocates the cache used to check for "dirty" fields in the recordset. 

Saves the current record to the cache. 

Restores the cached data member variables in the recordset. 

Frees the cache used to check for "dirty" fields in the recordset. 

Sets a field's status to Null and value to PSEUDO NULL. 

Marks fields "dirty" if not PSEUDO NULL. 

Marks fields "dirty" if they do not match the cache. 

Sets field values marked as "dirty." 

Dumps a field's contents (debug only). 

Used for input checking. 

See Also: CDaoFieldExchange: :Is ValidOperation, CDaoFieldExchange: :m_prs, 
CDaoRecordset: :DoFieldExchange 

CDaoFieldExchange: :m_prs 
Remarks 

Contains a pointer to the CDaoRecordset object associated with the 
CDaoFieldExchange object. 

For more information about DFX, see the article "DAO Record Field Exchange 
(DFX)" in Visual C++ Programmer's Guide online. 

See Also: CDaoFieldExchange: :m_nOperation, CDaoRecordset 

259 



CDaoQueryDef 

CDaoQueryDef 

Usage 

260 

A CDaoQueryDef object represents a query definition, or "querydef," usually 
one saved in a database. A querydef is a data access object that contains the SQL 
statement that describes a query, and its properties, such as "Date Created" and 
"ODBC Timeout." You can also create temporary querydef objects without saving 
them, but it is convenient-and much more efficient-to save commonly reused 
queries in a database. A CDaoDatabase object maintains a collection, called the 
QueryDefs collection, that contains its saved querydefs. 

Note The DAO database classes are distinct from the MFC database classes based on Open 
Database Connectivity (ODSC). All DAD database class names have the "CDao" prefix. You 
can still access ODSC data sources with the DAD classes. In general, the MFC classes based 
on DAD are more capable than the MFC classes based on DDSC; the DAD-based classes can 
access data, including through DDSC drivers, via their own database engine. The DAD-based 
classes also support Data Definition Language (DDL) operations, such as adding tables via the 
classes, without having to call DAD directly. 

Use querydef objects either to work with an existing saved query or to create a new 
saved query or temporary query: 

1. In all cases, first construct a CDaoQueryDef object, supplying a pointer to the 
CDaoDatabase object to which the query belongs. 

2. Then do the following, depending on what you want: 

• To use an existing saved query, call the querydef object's Open member 
function, supplying the name of the saved query. 

• To create a new saved query, call the querydef object's Create member 
function, supplying the name of the query. Then call Append to save the query 
by appending it to the database's QueryDefs collection. Create puts the 
querydef into an open state, so after calling Create you do not call Open. 

• To create a temporary querydef, call Create. Pass an empty string for the query 
name. Do not call Append. 

When you finish using a querydef object, call its Close member function; then destroy 
the querydef object. 

Tip The easiest way to create saved queries is to create them and store them in your 
database using Microsoft Access. Then you can open and use them in ,¥our MFC code. 



Purposes 
You can use a querydef object for any of the following purposes: 

• To create a CDaoRecordsetobject 

• To call the object's Execute member function to directly execute an action query 
or an SQL pass-through query 

You can use a querydef object for any type of query, including select, action, crosstab, 
delete, update, append, make-table, data definition, SQL pass-through, union, and 
bulk queries. The query's type is determined by the content of the SQL statement that 
you supply. For information about query types, see the Execute and GetType member 
functions. Recordsets are commonly used for row-returning queries, usually those 
using the SELECT ••• FROM keywords. Execute is most commonly used for bulk 
operations. For more information, see Execute and CDaoRecordset. 

Querydefs and Recordsets 
To use a querydef object to create a CDaoRecordset object, you typically create or 
open a querydef as described above. Then construct a recordset object, passing a 
pointer to your querydef object when you call CDaoRecordset::Open. The querydef 
you pass must be in an open state. For more information, see class CDaoRecordset. 

You cannot use a querydef to create a recordset (the most common use for a querydef) 
unless it is in an open state. Put the querydef into an open state by calling either Open 
or Create. 

External Databases 
Querydef objects are the preferred way to use the native SQL dialect of an external 
database engine. For example, you can create a Transact SQL query (as used on 
Microsoft SQL Server) and store it in a querydef object. When you need to use a SQL 
query not based on the Microsoft Jet database engine, you must provide a connect 
string that points to the external data source. Queries with valid connect strings bypass 
the database engine and pass the query directly to the external database server for 
processing. 

Tip The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB) 
database. For more information, see the article "DAO External: Working with External Data 
Sources" in Visual C++ Programmer's Guide online. 

For more information about querydefs, see the article "DAO Querydef' in Visual C+ + 
Programmer's Guide online. For related information, see the topics "QueryDef 
Object," "QueryDefs Collection," and "Accessing External Databases with DAO" in 
DAO Help. 

#include <afxdao.h> 

See Also: CDaoRecordset, CDaoDatabase, CDaoTableDef, CDaoException 

CDaoQueryDef 

261 



CDaoQueryDef 

CDaoQueryDef Class Members 

262 

Data Members 

m_pDAOQueryDef 

Construction 

CDaoQueryDef 

Create 

Append 

Open 

Close 

Attributes 

CanUpdate 

GetConnect 

GetDateCreated 

GetDateLastUpdated 

GetName 

GetODBCTimeout 

GetRecordsAffected 

GetReturnsRecords 

GetSQL 

GetType 

IsOpen 

SetConnect 

SetName 

A pointer to the CDaoDatabase object with which the querydef is 
associated. The querydef might be saved in the database or not. 

A pointer to the OLE interface for the underlying DAO querydef 
object. 

Constructs a CDaoQueryDef object. Next call Open or Create, 
depending on your needs. 

Creates the underlying DAO querydef object. Use the querydef as a 
temporary query, or call Append to save it in the database. 

Appends the querydef to the database's QueryDefs collection as a 
saved query. 

Opens an existing querydef stored in the database's QueryDefs 
collection. 

Closes the querydef object. Destroy the C++ object when you finish 
with it. 

Returns nonzero if the query can update the database. 

Returns the connect string associated with the querydef. The connect 
string identifies the data source. (For SQL pass-through queries only; 
otherwise an empty string.) 

Returns the date the saved query was created. 

Returns the date the saved query was last updated. 

Returns the name of the querydef. 

Returns the timeout value used by ODBC (for an ODBC query) when 
the querydef is executed. This determines how long to allow for the 
query's action to complete. 

Returns the number of records affected by an action query. 

Returns nonzero if the query defined by the querydef returns records. 

Returns the SQL string that specifies the query defined by the 
querydef. 

Returns the query type: delete, update, append, make-table, and so on. 

Returns nonzero if the querydef is open and can be executed. 

Sets the connect string for an SQL pass-through query on an ODBC 
data source. 

Sets the name of the saved query, replacing the name in use when the 
querydef was created. 



CDaoQueryDef: :Can Update 

Attributes (continued) 

SetODBCTimeout 

SetReturnsRecords 

SetSQL 

Operations 

Execute 

GetFieldCount 

GetFieldInfo 

GetParameterCount 

GetParameter Info 

GetParam Value 

SetParam Value 

Sets the timeout value used by ODBC (for an ODBC query) when 
the querydef is executed. 

Specifies whether the querydef returns records. Setting this attribute 
to TRUE is only valid for SQL pass-through queries. 

Sets the SQL string that specifies the query defined by the querydef. 

Executes the query defined by the querydef object. 

Returns the number of fields defined by the querydef. 

Returns information about a specified field defined in the query. 

Returns the number of parameters defined for the query. 

Returns information about a specified parameter to the query. 

Returns the value of a specified parameter to the query. 

Sets the value of a specified parameter to the query. 

Member Functions 
CDaoQuery Def: : Append 

Remarks 

virtual void Append( ); 
throw( CDaoException, CMemoryException); 

Call this member function after you call Create to create a new querydef object. 
Append saves the querydef in the database by appending the object to the database's 
QueryDefs collection. You can use the querydef as a temporary object without 
appending it, but if you want it to persist, you must call Append. 

If you attempt to append a temporary querydef object, MFC throws an exception of 
type CDaoException. 

For information about querydefs, see the article "DAO Querydef' in Visual c++ 
Programmer's Guide online. 

CDaoQuery Def: : Can Update 
BOOL CanUpdate( ); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if you are permitted to modify the querydef; otherwise O. 

263 



CDaoQueryDef: :CDaoQueryDef 

Remarks 
Call this member function to determine whether you can modify the querydef-such 
as changing its name or SQL string. You can modify the querydef if: 

• It is not based on a database that is open read-only. 

• You have update permissions for the database. 

This depends on whether you have implemented security features. MFC does not 
provide support for security; you must implement it yourself by calling DAO 
directly or by using Microsoft Access. See the topic "Permissions Property" in 
DAO Help. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 

CDaoQueryDef: :CDaoQueryDef 
CDaoQueryDef( CDaoDatabase* pDatabase); 

Parameters 

Remarks 

264 

pDatabase A pointer to an open CDaoDatabase object. 

Constructs a CDaoQueryDef object. The object can represent an existing querydef 
stored in the database's QueryDefs collection, a new query to be stored in the 
collection, or a temporary query, not to be stored. Your next step depends on the 
type of querydef: 

o If the object represents an existing querydef, call the object's Open member 
function to initialize it. 

o If the object represents a new querydef to be saved, call the object's Create 
member function. This adds the object to the database's QueryDefs collection. 
Then call CDaoQueryDef member functions to set the object's attributes. Finally, 
call Append. I 

o If the object represents a temporary querydef (not to be saved in the database), call 
Create, passing an empty string for the query's name. After calling Create, 
initialize the querydef by directly setting its attributes. Do not call Append. 

To set the attributes of the querydef, you can use the SetName, SetSQL, SetConnect, 
SetODBCTimeout, and SetReturnsRecords member functions. 

When you finish with the querydef object, call its Close member function. If you have 
a pointer to the querydef, use the delete operator to destroy the C++ object. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 



CDaoQueryDef::Create 

See Also: CDaoQueryDef: :GetConnect, CDaoQueryDef: : GetDateCreated, 
CDaoQueryDef: :GetDateLastUpdated, CDaoQueryDef: : GetName, 
CDaoQueryDef: :GetODBCTimeout, CDaoQueryDef: : GetReturnsRecords, 
CDaoQueryDef: :GetSQL 

CDaoQuery Def: : Close 

Remarks 

virtual void Close( ); 

Call this member function when you finish using the querydef object. Closing the 
querydef releases the underlying DAO object but does not destroy the saved DAO 
querydef object or the C++ CDaoQueryDef object. This is not the same as 
CDaoDatabase::DeleteQueryDef, which deletes the querydef from the database's 
QueryDefs collection in DAO (if not a temporary querydef). 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 

See Also: CDaoQueryDef::Open, CDaoQueryDef::Create, 
CDaoQueryDef:: CDaoQueryDef 

CD ao Query Def: : Create 
virtual void Create( LPCTSTR IpszName = NULL, LPCTSTR IpszSQL = NULL ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

lpszName The unique name of the query saved in the database. For details about the 
string, see the topic "CreateQueryDef Method" in DAO Help. If you accept the 
default value, an empty string, a temporary querydef is created. Such a query is 
not saved in the QueryDefs collection. 

lpszSQL The SQL string that defines the query. If you accept the default value of 
NULL, you must later call SetSQL to set the string. Until then, the query is 
undefined. You can, however, use the undefined query to open a recordset; see 
Remarks for details. The SQL statement must be defined before you can append 
the querydef to the QueryDefs collection. 

Call this member function to create a new saved query or a new temporary query. If 
you pass a name in lpszName, you can then call Append to save the querydef in the 
database's QueryDefs collection. Otherwise, the object is a temporary querydef and is 
not saved. In either case, the querydef is in an open state, and you can either use it to 
create a CDaoRecordset object or call the querydef's Execute member function. 

265 



CDaoQuery Def: :Execute 

If you do not supply an SQL statement in IpszSQL, you cannot run the query with 
Execute but you can use it to create a recordset. In that case, MFC uses the recordset's 
default SQL statement. 

For information about querydefs, see the article "DAO Queryder' in Visual C++ 
Programmer's Guide online. 

See Also: CDaoQueryDef: :Open, CDaoQueryDef: :CDaoQueryDef, 
CDaoRecordset::GetSQL 

CDaoQuery Def: :Execute 
virtual void Execute( int nOptions = dbFailOnError ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

266 

nOptions An integer that determines the characteristics of the query. For related 
information, see the topic "Execute Method" in DAO Help. You can use the 
bitwise-OR operator (I) to combine the following constants for this argument: 

• dbDenyWrite Deny write permission to other users. 

• dbInconsistent Inconsistent updates. 

• db Consistent Consistent updates. 

• dbSQLPassThrough SQL pass-through. Causes the SQL statement to be 
passed to an ODBC database for processing. 

• dbFailOnError Default value. Roll back updates if an error occurs and report 
the error to the user. 

• dbSeeChanges Generate a run-time error if another user is changing data you 
are editing. 

Note For an explanation of the terms "inconsistent" and "consistent," see the topic "Execute 
Method" in DAD Help. 

Call this member function to run the query defined by the querydef object. Querydef 
objects used for execution in this manner can only represent one of the following 
query types: 

• Action queries 

• SQL pass-through queries 

Execute does not work for queries that return records, such as select queries. Execute 
is commonly used for bulk operation queries, such as UPDATE, INSERT, or 
SELECT INTO, or for data definition language (DDL) operations. 



CDaoQuery Def: :GetConnect 

For an explanation of action queries and SQL pass-through queries, see the article 
"DAO Querydef: Action Queries and SQL Pass-Through Queries" in Visual C++ 
Programmer's Guide online. 

Tip The preferred way to work with ODBC data sources is to attach tables to a Microsoft Jet 
(.MDB) database. For more information, see the topic "Accessing External Databases with 
DAO" in DAO Help and the article "DAO External: Working with External Data Sources" in 
Visual C++ Programmer's Guide online. 

Call the GetRecordsAffected member function of the querydef object to determine 
the number of records affected by the most recent Execute call. For example, 
GetRecordsAffected returns information about the number of records deleted, 
updated, or inserted when executing an action query. The count returned will not 
reflect changes in related tables when cascade updates or deletes are in effect. 

If you include both dbInconsistent and db Consistent or if you include neither, the 
result is the default, db Inconsistent. 

Execute does not return a recordset. Using Execute on a query that selects records 
causes MFC to throw an exception of type CDaoException. 

For more information about using the Execute member function for querydef objects, 
see the article "DAO Querydef: Using Querydefs" in Visual C++ Programmer's 
Guide online. 

CD ao Query Def: : GetConnect 
CString GetConnect( ); 

throw( CDaoException, CMemoryException); 

Return Value 

. Remarks 

A CString containing the connect string for the querydef . 

Call this member function to get the connect string associated with the querydef's data. 
source. This function is used only with ODBC data sources and certain ISAM drivers. 
It is not used with Microsoft Jet (.MDB) databases; in this case, GetConnect returns 
an empty string. For more information, see SetConnect. 

Tip The preferred way to work with ODBC tables is to attach them to an .MDB database. For 
more information, see the topic "Accessing External Databases with DAO" in DAO Help and the 
article "DAO External: Working with External Data Sources" in Visual C++ Programmer's Guide 
online. 

For information about connect strings, see the topic "Connect Property" in DAO Help. 
For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 

267 



CDaoQuery Def: : GetDateCreated 

CDaoQuery Def: : GetDateCreated 
COleDateTime GetDateCreated( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A COleDateTime object containing the date and time the querydef was created. 

Call this member function to get the date the querydef object was created. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. For related information, see the topic "DateCreated, 
LastUpdated Properties" in DAO Help. 

See Also: CDaoQueryDef::GetDateLastUpdated 

CD ao Query Def: : GetDateLast Updated 
COleDateTime GetDateLastUpdated( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A COleDateTime object containing the date and time the querydef was last updated. 

Call this member function to get the date the querydef object was last updated-when 
any of its properties were changed, such as its name, its SQL string, or its connect 
string. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. For related information, see the topic "DateCreated, 
LastUpdated Properties" in DAO Help. 

See Also: CDaoQueryDef::GetDateCreated 

CDaoQuery Def: : GetFieldCount 
short GetFieldCount( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

268 

The number of fields defined in the query. 

Call this member function to retrieve the number of fields in the query. 
GetFieldCount is useful for looping through all fields in the querydef. For that 
purpose, use GetFieldCount in conjunction with GetFieldInfo. 



CDaoQuery Def:: GetFieldlnfo 

For information about obtaining information about querydef fields, see the article 
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. 

CDaoQuery Def: : GetFieldInfo 
void GetFieldInfo( int nlndex, CDaoFieldInfo& fieldinfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

void GetFieldInfo( LPCTSTR ipszName, CDaoFieldInfo& fieldinfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

nlndex The zero-based index of the desired field in the querydef's Fields collection, 
for lookup by index. 

fieldinfo A reference to a CDaoFieldInfo object that returns the information 
requested. 

dwlnfoOptions Options that specify which information about the field to retrieve. 
The available options are listed here along with what they cause the function to 
return: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes 

o AFX_DAO_SECONDARY_INFO Primary information plus: Ordinal 
Position, Required, Allow Zero Length, Source Field, Foreign Name, Source 
Table, Collating Order 

• AFX_DAO_ALL_INFO Primary and secondary information plus: Default 
Value, Validation Text, Validation Rule 

IpszName A string containing the name of the desired field, for lookup by name. 
You can use a CString. 

Call this member function to obtain various kinds of information about a field defined 
in the querydef. For a description of the information returned infieldinfo, see the 
CDaoFieldInfo structure. This structure has members that correspond to the 
descriptive information under dwlnfoOptions above. If you request one level of 
information, you get any prior levels of information as well. 

For more information about obtaining field information, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. 

See Also: CDaoQueryDef::GetFieldCount 

269 



CDaoQueryDef: :GetName 

CDaoQuery Def: : GetN arne 
CString GetName(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The name of the query. 

Call this member function to retrieve the name of the query represented by the 
querydef. Querydef names are unique user-defined names. For more information 
about querydef names, see the topic "Name Property" in DAO Help. 

For information about querydefs, see the article "DAO Queryder' in Visual C++ 
Programmer's Guide online. 

See Also: CDaoQueryDef::SetName, CDaoQueryDef::GetSQL, 
CDaoQueryDef: : GetReturnsRecords, CDaoQueryDef: : GetODBCTimeout 

CDaoQueryDef::GetODBCTirneout 
short GetODBCTimeout( ); 

throw( CDaoException, CMemoryException ); 

Return Value 

Remarks 

The number of seconds before a query times out. 

Call this member function to retrieve the current time limit before a query to an 
ODBC data source times out. For information about this time limit, see the topic 
"ODBCTimeout Property" in DAO Help. 

Tip The preferred way to work with DDBe tables is to attach them to a Microsoft Jet (.MDB) 
database. For more information, see the topic "Accessing External Databases with DAD" in 
DAD Help and the article "DAD External: Working with External Data Sources" in Visual C++ 
Programmer's Guide online. 

For information about querydefs, see the article "DAO Queryder' in Visual C++ 
Programmer's Guide online. 

See Also: CDaoQueryDef::SetODBCTimeout, CDaoQueryDef::GetName, 
CDaoQueryDef: :GetSQL, CDaoQueryDef: : GetReturnsRecords 

CDaoQuery Def: : GetPararneterCount 
short GetParameterCount(); 

throw( CDaoException, CMemoryException); 

270 



CDaoQuery Def:: GetParameter Info 

Return Value 

Remarks 

The number of parameters defined in the query. 

Call this member function to retrieve the number of parameters in the saved query. 
GetParameterCount is useful for looping through all parameters in the querydef. For 
that purpose, use GetParameterCount in conjunction with GetParameterInfo. 

For information about parameterizing queries, see the article "DAO Queries: Filtering 
and Parameterizing Queries" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Parameter Object," "Parameters Collection," and 
"PARAMETERS Declaration (SQL)" in DAO Help. 

See Also: CDaoQueryDef: : GetParam Value, CDaoQueryDef: :SetParam Value 

CDaoQuery Def:: GetParameterInfo 
void GetParameterInfo( int nlndex, CDaoParameterInfo& paraminfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException ); 

void GetParameterInfo( LPCTSTR lpszName, CDaoParameterInfo& paraminfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

nlndex The zero-based index of the desired parameter in the querydef's Parameters 
collection, for lookup by index. 

paraminfo A reference to a CDaoParameterInfo object that returns the information 
requested. 

dwlnfoOptions Options that specify which information about the parameter to 
retrieve. The available option is listed here along with what it causes the function 
to return: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Type 

IpszName A string containing the name of the desired parameter, for lookup by 
name. You can use a CString. 

Call this member function to obtain information about a parameter defined in the 
querydef. For a description of the information returned in paraminfo, see the 
CDaoParameterInfo structure. This structure has members that correspond to the 
descriptive information under dwlnfoOptions above. 

For more information about obtaining parameter information, see the article "DAO 
Collections: Obtaining Information About DAO Objects." For more information about 
parameterizing queries, see the article "DAO Queries: Filtering and Parameterizing 

271 



CDaoQueryDef: : GetParam Value 

Queries." Both articles are in Visual C++ Programmer's Guide online. For related 
information, see the topic "PARAMETERS Declaration (SQL)" in DAO Help. 

See Also: CDaoQueryDef::GetParameterCount 

CDaoQueryDef: : GetParam Value 
COleVariant GetParamValue( LPCTSTR IpszName); 

throw( CDaoException, CMemoryException ); 
COleVariant GetParamValue( int nlndex); 

throw( CDaoException, CMemoryException); 

Return Value 
An object of class COle Variant that contains the parameter's value. 

Parameters 

Remarks 

IpszName The name of the parameter whose value you want, for lookup by name. 

nlndex The zero-based index of the parameter in the querydef's Parameters 
collection, for lookup by index. You can obtain this value with calls to 
GetParameterCount and GetParameterlnfo. 

Call this member function to retrieve the current value of the specified parameter 
stored in the querydef's Parameters collection. You can access the parameter either 
by name or by its ordinal position in the collection. 

For examples and more information about parameterizing queries, see the article 
"DAO Queries: Filtering and Parameterizing Queries" in Visual C++ Programmer's 
Guide online. For related information, see the topic "PARAMETERS Declaration 
(SQL)" in DAO Help. 

See Also: CDaoQueryDef::SetParamValue 

CDaoQuery Def: : GetRecordsAffected 
long GetRecordsAffected(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

272 

The number of records affected. 

Call this member function to determine how many records were affected by the last 
call of Execute. The count returned will not reflect changes in related tables when 
cascade updates or deletes are in effect. 



CDaoQueryDef: :GetSQL 

For information about querydefs, see the article "DAO Querydef' in Visual c++ 
Programmer's Guide online. For related information see the topic "RecordsAffected 
Property" in DAO Help. 

CDaoQuery Def: : GetReturnsRecords 
BOOL GetReturnsRecords(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if the querydef is based on a query that returns records; otherwise o. 

Call this member function to determine whether the querydef is based on a query that 
returns records. This member function is only used for SQL pass-through queries. For 
more information about SQL queries, see the Execute member function. For more 
information about working with SQL pass-through queries, see the 
SetReturnsRecords member function. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. For related information, see the topic "ReturnsRecords 
Property" in DAO Help. 

See Also: CDaoQueryDef::GetName, CDaoQueryDef::GetSQL, 
CDaoQueryDef: :GetODBCTimeout 

CDaoQueryDef: : GetSQL 
CString GetSQL(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The SQL statement that defines the query on which the querydef is based. 

Call this member function to retrieve the SQL statement that defines the query on 
which the querydef is based. You will then probably parse the string for keywords, 
table names, and so on. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. For related information, see the topics "SQL Property," 
"Comparison of Microsoft Jet Database Engine SQL and ANSI SQL," and "Querying 
a Database with SQL in Code" in DAO Help. 

See Also: CDaoQueryDef::SetSQL, CDaoQueryDef::GetName, 
CDaoQueryDef: : GetReturnsRecords, CDaoQueryDef: :GetODBCTimeout 

273 



CDaoQueryDef: : GetType 

CDaoQuery Def: : GetType 
short GetType(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The type of the query defined by the querydef. For values, see Remarks. 

Call this member function to determine the query type of the querydef. The query type 
is set by what you specify in the querydef's SQL string when you create the querydef 
or call an existing querydef's SetSQL member function. The query type returned by 
this function can be one of the following values: 

• dbQSelect Select 

• dbQAction Action 

• dbQCrosstab Crosstab 

• dbQDelete Delete 

• dbQUpdate Update 

• dbQAppend Append 

• dbQMakeTable Make-table 

• dbQDDL Data-definition 

• dbQSQLPassThrough Pass-through 

• dbQSetOperation Union 

• dbQSPTBulk Used with dbQSQLPassThrough to specify a query that does not 
return records. 

Note To create an Sal pass-through query, don't set the dbSQLPassThrough constant. This 
is set automatically by the Microsoft Jet database engine when you create a querydef object 
and set the connect string. 

For information about SQL strings, see GetSQL. For information about query types, 
see Execute. 

CDaoQueryDef: :IsOpen 
BOOL IsOpen( ) const; 

Return Value 

Remarks 

274 

Nonzero if the CDaoQueryDef object is currently open; otherwise O. 

Call this member function to determine whether the CDaoQueryDef object is 
currently open. A querydef must be in an open state before you use it to call 



CDaoQuery Def: :SetConnect 

"" Execute or to create a CDaoRecordset object. To put a querydef into an open 
state call either Create (for a new querydef) or Open (for an existing querydef). 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 

CDaoQuery Def: : Open 
virtual void Open( LPCTSTR lpszName = NULL); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszName A string that contains the name of the saved querydef to open. You can 
use a CString. 

Call this member function to open a querydef previously saved in the database's 
QueryDefs collection. Once the querydef is open, you can call its Execute member 
function or use the querydef to create a CDaoRecordset object. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 

See Also: CDaoQueryDef::IsOpen, CDaoQueryDef::Close, 
CDaoQueryDef: :SetName, CDaoQueryDef: :Create 

CDaoQuery Def: : SetConnect 
void SetConnect( LPCTSTR IpszConnect); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszConnect A string that contains a connect string for the associated 
CDaoDatabase object. 

Call this member function to set the querydef object's connect string. The connect 
string is used to pass additional information to ODBC and certain ISAM drivers as 
needed. It is not used for Microsoft Jet (.MDB) databases. 

Tip The preferred way to work with DDBe tables is to attach them to an .MDB database. For 
more information, see the topic "Accessing External Databases with DAO" in DAO Help and the 
article "DAD External: Working with External Data Sources" in Visual C++ Programmer's Guide 
online. 

275 



CDaoQueryDef::SetName 

Before executing a querydef that represents an SQL pass-through query to an ODBC 
data source, set the connect string with SetConnect and call SetReturnsRecords to 
specify whether the query returns records. 

For more information about the connect string's structure and examples of connect 
string components, see the topic "Connect Property" in DAO Help. For information 
about querydefs, see the article "DAO Querydef' in Visual C++ Programmers Guide 
online. 

CDaoQuery Def: : SetN arne 
void SetName( LPCTSTR IpszName); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszName A string that contains the new name for a nontemporary query in the 
associated CDaoDatabase object. 

Call this member function if you want to change the name of a querydef that is not 
temporary. Querydef names are unique, user-defined names. You can call SetName 
before the querydef object is appended to the QueryDefs collection. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmers Guide online. For more information about the querydef name, see the 
topic "Name Property" in DAO Help. 

See Also: CDaoQueryDef::GetName, CDaoQueryDef::SetSQL, 
CDaoQueryDef: :SetConnect, CDaoQueryDef: :SetODBCTimeout, 
CDaoQueryDef: :SetReturnsRecords 

CDaoQueryDef::SetODBCTirneout 
void SetODBCTimeout( short nODBCTimeout ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

276 

nODBCTimeout The number of seconds before a query times out. 

Call this member function to set the time limit before a query to an ODBC data source 
times out. 

Tip The preferred way to work with DDBe tables is to attach them to a Microsoft Jet (.MDB) 
database. For more information, see the topic "Accessing External Databases with DAD" in 
DAD Help and the article "DAD External: Working with External Data Sources" in Visual C++ 
Programmer's Guide online. 



CDaoQueryDef: :SetParam Value 

This member function lets you override the default number of seconds before 
subsequent operations on the connected data source "time out." An operation might 
time out due to network access problems, excessive query processing time, and so on. 
Call SetODBCTimeout prior to executing a query with this querydef if you want to 
change the query timeout value. (As ODBC reuses connections, the timeout value is 
the same for all clients on the same connection.) 

The default value for query timeouts is 60 seconds. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer s Guide online. For related information, see the topic "ODBCTimeout 
Property" in DAO Help. 

See Also: CDaoQueryDef: :GetODBCTimeout, CDaoQueryDef: :SetName, 
CDaoQueryDef: :SetSQL, CDaoQueryDef: :SetConnect, 
CDaoQuery Def: :SetReturnsRecords 

CDaoQuery Def: : SetParam Value 
void SetParamValue( LPCTSTR lpszName, const COleVariant& varValue); 

throw( CDaoException, CMemoryException); 
void SetParamValue( int nOrdinal, const COleVariant& varValue); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

lpszName The name of the parameter whose value you want to set. 

varValue The value to set; see Remarks. 

nOrdinal The ordinal position of the parameter in the querydef's Parameters 
collection. You can obtain this value with calls to GetParameterCount and 
GetParameter Info. 

Call this member function to set the value of a parameter in the querydef at run time. 
The parameter must already have been established as part of the querydef's SQL 
string. You can access the parameter either by name or by its ordinal position in the 
collection. 

Specify the value to set as a COleVariant object. For information about setting the 
desired value and type in your COleVariant object, see class COleVariant. 

For examples and more information about parameterizing queries, see the article 
"DAO Queries: Filtering and Parameterizing Queries" in Visual C++ Programmers 
Guide online. For related information, see the topic "PARAMETERS Declaration 
(SQL)" in DAO Help. 

See Also: CDaoQueryDef::GetParamValue 

277 



CDaoQuery Def:: SetRetumsRecords 

CDaoQuery Def: : SetReturnsRecords 
void SetReturnsRecords( BOOL bReturnsRecords); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

bReturnsRecords Pass TRUE if the query on an external database returns records; 
otherwise, FALSE. 

Call this member function as part of the process of setting up an SQL pass-through 
query to an external database. In such a case, you must create the querydef and set its 
properties using other CDaoQueryDef member functions. For a description of 
external databases, see Set Connect. 

For information about querydefs, see the article "DAO Querydef." For information 
about external data sources, see the article "DAO External: Working with External 
Data Sources." Both articles are in Visual C++ Programmer's Guide online. For 
related information, see the topic "ReturnsRecords Property" in DAO Help. 

See Also: CDaoQueryDef: : GetReturnsRecords, CDaoQueryDef: :SetName, 
CDaoQueryDef: :SetSQL, CDaoQueryDef: :SetConnect, 
CDaoQueryDef: :SetODBCTimeout 

CDaoQueryDef: :SetSQL 
void SetSQL( LPCTSTR IpszSQL); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

278 

IpszSQL A string containing a complete SQL statement, suitable for execution. 
The syntax of this string depends on the DBMS that your query targets. For a 
discussion of syntax used in the Microsoft Jet database engine, see the topic 
"Building SQL Statements in Code" in DAO Help. 

Call this member function to set the SQL statement that the querydef executes. A 
typical use of SetSQL is setting up a querydef object for use in an SQL pass-through 
query. (For the syntax of SQL pass-through queries on your target DBMS, see the 
documentation for your DBMS.) 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. For more information about SQL, see the topics "SQL 
Property," "Microsoft Jet Database Engine SQL Data Types," and "Querying a 
Database with SQL in Code" in DAO Help. 



CDaoQueryDef: :m_pDAOQueryDef 

See Also: CDaoQueryDef: :GetSQL, CDaoQueryDef: :SetName, 
CDaoQueryDef::SetConnect, CDaoQueryDef::SetODBCTimeout, 
CDaoQuery Def: :SetReturnsRecords 

Data Members 
CDaoQuery Def: : m_pDatabase 
Remarks 

Contains a pointer to the CDaoDatabase object associated with the querydef object. 
Use this pointer if you need to access the database directly-for example, to obtain 
pointers to other querydef or recordset objects in the database's collections. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer s Guide online. 

CDaoQuery Def: :m_pDAOQuery Def 
Remarks 

Contains a pointer to the OLE interface for the underlying DAO querydef object. This 
pointer is provided for completeness and consistency with the other classes. However, 
because MFC rather fully encapsulates DAO querydefs, you are unlikely to need it. If 
you do use it, do so cautiously-in particular, do not change the value of the pointer 
unless you know what you are doing. 

For information about querydefs, see the article "DAO Querydef' in Visual C++ 
Programmer's Guide online. 

279 



CDaoRecordset 

CDaoRecordset 

280 

A CDaoRecordset object represents a set of records selected from a data source. 
Known as "recordsets," CDaoRecordset objects are available in the following three 
forms: 

• Table-type recordsets represent a base table that you can use to examine, add, 
change, or delete records from a single database table. 

• Dynaset-type recordsets are the result of a query that can have updatable records. 
These recordsets are a set of records that you can use to examine, add, change, or 
delete records from an underlying database table or tables. Dynaset-type recordsets 
can contain fields from one or more tables in a database. 

• Snapshot-type recordsets are a static copy of a set of records that you can use to 
find data or generate reports. These recordsets can contain fields from one or more 
tables in a database but cannot be updated. 

Each form of recordset represents a set of records fixed at the time the recordset is 
opened. When you scroll to a record in a table-type recordset or a dynaset-type 
recordset, it reflects changes made to the record after the record set is opened, 
either by other users or by other recordsets in your application. (A snapshot-type 
recordset cannot be updated.) You can use CDaoRecordset directly or derive an 
application-specific recordset class from CDaoRecordset. You can then: 

• Scroll through the records. 

• Set an index and quickly look for records using Seek (table-type recordsets only). 

• Find records based on a string comparison: "<", "<=", "=", ">=", or ">" 
(dynaset-type and snapshot-type recordsets). 

• Update the records and specify a locking mode (except snapshot:type recordsets). 

• Filter the recordset to constrain which records it selects from those available on 
the data source. 

• Sort the recordset. 

• Parameterize the recordset to customize its selection with information not known 
until run time. 

Class CDaoRecordset supplies an interface similar to that of class CRecordset. The 
main difference is that class CDaoRecordset accesses data through a Data Access 
Object (DAO) based on OLE. Class CRecordset accesses the DBMS through Open 
Database Connectivity (ODBC) and an ODBC driver for that DBMS. 



Note The DAD database classes are distinct from the MFC database classes based on Dpen 
Database Connectivity (DDBC). All DAD database class names have the "CDao" prefix. You 
can still access DDBC data sources with the DAD classes; the DAD classes generally offer 
superior capabilities because they are specific to the Microsoft Jet database engine. 

You can either use CDaoRecordset directly or derive a class from CDaoRecordset. 
To use a recordset class in either case, open a database and construct a recordset 
object, passing the constructor a pointer to your CDaoDatabase object. You can also 
construct a CDaoRecordset object and let MFC create a temporary CDaoDatabase 
object for you. Then call the recordset's Open member function, specifying whether 
the object is a table-type recordset, a dynaset-type recordset, or a snapshot-type 
recordset. Calling Open selects data from the database and retrieves the first record. 

Use the object's member functions and data members to scroll through the records and 
operate on them. The operations available depend on whether the object is a table-type 
recordset, a dynaset-type recordset, or a snapshot-type recordset, and whether it is 
updatable or read-only-this depends on the capability of the database or Open 
Database Connectivity (ODBC) data source. To refresh records that may have been 
changed or added since the Open call, call the object's Requery member function. Call 
the object's Close member function and destroy the object when you finish with it. 

CDaoRecordset uses DAO record field exchange (DFX) to support reading and 
updating of record fields through type-safe C++ members of your CDaoRecordset or 
CDaoRecordset-derived class. You can also implement dynamic binding of columns 
in a database without using the DFX mechanism using GetFieldValue and 
SetFieldValue. 

For more information about recordsets, see the article "DAO: Recordset Architecture" 
in Visual C++ Programmer's Guide online. For related information, see the topic 
"Recordset Object" in DAO Help. 

#include <afxdao.h> 

See Also: CDaoTableDef, CDaoWorkspace, CDaoDatabase, CDaoQueryDef 

CDaoRecordset Class Members 
Data Members 

m_bCheckCacheForDirtyFields Contains a flag indicating whether fields are automatically 
marked as changed. 

m_pDAORecordset A pointer to the DAO interface underlying the recordset 
object. 

m_nFields Contains the number of field data members in the 
recordset class and the number of columns selected by the 
recordset from the data source. 

(continued) 

CDaoRecordset 

281 



CDaoRecordset 

282 

Data Members (continued) 

Construction 

CDaoRecordset 

Close 

Open 

Attributes 

CanAppend 

CanBookmark 

CanRestart 

CanScroll 

CanTransact 

CanUpdate 

GetCurrentIndex 

GetDateCreated 

GetDateLastUpdated 

GetEditMode 

GetLastModifiedBookmark 

GetName 

GetParam Value 

Contains the number of parameter data members in the 
recordset class - the number of parameters passed with 
the recordset's query 

Source database for this result set. Contains a pointer to a 
CDaoDatabase object. 

Contains a string used to construct an SQL WHERE 
statement. 

Contains a string used to construct an SQL ORDER BY 
statement. 

Constructs a CDaoRecordset object. 

Closes the recordset. 

Creates a new recordset from a table, dynaset, or 
snapshot. 

Returns nonzero if new records can be added to the 
recordset via the AddNew member function. 

Returns nonzero if the recordset supports bookmarks. 

Returns nonzero if Requery can be called to run the 
recordset's query again. 

Returns nonzero if you can scroll through the records. 

Returns nonzero if the data source supports transactions. 

Returns nonzero if the recordset can be updated (you can 
add, update, or delete records). 

Returns a CString containing the name of the index most 
recently used on an indexed, table-type CDaoRecordset. 

Returns the date and time the base table underlying a 
CDaoRecordset object was created 

Returns the date and time of the most recent change made 
to the design of a base table underlying a CDaoRecordset 
object. 

Returns a value that indicates the state of editing for the 
current record. 

U sed to determine the most recently added or updated 
record. 

Returns a CString containing the name of the recordset. 

Retrieves the current value of the specified parameter 
stored in the underlying DAOParameter object. 



Attributes (continued) 

GetRecordCount 

GetSQL 

GetType 

Get ValidationRule 

GetValidationText 

IsBOF 

IsDeleted 

IsEOF 

IsFieldDirty 

IsFieldNulI 

IsFieldNullable 

IsOpen 

SetCurrentlndex 

SetParam Value 

SetParam ValueNulI 

Recordset Update Operations 

AddNew 

CancelUpdate 

Delete 

Edit 

Update 

Returns the number of records accessed in a recordset 
object. 

Gets the SQL string used to select records for the 
recordset. 

Called to determine the type of a recordset: table-type, 
dynaset-type, or snapshot-type. 

Returns a CString containing the value that validates data 
as it is entered into a field. 

Retrieves the text that is displayed when a validation rule 
is not satisfied. 

Returns nonzero if the recordset has been positioned 
before the first record. There is no current record. 

Returns nonzero if the recordset is positioned on a deleted 
record. 

Returns nonzero if the recordset has been positioned after 
the last record. There is no current record. 

Returns nonzero if the specified field in the current record 
has been changed. 

Returns nonzero if the specified field in the current record 
is Null (having no value). 

Returns nonzero if the specified field in the current record 
can be set to Null (having no value). 

Returns nonzero if Open has been called previously. 

Called to set an index on a table-type recordset. 

Sets the current value of the specified parameter stored in 
the underlying DAOParameter object 

Sets the current value of the specified parameter to Null 
(having no value). 

Prepares for adding a new record. Call Update to 
complete the addition. 

Cancels any pending updates due to an Edit or AddNew 
operation. 

Deletes the current record from the recordset. You must 
explicitly scroll to another record after the deletion. 

Prepares for changes to the current record. Call Update to 
complete the edit. 

Completes an AddNew or Edit operation by saving the 
new or edited data on the data source. 

CDaoRecordset 

283 



CDaoRecordset 

284 

Recordset Navigation Operations 

Find 

FindFirst 

FindLast 

FindNext 

FindPrev 

GetAbsolutePosition 

GetBookmark 

GetPercentPosition 

Move 

MoveFirst 

MoveLast 

MoveNext 

MovePrev 

Seek 

SetAbsolutePosition 

SetBookmark 

SetPercentPosition 

Locates the first, next, previous, or last location of a 
particular string in a dynaset-type recordset that satisfies 
the specified criteria and makes that record the current 
record. 

Locates the first record in a dynaset-type or snapshot-type 
recordset that satisfies the specified criteria and makes 
that record the current record. 

Locates the last record in a dynaset-type or snapshot-type 
recordset that satisfies the specified criteria and makes 
that record the current record. 

Locates the next record in a dynaset-type or snapshot-type 
recordset that satisfies the specified criteria and makes 
that record the current record. 

Locates the previous record in a dynaset-type or 
snapshot-type recordset that satisfies the specified criteria 
and makes that record the current record. 

Returns the record number of a record set object's current 
record. 

Returns a value that represents the bookmark on a record. 

Returns the position of the current record as a percentage 
of the total number of records. 

Positions the recordset to a specified number of records 
from the current record in either direction. 

Positions the current record on the first record in the 
recordset. 

Positions the current record on the last record in the 
recordset. 

Positions the current record on the next record in the 
recordset. 

Positions the current record on the previous record in the 
recordset. 

Locates the record in an indexed table-type recordset 
object that satisfies the specified criteria for the current 
index and makes that record the current record. 

Sets the record number of a recordset object's current 
record. 

Positions the recordset on a record containing the 
specified bookmark. 

Sets the position of the current record to a location 
corresponding to a percentage of the total number of 
records in a recordset. 



Other Recordset Operations 

FillCache 

GetCacheSize 

GetCacheStart 

GetFieldCount 

GetFieldInfo 

GetFieldValue 

GetlndexCount 

GetlndexInfo 

GetLockingMode 

Requery 

SetCacheSize 

Set CacheS tart 

SetFieldDirty 

SetFieldNull 

SetFieldValue 

SetFieldValueNull 

SetLockingMode 

Overridables 

DoFieldExchange 

GetDefaultDBName 

GetDefaultSQL 

Fills all or a part of a local cache for a recordset object 
that contains data from an ODBC data source. 

Returns a value that specifies the number of records in a 
dynaset-type recordset containing data to be locally 
cached from an ODBC data source. 

Returns a value that specifies the bookmark of the first 
record in the recordset to be cached. 

Returns a value that represents the number of fields in a 
recordset. 

Returns specific kinds of information about the fields in 
the recordset. 

Returns the value of a field in a recordset. 

Retrieves the number of indexes in a table underlying a 
recordset. 

Returns various kinds of information about an index. 

Returns a value that indicates the type of locking that is in 
effect during editing. 

Runs the recordset's query again to refresh the selected 
records. 

Sets a value that specifies the number of records in a 
dynaset-type recordset containing data to be locally 
cached from an ODBC data source. 

Sets a value that specifies the bookmark of the first record 
in the recordset to be cached. 

Marks the specified field in the current record as changed. 

Sets the value of the specified field in the current record 
to Null (having no value). 

Sets the value of a field in a recordset. 

Sets the value of a field in a recordset to Null. (having no 
value). 

Sets a value that indicates the type of locking to put into 
effect during editing. 

Called to exchange data (in both directions) between the 
field data members of the recordset and the corresponding 
record on the data source. Implements DAO record field 
exchange (DFX). 

Returns the name of the default data source. 

Called to get the default SQL string to execute. 

CDaoRecordset 

285 



CDaoRecordset: :AddN ew 

Member Functions 
CDaoRecordset: :AddN ew 

Remarks 

286 

virtual void AddNew(); 
throw( CDaoException, CMemoryException); 

Call this member function to add a new record to a table-type or dynaset-type 
recordset. The record's fields are initially Null. (In database terminology, Null means 
"having no value" and is not the same as NULL in C++.) To complete the operation, 
you must call the Update member function. Update saves your changes to the data 
source. 

Caution If you edit a record and then scroll to another record without calling Update, your 
changes are lost without warning. 

If you add a record to a dynaset-type recordset by calling AddNew, the record is 
visible in the recordset and included in the underlying table where it becomes visible 
to any new CDaoRecordset objects. 

The position of the new record depends on the type of recordset: 

• In a dynaset-type recordset, records are inserted at the end of the record set, 
regardless of any sorting or ordering rules that may have been in effect when the 
record set was opened. 

• In a table-type recordset for which an index has been specified, records are 
returned in their proper place in the sort order. If no index has been specified, new 
records are returned at the end of the recordset. 

The record that was current before you used AddNew remains current. If you 
want to make the new record current and the recordset supports bookmarks, call 
SetBookmark to the bookmark identified by the LastModified property setting of 
the underlying DAO recordset object. Doing so is useful for determining the value 
for counter (auto-increment) fields in an added record. For more information, see 
GetLastModifiedBookmark. 

If the database supports transactions, you can make your AddNew call part of a 
transaction. For more information about transactions, see class CDao Workspace. 
Note that you should call CDaoWorkspace::BeginTrans before calling AddNew. 

It is illegal to call AddNew for a recordset whose Open member function has not 
been called. A CDaoException is thrown if you call AddNew for a recordset that 
cannot be appended. You can determine whether the recordset is updatable by calling 
CanAppend. 



CDaoRecordset:: CanAppend 

The framework marks changed field data members to ensure they will be written to 
the record on the data source by the DAO record field exchange (DFX) mechanism. 
Changing the value of a field generally sets the field dirty automatically, so you will 
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure 
that columns will be explicitly updated or inserted regardless of what value is in the 
field data member. The DFX mechanism also employs the use of PSEUDO NULL. 
For more information, see CDaoFieldExchange: :m_nOperation. 

If the double-buffering mechanism is not being used, then changing the value of the 
field does not automatically set the field as dirty. In this case, it will be necessary to 
explicity set the field dirty. The flag contained in m_bCheckCacheForDirtyFields 
controls this automatic field checking. 

Note If records are double-buffered (that is, automatic field checking is enabled), calling 
Cancel Update will restore the member variables to the values they had before AddNew or 
Edit was called. 

For more information about updating records, see the article "DAO Recordset: 
Recordset Operations" in Visual C++ Programmer's Guide online. For related 
information, see the topics "AddNew Method," "CancelUpdate Method," 
"LastModified Property," and "EditMode Property" in DAO Help. 

See Also: CDaoRecordset:: Can Update, CDaoRecordset:: CancelU pdate, 
CDaoRecordset: :Delete, CDaoRecordset: :Edit, CDaoRecordset:: Update, 
CDaoRecordset:: Can Transact 

CDaoRecordset: : CanAppend 
BOOL CanAppend( ) const; 

Return Value 

Remarks 

Nonzero if the recordset allows adding new records; otherwise O. CanAppend will 
return 0 if you opened the recordset as read-only. 

Call this member function to determine whether the previously opened recordset 
allows you to add new records by calling the AddNew member function. 

For more information about updating records, see the article "DAO Recordset: 
Recordset Operations" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Append Method" in DAO Help. 

See Also: CDaoRecordset:: CanBookmark, CDaoRecordset: :CanRestart, 
CDaoRecordset:: CanScroll, CDaoRecordset:: Can Transact, 
CDaoRecordset: :CanUpdate 

287 



CDaoRecordset: :CanBookmark 

CDaoRecordset: :CanBookmark 
BOOL CanBookmark( ) const; 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if the recordset supports bookmarks, otherwise O. 

Call this member function to determine whether the previously opened recordset 
allows you to individually mark records using bookmarks. If you are using recordsets 
based entirely on Microsoft Jet database engine tables, bookmarks can be used except 
on snapshot-type recordsets flagged as forward-only scrolling recordsets. Other 
database products (external ODBC data sources) may not support bookmarks. 

For more information about recordset navigation, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Bookmarkable Property" in DAO Help. 

See Also: CDaoRecordset::CanAppend, CDaoRecordset::CanRestart, 
CDaoRecordset:: CanScroll, CDaoRecordset:: CanTransact, 
CDaoRecordset: :Can Update 

CDaoRecordset: :CancelUpdate 

Remarks 

288 

virtual void CanceIUpdate(); 
throw( CDaoException, CMemoryException); 

The CancelUpdate member function cancels any pending updates due to an Edit or 
AddNew operation. For example, if an application calls the Edit or AddNew member 
function and has not called Update, CancelUpdate cancels any changes made after 
Edit or AddNew was called. 

Note If records are double-buffered (that is, automatic field checking is enabled), calling 
Cancel Update will restore the member variables to the values they had before AddNew or 
Edit was called. 

If there is no Edit or AddNew operation pending, CancelUpdate causes MFC to 
throw an exception. Call the GetEditMode member function to determine if there is a 
pending operation that can be canceled. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topic "CancelUpdate Method" in DAO Help. 

See Also: CDaoRecordset::AddNew, CDaoRecordset::Delete, 
CDaoRecordset: :Edit, CDaoRecordset:: Update, CDaoRecordset: :CanTransact 



CDaoRecordset: :CanScroll 

CDaoRecordset: : C anRe start 
BOOL CanRestart( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if Requery can be called to run the recordset's query again, otherwise O. 

Call this member function to determine whether the recordset allows restarting its 
query (to refresh its records) by calling the Requery member function. Table-type 
recordsets do not support Requery. 

If Requery is not supported, call Close then Open to refresh the data. You can call 
Requery to update a recordset object's underlying parameter query after the 
parameter values have been changed. 

For more information about working with DAO objects, see the article "DAO: 
Creating, Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide 
online. For related information, see the topic "Restartable Property" in DAO Help. 

See Also: CDaoRecordset: :CanAppend, CDaoRecordset: :CanBookmark, 
CDaoRecordset:: CanScroll, CDaoRecordset:: CanTransact, 
CDaoRecordset::CanUpdate 

CDaoRecordset: :CanScroll 
BOOL CanScroll( ) const; 

Return Value 

Remarks 

Nonzero if you can scroll through the records, otherwise O. 

Call this member function to determine whether the recordset allows scrolling. If you 
call Open with dbForwardOnly, the recordset can only scroll forward. 

For more information about navigating through recordsets, see the article "DAO 
Recordset: Recordset Navigation" in Visual c++ Programmer's Guide online. For 
related information, see the topic "Positioning the Current Record Pointer with DAO" 
in DAO Help. 

See Also: CDaoRecordset: :CanAppend, CDaoRecordset: :CanBookmark, 
CDaoRecordset:: CanRestart, CDaoRecordset:: CanTransact, 
CDaoRecordset:: CanUpdate, CDaoRecordset: :Open 

289 



CDaoRecordset: :CanTransact 

CDaoRecordset: : Can Transact 
BOOL Can1ransact( ) const; 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if the underlying data source supports transactions, otherwise o. 

Call this member function to determine whether the recordset allows transactions. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topic "Transactions Property" in DAO Help. 

See Also: CDaoRecordset::AddNew, CDaoRecordset::CanAppend, 
CDaoRecordset:: CancelU pdate, CDaoRecordset:: CanScroll, 
CDaoRecordset:: CanRestart, CDaoRecordset:: Can Update, 
CDaoRecordset: :Delete, CDaoRecordset: :Edit, CDaoRecordset:: Update 

CDaoRecordset: : Can Update 
BOOL CanUpdate() const; 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

290 

Nonzero if the recordset can be updated (add, update, and delete records), otherwise O. 

Call this member function to determine whether the recordset can be updated. A 
recordset might be read-only if the underlying data source is read-only or if you 
specified dbReadOnly for nOptions when you called Open for the record set. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topics "AddNew Method," "Edit Method," "Delete Method," "Update Method," 
and "Updatable Property" in DAO Help. 

See Also: CDaoRecordset: :CanAppend, CDaoRecordset: :CanBookmark, 
CDaoRecordset:: CanS croll, CDaoRecordset:: CanRestart, 
CDaoRecordset:: Can1ransact 



CDaoRecordset:: Close 

CDaoRecordset: : CDaoRecordset 
CDaoRecordset( CDaoDatabase* pDatabase = NULL); 

Parameters 

Remarks 

pDatabase Contains a pointer to a CDaoDatabase object or the value NULL. If 
not NULL and the CDaoDatabase object's Open member function has not been 
called to connect it to the data source, the recordset attempts to open it for you 
during its own Open call. If you pass NULL, a CDaoDatabase object is 
constructed and connected for you using the data source information you 
specified if you derived your recordset class from CDaoRecordset. 

Constructs a CDaoRecordset object. You can either use CDaoRecordset directly or 
derive an application-specific class from CDaoRecordset. You can use ClassWizard 
to derive your recordset classes. 

Note If you derive a CDaoRecordset class, your derived class must supply its own 
constructor. In the constructor of your derived class, call the constructor 
CDaoRecordset::CDaoRecordset, passing the appropriate parameters along to it. 

Pass NULL to your recordset constructor to have a CDaoDatabase object constructed 
and connected for you automatically. This is a useful shortcut that does not require 
you to construct and connect a CDaoDatabase object prior to constructing your 
recordset. If the CDaoDatabase object is not open, a CDaoWorkspace object will 
also be created for you that uses the default workspace. For more information, see 
CDaoDatabase:: CDaoDatabase. 

For more information about constructing recordsets, see the article "DAO: Creating, 
Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset: : GetDefaultDBName, 
CDaoRecordset:: GetDefaultSQ L, CDaoRecordset:: GetDateCreated, 
CDaoRecordset:: GetDateLastUpdated 

CDaoRecordset: :Close 

Remarks 

virtual void Close( ); 
throw( CDaoException); 

Closing a CDaoRecordset object removes it from the collection of open recordsets in 
the associated database. Because Close does not destroy the CDaoRecordset object, 
you can reuse the object by calling Open on the same data source or a different data 
source. 

291 



CDaoRecordset: :Delete 

All pending AddNew or Edit statements are canceled, and all pending transactions 
are rolled back. If you want to preserve pending additions or edits, call Update before 
you call Close for each recordset. 

You can call Open again after calling Close. This lets you reuse the recordset object. 
A better alternative is to call Requery, if possible. 

For more information about working with recordsets, see the article "DAO: Creating, 
Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide online. For 
related information, see the topic "Close Method" in DAO Help. 

See Also: CDaoRecordset: :Open, CDaoRecordset:: CDaoRecordset 

CDaoRecordset: :Delete 

Remarks 

292 

virtual void Delete( ); 
throw( CDaoException, CMemoryException); 

Call this member function to delete the current record in an open dynaset-type or 
table-type recordset object. After a successful deletion, the recordset's field data 
members are set to a Null value, and you must explicitly call one of the recordset 
navigation member functions (Move, Seek, SetBookmark, and so on) in order to 
move off the deleted record. When you delete records from a recordset, there must be 
a current record in the recordset before you call Delete; otherwise, MFC throws an 
exception. 

Delete removes the current record and makes it inaccessible. Although you cannot 
edit or use the deleted record, it remains current. Once you move to another record, 
however, you cannot make the deleted record current again. 

Caution The recordset must be updatable and there must be a valid record current in the 
recordset when you call Delete. For example, if you delete a record but do not scroll to a new 
record before you call Delete again, Delete throws a CDaoException. 

You can undelete a record if you use transactions and you call the 
CDaoWorkspace::RoIIback member function. If the base table is the primary table 
in a cascade delete relationship, deleting the current record may also delete one or 
more records in a foreign table. For more information, see the definition "cascade 
delete" in DAO Help. 

Unlike AddNew and Edit, a call to Delete is not followed by a call to Update. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topics "AddNew Method," "Edit Method," "Delete Method," "Update Method," 
and "Updatable Property" in DAO Help. 



CDaoRecordset: :DoFie1dExchange 

See Also: CDaoRecordset: :AddNew, CDaoRecordset: :CanceIUpdate, 
CDaoRecordset: :Edit, CDaoRecordset:: Update, CDaoRecordset:: CanTransact 

CDaoRecordset: : DoFieldExchange 
virtual void DoFieldExchange( CDaoFieldExchange* pFX); 

Parameters 

Remarks 

pFX Contains a pointer to a CDaoFieldExchange object. The framework will 
already have set up this object to specify a context for the field exchange operation. 

The framework calls this member function to automatically exchange data between 
the field data members of your recordset object and the corresponding columns of the 
current record on the data source. It also binds your parameter data members, if any, 
to parameter placeholders in the SQL statement string for the recordset's selection. 
The exchange of field data, called DAO record field exchange (DFX), works in both 
directions: from the recordset object's field data members to the fields of the record on 
the data source, and from the record on the data source to the recordset object. If you 
are binding columns dynamically, you are not required to implement 
DoFieldExchange. 

The only action you must normally take to implement DoFieldExchange for your 
derived recordset class is to create the class with ClassWizard and specify the names 
and data types of the field data members. You might also add code to what 
ClassWizard writes to specify parameter data members. If all fields are to be bound 
dynamically, this function will be inactive unless you specify parameter data 
members. For more information, see the article "DAO Recordset: Binding Records 
Dynamically" in Visual C++ Programmer's Guide online. 

When you declare your derived recordset class with ClassWizard, the wizard writes an 
override of DoFieldExchange for you, which resembles the following example: 

void CCustSet::DoFieldExchange(CDaoFieldExchange* pFX) 
{ 

} 

//{{AFX_FIELD_MAP(CCustSet) 
pFX->SetFieldType(CDaoFieldExchange::outputColumn); 
DFX_Text(pFX, "Name", m_strName); 
DFX_Short(pFX, "Age", m_wAge); 
//}}AFX_FIELD_MAP 

For more information about record field exchange, see the article "DAO Record Field 
Exchange (DFX)" in Visual C++ Programmer's Guide online. 

See Also: CDaoException 

293 



CDaoRecordset: :Edit 

CDaoRecordset: :Edit 

Remarks 

294 

virtual void Edit( ); 
throw( CDaoException, CMemoryException); 

Call this member function to allow changes to the current record. 

Once you call the Edit member function, changes made to the current record's fields 
are copied to the copy buffer. After you make the desired changes to the record, call 
Update to save your changes. Edit saves the values of the recordset's data members. 
If you call Edit, make changes, then call Edit again, the record's values are restored 
to what they were before the first Edit call. 

Caution If you edit a record and then perform any operation that moves to another record 
without first calling Update, your changes are lost without warning. In addition, if you close the 
recordset or the parent database, your edited record is discarded without warning. 

In some cases, you may want to update a column by making it Null (containing no 
data). To do so, call SetFieldNull with a parameter of TRUE to mark the field Null; 
this also causes the column to be updated. If you want a field to be written to the data 
source even though its value has not changed, call SetFieldDirty with a parameter of 
TRUE. This works even if the field had the value Null. 

The framework marks changed field data members to ensure they will be written to 
the record on the data source by the DAO record field exchange (DFX) mechanism. 
Changing the value of a field generally sets the field dirty automatically, so you will 
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure 
that columns will be explicitly updated or inserted regardless of what value is in the 
field data member. The DFX mechanism also employs the use of PSEUDO NULL. 
For more information, see CDaoFieldExchange: :m_nOperation. 

If the double-buffering mechanism is not being used, then changing the value of the 
field does not automatically set the field as dirty. In this case, it will be necessary to 
explicity set the field dirty. The flag contained in m_hCheckCacheForDirtyFields 
controls this automatic field checking. 

When the recordset object is pessimistically locked in a multiuser environment, the 
record remains locked from the time Edit is used until the updating is complete. If the 
recordset is optimistically locked, the record is locked and compared with the 
pre-edited record just before it is updated in the database. If the record has changed 
since you called Edit, the Update operation fails and MFC throws an exception. You 
can change the locking mode with SetLockingMode. 

Note Optimistic locking is always used on external database formats, such as ODBe and 
installable ISAM. 



CDaoRecordset: :FillCache 

The current record remains current after you call Edit. To call Edit, there must be a 
current record. If there is no current record or if the recordset does not refer to an open 
table-type or dynaset-type recordset object, an exception occurs. Calling Edit causes a 
CDaoException to be thrown under the following conditions: 

• There is no current record. 

• The database or recordset is read-only. 

• No fields in the record are updatable. 

• The database or recordset was opened for exclusive use by another user. 

• Another user has locked the page containing your record. 

If the data source supports transactions, you can make the Edit call part of a 
transaction. Note that you should call CDaoWorkspace::BeginTrans before calling 
Edit and after the recordset has been opened. Also note that calling 
CDaoWorkspace::CommitTrans is not a substitute for calling Update to complete 
the Edit operation. For more information about transactions, see class 
CDaoWorkspace. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topics "AddNew Method," "Edit Method," "Delete Method," "Update Method," 
and "Up datable Property" in DAO Help. 

See Also: CDaoRecordset::AddNew, CDaoRecordset::CanceIUpdate, 
CDaoRecordset:: CanTransact, CDaoRecordset: :Delete, CDaoRecordset:: Update 

CDaoRecordset: :FillCache 
void FillCache( long* pSize = NULL, COleVariant* pBookmark = NULL); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

pSize Specifies the number of rows to fill in the cache. If you omit this parameter, the 
value is determined by the CacheSize property setting of the underlying DAO 
object. 

pBookmark A COle Variant specifying a bookmark. The cache is filled starting from 
the record indicated by this bookmark. If you omit this parameter, the cache is 
filled starting from the record indicated by the CacheStart property of the 
underlying DAO object. 

Call this member function to cache a specified number of records from the recordset. 
Caching improves the performance of an application that retrieves, or fetches, data 
from a remote server. A cache is space in local memory that holds the data most 
recently fetched from the server on the assumption that the data will probably be 

295 



CDaoRecordset: :Find 

requested again while the application is running. When data is requested, the 
Microsoft Jet database engine checks the cache for the data first rather than fetching 
it from the server, which takes more time. Using data caching on non-ODBC data 
sources has no effect as the data is not saved in the cache. 

Rather than waiting for the cache to be filled with records as they are fetched, you can 
explicitly fill the cache at any time by calling the FiIlCache member function. This is 
a faster way to fill the cache because FillCache fetches several records at once instead 
of one at a time. For example, while each screenful of records is being displayed, you 
can have your application call FillCache to fetch the next screenful of records. 

Any ODBC database accessed with recordset objects can have a local cache. To create 
the cache, open a recordset object from the remote data source, and then call the 
SetCacheSize and SetCacheStart member functions of the recordset. If ISize and 
IBookmark create a range that is partly or wholly outside the range specified by 
SetCacheSize and SetCacheStart, the portion of the recordset outside this range is 
ignored and is not loaded into the cache. If FillCache requests more records than 
remain in the remote data source, only the remaining records are fetched, and no 
exception is thrown. 

Records fetched from the cache do not reflect changes made concurrently to the 
source data by other users. 

FiIlCache fetches only records not already cached. To force an update of all the 
cached data, call the SetCacheSize member function with an ISize parameter equal to 
0, call SetCacheSize again with the ISize parameter equal to the size of the cache you 
originally requested, and then call FillCache. 

For more information about caching records, see the article "DAO External: 
Improving Performance with External Data Sources" in Visual c++ Programmer's 
Guide online. For related information, see the topic "FillCache Method" in DAO 
Help. 

See Also: CDaoRecordset: :GetCacheSize, CDaoRecordset: :GetCacheStart, 
CDaoRecordset: :SetCacheSize, CDaoRecordset: :SetCacheStart 

CDaoRecordset: :Find 
virtual BOOL Find( long IFindType, LPCTSTR IpszFilter ); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if matching records are found, otherwise O. 

Parameters 

296 

IFindType A value indicating the type of Find operation desired. The possible values 
are: 

• AFX_DAO_NEXT Find the next location of a matching string. 



CDaoRecordset: :FindFirst 

Remarks 

• AFX_DAO_PREV Find the previous location of a matching string. 

• AFX_DAO_FIRST Find the first location of a matching string. 

• AFX_DAO_LAST Find the last location of a matching string. 

/pszFilter A string expression (like the WHERE clause in an SQL statement without 
the word WHERE) used to locate the record. For example: 

Find(AFX_OAO_FIRST, "col RecIO = 7") 
Find(AFX_OAO_NEXT, "customerName = 'Jones''') 

Call this member function to locate a particular string in a dynaset- or snapshot-type 
recordset using a comparison operator. You can find the first, next, previous, or last 
instance of the string. Find is a virtual function, so you can override it and add your 
own implementation. The FindFirst, FindLast, FindNext, and FindPrev member 
functions call the Find member function, so you can use Find to control the behavior 
of all Find operations. 

To locate a record in a table-type recordset, call the Seek member function. 

Tip The smaller the set of records you have, the more effective Find will be. In general, and 
especially with DDSe data, it is better to create a new query that retrieves just the records you 
want. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" 
in DAO Help. 

See Also: CDaoRecordset: :FindFirst, CDaoRecordset: :FindLast, 
CDaoRecordset: :FindN ext, CDaoRecordset: :FindPrev 

CDaoRecordset: :FindFirst 
BOOL FindFirst( LPCTSTR IpszFilter); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if matching records are found, otherwise O. 

Parameters 

Remarks 

IpszFilter A string expression (like the WHERE clause in an SQL statement without 
the word WHERE) used to locate the record. 

Call this member function to find the first record that matches a specified condition. 
The FindFirst member function begins its search from the beginning of the recordset 
and searches to the end of the recordset. 

297 



CDaoRecordset: :FindFirst 

298 

If you want to include all the records in your search (not just those that meet a specific 
condition) use one of the Move operations to move from record to record. To locate a 
record in a table-type recordset, call the Seek member function. 

If a record matching the criteria is not located, the current record pointer is 
undetermined, and FindFirst returns zero. If the recordset contains more than one 
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext 
locates the next occurrence, and so on. 

Caution If you edit the current record, be sure to save the changes by calling the Update 
member function before you move to another record. If you move to another record without 
updating, your changes are lost without warning. 

The Find member functions search from the location and in the direction specified in 
the following table: 

Find operations Begin Search direction 

FindFirst Beginning of recordset End of recordset 

FindLast End of recordset Beginning of recordset 

FindNext Current record End of recordset 

FindPrevious Current record Beginning of recordset 

Important When you call FindLast, the Microsoft Jet database engine fully populates your 
recordset before beginning the search, if this has not already been done. The first search may 
take longer than subsequent searches. 

U sing one of the Find operations is not the same as calling MoveFirst or MoveN ext, 
however, which simply makes the first or next record current without specifying a 
condition. You can follow a Find operation with a Move operation. 

Keep the following in mind when using the Find operations: 

• If Find returns nonzero, the current record is not defined. In this case, you must 
position the current record pointer back to a valid record. 

• You cannot use a Find operation with a forward-only scrolling snapshot-type 
recordset. 

• You should use the U.S. date format (month-day-year) when you search for fields 
containing dates, even if you are not using the U.S. version of the Microsoft Jet 
database engine; otherwise, matching records may not be found. 

• When working with ODBC databases and large dynasets, you may discover that 
using the Find operations is slow, especially when working with large recordsets. 
You can improve performance by using SQL queries with customized ORDER BY 
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve 
specific indexed records. 



CDaoRecordset: :FindLast 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" 
in DAO Help. 

See Also: CDaoRecordset: :Find, CDaoRecordset: :FindLast, 
CDaoRecordset: :FindN ext, CDaoRecordset: :FindPrev 

CDaoRecordset: :FindLast 
BOOL FindLast( LPCTSTR lpszFilter); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if matching records are found, otherwise O. 

Parameters 

Remarks 

lpszFilter A string expression (like the WHERE clause in an SQL statement withQut 
the word WHERE) used to locate the record. 

Call this member function to find the last record that matches a specified condition. 
The FindLast member function begins its search at the end of the recordset and 
searches backward towards the beginning of the recordset. 

If you want to include all the records in your search (not just those that meet a specific 
condition) use one of the Move operations to move from record to record. To locate a 
record in a table-type recordset, call the Seek member function. 

If a record matching the criteria is not located, the current record pointer is 
undetermined, and FindLast returns zero. If the recordset contains more than one 
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext 
locates the next occurrence after the first occurrence, and so on. 

Caution If you edit the current record, be sure you save the changes by calling the Update 
member function before you move to another record. If you move to another record without 
updating, your changes are lost without warning. 

U sing one of the Find operations is not the same as calling MoveFirst or MoveNext, 
however, which simply makes the first or next record current without specifying a 
condition. You can follow a Find operation with a Move operation. 

Keep the following in mind when using the Find operations: 

• If Find returns nonzero, the current record is not defined. In this case, you must 
position the current record pointer back to a valid record. 

299 



CDaoRecordset: :FindN ext 

• You cannot use a Find operation with a forward-only scrolling snapshot-type 
record set. 

• You should use the U.S. date format (month-day-year) when you search for fields 
containing dates, even if you are not using the U.S. version of the Microsoft Jet 
database engine; otherwise, matching records may not be found. 

• When working with ODBC databases and large dynasets, you may discover that 
using the Find operations is slow, especially when working with large recordsets. 
You can improve performance by using SQL queries with customized ORDER BY 
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve 
specific indexed records. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" 
in DAO Help. 

See Also: CDaoRecordset: :Find, CDaoRecordset: : FindFirst, 
CDaoRecordset: :FindN ext, CDaoRecordset: : FindPrev 

CDaoRecordset: : FindN ext 
BOOL FindNext( LPCTSTR IpszFilter ); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if matching records are found, otherwise o. 

Parameters 

Remarks 

300 

IpszFilter A string expression (like the WHERE clause in an SQL statement without 
the word WHERE) used to locate the record. 

Call this member function to find the next record that matches a specified condition. 
The FindNext member function begins its search at the current record and searches to 
the end of the recordset. 

If you want to include all the records in your search (not just those that meet a specific 
condition) use one of the Move operations to move from record to record. To locate a 
record in a table-type recordset, call the Seek member function. 

If a record matching the criteria is not located, the current record pointer is 
undetermined, and FindNext returns zero. If the recordset contains more than one 
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext 
locates the next occurrence, and so on. 



CDaoRecordset: : FindPrev 

Caution If you edit the current record, be sure you save the changes by calling the Update 
member function before you move to another record. If you move to another record without 
updating, your changes are lost without warning. 

Using one of the Find operations is not the same as calling MoveFirst or MoveNext, 
however, which simply makes the first or next record current without specifying a 
condition. You can follow a Find operation with a Move operation. 

Keep the following in mind when using the Find operations: 

• If Find returns nonzero, the current record is not defined. In this case, you must 
position the current record pointer back to a valid record. 

• You cannot use a Find operation with a forward-only scrolling snapshot-type 
recordset. 

• You should use the U.S. date format (month-day-year) when you search for fields 
containing dates, even if you are not using the U.S. version of the Microsoft Jet 
database engine; otherwise, matching records may not be found. 

• When working with ODBC databases and large dynasets, you may discover that 
using the Find operations is slow, especially when working with large recordsets. 
You can improve performance by using SQL queries with customized ORDER BY 
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve 
specific indexed records. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" 
in DAO Help. 

See Also: CDaoRecordset: :Find, CDaoRecordset: :FindFirst, 
CDaoRecordset:: FindLast, CDaoRecordset:: FindPrev 

CDaoRecordset: : FindPrev 
BOOL FindPrev( LPCTSTR IpszFilter ); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if matching records are found, otherwise O. 

Parameters 
IpszFilter A string expression (like the WHERE clause in an SQL statement without 

the word WHERE) used to locate the record. 

301 



CDaoRecordset: :FindPrev 

Remarks 

302 

Call this member function to find the previous record that matches a specified 
condition. The FindPrev member function begins its search at the current record and 
searches backward towards the beginning of the recordset. 

If you want to include all the records in your search (not just those that meet a specific 
condition) use one of the Move operations to move from record to record. To locate a 
record in a table-type recordset, call the Seek member function. 

If a record matching the criteria is not located, the current record pointer is 
undetermined, and FindPrev returns zero. If the recordset contains more than one 
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext 
locates the next occurrence, and so on. 

Caution If you edit the current record, be sure you save the changes by calling the Update 
member function before you move to another record. If you move to another record without 
updating, your changes are lost without warning. 

U sing one of the Find operations is not the same as calling MoveFirst or MoveNext, 
however, which simply makes the first or next record current without specifying a 
condition. You can follow a Find operation with a Move operation. 

Keep the following in mind when using the Find operations: 

• If Find returns nonzero, the current record is not defined. In this case, you must 
position the current record pointer back to a valid record. 

• You cannot use a Find operation with a forward-only scrolling snapshot-type 
recordset. 

• You should use the U.S. date format (month-day-year) when you search for fields 
containing dates, even if you are not using the U.S. version of the Microsoft Jet 
database engine; otherwise, matching records may not be found. 

• When working with ODBC databases and large dynasets, you may discover that 
using the Find operations is slow, especially when working with large recordsets. 
You can improve performance by using SQL queries with customized ORDER BY 
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve 
specific indexed records. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" 
in DAO Help. 

See Also: CDaoRecordset: :Find, CDaoRecordset: :FindFirst, 
CDaoRecordset: :FindLast, CDaoRecordset: :FindN ext 



CDaoRecordset:: GetBookmark 

CDaoRecordset: : GetAbsolutePosition 
long GetAbsolutePosition(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

An integer from 0 to the number of records in the recordset. Corresponds to the 
ordinal position of the current record in the recordset. 

Returns the record number of a recordset object's current record. The 
AbsolutePosition property value of the underlying DAO object is zero-based; a 
setting of 0 refers to the first record in the recordset. You can determine the number 
of populated records in the recordset by calling GetRecordCount. Calling 
GetRecordCount may take some time because it must access all records to determine 
the count. 

If there is no current record, as when there are no records in the recordset,-l is 
returned. If the current record is deleted, the AbsolutePosition property value is not 
defined, and MFC throws an exception if it is referenced. For dynaset-type recordsets, 
new records are added to the end of the sequence. 

Note This property is not intended to be used as a surrogate record number. Bookmarks are 
still the recommended way of retaining and returning to a given position and are the only way to 
position the current record across all types of recordset objects. In particular, the position of a 
given record changes when record(s) preceding it are deleted. There is also no assurance that 
a given record will have the same absolute position if the recordset is re-created again because 
the order of individual records within a recordset is not guaranteed unless it is created with an 
Sal statement using an ORDER BY clause. 

Note This member function is valid only for dynaset-type and snapshot-type recordsets. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "AbsolutePosition Property" in DAO Help. 

See Also: CDaoRecordset: :SetAbsolutePosition 

CDaoRecordset: : GetBookmark 
COleVariant GetBookmark(); 

throw( CDaoException, CMemory Exception); 

Return Value 
Returns a value representing the bookmark on the current record. 

303 



CDaoRecordset: :GetCacheSize 

Remarks 
Call this member function to obtain the bookmark value in a particular record. When a 
recordset object is created or opened, each of its records already has a unique 
bookmark if it supports them. Call CanBookmark to determine whether a recordset 
supports bookmarks. 

You can save the bookmark for the current record by assigning the value of the 
bookmark to a COle Variant object. To quickly return to that record at any time after 
moving to a different record, call SetBookmark with a parameter corresponding to 
the value of that COle Variant object. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Bookmark Property" in DAO Help. 

See Also: CDaoRecordset: :SetBookmark, CDaoRecordset: :CanBookmark 

CDaoRecordset: : GetCacheSize 
long GetCacheSize(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

304 

A value that specifies the number of records in a dynaset-type recordset containing 
data to be locally cached from an ODBC data source. 

Call this member function to obtain the number of records cached. Data caching 
improves the performance of an application that retrieves data from a remote server 
through dynaset-type recordset objects. A cache is a space in local memory that holds 
the data most recently retrieved from the server in the event that the data will be 
requested again while the application is running. When data is requested, the 
Microsoft Jet database engine checks the cache for the requested data first rather than 
retrieving it from the server, which takes more time. Data that does not come from an 
ODBC data source is not saved in the cache. 

Any ODBC data source, such as an attached table, can have a local cache. 

For more information about caching records, see the article "DAO External: 
Improving Performance with External Data Sources" in Visual C++ Programmer's 
Guide online. For related information, see the topic "CacheSize, CacheS tart 
Properties" in DAO Help. 

See Also: CDaoRecordset::FillCache, CDaoRecordset::GetCacheStart, 
CDaoRecordset: :SetCacheSize, CDaoRecordset: :SetCacheStart 



CDaoRecordset: :GetCurrentIndex 

CDaoRecordset: : GetC acheS tart 
COleVariant GetCacheStart(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A COle Variant that specifies the bookmark of the first record in the recordset to be 
cached. 

Call this member function to obtain the bookmark value of the first record in the 
recordset to be cached. The Microsoft Jet database engine requests records within the 
cache range from the cache, and it requests records outside the cache range from the 
server. 

Note Records retrieved from the cache do not reflect changes made concurrently to the 
source data by other users. 

For more information about caching records, see the article "DAO External: 
Improving Performance with External Data Sources" in Visual C++ Programmer's 
Guide online. For related information, see the topic "Cache Size, CacheS tart 
Properties" in DAO Help. 

See Also: CDaoRecordset: :FillCache, CDaoRecordset: :GetCacheSize, 
CDaoRecordset: :SetCacheSize, CDaoRecordset: :SetCacheStart 

CDaoRecordset: : GetCurrentIndex 
CString GetCurrentlndex(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString containing the name of the index currently in use with a table-type 
recordset. Returns an empty string if no index has been set. 

Call this member function to determine the index currently in use in an indexed 
table-type CDaoRecordset object. This index is the basis for ordering records in a 
table-type recordset, and is used by the Seek member function to locate records. 

A CDaoRecordset object can have more than one index but can use only one index 
at a time (although a CDaoTableDef object may have several indexes defined on it). 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Index Object" and the definition "current index" in 
DAO Help. 

See Also: CDaoRecordset: :SetCurrentlndex 

305 



CDaoRecordset::GetDateCreated 

CDaoRecordset: : GetDateCreated 
COleDateTime GetDateCreated( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A COleDateTime object containing the date and time the base table was 
created. 

Call this member function to retrieve the date and time a base table was created. 
Date and time settings are derived from the computer on which the base table 
was created. 

For more information about creating recordsets, see the article "DAO: Creating, 
Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide online. 
For related information, see the topic "DateCreated, LastUpdated Properties" in 
DAOHelp. 

See Also: CDaoRecordset: : GetDateLastUpdated 

CDaoRecordset: : GetDateLast Updated 
COleDateTime GetDateLastUpdated( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

306 

A COleDateTime object containing the date and time the base table structure 
(schema) was last updated. 

Call this member function to retrieve the date and time the schema was last 
updated. Date and time settings are derived from the computer on which the base 
table structure (schema) was last updated. 

For more information about creating recordsets, see the article "DAO: Creating, 
Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide online. 
For related information, see the topic "DateCreated, LastUpdated Properties" in 
DAOHelp. 

See Also: CDaoRecordset::GetDateCreated 



CDaoRecordset: :GetDefaultSQL 

CDaoRecordset: : GetDefaultD BN arne 
virtual CString GetDefaultDBName( ); 

Return Value 

Remarks 

A CString that contains the path and name of the database from which this recordset 
is derived. 

Call this member function to determine the name of the database for this recordset. If 
a recordset is created without a pointer to a CDaoDatabase, then this path is used by 
the recordset to open the default database. By default, this function returns an empty 
string. When ClassWizard derives a new recordset from CDaoRecordset, it will 
create this function for you. 

The following example illustrates the use of the double backslash (\\) in the string, as 
is required for the string to be interpreted correctly. 

CString CMyRecordset::GetDefaultDBName(void) 
{ 

return _T("c:\\mydir\\datasrc.mdb"); 

For more information about connecting to databases, see the article "DAO: Creating, 
Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset::GetDefaultSQL, CDaoRecordset::GetName, 
CDaoRecordset: :GetSQL, CDaoRecordset: :GetType 

CDaoRecordset: : GetDefaultSQL 
virtual CString GetDefaultSQL( ); 

Return Value 

Remarks 

A CString that contains the default SQL statement. 

The framework calls this member function to get the default SQL statement on which 
the recordset is based. This might be a table name or an SQL SELECT statement. 

You indirectly define the default SQL statement by declaring your recordset class with 
Class Wizard, and Class Wizard performs this task for you. 

If you pass a null SQL string to Open, then this function is called to determine the 
table name or SQL for your recordset. 

307 



CDaoRecordset: :GetEditMode 

For more information about connecting to databases, see the article "DAO: Creating, 
Opening, and Closing DAO Objects" in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset: : GetDefaultDBName, CDaoRecordset: : GetName, 
CDaoRecordset: :GetSQL, CDaoRecordset: : GetType 

CDaoRecordset: : GetEditMode 
short GetEditMode(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Returns a value that indicates the state of editing for the current record. 

Call this member function to determine the state of editing, which is one of the 
following values: 

Value 

dbEditNone 

dbEditlnProgress 

dbEditAdd 

Description 

No editing operation is in progress. 

Edit has been called. 

AddNew has been called. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topic "EditMode Property" in DAO Help. 

CDaoRecordset: : GetFieldCount 
short GetFieldCount( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

308 

The number of fields in the recordset. 

Call this member function to retrieve the number of fields (columns) defined in the 
recordset. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Count Property" in DAO Help. 

See Also: CDaoRecordset:: GetFieldlnfo, CDaoRecordset:: GetFieldValue, 
CDaoRecordset:: GetIndexCount, CDaoRecordset: : GetIndexlnfo 



CDaoRecordset: :GetFieldlnfo 

CDaoRecordset: : GetFieldInfo 
void GetFieldInfo( int nlndex, CDaoFieldInfo& fieldinfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

void GetFieldInfo( LPCTSTR IpszName, CDaoFieldInfo& fieldinfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

nlndex The zero-based index of the predefined field in the recordset's Fields 
collection, for lookup by index. 

fieldinfo A reference to a CDaoFieldInfo structure. 

dwlnfoOptions Options that specify which information about the recordset to 
retrieve. The available options are listed here along with what they cause the 
function to return. For best performance, retrieve only the level of information 
you need: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes 

• AFX_DAO _SECONDARY _INFO Primary information, plus: Ordinal 
Position, Required, Allow Zero Length, Collating Order, Foreign Name, 
Source Field, Source Table 

• AFX_DAO _ALL_INFO Primary and secondary information, plus: Default 
Value, Validation Rule, Validation Text 

IpszName The name of the field. 

Call this member function to obtain information about the fields in a recordset. One 
version of the function lets you look up a field by index. The other version lets you 
look up a field by name. 

For a description of the information returned, see the CDaoFieldInfo structure. This 
structure has members that correspond to the items of information listed above in the 
description of dwlnfoOptions. When you request information at one level, you get 
information for any prior levels as well. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoRecordset:: GetField Count, CDaoRecordset:: GetFieldValue, 
CDaoRecordset::GetlndexCount, CDaoRecordset::GetlndexInfo 

309 



CDaoRecordset: : GetFieldValue 

CDaoRecordset: : GetFieldValue 
virtual void GetFieldValue( LPCTSTR lpszName, COle Variant& varValue ); 

throw( CDaoException, CMemoryException); 
virtual void GetFieldValue( int nlndex, COleVariant& varValue); 

throw( CDaoException, CMemoryException ); 
virtual COleVariant GetFieldValue( LPCTSTR lpszName); 

throw( CDaoException, CMemoryException); 
virtual COleVariant GetFieldValue( int nlndex); 

throw( CDaoException, CMemoryException); 

Return Value 
The two versions of GetFieldValue that return a value return a COle Variant object 
that contains the value of a field. 

Parameters 

Remarks 

310 

lpszName A pointer to a string that contains the name of a field. 

varValue A reference to a COle Variant object that will store the value of a field. 

nlndex A zero-based index of the field in the recordset's Fields collection, for lookup 
by index. 

Call this member function to retrieve data in a recordset. You can look up a field by 
name or by ordinal position. 

Note It is more efficient to call one of the versions of this member function that takes a 
COleVariant object reference as a parameter, rather than calling a version that returns a 
COleVariant object. 

Use GetFieldValue and SetFieldValue to dynamically bind fields at run time rather 
than statically binding columns using the DoFieldExchange mechanism. 

GetFieldValue and the DoFieldExchange mechanism can be combined to improve 
performance. For example, use GetFieldValue to retrieve a value that you need only 
on demand, and assign that call to a "More Information" button in the interface. 

For more information about binding fields dynamically, see the article "DAO 
Recordset: Binding Records Dynamically" in Visual C++ Programmer's Guide 
online. For related information, see the topics "Field Object" and "Value Property" in 
DAOHelp. 

See Also: CDaoRecordset::SetFieldValue 



CDaoRecordset: :GetIndexInfo 

CDaoRecordset: : GetIndexCount 
short GetIndexCount( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of indexes in the table-type recordset. 

Call this member function to determine the number of indexes available on the 
table-type recordset. GetIndexCount is useful for looping through all indexes in the 
recordset. For that purpose, use GetIndexCount in conjunction with GetIndexInfo. 
If you call this member function on dynaset-type or snapshot-type recordsets, MFC 
throws an exception. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoRecordset: : GetFieldCount, CDaoRecordset: :GetFieldInfo, 
CDaoRecordset: : GetIndexInfo 

CDaoRecordset: : GetIndexInfo 
void GetIndexInfo( int nlndex, CDaoIndexInfo& indexinfo, 

1.+ DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

void GetIndexInfo( LPCTSTR IpszName, CDaoIndexInfo& indexinfo, 
1.+ DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 
nlndex The zero-based index in the table's Indexes collection, for lookup by 

numerical position. 

indexinfo A reference to a CDaoIndexInfo structure. 

dwlnfoOptions Options that specify which information about the index to retrieve. 
The available options are listed here along with what they cause the function to 
return. For best performance, retrieve only the level of information you need: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Field Info, Fields 

• AFX_DAO_SECONDARY_INFO Primary information, plus: Primary, 
Unique, Clustered, IgnoreNulls, Required, Foreign 

• AFX_DAO_ALL_INFO Primary and secondary information, plus: Distinct 
Count 

311 



CDaoRecordset: : GetLastModifiedBookmark 

Remarks 

IpszName A pointer to the name of the index object, for lookup by name. 

Call this member function to obtain various kinds of information about an index 
defined in the base table underlying a recordset. One version of the function lets you 
look up a index by its position in the collection. The other version lets you look up an 
index by name. 

For a description of the information returned, see the CDaolndexlnfo structure. This 
structure has members that correspond to the items of information listed above in the 
description of dwlnfoOptions. When you request information at one level, you get 
information for any prior levels as well. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual c++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoRecordset: : GetFieldCount, CDaoRecordset: : GetFieldlnfo, 
CDaoRecordset:: GetIndexCount, CDaoRecordset: :GetLastModifiedBookmark 

CDaoRecordset: : GetLastModifiedBookrnark 
COleVariant GetLastModifiedBookmark(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

312 

A COle Variant containing a bookmark that indicates the most recently added or 
changed record. 

Call this member function to retrieve the bookmark of the most recently added or 
updated record. When a recordset object is created or opened, each of its records 
already has a unique bookmark if it supports them. Call GetBookmark to determine 
if the record set supports bookmarks. If the recordset does not support bookmarks, a 
CDaoException is thrown. 

When you add a record, it appears at the end of the recordset, and is not the current 
record. To make the new record current, call GetLastModifiedBookmark and then 
call SetBookmark to return to the newly added record. 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "LastModified Property" in DAO Help. 

See Also: CDaoRecordset: :GetBookmark, CDaoRecordset: :SetBookmark 



CDaoRecordset: :GetName 

CDaoRecordset: : GetLockingMode 
BOOL GetLockingMode( ); 

throw( CDaoException, CMemoryException ); 

Return Value 

Remarks 

Nonzero if the type of locking is pessimistic, otherwise 0 for optimistic record 
locking. 

Call this member function to determine the type of locking in effect for the recordset. 
When pessimistic locking is in effect, the data page containing the record you are 
editing is locked as soon as you call the Edit member function. The page is unlocked 
when you call the Update or Close member function or any of the Move or Find 
operations. 

When optimistic locking is in effect, the data page containing the record is locked 
only while the record is being updated with the Update member function. 

When working with ODBC data sources, the locking mode is always optimistic. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topics "LockEdits Property" and "Locking Behavior in Multiuser Applications" in 
DAO Help. 

See Also: CDaoRecordset: :SetLockingMode 

CDaoRecordset: : GetN arne 
CString GetName(); 

throw( CDaoException, CMemory Exception); 

Return Value 

Remarks 

A CString containing the name of the recordset. 

Call this member function to retrieve the name of the record set. The name of the 
recordset must start with a letter and can contain a maximum of 40 characters. It can 
include numbers and underscore characters but can't include punctuation or spaces. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Name Property" in DAO Help. 

See Also: CDaoRecordset: : GetDefaultDBName, 
CDaoRecordset: : GetDefaultSQL, CDaoRecordset: :GetSQL, 
CDaoRecordset: : GetType 

313 



CDaoRecordset: : GetParam Value 

CDaoRecordset: : GetParam Value 
virtual COleVariant GetParamValue( int nlndex); 

throw( CDaoException, CMemoryException); 
virtual COleVariant GetParamValue( LPCTSTR IpszName); 

throw( CDaoException, CMemoryException); 

Return Value 
An object of class COleVariant that contains the parameter's value. 

Parameters 

Remarks 

nlndex The numerical position of the parameter in the underlying DAOParameter 
object. 

IpszName The name of the parameter whose value you want. 

Call this member function to retrieve the current value of the specified parameter 
stored in the underlying DAOParameter object. You can access the parameter either 
by name or by its numerical position in the collection .. 

For more information about parameters, see the article "DAO Queries: Filtering and 
Parameterizing Queries" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Parameter Object" in DAO Help. 

See Also: CDaoRecordset: :SetParam Value, CDaoRecordset: :m_nParams 

CDaoRecordset: : GetPercentPosition 
float GetPercentPosition( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

314 

A number between 0 and 100 that indicates the approximate location of the current 
record in the recordset object based on a percentage of the records in the recordset. 

When working with a dynaset-type or snapshot-type recordset, if you call 
GetPercentPosition before fully popUlating the recordset, the amount of movement is 
relative to the number of records accessed as indicated by calling GetRecordCount. 
You can move to the last record by calling MoveLast to complete the population of all 
recordsets, but this may take a significant amount of time. 

You can call GetPercentPosition on all three types of recordset objects, including 
tables without indexes. However, you cannot call GetPercentPosition on 
forward-only scrolling snapshots, or on a recordset opened from a pass-through query 
against an external database. If there is no current record, or he current record has 
been deleted, a CDaoException is thrown. 



CDaoRecordset: :GetRecordCount 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "PercentPosition Property" in DAO Help. 

See Also: CDaoRecordset: :SetPercentPosition 

CDaoRecordset: : GetRecordCount 
long GetRecordCount(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Returns the number of records in a recordset. 

Call this member function to find out how many records in a recordset have been 
accessed. GetRecordCount does not indicate how many records are contained in a 
dynaset-type or snapshot-type recordset until all records have been accessed. This 
member function call may take a significant amount of time to complete. 

Once the last record has been accessed, the return value indicates the total number 
of un deleted records in the recordset. To force the last record to be accessed, call the 
MoveLast or FindLast member function for the recordset. You can also use a SQL 
Count to determine the approximate number of records your query will return. 

As your application deletes records in a dynaset-type recordset, the return value of 
GetRecordCount decreases. However, records deleted by other users are not 
reflected by GetRecordCount until the current record is positioned to a deleted 
record. If you execute a transaction that affects the record count and subsequently 
roll back the transaction, GetRecordCount will not reflect the actual number of 
remaining records. 

The value of GetRecordCount from a snapshot-type recordset is not affected by 
changes in the underlying tables. 

The value of GetRecordCount from a table-type recordset reflects the approximate 
number of records in the table and is affected immediately as table records are added 
and deleted. 

A recordset with no records returns a value of O. When working with attached tables 
or ODBC databases, GetRecordCount always returns-I. Calling the Requery 
member function on a recordset resets the value of GetRecordCount just as if the 
query were re-executed. 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "RecordCount Property" in DAO Help. 

315 



CDaoRecordset: :GetSQL 

See Also: CDaoRecordset:: GetFieldCount, CDaoRecordset:: GetFieldlnfo, 
CDaoRecordset:: GetIndexCount, CDaoRecordset:: GetIndexlnfo 

CDaoRecordset: :GetSQL 
CString GetSQL( ) const; 

Return Value 

Remarks 

A CString that contains the SQL statement. 

Call this member function to get the SQL statement that was used to select the 
recordset's records when it was opened. This will generally be an SQL SELECT 
statement. 

The string returned by GetSQL is typically different from any string you may have 
passed to the recordset in the IpszSQL parameter to the Open member function. This 
is because the recordset constructs a full SQL statement based on what you passed to 
Open, what you specified with ClassWizard, and what you may have specified in the 
m_strFilter and m_strSort data members. 

Important Call this member function only after calling Open. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual c++ Programmer's Guide online. For related 
information, see the topic "SQL Property" in DAO Help. 

See Also: CDaoRecordset:: GetDefaultSQ L, 
CDaoRecordset::GetDefaultDBName, CDaoRecordset::GetName, 
CDaoRecordset: : GetType 

CDaoRecordset: : GetType 
short GetType(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

316 

One of the following values that indicates the type of a recordset: 

• dbOpenTable Table-type recordset 

• dbOpenDynaset Dynaset-type recordset 

• dbOpenSnapshot Snapshot-type recordset 

Call this member function after opening the recordset to determine the type of the 
recordset object. 



CDaoRecordset::GetValidationText 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Type Property" in DAO Help. 

See Also: CDaoRecordset: : GetDefaultDBName, 
CDaoRecordset: :GetDefaultSQL, CDaoRecordset: :GetName, 
CDaoRecordset: :GetSQL 

CDaoRecordset: : Get ValidationRule 
CString GetValidationRule( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString object containing a value that validates the data in a record as it is changed 
or added to a table. 

Call this member function to determine the rule used to validate data. This rule is 
text-based, and is applied each time the underlying table is changed. If the data is not 
legal, MFC throws an exception. The returned error message is the text of the 
ValidationText property of the underlying field object, if specified, or the text of the 
expression specified by the ValidationRule property of the underlying field object. 
You can call GetValidationText to obtain the text of the error message. 

For example, a field in a record that requires the day of the month might have a 
validation rule such as "DAY BETWEEN 1 AND 31." 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "ValidationRule Property" in DAO Help. 

See Also: CDaoRecordset::GetValidationText 

CDaoRecordset: : Get Validation Text 
CString GetValidationText( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString object containing the text of the message that is displayed if the value of a 
field does not satisfy the validation rule of the underlying field object. 

Call this member function to retrieve the text of the ValidationText property of the 
underlying field object. 

317 



CDaoRecordset: :IsBOF 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. For related 
information, see the topic "ValidationText Property" in DAD Help. 

See Also: CDaoRecordset::GetValidationRule 

CDaoRecordset: :IsBOF 
BOOL IsBOF( ) const; 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

318 

Nonzero if the recordset contains no records or if you have scrolled backward before 
the first record; otherwise O. 

Call this member function before you scroll from record to record to learn whether 
you have gone before the first record of the recordset. You can also call IsBOF along 
with IsEOF to determine whether the recordset contains any records or is empty. 
Immediately after you call Open, if the recordset contains no records, IsBOF returns 
nonzero. When you open a recordset that has at least one record, the first record is the 
current record and IsBOF returns O. 

If the first record is the current record and you call MovePrev, IsBOF will 
subsequently return nonzero. If IsBOF returns nonzero and you call MovePrev, an 
exception is thrown. If IsBOF returns nonzero, the current record is undefined, and 
any action that requires a current record will result in an exception. 

Effect of specific methods on IsBOF and IsEOF settings: 

• Calling Open internally makes the first record in the recordset the current record 
by calling MoveFirst. Therefore, calling Open on an empty set of records causes 
IsBOF and IsEOF to return nonzero. (See the following table for the behavior of a 
failed MoveFirst or MoveLast call.) 

• All Move operations that successfully locate a record cause both IsBOF and 
IsEOF to return O. 

• An AddNew call followed by an Update call that successfully inserts a new record 
will cause IsBOF to return 0, but only if IsEOF is already nonzero. The state of 
IsEOF will always remain unchanged. As defined by the Microsoft Jet database 
engine, the current record pointer of an empty recordset is at the end of a file, so 
any new record is inserted after the current record. 

• Any Delete call, even if it removes the only remaining record from a recordset, will 
not change the value of IsBOF or IsEOF. 

This table shows which Move operations are allowed with different combinations of 
IsBOFlIsEOF. 



CDaoRecordset: :IsDeleted 

MoveFirst, MovePrev, MoveNext, 
MoveLast Move < 0 Move 0 Move> 0 

IsBOF=nonzero, Allowed Exception Exception Allowed 
IsEOF=O 

IsBOF=O, Allowed Allowed Exception Exception 
IsEOF=nonzero 

Both nonzero Exception Exception Exception Exception 

Both 0 Allowed Allowed Allowed Allowed 

Allowing a Move operation does not mean that the operation will successfully locate 
a record. It merely indicates that an attempt to perform the specified Move operation 
is allowed and will not generate an exception. The value of the IsBOF and IsEOF 
member functions may change as a result of the attempted move. 

The effect of Move operations that do not locate a record on the value of IsBOF and 
IsEOF settings is shown in the following table. 

IsBOF IsEOF 

MoveFirst, MoveLast Nonzero Nonzero 

Move 0 No change No change 

MovePrev, Move < 0 Nonzero No change 

MoveNext, Move> 0 No change Nonzero 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "BOF, EOF Properties" in DAO Help. 

See Also: CDaoRecordset::IsEOF 

CDaoRecordset: : IsDeleted 
BOOL IsDeleted( ) const; 

Return Value 

Remarks 

Nonzero if the recordset is positioned on a deleted record; otherwise O. 

Call this member function to determine whether the current record has been deleted. If 
you scroll to a record and IsDeleted returns TRUE (nonzero), then you must scroll to 
another record before you can perform any other recordset operations. 

Note You don't need to check the deleted status for records in a snapshot or table-type 
recordset. Because records cannot be deleted from a snapshot, there is no need to call 
IsDeleted. For table-type recordsets, deleted records are actually removed from the recordset. 
Once a record has been deleted, either by you, another user, or in another recordset, you ~ 
cannot scroll back to that record. Therefore, there is no need to calilsDeleted. 

319 



CDaoRecordset: :IsEOF 

When you delete a record from a dynaset, it is removed from the recordset and you 
cannot scroll back to that record. However, if a record in a dynaset is deleted either by 
another user or in another recordset based on the same table, IsDeleted will return 
TRUE when you later scroll to that record. 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Delete Method," "LastModified Property," and 
"EditMode Property" in DAO Help. 

See Also: CDaoRecordset::Delete, CDaoRecordset::IsBOF, 
CDaoRecordset: :IsEOF 

CDaoRecordset: :IsEOF 
BOOL IsEOF( ) const; 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

320 

Nonzero if the recordset contains no records or if you have scrolled beyond the last 
record; otherwise O. 

Call this member function as you scroll from record to record to learn whether you 
have gone beyond the last record of the recordset. You can also call IsEOF to 
determine whether the recordset contains any records or is empty. Immediately after 
you call Open, if the recordset contains no records, IsEOF returns nonzero. When 
you open a recordset that has at least one record, the first record is the current record 
and IsEOF returns O. 

If the last record is the current record when you call MoveNext, IsEOF will 
subsequently return nonzero. If IsEOF returns nonzero and you call MoveNext, an 
exception is thrown. If IsEOF returns nonzero, the current record is undefined, and 
any action that requires a current record will result in an exception. 

Effect of specific methods on IsBOF and IsEOF settings: 

• Calling Open internally makes the first record in the recordset the current record 
by calling MoveFirst. Therefore, calling Open on an empty set of records causes 
IsBOF and IsEOF to return nonzero. (See the following table for the behavior of 
a failed MoveFirst call.) 

• All Move operations that successfully locate a record cause both IsBOF and 
IsEOF to return O. 

• An AddNew call followed by an Update call that successfully inserts a new record 
will cause IsBOF to return 0, but only if IsEOF is already nonzero. The state of 
IsEOF will always remain unchanged. As defined by the Microsoft Jet database 
engine, the current record pointer of an empty recordset is at the end of a file, so 
any new record is inserted after the current record. 



CDaoRecordset: :IsFieldDirty 

• Any Delete call, even if it removes the only remaining record from a recordset, will 
not change the value of IsBOF or IsEOF. 

This table shows which Move operations are allowed with different combinations of 
IsBOFlIsEOF. 

MoveFirst, MovePrev, MoveNext, 
MoveLast Move < 0 Move 0 Move> 0 

IsBOF=nonzero, Allowed Exception Exception Allowed 
IsEOF=O 

IsBOF=O, Allowed Allowed Exception Exception 
IsEOF=nonzero 

Both nonzero Exception Exception Exception Exception 

Both 0 Allowed Allowed Allowed Allowed 

Allowing a Move operation does not mean that the operation will successfully locate a 
record. It merely indicates that an attempt to perform the specified Move operation is 
allowed and will not generate an exception. The value of the IsBOF and IsEOF 
member functions may change as a result of the attempted Move. 

The effect of Move operations that do not locate a record on the value of IsBOF and 
IsEOF settings is shown in the following table. 

IsBOF IsEOF 

MoveFirst, MoveLast Nonzero Nonzero 

Move 0 No change No change 

MovePrev, Move < 0 Nonzero No change 

MoveNext, Move> 0 No change Nonzero 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "BOF, EOF Properties" in DAO Help. 

See Also: CDaoRecordset::IsBOF 

CDaoRecordset: : IsFieldDirty 
BOOL IsFieldDirty( void* pv) const; 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if the specified field data member is flagged as dirty; otherwise O. 

Parameters 
pv A pointer to the field data member whose status you want to check, or NULL to 

determine if any of the fields are dirty. 

321 



CDaoRecordset: :IsFieldNull 

Remarks 
Call this member function to determine whether the specified field data member of a 
dynaset has been flagged as "dirty" (changed). The data in all dirty field data members 
will be transferred to the record on the data source when the current record is updated 
by a call to the Update member function of CDaoRecordset (following a call to Edit 
or AddNew). With this knowledge, you can take further steps, such as unflagging the 
field data member to mark the column so it will not be written to the data source. For 
more information on the dirty flag, see the article "DAO Recordset: Caching Multiple 
Records" in Visual C++ Programmer's Guide online. 

IsFieldDirty is implemented through DoFieldExchange. 

For more information about record field exchange, see the article "DAO Record Field 
Exchange (DFX)" in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset::IsFieldNull, CDaoRecordset::IsFieldNullable 

CDaoRecordset: : IsFieldNul1 
BOOL IsFieldNull( void* pv); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if the specified field data member is flagged as Null; otherwise O. 

Parameters 

Remarks 

322 

pv A pointer to the field data member whose status you want to check, or NULL to 
determine if any of the fields are Null. 

Call this member function to determine whether the specified field data member of a 
recordset has been flagged as Null. (In database terminology, Null means "having no 
value" and is not the same as NULL in C++.) If a field data member is flagged as 
Null, it is interpreted as a column of the current record for which there is no value. 

Note In certain situations, using IsFieldNull can be inefficient, as the following code example 
illustrates: 
COleVariant varValue; 

II this code is inefficient because data 
II must be retrieved for both IsFieldNull 
II and GetFieldValue 
if ( !rs.IsFieldNull( nField ) ) 

rs.GetFieldValue( nField. varValue ); 

II this code is more efficient 
rs.GetFieldValue( nField. varValue ); 
if ( varValue.vt == VT_NULL ) 

II do something 

See Also: CDaoRecordset: :IsFieldDirty, CDaoRecordset: :IsFieldN ullable 



CDaoRecordset: :Move 

CDaoRecordset: : IsFieldNullable 
BOOL IsFieldNullable( void* pv ); 

throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if the specified field data member can be made Null; otherwise O. 

Parameters 

Remarks 

pv A pointer to the field data member whose status you want to check, or NULL to 
determine if any of the fields are Null. 

Call this member function to determine whether the specified field data J;11ember is 
"nullable" (can be set to a Null value; C++ NULL is not the same as Null, which, in 
database terminology, means "having no value"). 

A field that cannot be Null must have a value. If you attempt to set such a field to Null 
when adding or updating a record, the data source rejects the addition or update, and 
Update will throw an exception. The exception occurs when you call Update, not 
when you call SetFieldNul1. 

See Also: CDaoRecordset::IsFieldDirty, CDaoRecordset::IsFieldNull 

CDaoRecordset: :IsOpen 
BOOL IsOpen( ) const; 

Return Value 

Remarks 

Nonzero if the recordset object's Open or Requery member function has previously 
been called and the recordset has not been closed; otherwise O. 

Call this member function to determine if the recordset is open. 

For more information about creating recordsets, see the article "DAO Recordset: 
Creating Recordsets" in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset: :Open, CDaoRecordset:: Close 

CDaoRecordset: :Move 
virtual void Move( long lRows); 

throw( CDaoException, CMemoryException); 

Parameters 
lRows The number of records to move forward or backward. Positive values move 

forward, toward the end of the recordset. Negative values move backward, toward 
the beginning. 

323 



CDaoRecordset: :MoveFirst 

Remarks 
Call this member function to position the recordset IRows records from the current 
record. You can move forward or backward. Move ( 1 ) is equivalent to MoveNext, 
and Move( - 1 ) is equivalent to MovePrev. 

Caution Calling any of the Move functions throws an exception if the recordset has no 
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether 
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF. 

If you have scrolled past the beginning or end of the recordset (lsBOF or IsEOF returns 
nonzero), a call to Move throws a CDaoException. 

If you call any of the Move functions while the current record is being updated or added, the 
updates are lost without warning. 

When you call Move on a forward-only scrolling snapshot, the IRows parameter must 
be a positive integer and bookmarks are not allowed, so you can move forward only. 

To make the first, last, next, or previous record in a recordset the current record, call 
the MoveFirst, MoveLast, MoveNext, or MovePrev member function. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext, 
MovePrevious Methods" in DAO Help. 

See Also: CDaoRecordset: :MoveFirst, CDaoRecordset: :MoveLast, 
CDaoRecordset: :MoveNext, CDaoRecordset: :MovePrev 

CDaoRecordset: : MoveFirst 

Remarks 

324 

void MoveFirst(); 
throw( CDaoException, CMemoryException); 

Call this member function to make the first record in the recordset (if any) the current 
record. You do not have to call MoveFirst immediately after you open the recordset. 
At that time, the first record (if any) is automatically the current record. 

Caution Calling any of the Move functions throws an exception if the recordset has no 
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether 
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF. 

If you call any of the Move functions while the current record is being updated or added, the 
updates are lost without warning. 

Use the Move functions to move from record to record without applying a condition. 
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset 



CDaoRecordset: :MoveLast 

object that satisfy a certain condition. To locate a record in a table-type recordset 
object, call Seek. 

If the recordset refers to a table-type recordset, movement follows the table's current 
index. You can set the current index by using the Index property of the underlying 
DAO object. If you do not set the current index, the order of returned records is 
undefined. 

If you call MoveLast on a recordset object based on an SQL query or querydef, the 
query is forced to completion and the recordset object is fully populated. 

You cannot call the MoveFirst or MovePrev member function with a forward-only 
scrolling snapshot. 

To move the position of the current record in a recordset object a specific number of 
records forward or backward, call Move. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext, 
MovePrevious Methods" in DAO Help. 

See Also: CDaoRecordset::Move, CDaoRecordset::MoveLast, 
CDaoRecordset:: MoveNext, CDaoRecordset: :MovePrev 

CDaoRecordset: :MoveLast 

Remarks 

void MoveLast( ); 
throw( CDaoException, CMemoryException); 

Call this member function to make the last record (if any) in the recordset the current 
record. 

Caution Calling any of the Move functions throws an exception if the recordset has no 
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether 
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF. 

If you call any of the Move functions while the current record is being updated or added, the 
updates are lost without warning. 

Use the Move functions to move from record to record without applying a condition. 
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset 
object that satisfy a certain condition. To locate a record in a table-type recordset 
object, call Seek. 

If the recordset refers to a table-type recordset, movement follows the table's current 
index. You can set the current index by using the Index property of the underlying 

325 



CDaoRecordset: :MoveNext 

DAO object. If you do not set the current index, the order of returned records is 
undefined. 

If you call MoveLast on a recordset object based on an SQL query or querydef, the 
query is forced to completion and the recordset object is fully populated. 

To move the position of the current record in a recordset object a specific number of 
records forward or backward, call Move. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext, 
MovePrevious Methods" in DAO Help. 

See Also: CDaoRecordset: :Move, CDaoRecordset: :MoveFirst, 
CDaoRecordset: :MoveNext, CDaoRecordset: :MovePrev 

CDaoRecordset: :MoveN ext 

Remarks 

326 

void MoveNext(); 
throw( CDaoException, CMemoryException); 

Call this member function to make the next record in the recordset the current record. 
It is recommended that you call IsBOF before you attempt to move to the previous 
record. A call to MovePrev will throw a CDaoException if IsBOF returns nonzero, 
indicating either that you have already scrolled before the first record or that no 
records were selected by the recordset. 

Caution Calling any of the Move functions throws an exception if the recordset has no 
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether 
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF. 

If you call any of the Move functions while the current record is being updated or added, the 
updates are lost without warning. 

Use the Move functions to move from record to record without applying a condition. 
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset 
object that satisfy a certain condition. To locate a record in a table-type recordset 
object, call Seek. 

If the recordset refers to a table-type recordset, movement follows the table's current 
index. You can set the current index by using the Index property of the underlying 
DAO object. If you do not set the current index, the order of returned records is 
undefined. 

To move the position of the current record in a recordset object a specific number of 
records forward or backward, call Move. 



CDaoRecordset: :MovePrev 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext, 
MovePrevious Methods" in DAO Help. 

See Also: CDaoRecordset: :Move, CDaoRecordset: :MoveFirst, 
CDaoRecordset: :MoveLast, CDaoRecordset: :MovePrev 

CDaoRecordset: : MovePrev 

Remarks 

void MovePrev( ); 
throw( CDaoException, CMemoryException); 

Call this member function to make the previous record in the recordset the current 
record. 

It is recommended that you call IsBOF before you attempt to move to the previous 
record. A call to MovePrev will throw a CDaoException if IsBOF returns nonzero, 
indicating either that you have already scrolled before the first record or that no 
records were selected by the recordset. 

Caution Calling any of the Move functions throws an exception if the recordset has no 
records. In general, call both IsBOF and IsEOF before a Move operation to determine whether 
the recordset has any records. After you call Open or Requery, call either IsBOF or IsEOF. 

If you call any of the Move functions while the current record is being updated or added, the 
updates are lost without warning. 

Use the Move functions to move from record to record without applying a condition. 
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset 
object that satisfy a certain condition. To locate a record in a table-type recordset 
object, call Seek. 

If the recordset refers to a table-type recordset, movement follows the table's current 
index. You can set the current index by using the Index property of the underlying 
DAO object. If you do not set the current index, the order of returned records is 
undefined. 

You cannot call the MoveFirst or MovePrev member function with a forward-only 
scrolling snapshot. 

To move the position of the current record in a recordset object a specific number of 
records forward or backward, call Move. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 

327 



CDaoRecordset: :Open 

information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext, 
MovePrevious Methods" in DAO Help. 

See Also: CDaoRecordset: :Move, CDaoRecordset: :MoveFirst, 
CDaoRecordset: :MoveLast, CDaoRecordset: :MoveNext 

CDaoRecordset: : Open 
virtual void Open( int nOpenType = AFX_DAO_USE_DEFAULT_TYPE, 

'+ LPCTSTR IpszSQL = NULL, int nOptions = 0 ); 
throw( CDaoException, CMemoryException); 

virtual void Open( CDaoTableDef* pTableDef, int nOpenType = dbOpenTable, 
'+ int nOptions = 0 ); 
throw( CDaoException, CMemoryException); 

virtual void Open( CDaoQueryDef* pQueryDeJ, int nOpenType = dbOpenDynaset, 
'+ int nOptions = 0 ); 
throw( CDaoException, CMemoryException); 

Parameters 

328 

nOpenType One of the following values: 

• dbOpenDynaset A dynaset-type recordset with bidirectional scrolling. This is 
the default. 

• db Open Table A table-type recordset with bidirectional scrolling. 

• dbOpenSnapshot A snapshot-type recordset with bidirectional scrolling. 

IpszSQL A string pointer containing one of the following: 

• A NULL pointer. 

• The name of one or more tabledefs and/or querydefs (comma-separated). 

• An SQL SELECT statement (optionally with an SQL WHERE or ORDER BY 
clause). 

• A pass-through query. 

nOptions One or more of the options listed below. The default value is O. Possible 
values are as follows: 

• dbAppendOnly You can only append new records (dynaset-type recordset 
only). This option means literally that records may only be appended. The MFC 
ODBC database classes have an append-only option that allows records to be 
retrieved and appended. 

• dbForwardOnly The recordset is a forward-only scrolling snapshot. 

• dbSeeChanges Generate an exception if another user is changing data you are 
editing. 



Remarks 

CDaoRecordset:: Open 

• dbDenyWrite Other users cannot modify or add records. 

• dbDenyRead Other users cannot view records (table-type recordset only). 

• dbReadOnly You can only view records; other users can modify them. 

• dblnconsistent Inconsistent updates are allowed (dynaset-type recordset only). 

• db Consistent Only consistent updates are allowed (dynaset-type recordset 
only). 

Note The constants dbConsistent and dblnconsistent are mutually exclusive. You can 
use one or the other, but not both in a given instance of Open. 

pTableDef A pointer to a CDaoTableDef object. This version is valid only for 
table-type recordsets. When using this option, the CDaoDatabase pointer used to 
construct the CDaoRecordset is not used; rather, the database in which the 
tabledef resides is used. 

pQueryDef A pointer to a CDaoQueryDef object. This version is valid only for 
dynaset-type and snapshot-type recordsets. When using this option, the 
CDaoDatabase pointer used to construct the CDaoRecordset is not used; rather, 
the database in which the querydef resides is used. 

You must call this member function to retrieve the records for the recordset. Before 
calling Open, you must construct the recordset object. There are several ways to do 
this: 

• When you construct the recordset object, pass a pointer to a CDaoDatabase object 
that is already open. 

• When you construct the recordset object, pass a pointer to a CDaoDatabase object 
that is not open. The recordset opens a CDaoDatabase object, but will not close it 
when the recordset object closes. 

• When you construct the recordset object, pass a NULL pointer. The recordset 
object calls GetDefaultDBName to get the name of the Microsoft Access .MDB 
file to open. The recordset then opens a CDaoDatabase object and keeps it open 
as long as the recordset is open. When you call Close on the recordset, the 
CDaoDatabase object is also closed. 

Note When the recordset opens the CDaoDatabase object, it opens the data source with 
nonexclusive access. 

For the version of Open that uses the IpszSQL parameter, once the recordset is open 
you can retrieve records in one of several ways. The first option is to have DFX 
functions in your DoFieldExchange. The second option is to use dynamic binding 
by calling the GetFieldValue member function. These options can be implemented 
separately or in combination. If they are combined, you will have to pass in the SQL 
statement yourself on the call to Open. For more information about dynamic binding, 

329 



CDaoRecordset: :Open 

330 

see the article "DAO Recordset: Binding Records Dynamically" in Visual c++ 
Programmer's Guide online. 

When you use the second version of Open where you pass in a CDaoTableDef 
object, the resulting columns will be available for you to bind via DoFieldExchange 
and the DFX mechanism, and/or bind dynamically via GetFieldValue. 

Note You can only call Open using a CDaoTableDef object for table-type recordsets. 

When you use the third version of Open where you pass in a CDaoQueryDef object, 
that query will be executed, and the resulting columns will be available for you to 
bind via DoFieldExchange and the DFX mechanism, andlor bind dynamically via 
GetFieldValue. 

Note You can only call Open using a CDaoQueryDef object for dynaset-type and 
snapshot-type recordsets. 

For the first version of Open that uses the IpszSQL parameter, records are selected 
based on criteria shown in the following table. 

Value of the /pszSQL parameter Records selected are determined by Example 

NULL 

A comma-separated list of 
one or more tabledefs and/or 
querydef names. 

SELECT column-list FROM 
table-list 

The string returned by 
GetDefaultSQL. 

All columns represented in the 
DoFieldExchange. 

The specified columns from the 
specified tabledef(s) and/or 
querydef(s). 

"Customer" 

"SELECT Custld, 
CustName 
FROM Customer" 

The usual procedure is to pass NULL to Open; in that case, Open calls 
GetDefaultSQL, an overridable member function that ClassWizard generates when 
creating a CDaoRecordset-derived class. This value gives the tabledef(s) and/or 
querydef name(s) you specified in ClassWizard. You can instead specify other 
information in the IpszSQL parameter. 

Whatever you pass, Open constructs a final SQL string for the query (the string may 
have SQL WHERE and ORDER BY clauses appended to the IpszSQL string you 
passed) and then executes the query. You can examine the constructed string by 
calling GetSQL after calling Open. 

The field data members of your recordset class are bound to the columns of the data 
selected. If any records are returned, the first record becomes the current record. 

If you want to set options for the recordset, such as a filter or sort, set m_strSort or 
m_strFilter after you construct the recordset object but before you call Open. If you 
want to refresh the records in the recordset after the recordset is already open, call 
Requery. 



CDaoRecordset: :Requery 

If you call Open on a dynaset-type or snapshot-type recordset, or if the data source 
refers to an SQL statement or a tabledef that represents an attached table, you cannot 
use dbOpenTable for the type argument; if you do, MFC throws an exception. To 
determine whether a tabledef object represents an attached table, create a 
CDaoTableDef object and call its GetConnect member function. 

Use the dbSeeChanges flag if you wish to trap changes made by another user or 
another program on your machine when you are editing or deleting the same record. 
For example, if two users start editing the same record, the first user to call the 
Update member function succeeds. When Update is called by the second user, a 
CDaoException is thrown. Similarly, if the second user tries to call Delete to delete 
the record, and it has already been changed by the first user, a CDaoException 
occurs. 

Typically, if the user gets this CDaoException while updating, your code should 
refresh the contents of the fields and retrieve the newly modified values. If the 
exception occurs in the process of deleting, your code could display the new record 
data to the user and a message indicating that the data has recently changed. At this 
point, your code can request a confirmation that the user still wants to delete the 
record. 

Tip Use the forward-only scrolling option (dbForwardOnly) to improve performance when 
your application makes a single pass through a recordset opened from an DOBe data source. 

For more information about opening recordsets, see the articles "DAO Recordset: 
Creating Recordsets" and "DAO: Creating, Opening, and Closing DAO Objects" 
in Visual C++ Programmer's Guide online. For related information, see the topic 
"OpenRecordset Method" in DAO Help. 

See Also: CDaoRecordset::Close, CDaoRecordset::CDaoRecordset 

CDaoRecordset: : Requery 

Remarks 

virtual void Requery(); 
throw( CDaoException, CMemoryException); 

Call this member function to rebuild (refresh) a recordset. If any records are returned, 
the first record becomes the current record. 

In order for the recordset to reflect the additions and deletions that you or other users 
are making to the data source, you must rebuild the record set by calling Requery. If 
the recordset is a dynaset, it automatically reflects updates that you or other users 
make to its existing records (but not additions). If the recordset is a snapshot, you 
must call Requery to reflect edits by other users as well as additions and deletions. 

331 



CDaoRecordset:: Seek 

For either a dynaset or a snapshot, call Requery any time you want to rebuild the 
recordset using parameter values. Set the new filter or sort by setting m_strFilter and 
m_strSort before calling Requery. Set new parameters by assigning new values to 
parameter data members before calling Requery. 

If the attempt to rebuild the recordset fails, the recordset is closed. Before you call 
Requery, you can determine whether the recordset can be requeried by calling the 
CanRestart member function. CanRestart does not guarantee that Requery will 
succeed. 

Caution Call Requery only after you have called Open. 

You can't call Requery on a dynaset-type or snapshot-type record set if calling 
CanRestart returns 0, nor can you use it on a table-type recordset. 

If both IsBOF and IsEOF return nonzero after you call Requery, the query didn't 
return any records and the recordset will contain no data. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, see 
the topic "Requery Method" in DAO Help. 

See Also: CDaoRecordset:: CanRestart 

CDaoRecordset: : Seek 
BOOL Seek( LPCTSTR IpszComparison, COleVariant* pKeyJ, 

... COleVariant* pKey2 = NULL, COleVariant* pKey3 = NULL); 
throw( CDaoException, CMemoryException); 

BOOL Seek (LPCTSTR IpszComparison, COleVariant* pKeyArray, WORD nKeys); 
throw( CDaoException, CMemoryException); 

Return Value 
Nonzero if matching records are found, otherwise 0. 

Parameters 

332 

IpszComparison One of the following string expressions: "<", "<=", "=", ">=", or ">". 

pKeyJ A pointer to a COleVariant whose value corresponds to the first field in the 
index. Required. 

pKey2 A pointer to a COle Variant whose value corresponds to the second field in 
the index, if any. Defaults to NULL. 

pKey3 A pointer to a COle Variant whose value corresponds to the third field in the 
index, if any. Defaults to NULL. 

pKeyArray A pointer to an array of variants. The array size corresponds to the 
number of fields in the index. 



Remarks 

CDaoRecordset: :Seek 

nKeys An integer corresponding to the size of the array, which is the number of 
fields in the index. 

Note Do not specify wildcards in the keys. Wildcards will cause Seek to return no matching 
records. 

Call this member function to locate the record in an indexed table-type recordset 
object that satisfies the specified criteria for the current index and make that record the 
current record. Use the second (array) version of Seek to handle indexes of four fields 
or more. 

Seek enables high-performance index searching on table-type recordsets. You must 
set the current index by calling SetCurrentIndex before calling Seek. If the index 
identifies a nonunique key field or fields, Seek locates the first record that satisfies 
the criteria. If you do not set an index, an exception is thrown. 

Note that if you are not creating a UNICODE recordset, the COleVariant objects 
must be explicitly declared ANSI. This can be done by using the 
COleVariant::COleVariant( IpszSrc, vtSrc) form of constructor with vtSrc set to 
VT_BSTRT (ANSI) or by using the COleVariant function SetString( IpszSrc, 
vtSrc) with vtSrc set to VT_BSTRT. 

When you call Seek, you pass one or more key values and a comparison operator 
("<", "<=", "=", ">=", or ">"). Seek searches through the specified key fields and 
locates the first record that satisfies the criteria specified by IpszComparison and 
pKeyl. Once found, Seek returns nonzero, and makes that record current. If Seek fails 
to locate a match, Seek returns zero, and the current record is undefined. When using 
DAO directly, you must explicitly check the NoMatch property. 

If ipszComparison is "=", ">=", or ">", Seek starts at the beginning of the index. 
If IpszComparison is "<" or "<=", Seek starts at the end of the index and searches 
backward unless there are duplicate index entries at the end. In this case, Seek starts 
at an arbitrary entry among the duplicate index entries at the end of the index. 

There does not have to be a current record when you use Seek. 

To locate a record in a dynaset-type or snapshot-type recordset that satisfies a specific 
condition, use the Find operations. To include all records, not just those that satisfy a 
specific condition, use the Move operations to move from record to record. 

You cannot call Seek on an attached table of any type because attached tables 
must be opened as dynaset-type or snapshot-type recordsets. However, if you call 
CDaoDatabase::Open to directly open an installable ISAM database, you can call 
Seek on tables in that database, although the performance may be slow. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Seek Method" in DAO Help. 

333 



CDaoRecordset:: SetAbsolutePosition 

See Also: CDaoRecordset: :FindFirst, CDaoRecordset: :FindLast, 
CDaoRecordset: :FindNext, CDaoRecordset: :FindPrev, CDaoRecordset: :Move, 
CDaoRecordset: :MoveFirst, CDaoRecordset: :MoveLast, 
CDaoRecordset: :MoveN ext, CDaoRecordset: :MovePrev, 
COle Variant:: COle Variant, COle Variant: :SetString 

CDaoRecordset: :SetAbsolutePosition 
void SetAbsolutePosition( long IPosition ); 

throw( CDaoException, CMemoryException ); 

Parameters 

Remarks 

334 

IPosition Corresponds to the ordinal position of the current record in the recordset. 

Sets the relative record number of a recordset object's current record. Calling 
SetAbsolutePosition enables you to position the current record pointer to a specific 
record based on its ordinal position in a dynaset-type or snapshot-type recordset. You 
can also determine the current record number by calling GetAbsolutePosition. 

Note This member function is valid only for dynaset-type and snapshot-type recordsets. 

The AbsolutePosition property value of the underlying DAO object is zero-based; a 
setting of 0 refers to the first record in the recordset. Setting a value greater than the 
number of populated records causes MFC to throw an exception. You can determine 
the number of populated records in the recordset by calling the GetRecordCount 
member function. 

If the current record is deleted, the AbsolutePosition property value is not defined, and 
MFC throws an exception if it is referenced. New records are added to the end of the 
sequence. 

Note This property is not intended to be used as a surrogate record number. Bookmarks are 
still the recommended way of retaining and returning to a given position and are the only way 
to position the current record across all types of recordset objects that support bookmarks. In 
particular, the position of a given record changes when record(s) preceding it are deleted. There 
is also no assurance that a given record will have the same absolute position if the recordset is 
re-created again because the order of individual records within a recordset is not guaranteed 
unless it is created with an Sal statement using an ORDER BY clause. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual c++ Programmer's Guide online. For related 
information, see the topic "AbsolutePosition Property" in DAO Help. 

See Also: CDaoRecordset::GetAbsolutePosition 



CDaoRecordset:: SetCacheSize 

CDaoRecordset: : SetBookmark 
void SetBookmark( COleVariant varBookmark); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

varBookmark A COle Variant object containing the bookmark value for a specific 
record. 

Call this member function to position the recordset on the record containing the 
specified bookmark. When a recordset object is created or opened, each of its records 
already has a unique bookmark. You can retrieve the bookmark for the current record 
by calling GetBookmark and saving the value to a COleVariant object. You can 
later return to that record by calling SetBookmark using the saved bookmark value. 

Note that if you are not creating a UNICODE recordset, the COleVariant object 
must be explicitly declared ANSI. This can be done by using the 
COleVariant::COleVariant( [pszSrc, vtSrc) form of constructor with vtSrc set 
to VT_BSTRT (ANSI) or by using the COleVariant function 
SetString( [pszSrc, vtSrc) with vtSrc set to VT_BSTRT. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topics "Bookmark Property" and "Bookmarkable Property" 
in DAO Help. 

See Also: CDaoRecordset: :GetBookmark 

CDaoRecordset: : SetCacheSize 
void SetCacheSize( long [Size ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

[Size Specifies the number of records. A typical value is 100. A setting of 0 turns 
off caching. The setting must be between 5 and 1200 records. The cache may use 
a considerable amount of memory. 

Call this member function to set the number of records to be cached. A cache is a 
space in local memory that holds the data most recently retrieved from the server 
in the event that the data will be requested again while the application is running. 
Data caching improves the performance of an application that retrieves data from a 
remote server through dynaset-type record set objects. When data is requested, the 

335 



CDaoRecordset: :SetCacheStart 

Microsoft Jet database engine checks the cache for the requested data first rather than 
retrieving it from the server, which takes more time. Data that does not come from an 
ODBC data source is not saved in the cache. 

Any ODBC data source, such as an attached table, can have a local cache. To create 
the cache, open a recordset object from the remote data source, call the SetCacheSize 
and SetCacheStart member functions, and then call the FillCache member function 
or step through the records by using one of the Move operations. The ISize parameter 
of the SetCacheSize member function can be based on the number of records your 
application can work with at one time. For example, if you are using a recordset as the 
source of the data to be displayed on screen, you could pass the SetCacheSize ISize 
parameter as 20 to display 20 records at one time. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "CacheSize, CacheS tart Properties" in DAO Help. 

See Also: CDaoRecordset: : Fill Cache, CDaoRecordset: :GetCacheSize, 
CDaoRecordset: :GetCacheStart, CDaoRecordset: :SetCacheStart 

CDaoRecordset: : SetCacheStart 
void SetCacheStart( COleVariant varBookmark); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

336 

varBookmark A COle Variant that specifies the bookmark of the first record in the 
recordset to be cached. 

Call this member function to specify the bookmark of the first record in the recordset 
to be cached. You can use the bookmark value of any record for the varBookmark 
parameter of the SetCacheStart member function. Make the record you want to 
start the cache with the current record, establish a bookmark for that record using 
SetBookmark, and pass the bookmark value as the parameter for the SetCacheStart 
member function. 

The Microsoft Jet database engine requests records within the cache range from the 
cache, and it requests records outside the cache range from the server. 

Records retrieved from the cache do not reflect changes made concurrently to the 
source data by other users. 

To force an update of all the cached data, pass the ISize parameter of SetCacheSize 
as 0, call SetCacheSize again with the size of the cache you originally requested, 
and then call the FillCache member function. 



CDaoRecordset::SetCurrentIndex 

Note that if you are not creating a UNICODE recordset, the COleVariant object 
must be explicitly declared ANSI. This can be done by using the 
COleVariant::COleVariant( ipszSrc, vtSrc) form of constructor with vtSrc set 
to VT_BSTRT (ANSI) or by using the COleVariant function 
SetString( ipszSrc, vtSrc) with vtSrc set to VT_BSTRT. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "CacheSize, CacheS tart Properties" in DAO Help. 

See Also: CDaoRecordset: :FillCache, CDaoRecordset: :GetCacheSize, 
CDaoRecordset: :GetCacheStart, CDaoRecordset: :SetCacheSize 

CDaoRecordset: : SetCurrentIndex 
void SetCurrentIndex( LPCTSTR ipszIndex); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

ipszIndex A pointer containing the name of the index to be set. 

Call this member function to set an index on a table-type recordset. Records in base 
tables are not stored in any particular order. Setting an index changes the order of 
records returned from the database, but it does not affect the order in which the 
records are stored. The specified index must already be defined. If you try to use an 
index object that does not exist, or if the index is not set when you call Seek, MFC 
throws an exception. 

You can create a new index for the table by calling CDaoTableDef::CreateIndex and 
appending the new index to the Indexes collection of the underlying tabledef by 
calling CDaoTableDef: :Append, and then reopening the recordset. 

Records returned from a table-type recordset can be ordered only by the indexes 
defined for the underlying tabledef. To sort records in some other order, you can open 
a dynaset-type or snapshot-type recordset using an SQL ORDER BY clause stored 
in CDaoRecordset: :m_strSort. 

For more information about finding records, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Index Object" and the definition "current index" in DAO 
Help. 

See Also: CDaoRecordset::GetCurrentIndex 

337 



CDaoRecordset:: SetFieldDirty 

CDaoRecordset: : SetFieldDirty 
void SetFieldDirty( void* pv, BOOL bDirty = TRUE ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

338 

pv Contains the address of a field data member in the recordset or NULL. If NULL, 
all field data members in the recordset are flagged. (C++ NULL is not the same as 
Null in database terminology, which means "having no value.") 

bDirty TRUE if the field data member is to be flagged as "dirty" (changed). 
Otherwise FALSE if the field data member is to be flagged as "clean" 
(unchanged). 

Call this member function to flag a field data member of the recordset as changed or 
as unchanged. Marking fields as unchanged ensures the field is not updated. 

The framework marks changed field data members to ensure they will be written to 
the record on the data source by the DAO record field exchange (DFX) mechanism. 
Changing the value of a field generally sets the field dirty automatically, so you will 
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure 
that columns will be explicitly updated or inserted regardless of what value is in the 
field data member. The DFX mechanism also employs the use of PSEUDO NULL. 
For more information, see CDaoFieldExchange::m_nOperation. 

If the double-buffering mechanism is not being used, then changing the value of the 
field does not automatically set the field as dirty. In this case, it will be necessary to 
explicity set the field as dirty. The flag contained in m_hCheckCacheForDirtyFields 
controls this automatic field checking. 

Important Call this member function only after you have called Edit or AddNew. 

Using NULL for the first argument of the function will apply the function to all 
outputColumns, not params in CDaoFieldExchange. For instance, the call 

SetFieldOirty( NULL ); 

will set only outputColumns to NULL. The value of param will be unaffected. 

To work on a param, you must supply the actual address of the individual param you 
want to work on, such as: 

SetFieldOirty( &m_strParam ); 

This means you cannot set all params NULL, as you can with outputColumns. 

SetFieldDirty is implemented through DoFieldExchange. 



CDaoRecordset: :SetFieldN ull 

For more information about record field exchange, see the articles "DAO Record 
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in 
Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset: :SetFieldNull, CDaoRecordset: :SetFieldValue 

CDaoRecordset: : SetFieldN ull 
void SetFieldNull( void* pv, BOOL bNull = TRUE); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

pv Contains the address of a field data member in the recordset or NULL. If NULL, 
all field data members in the recordset are flagged. (C++ NULL is not the same as 
Null in database terminology, which means "having no value.") 

bNull Nonzero if the field data member is to be flagged as having no value (Null). 
Otherwise 0 if the field data member is to be flagged as non-Null. 

Call this member function to flag a field data member of the recordset as Null 
(specifically having no value) or as non-Null. The first version of SetFieldNull is 
used for fields bound in the DoFieldExchange mechanism. If you choose to bind your 
fields dynamically, you must use either the second or third version of this member 
function. You can mix the calls as necessary. 

When you add a new record to a recordset, all field data members are initially set to 
a Null value and flagged as "dirty" (changed). When you retrieve a record from a data 
source, its columns either already have values or are Null. If it is not appropriate to 
make a field Null, a CDaoException is thrown. 

If you are using the double-buffering mechanism, for example, if you specifically 
wish to designate a field of the current record as not having a value, call SetFieldNull 
with bNull set to TRUE to flag it as Null. If a field was previously marked Null and 
you now want to give it a value, simply set its new value. You do not have to remove 
the Null flag with SetFieldNull. To determine whether the field is allowed to be Null, 
call IsFieldNullable. 

If you are not using the double-buffering mechanism, then changing the value of the 
field does not automatically set the field as dirty and non-Null. You must specifically 
set the fields dirty and non-Null. The flag contained in 
m_bCheckCacheForDirtyFields controls this automatic field checking. 

The DFX mechanism employs the use of PSEUDO NULL. For more information, see 
CDaoFieldExchange: :m_nOperation. 

Important Call this member function only after you have called Edit or AddNew. 

339 



CDaoRecordset:: SetFieldV alue 

Using NULL for the first argument of the function will apply the function only to 
outputColumns, not params in CDaoFieldExchange. For instance, the call 

SetFieldNull( NULL ); 

will set only outputColumns to NULL. The value of param will be unaffected. 

For more information about record field exchange, see the articles "DAO Record 
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in 
Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset: :SetParam Value 

CDaoRecordset: : SetFieldValue 
void SetFieldValue( LPCTSTR IpszName, const COleVariant& varValue); 

throw( CDaoException, CMemoryException); 
void SetFieldValue( int nOrdinal, const COleVariant& varValue); 

throw( CDaoException, CMemoryException); 
void SetFieldValue( LPCTSTR IpszName, LPCTSTR IpszValue); 
void SetFieldValue( int nOrdinal, LPCTSTR IpszValue); 

Parameters 

Remarks 

340 

lpszName A pointer to a string containing the name of a field. 

varValue A reference to a COleVariant object containing the value of the field's 
contents. 

nOrdinal An integer that represents the ordinal position of the field in the recordset's 
Fields collection (zero-based). 

lpszValue A pointer to a string containing the value of the field's contents. 

Call this member function to set the value of a field, either by ordinal position or by 
changing the value of the string. Use SetFieldValue and GetFieldValue to 
dynamically bind fields at run time rather than statically binding columns using the 
DoFieldExchange mechanism. 

Note that if you are not creating a UNICODE recordset, you must either use a form 
of SetFieldValue that does not contain a COle Variant parameter (one of the last 
two syntax forms), or the COleVariant object must be explicitly declared ANSI. 
This can be done by using the COleVariant::COleVariant( IpszSrc, vtSrc) form 
of constructor with vtSrc set to VT_BSTRT (ANSI) or by using the COleVariant 
function SetString( IpszSrc, vtSrc) with vtSrc set to VT_BSTRT. 

For more information about record field exchange, see the articles "DAO Record 
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in 
Visual C++ Programmer's Guide online. For related information, see the topics 
"Field Object" and "Value Property" in DAO Help. 



CDaoRecordset: :SetLockingMode 

See Also: CDaoRecordset::GetFieldValue, CDaoRecordset::m_nParams, 
CDaoRecordset: :SetFieldValueNull, COle Variant:: COle Variant, 
COle Variant: :SetString 

CDaoRecordset: :SetFieldValueNull 
void SetFieldValueNull( short nlndex ); 

throw( CDaoException, CMemoryException); 
void SetFieldValueNull( LPCTSTR IpszName ); 

throw( CDaoException, CMemory Exception); 

Parameters 

Remarks 

nlndex The index of the field in the recordset, for lookup by zero-based index. 

IpszName The name of the field in the recordset, for lookup by name. 

Call this member function to set the field to a Null value. C++ NULL is not the 
same as NUll, which, in database terminology, means "having no value." 

For more information about record field exchange, see the articles "DAO Record 
Field Exchange (DFX)" and "DAO Recordset: Binding Records Dynamically" in 
Visual C++ Programmer's Guide online. For related information, see the topics 
"Field Object" and "Value Property" in DAO Help. 

See Also: CDaoRecordset::SetFieldValue 

CDaoRecordset: : SetLockingMode 
void SetLockingMode( BOOL bPessimistic ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

bPessimistic A flag that indicates the type of locking. 

Call this member function to set the type of locking for the recordset. When 
pessimistic locking is in effect, the 2K page containing the record you are editing is 
locked as soon as you call the Edit member function. The page is unlocked when you 
call the Update or Close member function or any of the Move or Find operations. 

When optimistic locking is in effect, the 2K page containing the record is locked only 
while the record is being updated with the Update member function. 

If a page is locked, no other user can edit records on the same page. If you call 
SetLockingMode and pass a nonzero value and another user already has the page 
locked, an exception is thrown when you call Edit. Other users can read data from 
locked pages. 

341 



CDaoRecordset: :SetParam Value 

If you call SetLockingMode with a zero value and later call Update while the page is 
locked by another user, an exception occurs. To see the changes made to your record 
by another user (and lose your changes), call the SetBookmark member function with 
the bookmark value of the current record. 

When working with ODBC data sources, the locking mode is always optimistic. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer:S- Guide online. For related information, see 
the topics "LockEdits Property," "EditMode Property," and "Locking Behavior in 
Multiuser Applications" in DAO Help. 

See Also: CDaoRecordset: : GetLockingMode 

CDaoRecordset: :SetParam Value 
virtual void SetParamValue( int nlndex, const COleVariant& var); 

throw( CDaoException, CMemoryException); 
virtual void SetParam Value( LPCTSTR IpszName, const COle Variant& var ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

342 

nlndex The numerical position of the parameter in the querydef's Parameters 
collection. 

var The value to set; see Remarks. 

IpszName The name of the parameter whose value you want to set. 

Call this member function to set the value of a parameter in the recordset at run time. 
The parameter must already have been established as part of the recordset's SQL 
string. You can access the parameter either by name or by its index position in the 
collection. 

Specify the value to set as a COle Variant object. For information about setting the 
desired value and type in your COleVariant object, see class COleVariant. Note 
that if you are not creating a UNICODE recordset, the COleVariant object must be 
explicitly declared ANSI. This can be done by using the COleVariant::COleVariant 
( IpszSrc, vtSrc) form of constructor with vtSrc set to VT_BSTRT (ANSI) or by using 
the COleVariant function SetString( IpszSrc, vtSrc) with vtSrc set to VT_BSTRT. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer:S- Guide online. For related information, see 
the topic "Parameter Object" in DAO Help. 

See Also: CDaoRecordset: : GetParam Value, CDaoRecordset: :m_nParams, 
CDaoRecordset: :SetParam ValueNull 



CDaoRecordset:: SetPercentPosition 

CDaoRecordset: :SetParam ValueNull 
void SetParamValueNull( short nlndex); 

throw( CDaoException, CMemoryException); 
void SetParam ValueNull( LPCTSTR IpszName ); 

throw( CDaoException, CMemory Exception); 

Parameters 

Remarks 

nlndex The index of the field in the recordset, for lookup by zero-based index. 

IpszName The name of the field in the recordset, for lookup by name. 

Call this member function to set the parameter to a Null value. C++ NULL is not 
the same as Null, which, in database terminology, means "having no value." 

For more information about updating data, see the article "DAO Recordset: 
Recordset Operations" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Parameter Object" in DAO Help. 

CDaoRecordset: : SetPercentPosition 
void SetPercentPosition( floatjPosition ); 

throw( CDaoException, CMemory Exception); 

Parameters 

Remarks 

/position A number between a and 100. 

Call this member function to set a value that changes the approximate location 
of the current record in the recordset object based on a percentage of the records 
in the recordset. 

When working with a dynaset-type or snapshot-type recordset, first populate 
the recordset by moving to the last record before you call SetPercentPosition. 
If you call SetPercentPosition before fully populating the recordset, the amount 
of movement is relative to the number of records accessed as indicated by the 
value of GetRecordCount. You can move to the last record by calling 
MoveLast. 

Once you call SetPercentPosition, the record at the approximate position 
corresponding to that value becomes current. 

Note Calling SetPercentPosition to move the current record to a specific record in a 
recordset is not recommended. Call the SetBookmark member function instead. 

343 



CDaoRecordset:: Update 

For more information about navigating in recordsets, see the article "DAO Recordset: 
Recordset Navigation" in Visual C++ Programmer's Guide online. For related 
information, see the topic "PercentPosition Property" in DAO Help. 

See Also: CDaoRecordset: :GetPercentPosition 

CDaoRecordset: : Update 

Remarks 

344 

virtual void Update( ); 
throw( CDaoException, CMemoryException); 

Call this member function after a call to the AddNew or Edit member function. This 
call is required to complete the AddNew or Edit operation. 

Both AddNew and Edit prepare an edit buffer in which the added or edited data is 
placed for saving to the data source. Update saves the data. Only those fields marked 
or detected as changed are updated. 

If the data source supports transactions, you can make the Update call (and its 
corresponding AddNew or Edit call) part of a transaction. For more information 
about transactions, see the article "DAO Workspace: Managing Transactions" in 
Visual C++ Programmer's Guide online. 

Caution If you call Update without first calling either AddNew or Edit, Update throws a 
CDaoException. If you call AddNew or Edit, you must call Update before you call MoveNext 
or close either the recordset or the data source connection. Otherwise, your changes are lost 
without notification. 

When the recordset object is pessimistically locked in a multiuser environment, the 
record remains locked from the time Edit is used until the updating is complete. If the 
recordset is optimistically locked, the record is locked and compared with the 
pre-edited record just before it is updated in the database. If the record has changed 
since you called Edit, the Update operation fails and MFC throws an exception. You 
can change the locking mode with SetLockingMode. 

Note Optimistic locking is always used on external database formats, such as oose and 
installable ISAM. 

For more information about updating data, see the article "DAO Recordset: Recordset 
Operations" in Visual C++ Programmer's Guide online. For related information, 
see the topics "AddNew Method," "CancelUpdate Method," "Delete Method," 
"LastModified Property," "Update Method," and "EditMode Property" in DAO Help. 

See Also: CDaoRecordset::AddNew, CDaoRecordset::CanceIUpdate, 
CDaoRecordset: :Delete, CDaoRecordset: :Edit, CDaoRecordset:: CanTransact 



CDaoRecordset:: ffi_nFields 

Data Members 
CDaoRecordset: :m_bCheckCacheForDirty Fields 
Remarks 

Contains a flag indicating whether cached fields are automatically marked as dirty 
(changed) and Null. The flag defaults to TRUE. The setting in this data member 
controls the entire double-buffering mechanism. If you set the flag to TRUE, you 
can turn off the caching on a field-by-field basis using the DFX mechanism. If you 
set the flag to FALSE, you must call SetFieldDirty and SetFieldNull yourself. 

Set this data member before calling Open. This mechanism is primarily for 
ease-of-use. Performance may be slower because of the double-buffering of fields 
as changes are made. 

For more information about binding records dynamically, see the article "DAO 
Recordset: Binding Records Dynamically" in Visual C++ Programmer's Guide 
online. 

See Also: CDaoRecordset::SetFieldNull, CDaoRecordset::IsFieldNull, 
CDaoRecordset: : IsFieldDirty , CDaoRecordset: :SetFieldDirty 

CDaoRecordset: :m_nFields 
Remarks 

Contains the number of field data members in the recordset class and the number of 
columns selected by the recordset from the data source. The constructor for the 
recordset class must initialize m_nFields with the correct number of statically bound 
fields. ClassWizard writes this initialization for you when you use it to declare your 
recordset class. You can also write it manually. 

The framework uses this number to manage interaction between the field data 
members and the corresponding columns of the current record on the data source. 

Note This number must correspond to the number of output columns registered in 
DoFieldExchange after a call to SetFieldType with the parameter 
CDaoFieldExchange::outputColumn. 

You can bind columns dynamically by way of CDaoRecordset::GetFieldValue and 
CDaoRecordset::SetFieldValue, as explained in the article "DAO Recordset: 
Binding Records Dynamically." If you do so, you do not need to increment the count 
in m_nFields to reflect the number of DFX function calls in your DoFieldExchange 
member function. 

For more information, see the article "DAO Record Field Exchange (DFX)" in 
Visual C++ Programmer's Guide online. 

345 



CDaoRecordset: :m_nParams 

See Also: CDaoRecordset: :SetFieldValue, CDaoRecordset: : GetFieldValue 

CDaoRecordset: :m_nParams 
Remarks 

Contains the number of parameter data members in the recordset class - the number 
of parameters passed with the recordset's query. If your recordset class has any 
parameter data members, the constructor for the class must initialize m_nParams 
with the correct number. The value of m_nParams defaults to O. If you add parameter 
data members - which you must do manually - you must also manually add an 
initialization in the class constructor to reflect the number of parameters (which must 
be at least as large as the number of '?' placeholders in your m_strFilter or m_strSort 
string). 

The framework uses this number when it parameterizes the recordset's query. 

Important This number must correspond to the number of "params" registered in 
DoFieldExchange after a call to SetFieldType with the parameter CFieldExchange::param. 

For more information about selecting records, see the article "DAO Queries: Filtering 
and Parameterizing Queries" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Parameter Object" in DAO Help. 

CDaoRecordset: :m_pDAORecordset 
Remarks 

Contains a pointer to the OLE interface for the DAO recordset object underlying the 
CDaoRecordset object. Use this pointer if you need to access the DAO interface 
directly. 

For more information about accessing underlying DAO objects, see the article 
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. For related information, see the topic "Record set Object" 
in DAO Help. 

See Also: CDaoRecordset: :m_pDatabase 

CDaoRecordset: :m_pDatabase 
Remarks 

346 

Contains a pointer to the CDaoDatabase object through which the recordset is 
connected to a data source. This variable is set in two ways. Typically, you pass a 
pointer to an already open CDaoDatabase object when you construct the recordset 
object. If you pass NULL instead, CDaoRecordset creates a CDaoDatabase object 
for you and opens it. In either case, CDaoRecordset stores the pointer in this variable. 



CDaoRecordset: : m_strSort 

Normally you will not directly need to use the pointer stored in m_pDatabase. If you 
write your own extensions to CDaoRecordset, however, you might need to use the 
pointer. For example, you might need the pointer if you throw your own 
CDaoException( s). 

For more information about accessing underlying DAO objects, see the article 
"DAO Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. For related information, see the topic "Database Object" 
in DAO Help. 

See Also: CDaoRecordset::m_pDAORecordset 

CDaoRecordset: :m_strFilter 
Remarks 

Contains a string that is used to construct the WHERE clause of an SQL statement. 
It does not include the reserved word WHERE to filter the recordset. The use of this 
data member is not applicable to table-type recordsets. The use of m_strFilter has no 
effect when opening a recordset using a CDaoQueryDef pointer. 

Use the U.S. date format (month-day-year) when you filter fields containing dates, 
even if you are not using the U.S. version of the Microsoft Jet database engine; 
otherwise, the data may not be filtered as you expect. 

For more information about selecting records, see the article "DAO Queries: Filtering 
and Parameterizing Queries" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Filter Property" in DAO Help. 

See Also: CDaoRecordset::m_strSort 

CDaoRecordset: :m_strSort 
Remarks 

Contains a string containing the ORDER BY clause of an SQL statement without the 
reserved words ORDER BY. You can sort on dynaset- and snapshot-type recordset 
objects. 

You cannot sort table-type recordset objects. To determine the sort order of a 
table-type recordset, call SetCurrentIndex. 

The use of m_strSort has no effect when opening a recordset using a 
CDaoQueryDef pointer. 

For more information about selecting records, see the article "DAO Queries: Filtering 
and Parameterizing Queries" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Sort Property" in DAO Help. 

See Also: CDaoRecordset::m_strFilter 

347 



CDaoRecordView 

CDaoRecordView 

348 

CDaoRecordView 

A CDaoRecordView object is a view that displays database records in controls. 
The view is a form view directly connected to a CDaoRecordset object. The view is 
created from a dialog template resource and displays the fields of the CDaoRecordset 
object in the dialog template's controls. The CDaoRecordView object uses dialog 
data exchange (DDX) and DAO record field exchange (DFX) to automate the 
movement of data between the controls on the form and the fields of the recordset. 
CDaoRecordView also supplies a default implementation for moving to the first, 
next, previous, or last record and an interface for updating the record currently in 
view. 

Note The DAO database classes are distinct from the MFC database classes based on Open 
Database Connectivity (ODBC). All DAO database class names have the "CDao" prefix. You 
can still access ODBC data sources with the DAO classes; the DAO classes generally offer 
superior capabilities because they use the Microsoft Jet database engine. 

The most common way to create your record view is with App Wizard. App Wizard 
creates both the record view class and its associated recordset class as part of your 
skeleton starter application. 

If you simply need a single form, the AppWizard approach is easier. ClassWizard lets 
you decide to use a record view later in the development process. If you don't create 
the record view class with AppWizard, you can create it later with ClassWizard. Using 
ClassWizard to create a record view and a recordset separately and then connect them 
is the most flexible approach because it gives you more control in naming the 
recordset class and its .HI.CPP files. This approach also lets you have multiple record 
views on the same recordset class. 

To make it easy for end-users to move from record to record in the record view, 
AppWizard creates menu (and optionally toolbar) resources for moving to the first, 



next, previous, or last record. If you create a record view class with ClassWizard, you 
need to create these resources yourself with the menu and bitmap editors. For more 
information about these resources, see "Overview: Creating a Program That Supports 
a Database" and "ClassWizard: Creating a Database Form." 

For information about the default implementation for moving from record to record, 
see IsOnFirstRecord and IsOnLastRecord and the article "Record Views: Using a 
Record View," which applies to both CRecordView and CDaoRecordView. 

CDaoRecordView keeps track of the user's position in the recordset so that the 
record view can update the user interface. When the user moves to either end of the 
recordset, the record view disables user interface objects- such as menu items or 
toolbar buttons-for moving further in the same direction. 

For more information about declaring and using your record view and recordset 
classes, see "Designing and Creating a Record View" in the article "Record Views." 
For more information about how record views work and how to use them, see the 
article "Record Views: Using a Record View." All the articles mentioned above 
apply to both CRecordView and CDaoRecordView and are found in Visual C++ 
Programmer's Guide online. 

#include <afxdao.h> 

See Also: CDaoRecordset, CDaoTableDef, CDaoQueryDef, CDaoDatabase, 
CDaoWorkspace, CFormView 

CDaoRecordView Class Members 
Construction 

CDaoRecordView 

Attributes 

OnGetRecordset 

IsOnLastRecord 

IsOnFirstRecord 

Operations 

OnMove 

Constructs a CDaoRecordView object. 

Returns a pointer to an object of a class derived 
from CDaoRecordset. Class Wizard overrides this 
function for you and creates the recordset if necessary. 

Returns nonzero if the current record is the last record 
in the associated recordset. 

Returns nonzero if the current record is the first record 
in the associated recordset. 

If the current record has changed, updates it on the 
data source, then moves to the specified record 
(next, previous, first, or last). 

CDaoRecordView 

349 



CDaoRecordView: :CDaoRecordView 

Member Functions 
CDaoRecordView: : CDaoRecordView 

CDaoRecordView( LPCSTR IpszTemplateName); 
CDaoRecordView( UINT nIDTemplate); 

Parameters 

Remarks 

350 

IpszTemplateName Contains a null-terminated string that is the name of a dialog 
template resource. 

nIDTemplate Contains the ID number of a dialog template resource. 

When you create an object of a type derived from CDaoRecordView, call either 
form of the constructor to initialize the view object and identify the dialog resource 
on which the view is based. You can either identify the resource by name (pass a 
string as the argument to the constructor) or by its ID (pass an unsigned integer as 
the argument). Using a resource ID is recommended. 

Note Your derived class must supply its own constructor. In the constructor of your derived 
class, call the constructor CDaoRecordView::CDaoRecordView with the resource name or 
ID as an argument. 

CDaoRecordView: :OnInitialUpdate calls CWnd:: UpdateData, which calls 
CWnd: :DoDataExchange. This initial call to DoDataExchange connects 
CDaoRecordView controls (indirectly) to CDaoRecordset field data members 
created by Class Wizard. These data members cannot be used until after you call the 
base class CFormView::OnInitiaIUpdate member function. 

Note If you use ClassWizard, the wizard defines an enum value CDaoRecordVi ew: : I DO 
and specifies it in the member initialization list for the constructor where you see I DO_MY FORM. 

CMyRecordView::CMyRecordView() 

} 

: CDaoRecordView( IDD_MYFORM 

II{{AFX_DATA_INIT( CMyRecordView ) 
II NOTE: the ClassWizard will add member initialization here 

/I}}AFX_DATA_INIT 
II Other construction code, such as data initialization 

See Also: CWnd::UpdateData, CWnd::DoDataExchange 



CDaoRecordView: :IsOnLastRecord 

CDaoRecordView: : IsOnFirstRecord 
BOOL IsOnFirstRecord(); 

Return Value 

Remarks 

Nonzero if the current record is the first record in the recordset; otherwise O. 

Call this member function to determine whether the current record is the first record in 
the recordset object associated with this record view. This function is useful for 
writing your own implementations of the default command update handlers written by 
Class Wizard. 

If the user moves to the first record, the framework disables any user interface objects 
(for example, menu items or toolbar buttons) you have for moving to the first or the 
previous record. 

See Also: CDaoRecordView: :IsOnLastRecord 

CDaoRecordView: : IsOnLastRecord 
BOOL IsOnLastRecord(); 

Return Value 

Remarks 

Nonzero if the current record is the last record in the recordset; otherwise O. 

Call this member function to determine whether the current record is the last record in 
the recordset object associated with this record view. This function is useful for 
writing your own implementations of the default command update handlers that 
Class Wizard writes to support a user interface for moving from record to record. 

Caution The result of this function is reliable except that the view may not be able to detect 
the end of the recordset until the user has moved past it. The user might have to move beyond 
the last record before the record view can tell that it must disable any user interface objects for 
moving to the next or last record. If the user moves past the last record and then moves back to 
the last record (or before it), the record view can track the user's position in the recordset and 
disable user interface objects correctly. 

See Also: CDaoRecordView: :IsOnFirstRecord 

351 



CDaoRecordView: :OnGetRecordset 

CDaoRecordView: :OnGetRecordset 
virtual CDaoRecordset* OnGetRecordset( ) = 0; 

Return Value 

Remarks 

A pointer to a CDaoRecordset-derived object if the object was successfully created; 
otherwise a NULL pointer. 

Returns a pointer to the CDaoRecordset-derived object associated with the record 
view. You must override this member function to construct or obtain a recordset object 
and return a pointer to it. If you declare your record view class with Class Wizard, the 
wizard writes a default override for you. ClassWizard's default implementation returns 
the record set pointer stored in the record view if one exists. If not, it constructs a 
recordset object of the type you specified with ClassWizard and calls its Open 
member function to open the table or run the query, and then returns a pointer to the 
object. 

For more information and examples, see the article "Record Views: Using a Record 
View" in Visual c++ Programmer's Guide online. 

See Also: CDaoRecordset, CDaoRecordset: :Open 

CDaoRecordView: : OnMove 
virtual BOOL OnMove( UINT nIDMoveCommand ); 

Return Value 
Nonzero if the move was successful; otherwise 0 if the move request was denied. 

Parameters 

Remarks 

352 

nIDMoveCommand One of the following standard command ID values: 

• ID _RECORD _FIRST Move to the first record in the recordset. 

• ID_RECORD_LAST Move to the last record in the recordset. 

• ID_RECORD_NEXT Move to the next record in the recordset. 

• ID_RECORD_PREV Move to the previous record in the recordset. 

Call this member function to move to a different record in the recordset and display its 
fields in the controls of the record view. The default implementation calls the 
appropriate Move member function of the CDaoRecordset object associated with the 
record view. 

By default, OnMove updates the current record on the data source if the user has 
changed it in the record view. 



CDaoRecordView::OnMove 

AppWizard creates a menu resource with First Record, Last Record, Next Record, and 
Previous Record menu items. If you select the Initial Toolbar option, App Wizard also 
creates a toolbar with buttons corresponding to these commands. 

If you move past the last record in the recordset, the record view continues to display 
the last record. If you move backward past the first record, the record view continues 
to display the first record. 

Caution Calling OnMove throws an exception if the recordset has no records. Call the 
appropriate user interface update handler function-OnUpdateRecordFirst, 
OnUpdateRecordLast, OnUpdateRecordNext, or OnUpdateRecordPrev-before the 
corresponding move operation to determine whether the recordset has any records. For 
information about the update handlers, see "Overview: Creating a Program That Supports 
a Database" in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset: :Move 

353 



CDaoTableDef 

CDaoTableDef 

354 

A CDaoTableDef object represents the stored definition of a base table or an attached 
table. Each DAO database object maintains a collection, called TableDefs, that 
contains all saved DAO tabledef objects. 

You manipulate a table definition using a CDaoTableDef object. For example, 
you can: 

• Examine the field and index structure of any local, attached, or external table in 
a database. 

• Call the SetConnect and SetSourceTableName member functions for attached 
tables, and use the RefreshLink member function to update connections to 
attached tables. 

• Call the CanUp date member function to determine if you can edit field definitions 
in the table. 

• Get or set validation conditions using the GetValidationRule and 
SetValidationRule, and the GetValidationText and SetValidationText member 
functions. 

• Use the Open member function to create a table-, dynaset-, or snapshot-type 
CDaoRecordset object. 

Note The DAO database classes are distinct from the MFC database classes based on Open 
Database Connectivity (ODSC). All DAO database class names have the "CDao" prefix. You 
can still access ODSC data sources with the DAO classes; the DAO classes generally offer 
superior capabilities because they are specific to the Microsoft Jet database engine. 

Use tabledef objects either to work with an existing table or to create a new table: 

1. In all cases, first construct a CDaoTableDef object, supplying the a pointer to a 
CDaoDatabase object to which the table belongs. 

2. Then do the following, depending on what you want: 

• To use an existing saved table, call the tabledef object's Open member function, 
supplying the name of the saved table. 

• To create a new table, call the tabledef object's Create member function, 
supplying the name of the table. Call CreateField and CreateIndex to add 
fields and indexes to the table. 



• Call Append to save the table by appending it to the database's TableDefs 
collection. Create puts the tabledef into an open state, so after calling Create 
you do not call Open. 

Tip The easiest way to create saved tables is to create them and store them in your database 
using Microsoft Access. Then you can open and use them in your MFC code. 

To use the tabledef object you have opened or created, create and open a 
CDaoRecordset object, specifying the name of the tabledef with a dbOpenTable 
value in the 1l0pellType parameter. 

To use a tabledef object to create a CDaoRecordset object, you typically create or 
open a tabledef as described above, then construct a recordset object, passing a pointer 
to your tabledef object when you call CDaoRecordset::Open. The tabledef you pass 
must be in an open state. For more information, see class CDaoRecordset. 

When you finish using a tabledef object, call its Close member function; then destroy 
the tabledef object. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. 

#include <afxdao.h> 

See Also: CDaoDatabase, CDaoRecordset 

CDaoTableDef Class Members 
Data Members 

ID_pDatabase 

ID_pDAOTableDef 

Construction 

Append 

CdaoTableDef 

Close 

Create 

Open 

Attributes 

CanUp date 

GetAttributes 

Source database for this table. 

A pointer to the DAO interface underlying the tabledef object. 

Adds a new table to the database. 

Constructs a CDaoTableDef object. 

Closes an open tabledef. 

Creates a table which can be added to the database using Append. 

Opens an existing tabledef stored in the database's TableDef's 
collection. 

Returns nonzero if the table can be updated (you can modify the 
definition of fields or the table properties). 

Returns a value that indicates one or more characteristics of a 
CDaoTableDef object. 

(continued) 

CDaoTableDef 

355 



CDaoTableDef 

356 

Attributes (continued) 

GetConnect 

GetDateCreated 

GetDateLastU pdated 

GetFieldCount 

GetFieldInfo 

GetIndexCount 

GetIndexInfo 

GetName 

GetRecordCount 

GetSourceTableName 

GetValidationRule 

GetValidationText 

IsOpen 

SetAttributes 

SetConnect 

SetName 

SetSourceTableName 

SetValidationRule 

SetValidationText 

Operations 

CreateField 

Createlndex 

DeleteField 

DeleteIndex 

RefreshLink 

Returns a value that provides information about the source of a 
table. 

Returns the date and time the base table underlying a 
CDaoTableDef object was created. 

Returns the date and time of the most recent change made to the 
design of the base table. 

Returns a value that represents the number of fields in the table. 

Returns specific kinds of information about the fields in the table. 

Returns the number of indexes for the table. 

Returns specific kinds of information about the indexes for the 
table. 

Returns the user-defined name of the table. 

Returns the number of records in the table. 

Returns a value that specifies the name of the attached table in the 
source database. 

Returns a value that validates the data in a field as it is changed or 
added to a table. 

Returns a value that specifies the text of the message that your 
application displays if the value of a Field object does not satisfy 
the specified validation rule. 

Returns nonzero if the table is open. 

Sets a value that indicates one or more characteristics of a 
CDaoTableDef object. 

Sets a value that provides information about the source of a table. 

Sets the name of the table. 

Sets a value that specifies the name of an attached table in the 
source database. 

Sets a value that validates the data in a field as it is changed or 
added to a table. 

Sets a value that specifies the text of the message that your 
application displays if the value of a Field object does not satisfy 
the specified validation rule. 

Called to create a field for a table. 

Called to create an index for a table. 

Called to delete a field from a table. 

Called to delete an index from a table. 

Updates the connection information for an attached table. 



CDaoTableDef::CanUpdate 

Member Functions 
CDaoTableDef: : Append 

Remarks 

virtual void Append( ); 
throw( CDaoException, CMemoryException); 

Call this member function after you call Create to create a new tabledef object to 
save the tabledef in the database. The function appends the object to the database's 
TableDefs collection. You can use the tabledef as a temporary object while defining 
it by not appending it, but if you want to save and use it, you must call Append. 

Note If you attempt to append an unnamed tabledef (containing a null or empty string), MFC 
throws an exception. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Append Method" in DAO Help. 

See Also: CDaoTableDef::Create 

CDaoTableDef: : Can Update 
BOOL CanUpdate( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if the table structure (schema) can be modified (add or delete fields and 
indexes), otherwise O. 

Call this member function to determine whether the definition of the table underlying 
a CDaoTableDef object can be changed. 

By default, a newly created table underlying a CDaoTableDef object can be updated, 
and an attached table underlying a CDaoTableDef object cannot be updated. A 
CDaoTableDef object may be updatable, even if the resulting recordset is not 
updatable. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Up datable Property" in DAO Help. 

See Also: CDaoTableDef::GetDateLastUpdated 

357 



CDaoTableDef: :CDaoTableDef 

CDaoTableDef: :CDaoTableDef 
CDaoTableDef( CDaoDatabase* pDatabase); 

Parameters 

Remarks 

pDatabase A pointer to a CDaoDatabase object. 

Constructs a CDaoTableDef object. After constructing the object, you must call the 
Create or Open member function. When you finish with the object, you must call its 
Close member function and destroy the CDaoTableDef object. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. 

See Also: CDaoTableDef::Open, CDaoTableDef::Close, CDaoTableDef::Create, 
CDaoDatabase 

CDao TableDef: : Close 

Remarks 

virtual void Close( ); 
throw( CDaoException, CMemoryException ); 

Call this member function to close and release the tabledef object. Usually after 
calling Close, you delete the tabledef object if it was allocated with new. 

You can call Open again after calling Close. This lets you reuse the tabledef object. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Close Method" in DAO Help. 

See Also: CDaoTableDef::Open, CDaoTableDef::Create 

CDaoTableDef: : Create 
virtual void Create( LPCTSTR lpszName, long lAttributes = 0, 

.. LPCTSTR IpszSrcTable = NULL, LPCTSTR IpszConnect = NULL ); 
throw( CDaoException, CMemoryException); 

Parameters 

358 

IpszName A pointer to a string containing the name of the table. 

lAttributes A value corresponding to characteristics of the table represented by the 
tabledef object. You can use the bitwise-OR to combine any of the following 
constants: 



CDaoTableDef: :CreateField 

Remarks 

Constant 

d bA ttachExciusi ve 

dbAttachSavePWD 

dbSystemObject 

dbHiddenObject 

Description 

For databases that use the Microsoft Jet database engine, indicates 
the table is an attached table opened for exclusive use. 

For databases that use the Microsoft Jet database engine, indicates 
that the user ID and password for the attached table are saved with 
the connection information. 

Indicates the table is a system table provided by the Microsoft Jet 
database engine. 

Indicates the table is a hidden table provided by the Microsoft Jet 
database engine. 

lpszSrcTable A pointer to a string containing the source table name. By default this 
value is initialized as NULL. 

lpszConnect A pointer to a string containing the default connect string. By default 
this value is initialized as NULL. 

Call this member function to create a new saved table. Once you have named the 
tabledef, you can then call Append to save the tabledef in the database's TableDefs 
collection. After calling Append, the tabledef is in an open state, and you can use it to 
create a CDaoRecordset object. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "CreateTableDef Method" in DAO Help. 

See Also: CDaoTableDef::Open, CDaoTableDef::Close, CDaoRecordset 

CDaoTableDef: :CreateField 
void CreateField( LPCTSTR lpszName, short nType, long lSize, long lAttributes = 0 ); 

throw( CDaoException, CMemoryException); 
void CreateField( CDaoFieldInfo&JieldinJo); 

throw( CDaoException, CMemoryException); 

Parameters 
IpszName A pointer to a string expression specifying the name of this field. 

nType A value indicating the data type of the field. The setting can be one of these 
values: 

Type Size (bytes) Description 

dbBoolean 1 byte BOOL 

dbByte 1 BYTE 

dblnteger 2 int 

(continued) 

359 



CDaoTableDef: :CreateField 

Remarks 

360 

(continued) 

Type 

dbLong 

db Currency 

dbSingle 

dbDouble 

dbDate 

dbText 

dbLongBinary 

dbMemo 

Size (bytes) 

4 

8 

4 

8 

8 

1-255 

a 

a 

Description 

long 

Currency (COleCurrency) 

float 

double 

Daterrime (COleDateTime) 

Text (CString) 

Long Binary (OLE Object), CLongBinary 
or CByteArray 

Memo (CString) 

lSize A value that indicates the maximum size, in bytes, of a field that contains text, 
or the fixed size of a field that contains text or numeric values. The lSize parameter 
is ignored for all but text fields. 

lAttributes A value corresponding to characteristics of the field and that can be 
combined using a bitwise-OR. 

Constant Description 

db Fixed Field 

db VariableField 

dbAutolncrField 

dbUpdatableField 

dbDescending 

The field size is fixed (default for Numeric fields). 

The field size is variable (Text fields only). 

The field value for new records is automatically incremented to a 
unique long integer that cannot be changed. Only supported for 
Microsoft Jet database tables. 

The field value can be changed. 

The field is sorted in descending (Z-A or 100-0) order (applies 
only to a Field object in a Fields collection of an Index object). 
If you omit this constant, the field is sorted in ascending (A-Z or 
0-100) order (default). 

fieldinfo A reference to a CDaoFieldlnfo structure. 

Call this member function to add a field to the table. A DAOField (OLE) object is 
created and appended to the Fields collection of the DAOTableDef (OLE) object. 
Besides its use for examining object properties, you can also use CDaoFieldlnfo to 
construct an input parameter for creating new fields in a tabledef. The first version of 
CreateField is simpler to use, but if you want finer control, you can use the second 
version of CreateField, which takes a CDaoFieldlnfo parameter. 

If you use the version of CreateField that takes a CDaoFieldlnfo parameter, you 
must carefully set each of the following members of the CDaoFieldlnfo structure: 

• m_strName 

• m_nType 



CDaoTableDef: :Createlndex 

• m_lSize 

• m_lAttributes 

• m_bAllowZeroLength 

The remaining members of CDaoFieldlnfo should be set to 0, FALSE, or an empty 
string, as appropriate for the member, or a CDaoException may occur. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "CreateField Method" in DAO Help. 

See Also: CDaoTableDef::DeleteField, CDaoTableDef::Createlndex, 
CDaoTableDef: :Deletelndex 

CDao TableDef: : Createlndex 
void Createlndex( CDaolndexlnfo& indexinfo ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

indexinfo A reference to a CDaolndexlnfo structure. 

Call this function to add an index to a table. Indexes specify the order of records 
accessed from database tables and whether or not duplicate records are accepted. 
Indexes also provide efficient access to data. 

You do not have to create indexes for tables, but in large, unindexed tables, accessing 
a specific record or creating a recordset can take a long time. On the other hand, 
creating too many indexes slows down update, append, and delete operations as all 
indexes are automatically updated. Consider these factors as you decide which 
indexes to create. 

The following members of the CDaolndexlnfo structure must be set: 

• m_strName A name must be supplied. 

• m_pFieldlnfos Must point to an array of CDaolndexFieldlnfo structures. 

• m_nFields Must specify the number of fields in the array of CDaoFieldlnfo 
structures. 

The remaining members will be ignored if set to FALSE. In addition, the 
m_lDistinctCount member is ignored during creation of the index. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "CreateIndex Method" in DAO Help. 

361 



CDaoTableDef: :DeleteField 

See Also: CDaoTableDef: :DeleteIndex, CDaoTableDef: :CreateField, 
CDaoTableDef: :DeleteField, CDaoIndexInfo 

CDaoTableDef: : DeleteField 
void DeleteField( LPCTSTR lpszName ); 

throw( CDaoException, CMemoryException); 
void DeleteField( int nlndex ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

lpszName A pointer to a string expression that is the name of an existing field. 

nlndex The index of the field in the table's zero-based Fields collection, for lookup 
by index. 

Call this member function to remove a field and make it inaccessible. You can use this 
member function on a new object that has not been appended to the database or when 
CanUpdate returns nonzero. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual c++ Programmer's Guide online. For related 
information, see the topic "Delete Method" in DAO Help. 

See Also: CDaoTableDef::CreateField, CDaoTableDef::CreateIndex, 
CDaoTableDef: :DeleteIndex 

CDaoTableDef: : DeleteIndex 
void DeleteIndex( LPCTSTR lpszName); 

throw( CDaoException, CMemoryException); 
void DeleteIndex( int nlndex); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

362 

lpszName A pointer to a string expression that is the name of an existing index. 

nlndex The array index of the index object in the database's zero-based TableDefs 
collection, for lookup by index. 

Call this member function to delete an index in an underlying table. You can use this 
member function on a new object that hasn't been appended to the database or when 
CanUpdate returns nonzero. 



CDaoTableDef::GetAttributes 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Delete Method" in DAO Help. 

See Also: CDaoTableDef::Createlndex, CDaoTableDef::CreateField, 
CDaoTableDef:: DeleteField 

CDaoTableDef: : GetAttributes 
long GetAttributes( ); 

throw( CDaoException, CMemory Exception); 

Return Value 

Remarks 

Returns a value that indicates one or more characteristics of a CDaoTableDef object. 

For a CDaoTableDef object, the return value specifies characteristics of the table 
represented by the CDaoTableDef object and can be a sum of these constants: 

Constant 

dbAttachExclusive 

dbAttachSavePWD 

dbSystemObject 

dbHiddenObject 

dbAttachedTable 

dbAttachedODBC 

Description 

For databases that use the Microsoft Jet database engine, indicates 
the table is an attached table opened for exclusive use. 

For databases that use the Microsoft Jet database engine, indicates 
that the user ID and password for the attached table are saved with 
the connection information. 

Indicates the table is a system table provided by the Microsoft Jet 
database engine. 

Indicates the table is a hidden table provided by the Microsoft Jet 
database engine. 

Indicates the table is an attached table from a non-ODBC database, 
such as a Paradox database. 

Indicates the table is an attached table from an ODBC database, such 
as Microsoft SQL Server. 

A system table is a table created by the Microsoft Jet database engine to contain 
various internal information. 

A hidden table is a table created for temporary use by the Microsoft Jet database 
engine. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoTableDef::SetAttributes 

363 



CDaoTableDef:: GetConnect 

CDaoTableDef: : GetConnect 
CString GetConnect(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

364 

A CString object containing the path and database type for the table. 

Call this member function to obtain the connect string for a data source. For a 
CDaoTableDef object that represents an attached table, the CString object consists 
of one or two parts (a database type specifier and a path to the database). 

The path as shown in the table below is the full path for the directory containing the 
database files and must be preceded by the identifier "DATABASE=". In some cases 
(as with Microsoft Jet, Btrieve, and Microsoft Excel databases), a specific filename is 
included in the database path argument. 

The following table shows possible database types and their corresponding database 
specifiers and paths: 

Database type 

Database using the 
Jet database engine 

dBASEIII 

dBASEIV 

Paradox 3.x 

Paradox 4.x 

Btrieve 

FoxPro 2.0 

FoxPro 2.5 

FoxPro 2.6 

Excel 3.0 

Excel 4.0 

Exce15.0 

Text 

ODBC 

Specifier 

"." , 

"dBASE III;" 

"dBASE IV;" 

"Paradox 3.x;" 

"Paradox 4.x;" 

"Btrieve;" 

"FoxPro 2.0;" 

"FoxPro 2.5;" 

"FoxPro 2.6;" 

"Excel 3.0;" 

"Excel 4.0;" 

"Excel 5.0;" 

"Text;" 

"ODBC; 
DATABASE=defaultdatabase; 
UID=user;PWD=password; 
DSN =datasourcename; 
LOGINTIMEOUT=seconds" (This 
may not be a complete connection 
string for all servers; it is just an 
example. It is very important not to 
have spaces between the parameters.) 

Path 

"drive:\path\filename.MDB" 

"drive:\path" 

"drive:\path" 

"drive:\path" 

"drive:\path" 

"drive:\path\filename.DDF" 

"drive:\path" 

"drive:\path" 

"drive:\path" 

"drive:\path\filename.xLS" 

"drive:\path\filename.xLS" 

"drive:\path\filename.XLS" 

"drive:\path" 

None 



CDaoTableDef: :GetDateLastUpdated 

For Microsoft Jet database base tables, the specifier is a empty string (""). 

If a password is required but not provided, the ODBC driver displays a login dialog 
box the first time a table is accessed and again if the connection is closed and 
reopened. If an attached table has the dbAttachSavePWD attribute, the login prompt 
will not appear when the table is reopened. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Connect Property" in DAO Help. 

See Also: CDaoTableDef: :SetConnect 

CDaoTableDef: : GetDateCreated 
COleDateTime GetDateCreated( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A value containing the date and time of the creation of the table underlying the 
CDaoTableDef object. 

Call this function to determine the date and time the table underlying the 
CDaoTableDef object was created. 

The date and time settings are derived from the computer on which the base table was 
created or last updated. In a multiuser environment, users should get these settings 
directly from the file server to avoid discrepancies; that is, all clients should use a 
"standard" time source-perhaps from one server. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "DateCreated, LastUpdated Properties" in DAO Help. 

See Also: CDaoTableDef::GetLastDateUpdated 

CDaoTableDef:: GetDateLastUpdated 
COleDateTime GetDateLastUpdated( ); 

throw( CDaoException, CMemoryException); 

Return Value 
A value that contains the date and time the table underlying the CDaoTableDef object 
was last updated. 

365 



CDaoTableDef: :GetFieldCount 

Remarks 
Call this function to determine the date and time the table underlying the 
CDaoTableDef object was last updated. 

The date and time settings are derived from the computer on which the base table was 
created or last updated. In a multiuser environment, users should get these settings 
directly from the file server to avoid discrepancies; that is, all clients should use a 
"standard" time source-perhaps from_ one server. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "DateCreated, LastUpdated Properties" in DAO Help. 

See Also: CDaoTableDef::GetDateCreated 

CDaoTableDef: : GetFieldCount 
short GetFieldCount(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of fields in the table. 

Call this member function to retrieve the number of fields defined in the table. If its 
value is 0, there are no objects in the collection. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Count Property" in DAO Help. 

See Also: CDaoTableDef::GetFieldInfo, CDaoTableDef::GetIndexInfo, 
CDaoTableDef::GetIndexCount 

CDao TableDef: : GetFieldInfo 
void GetFieldInfo( int nlndex, CDaoFieldInfo& fieldinfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

void GetFieldInfo( LPCTSTR lpszName, CDaoFieldInfo& fieldinfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

Parameters 

366 

nlndex The index of the field object in the table's zero-based Fields collection, for 
lookup by index. 

fieldinfo A reference to a CDaoFieldInfo structure. 



CDaoTableDef: :GetlndexCount 

Remarks 

dwlnfoOptions Options that specify which information about the field to retrieve. 
The available options are listed here along with what they cause the function to 
return: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes. Use 
this option for fastest performance. 

• AFX_DAO_SECONDARY_INFO Primary information, plus: Ordinal 
Position, Required, Allow Zero Length, Collating Order, Foreign Name, Source 
Field, Source Table 

• AFX_DAO_ALL_INFO Primary and secondary information, plus: Validation 
Rule, Validation Text, Default Value 

IpszName A pointer to the name of the field object, for lookup by name. The name is 
a string with up to 64 characters that uniquely names the field. 

Call this member function to obtain various kinds of information about a field defined 
in the tabledef. One version of the function lets you look up a field by index. The 
other version lets you look up a field by name. 

For a description of the information returned, see the CDaoFieldlnfo structure. This 
structure has members that correspond to the items of information listed above in the 
description of dwlnfoOptions. When you request information at one level, you get 
information for any prior levels as well. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoTableDef: : GetIndexlnfo, CDaoTableDef: : GetIndexCount, 
CDaoTableDef: :GetFieldCount 

CDaoTableDef: : GetIndexCount 
short GetIndexCount(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of indexes for the table. 

Call this member function to obtain the number of indexes for a table. If its value is 0, 
there are no indexes in the collection. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Count Property" in DAO Help. 

367 



CDaoTableDef:: GetIndexInfo 

See Also: CDaoTableDef::GetIndexInfo, CDaoTableDef::GetFieldInfo, 
CDaoTableDef:: GetField Count 

CDao TableDef: : GetIndexInfo 
void GetIndexInfo( int nlndex, CDaoIndexInfo& indexinfo, 

... DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

void GetIndexInfo( LPCTSTR IpszName, CDaoIndexInfo& indexinfo, 
... DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

368 

nlndex The numeric index of the Index object in the table's zero-based Indexes 
collection, for lookup by its position in the collection. 

indexinfo A reference to a CDaoIndexInfo structure. 

dwlnfoOptions Options that specify which information about the index to retrieve. 
The available options are listed here along with what they cause the function to 
return: 

• AFX_DAO_PRIMARY_INFO Name, Field Info, Fields. Use this option for 
fastest performance. 

• AFX_DAO_SECONDARY_INFO Primary information, plus: Primary, 
Unique, Clustered, Ignore Nulls, Required, Foreign 

• AFX_DAO_ALL_INFO Primary and secondary information, plus: Distinct 
Count 

IpszName A pointer to the name of the index object, for lookup by name. 

Call this member function to obtain various kinds of information about an index 
defined in the tabledef. One version of the function lets you look up an index by its 
position in the collection. The other version lets you look up an index by name. 

For a description of the information returned, see the CDaoIndexInfo structure. This 
structure has members that correspond to the items of information listed above in the 
description of dwlnfoOptions. When you request information at one level, you get 
information for any prior levels as well. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoTableDef::GetFieldInfo, CDaoTableDef::GetIndexCount, 
CDaoTableDef:: GetField Count 



CDaoTableDef:: GetRecordCount 

CDaoTableDef: : GetN arne 
CString GetName( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A user-defined name for a table. 

Call this member function to obtain the user-defined name of the underlying table. 
This name starts with a letter and can contain a maximum of 64 characters. It can 
include numbers and underscore characters but cannot include punctuation or spaces. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Name Property" in DAO Help. 

See Also: CDaoTableDef::SetName, CDaoTableDef::GetConnect, 
CDaoTableDef:: Set Connect 

CDaoTableDef: : GetRecordCount 
long GetRecordCount( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

The number of records accessed in a tabledef object. 

Call this member function to find out how many records are in a CDaoTableDef 
object. 

Calling GetRecordCount for a table-type CDaoTableDef object reflects the 
approximate number of records in the table and is affected immediately as table 
records are added and deleted. Rolled back transactions will appear as part of the 
record count until you call CDaoWorkSpace::CompactDatabase. A CDaoTableDef 
object with no records has a record count property setting of O. When working with 
attached tables or ODBC databases, GetRecordCount always returns -1. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "RecordCount Property" in DAO Help. 

See Also: CDaoTableDef::GetSourceTableName, 
CDaoTableDef: :SetSourceTableName 

369 



CDaoTableDef: :GetSourceTableN arne 

CDaoTableDef: : GetSourceTableN arne 
CString GetSourceTableName(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString object that specifies the source name of an attached table, or an empty 
string if a native data table. 

Call this member function to retrieve the name of an attached table in a source 
database. An attached table is a table in another database linked to a Microsoft Jet 
database. Data for attached tables remains in the external database, where it can be 
manipulated by other applications. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "SourceTableName Property" in DAO Help. 

See Also: CDaoTableDef::GetRecordCount, 
CDaoTableDef: :SetSourceTableName 

CDaoTableDef: : GetValidationRule 
CString GetValidationRule(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

370 

A CString object that validates the data in a field as it is changed or added to a table. 

Call this member function to retrieve the validation rule for a tabledef. Validation rules 
are used in connection with update operations. If a tabledef contains a validation rule, 
updates to that tabledef must match predetermined criteria before the data is changed. 
If the change does not match the criteria, an exception containing the value of 
GetValidationText is thrown. For a CDaoTableDef object, this CString is read-only 
for an attached table and read/write for a base table. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "ValidationRule Property" in DAO Help. 

See Also: CDaoTableDef::SetValidationRule, 
CDaoTableDef: :Get ValidationText, CDaoTableDef: :Set Validation Text 



CDaoTableDef: :Open 

CDaoTableDef::GetValidationText 
CString GetValidationText( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString object that specifies the text displayed if the user enters data that does not 
match the validation rule. 

Call this function to retrieve the string to display when a user enters data that does not 
match the validation rule. For a CDaoTableDef object, this CString is read-only for 
an attached table and read/write for a base table. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "ValidationText Property" in DAO Help. 

See Also: CDaoTableDef: :SetValidationRule, CDaoTableDef: :SetValidationText, 
CDaoTableDef: : GetValidationRule 

CDaoTableDef: :IsOpen 
BOOL IsOpen( ) const; 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if the CDaoTableDef object is open; otherwise O. 

Call this member function to determine whether the CDaoTableDef object is currently 
open. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer:1I Guide online. 

See Also: CDaoTableDef: :Open 

CDaoTableDef: :Open 
virtual void Open( LPCTSTR ipszName); 

throw( CDaoException, CMemoryException); 

Parameters 
IpszName A pointer to a string that specifies a table name. 

371 



CDaoTableDef: :RefreshLink 

Remarks 
Call this member function to open a tabledef previously saved in the database's 
TableDef's collection. 

For more information on tabledefs, see the articles "DAD Tabledef' and "DAD 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. 

See Also: CDaoTableDef::IsOpen, CDaoTableDef::Create, 
CDaoTableDef:: Close 

CDaoTableDef: : RefreshLink 

Remarks 

void RefreshLink(); 
throw( CDaoException, CMemoryException); 

Call this member function to update the connection information for an attached table. 
You change the connection information for an attached table by calling SetConnect 
on the corresponding CDaoTableDef object and then using the RefreshLink member 
function to update the information. When you call RefreshLink, the attached table's 
properties are not changed. 

To force the modified connect information to take effect, all open CDaoRecordset 
objects based on this tabledef must be closed. 

For more information on tabledefs, see the articles "DAD Tabledef' and "DAD 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "RefreshLink Method" in DAD Help. 

See Also: CDaoTableDef: :SetConnect 

CDaoTableDef: :SetAttributes 
void SetAttributes( long IAttributes ); 

throw( CDaoException, CMemoryException); 

Parameters 

372 

IAttributes Characteristics of the table represented by the CDaoTableDef object and 
can be a sum of these constants: 

Constant 

dbAttachExclusive 

dbAttachSavePWD 

Description 

For databases that use the Microsoft Jet database engine, indicates 
the table is an attached table opened for exclusive use. 

For databases that use the Microsoft Jet database engine, indicates 
that the user ID and password for the attached table are saved with 
the connection information. 



CDaoTab1eDef::SetConnect 

Remarks 

(continued) 

Constant 

dbSystemObject 

dbHiddenObject 

Description 

Indicates the table is a system table provided by the Microsoft Jet 
database engine. 

Indicates the table is a hidden table provided by the Microsoft Jet 
database engine. 

When setting multiple attributes, you can combine them by summing the appropriate 
constants using the bitwise-OR operator. Setting dbAttachExclusive on a nonattached 
table produces an exception. Combining the following values also produce an 
exception: 

• dbAttachExclusive I dbAttachedODBC 

• dbAttachSavePWD I dbAttachedTable 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Attributes Property" in DAO Help. 

See Also: CDaoTableDef: :SetConnect 

CDaoTableDef: :SetConnect 
void SetConnect( LPCTSTR IpszConnect); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszConnect A pointer to a string expression that specifies additional parameters to 
pass to ODBC or installable ISAM drivers. 

For a CDaoTableDef object that represents an attached table, the string object 
consists of one or two parts (a database type specifier and a path to the database). 

The path as shown in the table below is the full path for the directory containing the 
database files and must be preceded by the identifier "DATABASE=". In some cases 
(as with Microsoft Jet, Btrieve, and Microsoft Excel databases), a specific filename is 
included in the database path argument. 

Note Do not include whitespace around the equal sign in path statements of the form 
"DATABASE=drive:\\path". This will result in an exception being thrown and the connection 
failing. 

373 



CDaoTableDef:: SetConnect 

374 

The following table shows possible database types and their corresponding database 
specifiers and paths: 

Database type 

Database using the 
Jet database engine 

dBASE III 

dBASEIV 

Paradox 3.x 

Paradox 4.x 

Btrieve 

FoxPro 2.0 

FoxPro 2.S 

FoxPro 2.6 

Excel 3.0 

Excel 4.0 

ExcelS.O 

Text 

ODBC 

Specifier 

"." , 

"dBASE III;" 

"dBASE IV;" 

"Paradox 3.x;" 

"Paradox 4.x;" 

"Btrieve;" 

"FoxPro 2.0;" 

"FoxPro 2.S;" 

"FoxPro 2.6;" 

"Excel 3.0;" 

"Excel 4.0;" 

"Excel S.O;" 

"Text;" 

"ODBC; 
DATABASE=defaultdatabase; 
UID=user;PWD=password; 
DSN=datasourcename; 
LOGINTIMEOUT=seconds" (This 
may not be a complete connection 
string for all servers; it is just an 
example. It is very important not to 
have spaces between the parameters.) 

Path 

"drive:\\path\\filename.MDB" 

"drive:\\path" 

"drive:\\path" 

"drive:\\path" 

"drive:\\path" 

"drive:\\path\\filename.DDF" 

"drive:\\path" 

"drive:\\path" 

"drive:\\path" 

"drive:\\path\\filename.xLS" 

"drive:\\path\\filename.xLS" 

"drive:\\path\\filename.xLS" 

"drive:\\path" 

None 

For Microsoft Jet database base tables, the specifier is an empty string (''''). 

You must use a double backslash (\\) in the connect strings. If you have modified the 
properties of an existing connection using SetConnect, you must subsequently call 
RefreshLink. If you are initializing the connection properties using SetConnect, you 
need not call RefreshLink, but should you choose to do so, first append the tabledef. 

If a password is required but not provided, the ODBC driver displays a login dialog 
box the first time a table is accessed and again if the connection is closed and 
reopened. 

You can set the connect string for a CDaoTableDef object by providing a source 
argument to the Create member function. You can check the setting to determine 
the type, path, user ID, password, or ODBC data source of the database. For more 
information, see the documentation for the specific driver. 



CDaoTableDef: :SetSourceTableN arne 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Connect Property" in DAO Help. 

See Also: CDaoTableDef: : RefreshLink, CDaoTableDef: :SetAttributes 

CDaoTableDef:: SetN arne 
void SetName( LPCTSTR lpszName ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszName A pointer to a string expression that specifies a name for a table. 

Call this member function to set a user-defined name for a table. The name must start 
with a letter and can contain a maximum of 64 characters. It can include numbers and 
underscore characters but cannot include punctuation or spaces. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "Name Property" in DAO Help. 

See Also: CDaoTableDef: :RefreshLink, CDaoTableDef: :SetConnect 

CDaoTableDef:: SetSourceTableN arne 
void SetSourceTableName( LPCTSTR IpszSrcTableName ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

lpszSrcTableName A pointer to a string expression that specifies a table name in the 
external database. For a base table, the setting is an empty string (""). 

Call this member function to specify the name of an attached table or the name of 
the base table on which the CDaoTableDef object is based, as it exists in the original 
source of the data. You must then call RefreshLink. This property setting is empty 
for a base table and read/write for an attached table or an object not appended to a 
collection. 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "SourceTableName Property" in DAO Help. 

See Also: CDaoTableDef: :RefreshLink, CDaoTableDef: : GetSourceTableName 

375 



CDaoTableDef: :Set ValidationRule 

CDaoTableDef: : Set ValidationRule 
void SetValidationRule( LPCTSTR IpszValidationRule); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

lpsz ValidationRule A pointer to a string expression that validates an operation. 

Call this member function to set a validation rule for a tabledef. Validation rules are 
used in connection with update operations. If a tabledef contains a validation rule, 
updates to that tabledef must match predetermined criteria before the data is changed. 
If the change does not match the criteria, an exception containing the text of 
GetValidationText is displayed. 

Validation is supported only for databases that use the Microsoft Jet database engine. 
The expression cannot refer to user-defined functions, domain aggregate functions, 
SQL aggregate functions, or queries. A validation rule for a CDaoTableDef object 
can refer to mUltiple fields in that object. 

For example, for fields named hi re_date and termi nat i on_date, a validation rule 
might be: 

CString strRule = _T("termination_date>hire_date"); 
MyRs.SetValidationRule(strRule); 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "ValidationRule Property" in DAO Help. 

See Also: CDaoTableDef: : GetValidationText, CDaoTableDef: :Set Validation Text, 
CDaoTableDef:: Get ValidationRule 

CDao TableDef: : Set Validation Text 
void SetValidationText( LPCTSTR IpszValidationText); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

376 

lpsz Validation Text A pointer to a string expression that specifies the text displayed 
if entered data is invalid. 

Call this member function to set the exception text of a validation rule for a 
CDaoTableDef object with an underlying base table supported by the Microsoft Jet 
database engine. You cannot set the validation text of an attached table. 



CDaoTableDef: :m_pDAOTableDef 

For more information on tabledefs, see the articles "DAO Tabledef' and "DAO 
Tabledef: Using Tabledefs" in Visual C++ Programmer's Guide online. For related 
information, see the topic "ValidationText Property" in DAO Help. 

See Also: CDaoTableDef::SetValidationRule, 
CDaoTableDef: :Get ValidationText, CDaoTableDef: :Get ValidationRule 

Data Members 
CDaoTableDef: :m_pDatabase 
Remarks 

Contains a pointer to the CDaoDatabase object for this table. 

For more information on accessing underlying DAO objects, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. 

See Also: CDaoTableDef::m_pDAOTableDef 

CDaoTableDef: :m_pDAOTableDef 
Remarks 

Contains a pointer to the OLE interface for the DAO tabledef object underlying the 
CDaoTableDef object. Use this pointer if you need to access the DAO interface 
directly. 

For more information on accessing underlying DAO objects, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. 

See Also: CDaoTableDef: :m_pDatabase 

377 



CDao Workspace 

CDao Workspace 

e 

A CDaoWorkspace object manages a named, password-protected database session 
from login to logoff, by a single user. In most cases, you will not need multiple 
workspaces, and you will not need to create explicit workspace objects; when you 
open database and recordset objects, they use DAO's default workspace. However, 
if needed, you can run multiple sessions at a time by creating additional workspace 
objects. Each workspace object can contain multiple open database objects in its 
own Databases collection. In MFC, a workspace is primarily a transaction manager, 
specifying a set of open databases all in the same "transaction space." 

Note The DAO database classes are distinct from the MFC database classes based on Open 
Database Connectivity (ODSC). All DAD database class names have a "CDao" prefix. In 
general, the MFC classes based on DAO are more capable than the MFC classes based on 
ODSC. The DAO-based classes access data through the Microsoft Jet database engine, 
including ODSC drivers. They also support Data Definition Language (DDL) operations, such 
as creating databases and adding tables and fields via the classes, without having to call DAD 
directly. 

Capabilities 

Security 

378 

Class CDaoWorkspace provides the following: 

• Explicit access, if needed, to a default workspace, created by initializing the 
database engine. Usually you use DAO's default workspace implicitly by creating 
database and recordset objects. 

• A transaction space in which transactions apply to all databases open in the 
workspace. You can create additional workspaces to manage separate transaction 
spaces. 

• An interface to many properties of the underlying Microsoft Jet database engine 
(see the static member functions). Opening or creating a workspace, or calling a 
static member function before open or create, initializes the database engine. 

• Access to the database engine's Workspaces collection, which stores all active 
workspaces that have been appended to it. You can also create and work with 
works paces without appending them to the collection. 

MFC does not implement the Users and Groups collections in DAO, which are used for 
security control. If you need those aspects of DAO, you must program them yourself via 
direct calls to DAO interfaces. For information, see Technical Note 54 online. 



Usage 
You can use class CDaoWorkspace to: 

• Explicitly open the default workspace. 

Usually your use of the default workspace is implicit - when you open new 
CDaoDatabase or CDaoRecordset objects. But you might need to access it 
explicitly-for example, to access database engine properties or the Workspaces 
collection. See "Implicit Use of the Default Workspace" below. 

• Create new workspaces. Call Append if you want to add them to the Workspaces 
collection. 

• Open an existing workspace in the Workspaces collection. 

Creating a new workspace that does not already exist in the Workspaces collection is 
described under the Create member function. Workspace objects do not persist in any 
way between database engine sessions. If your application links MFC statically, 
ending the application uninitializes the database engine. If your application links with 
MFC dynamically, the database engine is uninitialized when the MFC DLL is 
unloaded. 

Feature Only in Professional and Enterprise Editions Static linking to MFC is supported 
only in Visual C+t Professional and Enterprise Editions. For more information, see "Visual C++ 
Editions" online. 

Explicitly opening the default workspace, or opening an existing workspace in the 
Workspaces collection, is described under the Open member function. 

End a workspace session by closing the workspace with the Close member function. 
Close closes any databases you have not closed previously, rolling back any 
uncommitted transactions. 

Transactions 
DAO manages transactions at the workspace level; hence, transactions on a 
workspace with multiple open databases apply to all of the databases. For example, 
if two databases have uncommitted updates and you call CommitTrans, all of the 
updates are committed. If you want to limit transactions to a single database, you 
need a separate workspace object for it. 

Implicit Use of the Default Workspace 
MFC uses DAO's default workspace implicitly under the following circumstances: 

• If you create a new CDaoDatabase object but do not do so through an existing 
CDaoWorkspace object, MFC creates a temporary workspace object for you, 
which corresponds to DAO's default workspace. If you do so for multiple 
databases, all of the database objects are associated with the default workspace. 
You can access a database's workspace through a CDaoDatabase data member. 

CDao Workspace 

379 



CDao Workspace 

• Similarly, if you create a CDaoRecordset object without supplying a pointer 
to a CDaoDatabase object, MFC creates a temporary database object and, by 
extension, a temporary workspace object. You can access a recordset's database, 
and indirectly its workspace, through a CDaoRecordset data member. 

Other Operations 
Other database operations are also provided, such as repairing a corrupted database or 
compacting a database. 

For more about CDaoWorkspace, see the article "DAO Workspace." For information 
about calling DAO directly and about DAO security, see Technical Note 54 online. 
For more about working with ODBC data sources through DAO, see the article "DAO 
External: Working with External Data Sources." For information about the database 
engine, see the article "DAO Workspace: The Database Engine." All articles are in 
Visual c++ Programmer's Guide online. The MFC Database sample DAOVIEW 
illustrates using CDao Workspace. 

#include <afxdao.h> 

See Also: CDaoDatabase, CDaoRecordset, CDaoTableDef, CDaoQueryDef, 
CDaoException 

CDao Workspace Class Members 

380 

Data Members 

m_pDAOWorkspace 

Construction 

CDao Workspace 

Attributes 

GetIsolateODBCTrans 

GetName 

GetUserName 

IsOpen 

SetIsolateODBCTrans 

Points to the underlying DAO workspace object. 

Constructs a workspace object. Afterwards, call Create 
or Open. 

Returns a value that indicates whether multiple transactions 
that involve the same ODBC data source are isolated via forced 
multiple connections to the data source. 

Returns the user-defined name for the workspace object. 

Returns the user name specified when the workspace was created. 
This is the name of the workspace owner. 

Returns nonzero if the workspace is open. 

Specifies whether multiple transactions that involve the same 
ODBC data source are isolated by forcing multiple connections 
to the data source. 



Operations 

Append 

BeginTrans 

Close 

CommitTrans 

CompactDatabase 

Create 

GetDatabaseCount 

GetDatabaseInfo 

GetWorkspaceCount 

GetWorkspaceInfo 

Open 

RepairDatabase 

Rollback 

Idle 

Database Engine Properties 

GetVersion 

GetlniPath 

GetLoginTimeout 

SetDefaultPassword 

SetDefaultUser 

SetlniPath 

SetLoginTimeout 

Appends a newly created workspace to the database engine's 
Workspaces collection. 

Begins a new transaction, which applies to all databases open in 
the workspace. 

Closes the workspace and all of the objects it contains. Pending 
transactions are rolled back. 

Completes the current transaction and saves the changes. 

Compacts (or duplicates) a database. 

Creates a new DAO workspace object. 

Returns the number of DAO database objects in the workspace's 
Databases collection. 

Returns information about a specified DAO database defined in 
the workspace's Databases collection. 

Returns the number of DAO workspace objects in the database 
engine's Workspaces collection. 

Returns infonnation about a specified DAO workspace defined in 
the database engine's Workspaces collection. 

Explicitly opens a workspace object associated with DAO's 
default workspace. 

Attempts to repair a damaged database. 

Ends the current transaction and does not save the changes. 

Allows the database engine to perform background tasks. 

Returns a string that contains the version of the database engine 
associated with the workspace. 

Returns the location ofthe Microsoft Jet database engine's 
initialization settings in the Windows registry. 

Returns the number of seconds before an error occurs when the 
user attempts to log in to an ODBC database. 

Sets the password that the database engine uses when a workspace 
object is created without a specific password. 

Sets the user name that the database engine uses when a 
workspace object is created without a specific user name. 

Sets the location of the Microsoft Jet database engine's 
initialization settings in the Windows registry. 

Sets the number of seconds before an error occurs when the user 
attempts to log in to an ODBC data source. 

CDao Workspace 

381 



CDaoWorkspace::Append 

Member Functions 
CDao Workspace: : Append 

Remarks 

void Append(); 
throw( CDaoException, CMemoryException); 

Call this member function after you call Create. Append appends a newly created 
workspace object to the database engine's Workspaces collection. Workspaces do 
not persist between database engine sessions; they are stored only in memory, not 
on disk. You do not have to append a workspace; if you do not, you can still use it. 

An appended workspace remains in the Workspaces collection, in an active, open 
state, until you call its Close member function. 

For more information about workspaces, see the article "DAO Workspace." For 
more information about the database engine, see the article "DAO Workspace: The 
Database Engine." Both articles are in Visual c++ Programmers Guide online. 
For related information, see the topic "Append Method" in DAO Help. 

CDao Workspace: : BeginTrans 

Remarks 

382 

void BeginTrans( ); 
throw( CDaoException, CMemoryException); 

Call this member function to initiate a transaction. After you call BeginTrans, 
updates you make to your data or database structure take effect when you commit the 
transaction. Because the workspace defines a single transaction space, the transaction 
applies to all open databases in the workspace. There are two ways to complete the 
transaction: 

• Call the CommitTrans member function to commit the transaction and save 
changes to the data source. 

• Or call the Rollback member function to cancel the transaction. 

Closing the workspace object or a database object while a transaction is pending rolls 
back all pending transactions. 

If you need to isolate transactions on one ODBC data source from those on another 
ODBC data source, see the SetIsolateODBCTrans member function. 

For information about transactions, see the article "DAO Workspace: Managing 
Transactions." For more information about workspaces, see the article "DAO 
Workspace." Both articles are in Visual C++ Programmers Guide online. 



CDao Workspace: :Close 

See Also: CDaoWorkspace::GetIsolateODBCTrans, 
CDao Workspace: :CommitTrans, CDao Workspace: :Rollback 

CDao Workspace: :CDao Workspace 
CDaoWorkspace( ); 

Remarks 
Constructs a CDao Workspace object. After constructing the C++ object, you have 
two options: 

• Call the object's Open member function to open the default workspace or to open 
an existing object in the Workspaces collection. 

• Or call the object's Create member function to create a new DAO workspace 
object. This explicitly starts a new workspace session, which you can refer to via 
the CDaoWorkspace object. After calling Create, you can call Append if you 
want to add the workspace to the database engine's Workspaces collection. 

See the class overview for CDaoWorkspace for information about when you need to 
explicitly create a CDaoWorkspace object. Usually, you use workspaces created 
implicitly when you open a CDaoDatabase object without specifying a workspace or 
when you open a CDaoRecordset object without specifying a database object. MFC 
DAO objects created in this way use DAO's default workspace, which is created once 
and reused. 

To release a workspace and its contained objects, call the workspace object's Close 
member function. 

For more information about workspaces, see the article "DAO Workspace." For more 
information about implicit workspace creation, see the article "DAO: Accessing 
Implicit MFC DAO Objects." Both articles are in Visual C++ Programmer's Guide 
online. 

CDao Workspace: : Close 

Remarks 

virtual void Close( ); 
throw( CDaoException, CMemoryException); 

Call this member function to close the workspace object. Closing an open workspace 
object releases the underlying DAO object and, if the workspace is a member of the 
Workspaces collection, removes it from the collection. Calling Close is good 
programming practice. 

383 



CDao Workspace: :CommitTrans 

Caution Closing a workspace object closes any open databases in the workspace. This 
results in any recordsets open in the databases being closed as well, and any pending edits 
or updates are rolled back. For related information, see the CDaoDatabase::Close, 
CDaoRecordset: :Close, CDaoTableDef: :Close, and CDaoQueryDef: :Close member 
functions. 

Workspace objects are not permanent; they only exist while references to them exist. 
This means that when the database engine session ends, the workspace and its 
Databases collection do not persist. You must re-create them for the next session 
by opening your workspace and database(s) again. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"Close Method" in DAO Help. 

See Also: CDao Workspace: :Open 

CDao Workspace: :CommitTrans 

Remarks 

384 

void CommitTrans(); 
throw( CDaoException, CMemoryException); 

Call this member function to commit a transaction---save a group of edits and updates 
to one or more databases in the workspace. A transaction consists of a series of 
changes to the database's data or its structure, beginning with a call to BeginTrans. 
When you complete the transaction, either commit it or roll it back (cancel the 
changes) with Rollback. By default, without transactions, updates to records are 
committed immediately. Calling BeginTrans causes commitment of updates to be 
delayed until you call CommitTrans. 

Caution Within one workspace, transactions are always global to the workspace and are not 
limited to only one database or recordset. If you perform operations on more than one database 
or recordset within a workspace transaction, CommitTrans commits all pending updates, and 
Rollback restores all operations on those databases and recordsets. 

When you close a database or workspace with pending transactions, the transactions 
are all rolled back. 

Note This is not a two-phase commit mechanism. If one update fails to commit, others still will 
commit. 

For more information about workspaces, see the article "DAO Workspace." For more 
about transactions, including information about separate transaction spaces, see the 
article "DAO Workspace: Managing Transactions." Both articles are in Visual C++ 
Programmer's Guide online. 



CDao Workspace: :CompactDatabase 

CDao Workspace: :CompactDatabase 
static void PASCAL CompactDatabase( LPCTSTR lpszSrcName, 

... LPCTSTR IpszDestName, LPCTSTR lpszLocale = dbLangGeneral, int nOptiolls = 0 ); 
throw( CDaoException, CMemory Exception); 

static void PASCAL CompactDatabase( LPCTSTR lpszSrcName, 
... LPCTSTR lpszDestName, LPCTSTR IpszLocale, int IlOptions, 
... LPCTSTR IpszPassword ); 
throw( CDaoException, CMemoryException); 

Parameters 
IpszSrcName The name of an existing, closed database. It can be a full path and filename, 

such as "C:\\MYDB.MDB". If the filename has an extension, you must specify it. If 
your network supports the uniform naming convention (UNC), you can also specify 
a network path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". 
(Double backslashes are required in the path strings because "\" is the C++ escape 
character.) 

IpszDestName The full path of the compacted database that you are creating. You can 
also specify a network path as with IpszSrcName. You cannot use the ipszDestName 
argument to specify the same database file as IpszSrcName. 

IpszPassword A password, used when you want to compact a password-protected 
database. Note that if you use the version of CompactDatabase that takes a 
password, you must supply all parameters. 

IpszLocale A string expression used to specify collating order for creating IpszDestName. 
If you omit this argument by accepting the default value of dbLangGeneral (see 
below), the locale of the new database is the same as that of the old database. 
Possible values are: 

• dbLangGeneral English, German, French, Portuguese, Italian, and Modern 
Spanish 

• dbLangArabic Arabic 

• dbLangCyrillic Russian 

• dbLangCzech Czech 

• dbLangDutch Dutch 

• dbLangGreek Greek 

• dbLangHebrew Hebrew 

• dbLangHungarian Hungarian 

• dbLanglcelandic Icelandic 

• dbLangNordic Nordic languages (Microsoft Jet database engine version 1.0 
only) 

385 



CDao Workspace: :CompactDatabase 

Remarks 

386 

• dbLangNorwdan Norwegian and Danish 

• dbLangPoIish Polish 

• dbLangSpanish Traditional Spanish 

• dbLangSwedfin Swedish and Finnish 

• dbLangThrkish Turkish 

nOptions Indicates one or more options for the target database, IpszDestName. If you 
omit this argument by accepting the default value, the IpszDestName will have the 
same encryption and the same version as IpszSrcName. You can combine the 
dbEncrypt or dbDecrypt option with one of the version options using the 
bitwise-OR operator. Possible values, which specify a database format, not a 
database engine version, are: 

• dbEncrypt Encrypt the database while compacting. 

• dbDecrypt Decrypt the database while compacting. 

• dbVersion10 Create a database that uses the Microsoft Jet database engine 
version 1.0 while compacting. 

• db Version11 Create a database that uses the Microsoft Jet database engine 
version 1.1 while compacting. 

• db Version20 Create a database that uses the Microsoft Jet database engine 
version 2.0 while compacting. 

• dbVersion30 Create a database that uses the Microsoft Jet database engine 
version 3.0 while compacting. 

You can use dbEncrypt or dbDecrypt in the options argument to specify whether 
to encrypt or to decrypt the database as it is compacted. If you omit an encryption 
constant or if you include both dbDecrypt and dbEncrypt, IpszDestName will 
have the same encryption as IpsZSrcName. You can use one of the version constants 
in the options argument to specify the version of the data format for the compacted 
database. This constant affects only the version of the data format of 
IpszDestName. You can specify only one version constant. If you omit a version 
constant, IpszDestName will have the same version as IpszSrcName. You can 
compact IpszDestName only to a version that is the same or later than that of 
IpszSrcName. 

Caution If a database is not encrypted, it is possible, even if you implement user/password 
security, to directly read the binary disk file that constitutes the database. 

Call this member function to compact a specified Microsoft Jet (.MDB) database. 
As you change data in a database, the database file can become fragmented and use 
more disk space than necessary. Periodically, you should compact your database to 



CDao Workspace: :Create 

defragment the database file. The compacted database is usually smaller. You can also 
choose to change the collating order, the encryption, or the version of the data format 
while you copy and compact the database. 

Warning The CompactDatabase member function will not correctly convert a complete 
Microsoft Access database from one version to another. Only the data format is converted. 
Microsoft Access-defined objects, such as forms and reports, are not converted. However, the 
data is correctly converted. 

Tip You can also use CompactDatabase to copy a database file. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. For more information about compacting 
databases, see the topic "CompactDatabase Method" in DAO Help. 

See Also: CDao Workspace: :RepairDatabase 

CDao Workspace: : Create 
virtual void Create( LPCTSTR IpszName, LPCTSTR IpszUserName, 

~ LPCTSTR IpszPassword ); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszName A string with up to 14 characters that uniquely names the new workspace 
object. You must supply a name. For related information, see the topic "Name 
Property" in DAO Help. 

lpszUserName The user name of the workspace's owner. For requirements, see the 
lpszDeJaultUser parameter to the SetDefaultUser member function. For related 
information, see the topic "UserName Property" in DAO Help. 

lpszPassword The password for the new workspace object. A password can be up to 
14 characters long and can contain any character except ASCII 0 (null). Passwords 
are case-sensitive. For related information, see the topic "Password Property" in 
DAO Help. 

Call this member function to create a new DAO workspace object and associate it 
with the MFC CDao Workspace object. The overall creation process is: 

1. Construct a CDaoWorkspace object. 

2. Call the object's Create member function to create the underlying DAO 
workspace. You must specify a workspace name. 

3. Optionally call Append if you want to add the workspace to the database engine's 
Workspaces collection. You can work with the workspace without appending it. 

387 



CDao Workspace: :GetDatabaseCount 

After the Create call, the workspace object is in an open state, ready for use. You do 
not call Open after Create. You do not call Create if the workspace already exists in 
the Workspaces collection. Create initializes the database engine if it has not already 
been initialized for your application. 

For more infonnation about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. 

See Also: CDaoWorkspace::CDaoWorkspace, CDaoWorkspace::Close, 
CDao Workspace: :Open 

CDao Workspace: : GetDatabaseCount 
short GetDatabaseCount(); 

throw( CDaoException, CMemoryException ); 

Return Value 

Remarks 

The number of open databases in the workspace. 

Call this member function to retrieve the number of DAO database objects in the 
workspace's Databases collection - the number of open databases in the workspace. 
GetDatabaseCount is useful if you need to loop through all defined databases in the 
workspace's Databases collection. To obtain infonnation about a given database in the 
collection, see GetDatabaselnfo. Typical usage is to call GetDatabaseCount for the 
number of open databases, then use that number as a loop index for repeated calls to 
GetDatabaselnfo. 

For more infonnation about obtaining database infonnation, see the article "DAO 
Collections: Obtaining Infonnation About DAO Objects" in Visual C++ 
Programmer's Guide online. 

CDao Workspace: : GetDatabaselnfo 
void GetDatabaselnfo( int nlndex, CDaoDatabaselnfo& dbinfo, 

"+ DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

void GetDatabaselnfo( LPCTSTR lpszName, CDaoDatabaselnfo& dbinfo, 
"+ DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 

388 

nlndex The zero-based index of the database object in the workspace's Databases 
collection, for lookup by index. 

dbinfo A reference to a CDaoDatabaselnfo object that returns the infonnation 
requested. 



CDao Workspace: :GetIniPath 

Remarks 

dwlnfoOptions Options that specify which information about the database to retrieve. 
The available options are listed here along with what they cause the function to 
return: 

• AFX_DAO_PRIMARY_INFO (Default) Name, Updatable, Transactions 

• AFX_DAO_SECONDARY_INFO Primary information plus: Version, 
Collating Order, Query Timeout 

• AFX_DAO_ALL_INFO Primary and secondary information plus: Connect 

IpszName The name of the database object, for lookup by name. The name is a string 
with up to 14 characters that uniquely names the new workspace object. 

Call this member function to obtain various kinds of information about a database 
open in the workspace. One version of the function lets you look up a database by 
index. The other version lets you look up a database by name. 

For a description of the information returned in db info , see the CDaoDatabaselnfo 
structure. This structure has members that correspond to the items of information 
listed above in the description of dwlnfoOptions. When you request information at 
one level, you get information for any prior levels as well. 

For more information about obtaining database information, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer s Guide online. 

See Also: CDao Workspace: : GetDatabaseCount 

CDao Workspace: : GetlniPath 
static CString PASCAL GetlniPath(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString containing the registry location. 

Call this member function to obtain the location of the Microsoft Jet database engine's 
initialization settings in the Windows registry. You can use the location to obtain 
information about settings for the database engine. The information returned is 
actually the name of a registry subkey. 

For more information about the database engine, see the article "DAO Workspace: 
The Database Engine" in Visual C++ Programmers Guide online. For related 
information, see the topics "IniPath Property" and "Customizing Windows Registry 
Settings for Data Access" in DAO Help. 

See Also: CDao Workspace: :SetlniPath, CDao Workspace: : GetVersion 

389 



CDao Workspace: :GetIsolateODBCTrans 

CDao Workspace: : GetIsolateODBCTrans 
BOOL GetIsolateODBCTrans( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

Nonzero if ODBC transactions are isolated; otherwise 0. 

Call this member function to get the current value of the DAO IsolateODBCTrans 
property for the workspace. In some situations, you might need to have multiple 
simultaneous transactions pending on the same ODBC database. To do this, you 
need to open a separate workspace for each transaction. Keep in mind that although 
each workspace can have its own ODBC connection to the database, this slows 
system performance. Because transaction isolation is not normally required, ODBC 
connections from multiple workspace objects opened by the same user are shared 
by default. 

Some ODBC servers, such as Microsoft SQL Server, do not allow simultaneous 
transactions on a single connection. If you need to have more than one transaction at 
a time pending against such a database, set the IsolateODBCTrans property to TRUE 
on each workspace as soon as you open it. This forces a separate ODBC connection 
for each workspace. 

For more information about workspaces, see the article "DAO Workspace." For 
more information about working with ODBC data sources through DAO, see the 
article "DAO External: Working with External Data Sources." Both articles are in 
Visual C++ Programmers Guide online. For related information, see the topic 
"IsolateODBCTrans Property" in DAO Help. 

See Also: CDao Workspace: :SetIsolateODBCTrans 

CDao Workspace: : GetLoginTimeout 
static short PASCAL GetLoginTimeout( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

390 

The number of seconds before an error occurs when you attempt to log in to an ODBC 
database. 

Call this member function to get the current value of tpe DAO LoginTimeout property 
for the workspace. This value represents the number of seconds before an error occurs 
when you attempt to log in to an ODBC database. The default LoginTimeout setting is 
20 seconds. When LoginTimeout is set to 0, no timeout occurs and the communication 
with the data source might hang. 



CDaoWorkspace::GetUserName 

When you are attempting to log in to an ODBC database, such as Microsoft SQL 
Server, the connection may fail as a result of network errors or because the server is 
not running. Rather than waiting for the default 20 seconds to connect, you can 
specify how long the database engine waits before it produces an error. Logging in to 
the server happens implicitly as part of a number of different events, such as running 
a query on an external server database. 

For more information about workspaces, see the article "DAO Workspace." For 
more information about working with ODBC data sources through DAO, see the 
article "DAO External: Working with External Data Sources." Both articles are in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"LoginTimeout Property" in DAO Help. 

See Also: CDao Workspace: :SetLoginTimeout 

CDao Workspace: : GetN arne 
CString GetName(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString containing the user-defined name of the DAO workspace object. 

Call this member function to get the user-defined name of the DAO workspace 
object underlying the CDaoWorkspace object. The name is useful for accessing the 
DAO workspace object in the database engine's Workspaces collection by name. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual c++ Programmer's Guide online. For related information, see the topic 
"Name Property" in DAO Help. 

CDaoWorkspace::GetUserNarne 
CString GetUserName(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString that represents the owner of the workspace object. 

Call this member function to obtain the name of the owner of the workspace. 

To get or set the permissions for the workspace owner, call DAO directly to check the 
Permissions property setting; this determines what permissions that user has. To work 
with permissions, you need a SYSTEM.MDA file. 

391 



CDao Workspace: :GetVersion 

For more information about workspaces, see the article "DAO Workspace." For 
information about calling DAO directly, see Technical Note 54 online. For related 
information, see the topic "UserName Property" in DAO Help. 

See Also: CDao Workspace: :SetDefaultUser 

CDao Workspace: : GetVersion 
static CString PASCAL GetVersion(); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

A CString that indicates the version of the database engine associated with the object. 

Call this member function to determine the version of the Microsoft Jet database 
engine in use. The value returned represents the version number in the form 
"major.minor"; for example, "3.0". The product version number (for example, 3.0) 
consists of the version number (3), a period, and the release number (0). 

For more information about obtaining workspace information, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. For related information, see the topic "Version Property" 
in DAO Help. 

See Also: CDaoDatabase::GetVersion 

CDao Workspace: : GetWorkspaceCount 
short GetWorkspaceCount( ); 

throw( CDaoException, CMemoryException); 

Return Value 

Remarks 

392 

The number of open workspaces in the Workspaces collection. 

Call this member function to retrieve the number of DAO workspace objects in the 
database engine's Workspaces collection. This count does not include any open 
workspaces not appended to the collection. GetWorkspaceCount is useful if you 
need to loop through all defined workspaces in the Workspaces collection. To obtain 
information about a given workspace in the collection, see GetWorkspacelnfo. 
Typical usage is to call GetWorkspaceCount for the number of open workspaces, 
then use that number as a loop index for repeated calls to GetWorkspacelnfo. 

For more information about obtaining workspace information, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. 



CDao Workspace: :Idle 

CDao Workspace: : GetWorkspaceInfo 
void GetWorkspaceInfo( int nlndex, CDaoWorkspaceInfo& wkspcillfo 

.. DWORD dwlnfoOptions = AFX_DAO_PRIMARY _INFO ); 
throw( CDaoException, CMemoryException); 

void GetWorkspaceInfo( LPCTSTR IpszName, CDaoWorkspaceInfo& wkspcinfo 
.. DWORD dwIllfoOptions = AFX_DAO_PRIMARY_INFO); 
throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

nlndex The zero-based index of the database object in the Workspaces collection, 
for lookup by index. 

wkspcinfo A reference to a CDaoWorkspaceInfo object that returns the information 
requested. 

dwlnfoOptions Options that specify which information about the workspace to 
retrieve. The available options are listed here along with what they cause the 
function to return: 

• AFX_DAO_PRIMARY_INFO (Default) Name 

• AFX_DAO_SECONDARY_INFO Primary information plus: User Name 

• AFX_DAO_ALL_INFO Primary and secondary information plus: Isolate 
ODBCTrans 

IpszName The name of the workspace object, for lookup by name. The name is a 
string with up to 14 characters that uniquely names the new workspace object. 

Call this member function to obtain various kinds of information about a workspace 
open in the session. For a description of the information returned in wkspcinfo, see 
the CDao WorkspaceInfo structure. This structure has members that correspond to 
the items of information listed above in the description of dwlnfoOptions. When you 
request information at one level, you get information for prior levels as well. 

For more information about obtaining workspace information, see the article "DAO 
Collections: Obtaining Information About DAO Objects" in Visual C++ 
Programmer's Guide online. 

See Also: CDao Workspace: : GetWorkspaceCount 

CDao Workspace: :Idle 
static void PASCAL Idle( int nAction = dbFreeLocks); 

throw( CDaoException, CMemoryException); 

Parameters 
nAction An action to take during the idle processing. Currently the only valid action 

is dbFreeLocks. 

393 



CDao Workspace: :IsOpen 

Remarks 
Call Idle to provide the database engine with the opportunity to perform 
background tasks that may not be up-to-date because of intense data processing. 
This is often true in multiuser, multitasking environments in which there is not 
enough background processing time to keep all records in a recordset current. 

Important Calling Idle is not necessary with databases created with version 3.0 of 
the Microsoft Jet database engine. Use Idle only for databases created with earlier 
versions. 

Usually, read locks are removed and data in local dynaset-type recordset objects 
is updated only when no other actions (including mouse movements) are occurring. 
If you periodically call Idle, you provide the database engine with time to catch 
up on background processing tasks by releasing unneeded read locks. Specifying 
the dbFreeLocks constant as an argument delays processing until all read locks 
are released. 

This member function is not needed in single-user environments unless multiple 
instances of an application are running. The Idle member function may increase 
performance in a multiuser environment because it forces the database engine to 
flush data to disk, releasing locks on memory. You can also release read locks by 
making operations part of a transaction. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"Idle Method" in DAO Help. 

CDao Workspace: :IsOpen 
BOOL IsOpen( ) const; 

Return Value 

Remarks 

394 

Nonzero if the workspace object is open; otherwise O. 

Call this member function to determine whether the CDao Workspace object is 
open-that is, whether the MFC object has been initialized by a call to Open or 
a call to Create. You can call any of the member functions of a workspace that 
is in an open state. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. 



CDao Workspace: :RepairDatabase 

CDao Workspace: : Open 
virtual void Open( LPCTSTR IpszName = NULL); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszName The name of the DAO workspace object to open-a string with up to 14 
characters that uniquely names the workspace. Accept the default value NULL to 
explicitly open the default workspace. For naming requirements, see the IpszName 
parameter for Create. For related information, see the topic "Name Property" in 
DAO Help. 

After constructing a CDaoWorkspace object, call this member function to do one of 
the following: 

• Explicitly open the default workspace. Pass NULL for IpszName. 

• Open an existing CDao Workspace object, a member of the Workspaces collection, 
by name. Pass a valid name for an existing workspace object. 

Open puts the workspace object into an open state and also initializes the database 
engine if it has not already been initialized for your application. 

Although many CDao Workspace member functions can only be called after the 
workspace has been opened, the following member functions, which operate on the 
database engine, are available after construction of the C++ object but before a call to 
Open: 

Create 

GetIniPath 

GetLoginTirneout 

GetVersion 

Idle 

SetDefaultPassword 

SetDefaultUser 

SetIniPath 

SetLoginTirneout 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. 

See Also: CDao Workspace: :IsOpen, CDao Workspace:: CDao Workspace, 
CDao Workspace: :Create, CDao Workspace: :Close 

CDao Workspace: : RepairDatabase 
static void PASCAL RepairDatabase( LPCTSTR IpszName ); 

throw( CDaoException, CMemoryException); 

Parameters 
IpszName The path and filename for an existing Microsoft Jet engine database file. 

If you omit the path, only the current directory is searched. If your system supports 
the uniform naming convention (UNC), you can also specify a network path, such 

395 



CDao Workspace: :Rollback 

Remarks 

as: "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double backslashes 
are required in the path string because "\" is the C++ escape character.) 

Call this member function if you need to attempt to repair a corrupted database that 
accesses the Microsoft Jet database engine. You must close the database specified by 
IpszName before you repair it. In a multiuser environment, other users cannot have 
IpszName open while you are repairing it. If IpszName is not closed or is not available 
for exclusive use, an error occurs. 

This member function attempts to repair a database that was marked as possibly 
corrupt by an incomplete write operation. This can occur if an application using the 
Microsoft Jet database engine is closed unexpectedly because of a power outage or 
computer hardware problem. If you complete the operation and call the Close member 
function or you quit the application in a usual way, the database will not be marked as 
possibly corrupt. 

Note After repairing a database, it is also a good idea to compact it using the 
CompactDatabase member function to defragment the file and to recover disk space. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. For more information about repairing 
databases, see the topic "RepairDatabase Method" in DAO Help. 

CDao Workspace: :Rollback 

Remarks 

396 

void Rollback(); 
throw( CDaoException, CMemoryException); 

Call this member function to end the current transaction and restore all databases in 
the workspace to their condition before the transaction was begun. 

Caution Within one workspace object, transactions are always global to the workspace and 
are not limited to only one database or recordset. If you perform operations on more than one 
database or recordset within a workspace transaction, Rollback restores all operations on all 
of those databases and recordsets. 

If you close a workspace object without saving or rolling back any pending 
transactions, the transactions are automatically rolled back. If you call CommitTrans 
or Rollback without first calling BeginTrans, an error occurs. 

Note When you begin a transaction, the database engine records its operations in a file kept in 
the directory specified by the TEMP environment variable on the workstation. If the transaction 
log file exhausts the available storage on your TEMP drive, the database engine will cause MFC 
to throw a CDaoException (DAD error 2004). At this point, if you call CommitTrans, an 



CDao Workspace: :SetDefaultU ser 

indeterminate number of operations are committed but the remaining uncompleted operations 
are lost, and the operation has to be restarted. Calling Rollback releases the transaction log 
and rolls back all operations in the transaction. 

For more information about workspaces, see the article "DAO Workspace." For more 
about transactions, see the article "DAO Workspace: Managing Transactions." Both 
articles are in Visual C++ Programmer's Guide online. 

See Also: CDaoRecordset 

CDao Workspace: : S etDefaultPas sword 
static void PASCAL SetDefaultPassword( LPCTSTR IpszPassword ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

IpszPassword The default password. A password can be up to 14 characters long and 
can contain any character except ASCII 0 (null). Passwords are case-sensitive. 

Call this member function to set the default password that the database engine uses 
when a workspace object is created without a specific password. The default password 
that you set applies to new workspaces you create after the call. When you create 
subsequent workspaces, you do not need to specify a password in the Create call. 

To use this member function: 

1. Construct a CDao Workspace object but do not call Create. 

2. Call SetDefaultPassword and, if you like, SetDefaultUser. 

3. Call Create for this workspace object or subsequent ones, without specifying a 
password. 

By default, the DefaultUser property is set to "admin" and the DefaultPassword 
property is set to an empty string (""). 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. For more about security, see the topic 
"Permissions Property" in DAO Help. For related information, see the topics 
"DefaultPassword Property" and "DefaultUser Property" in DAO Help. 

CDao Workspace:: SetDefaultU ser 
static void PASCAL SetDefaultUser( LPCTSTR IpszDeJaultUser); 

throw( CDaoException, CMemoryException); 

Parameters 
IpszDeJaultUser The default user name. A user name can be 1-20 characters long 
and include alphabetic characters, accented characters, numbers, spaces, and symbols 

397 



CDao Workspace:: SetIniPath 

Remarks 

except for: II (quotation marks), / (forward slash), \ (backslash), [ ] (brackets), : 
(colon), I (pipe), < (less-than sign), > (greater-than sign), + (plus sign), = (equal sign), 
; (semicolon), , ( comma), ? (question mark), * (asterisk), leading spaces, and control 
characters (ASCII 00 to ASCII 31). For related information, see the topic "UserName 
Property" in DAO Help. 

Call this member function to set the default user name that the database engine uses 
when a workspace object is created without a specific user name. The default user 
name that you set applies to new workspaces you create after the call. When you 
create subsequent workspaces, you do not need to specify a user name in the Create 
call. 

To use this member function: 

1. Construct a CDao Workspace object but do not call Create. 

2. Call SetDefaultUser and, if you like, SetDefaultPassword. 

3. Call Create for this workspace object or subsequent ones, without specifying a 
user name. 

By default, the DefaultUser property is set to "admin" and the DefaultPassword 
property is set to an empty string (""). 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmers Guide online. For related information, see the topics 
"DefaultUser Property" and "DefaultPassword Property" in DAO Help. 

CDao Workspace: : SetIniPath 
static void PASCAL SetIniPath( LPCTSTR IpszRegistrySubkey); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

398 

IpszRegistrySubkey A string containing the name of a Windows registry subkey for 
the location of Microsoft Jet database engine settings or parameters needed for 
install able ISAM databases. 

Call this member function to specify the location of Windows registry settings for the 
Microsoft Jet database engine. Call SetIniPath only if you need to specify special 
settings. For more information, see the topic "IniPath Property" in DAO Help. 



CDao Workspace:: SetlsolateOD BCTrans 

Important Call SetiniPath during application installation, not when the application runs. 
SetiniPath must be called before you open any workspaces, databases, or recordsets; 
otherwise, MFC throws an exception. 

You can use this mechanism to configure the database engine with user-provided 
registry settings. The scope of this attribute is limited to your application and cannot 
be changed without restarting your application. 

For more information about workspaces, see the article "DAO Workspace" in 
Visual C++ Programmer's Guide online. 

CDao Workspace:: SetIsolateODBCTrans 
void SetlsolateODBCTrans( BOOL bIsolateODBCTrans ); 

throw( CDaoException, CMemoryException); 

Parameters 

Remarks 

bIsolateODBCTrans Pass TRUE if you want to begin isolating ODBC transactions. 
Pass FALSE if you want to stop isolating ODBC transactions. 

Call this member function to set the value of the DAO IsolateODBCTrans property 
for the workspace. In some situations, you might need to have multiple simultaneous 
transactions pending on the same ODBC database. To do this, you need to open a 
separate workspace for each transaction. Although each workspace can have its own 
ODBC connection to the database, this slows system performance. Because 
transaction isolation is not normally required, ODBC connections from multiple 
workspace objects opened by the same user are shared by default. 

Some ODBC servers, such as Microsoft SQL Server, do not allow simultaneous 
transactions on a single connection. If you need to have more than one transaction at 
a time pending against such a database, set the IsolateODBCTrans property to TRUE 
on each workspace as soon as you open it. This forces a separate ODBC connection 
for each workspace. 

For more information about workspaces, see the article "DAO Workspace." For more 
about transactions, see the article "DAO Workspace: Managing Transactions." For 
more about working with ODBC data sources through DAO, see the article "DAO 
External: Working with External Data Sources." All articles are in Visual C++ 
Programmer's Guide online. 

See Also: CDao Workspace: :GetlsolateODBCTrans 

399 



CDao Workspace: :SetLoginTimeout 

CDao Workspace: :SetLoginTimeout 
static void PASCAL SetLoginTimeout( short nSeconds ); 

throw( CDaoException, CMemoryException ); 

Parameters 

Remarks 

400 

nSeconds The number of seconds before an error occurs when you attempt to log in 
to an ODBC database. 

Call this member function to set the value of the DAO LoginTimeout property for the 
workspace. This value represents the number of seconds before an error occurs when 
you attempt to log in to an ODBC database. The default LoginTimeout setting is 20 
seconds. When LoginTimeout is set to 0, no timeout occurs and the communication 
with the data source might hang. 

When you are attempting to log in to an ODBC database, such as Microsoft SQL 
Server, the connection may fail as a result of network errors or because the server 
is not running. Rather than waiting for the default 20 seconds to connect, you can 
specify how long the database engine waits before it produces an error. Logging 
on to the server happens implicitly as part of a number of different events, such as 
running a query on an external server database. The timeout value is determined 
by the current setting of the LoginTimeout property. 

For more information about workspaces, see the article "DAO Workspace." For 
more information about working with ODBC data sources through DAO, see the 
article "DAO External: Working with External Data Sources." Both articles are in 
Visual C++ Programmer's Guide online. For related information, see the topic 
"LoginTimeout Property" in DAO Help. 

See Also: CDaoWorkspace::GetLoginTimeout 



CDao Workspace: :m_pDAOWorkspace 

Data Members 
CDao Workspace: :m_pDAOWorkspace 
Remarks 

A pointer to the underlying DAO workspace object. Use this data member if you need 
direct access to the underlying DAO object. You can call the DAO object's interfaces 
through this pointer. 

For information about accessing DAO objects directly, see Technical Note 54 online. 

401 



CDatabase 

CDatabase 

A CDatabase object represents a connection to a data source, through which you can 
operate on the data source. A data source is a specific instance of data hosted by some 
database management system (DBMS). Examples include Microsoft SQL Server, 
Microsoft Access, Borland® dBASE®, and xBASE. You can have one or more 
CDatabase objects active at a time in your application. 

Note If you are working with the Data Access Objects (DAO) classes rather than the Open 
Database Connectivity (ODBC) classes, use class CDaoDatabase instead. For more 
information, see the articles "Database Topics (General)" and "DAO and MFC." Both articles 
are in Visual C++ Programmer's Guide online. 

To use CDatabase, construct a CDatabase object and call its OpenEx member 
function. This opens a connection. When you then construct CRecordset objects for 
operating on the connected data source, pass the recordset constructor a pointer to 
your CDatabase object. When you finish using the connection, call the Close member 
function and destroy the CDatabase object. Close closes any recordsets you have not 
closed previously. 

For more information about CDatabase, see the articles "Data Source (ODBC)" and 
"Database Topics (General)" in Visual C++ Programmer's Guide online. 

#include <afxdb.h> 

See Also: CRecordset 

CDatabase Class Members 
Data Members 

Construction 

CDatabase 

Open 

OpenEx 

Close 

402 

Open Database Connectivity (ODBC) connection handle 
to a data source. Type HDBC. 

Constructs a CDatabase object. You must initialize the 
object by calling OpenEx or Open. 

Establishes a connection to a data source (through an 
ODBC driver). 

Establishes a connection to a data source (through an 
ODBC driver). 

Closes the data source connection. 



Database Attributes 

GetConnect 

IsOpen 

GetDatabaseName 

CanUpdate 

CanTransact 

SetLoginTimeout 

SetQueryTimeout 

GetBookmarkPersistence 

GetCursorCommitBehavior 

GetCursor RollbackBehavior 

Database Operations 

BeginTrans 

CommitTrans 

Rollback 

Cancel 

ExecuteSQL 

Database Overridables 

OnSetOptions 

Returns the ODBC connect string used to connect the 
CDatabase object to a data source. 

Returns nonzero if the CDatabase object is currently 
connected to a data source. 

Returns the name of the database currently in use. 

Returns nonzero if the CDatabase object is updatable 
(not read-only). 

Returns nonzero if the data source supports transactions. 

Sets the number of seconds after which a data source 
connection attempt will time out. 

Sets the number of seconds after which database query 
operations will time out. Affects all subsequent recordset 
Open, AddNew, Edit, and Delete calls. 

Identifies the operations through which bookmarks 
persist on recordset objects. 

Identifies the effect of committing a transaction on an 
open recordset object. 

Identifies the effect of rolling back a transaction on an 
open recordset object. 

Starts a "transaction" -a series of reversible calls to the 
AddNew, Edit, Delete, and Update member functions 
of class CRecordset-on the connected data source. 
The data source must support transactions for 
BeginTrans to have any effect. 

Completes a transaction begun by BeginTrans. 
Commands in the transaction that alter the data source 
are carried out. 

Reverses changes made during the current transaction. 
The data source returns to its previous state, as defined 
at the BeginTrans call, unaltered. 

Cancels an asynchronous operation or a process from a 
second thread. 

Executes an SQL statement. No data records are 
returned. 

Called by the framework to set standard connection 
options. The default implementation sets the query 
timeout value. You can establish these options ahead 
of time by calling SetQueryTimeout. 

CDatabase 

403 



CDatabase: :BeginTrans 

Member Functions 
CDatabase: :BeginTrans 

BOOL BeginTrans( ); 

Return Value 

Remarks 

404 

Nonzero if the call was successful and changes are committed only manually; 
otherwise O. 

Call this member function to begin a transaction with the connected data source. A 
transaction consists of one or more calls to the AddNew, Edit, Delete, and Update 
member functions of a CRecordset object. Before beginning a transaction, the 
CDatabase object must already have been connected to the data source by calling its 
OpenEx or Open member function. To end the transaction, call CommitTrans to 
accept all changes to the data source (and carry them out) or call Rollback to abort 
the entire transaction. Call BeginTrans after you open any recordsets involved in the 
transaction and as close to the actual update operations as possible. 

Caution Depending on your ODBC driver, opening a recordset before calling BeginTrans may 
cause problems when calling Rollback. You should check the specific driver you are using. For 
example, when using the Microsoft Access driver included in the Microsoft ODBC Desktop 
Driver Pack 3.0, you must account for the Jet database engine's requirement that you should 
not begin a transaction on any database that has an open cursor. In the MFC database classes, 
an open cursor means an open CRecordset object. For more information, see Technical 
Note 68 online. 

BeginTrans may also lock data records on the server, depending on the requested 
concurrency and the capabilities of the data source. For information about locking 
data, see the article "Record set: Locking Records (ODBC)" in Visual C++ 
Programmer's Guide online. 

User-defined transactions are explained in the article "Transaction (ODBC)" in 
Visual C++ Programmer's Guide online. 

BeginTrans establishes the state to which the sequence of transactions can be rolled 
back (reversed). To establish a new state for rollbacks, commit any current 
transaction, then call BeginTrans again. 

Warning Calling BeginTrans again without calling CommitTrans or Rollback is an error. 

Call the CanTransact member function to determine whether your driver supports 
transactions for a given database. You should also call GetCursorCommitBehavior 
and GetCursorRollbackBehavior to determine the support for cursor preservation. 



CDatabase::CanUpdate 

Example 

For more information about transactions, see the article "Transaction (ODBC)" in 
Visual C++ Programmer's Guide online. 

See the article "Transaction: Performing a Transaction in a Recordset (ODBC)" in 
Visual C++ Programmer's Guide online. 

See Also: CDatabase:: CommitTrans, CDatabase: :Rollback, 
CRecordset:: Can Transact 

CDatabase: :Cancel 

Remarks 

void Cancel(); 

Call this member function to request that the data source cancel either an 
asynchronous operation in progress or a process from a second thread. Note that 
the MFC ODBC classes no longer use asynchronous processing; to perform an 
asychronous operation, you must directly call the ODBC API function 
SQLSetConnectOption. For more information, see the topic "Executing Functions 
Asynchronously" in the ODBC SDK Programmer's Guide online. 

CDatabase: : Can Transact 
BOOL CanTransact( ) const; 

Return Value 

Remarks 

Nonzero if recordsets using this CDatabase object allow transactions; otherwise 0. 

Call this member function to determine whether the database allows transactions. For 
information about transactions, see the article "Transaction (ODBC)" in Visual C++ 
Programmer's Guide online. 

See Also: CDatabase: :BeginTrans, CDatabase:: CommitTrans, 
CDatabase: :Rollback 

CDatabase: : Can Update 
BOOL CanUpdate( ) const; 

Return Value 
Nonzero if the CDatabase object allows updates; otherwise 0, indicating either that 
you passed TRUE in bReadOnly when you opened the CDatabase object or that the 
data source itself is read-only. The data source is read-only if a call to the ODBC API 
function ::SQLGetInfo for SQL_DATASOURCE_READ_ONLY returns "y". 

405 



CDatabase: :CDatabase 

Remarks 
Call this member function to determine whether the CDatabase object allows 
updates. Not all drivers support updates. 

CDatabase: :CDatabase 

Remarks 

Example 

CDatabase( ); 

Constructs a CDatabase object. After constructing the object, you must call its 
OpenEx or Open member function to establish a connection to a specified data 
source. 

You may find it convenient to embed the CDatabase object in your document class. 

II This example illustrates using CDatabase 
II in a CDocument-derived class. 

class CMyDocument : public CDocument 
{ 

public: 

} ; 

1/ 

II Declare a CDatabase embedded in the document 
CDatabase m_dbCust; 
I I ... 

II Initialize when needed 
CDatabase* CMyDocument::GetDatabase( 
{ 

II Connect the object to a data source 
i f ( ! m_ db C u st. IsO pen ( ) & & 

!m_dbCust.OpenEx( NULL) ) 
return NULL; 

return &m_dbCust; 

See Also: CDatabase::OpenEx, CDatabase::Open 

CDatabase: :Close 

Remarks 

406 

virtual void Close( ); 

Call this member function if you want to disconnect from a data source. You must 
close any recordsets associated with the CDatabase object before you call this 



CDatabase: :CommitTrans 

Example 

member function. Because Close does not destroy the CDatabase object, you can 
reuse the object by opening a new connection to the same data source or a different 
data source. 

All pending AddNew or Edit statements of recordsets using the database are 
canceled, and all pending transactions are rolled back. Any recordsets dependent 
on the CDatabase object are left in an undefined state. 

II Close the current connection 
m_dbCus t. Close ( ); 

II Perhaps connect the object to a 
II different data source 
m_dbCust.OpenEx(nDSN=MYDATASOURCE;UID=JOES n); 

See Also: CDatabase::OpenEx, CDatabase::Open 

CDatabase: :CommitTrans 
BOOL CommitTrans( ); 

Return Value 

Remarks 

Example 

Nonzero if the updates were successfully committed; otherwise O. If CommitTrans 
fails, the state of the data source is undefined. You must check the data to determine 
its state. 

Call this member function upon completing transactions. A transaction consists of 
a series of calls to the AddNew, Edit, Delete, and Update member functions of a 
CRecordset object that began with a call to the BeginTrans member function. 
CommitTrans commits the transaction. By default, updates are committed 
immediately; calling BeginTrans causes commitment of updates to be delayed 
until CommitTrans is called. 

Until you call CommitTrans to end a transaction, you can call the Rollback member 
function to abort the transaction and leave the data source in its original state. To 
begin a new transaction, call BeginTrans again. 

For more information about transactions, see the article "Transaction (ODBC)" in 
Visual C++ Programmer's Guide online. 

See the article "Transaction: Performing a Transaction in a Recordset (ODBC)" in 
Visual C++ Programmer's Guide online. 

See Also: CDatabase: : BeginTrans, CDatabase: :Rollback 

407 



CDatabase: :ExecuteSQL 

CDatabase: :ExecuteSQL 
void ExecuteSQL( LPCSTR IpszSQL); throw( CDBException); 

Parameters 

Remarks 

Example 

IpszSQL Pointer to a null-terminated string containing a valid SQL command to 
execute. You can pass a CString. 

Call this member function when you need to execute an SQL command directly. 
Create the command as a null-terminated string. ExecuteSQL does not return data 
records. If you want to operate on records, use a recordset object instead. 

Most of your commands for a data source are issued through recordset objects, which 
support commands for selecting data, inserting new records, deleting records, and 
editing records. However, not all ODBC functionality is directly supported by the 
database classes, so you may at times need to make a direct SQL call with 
ExecuteSQL. 

CString strCmd "UPDATE Taxes SET Federal 36%"; 

TRY 
{ 

m_dbCust.ExecuteSQL( strCmd ); 

CATCH(CDBException. e) 
{ 

II The error code is in e->m_nRetCode 
} 

END CATCH 

See Also: CDatabase: :SetLoginTimeout, CRecordset 

CDatabase: : GetBookmarkPersistence 
DWORD GetBookmarkPersistence( ) const; 

Return Value 

Remarks 

408 

A bitmask that identifies the operations through which bookmarks persist on a 
recordset object. For details, see Remarks. 

Call this member function to determine the persistence of bookmarks on a recordset 
object after certain operations. For example, if you call CRecordset::GetBookmark 
and then call CRecordset::Requery, the bookmark obtained from GetBookmark 



CDatabase: :GetConnect 

may no longer be valid. You should call GetBookmarkPersistence before calling 
CRecordset:: SetBookmark. 

The following table lists the bitmask values that can be combined for the return value 
of GetBookmarkPersistence. 

Bitmask value 

SQL_BP _CLOSE 

SQL_BP _DELETE 

SQL_BP _DROP 

SQL_BP _SCROLL 

Bookmark persistence 

Bookmarks are valid after a Requery operation. 

The bookmark for a row is valid after a Delete operation 
on that row. 

Bookmarks are valid after a Close operation. 

Bookmarks are valid after any Move operation. This 
simply identifies if bookmarks are supported on the 
recordset, as returned by CRecordset::CanBookmark. 

Bookmarks are valid after a transaction is committed or 
rolled back. 

The bookmark for a row is valid after an Update operation 
on that row. 

Bookmarks associated with one recordset object are valid 
on a second recordset. 

For more information about this return value, see the ODBC API function 
SQLGetlnfo in the ODBC SDK Programmer's Reference. For more information 
about bookmarks, see the article "Recordset: Bookmarks and Absolute Positions 
(ODBC)" in Visual C++ Programmer's Guide online. 

See Also: CRecordset, CRecordset:: CanBookmark, CRecordset: :GetBookmark, 
CRecordset: :SetBookmark 

CDatabase: : GetConnect 
const CString& GetConnect( ) const; 

Return Value 

Remarks 

A const reference to a CString containing the connect string if OpenEx or Open 
has been called; otherwise, an empty string. 

Call this member function to retrieve the connect string used during the call to 
OpenEx or Open that connected the CDatabase object to a data source. 

See CDatabase::Open for a description of how the connect string is created. 

See Also: CDatabase::OpenEx, CDatabase::Open 

409 



CDatabase: :GetCursorCommitBehavior 

CDatabase: : GetCursorCommitBeha vior 
int GetCursorCommitBehavior( ) const; 

Return Value 

Remarks 

A value indicating the effect of transactions on open recordset objects. For details, see 
Remarks. 

Call this member function to determine how a CommitTrans operation affects cursors 
on open recordset objects. 

The following table lists the possible return values for GetCursorCommitBehavior 
and the corresponding effect on the open recordset. 

Return value Effect on CRecordset objects 

Call CRecordset::Requery immediately following the 
transaction commit. 

Call CRecordset::Close immediately following the transaction 
commit. 

Proceed normally with CRecordset operations. 

For more information about this return value, see the ODBC API function 
SQLGetInfo in the ODBC SDK Programmer's Reference. For more information 
about transactions, see the article "Transaction (ODBC)" in Visual C++ 
Programmer's Guide online. 

See Also: CDatabase::GetCursorRollbackBehavior, CDatabase::CanTransact, 
CDatabase: :BeginTrans, CDatabase: :CommitTrans, CDatabase: :Rollback, 
CRecordset 

CDatabase: : GetCursorRollbackBehavior 
int GetCursorRollbackBehavior( ) const; 

Return Value 

Remarks 

410 

A value indicating the effect of transactions on open recordset objects. For details, see 
Remarks. 

Call this member function to determine how a Rollback operation affects cursors on 
open recordset objects. 

The following table lists the possible return values for GetCursorRollbackBehavior 
and the corresponding effect on the open recordset. 



Return value 

SQL_ ell_DELETE 

SQL_ Cll_PRESERVE 

Effect on CRecordset objects 

Call CRecordset::Requery immediately following the 
transaction rollback. 

Call CRecordset::Close immediately following the transaction 
rollback. 

Proceed normally with CRecordset operations. 

For more information about this return value, see the ODBC API function 
SQLGetlnfo in the ODBC SDK Programmer's Reference. For more information 
about transactions, see the article "Transaction (ODBC)" in Visual C++ 
Programmer's Guide online. 

See Also: CDatabase:: GetCursorCommitBehavior, CDatabase:: CanTransact, 
CDatabase: :BeginTrans, CDatabase: :CommitTrans, CDatabase: :Rollback, 
CRecordset 

CDatabase: : GetDatabaseN arne 
CString GetDatabaseName( ) const; 

Return Value 

Remarks 

A CString containing the database name if successful; otherwise, an empty CString. 

Call this member function to retrieve the name of the currently connected database 
(provided that the data source defines a named object called "database"). This is not 
the same as the data source name (DSN) specified in the OpenEx or Open call. What 
GetDatabaseName returns depends on ODBC. In general, a database is a collection 
of tables. If this entity has a name, GetDatabaseName returns it. 

You might, for example, want to display this name in a heading. If an error occurs 
while retrieving the name from ODBC, GetDatabaseName returns an empty Cstring. 

See Also: CDatabase::OpenEx, CDatabase::Open, CDatabase::GetConnect 

CDatabase: :IsOpen 
BOOL IsOpen( ) const; 

Return Value 

Remarks 

Nonzero if the CDatabase object is currently connected; otherwise O. 

Call this member function to determine whether the CDatabase object is currently 
connected to a data source. 

See Also: CDatabase::OpenEx, CDatabase::Open 

CDatabase::IsOpen 

411 



CDatabase: :OnSetOptions 

CDatabase: : OnSetOptions 
virtual void OnSetOptions( HSTMT hstmt); 

Parameters 

Remarks 

hstmt The ODBC statement handle for which options are being set. 

The framework calls this member function when directly executing an SQL statement 
with the ExecuteSQL member function. CRecordset::OnSetOptions also calls this 
member function. 

OnSetOptions sets the login timeout value. If there have been previous calls to the 
SetQueryTimeout and member function, OnSetOptions reflects the current values; 
otherwise, it sets default values. 

Note Prior to MFC 4.2, OnSetOptions also set the processing mode to either snychronous 
or asynchronous. Beginning with MFC 4.2, all operations are synchronous. To perform an 
asynchronous operation, you must make a direct call to the DDBC API function SQLSetPos. 

You do not need to override OnSetOptions to change the timeout value. Instead, to 
customize the query timeout value, call SetQueryTimeout before creating a 
recordset; OnSetOptions will use the new value. The values set apply to subsequent 
operations on all recordsets or direct SQL calls. 

Override OnSetOptions if you want to set additional options. Your override should 
call the base class OnSetOptions either before or after you call the ODBC API 
function ::SQLSetStmtOption. Follow the method illustrated in the framework's 
default implementation of OnSetOptions. 

See Also: CDatabase: :ExecuteSQL, CDatabase: :SetQueryTimeout, 
CRecordset:: OnSetOptions 

CDatabase::Open 
virtual BOOL Open( LPCTSTR IpszDSN, BOOL bExclusive = FALSE, 

... BOOL bReadOnly = FALSE, LPCTSTR IpszConnect = "ODBC;", 

... BOOL bUseCursorLib = TRUE ); 
throw( CDBException, CMemoryException); 

Return Value 
Nonzero if the connection is successfully made; otherwise 0 if the user chooses 
Cancel when presented a dialog box asking for more connection information. In all 
other cases, the framework throws an exception. 

Parameters 

412 

IpszDSN Specifies a data source name-a name registered with ODBC through the 
ODBC Administrator program. If a DSN value is specified in IpszConnect (in the 



Remarks 

form "DSN=<data-source>"), it must not be specified again in ipszDSN. In this 
case, lpszDSN should be NULL. Otherwise, you can pass NULL if you want to 
present the user with a Data Source dialog box in which the user can select a data 
source. For further information, see Remarks. 

bExclusive Not supported in this version of the class library. Currently, an assertion 
fails if this parameter is TRUE. The data source is always opened as shared (not 
exclusive). 

bReadOnly TRUE if you intend the connection to be read-only and to prohibit 
updates to the data source. All dependent recordsets inherit this attribute. The 
default value is FALSE. 

lpszConnect Specifies a connect string. The connect string concatenates information, 
possibly including a data source name, a user ID valid on the data source, a user 
authentication string (password, if the data source requires one), and other 
information. The whole connect string must be prefixed by the string "ODBC;" 
(uppercase or lowercase). The "ODBC;" string is used to indicate that the 
connection is to an ODBC data source; this is for upward compatibility when 
future versions of the class library might support non-ODBC data sources. 

bUseCursorLib TRUE if you want the ODBC Cursor Library DLL to be loaded. The 
cursor library masks some functionality of the underlying ODBC driver, effectively 
preventing the use of dynasets (if the driver supports them). The only cursors 
supported if the cursor library is loaded are static snapshots and forward-only 
cursors. The default value is TRUE. If you plan to create a recordset object 
directly from CRecordset without deriving from it, you should not load the cursor 
library. 

Call this member function to initialize a newly constructed CDatabase object. Your 
database object must be initialized before you can use it to construct a recordset 
object. 

Note Calling the Open Ex member function is the preferred way to connect to a data source 
and initialize your database object. 

If the parameters in your Open call do not contain enough information to make the 
connection, the ODBC driver opens a dialog box to obtain the necessary information 
from the user. When you call Open, your connect string, lpszConnect, is stored 
privately in the CDatabase object and is available by calling the GetConnect 
member function. 

If you wish, you can open your own dialog box before you call Open to get 
information from the user, such as a password, then add that information to the 
connect string you pass to Open. Or you might want to save the connect string you 
pass so you can reuse it the next time your application calls Open on a CDatabase 
object. 

CDatabase: :Open 

413 



CDatabase:: OpenEx 

Example 

You can also use the connect string for multiple levels of login authorization (each for 
a different CDatabase object) or to convey other data source-specific information. 
For more information about connect strings, see Chapter 5 in the ODBC SDK 
Programmer's Reference. 

It is possible for a connection attempt to time out if, for example, the DBMS host is 
unavailable. If the connection attempt fails, Open throws a CDBException. 

II Embed a CDatabase object 
II in your document class 
CDa ta ba se m_dbCust ( ): 

II Connect the object to a 
II data source (no password) 
II the ODBC connection dialog box 
II will always remain hidden 
m_dbCust.Open( _T( "MYDATASOURCE" ). FALSE. 

FALSE. _T( "ODBC:UID=JOES" ). 

II ... Or. query the user for all 
II connection information 
m_dbCust.Open( NULL ): 

See Also: CDatabase::OpenEx, CDatabase::CDatabase, CDatabase::Close, 
CDBException, CRecordset::Open 

CDatabase: : OpenEx 
virtual BOOL OpenEx( LPCTSTR IpszConnectString, 

1+ DWORD dwOptions = 0 );throw( CDBException, CMemoryException ); 

Return Value 
Nonzero if the connection is successfully made; otherwise 0 if the user chooses 
Cancel when presented a dialog box asking for more connection information. In all 
other cases, the framework throws an exception. 

Parameters 

414 

IpszConnectString Specifies an ODBC connect string. This includes the data source 
name as well as other optional information, such as a user ID and password. For 
example, "DSN=SQLServer_Source;UID=SA;PWD=abc123" is a possible connect 
string. Note that if you pass NULL for IpszConnectString, a Data Source dialog 
box will prompt the user to select a data source. 

dwOptions A bitmask which specifies a combination of the following values. The 
default value is 0, meaning that the database will be opened as shared with write 
access, the ODBC Cursor Library DLL will not be loaded, and the ODBC 
connection dialog box will display only if there is not enough information to 
make the connection. 



Remarks 

• CDatabase::openExclusive Not supported in this version of the class library. 
A data source is always opened as shared (not exclusive). Currently, an assertion 
fails if you specify this option. 

• CDatabase::openReadOnly Open the data source as read-only. 

• CDatabase::useCursorLib Load the ODBC Cursor Library DLL. The cursor 
library masks some functionality of the underlying ODBC driver, effectively 
preventing the use of dynasets (if the driver supports them). The only cursors 
supported if the cursor library is loaded are static snapshots and forward-only 
cursors. If you plan to create a recordset object directly from CRecordset 
without deriving from it, you should not load the cursor library. 

• CDatabase::noOdbcDialog Do not display the ODBC connection dialog box, 
regardless of whether enough connection information is supplied. 

• CDatabase::forceOdbcDialog Always display the ODBC connection dialog 
box. 

Call this member function to initialize a newly constructed CDatabase object. Your 
database object must be initialized before you can use it to construct a recordset 
object. 

If the lpszConnectString parameter in your OpenEx call does not contain enough 
information to make the connection, the ODBC driver opens a dialog box to obtain 
the necessary information from the user, provided you have not set 
CDatabase: :noOdbcDialog or CDatabase: :forceOdbcDialog in the dwOptions 
parameter. When you call OpenEx, your connect string, lpszConnectString, is stored 
privately in the CDatabase object and is available by calling the GetConnect 
member function. 

If you wish, you can open your own dialog box before you call OpenEx to get 
information from the user, such as a password, and then add that information to the 
connect string you pass to OpenEx. Or you might want to save the connect string you 
pass so you can reuse it the next time your application calls OpenEx on a CDatabase 
object. 

You can also use the connect string for multiple levels of login authorization (each for 
a different CDatabase object) or to convey other data source-specific information. 
For more information about connect strings, see Chapter 5 in the ODBC SDK 
Programmer's Reference. 

It is possible for a connection attempt to time out if, for example, the DBMS host is 
unavailable. If the connection attempt fails, OpenEx throws a CDBException. 

CDatabase:: OpenEx 

415 



CDatabase: :Rollback 

Example 
II Embed a CDatabase object 
II in your document class 
CDa taba se m_dbCust ( ); 

II Connect the object to a 
II read-only data source where 
II the ODBC connection dialog box 
II will always remain hidden 
m_dbCust.OpenEx( _T( "DSN=MYDATASOURCE;UID=JOES" ), 

CDatabase::openReadOnly I 
CDatabase::noOdbcDialog ) ); 

See Also: CDatabase: :Open, CDatabase: :CDatabase, CDatabase: :Close, 
CDBException, CRecordset: :Open 

CDatabase: : Rollback 
BOOL Rollback( ); 

Return Value 

Remarks 

Example 

416 

Nonzero if the transaction was successfully reversed; otherwise O. If a Rollback 
call fails, the data source and transaction states are undefined. If Rollback returns 0, 
you must check the data source to determine its state. 

Call this member function to reverse the changes made during a transaction. All 
CRecordset AddNew, Edit, Delete, and Update calls executed since the last 
BeginTrans are rolled back to the state that existed at the time of that call. 

After a call to Rollback, the transaction is over, and you must call BeginTrans 
again for another transaction. The record that was current before you called 
BeginTrans becomes the current record again after Rollback. 

After a rollback, the record that was current before the rollback remains current. 
For details about the state of the recordset and the data source after a rollback, 
see the article "Transaction (ODBC)" in Visual C++ Programmer's Guide 
online. 

See the article "Transaction: Performing a Transaction in a Recordset (ODBC)" 
in Visual C++ Programmer's Guide online. 

See Also: CDatabase: :BeginTrans, CDatabase: :CommitTrans 



CDatabase: :SetQueryTimeout 

CDatabase::SetLoginTimeout 
void SetLoginTimeout( DWORD dwSeconds ); 

Parameters 

Remarks 

dwSeconds The number of seconds to allow before a connection attempt times out. 

Call this member function-before you call OpenEx or Open-to override the 
default number of seconds allowed before an attempted data source connection times 
out. A connection attempt might time out if, for example, the DBMS is not available. 
Call SetLoginTimeout after you construct the uninitialized CDatabase object but 
before you call OpenEx or Open. 

The default value for login timeouts is 15 seconds. Not all data sources support the 
ability to specify a login timeout value. If the data source does not support timeout, 
you get trace output but not an exception. A value of ° means "infinite." 

See Also: CDatabase: :OnSetOptions, CDatabase: :SetQueryTimeout 

CDatabase: : SetQueryTimeout 
void SetQueryTimeout( DWORD dwSeconds); 

Parameters 

Remarks 

dwSeconds The number of seconds to allow before a query attempt times out. 

Call this member function to override the default number of seconds to allow before 
subsequent operations on the connected data source time out. An operation might time 
out due to network access problems, excessive query processing time, and so on. Call 
SetQueryTimeout prior to opening your recordset or prior to calling the recordset's 
AddNew, Update or Delete member functions if you want to change the query 
timeout value. The setting affects all subsequent Open, AddNew, Update, and Delete 
calls to any recordsets associated with this CDatabase object. Changing the query 
timeout value for a recordset after opening does not change the value for the 
recordset. For example, subsequent Move operations do not use the new value. 

The default value for query timeouts is 15 seconds. Not all data sources support the 
ability to set a query timeout value. If you set a query timeout value of 0, no timeout 
occurs; the communication with the data source may hang. This behavior may be 
useful during development. If the data source does not support timeout, you get trace 
output but not an exception. 

See Also: CDatabase: :SetLoginTimeout 

417 



CDatabase: :m_hdbc 

Data Members 
CDatabase: :m_hdbc 
Remarks 

Example 

418 

Contains a public handle to an ODBC data source connection-a "connection 
handle." Normally, you will have no need to access this member variable directly. 
Instead, the framework allocates the handle when you call OpenEx or Open. 
The framework deallocates the handle when you call the delete operator on the 
CDatabase object. Note that the Close member function does not deallocate the 
handle. 

Under some circumstances, however, you may need to use the handle directly. For 
example, if you need to call ODBC API functions directly rather than through class 
CDatabase, you may need a connection handle to pass as a parameter. See the code 
example below. 

II Using m_hdbc for a direct ODBC API call. 
II m_db is the CDatabase object; m_hdbc is 
II its HDBC member variable 
nRetcode = ::SQLGetInfo( m_db.m_hdbc, 

SQL_ODBC_SQL_CONFORMANCE, 
&nValue, 
sizeof( nValue ), 
&cbValue ); 

See Also: CDatabase::OpenEx, CDatabase::Open, CDatabase::Close 



CDataExchange 
CDataExchange does not have a base class. 

The CDataExchange class supports the dialog data exchange (DDX) and dialog data 
validation eDDY) routines used by the Microsoft Foundation classes. Use this class if 
you are writing data exchange routines for custom data types or controls, or if you are 
writing your own data validation routines. For more information on writing your own 
DDX and DDV routines, see Technical Note 26 online. For an overview of DDX and 
DDV, see "Dialog Data Exchange" and "Validation and Dialog Box Topics" in 
Visual C++ Programmer's Guide online. 

A CDataExchange object provides the context information needed for DDX and 
DDV to take place. The flag m_bSaveAndValidate is FALSE when DDX is used to 
fill the initial values of dialog controls from data members. The flag 
m_bSaveAndValidate is TRUE when DDX is used to set the current values of dialog 
controls into data members and when DDV is used to validate the data values. If the 
DDV validation fails, the DDV procedure will display a message box explaining the 
input error. The DDV procedure will then call Fail to reset the focus to the offending 
control and throw an exception to stop the validation process. 

#include <afxwin.h> 

See Also: CWnd::DoDataExchange, CWnd::UpdateData 

CDataExchange Class Members 
Data Members 

m_bSaveAndValidate 

m_pDlgWnd 

Operations 

PrepareCtrl 

PrepareEditCtrl 

Fail 

Flag for the direction ofDDX and DDV. 

The dialog box or window where the data exchange 
takes place. 

Prepares the specified control for data exchange or 
validation. Use for nonedit controls. 

Prepares the specified edit control for data exchange 
or validation. 

Called when validation fails. Resets focus to the 
previous control and throws an exception. 

CDataExchange 

419 



CDataExchange: :Fail 

Member Functions 
CDataExchange: :Fail 

Remarks 

void Fail( ); 
throw( CUserException ); 

The framework calls this member function when a dialog data validation (DDV) 
operation fails. Fail restores the focus and selection to the control whose validation 
failed (if there is a control to restore). Fail then throws an exception of type 
CUserException to stop the validation process. The exception causes a message box 
explaining the error to be displayed. After DDV validation fails, the user can reenter 
data in the offending control. 

Implementors of custom DDV routines can call Fail from their routines when a 
validation fails. 

For more information on writing your own DDX and DDV routines, see Technical 
Note 26 online. For an overview of DDX and DDV, see "Dialog Data Exchange" and 
"Validation and Dialog Box Topics" in Visual C++ Programmer's Guide online. 

See Also: CDataExchange: : PrepareCtrl , CDataExchange: :PrepareEditCtrl 

CDataExchange: :PrepareCtrl 
HWND PrepareCtrl( int nIDC ); 

throw( CNotSupportedException ); 

Return Value 
The HWND of the control being prepared for DDX or DDY. 

Parameters 

Remarks 

420 

nIDC The ID of the control to be prepared for DDX or DDY. 

The framework calls this member function to prepare the specified control for dialog 
data exchange (DDX) and validation (DDV). Use PrepareEditCtrl instead for edit 
controls; use this member function for all other controls. 

Preparation consists of storing the control's HWND in the CDataExchange class. 
The framework uses this handle to restore the focus to the previously focused control 
in the event of a DDX or DDV failure. 

Implementors of custom DDX or DDV routines should call PrepareCtrl for all 
non-edit controls for which they are exchanging data via DDX or validating data 
via DDY. 



CDataExchange: :m_bSaveAndValidate 

For more information on writing your own DDX and DDV routines, see Technical 
Note 26 online. For an overview of DDX and DDV, see "Dialog Data Exchange" and 
"Validation and Dialog Box Topics" in Visual C++ Programmer's Guide online. 

See Also: CDataExchange: :Fail 

CDataExchange: :PrepareEditCtrl 
HWND PrepareEditCtrl( int nIDC ); 

throw( CNotSupportedException ); 

Return Value 
The HWND of the edit control being prepared for DDX or DDY. 

Parameters 

Remarks 

nIDC The ID of the edit control to be prepared for DDX or DDY. 

The framework calls this member function to prepare the specified edit control for 
dialog data exchange (DDX) and validation (DDV). Use PrepareCtrl instead for all 
non-edit controls. 

Preparation consists of two things. First, PrepareEditCtrl stores the control's 
HWND in the CDataExchange class. The framework uses this handle to restore the 
focus to the previously focused control in the event of a DDX or DDV failure. 
Second, PrepareEditCtrl sets a flag in the CDataExchange class to indicate that the 
control whose data is being exchanged or validated is an edit control. 

Implementors of custom DDX or DDV routines should call PrepareEditCtrl for all 
edit controls for which they are exchanging data via DDX or validating data via DDY. 

For more information on writing your own DDX and DDV routines, see Technical 
Note 26 online. For an overview of DDX and DDV, see "Dialog Data Exchange" and 
"Validation and Dialog Box Topics" in Visual C++ Programmer's Guide online. 

See Also: CDataExchange: :Fail 

Data Members 
CDataExchange: : m_bSaveAndValidate 
Remarks 

This flag indicates the direction of a dialog data exchange (DDX) operation. The flag 
is nonzero if the CDataExchange object is being used to move data from the dialog 
controls to dialog-class data members after the user edits the controls. The flag is zero 
if the object is being used to initialize dialog controls from dialog-class data members. 

421 



CDataExchange: :m_pDIgWnd 

The flag is also nonzero during dialog data validation (DDV). 

For more information on writing your own DDX and DDV routines, see Technical 
Note 26 online. For an overview of DDX and DDV, see "Dialog Data Exchange" and 
"Validation and Dialog Box Topics" in Visual C++ Programmer's Guide online. 

CDataExchange: :m_pD 19 W nd 
Remarks 

422 

Contains a pointer to the CWnd object for which dialog data exchange (DDX) 
or validation (DDV) is taking place. This object is usually a CDialog object. 
Implementors of custom DDX or DDV routines can use this pointer to obtain 
access to the dialog window that contains the controls they are operating on. 

For more information on writing your own DDX and DDV routines, see Technical 
Note 26 online. For an overview of DDX and DDV, see "Dialog Data Exchange" and 
"Validation and Dialog Box Topics" in Visual C++ Programmer's Guide online. 



CDataPathProperty 

CDataPathProperty 

CDataPathProperty 

Class CDataPathProperty implements an OLE control property that can be loaded 
asynchronously. Asynchronous properties are loaded after synchronous initiation. 

The class CDataPathProperty is derived from CAysncMonikerFile. To implement 
asynchronous properties in your OLE controls, derive a class from CDataPathProperty, 
and override OnDataAvailable. 

For more information about how to use asynchronous monikers and ActiveX controls in 
Internet applications, see the following articles in Visual C++ Programmer's Guide online: 

• "Internet First Steps: ActiveX Controls" 

• "Internet First Steps: Asynchronous Monikers" 

#include <afxctl.h> 

See Also: CAsyncMonikerFile 

CDataPathProperty Class Members 
Construction 

CDataPathProperty 

Operations 

GetControl 

GetPath 

Open 

ResetData 

SetControl 

SetPath 

Constructs a CDataPathProperty object. 

Retrieves the asynchronous OLE control associated with the 
CDataPathProperty object. 

Retrieves the pathname of the property. 

Initiates loading of the asynchronous property for the associated 
ActiveX (OLE) control. 

Calls CAsyncMonikerFile::OnDataAvailable to notify the 
container that the control properties have changed. 

Sets the asynchronous ActiveX (OLE) control associated with 
the property. 

Sets the pathname of the property. 

423 



CDataPathProperty: :CDataPathProperty 

Member Functions 
CDataPathProperty: : CDataPathProperty 

CDataPathProperty( COleControl* pControl ); 
CDataPathProperty( LPCTSTR IpszPath, COleControl* pControl ); 

Parameters 

Remarks 

pControl A pointer to the OLE control object to be associated with this 
CDataPathProperty object. 

IpszPath The path, which may be absolute or relative, used to create an 
asynchronous moniker that references the actual absolute location of the 
property. CDataPathProperty uses URLs, not filenames. If you want a 
CDataPathProperty object for a file, prepend f i 1 e : / / to the path. 

Constructs a CDataPathProperty object. The COleControl object pointed to by 
pControl is used by Open and retrieved by derived classes. If pControl is NULL, 
the control used with Open should be set with SetControl. If IpszPath is NULL, 
you can pass in the path through Open or set it with SetPath. 

See Also: CDataPathProperty: :Open, CDataPathProperty: :SetControl 

CDataPathProperty: : GetControl 
COleControl* GetControl( ); 

Return Value 

Remarks 

Returns a pointer to the OLE control associated with the CDataPathProperty object. 
NULL if not control is associated. 

Call this member function to retrieve the COleControl object associated with the 
CDataPathProperty object. 

See Also: CDataPathProperty: :SetControl 

CDataPathProperty: : GetPath 
CString GetPath( ) const; 

Return Value 

424 

Returns the pathname to the property itself. Can be empty if no path has been 
specified. 



CDataPathProperty: :Open 

Remarks 
Call this member function to retrieve the path, set when the CDataPathProperty 
object was constructed, or specified in Open, or specified in a previous call to the 
SetPath member function. 

See Also: CDataPathProperty::SetPath, CDataPathProperty::Open, 
CDataPathProperty::CDataPathProperty 

CDataPathProperty: : Open 
virtual BOOL Open( COleControl* pControl, CFileException* pError = NULL ); 
virtual BOOL Open( LPCTSTR IpszPath, COleControl* pControl, 

... CFileException* pError = NULL ); 
virtual BOOL Open( LPCTSTR ipszPath, CFileException* pError = NULL ); 
virtual BOOL Open( CFileException* pError = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pControl A pointer to the OLE control object to be associated with this 
CDataPathProperty object. 

pError A pointer to a file exception. In the event of an error, will be set to 
the cause. 

IpszPath The path, which may be absolute or relative, used to create an 
asynchronous moniker that references the actual absolute location of the 
property. CDataPathProperty uses URLs, not filenames. If you want a 
CDataPathProperty object for a file, prepend f i 1 e : / / to the path. 

Call this member function to initiate loading of the asynchronous property for the 
associated control. The function attempts to obtain the IBindHost interface from 
the control. 

Before calling Open without a path, the value for the property's path must be set. 
This can be done when the object is constructed, or by calling the SetPath member 
function. 

Before calling Open without a control, an ActiveX control (formerly known as an 
OLE control) can be associated with the object. This can be done when the object is 
constructed, or by calling SetControl. 

All overloads of CAsyncMonikerFile::Open are also available from 
CDataPathProperty. 

See Also: CDataPathProperty: :SetControl, 
CDataPathProperty:: CDataPathProperty, CAsyncMoniker File: :Open 

425 



CDataPathProperty::ResetData 

CDataPathProperty: : ResetData 

Remarks 

virtual void ResetData( ); 

Call this function to get CAsyncMonikerFile::OnDataAvailable to notify the 
container that the control properties have changed, and all the information loaded 
asynchronously is no longer useful. Opening should be restarted. Derived classes can 
override this function for different defaults. 

See Also: CAsyncMonikerFile: :OnDataAvailable, CDataPathProperty: :Open 

CDataPathProperty: : SetControl 
void SetControl( COleControl* pControl ); 

Parameters 

Remarks 

pControl A pointer to the asynchronous OLE control to be associated with the 
property. 

Call this member function to associate an asynchronous OLE control with the 
CDataPathProperty object. 

See Also: CDataPathProperty: : GetControl, CDataPathProperty: :SetPath, 
CDataPathProperty: : CDataPathProperty 

CDataPathProperty: : SetPath 
void SetPath( LPCTSTR lpszPath ); 

Parameters 

Remarks 

426 

lpszPath A path, which may be absolute or relative, to the property being loaded 
asynchronously. CDataPathProperty uses URLs, not filenames. If you want a 
CDataPathProperty object for a file, prepend f i 1 e : / / to the path. 

Call this member function to set the pathname of the property. 

See Also: CDataPathProperty: : GetPath, CDataPathProperty: :SetControl, 
CDataPathProperty: :CDataPathProperty 



CDBException 

A CDBException object represents an exception condition arising from the database 
classes. The class includes two public data members you can use to determine the 
cause of the exception or to display a text message describing the exception. 
CDBException objects are constructed and thrown by member functions of the 
database classes. 

Note This class is one of MFC's Open Database Connectivity (ODSC) classes. If you are 
instead using the newer Data Access Objects (DAD) classes, use CDaoException instead. 
All DAD class names have "CDao" as a prefix. For more information, see the articles 
"DatabaseTopics (General)" and "DAD and MFC" in Visual C++ Programmer's Guide online. 

Exceptions are cases of abnormal execution involving conditions outside the 
program's control, such as data source or network I/O errors. Errors that you might 
expect to see in the normal course of executing your program are usually not 
considered exceptions. 

You can access these objects within the scope of a CATCH expression. You can also 
throw CDBException objects from your own code with the AfxThrowDBException 
global function. 

For more information about exception handling in general, or about CDBException 
objects, see the articles "Exceptions" and "Exceptions: Database Exceptions" in 
Visual C++ Programmer's Guide online. 

#include <afxdb.h> 

See Also: CDatabase, CRecordset, CFieldExchange, AfxThrowDBException, 
CRecordset:: Update, CRecordset: :Delete, CException 

CDBException Class Members 
Data Members 

m_strError 

m_strStateNativeOrigin 

Contains an Open Database Connectivity (ODBC) return code, 
of type RETCODE. 

Contains a string that describes the error in alphanumeric terms. 

Contains a string describing the error in terms of the error codes 
returned by ODBC. 

CDBException 

427 



CDBException: :m_nRetCode 

Data Members 
CDBException: :m_nRetCode 
Remarks 

428 

Contains an ODBC error code of type RETCODE returned by an ODBC application 
programming interface (API) function. This type includes SQL-prefixed codes 
defined by ODBC and AFX_SQL-prefixed codes defined by the database classes. For 
a CDBException, this member will contain one of the following values: 

• AFX_SQL_ERROR_API_CONFORMANCE The driver for a 
CDatabase::OpenEx or CDatabase::Open call does not conform to required 
ODBC API Conformance level 1 (SQL_OAC_LEVELl). 

• AFX_SQL_ERROR_CONNECT_FAIL Connection to the data source failed. 
You passed a NULL CDatabase pointer to your recordset constructor and the 
subsequent attempt to create a connection based on GetDefaultConnect failed. 

• AFX_SQL_ERROR_DATA_TRUNCATED You requested more data than you 
have provided storage for. For information on increasing the provided data storage 
for CString or CByteArray data types, see the nMaxLength argument for 
RFX_Text and RFX_Binary under "Macros and Globals." 

• AFX_SQL_ERROR_DYNASET_NOT_SUPPORTED A call to 
CRecordset::Open requesting a dynaset failed. Dynasets are not supported by the 
driver. 

• AFX_SQL_ERROR_EMPTY_COLUMN_LIST You attempted to open a table 
(or what you gave could not be identified as a procedure call or SELECT 
statement) but there are no columns identified in record field exchange (RFX) 
function calls in your DoFieldExchange override. 

• AFX_SQL_ERROR_FIELD_SCHEMA_MISMATCH The type of an RFX 
function in your DoFieldExchange override is not compatible with the column 
data type in the recordset. 

• AFX_SQL_ERROR_ILLEGAL_MODE You called CRecordset::Update 
without previously calling CRecordset::AddNew or CRecordset::Edit. 

• AFX_SQL_ERROR_LOCK_MODE_NOT_SUPPORTED Your request to 
lock records for update could not be fulfilled because your ODBC driver does not 
support locking. 

• AFX_SQL_ERROR_MULTIPLE_ROWS_AFFECTED You called 
CRecordset::Update or Delete for a table with no unique key and changed 
multiple records. 



CDBException::m_nRetCode 

• AFX_SQL_ERROR_NO_CURRENT_RECORD You attempted to edit or 
delete a previously deleted record. You must scroll to a new current record after a 
deletion. 

• AFX_SQL_ERROR_NO_POSITIONED_UPDATES Your request for a 
dynaset could not be fulfilled because your ODBC driver does not support 
positioned updates. 

• AFX_SQL_ERROR_NO_ROWS_AFFECTED You called 
CRecordset::Update or Delete, but when the operation began the record could no 
longer be found. 

• AFX_SQL_ERROR_ODBC_LOAD_FAILED An attempt to load the 
ODBC.DLL failed; Windows could not find or could not load this DLL. This error 
is fatal. 

• AFX_SQL_ERROR_ODBC_ V2_REQUIRED Your request for a dynaset could 
not be fulfilled because a Level 2-compliant ODBC driver is required. 

• AFX_SQL_ERROR_RECORDSET_FORWARD_ONLY An attempt to scroll 
did not succeed because the data source does not support backward scrolling. 

• AFX_SQL_ERROR_SNAPSHOT_NOT_SUPPORTED A call to 
CRecordset: :Open requesting a snapshot failed. Snapshots are not supported by 
the driver. (This should only occur when the ODBC cursor library­
ODBCCURS.DLL-is not present.) 

• AFX_SQL_ERROR_SQL_CONFORMANCE The driver for a 
CDatabase::OpenEx or CDatabase::Open call does not conform to the required 
ODBC SQL Conformance level of "Minimum" (SQL_OSC_MINIMUM). 

o AFX_SQL_ERROR_SQL_NO_TOTAL The ODBC driver was unable to 
specify the total size of a CLongBinary data value. The operation probably failed 
because a global memory block could not be preallocated. 

• AFX_SQL_ERROR_RECORDSET_READONLY You attempted to update a 
read-only recordset, or the data source is read-only. No update operations can be 
performed with the recordset or the CDatabase object it is associated with. 

• SQL_ERROR Function failed. The error message returned by ::SQLError is 
stored in the m_strError data member. 

• SQL_INVALID_HANDLE Function failed due to an invalid environment 
handle, connection handle, or statement handle. This indicates a programming 
error. No additional information is available from ::SQLError. 

The SQL-prefixed codes are defined by ODBC. The AFX-prefixed codes are defined 
in AFXDB.H, found in MFC\INCLUDE. 

See Also: CDatabase, CLongBinary, CRecordset 

429 



CDBException: :m_strError 

CDBException: :m_strError 
Remarks 

Contains a string describing the error that caused the exception. The string describes 
the error in alphanumeric terms. For more detailed information and an example, see 
m_strStateNativeOrigin. 

See Also: CDBException::m_strStateNativeOrigin 

CD BException: :m_strStateN ati veOrigin 
Remarks 

Example 

430 

Contains a string describing the error that caused the exception. The string is of the 
form "State:%s,Native:%ld,Origin:%s", where the format codes, in order, are replaced 
by values that describe: 

• The SQLSTATE, a null-terminated string containing a five-character error code 
returned in the szSqlState parameter of the ::SQLError function. SQLSTATE 
values are listed in Appendix A, "ODBC Error Codes," in the ODBC SDK 
Programmers Reference. Example: "S0022". 

• The native error code, specific to the data source, returned in the pjNativeError 
parameter of the: :SQLError function. Example: 207. 

• The error message text returned in the szErrorMsg parameter of the ::SQLError 
function. This message consists of several bracketed names. As an error is passed 
from its source to the user, each ODBC component (data source, driver, Driver 
Manager) appends its own name. This information helps to pinpoint the origin of 
the error. Example: [Microsoft][ODBC SQL Server Driver][SQL Server] 

The framework interprets the error string and puts its components into 
m_strStateNativeOrigin; if m_strStateNativeOrigin contains information for more 
than one error, the errors are separated by newlines. The framework puts the 
alphanumeric error text into m_strError. 

For additional information about the codes used to make up this string, see the 
::SQLError function in the ODBC SDK Programmer's Reference. 

From ODBC: "State:S0022,Native:207,Origin:[Microsoft][ODBC SQL Server 
Driver][SQL Server] Invalid column name 'CoIName'" 

In m_strStateNativeOrigin: "State:S0022,Native:207,Origin: [Microsoft] [ODBC 
SQL Server Driver] [SQL Server]" 

In m_strError: "Invalid column name 'CoIName'" 

See Also: CDBException: :m_strError 



CDBVariant 
CDBVariant does not have a base class. 

A CDBVariant object represents a variant data type for the MFC ODBC classes. 
CDBVariant is similar to COle Variant; however, CDBVariant does not use OLE. 
CDBVariant allows you to store a value without worrying about the value's data 
type. CDBVariant tracks the data type of the current value, which is stored in a 
union. 

Class CRecordset utilizes CDBVariant objects in three member functions: 
GetFieldValue, GetBookmark, and SetBookmark. For example, GetFieldValue 
allows you to dynamically fetch data in a column. Because the data type of the column 
may not be known at run time, GetFieldValue uses a CDBVariant object to store the 
column's data. 

#include <afxdb.h> 

See Also: CRecordset, CRecordset::GetFieldValue, CRecordset::GetBookmark, 
CRecordset: :SetBookmark 

CDBVariant Class Members 
Data Members 

m_boolVai 

m_chVal 

m_iVal 

m_IVal 

m_fltVal 

m_dblVal 

m_pdate 

m_pstring 

m_pbinary 

Construction 

CDBVariant 

Operations 

Clear 

Contains the data type of the currently stored value. 
Type DWORD. 

Contains a value of type BOOL. 

Contains a value of type unsigned char. 

Contains a value of type short. 

Contains a value of type long. 

Contains a value of type float. 

Contains a value of type double. 

Contains a pointer to an object of type 
TIMESTAMP _STRUCT. 

Contains a pointer to an object of type CString. 

Contains a pointer to an object of type CLongBinary. 

Constructs a CDBVariant object. 

Clears the CDBVariant object. 

CDBVariant 

431 



CDBVariant: :CDBVariant 

Member Functions 
CDBVariant: :CDBVariant 

Remarks 

CDBVariant( ); 

Creates a NULL CDBVariant object. Sets the m_dwType data member to 
DBVT_NULL. 

See Also: CDBVariant: :m_dwType 

CDBVariant::Clear 

Remarks 

void Clear( ); 

Call this member function to clear the CDBVariant object. If the value of the 
m_dwType data member is DBVT_DATE, DBVT_STRING, or DBVT_BINARY, 
Clear frees the memory associated with the union pointer member. Clear sets 
m_dwType to DBVT_NULL. 

The CDBVariant destructor calls Clear. 

See Also: CDBVariant: :m_dwType 

Data Members 
CDBVariant: : m_b0 olVal 
Remarks 

432 

Stores a value of type BOOL. The m_boolVal data member belongs to a union. 
Before accessing m_booIVal, first check the value of CDBVariant::m_dwType. 
If m_dwType is set to DBVT_BOOL, then m_boolVal will contain a valid value; 
otherwise, accessing m_boolVal will produce unreliable results. 

See Also: CDBVariant: :m_dwType 



CDBVariant::m_dwType 

CDBVariant: :m_ch Val 
Remarks 

Stores a value of type unsigned char. The m_ch Val data member belongs to a union. 
Before accessing m_ch Val, first check the value of CDBVariant: :m_dwType. If 
m_dwType is set to DBVT_UCHAR, then m_chVal contains a valid value; 
otherwise, accessing m_ch Val will produce unreliable results. 

See Also: CDBVariant: :m_dwType 

CDBVariant::m dblVal 
Remarks 

Stores a value of type double. The m_dblVal data member belongs to a union. 
Before accessing m_dbIVal, first check the value of CDBVariant::m_dwType. If 
m_dwType is set to DBVT_DOUBLE, then m_dblVal contains a valid value; 
otherwise, accessing m_dblVal will produce unreliable results. 

See Also: CDBVariant: :m_dwType 

CDBVariant: :m_dwType 
Remarks 

This data member contains the data type for the value that is currently stored in the 
CDBVariant object's union data member. Before accessing this union, you must 
check the value of m_dwType in order to determine which union data member to 
access. The following table lists the possible values for m_dwType and the 
corresponding union data member. 

DBVT_NULL 

DBVT_BOOL 

DBVT_UCHAR 

DBVT_SHORT 

DBVT_LONG 

DBVT_SINGLE 

DBVT_DOUBLE 

DBVT_DATE 

DBVT_STRING 

DBVT_BINARY 

Union data member 

No union member is valid for access. 

m_boolVal 

m_chVal 

m_iVal 

m_lVal 

m_fltVal 

m_dblVal 

m_pdate 

m_pstring 

m_pbinary 

433 



CDBVariant::m_fltVal 

CDBVariant: :m_fltVal 
Remarks 

Stores a value of type float. The m_fltVal data member belongs to a union. Before 
accessing m_fltVal, first check the value of CDBVariant::m_dwType. If m_dwType 
is set to DBVT_SINGLE, then m_fltVal contains a valid value; otherwise, accessing 
m_fltVal will produce unreliable results. 

See Also: CDBVariant: :m_dwType 

CDBVariant: :m_iVal 
Remarks 

Stores a value of type short. The m_iVal data member belongs to a union. Before 
accessing m_iVal, first check the value of CDBVariant::m_dwType. If m_dwType 
is set to DBVT_SHORT, then m_iVal contains a valid value; otherwise, accessing 
m_iVal will produce unreliable results. 

See Also: CDBVariant: :m_dwType 

CDBVariant: :m_IVal 
Remarks 

Stores a value of type long. The m_IVal data member belongs to a union. Before 
accessing m_IVal, first check the value of CDBVariant: :m_dwType. If m_dwType 
is set to DBVT_LONG, then m_IVal contains a valid value; otherwise, accessing 
m_IVal will produce unreliable results. 

See Also: CDBVariant: :m_dwType 

CDBVariant: :m_pbinary 
Remarks 

434 

Stores a pointer to an object of type CLongBinary. The m_pbinary data member 
belongs to a union. Before accessing m_pbinary, first check the value of 
CDBVariant::m_dwType. Ifm_dwType is set to DBVT_BINARY, then 
m_pbinary contains a valid pointer; otherwise, accessing m_pbinary will produce 
unreliable results. 

See Also: CDBVariant::m_dwType 



CDBVariant: :m_pdate 
Remarks 

Stores a pointer to an object of type TIMESTAMP _STRUCT. The m_pdate 
data member belongs to a union. Before accessing m_pdate, first check the value 
of CDBVariant::m_dwType. If m_dwType is set to DBVT_DATE, then m_ 
pdate contains a valid pointer; otherwise, accessing m_pdate will produce 
unreliable results. 

For more information about the TIMESTAMP _STRUCT data type, see the topic 
"e Data Types" in Appendix D of the ODBC SDK Programmer's Reference. 

See Also: CDBVariant::m_dwType 

CD B Variant: :m_pstring 
Remarks 

Stores a pointer to an object of type CString. The m_pstring data member 
belongs to a union. Before accessing m_pstring, first check the value of 
CDBVariant::m_dwType. If m_dwType is set to DBVT_STRING, then 
m_pstring contains a valid pointer; otherwise, accessing m_pstring will 
produce unreliable results. 

See Also: CDBVariant: :m_dwType 

CDBVariant::m_pstring 

435 



CDC 

CDC 

436 

The CDC class defines a class of device-context objects. The CDC object provides 
member functions for working with a device context, such as a display or printer, as well as 
members for working with a display context associated with the client area of a window. 

Do all drawing through the member functions of a CDC object. The class provides member 
functions for device-context operations, working with drawing tools, type-safe graphics 
device interface (GDI) object selection, and working with colors and palettes. It also 
provides member functions for getting and setting drawing attributes, mapping, working 
with the viewport, working with the window extent, converting coordinates, working with 
regions, clipping, drawing lines, and drawing simple shapes, ellipses, and polygons. 
Member functions are also provided for drawing text, working with fonts, using printer 
escapes, scrolling, and playing metafiles. 

To use a CDC object, construct it, and then call its member functions that parallel 
Windows functions that use device contexts. 

Note Under Windows 95, all screen coordinates are limited to 16 bits. Therefore, an int passed to 
a CDC member function must lie in the range -32768 to 32767. 

For specific uses, the Microsoft Foundation Class Library provides several classes derived 
from CDC. CPaintDC encapsulates calls to BeginPaint and EndPaint. CClientDC 
manages a display context associated with a window's client area. CWindowDC manages 
a display context associated with an entire window, including its frame and controls. 
CMetaFileDC associates a device context with a metafile. 

CDC contains two device contexts, m_hDC and m_hAttrihDC, which, on creation of a 
CDC object, refer to the same device. CDC directs all output GDI calls to m_hDC and 
most attribute GDI calls to m_hAttrihDC. (An example of an attribute call is 
GetTextColor, while SetTextColor is an output call.) 

For example, the framework uses these two device contexts to implement a CMetaFileDC 
object that will send output to a metafile while reading attributes from a physical device. 
Print preview is implemented in the framework in a similar fashion. You can also use the 
two device contexts in a similar way in your application-specific code. 

There are times when you may need text-metric information from both the m_hDC and 
m_hAttrihDC device contexts. The following pairs of functions provide this capability: 



Uses m_hAttribDC 

GetTcxtExtcnt 

GctTabbedTextExtcnt 

GetTextMetrics 

GctCharWidth 

GetOutputTcxtExtent 

GctOutputTabbedTextExtcnt 

GctOutputTcxtMctrics 

GetOutputCharWidth 

For more information on CDC, see "Device Contexts" in Visual C++ Programmer's 
Guide online. 

#include <afxwin.h> 

See Also: CPaintDC, CWindowDC, CClientDC, CMetaFileDC 

CDC Class Members 
Data Members 

m_hDC 

m_hAttribDC 

Construction 

CDC 

Initialization 

CreateDC 

CreateIC 

CreateCompatibleDC 

DeleteDC 

FromHandle 

DeleteTempMap 

Attach 

Detach 

SetAttribDC 

SetOutputDC 

The output-device context used by this CDC object. 

The attribute-device context used by this CDC object. 

Constructs a CDC object. 

Creates a device context for a specific device. 

Creates an information context for a specific device. This provides 
a fast way to get information about the device without creating a 
device context. 

Creates a memory-device context that is compatible with another 
device context. You can use it to prepare images in memory. 

Deletes the Windows device context associated with this CDC 
object. 

Returns a pointer to a CDC object when given a handle to a 
device context. If a CDC object is not attached to the handle, a 
temporary CDC object is created and attached. 

Called by the CWinApp idle-time handler to delete any 
temporary CDC object created by FromHandle. Also detaches 
the device context. 

Attaches a Windows device context to this CDC object. 

Detaches the Windows device context from this CDC object. 

Sets m_hAttribDC, the attribute device context. 

Sets m_hDC, the output device context. 

(continued) 

CDC 

437 



CDC 

438 

Initialization (continued) 

ReleaseAttribDC 

ReleaseOutputDC 

GetCurrentBitmap 

GetCurrentBrush 

GetCurrentFont 

GetCurrentPalette 

GetCurrentPen 

GetWindow 

Device-Context Functions 

GetSafeHdc 

SaveDC 

RestoreDC 

ResetDC 

GetDeviceCaps 

IsPrinting 

Drawing-Tool Functions 

GetBrushOrg 

SetBrushOrg 

EnumObjects 

Type-Safe Selection Helpers 

SelectObject 

SelectStockObject 

Color and Color Palette Functions 

GetN earestColor 

SelectPalette 

RealizePalette 

UpdateColors 

GetHalftoneBrush 

Releases m_hAttribDC, the attribute device context. 

Releases m_hDC, the output device context. 

Returns a pointer to the currently selected CBitmap object. 

Returns a pointer to the currently selected CBrush object. 

Returns a pointer to the currently selected CFont object. 

Returns a pointer to the currently selected CPalette object. 

Returns a pointer to the currently selected CPen object. 

Returns the window associated with the display device context. 

Returns m_hDC, the output device context. 

Saves the current state of the device context. 

Restores the device context to a previous state saved with 
SaveDC. 

Updates the m_hAttribDC device context. 

Retrieves a specified kind of device-specific information about a 
given display device's capabilities. 

Determines whether the device context is being used for printing. 

Retrieves the origin of the current brush. 

Specifies the origin for the next brush selected into a device 
context. 

Enumerates the pens and brushes available in a device context. 

Selects a GO! drawing object such as a pen. 

Selects one of the predefined stock pens, brushes, or fonts 
provided by Windows. 

Retrieves the closest logical color to a specified logical color that 
the given device can represent. 

Selects the logical palette. 

Maps palette entries in the current logical palette to the system 
palette. 

Updates the client area of the device context by matching the 
current colors in the client area to the system palette on a 
pixel-by-pixel basis. 

Retrieves a halftone brush. 



Drawing-Attribute Functions 

GetBkColor 

SetBkColor 

GetBkMode 

SetBkMode 

GetPoly FillMode 

SetPoly FillMode 

GetROP2 

SetROP2 

GetStretchBItMode 

SetStretchBItMode 

GetTextColor 

SetTextColor 

GetColor Adjustment 

SetColor Adjustment 

Mapping Functions 

GetMapMode 

SetMapMode 

GetViewportOrg 

SetViewportOrg 

Offset ViewportOrg 

Get ViewportExt 

Set ViewportExt 

Scale ViewportExt 

GetWindowOrg 

SetWindowOrg 

OffsetWindowOrg 

GetWindowExt 

SetWindowExt 

Scale Window Ext 

Coordinate Functions 

DPtoHIMETRIC 

DPtoLP 

HIMETRICtoDP 

Retrieves the current background color. 

Sets the current background color. 

Retrieves the background mode. 

Sets the background mode. 

Retrieves the current polygon-filling mode. 

Sets the polygon-filling mode. 

Retrieves the current drawing mode. 

Sets the current drawing mode. 

Retrieves the current bitmap-stretching mode. 

Sets the bitmap-stretching mode. 

Retrieves the current text color. 

Sets the text color. 

Retrieves the color adjustment values for the device context. 

Sets the color adjustment values for the device context using the 
specified values. 

Retrieves the current mapping mode. 

Sets the current mapping mode. 

Retrieves the x- and y-coordinates of the viewport origin. 

Sets the viewport origin. 

Modifies the viewport origin relative to the coordinates of the 
current viewport origin. 

Retrieves the x- and y-extents of the viewport. 

Sets the x- and y-extents of the viewport. 

Modifies the viewport extent relative to the current values. 

Retrieves the x- and y-coordinates of the origin of the associated 
window. 

Sets the window origin of the device context. 

Modifies the window origin relative to the coordinates of the 
current window origin. 

Retrieves the x- and y-extents of the associated window. 

Sets the x- and y-extents of the associated window. 

Modifies the window extents relative to the current values. 

Converts device units into HIMETRIC units. 

Converts device units into logical units. 

Converts HIMETRIC units into device units. 
(continued) 

CDC 

439 



CDC 

440 

Coordinate Functions (continued) 

HIMETRICtoLP 

LPtoDP 

LPtoHIMETRIC 

Region Functions 

FiIIRgn 

FrameRgn 

InvertRgn 

PaintRgn 

Clipping Functions 

SetBoundsRect 

GetBoundsRect 

GetClipBox 

SelectClipRgn 

ExcludeClipRect 

ExcludeUpdateRgn 

IntersectClipRect 

OffsetClipRgn 

PtVisible 

RectVisible 

Line-Output Functions 

GetCurrentPosition 

MoveTo 

LineTo 

Arc 

ArcTo 

AngleArc 

GetArcDirection 

SetArcDirection 

Converts HIMETRIC units into logical units. 

Converts logical units into device units. 

Converts logical units into HIMETRIC units. 

Fills a specific region with the specified brush. 

Draws a border around a specific region using a brush. 

Inverts the colors in a region. 

Fills a region with the selected brush. 

Controls the accumulation of bounding-rectangle information for 
the specified device context. 

Returns the current accumulated bounding rectangle for the 
specified device context. 

Retrieves the dimensions of the tightest bounding rectangle 
around the current clipping boundary. 

Combines the given region with the current clipping region by 
using the specified mode. 

Creates a new clipping region that consists of the existing clipping 
region minus the specified rectangle. 

Prevents drawing within invalid areas of a window by excluding 
an updated region in the window from a clipping region. 

Creates a new clipping region by forming the intersection of the 
current region and a rectangle. 

Moves the clipping region of the given device. 

Specifies whether the given point is within the clipping region. 

Determines whether any part of the given rectangle lies within the 
clipping region. 

Retrieves the current position of the pen (in logical coordinates). 

Moves the current position. 

Draws a line from the current position up to, but not including, a 
point. 

Draws an elliptical arc. 

Draws an elliptical arc. This function is similar to Are, except that 
the current position is updated. 

Draws a line segment and an arc, and moves the current position 
to the ending point of the arc. 

Returns the current arc direction for the device context. 

Sets the drawing direction to be used for arc and rectangle functions. 



Line-Output Functions (continued) 

PolyDraw 

Polyline 

Poly Polyline 

PolylineTo 

PolyBezier 

PolyBezierTo 

Simple Drawing Functions 

FillRect 

FrameRect 

InvertRect 

Drawlcon 

DrawDragRect 

FillSolidRect 

Draw3dRect 

DrawEdge 

DrawFrameControl 

DrawState 

Ellipse and Polygon Functions 

Chord 

DrawFocusRect 

Ellipse 

Pie 

Polygon 

PolyPolygon 

Polyline 

Rectangle 

RoundRect 

Draws a set of line segments and Bezier splines. This function 
updates the current position. 

Draws a set of line segments connecting the specified points. 

Draws mUltiple series of connected line segments. The current 
position is neither used nor updated by this function. 

Draws one or more straight lines and moves the current position 
to the ending point of the last line. 

Draws one or more Bezier splines. The current position is neither 
used nor updated. 

Draws one or more Bezier splines, and moves the current position 
to the ending point of the last Bezier spline. 

Fills a given rectangle by using a specific brush. 

Draws a border around a rectangle. 

Inverts the contents of a rectangle. 

Draws an icon. 

Erases and redraws a rectangle as it is dragged. 

Fills a rectangle with a solid color. 

Draws a three-dimensional rectangle. 

Draws the edges of a rectangle. 

Draw a frame control. 

Displays an image and applies a visual effect to indicate a state. 

Draws a chord (a closed figure bounded by the intersection of an 
ellipse and a line segment). 

Draws a rectangle in the style used to indicate focus. 

Draws an ellipse. 

Draws a pie-shaped wedge. 

Draws a polygon consisting of two or more points (vertices) 
connected by lines. 

Creates two or more polygons that are filled using the current 
polygon-filling mode. The polygons may be disjoint or they may 
overlap. 

Draws a polygon consisting of a set of line segments connecting 
specified points. 

Draws a rectangle using the current pen and fills it using the 
current brush. 

Draws a rectangle with rounded corners using the current pen and 
filled using the current brush. 

CDC 

441 



CDC 

442 

Bitmap Functions 

PatBit 

BitBit 

StretchBit 

GetPixel 

SetPixel 

SetPixeIV 

FloodFiII 

ExtFloodFiII 

MaskBIt 

PIgBit 

Text Functions 

TextOut 

ExtTextOut 

TabbedTextOut 

DrawText 

GetTextExtent 

GetOutputTextExtent 

Creates a bit pattern. 

Copies a bitmap from a specified device context. 

Moves a bitmap from a source rectangle and device into a 
destination rectangle, stretching or compressing the bitmap if 
necessary to fit the dimensions of the destination rectangle. 

Retrieves the ROB color value of the pixel at the specified point. 

Sets the pixel at the specified point to the closest approximation of 
the specified color. 

Sets the pixel at the specified coordinates to the closest 
approximation of the specified color. SetPixeIV is faster than 
SetPixeI because it does not need to return the color value of the 
point actually painted. 

Fills an area with the current brush. 

Fills an area with the current brush. Provides more flexibility than 
the FloodFiII member function. 

Combines the color data for the source and destination bitmaps 
using the given mask and raster operation. 

Performs a bit-block transfer of the bits of color data from the 
specified rectangle in the source device context to the specified 
parallelogram in the given device context. 

Writes a character string at a specified location using the currently 
selected font. 

Writes a character string within a rectangular region using the 
currently selected font. 

Writes a character string at a specified location, expanding tabs to 
the values specified in an array of tab-stop positions. 

Draws formatted text in the specified rectangle. 

Computes the width and height of a line of text on the attribute 
device context using the current font to determine the dimensions. 

Computes the width and height of a line of text on the output 
device context using the current font to determine the dimensions. 

GetTabbedTextExtent Computes the width and height of a character string on the 
attribute device context. 

GetOutputTabbedTextExtent Computes the width and height of a character string on the output 
device context. 

GrayString 

GetTextAIign 

SetTextAIign 

GetTextFace 

Draws dimmed (grayed) text at the given location. 

Retrieves the text-alignment flags. 

Sets the text-alignment flags. 

Copies the typeface name of the current font into a buffer as a 
null-terminated string. 



Text Functions (continued) 

GetTextMetrics 

GetOutputTextMetrics 

SetTextjustification 

GetTextCharacter Extra 

SetTextCharacterExtra 

Font Functions 

GetFontData 

GetKerningPairs 

GetOutiineTextMetrics 

GetGlyphOutiine 

GetChar ABCWidths 

GetCharWidth 

GetOutputCharWidth 

SetMapperFlags 

GetAspectRatioFilter 

Printer Escape Functions 

QueryAbort 

Escape 

DrawEscape 

StartDoc 

StartPage 

EndPage 

Retrieves the metrics for the current font from the attribute device 
context. 

Retrieves the metrics for the current font from the output device 
context. 

Adds space to the break characters in a string. 

Retrieves the current setting for the amount of intercharacter 
spacing. 

Sets the amount of intercharacter spacing. 

Retrieves font metric information from a scalable font file. The 
information to retrieve is identified by specifying an offset into 
the font file and the length of the information to return. 

Retrieves the character kerning pairs for the font that is currently 
selected in the specified device context. 

Retrieves font metric information for TrueType fonts. 

Retrieves the outline curve or bitmap for an outline character in 
the current font. 

Retrieves the widths, in logical units, of consecutive characters in 
a given range from the current font. 

Retrieves the fractional widths of consecutive characters in a 
given range from the current font. 

Retrieves the widths of individual characters in a consecutive 
group of characters from the current font using the output device 
context. 

Alters the algorithm that the font mapper uses when it maps 
logical fonts to physical fonts. 

Retrieves the setting for the current aspect-ratio filter. 

Calls the AbortProc callback function for a printing application 
and queries whether the printing should be terminated. 

Allows applications to access facilities that are not directly 
available from a particular device through GO!. Also allows 
access to Windows escape functions. Escape calls made by an 
application are translated and sent to the device driver. 

Accesses drawing capabilities of a video display that are not 
directly available through the graphics device interface (GDI). 

Informs the device driver that a new print job is starting. 

Informs the device driver that a new page is starting. 

Informs the device driver that a page is ending. 

(continued) 

CDC 

443 



CDC 

444 

Printer Escape Functions (continued) 

SetAbortProc 

AbortDoc 

EndDoc 

Scrolling Functions 

ScroIlDC 

Metafile Functions 

PlayMetaFile 

AddMetaFileComment 

Path Functions 

AbortPath 

BeginPath 

CloseFigure 

EndPath 

FilIPath 

FlattenPath 

GetMiterLimit 

GetPath 

SelectClipPath 

SetMiterLimit 

StrokeAndFilIPath 

StrokePath 

WidenPath 

Sets a programmer-supplied callback function that Windows 
calls if a print job must be aborted. 

Terminates the current print job, erasing everything the 
application has written to the device since the last call of the 
StartDoc member function. 

Ends a print job started by the StartDoc member function. 

Scrolls a rectangle of bits horizontally and vertically. 

Plays the contents of the specified metafile on the given device. 
The enhanced version of PlayMetaFiIe displays the picture stored 
in the given enhanced-format metafile. The metafile can be played 
any number of times. 

Copies the comment from a buffer into a specified 
enhanced-format metafile. 

Closes and discards any paths in the device context. 

Opens a path bracket in the device context. 

Closes an open figure in a path. 

Closes a path bracket and selects the path defined by the bracket 
into the device context. 

Closes any open figures in the current path and fills the path's 
interior by using the current brush and polygon-filling mode. 

Transforms any curves in the path selected into the current device 
context, and turns each curve into a sequence of lines. 

Returns the miter limit for the device context. 

Retrieves the coordinates defining the endpoints of lines and the 
control points of curves found in the path that is selected into the 
device context. 

Selects the current path as a clipping region for the device context, 
combining the new region with any existing clipping region by 
using the specified mode. 

Sets the limit for the length of miter joins for the device context. 

Closes any open figures in a path, strikes the outline of the path 
by using the current pen, and fills its interior by using the current 
brush. 

Renders the specified path by using the current pen. 

Redefines the current path as the area that would be painted if the 
path were stroked using the pen currently selected into the device 
context. 



Member Functions 
CDC: :AbortDoc 

int AbortDoc( ); 

Return Value 

Remarks 

A value greater than or equal to 0 if successful, or a negative value if an error has occurred. 
The following list shows common error values and their meanings: 

• SP _ERROR General error. 

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and no 
more space will become available. 

• SP _OUTOFMEMORY Not enough memory is available for spooling. 

• SP _USERABORT User terminated the job through the Print Manager. 

Terminates the current print job and erases everything the application has written to the 
device since the last call to the StartDoc member function. 

This member function replaces the ABORTDOC printer escape. 

AbortDoc should be used to terminate the following: 

• Printing operations that do not specify an abort function using SetAbortProc. 

• Printing operations that have not yet reached their first NEWFRAME or NEXTBAND 
escape call. 

If an application encounters a printing error or a canceled print operation, it must not 
attempt to terminate the operation by using either the EndDoc or AbortDoc member 
functions of class CDC. GDI automatically terminates the operation before returning the 
error value. 

If the application displays a dialog box to allow the user to cancel the print operation, it 
must call AbortDoc before destroying the dialog box. 

If Print Manager was used to start the print job, calling AbortDoc erases the entire spool 
job-the printer receives nothing. If Print Manager was not used to start the print job, the 
data may have been sent to the printer before AbortDoc was called. In this case, the printer 
driver would have reset the printer (when possible) and closed the print job. 

See Also: CDC::StartDoc, CDC::EndDoc, CDC::SetAbortProc 

CDC: :AbortDoc 

445 



CDC: :AbortPath 

CDC: : AbortPath 
BOOL AbortPath( ) 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Closes and discards any paths in the device context. If there is an open path bracket in the 
device context, the path bracket is closed and the path is discarded. If there is a closed path 
in the device context, the path is discarded. 

See Also: CDC::BeginPath, CDC::EndPath 

CDC: : AddMetaFileComment 
BOOL AddMetaFileComment( DINT nDataSize, const BYTE* pCommentData ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

nDataSize Specifies the length of the comment buffer, in bytes. 

pCommentData Points to the buffer that contains the comment. 

Copies the comment from a buffer into a specified enhanced-format metafile. A comment 
may include any private information-for example, the source of the picture and the date it 
was created. A comment should begin with an application signature, followed by the data. 
Comments should not contain position-specific data. Position-specific data specifies the 
location of a record, and it should not be included because one metafile may be embedded 
within another metafile. This function can only be used with enhanced metafiles. 

See Also: CMetaFileDC::CreateEnhanced, ::GdiComment 

CDC::AngleArc 
BaaL AngleArc( int x, int y, int nRadius, floatjStartAngle, floatjSweepAngle); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
x Specifies the logical x-coordinate of the center of the circle. 

y Specifies the logical y-coordinate of the center of the circle. 

446 



Remarks 

nRadius Specifies the radius of the circle in logical units. This value must be 
positive. 

jStartAngle Specifies the starting angle in degrees relative to the x-axis. 

jSweepAngle Specifies the sweep angle in degrees relative to the starting angle. 

Draws a line segment and an arc. The line segment is drawn from the current position 
to the beginning of the arc. The arc is drawn along the perimeter of a circle with the 
given radius and center. The length of the arc is defined by the given start and sweep 
angles. 

AngleArc moves the current position to the ending point of the arc. The arc drawn by 
this function may appear to be elliptical, depending on the current transformation and 
mapping mode. Before drawing the arc, this function draws the line segment from the 
current position to the beginning of the arc. The arc is drawn by constructing an 
imaginary circle with the specified radius around the specified center point. The 
starting point of the arc is determined by measuring counterclockwise from the x -axis 
of the circle by the number of degrees in the start angle. The ending point is similarly 
located by measuring counterclockwise from the starting point by the number of 
degrees in the sweep angle. 

If the sweep angle is greater than 360 degrees the arc is swept multiple times. This 
function draws lines by using the current pen. The figure is not filled. 

See Also: CDC::Arc, CDC::ArcTo, CDC::MoveTo, ::AngleArc 

CDC::Arc 
BOOL Arc( int xl, int y I, int x2, int y2, int x3, int y3, int x4, int y4 ); 
BOOL Arc( LPCRECT IpRect, POINT ptStart, POINT ptEnd ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
xl Specifies the x-coordinate of the upper-left comer of the bounding rectangle 

(in logical units). 

yl Specifies the y-coordinate of the upper-left comer of the bounding rectangle 
(in logical units). 

x2 Specifies the x-coordinate of the lower-right comer of the bounding rectangle 
(in logical units). 

y2 Specifies the y-coordinate of the lower-right comer of the bounding rectangle 
(in logical units). 

x3 Specifies the x-coordinate of the point that defines the arc's starting point 
(in logical units). This point does not have to lie exactly on the arc. 

CDC::Arc 

447 



CDC::ArcTo 

Remarks 

y3 Specifies the y-coordinate of the point that defines the arc's starting point 
(in logical units). This point does not have to lie exactly on the arc. 

x4 Specifies the x-coordinate of the point that defines the arc's endpoint (in logical 
units). This point does not have to lie exactly on the arc. 

y4 Specifies the y-coordinate of the point that defines the arc's endpoint (in logical 
units). This point does not have to lie exactly on the arc. 

IpRect Specifies the bounding rectangle (in logical units). You can pass either an 
LPRECT or a CRect object for this parameter. 

ptStart Specifies the x- and y-coordinates of the point that defines the arc's starting 
point (in logical units). This point does not have to lie exactly on the arc. You can 
pass either a POINT structure or a CPoint object for this parameter. 

ptEnd Specifies the x- and y-coordinates of the point that defines the arc's ending 
point (in logical units). This point does not have to lie exactly on the arc. You can 
pass either a POINT structure or a CPoint object for this parameter. 

Draws an elliptical arc. The arc drawn by using the function is a segment of the ellipse 
defined by the specified bounding rectangle. 

The actual starting point of the arc is the point at which a ray drawn from the center of 
the bounding rectangle through the specified starting point intersects the ellipse. The 
actual ending point of the arc is the point at which a ray drawn from the center of the 
bounding rectangle through the specified ending point intersects the ellipse. The arc 
is drawn in a counterclockwise direction. Since an arc is not a closed figure, it is not 
filled. Both the width and height of the rectangle must be greater than 2 units and less 
than 32,767 units. 

See Also: CDC::Chord, ::Arc, POINT, RECT 

CDC::ArcTo 
BOOL ArcTo( int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4 ); 
BOOL ArcTo( LPCRECT IpRect, POINT ptStart, POINT ptEnd ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

448 

xl Specifies the x-coordinate of the upper-left comer of the bounding rectangle 
(in logical units). 

yl Specifies the y-coordinate of the upper-left comer of the bounding rectangle 
(in logical units). 

x2 Specifies the x-coordinate of the lower-right comer of the bounding rectangle 
(in logical units). 



Remarks 

y2 Specifies the y-coordinate of the lower-right corner of the bounding rectangle 
(in logical units). 

x3 Specifies the x-coordinate of the point that defines the arc's starting point 
(in logical units). This point does not have to lie exactly on the arc. 

y3 Specifies the y-coordinate of the point that defines the arc's starting point 
(in logical units). This point does not have to lie exactly on the arc. 

x4 Specifies the x-coordinate of the point that defines the arc's endpoint (in logical 
units). This point does not have to lie exactly on the arc. 

y4 Specifies the y-coordinate of the point that defines the arc's endpoint (in logical 
units). This point does not have to lie exactly on the arc. 

IpRect Specifies the bounding rectangle (in logical units). You can pass either a 
pointer to a RECT data structure or a CRect object for this parameter. 

ptStart Specifies the x- and y-coordinates of the point that defines the arc's starting 
point (in logical units). This point does not have to lie exactly on the arc. You can 
pass either a POINT data structure or a CPoint object for this parameter. 

ptEnd Specifies the x- and y-coordinates of the point that defines the arc's ending 
point (in logical units). This point does not have to lie exactly on the arc. You can 
pass either a POINT data structure or a CPoint object for this parameter. 

Draws an elliptical arc. This function is similar to CDC::Arc, except that the current 
position is updated. The points (xl,yl) and (x2,y2) specify the bounding rectangle. An 
ellipse formed by the given bounding rectangle defines the curve of the arc. The arc 
extends counterclockwise (the default arc direction) from the point where it intersects 
the radial line from the center of the bounding rectangle to (x3,y3). The arc ends 
where it intersects the radial line from the center of the bounding rectangle to (x4,y4). 
If the starting point and ending point are the same, a complete ellipse is drawn. 

A line is drawn from the current position to the starting point of the arc. If no error 
occurs, the current position is set to the ending point of the arc. The arc is drawn using 
the current pen; it is not filled. 

See Also: CDC::AngleArc, CDC::Arc, CDC::SetArcDirection, ::ArcTo 

CDC: : Attach 
BOOL Attacb( HDC hDC ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
hDC A Windows device context. 

CDC::Attach 

449 



CDC::BeginPath 

Remarks 
Use this member function to attach an hDC to the CDC object. The hDC is stored in 
both m_hDC, the output device context, and in m_hAttrihDC, the attribute device 
context. 

See Also: CDC::Detach, CDC::m_hDC, CDC::m_hAttrihDC 

CDC::BeginPath 
BOOL BeginPath( ); 

Return Value 

Remarks 

450 

Nonzero if the function is successful; otherwise O. 

Opens a path bracket in the device context. After a path bracket is open, an 
application can begin calling GDI drawing functions to define the points that lie in the 
path. An application can close an open path bracket by calling the EndPath member 
function. When an application calls BeginPath, any previous paths are discarded. 

The following drawing functions define points in a path: 

AngleArc PolyBezierTo 

Arc PolyDraw 

ArcTo Polygon 

Chord Polyline 

CloseFigure PolylineTo 

Ellipse PolyPolygon 

ExtTextOut PolyPolyline 

LineTo Rectangle 

MoveToEx RoundRec 

Pie TextOut 

PolyBezier 

See Also: CDC::EndPath, CDC::FiIIPath, CRgn::CreateFromPath, 
CDC: :SelectClipPath, CDC: :StrokeAndFiIIPath, CDC: :StrokePath, 
CDC::WidenPath, ::BeginPath 



CDC::BitBlt 
BOOL BitBlt( int x, int y, int n Width, int nHeight, CDC* pSrcDC, int xSrc, int ySrc, 

... DWORD dwRop ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
x Specifics the logical x-coordinate of the upper-left corner of the destination 

rectangle. 

y Specifies the logical y-coordinate of the upper-left corner of the destination 
rectangle. 

nWidth Specifies the width (in logical units) of the destination rectangle and source 
bitmap. 

nHeight Specifies the height (in logical units) of the destination rectangle and source 
bitmap. 

pSrcDC Pointer to a CDC object that identifies the device context from which the 
bitmap will be copied. It must be NULL if dwRop specifies a raster operation that 
does not include a source. 

xSrc Specifies the logical x-coordinate of the upper-left corner of the source bitmap. 

ySrc Specifies the logical y-coordinate of the upper-left corner of the source bitmap. 

dwRop Specifies the raster operation to be performed. Raster-operation codes define 
how the GDI combines colors in output operations that involve a current brush, a 
possible source bitmap, and a destination bitmap. The following lists 
raster-operation codes for dwRop and their descriptions: 

o BLACKNESS Turns all output black. 

• DSTINVERT Inverts the destination bitmap. 

• MERGECOPY Combines the pattern and the source bitmap using the 
Boolean AND operator. 

o MERGEPAINT Combines the inverted source bitmap with the destination 
bitmap using the Boolean OR operator. 

o NOTSRCCOPY Copies the inverted source bitmap to the destination. 

o NOTSRCERASE Inverts the result of combining the destination and source 
bitmaps using the Boolean OR operator. 

• PATCOPY Copies the pattern to the destination bitmap. 

o PATINVERT Combines the destination bitmap with the pattern using the 
Boolean XOR operator. 

CDC::BitBlt 

451 



CDC::BitBlt 

Remarks 

452 

• PATPAINT Combines the inverted source bitmap with the pattern using the 
Boolean OR operator. Combines the result of this operation with the destination 
bitmap using the Boolean OR operator. 

• SRCAND Combines pixels of the destination and source bitmaps using the 
Boolean AND operator. 

• SRCCOPY Copies the source bitmap to the destination bitmap. 

• SRCERASE Inverts the desination bitmap and combines the result with the 
source bitmap using the Boolean AND operator. 

• SRCINVERT Combines pixels of the destination and source bitmaps using 
the Boolean XOR operator. 

• SRCPAINT Combines pixels of the destination and source bitmaps using the 
Boolean OR operator. 

• WHITENESS Turns all output white. 

For a complete list of raster-operation codes, see "About Raster Operation Codes" in 
the Appendices section of the Win32 SDK Programmer's Reference. 

Copies a bitmap from the source device context to this current device context. 

The application can align the windows or client areas on byte boundaries to ensure 
that the BitBIt operations occur on byte-aligned rectangles. (Set the 
CS_BYTEALIGNWINDOW or CS_BYTEALIGNCLIENT flags when you 
register the window classes.) 

BitBIt operations on byte-aligned rectangles are considerably faster than BitBIt 
operations on rectangles that are not byte aligned. If you want to specify class styles 
such as byte-alignment for your own device context, you will have to register a 
window class rather than relying on the Microsoft Foundation classes to do it for you. 
Use the global function AfxRegisterWndClass. 

GDI transforms n Width and nHeight, once by using the destination device context, 
and once by using the source device context. If the resulting extents do not match, 
GDI uses the Windows StretchBIt function to compress or stretch the source bitmap 
as necessary. 

If destination, source, and pattern bitmaps do not have the same color format, the 
BitBIt function converts the source and pattern bitmaps to match the destination. The 
foreground and background colors of the destination bitmap are used in the 
conversion. 

When the BitBIt function converts a monochrome bitmap to color, it sets white bits 
(1) to the background color and black bits (0) to the foreground color. The foreground 
and background colors of the destination device context are used. To convert color to 



monochrome, BitBIt sets pixels that match the background color to white and sets all 
other pixels to black. BitBIt uses the foreground and background colors of the color 
device context to convert from color to monochrome. 

Note that not all device contexts support BitBIt. To check whether a given device 
context does support BitBlt, use the GetDeviceCaps member function and specify 
the RASTER CAPS index. 

See Also: CDC::GetDeviceCaps, CDC::PatBlt, CDC::SetTextColor, 
CDC::StretchBlt, ::StretchDIBits, ::BitBlt 

CDC::CDC 
CDC( ); 

Remarks 
Constructs a CDC object. 

See Also: CDC: :CreateDC, CDC: :CreateIC, CDC: :CreateCompatibleDC 

CDC::Chord 
BOOL Chord( int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4); 
BOOL Chord( LPCRECT ipRect, POINT ptStart, POINT ptEnd ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
xl Specifies the x-coordinate of the upper-left comer of the chord's bounding 

rectangle (in logical units). 

yl Specifies the y-coordinate of the upper-left comer of the chord's bounding 
rectangle (in logical units). 

x2 Specifies the x-coordinate of the lower-right comer of the chord's bounding 
rectangle (in logical units). 

y2 Specifies the y-coordinate of the lower-right comer of the chord's bounding 
rectangle (in logical units). 

x3 Specifies the x-coordinate of the point that defines the chord's starting point 
(in logical units). 

y3 Specifies the y-coordinate of the point that defines the chord's starting point 
(in logical units). 

x4 Specifies the x-coordinate of the point that defines the chord's endpoint 
(in logical units). 

CDC::Chord 

453 



CDC: :CloseFigure 

Remarks 

y4 Specifies the y-coordinate of the point that defines the chord's endpoint 
(in logical units). 

IpRect Specifies the bounding rectangle (in logical units). You can pass either a 
LPRECT or a CRect object for this parameter. 

ptStart Specifies the x- and y-coordinates of the point that defines the chord's 
starting point (in logical units). This point does not have to lie exactly on the chord. 
You can pass either a POINT structure or a CPoint object for this parameter. 

ptEnd Specifies the x- and y-coordinates of the point that defines the chord's ending 
point (in logical units). This point does not have to lie exactly on the chord. You 
can pass either a POINT structure or a CPoint object for this parameter. 

Draws a chord (a closed figure bounded by the intersection of an ellipse and a line 
segment). The (xl, yl) and (x2, y2) parameters specify the upper-left and lower-right 
comers, respectively, of a rectangle bounding the ellipse that is part of the chord. The 
(x3, y3) and (x4, y4) parameters specify the endpoints of a line that intersects the 
ellipse. The chord is drawn by using the selected pen and filled by using the selected 
brush. 

The figure drawn by the Chord function extends up to, but does not include the right 
and bottom coordinates. This means that the height of the figure is y2 - yl and the 
width of the figure is x2 - xl. 

See Also: CDC::Arc, ::Chord, POINT 

CDC::CloseFigure 
BOOL CloseFigure(); 

Return Value 

Remarks 

454 

Nonzero if the function is successful; otherwise O. 

Closes an open figure in a path. The function closes the figure by drawing a line from 
the current position to the first point of the figure (usually, the point specified by the 
most recent call to the MoveTo member function) and connects the lines by using the 
line join style. If a figure is closed by using the LineTo member function instead of 
CloseFigure, end caps are used to create the comer instead of ajoin. CloseFigure 
should only be called if there is an open path bracket in the device context. 

A figure in a path is open unless it is explicitly closed by using this function. (A figure 
can be open even if the current point and the starting point of the figure are the same.) 
Any line or curve added to the path after CloseFigure starts a new figure. 

See Also: CDC::BeginPath, CDC::EndPath, CDC::MoveTo, ::CloseFigure 



CDC: : CreateCompatibleDC 
virtual BOOL CreateCompatibleDC( CDC* pDC ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

pDC A pointer to a device context. If pDC is NULL, the function creates a memory 
device context that is compatible with the system display. 

Creates a memory device context that is compatible with the device specified by pDC. 
A memory device context is a block of memory that represents a display surface. It 
can be used to prepare images in memory before copying them to the actual device 
surface of the compatible device. 

When a memory device context is created, GDI automatically selects a I-by-l 
monochrome stock bitmap for it. GDI output functions can be used with a memory 
device context only if a bitmap has been created and selected into that context. 

This function can only be used to create compatible device contexts for devices that 
support raster operations. See the CDC::BitBlt member function for information 
regarding bit-block transfers between device contexts. To determine whether a device 
context supports raster operations, see the RC_BITBLT raster capability in the 
member function CDC::GetDeviceCaps. 

See Also: CDC::CDC, CDC::GetDeviceCaps, ::CreateCompatibleDC, 
CDC::BitBlt, CDC::CreateDC, CDC::CreateIC, CDC::DeleteDC 

CDC: : CreateDC 
virtual BOOL CreateDC( LPCTSTR lpszDriverName, LPCTSTR lpszDeviceName, 

.. LPCTSTR lpszOutput, const void* lplnitData ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
lpszDriverName Points to a null-terminated string that specifies the filename 

(without extension) of the device driver (for example, "EPSON"). You can also 
pass a CString object for this parameter. 

lpszDeviceName Points to a null-terminated string that specifies the name of the 
specific device to be supported (for example, "EPSON FX-80"). The 
lpszDeviceName parameter is used if the module supports more than one device. 
You can also pass a CString object for this parameter. 

CDC: :CreateDC 

455 



CDC: :CreateIC 

Remarks 

IpszOutput Points to a null-terminated string that specifies the file or device name 
for the physical output medium (file or output port). You can also pass a CString 
object for this parameter. 

IplnitData Points to a DEVMODE structure containing device-specific initialization 
data for the device driver. The Windows DocumentProperties function retrieves 
this structure filled in for a given device. The IplnitData parameter must be NULL 
if the device driver is to use the default initialization (if any) specified by the user 
through the Control Panel. 

Creates a device context for the specified device. 

The PRINT.H header file is required if the DEVMODE structure is used. 

Device names follow these conventions: an ending colon (:) is recommended, but 
optional. Windows strips the terminating colon so that a device name ending with a 
colon is mapped to the same port as the same name without a colon. The driver and 
port names must not contain leading or trailing spaces. GDI output functions cannot 
be used with information contexts. 

See Also: ::DocumentProperties, ::CreateDC, CDC::DeleteDC, CDC::CreateIC 

CDC: : CreateI C 
virtual BOOL CreateIC( LPCTSTR IpszDriverName, LPCTSTR IpszDeviceName, 

... LPCTSTR IpszOutput, const void* IplnitData ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

456 

IpszDriverName Points to a null-terminated string that specifies the filename 
(without extension) of the device driver (for example, "EPSON"). You can pass a 
CString object for this parameter. 

IpszDeviceName Points to a null-terminated string that specifies the name of the 
specific device to be supported (for example, "EPSON FX-80"). The 
IpszDeviceName parameter is used if the module supports more than one device. 
You can pass a CString object for this parameter. 

IpszOutput Points to a null-terminated string that specifies the file or device name for 
the physical output medium (file or port). You can pass a CString object for this 
parameter. 

IplnitData Points to device-specific initialization data for the device driver. The 
IplnitData parameter must be NULL if the device driver is to use the default 
initialization (if any) specified by the user through the Control Panel. See 
CreateDC for the data format for device-specific initialization. 



CDC: :DeleteTempMap 

Remarks 
Creates an information context for the specified device. The information context 
provides a fast way to get information about the device without creating a device 
context. 

Device names follow these conventions: an ending colon (:) is recommended, but 
optional. Windows strips the terminating colon so that a device name ending with a 
colon is mapped to the same port as the same name without a colon. The driver and 
port names must not contain leading or trailing spaces. GDI output functions cannot 
be used with information contexts. 

See Also: CDC::CreateDC, ::CreateIC, CDC::DeleteDC 

CDC: : DeleteDC 
virtual BOOL DeleteDC(); 

Return Value 

Remarks 

Nonzero if the function completed successfully; otherwise o. 

In general, do not call this function; the destructor will do it for you. The DeleteDC 
member function deletes the Windows device contexts that are associated with 
m_hDC in the current CDC object. If this CDC object is the last active device 
context for a given device, the device is notified and all storage and system resources 
used by the device are released. 

An application should not call DeleteDC if objects have been selected into the device 
context. Objects must first be selected out of the device context before it it is deleted. 

An application must not delete a device context whose handle was obtained by calling 
CWnd::GetDC. Instead, it must call CWnd::ReleaseDC to free the device context. 
The CClientDC and CWindowDC classes are provided to wrap this functionality. 

The DeleteDC function is generally used to delete device contexts created with 
CreateDC, CreateIC, or CreateCompatibleDC. 

See Also: CDC::CDC, ::DeleteDC, CDC::CreateDC, CDC::CreateIC, 
CDC::CreateCompatibleDC, CWnd::GetDC, CWnd::ReleaseDC 

CDC: :DeleteTempMap 

Remarks 

static void PASCAL DeleteTempMap(); 

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes 
any temporary CDC objects created by FromHandle, but does not destroy the device 
context handles (hDCs) temporarily associated with the CDC objects. 

See Also: CDC::Detach, CDC::FromHandle, CWinApp::Onldle 

457 



CDC::Detach 

CDC: :Detach 
HDC Detach(); 

Return Value 

Remarks 

A Windows device context. 

Call this function to detach m_hDC (the output device context) from the CDC object 
and set both m_hDC and m_hAttribDC to NULL. 

See Also: CDC::Attach, CDC::m_hDC, CDC::m_hAttribDC 

CDC::DPtoHIMETRIC 
void DPtoHIMETRIC( LPSIZE IpSize ) const; 

Parameters 

Remarks 

IpSize Points to a SIZE structure or CSize object. 

Use this function when you give HIMETRIC sizes to OLE, converting pixels to 
HIMETRIC. 

If the mapping mode of the device context object is MM_LOENGLISH, 
MM_HIENGLISH, MM_LOMETRIC, or MM_HIMETRIC, then the conversion 
is based on the number of pixels in the physical inch. If the mapping mode is one of 
the other non-constrained modes (e.g., MM_TEXT), then the conversion is based on 
the number of pixels in the logical inch. 

See Also: CDC::DPtoLP, CDC::LPtoDP, CDC::HIMETRICtoLP, 
CDC: :HIMETRICtoDP, CDC: :LPtoHIMETRIC 

CDC::DPtoLP 
void DPtoLP( LPPOINT IpPoints, int nCount = 1 ) const; 
void DPtoLP( LPRECT IpRect) const; 
void DPtoLP( LPSIZE IpSize ) const; 

Parameters 

458 

IpPoints Points to an array of POINT structures or CPoint objects. 

nCount The number of points in the array. 

IpRect Points to a RECT structure or CRect object. This parameter is used for the 
simple case of converting one rectangle from device points to logical points. 

IpSize Points to a SIZE structure or CSize object. 



Remarks 
Converts device units into logical units. The function maps the coordinates of each 
point, or dimension of a size, from the device coordinate system into GDI's logical 
coordinate system. The conversion depends on the current mapping mode and the 
settings of the origins and extents for the device's window and viewport. 

See Also: CDC::LPtoDP, CDC::HIMETRICtoDP, ::DPtoLP, POINT, RECT, 
CDC: : GetWindowExt, CDC: : GetWindowOrg 

CDC: :Draw3dRect 
void Draw3dRect( LPCRECT lpReet, COLORREF clrTopLeft, 

... COLORREF clrBotto11lRight); 
void Draw3dRect( int x, int y, int ex, int ey, COLORREF clrTopLeft, 

... COLORREF clrBotto11lRight ); 

Parameters 

Remarks 

lpReet Specifies the bounding rectangle (in logical units). You can pass either a 
pointer to a RECT structure or a CRect object for this parameter. 

clrTopLeft Specifies the color of the top and left sides of the three-dimensional 
rectangle. 

clrBotto11lRight Specifies the color of the bottom and right sides of the 
three-dimensional rectangle. 

x Specifies the logical x-coordinate of the upper-left comer of the three-dimensional 
rectangle. 

y Specifies the logical y-coordinate of the upper-left comer of the three-dimensional 
rectangle. 

cx Specifies the width of the three-dimensional rectangle. 

cy Specifies the height of the three-dimensional rectangle. 

Call this member function to draw a three-dimensional rectangle. The rectangle will 
be drawn with the top and left sides in the color specified by clrTopLeft and the 
bottom and right sides in the color specified by clrBotto11lRight. 

See Also: RECT, CRect 

CDC::DrawDragRect 
void DrawDragRect( LPCRECT [pReet, SIZE size, LPCRECT lpReetLast, 

... SIZE sizeLast, CBrush* pBrush = NULL, CBrush* pBrushLast = NULL ); 

Parameters 
lpReet Points to a RECT structure or a CRect object that specifies the logical 

coordinates of a rectangle - in this case, the end position of the rectangle being 
redrawn. 

CDC::DrawDragRect 

459 



CDC: :DrawEdge 

Remarks 

size Specifies the displacement from the top-left corner of the outer border to the 
top-left corner of the inner border (that is, the thickness of the border) of a 
rectangle. 

IpRectLast Points to a RECT structure or a CRect object that specifies the logical 
coordinates of the position of a rectangle - in this case, the original position of the 
rectangle being redrawn. 

sizeLast Specifies the displacement from the top-left corner of the outer border to 
the top-left corner of the inner border (that is, the thickness of the border) of the 
original rectangle being redrawn. 

pBrush Pointer to a brush object. Set to NULL to use the default halftone brush. 

pBrushLast Pointer to the last brush object used. Set to NULL to use the default 
halftone brush. 

Call this member function repeatedly to redraw a drag rectangle. Call it in a loop 
as you sample mouse position, in order to give visual feedback. When you call 
DrawDragRect, the previous rectangle is erased and a new one is drawn. For 
example, as the user drags a rectangle across the screen, DrawDragRect will erase 
the original rectangle and redraw a new one in its new position. By default, 
DrawDragRect draws the rectangle by using a halftone brush to eliminate flicker 
and to create the appearance of a smoothly moving rectangle. 

The first time you call DrawDragRect, the IpRectLast parameter should be NULL. 

See Also: RECT, CRect, CDC::GetHaIftoneBrush 

CDC::DrawEdge 
BOOL DrawEdge( LPRECT IpRect, UINT nEdge, UINT nFlags ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

460 

IpRect A pointer to a RECT structure that contains the logical coordinates of the 
rectangle. 

nEdge Specifies the type of inner and outer edge to draw. This parameter must be a 
combination of one inner-border flag and one outer-border flag. See the Remarks 
section for a table of the parameter's types. 

nFlags The flags that specify the type of border to be drawn. See the Remarks 
section for a table of the parameter's values: 

Call this member function to draw the edges of a rectangle of the specified type and 
style. 

The inner and outer border flags are as follows: 



o Inner-border flags 

o BDR_RAISEDINNER Raised inner edge. 

o BDR_SUNKENINNER Sunken inner edge. 

o Outer-border flags 

o BDR_RAISEDOUTER Raised outer edge. 

o BDR_SUNKENOUTER Sunken outer edge. 

The nEdge parameter must be a combination of one inner and one outer border flag. 
The nEdge parameter can specify one of the following flags: 

o EDGE_BUMP Combination of BDR_RAISEDOUTER and 
BDR_SUNKENINNER. 

o EDGE_ETCHED Combination of BDR_SUNKENOUTER and 
BDR_RAISEDINNER. 

o EDGE_RAISED Combination of BDR_RAISEDOUTER and 
BDR_RAISEDINNER. 

o EDGE_SUNKEN Combination of BDR_SUNKENOUTER and 
BDR_SUNKENINNER. 

The nFlags parameter types are as follows: 

• BF _RECT Entire border rectangle. 

• BF _LEFT Left side of border rectangle. 

• BF _BOTTOM Bottom of border rectangle. 

• BF _RIGHT Right side of border rectangle. 

o BF _TOP Top of border rectangle. 

• BF _ TOPLEFT Top and left side of border rectangle. 

o BF _TOPRIGHT Top and right side of border rectangle. 

o BF _BOTTOMLEFT Bottom and left side of border rectangle. 

o BF _BOTTOMRIGHT Bottom and right side of border rectangle. 

For diagonal lines, the BF _RECT flags specify the end point of the vector bounded 
by the rectangle parameter. 

o BF _DIAGONAL_ENDBOTTOMLEFT Diagonal border. The end point is the 
bottom-left comer of the rectangle; the origin is top-right comer. 

o BF _DIAGONAL_ENDBOTTOMRIGHT Diagonal border. The end point is the 
bottom-right comer of the rectangle; the origin is top-left comer. 

o BF _DIAGONAL_ENDTOPLEFT Diagonal border. The end point is the top-left 
corner of the rectangle; the origin is bottom-right comer. 

o BF _DIAGONAL_ENDTOPRIGHT Diagonal border. The end point is the 
top-right comer of the rectangle; the origin is bottom-left comer. 

CDC: :DrawEdge 

461 



CDC: :DrawEscape 

For more information about the Windows API DrawEdge, see ::DrawEdge in the 
Win32 SDK Programmer's Reference. 

See Also: ::DrawEdge 

CDC: : Draw Escape 
int DrawEscape( int nEscape, int nlnputSize, LPCSTR Ipsz/nputData); 

Return Value 
Specifies the outcome of the function. Greater than zero if successful, except for the 
QUERYESCSUPPORT draw escape, which checks for implementation only; or zero 
if the escape is not implemented; or less than zero if an error occurred. 

Parameters 

Remarks 

nEscape Specifies the escape function to be performed. 

nlnputSize Specifies the number of bytes of data pointed to by the Ipsz/nputData 
parameter. 

Ipsz/nputData Points to the input structure required for the specified escape. 

Accesses drawing capabilities of a video display that are not directly available through 
the graphics device interface (GDI). When an application calls DrawEscape, the data 
identified by nlnputSize and IpszlnputData is passed directly to the specified display 
driver. 

See Also: CDC::Escape, ::DrawEscape 

CDC: : Draw FocusRect 
void DrawFocusRect( LPCRECT IpRect ); 

Parameters 

Remarks 

462 

IpRect Points to a RECT structure or a CRect object that specifies the logical 
coordinates of the rectangle to be drawn. 

Draws a rectangle in the style used to indicate that the rectangle has the focus. 

Since this is a Boolean XOR function, calling this function a second time with the 
same rectangle removes the rectangle from the display. The rectangle drawn by this 
function cannot be scrolled. To scroll an area containing a rectangle drawn by this 
function, first call DrawFocusRect to remove the rectangle from the display, then 
scroll the area, and then call DrawFocusRect again to draw the rectangle in the new 
position. 

See Also: CDC::FrameRect, ::DrawFocusRect, RECT 



CDC: :DrawFrameControl 

CDC: : DrawFrameControl 
BOOL DrawFrameControl( LPRECT ipRect, UINT nType, UINT nState ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

lpRect A pointer to a RECT structure that contains the logical coordinates of the 
rectangle. 

nType Specifies the type of frame control to draw. This parameter can be one of the 
following values: 

• DFC_BUTTON Standard button 

• DFC_CAPTION Title bar 

• DFC_MENU Menu 

• DFC_SCROLL Scroll bar 

nState Specifies the initial state of the frame control. See the Remarks section for a 
table of the parameter's values. 

Call this member function to draw a frame control of the specified type and style. 

Use the nState value DFCS_ADJUSTRECT to adjust the bounding rectangle to 
exclude the surrounding edge of the push button. One or more of the following values 
can be used to set the state of the control to be drawn: 

• DFCS_CHECKED Button is checked. 

• DFCS_FLAT Button has a flat border. 

• DFCS_INACTIVE Button is inactive (grayed). 

• DFCS_MONO Button has a monochrome border. 

• DFCS_PUSHED Button is pushed. 

In several cases, nState depends on the nType parameter. The following list shows the 
relationship between the four nType values and nState: 

• DFC_BUTTON 

• DFCS_BUTTON3STATE Three-state button 

• DFCS_BUTTONCHECK Check box 

• DFCS_BUTTONPUSH Push button 

• DFCS_BUTTONRADIO Radio button 

• DFCS_BUTTONRADIOIMAGE Image for radio button (nonsquare needs 
image) 

463 



CDC: : Draw Icon 

• DFCS_BUTTONRADIOMASK Mask for radio button (nonsquare needs 
mask) 

• DFC_ CAPTION 

• DFCS_CAPTIONCLOSE Close button 

• DFCS_ CAPTION HELP Help button 

• DFCS_CAPTIONMAX Maximize button 

• DFCS_CAPTIONMIN Minimize button 

• DFCS_CAPTIONRESTORE Restore button 

• DFC_MENU 

• DFCS_MENUARROW Submenu arrow 

• DFCS_MENUBULLET Bullet 

• DFCS_MENUCHECK Check mark 

• DFC_SCROLL 

• DFCS_SCROLLCOMBOBOX Combo box scroll bar 

• DFCS_SCROLLDOWN Down arrow of scroll bar 

• DFCS_SCROLLLEFT Left arrow of scroll bar 

• DFCS_SCROLLRIGHT Right arrow of scroll bar 

• DFCS_SCROLLSIZEGRIP Size grip in bottom-right comer of window 

• DFCS_SCROLLUP Up arrow of scroll bar 

For more information about the Windows API DrawFrameControl, see 
::DrawFrameControl in the Win32 SDK Programmer's Reference. 

See Also: ::DrawFrameControl 

CDC: : Draw Icon 
BOOL DrawIcon( int x, int y, HICON hIcon ); 
BOOL DrawIcon( POINT point, HICON hIcon ); 

Return Value 
Nonzero if the function completed successfully; otherwise O. 

Parameters 

464 

x Specifies the logical x-coordinate of the upper-left comer of the icon. 

y Specifies the logical y-coordinate of the upper-left comer of the icon. 

hIcon Identifies the handle of the icon to be drawn. 

point Specifies the logical x- and y-coordinates of the upper-left comer of the icon. 
You can pass a POINT structure or a CPoint object for this parameter. 



Remarks 
Draws an icon on the device represented by the current CDC object. The function 
places the icon's upper-left corner at the location specified by x and y. The location is 
subject to the current mapping mode of the device context. 

The icon resource must have been previously loaded by using the functions 
CWinApp: :LoadIcon, CWinApp: :LoadStandardIcon, or 
CWinApp: :LoadOEMIcon. The MM_ TEXT mapping mode must be selected prior 
to using this function. 

See Also: CWinApp::LoadIcon, CWinApp::LoadStandardIcon, 
CWinApp: :LoadOEMIcon, CDC: :GetMapMode, CDC: :SetMapMode, 
::DrawIcon, POINT 

CDC: : DrawState 
BOOL DrawState( CPoint pt, CSize size, HBITMAP hBitmap, UINT nFlags, 

10+ HBRUSH hBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, CBitmap* pBitmap, UINT nFlags, 

10+ CBrush* pBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, HICON hIcoll, UINT nFlags, 

10+ HBRUSH hBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, HICON hIcon, UINT nFlags, 

10+ CBrush* pBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, LPCTSTR lpszText, UINT nFlags, 

10+ BOOL bPrefixText = TRUE, int nTextLen = 0, HBRUSH hBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, LPCTSTR IpszText, UINT nFlags, 

10+ BOOL bPrefixText = TRUE, int nTextLen = 0, CBrush* pBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, DRAWSTATEPROC IpDrawProc, 

10+ LPARAM lData, UINT nFlags, HBRUSH hBrush = NULL ); 
BOOL DrawState( CPoint pt, CSize size, DRAWSTATEPROC lpDrawProc, 

10+ LPARAM IData, UINT nFlags, CBrush* pBrush = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
pt Specifies the location of the image. 

size Specifies the size of the image. 

hBitmap A handle to a bitmap. 

nFlags Flags that specify the image type and state. See the Remarks section for the 
possible nFlags types and states. 

hBrush A handle to a brush. 

pBitmap A pointer to a Cbitmap object. 

CDC::DrawState 

465 



CDC: :DrawState 

Remarks 

466 

pBrush A pointer to a Cbrush object. 

hlcon A handle to an icon. 

IpszText A pointer to text. 

bPrefixText Text that may contain an accelerator mnemonic. The IData parameter 
specifies the address of the string, and the nTextLen parameter specifies the length. 
If nTextLen is 0, the string is assumed to be null-terminated. 

nTextLen Length of the text string pointed to by IpszText. If nTextLen is 0, the string 
is assumed to be null-terminated. 

IpDrawProc A pointer to a callback function used to render an image. This 
parameter is required if the image type in nFlags is DST_COMPLEX. It is 
optional and can be NULL if the image type is DST _TEXT. For all other image 
types, this parameter is ignored. For more information about the callback function, 
see the ::DrawStateProc function in the Win32 SDK Programmer's Reference. 

IData Specifies information about the image. The meaning of this parameter depends 
on the image type. 

Call this member function to display an image and apply a visual effect to indicate a 
state, such as a disabled or default state. 

The parameter nFlag type can be set to one of the following values: 

• DST _BITMAP The image is a bitmap. The low-order word of the IData 
parameter is the bitmap handle. 

• DST_COMPLEX The image is application defined. To render the image, 
DrawState calls the callback function specified by the IpDrawProc parameter. 

• DST_ICON The image is an icon. The low-order word of IData is the icon 
handle. 

• DST_PREFIXTEXT The image is text that may contain an accelerator 
mnemonic. DrawState interprets the ampersand (&) prefix character as a directive 
to underscore the character that follows. The IData parameter specifies the address 
of the string. 

• DST _TEXT The image is text. The IData parameter specifies the address of the 
string. 

The parameter nFlag state can be one of following values: 

• DSS_NORMAL Draws the image without any modification. 

• DSS_UNION Dithers the image. 

• DSS_DISABLED Embosses the image. 

• DSS_DEFAULT Makes the image bold. 

• DSS_MONO Draws the image using the brush specified by the hBrush or pBrush 
parameter. 



Note For all nFlag states except DSS_NORMAL, the image is converted to monochrome 
before the visual effect is applied. 

For more information about the Windows API DrawState, see: :DrawState in the 
Win32 SDK Programmer's Reference. 

See Also: ::DrawState, ::DrawStateProc 

CDC: : DrawText 
virtual int DrawText( LPCTSTR ipszString, int nCount, LPRECT ipRect, 

~ UINT nFonnat); 
int DrawText( const CString& str, LPRECT ipRect, UINT nFormat); 

Return Value 
The height of the text if the function is successful. 

Parameters 
lpszString Points to the string to be drawn. If nCount is -1, the string must be 

null-terminated. 

nCount Specifies the number of chars in the string. If nCount is -1, then ipszString is 
assumed to be a long pointer to a null-terminated string and DrawText computes 
the character count automatically. 

lpRect Points to a RECT structure or CRect object that contains the rectangle (in 
logical coordinates) in which the text is to be formatted. 

str A CString object that contains the specified characters to be drawn. 

nFormat Specifies the method of formatting the text. It can be any combination of 
the following values (combine using the bitwise OR operator): 

• DT_BOTTOM Specifies bottom-justified text. This value must be combined 
with DT_SINGLELINE. 

• DT_CALCRECT Determines the width and height of the rectangle. If there 
are multiple lines of text, DrawText will use the width of the rectangle pointed 
to by ipRect and extend the base of the rectangle to bound the last line of text. If 
there is only one line of text, DrawText will modify the right side of the 
rectangle so that it bounds the last character in the line. In either case, 
DrawText returns the height of the formatted text, but does not draw the text. 

• DT_ CENTER Centers text horizontally. 

• DT_EXPANDTABS Expands tab characters. The default number of characters 
per tab is eight. 

• DT_EXTERNALLEADING Includes the font's external leading in the line 
height. Normally, external leading is not included in the height of a line of text. 

• DT_LEFT Aligns text flush-left. 

CDC: :DrawText 

467 



CDC: :DrawText 

Remarks 

468 

• DT_NOCLIP Draws without clipping. DrawText is somewhat faster when 
DT_NOCLIP is used. 

• DT_NOPREFIX Turns off processing of prefix characters. Normally, 
DrawText interprets the ampersand (&) mnemonic-prefix character as a 
directive to underscore the character that follows, and the two-ampersand (&&) 
mnemonic-prefix characters as a directive to print a single ampersand. By 
specifying DT_NOPREFIX, this processing is turned off. 

• DT_RIGHT Aligns text flush-right. 

• DT_SINGLELINE Specifies single line only. Carriage returns and linefeeds 
do not break the line. 

• DT_TABSTOP Sets tab stops. The high-order byte of nFormat is the number 
of characters for each tab. The default number of characters per tab is eight. 

• DT_TOP Specifies top-justified text (single line only). 

• DT_ VCENTER Specifies vertically centered text (single line only). 

• DT_ WORDBREAK Specifies word-breaking. Lines are automatically broken 
between words if a word would extend past the edge of the rectangle specified 
by lpRect. A carriage return-linefeed sequence will also break the line. 

Note The values DT_CALCRECT, DT_EXTERNALLEADING, DTJNTERNAL, DT_NOCLlP, 
and DT _NOPREFIX cannot be used with the DT _ TABSTOP value. 

Call this member function to format text in the given rectangle. It formats text by 
expanding tabs into appropriate spaces, aligning text to the left, right, or center of the 
given rectangle, and breaking text into lines that fit within the given rectangle. The 
type of formatting is specified by nFormat. 

This member function uses the device context's selected font, text color, and 
background color to draw the text. Unless the DT_NOCLIP format is used, 
DrawText clips the text so that the text does not appear outside the given rectangle. 
All formatting is assumed to have multiple lines unless the DT_SINGLELINE format 
is given. 

If the selected font is too large for the specified rectangle, the DrawText member 
function does not attempt to substitute a smaller font. 

If the DT_CALCRECT flag is specified, the rectangle specified by lpRect will be 
updated to reflect the width and height needed to draw the text. 

If the TA_UPDATECP text-alignment flag has been set (see CDC::SetTextAlign), 
DrawText will display text starting at the current position, rather than at the left of the 
given rectangle. DrawText will not wrap text when the TA_UPDATECP flag has 
been set (that is, the DT_ WORDBREAK flag will have no effect). 

The text color may be set by CDC::SetTextColor. 



See Also: CDC::SetTextColor, CDC::ExtTextOut, CDC::TabbedTextOut, 
CDC::TextOut, ::DrawText, RECT, CDC::SetTextAlign 

CDC: :Ellipse 
BOOL Ellipse( int xl, int yl, int x2, int y2 ); 
BOOL Ellipse( LPCRECT IpRect ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

xl Specifies the logical x-coordinate of the upper-left corner of the ellipse's 
bounding rectangle. 

yl Specifies the logical y-coordinate of the upper-left corner of the ellipse's 
bounding rectangle. 

x2 Specifies the logical x-coordinate of the lower-right corner of the ellipse's 
bounding rectangle. 

y2 Specifies the logical y-coordinate of the lower-right corner of the ellipse's 
bounding rectangle. 

IpRect Specifies the ellipse's bounding rectangle. You can also pass a CRect 
object for this parameter. 

Draws an ellipse. The center of the ellipse is the center of the bounding rectangle 
specified by xl, yl, x2, and y2, or IpRect. The ellipse is drawn with the current pen, 
and its interior is filled with the current brush. 

The figure drawn by this function extends up to, but does not include, the right and 
bottom coordinates. This means that the height of the figure is y2 - yl and the width 
of the figure is x2 - xl. 

If either the width or the height of the bounding rectangle is 0, no ellipse is drawn. 

See Also: CDC::Arc, CDC::Chord, ::Ellipse 

CDC: :EndDoc 
int EndDoc(); 

Return Value 
Greater than or equal to 0 if the function is successful, or a negative value if an error 
occurred. The following list shows common error values: 

• SP _ERROR General error. 

CDC::EndDoc 

469 



CDC::EndPage 

Remarks 

• SP _OUTOFDISK Not enough disk space is currently available for spooling, 
and no more space will become available. 

• SP_OUTOFMEMORY Not enough memory is available for spooling. 

• SP _USERABORT User ended the job through the Print Manager. 

Ends a print job started by a call to the StartDoc member function. This member 
function replaces the ENDDOC printer escape, and should be called immediately 
after finishing a successful print job. 

If an application encounters a printing error or a canceled print operation, it must not 
attempt to terminate the operation by using either EndDoc or AbortDoc. GDI 
automatically terminates the operation before returning the error value. 

This function should not be used inside metafiles. 

See Also: CDC::AbortDoc, CDC::Escape, CDC::StartDoc 

CDC: : EndPage 
int EndPage(); 

Return Value 

Remarks 

470 

Greater than or equal to 0 if successful; otherwise it is an error value, which can be 
one of the following: 

• SP _ERROR General error. 

• SP _APPABORT Job was ended because the application's abort function 
returned O. 

• SP _USERABORT User ended the job through Print Manager. 

• SP _OUTOFDISK Not enough disk space is currently available for spooling, 
and no more space will become available. 

• SP _OUTOFMEMORY Not enough memory is available for spooling. 

Informs the device that the application has finished writing to a page. This member 
function is typically used to direct the device driver to advance to a new page. 

This member function replaces the NEWFRAME printer escape. Unlike 
NEWFRAME, this function is always called after printing a page. 

See Also: CDC::StartPage, CDC::StartDoc, CDC::Escape 



CDC: : EndPath 
BOOL EndPath( ); 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Closes a path bracket and selects the path defined by the bracket into the device 
context. 

See Also: CDC: : BeginPath 

CDC::EnumObjects 
int EnumObjects( int nObjectType, int ( CALLBACK EXPORT* /pfn ) 

... ( LPVOID, LPARAM ), LPARAM /pData ); 

Return Value 
Specifies the last value returned by the callback function. Its meaning is 
user-defined. 

Parameters 

Remarks 

nObjectType Specifies the object type. It can have the values OBJ_BRUSH or 
OBJ_PEN. 

/pfn Is the procedure-instance address of the application-supplied callback function. 
See the "Remarks" section below. 

/pData Points to the application-supplied data. The data is passed to the callback 
function along with the object information. 

Enumerates the pens and brushes available in a device context. For each object of a 
given type, the callback function that you pass is called with the information for that 
object. The system calls the callback function until there are no more objects or the 
callback function returns O. 

Note that new features of Microsoft Visual C++ let you use an ordinary function as 
the function passed to EnumObjects. The address passed to EnumObjects is a 
pointer to a function exported with EXPORT and with the Pascal calling convention. 
In protect-mode applications, you do not have to create this function with the 
Windows MakeProcInstance function or free the function after use with the 
FreeProcInstance Windows function. 

CDC::EnumObjects 

471 



CDC::Escape 

You also do not have to export the function name in an EXPORTS statement in your 
application's module-definition file. You can instead use the EXPORT function 
modifier, as in 

int CALLBACK EXPORT AFunction( LPSTR, LPSTR ); 

to cause the compiler to emit the proper export record for export by name without 
aliasing. This works for most needs. For some special cases, such as exporting a 
function by ordinal or aliasing the export, you still need to use an EXPORTS 
statement in a module-definition file. 

For compiling Microsoft Foundation programs, you will normally use the IGA and 
IGEs compiler options. The IGw compiler option is not used with the Microsoft 
Foundation classes. (If you do use the Windows function MakeProcInstance, you 
will need to explicitly cast the returned function pointer from FARPROC to the type 
needed in this API.) Callback registration interfaces are now type-safe (you must pass 
in a function pointer that points to the right kind of function for the specific callback). 

Also note that all callback functions must trap Microsoft Foundation exceptions 
before returning to Windows, since exceptions cannot be thrown across callback 
boundaries. For more information about exceptions, see the article "Exceptions" 
in Visual C++ Programmer's Guide online. 

See Also: : : EnumObjects 

CDC::Escape 
virtual int Escape( int nEscape, int nCount, LPCSTR Ipsz/nData, 

10+ LPVOID IpOutData); 
int ExtEscape( int nEscape, int nlnputSize, LPCSTR Ipsz/nputData, 

10+ int nOutputSize, LPSTR IpszOutputData); 

Return Value 
Positive if the function is successful, except for the QUERYESCSUPPORT escape, 
which only checks for implementation. Zero is returned if the escape is not 
implemented, and a negative value is returned if an error occurred. The following are 
common error values: 

• SP _ERROR General error. 

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and 
no more space will become available. 

• SP _OUTOFMEMORY Not enough memory is available for spooling. 

• SP _USERABORT User ended the job through the Print Manager. 

Parameters 
nEscape Specifies the escape function to be performed. 

472 



CDC: :ExcludeClipRect 

Remarks 

For a complete list of escape functions, see the information on printer escapes in 
the Windows Software Development Kit documentation. 

nCount Specifies the number of bytes of data pointed to by lpszlnData. 

lpsz/nData Points to the input data structure required for this escape. 

lpOutData Points to the structure that is to receive output from this escape. The 
lpOutData parameter is NULL if no data is returned. 

nlnputSize Specifies the number of bytes of data pointed to by the lpszlnputData 
parameter. 

lpszlnputData Points to the input structure required for the specified escape. 

nOutputSize Specifies the number of bytes of data pointed to by the lpszOutputData 
parameter. 

IpszOutputData Points to the structure that receives output from this escape. This 
parameter should be NULL if no data is returned. 

Allows applications to access facilities of a particular device that are not directly 
available through GDI. Use the first version of Escape to pass a driver-defined escape 
value to a device. Use the second version of Escape to pass one of the escape values 
defined by Windows to a device. Escape calls made by an application are translated 
and sent to the device driver. 

The nEscape parameter specifies the escape function to be performed. For possible 
values, see the information on printer escapes in the Windows SDK documentation. 

See Also: CDC::StartDoc, CDC::StartPage, CDC::EndPage, 
CDC::SetAbortProc, CDC::AbortDoc, CDC::EndDoc, CDC::GetDeviceCaps, 
::ExtEscape, ::Escape 

CDC: : ExcludeClipRect 
virtual int ExcludeClipRect( int xl, int yl, int x2, int y2 ); 
virtual int ExcludeClipRect( LPCRECT IpRect); 

Return Value 
Specifies the new clipping region's type. It can be any of the following values: 

• COMPLEXREGION The region has overlapping borders. 

• ERROR No region was created. 

• NULLREGION The region is empty. 

• SIMPLEREGION The region has no overlapping borders. 

473 



CDC::Exc1udeUpdateRgn 

Parameters 

Remarks 

xl Specifies the logical x-coordinate of the upper-left comer of the rectangle. 

yl Specifies the logical y-coordinate of the upper-left comer of the rectangle. 

x2 Specifies the logical x-coordinate of the lower-right comer of the rectangle. 

y2 Specifies the logical y-coordinate of the lower-right comer of the rectangle. 

IpRect Specifies the rectangle. Can also be a CRect object. 

Creates a new clipping region that consists of the existing clipping region minus the 
specified rectangle. 

The width of the rectangle, specified by the absolute value of x2 - xl, must not exceed 
32,767 units. This limit applies to the height of the rectangle as well. 

See Also: CDC: :ExcludeUpdateRgo, : :ExcludeClipRect 

CDC: : Exclude U pdateRgn 
iot ExcludeUpdateRgo( CWod* pWnd); 

Return Value 
The type of excluded region. It can be anyone of the following values: 

• COMPLEX REGION The region has overlapping borders. 

• ERROR No region was created. 

• NULLREGION The region is empty. 

• SIMPLEREGION The region has no overlapping borders. 

Parameters 

Remarks 

p Wnd Points to the window object whose window is being updated. 

Prevents drawing within invalid areas of a window by excluding an updated region 
in the window from the clipping region associated with the CDC object. 

See Also: CDC: :ExcludeClipRect, : : ExcludeUpdateRgo 

CDC: : ExtFloodFill 
BOOL ExtFloodFill( iot x, iot y, COLORREF crColor, UINT nFillType ); 

Return Value 

474 

Nonzero if the function is successful; otherwise 0 if the filling could not be 
completed, if the given point has the boundary color specified by crColor (if 
FLOODFILLBORDER was requested), if the given point does not have the color 



specified by crColor (if FLOODFILLSURFACE was requested), or if the point is 
outside the clipping region. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the point where filling begins. 

y Specifies the logical y-coordinate of the point where filling begins. 

crColor Specifies the color of the boundary or of the area to be filled. The 
interpretation of crColor depends on the value of nFillType. 

nFillType Specifies the type of flood fill to be performed. It must be either of the 
following values: 

• FLOODFILLBORDER The fill area is bounded by the color specified by 
crColor. This style is identical to the filling performed by FloodFill . 

• FLOODFILLSURFACE The fill area is defined by the color specified by 
crColor. Filling continues outward in all directions as long as the color is 
encountered. This style is useful for filling areas with multicolored boundaries. 

Fills an area of the display surface with the current brush. This member function 
offers more flexibility than FloodFill because you can specify a fill type in nFillType. 

If nFillType is set to FLOODFILLBORDER, the area is assumed to be completely 
bounded by the color specified by crColor. The function begins at the point specified 
by x and y and fills in all directions to the color boundary. 

If nFillType is set to FLOODFILLSURFACE, the function begins at the point 
specified by x and y and continues in all directions, filling all adjacent areas 
containing the color specified by crColor. 

Only memory-device contexts and devices that support raster-display technology 
support ExtFloodFill. For more information, see the GetDeviceCaps member 
function. 

See Also: CDC::FloodFill, CDC::GetDeviceCaps, ::ExtFloodFill 

CDC: : ExtTextOut 
virtual BOOL ExtTextOut( int x, int y, UINT nOptions, LPCRECT lpRect, 

... LPCTSTR lpszString, UINT nCount, LPINT IpDxWidths); 
BOOL ExtTextOut( int x, int y, UINT nOptions, LPCRECT lpRect, 

... const CString& str, LPINT lpDxWidths ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

CDC: :ExtTextOut 

475 



CDC::ExtTextOut 

Parameters 

Remarks 

476 

x Specifies the logical x-coordinate of the character cell for the first character in the 
specified string. 

y Specifies the logical y-coordinate of the top of the character cell for the first 
character in the specified string. 

nOptions Specifies the rectangle type. This parameter can be one, both, or neither of 
the following values: 

• ETO_CLIPPED Specifies that text is clipped to the rectangle . 

• ETO_OPAQUE Specifies that the current background color fills the rectangle. 
(You can set and query the current background color with the SetBkColor and 
GetBkColor member functions.) 

IpRect Points to a RECT structure that determines the dimensions of the rectangle. 
This parameter can be NULL. You can also pass a CRect object for this parameter. 

IpszString Points to the specified character string to be drawn. You can also pass a 
CString object for this parameter. 

nCount Specifies the number of characters in the string. 

IpDxWidths Points to an array of values that indicate the distance between origins of 
adjacent character cells. For instance, IpDxWidths[i] logical units will separate the 
origins of character cell i and character cell i + 1. If IpDxWidths is NULL, 
ExtTextOut uses the default spacing between characters. 

str A CString object that contains the specified characters to be drawn. 

Call this member function to write a character string within a rectangular region using 
the currently selected font. The rectangular region can be opaque (filled with the 
current background color), and it can be a clipping region. 

If nOptions is 0 and IpRect is NULL, the function writes text to the device context 
without using a rectangular region. By default, the current position is not used or 
updated by the function. If an application needs to update the current position when it 
calls ExtTextOut, the application can call the CDC member function SetTextAlign 
with nFlags set to TA_UPDATECP. When this flag is set, Windows ignores x and y 
on subsequent calls to ExtTextOut and uses the current position instead. When an 
application uses TA_UPDATECP to update the current position, ExtTextOut sets 
the current position either to the end of the previous line of text or to the position 
specified by the last element of the array pointed to by IpDxWidths, whichever is 
greater. 

See Also: CDC::SetTextAlign, CDC::TabbedTextOut, CDC::TextOut, 
CDC::GetBkColor, CDC::SetBkColor, CDC::SetTextColor, ::ExtTextOut, 
RECT 



CDC::FillPath 
BOOL FillPath( ); 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Closes any open figures in the current path and fills the path's interior by using the 
current brush and polygon-filling mode. After its interior is filled, the path is 
discarded from the device context. 

See Also: CDC::BeginPath, CDC::SetPolyFillMode, CDC::StrokeAndFillPath, 
CDC: :StrokePath, : : FillPath 

CDC: : FillRect 
void FillRect( LPCRECT lpRect, CBrush* pBrush ); 

Parameters 

Remarks 

lpRect Points to a RECT structure that contains the logical coordinates of the 
rectangle to be filled. You can also pass a CRect object for this parameter. 

pBrush Identifies the brush used to fill the rectangle. 

Call this member function to fill a given rectangle using the specified brush. The 
function fills the complete rectangle, including the left and top borders, but it does 
not fill the right and bottom borders. 

The brush needs to either be created using the CBrush member functions 
CreateHatchBrush, CreatePatternBrush, and CreateSolidBrush, or retrieved by 
the ::GetStockObject Windows function. 

When filling the specified rectangle, FillRect does not include the rectangle's right 
and bottom sides. GDI fills a rectangle up to, but does not include, the right column 
and bottom row, regardless of the current mapping mode. FillRect compares the 
values of the top, bottom, left, and right members of the specified rectangle. If 
bottom is less than or equal to top, or if right is less than or equal to left, the 
rectangle is not drawn. 

FillRect is similar to CDC::FillSolidRect; however, FillRect takes a brush and 
therefore can be used to fill a rectangle with a solid color, a dithered color, hatched 
brushes, or a pattern. FillSolidRect uses only solid colors (indicated by a 
COLORREF parameter). FillRect usually is slower than FillSolidRect. 

See Also: CBrush::CreateHatchBrush, CBrush::CreatePatternBrush, 
CBrush::CreateSolidBrush, ::FillRect, ::GetStockObject, RECT, CBrush, 
CDC: :FillSolidRect 

CDC::FillRect 

477 



CDC: : FillRgn 

CDC: : FillRgn 
BOOL FillRgn( CRgn* pRgn, CBrush* pBrush ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

pRgn A pointer to the region to be filled. The coordinates for the given region are 
specified in device units. 

pBrush Identifies the brush to be used to fill the region. 

Fills the region specified by pRgn with the brush specified by pBrush. 

The brush must either be created using the CBrush member functions 
CreateHatchBrush, CreatePatternBrush, CreateSolidBrush, or be retrieved by 
GetStockObject. 

See Also: CDC::PaintRgn, CDC::FilIRect, CBrush, CRgn, ::FillRgn 

CDC: :FillSolidRect 
void FillSolidRect( LPCRECT lpRect, COLORREF clr ); 
void FillSolidRect( int x, int y, int ex, int ey, COLORREF clr ); 

Parameters 

Remarks 

478 

lpReet Specifies the bounding rectangle (in logical units). You can pass either a 
pointer to a RECT data structure or a CRect object for this parameter. 

clr Specifies the color to to be used to fill the rectangle. 

x Specifies the logical x-coordinate of the upper-left comer of the rectangle. 

y Specifies the logical y-coordinate of the upper-left comer of the destination 
rectangle. 

ex Specifies the width of the rectangle. 

ey Specifies the height of the rectangle. 

Call this member function to fill the given rectangle with the specified solid color. 

FillSolidRect is very similar to CDC::FillRect; however, FillSolidRect uses only 
solid colors (indicated by the COLORREF parameter), while FillRect takes a brush 
and therefore can be used to fill a rectangle with a solid color, a dithered color, 
hatched brushes, or a pattern. FillSolidRect usually is faster than FillRect. 



Note When you call FiliSolidRect, the background color, which was previously set using 
SetBkColor, is set to the color indicated by elr. 

See Also: RECT, CRect, CDC::FillRect 

CDC::FlattenPath 
BOOL FlattenPath(); 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Transforms any curves in the path selected into the current device context, and turns 
each curve into a sequence of lines. 

See Also: CDC::WidenPath 

CDC::FloodFill 
BOOL FloodFill( int x, int y, COLORREF creolor); 

Return Value 
Nonzero if the function is successful; otherwise 0 is returned if the filling could not be 
completed, the given point has the boundary color specified by creolor, or the point is 
outside the clipping region. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the point where filling begins. 

y Specifies the logical y-coordinate of the point where filling begins. 

creolor Specifies the color of the boundary. 

Fills an area of the display surface with the current brush. The area is assumed to be 
bounded as specified by creolor. The FloodFill function begins at the point specified 
by x and y and continues in all directions to the color boundary. 

Only memory-device contexts and devices that support raster-display technology 
support the FloodFill member function. For information about RC_BITBLT 
capability, see the GetDeviceCaps member function. 

The ExtFloodFill function provides similar capability but greater flexibility. 

See Also: CDC: :ExtFloodFill, CDC: : GetDeviceCaps, : : FloodFill 

CDC: :FloodFill 

479 



CDC: :FrameRect 

CDC: : FrameRect 
void FrameRect( LPCRECT IpRect, CBrush* pBrush); 

Parameters 

Remarks 

IpRect Points to a RECT structure or CRect object that contains the logical 
coordinates of the upper-left and lower-right comers of the rectangle. You can 
also pass a CRect object for this parameter. 

pBrush Identifies the brush to be used for framing the rectangle. 

Draws a border around the rectangle specified by IpRect. The function uses the 
given brush to draw the border. The width and height of the border is always 1 
logical unit. 

If the rectangle's bottom coordinate is less than or equal to top, or if right is less 
than or equal to left, the rectangle is not drawn. 

The border drawn by FrameRect is in the same position as a border drawn by the 
Rectangle member function using the same coordinates (if Rectangle uses a pen 
that is 1 logical unit wide). The interior of the rectangle is not filled by FrameRect. 

See Also: CBrush,: : FrameRect, CDC: :Rectangle, CDC: :FrameRgn, RECT 

CDC: : FrameRgn 
BOOL FrameRgn( CRgn* pRgn, CBrush* pBrush, int n Width, int nHeight ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

480 

pRgn Points to the CRgn object that identifies the region to be enclosed in a border. 
The coordinates for the given region are specified in device units. 

pBrush Points to the CBrush object that identifies the brush to be used to draw the 
border. 

n Width Specifies the width of the border in vertical brush strokes in device units. 

nHeight Specifies the height of the border in horizontal brush strokes in device units. 

Draws a border around the region specified by pRgn using the brush specified by 
pBrush. 

See Also: CDC::Rectangle, CDC::FrameRect, CBrush, CRgn, ::FrameRgn 



CDC: :GetAspectRatioFilter 

CDC: : FromHandle 
static CDC* PASCAL FromHandle( HDC hDC ); 

Return Value 
The pointer may be temporary and should not be stored beyond immediate use. 

Parameters 

Remarks 

hDC Contains a handle to a Windows device context. 

Returns a pointer to a CDC object when given a handle to a device context. If a CDC 
object is not attached to the handle, a temporary CDC object is created and attached. 

See Also: CDC::DeleteTempMap 

CDC: : GetArcDirection 
int GetArcDirection( ) const; 

Return Value 

Remarks 

Specifies the current arc direction, if successful. Following are the valid return values: 

• AD_COUNTERCLOCKWISE Arcs and rectangles drawn counterclockwise . 

• AD_CLOCKWISE Arcs and rectangles drawn clockwise. 

If an error occurs, the return value is zero. 

Returns the current arc direction for the device context. Arc and rectangle functions 
use the arc direction. 

See Also: CDC::SetArcDirection, ::GetArcDirection 

CDC: : GetAspectRatioFilter 
CSize GetAspectRatioFilter( ) const; 

Return Value 

Remarks 

A CSize object representing the aspect ratio used by the current aspect ratio filter. 

Retrieves the setting for the current aspect-ratio filter. The aspect ratio is the ratio 
formed by a device's pixel width and height. Information about a device's aspect ratio 
is used in the creation, selection, and display of fonts. Windows provides a special 
filter, the aspect-ratio filter, to select fonts designed for a particular aspect ratio from 
all of the available fonts. The filter uses the aspect ratio specified by the 
SetMapperFlags member function. 

481 



CDC::GetBkColor 

See Also: CDC::SetMapperFlags, CSize 

CDC::GetBkColor 
COLORREF GetBkColor( ) const; 

Return Value 

Remarks 

An ROB color value. 

Returns the current background color. If the background mode is OPAQUE, the 
system uses the background color to fill the gaps in styled lines, the gaps between 
hatched lines in brushes, and the background in character cells. The system also uses 
the background color when converting bitmaps between color and monochrome 
device contexts. 

See Also: CDC::GetBkMode, CDC::SetBkColor, CDC::SetBkMode, 
: :GetBkColor 

CDC::GetBkMode 
int GetBkMode( ) const; 

Return Value 

Remarks 

The current background mode, which can be OPAQUE, TRANSPARENT, or 
TRANSPARENTl. 

Returns the background mode. The background mode defines whether the system 
removes existing background colors on the drawing surface before drawing text, 
hatched brushes, or any pen style that is not a solid line. 

See Also: CDC::GetBkColor, CDC::SetBkColor, CDC::SetBkMode, 
: :GetBkMode 

CDC: : GetBoundsRect 
UINT GetBoundsRect( LPRECT lpRectBounds, UINT flags ); 

Return Value 

482 

Specifies the current state of the bounding rectangle if the function is successful. 
It can be a combination of the following values: 

• DCB_ACCUMULATE Bounding rectangle accumulation is occurring. 

• DCB_RESET Bounding rectangle is empty. 



CDC: :GetCharABCWidths 

• DCB_SET Bounding rectangle is not empty. 

• DCB_ENABLE Bounding accumulation is on. 

• DCB_DISABLE Bounding accumulation is off. 

Parameters 

Remarks 

IpRectBounds Points to a buffer that will receive the current bounding rectangle. The 
rectangle is returned in logical coordinates. 

flags Specifies whether the bounding rectangle is to be cleared after it is returned. 
This parameter can be either of the following values: 

• DCB_RESET Forces the bounding rectangle to be cleared after it is returned. 

• DCB_ WINDOWMGR Queries the Windows bounding rectangle instead of 
the application's. 

Returns the current accumulated bounding rectangle for the specified device context. 

See Also: CDC::SetBoundsRect, ::GetBoundsRect 

CDC: : GetBrushOrg 
CPoint GetBrushOrg( ) const; 

Return Value 

Remarks 

The current origin of the brush (in device units) as a CPoint object. 

Retrieves the origin (in device units) of the brush currently selected for the device 
context. 

The initial brush origin is at (0,0) of the client area. The return value specifies this 
point in device units relative to the origin of the desktop window. 

See Also: CDC: :SetBrushOrg, CPoint 

CDC:: GetCharABCWidths 
BOOL GetCharABCWidths( UINT nFirstChar, UINT nLastChar, 

... LPABC lpabc) const; 
BOOL GetCharABCWidths( UINT nFirstChar, UINT nLastChar, 

... LPABCFLOAT IpABCF) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

483 



CDC: : GetCharWidth 

Parameters 

Remarks 

nFirstChar Specifies the first character in the range of characters from the current 
font for which character widths are returned. 

nLastChar Specifies the last character in the range of characters from the current font 
for which character widths are returned. 

lpabc Points to an array of ABC structures that receive the character widths when the 
function returns. This array must contain at least as many ABC structures as there 
are characters in the range specified by the nFirstChar and nLastChar parameters. 

lpABCF Points to an application-supplied buffer with an array of ABCFLOAT 
structures to receive the character widths when the function returns. The widths 
returned by this function are in the IEEE floating-point format. 

Retrieves the widths of consecutive characters in a specified range from the current 
TrueType font. The widths are returned in logical units. This function succeeds only 
with TrueType fonts. 

The TrueType rasterizer provides "ABC" character spacing after a specific point size 
has been selected. "A" spacing is the distance that is added to the current position 
before placing the glyph. "B" spacing is the width of the black part of the glyph. "c" 
spacing is added to the current position to account for the white space to the right of 
the glyph. The total advanced width is given by A + B + C. 

When the GetCharABCWidths member function retrieves negative "A" or "c" 
widths for a character, that character includes underhangs or overhangs. 

To convert the ABC widths to font design units, an application should create a font 
whose height (as specified in the Iffieight member of the LOGFONT structure) is 
equal to the value stored in the ntmSizeEM member of the NEWTEXTMETRIC 
structure. (The value of the ntmSizeEM member can be retrieved by calling the 
EnumFontFamiIies Windows function.) 

The ABC widths of the default character are used for characters that are outside the 
range of the currently selected font. 

To retrieve the widths of characters in non-TrueType fonts, applications should use the 
GetCharWidth member function. 

See Also: ::EnumFontFamiIies, CDC::GetCharWidth, ::GetCharABCWidths, 
: :GetChar ABCWidthsFloat, : : GetCharWidthFloat 

CDC: : GetCharWidth 
BOOL GetCharWidth( UINT nFirstChar, UINT nLastChar, LPINT lpBuffer ) const; 
BOOL GetCharWidth( UINT nFirstChar, UINT nLastChar, float* lpFloatBuffer ) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

484 



Parameters 

Remarks 

nFirstChar Specifies the first character in a consecutive group of characters in the 
current font. 

nLastChar Specifies the last character in a consecutive group of characters in the 
current font. 

IpBuffer Points to a buffer that will receive the width values for a consecutive group 
of characters in the current font. 

IpFloatBujfer Points to a buffer to receive the character widths. The returned widths 
are in the 32-bit IEEE floating-point format. (The widths are measured along the 
base line of the characters.) 

Retrieves the widths of individual characters in a consecutive group of characters 
from the current font, using m_hAttribDC, the input device context. For example, if 
nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the function 
retrieves the widths of all lowercase characters. 

The function stores the values in the buffer pointed to by lpBuffer. This buffer must be 
large enough to hold all of the widths. That is, there must be at least 26 entries in the 
example given. 

If a character in the consecutive group of characters does not exist in a particular font, 
it will be assigned the width value of the default character. 

See Also: CDC::GetOutputCharWidth, CDC::m_hAttribDC, CDC::m_hDC, 
CDC::GetCharABCWidths, ::GetCharWidth, ::GetCharABCWidths, 
::GetCharABCWidthsFloat, ::GetCharWidthFloat 

CDC: : GetClipBox 
virtual int GetClipBox( LPRECT IpRect ) const; 

Return Value 
The clipping region's type. It can be any of the following values: 

• COMPLEXREGION Clipping region has overlapping borders. 

• ERROR Device context is not valid. 

• NULLREGION Clipping region is empty. 

• SIMPLEREGION Clipping region has no overlapping borders. 

Parameters 
lpRect Points to the RECT structure or CRect object that is to receive the rectangle 

dimensions. 

CDC: :GetClipBox 

485 



CDC: : GetColorAdjustment 

Remarks 
Retrieves the dimensions of the tightest bounding rectangle around the current 
clipping boundary. The dimensions are copied to the buffer pointed to by IpRect. 

See Also: CDC::SelectClipRgn, ::GetClipBox, RECT 

CDC: : GetColorAdjustment 
BOOL GetColorAdjustment( LPCOLORADJUSTMENT IpColorAdjust ) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

IpColorAdjust Points to a COLORADJUSTMENT data structure to receive the 
color adjustment values. 

Retrieves the color adjustment values for the device context. 

See Also: CDC::SetColorAdjustment 

CDC: : GetCurrentBitmap 
CBitmap* GetCurrentBitmap( ) const; 

Return Value 

Remarks 

Pointer to a CBitmap object, if successful; otherwise NULL. 

Returns a pointer to the currently selected CBitmap object. This member function 
may return temporary objects. 

See Also: CDC::SelectObject, ::GetCurrentObject 

CDC: : GetCurrentBrush 
CBrush* GetCurrentBrush( ) const; 

Return Value 

Remarks 

486 

Pointer to a CBrush object, if successful; otherwise NULL. 

Returns a pointer to the currently selected CBrush object. This member function 
may return temporary objects. 

See Also: CDC::SelectObject, ::GetCurrentObject 



CDC: : GetCurrentPosition 

CDC: : GetCurrentFont 
CFont* GetCurrentFont( ) const; 

Return Value 

Remarks 

Pointer to a CFont object, if successful; otherwise NULL. 

Returns a pointer to the currently selected CFont object. This member function may 
return temporary objects. 

See Also: CDC::SelectObject, ::GetCurrentObject 

CDC: : GetCurrentPalette 
CPalette* GetCurrentPalette( ) const; 

Return Value 

Remarks 

Pointer to a CPalette object, if successful; otherwise NULL. 

Returns a pointer to the currently selected CPalette object. This member function may 
return temporary objects. 

See Also: CDC::SelectObject, ::GetCurrentObject 

CDC: : GetCurrentPen 
CPen* GetCurrentPen( ) const; 

Return Value 

Remarks 

Pointer to a CPen object, if successful; otherwise NULL. 

Returns a pointer to the currently selected CPen object. This member function may 
return temporary objects. 

See Also: CDC::SelectObject, ::GetCurrentObject 

CDC: : GetCurrentPosition 
CPoint GetCurrentPosition( ) const; 

Return Value 
The current position as a CPoint object. 

487 



CDC: :GetDeviceCaps 

Remarks 
Retrieves the current position (in logical coordinates). The current position can be set 
with the MoveTo member function. 

See Also: CDC::MoveTo, CPoint 

CDC: : GetDeviceCaps 
int GetDeviceCaps( int nlndex ) const; 

Return Value 
The value of the requested capability if the function is successful. 

Parameters 

488 

nlndex Specifies the type of information to return. It can be anyone of the following 
values: 

• DRIVERVERSION Version number; for example, Ox100 for 1.0. 

• TECHNOLOGY Device technology. It can be anyone of the following: 

Value Meaning 

DT_PLOTTER Vector plotter 

DT_RASDISPLAY Raster display 

DT _RASPRINTER Raster printer 

DT_RASCAMERA Raster camera 

DT_CHARSTREAM Character stream 

DT_METAFILE Metafile 

DT _DISPFILE Display file 

• HORZSIZE Width of the physical display (in millimeters). 

• VERTSIZE Height of the physical display (in millimeters). 

• HORZRES Width of the display (in pixels). 

• VERTRES Height of the display (in raster lines). 

• LOGPIXELSX Number of pixels per logical inch along the display width. 

• LOGPIXELSY Number of pixels per logical inch along the display height. 

• BITSPIXEL Number of adjacent color bits for each pixel. 

• PLANES Number of color planes. 

• NUMBRUSHES Number of device-specific brushes. 

• NUMPENS Number of device-specific pens. 

• NUMFONTS Number of device-specific fonts. 

• NUMCOLORS Number of entries in the device's color table. 

• ASPECTX Relative width of a device pixel as used for line drawing. 

• ASPECTY Relative height of a device pixel as used for line drawing. 



CDC: :GetDeviceCaps 

• ASPECTXY Diagonal width of the device pixel as used for line drawing. 

• PDEVICESIZE Size of the PDEVICE internal data structure. 

• CLIPCAPS Clipping capabilities of the device. It can be one of the following: 

Value 

CP_NONE 

CP _RECTANGLE 

CP_REGION 

Meaning 

Output is not clipped. 

Output is clipped to rectangles. 

Output is clipped to regions. 

• SIZEPALETTE Number of entries in the system palette. This index is valid 
only if the device driver sets the RC_PALETTE bit in the RASTER CAPS 
index. 

• NUMRESERVED Number of reserved entries in the system palette. This 
index is valid only if the device driver sets the RC_PALETTE bit in the 
RASTERCAPS index. 

• COLORRES Actual color resolution of the device in bits per pixel. This index 
is valid only if the device driver sets the RC_PALETTE bit in the 
RASTERCAPS index. 

• RASTER CAPS Value that indicates the raster capabilities of the device. It can 
be a combination of the following: 

Value Meaning 

RC_BANDING 

RC_BIGFONT 

RC_BITBLT 

RC_BITMAP64 

RC_DEVBITS 

RC_DCBITMAP 

RC_FLOODFILL 

RC_GDI20_0UTPUT 

RC_GDI20_STATE 

RC_NONE 

RC_OP _DX_OUTPUT 

RC_PALETTE 

RC_SA VEBITMAP 

RC_SCALING 

RC_STRETCHBLT 

RC_STRETCHDIB 

Requires banding support. 

Supports fonts larger than 64K. 

Capable of transferring bitmaps. 

Supports bitmaps larger than 64K. 

Supports device bitmaps. 

Capable of supporting the SetDIBits and GetDIBits 
Windows functions. 

Capable of supporting the SetDIBitsToDevice Windows 
function. 

Capable of performing flood fills. 

Capable of supporting Windows version 2.0 features. 

Includes a state block in the device context. 

Supports no raster operations. 

Supports dev opaque and DX array. 

Specifies a palette-based device. 

Capable of saving bitmaps locally. 

Capable of scaling. 

Capable of performing the StretchBlt member function. 

Capable of performing the StretchDIBits Windows 
function. 

489 



CDC: : GetDeviceCaps 

490 

• CURVE CAPS The curve capabilities of the device. It can be a combination of 
the following: 

Value 

CC_NONE 

CC_CIRCLES 

CC_PIE 

CC_CHORD 

CC_ELLIPSES 

CC_WIDE 

CC_STYLED 

CC_ WIDE STYLED 

CC_INTERIORS 

CC_ROUNDRECT 

Meaning 

Supports curves. 

Supports circles. 

Supports pie wedges. 

Supports chords. 

Supports ellipses. 

Supports wide borders. 

Supports styled borders. 

Supports wide, styled borders. 

Supports interiors. 

Supports rectangles with rounded corners. 

• LINECAPS Line capabilities the device supports. It can be a combination of 
the following: 

Value 

LC_NONE 

LC_POLYLINE 

LC_MARKER 

LC_POL YMARKER 

LC_WIDE 

LC_STYLED 

LC_ WIDESTYLED 

LC_INTERIORS 

Meaning 

Supports no lines. 

Supports polylines. 

Supports markers. 

Supports polymarkers. 

Supports wide lines. 

Supports styled lines. 

Supports wide, styled lines. 

Supports interiors. 

• POLYGONALCAPS Polygonal capabilities the device supports. It can be a 
combination of the following: 

Value Meaning 

PC_NONE 

PC_POLYGON 

PC_RECTANGLE 

PC_ WINDPOLYGON 

PC_SCANLINE 

PC_WIDE 

PC_STYLED 

PC_ WIDE STYLED 

PC_INTERIORS 

Supports no polygons. 

Supports alternate fill polygons. 

Supports rectangles. 

Supports winding number fill polygons. 

Supports scan lines. 

Supports wide borders. 

Supports styled borders. 

Supports wide, styled borders. 

Supports interiors. 



CDC: :GetDeviceCaps 

• TEXT CAPS Text capabilities the device supports. It can be a combination of 
the following: 

Value Meaning 

Supports character output precision, which indicates the 
device can place device fonts at any pixel location. This is 
required for any device with device fonts. 

Supports stroke output precision, which indicates the 
device can omit any stroke of a device font. 

Supports stroke clip precision, which indicates the device 
can clip device fonts to a pixel boundary. 

Supports 90-degree character rotation, which indicates the 
device can rotate characters only 90 degrees at a time. 

Supports character rotation at any degree, which indicates 
the device can rotate device fonts through any angle. 

Supports scaling independent of x and y directions, which 
indicates the device can scale device fonts separately in x 
and y directions. 

Supports doubled characters for scaling, which indicates 
the device can double the size of device fonts. 

Supports integer multiples for scaling, which indicates the 
device can scale the size of device fonts in any integer 
multiple. 

Supports any multiples for exact scaling, which indicates 
the device can scale device fonts by any amount but still 
preserve the x and y ratios. 

Supports double-weight characters, which indicates the 
device can make device fonts bold. If this bit is not set for 
printer drivers, GDI attempts to create bold device fonts by 
printing them twice. 

Supports italics, which indicates the device can make 
device fonts italic. If this bit is not set, GDI assumes italics 
are not available. 

Supports underlining, which indicates the device can 
underline device fonts. If this bit is not set, GDI creates 
underlines for device fonts. 

Supports strikeouts, which indicates the device can 
strikeout device fonts. If this bit is not set, GDI creates 
strikeouts for device fonts. 

Supports raster fonts, which indicates that GDI should 
enumerate any raster or TrueType fonts available for 
this device in response to a call to the EnumFonts or 
EnumFontFamilies Windows functions. If this bit is 
not set, GDI-supplied raster or TrueType fonts are not 
enumerated when these functions are called. 

(continued) 

491 



CDC: : GetFontData 

Remarks 

(continued) 

Value Meaning 

Supports vector fonts, which indicates that GDI 
should enumerate any vector fonts available for this 
device in response to a call to the EnumFonts or 
EnumFontFamilies Windows functions. This is 
significant for vector devices only (that is, for plotters). 
Display drivers (which must be able to use raster fonts) 
and raster printer drivers always enumerate vector fonts, 
because GDI rasterizes vector fonts before sending them 
to the driver. 

Reserved; must be O. 

Retrieves a wide range of device-specific information about the display device. 

See Also: ::GetDeviceCaps 

CDC::GetFontData 
DWORD GetFontData( DWORD dwTable, DWORD dwOffset, LPVOID IpData, 

'+ DWORD cbData ) const; 

Return Value 
Specifies the number of bytes returned in the buffer pointed to by IpData if the 
function is successful~ otherwise -1. 

Parameters 

492 

dwTable Specifies the name of the metric table to be returned. This parameter can 
be one of the metric tables documented in the TrueType Font Files specification 
published by Microsoft Corporation. If this parameter is 0, the information is 
retrieved starting at the beginning of the font file. 

dwOffset Specifies the offset from the beginning of the table at which to begin 
retrieving information. If this parameter is 0, the information is retrieved starting 
at the beginning of the table specified by the dwTable parameter. If this value is 
greater than or equal to the size of the table, GetFontData returns 0. 

IpData Points to a buffer that will receive the font information. If this value is 
NULL, the function returns the size of the buffer required for the font data 
specified in the dwTable parameter. 

cbData Specifies the length, in bytes, of the information to be retrieved. If this 
parameter is 0, GetFontData returns the size of the data specified in the dwTable 
parameter. 



CDC: :GetGlyphOutline 

Remarks 
Retrieves font-metric information from a scalable font file. The information to retrieve 
is identified by specifying an offset into the font file and the length of the information 
to return. 

An application can sometimes use the GetFontData member function to save a 
TrueType font with a document. To do this, the application determines whether the 
font can be embedded and then retrieves the entire font file, specifying 0 for the 
dwTable, dwOffset, and cbData parameters. 

Applications can determine whether a font can be embedded by checking the 
otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of 
otmfsType is set, embedding is not permitted for the font. If bit 1 is clear, the font 
can be embedded. If bit 2 is set, the embedding is read only. 

If an application attempts to use this function to retrieve information for a 
non-TrueType font, the GetFontData member function returns -1. 

See Also: CDC::GetOutlineTextMetrics, ::GetFontData, 
OUTLINETEXTMETRIC 

CDC: : GetGlyphOutline 
DWORD GetGlyphOutline( UINT nChar, UINT nFormat, LPGLYPHMETRICS lpgm, 

10+ DWORD cbBuffer, LPVOID IpBuffer, const MAT2 FAR* Ipmat2 ) const; 

Return Value 
The size, in bytes, of the buffer required for the retrieved information if cbBuffer is 0 
or IpBuffer is NULL. Otherwise, it is a positive value if the function is successful, or 
-1 if there is an error. 

Parameters 
nChar Specifies the character for which information is to be returned. 

nFormat Specifies the format in which the function is to return information. It can be 
one of the following values, or 0: 

Value Meaning 

GGO_BITMAP 

GGO_NATIVE 

Returns the glyph bitmap. When the function returns, the 
buffer pointed to by lpBuffer contains a I-bit-per-pixel 
bitmap whose rows start on double word boundaries. 

Returns the curve data points in the rasterizer's native 
format, using device units. When this value is specified, 
any transformation specified in lpmat2 is ignored. 

When the value of nFormat is 0, the function fills in a GLYPHMETRICS 
structure but does not return glyph-outline data. 

493 



CDC: :GetHalftoneBrush 

Remarks 

lpgm Points to a GLYPHMETRICS structure that describes the placement of the 
glyph in the character cell. 

cbBuffer Specifies the size of the buffer into which the function copies information 
about the outline character. If this value is 0 and the nFormat parameter is either 
the GGO_BITMAP or GGO_NATIVE values, the function returns the required 
size of the buffer. 

IpBuffer Points to a buffer into which the function copies information about the 
outline character. If nFormat specifies the GGO_NATIVE value, the information 
is copied in the form of TTPOLYGONHEADER and TTPOLYCURVE 
structures. If this value is NULL and nFormat is either the GGO_BITMAP or 
GGO _NATIVE value, the function returns the required size of the buffer. 

Ipmat2 Points to a MAT2 structure that contains a transformation matrix for the 
character. This parameter cannot be NULL, even when the GGO_NATIVE value 
is specified for nFormat. 

Retrieves the outline curve or bitmap for an outline character in the current font. 

An application can rotate characters retrieved in bitmap format by specifying a 2-by-2 
transformation matrix in the structure pointed to by lpmat2. 

A glyph outline is returned as a series of contours. Each contour is defined by a 
TTPOLYGONHEADER structure followed by as many TTPOLYCURVE 
structures as are required to describe it. All points are returned as POINTFX 
structures and represent absolute positions, not relative moves. The starting point 
given by the pfxStart member of the TTPOLYGONHEADER structure is the point 
at which the outline for a contour begins. The TTPOLYCURVE structures that 
follow can be either polyline records or spline records. Polyline records are a series of 
points; lines drawn between the points describe the outline of the character. Spline 
records represent the quadratic curves used by TrueType (that is, quadratic b-splines). 

See Also: CDC::GetOutlineTextMetrics, ::GetGlyphOutline, GLYPHMETRICS, 
TTPOLYGONHEADER,TTPOLYCURVE 

CDC: : GetHalftoneBrush 
static CBrush* PASCAL GetHalftoneBrush( ); 

Return Value 

Remarks 

494 

A pointer to a CBrush object if successful; otherwise NULL. 

Call this member function to retrieve a halftone brush. A halftone brush shows pixels 
that are alternately foreground and background colors to create a dithered pattern. The 
following is an example of a dithered pattern created by a halftone brush. 



r Background color I.: .... ::!@. ~'f~ 
"'- Foreground COl': "*"~ 

Dithered pattern 

See Also: CBrush 

CDC: : GetKerningPairs 
int GetKerningPairs( int nPairs, LPKERNINGPAIR lpkrnpair) const; 

Return Value 
Specifies the number of kerning pairs retrieved or the total number of kerning pairs in 
the font, if the function is successful. Zero is returned if the function fails or there are 
no kerning pairs for the font. 

Parameters 

Remarks 

nPairs Specifies the number of KERNINGPAIR structures pointed to by lpkrnpair. 
The function will not copy more kerning pairs than specified by nPairs. 

lpkrnpair Points to an array of KERNINGPAIR structures that receive the kerning 
pairs when the function returns. This array must contain at least as many structures 
as specified by nPairs. If this parameter is NULL, the function returns the total 
number of kerning pairs for the font. 

Retrieves the character kerning pairs for the font that is currently selected in the 
specified device context. 

See Also: ::GetKerningPairs, KERNINGPAIR 

CDC::GetMapMode 
int GetMapMode( ) const; 

Return Value 

Remarks 

The mapping mode. 

Retrieves the current mapping mode. 

See the SetMapMode member function for a description of the mapping modes. 

See Also: CDC: :SetMapMode, : : GetMapMode 

CDC: :GetMapMode 

495 



CDC: : GetMiterLimit 

CDC: : GetMiterLimit 
float GetMiterLimit( ) const; 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Returns the miter limit for the device context. The miter limit is used when drawing 
geometric lines that have miter joins. 

See Also: CDC::SetMiterLimit, ::GetMiterLimit 

CDC: : GetNearestColor 
COLORREF GetNearestColor( COLORREF creolor ) const; 

Return Value 
An RGB (red, green, blue) color value that defines the solid color closest to the 
creolor value that the device can represent. 

Parameters 

Remarks 

creolor Specifies the color to be matched. 

Returns the solid color that best matches a specified logical color. The given device 
must be able to represent this color. 

See Also: ::GetNearestColor, CPalette::GetNearestPaletteIndex 

CDC: : GetOutlineTextMetrics 
UINT CDC::GetOutlineTextMetrics( UINT cbData, 

... LPOUTLINETEXTMETRIC lpotm ) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

496 

lpotm Points to an array of OUTLINETEXTMETRIC structures. If this parameter 
is NULL, the function returns the size of the buffer required for the retrieved 
metric data. 

cbData Specifies the size, in bytes, of the buffer to which information is returned. 

lpotm Points to an OUTLINETEXTMETRIC structure. If this parameter is NULL, 
the function returns the size of the buffer required for the retrieved metric 
information. 



CDC::GetOutputCharWidth 

Remarks 
Retrieves metric information for TrueType fonts. 

The OUTLINETEXTMETRIC structure contains most of the font metric 
information provided with the TrueType format, including a TEXTMETRIC 
structure. The last four members of the OUTLINETEXTMETRIC structure are 
pointers to strings. Applications should allocate space for these strings in addition to 
the space required for the other members. Because there is no system-imposed limit 
to the size of the strings, the simplest method for allocating memory is to retrieve the 
required size by specifying NULL for lpotm in the first call to the 
GetOutlineTextMetrics function. 

See Also: ::GetTextMetrics, ::GetOutlineTextMetrics, CDC::GetTextMetrics 

CDC: : GetOutputCharWidth 
BOOL GetOutputCharWidth( UINT nFirstChar, UINT nLastChar, 

~ LPINT lpBuffer ) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

nFirstChar Specifies the first character in a consecutive group of characters in the 
current font. 

nLastChar Specifies the last character in a consecutive group of characters in the 
current font. 

IpBuffer Points to a buffer that will receive the width values for a consecutive group 
of characters in the current font. 

Uses the output device context, m_hDC, and retrieves the widths of individual 
characters in a consecutive group of characters from the current font. For example, if 
nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the function 
retrieves the widths of all lowercase characters. 

The function stores the values in the buffer pointed to by lpBuffer. This buffer must be 
large enough to hold all of the widths; that is, there must be at least 26 entries in the 
example given. 

If a character in the consecutive group of characters does not exist in a particular font, 
it will be assigned the width value of the default character. 

See Also: CDC::GetCharWidth, CDC::m_hAttribDC, CDC::m_hDC, 
: : GetCharWidth 

497 



CDC: :GetOutputTabbedTextExtent 

CDC:: GetOutputTab bedTextExtent 
CSize GetOutputTabbedTextExtent( LPCTSTR IpszString, int nCount, 

... int nTabPositions, LPINTlpnTabStopPositions) const; 
CSize GetOutputTabbedTextExtent( const CString& str, int nTabPositions, 

... LPINT IpnTabStopPositions ) const; 

Return Value 
The dimensions of the string (in logical units) in a CSize object. 

Parameters 

Remarks 

498 

IpszString Points to a character string to be measured. You can also pass a CString 
object for this parameter. 

nCount Specifies the number of characters in the string. If nCount is -1, the length is 
calculated. 

nTabPositions Specifies the number of tab-stop positions in the array pointed to by 
IpnTabStopP ositions. 

IpnTabStopPositions Points to an array of integers containing the tab-stop positions 
in logical units. The tab stops must be sorted in increasing order; the smallest 
x-value should be the first item in the array. Back tabs are not allowed. 

str A CString object that contains the specified characters to be measured. 

Call this member function to compute the width and height of a character string using 
m_hDC, the output device context. If the string contains one or more tab characters, 
the width of the string is based upon the tab stops specified by IpnTabStopPositions. 
The function uses the currently selected font to compute the dimensions of the string. 

The current clipping region does not offset the width and height returned by the 
GetOutputTabbedTextExtent function. 

Since some devices do not place characters in regular cell arrays (that is, they kern the 
characters), the sum of the extents of the characters in a string may not be equal to the 
extent of the string. 

If nTabPositions is 0 and IpnTabStopPositions is NULL, tabs are expanded to eight 
average character widths. If nTabPositions is 1, the tab stops will be separated by the 
distance specified by the first value in the array to which IpnTabStopPositions points. 
If IpnTabStopPositions points to more than a single value, a tab stop is set for each 
value in the array, up to the number specified by nTabPositions. 

See Also: CDC::GetTextExtent, CDC::m_hAttribDC, CDC::m_hDC, 
CDC: : GetTabbedTextExtent, CDC: : GetOutputTextExtent, 
CDC::TabbedTextOut, ::GetTabbedTextExtent, Csize 



CDC: :GetOutputTextMetrics 

CDC::GetOutputTextExtent 
CSize GetOutputTextExtent( LPCTSTR /pszString, int nCount ) const; 
CSize GetOutputTextExtent( const CString& str ) const; 

Return Value 
The dimensions of the string (in logical units) returned in a CSize object. 

Parameters 

Remarks 

lpszString Points to a string of characters. You can also pass a CString object for this 
parameter. 

nCount Specifies the number of characters in the string. If nCoum is -1, the length is 
calculated. 

str A CString object that contains the specified characters to be measured. 

Call this member function to use the output device context, m_hDC, and compute the 
width and height of a line of text, using the current font. 

The current clipping region does not affect the width and height returned by 
GetOutputTextExtent. 

Since some devices do not place characters in regular cell arrays (that is, they carry 
out kerning), the sum of the extents of the characters in a string may not be equal to 
the extent of the string. 

See Also: CDC: : GetTabbedTextExtent, CDC: : GetOutputTabbedTextExtent, 
CDC::m_hAttribDC, CDC::m_hDC, CDC::GetTextExtent, 
CDC:: SetTextJ ustification, CSize 

CDC: : GetOutputTextMetrics 
BOOL GetOutputTextMetrics( LPTEXTMETRIC /pMetrics) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

/pMetrics Points to the TEXTMETRIC structure that receives the metrics. 

Retrieves the metrics for the current font using m_hDC, the output device context. 

See Also: CDC::GetTextAlign, CDC::m_hAttribDC, CDC::m_hDC, 
CDC: : GetTextMetrics, CDC: : GetTextExtent, CDC: : GetTextFace, 
CDC: :SetTextJustification, : : GetTextMetrics 

499 



CDC::GetPath 

CDC: : GetPath 
int GetPath( LPPOINT IpPoints, LPBYTE IpTypes, int nCount ) const; 

Return Value 
If the nCount parameter is nonzero, the number of points enumerated. If nCount is 0, 
the total number of points in the path (and GetPath writes nothing to the buffers). If 
nCount is nonzero and is less than the number of points in the path, the return value 
is -1. 

Parameters 

Remarks 

500 

IpPoints Points to an array of POINT data structures or CPoint objects where the 
line endpoints and curve control points are placed. 

IpTypes Points to an array of bytes where the vertex types are placed. Values are one 
of the following: 

• PT_MOVETO Specifies that the corresponding point in IpPoints starts a 
disjoint figure. 

• PT_LINETO Specifies that the previous point and the corresponding point in 
IpPoints are the endpoints of a line. 

• PT_BEZIERTO Specifies that the corresponding point in IpPoints is a control 
point or ending point for a B6zier curve. 

PT_BEZIERTO types always occur in sets of three. The point in the path 
immediately preceding them defines the starting point for the B6zier curve. The 
first two PT _BEZIERTO points are the control points, and the third 
PT_BEZIERTO point is the end point (if hard-coded). 

A PT_LINETO or PT_BEZIERTO type may be combined with the following 
flag (by using the bitwise operator OR) to indicate that the corresponding point is 
the last point in a figure and that the figure should be closed: 

• PT_CLOSEFIGURE Specifies that the figure is automatically closed after the 
corresponding line or curve is drawn. The figure is closed by drawing a line 
from the line or curve endpoint to the point corresponding to the last 
PT_MOVETO. 

nCount Specifies the total number of POINT data structures that may be placed in 
the IpPoints array. This value must be the same as the number of bytes that may be 
placed in the IpTypes array. 

Retrieves the coordinates defining the endpoints of lines and the control points of 
curves found in the path that is selected into the device context. The device context 
must contain a closed path. The points of the path are returned in logical coordinates. 
Points are stored in the path in device coordinates, so GetPath changes the points 
from device coordinates to logical coordinates by using the inverse of the current 



CDC::GetPolyFillMode 

transformation. The FlattenPath member function may be called before GetPath, 
to convert all curves in the path into line segments. 

See Also: CDC::FlattenPath, CDC::PolyDraw, CDC::WidenPath 

CDC: : GetPixel 
COLORREF GetPixel( int x, int y ) const; 
COLORREF GetPixel( POINT point) const; 

Return Value 
For either version of the function, an RGB color value for the color of the given point. 
It is -1 if the coordinates do not specify a point in the clipping region. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the point to be examined. 

y Specifies the logical y-coordinate of the point to be examined. 

point Specifies the logical x- and y-coordinates of the point to be examined. 

Retrieves the RGB color value of the pixel at the point specified by x and y. The point 
must be in the clipping region. If the point is not in the clipping region, the function 
has no effect and returns -1. 

Not all devices support the GetPixel function. For more information, see the 
RC_BITBLT raster capability under the GetDeviceCaps member function. 

The GetPixel member function has two forms. The first takes two coordinate values; 
the second takes either a POINT structure or a CPoint object. 

See Also: CDC::GetDeviceCaps, CDC::SetPixel, ::GetPixel, POINT, CPoint 

CDC: : GetPolyFillMode 
int GetPolyFillMode() const; 

Return Value 

Remarks 

The current polygon-filled mode, ALTERNATE or WINDING, if the function is 
successful. 

Retrieves the current polygon-filling mode. 

See the SetPolyFillMode member function for a description of the polygon-filling 
modes. 

See Also: CDC::SetPolyFillMode, ::GetPolyFillMode 

501 



CDC::GetROP2 

CDC::GetROP2 
int GetROP2( ) const; 

Return Value 

Remarks 

The drawing mode. For a list of the drawing mode values, see the SetROP2 member 
function. 

Retrieves the current drawing mode. The drawing mode specifies how the colors of 
the pen and the interior of filled objects are combined with the color already on the 
display surface. 

See Also: CDC::GetDeviceCaps, CDC::SetROP2, ::GetROP2 

CDC::GetSafeHdc 
HDC GetSafeHdc( ) const; 

Return Value 

Remarks 

A device context handle. 

Call this member function to get m_hDC, the output device context. This member 
function also works with null pointers. 

CDC: : GetStretchBltMode 
int GetStretchBltMode( ) const; 

Return Value 

Remarks 

502 

The return value specifies the current bitmap-stretching mode­
STRETCH_ANDSCANS, STRETCH_DELETESCANS, or 
STRETCH_ORSCANS-if the function is successful. 

Retrieves the current bitmap-stretching mode. The bitmap-stretching mode defines 
how information is removed from bitmaps that are stretched or compressed by the 
StretchBlt member function. 

The STRETCH_ANDSCANS and STRETCH_ ORSCANS modes are typically 
used to preserve foreground pixels in monochrome bitmaps. The 
STRETCH_DELETES CANS mode is typically used to preserve color in color 
bitmaps. 

See Also: CDC::StretchBlt, CDC::SetStretchBltMode, ::GetStretchBltMode 



CDC: :GetTabbedTextExtent 

CDC: : GetTabbedTextExtent 
CSize GetTabbedTextExtent( LPCTSTR ipszString, int nCount, int nTabPositions, 

... LPINT lpnTabStopPositions ) const; 
CSize GetTabbedTextExtent( const CString& str, int nTabPositions, 

... LPINT ipnTabStopPositiolls ) const; 

Return Value 
The dimensions of the string (in logical units) in a CSize object. 

Parameters 

Remarks 

ipszString Points to a character string. You can also pass a CString object for this 
parameter. 

nCount Specifies the number of characters in the string. If nCount is -1, the length is 
calculated. 

nTabPositions Specifies the number of tab-stop positions in the array pointed to by 
ipnTabStopPositions. 

ipnTabStopPositiollS Points to an array of integers containing the tab-stop positions 
in logical units. The tab stops must be sorted in increasing order; the smallest 
x-value should be the first item in the array. Back tabs are not allowed. 

str A CString object that contains the specified characters to be drawn. 

Call this member function to compute the width and height of a character string using 
m_hAttribDC, the attribute device context. If the string contains one or more tab 
characters, the width of the string is based upon the tab stops specified by 
lpnTabStopPositiol1s. The function uses the currently selected font to compute the 
dimensions of the string. 

The current clipping region does not offset the width and height returned by the 
GetTabbedTextExtent function. 

Since some devices do not place characters in regular cell arrays (that is, they kern the 
characters), the sum of the extents of the characters in a string may not be equal to the 
extent of the string. 

If nTabPositions is 0 and ipnTabStopPositions is NULL, tabs are expanded to eight 
times the average character width. If nTabPositions is 1, the tab stops will be 
separated by the distance specified by the first value in the array to which 
ipnTabStopPositions points. If ipnTabStopPositions points to more than a single value, 
a tab stop is set for each value in the array, up to the number specified by 
nTabPositions. 

See Also: CDC: : GetTextExtent, CDC: : GetOutputTabbedTextExtent, 
CDC: : GetOutputTextExtent, CDC: :TabbedTextOut, : : GetTabbedTextExtent, 
CSize 

503 



CDC: : GetTextAlign 

CDC: : GetTextAlign 
UINT GetTextAlign() const; 

Return Value 

Remarks 

504 

The status of the text-alignment flags. The return value is one or more of the 
following values: 

• TA_BASELINE Specifies alignment of the x-axis and the baseline of the chosen 
font within the bounding rectangle. 

• TA_BOTTOM Specifies alignment of the x-axis and the bottom of the bounding 
rectangle. 

• TA_ CENTER Specifies alignment of the y-axis and the center of the bounding 
rectangle. 

• TA_LEFT Specifies alignment of the y-axis and the left side of the bounding 
rectangle. 

• TA_NOUPDATECP Specifies that the current position is not updated. 

• TA_RIGHT Specifies alignment of the y-axis and the right side of the bounding 
rectangle. 

• TA_TOP Specifies alignment of the x-axis and the top of the bounding rectangle. 

• TA_UPDATECP Specifies that the current position is updated. 

Retrieves the status of the text-alignment flags for the device context. 

The text-alignment flags determine how the TextOut and ExtTextOut member 
functions align a string of text in relation to the string's starting point. The 
text-alignment flags are not necessarily single-bit flags and may be equal to O. 
To test whether a flag is set, an application should follow these steps: 

1. Apply the bitwise OR operator to the flag and its related flags, grouped as follows: 

• TA_LEFT, TA_CENTER, and TA_RIGHT 

• TA_BASELINE, TA_BOTTOM, and TA_TOP 

• TA_NOUPDATECPandTA_UPDATECP 

2. Apply the bitwise-AND operator to the result and the return value of 
GetTextAlign. 

3. Test for the equality of this result and the flag. 

See Also: CDC::ExtTextOut, CDC::SetTextAlign, CDC::TextOut, 
: : GetTextAlign 



CDC: : GetTextCharacterExtra 
int GetTextCharacterExtra() const; 

Return Value 

Remarks 

The amount of the intercharacter spacing. 

Retrieves the current setting for the amount of intercharacter spacing. GDI adds this 
spacing to each character, including break characters, when it writes a line of text to 
the device context. 

The default value for the amount of intercharacter spacing is O. 

See Also: CDC: :SetTextCharacterExtra, : : GetTextCharacterExtra 

CDC: : GetTextColor 
COLORREF GetTextColor( ) const; 

Return Value 

Remarks 

The current text color as an RGB color value. 

Retrieves the current text color. The text color is the foreground color of characters 
drawn by using the GDI text-output member functions TextOut, ExtTextOut, and 
TabbedTextOut. 

See Also: CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkMode, 
CDC::SetTextColor, ::GetTextColor 

CDC: : GetTextExtent 
CSize GetTextExtent( LPCTSTR lpszString, int nCount) const; 
CSize GetTextExtent( const CString& str ) const; 

Return Value 
The dimensions of the string (in logical units) in a CSize object. 

Parameters 
lpszString Points to a string of characters. You can also pass a CString object for this 

parameter. 

nCount Specifies the number of characters in the string. 

str A CString object that contains the specified characters. 

CDC: :GetTextExtent 

505 



CDC::GetTextFace 

Remarks 
Call this member function to compute the width and height of a line of text using the 
current font to determine the dimensions. The information is retrieved from 
m_hAttribDC, the attribute device context. 

The current clipping region does not affect the width and height returned by 
GetTextExtent. 

Since some devices do not place characters in regular cell arrays (that is, they carry 
out kerning), the sum of the extents of the characters in a string may not be equal to 
the extent of the string. 

See Also: CDC::GetTabbedTextExtent, CDC::m_hAttribDC, CDC::m_hDC, 
CDC: : GetOutputTextExtent, CDC: :SetTextJ ustification, CSize 

CDC: : GetTextFace 
int GetTextFace( int nCount, LPTSTR lpszFacename) const; 
int GetTextFace( CString& rString ) const; 

Return Value 
The number of bytes copied to the buffer, not including the terminating null character. 
It is 0 if an error occurs. 

Parameters 

Remarks 

nCount Specifies the size of the buffer (in bytes). If the typeface name is longer than 
the number of bytes specified by this parameter, the name is truncated. 

lpszF acename Points to the buffer for the typeface name. 

rString A reference to a CString object. 

Call this member function to copy the typeface name of the current font into a buffer. 
The typeface name is copied as a null-terminated string. 

See Also: CDC::GetTextMetrics, CDC::SetTextAlign, CDC::TextOut, 
:: GetTextFace 

CDC: : GetTextMetrics 
BOOL GetTextMetrics( LPTEXTMETRIC lpMetrics) const; 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
lpMetrics Points to the TEXTMETRIC structure that receives the metrics. 

506 



Remarks 
Retrieves the metrics for the current font using the attribute device context. 

See Also: CDC::GetTextAlign, CDC::m_hAttribDC, CDC::m_hDC, 
CDC: : GetOutputTextMetrics, CDC: : GetTextExtent, CDC: : GetTextFace, 
CDC: :SetTextJ ustification, :: GetTextMetrics 

CDC: : GetViewportExt 
CSize GetViewportExt() const; 

Return Value 

Remarks 

The x- and y-extents (in device units) as a CSize object. 

Retrieves the x- and y-extents of the device context's viewport. 

See Also: CDC::SetViewportExt, CSize, CDC::SetWindowExt 

CDC: : Get ViewportOrg 
CPoint GetViewportOrg() const; 

Return Value 

Remarks 

The origin of the viewport (in device coordinates) as a CPoint object. 

Retrieves the x- and y-coordinates of the origin of the viewport associated with the 
device context. 

See Also: CDC::GetWindowOrg, CPoint, CDC::SetViewportOrg 

CDC: : GetWindow 
CWnd* GetWindow() const; 

Return Value 

Remarks 

Pointer to a CWnd object if successful; otherwise NULL. 

Returns the window associated with the display device context. This is an advanced 
function. For example, this member function may not return the view window when 
printing or in print preview. It always returns the window associated with output. 
Output functions that use the given DC draw into this window. 

See Also: CWnd::GetDC, CWnd::GetWindowDC, ::GetWindow 

CDC: :GetWindow 

507 



CDC::GetWindowExt 

CDC::GetWindowExt 
CSize GetWindowExt( ) const; 

Return Value 

Remarks 

The x- and y-extents (in logical units) as a CSize object. 

Retrieves the x- and y-extents of the window associated with the device context. 

See Also: CDC::SetWindowExt, CSize, CDC::GetViewportExt 

CDC: : GetWindowOrg 
CPoint GetWindowOrg() const; 

Return Value 

Remarks 

The origin of the window (in logical coordinates) as a CPoint object. 

Retrieves the x- and y-coordinates of the origin of the window associated with the 
device context. 

See Also: CDC::GetViewportOrg, CDC::SetWindowOrg, CPoint 

CDC::GrayString 
virtual BOOL GrayString( CBrush* pBrush, 

... BOOL ( CALLBACK EXPORT* lpjnOutput ) ( HDC, LPARAM, int ), 

... LPARAM lpData, int nCount, int x, int y, int n Width, int nHeight ); 

Return Value 
Nonzero if the string is drawn, or ° if either the TextOut function or the 
application-supplied output function returned 0, or if there was insufficient memory to 
create a memory bitmap for dimming. 

Parameters 

508 

pBrush Identifies the brush to be used for dimming (graying). 

lpjnOutput Specifies the procedure-instance address of the application-supplied 
callback function that will draw the string. For more information, see the 
description of the Windows OutputFunc callback function. If this parameter is 
NULL, the system uses the Windows TextOut function to draw the string, and 
lpData is assumed to be a long pointer to the character string to be output. 

lpData Specifies a far pointer to data to be passed to the output function. If 
lpjnOutput is NULL, lpData must be a long pointer to the string to be output. 

nCount Specifies the number of characters to be output. If this parameter is 0, 
GrayString calculates the length of the string (assuming that lpData is a pointer 



Remarks 

to the string). If nCount is -1 and the function pointed to by lpfnOutput returns 0, 
the image is shown but not dimmed. 

x Specifies the logical x-coordinate of the starting position of the rectangle that 
encloses the string. 

y Specifies the logical y-coordinate of the starting position of the rectangle that 
encloses the string. 

n Width Specifies the width (in logical units) of the rectangle that encloses the string. 
If n Width is 0, GrayString calculates the width of the area, assuming /pData is a 
pointer to the string. 

nHeight Specifies the height (in logical units) of the rectangle that encloses the 
string. If nHeight is 0, GrayString calculates the height of the area, assuming 
lpData is a pointer to the string. 

Draws dimmed (gray) text at the given location by writing the text in a memory 
bitmap, dimming the bitmap, and then copying the bitmap to the display. The function 
dims the text regardless of the selected brush and background. The GrayString 
member function uses the currently selected font. The MM_TEXT mapping mode 
must be selected before using this function. 

An application can draw dimmed (grayed) strings on devices that support a solid gray 
color without calling the GrayString member function. The system color 
COLOR_GRAYTEXT is the solid-gray system color used to draw disabled text. The 
application can call the GetSysColor Windows function to retrieve the color value of 
COLOR_GRAYTEXT.1f the color is other than ° (black), the application can call 
the SetTextColor member function to set the text color to the color value and then 
draw the string directly. If the retrieved color is black, the application must call 
GrayString to dim (gray) the text. 

If lpfnOutput is NULL, GDI uses the Windows TextOut function, and lpData is 
assumed to be a far pointer to the character to be output. If the characters to be output 
cannot be handled by the TextOut member function (for example, the string is stored 
as a bitmap), the application must supply its own output function. 

Also note that all callback functions must trap Microsoft Foundation exceptions 
before returning to Windows, since exceptions cannot be thrown across callback 
boundaries. For more information about exceptions, see the article "Exceptions" in 
Visual C++ Programmer's Guide online. 

The callback function passed to GrayString must use the Pascal calling convention, 
must be exported with _export, and must be declared FAR. 

When the framework is in preview mode, a call to the GrayString member function is 
translated to a TextOut call, and the callback function is not called. 

See Also: ::GetSysColor, CDC::SetTextColor, CDC::TextOut, ::GrayString 

CDC: :GrayString 

509 



CDC::HIMETRICtoDP 

CDC: :HIMETRICtoDP 
void HIMETRICtoDP( LPSIZE IpSize ) const; 

Parameters 

Remarks 

IpSize Points to a SIZE structure or CSize object. 

Use this function when you convert HIMETRIC sizes from OLE to pixels. 

If the mapping mode of the device context object is MM_LOENGLISH, 
MM_HIENGLISH, MM_LOMETRIC or MM_HIMETRIC, then the conversion 
is based on the number of pixels in the physical inch. If the mapping mode is one of 
the other non-constrained modes (e.g., MM_ TEXT), then the conversion is based on 
the number of pixels in the logical inch. 

See Also: CDC::LPtoDP, CDC::HIMETRICtoLP 

CDC: :HIMETRICtoLP 
void HIMETRICtoLP( LPSIZE IpSize ) const; 

Parameters 

Remarks 

IpSize Points to a SIZE structure or CSize object. 

Call this function to convert HIMETRIC units into logical units. Use this function 
when you get HIMETRIC sizes from OLE and wish to convert them to your 
application's natural mapping mode. 

The conversion is accomplished by first converting the HIMETRIC units into pixels 
and then converting these units into logical units using the device context's current 
mapping units. Note that the extents of the device's window and viewport will affect 
the result. 

See Also: CDC::HIMETRICtoDP, CDC::DPtoLP 

CDC: : IntersectClipRect 
virtual int IntersectClipRect( int xl, int yl, int x2, int y2 ); 
virtual int IntersectClipRect( LPCRECT IpRect); 

Return Value 
The new clipping region's type. It can be anyone of the following values: 

• COMPLEXREGION New clipping region has overlapping borders. 

• ERROR Device context is not valid . 

• NULLREGION New clipping region is empty. 

510 



• SIMPLEREGION New clipping region has no overlapping borders. 

Parameters 

Remarks 

xl Specifies the logical x-coordinate of the upper-left corner of the rectangle. 

yl Specifies the logical y-coordinate of the upper-left corner of the rectangle. 

x2 Specifies the logical x-coordinate of the lower-right corner of the rectangle. 

y2 Specifies the logical y-coordinate of the lower-right corner of the rectangle. 

IpRect Specifies the rectangle. You can pass either a CRect object or a pointer to a 
RECT structure for this parameter. 

Creates a new clipping region by forming the intersection of the current region and the 
rectangle specified by xl, yl, x2, and y2. GDI clips all subsequent output to fit within 
the new boundary. The width and height must not exceed 32,767. 

See Also: : :IntersectClipRect, CRect, RECT 

CDC: : InvertRect 
void InvertRect( LPCRECT IpRect ); 

Parameters 

Remarks 

lpRect Points to a RECT that contains the logical coordinates of the rectangle to be 
inverted. You can also pass a CRect object for this parameter. 

Inverts the contents of the given rectangle. Inversion is a logical NOT operation and 
flips the bits of each pixel. On monochrome displays, the function makes white pixels 
black and black pixels white. On color displays, the inversion depends on how colors 
are generated for the display. Calling InvertRect twice with the same rectangle 
restores the display to its previous colors. 

If the rectangle is empty, nothing is drawn. 

See Also: CDC::FillRect, ::InvertRect, CRect, RECT 

CDC: : InvertRgn 
BOOL InvertRgn( CRgn* pRgn); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
pRgn Identifies the region to be inverted. The coordinates for the region are specified 

in device units. 

CDC::InvertRgn 

511 



CDC: :IsPrinting 

Remarks 
Inverts the colors in the region specified by pRgn. On monochrome displays, the 
function makes white pixels black and black pixels white. On color displays, the 
inversion depends on how the colors are generated for the display. 

See Also: CDC::FillRgn, CDC::PaintRgn, CRgn, ::InvertRgn 

CDC: : I sPrinting 
BOOL IsPrinting( ) const; 

Return Value 
Nonzero if the CDC object is a printer DC; otherwise O. 

CDC::LineTo 
BOOL LineTo( int x, int y ); 
BOOL LineTo( POINT point ); 

Return Value 
Nonzero if the line is drawn; otherwise O. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the endpoint for the line. 

y Specifies the logical y-coordinate of the endpoint for the line. 

point Specifies the endpoint for the line. You can pass either a POINT structure or a 
CPoint object for this parameter. 

Draws a line from the current position up to, but not including, the point specified by 
x and y (or point). The line is drawn with the selected pen. The current position is set 
to x,y or to point. 

See Also: CDC::MoveTo, CDC::GetCurrentPosition, ::LineTo~ CPoint, POINT 

CDC::LPtoDP 
void LPtoDP( LPPOINT IpPoints, int nCount = 1 ) const; 
void LPtoDP( LPRECT IpRect ) const; 
void LPtoDP( LPSIZE IpSize ) const; 

Parameters 

512 

IpPoints Points to an array of points. Each point in the array is a POINT structure or 
a CPoint object. 

nCount The number of points in the array. 



Remarks 

IpRect Points to a RECT structure or a CRect object. This parameter is used for the 
common case of mapping a rectangle from logical to device units. 

IpSize Points to a SIZE structure or a CSize object. 

Converts logical units into device units. The function maps the coordinates of each 
point, or dimensions of a size, from GDI's logical coordinate system into a device 
coordinate system. The conversion depends on the current mapping mode and the 
settings of the origins and extents of the device's window and viewport. 

The x- and y-coordinates of points are 2-byte signed integers in the range -32,768 
through 32,767. In cases where the mapping mode would result in values larger than 
these limits, the system sets the values to -32,768 and 32,767, respectively. 

See Also: CDC::DPtoLP, CDC::HIMETRICtoLP, ::LPtoDP, 
CDC: : GetWindowOrg, CDC: : GetWindowExt 

CDC: : LPtoHIMETRIC 
void LPToHIMETRIC( LPSIZE IpSize) const; 

Parameters 

Remarks 

IpSize Points to a SIZE structure or a CSize object. 

Call this function to convert logical units into HIMETRIC units. Use this function 
when you give HIMETRIC sizes to OLE, converting from your application's natural 
mapping mode. Note that the extents of the device's window and viewport will affect 
the result. 

The conversion is accomplished by first converting the logical units into pixels using 
the device context's current mapping units and then converting these units into 
HIMETRIC units. 

See Also: CDC::HIMETRICtoLP, CDC::LPtoDP, CDC::DPtoHIMETRIC 

CDC: :MaskBlt 
BOOL MaskBlt( int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc, int ySrc, 

... CBitmap& maskBitmap, int xMask, int yMask, DWORD dwRop ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
x Specifies the logical x-coordinate of the upper-left comer of the destination 

rectangle. 

CDC: :MaskBlt 

513 



CDC::MaskBlt 

Remarks 

514 

y Specifies the logical y-coordinate of the upper-left corner of the destination 
rectangle. 

n Width Specifies the width, in logical units, of the destination rectangle and source 
bitmap. 

nHeight Specifies the height, in logical units, of the destination rectangle and source 
bitmap. 

pSrcDC Identifies the device context from which the bitmap is to be copied. It must 
be zero if the dwRop parameter specifies a raster operation that does not include a 
source. 

xSrc Specifies the logical x-coordinate of the upper-left corner of the source bitmap. 

ySrc Specifies the logical y-coordinate of the upper-left corner of the source bitmap. 

maskBitmap Identifies the monochrome mask bitmap combined with the color 
bitmap in the source device context. 

xMask Specifies the horizontal pixel offset for the mask bitmap specified by the 
maskBitmap parameter. 

yMask Specifies the vertical pixel offset for the mask bitmap specified by the 
maskBitmap parameter. 

dwRop Specifies both foreground and background ternary raster operation codes, 
which the function uses to control the combination of source and destination data. 
The background raster operation code is stored in the high byte of the high word of 
this value; the foreground raster operation code is stored in the low byte of the high 
word of this value; the low word of this value is ignored, and should be zero. The 
macro MAKEROP4 creates such combinations of foreground and background 
raster operation codes. See the Remarks section for a discussion of foreground and 
background in the context of this function. See the BitBIt member function for a 
list of common raster operation codes. 

Combines the color data for the source and destination bitmaps using the given mask 
and raster operation. A value of 1 in the mask specified by maskBitmap indicates that 
the foreground raster operation code specified by dwRop should be applied at that 
location. A value of 0 in the mask indicates that the background raster operation code 
specified by dwRop should be applied at that location. If the raster operations require 
a source, the mask rectangle must cover the source rectangle. If it does not, the 
function will fail. If the raster operations do not require a source, the mask rectangle 
must cover the destination rectangle. If it does not, the function will fail. 

If a rotation or shear transformation is in effect for the source device context when this 
function is called, an error occurs. However, other types of transformations are allowed. 

If the color formats of the source, pattern, and destination bitmaps differ, this function 
converts the pattern or source format, or both, to match the destination format. If the 
mask bitmap is not a monochrome bitmap, an error occurs. When an enhanced 



metafile is being recorded, an error occurs (and the function returns 0) if the source 
device context identifies an enhanced-metafile device context. Not all devices support 
MaskBlt. An application should call GetDeviceCaps to determine whether a device 
supports this function. If no mask bitmap is supplied, this function behaves exactly 
like BitBlt, using the foreground raster operation code. The pixel offsets in the mask 
bitmap map to the point (0,0) in the source device context's bitmap. This is useful for 
cases in which a mask bitmap contains a set of masks; an application can easily apply 
anyone of them to a mask-blitting task by adjusting the pixel offsets and rectangle 
sizes sent to MaskBIt. 

See Also: CDC::BitBlt, CDC::GetDeviceCaps, CDC::PIgBlt, CDC::StretchBlt, 
::MaskBlt 

CDC: :MoveTo 
CPoint MoveTo( int x, int y); 
CPoint MoveTo( POINT point); 

Return Value 
The x- and y-coordinates of the previous position as a CPoint object. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the new position. 

y Specifies the logical y-coordinate of the new position. 

point Specifies the new position. You can pass either a POINT structure or a CPoint 
object for this parameter. 

Moves the current position to the point specified by x and y (or by point). 

See Also: CDC::GetCurrentPosition, CDC::LineTo, CPoint, POINT 

CDC:: OffsetClipRgn 
virtual int OffsetClipRgn( int x, int y ); 
virtual int OffsetClipRgn( SIZE size); 

Return Value 
The new region's type. It can be anyone of the following values: 

• COMPLEXREGION Clipping region has overlapping borders. 

• ERROR Device context is not valid. 

• NULLREGION Clipping region is empty. 

• SIMPLEREGION Clipping region has no overlapping borders. 

CDC: :OffsetClipRgn 

515 



CDC: : Offset ViewportOrg 

Parameters 

Remarks 

x Specifies the number of logical units to move left or right. 

y Specifies the number of logical units to move up or down. 

size Specifies the amount to offset. 

Moves the clipping region of the device context by the specified offsets. The function 
moves the region x units along the x-axis and y units along the y-axis. 

See Also: CDC::SelectClipRgn, ::OffsetClipRgn 

CDC: : Offset ViewportOrg 
virtual CPoint OffsetViewportOrg( int nWidth, int nHeight); 

Return Value 
The previous viewport origin (in device coordinates) as a CPoint object. 

Parameters 

Remarks 

nWidth Specifies the number of device units to add to the current origin's 
x -coordinate. 

nHeight Specifies the number of device units to add to the current origin's 
y -coordinate. 

Modifies the coordinates of the viewport origin relative to the coordinates of the 
current viewport origin. 

See Also: CDC::GetViewportOrg, CDC::OffsetWindowOrg, 
CDC: :Set ViewportOrg, CPoint 

CDC: : Offset WindowOrg 
CPoint OffsetWindowOrg( int n Width, int nHeight ); 

Return Value 
The previous window origin (in logical coordinates) as a CPoint object. 

Parameters 

Remarks 

516 

n Width Specifies the number of logical units to add to the current origin's 
x -coordinate. 

nHeight Specifies the number of logical units to add to the current origin's 
y-coordinate. 

Modifies the coordinates of the window origin relative to the coordinates of the 
current window origin. 



See Also: CDC::GetWindowOrg, CDC::OffsetViewportOrg, 
CDC::SetWindowOrg, CPoint 

CDC: :PaintRgn 
BOOL PaintRgn( CRgn* pRgn ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

pRgn Identifies the region to be filled. The coordinates for the given region are 
specified in device units. 

Fills the region specified by pRgn using the current brush. 

See Also: CBrush, CDC::SelectObject, CDC::FillRgn, ::PaintRgn, CRgn 

CDC::PatBlt 
BOOL PatBlt( int x, int y, int n Width, int nHeight, DWORDdwRop ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
x Specifies the logical x-coordinate of the upper-left corner of the rectangle that is to 

receive the pattern. 

y Specifies the logical y-coordinate of the upper-left corner of the rectangle that is to 
receive the pattern. 

n Width Specifies the width (in logical units) of the rectangle that is to receive the 
pattern. 

nHeight Specifies the height (in logical units) of the rectangle that is to receive the 
pattern. 

dwRop Specifies the raster-operation code. Raster-operation codes (ROPs) define 
how GDI combines colors in output operations that involve a current brush, a 
possible source bitmap, and a destination bitmap. This parameter can be one of the 
following values: 

• PATCOPY Copies pattern to destination bitmap. 

• PATINVERT Combines destination bitmap with pattern using the Boolean 
XOR operator. 

• DSTINVERT Inverts the destination bitmap. 

CDC::PatBlt 

517 



CDC::Pie 

Remarks 

• BLACKNESS Turns all output black. 

• WHITENESS Turns all output white. 

Creates a bit pattern on the device. The pattern is a combination of the selected brush 
and the pattern already on the device. The raster-operation code specified by dwRop 
defines how the patterns are to be combined. The raster operations listed for this 
function are a limited subset of the full 256 ternary raster-operation codes; in 
particular, a raster-operation code that refers to a source cannot be used. 

Not all device contexts support the PatBlt function. To determine whether a device 
context supports PatBlt, call the GetDeviceCaps member function with the 
RASTER CAPS index and check the return value for the RC_BITBLT flag. 

See Also: CDC::GetDeviceCaps, ::PatBlt 

CDC::Pie 
BOOL Pie( int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4 ); 
BOOL Pie( LPCRECT [pReet, POINT ptStart, POINT ptEnd ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

518 

xl Specifies the x-coordinate of the upper-left corner of the bounding rectangle 
(in logical units). 

yl Specifies the y-coordinate of the upper-left corner of the bounding rectangle 
(in logical units). 

x2 Specifies the x-coordinate of the lower-right corner of the bounding rectangle 
(in logical units). 

y2 Specifies the y-coordinate of the lower-right corner of the bounding rectangle 
(in logical units). 

x3 Specifies the x-coordinate of the arc's starting point (in logical units). This point 
does not have to lie exactly on the arc. 

y3 Specifies the y-coordinate of the arc's starting point (in logical units). This point 
does not have to lie exactly on the arc. 

x4 Specifies the x-coordinate of the arc's endpoint (in logical units). This point does 
not have to lie exactly on the arc. 

y4 Specifies the y-coordinate of the arc's endpoint (in logical units). This point does 
not have to lie exactly on the arc. 

[pReet Specifies the bounding rectangle. You can pass either a CRect object or a 
pointer to a RECT structure for this parameter. 



Remarks 

ptStart Specifies the starting point of the arc. This point does not have to lie exactly 
on the arc. You can pass either a POINT structure or a CPoint object for this 
parameter. 

ptEnd Specifies the endpoint of the arc. This point does not have to lie exactly on the 
arc. You can pass either a POINT structure or a CPoint object for this parameter. 

Draws a pie-shaped wedge by drawing an elliptical arc whose center and two 
endpoints are joined by lines. The center of the arc is the center of the bounding 
rectangle specified by xl, yl, x2, and y2 (or by IpRect). The starting and ending points 
of the arc are specified by x3, y3, x4, and y4 (or by ptStart and ptEnd). 

The arc is drawn with the selected pen, moving in a counterclockwise direction. Two 
additional lines are drawn from each endpoint to the arc's center. The pie-shaped area 
is filled with the current brush. If x3 equals x4 and y3 equals y4, the result is an ellipse 
with a single line from the center of the ellipse to the point (x3, y3) or (x4, y4). 

The figure drawn by this function extends up to but does not include the right and 
bottom coordinates. This means that the height of the figure is y2 - y 1 and the width 
of the figure is x2 - xl. Both the width and the height of the bounding rectangle must 
be greater than 2 units and less than 32,767 units. 

See Also: CDC::Chord, ::Pie, RECT, POINT, CRect, CPoint 

CDC::PlayMetaFile 
BOOL PlayMetaFile( HMETAFILE hMF); 
BOOL PlayMetaFile( HENHMETAFILE hEnhMetaFile, LPCRECT IpBounds); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

hMF Identifies the metafile to be played. 

hEnhMetaFile Identifies the enhanced metafile. 

IpBounds Points to a RECT structure or a CRect object that contains the coordinates 
of the bounding rectangle used to display the picture. The coordinates are specified 
in logical units. 

Plays the contents of the specified metafile on the device context. The metafile can be 
played any number of times. 

The second version of PlayMetaFile displays the picture stored in the given 
enhanced-format metafile. When an application calls the second version of 
PlayMetaFile, Windows uses the picture frame in the enhanced-metafile header to 
map the picture onto the rectangle pointed to by the IpBounds parameter. (This picture 

CDC: :PlayMetaFi1e 

519 



CDC: :PIgBlt 

may be sheared or rotated by setting the world transform in the output device before 
calling PlayMetaFile.) Points along the edges of the rectangle are included in the 
picture. An enhanced-metafile picture can be clipped by defining the clipping region 
in the output device before playing the enhanced metafile. 

If an enhanced metafile contains an optional palette, an application can achieve 
consistent colors by setting up a color palette on the output device before calling the 
second version of PlayMetaFile. To retrieve the optional palette, use the 
::GetEnhMetaFilePaletteEntries function. An enhanced metafile can be embedded 
in a newly created enhanced metafile by calling the second version of PlayMetaFile 
and playing the source enhanced metafile into the device context for the new 
enhanced metafile. 

The states of the output device context are preserved by this function. Any object 
created but not deleted in the enhanced metafile is deleted by this function. To stop 
this function, an application can call the ::CanceIDC function from another thread to 
terminate the operation. In this case, the function returns zero. 

See Also: : : CancelDC, :: GetEnhMetaFileHeader, 
: : GetEnhMetaFilePaletteEntries, : : Set World Transform, : :PlayMetaFile, 
::PIayEnhMetaFile, ::PlayMetaFile 

CDC: :PIgBlt 
BOOL PIgBlt( POINT IpPoint, CDC* pSrcDC, int xSrc, int ySrc, int n Width, 

~ int nHeight, CBitmap& maskBitmap, int xMask, int yMask ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

520 

IpPoint Points to an array of three points in logical space that identifies three corners 
of the destination parallelogram. The upper-left corner of the source rectangle is 
mapped to the first point in this array, the upper-right corner to the second point in 
this array, and the lower-left corner to the third point. The lower-right corner of the 
source rectangle is mapped to the implicit fourth point in the parallelogram. 

pSrcDC Identifies the source device context. 

xSrc Specifies the x-coordinate, in logical units, of the upper-left corner of the source 
rectangle. 

ySrc Specifies the y-coordinate, in logical units, of the upper-left corner of the source 
rectangle. 

n Width Specifies the width, in logical units, of the source rectangle. 

nHeight Specifies the height, in logical units, of the source rectangle. 

maskBitmap Identifies an optional monochrome bitmap that is used to mask the 
colors of the source rectangle. 



Remarks 

xMask Specifies the x-coordinate of the upper-left corner of the monochrome 
bitmap. 

yMask Specifies the y-coordinate of the upper-left corner of the monochrome 
bitmap. 

Performs a bit-block transfer of the bits of color data from the specified rectangle in 
the source device context to the specified parallelogram in the given device context. If 
the given bitmask handle identifies a valid monochrome bitmap, the function uses this 
bitmap to mask the bits of color data from the source rectangle. 

The fourth vertex of the parallelogram (D) is defined by treating the first three points 
(A, B, and C) as vectors and computing D = B + C - A. 

If the bitmask exists, a value of 1 in the mask indicates that the source pixel color 
should be copied to the destination. A value of 0 in the mask indicates that the 
destination pixel color is not to be changed. 

If the mask rectangle is smaller than the source and destination rectangles, the 
function replicates the mask pattern. 

Scaling, translation, and reflection transformations are allowed in the source device 
context; however, rotation and shear transformations are not. If the mask bitmap is not 
a monochrome bitmap, an error occurs. The stretching mode for the destination device 
context is used to determine how to stretch or compress the pixels, if that is necessary. 
When an enhanced metafile is being recorded, an error occurs if the source device 
context identifies an enhanced-metafile device context. 

The destination coordinates are transformed according to the destination device 
context; the source coordinates are transformed according to the source device 
context. If the source transformation has a rotation or shear, an error is returned. If the 
destination and source rectangles do not have the same color format, PIgBlt converts 
the source rectangle to match the destination rectangle. Not all devices support PIgBlt. 
For more information, see the description of the RC_BITBLT raster capability in the 
CDC: : GetDeviceCaps member function. 

If the source and destination device contexts represent incompatible devices, PIgBlt 
returns an error. 

See Also: CDC::BitBlt, CDC::GetDeviceCaps, CDC::MaskBlt, 
CDC::StretchBlt, ::SetStretchBltMode , ::PIgBlt 

CDC::PolyBezier 
BOOL PolyBezier( const POINT* lpPoints, int nCount ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

CDC::PolyBezier 

521 



CDC: :PolyBezierTo 

Parameters 

Remarks 

lpPoints Points to an array of POINT data structures that contain the endpoints and 
control points of the spline(s). 

nCount Specifies the number of points in the IpPoints array. This value must be one 
more than three times the number of splines to be drawn, because each Bezier 
spline requires two control points and an endpoint, and the initial spline requires an 
additional starting point. 

Draws one or more Bezier splines. This function draws cubic Bezier splines by using 
the endpoints and control points specified by the IpPoints parameter. The first spline 
is drawn from the first point to the fourth point by using the second and third points 
as control points. Each subsequent spline in the sequence needs exactly three more 
points: the end point of the previous spline is used as the starting point, the next two 
points in the sequence are control points, and the third is the end point. 

The current position is neither used nor updated by the PolyBezier function. The 
figure is not filled. This function draws lines by using the current pen. 

See Also: CDC::PolyBezierTo, ::PolyBezier 

CDC: :Poly BezierTo 
BOOL PolyBezierTo( coost POINT* lpPoints, iot nCount); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

522 

lpPoints Points to an array of POINT data structures that contains the endpoints and 
control points. 

nCount Specifies the number of points in the IpPoints array. This value must be three 
times the number of splines to be drawn, because each Bezier spline requires two 
control points and an end point. 

Draws one or more Bezier splines. This function draws cubic Bezier splines by using 
the control points specified by the lpPoints parameter. The first spline is drawn from 
the current position to the third point by using the first two points as control points. 
For each subsequent spline, the function needs exactly three more points, and uses the 
end point of the previous spline as the starting point for the next. Poly BezierTo moves 
the current position to the end point of the last Bezier spline. The figure is not filled. 
This function draws lines by using the current pen. 

See Also: CDC::MoveTo, CDC::PolyBezier, ::PolyBezierTo 



CDC::PolyDraw 
BOOL PolyDraw( const POINT* lpPoints, const BYTE* IpTypes, int nCount); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

lpPoints Points to an array of POINT data structures that contains the endpoints for 
each line segment and the endpoints and control points for each Bezier spline. 

lpTypes Points to an array that specifies how each point in the IpPoints array is used. 
Values can be one of the following: 

• PT_MOVETO Specifies that this point starts a disjoint figure. This point 
becomes the new current position. 

• PT_LINETO Specifies that a line is to be drawn from the current position to 
this point, which then becomes the new current position. 

• PT _BEZIERTO Specifies that this point is a control point or ending point for 
a Bezier spline. 

PT_BEZIERTO types always occur in sets of three. The current position 
defines the starting point for the Bezier spline. The first two PT_BEZIERTO 
points are the control points, and the third PT_BEZIERTO point is the ending 
point. The ending point becomes the new current position. If there are not three 
consecutive PT_BEZIERTO points, an error results. 

A PT_LINETO or PT_BEZIERTO type can be combined with the following 
constant by using the bitwise operator OR to indicate that the corresponding 
point is the last point in a figure and the figure is closed: 

• PT_CLOSEFIGURE Specifies that the figure is automatically closed after the 
PT_LINETO or PT_BEZIERTO type for this point is done. A line is drawn 
from this point to the most recent PT_MOVETO or MoveTo point. 

This flag is combined with the PT_LINETO type for a line, or with the 
PT _BEZIERTO type of ending point for a Bezier spline, by using the bitwise 
OR operator. The current position is set to the ending point of the closing line. 

nCount Specifies the total number of points in the lpPoints array, the same as the 
number of bytes in the IpTypes array. 

Draws a set of line segments and Bezier splines. This function can be used to draw 
disjoint figures in place of consecutive calls to CDC::MoveTo, CDC::LineTo, and 
CDC::PolyBezierTo member functions. The lines and splines are drawn using the 
current pen, and figures are not filled. If there is an active path started by calling 
the CDC::BeginPath member function, PolyDraw adds to the path. The points 
contained in the lpPoints array and in lpTypes indicate whether each point is part of 

CDC::PolyDraw 

523 



CDC: :Polygon 

a CDC::MoveTo, a CDC::LineTo, or a CDC::BezierTo operation. It is also possible 
to close figures. This function updates the current position. 

See Also: CDC::BeginPath, CDC::EndPath, CDC::LineTo, CDC::MoveTo, 
CDC::PolyBezierTo, CDC::PolyLine, ::PolyDraw 

CDC::Polygon 
BOOL Polygon( LPPOINT lpPoints, int nCount ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

lpPoints Points to an array of points that specifies the vertices of the polygon. Each 
point in the array is a POINT structure or a CPoint object. 

nCount Specifies the number of vertices in the array. 

Draws a polygon consisting of two or more points (vertices) connected by lines, using 
the current pen. The system closes the polygon automatically, if necessary, by drawing 
a line from the last vertex to the first. 

The current polygon-filling mode can be retrieved or set by using the 
GetPolyFillMode and SetPolyFillMode member functions. 

See Also: CDC::GetPolyFillMode, CDC::Polyline, CDC::PolyPolygon, 
CDC::SetPolyFillMode, CPoint, ::Polygon 

CDC::Polyline 
BOOL Polyline( LPPOINT lpPoints, int nCount ); 

Return Value 
Nonzero if the function is successful; otherwise o. 

Parameters 

Remarks 

524 

lpPoints Points to an array of POINT structures or CPoint objects to be connected. 

nCount Specifies the number of points in the array. This value must be at least 2. 

Draws a set of line segments connecting the points specified by lpPoints. The lines are 
drawn from the first point through subsequent points using the current pen. Unlike the 
LineTo member function, the Polyline function neither uses nor updates the current 
position. 

For more information, see ::PolyLine in the Win32 SDK Programmer's Reference. 

See Also: CDC::LineTo, CDC::Polygon, POINT, CPoint 



CDC: :Poly lineTo 
BOOL PolylineTo( const POINT* lpPoints, int nCount ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

lpPoints Points to an array of POINT data structures that contains the vertices of the 
line. 

nCount Specifies the number of points in the array. 

Draws one or more straight lines. A line is drawn from the current position to the first 
point specified by the lpPoints parameter by using the current pen. For each additional 
line, the function draws from the ending point of the previous line to the next point 
specified by lpPoints. PolylineTo moves the current position to the ending point of the 
last line. If the line segments drawn by this function form a closed figure, the figure is 
not filled. 

See Also: CDC::LineTo, CDC::Polyline, CDC::MoveTo, ::PolylineTo 

CDC::PolyPolygon 
BOOL PolyPolygon( LPPOINT lpPoints, LPINT lpPolyCounts, int nCount); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

lpPoints Points to an array of POINT structures or CPoint objects that define the 
vertices of the polygons. 

lpPolyCounts Points to an array of integers, each of which specifies the number of 
points in one of the polygons in the lpPoints array. 

nCount The number of entries in the lpPolyCounts array. This number specifies the 
number of polygons to be drawn. This value must be at least 2. 

Creates two or more polygons that are filled using the current polygon-filling mode. 
The polygons may be disjoint or overlapping. 

Each polygon specified in a call to the PolyPolygon function must be closed. Unlike 
polygons created by the Polygon member function, the polygons created by 
PolyPolygon are not closed automatically. 

The function creates two or more polygons. To create a single polygon, an application 
should use the Polygon member function. 

CDC::PolyPolygon 

525 



CDC::PolyPolyline 

The current polygon-filling mode can be retrieved or set by using the 
GetPolyFiIlMode and SetPolyFiIlMode member functions. 

See Also: CDC::GetPolyFiIlMode, CDC::Polygon, CDC::Polyline, 
CDC::SetPolyFiIlMode, ::PolyPolygon, POINT, CPoint 

CDC::PolyPolyline 
BOOL PolyPolyline( const POINT* IpPoints, const DWORD* IpPolyPoints, 

"+ int nCount ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

IpPoints Points to an array of structures that contains the vertices of the polylines. 
The polylines are specified consecutively. 

lpPolyPoints Points to an array of variables specifying the number of points in the 
lpPoints array for the corresponding polygon. Each entry must be greater than or 
equal to 2. 

nCount Specifies the total number of counts in the lpPolyPoints array. 

Draws multiple series of connected line segments. The line segments are drawn by 
using the current pen. The figures formed by the segments are not filled. The current 
position is neither used nor updated by this function. 

See Also: CDC::Polyline, CDC::PolylineTo, ::PolyPolyline 

CDC::PtVisible 
virtual BOOL PtVisible( int x, int y ) const; 
virtual BOOL PtVisible( POINT point) const; 

Return Value 
Nonzero if the specified point is within the clipping region; otherwise O. 

Parameters 

526 

x Specifies the logical x-coordinate of the point. 

y Specifies the logical y-coordinate of the point. 

point Specifies the point to check in logical coordinates. You can pass either a 
POINT structure or a CPoint object for this parameter. 



Remarks 
Determines whether the given point is within the clipping region of the device 
context. 

See Also: CDC::RectVisible, CDC::SelectClipRgn, CPoint, ::PtVisible, POINT 

CDC: : Query Abort 
BOOL QueryAbort() const; 

Return Value 

Remarks 

The return value is nonzero if printing should continue or if there is no abort 
procedure. It is 0 if the print job should be terminated. The return value is supplied by 
the abort function. 

Calls the abort function installed by the SetAbortProc member function for a printing 
application and queries whether the printing should be terminated. 

See Also: CDC: :SetAbortProc 

CDC: : RealizePalette 
UINT RealizePalette(); 

Return Value 

Remarks 

Indicates how many entries in the logical palette were mapped to different entries in 
the system palette. This represents the number of entries that this function remapped 
to accommodate changes in the system palette since the logical palette was last 
realized. 

Maps entries from the current logical palette to the system palette. 

A logical color palette acts as a buffer between color-intensive applications and the 
system, allowing an application to use as many colors as needed without interfering 
with its own displayed colors or with colors displayed by other windows. 

When a window has the input focus and calls RealizePalette, Windows ensures that 
the window will display all the requested colors, up to the maximum number 
simultaneously available on the screen. Windows also displays colors not found in the 
window's palette by matching them to available colors. 

In addition, Windows matches the colors requested by inactive windows that call the 
function as closely as possible to the available colors. This significantly reduces 
undesirable changes in the colors displayed in inactive windows. 

See Also: CDC::SelectPalette, CPalette, ::RealizePalette 

CDC: :RealizePalette 

527 



CDC: :Rectangle 

CDC: : Rectangle 
BOOL Rectangle( int xl, int yl, int x2, int y2 ); 
BOOL Rectangle( LPCRECT /pRect ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

xl Specifies the x-coordinate of the upper-left comer of the rectangle (in logical 
units). 

yl Specifies the y-coordinate of the upper-left comer of the rectangle (in logical 
units). 

x2 Specifies the x-coordinate of the lower-right comer of the rectangle (in logical 
units). 

y2 Specifies the y-coordinate of the lower-right comer of the rectangle (in logical 
units). 

/pRect Specifies the rectangle in logical units. You can pass either a CRect object or 
a pointer to a RECT structure for this parameter. 

Draws a rectangle using the current pen. The interior of the rectangle is filled using 
the current brush. 

The rectangle extends up to, but does not include, the right and bottom coordinates. 
This means that the height of the rectangle is y2 - yl and the width of the rectangle is 
x2 - xl. Both the width and the height of a rectangle must be greater than 2 units and 
less than 32,767 units. 

See Also: ::Rectangle, CDC::PolyLine, CDC::RoundRect, RECT, CRect 

CDC::RectVisible 
virtual BOOL RectVisible( LPCRECT /pRect ) const; 

Return Value 
Nonzero if any portion of the given rectangle lies within the clipping region; 
otherwise O. 

Parameters 

Remarks 

528 

/pRect Points to a RECT structure or a CRect object that contains the logical 
coordinates of the specified rectangle. 

Determines whether any part of the given rectangle lies within the clipping region of 
the display context. 

See Also: CDC::PtVisible, CDC::SelectClipRgn, CRect, ::RectVisible, RECT 



CDC: : ReleaseAttribDC 

Remarks 

virtual void ReleaseAttribDC( ); 

Call this member function to set m_hAttribDC to NULL. This does not cause a 
Detach to occur. Only the output device context is attached to the CDC object, and 
only it can be detached. 

See Also: CDC::SetOutputDC, CDC::SetAttribDC, CDC::ReleaseOutputDC, 
CDC: :m_hAttribDC 

CDC: : ReleaseOutputDC 

Remarks 

virtual void ReleaseOutputDC( ); 

Call this member function to set the m_hDC member to NULL. This member 
function cannot be called when the output device context is attached to the CDC 
object. Use the Detach member function to detach the output device context. 

See Also: CDC: :SetAttribDC, CDC: :SetOutputDC, CDC: :ReleaseAttribDC, 
CDC::m_hDC 

CDC: :ResetDC 
BOOL ResetDC( const DEVMODE* IpDevMode ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

IpDevMode A pointer to a Windows DEVMODE structure. 

Call this member function to update the device context wrapped by the CDC object. 
The device context is updated from the information specified in the Windows 
DEVMODE structure. This member function only resets the attribute device context. 

An application will typically use the ResetDC member function when a window 
processes a WM_DEVMODECHANGE message. You can also use this member 
function to change the paper orientation or paper bins while printing a document. 

You cannot use this member function to change the driver name, device name, or 
output port. When the user changes the port connection or device name, you must 
delete the original device context and create a new device context with the new 
information. 

CDC::ResetDC 

529 



CDC: :RestoreDC 

Before you call this member function, you must ensure that all objects (other than 
stock objects) that had been selected into the device context have been selected out. 

See Also: CDC::m_hAttrihDC, ::ResetDC, WM_DEVMODECHANGE, 
DEVMODE 

CDC: : RestoreDC 
virtual BOOL RestoreDC( int nSavedDC ); 

Return Value 
Nonzero if the specified context was restored; otherwise O. 

Parameters 

Remarks 

nSavedDC Specifies the device context to be restored. It can be a value returned by a 
previous SaveDC function call. If nSavedDC is -1, the most recently saved device 
context is restored. 

Restores the device context to the previous state identified by nSavedDC. RestoreDC 
restores the device context by popping state information off a stack created by earlier 
calls to the SaveDC member function. 

The stack can contain the state information for several device contexts. If the context 
specified by nSavedDC is not at the top of the stack, RestoreDC deletes all state 
information between the device context specified by nSavedDC and the top of the 
stack. The deleted information is lost. 

See Also: CDC::SaveDC, ::RestoreDC 

CDC: : RoundRect 
BOOL RoundRect( int xl, int yl, int x2, int y2, int x3, int y3); 
BOOL RoundRect( LPCRECT IpRect, POINT point ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

530 

xl Specifies the x-coordinate of the upper-left comer of the rectangle (in logical units). 

yl Specifies the y-coordinate of the upper-left comer of the rectangle (in logical units). 

x2 Specifies the x-coordinate of the lower-right comer of the rectangle (in logical units). 

y2 Specifies the y-coordinate of the lower-right comer of the rectangle (in logical units). 

x3 Specifies the width of the ellipse used to draw the rounded comers (in logical units). 

y3 Specifies the height of the ellipse used to draw the rounded comers (in logical units). 



CDC: :Scale ViewportExt 

Remarks 

IpRect Specifies the bounding rectangle in logical units. You can pass either a CRect 
object or a pointer to a RECT structure for this parameter. 

point The x-coordinate of point specifies the width of the ellipse to draw the rounded 
corners (in logical units). The y-coordinate of point specifies the height of the ellipse to 
draw the rounded corners (in logical units). You can pass either a POINT structure or a 
CPoint object for this parameter. 

Draws a rectangle with rounded corners using the current pen. The interior of the 
rectangle is filled using the current brush. 

The figure this function draws extends up to but does not include the right and bottom 
coordinates. This means that the height of the figure is y2 - y I and the width of the 
figure is x2 - xl. Both the height and the width of the bounding rectangle must be 
greater than 2 units and less than 32,767 units. 

See Also: CDC::Rectangle, ::RoundRect, CRect, RECT, POINT, CPoint 

CDC::SaveDC 
virtual int SaveDC( ); 

Return Value 

Remarks 

An integer identifying the saved device context. It is 0 if an error occurs. This return 
value can be used to restore the device context by calling RestoreDC. 

Saves the current state of the device context by copying state information (such as 
clipping region, selected objects, and mapping mode) to a context stack maintained by 
Windows. The saved device context can later be restored by using RestoreDC. 

SaveDC can be used any number of times to save any number of device-context 
states. 

See Also: CDC::RestoreDC, ::SaveDC 

CDC: : Scale ViewportExt 
virtual CSize Scale ViewportExt( int xNum, int xDenom, int yNum, int yDenom ); 

Return Value 
The previous viewport extents (in device units) as a CSize object. 

Parameters 
xNum Specifies the amount by which to multiply the current x-extent. 

xDenom Specifies the amount by which to divide the result of multiplying the current 
x-extent by the value of the xNum parameter. 

531 



CDC::ScaleWindowExt 

Remarks 

yNum Specifies the amount by which to multiply the current y-extent. 

yDenom Specifies the amount by which to divide the result of multiplying the current 
y-extent by the value of the yNum parameter. 

Modifies the viewport extents relative to the current values. The formulas are written 
as follows: 

xNewVE = ( xOldVE * xNum ) / xDenom 
yNewVE = ( yOldVE * yNum ) / yDenom 

The new viewport extents are calculated by multiplying the current extents by the 
given numerator and then dividing by the given denominator. 

See Also: CDC::GetViewportExt, CSize 

CDC: :Scale WindowExt 
virtual CSize ScaleWindowExt( int xNum, int xDenom, int yNum, int yDenom ); 

Return Value 
The previous window extents (in logical units) as a CSize object. 

Parameters 

Remarks 

xNum Specifies the amount by which to multiply the current x-extent. 

xDenom Specifies the amount by which to divide the result of mUltiplying the current 
x-extent by the value of the xNum parameter. 

yNum Specifies the amount by which to multiply the current y-extent. 

yDenom Specifies the amount by which to divide the result of multiplying the current 
y-extent by the value of the yNum parameter. 

Modifies the window extents relative to the current values. The formulas are written 
as follows: 

xNewWE = ( xOldWE * xNum ) / xDenom 
yNewWE = ( yOldWE * yNum ) / yDenom 

The new window extents are calculated by multiplying the current extents by the 
given numerator and then dividing by the given denominator. 

See Also: CDC::GetWindowExt, CSize 

CDC: :ScrollDC 
BOOL ScrollDC( int dx, int dy, LPCRECT IpRectScroll, LPCRECT IpRectClip, 

... CRgn* pRgnUpdate, LPRECT IpRectUpdate ); 

Return Value 
Nonzero if scrolling is executed; otherwise O. 

532 



Parameters 

Remarks 

dx Specifies the number of horizontal scroll units. 

dy Specifies the number of vertical scroll units. 

IpRectScroll Points to the RECT structure or CRect object that contains the 
coordinates of the scrolling rectangle. 

IpRectClip Points to the RECT structure or CRect object that contains the 
coordinates of the clipping rectangle. When this rectangle is smaller than the 
original one pointed to by IpRectScroll, scrolling occurs only in the smaller 
rectangle. 

pRgllUpdate Identifies the region uncovered by the scrolling process. The ScrollDC 
function defines this region; it is not necessarily a rectangle. 

IpRectUpdate Points to the RECT structure or CRect object that receives the 
coordinates of the rectangle that bounds the scrolling update region. This is the 
largest rectangular area that requires repainting. The values in the structure or 
object when the function returns are in client coordinates, regardless of the 
mapping mode for the given device context. 

Scrolls a rectangle of bits horizontally and vertically. 

If IpRectUpdate is NULL, Windows does not compute the update rectangle. If both 
pRgnUpdate and IpRectUpdate are NULL, Windows does not compute the update 
region. If pRgnUpdate is not NULL, Windows assumes that it contains a valid pointer 
to the region uncovered by the scrolling process (defined by the ScrollDC member 
function). The update region returned in IpRectUpdate can be passed to 
CWnd::lnvalidateRgn if required. 

An application should use the ScrollWindow member function of class CWnd when 
it is necessary to scroll the entire client area of a window. Otherwise, it should use 
ScrollDC. 

See Also: CWnd::lnvalidateRgn, CWnd::ScrollWindow, ::ScrollDC, CRgn, 
RECT, CRect 

CDC: :SelectClipPath 
BaaL SelectClipPath( int nMode ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
nMode Specifies the way to use the path. The following values are allowed: 

• RGN_AND The new clipping region includes the intersection (overlapping 
areas) of the current clipping region and the current path. 

CDC::SelectClipPath 

533 



CDC::SelectClipRgn 

Remarks 

• RGN_COPY The new clipping region is the current path. 

• RGN_DIFF The new clipping region includes the areas of the current clipping 
region, and those of the current path are excluded. 

• RGN_OR The new clipping region includes the union (combined areas) of the 
current clipping region and the current path. 

• RGN_XOR The new clipping region includes the union of the current clipping 
region and the current path, but without the overlapping areas. 

Selects the current path as a clipping region for the device context, combining the new 
region with any existing clipping region by using the specified mode. The device 
context identified must contain a closed path. 

See Also: CDC::BegioPath, CDC::EodPath 

CDC: : SelectClipRgn 
virtual iot SelectClipRgo( CRgo* pRgn); 
iot SelectClipRgo( CRgo* pRgn, iot nMode); 

Return Value 
The region's type. It can be any of the following values: 

• COMPLEXREGION New clipping region has overlapping borders. 

• ERROR Device context or region is not valid. 

• NULLREGION New clipping region is empty. 

• SIMPLEREGION New clipping region has no overlapping borders. 

Parameters 

534 

pRgn Identifies the region to be selected. 

• For the first version of this function, if this value is NULL, the entire client area 
is selected and output is still clipped to the window. 

• For the second version of this function, this handle can be NULL only when the 
RGN_COPY mode is specified. 

nMode Specifies the operation to be performed. It must be one of the following 
values: 

• RGN_AND The new clipping region combines the overlapping areas of the 
current clipping region and the region identified by pRgn. 

• RGN_COPY The new clipping region is a copy of the region identified by 
pRgn. This is functionality is identical to the first version of SelectClipRgo. If 
the region identified by pRgn is NULL, the new clipping region becomes the 
default clipping region (a null region). 



Remarks 

• RGN_DIFF The new clipping region combines the areas of the current 
clipping region with those areas excluded from the region identified by pRgn. 

• RGN_OR The new clipping region combines the current clipping region and 
the region identified by pRgn. 

• RGN_XOR The new clipping region combines the current clipping region and 
the region identified by pRgn but excludes any overlapping areas. 

Selects the given region as the current clipping region for the device context. Only a 
copy of the selected region is used. The region itself can be selected for any number 
of other device contexts, or it can be deleted. 

The function assumes that the coordinates for the given region are specified in device 
units. Some printer devices support text output at a higher resolution than graphics 
output in order to retain the precision needed to express text metrics. These devices 
report device units at the higher resolution, that is, in text units. These devices then 
scale coordinates for graphics so that several reported device units map to only 1 
graphic unit. You should always call the SelectClipRgn function using text units. 

Applications that must take the scaling of graphics objects in the GDI can use the 
GETSCALINGFACTOR printer escape to determine the scaling factor. This scaling 
factor affects clipping. If a region is used to clip graphics, GDI divides the coordinates 
by the scaling factor. If the region is used to clip text, GDI makes no scaling adjustment. 
A scaling factor of 1 causes the coordinates to be divided by 2; a scaling factor of 2 
causes the coordinates to be divided by 4; and so on. 

See Also: CDC::GetClipBox, CDC::Escape, CRgn::SelectClipRgn 

CDC: :SelectObject 
CPen* SelectObject( CPen* pPen ); 
CBrush* SelectObject( CBrush* pBrush ); 
virtual CFont* SelectObject( CFont* pFont); 
CBitmap* SelectObject( CBitmap* pBitmap ); 
int SelectObject( CRgn* pRgn); 

Return Value 
A pointer to the object being replaced. This is a pointer to an object of one of the 
classes derived from CGdiObject, such as CPen, depending on which version of the 
function is used. The return value is NULL if there is an error. This function may 
return a pointer to a temporary object. This temporary object is only valid during the 
processing of one Windows message. For more information, see 
CGdiObject: :FromHandle. 

CDC: :SelectObject 

535 



CDC: :SelectPalette 

The version of the member function that takes a region parameter performs the same 
task as the SelectClipRgn member function. Its return value can be any of the 
following: 

• COMPLEXREGION New clipping region has overlapping borders. 

• ERROR Device context or region is not valid. 

• NULLREGION New clipping region is empty. 

• SIMPLEREGION New clipping region has no overlapping borders. 

Parameters 

Remarks 

pPen A pointer to a CPen object to be selected. 

pBrush A pointer to a CBrush object to be selected. 

pFont A pointer to a CFont object to be selected. 

pBitmap A pointer to a CBitmap object to be selected. 

pRgn A pointer to a CRgn object to be selected. 

Selects an object into the device context. Class CDC provides five versions 
specialized for particular kinds of GDI objects, including pens, brushes, fonts, 
bitmaps, and regions. The newly selected object replaces the previous object of the 
same type. For example, if pObject of the general version of SelectObject points to a 
CPen object, the function replaces the current pen with the pen specified by pObject. 

An application can select a bitmap into memory device contexts only and into only 
one memory device context at a time. The format of the bitmap must either be 
monochrome or compatible with the device context; if it is not, SelectObject 
returns an error. 

For Windows 3.1 and later, the SelectObject function returns the same value whether 
it is used in a metafile or not. Under previous versions of Windows, SelectObject 
returned a nonzero value for success and 0 for failure when it was used in a metafile. 

See Also: CGdiObject: :DeleteObject, CGdiObject: :FromHandle, 
CDC: :SelectClipRgn, CDC: :SelectPalette, : :SelectObject 

CDC: :SelectPalette 
CPalette* SelectPalette( CPalette* pPalette, BOOL bForceBackground); 

Return Value 
A pointer to a CPalette object identifying the logical palette replaced by the palette 
specified by pPalette. It is NULL if there is an error. 

Parameters 

536 

pPalette Identifies the logical palette to be selected. This palette must already have 
been created with the CPalette member function CreatePalette. 



CDC: :SelectStockObject 

Remarks 

bForceBackground Specifies whether the logical palette is forced to be a background 
palette. If bForceBackground is nonzero, the selected palette is always a 
background palette, regardless of whether the window has the input focus. If 
bForceBackground is 0 and the device context is attached to a window, the logical 
palette is a foreground palette when the window has the input focus. 

Selects the logical palette that is specified by pPalette as the selected palette object of 
the device context. The new palette becomes the palette object used by GDI to control 
colors displayed in the device context and replaces the previous palette. 

An application can select a logical palette into more than one device context. 
However, changes to a logical palette will affect all device contexts for which it is 
selected. If an application selects a palette into more than one device context, the 
device contexts must all belong to the same physical device. 

See Also: CDC::RealizePalette, CPalette, ::SelectPalette 

CDC: : SelectStockObj ect 
virtual CGdiObject* SelectStockObject( int nlndex); 

Return Value 
A pointer to the CGdiObject object that was replaced if the function is successful. 
The actual object pointed to is a CPen, CBrush, or CFont object. If the call is 
unsuccessful, the return value is NULL. 

Parameters 
nlndex Specifies the kind of stock object desired. It can be one of the following 

values: 

• BLACK_BRUSH Black brush. 

• DKGRAY_BRUSH Dark gray brush. 

• GRAY_BRUSH Gray brush. 

• HOLLOW_BRUSH Hollow brush. 

• LTGRAY _BRUSH Light gray brush. 

• NULL_BRUSH Null brush. 

• WHITE_BRUSH White brush. 

• BLACK_PEN Black pen. 

• NULL_PEN Null pen. 

• WHITE_PEN White pen. 

• ANSI_FIXED_FONT ANSI fixed system font. 

537 



CDC: :SetAbortProc 

Remarks 

• ANSI_ VAR_FONT ANSI variable system font. 

• DEVICE_DEFAULT_FONT Device-dependent font. 

• OEM_FIXED_FONT OEM-dependent fixed font. 

• SYSTEM_FONT The system font. By default, Windows uses the system font 
to draw menus, dialog-box controls, and other text. In Windows versions 3.0 
and later, the system font is proportional width; earlier versions of Windows use 
a fixed-width system font. 

• SYSTEM_FIXED_FONT The fixed-width system font used in Windows 
prior to version 3.0. This object is available for compatibility with earlier 
versions of Windows. 

• DEFAULT_PALETTE Default color palette. This palette consists of the 20 
static colors in the system palette. 

Selects a CGdiObject object that corresponds to one of the predefined stock pens, 
brushes, or fonts. 

See Also: CGdiObject::GetObject 

CDC: : SetAbortProc 
int SetAbortProc( BOOL (CALLBACK EXPORT* lpfn)( HDC, int»; 

Return Value 
Specifies the outcome of the SetAbortProc function. Some of the following values 
are more probable than others, but all are possible. 

• SP _ERROR General error. 

• SP _OUTOFDISK Not enough disk space is currently available for spooling, and 
no more space will become available. 

• SP _OUTOFMEMORY Not enough memory is available for spooling. 

• SP _USERABORT User ended the job through the Print Manager. 

Parameters 

Remarks 

538 

lpfn A pointer to the abort function to install as the abort procedure. For more about 
the callback function, see "Callback Function for CDC::SetAbortProc." 

Installs the abort procedure for the print job. 

If an application is to allow the print job to be canceled during spooling, it must set 
the abort function before the print job is started with the StartDoc member function. 
The Print Manager calls the abort function during spooling to allow the application to 



CDC: :SetArcDirection 

cancel the print job or to process out-of-disk-space conditions. If no abort function is 
set, the print job will fail if there is not enough disk space for spooling. 

Note that the features of Microsoft Visual C++ simplify the creation of the callback 
function passed to SetAbortProc. The address passed to the EnumObjects member 
function is a pointer to a function exported with _export and with the Pascal calling 
convention. In protect-mode applications, you do not have to create this function with 
the Windows MakeProcInstance function or free the function after use with the 
Windows function FreeProcInstance. 

You also do not have to export the function name in an EXPORTS statement in your 
application's module-definition file. You can instead use the EXPORT function 
modifier, as in 

BOOL CALLBACK EXPORT AFunction( HDC, int ); 

to cause the compiler to emit the proper export record for export by name without 
aliasing. This works for most needs. For some special cases, such as exporting a 
function by ordinal or aliasing the export, you still need to use an EXPORTS 
statement in a module-definition file. 

For compiling Microsoft Foundation programs, you'll normally use the /GA and /GEs 
compiler options. The /Gw compiler option is not used with the Microsoft Foundation 
classes. (If you do use the Windows function MakeProcInstance, you will need to 
explicitly cast the returned function pointer from FARPROC to the type needed by 
this member function.) Callback registration interfaces are now type-safe (you must 
pass in a function pointer that points to the right kind of function for the specific 
callback). 

Also note that all callback functions must trap Microsoft Foundation exceptions 
before returning to Windows, since exceptions cannot be thrown across callback 
boundaries. For more information about exceptions, see the article "Exceptions" in 
Visual C++ Programmer's Guide online. 

CDC:: SetArcDirection 
int SetArcDirection( int nArcDirection ); 

Return Value 
Specifies the old arc direction, if successful; otherwise O. 

Parameters 
nArcDirection Specifies the new arc direction. This parameter can be either of the 

following values: 

• AD_COUNTERCLOCKWISE Figures drawn counterclockwise. 

• AD_CLOCKWISE Figures drawn clockwise. 

539 



CDC::SetAttribDC 

Remarks 
Sets the drawing direction to be used for arc and rectangle functions. The default 
direction is counterclockwise. The SetArcDirection function specifies the direction in 
which the following functions draw: 

Arc 

ArcTo 

Chord 

Ellipse 

Pie 

Rectangle 

RoundRect 

See Also: CDC::GetArcDirection, ::SetArcDirection 

CDC: : SetAttribDC 
virtual void SetAttribDC( HDC hDC ); 

Parameters 

Remarks 

hDC A Windows device context. 

Call this function to set the attribute device context, m_hAttribDC. This member 
function does not attach the device context to the CDC object. Only the output device 
context is attached to a CDC object. 

See Also: CDC: :SetOutputDC, CDC: :ReleaseAttribDC, 
CDC::ReleaseOutputDC 

CDC::SetBkColor 
virtual COLORREF SetBkColor( COLORREF erColor ); 

Return Value 
The previous background color as an RGB color value. If an error occurs, the return 
value is Ox80000000. 

Parameters 

Remarks 

540 

erColor Specifies the new background color. 

Sets the current background color to the specified color. If the background mode is 
OPAQUE, the system uses the background color to fill the gaps in styled lines, the 
gaps between hatched lines in brushes, and the background in character cells. The 
system also uses the background color when converting bitmaps between color and 
monochrome device contexts. 



If the device cannot display the specified color, the system sets the background color 
to the nearest physical color. 

See Also: CDC::BitBlt, CDC::GetBkColor, CDC::GetBkMode, 
CDC::SetBkMode, CDC::StretchBlt, ::SetBkColor 

CDC::SetBkMode 
int SetBkMode( int nBkMode ); 

Return Value 
The previous background mode. 

Parameters 

Remarks 

nBkMode Specifies the mode to be set. This parameter can be either of the following 
values: 

• OPAQUE Background is filled with the current background color before the 
text, hatched brush, or pen is drawn. This is the default background mode. 

• TRANSPARENT Background is not changed before drawing. 

Sets the background mode. The background mode defines whether the system 
removes existing background colors on the drawing surface before drawing text, 
hatched brushes, or any pen style that is not a solid line. 

See Also: CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkCoior, 
::SetBkMode 

CDC: :SetBoundsRect 
UINT SetBoundsRect( LPCRECT lpRectBounds, UINT flags ); 

Return Value 
The current state of the bounding rectangle, if the function is successful. Like flags, 
the return value can be a combination of DCB_ values: 

• DCB_ACCUMULATE The bounding rectangle is not empty. This value will 
always be set. 

• DCB_DISABLE Bounds accumulation is off. 

• DCB_ENABLE Bounds accumulation is on. 

Parameters 
lpRectBounds Points to a RECT structure or CRect object that is used to set the 

bounding rectangle. Rectangle dimensions are given in logical coordinates. This 
parameter can be NULL. 

CDC:: SetBoundsRect 

541 



CDC: :SetBrushOrg 

Remarks 

flags Specifies how the new rectangle will be combined with the accumulated 
rectangle. This parameter can be a combination of the following values: 

• DCB_ACCUMULATE Add the rectangle specified by IpRectBounds to the 
bounding rectangle (using a rectangle-union operation). 

• DCB_DISABLE Tum off bounds accumulation. 

• DCB_ENABLE Tum on bounds accumulation. (The default setting for 
bounds accumulation is disabled.) 

Controls the accumulation of bounding-rectangle information for the specified device 
context. 

Windows can maintain a bounding rectangle for all drawing operations. This rectangle 
can be queried and reset by the application. The drawing bounds are useful for 
invalidating bitmap caches. 

See Also: CDC::GetBoundsRect, ::SetBoundsRect, RECT, CRect 

CDC::SetBrushOrg 
CPoint SetBrushOrg( int x, int y ); 
CPoint SetBrushOrg( POINT point ); 

Return Value 
The previous origin of the brush in device units. 

Parameters 

Remarks 

542 

x Specifies the x-coordinate (in device units) of the new origin. This value must be in 
the range 0-7. 

Y Specifies the y-coordinate (in device units) of the new origin. This value must be in 
the range 0-7. 

point Specifies the x- and y-coordinates of the new origin. Each value must be in the 
range 0-7. You can pass either a POINT structure or a CPoint object for this 
parameter. 

Specifies the origin that GDI will assign to the next brush that the application selects 
into the device context. 

The default coordinates for the brush origin are (0, 0). To alter the origin of a brush, 
call the UnrealizeObject function for the CBrush object, call SetBrushOrg, and then 
call the SelectObject member function to select the brush into the device context. 

Do not use SetBrushOrg with stock CBrush objects. 

See Also: CBrush, CDC::GetBrushOrg, CDC::SelectObject, 
CGdiObject:: UnrealizeObject, POINT, CPoint 



CDC:: SetColorAdjustment 
BOOL SetColorAdjustment( const COLORADJUSTMENT* lpColorAdjust); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

/pColorAdjust Points to a COLORADJUSTMENT data structure containing the 
color adjustment values. 

Sets the color adjustment values for the device context using the specified values. The 
color adjustment values are used to adjust the input color of the source bitmap for 
calls to the CDC::StretchBlt member function when HALFTONE mode is set. 

See Also: CDC: :SetStretchBltMode, CDC: :StretchBlt, : :StretchDIBits 

CDC::SetMapMode 
virtual int SetMapMode( int nMapMode ); 

Return Value 
The previous mapping mode. 

Parameters 
nMapMode Specifies the new mapping mode. It can be anyone of the following 

values: 

• MM_ANISOTROPIC Logical units are converted to arbitrary units with 
arbitrarily scaled axes. Setting the mapping mode to MM_ANISOTROPIC 
does not change the current window or viewport settings. To change the units, 
orientation, and scaling, call the SetWindowExt and SetViewportExt member 
functions. 

• MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x is 
to the right; positive y is up. 

• MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive x 
is to the right; positive y is up. 

• MM_ISOTROPIC Logical units are converted to arbitrary units with equally 
scaled axes; that is, 1 unit along the x-axis is equal to 1 unit along the y-axis. 
Use the SetWindowExt and SetViewportExt member functions to specify the 
desired units and the orientation of the axes. GDI makes adjustments as 
necessary to ensure that the x and y units remain the same size. 

• MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x is 
to the right; positive y is up. 

CDC::SetMapMode 

543 



CDC: :SetMapperFlags 

Remarks 

• MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x 
is to the right; positive y is up. 

• MM_TEXT Each logical unit is converted to 1 device pixel. Positive x is to 
the right; positive y is down. 

• MM_TWIPS Each logical unit is converted to 1120 of a point. (Because a point 
is 1172 inch, a twip is 111440 inch.) Positive x is to the right; positive y is up. 

Sets the mapping mode. The mapping mode defines the unit of measure used to 
convert logical units to device units; it also defines the orientation of the device's 
x- and y-axes. GDI uses the mapping mode to convert logical coordinates into the 
appropriate device coordinates. The MM_TEXT mode allows applications to work in 
device pixels, where 1 unit is equal to 1 pixel. The physical size of a pixel varies from 
device to device. 

The MM_HIENGLISH, MM_HIMETRIC, Ml\1_LOENGLISH, MM_LOMETRIC, 
and MM_ TWIPS modes are useful for applications that must draw in physically 
meaningful units (such as inches or millimeters). The MM_ISOTROPIC mode ensures 
a 1: 1 aspect ratio, which is useful when it is important to preserve the exact shape of an 
image. The MM_ANISOTROPIC mode allows the x- and y-coordinates to be 
adjusted independently. 

See Also: CDC::SetViewportExt, CDC::SetWindowExt, ::SetMapMode 

CDC:: SetMapperFlags 
DWORD SetMapperFlags( DWORD dwFlag ); 

Return Value 
The previous value of the font-mapper flag. 

Parameters 

Remarks 

544 

dwFlag Specifies whether the font mapper attempts to match a font's aspect height 
and width to the device. When this value is ASPECT_FILTERING, the mapper 
selects only fonts whose x-aspect and y-aspect exactly match those of the specified 
device. 

Changes the method used by the font mapper when it converts a logical font to a 
physical font. An application can use SetMapperFlags to cause the font mapper to 
attempt to choose only a physical font that exactly matches the aspect ratio of the 
specified device. 

An application that uses only raster fonts can use the SetMapperFlags function to 
ensure that the font selected by the font mapper is attractive and readable on the 
specified device. Applications that use scalable (TrueType) fonts typically do not use 
SetMapperFlags. 



If no physical font has an aspect ratio that matches the specification in the logical font, 
ODI chooses a new aspect ratio and selects a font that matches this new aspect ratio. 

See Also: ::SetMapperFlags 

CDC: :SetMiterLimit 
BOOL SetMiterLimit( floatfMiterLimit); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

fMiterLimit Specifies the new miter limit for the device context. 

Sets the limit for the length of miter joins for the device context. The miter length is 
defined as the distance from the intersection of the line walls on the inside of the join 
to the intersection of the line walls on the outside of the join. The miter limit is the 
maximum allowed ratio of the miter length to the line width. The default miter limit 
is 10.0. 

See Also: CDC::GetMiterLimit, ::SetMiterLimit 

CDC: :SetOutputDC 
virtual void SetOutputDC( HDC hDC ); 

Parameters 

Remarks 

hDC A Windows device context. 

Call this member function to set the output device context, m_hDC. This member 
function can only be called when a device context has not been attached to the CDC 
object. This member function sets m_hDC but does not attach the device context to 
the CDC object. 

See Also: CDC::SetAttribDC, CDC::ReleaseAttribDC, 
CDC::ReleaseOutputDC, CDC::m_hDC 

CDC::SetPixel 
COLORREF SetPixel( int x, int y, COLORREF crColor ); 
COLORREF SetPixel( POINT point, COLORREF crColor ); 

Return Value 
An ROB value for the color that the point is actually painted. This value can be 
different from that specified by crColor if an approximation of that color is used. 

CDC:: SetPixel 

545 



CDC::SetPixeIV 

If the function fails (if the point is outside the clipping region), the return value 
is -1. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the point to be set. 

y Specifies the logical y-coordinate of the point to be set. 

creolor Specifies the color used to paint the point. 

point Specifies the logical x- and y-coordinates of the point to be set. You can pass 
either a POINT structure or a CPoint object for this parameter. 

Sets the pixel at the point specified to the closest approximation of the color specified 
by creolor. The point must be in the clipping region. If the point is not in the clipping 
region, the function does nothing. 

Not all devices support the SetPixel function. To determine whether a device supports 
SetPixel, call the GetDeviceCaps member function with the RASTER CAPS index 
and check the return value for the RC_BITBLT flag. 

See Also: CDC::GetDeviceCaps, CDC::GetPixel, ::SetPixel, POINT, CPoint 

CDC::SetPixeIV 
BOOL SetPixelV(int x, int y, COLORREF creolor); 
BOOL SetPixelV( POINT point, COLORREF creolor ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

546 

x Specifies the x-coordinate, in logical units, of the point to be set. 

y Specifies the y-coordinate, in logical units, of the point to be set. 

creolor Specifies the color to be used to paint the point. 

point Specifies the logical x- and y-coordinates of the point to be set. You can pass 
either a POINT data structure or a CPoint object for this parameter. 

Sets the pixel at the specified coordinates to the closest approximation of the specified 
color. The point must be in both the clipping region and the visible part of the device 
surface. Not all devices support the member function. For more information, see the 
RC_BITBLT capability in the CDC::GetDeviceCaps member function. SetPixelV 
is faster than SetPixel because it does not need to return the color value of the point 
actually painted. 

See Also: CDC::GetDeviceCaps, CDC::SetPixel, ::SetPixeIV 



CDC::SetPolyFiIIMode 
int SetPolyFillMode( int nPolyFillMode); 

Return Value 
The previous filling mode, if successful; otherwise O. 

Parameters 

Remarks 

nPolyFillMode Specifies the new filling mode. This value may be either 
ALTERNATE or WINDING. The default mode set in Windows is 
ALTERNATE. 

Sets the polygon-filling mode. 

When the polygon-filling mode is ALTERNATE, the system fills the area between 
odd-numbered and even-numbered polygon sides on each scan line. That is, the 
system fills the area between the first and second side, between the third and fourth 
side, and so on. This mode is the default. 

When the polygon-filling mode is WINDING, the system uses the direction in which 
a figure was drawn to determine whether to fill an area. Each line segment in a 
polygon is drawn in either a clockwise or a counterclockwise direction. Whenever an 
imaginary line drawn from an enclosed area to the outside of a figure passes through a 
clockwise line segment, a count is incremented. When the line passes through a 
counterclockwise line segment, the count is decremented. The area is filled if the 
count is nonzero when the line reaches the outside of the figure. 

See Also: CDC::GetPolyFillMode, CDC::PolyPolygon, ::SetPolyFillMode 

CDC: :SetROP2 
int SetROP2( int nDrawMode ); 

Return Value 
The previous drawing mode. 

It can be any of the values given in the Windows SDK documentation. 

Parameters 
nDrawMode' Specifies the new drawing mode. It can be any of the following values: 

• R2_BLACK Pixel is always black. 

• R2_ WHITE Pixel is always white. 

• R2_NOP Pixel remains unchanged. 

• R2_NOT Pixel is the inverse of the screen color. 

• R2_ COPYPEN Pixel is the pen color. 

CDC::SetROP2 

547 



CDC::SetStretchBltMode 

Remarks 

• R2_NOTCOPYPEN Pixel is the inverse of the pen color. 

• R2_MERGEPENNOT Pixel is a combination of the pen color and the inverse 
of the screen color (final pixel = (NOT screen pixel) OR pen). 

• R2_MASKPENNOT Pixel is a combination of the colors common to both the 
pen and the inverse of the screen (final pixel = (NOT screen pixel) AND pen). 

• R2_MERGENOTPEN Pixel is a combination of the screen color and the 
inverse of the pen color (final pixel = (NOT pen) OR screen pixel). 

• R2_MASKNOTPEN Pixel is a combination of the colors common to both the 
screen and the inverse of the pen (final pixel = (NOT pen) AND screen pixel). 

• R2_MERGEPEN Pixel is a combination of the pen color and the screen color 
(final pixel = pen OR screen pixel). 

• R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color 
(final pixel = NOT(pen OR screen pixel)). 

• R2_MASKPEN Pixel is a combination of the colors common to both the pen 
and the screen (final pixel = pen AND screen pixel). 

• R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color (final 
pixel = NOT(pen AND screen pixel)). 

• R2_XORPEN Pixel is a combination of the colors that 'are in the pen or in the 
screen, but not in both (final pixel = pen XOR screen pixel). 

• R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color (final pixel 
= NOT(pen XOR screen pixel)). 

Sets the current drawing mode. The drawing mode specifies how the colors of the pen 
and the interior of filled objects are combined with the color already on the display 
surface. 

The drawing mode is for raster devices only; it does not apply to vector devices. 
Drawing modes are binary raster-operation codes representing all possible Boolean 
combinations of two variables, using the binary operators AND, OR, and XOR 
(exclusive OR), and the unary operation NOT. 

See Also: CDC::GetDeviceCaps, CDC::GetROP2, ::SetROP2 

CDC: :SetStretchBltMode 
int SetStretchBItMode( int nStretchMode ); 

Return Value 

548 

The previous stretching mode. It can be STRETCH_ANDSCANS, 
STRETCH_DELETESCANS, or STRETCH_ORSCANS. 



CDC: :SetStretchBltMode 

Parameters 

Remarks 

nStretclzMode Specifies the stretching mode. It can be any of the following values: 

Value Description 

BLACKONWHITE Performs a Boolean AND operation using the color 
values for the eliminated and existing pixels. If the 
bitmap is a monochrome bitmap, this mode preserves 
black pixels at the expense of white pixels. 

COLORONCOLOR Deletes the pixels. This mode deletes all eliminated lines 
of pixels without trying to preserve their information. 

HALFTONE Maps pixels from the source rectangle into blocks of 
pixels in the destination rectangle. The average color 
over the destination block of pixels approximates the 
color of the source pixels. 

After setting the HALFTONE stretching mode, 
an application must call the Win32 function 
::SetBrushOrgEx to set the brush origin. If it fails 
to do so, brush misalignment occurs. 

STRETCH_ANDSCANS Windows 95: Same as BLACKONWHITE 

STRETCH_DELETES CANS Windows 95: Same as COLORONCOLOR 

STRETCH_HALFTONE Windows 95: Same as HALFTONE. 

STRETCH_ORSCANS Windows 95: Same as WHITEONBLACK 

WHITEONBLACK Performs a Boolean OR operation using the color values 
for the eliminated and existing pixels. If the bitmap is a 
monochrome bitmap, this mode preserves white pixels at 
the expense of black pixels. 

Sets the bitmap-stretching mode for the StretchBlt member function. The 
bitmap-stretching mode defines how information is removed from bitmaps that are 
compressed by using the function. 

The BLACKONWHITE (STRETCH_ANDSCANS) and WHITEONBLACK 
(STRETCH_ORSCANS) modes are typically used to preserve foreground pixels in 
monochrome bitmaps. The COLORONCOLOR (STRETCH_DELETESCANS) 
mode is typically used to preserve color in color bitmaps. 

The HALFTONE mode requires more processing of the source image than the other 
three modes; it is slower than the others, but produces higher quality images. Also 
note that SetBrushOrgEx must be called after setting the HALFTONE mode to 
avoid brush misalignment. 

Additional stretching modes might also be available depending on the capabilities of 
the device driver. 

See Also: CDC::GetStretchBltMode, CDC::StretchBlt, ::SetStretchBltMode 

549 



CDC::SetTextAlign 

CDC: :SetTextAlign 
UINT SetTextAlign( UINT nFlags); 

Return Value 
The previous text-alignment setting, if successful. The low-order byte contains the 
horizontal setting and the high-order byte contains the vertical setting; otherwise O. 

Parameters 

Remarks 

550 

nFlags Specifies text-alignment flags. The flags specify the relationship between a 
point and a rectangle that bounds the text. The point can be either the current 
position or coordinates specified by a text-output function. The rectangle that 
bounds the text is defined by the adjacent character cells in the text string. The 
nFlags parameter can be one or more flags from the following three categories. 
Choose only one flag from each category. The first category affects text alignment 
in the x-direction: 

o TA_CENTER Aligns the point with the horizontal center of the bounding 
rectangle. 

o TA_LEFT Aligns the point with the left side of the bounding rectangle. This is 
the default setting. 

o TA_RIGHT Aligns the point with the right side of the bounding rectangle. 

The second category affects text alignment in the y-direction: 

o TA_BASELINE Aligns the point with the base line of the chosen font. 

o TA_BOTTOM Aligns the point with the bottom of the bounding rectangle. 

o TA_TOP Aligns the point with the top of the bounding rectangle. This is the 
default setting. 

The third category determines whether the current position is updated when text is 
written: 

o TA_NOUPDATECP Does not update the current position after each call to a 
text-output function. This is the default setting. 

o TA_UPDATECP Updates the current x-position after each call to a 
text-output function. The new position is at the right side of the bounding 
rectangle for the text. When this flag is set, the coordinates specified in calls to 
the TextOut member function are ignored. 

Sets the text-alignment flags. 

The TextOut and ExtTextOut member functions use these flags when positioning a 
string of text on a display or device. The flags specify the relationship between a 



specific point and a rectangle that bounds the text. The coordinates of this point are 
passed as parameters to the TextOut member function. The rectangle that bounds the 
text is formed by the adjacent character cells in the text string. 

See Also: CDC::ExtTextOut, CDC::GetTextAlign, CDC::TabbedTextOut, 
CDC::TextOut, ::SetTextAlign 

CDC: :SetTextCharacterExtra 
int SetTextCharacterExtra( int nCharExtra); 

Return Value 
The amount of the previous intercharacter spacing. 

Parameters 

Remarks 

nCharExtra Specifies the amount of extra space (in logical units) to be added to each 
character. If the current mapping mode is not MM_TEXT, nCharExtra is 
transformed and rounded to the nearest pixel. 

Sets the amount of intercharacter spacing. GDI adds this spacing to each character, 
including break characters, when it writes a line of text to the device context. The 
default value for the amount of intercharacter spacing is O. 

See Also: CDC::GetTextCharacterExtra, ::SetTextCharacterExtra 

CDC: :SetTextColor 
virtual COLORREF SetTextColor( COLORREF crColor ); 

Return Value 
An RGB value for the previous text color. 

Parameters 

Remarks 

crColor Specifies the color of the text as an RGB color value. 

Sets the text color to the specified color. The system will use this text color when 
writing text to this device context and also when converting bitmaps between color 
and monochrome device contexts. 

If the device cannot represent the specified color, the system sets the text color to 
the nearest physical color. The background color for a character is specified by the 
SetBkColor and SetBkMode member functions. 

See Also: CDC::GetTextColor, CDC::BitBlt, CDC::SetBkColor, 
CDC: :SetBkMode, : :SetTextColor 

CDC: :SetTextColor 

551 



CDC:: SetTextJ ustification 

CDC: : SetTextJ ustification 
int SetTextjustification( int nBreakExtra, int nBreakCount); 

Return Value 
One if the function is successful~ otherwise O. 

Parameters 

Remarks 

552 

nBreakExtra Specifies the total extra space to be added to the line of text (in logical 
units). If the current mapping mode is not MM_TEXT, the value given by this 
parameter is converted to the current mapping mode and rounded to the nearest 
device unit. 

nBreakCount Specifies the number of break characters in the line. 

Adds space to the break characters in a string. An application can use the 
GetTextMetrics member functions to retrieve a font's break character. 

After the SetTextJustification member function is called, a call to a text-output 
function (such as TextOut) distributes the specified extra space evenly among the 
specified number of break characters. The break character is usually the space 
character (ASCII 32), but may be defined by a font as some other character. 

The member function GetTextExtent is typically used with SetTextJustification. 
GetTextExtent computes the width of a given line before alignment. An application 
can determine how much space to specify in the nBreakExtra parameter by 
subtracting the value returned by GetTextExtent from the width of the string 
after alignment. 

The SetTextjustification function can be used to align a line that contains multiple 
runs in different fonts. In this case, the line must be created piecemeal by aligning 
and writing each run separately. 

Because rounding errors can occur during alignment, the system keeps a running 
error term that defines the current error. When aligning a line that contains multiple 
runs, GetTextExtent automatically uses this error term when it computes the extent 
of the next run. This allows the text-output function to blend the error into the 
new run. 

After each line has been aligned, this error term must be cleared to prevent it from 
being incorporated into the next line. The term can be cleared by calling 
SetTextJustification with nBreakExtra set to O. 

See Also: CDC::GetMapMode, CDC::GetTextExtent, CDC::GetTextMetrics, 
CDC::SetMapMode, CDC::TextOut, ::SetTextjustification 



CDC::SetViewportOrg 

CDC: :SetViewportExt 
virtual CSize SetViewportExt( iot ex, iot ey); 
virtual CSize SetViewportExt( SIZE size); 

Return Value 
The previous extents of the viewport as a CSize object. When an error occurs, 
the x- and y-coordinates of the returned CSize object are both set to O. 

Parameters 

Remarks 

ex Specifies the x-extent of the viewport (in device units). 

ey Specifies the y-extent of the viewport (in device units). 

size Specifies the x- and y-extents of the viewport (in device units). 

Sets the x- and y-extents of the viewport of the device context. The viewport, along 
with the device-context window, defines how GDI maps points in the logical 
coordinate system to points in the coordinate system of the actual device. In other 
words, they define how GDI converts logical coordinates into device coordinates. 

When the following mapping modes are set, calls to SetWiodowExt and 
SetViewportExt are ignored: 

MM_HIENGLISH 

MM_HIMETRIC 

MM_LOENGLISH 

MM_LOMETRIC 

MM_TEXT 

MM_TWIPS 

When MM_ISOTROPIC mode is set, an application must call the SetWiodowExt 
member function before it calls SetViewportExt. 

See Also: CDC::SetWiodowExt, CSize, CDC::GetViewportExt 

CDC: : Set ViewportOrg 
virtual CPoiot SetViewportOrg( iot x, iot y ); 
virtual CPoiot SetViewportOrg( POINT point); 

Return Value 
The previous origin of the viewport (in device coordinates) as a CPoiot object. 

Parameters 
x Specifies the x-coordinate (in device units) of the origin of the viewport. The value 

must be within the range of the device coordinate system. 

y Specifies the y-coordinate (in device units) of the origin of the viewport. The value 
must be within the range of the device coordinate system. 

553 



CDC::SetWindowExt 

Remarks 

point Specifies the origin of the viewport. The values must be within the range of the 
device coordinate system. You can pass either a POINT structure or a CPoint 
object for this parameter. 

Sets the viewport origin of the device context. The viewport, along with the 
device-context window, defines how GDI maps points in the logical coordinate 
system to points in the coordinate system of the actual device. In other words, they 
define how GDI converts logical coordinates into device coordinates. 

The viewport origin marks the point in the device coordinate system to which GDI 
maps the window origin, a point in the logical coordinate system specified by the 
SetWindowOrg member function. GDI maps all other points by following the same 
process required to map the window origin to the viewport origin. For example, all 
points in a circle around the point at the window origin will be in a circle around the 
point at the viewport origin. Similarly, all points in a line that passes through the 
window origin will be in a line that passes through the viewport origin. 

See Also: CDC::SetWindowOrg, CPoint, POINT, CDC::GetViewportOrg 

CDC::SetWindowExt 
virtual CSize SetWindowExt( int ex, int ey); 

virtual CSize SetWindowExt( SIZE size); 

Return Value 
The previous extents of the window (in logical units) as a CSize object. If an error 
occurs, the x- and y-coordinates of the returned CSize object are both set to O. 

Parameters 

Remarks 

554 

ex Specifies the x-extent (in logical units) of the window. 

ey Specifies the y-extent (in logical units) of the window. 

size Specifies the x- and y-extents (in logical units) of the window. 

Sets the x- and y-extents of the window associated with the device context. The 
window, along with the device-context viewport, defines how GDI maps points in the 
logical coordinate system to points in the device coordinate system. 

When the following mapping modes are set, calls to SetWindowExt and 
Set ViewportExt functions are ignored: 

• MM_HIENGLISH 

• MM_HIMETRIC 

• MM_LOENGLISH 

• MM_LOMETRIC 



• MM_TEXT 

• MM_TWIPS 

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt 
member function before calling SetViewportExt. 

See Also: CDC::GetWindowExt, CDC::SetViewportExt, CSize 

CDC: : Set WindowOrg 
CPoint SetWindowOrg( int x, int y); 
CPoint SetWindowOrg( POINT point); 

Return Value 
The previous origin of the window as a CPoint object. 

Parameters 

Remarks 

x Specifies the logical x-coordinate of the new origin of the window. 

y Specifies the logical y-coordinate of the new origin of the window. 

point Specifies the logical coordinates of the new origin of the window. You can pass 
either a POINT structure or a CPoint object for this parameter. 

Sets the window origin of the device context. The window, along with the 
device-context viewport, defines how GDI maps points in the logical coordinate 
system to points in the device coordinate system. 

The window origin marks the point in the logical coordinate system from which GDI 
maps the viewport origin, a point in the device coordinate system specified by the 
SetWindowOrg function. GDI maps all other points by following the same process 
required to map the window origin to the viewport origin. For example, all points in a 
circle around the point at the window origin will be in a circle around the point at the 
viewport origin. Similarly, all points in a line that passes through the window origin 
will be in a line that passes through the viewport origin. 

See Also: CPoint, POINT, CDC: : GetWindowOrg 

CDC::StartDoc 
int StartDoc( LPDOCINFO IpDocInfo); 

Return Value 
The value -1 if there is an error such as insufficient memory or an invalid port 
specification occurs; otherwise a positive value. 

CDC: :StartDoc 

555 



CDC: :StartPage 

Parameters 

Remarks 

lpDocInfo Points to a DOCINFO structure containing the name of the document file 
and the name of the output file. 

Informs the device driver that a new print job is starting and that all subsequent 
StartPage and EndPage calls should be spooled under the same job until an EndDoc 
call occurs. This ensures that documents longer than one page will not be interspersed 
with other jobs. 

For Windows versions 3.1 and later, this function replaces the STARTDOC printer 
escape. Using this function ensures that documents containing more than one page are 
not interspersed with other print jobs. 

StartDoc should not be used inside metafiles. 

See Also: CDC::Escape, CDC::EndDoc, CDC::AbortDoc 

CDC::StartPage 

Remarks 

int StartPage(); 

Call this member function to prepare the printer driver to receive data. StartPage 
supersedes the NEWFRAME and BANDINFO escapes. 

For an overview of the sequence of printing calls, see the StartDoc member function. 

The system disables the ResetDC member function between calls to StartPage and 
EndPage. 

See Also: CDC::Escape, CDC::EndPage 

CDC::StretchBlt 
BOOL StretchBlt( int x, int y, int n Width, int nHeight, CDC* pSrcDC, int xSrc, 

.. int ySrc, int nSrcWidth, int nSrcHeight, DWORD dwRop ); 

Return Value 
Nonzero if the bitmap is drawn; otherwise O. 

Parameters 

556 

x Specifies the x-coordinate (in logical units) of the upper-left comer of the 
destination rectangle. 

y Specifies the y-coordinate (in logical units) of the upper-left comer of the 
destination rectangle. 

n Width Specifies the width (in logical units) of the destination rectangle. 



nHeiglzt Specifies the height (in logical units) of the destination rectangle. 

pSrcDC Specifies the source device context. 

xSrc Specifies the x-coordinate (in logical units) of the upper-left corner of the 
source rectangle. 

ySrc Specifies the x-coordinate (in logical units) of the upper-left corner of the 
source rectangle. 

nSrcWidtlz Specifies the width (in logical units) of the source rectangle. 

nSrcHeight Specifies the height (in logical units) of the source rectangle. 

dwRop Specifies the raster operation to be performed. Raster operation codes define 
how GDI combines colors in output operations that involve a current brush, a 
possible source bitmap, and a destination bitmap. This parameter may be one of the 
following values: 

• BLACKNESS Turns all output black. 

• DSTINVERT Inverts the destination bitmap. 

• MERGE COpy Combines the pattern and the source bitmap using the 
Boolean AND operator. 

• MERGEPAINT Combines the inverted source bitmap with the destination 
bitmap using the Boolean OR operator. 

• NOTSRCCOPY Copies the inverted source bitmap to the destination. 

• NOTSRCERASE Inverts the result of combining the destination and source 
bitmaps using the Boolean OR operator. 

• PATCOPY Copies the pattern to the destination bitmap. 

• PATINVERT Combines the destination bitmap with the pattern using the 
Boolean XOR operator. 

• PATPAINT Combines the inverted source bitmap with the pattern using the 
Boolean OR operator. Combines the result of this operation with the destination 
bitmap using the Boolean OR operator. 

• SRCAND Combines pixels of the destination and source bitmaps using the 
Boolean AND operator. 

• SRCCOPY Copies the source bitmap to the destination bitmap. 

• SRCERASE Inverts the destination bitmap and combines the result with the 
source bitmap using the Boolean AND operator. 

• SRCINVERT Combines pixels of the destination and source bitmaps using 
the Boolean XOR operator. 

• SRCPAINT Combines pixels of the destination and source bitmaps using the 
Boolean OR operator. 

• WHITENESS Turns all output white. 

CDC::StretchBlt 

557 



CDC::StretchBlt 

Remarks 

558 

Copies a bitmap from a source rectangle into a destination rectangle, stretching or 
compressing the bitmap if necessary to fit the dimensions of the destination rectangle. 
The function uses the stretching mode of the destination device context (set by 
SetStretchBltMode) to determine how to stretch or compress the bitmap. 

The StretchBlt function moves the bitmap from the source device given by pSrcDC 
to the destination device represented by the device-context object whose member 
function is being called. The xSrc, ySrc, nSrcWidth, and nSrcHeight parameters define 
the upper-left corner and dimensions of the source rectangle. The x, y, n Width, and 
nHeight parameters give the upper-left corner and dimensions of the destination 
rectangle. The raster operation specified by dwRop defines how the source bitmap 
and the bits already on the destination device are combined. 

The StretchBlt function creates a mirror image of a bitmap if the signs of the 
nSrcWidth and n Width or nSrcHeight and nHeight parameters differ. If nSrcWidth and 
n Width have different signs, the function creates a mirror image of the bitmap along 
the x-axis. If nSrcHeight and nHeight have different signs, the function creates a 
mirror image of the bitmap along the y-axis. 

The StretchBlt function stretches or compresses the source bitmap in memory and 
then copies the result to the destination. If a pattern is to be merged with the result, it 
is not merged until the stretched source bitmap is copied to the destination. If a brush 
is used, it is the selected brush in the destination device context. The destination 
coordinates are transformed according to the destination device context; the source 
coordinates are transformed according to the source device context. 

If the destination, source, and pattern bitmaps do not have the same color format, 
StretchBlt converts the source and pattern bitmaps to match the destination bitmaps. 
The foreground and background colors of the destination device context are used in 
the conversion. 

If StretchBlt must convert a monochrome bitmap to color, it sets white bits (1) to 
the background color and black bits (0) to the foreground color. To convert color to 
monochrome, it sets pixels that match the background color to white (1) and sets all 
other pixels to black (0). The foreground and background colors of the device context 
with color are used. 

Not all devices support the StretchBlt function. To determine whether a device 
supports StretchBlt, call the GetDeviceCaps member function with the 
RASTER CAPS index and check the return value for the RC_STRETCHBLT 
flag. 

See Also: CDC: :BitBlt, CDC: :GetDeviceCaps, CDC: :SetStretchBltMode, 
: :StretchBlt 



CDC: :TabbedTextOut 

CDC: : StrokeAndFillPath 
BOOL StrokeAndFillPath( ); 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Closes any open figures in a path, strokes the outline of the path by using the current 
pen, and fills its interior by using the current brush. The device context must contain a 
closed path. The StrokeAndFillPath member function has the same effect as closing 
all the open figures in the path, and stroking and filling the path separately, except that 
the filled region will not overlap the stroked region even if the pen is wide. 

See Also: CDC: :BeginPath, CDC: : FillPath , CDC: :SetPoly FillMode, 
CDC: :StrokePath, : :StrokeAndFillPath 

CDC: : StrokePath 
BOOL StrokePath( ); 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Renders the specified path by using the current pen. The device context must contain a 
closed path. 

See Also: CDC::BeginPath, CDC::EndPath, ::StrokePath 

CDC: : TabbedTextOut 
virtual CSize TabbedTextOut( int x, int y, LPCTSTR IpszString, int nCount, 

... int nTabPositions, LPINT IpnTabStopPositions, int nTabOrigin ); 
CSize TabbedTextOut( int x, int y, const CString& str, int nTabPositions, 

... LPINT IpnTabStopPositions, int nTabOrigin ); 

Return Value 
The dimensions of the string (in logical units) as a CSize object. 

Parameters 
x Specifies the logical x-coordinate of the starting point of the string. 

y Specifies the logical y-coordinate of the starting point of the string. 

IpszString Points to the character string to draw. You can pass either a pointer to an 
array of characters or a CString object for this parameter. 

559 



CDC::TextOut 

Remarks 

nCount Specifies the number of characters in the string. If nCount is -1, the length is 
calculated. 

nTabPositions Specifies the number of values in the array of tab-stop positions. 

IpnTabStopPositions Points to an array containing the tab-stop positions (in logical 
units). The tab stops must be sorted in increasing order; the smallest x-value should 
be the first item in the array. 

nTabOrigin Specifies the x-coordinate of the starting position from which tabs are 
expanded (in logical units). 

str A CString object that contains the specified characters. 

Call this member function to write a character string at the specified location, 
expanding tabs to the values specified in the array of tab-stop positions. Text is written 
in the currently selected font. If nTabPositions is 0 and IpnTabStopPositions is NULL, 
tabs are expanded to eight times the average character width. 

If nTabPositions is 1, the tab stops are separated by the distance specified by the first 
value in the IpnTabStopPositions array. If the IpnTabStopPositions array contains 
more than one value, a tab stop is set for each value in the array, up to the number 
specified By nTabPositions. The nTabOrigin parameter allows an application to call 
the TabbedTextOut function several times for a single line. If the application calls 
the function more than once with the nTabOrigin set to the same value each time, 
the function expands all tabs relative to the position specified by nTabOrigin. 

By default, the current position is not used or updated by the function. If an 
application needs to update the current position when it calls the function, the 
application can call the SetTextAlign member function with nFlags set to 
TA_UPDATECP. When this flag is set, Windows ignores the x and y parameters 
on subsequent calls to TabbedTextOut, using the current position instead. 

See Also: CDC::GetTabbedTextExtent, CDC::SetTextAlign, CDC::TextOut, 
CDC::SetTextCoior, ::TabbedTextOut, CSize 

CDC::TextOut 
virtual BOOL TextOut( int x, int y, LPCTSTR IpszString, int nCount ); 
BOOL TextOut( int x, int y, const CString& str ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

560 

x Specifies the logical x-coordinate of the starting point of the text. 

y Specifies the logical y-coordinate of the starting point of the text. 

IpszString Points to the character string to be drawn. 



Remarks 

nCount Specifies the number of bytes in the string. 

str A CString object that contains the characters to be drawn. 

Writes a character string at the specified location using the currently selected font. 

Character origins are at the upper-left corner of the character cell. By default, the 
current position is not used or updated by the function. 

If an application needs to update the current position when it calls TextOut, the 
application can call the SetTextAlign member function with nFlags set to 
TA_UPDATECP. When this flag is set, Windows ignores the x and y parameters on 
subsequent calls to TextOut, using the current position instead. 

See Also: CDC: : ExtTextOut, CDC: : GetTextExtent, CDC: :SetTextAlign, 
CDC: :SetTextColor, CDC: :TabbedTextOut, : :TextOut 

CDC: : U pdateColors 

Remarks 

void UpdateColors( ); 

Updates the client area of the device context by matching the current colors in the 
client area to the system palette on a pixel-by-pixel basis. An inactive window with a 
realized logical palette may call UpdateColors as an alternative to redrawing its client 
area when the system palette changes. 

For more information about using color palettes, see ::UpdateColors in the Win32 
SDK Programmer's Reference. 

The UpdateColors member function typically updates a client area faster than 
redrawing the area. However, because the function performs the color translation 
based on the color of each pixel before the system palette changed, each call to this 
function results in the loss of some color accuracy. 

See Also: CDC::RealizePalette, CPalette, ::UpdateColors 

CDC:: WidenPath 
BOOL WidenPath(); 

Return Value 

Remarks 

Nonzero if the function is successful; otherwise O. 

Redefines the current path as the area that would be painted if the path were stroked 
using the pen currently selected into the device context. This function is successful 
only if the current pen is a geometric pen created by the second version of CreatePen 

CDC::WidenPath 

561 



CDC: :m_hAttribDC 

member function, or if the pen is created with the first version of CreatePen and has a 
width, in device units, of greater than 1. The device context must contain a closed 
path. Any Bezier curves in the path are converted to sequences of straight lines 
approximating the widened curves. As such, no Bezier curves remain in the path after 
WidenPath is called. 

See Also: CDC::BeginPath, CDC::EndPath, CDC::SetMiterLimit, ::WidenPath 

Data Members 
CDC: :m_hAttribDC 
Remarks 

Remarks 

562 

The attribute device context for this CDC object. By default, this device context is 
equal to m_hDC. In general, CDC GDI calls that request information from the device 
context are directed to m_hAttribDC. See the CDC class description for more on the 
use of these two device contexts. 

See Also: CDC::m_hDC, CDC::SetAttribDC, CDC::ReleaseAttribDC 

The output device context for this CDC object. By default, m_hDC is equal to 
m_hAttribDC, the other device context wrapped by CDC. In general, CDC GDI 
calls that create output go to the m_hDC device context. You can initialize m_hDC 
and m_hAttribDC to point to different devices. See the CDC class description for 
more on the use of these two device contexts. 

See Also: CDC: :m_hAttribDC, CDC: :SetOutputDC, CDC: :ReleaseOutputDC 



CDialog 

The CDialog class is the base class used for displaying dialog boxes on the screen. 
Dialog boxes are of two types: modal and modeless. A modal dialog box must be 
closed by the user before the application continues. A modeless dialog box allows 
the user to display the dialog box and return to another task without canceling or 
removing the dialog box. 

A CDialog object is a combination of a dialog template and a CDialog-derived class. 
Use the dialog editor to create the dialog template and store it in a resource, then use 
Class Wizard to create a class derived from CDialog. 

A dialog box, like any other window, receives messages from Windows. In a dialog 
box, you are particularly interested in handling notification messages from the dialog 
box's controls since that is how the user interacts with your dialog box. ClassWizard 
browses through the potential messages generated by each control in your dialog box, 
and you can select which messages you wish to handle. ClassWizard then adds the 
appropriate message-map entries and message-handler member functions to the new 
class for you. You only need to write application-specific code in the handler member 
functions. 

If you prefer, you can always write message-map entries and member functions 
yourself instead of using Class Wizard. 

In all but the most trivial dialog box, you add member variables to your derived dialog 
class to store data entered in the dialog box's controls by the user or to display data for 
the user. Class Wizard browses through those controls in your dialog box that can be 
mapped to data and prompts you to create a member variable for each control. At the 
same time, you choose a variable type and permissible range of values for each 
variable. ClassWizard adds the member variables to your derived dialog class. 

ClassWizard then writes a data map to automatically handle the exchange of data 
between the member variables and the dialog box's controls. The data map provides 
functions that initialize the controls in the dialog box with the proper values, retrieve 
the data, and validate the data. 

CDialog 

563 



CDialog 

564 

To create a modal dialog box, construct an object on the stack using the constructor 
for your derived dialog class and then call DoModal to create the dialog window and 
its controls. If you wish to create a modeless dialog, call Create in the constructor of 
your dialog class. 

You can also create a template in memory by using a DLGTEMPLATE data structure 
as described in the Win32 SDK documentation. After you construct a CDialog object, 
call CreateIndirect to create a modeless dialog box, or call InitModalIndirect and 
DoModal to create a modal dialog box. 

Class Wizard writes the exchange and validation data map in an override of 
CWnd::DoDataExchange that ClassWizard adds to your new dialog class. See the 
DoDataExchange member function in CWnd for more on the exchange and 
validation functionality. 

Both the programmer and the framework call DoDataExchange indirectly through 
a call to CWnd:: UpdateData. 

The framework calls UpdateData when the user clicks the OK button to close a 
modal dialog box. (The data is not retrieved if the Cancel button is clicked.) The 
default implementation of OnInitDialog also calls UpdateData to set the initial 
values of the controls. You typically override OnInitDialog to further initialize 
controls. OnInitDialog is called after all the dialog controls are created and just 
before the dialog box is displayed. 

You can call CWnd::UpdateData at any time during the execution of a modal or 
modeless dialog box. 

If you develop a dialog box by hand, you add the necessary member variables to the 
derived dialog-box class yourself, and you add member functions to set or get these 
values. 

For more on ClassWizard, see "Using ClassWizard" in the Visual C++ Programmer's 
Guide online. 

Call CWinApp::SetDialogBkColor to set the background color for dialog boxes in 
your application. 

A modal dialog box closes automatically when the user presses the OK or Cancel 
buttons or when your code calls the EndDialog member function. 

When you implement a modeless dialog box, always override the OnCancel member 
function and call DestroyWindow from within it. Don't call the base class 
CDialog::OnCancel, because it calls EndDialog, which will make the dialog box 
invisible but will not destroy it. You should also override PostNcDestroy for 
modeless dialog boxes in order to delete this, since modeless dialog boxes are usually 
allocated with new. Modal dialog boxes are usually constructed on the frame and do 
not need PostNcDestroy cleanup. 



For more information on CDialog, see the article "Dialog Box Topics" in Visual C++ 
Programmer's Guide online. 

#include <afxwin.h> 

CDialog Class Members 
Construction 

CDialog 

Initialization 

Create 

CreateIndirect 

InitModalIndirect 

Operations 

DoModal 

MapDialogRect 

NextDIgCtrl 

PrevDIgCtrl 

GotoDlgCtrl 

SetDefiD 

GetDefiD 

SetHelpID 

EndDialog 

Overridables 

OnInitDialog 

OnSetFont 

OnOK 

On Cancel 

Constructs a CDialog object. 

Initializes the CDialog object. Creates a modeless dialog box and 
attaches it to the CDialog object. 

Creates a modeless dialog box from a dialog-box template in memory 
(not resource-based). 

Creates a modal dialog box from a dialog-box template in memory 
(not resource-based). The parameters are stored until the function 
DoModal is called. 

Calls a modal dialog box and returns when done. 

Converts the dialog-box units of a rectangle to screen units. 

Moves the focus to the next dialog-box control in the dialog box. 

Moves the focus to the previous dialog-box control in the dialog box. 

Moves the focus to a specified dialog-box control in the dialog box. 

Changes the default pushbutton control for a dialog box to a specified 
pushbutton. 

Gets the ID of the default pushbutton control for a dialog box. 

Sets a context-sensitive help ID for the dialog box. 

Closes a modal dialog box. 

Override to augment dialog-box initialization. 

Override to specify the font that a dialog-box control is to use when it 
draws text. 

Override to perform the OK button action in a modal dialog box. The 
default closes the dialog box and DoModal returns IDOK. 

Override to perform the Cancel button or ESC key action. The default 
closes the dialog box and DoModal returns IDCANCEL. 

CDialog 

565 



CDialog: :CDialog 

Member Functions 
CDialog: :CDialog 

CDialog( LPCTSTR IpszTemplateName, CWnd* pParentWnd = NULL ); 
CDialog( UINT nIDTemplate, CWnd* pParentWnd = NULL ); 
CDialog( ); 

Parameters 

Remarks 

IpszTemplateName Contains a null-terminated string that is the name of a dialog-box 
template resource. 

nIDTemplate Contains the ID number of a dialog-box template resource. 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the dialog object's parent window is set to 
the main application window. 

To construct a resource-based modal dialog box, call either public form of the 
constructor. One form of the constructor provides access to the dialog resource by 
template name. The other constructor provides access by template ID number, usually 
with an IDD_ prefix (for example, IDD_DIALOGl). 

To construct a modal dialog box from a template in memory, first invoke the 
parameterless, protected constructor and then call InitModalIndirect. 

After you construct a modal dialog box with one of the above methods, call 
DoModal. 

To construct a modeless dialog box, use the protected form of the CDialog 
constructor. The constructor is protected because you must derive your own 
dialog-box class to implement a modeless dialog box. Construction of a modeless 
dialog box is a two-step process. First call the constructor; then call the Create 
member function to create a resource-based dialog box, or call CreateIndirect to 
create the dialog box from a template in memory. 

See Also: CDialog::Create, CWnd::DestroyWindow, 
CDialog: :InitModalIndirect, CDialog: :DoModal, :: CreateDialog 

CDialog: : Create 
BOOL Create( LPCTSTR lpszTemplateName, CWnd* pParentWnd = NULL ); 
BOOL Create( UINT nIDTemplate, CWnd* pParentWnd = NULL ); 

Return Value 

566 

Both forms return nonzero if dialog-box creation and initialization were successful; 
otherwise O. 



CDialog::CreateIndirect 

Parameters 

Remarks 

lpszTemplateName Contains a null-terminated string that is the name of a dialog-box 
template resource. 

pParentWnd Points to the parent window object (of type CWnd) to which the dialog 
object belongs. If it is NULL, the dialog object's parent window is set to the main 
application window. 

nIDTemplate Contains the ID number of a dialog-box template resource. 

Call Create to create a modeless dialog box using a dialog-box template from a 
resource. You can put the call to Create inside the constructor or call it after the 
constructor is invoked. 

Two forms of the Create member function are provided for access to the dialog-box 
template resource by either template name or template ID number (for example, 
IDD_DIALOG 1). 

For either form, pass a pointer to the parent window object. If pParentWnd is NULL, 
the dialog box will be created with its parent or owner window set to the main 
application window. 

The Create member function returns immediately after it creates the dialog box. 

Use the WS_ VISIBLE style in the dialog-box template if the dialog box should 
appear when the parent window is created. Otherwise, you must call ShowWindow. 
For further dialog-box styles and their application, see the DLGTEMPLATE 
structure in the Win32 SDK documentation and "Window Styles" in the Class Library 
Reference. 

Use the CWnd::DestroyWindow function to destroy a dialog box created by the 
Create function. 

See Also: CDialog::CDialog, CWnd::DestroyWindow, 
CDialog: :InitModalIndirect, CDialog: :DoModal, :: CreateDialog 

CDialog: :CreateIndirect 
BOOL CreateIndirect( LPCDLGTEMPLATE lpDialogTemplate, 

... CWnd* pParentWnd = NULL ); 
BOOL CreateIndirect( HGLOBAL hDialogTemplate, CWnd* pParentWnd = NULL ); 

Return Value 
Nonzero if the dialog box was created and initialized successfully; otherwise O. 

Parameters 
lpDialogTemplate Points to memory that contains a dialog-box template used to 

create the dialog box. This template is in the form of a DLGTEMPLATE structure 

567 



CDialog: :DoModal 

Remarks 

and control information. For more information on this structure, see the 
Win32 SDK documentation. 

pPart:ntWnd Points to the dialog object's parent window object (of type CWnd). 
If it is NULL, the dialog object's parent window is set to the main application 
window. 

hDialogTemplate Contains a handle to global memory containing a dialog-box 
template. This template is in the form of a DLGTEMPLATE structure and data 
for each control in the dialog box. 

Call this member function to create a modeless dialog box from a dialog-box template 
in memory. 

The CreateIndirect member function returns immediately after it creates the 
dialog box. 

Use the WS_ VISIBLE style in the dialog-box template if the dialog box should 
appear when the parent window is created. Otherwise, you must call ShowWindow 
to cause it to appear. For more information on how you can specify other dialog-box 
styles in the template, see the DLGTEMPLATE structure in the Win32 SDK 
documentation. 

Use the CWnd::DestroyWindow function to destroy a dialog box created by the 
CreateIndirect function. 

See Also: CDialog::CDialog, CWnd::DestroyWindow, CDialog::Create, 
:: CreateDialogIndirect 

CDialog: :DoModal 
virtual int DoModal(); 

Return Value 

Remarks 

568 

An int value that specifies the value of the nResult parameter that was passed to the 
CDialog: :EndDialog member function, which is used to close the dialog box. The 
return value is -1 if the function could not create the dialog box, or IDABORT if 
some other error occurred. 

Call this member function to invoke the modal dialog box and return the dialog-box 
result when done. This member function handles all interaction with the user while the 
dialog box is active. This is what makes the dialog box modal; that is, the user cannot 
interact with other windows until the dialog box is closed. 

If the user clicks one of the pushbuttons in the dialog box, such as OK or Cancel, a 
message-handler member function, such as OnOK or OnCancel, is called to attempt 



to close the dialog box. The default OnOK member function will validate and update 
the dialog-box data and close the dialog box with result IDOK, and the default 
OnCancel member function will close the dialog box with result IDCANCEL 
without validating or updating the dialog-box data. You can override these 
message-handler functions to alter their behavior. 

Note PreTranslateMessage is now called for modal dialog box message processing. 

See Also: : :DialogBox, CWnd: :IsDialogMessage 

CDialog: :EndDialog 
void EndDialog( int nResult ); 

Parameters 

Remarks 

nResult Contains the value to be returned from the dialog box to the caller of 
DoModal. 

Call this member function to terminate a modal dialog box. This member function 
returns nResult as the return value of DoModal. You must use the EndDialog 
function to complete processing whenever a modal dialog box is created. 

You can call EndDialog at any time, even in OnlnitDialog, in which case you 
should close the dialog box before it is shown or before the input focus is set. 

EndDialog does not close the dialog box immediately. Instead, it sets a flag that 
directs the dialog box to close as soon as the current message handler returns. 

See Also: CDialog::DoModal, CDialog::OnOK, CDialog::OnCancel 

CDialog: : GetDefID 
DWORD GetDeflD( ) const; 

Return Value 

Remarks 

A 32-bit value (DWORD). If the default pushbutton has an ID value, the high-order 
word contains DC_HASDEFID and the low-order word contains the ID value. If the 
default pushbutton does not have an ID value, the return value is O. 

Call the GetDeflD member function to get the ID of the default pushbutton control 
for a dialog box. This is usually an OK button. 

See Also: CDialog: :SetDeflD, DM_ GETDEFID 

CDialog::GetDeflD 

569 



CDialog::GotoDlgCtrl 

CDialog: : GotoDlgCtrl 
void GotoDlgCtrl( CWnd* pWndCtrl); 

Parameters 

Remarks 

pWndCtrl Identifies the window (control) that is to receive the focus. 

Moves the focus to the specified control in the dialog box. 

To get a pointer to the control (child window) to pass as pWndCtrl, call the 
CWnd::GetDIgItem member function, which returns a pointer to a CWnd object. 

See Also: CWnd::GetDIgItem, CDialog::PrevDlgCtrl, CDialog::NextDlgCtrl 

CDialog: : InitModalIndirect 
BOOL InitModalIndirect( LPCDLGTEMPLATE IpDialogTemplate, 

~ CWnd* pParentWnd = NULL ); 
BOOL InitModalIndirect( HGLOBAL hDialogTemplate, 

~ CWnd* pParentWnd = NULL ); 

Return Value 
Nonzero if the dialog object was created and initialized successfully~ otherwise O. 

Parameters 

Remarks 

570 

lpDialogTemplate Points to memory that contains a dialog-box template used to 
create the dialog box. This template is in the form of a DLGTEMPLATE structure 
and control information. For more information on this structure, see the 
Win32 SDK documentation. 

hDialogTemplate Contains a handle to global memory containing a dialog-box 
template. This template is in the form of a DLGTEMPLATE structure and data for 
each control in the dialog box. 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the dialog object's parent window is set to 
the main application window. 

Call this member function to initialize a modal dialog object using a dialog-box 
template that you construct in memory. 

To create a modal dialog box indirectly, first allocate a global block of memory and 
fill it with the dialog box template. Then call the empty CDialog constructor to 
construct the dialog-box object. Next, call InitModalIndirect to store your handle to 
the in-memory dialog-box template. The Windows dialog box is created and displayed 
later, when the DoModal member function is called. 



See Also: ::DialogBoxlndirect, CDialog::DoModal, CWnd::DestroyWindow, 
CDialog:: Cdialog 

CDialog: : MapDialogRect 
void MapDialogRect( LPRECT lpRect ) const; 

Parameters 

Remarks 

lpRect Points to a RECT structure or CRect object that contains the dialog-box 
coordinates to be converted. 

Call to convert the dialog-box units of a rectangle to screen units. Dialog-box units 
are stated in terms of the current dialog-box base unit derived from the average width 
and height of characters in the font used for dialog-box text. One horizontal unit is 
one-fourth of the dialog-box base-width unit, and one vertical unit is one-eighth of 
the dialog-box base height unit. 

The GetDialogBaseUnits Windows function returns size information for the system 
font, but you can specify a different font for each dialog box if you use the 
DS_SETFONT style in the resource-definition file. The MapDialogRect Windows 
function uses the appropriate font for this dialog box. 

The MapDialogRect member function replaces the dialog-box units in lpRect with 
screen units (pixels) so that the rectangle can be used to create a dialog box or position 
a control within a box. 

See Also: : :GetDialogBaseUnits, : :MapDialogRect, WM_SETFONT 

CDialog::N extDlgCtrl 

Remarks 

void NextDlgCtrl( ) const; 

Moves the focus to the next control in the dialog box. If the focus is at the last control 
in the dialog box, it moves to the first control. 

See Also: CDialog::PrevDlgCtrl, CDialog::GotoDlgCtrl 

CDialog::OnCancel 

Remarks 

virtual void OnCancel(); 

The framework calls this member function when the user clicks the Cancel button or 
presses the ESC key in a modal or modeless dialog box. 

CDialog: :OnCancel 

571 



CDialog: :OnlnitDialog 

Override this member function to perform Cancel button action. The default simply 
terminates a modal dialog box by calling EndDialog and causing DoModal to return 
IDCANCEL. 

If you implement the Cancel button in a modeless dialog box, you must override the 
OnCancel member function and call DestroyWindow from within it. Don't call the 
base-class member function, because it calls EndDialog, which will make the dialog 
box invisible but not destroy it. 

See Also: CDialog::OnOK, CDialog::EndDialog 

CDialog: :OnInitDialog 
virtual BOOL OnInitDialog(); 

Return Value 

Remarks 

Specifies whether the application has set the input focus to one of the controls in the 
dialog box. If OnInitDialog returns nonzero, Windows sets the input focus to the first 
control in the dialog box. The application can return 0 only if it has explicitly set the 
input focus to one of the controls in the dialog box. 

This member function is called in response to the WM_INITDIALOG message. This 
message is sent to the dialog box during the Create, CreateIndirect, or DoModal 
calls, which occur immediately before the dialog box is displayed. 

Override this member function if you need to perform special processing when the 
dialog box is initialized. In the overridden version, first call the base class 
OnInitDialog but disregard its return value. You will normally return TRUE from 
your overridden member function. 

Windows calls the OnInitDialog function via the standard global dialog-box 
procedure common to all Microsoft Foundation Class Library dialog boxes, rather 
than through your message map, so you do not need a message-map entry for this 
member function. 

See Also: CDialog::Create, CDialog::CreateIndirect, WM_INITDIALOG 

CDialog: :OnOK 

Remarks 

572 

virtual void OnOK( ); 

Called when the user clicks the OK button (the button with an ID of IDOK). 

Override this member function to perform the OK button action. If the dialog box 
includes automatic data validation and exchange, the default implementation of this 



member function validates the dialog-box data and updates the appropriate variables 
in your application. 

If you implement the OK button in a modeless dialog box, you must override the 
OnOK member function and call DestroyWindow from within it. Don't call the 
base-class member function, because it calls EndDialog, which makes the dialog 
box invisible but does not destroy it. 

See Also: CDialog::OnCancel, CDialog::EndDialog 

CDialog: :OnSetFont 
virtual void OnSetFont( CFont* pFont); 

Parameters 

Remarks 

pFont Specifies a pointer to the font. Used as the default font for all controls in this 
dialog box. 

Specifies the font a dialog-box control will use when drawing text. The dialog-box 
control will use the specified font as the default for all dialog-box controls. 

The dialog editor typically sets the dialog-box font as part of the dialog-box template 
resource. 

See Also: WM_SETFONT, CWnd::SetFont 

CDialog: :Prev DlgCtrl 
void PrevDIgCtrl() const; 

Remarks 
Sets the focus to the previous control in the dialog box. If the focus is at the first 
control in the dialog box, it moves to the last control in the box. 

See Also: CDialog::NextDlgCtrl, CDialog::GotoDlgCtrl 

CDialog::SetDefiD 
void SetDefID( DINT nID ); 

Parameters 

Remarks 

nID Specifies the ID of the pushbutton control that will become the default. 

Changes the default pushbutton control for a dialog box. 

See Also: CDialog::GetDefiD 

CDialog::SetDefiD 

573 



CDialog: :SetHelpID 

CDialog:: SetHelpID 
void SetHelpID( UINT nIDR ); 

Parameters 
nIDR Specifies the context-sensitive help ID. 

Remarks 
Sets a context-sensitive help ID for the dialog box. 

574 



CDialogBar 

The CDialogBar class provides the functionality of a Windows modeless dialog 
box in a control bar. A dialog bar resembles a dialog box in that it contains standard 
Windows controls that the user can tab between. Another similarity is that you create 
a dialog template to represent the dialog bar. 

Creating and using a dialog bar is similar to creating and using a CForm View object. 
First, use the dialog editor (described in the Developer Studio User's Guide online) to 
define a dialog template with the style WS_CHILD and no other style. The template 
must not have the style WS_ VISIBLE. In your application code, call the constructor 
to construct the CDialogBar object, then call Create to create the dialog-bar window 
and attach it to the CDialogBar object. 

For more information on CDialogBar, see the article "Dialog Bar Topics" in 
Visual C++ Programmer's Guide online and Technical Note 31 online, "Control 
Bars." 

#include <afxext.h> 

See Also: CForm View, CControlBar 

CDialogBar Class Members 
Construction 

CDialogBar 

Create 

Constructs a CDialogBar object. 

Creates a Windows dialog bar and attaches it to the CDialogBar object. 

Member Functions 
CDialogBar: :CDialogBar 

CDialogBar( ); 

CDialogBar 

575 



CDialogBar: : Create 

Remarks 
Constructs a CDialogBar object. 

See Also: CControlBar 

CDialo gB ar: : Create 
BOOL Create( CWnd* pParentWnd, LPCTSTR /pszTemplateName, 

.. DINT nStyle, DINT nID); 
BOOL Create( CWnd* pParentWnd, DINT nIDTemplate, DINT nStyle, DINT nID ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

576 

pParentWnd A pointer to the parent CWnd object. 

IpszTemplateName A pointer to the name of the CDialogBar object's dialog-box 
resource template. 

nStyle The alignment style of the dialog bar. The following styles are supported: 

• CBRS_TOP Control bar is at the top of the frame window. 

• CBRS_BOTTOM Control bar is at the bottom of the frame window. 

• CBRS_NOALIGN Control bar is not repositioned when the parent is resized. 

• CBRS_LEFT Control bar is at the left of the frame window. 

• CBRS_RIGHT Control bar is at the right of the frame window. 

nID The control ID of the dialog bar. 

nIDTemplate The resource ID of the CDialogBar object's dialog-box template. 

Loads the dialog-box resource template specified by IpszTemplateName or 
nIDTemplate, creates the dialog-bar window, sets its style, and associates it with the 
CDialogBar object. 

If you specify the CBRS_TOP or CBRS_BOTTOM alignment style, the dialog bar's 
width is that of the frame window and its height is that of the resource specified by 
nIDTemplate. If you specify the CBRS_LEFT or CBRS_RIGHT alignment style, the 
dialog bar's height is that of the frame window and its width is that of the resource 
specified by nIDTemplate. 

See Also: CDialogBar:: CDialogBar 



CDocItem 

CDocItem is the base class for document items, which are components of a 
document's data. CDocItem objects are used to represent OLE items in both client 
and server documents. 

For more information, see the article "Containers: Implementing a Container" in 
Visual C++ Programmer's Guide online. 

#include <afxole.h> 

See Also: COleDocument, COleServerItem, COleClientItem 

CDocItem Class Members 
Operations 

GetDocument Returns the document that contains the item. 

Overridables 

IsBiank Determines whether the item contains any information. 

Member Functions 
CDocItem: :IsBlank 

virtual BOOL IsBlank() const; 

Return Value 

Remarks 

Nonzero if the item contains no information; otherwise O. 

Called by the framework when default serialization occurs. 

By default, CDocItem objects are not blank. COleClientltem objects are sometimes 
blank because they derive directly from CDocItem. However, COleServerItem 
objects are always blank. By default, OLE applications containing COleClientItem 

CDocItem 

577 



CDocltem: : GetDocument 

objects that have no x or y extent are serialized. This is done by returning TRUE from 
an override of IsBlank when the item has no x or y extent. 

Override this function if you want to implement other actions during serialization. 

See Also: CObject::Serialize 

CDocItem: : GetDocument 
CDocument* GetDocument( ) const; 

Return Value 

Remarks 

578 

A pointer to the document that contains the item; NULL, if the item is not part of a 
document. 

Call this function to get the document that contains the item. 

This function is overridden in the derived classes COleClientltem and 
COleServerltem, returning a pointer to either a COleDocument, a 
COleLinkingDoc, or a COleServerDoc object. 

See Also: COleDocument, COleLinkingDoc, COleServerDoc, COleClientltem, 
COleServerItem 



CDockState 

CDockState is a serialized CObject class that loads, unloads, or clears the state of one 
or more docking control bars in persistent memory (a file). The dock state includes the 
size and position of the bar and whether or not it is docked. When retrieving the stored 
dock state, CDockState checks the bar's position and, if the bar is not visible with the 
current screen settings, CDockState scales the bar's position so that it is visible. The 
main purpose of CDockState is to hold the entire state of a number of control bars and 
to allow that state to be saved and loaded either to the registry, the application's .INI 
file, or in binary form as part of a CArchive object's contents. 

The bar can be any dockable control bar, including a toolbar, status bar, or dialog bar. 
CDockState objects are written and read to or from a file via a CArchive object. 

CFrameWnd::GetDockState retrieves the state information of all the frame window's 
CControlBar objects and puts it into the CDockState object. You can then write the 
contents of the CDockState object to storage with Serialize or CDockState: :SaveState. If 
you later want to restore the state of the control bars in the frame window, you can load the 
state with Serialize or CDockState::LoadState, then use CFrameWnd::SetDockState 
to apply the saved state to the frame window's control bars. 

For more information on docking control bars, see the articles "Control Bar Topics," 
"Toolbars: Docking and Floating," and "Frame Window Topics" in Visual C++ 
Programmer's Guide online. 

#include <afxadv.h> 

CDockState Class Members 
Data Members 

Construction 

CDockState 

Operations 

Clear 

GetVersion 

Array of pointers to the stored dock state 
information with one entry for each control bar. 

Constructs a CDockState object. 

Clears the dock state information. 

Retrieves the version number of the stored bar state. 
(continued) 

CDockState 

579 



CDockState: :CDockS tate 

Operations (continued) 

LoadState 

SaveState 

Retrieves state information from the registry or .INI file. 

Saves state information to the registry or INI file. 

Member Functions 
CDockState: :CDockState 

Remarks 

CDockState( ); 

Constructs a CDockState object. 

See Also: CDockState::Clear, CDockState::GetVersion, CDockState::LoadState, 
CDockState: :SaveState, CFrame Wnd: : GetDockState, 
CFrame Wnd: :SetDockState 

CDockState: : Clear 

Remarks 

void Clear( ); 

Call this function to clear all docking infonnation stored in the CDockState object. 
This includes not only whether the bar is docked or not, but the bar's size and position 
and whether or not it is visible. 

See Also: CDockState: :LoadState, CDockState: :SaveState, 
CDockState::GetVersion, CFrameWnd::GetDockState, 
CFrame Wnd: :SetDockState 

CDockState: : GetVersion 
DWORD GetVersion( ); 

Return Value 

Remarks 

580 

1 if the stored bar infonnation is older than current bar state; 2 if the stored bar 
infonnation is the same as the current bar state. 

Call this function to retrieve the version number of the stored bar state. Version 
support enables a revised bar to add new persistent properties and still be able to 
detect and load the persistent state created by an earlier version of the bar. 

See Also: CDockState::LoadState, CDockState::SaveState, CDockState::Clear, 
CFrame Wnd: : GetDockState, CFrame Wnd: :SetDockState 



CDockState::m_arrBarInfo 

CDockState: :LoadState 
void LoadState( LPCTSTR lpszProfileName ); 

Parameters 

Remarks 

lpszProfileName Points to a null-terminated string that specifies the name of a 
section in the initialization file or a key in the Windows registry where state 
information is stored. 

Call this function to retrieve state information from the registry or .INI file. The 
profile name is the section of the application's .INI file or the registry that contains the 
bars' state information. You can save control bar state information to the registry or 
.INI file with SaveS tate. 

See Also: CDockState::SaveState, CDockState::GetVersion, CDockState::Clear, 
CFrame Wnd: :GetDockState, CFrame Wnd: :SetDockState 

CDockState: :SaveState 
void SaveState( LPCTSTR lpszProfileName ); 

Parameters 

Remarks 

lpszProfileName Points to a null-terminated string that specifies the name of a 
section in the initialization file or a key in the Windows registry where state 
information is stored. 

Call this function to save the state information to the registry or .INI file. The profile 
name is the section of the application's .INI file or the registry that contains the 
control bar's state information. SaveState also saves the current screen size. You can 
retrieve control bar information from the registry or .INI file with LoadState. 

See Also: CDockState::LoadState, CDockState::GetVersion, CDockState::Clear, 
CFrameWnd::GetDockState, CFrameWnd::SctDockState 

Data Members 
CDockState: :m_arrBarInfo 
Remarks 

A CPtrArray object that is an array of pointers to the stored control bar information 
for each control bar that has saved state information in the CDockState object. 

See Also: CDockState::LoadState, CDockState::SaveState, CDockState::Clear, 
CFrame Wnd: : GetDockState, CFrame Wnd: :SetDockState 

581 



CDocObjectServer 

CDocObjectServer 

CDocObjectServer 

Class CDocObjectServer implements the additional OLE interfaces needed to 
make a normal COleDocument server into a full DocObject server: IOleDocument, 
IOleDocumentView, IOleCommandTarget, and IPrint. CDocObjectServer is 
derived from CCmdTarget and works closely with COleServerDoc to expose the 
interfaces. 

A DocObject server document can contain CDocObjectServerItem objects, which 
represent the server interface to DocObject items. 

To customize your DocObject server, derive your own class from CDocObjectServer 
and override its view setup functions, OnActivateView, OnApplyViewState, and 
OnSaveViewState. You will need to provide a new instance of your class in response 
to framework calls. 

For further information on DocObjects, see CDocObjectServerItem and 
COleCmdUI in the MFC Class Library Reference. Also see "Internet First Steps: 
ActiveX Documents" and "ActiveX Documents" in Visual C++ Programmer's Guide 
online. 

#include <afxdocobj.h> 

See Also: CDocObjectServerItem 

CDocObjectServer Class Members 

582 

Constructors 

CDocObjectServer 

Operations 

ActivateDocObject 

Overrideables 

OnActivate View 

OnApply ViewS tate 

OnSaveViewState 

Constructs a CDocObjectServer object. 

Activates the document object server, 
but does not show it. 

Displays the DocObject view. 

Restores the state of the DocObject view. 

Saves the state of the DocObject view. 



CDocObjectServer: :CDocObjectServer 

Member Functions 
CDocObjectServer: : ActivateDocObject 

Remarks 

void ActivateDocObject( ); 

Call this function to activate (but not show) the document object server. 
ActivateDocObject calls IOleDocumentSite's ActivateMe method, but does not 
show the view because it waits for specific instructions on how to set up and display 
the view, given in the call to CDocObjectServer::OnActivateView. 

Together, ActivateDocObject and OnActivateView activate and display the 
DocObject view. DocObject activation differs from other kinds of OLE in-place 
activation. DocObject activation bypasses displaying in-place hatch borders and 
object adornments (such as sizing handles), ignores object extent functions, and 
draws scroll bars within the view rectangle as opposed to drawing them outside that 
rectangle (as in normal in-place activation). 

See Also: CDocObjectServerItem 

CDocObjectServer: : CDocObjectServer 
CDocObjectServer( COleServerDoc* pOwner, 

... LPOLEDOCUMENTSITE pDocSite = NULL ); 

Parameters 

Remarks 

pOwner A pointer to the client site document that is the client for the DocObject 
server. 

pDocSite A pointer to the IOleDocumentSite interface implemented by the 
container. 

Constructs and initializes a CDocObjectServer object. 

When a DocObject is active, the client site OLE interface (IOleDocumentSite) is 
what allows the DocObject server to communicate with its client (the container). 
When a DocObject server is activated, it first checks that the container implements the 
IOleDocumentSite interface. If so, COleServerDoc::GetDocObjectServer is called 
to see if the container supports DocObjects. By default, GetDocObjectServer returns 
NULL. You must override COleServerDoc::GetDocObjectServer to construct a 
new CDocObjectServer object or a derived object of your own, with pointers to the 
COleServerDoc container and its IOleDocumentSite interface as arguments to the 
constructor. 

See Also: CDocObjectServerItem, COleServerDoc:: GetDocObjectServer 

583 



CDocObjectServer: :OnActivate View 

CDocObjectServer: :OnActivate View 
virtual HRESULT OnActivateView(); 

Return Value 

Remarks 

Returns an error or warning value. By default, returns NOERROR if successful; 
otherwise, E_FAIL. 

Call this function to display the DocObject view. This function creates an in-place 
frame window, draws scrollbars within the view, sets up the menus the server shares 
with its container, adds frame controls, sets the active object, then finally shows the 
in-place frame window and sets the focus. 

See Also: CDocObjectServer: :OnApplyViewState 

CDocObjectServer:: OnApply ViewState 
virtual void OnApplyViewState( CArchive& ar); 

Parameters 

Remarks 

ar A CArchive object from which to serialize the view state. 

Override this function to restore the state of the DocObject view. 

This function is called when the view is being displayed for the first time after its 
instantiation. OnApplyViewState instructs a view to reinitialize itself according to the 
data in the CArchive object previously saved with OnSaveViewState. The view must 
validate the data in the CArchive object because the container does not attempt to 
interpret the view state data in any way. 

You can use OnSaveViewState to store persistent information specific to your view's 
state. If you override OnSaveViewState to store information, you will want to 
override OnApplyViewState to read that information and apply it to your view when 
it is newly activated. 

See Also: CDocObjectServer: :OnSave ViewState 

CDocObjectServer: :OnSave ViewState 
virtual void OnSaveViewState( CArchive& ar); 

Parameters 
ar A CArchive object to which the view state is serialized. 

Remarks 
Override this function to save extra state information about your DocObject view. 

584 



CDocObjectServer: :OnSave ViewS tate 

Your state might include properties like the view type, zoom factor, insertion and 
selection point, and so on. The container typically calls this function before 
deactivating the view. The saved state can later be restored through 
OnApplyViewState. 

You can use OnSaveViewState to store persistent information specific to your view's 
state. If you override OnSave ViewState to store information, you will want to 
override OnApplyViewState to read that information and apply it to your view when 
it is newly activated. 

See Also: CDocObjectServer::OnApplyViewState 

585 



CDocObjectServerItem 

CDocObjectServerItem 

Class CDocObjectServerltem, derived from COleServerltem, implements OLE 
server verbs specifically for DocObject servers. 

CDocObjectServerltem defines overridable member functions: OnHide, OnOpen, 
and OnShow. 

To use CDocObjectServerltem, assure that the OnGetEmbeddedltem override in 
your COleServerDoc-derived class returns a new CDocObjectServerltem object. 
If you need to change any functionality in your item, you can create a new instance 
of your own CDocObjectServerltem-derived class. 

For further information on DocObjects, see CDocObjectServer and COleCmdUI 
in the MFC Class Library Reference. Also see "Internet First Steps: ActiveX 
Documents" and "ActiveX Documents" in Visual C++ Programmer's Guide online. 

#include <afxdocobj.h> 

See Also: CDocObjectServer 

CDocObjectServerItem Class Members 

586 

Constructors 

CDocObjectServerltem 

Overridables 

OnHide 

OnOpen 

OnShow 

Constructs a CDocObjectServerltem object. 

Throws an exception if the framework tries to hide a 
DocObject item. 

Called by the framework to make the DocObject item 
in-place active. If the item is not a DocObject, calls 
COleServerltem::OnOpen. 

Called by the framework to make the DocObject item 
in-place active. If the item is not a DocObject, calls 
COleServerltem::OnShow. 



CDocObjectServerItem: :OnOpen 

Member Functions 
CDocObj ectServerItem: : CDocObj ectServerItem 

CDocObjectServerltem( COleServerDoc* pServerDoc, BOOL bAutoDelete); 

Parameters 

Remarks 

pServerDoc A pointer to the document that will contain the new DocObject item. 

bAutoDelete Indicates whether the object can be deleted when a link to it is released. 
Set the argument to FALSE if the CDocObjectServerltem object is an integral 
part of your document's data. Set it to TRUE if the object is a secondary structure 
used to identify a range in your document's data that can be deleted by the 
framework. 

Constructs a CDocObjectServerltem object. 

See Also: CDocObjectServer 

CDocObjectServerItem: :OnHide 

Remarks 

virtual void OnHide( ); 

Called by the framework to hide the item. The default implementation throws an 
exception if the item is a DocObject. You cannot hide an active DocObject item 
because it takes the whole view. You must deactivate the DocObject item to make it 
disappear. If the item is not a DocObject, the default implementation calls 
COleServerltem: :OnHide. 

See Also: CDocObjectServerltem::OnOpen, CDocObjectServerltem::OnShow 

CDocObjectServerItem:: OnOpen 

Remarks 

virtual void OnOpen( ); 

Called by the framework to instruct the server application to make the DocObject item 
in-place active. If the item is not a DocObject, the default implementation calls 
COleServerltem::OnOpen. Override this function if you want to perform special 
processing when opening a DocObject item. 

See Also: CDocObjectServerltem: :OnHide, CDocObjectServerltem: :OnShow 

587 



CDocObjectServerItem: :OnShow 

CDocObjectServerItem: :OnShow 

Remarks 

588 

virtual void OnShow(); 

Called by the framework to instruct the server application to make the DocObject item 
in-place active. If the item is not a DocObject, the default implementation calls 
COleServerltem::OnShow. Override this function if you want to perform special 
processing when opening a DocObject item. 

See Also: CDocObjectServerltem: :OnHide, CDocObjectServerltem: :OnOpen 



CDocTernplate 

CDocTemplate is an abstract base class that defines the basic functionality for 
document templates. You usually create one or more document templates in the 
implementation of your application's Initlnstance function. A document template 
defines the relationships among three types of classes: 

• A document class, which you derive from CDocument. 

• A view class, which displays data from the document class listed above. You can 
derive this class from CView, CScrollView, CFormView, or CEditView. (You 
can also use CEditView directly.) 

• A frame window class, which contains the view. For a single document interface 
(SDI) application, you derive this class from CFrameWnd. For a multiple 
document interface (MDI) application, you derive this class from 
CMDIChildWnd. If you don't need to customize the behavior of the frame 
window, you can use CFrameWnd or CMDIChildWnd directly without deriving 
your own class. 

Your application has one document template for each type of document that it 
supports. For example, if your application supports both spreadsheets and text 
documents, the application has two document template objects. Each document 
template is responsible for creating and managing all the documents of its type. 

The document template stores pointers to the CRuntimeClass objects for the 
document, view, and frame window classes. These CRuntimeClass objects are 
specified when constructing a document template. 

The document template contains the ID of the resources used with the document type 
(such as menu, icon, or accelerator table resources). The document template also has 
strings containing additional information about its document type. These include the 
name of the document type (for example, "Worksheet") and the file extension (for 
example, ".xls"). Optionally, it can contain other strings used by the application's user 
interface, the Windows File Manager, and Object Linking and Embedding (OLE) 
support. 

If your application is an OLE container and/or server, the document template also 
defines the ID of the menu used during in-place activation. If your application is an 
OLE server, the document template defines the ID of the toolbar and menu used 
during in-place activation. You specify these additional OLE resources by calling 
SetContainerInfo and SetServerInfo. 

CDocTemplate 

589 



CDocTemplate 

Because CDocTemplate is an abstract class, you cannot use the class directly. A 
typical application uses one of the two CDocTemplate-derived classes provided by 
the Microsoft Foundation Class Library: CSingleDocTemplate, which implements 
SDI, and CMultiDocTemplate, which implements MDI. See those classes for more 
information on using document templates. 

If your application requires a user-interface paradigm that is fundamentally different 
from SDI or MDI, you can derive your own class from CDocTemplate. 

For more information on CDocTemplate, see "Document Templates and the 
DocumentlView Creation Process" in Visual C++ Programmer's Guide online. 

include# <afxwin.h> 

See Also: CSingleDocTemplate, CMultiDocTemplate, CDocument, CView, 
CScrollView, CEditView, CFormView, CFrameWnd, CMDIChildWnd 

CDocTemplate Class Members 

590 

Constructors 

CDocTemplate 

Attributes 

SetContainerInfo 

SetServerInfo 

GetFirstDocPosition 

GetNextDoc 

LoadTemplate 

Operations 

AddDocument 

RemoveDocument 

GetDocString 

CreateOleFrame 

Overridables 

MatchDocType 

CreateNewDocument 

CreateNewFrame 

InitialUpdateFrame 

Constructs a CDocTemplate object. 

Determines the resources for OLE containers when editing an 
in-place OLE item. 

Determines the resources and classes when the server document is 
embedded or edited in-place. 

Retrieves the position of the first document associated with this 
template. 

Retrieves a document and the position of the next one. 

Loads the resources for a given CDocTemplate or derived class. 

Adds a document to a template. 

Removes a document from a template. 

Retrieves a string associated with the document type. 

Creates an OLE-enabled frame window. 

Determines the degree of confidence in the match between a 
document type and this template. 

Creates a new document. 

Creates a new frame window containing a document and view. 

Initializes the frame window, and optionally makes it visible. 



CDocTemplate: :CDocTemplate 

Overridables (continued) 

SaveAllModified 

CloseAllDocuments 

OpenDocumentFile 

SetDefaultTitle 

Saves all documents associated with this template which 
have been modified. 

Closes all documents associated with this template. 

Opens a file specified by a pathname. 

Displays the default title in the document window's title bar. 

Member Functions 
CDocTemplate: : AddDocument 

virtual void AddDocument( CDocument* pDoc); 

Parameters 

Remarks 

pDoc A pointer to the document to be added. 

Use this function to add a document to a template. The derived classes 
CMultiDocTemplate and CSingleDocTemplate override this function. If you derive 
your own document-template class from CDocTemplate, your derived class must 
override this function. 

See Also: CDocTemplate: :RemoveDocument, CMultiDocTemplate, 
CSingleDocTemplate 

CDocTemplate: :CDocTemplate 
CDocTemplate ( UINT nIDResource, CRuntimeClass* pDocClass, 

... CRuntimeClass* pFrameClass, CRuntimeClass* p View Class ); 

Parameters 
nIDResource Specifies the ID of the resources used with the document type. This 

may include menu, icon, accelerator table, and string resources. 

The string resource consists of up to seven substrings separated by the '\n' 
character (the '\n' character is needed as a place holder if a substring is not 
included; however, trailing '\n' characters are not necessary); these substrings 
describe the document type. For information on the substrings, see GetDocString. 
This string resource is found in the application's resource file. For example: 

II MYCALC.RC 
STRINGTABLE PRELOAD DISCARDABLE 
BEGIN 

IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets 
.. (*.myc)\n.myc\n MyCalcSheet\nMyCalc Worksheet" 

END 

591 



CDocTemplate: :CloseAllDocuments 

Remarks 

Note that the string begins with a '\n' character; this is because the first substring is 
not used for MDI applications and so is not included. You can edit this string using 
the string editor; the entire string appears as a single entry in the String Editor, not 
as seven separate entries. 

For more information about these resource types, see the Developer Studio User's 
Guide online. 

pDocClass Points to the CRuntimeClass object of the document class. This class is 
a CDocument-derived class you define to represent your documents. 

pFrameClass Points to the CRuntimeClass object of the frame window class. This 
class can be a CFrameWnd-derived class, or it can be CFrameWnd itself if you 
want default behavior for your main frame window. 

p ViewClass Points to the CRuntimeClass object of the view class. This class is a 
CView-derived class you define to display your documents. 

Use this member function to construct a CDocTemplate object. Dynamically allocate 
a CDocTemplate object and pass it to CWinApp: :AddDocTemplate from the 
In i tIn s tan c e member function of your application class. 

See Also: CDocTemplate: : GetDocString, CWinApp: :AddDocTemplate, 
CWinApp: :Initlnstance, CRuntimeClass 

CDocTemplate: : CloseAllDocuments 
virtual void CloseAlIDocuments( BOOL bEndSession ); 

Parameters 

Remarks 

592 

bEndSession Specifies whether or not the session is being ended. It is TRUE if the 
session is being ended; otherwise FALSE. 

Call this member function to close all open documents. This member function is 
typically used as part of the File Exit command. The default implementation of this 
function calls the CDocument: :DeleteContents member function to delete the 
document's data and then closes the frame windows for all the views attached to the 
document. 

Override this function if you want to require the user to perform special cleanup 
processing before the document is closed. For example, if the document represents a 
record in a database, you may want to override this function to close the database. 

See Also: CDocTemplate: :OpenDocumentFile, CDocTemplate: :SaveAIIModified 



CDocTemplate::CreateOleFrame 

CDocTemplate: : CreateN ew Document 
virtual CDocument* CreateNewDocument(); 

Return Value 

Remarks 

A pointer to the newly created document, or NULL if an error occurs. 

Call this member function to create a new document of the type associated with this 
document template. 

See Also: CDocTemplate::CreateNewFrame 

CDocTemplate: : CreateN ew Frame 
virtual CFrameWnd* CreateNewFrame( CDocument* pDoc, CFrameWnd* pOther); 

Return Value 
A pointer to the newly created frame window, or NULL if an error occurs. 

Parameters 

Remarks 

pDoc The document to which the new frame window should refer. Can be NULL. 

pOther The frame window on which the new frame window is to be based. Can be 
NULL. 

CreateNewFrame uses the CRuntimeClass objects passed to the constructor to 
create a new frame window with a view and document attached. If the pDoc 
parameter is NULL, the framework outputs a TRACE message. 

The pOther parameter is used to implement the Window New command. It provides 
a frame window on which to model the new frame window. The new frame window 
is usually created invisible. Call this function to create frame windows outside the 
standard framework implementation of File New and File Open. 

See Also: CCreateContext, CFrameWnd::LoadFrame, 
CDocTemplate: :InitialUpdateFrame 

CDocTemplate: :CreateOleFrame 
CFrameWnd* CreateOleFrame( CWnd* pParentWnd, CDocument* pDoc, 

... BOOL bCreateView ); 

Return Value 
A pointer to a frame window if successful; otherwise NULL. 

Parameters 
pParentWnd A pointer to the frame's parent window. 

593 



CDocTemplate: :GetDocString 

Remarks 

pDoc A pointer to the document to which the new OLE frame window should refer. 

bCreate View Determines whether a view is created along with the frame. 

Creates an OLE frame window. If bCreate View is zero, an empty frame is created. 

See Also: CDocTemplate: : CreateNewFrame , COleDocument, 
COleIPFrameWnd 

CDocTemplate: : GetDocString 
virtual BOOL GetDocString( CString& rString, enum DocStringIndex index) const; 

Return Value 
,N onzero if the specified substring was found; otherwise O. 

Parameters 

594 

rString A reference to a CString object that will contain the string when the function 
returns. 

index An index of the substring being retrieved from the string that describes the 
document type. This parameter can have one of the following values: 

• CDocTemplate::windowTitle Name that appears in the application window's 
title bar (for example, "Microsoft Excel"). Present only in the document 
template for SDI applications. 

• CDocTemplate::docName Root for the default document name (for example, 
"Sheet"). This root, plus a number, is used for the default name of a new 
document of this type whenever the user chooses the New command from the 
File menu (for example, "Sheet!" or "Sheet2"). If not specified, "Untitled" is 
used as the default. 

• CDocTemplate::fileNewName Name of this document type. If the application 
supports more than one type of document, this string is displayed in the File 
New dialog box (for example, "Worksheet"). If not specified, the document type 
is inaccessible using the File New command. 

• CDocTemplate: :filterName Description of the document type and a wildcard 
filter matching documents of this type. This string is displayed in the List Files 
Of Type drop-down list in the File Open dialog box (for example, "Worksheets 
(* .xls)"). If not specified, the document type is inaccessible using the File Open 
command. 

• CDocTemplate: :filterExt Extension for documents of this type (for example, 
".xls"). If not specified, the document type is inaccessible using the File Open 
command. 



CDocTemplate:: GetFirstDocPosition 

Remarks 

• CDocTemplate::regFileTypeld Identifier for the document type to be stored 
in the registration database maintained by Windows. This string is for internal 
use only (for example, "ExceIWorksheet"). If not specified, the document type 
cannot be registered with the Windows File Manager. 

• CDocTemplate::regFileTypeName Name of the document type to be stored 
in the registration database. This string may be displayed in dialog boxes of 
applications that access the registration database (for example, "Microsoft Excel 
Worksheet"). 

Call this function to retrieve a specific substring describing the document type. The 
string containing these substrings is stored in the document template and is derived 
from a string in the resource file for the application. The framework calls this function 
to get the strings it needs for the application's user interface. If you have specified a 
filename extension for your application's documents, the framework also calls this 
function when adding an entry to the Windows registration database; this allows 
documents to be opened from the Windows File Manager. 

Call this function only if you are deriving your own class from CDocTemplate. 

See Also: CMultiDocTemplate:: CMultiDocTemplate, 
CSingleDocTemplate: : CSingleDocTemplate, CWinApp: : RegisterShellFileTypes 

CDocTemplate: : GetFirstDocPosi tion 
virtual POSITION GetFirstDocPosition( ) const = 0; 

Return Value 

Remarks 

A POSITION value that can be used to iterate through the list of documents 
associated with this document template; or NULL if the list is empty. 

Use this function to get the position of the first document in the list of documents 
associated with this template. Use the POSITION value as an argument to 
CDocTemplate::GetNextDoc to iterate through the list of documents associated 
with the template. 

CSingleDocTemplate and CMultiDocTemplate both override this pure virtual 
function. Any class you derive from CDocTemplate must also override this 
function. 

See Also: CDocTemplate::GetNextDoc, CSingleDocTemplate, 
CMultiDocTemplate 

595 



CDocTemplate: : GetNextDoc 

CDocTemplate: : GetN extDoc 
virtual CDocument* GetNextDoc( POSITION& rPos) const = 0; 

Return Value 
A pointer to the next document in the list of qocuments associated with this template. 

Parameters 

Remarks 

rPos A reference to a POSITION value returned by a previous call to 
GetFirstDocPosition or GetNextDoc. 

Retrieves the list element identified by rPos, then sets rrPos to the POSITION value 
of the next entry in the list. If the retrieved element is the last in the list, then the new 
value of rPos is set to NULL. 

You can use GetNextDoc in a forward iteration loop if you establish the initial 
position with a call to GetFirstDocPosition. 

You must ensure that your POSITION value represents a valid position in the list. If 
it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

See Also: CDocTemplate::GetFirstDocPosition 

CDocTemplate: : Initial U pdateFrame 
virtual void InitialUpdateFrame( CFrameWnd* pFrame, CDocument* pDoc, 

... BOOL bMakeVisible = TRUE ); 

Parameters 

Remarks 

596 

pFrame The frame window that needs the initial update. 

pDoc The document to which the frame is associated. Can be NULL. 

bMake Visible Indicates whether the frame should become visible and active. 

Call IntitialUpdateFrame after creating a new frame with CreateNewFrame. 
Calling this function causes the views in that frame window to receive their 
OnInitialUpdate calls. Also, if there was not previously an active view, the 
primary view of the frame window is made active; the primary view is a view 
with a child ID of AFX_IDW _PANE_FIRST. Finally, the frame window is made 
visible if bMakeVisible is non-zero. If bMakeVisible is zero, the current focus and 
visible state of the frame window will remain unchanged. 

It is not necessary to call this function when using the framework's implementation 
of File New and File Open. 



CDocTemplate: :MatchDocType 

See Also: CView::OnlnititaIUpdate, CFrameWnd::SetActiveView, 
CDocTemplate::CreateNewFrame 

CDocTempate: : LoadTemplate 

Remarks 

virtual void LoadTemplate( ); 

This member function is called by the framework to load the resources for a given 
CDocTemplate or derived class. Normally it is called during construction, except 
when the template is being constructed globally. In that case, the call to 
LoadTemplate is delayed until CWinApp::AddDocTemplate is called. 

See Also: CWinApp::AddDocTemplate 

CDocTemplate: :MatchDocType 
virtual Confidence MatchDocType( LPCTSTR lpszPathName, 

... CDocument*& rpDocMatch); 
virtual Confidence MatchDocType( LPCTSTR lpszPathName, 

... DWORD dwFileType, CDocument*& rpDocMatch ); 

Return Value 
A value from the Confidence enumeration, which is defined as follows: 

enum Confidence 
{ 

noAttempt. 
maybeAttemptForeign. 
maybeAttemptNative. 
yesAttemptForeign. 
yesAttemptNative. 
yesAlreadyOpen 

} ; 

Parameters 

Remarks 

lpszPathName Pathname of the file whose type is to be determined. 

rpDocMatch Pointer to a document that is assigned the matching document, if the 
file specified by IpszPathName is already open. 

dwFileType The type of the document (Macintosh® only). 

Use this function to determine the type of document template to use for opening a file. 
If your application supports multiple file types, for example, you can use this function 
to determine which of the available document templates is appropriate for a given file 
by calling MatchDocType for each template in tum, and choosing a template 
according to the confidence value returned. 

597 



CDocTemplate: :OpenDocumentFile 

If the file specified by IpszPathName is already open, this function returns 
CDocTemplate::yesAlreadyOpen and copies the file's Cdocument object into 
the object at rpDocMatch. 

If the file is not open but the extension in IpszPathName matches the extension 
specified by CDocTemplate::filterExt (or the Macintosh file type matches), 
this function returns CDocTemplate::yesAttemptNative and sets rpDocMatch 
to NULL. For more information on CDocTemplate::filterExt, see 
CDocTemplate:: GetDocString. 

If neither case is true, the function returns CDocTemplate: :yesAttemptForeign. 

The default implementation does not return CDocTemplate::maybeAttemptForeign 
or CDocTemplate::maybeAttemptNative. Override this function to implement 
type-matching logic appropriate to your application, perhaps using these two values 
from the Confidence enumeration. 

See Also: CDocTemplate:: GetDocString 

CDocTemplate: : OpenDocumentFile 
virtual CDocument* OpenDocumentFile( LPCTSTR IpszPathName, 

... BOOL bMake Visible = TRUE) = 0; 

Return Value 
A pointer to the document whose file is named by IpszPathName; NULL if 
unsuccessful. 

Parameters 

Remarks 

IpszPathName Pointer to the pathname of the file containing the document to be 
opened. 

bMake Visible Determines whether the window containing the document is to be 
made visible. 

Opens the file whose pathname is specified by IpzsPathName. If IpszPathName is 
NULL, a new file, containing a document of the type associated with this template, 
is created. 

See Also: CDocTemplate::CloseAlIDocuments 

CDocTemplate: : RemoveDocument 
virtual void RemoveDocument( CDocument* pDoc ); 

Parameters 
pDoc Pointer to the document to be removed. 

598 



CDocTemplate:: SetContainerInfo 

Remarks 
Removes the document pointed to by pDoc from the list of documents associated with 
this template. The derived classes CMultiDocTemplate and CSingleDocTemplate 
override this function. If you derive your own document-template class from 
CDocTemplate, your derived class must override this function. 

See Also: CDocTemplate: :AddDocument, CMultiDocTemplate, 
CSingleDocTemplate 

CDocTemplate: :SaveAIIModified 
virtual BOOL SaveAllModified(); 

Return Value 

Remarks 

Non-zero if successful; otherwise O. 

Saves all documents that have been modified. 

See Also: CDocTemplate::OpenDocumentFile, 
CDocTemplate:: CloseAllDocuments 

CDocTemplate: :SetContainerInfo 
void SetContainerInfo( UINT nIDOlelnPlaceContainer ); 

Parameters 

Remarks 

nIDOlelnPlaceContainer The ID of the resources used when an embedded object 
is activated. 

Call this function to set the resources to be used when an OLE 2 object is in-place 
activated. These resources may include menus and accelerator tables. This function 
is usually called in the CWinApp::Initlnstance function of your application. 

The menu associated with nIDOlelnPlaceContainer contains separators that allow 
the menu of the activated in-place item to merge with the menu of the container 
application. For more information about merging server and container menus, 
see the article "Menus and Resources (OLE)" in Visual C++ Programmer's 
Guide online. 

See Also: CDocTemplate::SetServerInfo, CWinApp::Initlnstance, 
CMultiDocTemplate: :CMultiDocTemplate 

599 



CDocTemplate::SetDefaultTitle 

CDocTemplate: :SetDefaultTitle 
virtual void SetDefaultTitle( CDocument* pDocument) = 0; 

Parameters 

Remarks 

pDocument Pointer to the document whose title is to be set. 

Call this function to load the document's default title and display it in the document's 
title bar. For information on the default title, see the description of 
CDocTemplate: :docName in CDocTemplate: :GetDocString. 

See Also: CDocTemplate: : GetDocString 

CDocTemplate:: SetServerInfo 
void SetServerInfo( UINT nIDOleEmbedding, UINT nIDOlelnPlaceServer = 0, 

~ CRuntimeClass* pOleFrameClass = NULL, 
~ CRuntimeClass* pOle ViewClass = NULL ); 

Parameters 

Remarks 

600 

nIDOleEmbedding The ID of the resources used when an embedded object is opened 
in a separate window. 

nIDOlelnPlaceServer The ID of the resources used when an embedded object is 
activated in-place. 

pOleFrameClass Pointer to a CRuntimeClass structure containing class information 
for the frame window object created when in-place activation occurs. 

pOle ViewClass Pointer to a CRuntimeClass structure containing class information 
for the view object created when in-place activation occurs. 

Call this member function to identify resources that will be used by the server 
application when the user requests activation of an embedded object. These resources 
consist of menus and accelerator tables. This function is usually called in the 
InitInstance of your application. 

The menu associated with nIDOlelnPlaceServer contains separators that allow the 
server menu to merge with the menu of the container. For more information about 
merging server and container menus, see the article "Menus and Resources (OLE)" 
in Visual c++ Programmer's Guide online. 

See Also: CMultiDocTemplate:: CMultiDocTemplate, 
CDocTemplate: :SetContainerInfo, CWinA pp: : InitInstance 



CDocument 

The CDocument class provides the basic functionality for user-defined document 
classes. A document represents the unit of data that the user typically opens with the 
File Open command and saves with the File Save command. 

CDocument supports standard operations such as creating a document, loading it, 
and saving it. The framework manipulates documents using the interface defined by 
CDocument. 

An application can support more than one type of document; for example, an 
application might support both spreadsheets and text documents. Each type of 
document has an associated document template; the document template specifies 
what resources (for example, menu, icon, or accelerator table) are used for that type 
of document. Each document contains a pointer to its associated CDocTemplate 
object. 

Users interact with a document through the CView object(s) associated with it. A 
view renders an image of the document in a frame window and interprets user input 
as operations on the document. A document can have multiple views associated with 
it. When the user opens a window on a document, the framework creates a view and 
attaches it to the document. The document template specifies what type of view and 
frame window are used to display each type of document. 

Documents are part of the framework's standard command routing and consequently 
receive commands from standard user-interface components (such as the File Save 
menu item). A document receives commands forwarded by the active view. If the 
document doesn't handle a given command, it forwards the command to the 
document template that manages it. 

When a document's data is modified, each of its views must reflect those 
modifications. CDocument provides the UpdateAllViews member function for you 
to notify the views of such changes, so the views can repaint themselves as necessary. 
The framework also prompts the user to save a modified file before closing it. 

To implement documents in a typical application, you must do the following: 

• Derive a class from CDocument for each type of document. 

• Add member variables to store each document's data. 

CDocument 

601 



CDocument 

• Implement member functions for reading and modifying the document's data. 
The document's views are the most important users of these member functions. 

• Override the CObject: : Serialize member function in your document class to 
write and read the document's data to and from disk. 

CDocument supports sending your document via mail if mail support (MAPI) is 
present. See the articles "MAPI Topics" and "MAPI Support in MFC" in Visual C++ 
Programmer's Guide online. 

For more information on CDocument, see "Serialization (Object Persistence)," 
"DocumentlView Architecture Topics," and "DocumentlView Creation" in 
Visual C++ Programmer's Guide online. 

#include <afxwin.h> 

See Also: CCmdTarget, CView, CDocTemplate 

CDocument Class Members 

602 

Construction 

CDocument 

Operations 

AddView 

GetDocTemplate 

GetFirst View Position 

GetNextView 

GetPathName 

GetTitle 

Is Modified 

RemoveView 

SetModifiedFlag 

SetPathName 

SetTitle 

UpdateAIIViews 

Constructs a CDocument object. 

Attaches a view to the document. 

Returns a pointer to the document template that describes 
the type of the document. 

Returns the position of the first in the list of views; used to 
begin iteration. 

Iterates through the list of views associated with 
the document. 

Returns the path of the document's data file. 

Returns the document's title. 

Indicates whether the document has been modified since 
it was last saved. 

Detaches a view from the document. 

Sets a flag indicating that you have modified the document 
since it was last saved. 

Sets the path of the data file used by the document. 

Sets the document's title. 

Notifies all views that document has been modified. 



CDocument: :AddView 

Overridables 

CanCloseFrame Advanced overridable; called before closing a frame window 
viewing this document. 

DeleteContents Called to perform cleanup of the document. 

OnChangedViewList Called after a view is added to or removed from the document. 

OnCloseDocument Called to close the document. 

OnNewDocument Called to create a new document. 

OnOpenDocument Called to open an existing document. 

OnSaveDocument Called to save the document to disk. 

ReportSaveLoadException Advanced overridable; called when an open or save operation 
cannot be completed because of an exception. 

GetFile Returns a pointer to the desired CFile object. 

ReleaseFile Releases a file to make it available for use by other 
applications. 

SaveModified Advanced overridable; called to ask the user whether the 
document should be saved. 

PreCloseFrame Called before the frame window is closed. 

Mail Functions 

OnFileSendMail 

OnUpdateFileSendMail 

Sends a mail message with the document attached. 

Enables the Send Mail command if mail support is present. 

Member Functions 
CDocument: : AddView 

void AddView( CView* pView); 

Parameters 

Remarks 

p View Points to the view being added. 

Call this function to attach a view to the document. This function adds the specified 
view to the list of views associated with the document; the function also sets the 
view's document pointer to this document. The framework calls this function when 
attaching a newly created view object to a document; this occurs in response to a 
File New, File Open, or New Window command or when a splitter window is split. 

Call this function only if you are manually creating and attaching a view. Typically 
you will let the framework connect documents and views by defining a 
CDocTemplate object to associate a document class, view class, and frame 
window class. 

603 



CDocument: :AddView 

Example 

604 

II The following example toggles two views in an SOl (single document 
II interface) frame window. A design decision must be made as to 
II whether to leave the inactive view connected to the document. 
II such that the inactive view continues to receive OnUpdate 
II notifications from the document. It is usually desirable to 
II keep the inactive view continuously in sync with the document. even 
II though it is inactive. However. doing so incurs a performance cost. 
II as well as the programming cost of implementing OnUpdate hints. 
II It may be less expensive. in terms of performance andlor programming. 
II to re-sync the inactive view with the document only with it is 
II reactivated. This example illustrates this latter approach. by 
II reconnecting the newly active view and disconnecting the newly 
II inactive view. via calls to CDocument: :AddView and RemoveView. 

BOOL CMainFrame::OnViewChange(UINT nCmdID) 
( 

CView* pViewAdd; 
CView* pViewRemove; 
CDocument* pDoc = GetActiveDocument(); 
UINT nCmdID; 

nCmdlD = LOWORD(GetCurrentMessage()-)wParam); 

if( (nCmdlD 
return; 

if«nCmdID 
return; 

if (nCmdID == ID_VIEW_VIEW2) 
{ 

if (m_pView2 == NULL) 
{ 

m_pView1 = GetActiveView(); 
m_pView2 new CMyView2; 

1) 

2» 

IINote that if OnSize has been overridden in CMyView2 
Iland GetDocument() is used in this override it can 
Ilcause assertions and. if the assertions are ignored. 
Ilcause access violation. 

m_pView2-)Create(NULL. NULL. AFX_WS_DEFAULT_VIEW. 
rectDefault. this. AFX_IDW_PANE_FIRST + 1. NULL); 

} 

pViewAdd = m_pView2; 
pViewRemove = m_pView1; 
m_currentView= 2; 

else 
{ 

} 

pViewAdd = m_pView1; 
pViewRemove = m_pView2; 
m_currentView= 1; 



CDocument: :CanCloseFrame 

II Set the child i .d. of the active view to AFX_IDW_PANE_FIRST, 
II so that CFrameWnd: :RecalcLayout will allocate to this 
II "first pane" that portion of the frame window's client area 
II not allocated to control bars. Set the child i .d. of the 
II other view to anything other than AFX_IDW_PANE_FIRST; this 
II examples switches the child id's of the two views. 

} 

int nSwitchChildID = pViewAdd->GetDlgCtrlID(); 
pViewAdd->SetDlgCtrlID(AFX_IDW_PANE_FIRST); 
pViewRemove->SetDlgCtrlID(nSwitchChildIO); 

II Show the newly active view and hide the inactive view. 

pViewAdd->ShowWindow(SW_SHOW); 
pViewRemove->ShowWindow(SW_HIDE); 

II Connect the newly active view to the document, and 
II disconnect the inactive view. 
pDoc->AddView(pViewAdd); 
pDoc->RemoveView(pViewRemove); 

SetActiveView(pViewAdd); 
RecalcLayout(); 

See Also: CDocTemplate, CDocument::GetFirstViewPosition, 
CDocument: : GetNextView, CDocument: :Remove View, 
CView: : GetDocument 

CDocument: : CanCloseFrame 
virtual BOOL CanCloseFrame( CFrameWnd* pFrame ); 

Return Value 
Nonzero if it is safe to close the frame window; otherwise O. 

Parameters 

Remarks 

pFrame Points to the frame window of a view attached to the document. 

Called by the framework before a frame window displaying the document is closed. 
The default implementation checks if there are other frame windows displaying the 
document. If the specified frame window is the last one that displays the document, 
the function prompts the user to save the document if it has been modified. Override 
this function if you want to perform special processing when a frame window is 
closed. This is an advanced overridable. 

See Also: CDocument: :SaveModified 

605 



CDocument: :CDocument 

CDocument: :CDocument 

Remarks 

CDocument( ); 

Constructs a CDocument object. The framework handles document creation for 
you. Override the OnNewDocument member function to perform initialization 
on a per-document basis; this is particularly important in single document interface 
(SDI) applications. 

See Also: CDocument::OnNewDocument, CDocument::OnOpenDocument 

CDocument: : DeleteContents 

Remarks 

Example 

606 

virtual void DeleteContents( ); 

Called by the framework to delete the document's data without destroying the 
CDocument object itself. It is called just before the document is to be destroyed. It is 
also called to ensure that a document is empty before it is reused. This is particularly 
important for an SDI application, which uses only one document; the document is 
reused whenever the user creates or opens another document. Call this function to 
implement an "Edit Clear All" or similar command that deletes all of the document's 
data. The default implementation of this function does nothing. Override this function 
to delete the data in your document. 

II This example is the handler for an Edit Clear All command. 

void CMyDoc::OnEditClearAll() 
{ 

} 

DeleteContents(); 
UpdateAllViews(NULL); 

void CMyDoc::DeleteContents() 
{ 

II Re-initialize document data here. 

} 

See Also: CDocument::OnCloseDocument, CDocument::OnNewDocument, 
CDocument: :OnOpenDocument 



CDocument: : GetDocTemplate 
CDocTemplate* GetDocTemplate( ) const; 

Return Value 

Remarks 

Example 

A pointer to the document template for this document type, or NULL if the document 
is not managed by a document template. 

Call this function to get a pointer to the document template for this document type. 

II This example accesses the doc template object to construct 
II a default document name such as SHEET.XLS. where "sheet" 
II is the base document name and ".xls" is the file extension 
II for the document type. 
CString strDefaultDocName. strBaseName. strExt; 
CDocTemplate* pDocTemplate = GetDocTemplate(); 
if (!pDocTemplate-)GetDocString(strBaseName. CDocTemplate::docName) 

I I !pDocTemplate-)GetDocString(strExt. CDocTemplate::filterExt» 

AfxThrowUserException(); II These doc template strings will 
II be available if you created the application using AppWizard 
II and specified the file extension as an option for 
II the document class produced by AppWizard. 

strDefaultDocName = strBaseName + strExt; 

See Also: CDocTemplate 

CDocument: : GetFile 
virtual CFile* GetFile( LPCTSTR lpszFileName, UINT nOpenFlags, 

... CFileException* pError ); 

Return Value 
A pointer to a CFile object. 

Parameters 
IpszFileName A string that is the path to the desired file. The path may be relative or 

absolute. 

pError A pointer to an existing file-exception object that indicates the completion 
status of the operation. 

nOpenFlags Sharing and access mode. Specifies the action to take when opening the 
file. You can combine options listed in the CFile constructor CFile::CFile by using 
the bitwise OR (I) operator. One access permission and one share option are 
required; the modeCreate and modeNoInherit modes are optional. 

CDocument:: GetFile 

607 



CDocument::GetFirstViewPosition 

Remarks 
Call this member function to get a pointer to a CFile object. 

See Also: CDocTemplate 

CDocument: : GetFirst View Position 
virtual POSITION GetFirstViewPosition( ) const; 

Return Value 

Remarks 

Example 

A POSITION value that can be used for iteration with the GetNextView member 
function. 

Call this function to get the position of the first view in the list of views associated 
with the document. 

liTo get the first view in the list of views: 

POSITION pos = GetFirstViewPosition(); 
CView* pFirstView = GetNextView( pos ); 
II This example uses CDocument::GetFirstViewPosition 
II and GetNextView to repaint each view. 
void CMyDoc::OnRepaintAllViews() 
{ 

} 

POSITION pos = GetFirstViewPosition(); 
while (pos 1= NULL) 
{ 

CView* pView = GetNextView(pos); 
pView->UpdateWindow(); 
} 

II An easier way to accomplish the same result is to call 
II UpdateAllViews(NULL); 

See Also: CDocument::GetNextView 

CDocument: : GetNextView 
virtual CView* GetNextView( POSITION& rPosition ) const; 

Return Value 
A pointer to the view identified by rPosition. 

Parameters 

608 

rPosition A reference to a POSITION value returned by a previous call to the 
GetNextView or GetFirstViewPosition member functions. This value must not 
be NULL. 



CDocument: :GetTitle 

Remarks 

Example 

Call this function to iterate through all of the document's views. The function returns 
the view identified by rPositioll and then sets rPosition to the POSITION value of 
the next view in the list. If the retrieved view is the last in the list, then rPosition is set 
to NULL. 

II This example uses CDocument::GetFirstViewPosition 
II and GetNextView to repaint each view. 
void CMyDoc: :OnRepaintAllViews() 
{ 

POSITION pos = GetFirstViewPosition(); 
while (pos 1= NULL) 
{ 

CView* pView = GetNextView(pos); 
pView->UpdateWindow(); 

II An easier way to accomplish the same result is to call 
II UpdateAllViews(NULL); 

See Also: CDocument::AddView, CDocument::GetFirstViewPosition, 
CDocument: :Remove View, CDocument:: UpdateAllViews 

CDocurnent: : GetPathN arne 
const CString& GetPathName() const; 

Return Value 

Remarks 

The document's fully qualified path. This string is empty if the document has not been 
saved or does not have a disk file associated with it. 

Call this function to get the fully qualified path of the document's disk file. 

See Also: CDocument::SetPathName 

CDocurnent: : GetTitle 
const CString& GetTitle( ) const; 

Return Value 

Remarks 

The document's title. 

Call this function to get the document's title, which is usually derived from the 
document's filename. 

See Also: CDocument::SetTitie 

609 



CDocument: : IsModified 

CDocument: : IsModified 
BOOL IsModified( ); 

Return Value 

Remarks 

Nonzero if the document has been modified since it was last saved; otherwise O. 

Call this function to determine whether the document has been modified since it was 
last saved. 

See Also: CDocument: :SetModifiedFlag, CDocument: :SaveModified 

CDocument: : On ChangedView List 

Remarks 

virtual void OnChangedViewList(); 

Called by the framework after a view is added to or removed from the document. The 
default implementation of this function checks whether the last view is being removed 
and, if so, deletes the document. Override this function if you want to perform special 
processing when the framework adds or removes a view. For example, if you want a 
document to remain open even when there are no views attached to it, override this 
function. 

See Also: CDocument::AddView, CDocument::RemoveView 

CDocument: : On CloseDocument 

Remarks 

610 

virtual void OnCloseDocument(); 

Called by the framework when the document is closed, typically as part of the File 
Close command. The default implementation of this function calls the 
DeleteContents member function to delete the document's data and then closes the 
frame windows for all the views attached to the document. 

Override this function if you want to perform special cleanup processing when the 
framework closes a document. For example, if the document represents a record in a 
database, you may want to override this function to close the database. You should 
call the base class version of this function from your override. 

See Also: CDocument::DeleteContents, CDocument::OnNewDocument, 
CDocument: :OnOpenDocument 



CDocument: :OnNew Document 

CDocument: : OnFileSendMail 

Remarks 

void OnFileSendMail(); 

Sends a message via the resident mail host (if any) with the document as an 
attachment. OnFileSendMail calls OnSaveDocument to serialize (save) 
untitled and modified documents to a temporary file, which is then sent via 
electronic mail. If the document has not been modified, a temporary file is not 
needed; the original is sent. OnFileSendMailloads MAPI32.DLL if it has not 
already been loaded. 

A special implementation of OnFileSendMaii for COleDocument handles 
compound files correctly. 

CDocument supports sending your document via mail if mail support (MAPI) 
is present. See the articles "MAP I Topics" and "MAPI Support in MFC" in 
Visual C++ Programmer's Guide online. 

See Also: CDocument::OnUpdateFileSendMail, 
COleDocument::OnFileSendMail, CDocument::OnSaveDocument 

CDocument: :OnN ew Document 
virtual BOOL OnNewDocument( ); 

Return Value 

Remarks 

Nonzero if the document was successfully initialized; otherwise O. 

Called by the framework as part of the File New command. The default 
implementation of this function calls the DeleteContents member function to ensure 
that the document is empty and then marks the new document as clean. Override this 
function to initialize the data structure for a new document. You should call the base 
class version of this function from your override. 

If the user chooses the File New command in an SDI application, the framework uses 
this function to reinitialize the existing document, rather than creating a new one. If 
the user chooses File New in a multiple document interface (MDI) application, the 
framework creates a new document each time and then calls this function to initialize 
it. You must place your initialization code in this function instead of in the constructor 
for the File New command to be effective in SDI applications. 

611 



CDocument: :OnNew Document 

Example 

612 

II The following examples illustrate alternative methods of 
II initializing a document object. 

II Method 1: In an MOl application. the simplest place to do 
II initialization is in the document constructor. The framework 
II always creates a new document object for File New or File Open. 

(MyOoc::CMyOoc() 
{ 

II Do initialization of MOl document here. 
II 

II Method 2: In an SOl or MOl application. do all initialization 
II in an override of OnNewOocument. if you are certain that 
II the initialization is effectively saved upon File Save 
II and fully restored upon File Open. via serialization. 

BOOl CMyOoc::OnNewOocument() 
{ 

} 

if (!COocument::OnNewOocument()) 
return FALSE; 

II Do initialization of new document here. 

return TRUE; 

II Method 3: If the initialization of your document is not 
II effectively saved and restored by serialization (during File Save 
II and File Open). then implement the initialization in single 
II function (named InitMyOocument in this example). Call the 
II shared initialization function from overrides of both 
II OnNewOocument and OnOpenOocument. 

BOOl CMyOoc::OnNewOocument() 
{ 

if (!COocument::OnNewOocument()) 
return FALSE; 

InitMyOocument(); II call your shared initialization function 

II If your new document object requires additional initialization 
II not necessary when the document is deserialized via File Open. 
II then perform that additional initialization here. 

return TRUE; 

See Also: CDocument::CDocument, CDocument::DeleteContents, 
CDocument: :OnCloseDocument, CDocument: :OnOpenDocument, 
CDocument: :OnSaveDocument 



CDocument: :OnOpenDocument 

CDocument: : On OpenDocument 
virtual BOOL OnOpenDocument( LPCTSTR lpszPathName ); 

Return Value 
Nonzero if the document was successfully loaded; otherwise O. 

Parameters 

Remarks 

Example 

IpszPathName Points to the path of the document to be opened. 

Called by the framework as part of the File Open command. The default 
implementation of this function opens the specified file, calls the DeleteContents 
member function to ensure that the document is empty, calls CObject: :Serialize to 
read the file's contents, and then marks the document as clean. Override this function 
if you want to use something other than the archive mechanism or the file mechanism. 
For example, you might write an application where documents represent records in a 
database rather than separate files. 

If the user chooses the File Open command in an SDI application, the framework uses 
this function to reinitialize the existing CDocument object, rather than creating a new 
one. If the user chooses File Open in an MDI application, the framework constructs a 
new CDocument object each time and then calls this function to initialize it. You 
must place your initialization code in this function instead of in the constructor for the 
File Open command to be effective in SDI applications. 

II The following examples illustrate alternative methods of 
II initializing a document object. 

II Method 1: In an MOl application, the simplest place to do 
II initialization is in the document constructor. The framework 
II always creates a new document object for File New or File Open. 

CMyOoc::CMyOoc() 
{ 

II Do initialization of MOl document here. 
II 

II Method 2: In an SOl or MOl application, do all initialization 
II in an override of OnNewOocument, if you are certain that 
II the initialization is effectively saved upon File Save 
II and fully restored upon File Open, via serialization. 

BOOl CMyOoc::OnNewOocument() 
{ 

if (!COocument::OnNewOocument()) 
return FALSE; 

613 



CDocument: :OnSaveDocument 

II Do initialization of new document here. 

return TRUE; 

II Method 3: If the initialization of your document is not 
II effectively saved and restored by serialization (during File Save 
II and File Open). then implement the initialization in single 
II function (named InitMyDocument in this example). Call the 
II shared initialization function from overrides of both 
II OnNewDocument and OnOpenDocument. 

BOOl CMyDoc::OnNewDocument() 
{ 

if (!CDocument::OnNewDocument()) 
return FALSE; 

InitMyDocument(); II call your shared .initialization function 

II If your new document object requires additional initialization 
II not necessary when the document is deserialized via File Open. 
II then perform that additional initialization here. 

return TRUE; 

See Also: CDocument: :DeleteContents, CDocument: :OnCloseDocument, 
CDocument: :OnNewDocument, CDocument: :OnSaveDocument, 
CDocument: :ReportSaveLoadException, CObject: : Serialize 

CDocument: : OnS aveDocument 
virtual BOOL OnSaveDocument( LPCTSTR IpszPathName ); 

Return Value 
Nonzero if the document was successfully saved; otherwise O. 

Parameters 

Remarks 

614 

IpszPathName Points to the fully qualified path to which the file should be saved. 

Called by the framework as part of the File Save or File Save As command. The 
default implementation of this function opens the specified file, calls 
CObject::Serialize to write the document's data to the file, and then marks the 
document as clean. Override this function if you want to perform special processing 
when the framework saves a document. For example, you might write an application 
where documents represent records in a database rather than separate files. 

See Also: CDocument::OnCloseDocument, CDocument::OnNewDocument, 
CDocument: :OnOpenDocument, CDocument: :ReportSaveLoadException, 
CObject::Serialize 



CDocument: :ReleaseFile 

CDocument: : On U pdateFileSendMail 
void OnUpdateFileSendMail( CCmdUI* pCmdUI ); 

Parameters 

Remarks 

pCmdUI A pointer to the CCmdUI object associated with the 
ID _FILE_SEND _MAIL command. 

Enables the ID _FILE_SEND _MAIL command if mail support (MAPI) is present. 
Otherwise the function removes the ID _FILE_SEND _MAIL command from the 
menu, including separators above or below the menu item as appropriate. MAPI is 
enabled if MAPI32.DLL is present in the path and, in the [Mail] section of the 
WIN.lNI file, MAPI=1. Most applications put this command on the File menu. 

CDocument supports sending your document via mail if mail support (MAPI) is 
present. See the articles "MAPI Topics" and "MAPI Support in MFC" in Visual C++ 
Programmer's Guide online. 

See Also: CDocument: :OnFileSendMail 

CDocument: :PreCloseFrame 
virtual void PreCloseFrame( CFrameWnd* pFrame); 

Parameters 

Remarks 

pFrame Pointer to the CFrameWnd that holds the associated CDocument object. 

This member function is called by the framework before the frame window is 
destroyed. It can be overridden to provide custom cleanup, but be sure to call the 
base class as well. 

The default of PreCloseFrame does nothing in CDocument. The 
CDocument-derived classes COleDocument and CRichEditDoc use this member 
function. 

CDocument: : ReleaseFile 
virtual void ReleaseFile( CFile* pFile, BOOL bAbort ); 

Parameters 
pFile A pointer to the CFile object to be released. 

bAbort Specifies whether the file is to be released by using either CFile::Close or 
CFile::Abort. FALSE if the file is to be released using CFile::Close; TRUE if the 
file is to be released using CFile: :Abort. 

615 



CDocument: :Remove View 

Remarks 
This member function is called by the framework to release a file, making it available 
for use by other applications. If bAbort is TRUE, ReleaseFile calls CFile::Abort, 
and the file is released. CFile: :Abo.rt will not throw an exception. 

If bAbort is FALSE, ReleaseFile calls CFile::Close and the file is released. 

Override this member function to require an action by the user before the file is 
released. 

See Also: CDocTemplate, CFile::Close, CFile::Abort 

CDocument: : Remove View 
void RemoveView( CView* pView); 

Parameters 

Remarks 

p View Points to the view being removed. 

Call this function to detach a view from a document. This function removes the 
specified view from the list of views associated with the document; it also sets the 
view's document pointer to NULL. This function is called by the framework when 
a frame window is closed or a pane of a splitter window is closed. 

Call this function only if you are manually detaching a view. Typically you will let 
the framework detach documents and views by defining a CDocTemplate object to 
associate a document class, view class, and frame window class. 

See the example at AddView for a sample implementation. 

See Also: CDocument::AddView, CDocument::GetFirstViewPosition, 
CDocument: : GetNextView 

CDocument: : ReportS aveLoadException 
virtual void ReportSaveLoadException( LPCTSTR IpszPathName, CException* e, 

"+ BOOL bSaving, UINT nIDPDefault); 

Parameters 

616 

IpszPathName Points to name of document that was being saved or loaded. 

e Points to the exception that was thrown. May be NULL. 

bSaving Flag indicating what operation was in progress; nonzero if the document 
was being saved, 0 if the document was being loaded. 

nIDPDefault Identifier of the error message to be displayed if the function does not 
specify a more specific one. 



CDocument:: SetModifiedFlag 

Remarks 
Called if an exception is thrown (typically a CFileException or CArchiveException) 
while saving or loading the document. The default implementation examines the 
exception object and looks for an error message that specifically describes the cause. 
If a specific message is not found or if e is NULL, the general message specified 
by the nIDPDefault parameter is used. The function then displays a message box 
containing the error message. Override this function if you want to provide additional, 
customized failure messages. This is an advanced overridable. 

See Also: CDocument::OnOpenDocument, CDocument::OnSaveDocument, 
CFileException, CArchiveException 

CDocument: : SaveModified 
virtual BOOL SaveModified(); 

Return Value 

Remarks 

Nonzero if it is safe to continue and close the document; 0 if the document should 
not be closed. 

Called by the framework before a modified document is to be closed. The default 
implementation of this function displays a message box asking the user whether to 
save the changes to the document, if any have been made. Override this function if 
your program requires a different prompting procedure. This is an advanced 
overridable. 

See Also: CDocument::CanCloseFrame, CDocument::IsModified, 
CDocument: :OnNewDocument, CDocument: :OnOpenDocument, 
CDocument: :OnSaveDocument 

CDocument: : SetModifiedFlag 
void SetModifiedFlag( BOOL bModified = TRUE ); 

Parameters 

Remarks 

bModified Flag indicating whether the document has been modified. 

Call this function after you have made any modifications to the document. By calling 
this function consistently, you ensure that the framework prompts the user to save 
changes before closing a document. Typically you should use the default value of 
TRUE for the bModified parameter. To mark a document as clean (unmodified), call 
this function with a value of FALSE. 

See Also: CDocument:: IsModified, CDocument:: SaveModified 

617 



CDocurnent: :SetPathN arne 

CDocument: : SetPathN arne 
virtual void SetPathName( LPCTSTR lpszPathName, BOOL bAddToMRU = TRUE ); 

Parameters 

Remarks 

lpszPathName Points to the string to be used as the path for the document. 

bAddToMRU Determines whether the filename is added to the most recently used 
(MRU) file list. If TRUE, the filename is added; if FALSE, it is not added. 

Call this function to specify the fully qualified path of the document's disk file. 
Depending on the value of bAddToMRU the path is added, or not added, to the MRU 
list maintained by the application. Note that some documents are not associated with 
a disk file. Call this function only if you are overriding the default implementation for 
opening and saving files used by the framework. 

See Also: CDocument: : GetPathName, CWinApp: :AddToRecentFileList 

CDocument: : SetTitle 
virtual void SetTitle( LPCTSTR lpszTitle); 

Parameters 

Remarks 

lpszTitle Points to the string to be used as the document's title. 

Call this function to specify the document's title (the string displayed in the title bar of 
a frame window). Calling this function updates the titles of all frame windows that 
display the document. 

See Also: CDocument::GetTitle 

CDocument:: UpdateAIIViews 
void UpdateAIIViews( CView* pSender, LPARAM lHint = OL, CObject* pHint = NULL ); 

Parameters 

Remarks 

618 

pSender Points to the view that modified the document, or NULL if all views are to 
be updated. 

[Hint Contains information about the modification. 

pHint Points to an object storing information about the modification. 

Call this function after the document has been modified. You should call this function 
after you call the SetModifiedFlag member function. This function informs each 



CDocument:: UpdateAllViews 

view attached to the document, except for the view specified by pSender, that 
the document has been modified. You typically call this function from your view 
class after the user has changed the document through a view. 

This function calls the CView::OnUpdate member function for each of the 
document's views except the sending view, passing pHint and tHint. Use these 
parameters to pass information to the views about the modifications made to the 
document. You can encode information using tHint and/or you can define a 
CObject-derived class to store information about the modifications and pass an 
object of that class using pHint. Override the CView::OnUpdate member function 
in your CView-derived class to optimize the updating of the view's display based 
on the information passed. 

See Also: CDocument:: SetModifiedFlag, CDocument:: GetFirst ViewPosition, 
CDocument::GetNextView, CView::OnUpdate 

619 



CDragListBox 

CDragListBox 

In addition to providing the functionality of a Windows list box, the CDragListBox 
class allows the user to move list box items, such as filenames, within the list box. List 
boxes with this capability allow users to order the items in a list in whatever manner is 
most useful to them. By default, the list box will move the item to the new location in 
the list. However, CDragListBox objects can be customized to copy items instead of 
moving them. 

The list box control associated with the CDragListBox class must not have the 
LBS_SORT or the LBS_MULTIPLESELECT style. For a description of list box 
styles, see "List-Box Styles." 

To use a drag list box in an existing dialog box of your application, add a list box 
control to your dialog template using the dialog editor and then assign a member 
variable (of Category Control and Variable Type CDragL i stBox) corresponding to 
the list box control in your dialog template. 

For more information on assigning controls to member variables, see "Shortcut for 
Defining Member Variables for Dialog Controls" in the Visual c++ Programmer's 
Guide online. 

#include <afxcmn.h> 

See Also: CListBox 

CDragListBox Class Members 
Attributes 

ItemFromPt Returns the coordinates of the item being dragged. 

Construction 

CDragListBox Constructs a CDragListBox object. 

620 



CDragListBox: :CancelDrag 

Operations 

Drawlnsert 

Overridables 

BeginDrag 

CancelDrag 

Dragging 

Dropped 

Draws the insertion guide of the drag list box. 

Called by the framework when a drag operation starts. 

Called by the framework when a drag operation has been canceled. 

Called by the framework during a drag operation. 

Called by the framework after the item has been dropped. 

Member Functions 
CDragListBox: :BeginDrag 

virtual BOOL BeginDrag( CPoint pt ); 

Return Value 
Nonzero if dragging is allowed, otherwise O. 

Parameters 

Remarks 

pt A CPoint object that contains the coordinates of the item being dragged. 

Called by the framework when an event occurs that could begin a drag operation, such 
as pressing the left mouse button. Override this function if you want to control what 
happens when a drag operation begins. The default implementation captures the 
mouse and stays in drag mode until the user clicks the left or right mouse button or 
presses ESC, at which time the drag operation is canceled. 

See Also: CDragListBox:: CancelDrag, CDragListBox: :Dragging 

CDragListBox: :CancelDrag 
virtual void CancelDrag( CPoint pt ); 

Parameters 

Remarks 

pt A CPoint object that contains the coordinates of the item being dragged. 

Called by the framework when a drag operation has been canceled. Override this 
function to handle any special processing for your list box control. 

See Also: CDragListBox: :BeginDrag, CDragListBox: :Dragging 

621 



CDragListBox: :CDragListBox 

CDragListBox::CDragListBox 
CDragListBox( ); 

Remarks 
Constructs a CDragListBox object. 

See Also: CListBox::Create 

CDragListBox: : Dragging 
virtual UINT Dragging( CPoint pt ); 

Return Value 
The resource ID of the cursor to be displayed. The following values are 
possible: 

• DL_COPYCURSOR Indicates that the item will be copied. 

• DL_MOVECURSOR Indicates that the item will be moved. 

• DL_STOPCURSOR Indicates that the current drop target is 
not acceptable. 

Parameters 

Remarks 

pt A CPoint object that contains the x and y screen coordinates of the cursor. 

Called by the framework when a list box item is being dragged within the 
CDragListBox object. The default behavior returns DL_MOVECURSOR. 
Override this function if you want to provide additional functionality. 

See Also: CDragListBox: :BeginDrag, CDragListBox:: CancelDrag 

CDragListBox: :Draw Insert 
virtual void DrawInsert( int nltem); 

Parameters 

Remarks 

622 

nltem Zero-based index of the insertion point. 

Called by the framework to draw the insertion guide before the item with the 
indicated index. A value of - 1 clears the insertion guide. Override this function 
to modify the appearance or behavior of the insertion guide. 



CDragListBox: :ItemFromPt 

CDragListBox: :Dropped 
virtual void Dropped( int nSrc/ndex, CPoint pt); 

Parameters 

Remarks 

nSrcIndex Specifies the zero-based index of the dropped string. 

pt A CPoint object that contains the coordinates of the drop site. 

Called by the framework when an item is dropped within a CDragListBox object. 
The default behavior copies the list box item and its data to the new location and then 
deletes the original item. Override this function to customize the default behavior, 
such as enabling copies of list box items to be dragged to other locations within 
the list. 

See Also: CDragListBox::BeginDrag 

CDragListBox: : ItemFromPt 
int ItemFromPt( CPoint pt, BOOL bAutoScroli = TRUE ); 

Return Value 
Zero-based index of the drag list box item. 

Parameters 
pt A CPoint object containing the coordinates of a point within the list box. 

bAutoScroli Nonzero if scrolling is allowed, otherwise O. 

Remarks 
Call this function to retrieve the zero-based index of the list box item located at pt. 

623 



CDumpContext 

CDumpContext 

624 

CDumpContext does not have a base class. 

The CDumpContext class supports stream-oriented diagnostic output in the form of 
human-readable text. You can use afxDump, a predeclared CDumpContext object, 
for most of your dumping. The afxDump object is available only in the Debug 
version of the Microsoft Foundation Class Library. 

Several of the memory diagnostic functions use afxDump for their output. 

Under the Windows environment, the output from the predefined afxDump object, 
conceptually similar to the cerr stream, is routed to the debugger via the Windows 
function OutputDebugString. 

The CDumpContext class has an overloaded insertion «<) operator for CObject 
pointers that dumps the object's data. If you need a custom dump format for a derived 
object, override CObject::Dump. Most Microsoft Foundation classes implement an 
overridden Dump member function. 

Classes that are not derived from CObject, such as CString, CTime, and 
CTimeSpan, have their own overloaded CDumpContext insertion operators, as do 
often-used structures such as CFileStatus, CPoint, and CRect. 

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro in the 
implementation of your class, then CObject::Dump will print the name of your 
CObject-derived class. Otherwise, it will print CObj eet. 

The CDumpContext class is available with both the Debug and Release versions of 
the library, but the Dump member function is defined only in the Debug version. Use 
#ifdef _DEBUG / #endif statements to bracket your diagnostic code, including your 
custom Dump member functions. 

Before you create your own CDumpContext object, you must create a CFile object 
that serves as the dump destination. 

For more information on CDumpContext, see "MFC Debugging Support" in 
Visual C++ Programmer's Guide online. 

#define _DEBUG 

#include <afx.h> 

See Also: CFile, CObject 



CDumpContext: :CDumpContext 

CDumpContext Class Members 
Construction 

CDumpContext 

Basic InputJOutput 

Flush 

operator « 

HexDump 

Status 

GetDepth 

SetDepth 

Constructs a CDumpContext object. 

Flushes any data in the dump context buffer. 

Inserts variables and objects into the dump context. 

Dumps bytes in hexadecimal format. 

Gets an integer corresponding to the depth of the dump. 

Sets the depth of the dump. 

Member Functions 
CDumpContext: : CDumpContext 

CDumpContext( CFile* pFile); 
throw( CMemoryException, CFileException); 

Parameters 

Remarks 

Example 

pFile A pointer to the CFile object that is the dump destination. 

Constructs an object of class CDumpContext. The afxDump object is constructed 
automatically. 

Do not write to the underlying CFile while the dump context is active; otherwise, you 
will interfere with the dump. Under the Windows environment, the output is routed to 
the debugger via the Windows function OutputDebugString. 

//example for CDumpContext::CDumpContext 
CFile f; 
if( !f.Open("dump.txt". CFile: :modeCreate I CFile: :modeWrite ) ) { 

afxDump « "Unable to open file" « "\n"; 
exit( 1 ); 

CDumpContext dc( &f ); 

625 



CDumpContext: :Flush 

CDumpContext: :Flush 

Remarks 

Example 

void Flush(); 
throw( CFileException); 

Forces any data remaining in buffers to be written to the file attached to the dump 
context. 

//example for CDumpContext::Flush 
afxDump.Flush(); 

CDumpContext: : GetDepth 
int GetDepth( ) const; 

Return Value 
The depth of the dump as set by SetDepth. 

Remarks 
Determines whether a deep or shallow dump is in process. 

Example 
See the example for SetDepth. 

See Also: CDumpContext: :SetDepth 

CDumpContext: : HexDump 
void HexDump( LPCTSTR IpszLine, BYTE* pby, int nBytes, int n Width ); 

throw( CFileException ); 

Parameters 

Remarks 

Example 

626 

IpszLine A string to output at the start of a new line. 

pby A pointer to a buffer containing the bytes to dump. 

nBytes The number of bytes to dump. 

n Width Maximum number of bytes dumped per line (not the width of the output 
line). 

Dumps an array of bytes formatted as hexadecimal numbers. 

//example for CDumpContext::HexDump 
char teste] = "This is a test of CDumpContext::HexDump\n"; 
afxDump.HexDump(".". (BYTE*) test. sizeof test. 20 ); 



CDumpContext::operator « 

The output from this program is: 

54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 6F 66 20 43 44 
75 60 70 43 6F 6E 74 65 78 74 3A 3A 48 65 78 44 75 60 70 0A 
00 

CDumpContext: : SetDepth 
void SetDepth( int nNewDepth ); 

Parameters 

Remarks 

Example 

nNewDepth The new depth value. 

Sets the depth for the dump. If you are dumping a primitive type or simple CObject 
that contains no pointers to other objects, then a value of 0 is sufficient. A value 
greater than 0 specifies a deep dump where all objects are dumped recursively. For 
example, a deep dump of a collection will dump all elements of the collection. You 
may use other specific depth values in your derived classes. 

Note Circular references are not detected in deep dumps and can result in infinite loops. 

Ilexample for COumpContext::SetOepth 
afxOump.SetOepth( 1): II Specifies deep dump 
ASSERT( afxOump.GetOepth() == 1 ): 

See Also: CObject: :Dump 

Operators 
CDumpContext: : operator < < 

CDumpContext& operator «( const CObject* pOb ); 
throw( CFileException); 

CDumpContext& operator «( const CObject& ob ); 
throw( CFileException ); 

CDumpContext& operator «( LPCTSTR lpsz ); 
throw( CFileException); 

CDumpContext& operator «( const void* lp); 
throw( CFileException); 

CDumpContext& operator «( BYTE by); 
throw( CFileException); 

CDumpContext& operator «( WORD w ); 
throw( CFileException); 

627 



CDumpContext::operator « 

CDumpContext& operator «( DWORD dw ); 
throw( CFileException); 

CDumpContext& operator «( int n ); 
throw( CFileException); 

CDumpContext& operator «( double d); 
throw( CFileException); 

CDumpContext& operator «( floatj); 
throw( CFileException ); 

CDumpContext& operator «( LONG 1); 
throw( CFileException); 

CDumpContext& operator «( UINT u ); 
throw( CFileException); 

CDumpContext& operator «( LPCWSTR lpsz ); 
throw( CFileException); 

CDumpContext& operator «( LPCSTR lpsz ); 
throw( CFileException); 

Return Value 

Remarks 

Example 

628 

A CDumpContext reference. Using the return value, you can write multiple 
insertions on a single line of source code. 

Outputs the specified data to the dump context. 

The insertion operator is overloaded for CObject pointers as well as for most 
primitive types. A pointer to character results in a dump of string contents; a pointer 
to void results in a hexadecimal dump of the address only. 

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro in the 
implementation of your class, then the insertion operator, through CObject: :Dump, 
will print the name of your CObject-derived class. Otherwise, it will print CObj ect. 
If you override the Dump function of the class, then you can provide a more 
meaningful output of the object's contents instead of a hexadecimal dump. 

//example for CDumpContext::operator « 
extern CObList li; 
CString s = "test"; 
int i = 7; 
long 10 = 1000000000L; 
afxDump « "list=" « &li « "string=" 

« s « "i nt=" « i « "long=" « 1 0 « "\n"; 



CDWordArray 

The CDWordArray class supports arrays of 32-bit doublewords. 

The member functions of CDWordArray are similar to the member functions of 
class CObArray. Because of this similarity, you can use the CObArray reference 
documentation for member function specifics. Wherever you see a CObject pointer 
as a function parameter or return value, substitute a DWORD. 

CObject* CObArray: :GetAt( int <nIndex> ) canst: 

for example, translates to 

DWORD CDWardArray::GetAt( int <nIndex> ) canst: 

CDWordArray incorporates the IMPLEMENT_SERIAL macro to support 
serialization and dumping of its elements. If an array of doublewords is stored to 
an archive, either with the overloaded insertion «<) operator or with the Serialize 
member function, each element is, in turn, serialized. 

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you 
do not use SetSize, adding elements to your array causes it to be frequently reallocated and 
copied. Frequent reallocation and copying are inefficient and can fragment memory. 

If you need debug output from individual elements in the array, you must set the depth 
of the CDumpContext object to 1 or greater. 

For more information on using CDWordArray, see the article "Collections" in 
Visual C++ Programmer's Guide online. 

#include <afxcoll.h> 

See Also: CObArray 

CDWordArray Class Members 
Construction 

CDWordArray 

Bounds 

GetSize 

GetUpperBound 

SetSize 

Constructs an empty array for doublewords. 

Gets the number of elements in this array. 

Returns the largest valid index. 

Sets the number of elements to be contained in this array. 

CDWordArray 

629 



CDWordArray 

630 

Operations 

FreeExtra 

RemoveAIl 

Element Access 

GetAt 

SetAt 

ElementAt 

GetData 

Growing the Array 

SetAtGrow 

Add 

Append 

Copy 

Insertion/Removal 

InsertAt 

RemoveAt 

Operators 

operator [] 

Frees all unused memory above the current upper bound. 

Removes all the elements from this array. 

Returns the value at a given index. 

Sets the value for a given index; array not allowed to grow. 

Returns a temporary reference to the doubleword within the array. 

Allows access to elements in the array. Can be NULL. 

Sets the value for a given index; grows the array if necessary. 

Adds an element to the end of the array; grows the array if necessary. 

Appends another array to the array; grows the array if necessary. 

Copies another array to the array; grows the array if necessary. 

Inserts an element (or all the elements in another array) at a specified 
index. 

Removes an element at a specific index. 

Sets or gets the element at the specified index. 



CEdit 

The CEdit class provides the functionality of a Windows edit control. An edit 
control is a rectangular child window in which the user can enter text. 

You can create an edit control either from a dialog template or directly in your 
code. In both cases, first call the constructor CEdit to construct the CEdit object, 
then call the Create member function to create the Windows edit control and 
attach it to the CEdit object. 

Construction can be a one-step process in a class derived from CEdit. Write a 
constructor for the derived class and call Create from within the constructor. 

CEdit inherits significant functionality from CWnd. To set and retrieve text 
from a CEdit object, use the CWnd member functions SetWindowText and 
GetWindowText, which set or get the entire contents of an edit control, even if 
it is a multiline control. Also, if an edit control is multiline, get and set part of the 
control's text by calling the CEdit member functions GetLine, SetSel, GetSel, 
and ReplaceSel. 

If you want to handle Windows notification messages sent by an edit control to 
its parent (usually a class derived from CDialog), add a message-map entry and 
message-handler member function to the parent class for each message. 

Each message-map entry takes the following form: 

ON_Notification( id, memberFxn) 

where id specifies the child window ID of the edit control sending the notification, 
and memberFxn is the name of the parent member function you have written to 
handle the notification. 

The parent's function prototype is as follows: 

afx_msg void memberFxn( ); 

CEdit 

631 



CEdit 

632 

Following is a list of potential message-map entries and a description of the cases in 
which they would be sent to the parent: 

• ON_EN_ CHANGE The user has taken an action that may have altered text in an 
edit control. Unlike the EN_UPDATE notification message, this notification 
message is sent after Windows updates the display. 

• ON_EN_ERRSPACE The edit control cannot allocate enough memory to meet a 
specific request. 

• ON_EN_HSCROLL The user clicks an edit control's horizontal scroll bar. The 
parent window is notified before the screen is updated. 

• ON_EN_KILLFOCUS The edit control loses the input focus. 

• ON_EN_MAXTEXT The current insertion has exceeded the specified number 
of characters for the edit control and has been truncated. Also sent when an edit 
control does not have the ES_AUTOHSCROLL style and the number of 
characters to be inserted would exceed the width of the edit control. Also sent 
when an edit control does not have the ES_AUTOVSCROLL style and the total 
number of lines resulting from a text insertion would exceed the height of the edit 
control. 

• ON_EN_SETFOCUS Sent when an edit control receives the input focus. 

• ON_EN_ UPDATE The edit control is about to display altered text. Sent after the 
control has formatted the text but before it screens the text so that the window size 
can be altered, if necessary. 

• ON_EN_ VSCROLL The user clicks an edit control's vertical scroll bar. The 
parent window is notified before the screen is updated. 

If you create a CEdit object within a dialog box, the CEdit object is automatically 
destroyed when the user closes the dialog box. 

If you create a CEdit object from a dialog resource using the dialog editor, the CEdit 
object is automatically destroyed when the user closes the dialog box. 

If you create a CEdit object within a window, you may also need to destroy it. If you 
create the CEdit object on the stack, it is destroyed automatically. If you create the 
CEdit object on the heap by using the new function, you must call delete on the 
object to destroy it when the user terminates the Windows edit control. If you allocate 
any memory in the CEdit object, override the CEdit destructor to dispose of the 
allocations. 

For more information on CEdit, see "Control Topics" in Visual C++ Programmer's 
Guide online. 

#incIude <afxwin.h> 

See Also: CWnd, CButton, CComboBox, CListBox, CScroIIBar, CStatic, 
CDialog 



CEdit Class Members 
Construction 

CEdit 

Create 

General Operations 

Constructs a CEdit control object. 

Creates the Windows edit control and attaches it to the CEdit object. 

Note For single-line edit controls, use CWnd::GetWindowText 

GetSel 

ReplaceSel 

SetSel 

Clear 

Copy 

Cut 

Paste 

Undo 

CanUndo 

EmptyUndoBuffer 

GetModify 

SetModify 

SetReadOnly 

GetPasswordChar 

SetPasswordChar 

GetFirst VisibleLine 

LineLength 

LineScroll 

LineFromChar 

GetRect 

LimitText 

Gets the starting and ending character positions of the current selection 
in an edit control. 

Replaces the current selection in an edit control with the specified text. 

Selects a range of characters in an edit control. 

Deletes (clears) the current selection (if any) in the edit control. 

Copies the current selection (if any) in the edit control to the 
Clipboard in CF _TEXT format. 

Deletes (cuts) the current selection (if any) in the edit control and 
copies the deleted text to the Clipboard in CF _TEXT format. 

Inserts the data from the Clipboard into the edit control at the current 
cursor position. Data is inserted only if the Clipboard contains data in 
CF _TEXT format. 

Reverses the last edit-control operation. 

Determines whether an edit-control operation can be undone. 

Resets (clears) the undo flag of an edit control. 

Determines whether the contents of an edit control have been 
modified. 

Sets or clears the modification flag for an edit control. 

Sets the read-only state of an edit control. 

Retrieves the password character displayed in an edit control when the 
user enters text. 

Sets or removes a password character displayed in an edit control 
when the user enters text. 

Determines the topmost visible line in an edit control. 

Retrieves the length of a line in an edit control. 

Scrolls the text of a multiple-line edit control. 

Retrieves the line number of the line that contains the specified 
character index. 

Gets the formatting rectangle of an edit control. 

Limits the length of the text that the user may enter into an edit 
control. 

CEdit 

633 



CEdit::CanUndo 

Multiple-Line Operations 

GetLineCount 

GetLine 

Linelndex 

FmtLines 

SetTabStops 

SetRect 

SetRectNP 

GetHandle 

SetHandle 

Windows 95 Operations 

GetMargins 

SetMargins 

GetLimitText 

SetLimitText 

CharFromPos 

PosFromChar 

Retrieves the number of lines in a multiple-line edit control. 

Retrieves a line of text from an edit control. 

Retrieves the character index of a line within a multiple-line edit 
control. 

Sets the inclusion of soft line-break: characters on or off within a 
multiple-line edit control. 

Sets the tab stops in a multiple-line edit control. 

Sets the formatting rectangle of a multiple-line edit control and 
updates the control. 

Sets the formatting rectangle of a multiple-line edit control without 
redrawing the control window. 

Retrieves a handle to the memory currently allocated for a 
multiple-line edit control. 

Sets the handle to the local memory that will be used by a 
multiple-line edit control. 

Gets the left and right margins for this CEdit. 

Sets the left and right margins for this CEdit. 

Gets the maximum amount of text this CEdit can contain. 

Sets the maximum amount of text this CEdit can contain. 

Retrieves the line and character indices for the character closest to a 
specified position. 

Retrieves the coordinates of the upper-left comer of a specified 
character index. 

Member Functions 
CEdit::CanUndo 

BOOL CanUndo( ) const; 

Return Value 

Remarks 

634 

Nonzero if the last edit operation can be undone by a call to the Undo member 
function; 0 if it cannot be undone. 

Call this function to determine if the last edit operation can be undone. 

For more information, see EM_CANUNDO in the Win32 documentation. 

See Also: CEdit::Undo, CEdit::EmptyUndoBuffer 



CEdit::CEdit 

Remarks 

CEdit( ); 

Constructs a CEdit object. Use Create to construct the Windows edit control. 

See Also: CEdit:: Create 

CEdit: :CharFromPos 
int CharFromPos( CPoint pt ) const; 

Return Value 
The character index in the low-order WORD, and the line index in the high-order 
WORD. 

Parameters 

Remarks 

pt The coordinates of a point in the client area of this CEdit object. 

Call this function to retrieve the zero-based line and character indices of the character 
nearest the specified point in this CEdit control 

Note This member function is available only in Windows 95. 

For more information, see EM_CHARFROMPOS in the Win32 documentation. 

See Also: CEdit::PosFromChar 

CEdit: : Clear 

Remarks 

void Clear( ); 

Call this function to delete (clear) the current selection (if any) in the edit control. 

The deletion performed by Clear can be undone by calling the Undo member 
function. 

To delete the current selection and place the deleted contents into the Clipboard, 
call the Cut member function. 

For more information, see WM_CLEAR in the Win32 documentation. 

See Also: CEdit::Undo, CEdit::Copy, CEdit::Cut, CEdit::Paste 

CEdit::Clear 

635 



CEdit::Copy 

CEdit::Copy 

Remarks 

void Copy(); 

Call this function to coy the current selection (if any) in the edit control to the 
Clipboard in CF _TEXT format. 

For more information, see WM_COPY in the Win32 documentation. 

See Also: CEdit::Clear, CEdit::Cut, CEdit::Paste 

CEdit: : Create 
BOOL Create( DWORD dwStyie, const RECT& reet, CWnd* pParentWnd, UINT nID ); 

Return Value 
Nonzero if initialization is successful; otherwise O. 

Parameters 

Remarks 

636 

dwStyle Specifies the edit control's style. Apply any combination of edit styles to the 
control. 

reet Specifies the edit control's size and position. Can be a CRect object or RECT 
structure. 

pParentWnd Specifies the edit control's parent window (usually a CDialog). It must 
not be NULL. 

nID Specifies the edit control's rD. 

You construct a CEdit object in two steps. First, call the CEdit constructor, then call 
Create, which creates the Windows edit control and attaches it to the CEdit object. 

When Create executes, Windows sends the WM_NCCREATE, 
WM_NCCALCSIZE, WM_CREATE, and WM_GETMINMAXINFO messages 
to the edit control. 

These messages are handled by default by the OnNcCreate, OnNcCalcSize, 
OnCreate, and OnGetMinMaxInfo member functions in the CWnd base class. To 
extend the default message handling, derive a class from CEdit, add a message map to 
the new class, and override the above message-handler member functions. Override 
OnCreate, for example, to perform needed initialization for the new class. 

Apply the following window styles to an edit control. 

• WS_CHILD Always 

• WS_ VISIBLE Usually 

• WS_DISABLED Rarely 



• WS_GROUP To group controls 

• WS_TABSTOP To include edit control in the tabbing order 

See Also: CEdit::CEdit 

CEdit::Cut 

Remarks 

void Cut(); 

Call this function to delete (cut) the current selection (if any) in the edit control and 
copy the deleted text to the Clipboard in CF _TEXT format. 

The deletion performed by Cut can be undone by calling the Undo member function. 

To delete the current selection without placing the deleted text into the Clipboard, call 
the Clear member function. 

For more information, see WM_CUT in the Win32 documentation. 

See Also: CEdit::Undo, CEdit::Clear, CEdit::Copy, CEdit::Paste 

CEdit: : EmptyUndoBuffer 

Remarks 

void EmptyUndoBuffer(); 

Call this function to reset (clear) the undo flag of an edit control. The edit control will 
now be unable to undo the last operation. The undo flag is set whenever an operation 
within the edit control can be undone. 

The undo flag is automatically cleared whenever the SetWindowText or SetHandle 
CWnd member functions are called. 

For more information, see EM_EMPTYUNDOBUFFER in the Win32 
documentation. 

See Also: CEdit::CanUndo, CEdit::SetHandle, CEdit::Undo, 
CWnd::SetWindowText 

CEdit: : FmtLines 
BOOL FmtLines( BOOL bAddEOL ); 

Return Value 
Nonzero if any formatting occurs; otherwise O. 

CEdit: :FmtLines 

637 



CEdit: : GetFirst VisibleLine 

Parameters 

Remarks 

bAddEOL Specifies whether soft line-break characters are to be inserted. A value of 
TRUE inserts the characters; a value of FALSE removes them. 

Call this function to set the inclusion of soft line-break characters on or off within a 
multiple-line edit control. A soft line break consists of two carriage returns and a 
linefeed inserted at the end of a line that is broken because of word wrapping. A hard 
line break consists of one carriage return and a linefeed. Lines that end with a hard 
line break are not affected by FmtLines. 

Windows will only respond if the CEdit object is a multiple-line edit control. 

FmtLines only affects the buffer returned by GetHandle and the text returned by 
WM_GETTEXT. It has no impact on the display of the text within the edit control. 

For more information, see EM_FMTLINES in the Win32 documentation. 

See Also: CEdit::GetHandle, CWnd::GetWindowText 

CEdit::GetFirstVisibleLine 
int GetFirstVisibleLine( ) const; 

Return Value 

Remarks 

The zero-based index of the topmost visible line. For single-line edit controls, the 
return value is O. 

Call this function to determine the topmost visible line in an edit control. 

For more information, see EM_GETFIRSTVISIBLELINE in the Win32 
documentation. 

See Also: CEdit: :GetLine 

CEdit:: GetHandle 
HLOCAL GetHandle( ) const; 

Return Value 

Remarks 

638 

A local memory handle that identifies the buffer holding the contents of the edit 
control. If an error occurs, such as sending the message to a single-line edit control, 
the return value is O. 

Call this function to retrieve a handle to the memory currently allocated for a multiple­
line edit control. The handle is a local memory handle and may be used by any of the 
Local Windows memory functions that take a local memory handle as a parameter. 



GetHandle is processed only by multiple-line edit controls. 

Call GetHandle for a multiple-line edit control in a dialog box only if the dialog box 
was created with the DS_LOCALEDIT style flag set. If the DS_LOCALEDIT style 
is not set, you will still get a nonzero return value, but you will not be able to use the 
returned value. 

For more information, see EM_GETHANDLE in the Win32 documentation. 

See Also: CEdit: :SetHandle 

CEdit: : GetLimitText 
UINT GetLimitText( ) const; 

Return Value 

Remarks 

The current text limit, in bytes, for this CEdit object. 

Call this member function to get the text limit for this CEdit object. The text limit is 
the maximum amount of text, in bytes, that the edit control can accept. 

Note This member function is available only in Windows 95. 

For more information, see EM_GETLIMITTEXT in the Win32 documentation. 

See Also: CEdit::SetLimitText, CEdit::LimitText 

CEdit: : GetLine 
int GetLine( int nlndex, LPTSTR lpszBuJfer ) const; 
int GetLine( int nlndex, LPTSTR lpszBuJfer, int nMaxLength ) const; 

Return Value 
The number of bytes actually copied. The return value is 0 if the line number specified 
by nlndex is greater then the number of lines in the edit control. 

Parameters 
nlndex Specifies the line number to retrieve from a multiple-line edit control. Line 

numbers are zero-based; a value of 0 specifies the first line. This parameter is 
ignored by a single-line edit control. 

lpszBuJfer Points to the buffer that receives a copy of the line. The first word of the 
buffer must specify the maximum number of bytes that can be copied to the buffer. 

nMaxLength Specifies the maximum number of bytes that can be copied to the 
buffer. GetLine places this value in the first word of IpszBuJfer before making the 
call to Windows. 

CEdit::GetLine 

639 



CEdit: :GetLineCount 

Remarks 
Call this function to retrieve a line of text from an edit control and places it in 
lpszBufJer. This call is not processed for a single-line edit control. 

The copied line does not contain a null-termination character. 

For more infonnation, see EM_GETLINE in the Win32 documentation. 

See Also: CEdit::LineLength, CWnd::GetWindowText 

CEdit: : GetLineCount 
int GetLineCount( ) const; 

Return Value 

Remarks 

An integer containing the number of lines in the multiple-line edit control. If no text 
has been entered into the edit control, the return value is 1. 

Call this function to retrieve the number of lines in a multiple-line edit control. 

GetLineCount is only processed by multiple-line edit controls. 

For more infonnation, see EM_GETLINECOUNT in the Win32 documentation. 

CEdit: : GetMargins 
DWORD GetMargins( ) const; 

Return Value 

Remarks 

The width of the left margin in the low-order WORD and the width of the right 
margin in the high-order WORD. 

Call this member function to retrieve the left and right margins of this edit control. 
Margins are measured in pixels. 

Note This member function is available only in Windows 95. 

For more infonnation, see EM_GETMARGINS in the Win32 documentation. 

See Also: CEdit::SetMargins 

CEdit: : GetModify 
BOOL GetModify( ) const; 

Return Value 

640 

Nonzero if the edit-control contents have been modified; 0 if they have remained 
unchanged. 



Remarks 
Call this function to determine whether the contents of an edit control have been 
modified. 

Windows maintains an internal flag indicating whether the contents of the edit control 
have been changed. This flag is cleared when the edit control is first created and may 
also be cleared by calling the SetModify member function. 

For more information, see EM_GETMODIFY in the Win32 documentation. 

See Also: CEdit::SetModify 

CEdit: : GetPasswordChar 
TCHAR GetPasswordChar() const; 

Return Value 

Remarks 

Specifies the character to be displayed in place of the character typed by the user. The 
return value is NULL if no password character exists. 

Call this function to retrieve the password character displayed in an edit control when 
the user enters text. 

If the edit control is created with the ES_PASSWORD style, the default password 
character is set to an asterisk (*). 

For more information, see EM_GETPASSWORDCHAR in the Win32 
documentation. 

See Also: CEdit::SetPasswordChar 

CEdit: : GetRect 
void GetRect( LPRECT lpRect ) const; 

Parameters 

Remarks 

lpRect Points to the RECT structure that receives the formatting rectangle. 

Call this function to get the formatting rectangle of an edit control. The formatting 
rectangle is the limiting rectangle of the text, which is independent of the size of the 
edit-control window. 

The formatting rectangle of a multiple-line edit control can be modified by the 
SetRect and SetRectNP member functions. 

For more information, see EM_GETRECT in the Win32 documentation. 

See Also: CEdit::SetRect, CEdit::SetRectNP 

CEdit::GetRect 

641 



CEdit: :GetSel 

CEdit::GetSel 
DWORD GetSeI( ) const; 
void GetSeI( int& nStartChar, int& nEndChar ) const; 

Return Value 
The version that returns a DWORD returns a value that contains the starting position 
in the low-order word and the position of the first nonselected character after the end 
of the selection in the high-order word. 

Parameters 

Remarks 

nStartChar Reference to an integer that will receive the position of the first character 
in the current selection. 

nEndChar Reference to an integer that will receive the position of the first 
nonselected character past the end of the current selection. 

Call this function to get the starting and ending character positions of the current 
selection (if any) in an edit control, using either the return value or the parameters. 

For more information, see EM_GETSEL in the Win32 documentation. 

See Also: CEdit::SetSeI 

CEdit: : LimitText 
void LimitText( int nChars = 0 ); 

Parameters 

Remarks 

642 

nChars Specifies the length (in bytes) of the text that the user can enter. If this 
parameter is 0, the text length is set to UINT_MAX bytes. This is the default 
behavior. 

Call this function to limit the length of the text that the user may enter into an edit 
control. 

Changing the text limit restricts only the text the user can enter. It has no effect on any 
text already in the edit control, nor does it affect the length of the text copied to the 
edit control by the SetWindowText member function in CWnd. If an application uses 
the SetWindowText function to place more text into an edit control than is specified 
in the call to LimitText, the user can delete any of the text within the edit control. 
However, the text limit will prevent the user from replacing the existing text with new 
text, unless deleting the current selection causes the text to fall below the text limit. 

Note In Win32 (Windows NT and Windows 95), SetLimitText replaces this function. 

For more information, see EM_LIMITTEXT in the Win32 documentation. 

See Also: CWnd::SetWindowText, CEdit::GetLimitText, CEdit::SetLimitText 



CEdit: : LineFromChar 
int LineFromChar( int nlndex = -1 ) const; 

Return Value 
The zero-based line number of the line containing the character index specified by 
nlndex. If nlndex is -1, the number of the line that contains the first character of the 
selection is returned. If there is no selection, the current line number is returned. 

Parameters 

Remarks 

nlndex Contains the zero-based index value for the desired character in the text of 
the edit control, or contains -1. If nlndex is -1, it specifies the current line, that is, 
the line that contains the caret. 

Call this function to retrieve the line number of the line that contains the specified 
character index. A character index is the number of characters from the beginning of 
the edit control. 

This member function is only used by multiple-line edit controls. 

For more information, see EM_LINEFROMCHAR in the Win32 documentation. 

See Also: CEdit::Linelndex 

CEdit: : LineIndex 
int Linelndex( int nLine = -1 ) const; 

Return Value 
The character index of the line specified in nLine or -1 if the specified line number is 
greater then the number of lines in the edit control. 

Parameters 

Remarks 

nLine Contains the index value for the desired line in the text of the edit control, or 
contains -1. If nLine is -1, it specifies the current line, that is, the line that contains 
the caret. 

Call this function to retrieve the character index of a line within a multiple-line edit 
control. The character index is the number of characters from the beginning of the edit 
control to the specified line. 

This member function is only processed by multiple-line edit controls. 

For more information, see EM_LINEINDEX in the Win32 documentation. 

See Also: CEdit::LineFromChar 

CEdit::Linelndex 

643 



CEdit: :LineLength 

CEdit: : LineLength 
int LineLength( int nLine = -1 ) const; 

Return Value 
When LineLength is called for a multiple-line edit control, the return value is the 
length (in bytes) of the line specified by nLine. When LineLength is called for a 
single-line edit control, the return value is the length (in bytes) of the text in the 
edit control. 

Parameters 

Remarks 

nLine Specifies the character index of a character in the line whose length is to 
be retrieved. If this parameter is -1, the length of the current line (the line that 
contains the caret) is returned, not including the length of any selected text within 
the line. When LineLength is called for a single-line edit control, this parameter 
is ignored. 

Call this function to retrieve the length of a line in an edit control. 

Use the Linelndex member function to rt:trieve a character index for a given line 
number within a multiple-line edit control. 

For more information, see EM_LINELENGTH in the Win32 documentation. 

See Also: CEdit: :Linelndex 

CEdit: :LineScroll 
void LineScrolI( int nLines, int nChars = 0 ); 

Parameters 

Remarks 

644 

nLines Specifies the number of lines to scroll vertically. 

nChars Specifies the number of character positions to scroll horizontally. This value 
is ignored if the edit control has either the ES_RIGHT or ES_CENTER style. 

Call this function to scroll the text of a multiple-line edit control. 

This member function is processed only by multiple-line edit controls. 

The edit control does not scroll vertically past the last line of text in the edit control. If 
the current line plus the number of lines specified by nLines exceeds the total number 
of lines in the edit control, the value is adjusted so that the last line of the edit control 
is scrolled to the top of the edit-control window. 

LineScrolI can be used to scroll horizontally past the last character of any line. 



For more information, see EM_LINES CROLL in the Win32 documentation. 

See Also: CEdit::LineIndex 

CEdit: :Paste 

Remarks 

void Paste( ); 

Call this function to insert the data from the Clipboard into the CEdit at the insertion 
point. Data is inserted only if the Clipboard contains data in CF _TEXT format. 

For more information, see WM_PASTE in the Win32 documentation. 

See Also: CEdit::Clear, CEdit::Copy, CEdit::Cut 

CEdit: :PosFromChar 
CPoint PosFromChar( UINT nChar ) const; 

Return Value 
The coordinates of the top-left corner of the character specified by nChar. 

Parameters 

Remarks 

nChar The zero-based index of the specified character. 

Call this function to get the position (top-left corner) of a given character within this 
CEdit object. The character is specified by giving its zero-based index value. If 
nChar is greater than the index of the last character in this CEdit object, the return 
value specifies the coordinates of the character position just past the last character in 
this CEdit object. 

Note This member function is available only in Windows 95. 

For more information, see EM_POSFROMCHAR in the Win32 documentation. 

See Also: CEdit::CharFromPos 

CEdit: :ReplaceSel 
void ReplaceSel( LPCTSTR lpszNewText, BOOL bCanUndo = FALSE); 

Parameters 
lpszNewText Points to a null-terminated string containing the replacement text. 

bCanUndo To specify that this function can be undone, set the value of this 
parameter to TRUE. The default value is FALSE. 

CEdit::ReplaceSel 

645 



CEdit:: SetHandle 

Remarks 
Call this function to replace the current selection in an edit control with the text 
specified by IpszNewText. 

Replaces only a portion of the text in an edit control. If you want to replace all of 
the text, use the CWnd::SetWindowText member function. 

If there is no current selection, the replacement text is inserted at the current cursor 
location. 

For more information, see EM_REPLACESEL in the Win32 documentation. 

See Also: CWnd::SetWindowText 

CEdit::SetHandle 
void SetHandle( HLOCAL hBuffer); 

Parameters 

Remarks 

646 

hBuffer Contains a handle to the local memory. This handle must have been 
created by a previous call to the LocalAlloc Windows function using the 
LMEM_MOVEABLE flag. The memory is assumed to contain a 
null-terminated string. If this is not the case, the first byte of the allocated 
memory should be set to O. 

Call this function to set the handle to the local memory that will be used by a 
multiple-line edit control. The edit control will then use this buffer to store the 
currently displayed text instead of allocating its own buffer. 

This member function is processed only by multiple-line edit controls. 

Before an application sets a new memory handle, it should use the GetHandle 
member function to get the handle to the current memory buffer and free that 
memory using the LocalFree Windows function. 

SetHandle clears the undo buffer (the CanUndo member function then returns 0) 
and the internal modification flag (the GetModify member function then returns 0). 
The edit-control window is redrawn. 

You can use this member function in a multiple-line edit control in a dialog box 
only if you have created the dialog box with the DS_LOCALEDIT style flag set. 

For more information, see EM_SETHANDLE, LocalAlloc, and LocalFree in the 
Win32 documentation. 

See Also: CEdit::CanUndo, CEdit::GetHandle, CEdit::GetModify 



CEdit:: SetLimitText 
void SetLimitText( UINT nMax); 

Parameters 

Remarks 

nMax The new text limit, in bytes. 

Call this member function to set the text limit for this CEdit object. The text limit is 
the maximum amount of text, in bytes, that the edit control can accept. 

Changing the text limit restricts only the text the user can enter. It has no effect on 
any text already in the edit control, nor does it affect the length of the text copied to 
the edit control by the SetWindowText member function in CWnd. If an application 
uses the SetWindowText function to place more text into an edit control than is 
specified in the call to LimitText, the user can delete any of the text within the edit 
control. However, the text limit will prevent the user from replacing the existing text 
with new text, unless deleting the current selection causes the text to fall below the 
text limit. 

This function replaces LimitText in Win32. 

For more information, see EM_SET LIMIT TEXT in the Win32 documentation. 

See Also: CEdit::GetLimitText, CEdit::LimitText 

CEdit:: SetMargins 
void SetMargins( UINT nLeft, UINT nRight); 

Parameters 

Remarks 

nLeft The width of the new left margin, in pixels. 

nRight The width of the new right margin, in pixels. 

Call this member function to set the left and right margins of this edit control. 

Note This member function is available only in Windows 95. 

For more information, see EM_SETMARGINS in the Win32 documentation. 

See Also: CEdit: : GetMargins 

CEdit:: SetMargins 

647 



CEdit: :SetModify 

CEdit::SetModify 
void SetModify( BOOL bModified = TRUE ); 

Parameters 

Remarks 

bModified A value of TRUE indicates that the text has been modified, and a value of 
FALSE indicates it is unmodified. By default, the modified flag is set. 

Call this function to set or clear the modified flag for an edit control. The modified 
flag indicates whether or not the text within the edit control has been modified. It is 
automatically set whenever the user changes the text. Its value may be retrieved with 
the GetModify member function. 

For more information, see EM_SETMODIFY in the Win32 documentation. 

See Also: CEdit::GetModify 

CEdit: : SetPasswordChar 
void SetPasswordChar( TCHAR ch); 

Parameters 

Remarks 

ch Specifies the character to be displayed in place of the character typed by the user. 
If ch is 0, the actual characters typed by the user are displayed. 

Call this function to set or remove a password character displayed in an edit control 
when the user types text. When a password character is set, that character is displayed 
for each character the user types. 

This member function has no effect on a multiple-line edit control. 

When the SetPasswordChar member function is called, CEdit will redraw all visible 
characters using the character specified by ch. 

If the edit control is created with the ES_PASSWORD style, the default password 
character is set to an asterisk (*). This style is removed if SetPasswordChar is called 
with ch set to 0. 

For more information, see EM_SETPASSWORDCHAR in the Win32 
documentation. 

See Also: CEdit::GetPasswordChar 

CEdit: : SetReadOnl y 
BOOL SetReadOnly( BOOL bReadOnly = TRUE ); 

648 



Return Value 
Nonzero if the operation is successful, or 0 if an error occurs. 

Parameters 

Remarks 

bReadOnly Specifies whether to set or remove the read-only state of the edit control. 
A value of TRUE sets the state to read-only; a value of FALSE sets the state to 
read/write. 

Calls this function to set the read-only state of an edit control. 

The current setting can be found by testing the ES_READONLY flag in the return 
value of CWnd::GetStyle. 

For more infonnation, see EM_SETREADONLY in the Win32 documentation. 

See Also: CWnd::GetStyle 

CEdit:: SetRect 
void SetRect( LPCRECT lpRect); 

Parameters 

Remarks 

lpRect Points to the RECT structure or CRect object that specifies the new 
dimensions of the fonnatting rectangle. 

Call this function to set the dimensions of a rectangle using the specified coordinates. 
This member is processed only by multiple-line edit controls. 

Use SetRect to set the formatting rectangle of a multiple-line edit control. The 
fonnatting rectangle is the limiting rectangle of the text, which is independent of the 
size of the edit-control window. When the edit control is first created, the fonnatting 
rectangle is the same as the client area of the edit-control window. By using the 
SetRect member function, an application can make the fonnatting rectangle larger or 
smaller than the edit-control window. 

If the edit control has no scroll bar, text will be clipped, not wrapped, if the fonnatting 
rectangle is made larger than the window. If the edit control contains a border, the 
fonnatting rectangle is reduced by the size of the border. If you adjust the rectangle 
returned by the GetRect member function, you must remove the size of the border 
before you pass the rectangle to SetRect. 

When SetRect is called, the edit control's text is also refonnatted and redisplayed. 

For more infonnation, see EM_SETRECT in the Win32 documentation. 

See Also: CRect::CRect, CRect::CopyRect, CRect::operator =, 
CRect::SetRectEmpty, CEdit::GetRect, CEdit::SetRectNP 

CEdit::SetRect 

649 



CEdit::SetRectNP 

CEdit: : SetRectNP 
void SetRectNP( LPCRECT IpRect ); 

Parameters 

Remarks 

IpRect Points to a RECT structure or CRect object that specifies the new dimensions 
of the rectangle. 

Call this function to set the formatting rectangle of a multiple-line edit control. The 
formatting rectangle is the limiting rectangle of the text, which is independent of the 
size of the edit-control window. 

SetRectNP is identical to the SetRect member function except that the edit-control 
window is not redrawn. 

When the edit control is first created, the formatting rectangle is the same as the client 
area of the edit-control window. By calling the SetRectNP member function, an 
application can make the formatting rectangle larger or smaller than the edit-control 
window. 

If the edit control has no scroll bar, text will be clipped, not wrapped, if the formatting 
rectangle is made larger than the window. 

This member is processed only by multiple-line edit controls. 

For more information, see EM_SETRECTNP in the Win32 documentation. 

See Also: CRect::CRect, CRect::CopyRect, CRect::operator =, 
CRect: :SetRectEmpty, CEdit: : GetRect, CEdit: :SetRect 

CEdit: : SetSel 
void SetSel( DWORD dwSelection, BOOL bNoScroll = FALSE ); 
void SetSel( int nStartChar, int nEndChar, BOOL bNoScroll = FALSE ); 

Parameters 

650 

dwSelection Specifies the starting position in the low-order word and the ending 
position in the high-order word. If the low-order word is 0 and the high-order word 
is -1, all the text in the edit control is selected. If the low-order word is -1, any 
current selection is removed. 

bNoScroll Indicates whether the caret should be scrolled into view. If FALSE, the 
caret is scrolled into view. If TRUE, the caret is not scrolled into view. 

nStartChar Specifies the starting position. If nStartChar is 0 and nEndChar is -1, all 
the text in the edit control is selected. If nStartChar is -1, any current selection is 
removed. 

nEndChar Specifies the ending position. 



Remarks 
Call this function to select a range of characters in an edit control. 

For more information, see EM_SETSEL in the Win32 documentation. 

See Also: CEdit::GetSel, CEdit::ReplaceSel 

CEdit: : SetTabStops 
void SetTabStops( ); 
BOOL SetTabStops( const int& cxEachStop ); 
BOOL SetTabStops( int nTabStops, LPINT rgTabStops ); 

Return Value 
Nonzero if the tabs were set; otherwise O. 

Parameters 

Remarks 

cxEachStop Specifies that tab stops are to be set at every cxEachStop dialog units. 

nTabStops Specifies the number of tab stops contained in rgTabStops. This number 
must be greater than 1. 

rgTabStops Points to an array of unsigned integers specifying the tab stops in dialog 
units. A dialog unit is a horizontal or vertical distance. One horizontal dialog unit 
is equal to one-fourth of the current dialog base width unit, and 1 vertical dialog 
unit is equal to one-eighth of the current dialog base height unit. The dialog base 
units are computed based on the height and width of the current system font. The 
GetDialogBaseUnits Windows function returns the current dialog base units in 
pixels. 

Call this function to set the tab stops in a multiple-line edit control. When text is 
copied to a multiple-line edit control, any tab character in the text will cause space 
to be generated up to the next tab stop. 

To set tab stops to the default size of 32 dialog units, call the parameterless version of 
this member function. To set tab stops to a size other than 32, call the version with the 
cxEachStop parameter. To set tab stops to an array of sizes, use the version with two 
parameters. 

This member function is only processed by multiple-line edit controls. 

SetTabStops does not automatically redraw the edit window. If you change the tab 
stops for text already in the edit control, call CWnd::lnvalidateRect to redraw the 
edit window. 

For more information, see EM_SETTABSTOPS and GetDialogBaseUnits in the 
Win32 documentation. 

See Also: CWnd: :InvalidateRect 

CEdit::SetTabStops 

651 



CEdit::Undo 

CEdit::Undo 
BOOL Undo( ); 

Return Value 

Remarks 

652 

For a single-line edit control, the return value is always nonzero. For a multiple-line 
edit control, the return value is nonzero if the undo operation is successful, or 0 if the 
undo operation fails. 

Call this function to undo the last edit-control operation. 

An undo operation can also be undone. For example, you can restore deleted text with 
the first call to Undo. As long as there is no intervening edit operation, you can 
remove the text again with a second call to Undo. 

For more information, see EM_UNDO in the Win32 documentation. 

See Also: CEdit::CanUndo 



CEditView 

A CEditView object is a view that, like the CEdit class, provides the functionality of 
a Windows edit control and can be used to implement simple text-editor functionality. 
The CEditView class provides the following additional functions: 

• Printing 

• Find and replace 

Because class CEditView is a derivative of class CView, objects of class CEditView 
can be used with documents and document templates. 

Each CEditView control's text is kept in its own global memory object. Your 
application can have any number of CEditView objects. 

Create objects of type CEditView if you want an edit window with the added 
functionality listed above, or if you want simple text-editor functionality. A 
CEditView object can occupy the entire client area of a window. Derive your own 
classes from CEditView to add or modify the basic functionality, or to declare classes 
that can be added to a document template. 

The default implementation of class CEditView handles the following commands: 
ID _EDIT_SELECT_ALL, ID_EDIT_FIND, ID _EDIT_REPLACE, 
ID_EDIT_REPEAT, and ID_FILE_PRINT. 

Objects of type CEditView (or of types derived from CEditView) have the following 
limitations: 

• CEditView does not implement true WYSIWYG (what you see is what you get) 
editing. Where there is a choice between readability on the screen and matching 
printed output, CEditView opts for screen readability. 

• CEditView can display text in only a single font. No special character formatting is 
supported. See class CRichEditView for greater capabilities. 

• The amount of text a CEditView can contain is limited. The limits are the same as 
for the CEdit control. 

CEditView 

653 



CEditView 

For more information on CEditView, see "Derived View Classes" in Visual C++ 
Programmer's Guide online. 

#include <afxext.h> 

See Also: CEdit, CDocument, CDocTemplate, CCtrlView, CRichEditView 

CEditView Class Members 

654 

Data Members 

dwStyleDefault 

Construction 

CEditView 

Attributes 

GetEditCtrl 

GetPrinterFont 

GetSelectedText 

LockBuffer 

UnlockBuffer 

GetBufferLength 

SetPrinterFont 

SetTabStops 

Operations 

FindText 

PrintInsideRect 

SerializeRaw 

Overridables 

OnFindNext 

OnReplaceAIl 

OnReplaceSel 

OnTextNotFound 

Default style for objects of type CEditView. 

Constructs an object of type CEditView. 

Provides access to the CEdit portion of a 
CEditView object (the Windows edit control). 

Retrieves the current printer font. 

Retrieves the current text selection. 

Locks the buffer. 

Unlocks the buffer. 

Obtains the length of the character buffer. 

Sets a new printer font. 

Sets tab stops for both screen display and printing. 

Searches for a string within the text. 

Renders text inside a given rectangle. 

Serializes a CEditView object to disk as raw text. 

Finds next occurrence of a text string. 

Replaces all occurrences of a given string with 
a new string. 

Replaces current selection. 

Called when a find operation fails to match any 
further text. 



CEditView::FindText 

Member Functions 
CEditView: :CEditView 

Remarks 

CEditView( ); 

Constructs an object of type CEditView. After constructing the object, you must call 
the CWnd::Create function before the edit control is used. If you derive a class from 
CEditView and add it to the template using CWinApp::AddDocTemplate, the 
framework calls both this constructor and the Create function. 

See Also: CWnd::Create, CWinApp::AddDocTemplate 

CEdit View: : FindText 
BOOL FindText( LPCTSTR lpszFind, BOOL bNext = TRUE, BOOL bCase = TRUE ); 

Return Value 
Nonzero if the search text is found; otherwise O. 

Parameters 

Remarks 

lpszFind The text to be found. 

bNext Specifies the direction of the search. If TRUE, the search direction is toward 
the end of the buffer. If FALSE, the search direction is toward the beginning of the 
buffer. 

bCase Specifies whether the search is case sensitive. If TRUE, the search is case 
sensitive. If FALSE, the search is not case sensitive. 

Call the FindText function to search the CEditView object's text buffer. This function 
searches the text in the buffer for the text specified by lpszFind, starting at the current 
selection, in the direction specified by bNext, and with case sensitivity specified by 
bCase. If the text is found, it sets the selection to the found text and returns a nonzero 
value. If the text is not found, the function returns O. 

You normally do not need to call the FindText function unless you override 
OnFindNext, which calls FindText. 

See Also: CEditView::OnFindNext, CEditView::OnReplaceAII, 
CEditView::OnReplaceSel, CEditView::OnTextNotFound 

655 



CEditView::GetBufferLength 

CEditView::GetBufferLength 
UINT GetBufferLength() const; 

Return Value 

Remarks 

The length of the string in the buffer. 

Call this member function to obtain the number of characters currently in the edit 
control's buffer, not including the null tenninator. 

See Also: CEditView::LockBuffer, CEditView:: UnlockBuffer 

CEditView: : GetEditCtrl 
CEdit& GetEditCtrl( ) const; 

Return Value 

Remarks 

A reference to a CEdit object. 

Call GetEditCtrl to get a reference to the edit control used by the edit view. This 
control is of type CEdit, so you can manipulate the Windows edit control directly 
using the CEdit member functions. 

Warning Using the CEdit object can change the state of the underlying Windows edit control. 
For example, you should not change the tab settings using the CEdit::SetTabStops function 
because CEditView caches these settings for use both in the edit control and in printing. 
Instead, use CEditView::SetTabStops. 

See Also: CEdit, CEditView::SetTabStops 

CEditView::GetPrinterFont 
CFont* GetPrinterFont( ) const; 

Return Value 

Remarks 

656 

A pointer to a CFont object that specifies the current printer font; NULL if the printer 
font has not been set. The pointer may be temporary and should not be stored for later 
use. 

Call GetPrinterFont to get a pointer to a CFont object that describes the current 
printer font. If the printer font has not been set, the default printing behavior of the 
CEditView class is to print using the same font used for display. 



CEdit View: :OnFindNext 

Use this function to determine the current printer font. If it is not the desired printer 
font, use CEditView::SetPrinterFont to change it. 

See Also: CEditView::SetPrinterFont 

CEditView: : GetSelectedText 
void GetSelectedText( CString& strResult ) const; 

Parameters 

Remarks 

strResult A reference to the CString object that is to receive the selected text. 

Call GetSelectedText to copy the selected text into a CString object, up to the end 
of the selection or the character preceding the first carriage-return character in the 
selection. 

See Also: CEditView::OnReplaceSel 

CEditView: : LockBuffer 
LPCTSTR LockBuffer( ) const; 

Return Value 

Remarks 

A pointer to the edit control's buffer. 

Call this member function to obtain a pointer to the buffer. The buffer should not be 
modified. 

See Also: CEditView::UnlockBuffer, CEditView::GetBufferLength 

CEditView: :OnFindNext 
virtual void OnFindNext( LPCTSRT lpszFind, BOOL bNext, BOOL bCase ); 

Parameters 
IpszFind The text to be found. 

bNext Specifies the direction of the search. If TRUE, the search direction is toward 
the end of the buffer. If FALSE, the search direction is toward the beginning of the 
buffer. 

bCase Specifies whether the search is case sensitive. If TRUE, the search is case 
sensitive. If FALSE, the search is not case sensitive. 

657 



CEditView: :OnReplaceAll 

Remarks 
Searches the text in the buffer for the text specified by IpszFind, in the direction 
specified by bNext, with case sensitivity specified by bCase. The search starts at the 
beginning of the current selection and is accomplished through a call to FindText. In 
the default implementation, OnFindNext calls OnTextNotFound if the text is not 
found. 

Override OnFindNext to change the way a CEditView-derived object searches text. 
CEditView calls OnFindNext when the user chooses the Find Next button in the 
standard Find dialog box. 

See Also: CEditView::OnTextNotFound, CEditView::FindText, 
CEdit View: :OnReplaceAIl, CEdit View: :OnReplaceSel 

CEdit View:: OnReplaceAl1 
virtual void OnReplaceAIl( LPCTSTR IpszFind, LPCTSTR IpszReplace, 

... BOOL bCase ); 

Parameters 

Remarks 

658 

IpszFind The text to be found. 

IpszReplace The text to replace the search text. 

bCase Specifies whether search is case sensitive. If TRUE, the search is case 
sensitive. If FALSE, the search is not case sensitive. 

CEditView calls OnReplaceAll when the user selects the Replace All button in the 
standard Replace dialog box. OnReplaceAll searches the text in the buffer for the text 
specified by IpszFind, with case sensitivity specified by bCase. The search starts at the 
beginning of the current selection. Each time the search text is found, this function 
replaces that occurrence of the text with the text specified by IpszReplace. The search 
is accomplished through a call to FindText. In the default implementation, 
OnTextNotFound is called if the text is not found. 

If the current selection does not match IpszFind, the selection is updated to the first 
occurrence of the text specified by IpszFind and a replace is not performed. This 
allows the user to confirm that this is what they want to do when the selection does 
not match the text to be replaced. 

Override OnReplaceAIl to change the way a CEditView-derived object replaces text. 

See Also: CEditView::OnFindNext, CEditView::OnTextNotFound, 
CEdit View: : FindText, CEdit View:: OnReplaceSel 



CEditView: :OnTextNotFound 

CEditView::OnReplaceSel 
virtual void OnReplaceSel( LPCTSTR lpszFind, BOOL bNext, BOOL bCase, 

"+ LPCTSTR /pszReplace); 

Parameters 

Remarks 

lpszFind The text to be found. 

bNext Specifies the direction of the search. If TRUE, the search direction is toward 
the end of the buffer. If FALSE, the search direction is toward the beginning of the 
buffer. 

bCase Specifies whether the search is case sensitive. If TRUE, the search is case 
sensitive. If FALSE, the search is not case sensitive. 

lpszReplace The text to replace the found text. 

CEditView calls OnReplaceSel when the user selects the Replace button in the 
standard Replace dialog box. 

After replacing the selection, this function searches the text in the buffer for the next 
occurrence of the text specified by lpszFind, in the direction specified by bNext, with 
case sensitivity specified by bCase. The search is accomplished through a call to 
FindText. If the text is not found, OnTextNotFound is called. 

Override OnReplaceSel to change the way a CEditView-derived object replaces the 
selected text. 

See Also: CEditView::OnFindNext, CEditView::OnTextNotFound, 
CEdit View: : FindText, CEdit View: :OnReplaceAll 

CEditView::OnTextNotFound 
virtual void OnTextNotFound( LPCTSTR lpszFind); 

Parameters 

Remarks 

lpszFind The text to be found. 

Override this function to change the default implementation, which calls the Windows 
function MessageBeep. 

See Also: CEditView::FindText, CEditView::OnFindNext, 
CEdit View:: OnReplaceAll, CEdit View:: OnReplaceSel 

659 



CEditView: :PrintInsideRect 

CEditView::PrintInsideRect 
UINT PrintlnsideRect( CDC *pDC, RECT & rectLayout, UINT nlndexStart, 

~ UINT nlndexStop ); 

Return Value 
The index of the next character to be printed (that is, the character following the last 
character rendered). 

Parameters 

Remarks 

pDC Pointer to the printer device context. 

rectLayout Reference to a CRect object or RECT structure specifying the rectangle 
in which the text is to be rendered. 

nlndexStart Index within the buffer of the first character to be rendered. 

nlndexStop Index within the buffer of the character following the last character to be 
rendered. 

Call PrintlnsideRect to print text in the rectangle specified by rectLayout. 

If the CEditView control does not have the style ES_AUTOHSCROLL, text is 
wrapped within the rendering rectangle. If the control does have the style 
ES_AUTOHSCROLL, the text is clipped at the right edge of the rectangle. 

The rect.bottom element of the rectLayout object is changed so that the rectangle's 
dimensions define the part of the original rectangle that is occupied by the text. 

See Also: CEditView::SetPrinterFont, CEditView::GetPrinterFont 

CEditView: :SerializeRaw 
void SerializeRaw( CArchive& ar); 

Parameters 

Remarks 

660 

ar Reference to the CArchive object that stores the serialized text. 

Call SerializeRaw to have a CArchive object read or write the text in the CEditView 
object to a text file. SerializeRaw differs from CEditView's internal implementation 
of Serialize in that it reads and writes only the text, without preceding 
object-description data. 

See Also: CArchive, CObject::Serialize 



CEditView:: UnlockBuffer 

CEditView::SetPrinterFont 
void SetPrinterFont( CFont* pFont); 

Parameters 

Remarks 

pFont A pointer to an object of type CFont. If NULL, the font used for printing is 
based on the display font. 

Call SetPrinterFont to set the printer font to the font specified by pFont. 

If you want your view to always use a particular font for printing, include a call to 
SetPrinterFont in your class's OnPreparePrinting function. This virtual function is 
called before printing occurs, so the font change takes place before the view's contents 
are printed. 

See Also: CWnd::SetFont, CFont, CView::OnPreparePrinting 

CEditView: :SetTabStops 
void SetTabStops( int nTabStops ); 

Parameters 

Remarks 

nTabStops Width of each tab stop, in dialog units. 

Call this function to set the tab stops used for display and printing. Only a single 
tab-stop width is supported. (CEdit objects support multiple tab widths.) Widths are 
in dialog units, which equal one-fourth of the average character width (based on 
uppercase and lowercase alphabetic characters only) of the font used at the time of 
printing or displaying. You should not use CEdit::SetTabStops because CEditView 
must cache the tab-stop value. 

This function modifies only the tabs of the object for which it is called. To change the 
tab stops for each CEditView object in your application, call each object's 
SetTabStops function. 

See Also: CWnd::SetFont, CEditView::SetPrinterFont 

CEditView:: UnlockBuffer 
void UnlockBuffer( ) const; 

Remarks 
Call this member function to unlock the buffer. Call UnlockBuffer after you have 
finished using the pointer returned by LockBuffer. 

See Also: CEditView::LockBuffer, CEditView::GetBufferLength 

661 



CEditView::dwStyleDefault 

Data Members 
CEditView::dwStyleDefault 
Remarks 

662 

Pass this static member as the dwStyle parameter of the Create function to obtain the 
default style for the CEditView object. dwStyleDefault is a public member of type 
DWORD. 



CEvent 

CEvent 

An object of class CEvent represents an "event" -a synchronization object that 
allows one thread to notify another that an event has occurred. Events are useful when 
a thread needs to know when to perform its task. For example, a thread that copies 
data to a data archive would need to be notified when new data is available. By using 
a CEvent object to notify the copy thread when new data is available, the thread can 
perform its task as soon as possible. 

CEvent objects have two types: manual and automatic. A manual CEvent object 
stays in the state set by SetEvent or ResetEvent until the other function is called. An 
automatic CEvent object automatically returns to a nonsignaled (unavailable) state 
after at least one thread is released. 

To use a CEvent object, construct the CEvent object when it is needed. Specify the 
name of the event you wish to wait on, and that your application should initially own 
it. You can then access the event when the constructor returns. Call SetEvent to signal 
(make available) the event object and then call Unlock when you are done accessing 
the controlled resource. 

An alternative method for using CEvent objects is to add a variable of type CEvent 
as a data member to the class you wish to control. During construction of the 
controlled object, call the constructor of the CEvent data member specifying if the 
event is initially signaled, the type of event object you want, the name of the event 
(if it will be used across process boundaries), and desired security attributes. 

To access a resource controlled by a CEvent object in this manner, first create a 
variable of either type CSingleLock or type CMultiLock in your resource's access 
member function. Then call the lock object's Lock member function (for example, 
CMultiLock: :Lock). At this point, your thread will either gain access to the resource, 
wait for the resource to be released and gain access, or wait for the resource to be 
released and time out, failing to gain access to the resource. In any case, your resource 
has been accessed in a thread-safe manner. To release the resource, call SetEvent to 
signal the event object, and then use the lock object's Unlock member function (for 
example, CMultiLock:: Unlock), or allow the lock object to fall out of scope. 

For more information on using CEvent objects, see the article "Multithreading: How 
to Use the Synchronization Classes" in Visual C++ Programmer's Guide online. 

#include <afxmt.h> 

CEvent 

663 



CEvent: :CEvent 

CEvent Class Members 
Construction 

CEvent 

Methods 

SetEvent 

PulseEvent 

ResetEvent 

Unlock 

Constructs a CEvent object. 

Sets the event to available (signaled) and releases any waiting threads. 

Sets the event to available (signaled), releases waiting threads, and sets 
the event to unavailable (nonsignaled). 

Sets the event to unavailable (nonsignaled). 

Releases the event object. 

Member Functions 
CEvent: :CEvent 

CEvent( BOOL blnitiallyOwn = FALSE, BOOL bManualReset = FALSE, 
... LPCTSTR lpszName = NULL, 
... LPSECURITY _ATTRIBUTES lpsaAttribute = NULL ); 

Parameters 

Remarks 

664 

blnitiallyOwn If TRUE, the thread for the CMultilock or CSingleLock object is 
enabled. Otherwise, all threads wanting to access the resource must wait. 

bManualReset If TRUE, specifies that the event object is a manual event, otherwise 
the event object is an automatic event. 

lpszName Name of the CEvent object. Must be supplied if the object will be used 
across process boundaries. If the name matches an existing event, the constructor 
builds a new CEvent object which references the event of that name. If the name 
matches an existing synchronization object that is not an event, the construction 
will fail. If NULL, the name will be null. 

lpsaAttribute Security attributes for the event object. For a full description of this 
structure, see SECURITY_ATTRIBUTES in the Win32 SDK Programmer's 
Reference. 

Constructs a named or unnamed CEvent object. To access or release a CEvent object, 
create a CMultiLock or CSingleLock object and call its Lock and Unlock member 
functions. 

To change the state of a CEvent object to signaled (threads do not have to wait), call 
SetEvent or PulseEvent. To set the state of a CEvent object to nonsignaled (threads 
must wait), call ResetEvent. 



CEvent: :PulseEvent 
BOOL PulseEvent( ); 

Return Value 

Remarks 

Nonzero if the function was successful; otherwise o. 

Sets the state of the event to signaled (available), releases any waiting threads, and 
resets it to nonsignaled (unavailable) automatically. If the event is manual, all waiting 
threads are released, the event is set to nonsignaled, and PulseEvent returns. If the 
event is automatic, a single thread is released, the event is set to nonsignaled, and 
PulseEvent returns. 

If no threads are waiting, or no threads can be released immediately, PulseEvent sets 
the state of the event to non signaled and returns. 

CEvent: : ResetEvent 
BOOL ResetEvent( ); 

Return Value 

Remarks 

Nonzero if the function was successful; otherwise O. 

Sets the state of the event to non signaled until explicitly set to signaled by the 
SetEvent member function. This causes all threads wishing to access this event 
to wait. 

This member function is not used by automatic events. 

CEvent: : SetEvent 
BOOL SetEvent( ); 

Return Value 

Remarks 

Nonzero if the function was successful, otherwise O. 

Sets the state of the event to signaled, releasing any waiting threads. If the event is 
manual, the event will remain signaled until ResetEvent is called. More than one 
thread can be released in this case. If the event is automatic, the event will remain 
signaled until a single thread is released. The system will then set the state of the 
event to nonsignaled. If no threads are waiting, the state remains signaled until one 
thread is released. 

CEvent::SetEvent 

665 



CEvent: : Unlock 

CEvent: : Unlock 
virtual BOOL Unlock( ); 

Return Value 

Remarks 

666 

Nonzero if the thread owned the event object and the event is an automatic event; 
otherwise O. 

Releases the event object. This member function is called by threads that currently 
own an automatic event to release it after they are done, if their lock object is to be 
reused. If the lock object is not to be reused, this function will be called by the lock 
object's destructor. 



CException 

CException 

CException is the base class for all exceptions in the Microsoft Foundation Class 
Library. The derived classes and their descriptions are listed below: 

CMemoryException 

CNotSupportedException 

CArchiveException 

CFileException 

CResourceException 

COleException 

CDBException 

COleDispatchException 

CUser Exception 

CDaoException 

ClnternetException 

Out-of-memoryexception 

Request for an unsupported operation 

Archi ve-specific exception 

File-specific exception 

Windows resource not found or not createable 

OLE exception 

Database exception (that is, exception conditions arising for 
MFC database classes based on Open Database Connectivity) 

OLE dispatch (automation) exception 

Exception that indicates that a resource could not be found 

Data access object exception (that is, exception conditions 
arising for DAO classes) 

Internet exception (that is, exception conditions arising for 
Internet classes) 

These exceptions are intended to be used with the THROW, THROW_LAST, TRY, 
CATCH, AND_CATCH, and END_CATCH macros. For more information on 
exceptions, see "Exception Processing," or see the article "Exceptions" in Visual c++ 
Programmer's Guide online. 

To catch a specific exception, use the appropriate derived class. To catch all types of 
exceptions, use CException, and then use CObject::IsKindOf to differentiate among 
CException-derived classes. Note that CObject::IsKindOf works only for classes 
declared with the IMPLEMENT_DYNAMIC macro, in order to take advantage of 
dynamic type checking. Any CException-derived class that you create should use the 
IMPLEMENT_DYNAMIC macro, too. 

You can report details about exceptions to the user by calling GetErrorMessage or 
ReportError, two member functions that work with any of CException's derived 
classes. 

If an exception is caught by one of the macros, the CException object is deleted 
automatically; do not delete it yourself. If an exception is caught by using a catch 
keyword, it is not automatically deleted. See the article "Exceptions" in Visual C++ 
Programmer's Guide online for more information about when to delete an exception 
object. 

CException 

667 



CException: :CException 

CException is an abstract base class. You cannot create CException objects; you 
must create objects of derived classes. If you need to create your own CException 
type, use one of the derived classes listed above as a model. Make sure that your 
derived class also uses IMPLEMENT_DYNAMIC. 

#include <afx.h> 

See Also: Exception Processing 

CException Class Members 
Operations 

CException 

Delete 

GetErrorMessage 

ReportError 

Constructs a CException object. 

Deletes a CException object. 

Retrieves the message describing an exception. 

Reports an error message in a message box to the user. 

Member Functions 
CException: :CException 

CException( BOOL b_AutoDelete); 

Parameters 

Remarks 

bAutoDelete Specify TRUE if the memory for the CException object has been 
allocated on the heap. This will cause the CException object to be deleted when 
the Delete member function is called to delete the exception. Specify FALSE 
if the CException object is on the stack or is a global object. In this case, the 
CException object wi~l not be deleted when the Delete member function is called. 

This member function constructs a CException object. You should not directly create 
a CException object using new. Use this constructor when you derive a class from 
Cexception. 

CException: :Delete 

Remarks 

668 

void CException::Delete(); 

This function checks to see if the CException object was created on the heap, and if 
so, it calls the delete operator on the object. When deleting a CException object, use 



CException: :GetErrorMessage 

the Delete member function to delete the exception. Do not use the delete operator 
directly, because the CException object may be a global object or have been created 
on the stack. 

You can specify whether the object should be deleted when the object is constructed. 
For more information, see CException::CException. 

You only need to call Delete if you are using the C++ try-catch mechanism. If you 
are using the MFC macros TRY and CATCH, then these macros will automatically 
call this function. 

CException: : GetErrorMessage 
virtual BOOL GetErrorMessage( LPTSTR IpszError, UINT nMaxError, 

~ PUINT pnHelpContext = NULL ); 

Return Value 
Nonzero if the function is successful; otherwise 0 if no error message text is available. 

Parameters 

Remarks 

Example 

IpszError A pointer to a buffer that will receive an error message. 

nMaxError The maximum number of characters the buffer can hold, including the 
NULL terminator. 

pnHelpContext The address of a UINT that will receive the help context ID. If 
NULL, no ID will be returned. 

Call this member function to provide text about an error that has occurred. For 
example, call GetErrorMessage to retrieve a string describing the error which caused 
MFC to throw a CFileException when writing to a CFile object. 

Note GetErrorMessage will not copy more than nMaxError -1 characters to the buffer, and it 
will always add a trailing null to end the string. If the buffer is too small, the error message may 
be truncated. 

Here is an example of the use of CException::GetErrorMessage. 

CFile fileInput: 
CFileException ex; 

II try to open a file for reading. 
II The file will certainly not 
II exist because there are too many explicit 
II directories in the name. 

669 



CException: :ReportError 

II if the call to Open() fails. ex will be 
II initialized with exception 
II information. the call to ex.GetErrorMessage() 
II will retrieve an appropriate message describing 
II the error. and we'll add our own text 
II to make sure the user is perfectly sure what 
II went wrong. 

if (!filelnput.Open("\\Too\\Many\\Bad\\Dirs.DAT". CFile::modeRead. &ex)) 
{ 

TCHAR szCause[255]; 
CString strFormatted; 

ex.GetErrorMessage(szCause. 255); 

II (in real life. it's probably more 
II appropriate to read this from 
II a string resource so it would be easy to 
II localize) 

strFormatted = _T("The data file could not be opened because 
... of this error: "); 
strFormatted += szCause; 

AfxMessageBox(strFormatted); 

else 
{ 

II the file was opened. so do whatever work 
II with filelnput 
II we were planning ... 
II 

filelnput.Close(); 

See Also: CException: : ReportError 

CException: : ReportError 
virtual int ReportError( UINT nType = MB_OK, UINT nMessageID = 0); 

Return Value 
An AfxMessageBox value; otherwise 0 if there is not enough memory to display the 
message box. See AfxMessageBox for the possible return values. 

Parameters 

670 

nType Specifies the style of the message box. Apply any combination of the 
message-box styles to the box. If you don't specify this parameter, the default 
isMB_OK. 



Remarks 

Example 

CException: :ReportError 

nMessageID Specifies the resource ID (string table entry) of a message to display if 
the exception object does not have an error message. If 0, the message "No error 
message is available" is displayed. 

Call this member function to report error text in a message box to the user. 

Here is an example of the use of CException::ReportError. 

CFile filelnput; 
CFileException ex; 

II try to open a file for reading. 
II The file will certainly not 
II exist because there are too many explicit 
II directories in the name. 

II if the call to Open() fails. ex will be 
II initialized with exception 
II information. the call to ex.ReportError() will 
II display an appro~riate 
II error message to the user. such as 
II "\Too\Many\Bad\Dirs.DAT contains an 
II invalid path." The error message text will be 
II appropriate for the 
II file name and error condition. 

if (!fileInput.Open("\\Too\\Many\\Bad\\Dirs.DAT". CFile::modeRead. &ex» 
{ 

ex.ReportError(); 

else 
{ 

II the file was opened. so do whatever work 
II with fileInput we were planning ... 
II 

fileInput.Close(); 

See Also: AfxMessageBox, CException: : GetErrorMessage 

671 



CFieldExchange 

CFieldExchange 

672 

CFieldExchange does not have a base class. 

The CFieldExchange class supports the record field exchange (RFX) and bulk 
record field exchange (Bulk RFX) routines used by the database classes. Use this 
class if you are writing data exchange routines for custom data types or when you 
are implementing bulk row fetching; otherwise, you will not directly use this class. 
RFX and Bulk RFX exchanges data between the field data members of your recordset 
object and the corresponding fields of the current record on the data source. 

Note If you are working with the Data Access Objects (DAD) classes rather than the Open 
Database Connectivity (ODBC) classes, use class CDaoFieldExchange instead. For more 
information, see the articles "Database Topics (General)" and "DAO and MFC" in Visual C++ 
Programmer's Guide online. 

A CFieldExchange object provides the context information needed for record field 
exchange or bulk record field exchange to take place. CFieldExchange objects 
support a number of operations, including binding parameters and field data members 
and setting various flags on the fields of the current record. RFX and Bulk RFX 
operations are performed on recordset -class data members of types defined by the 
enum FieldType in CFieldExchange. Possible FieldType values are: 

• CFieldExchange: :outputColumn for field data members. 

• CFieldExchange::inputParam or CFieldExchange::param for input parameter 
data members. 

• CFieldExchange: :outputParam for output parameter data members. 

• CFieldExchange: :inoutParam for input/output parameter data members. 

Most of the class's member functions and data members are provided for writing 
your own custom RFX routines. You will use SetFieldType frequently. For more 
information, see the articles "Record Field Exchange (RFX)" and "Recordset 
(ODBC)" in Visual C++ Programmer's Guide online. For information about bulk row 
fetching, see the article "RecordsetFetching Records in Bulk (ODBC)" in Visual C++ 
Programmer's Guide online. For details about the RFX and Bulk RFX global 
functions, see "Record Field Exchange Functions" in the "MFC Macros and Globals" 
section in this manual. 

#include <afxdb.h> 

See Also: CRecordset 



CFieldExchange: :SetFieldType 

CFieldExchange Class Members 
Operations 

IsFieldType 

SetFieldType 

Returns nonzero if the current operation is appropriate for the type of 
field being updated. 

Specifies the type of recordset data member- column or parameter­
represented by all following calls to RFX functions until the next call to 
SetFieldType. 

Member Functions 
CFieldExchange: : IsFieldType 

BOOL IsFieldType( UINT* pnField ); 

Return Value 
Nonzero if the current operation can be performed on the current field or parameter 
type. 

Parameters 

Remarks 

pnField The sequential number of the field or parameter data member is returned 
in this parameter. This number corresponds to the data member's order in the 
CRecordset:: DoFieldExchange or CRecordset:: DoBulkFieldExchange 
function. 

If you write your own RFX function, call IsFieldType at the beginning of your 
function to determine whether the current operation can be performed on a particular 
field or parameter data member type (a CFieldExchange::outputColumn, 
CFieldExchange: :inputParam, CFieldExchange: :param, 
CFieldExchange::outputParam, or CFieldExchange::inoutParam). Follow the 
model of the existing RFX functions. 

CFieldExchange: : SetFieldType 
void SetFieldType( UINT nFieldType); 

Parameters 
nFieldType A value of the enum FieldType, declared in CFieldExchange, which 

can be one of the following: 

• CFieldExchange: :outputColumn 

• CFieldExchange: :inputParam 

673 



CFieldExchange: :SetFieldType 

Remarks 

Example 

674 

• CFieldExchange::param 

• CFieldExchange: :outputParam 

• CFieldExchange: :inoutParam 

You need a call to SetFieldType in your recordset class's DoFieldExchange or 
DoBulkFieldExchange override. For field data members, you must call SetFieldType 
with a parameter of CFieldExchange: :outputColumn, followed by calls to the RFX 
or Bulk RFX functions. If you have not implemented bulk row fetching, then 
Class Wizard places this SetFieldType call for you in the field map section of 
DoFieldExchange. 

If you parameterize your recordset class, you must call SetFieldType again, outside 
any field map section, followed by RFX calls for all the parameter data members. 
Each type of parameter data member must have its own SetFieldType call. The 
following table distinguishes the different values you can pass to SetFieldType to 
represent the parameter data members of your class: 

~tFieldType parameter value 

CFieldExchange: :inputParam 

CFieldExchange: :param 

CFieldExchange: :outputParam 

CFieldExchange: :inoutParam 

Type of parameter data member 

Input parameter. A value that is passed into the 
recordset's query or stored procedure. 

Same as CFieldExchange: :inputParam. 

Output parameter. A return value of the recordset's 
stored procedure. 

Input/output parameter. A value that is passed into 
and returned from the recordset's stored procedure. 

In general, each group of RFX function calls associated with field data members or 
parameter data members must be preceded by a call to SetFieldType. The nFieldType 
parameter of each SetFieldType call identifies the type of the data members 
represented by the RFX function calls that follow the SetFieldType call. 

For more information about handling output and input/output parameters, see the 
CRecordset member function FlushResultSet. For more information about the RFX 
and Bulk RFX functions, see the topic "Record Field Exchange Functions." For 
related information about bulk row fetching, see the article "Recordset: Fetching 
Records in Bulk (ODBC)" in Visual c++ Programmer's Guide online. 

This example shows several calls to RFX functions with accompanying calls to 
SetFieldType. Note that SetFieldType is called through the pFX pointer to a 
CFieldExchange object. 



CFieldExchange: :SetFieldType 

void CSections::DoFieldExchange( CFieldExchange* pFX ) 
{ 

11{{AFX_FIELD_MAP(CSections) 
pFX-)SetFieldType( CFieldExchange::outputColumn ); 
RFX_Text( pFX. "CourseID". m_strCourseID ); 
RFX_Text( pFX. "InstructorID". m_strInstructorID ); 
RFX_Text( pFX. "RoomNo". m_strRoomNo ); 
RFX_Text( pFX. "Schedule". m_strSchedule ); 
II}}AFX_FIELD_MAP 

II output parameter 
pFX-)SetFieldType( CFieldExchange::outputParam ); 
RFX_Long( pFX. "Instructor_Count". m_nCountParam ); 

II input parameter 
pFX-)SetFieldType( CFieldExchange::inputParam ); 
RFX_Text( pFX. "Department_Name". m_strNameParam ); 

See Also: CRecordset: :DoFieldExchange, CRecordset: :DoBulkFieldExchange, 
CRecordset: :FlushResultSet, "Record Field Exchange Functions" 

675 



CFile 

CFile 

CFile is the base class for Microsoft Foundation file classes. It directly provides 
unbuffered, binary disk input/output services, and it indirectly supports text files 
and memory files through its derived classes. CFile works in conjunction with the 
CArchive class to support serialization of Microsoft Foundation Class objects. 

The hierarchical relationship between this class and its derived classes allows your 
program to operate on all file objects through the polymorphic CFile interface. A 
memory file, for example, behaves like a disk file. 

Use CFile and its derived classes for general-purpose disk 110. Use of stream or other 
Microsoft iostream classes for formatted text sent to a disk file. 

Normally, a disk file is opened automatically on CFile construction and closed on 
destruction. Static member functions permit you to interrogate a file's status without 
opening the file. 

For more information on using CFile, see the article "Files in MFC" in Visual C++ 
Programmer's Guide online and "File Handling" in the Run-Time Library Reference. 

#include <afx.h> 

See Also: CStdioFile, CMemFile 

CFile Class Members 

676 

Data Members 

m_hFile 

Construction 

CFile 

Abort 

Duplicate 

Open 

Close 

Input/Output 

Read 

ReadHuge 

Usually contains the operating-system file handle. 

Constructs a CFile object from a path or file handle. 

Closes a file ignoring all warnings and errors. 

Constructs a duplicate object based on this file. 

Safely opens a file with an error-testing option. 

Closes a file and deletes the object. 

Reads (unbuffered) data from a file at the current file position. 

Can read more than 64K of (unbuffered) data from a file at the current 
file position. Obsolete in 32-bit programming. See Read. 



Input/Output (continued) 

Write 

WriteHuge 

Flush 

Position 

Seek 

SeekToBegin 

SeekToEnd 

GetLength 

SetLength 

Locking 

LockRange 

UnlockRange 

Status 

GetPosition 

GetStatus 

GetFileName 

GetFileTitle 

GetFilePath 

SetFilePath 

Static 

Rename 

Remove 

GetStatus 

SetStatus 

Writes (unbuffered) data in a file to the current file position. 

Can write more than 64K of (unbuffered) data in a file to the current file 
position. Obsolete in 32-bit programming. See Write. 

Flushes any data yet to be written. 

Positions the current file pointer. 

Positions the current file pointer at the beginning of the file. 

Positions the current file pointer at the end of the file. 

Retrieves the length of the file. 

Changes the length of the file. 

Locks a range of bytes in a file. 

Unlocks a range of bytes in a file. 

Retrieves the current file pointer. 

Retrieves the status of this open file. 

Retrieves the filename of the selected file. 

Retrieves the title of the selected file. 

Retrieves the full file path of the selected file. 

Sets the full file path of the selected file. 

Renames the specified file (static function). 

Deletes the specified file (static function). 

Retrieves the status of the specified file (static, virtual function). 

Sets the status of the specified file (static, virtual function). 

Member Functions 
CFile: : Abort 

Remarks 

virtual void Abort( ); 

Closes the file associated with this object and makes the file unavailable for reading or 
writing. If you have not closed the file before destroying the object, the destructor 
closes it for you. 

CFile::Abort 

677 



CFile::CFile 

Example 

When handling exceptions, CFile::Abort differs from CFile::Close in two important 
ways. First, the Abort function will not throw an exception on failures because 
failures are ignored by Abort. Second, Abort will not ASSERT if the file has not 
been opened or was closed previously. 

If you used new to allocate the CFile object on the heap, then you must delete it after 
closing the file. Abort sets m_hFile to CFile::hFileNull. 

Ilexample for CFile::Abort 
CStdioFile fileTest; 
char* pFileName = "test.dat"; 
TRY 
{ 

} 

II do stuff that may throw exceptions 
fileTest.Open( pFileName. CFile::modeWrite ); 

CATCH_ALL( e ) 
{ 

fileTest.Abort(); II close file safely and quietly 
THROW_LAST( ) ; 

} 

END_CATCH_ALL 

See Also: CFile::Close, CFile::Open 

CFile: :CFile 
CFile( ); 
CFile( iot hFile ); 
CFile( LPCTSTR ZpszFileName, UINT nOpenFZags ); 

throw( CFileException ); 

Parameters 

678 

hFile The handle of a file that is already open. 

ZpszFileName A string that is the path to the desired file. The path can be relative or 
absolute. 

nOpenFlags Sharing and access mode. Specifies the action to take when opening the 
file. You can combine options listed below by using the bitwise-OR ( I) operator. 
One access permission and one share option are required; the modeCreate and 
modeNoInherit modes are optional. The values are as follows: 

• CFile: :modeCreate Directs the constructor to create a new file. If the file 
exists already, it is truncated to 0 length. 

• CFile: :modeNoTruncate Combine this value with modeCreate. If the file 
being created already exists, it is not truncated to 0 length. Thus the file is 
guaranteed to open, either as a newly created file or as an existing file. This 



Remarks 

might be useful, for example, when opening a settings file that mayor may not 
exist already. This option applies to CStdioFile as well. 

• CFile: :modeRead Opens the file for reading only. 

• CFile::modeReadWrite Opens the file for reading and writing. 

• CFile::modeWrite Opens the file for writing only. 

• CFile::modeNolnherit Prevents the file from being inherited by child 
processes. 

• CFile::shareDenyNone Opens the file without denying other processes read 
or write access to the file. Create fails if the file has been opened in 
compatibility mode by any other process. 

• CFile::shareDenyRead Opens the file and denies other processes read access 
to the file. Create fails if the file has been opened in compatibility mode or for 
read access by any other process. 

• CFile::shareDenyWrite Opens the file and denies other processes write 
access to the file. Create fails if the file has been opened in compatibility mode 
or for write access by any other process. 

• CFile::shareExciusive Opens the file with exclusive mode, denying other 
processes both read and write access to the file. Construction fails if the file has 
been opened in any other mode for read or write access, even by the current 
process. 

o CFile: :shareCompat This flag is not available in 32 bit MFC. This flag maps 
to CFile::shareExciusive when used in CFile::Open. 

• CFile: :typeText Sets text mode with special processing for carriage retuffi­
linefeed pairs (used in derived classes only). 

• CFile::typeBinary Sets binary mode (used in derived classes only). 

The default constructor does not open a file but rather sets m_hFile to 
CFile: :hFileNull. Because this constructor does not throw an exception, it does not 
make sense to use TRY/CATCH logic. Use the Open member function, then test 
directly for exception conditions. For a discussion of exception-processing strategy, 
see the article "Exceptions" in Visual C++ Programmer's Guide online. 

The constructor with one argument creates a CFile object that corresponds to an 
existing operating-system file identified by hFile. No check is made on the access 
mode or file type. When the CFile object is destroyed, the operating-system file will 
not be closed. You must close the file yourself. 

The constructor with two arguments creates a CFile object and opens the 
corresponding operating-system file with the given path. This constructor combines 

CFile::CFile 

679 



CFile::Close 

Example 

the functions of the first constructor and the Open member function. It throws an 
exception if there is an error while opening the file. Generally, this means that the 
error is unrecoverable and that the user should be alerted. 

//example for CFile::CFile 
char* pFileName = "test.dat"; 
TRY 
{ 

CFile f( pFileName, CFile::modeCreate I CFile::modeWrite ); 

CATCH( CFileException, e ) 
{ 

4!ifdef _DEBUG 
afxDump « "File could not be opened" « e->m_cause « "\n"; 

4!endif 

CFile::Close 

Remarks 

virtual void Close( ); 
throw( CFileException); 

Closes the file associated with this object and makes the file unavailable for reading or 
writing. If you have not closed the file before destroying the object, the destructor 
closes it for you. 

If you used new to allocate the CFile object on the heap, then you must delete it after 
closing the file. Close sets m_hFile to CFile::hFileNull. 

See Also: CFile: :Open 

CFile: : Duplicate 
virtual CFile* Duplicate( ) const; 

throw( CFileException); 

Return Value 

Remarks 

680 

A pointer to a duplicate CFile object. 

Constructs a duplicate CFile object for a given file. This is equivalent to the C 
run-time function _dup. 



CFile: :Flush 

Remarks 

virtual void Flush( ); 
throw( CFileException); 

Forces any data remaining in the file buffer to be written to the file. 

The use of Flush does not guarantee flushing of CArchive buffers. If you are using an 
archive, call CArchive::Flush first. 

CFile: : GetFileN arne 
virtual CString GetFileName() const; 

Return Value 

Remarks 

The name of the file. 

Call this member function to retrieve the name of a specified file. For example, when 
you call GetFileName to generate a message to the user about the file 
c: \wi ndows \wri te \myfil e. wri, the filename, myfil e. wri, is returned. 

To return the entire path of the file, including the name, call GetFilePath. To return 
the title of the file (myfi 1 e), call GetFileTitle. 

See Also: CFile::GetFilePath, CFile::GetFileTitle 

CFile: : GetFilePath 
virtual CString GetFilePath( ) const; 

Return Value 

Remarks 

The full path of the specified file. 

Call this member function to retrieve the full path of a specified file. For example, 
when you call GetFilePath to generate a message to the user about the file 
c: \wi ndows \wri te \myfi 1 e. wri, the file path, c: \wi ndows \wri te \myfi 1 e. wri, is 
returned. 

To return just the name of the file (myfi 1 e. wri), call GetFileName. To return the title 
of the file (myfi 1 e), call GetFileTitle. 

See Also: CFile::SetFilePath, CFile::GetFileTitle, CFile::GetFileName 

CFi1e:: GetFilePath 

681 



CFile: : GetFileTitIe 

CFile:: GetFileTitle 
virtual CString GetFileTitle( ) const; 

Return Value 

Remarks 

The title of the specified file. 

Call this member function to retrieve the file title for a specified file. For example, 
when you call GetFileTitle to generate a message to the user about the file 
c: \wi ndows \write \myfil e. wri, the file title (myfil e) is returned. 

Note In Windows 95, the file title typically does not include the extention. For a explanation of 
this, see GetFileTitie in the Win32 documentation. 

To return the entire path of the file, including the name, call GetFilePath. To return 
just the name of the file (myfi 1 e. wri), call GetFileName. 

See Also: CFile::GetFileName, CFile::GetFilePath, GetFileTitle 

CFile: : GetLength 
virtual DWORD GetLength( ) const; 

throw( CFileException ); 

Return Value 

Remarks 

The length of the file. 

Obtains the current logical length of the file in bytes, not the amount. 

See Also: CFile: :SetLength 

CFile: : GetPosition 
virtual DWORD GetPosition( ) const; 

throw( CFileException); 

Return Value 

Remarks 

Example 

682 

The file pointer as a 32-bit doubleword. 

Obtains the current value of the file pointer, which can be used in subsequent calls to 
Seek. 

Ilexample for CFile::GetPosition 
extern CFile cfile: 
DWORD dwPosition = cfile.GetPosition(): 



CFile:: GetStatus 
BOOL GetStatus( CFileStatus& rStatlls ) const; 
static BOOL PASCAL GetStatus( LPCTSTR ipszFileName, CFileStatus& rStatus ); 

Return Value 
TRUE if the status information for the specified file is successfully obtained; 
otherwise, FALSE. 

Parameters 

Remarks 

rStatus A reference to a user-supplied CFileStatus structure that will receive the 
status information. The CFileStatus structure has the following fields: 

• CTime m_ctime The date and time the file was created. 

• CTime m_mtime The date and time the file was last modified. 

• CTime m_atime The date and time the file was last accessed for reading. 

• LONG m_size The logical size of the file in bytes, as reported by the DIR 
command. 

• BYTE m_attribute The attribute byte of the file. 

• char m_szFullNameLMAX_PATH] The absolute filename in the Windows 
character set. 

ipszFileName A string in the Windows character set that is the path to the desired 
file. The path can be relative or absolute, but cannot contain a network name. 

The virtual version of GetStatus retrieves the status of the open file associated with 
this CFile object. It does not insert a value into the m_szFullName structure member. 

The static version gets the status of the named file and copies the filename to 
m_szFullName. This function obtains the file status from the directory entry without 
actually opening the file. It is useful for testing the existence and access rights of a 
file. 

The m_attribute is the file attribute. The Microsoft FoundatIon classes provide an 
enum type attribute so that you can specify attributes symbolically: 

enum Attribute 
normal = 
readOnly = 

hidden = 
system = 
volume = 
directory 
archive 
} ; 

{ 

0x00. 
0x01. 
0x02. 
0x04. 
0x08. 
0x10. 
0x20 

CFile::GetStatus 

683 



CFile: :LockRange 

Example 
Ilexample for CFile::GetStatus 
CFileStatus status; 
extern CFile cfile; 
if( cfile.GetStatus( status)) II virtual member function 

{ 

} 

4/ifdef _DEBUG 
afxDump « "File size "« status.m_size « "\n"; 

4/endif 

char* pFileName = "test.dat"; 
if( CFile::GetStatus( pFileName, status)) II static function 

{ 

4/ifdef _DEBUG 
afxDump « "Full file name "« status.m_szFullName « "\n"; 

#endif 

See Also: CFile::SetStatus, CTime 

CFile: : LockRange 
virtual void LockRange( DWORD dwPos, DWORD dwCount); 

throw( CFileException ); 

Parameters 

Remarks 

Example 

684 

dwPos The byte offset of the start of the byte range to lock. 

dwCount The number of bytes in the range to lock. 

Locks a range of bytes in an open file, throwing an exception if the file is already 
locked. Locking bytes in a file prevents access to those bytes by other processes. You 
can lock more than one region of a file, but no overlapping regions are allowed. 

When you unlock the region, using the UnlockRange member function, the byte 
range must correspond exactly to the region that was previously locked. The 
LockRange function does not merge adjacent regions; if two locked regions are 
adjacent, you must unlock each region separately. 

Note This function is not available for the CMemFile-derived class. 

I/example for CFile::LockRange 
extern DWORD dwPos; 
extern DWORD dwCount; 
extern CFile cfile; 
cfile.LockRange( dwPos, dWCount ); 

See Also: CFile:: U nlockRange 



CFile::Open 
virtual BOOL Open( LPCTSTR IpszFileName, UINT nOpenFlags, 

... CFileException* pError = NULL ); 

Return Value 
Nonzero if the open was successful; otherwise O. The pError parameter is meaningful 
only if 0 is returned. 

Parameters 

Remarks 

Example 

IpszFileName A string that is the path to the desired file. The path can be relative or 
absolute but cannot contain a network name. 

nOpenFlags A UINT that defines the file's sharing and access mode. It specifies 
the action to take when opening the file. You can combine options by using the 
bitwise-OR ( I ) operator. One access permission and one share option are required; 
the mode Create and modeNoInherit modes are optional. See the CFile 
constructor for a list of mode options. 

pError A pointer to an existing file-exception object that will receive the status of a 
failed operation. 

Open is designed for use with the default CFile constructor. The two functions form a 
"safe" method for opening a file where a failure is a normal, expected condition. 

While the CFile constructor will throw an exception in an error condition, Open will 
return FALSE for error conditions. Open can still initialize a CFileException object 
to describe the error, however. If you don't supply the pError parameter, or if you pass 
NULL for pError, Open will return FALSE and not throw a CFileException. If you 
pass a pointer to an existing CFileException, and Open encounters an error, the 
function will fill it with information describing that error. In neither case will Open 
throw an exception. 

The following table describes the possible results of Open. 

pError Error encountered? 

NULL No 

ptr to CFileException No 

NULL Yes 

ptr to CFileException Yes 

//example for CFile::Open 
CFile f; 
CFileException e; 
char* pFileName = "test.dat"; 

Return value 

TRUE 

TRUE 

FALSE 

FALSE 

CFileException content 

n/a 

unchanged 

nla 

initialized to describe 
error 

if( !f.Open( pFileName. CFile::modeCreate I CFile::modeWrite. &e ) ) 

CFile: :Open 

685 



CFile::Read 

{ 

lIifdef _DEBUG 
afxDump« "File could not be opened"« e.m_cause« "\n"; 

lIendif 
} 

See Also: CFile::CFile, CFile::Close 

CFile: :Read 
virtual UINT Read( void* IpBuf, UINT nCount ); 

throw( CFileException); 

Return Value 
The number of bytes transferred to the buffer. Note that for all CFile classes, the 
return value may be less than nCount if the end of file was reached. 

Parameters 

Remarks 

Example 

IpBuJ Pointer to the user-supplied buffer that is to receive the data read from the file. 

nCount The maximum number of bytes to be read from the file. For text-mode files, 
carriage return-linefeed pairs are counted as single characters. 

Reads data into a buffer from the file associated with the CFile object. 

Ilexample for CFile::Read 
extern CFile cfile; 
char pbuf[100]; 
UINT nBytesRead = cfile.Read( pbuf. 100 ); 

CFile: : ReadHuge 
DWORD ReadHuge( void* IpBuffer, DWORD dwCount); 

throw( CFileException ); 

Return Value 
The number of bytes transferred to the buffer. Note that for all CFile objects, the 
return value can be less than dwCount if the end of file was reached. 

Parameters 

Remarks 

686 

IpBuJ Pointer to the user-supplied buffer that is to receive the data read from the file. 

dwCount The maximum number of bytes to be read from the file. For text-mode 
files, carriage return-linefeed pairs are counted as single characters. 

Reads data into a buffer from the file associated with the CFile object. 



This function differs from Read in that more than 64K-l bytes of data can be read by 
ReadHuge. This function can be used by any object derived from CFile. 

Note ReadHuge is provided only for backward compatibility. ReadHuge and Read have the 
same semantics under Win32. 

See Also: CFile::Write, CFile::WriteHuge, CFile::Read 

CFile: :Remove 
static void PASCAL Remove( LPCTSTR IpszFileName); 

throw( CFileException ); 

Parameters 

Remarks 

Example 

IpszFileName A string that is the path to the desired file. The path can be relative or 
absolute but cannot contain a network name. 

This static function deletes the file specified by the path. It will not remove a 
directory. 

The Remove member function throws an exception if the connected file is open or if 
the file cannot be removed. This is equivalent to the DEL command. 

//example for CFile::Remove 
char* pFileName = "test.dat"; 
TRY 
{ 

CFile::Remove( pFileName ); 
} 

CATCH( CFileException. e ) 
{ 

#ifdef _DEBUG 
afxDump « "File" « pFileName « " cannot be removed\n"; 

1fendif 

CFile: : Rename 
static void PASCAL Rename( LPCTSTR IpszOldName, LPCTSTR IpszNewName ); 

throw( CFileException ); 

Parameters 
IpszOldName The old path. 

IpszNewName The new path. 

CFile::Rename 

687 



CFile::Seek 

Remarks 

Example 

This static function renames the specified file. Directories cannot be renamed. This is 
equivalent to the REN command. 

//example for CFile::Rename 
extern char* pOldName; 
extern char* pNewName; 
TRY 
{ 

CFile::Rename( pOldName, pNewName ); 
} 

CATCH( CFileException, e ) 
{ 

Iii fdef _DEBUG 
afxDump « "File" « pOldName « " not found, cause = " 

« e->m_cause « "\n"; 
Ilendi f 

CFile::Seek 
virtual LONG Seek( LONG [Off, UINT nFrom); 

throw( CFileException ); 

Return Value 
If the requested position is legal, Seek returns the new byte offset from the beginning 
of the file. Otherwise, the return value is undefined and a CFileException object is 
thrown. 

Parameters 

Remarks 

688 

[Off Number of bytes to move the pointer. 

nFrom Pointer movement mode. Must be one of the following values: 

• CFile::begin Move the file pointer [Off bytes forward from the beginning of 
the file. 

• CFile::current Move the file pointer [Off bytes from the current position in 
the file. 

• CFile::end Move the file pointer [Off bytes from the end of the file. Note that 
[Offmust be negative to seek into the existing file; positive values will seek past 
the end of the file. 

Repositions the pointer in a previously opened file. The Seek function permits random 
access to a file's contents by moving the pointer a specified amount, absolutely or 
relatively. No data is actually read during the seek. 



Example 

When a file is opened, the file pointer is positioned at offset 0, the beginning of 
the file. 

//example for CFile::Seek 
extern CFile cfile; 
LONG lOffset = 1000. lActual; 
lActual = cfile.Seek( lOffset. CFile: :begin ); 

CFile: :SeekToBegin 

Remarks 

Example 

void SeekToBegin(); 
throw( CFileException); 

Sets the value of the file pointer to the beginning of the file. See k To Beg i n ( ) is 
equivalent to See k ( 0 L. C Fil e : : beg in). 

I/example for CFile::SeekToBegin 
extern CFile cfile; 
cfile.SeekToBegin(); 

CFile:: SeekToEnd 
DWORD SeekToEnd( ); 

throw( CFileException); 

Return Value 

Remarks 

Example 

The length of the file in bytes. 

Sets the value of the file pointer to the logical end of the file. See k ToE n d ( ) is 
equivalenttoCFile::Seek( 0L. CFile::end). 

I/example for CFile::SeekToEnd 
extern CFile cfile; 
DWORD dwActual = cfile.SeekToEnd(); 

See Also: CFile::GetLength, CFile::Seek, CFile::SeekToBegin 

CFile:: SetFilePath 
virtual void SetFilePath( LPCTSTR IpszNewName ); 

Parameters 
IpszNewName Pointer to a string specifying the new path. 

CFile: :SetFilePath 

689 



CFile::SetLength 

Remarks 
Call this function to specify the path of the file; for example, if the path of a file is not 
available when a CFiIe object is constructed, call SetFilePath to provide it. 

Note SetFilePath does not open the file or create the file; it simply associates the CFile object 
with a path name, which can then be used. 

See Also: CFiIe::GetFiIePath, CFiIe::CFiIe 

CFile: :SetLength 
virtual void SetLength( DWORD dwNewLen ); 

throw( CFileException); 

Parameters 

Remarks 

Example 

dwNewLen Desired length of the file in bytes. This value can be larger or smaller 
than the current length of the file. The file will be extended or truncated as 
appropriate. 

Call this function to change the length of the file. 

Note With CMemFile, this function could throw a CMemoryException object. 

Ilexample for CFile::SetLength 
extern CFile cfile; 
DWORD dwNewLength = 10000; 
cfile.SetLength( dwNewLength ); 

CFile:: SetStatus 
static void SetStatus( LPCTSTR IpszFileName, const CFiIeStatus& status); 

throw( CFileException ); 

Parameters 

690 

IpszFileName A string that is the path to the desired file. The path can be relative or 
absolute but cannot contain a network name. 

status The buffer containing the new status information. Call the GetStatus member 
function to prefill the CFileStatus structure with current values, then make 
changes as required. If a value is 0, then the corresponding status item is not 
updated. See the GetStatus member function for a description of the CFileStatus 
structure. 



Remarks 

Example 

Sets the status of the file associated with this file location. 

To set the time, modify the m_mtime field of status. 

Please note that when you make a call to SetStatus in an attempt to change only the 
attributes of the file, and the m_mtime member of the file status structure is nonzero, 
the attributes may also be affected (changing the time stamp may have side effects 
on the attributes). If you want to only change the attributes of the file, first set the 
m_mtime member of the file status structure to zero and then make a call to 
SetStatus. 

//example for CFile::SetStatus 
char* pFileName = "test.dat"; 
extern BYTE newAttribute; 
CFileStatus status; 
CFil e: : GetStatus ( pFi 1 eName, status ); 
status.m_attribute = newAttribute; 
CFile::SetStatus( pFileName, status ); 

See Also: CFile::GetStatus 

CFile:: UnlockRange 
virtual void UnlockRange( DWORD dwPos, DWORD dwCount ); 

throw( CFileException); 

Parameters 

Remarks 

Example 

dwPos The byte offset of the start of the byte range to unlock. 

dwCount The number of bytes in the range to unlock. 

Unlocks a range of bytes in an open file. See the description of the LockRange 
member function for details. 

Note This function is not available for the CMemFile-derived class. 

I/example for CFile::UnlockRange 
extern DWORD dwPos; 
extern DWORD dWCount; 
extern CFile cfile; 
cfile.UnlockRange( dwPos, dwCount ); 

See Also: CFile: : LockRange 

CFile:: UnlockRange 

691 



CFile::Write 

CFile:: Write 
virtual void Write( const void* IpBuf, UINT nCount); 

throw( CFileException); 

Parameters 

Remarks 

Example 

IpBuJ A pointer to the user-supplied buffer that contains the data to be written to the 
file. 

nCount The number of bytes to be transferred from the buffer. For text-mode files, 
carriage return-linefeed pairs are counted as single characters. 

Writes data from a buffer to the file associated with the CFile object. 

Write throws an exception in response to several conditions, including the disk-full 
condition. 

//example for CFile::Write 
extern CFile cfile; 
char pbuf[100]; 
cfile.Write( pbuf. 100 ); 

See Also: CFile: :Read, CStdioFile:: WriteString 

CFile:: WriteHuge 
void WriteHuge( const void* IpBuf, DWORD dwCount ); 

throw( CFileException); 

Parameters 

Remarks 

692 

IpBuJ A pointer to the user-supplied buffer that contains the data to be written to the 
file. 

dwCount The number of bytes to be transferred from the buffer. For text-mode files, 
carriage return-linefeed pairs are counted as single characters. 

Writes data from a buffer to the file associated with the CFile object. WriteHuge 
throws an exception in response to several conditions, including the disk-full 
condition. 

This function differs from Write in that more than 64K-l bytes of data can be written 
by WriteHuge. This function can be used by any object derived from CFile. 

Note WriteHuge is provided only for backward compatibility. WriteHuge and Write have the 
same semantics under Win32. 

See Also: CFile::Read, CFile::ReadHuge, CFile::Write, CStdioFile::WriteString 



Data Members 
CFile: :m_hFile 
Remarks 

Contains the operating-system file handle for an open file. m_hFile is a public 
variable of type UINT. It contains CFile::hFileNull (an operating-system­
independent empty file indicator) if the handle has not been assigned. 

Use of m_hFile is not recommended because the member's meaning depends on the 
derived class. m_hFile is made a public member for convenience in supporting 
nonpolymorphic use of the class. 

693 



CFileDialog 

CFileDialog 

694 

The CFileDialog class encapsulates the Windows common file dialog box. Common 
file dialog boxes provide an easy way to implement File Open and File Save As dialog 
boxes (as well as other file-selection dialog boxes) in a manner consistent with 
Windows standards. 

You can use CFileDialog "as is" with the constructor provided, or you can derive 
your own dialog class from CFileDialog and write a constructor to suit your needs. In 
either case, these dialog boxes will behave like standard Microsoft Foundation class 
dialog boxes because they are derived from the CCommonDialog class. 

To use a CFileDialog object, first create the object using the CFileDialog constructor. 
After the dialog box has been constructed, you can set or modify any values in the 
m_ofn structure to initialize the values or states of the dialog box's controls. The 
m_ofn structure is of type OPENFILENAME. For more information, see the 
OPENFILENAME structure in the Win32 SDK documentation. 

After initializing the dialog box's controls, call the DoModal member function to 
display the dialog box and allow the user to enter the path and file. DoModal returns 
whether the user selected the OK (IDOK) or the Cancel (IDCANCEL) button. 

If DoModal returns IDOK, you can use one of CFileDialog's public member 
functions to retrieve the information input by the user. 

CFileDialog includes several protected members that enable you to do custom 
handling of share violations, filename validation, and list-box change notification. 
These protected members are callback functions that most applications do not need 
to use, since default handling is done automatically. Message-map entries for these 
functions are not necessary because they are standard virtual functions. 

You can use the Windows CommDlgExtendedError function to determine whether 
an error occurred during initialization of the dialog box and to learn more about the 
error. 

The destruction of CFileDialog objects is handled automatically. It is not necessary to 
call CDialog: :EndDialog. 



To allow the user to select mUltiple files, set the OFN_ALLOWMULTISELECT 
flag before calling DoModal. You need to supply your own filename buffer to 
accommodate the returned list of multiple filenames. Do this by replacing 
ffi_ofn.lpstrFile with a pointer to a buffer you have allocated, after constructing the 
CFileDialog, but before calling DoModal. Additionally, you must set 
ffi_ofn.nMaxFile with the number of characters in the buffer pointed to by 
ffi_ofn.lpstrFile. 

CFileDialog relies on the COMMDLG.DLL file that ships with Windows 
versions 3.1 and later. 

If you derive a new class from CFileDialog, you can use a message map to handle any 
messages. To extend the default message handling, derive a class from CWnd, add a 
message map to the new class, and provide member functions for the new messages. 
You do not need to provide a hook function to customize the dialog box. 

To customize the dialog box, derive a class from CFileDialog, provide a custom 
dialog template, and add a message map to process the notification messages from the 
extended controls. Any unprocessed messages should be passed to the base class. 

Customizing the hook function is not required. 

For more information on using CFileDialog, see "Common Dialog Classes" in 
Visual C++ Programmer's Guide online. 

#include <afxdlgs.h> 

CFileDialog Class Members 
Data Members 

Construction 

CFileDialog 

Operations 

DoModal 

GetPathName 

GetFileName 

GetFileExt 

GetFileTitle 

GetNextPathName 

GetReadOnly Pref 

GetStartPosition 

The Windows OPENFILENAME structure. Provides access to 
basic file dialog box parameters. 

Constructs a CFileDialog object. 

Displays the dialog box and allows the user to make a selection. 

Returns the full path of the selected file. 

Returns the filename of the selected file. 

Returns the file extension of the selected file. 

Returns the title of the selected file. 

Returns the full path of the next selected file. 

Returns the read-only status of the selected file. 

Returns the position of the first element of the filename list. 

CFileDialog 

695 



CFileDialog: :CFileDialog 

Overridables 

OnShare Violation Called when a share violation occurs. 

OnFileNameOK Called to validate the filename entered in the dialog box. 

OnLBSelChangedNotify Called when the list box selection changes. 

OnlnitDone Called to handle the WM_NOTIFY CDN_INITDONE message. 

OnFileNameChange Called to handle the WM_NOTIFY CDN_SELCHANGE 
message. 

OnFolderChange 

OnTypeChange 

Called to handle the WM_NOTIFY CDN_FOLDERCHANGE 
message. 

Called to handle the WM_NOTIFY CDN_TYPECHANGE 
message. 

Member Functions 
CFileDialog: :CFileDialog 

CFileDialog( BOOL bOpenFileDialog, LPCTSTR lpszDeJExt = NULL, 
... LPCTSTR lpszFileName = NULL, DWORD dwFlags = 
... OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT, 
... LPCTSTR lpszFilter = NULL, CWnd* pParentWnd = NULL ); 

Parameters 

696 

bOpenFileDialog Set to TRUE to construct a File Open dialog box or FALSE to 
construct a File Save As dialog box. 

lpszDejExt The default filename extension. If the user does not include an extension 
in the Filename edit box, the extension specified by lpszDeJExt is automatically 
appended to the filename. If this parameter is NULL, no file extension is 

. appended. 

lpszFileName The initial filename that appears in the filename edit box. If NULL, no 
filename initially appears. 

dwFlags A combination of one or more flags that allow you to customize the dialog 
box. For a description of these flags, see the OPENFILENAME structure in the 
Win32 SDK documentation. If you modify the m_ofn.Flags structure member, use 
a bitwise-OR operator in your changes to keep the default behavior intact. 

lpszFilter A series of string pairs that specify filters you can apply to the file. If you 
specify file filters, only selected files will appear in the Files list box. See the 
Remarks section for more information on how to work with file filters. 

pParentWnd A pointer to the file dialog-box object's parent or owner window. 



CFileDialog: :DoModal 

Remarks 
Call this function to construct a standard Windows file dialog box-object. Either a File 
Open or File Save As dialog box is constructed, depending on the value of 
bOpenFileDiaio g. 

To allow the user to select multiple files, set the OFN_ALLOWMULTISELECT 
flag before calling DoModal. You need to supply your own filename buffer to 
accommodate the returned list of multiple filenames. Do this by replacing 
m_ofn.lpstrFile with a pointer to a buffer you have allocated, after constructing the 
CFileDialog, but before calling DoModal. Additionally, you must set 
m_ofn.nMaxFile with the number of characters in the buffer pointed to by 
m_ ofn.lpstrFile. 

For example, Microsoft Excel permits users to open files with extensions .XLC (chart) 
or .XLS (worksheet), among others. The filter for Excel could be written as: 

static char BASED_CODE szFilter[] = "Chart Files (*.xlc)I*.xlcIWorksheet Files 
(*.xls)I*.xlsIData Files (*.xlc;*.xls)I*.xlc; *.xlsIAll Files (*.*)1*.*11"; 

See Also: CFileDialog: :DoModal, : :GetOpenFileName, : : GetSaveFileName, 
OPENFILENAME 

CFileDialog: :DoModal 
virtual int DoModal(); 

Return Value 

Remarks 

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and 
IDCANCEL are constants that indicate whether the user selected the OK or Cancel 
button. 

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError 
function to determine whether an error occurred. 

Call this function to display the Windows common file dialog box and allow the user 
to browse files and directories and enter a filename. 

If you want to initialize the various file dialog-box options by setting members of the 
m_ofn structure, you should do this before calling DoModal, but after the dialog 
object is constructed. 

When the user clicks the dialog box's OK or Cancel buttons, or selects the Close 
option from the dialog box's control menu, control is returned to your application. 
You can then call other member functions to retrieve the settings or information the 
user inputs into the dialog box. 

DoModal is a virtual function overridden from class Cdialog. 

See Also: CDialog: :DoModal, CFileDialog:: CFileDialog 

697 



CFileDialog:: GetFileExt 

CFileDialog: : GetFileExt 
CString GetFileExt( ) const; 

Return Value 

Remarks 

The extension of the filename. 

Call this function to retrieve the extension of the filename entered into the dialog box. 
For example, if the name of the file entered is DATA.TXT, GetFileExt returns "TXT". 

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains 
a sequence of null-terminated strings, with the first string being the directory path of 
the file group selected, followed by the names of all files selected by the user. To 
retrieve file pathnames, use the GetStartPosition and GetNextPathName member 
functions. 

See Also: CFileDialog::GetPathName, CFileDialog::GetFileName, 
CFileDialog:: GetFileTitle 

CFileDialog::GetFileName 
CString GetFileName() const; 

Return Value 

Remarks 

The name of the file. 

Call this function to retrieve the name of the filename entered in the dialog box. 
The name of the file includes both the prefix and the extension. For example, 
GetFileName will return "TEXT.DAT" for the file C:\FILES\TEXT.DAT. 

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, you should call 
GetStartPosition and GetNextPathName to retrieve a file pathname. 

See Also: CFileDialog::GetPathName, CFileDialog::GetStartPosition, 
CFileDialog:: GetFileTitle 

CFileDialog::GetFileTitle 
CString GetFileTitle( ) const; 

Return Value 

Remarks 

698 

The title of the file. 

Call this function to retrieve the title of the file entered in the dialog box. The title of 
the file includes only its prefix, without the path or the extension. For example, 
GetFileTitle will return "TEXT" for the file C:\FILES\TEXT.DAT. 



CFileDialog: :GetPathN arne 

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains 
a sequence of null-teminated strings, with the first string being the directory path of 
the file group selected, followed by the names of all files selected by the user. For this 
reason, use the GetStartPosition and GetNextPathName member functions to 
retrieve the next file name in the list. 

See Also: CFileDialog::GetPathName, CFileDialog::GetFileName, 
CFileDialog:: GetFileExt, :: GetFileTitle 

CFileDialog::GetNextPathName 
CString GetNextPathName( POSITION& pos) const; 

Parameters 
pos A reference to a POSITION value returned by a previous GetNextPathName 

or GetStartPosition function call. NULL if the end of the list has been reached. 

Return Value 

Remarks 

The full path of the file. 

Call this function to retrieve the next filename from the group selected in the dialog 
box. The path of the filename includes the file's title plus the entire directory path. 
For example, GetNextPathName will return "C:\FILES\TEXT.DAT" for the file 
C:\FILES\TEXT.DAT. You can use GetNextPathName in a forward iteration loop 
if you establish the initial position with a call to GetStartPosition. 

If the selection consists of only one file, that file name will be returned. 

See Also: CFileDialog::GetFileName, CFileDialog::GetStartPosition 

CFileDialog::GetPathName 
CString GetPathName( ) const; 

Return Value 

Remarks 

The full path of the file. 

Call this function to retrieve the full path of the file entered in the dialog box. The 
path of the filename includes the file's title plus the entire directory path. For example, 
GetPathName will return "C:\FILES\TEXT.DAT" for the file C:\FILES\TEXT.DAT. 

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains 
a sequence of null-terminated strings, with the first string being the directory path of 
the file group selected, followed by the names of all files selected by the user. For this 
reason, use the GetStartPosition and GetNextPathName member functions to 
retrieve the next file name in the list. 

699 



CFileDialog: : GetReadOnly Pref 

See Also: CFileDialog: : GetFileName, CFileDialog: : GetFileExt, 
CFileDialog: : GetFileTitle 

CFileDialog: : GetReadOnlyPref 
BOOL GetReadOnlyPref( ) const; 

Return Value 

Remarks 

Non-zero if the Read Only check box in the dialog box is selected; otherwise O. 

Call this function to determine whether the Read Only check box has been selected 
in the Windows standard File Open and File Save As dialog boxes. The Read Only 
check box can be hidden by setting the OFN_HIDEREADONLY style in the 
CFileDialog constructor. 

See Also: CFileDialog: :CFileDialog, CFileDialog: : GetPathName, 
CFileDialog:: GetFileExt 

CFileDialog: : GetStartPosition 
POSITION GetStartPosition( ) const; 

Return Value 

Remarks 

A POSITION value that can be used for iteration; NULL if the list is empty. 

Call this member function to retrieve the position of the first file pathname in the list, 
if m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set. 

See Also: CFileDialog::GetFileName, CFileDialog::GetNextPathName 

CFileDialog: : OnFileN ameChange 

Remarks 

700 

virtual void OnFileN ameChange( ); 

Override this function to handle the WM_NOTIFY CDN_SELCHANGE message. 
The notification message is sent when the user selects a new file or folder in the file 
list of the Open or Save As dialog box. 

Notification is sent only if the dialog box was created with the OFN_EXPLORER 
style. For more information about the notification, see CDN_SELCHANGE. For 
information about the OFN_EXPLORER style, see the OPENFILENAME structure 
and "Open and Save As Dialog Boxes." 

See Also: CFileDialog:: OnFolderChange 



CFileDialog: :Onlni tDone 

CFileDialog: : OnFileN ameO K 
virtual BOOL OnFileNameOK( ); 

Return Value 

Remarks 

1 if the filename is not a valid filename; otherwise O. 

Override this function only if you want to provide custom validation of filenames that 
are entered into a common file dialog box. This function allows you to reject a 
filename for any application-specific reason. Normally, you do not need to use this 
function because the framework provides default validation of filenames and displays 
a message box if an invalid filename is entered. 

If 1 is returned, the dialog box will remain displayed for the user to enter another 
filename. The dialog procedure dismisses the dialog if the return is O. Other nonzero 
return values are currently reserved and should not be used. 

See Also: OPENFILENAME 

CFileDialog::OnFolderChange 

Remarks 

virtual void OnFolderChange( ); 

Override this function to handle the WM_NOTIFY CDN_FOLDERCHANGE 
message. The notification message is sent when a new folder is opened in the Open or 
Save As dialog box. 

Notification is sent only if the dialog box was created with the OFN_EXPLORER 
style. For more information about the notification, see CDN_FOLDERCHANGE. 
For information about the OFN_EXPLORER style, see the OPENFILENAME 
structure and "Open and Save As Dialog Boxes." 

See Also: CFileDialog::OnFileChange 

CFileDialog: : OnInitDone 

Remarks 

virtual void OnlnitDone( ); 

Override this function to handle the WM_NOTIFY CDN_INITDONE message. 
The notification message is sent when the system has finished arranging controls 
in the Open or Save As dialog box to make room for the controls of the child 
dialog box. 

701 



CFileDialog::OnLBSeIChangedNotify 

Notification is sent only if the dialog box was created with the OFN_EXPLORER 
style. For more information about the notification, see CDN_INITDONE. For 
information about the OFN_EXPLORER style, see the OPENFILENAME structure 
and "Open and Save As Dialog Boxes." 

CFileDialo g: : OnLB Sel ChangedN otify 
virtual void OnLBSelChangedNotify( UINT nIDBox, UINT iCurSel, UINT nCode); 

Parameters 

Remarks 

nIDBox The ID of the list box or combo box in which the selection occurred. 

iCurSel The index of the current selection. 

nCode The control notification code. This parameter must have one of the following 
values: 

• CD_LBSELCHANGE Specifies iCurSel is the selected item in a 
single-selection list box. 

• CD_LBSELSUB Specifies that iCurSel is no longer selected in a 
multi selection list box. 

• CD _LBSELADD Specifies that iCurSel is selected in a multiselection list box. 

• CD_LBSELNOITEMS Specifies that no selection exists in a multi selection 
list box. 

For more information, see "About Common Dialog Boxes" in the Win32 SDK 
documentation. 

This function is called whenever the current selection in a list box is about to change. 
Override this function to provide custom handling of selection changes in the list box. 
For example, you can use this function to display the access rights or 
date-last-modified of each file the user selects. 

CFileDialog: :OnShare Violation 
virtual UINT OnShareViolation( LPCTSTR IpszPathName); 

Return Value 

702 

One of the following values: 

• OFN_SHAREFALLTHROUGH The filename is returned from the dialog box. 

• OFN_SHARENOWARN No further action needs to be taken. 

• OFN_SHAREWARN The user receives the standard warning message for this 
error. 



Parameters 

Remarks 

IpszPathName The path of the file on which the share violation occurred. 

Override this function to provide custom handling of share violations. Normally, you 
do not need to use this function because the framework provides default checking of 
share violations and displays a message box if a share violation occurs. 

If you want to disable share violation checking, use the bitwise OR operator to 
combine the flag OFN_SHAREAWARE with ID_ofn.Flags. 

See Also: CFileDialog::OnFileNaIDeOK 

CFileDialog: :OnTypeChange 

Remarks 

virtual void OnlnitDone( ); 

Override this function to handle the WM_NOTIFY CDN_TYPECHANGE 
message. The notification message is sent when the user selects a new file type from 
the list of file types in the Open or Save As dialog box. 

Notification is sent only if the dialog box was created with the OFN_EXPLORER 
style. For more information about the notification, see CDN_TYPECHANGE. For 
information about the OFN_EXPLORER style, see the OPENFILENAME structure 
and "Open and Save As Dialog Boxes." 

See Also: CFileDialog::OnFileChange 

Data Members 
CFileDialog: :m_ofn 
Remarks 

ID_ofn is a structure of type OPENFILENAME. Use this structure to initialize the 
appearance of a File Open or File Save As dialog box after it is constructed but before 
it is displayed with the DoModal member function. For example, you can set the 
IpstrTitie member of ID_ofn to the caption you want the dialog box to have. 

For more information, see the OPENFILENAME structure in the Win32 SDK 
documentation. 

CFileDialog::m_ofn 

703 



CFileException 

CFileException 

A CFileException object represents a file-related exception condition. The 
CFileException class includes public data members that hold the portable cause code 
and the operating-system-specific error number. The class also provides static member 
functions for throwing file exceptions and for returning cause codes for both 
operating-system errors and C run-time errors. 

CFileException objects are constructed and thrown in CFile member functions and in 
member functions of derived classes. You can access these objects within the scope of 
a CATCH expression. For portability, use only the cause code to get the reason for an 
exception. For more information about exceptions, see the article "Exceptions" in 
Visual C++ Programmer's Guide online. 

#include <afx.h> 

See Also: "Exception Processing" 

CFileException Class Members 

704 

Data Members 

m_cause 

m_lOsError 

m_strFileName 

Construction 

CFileException 

Code Conversion 

Contains portable code corresponding to the exception cause. 

Contains the related operating-system error number. 

Contains the name of the file for this exception. 

Constructs a CFileException object. 

OsErrorToException Returns a cause code corresponding to an operating system 
error code. 

ErrnoToException Returns cause code corresponding to a run-time error number. 

Helper Functions 

ThrowOsError 

ThrowErrno 

Throws a file exception based on an operating-system error number. 

Throws a file exception based on a run-time error number. 



CFileException: :ErrnoToException 

Member Functions 
CFileException: : CFileException 

CFileException( int cause = CFileException::none, LONG IOsError = -1 ); 

Parameters 

Remarks 

cause An enumerated type variable that indicates the reason for the exception. 
See CFileException: :m_cause for a list of the possible values. 

IOsError An operating-system-specific reason for the exception, if available. 
The IOsError parameter provides more information than cause does. 

Constructs a CFileException object that stores the cause code and the 
operating-system code in the object. 

Do not use this constructor directly, but rather call the global function 
AfxThrow FileException. 

Note The variable lOs Error applies only to CFile and CStdioFile objects. The CMemFile 
class does not handle this error code. 

See Also: AfxThrowFileException 

CFileException: : ErrnoToException 
static int PASCAL ErrnoToException( int nErrno ); 

Return Value 
Enumerated value that corresponds to a given run-time library error value. 

Parameters 

Remarks 

Example 

nErrno An integer error code as defined in the run-time include file ERRNO.H. 

Converts a given run-time library error value to a CFileException enumerated error 
value. See CFileException::m_cause for a list of the possible enumerated values. 

Ilexample for CFileException::ErrnoToException 
#include <errno.h> 
ASSERT( CFileException::ErrnoToException( EACCES 

CFileException::accessDenied ); 

See Also: CFileException::OsErrorToException 

705 



CFileException: :OsErrorToException 

CFileException: :OsErrorToException 
static int PASCAL OsErrorToException( LONG IOsError ); 

Return Value 
Enumerated value that corresponds to a given operating-system error value. 

Parameters 

Remarks 

Example 

IOsError An operating-system-specific error code. 

Returns an enumerator that corresponds to a given IOsError value. If the error code is 
unknown, then the function returns CFileException: :generic. 

Ilexample for CFileException::OsErrorToException 
ASSERT( CFileException::OsErrorToException( 5 ) 

CFileException::accessDenied ); 

See Also: CFileException: :ErrnoToException 

CFileException: : ThrowErrno 
static void PASCAL ThrowErrno( int nErrno); 

Parameters 

Remarks 

Example 

nErrno An integer error code as defined in the run-time include file ERRNO.H. 

Constructs a CFileException object corresponding to a given nErrno value, then 
throws the exception. 

Ilexample for CFileException::ThrowErrno 
#include <errno.h> 
CFileException::ThrowErrno( EACCES); II "access denied" 

See Also: CFiIeException::ThrowOsError 

CFileException: : ThrowOsError 
static void PASCAL ThrowOsError( LONG IOsError, 

~ LPCTSTR IpszFileName = NULL ); 

Parameters 

706 

IOsError An operating-system-specific error code. 

IpszFileName A pointer to the string containing the name of the file that caused the 
exception, if available. 



CFileException: :m_cause 

Remarks 

Example 

Throws a CFileException corresponding to a given IOsError value. If the error code 
is unknown, then the function throws an exception coded as 
CFileException:: generic. 

Ilexample for CFileException::ThrowOsError 
CFileException::ThrowOsError( 5); II "access denied" 

See Also: CFileException::ThrowErrno 

Data Members 
CFileException: :m_cause 
Remarks 

Contains values defined by a CFileException enumerated type. This data member is a 
public variable of type int. The enumerators and their meanings are as follows: 

o CFileException: :none No error occurred. 

• CFileException::generic An unspecified error occurred. 

o CFileException::flleNotFound The file could not be located. 

• CFileException:: badPath All or part of the path is invalid. 

o CFileException::tooManyOpenFiles The permitted number of open files was 
exceeded. 

• CFileException: :accessDenied The file could not be accessed. 

• CFileException::invalidFile There was an attempt to use an invalid file handle. 

• CFileException::removeCurrentDir The current working directory cannot be 
removed. 

• CFileException::directoryFull There are no more directory entries. 

• CFileException::badSeek There was an error trying to set the file pointer. 

• CFileException::hardIO There was a hardware error. 

• CFileException::sharingViolation SHARE.EXE was not loaded, or a shared 
region was locked. 

• CFileException::lockViolation There was an attempt to lock a region that was 
already locked. 

• CFileException: :diskFull The disk is full. 

o CFileException: :endOfFile The end of file was reached. 

Note These CFileException cause enumerators are distinct from the CArchiveException 
cause enumerators. 

707 



CFileException: :m_IOsError 

Example 
//example for CFileException::m_cause 
extern char* pFileName; 
TRY 
{ 

CFile f( pFileName, CFile::modeCreate I CFile::modeWrite ); 

CATCH( CFileException, e ) 
{ 

if( e->m_cause == CFileException::fileNotFound 
printf( "ERROR: File not found\n"); 

CFileException: :rn_IOsError 
Remarks 

Contains the operating-system error code for this exception. See your 
operating-system technical manual for a listing of error codes. This data member 
is a public variable of type LONG. 

CFileException: :rn_strFileN arne 
CString m_strFileName; 

Remarks 
Contains the name of the file for this exception condition. 

708 



CFileFind 

The MFC class CFileFind performs local file searches and is the base class for 
CGopherFileFind and CFtpFileFind, which perform Internet file searches. 
CFileFind includes member functions that begin a search, locate a file, and return 
the title, name, or path of the file. For Internet searches, the member function 
GetFileURL returns the file's URL. 

CFileFind is the base class for two other MFC classes designed to search particular 
server types: CGopherFileFind works specifically with gopher servers, and 
CFtpFileFind works specifically with FTP servers. Together, these three classes 
provide a seamless mechanism for the client to find files, regardless of the server 
protocol, the file type, or location, on either a local machine or a remote server. 

The following code will enumerate all the files in the current directory, printing the 
name of each file: 

CFileFind finder; 
BOOl bWorking = finder.FindFile("*.*"); 
while (bWorking) 
{ 

bWorking = finder.FindNextFile(); 
cout « (lPCTSTR) finder.GetFileName() « endl; 

To keep the example simple, this code uses the standard C++ library COllt class. The 
COllt line could be replaced with a call to CListBox::AddString, for example, in a 
program with a graphical user interface. 

For more information about how to use CFileFind and the other WinInet classes, see 
the article "Internet Programming with WinInet" in Visual c++ Programmer's Guide 
online. 

#inclllde <afx.h> 

See Also: CFtpFileFind, CGopherFileFind, ClnternetFile, CGopherFile, 
CHttpFile 

CFileFind Class Members 
Construction 

CFileFind Constructs a CFileFind object. 

CFileFind 

709 



CFileFind: :CFileFind 

Attributes 

GetLength 

GetFileName 

GetFilePath 

GetFileTitle 

GetFileURL 

GetRoot 

GetCreationTime 

GetLastAccessTime 

GetLastWriteTime 

MatchesMask 

IsDots 

IsReadOnly 

IsDirectory 

IsCompressed 

IsSystem 

IsHidden 

IsTemporary 

IsNormal 

IsArchived 

Operations 

Close 

FindFile 

FindNextFile 

Gets the length of the found file, in bytes. 

Gets the name, including the extension, of the found file 

Gets the whole path of the found file. 

Gets the title of the found file. The title does not include the extension. 

Gets the URL, including the file path, of the found file. 

Gets the root directory of the found file. 

Gets the time the file was created. 

Gets the time that the file was last accessed. 

Gets the time the file was last changed and saved. 

Indicates the desired file attributes of the file to be found. 

Determines if the name of the found file has the name"." or " .. ", 
indicating that is actually a directory. 

Determines if the found file is read-only. 

Determines if the found file is a directory. 

Determines if the found file is compressed. 

Determines if the found file is a system file. 

Determines if the found file is hidden. 

Determines if the found file is temporary. 

Determines if the found file is normal (in other words, has no other 
attributes ). 

Determines if the found file is archived. 

Closes the search request. 

Searches a directory for a specified file name. 

Continues a file search from a previous call to FindFile. 

Member Functions 
CFileFind: : CFileFind 

Remarks 

710 

CFileFind( ); 

This member function is called when a CFileFind object is constructed. 

See Also: CGopherFileFind, CFtpFileFind 



CFileFind: : Close 

Remarks 

void Close( ); 

Call this member function to end the search, reset the context, and release all 
resources. After calling Close, you do not have to create a new CFileFind instance 
before calling FindFile to begin a new search. 

CFileFind: : FindFile 
virtual BOOL FindFile( LPCTSTR pstrName = NULL, DWORD dwUnused = 0 ); 

Return Value 
Nonzero if successful; otherwise O. To get extended error information, call the Win32 
function GetLastError. 

Parameters 

Remarks 

pstrName A pointer to a string containing the name of the file to find. If you pass 
NULL for pstrName, FindFile does a wildcard (*. *) search. 

dwUnused Reserved to make FindFile polymorphic with derived classes. Must be O. 

Call this member function to open a file search. 

After calling FindFile to begin the file search, call FindNextFile to retrieve 
subsequent files. You must call FindNextFile at least once before calling any of the 
following attribute member functions: 

• GetCreationTirne 

o GetFileN arne 

• GetFileTitle 

• GetFilePath 

• GetFileURL 

• GetLastAccessTirne 

• GetLastWriteTirne 

• GetLength 

• GetRoot 

See Also: CFileFind::FindNextFile 

CFileFind: :FindFile 

711 



CFileFind: :FindN extFile 

CFileFind: : FindN extFile 
virtual BOOL FindNextFile(); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. To get extended error information, call the Win32 
function GetLastError. 

Call this member function to continue a file search from a previous call to FindFile. 
You must call FindNextFile at least once before calling any of the following attribute 
member functions: 

• GetCreationTime 

• GetFileName 

• GetFileTitle 

• GetFilePath 

• GetFileURL 

• GetLastAccessTime 

• GetLastWriteTime 

• GetLength 

• GetRoot 

FindNextFile wraps the Win32 function FindNextFile. 

CFileFind: : GetCreation Time 
virtual BOOL GetCreationTime( FILETIME* pFileTime ) const; 
virtual BOOL GetCreationTime( CTime& rejTime ) const; 

Return Value 
Nonzero if successful; 0 if unsuccessful. GetCreationTime returns 0 only if 
FindNextFile has never been called on this CFileFind object. 

Parameters 

Remarks 

712 

pFileTime A pointer to a FILE TIME structure containing the time the file was 
created. 

rejTime A reference to a CTime object. 

Call this member function to get the time the specified file was created. 

You must call FindNextFile at least once before calling GetCreationTime. 



CFileFind: :GetFilePath 

Note Not all file systems use the same semantics to implement the time stamp returned by 
this function. This function may return the same value returned by other time stamp functions 
if the underlying file system or server does not support keeping the time attribute. See the 
Win32_FIND_DATA structure for information about time formats. On some operation systems, 
the returned time is in the time zone local to the machine were the file is located. See the Win32 
FileTimeToLocalFileTime API for more information. 

CFileFind: : GetFileN arne 
virtual CString GetFileName() const; 

Return Value 

Remarks 

The name of the most-recently-found file. 

Call this member function to get the name of the found file. You must call 
FindNextFile at least once before calling GetFileName. 

GetFileName is one of three CFileFind member functions that return some form of 
the file name. The following list describes the three and how they vary: 

• GetFileName returns the file name, including the extension. For example, calling 
GetFileName to generate a user message about the file c: \myhtml \myfi 1 e. txt 
returns the file name myfi 1 e. txt. 

• GetFilePath returns the entire path for the file. For example, calling GetFilePath 
to generate a user message about the file c: \myhtml \myfi 1 e. txt returns the file 
path c: \myhtml \myfi 1 e. txt. 

• GetFileTitie returns the file name, excluding the file extension. For example, 
calling GetFileTitie to generate a user message about the file 
c: \myhtml \myfi 1 e. txt returns the file title myfi 1 e. 

See Also: CFileFind: :FindFile 

CFileFind: : GetFilePath 
virtual CString GetFilePath() const; 

Return Value 

Remarks 

The path of the specified file. 

Call this member function to get the full path of the specified file. You must call 
FindNextFile at least once before calling GetFilePath. 

GetFilePath is one of three CFileFind member functions that return some form of the 
file name. The following list describes the three and how they vary: 

713 



CFileFind:: GetFileTitle 

• GetFileName returns the file name, including the extension. For example, calling 
GetFileName to generate a user message about the file c: \myhtml \myfi 1 e. txt 
returns the file name myfi 1 e. txt. 

• GetFilePath returns the entire path for the file. For example, calling GetFilePath 
to generate a user message about the file c: \myhtml \myfi 1 e. txt returns the file 
path c: \myhtml \myfi 1 e. txt. 

• GetFileTitle returns the file name, excluding the file extension. For example, 
calling GetFileTitle to generate a user message about the file 
c: \myhtml \myfi 1 e. txt returns the file title myfi 1 e. 

See Also: CFileFind::FindFile 

CFileFind: : GetFileTitle 
virtual CString GetFileTitle( ) const; 

Return Value 

Remarks 

The title of the file. 

Call this member function to get the title of the found file. You must call 
FindNextFile at least once before calling GetFileTitle. 

GetFileTitle is one of three CFileFind member functions that return some form of the 
file name. The following list describes the three and how they vary: 

• GetFileName returns the file name, including the extension. For example, calling 
GetFileName to generate a user message about the file c: \myhtml \myfi 1 e. txt 
returns the file name myfi 1 e. txt. 

• GetFilePath returns the entire path for the file. For example, calling GetFilePath 
to generate a user message about the file c: \myhtml \myfi 1 e. txt returns the file 
path c: \myhtml \myfi 1 e. txt. 

• GetFileTitle returns the file name, excluding the file extension. For example, 
calling GetFileTitle to generate a user message about the file 
c: \myhtml \myfi 1 e. txt returns the file title myfi 1 e. 

See Also: CFileFind: :FindFile 

CFileFind: : GetFile URL 
virtual CString GetFileURL( ) const; 

Return Value 
The complete URL. 

714 



CFileFind: : GetLastWriteTime 

Remarks 
Call this member function to retrieve the specified URL. You must call FindNextFile 
at least once before calling GetFileURL. 

GetFileURL is similar to the member function GetFilePath, except that it returns the 
URL in the form f i 1 e : / / pat h. For example, calling GetFileURL to get the 
complete URL for myfi 1 e. txt returns the URL 
file://c:\myhtml\myfile.txt. 

See Also: CFileFind: :FindFile 

CFileFind: : GetLastAccessTime 
virtual BOOL GetLastAccessTime( CTime& refFime) const; 
virtual BOOL GetLastAccessTime( FILETIME* pFileTi11le ) const; 

Return Value 
Nonzero if successful; 0 if unsuccessful. GetLastAccessTime returns 0 only if 
FindNextFile has never been called on this CFileFind object. 

Parameters 

Remarks 

pFileTi11le A pointer to a FILETIME structure containing the time the file was last 
accessed. 

refFime A reference to a CTime object. 

Call this member function to get the time that the specified file was last accessed. 

You must call FindNextFile at least once before calling GetLastAccessTime. 

Note Not all file systems use the same semantics to implement the time stamp returned by this 
function. This function may return the same value returned by other time stamp functions if the 
underlying file system or server does not support keeping the time attribute. See the 
Win32_FIND_DATA structure for information about time formats. On some operation systems, 
the returned time is in the time zone local to the machine were the file is located. See the Win32 
FileTimeToLocalFileTime API for more information. 

CFileFind: : GetLast WriteTime 
virtual BOOL GetLastWriteTime( FILETIME* pFileTi11le) const; 
virtual BOOL GetLastWriteTime( CTime& refFime ) const; 

Return Value 
Nonzero if successful; 0 if unsuccessful. GetLastWriteTime returns 0 only if 
FindNextFile has never been called on this CFileFind object. 

715 



CFileFind: :GetLength 

Parameters 

Remarks 

pFileTime A pointer to a FILE TIME structure containing the time the file was last 
written to. 

refFime A reference to a CTime object. 

Call this member function to get the last time the file was changed. 

You must call FindNextFile at least once before calling GetLastWriteTime. 

Note Not all file systems use the same semantics to implement the time stamp returned by this 
function. This function may return the same value returned by other time stamp functions if the 
underlying file system or server does not support keeping the time attribute. See the 
Win32_Find_Data structure for information about time formats. On some operation systems, 
the returned time is in the time zone local to the machine were the file is located. See the Win32 
FileTimeToLocalFileTime API for more information. 

CFileFind: : GetLength 
DWORD GetLength( ) const; 

Return Value 

Remarks 

The length of the found file, in bytes. 

Call this member function to get the length of the found file, in bytes. You must call 
FindNextFile at least once before calling GetLength. 

GetLength uses the nFileSizeLow member of the Win32 structure, 
WIN32_FIND_DATA, to get and return the low-order DWORD value of the file 
size, in bytes. If the file may be more than four gigabytes in size, use the 
GetLength64 member. 

CFileFind: : GetRoot 
virtual CString GetRoot( ) const; 

Return Value 

Remarks 

716 

The root of the active search. 

Call this member function to get the root of the found file. You must call 
FindNextFile at least once before calling GetRoot. 

This member function returns the drive specifier and path name used to start a search. 
For example, calling FindFile with * . d a t results in GetRoot returning an empty 
string. Passing a path, such as c: \wi ndows \system\ *. dll, to FindFile results 
GetRoot returning c: \wi ndows \system\. 



CFileFind::IsDirectory 

CFileFind: : IsArchived 
BOOL IsArchived( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is archived. Applications 
mark an archive file, which is to be backed up or removed, with 
FILE_ATTRIBUTE_ARCHIVE, a file attribute identified in the 
WIN32_FIND _DATA structure. 

See the member function MatchesMask for a complete list of file attributes. 

CFileFind: :IsCompressed 
BOOL IsCompressed( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is compressed. A compressed 
file is marked with FILE_ATTRIBUTE_COMPRESSED, a file attribute identified in 
the WIN32_FIND_DATA structure. For a file, this attribute indicates that all of the 
data in the file is compressed. For a directory, this attribute indicates that compression 
is the default for newly created files and subdirectories. 

See the member function MatchesMask for a complete list of file attributes. 

CFileFind: : IsDirectory 
BOOL IsDirectory( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is a directory. A file that is a 
directory is marked with FILE_ATTRIBUTE_DlRECTORY a file attribute identified 
in the WIN32_FIND _DATA structure. 

See the member function MatchesMask for a complete list of file attributes. 

717 



CFileFind: :IsDots 

CFileFind: :IsDots 
virtual BOOL IsDots( ) const; 

Return Value 

Remarks 

Nonzero if the found file has the name "." or " .. ", which indicates that the found file is 
actually a directory. Otherwise O. 

Call this member function to test for the current directory and parent directory 
markers while iterating through files. 

See Also: CFileFind: :IsDirectory 

CFileFind: :IsHidden 
BOOL IsHidden( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is hidden. Hidden files, which 
are marked with FILE_ATTRIBUTE_HIDDEN, a file attribute identified in the 
WIN32_FIND _DATA structure. A hidden file is not included in an ordinary directory 
listing. 

See the member function MatchesMask for a complete list of file attributes. 

CFileFind: :IsN ormal 
BOOL IsNormal() const; 

Return Value 

Remarks 

718 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is a normal file. Files 
marked with FILE_ATTRIBUTE_NORMAL, a file attribute identified in the 
WIN32_FIND_DATA structure. A normal file has no other attributes set. All 
other file attributes override this attribute. 

See the member function MatchesMask for a complete list of file attributes. 



CFileFind: :IsTemporary 

CFileFind: :IsReadOnly 
BOOL IsReadOnly( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is read-only. A read-only file 
is marked with FILE_ATTRIBUTE_, a file attribute identified in the 
WIN32_FIND_DATA structure. Applications can read such a file, but they cannot 
write to it or delete it. 

See the member function MatchesMask for a complete list of file attributes. 

CFileFind: :IsSystem 
BOOL IsSystem( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is a system file. A system file 
is marked with FILE_ATTRIBUTE_SYSTEM, , a file attribute identified in the 
WIN32_FIND_DATA structure. A system file is part of, or is used exclusively by, the 
operating system. 

See the member function MatchesMask for a complete list of file attributes. 

CFileFind: : I sTemporary 
BOOL IsTemporary( ) const; 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this member function to determine if the found file is a temporary file. A 
temporary file is marked with FILE_ATTRIBUTE_TEMPORARY, a file attribute 
identified in the WIN32_FIND _DATA structure. A temporary file is used for 
temporary storage. Applications should write to the file only if absolutely necessary. 
Most of the file's data remains in memory without being flushed to the media because 
the file will soon be deleted. 

See the member function MatchesMask for a complete list of file attributes. 

719 



CFileFind: :MatchesMask 

CFileFind: :MatchesMask 
virtual BOOL MatchesMask( DWORD dwMask) const; 

Return Value 
Nonzero if successful; otherwise O. To get extended error information, call the Win32 
function GetLastError. 

Parameters 

Remarks 

720 

dwMask Specifies one or more file attributes, identified in the 
WIN32_FIND_DATA structure, for the found file. To search for multiple 
attributes, use the bitwise OR (I) operator. Any combination of the following 
attributes is acceptable: 

• FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use 
this attribute to mark files for backup or removal. 

• FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For 
a file, this means that all of the data in the file is compressed. For a directory, 
this means that compression is the default for newly created files and 
subdirectories. 

• FILE_ATTRIBUTE_DIRECTORY The file is a directory. 

• FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This 
attribute is valid only if used alone. All other file attributes override this 
attribute. 

• FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an 
ordinary directory listing. 

• FILE_ATTRIBUTE_READONLY The file is read only. Applications can read 
the file but cannot write to it or delete it. 

• FILE_ATTRIBUTE_SYSTEM The file is part of or is used exclusively by the 
operating system. 

• FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary 
storage. Applications should write to the file only if absolutely necessary. Most 
of the file's data remains in memory without being flushed to the media because 
the file will soon be deleted. 

Call this member function to test the file attributes on the found file. 

See Also: CFileFind: :IsDots, CFileFind: :IsReadOnly, CFileFind: : IsDirectory , 
CFileFind: :IsCompressed, CFileFind: :IsSystem, CFileFind: :IsHidden, 
CFileFind: :IsTemporary, CFileFind: : IsNormal , CFileFind: : IsArchived 



CFindReplaceDialog 

The CFindReplaceDialog class allows you to implement standard string 
Find/Replace dialog boxes in your application. Unlike the other Windows common 
dialog boxes, CFindReplaceDialog objects are modeless, allowing users to interact 
with other windows while they are on screen. There are two kinds of 
CFindReplaceDialog objects: Find dialog boxes and Find/Replace dialog boxes. 
Although the dialog boxes allow the user to input search and search/replace strings, 
they do not perform any of the searching or replacing functions. You must add these to 
the application. 

To construct a CFindReplaceDialog object, use the provided constructor (which has 
no arguments). Since this is a modeless dialog box, allocate the object on the heap 
using the new operator, rather than on the stack. 

Once a CFindReplaceDialog object has been constructed, you must call the Create 
member function to create and display the dialog box. 

Use the m_fr structure to initialize the dialog box before calling Create. The m_fr 
structure is of type FINDREPLACE. For more information on this structure, see the 
Win32 SDK documentation. 

In order for the parent window to be notified of find/replace requests, you must use 
the Windows RegisterWindowMessage function and use the 
ON_REGISTERED_MESSAGE message-map macro in your frame window that 
handles this registered message. You can call any of the member functions listed in the 
"Operations" section of the CFindReplaceDialog Class Members table from the 
frame window's callback function. 

You can determine whether the user has decided to terminate the dialog box with the 
IsTerminating member function. 

CFindReplaceDialog relies on the COMMDLG.DLL file that ships with Windows 
versions 3.1 and later. 

CFindReplaceDialog 

721 



CFindReplaceDialog 

To customize the dialog box, derive a class from CFindReplaceDialog, provide a 
custom dialog template, and add a message map to process the notification messages 
from the extended controls. Any unprocessed messages should be passed to the base 
class. 

Customizing the hook function is not required. 

For more information on using CFindReplaceDialog, see "Common Dialog Classes" 
in Visual C++ Programmer's Guide online. 

#include <afxdlgs.h> 

CFindReplaceDialog Class Members 

722 

Data Members 

Construction 

CFindReplaceDialog 

Create 

Operations 

FindNext 

GetN otifier 

GetFindString 

GetReplaceString 

IsTerminating 

MatchCase 

MatchWholeWord 

ReplaceAII 

ReplaceCurrent 

SearchDown 

A structure used to customize a CFindReplaceDialog object. 

Call this function to construct a CFindReplaceDialog object. 

Creates and displays a CFindReplaceDialog dialog box. 

Call this function to determine whether the user wants to find the 
next occurrence of the find string. 

Call this function to retrieve the FINDREPLACE structure in 
your registered message handler. 

Call this function to retrieve the current find string. 

Call this function to retrieve the current replace string. 

Call this function to determine whether the dialog box is 
terminating. 

Call this function to determine whether the user wants to match 
the case of the find string exactly. 

Call this function to determine whether the user wants to match 
entire words only. 

Call this function to determine whether the user wants all 
occurrences of the string to be replaced. 

Call this function to determine whether the user wants the current 
word to be replaced. 

Call this function to determine whether the user wants the search 
to proceed in a downward direction. 



CFindReplaceDialog: :Create 

Member Functions 
CFindReplaceDialog: :CFindReplaceDialog 

Remarks 

CFindReplaceDialog( ); 

Constructs a CFindReplaceDialog object. CFindReplaceDialog objects are 
constructed on the heap with the new operator. For more information on the 
construction of CFindReplaceDialog objects, see the CFindReplaceDialog 
overview. Use the Create member function to display the dialog box. 

See Also: CFindReplaceDialog::Create 

CFindReplaceDialog: : Create 
BOOL Create( BOOL bFindDialogOnly, LPCTSTR lpszFindWhat, 

... LPCTSTR lpszReplaceWith = NULL, DWORD dwFlags = FR_DOWN, 

... CWnd* pParentWnd = NULL ); 

Return Value 
Nonzero if the dialog box object was successfully created; otherwise O. 

Parameters 

Remarks 

bFindDialogOnly Set this parameter to TRUE to display the standard Windows Find 
dialog box. Set it to FALSE to display the Windows FindlReplace dialog box. 

lpszFindWhat Specifies the string for which to search. 

lpszReplace With Specifies the default string with which to replace found strings. 

dwFlags One or more flags you can use to customize the settings of the dialog box, 
combined using the bitwise OR operator. The default value is FR_DOWN, which 
specifies that the search is to proceed in a downward direction. See the 
FINDREPLACE structure in the Win32 SDK documentation for more 
information on these flags. 

pParentWnd A pointer to the dialog box's parent or owner window. This is the 
window that will receive the special message indicating that a find/replace action is 
requested. If NULL, the application's main window is used. 

Creates and displays either a Find or FindlReplace dialog box object, depending on 
the value of bFindDialogOnly. 

In order for the parent window to be notified of find/replace requests, you must use 
the Windows RegisterWindowMessage function whose return value is a message 
number unique to the application's instance. Your frame window should have a 

723 



CFindReplaceDialog: :FindNext 

message map entry that declares the callback function (OnFindReplace in the 
example that follows) that handles this registered message. The following code 
fragment is an example of how to do this for a frame window class named 
CMyFrameWnd: 

class CMyFrameWnd : public CFrameWnd 
{ 

protected: 
afx_msg LONG OnFindReplace(WPARAM wParam, LPARAM lParam); 

} : 
static UINT WM FINDREPLACE ::RegisterWindowMessage(FINDMSGSTRING); 

BEGIN_MESSAGE_MAP( CMyFrameWnd, CFrameWnd 
IINormal message map entries here. 
ON_REGISTERED_MESSAGE( WM_FINDREPLACE, OnFindReplace 

END_MESSAGE_MAP 

Within your OnFindReplace function, you interpret the intentions of the user and 
create the code for the find/replace operations. 

See Also: CFindReplaceDialog::CFindReplaceDialog 

CFindReplaceDialog: : FindNext 
BOOL FindNext( ) const; 

Return Value 

Remarks 

Nonzero if the user wants to find the next occurrence of the search string; otherwise O. 

Call this function from your callback fUl1ction to determine whether the user wants to 
find the next occurrence of the search str~ng. 

See Also: CFindReplaceDialog: :GetFin~String, 
CFindReplaceDialog: :SearchDown 

CFindReplaceDialo g: : GetFindString 
CString GetFindString( ) const; 

Return Value 

Remarks 

724 

The default string to find. 

Call this function from your callback function to retrieve the default string to find. 

See Also: CFindReplaceDialog: :FindN ext, 
CFindReplaceDialog: : GetReplaceString 



CFindReplaceDialog: : IsTerminating 

CFindReplaceDialog: : GetN otifier 
static CFindReplaceDialog* PASCAL GetNotifier( LPARAM IParam); 

Return Value 
A pointer to the current dialog box. 

Parameters 

Remarks 

IParam The lparam value passed to the frame window's OnFindReplace 
member function. 

Call this function to retrieve a pointer to the current Find Replace dialog box. 
It should be used within your callback function to access the current dialog box, 
call its member functions, and access the m_fr structure'. 

CFindReplaceDialog: : GetReplaceString 
CString GetReplaceString( ) const; 

Return Value 

Remarks 

The default string with which to replace found strings. 

Call this function to retrieve the current replace string. 

See Also: CFindReplaceDialog::GetFindString 

CFindReplaceDialog: : IsTerminating 
BOOL IsTerminating( ) const; 

Return Value 

Remarks 

Nonzero if the user has decided to terminate the dialog box; otherwise O. 

Call this function within your callback function to determine whether the user 
has decided to terminate the dialog box. If this function returns nonzero, you 
should call the DestroyWindow member function of the current dialog box 
and set any dialog box pointer variable to NULL. Optionally, you can also store 
the find/replace text last entered and use it to initialize the next find/replace 
dialog box. 

725 



CFindReplaceDialog::MatchCase 

CFindReplaceDialog: :MatchCase 
BOOL MatchCase() const; 

Return Value 

Remarks 

Nonzero if the user wants to find occurrences of the search string that exactly match 
the case of the search string; otherwise O. 

Call this function to determine whether the user wants to match the case of the find 
string exactly. 

See Also: CFindReplaceDialog: :Match Whole Word 

CFindReplaceDialog: :Match Whole Word 
BOOL MatchWholeWord() const; 

Return Value 

Remarks 

Nonzero if the user wants to match only the entire words of the search string; 
otherwise O. 

Call this function to determine whether the user wants to match entire words only. 

See Also: CFindReplaceDialog: :Match Case 

CFindReplaceDialog: : ReplaceAl1 
BOOL ReplaceAll( ) const; 

Return Value 

Remarks 

Nonzero if the user has requested that all strings matching the replace string be 
replaced; otherwise O. 

Call this function to determine whether the user wants all occurrences of the string to 
be replaced. 

See Also: CFindReplaceDialog: : ReplaceCurrent 

CFindReplaceDialog: : ReplaceCurrent 
BOOL ReplaceCurrent( ) const; 

Return Value 

726 

Nonzero if the user has requested that the currently selected string be replaced with 
the replace string; otherwise O. 



CFindReplaceDialog: :m_fr 

Remarks 
Call this function to determine whether the user wants the current word to be replaced. 

See Also: CFindReplaceDialog::ReplaceAll 

CFindReplaceDialog: : SearchDown 
BOOL SearchDown() const; 

Return Value 

Remarks 

Nonzero if the user wants the search to proceed in a downward direction; 0 if the user 
wants the search to proceed in an upward direction. 

Call this function to determine whether the user wants the search to proceed in a 
downward direction. 

Data Members 
CFindReplaceDialog: :m_fr 
Remarks 

m_fr is a structure of type FINDREPLACE. Its members store the characteristics of 
the dialog-box object. After constructing a CFindReplaceDialog object, you can use 
m_fr to modify various values in the dialog box. 

For more information on this structure, see the FINDREPLACE structure in the 
Win32 SDK documentation. 

727 



CFont 

CFont 

The CFont class encapsulates a Windows graphics device interface (GDI) font 
and provides member functions for manipulating the font. To use a CFont object, 
construct a CFont object and attach a Windows font to it with CreateFont, 
CreateFontIndirect, CreatePointFont, or CreatePointFontIndirect, and then 
use the object's member functions to manipulate the font. 

The CreatePointFont and CreatePointFontIndirect functions are often easier to use 
than CreateFont or CreateFontIndirect since they do the conversion for the height 
of the font from a point size to logical units automatically. 

For more information on CFont, see "Graphic Objects" in Visual C++ Programmer's 
Guide online. 

#include <afxwin.h> 

CFont Class Members 

728 

Construction 

CFont 

Initialization 

CreateFontIndirect 

CreateFont 

CreatePointFont 

CreatePointFontIndirect 

Operations 

FromHandle 

Constructs a CFont object. 

Initializes a CFont object with the characteristics given in a 
LOGFONT structure. 

Initializes a CFont with the specified characteristics. 

Initializes a CFont with the specified height, measured in 
tenths of a point, and typeface. 

Same as CreateFontIndirect except that the font height is 
measured in tenths of a point rather than logical units. 

Returns a pointer to a CFont object when given a Windows 
HFONT. 



Attributes 

operator HFONT 

GetLogFont 

Returns the Windows GDI font handle attached to the CFont 
object. 

Fills a LOGFONT with information about the logical font 
attached to the CFont object. 

Member Functions 
CFont::CFont 

Remarks 

CFont( ); 

Constructs a CFont object. The resulting object must be initialized with CreateFont, 
CreateFontIndirect, CreatePointFont, or CreatePointFontIndirect before it can be 
used. 

See Also: CFont:: CreateFontIndirect, CFont:: CreateFont, 
CFont: :CreatePointFont, CFont: :CreatePointFontIndirect, : :EnumFonts 

CFont: :CreateFont 
BOOL CreateFont( int nHeight, int nWidth, int nEscapement, int nOrientation, 

... int n Weight, BYTE bltalic, BYTE bUnderline, BYTE cStrikeOut, 

... BYTE nCharSet, BYTE nOutPrecision, BYTE nClipPrecision, 

... BYTE nQuality, BYTE nPitchAndFamily, LPCTSTR IpszFacename); 

Return Value 
Nonzero if successful; otherwise 0. 

Parameters 
nHeight Specifies the desired height (in logical units) of the font. The font height can 

be specified in the following ways: 

• Greater than 0, in which case the height is transformed into device units and 
matched against the cell height of the available fonts. 

• Equal to 0, in which case a reasonable default size is used. 

• Less than 0, in which case the height is transformed into device units and the 
absolute value is matched against the character height of the available fonts. 

The absolute value of nHeight must not exceed 16,384 device units after it is 
converted. For all height comparisons, the font mapper looks for the largest font 
that does not exceed the requested size or the smallest font if all the fonts exceed 
the requested size. 

CFont: :CreateFont 

729 



CF ont: :CreateFont 

730 

n Width Specifies the average width (in logical units) of characters in the font. If 
n Width is 0, the aspect ratio of the device will be matched against the digitization 
aspect ratio of the available fonts to find the closest match, which is determined by 
the absolute value of the difference. 

nEscapement Specifies the angle (in OJ-degree units) between the escapement 
vector and the x-axis of the display surface. The escapement vector is the line 
through the origins of the first and last characters on a line. The angle is measured 
counterclockwise from the x-axis. 

nOrientation Specifies the angle (in O.l-degree units) between the baseline of a 
character and the x-axis. The angle is measured counterclockwise from the x-axis 
for coordinate systems in which the y-direction is down and clockwise from the 
x-axis for coordinate systems in which the y-direction is up. 

n Weight Specifies the font weight (in inked pixels per 1000). Although n Weight can 
be any integer value from 0 to 1000, the common constants and values are as 
follows: 

Constant Value 

FW _DONTCARE 0 

FW_THIN 100 

FW _EXTRALIGHT 200 

FW _ULTRALIGHT 200 

FW_LIGHT 300 

FW_NORMAL 400 

FW_REGULAR 400 

FW_MEDIUM 500 

FW _SEMIBOLD 600 

FW _DEMIBOLD 600 

FW_BOLD 700 

FW _EXTRABOLD 800 

FW_ULTRABOLD 800 

FW_BLACK 900 

FW_HEAVY 900 

These values are approximate; the actual appearance depends on the typeface. 
Some fonts have only FW _NORMAL, FW _REGULAR, and FW _BOLD 
weights. If FW _DONTCARE is specified, a default weight is used. 

bltalic Specifies whether the font is italic. 

bUnderline Specifies whether the font is underlined. 

cStrikeOut Specifies whether characters in the font are struck out. Specifies a 
strikeout font if set to a nonzero value. 



nCharSet Specifies the font's character set. The following constants and values are 
predefined: 

Constant Value 

ANSCCHARSET 0 

DEFAULT_CHARSET 

SYMBOL_CHARSET 2 

SHIFTJIS_CHARSET 128 

OEM_CHARSET 255 

The OEM character set is system-dependent. 

Fonts with other character sets may exist in the system. An application that uses a 
font with an unknown character set must not attempt to translate or interpret strings 
that are to be rendered with that font. Instead, the strings should be passed directly 
to the output device driver. 

The font mapper does not use the DEFAULT_CHARSET value. An application 
can use this value to allow the name and size of a font to fully describe the logical 
font. If a font with the specified name does not exist, a font from any character set 
can be substituted for the specified font. To avoid unexpected results, applications 
should use the DEFAULT_CHARSET value sparingly. 

nOutPrecision Specifies the desired output precision. The output precision defines 
how closely the output must match the requested font's height, width, character 
orientation, escapement, and pitch. It can be anyone of the following values: 

OUT_CHARACTER_PRECIS 

OUT_DEFAULT_PRECIS 

OUT_DEVICE_PRECIS 

OUT_RASTER_PRECIS 

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, 
and OUT_ TT_PRECIS values to control how the font mapper chooses a font 
when the system contains more than one font with a given name. For example, if 
a system contains a font named Symbol in raster and TrueType form, specifying 
OUT_TT_PRECIS forces the font mapper to choose the TrueType version. 
(Specifying OUT_TT_PRECIS forces the font mapper to choose a TrueType font 
whenever the specified font name matches a device or raster font, even when there 
is no TrueType font of the same name.) 

nClipPrecision Specifies the desired clipping precision. The clipping precision 
defines how to clip characters that are partially outside the clipping region. It can 
be anyone of the following values: 

CLIP _CHARACTER_PRECIS CLIP_MASK 

CLIP _DEFAULT_PRECIS 

CLIP _ENCAPSULATE 

CLIP _LH_ANGLES 

CLIP _STROKE_PRECIS 

CLIP_TT_ALWAYS 

CFont: :CreateFont 

731 



CFont: :CreateFont 

732 

To use an embedded read-only font, an application must specify 
CLIP_ENCAPSULATE. 

To achieve consistent rotation of device, TrueType, and vector fonts, an application 
can use the OR operator to combine the CLIP _LH_ANGLES value with any of 
the other nClipPrecision values. If the CLIP _LH_ANGLES bit is set, the rotation 
for all fonts depends on whether the orientation of the coordinate system is 
left-handed or right-handed. (For more information about the orientation of 
coordinate systems, see the description of the nOrientation parameter.) If 
CLIP _LH_ANGLES is not set, device fonts always rotate counterclockwise, but 
the rotation of other fonts is dependent on the orientation of the coordinate system. 

nQuality Specifies the font's output quality, which defines how carefully the GDI 
must attempt to match the logical-font attributes to those of an actual physical font. 
It can be one of the following values: 

• DEFAULT_QUALITY Appearance of the font does not matter. 

• DRAFT_QUALITY Appearance of the font is less important than when 
PROOF_QUALITY is used. For GDI raster fonts, scaling is enabled. Bold, 
italic, underline, and strikeout fonts are synthesized if necessary. 

• PROOF_QUALITY Character quality of the font is more important than 
exact matching of the logical-font attributes. For GDI raster fonts, scaling is 
disabled and the font closest in size is chosen. Bold, italic, underline, and 
strikeout fonts are synthesized if necessary. 

nPitchAndFamily Specifies the pitch and family of the font. The two low-order bits 
specify the pitch of the font and can be anyone of the following values: 

DEFAULT_PITCH VARIABLE_PITCH FIXED _PITCH 

Applications can add TMPF _TRUE TYPE to the nPitchAndFamily parameter to 
choose a TrueType font. The four high-order bits of the parameter specify the font 
family and can be anyone of the following values: 

• FF _DECORATIVE Novelty fonts: Old English, for example. 

• FF _DONTCARE Don't care or don't know. 

• FF _MODERN Fonts with constant stroke width (fixed-pitch), with or without 
serifs. Fixed-pitch fonts are usually modem faces. Pica, Elite, and Courier New 
are examples. 

• FF _ROMAN Fonts with variable stroke width (proportionally spaced) and 
with serifs. Times New Roman and Century Schoolbook are examples. 

• FF _SCRIPT Fonts designed to look like handwriting. Script and Cursive are 
examples. 

• FF _SWISS Fonts with variable stroke width (proportionally spaced) and 
without serifs. MS Sans Serif is an example. 



CFont: :CreateFontIndirect 

Remarks 

An application can specify a value for nPitchAndFamily by using the Boolean OR 
operator to join a pitch constant with a family constant. 

Font families describe the look of a font in a general way. They are intended for 
specifying fonts when the exact typeface desired is not available. 

ipszFacename A CString or pointer to a null-terminated string that specifies the 
typeface name of the font. The length of this string must not exceed 30 characters. 
The Windows EnumFontFamilies function can be used to enumerate all currently 
available fonts. If IpszFacename is NULL, the GDI uses a device-independent 
typeface. 

Initializes a CFont object with the specified characteristics. The font can subsequently 
be selected as the font for any device context. 

The CreateFont function does not create a new Windows GDI font. It merely selects 
the closest match from the fonts available in the GDI's pool of physical fonts. 

Applications can use the default settings for most of these parameters when creating a 
logical font. The parameters that should always be given specific values are nHeight 
and IpszFacename. If nHeight and IpszFacename are not set by the application, the 
logical font that is created is device-dependent. 

When you finish with the CFont object created by the CreateFont function, first 
select the font out of the device context, then delete the CFont object. 

See Also: CFont::CreateFontIndirect, CFont::CreatePointFont, ::CreateFont, 
: :EnumFontFamilies, : :EnumFonts 

CFont: :CreateFontIndirect 
BOOL CreateFontIndirect(const LOGFONT* lpLogFont); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpLogFont Points to a LOGFONT structure that defines the characteristics of the 
logical font. 

Initializes a CFont object with the characteristics given in a LOGFONT structure 
pointed to by IpLogFont. The font can subsequently be selected as the current font for 
any device. 

This font has the characteristics specified in the LOGFONT structure. When the font 
is selected by using the CDC::SeiectObject member function, the GDI's font mapper 
attempts to match the logical font with an existing physical font. If it fails to find an 

733 



CFont: :CreatePointFont 

exact match for the logical font, it provides an alternative whose characteristics match 
as many of the requested characteristics as possible. 

When you finish with the CFont object created by the CreateFontIndirect function, 
first select the font out of the device context, then delete the CFont object. 

See Also: CFont::CreateFont, CFont::CreatePointFontIndirect, 
CDC: :SelectObject, CGdiObject: :DeleteObject, : :CreateFontIndirect 

CFont: :CreatePointFont 
BOOL CreatePointFont( int nPointSize, LPCTSTR IpszFaceName, CDC* pDC = NULL ); 

Return Value 
Nonzero if successful, otherwise O. 

Parameters 

Remarks 

nPointSize Requested font height in tenths of a point. (For instance, pass 120 to 
request a 12-point font.) 

IpszFaceName A CString or pointer to a null-terminated string that specifies the 
typeface name of the font. The length of this string must not exceed 30 characters. 
The Windows EnumFontFamilies function can be used to enumerate all currently 
available fonts. If IpszFaceName is NULL, the GDI uses a device-independent 
typeface. 

pDC Pointer to the CDC object to be used to convert the height in nPointSize to 
logical units. If NULL, a screen device context is used for the conversion. 

This function provides a simple way to create a font of a specified typeface and point 
size. It automatically converts the height in nPointSize to logical units using the CDC 
object pointed to by pDC. 

When you finish with the CFont object created by the CreatePointFont function, 
first select the font out of the device context, then delete the CFont object. 

See Also: CFont::CreatePointFontIndirect, CFont::CreateFont 

CFont: :CreatePointFontIndirect 
BOOL CreatePointFontIndirect( const LOGFONT* IpLogFont, CDC* pDC = NULL ); 

Return Value 
Nonzero if successful, otherwise O. 

Parameters 

734 

IpLogFont Points to a LOGFONT structure that defines the characteristics of the 
logical font. The IfHeight member of the LOGFONT structure is measured in 



Remarks 

tenths of a point rather than logical units. (For instance, set IfHeight to 120 to 
request a 12-point font.) 

pDC Pointer to the CDC object to be used to convert the height in IfHeight to 
logical units. If NULL, a screen device context is used for the conversion. 

This function is the same as CreateFontlndirect except that the IfHeight member of 
the LOGFONT is interpreted in tenths of a point rather than device units. This 
function automatically converts the height in IfHeight to logical units using the CDC 
object pointed to by pDC before passing the LOGFONT structure on to Windows. 

When you finish with the CFont object created by the CreatePointFontlndirect 
function, first select the font out of the device context, then delete the CFont object. 

See Also: CFont::CreatePointFont, CFont::CreateFontlndirect 

CFont: : FromHandle 
static CFont* PASCAL FromHandle( HFONT hFont); 

Return Value 
A pointer to a CFont object if successful; otherwise NULL. 

Parameters 

Remarks 

hFont An HFONT handle to a Windows font. 

Returns a pointer to a CFont object when given an HFONT handle to a Windows 
GDI font object. If a CFont object is not already attached to the handle, a temporary 
CFont object is created and attached. This temporary CFont object is valid only until 
the next time the application has idle time in its event loop, at which time all 
temporary graphic objects are deleted. Another way of saying this is that the 
temporary object is valid only during the processing of one window message. 

CFont::GetLogFont 
int GetLogFont( LOGFONT * pLogFont); 

Return Value 
Nonzero if the function succeeds, otherwise O. 

Parameters 

Remarks 

pLogFont Pointer to the LOGFONT structure to receive the font information. 

Call this function to retrieve a copy of the LOGFONT structure for Cfont. 

See Also: LOGFONT, ::GetObject 

CFont: :GetLogFont 

735 



CFont: :operator HFONT 

CFont::operator HFONT 
operator HFONT( ) const; 

Return Value 

Remarks 

736 

The handle of the Windows GDI font object attached to CFont if successful; 
otherwise NULL. 

Use this operator to get the Windows GDI handle of the font attached to the CFont 
object. 

Since this operator is automatically used for conversions from CFont to Fonts and 
Text, you can pass CFont objects to functions that expect HFONTs. 

For more information about using graphic objects, see "Graphic Objects" in the 
Win32 SDK documentation. 



CFontDialog 

[] 

The CFontDialog class allows you to incorporate a font-selection dialog box into 
your application. A CFontDialog object is a dialog box with a list of fonts that are 
currently installed in the system. The user can select a particular font from the list, 
and this selection is then reported back to the application. 

To construct a CFontDialog object, use the provided constructor or derive a new 
subclass and use your own custom constructor. 

Once a CFontDialog object has been constructed, you can use the m_cf structure to 
initialize the values or states of controls in the dialog box. The m_cf structure is of 
type CHOOSEFONT. For more information on this structure, see the Win32 SDK 
documentation. 

After initializing the dialog object's controls, call the DoModal member function to 
display the dialog box and allow the user to select a font. DoModal returns whether 
the user selected the OK (IDOK) or Cancel (IDCANCEL) button. 

If DoModal returns IDOK, you can use one of CFontDialog's member functions to 
retrieve the information input by the user. 

You can use the Windows CommDlgExtendedError function to determine whether 
an error occurred during initialization of the dialog box and to learn more about the 
error. For more information on this function, see the Win32 SDK documentation. 

CFontDialog relies on the COMMDLG.DLL file that ships with Windows versions 
3.1 and later. 

To customize the dialog box, derive a class from CFontDialog, provide a custom 
dialog template, and add a message-map to process the notification messages from the 
extended controls. Any unprocessed messages should be passed to the base class. 

Customizing the hook function is not required. 

For more information on using CFontDialog, see "Common Dialog Classes" in 
Visual C++ Programmer's Guide online. 

#include <afxdlgs.h> 

CFontDialog 

737 



CFontDialog: :CFontDialog 

CFontDialog Class Members 
Data Members 

Construction 

CFontDialog 

Operations 

DoModal 

GetCurrentFont 

GetFaceName 

GetStyleName 

GetSize 

GetColor 

GetWeight 

IsStrikeOut 

IsUnderline 

IsBold 

Isltalic 

A structure used to customize a CFontDialog object. 

Constructs a CFontDialog object. 

Displays the dialog and allows the user to make a selection. 

Retrieves the name of the currently selected font. 

Returns the face name of the selected font. 

Returns the style name of the selected font. 

Returns the point size of the selected font. 

Returns the color of the selected font. 

Returns the weight of the selected font. 

Determines whether the font is displayed with strikeout. 

Determines whether the font is underlined. 

Determines whether the font is bold. 

Determines whether the font is italic. 

Member Functions 
CFontDialog::CFontDialog 

CFontDialog( LPLOGFONT lplfInitial = NULL, 
... DWORD dwFlags = CF _EFFECTS I CF _SCREENFONTS, 
... CDC* pdcPrinter = NULL, CWnd* pParentWnd = NULL ); 

Parameters 

738 

lplfInitial A pointer to a LOGFONT data structure that allows you to set some of the 
font's characteristics. 

dwFlags Specifies one or more choose-font flags. One or more preset values can be 
combined using the bitwise OR operator. If you modify the ID_cf.Flags structure 
member, be sure to use a bitwise OR operator in your changes to keep the default 
behavior intact. For details on each of these flags, see the description of the 
CHOOSEFONT structure in the Win32 SDK documentation. 

pdc?rinter A pointer to a printer-device context. If supplied, this parameter points to 
a printer-device context for the printer on which the fonts are to be selected. 



CFontDialog: :GetColor 

Remarks 

pParentWnd A pointer to the font dialog box's parent or owner window. 

Constructs a CFontDialog object. Note that the constructor automatically fills in the 
members of the CHOOSEFONT structure. You should only change these if you want 
a font dialog different than the default. 

See Also: CFontDialog::DoModal 

CFontDialog: :DoModal 
virtual int DoModal(); 

Return Value 

Remarks 

IDOK or IDCANCEL if the function is successful; otherwise O. IDOK and 
IDCANCEL are constants that indicate whether the user selected the OK or Cancel 
button. 

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError 
function to determine whether an error occurred. 

Call this function to display the Windows common font dialog box and allow the user 
to choose a font. 

If you want to initialize the various font dialog controls by setting members of the 
m_cf structure, you should do this before calling DoModal, but after the dialog object 
is constructed. 

If DoModal returns IDOK, you can call other member functions to retrieve the 
settings or information input by the user into the dialog box. 

See Also: CDialog::DoModal, CFontDialog::CFontDialog 

CFontDialog: : GetColor 
COLORREF GetColor( ) const; 

Return Value 
The color of the selected font. 

Remarks 
Call this function to retrieve the selected font color. 

See Also: CFontDialog::GetCurrentFont 

739 



CFontDialog: : GetCurrentFont 

CFontDialog: : GetCurrentFont 
void GetCurrentFont( LPLOGFONT lplf); 

Parameters 

Remarks 

lplf A pointer to a LOGFONT structure. 

Call this function to assign the characteristics of the currently selected font to the 
members of a LOGFONT structure. Other CFontDialog member functions are 
provided to access individual characteristics of the current font. 

If this function is called during a call to DoModal, it returns the current selection at 
the time (what the user sees or has changed in the dialog). If this function is called 
after a call to DoModal (only if DoModal returns IDOK), it returns what the user 
actually selected. 

See Also: CFontDialog::GetFaceName, CFontDialog::GetStyleName 

CFontDialog: : GetFaceN arne 
CString GetFaceName() const; 

Return Value 
The face name of the font selected in the CFontDialog dialog box. 

Remarks 
Call this function to retrieve the face name of the selected font. 

See Also: CFontDialog: :GetCurrentFont, CFontDialog: : GetStyleName 

CFontDialog: :GetSize 
int GetSize( ) const; 

Return Value 
The font's size, in tenths of a point. 

Remarks 
Call this function to retrieve the size of the selected font. 

See Also: CFontDialog::GetWeight, CFontDialog::GetCurrentFont 

740 



CFontDialog::GetStyleName 
CString GetStyleName( ) const; 

Return Value 
The style name of the font. 

Remarks 
Call this function to retrieve the style name of the selected font. 

See Also: CFontDialog: :GetFaceName, CFontDialog: :GetCurrentFont 

CFontDialog: : GetWeight 
int GetWeight() const; 

Return Value 

Remarks 

The weight of the selected font. 

Call this function to retrieve the weight of the selected font. For more information on 
the weight of a font, see CFont::CreateFont. 

See Also: CFontDialog::GetCurrentFont, CFontDialog::IsBold 

CFontDialog: :Is~old 
BOOL IsBold( ) const; 

Return Value 

Remarks 

Nonzero if the selected font has the Bold characteristic enabled; otherwise O. 

Call this function to determine if the selected font is bold. 

See Also: CFontDialog::GetCurrentFont 

CFontDialog: : IsItalic 
BOOL Isltalic() const; 

Return Value 
Nonzero if the selected font has the Italic characteristic enabled; otherwise O. 

Remarks 
Call this function to determine if the selected font is italic. 

See Also: CFontDialog::GetCurrentFont 

CFontDialog: :IsItalic 

741 



CFontDialog: :IsStrikeOut 

CFontDialog: : IsStrikeOut 
BOOL IsStrikeOut( ) const; 

Return Value 

Remarks 

Nonzero if the selected font has the Strikeout characteristic enabled; otherwise O. 

Call this function to determine if the selected font is displayed with strikeout. 

See Also: CFontDialog::GetCurrentFont 

CFontDialog: :Is Underline 
BOOL IsUnderline( ) const; 

Return Value 
Nonzero if the selected font has the Underline characteristic enabled; otherwise O. 

Remarks 
Call this function to determine if the selected font is underlined. 

See Also: CFontDialog::GetCurrentFont 

Data Members 
CFontDialog: :m_cf 
Remarks 

742 

A structure whose members store the characteristics of the dialog object. After 
constructing a CFontDialog object, you can use m_cf to modify various aspects of 
the dialog box before calling the DoModal member function. For more information 
on this structure, see CHOOSEFONT in the Win32 SDK documentation. 



CFontHolder 
CFontHolder does not have a base class. 

The CFontHolder class, which encapsulates the functionality of a Windows font 
object and the IFont interface, is used to implement the stock Font property. 

Use this class to implement custom font properties for your control. For information 
on creating such properties, see the article "ActiveX Controls: Using Fonts in an 
ActiveX Control" in Visual C++ Programmer's Guide online. 

#include <afxctl.h> 

See Also: CPropExchange 

CFontHolder Class Members 
Data Members 

m_pFont 

Construction/Destruction 

CFontHolder 

Operations 

GetFontDispatch 

GetDisplayString 

GetFontHandle 

InitializeFont 

ReleaseFont 

Select 

SetFont 

A pointer to the CFontHolder object's IFont interface. 

Constructs a CFontHolder object. 

Returns the font's IDispatch interface. 

Retrieves the string displayed in a container's property browser. 

Returns a handle to a Windows font. 

Initializes a CFontHolder object. 

Disconnects the CFontHolder object from the IFont and 
IFontNotification interfaces. 

Selects a font resource into a device context. 

Connects the CFontHolder object to an IFont interface. 

Member Functions 
CFontHolder: :CFontHolder 

CFontHolder( LPPROPERTYNOTIFYSINK pNotify ); 

Parameters 
pNotify Pointer to the font's IPropertyNotifySink interface. 

CFontHolder 

743 



CFontHolder: :GetDisplayString 

Remarks 
Constructs a CFontHolder object. You must call InitiaIizeFont to initialize the 
resulting object before using it. 

See Also: CFontHolder: : InitiaIizeFont 

CFontHolder: : GetDisplayString 
BOOL GetDisplayString( CString& strValue ); 

Return Value 
Nonzero if the string is successfully retrieved; otherwise O. 

Parameters 
strValue Reference to the CString that is to hold the display string. 

Remarks 
Retrieves a string that can be displayed in a container's property browser. 

CFontHolder: : GetFontDispatch 
LPFONTDISP GetFontDispatch( ); 

Return Value 

Remarks 

A pointer to the CFontHolder object's IFontDisp interface. Note that the function 
that calls GetFontDispatch must call IUnknown::Release on this interface pointer 
when done with it. 

Call this function to retrieve a pointer to the font's dispatch interface. Call 
InitiaIizeFont before calling GetFontDispatch. 

See Also: CFontHolder: :InitializeFont 

CFontHolder::GetFontHandle 
HFONT GetFontHandle( ); 
HFONT GetFontHandle( long cyLogical, long cyHimetric ); 

Return Value 
A handle to the Font object; otherwise NULL. 

Parameters 
cyLogical Height, in logical units, of the rectangle in which the control is drawn. 

cyHimetric Height, in MM_HIMETRIC units, of the control. 

744 



CFontHolder: :ReleaseFont 

Remarks 
Call this function to get a handle to a Windows font. 

The ratio of cyLogicaZ and cyHimetric is used to calculate the proper display size, 
in logical units, for the font's point size expressed in MM_HIMETRIC units: 

Display size = (cyLogicaZ / cyHimetric) X font size 

The version with no parameters returns a handle to a font sized correctly for the 
screen. 

CFontHolder: : InitializeFont 
void InitializeFont( const FONTDESC FAR* pFontDesc = NULL, 

10+ LPDISPATCH pFontDispAmbient = NULL ); 

Parameters 

Remarks 

pFontDesc Pointer to a font description structure (FONTDESC) that specifies the 
font's characteristics. 

pFontDispAmbient Pointer to the container's ambient Font property. 

Initializes a CFontHolder object. 

If pFontDispAmbient is not NULL, the CFontHolder object is connected to a clone 
of the IFont interface used by the container's ambient Font property. 

If pFontDispAmbient is NULL, a new Font object is created either from the font 
description pointed to by pFolltDesc or, if pFolltDesc is NULL, from a default 
description. 

Call this function after constructing a CFontHolder object. 

See Also: CFontHolder::CFontHolder 

CFontHolder: :ReleaseFont 

Remarks 

void ReleaseFont( ); 

This function disconnects the CFontHolder object from its IFont interface. 

See Also: CFontHolder: :SetFont 

745 



CFontHolder: :Select 

CFontHolder: :Select 
CFont* Select( CDC* pDC, long cyLogical, long cyHimetric ); 

Return Value 
A pointer to the font that is being replaced. 

Parameters 

Remarks 

pDC Device context into which the font is selected. 

cyLogical Height, in logical units, of the rectangle in which the control is drawn. 

cyHimetric Height, in MM_HIMETRIC units, of the control. 

Call this function to select your control's font into the specified device context. 

See GetFontHandle for a discussion of the cyLogical and cyHimetric parameters. 

CFontHolder:: SetFont 
void SetFont( LPFONT pNewFont); 

Parameters 

Remarks 

pNewFont Pointer to the new IFont interface. 

Releases any existing font and connects the CFontHolder object to an IFont 
interface. 

See Also: CFontHolder: : ReleaseFont 

Data Members 
CFontHolder: :m_pFont 
Remarks 

746 

A pointer to the CFontHolder object's IFont interface. 

See Also: CFontHolder: :SetFont 



CFormView 

The CForm View class is the base class used for views containing controls. These 
controls are laid out based on a dialog-template resource. Use CFormView if you 
want form-based documents in your application. These views support scrolling, as 
needed, using the CScrollView functionality. 

Creating a view based on CForm View is similar to creating a dialog box. 

To use CFormView, take the following steps: 

1. Design a dialog template. 

Use the dialog editor to design the dialog box. Then, in the Styles and More Styles 
property pages, set the following properties: 

• In the Style box, select Child (WS_CHILD on). 

• In the Border box, select None (WS_BORDER off). 

• Clear the Visible check box (WS_ VISIBLE off). 

• Clear the Titlebar check box (WS_CAPTION off). 

These steps are necessary because a form view is not a true dialog box. For more 
information about creating a dialog-box resource, see "Dialog Editor" in Developer 
Studio User's Guide online. 

2. Create a view class. 

With your dialog template open, run Class Wizard and choose CForm View as the 
class type when you are filling in the Add Class dialog box. ClassWizard creates a 
CForm View-derived class and connects it to the dialog template you just designed. 
This connection is established in the constructor for your class; ClassWizard 

CFormView 

747 



CFormView 

748 

generates a call to the base-class constructor, CFormView::CFormView, and 
passes the resource ID of your dialog template. For example: 

CMyFormView::CMyFormView() 
: CFormView( CMyFormView::IDD ) 

II{{AFX_DATA_INIT( CMyFormView ) 
II NOTE: the ClassWizard will add member 
II initialization here 
IIJJAFX_DATA_INIT 

II Other construction code. such as data initialization 

Note If you choose not to use ClassWizard, you must define the appropriate ID you supply 
to the CFormView constructor (that is, CMyFormVi ew: : I DD is not predefined). ClassWizard 
declares I DD as an enum value in the class it creates for you. 

If you want to define member variables in your view class that correspond to the 
controls in your form view, use the Edit Variables button in the ClassWizard dialog 
box. This allows you to use the dialog data exchange (DDX) mechanism. If you 
want to define message handlers for control-notification messages, use the Add 
Function button in the ClassWizard dialog box. For more information see "Using 
ClassWizard" in the Visual C++ Programmer's Guide online. 

3. Override the OnUpdate member function. 

The OnUpdate member function is defined by CView and is called to update the 
form view's appearance. Override this function to update the member variables in 
your view class with the appropriate values from the current document. Then, if 
you are using DDX, use the UpdateData member function (defined by CWnd) 
with an argument of FALSE to update the controls in your form view. 

The OnInitialUpdate member function (also defined by CView) is called to 
perform one-time initialization of the view. CForm View overrides this function to 
use DDX to set the initial values of the controls you have mapped using 
ClassWizard. Override OnInitialUpdate if you want to perform custom 
initialization. 

4. Implement a member function to move data from your view to your document. 

This member function is typically a message handler for a control-notification 
message or for a menu command. If you are using DDX, call the UpdateData 
member function to update the member variables in your view class. Then move 
their values to the document associated with the form view. 

5. Override the OnPrint member function (optional). 

The OnPrint member function is defined by CView and prints the view. By 
default, printing and print preview are not supported by the CFormView class. 
To add printing support, override the OnPrint function in your derived class. 



See the MFC General sample VIEWEX for more information about how to add 
printing capabilities to a view derived from CFormView. 

6. Associate your view class with a document class and a frame-window class using 
a document template. 

Unlike ordinary views, form views do not require you to override the OnDraw 
member function defined by CView. This is because controls are able to paint 
themselves. Only if you want to customize the display of your form view (for 
example, to provide a background for your view) should you override OnDraw. If 
you do so, be careful that your updating does not conflict with the updating done by 
the controls. 

If your view contains controls that are derived from (or instances of) CSliderCtrl or 
CSpinButtonCtrl and you have message handlers for WM_HSCROLL and 
WM_ VSCROLL, you should write code that calls the proper routines. The code 
example below calls CWnd::OnHScroll if a WM_HSCROLL message is sent by 
either a spin button or slider control. 

void CMyFormView::OnHScroll( UINT nSBCode, UINT nPos, CScrollBar* pScrollBar 
{ 

if ( pScrollBar->IsKindOf( RUNTIME_CLASS( CScrollBar ) )) 
{ 

CFormView::OnHScroll( nSBCode, nPos, pScrollBar ): 
} 

else if ( pScrollBar->IsKindOf( RUNTIME_CLASS( CSliderCtrl ) )) 
{ 

CWnd::OnHScroll( nSBCode, nPos, pScrollBar ): 
} 

else if ( pScrollBar->IsKindOf( RUNTIME_CLASS( CSpinButtonCtrl ) )) 
{ 

CWnd::OnHScroll( nSBCode, nPos, pScrollBar ); 

If the view becomes smaller than the dialog template, scroll bars appear automatically. 
Views derived from CFormView support only the MM_TEXT mapping mode. 

If you are not using DDX, use the CWnd dialog functions to move data between the 
member variables in your view class and the controls in your form view. 

For more information about DDX, see "Defining Member Variables for DDX" in the 
Visual C++ Programmer's Guide online. For more information on CFormView, see 
"Derived View Classes" and "DocumentlView Architecture Topics" also in the 
Visual C++ Programmer's Guide online. 

#include <afxext.h> 

See Also: CDialog, CScrollView, CView::OnUpdate, CView::OnInitiaIUpdate, 
CView: :OnPrint, CWnd:: UpdateData, CScrollView: : ResizeParentToFit 

CFormView 

749 



CFonn View: :CForm View 

CForm View Class Members 
Construction 

CFormView Constructs a CForm View object. 

Member Functions 
CForm View: :CForm View 

CForm View( LPCTSTR IpszTemplateName ); 
CFormView( UINT nIDTemplate); 

Parameters 

Remarks 

750 

IpszTemplateName Contains a null-terminated string that is the name of a 
dialog-template resource. 

nIDTemplate Contains the ID number of a dialog-template resource. 

When you create an object of a type derived from CFormView, invoke one of the 
constructors to create the view object and identify the dialog resource on which the 
view is based. You can identify the resource either by name (pass a string as the 
argument to the constructor) or by its ID (pass an unsigned integer as the argument). 

The form-view window and child controls are not created until CWnd::Create is 
called. CWnd::Create is called by the framework as part of the document and view 
creation process, which is driven by the document template. 

Note Your derived class must supply its own constructor. In the constructor, invoke the 
constructor, CFormView::CFormView, with the resource name or 10 as an argument as shown 
in the preceding class overview. 

See Also: CWnd::Create 



CFrameWnd 

CFrameWnd 

The CFrameWnd class provides the functionality of a Windows single document 
interface (SDI) overlapped or pop-up frame window, along with members for 
managing the window. 

To create a useful frame window for your application, derive a class from 
CFrameWnd. Add member variables to the derived class to store data specific to 
your application. Implement message-handler member functions and a message 
map in the derived class to specify what happens when messages are directed to the 
window. 

There are three ways to construct a frame window: 

o Directly construct it using Create. 

• Directly construct it using LoadFrame. 

• Indirectly construct it using a document template. 

Before you call either Create or LoadFrame, you must construct the frame-window 
object on the heap using the C++ new operator. Before calling Create, you can also 
register a window class with the AfxRegisterWndClass global function to set the 
icon and class styles for the frame. 

Use the Create member function to pass the frame's creation parameters as immediate 
arguments. 

LoadFrame requires fewer arguments than Create, and instead retrieves most of its 
default values from resources, including the frame's caption, icon, accelerator table, 
and menu. To be accessible by LoadFrame, all these resources must have the same 
resource ID (for example, IDR_MAINFRAME). 

When a CFrame Wnd object contains views and documents, they are created 
indirectly by the framework instead of directly by the programmer. The 
CDocTemplate object orchestrates the creation of the frame, the creation of the 
containing views, and the connection of the views to the appropriate document. The 
parameters of the CDocTemplate constructor specify the CRuntimeClass of the three 
classes involved (document, frame, and view). A CRuntimeClass object is used by 
the framework to dynamically create new frames when specified by the user (for 

CFrameWnd 

751 



CFrameWnd 

752 

example, by using the File New command or the multiple document interface (MDI) 
Window New command). 

A frame-window class derived from CFrameWnd must be declared with 
DECLARE_DYNCREATE in order for the above RUNTIME_CLASS mechanism 
to work correctly. 

A CFrameWnd contains default implementations to perfonn the following functions 
of a main window in a typical application for Windows: 

• A CFrame Wnd frame window keeps track of a currently active view that is 
independent of the Windows active window or the current input focus. When the 
frame is reactivated, the active view is notified by calling 
CView: :OnActivate View. 

• Command messages and many common frame-notification messages, including 
those handled by the OnSetFocus, OnHScroll, and On VScroll functions of 
CWnd, are delegated by a CFrame Wnd frame window to the currently active 
view. 

• The currently active view (or currently active MDI child frame window in the case 
of an MDI frame) can detennine the caption of the frame window. This feature can 
be disabled by turning off the FWS_ADDTOTITLE style bit of the frame 
window. 

• A CFrame Wnd frame window manages the positioning of the control bars, views, 
and other child windows inside the frame window's client area. A frame window 
also does idle-time updating of toolbar and other control-bar buttons. A 
CFrameWnd frame window also has default implementations of commands for 
toggling on and off the toolbar and status bar. 

• A CFrameWnd frame window manages the main menu bar. When a pop-up menu 
is displayed, the frame window uses the UPDATE_COMMAND_UI mechanism 
to detennine which menu items should be enabled, disabled, or checked. When the 
user selects a menu item, the frame window updates the status bar with the message 
string for that command. 

• A CFrameWnd frame window has an optional accelerator table that automatically 
translates keyboard accelerators. 

• A CFrameWnd frame window has an optional help ID set with LoadFrame that 
is used for context-sensitive help. A frame window is the main orchestrator of 
semimodal states such as context-sensitive help (SHIFf+Fl) and print-preview 
modes. 

• A CFrameWnd frame window will open a file dragged from the File Manager and 
dropped on the frame window. If a file extension is registered and associated with 
the application, the frame window responds to the dynamic data exchange (DDE) 
open request that occurs when the user opens a data file in the File Manager or 
when the ShellExecute Windows function is called. 



• If the frame window is the main application window (that is, 
CWinThread: :m_pMain Wnd), when the user closes the application, the frame 
window prompts the user to save any modified documents (for OnClose and 
OnQuery EndSession). 

• If the frame window is the main application window, the frame window is the 
context for running WinHelp. Closing the frame window will shut down 
WINHELP.EXE if it was launched for help for this application. 

Do not use the C++ delete operator to destroy a frame window. Use 
CWnd::DestroyWindow instead. The CFrameWnd implementation of 
PostNcDestroy will delete the C++ object when the window is destroyed. When the 
user closes the frame window, the default OnClose handler will call DestroyWindow. 

For more information on CFrameWnd, see "Frame Window Topics" in Visual C++ 
Programmer s Guide online. 

#include <afxwin.h> 

See Also: CWnd, CMDIFrameWnd, CMDIChildWnd, CView, CDocTemplate, 
CRuntimeClass 

CFrameWnd Class Members 
Data Members 

m_bAutoMenuEnable 

rectDefault 

Construction 

CFrameWnd 

Initialization 

Create 

LoadFrame 

LoadAccelTable 

LoadBarState 

SaveBarState 

ShowControlBar 

SetDockState 

GetDockState 

Controls automatic enable and disable functionality for menu items. 

Pass this static CRect as a parameter when creating a CFrameWnd 
object to allow Windows to choose the window's initial size and 
position. 

Constructs a CFrameWnd object. 

Call to create and initialize the Windows frame window associated 
with the CFrameWnd object. 

Call to dynamically create a frame window from resource 
information. 

Call to load an accelerator table. 

Call to restore control bar settings. 

Call to save control bar settings. 

Call to show the control bar. 

Call to dock the frame window in the main window. 

Retrieves the dock state of a frame window. 

CFrameWnd 

753 



CFrame W nd: :ActivateFrame 

Operations 

ActivateFrame 

InitialUpdateFrame 

GetActiveFrame 

SetActive View 

GetActive View 

CreateView 

GetActiveDocument 

GetControlBar 

GetMessageString 

IsTracking 

SetMessageText 

EnableDocking 

DockControlBar 

FloatControlBar 

BeginModalState 

EndModalState 

InModalState 

ShowOwnedWindows 

RecalcLayout 

Overridables 

Makes the frame visible and available to the user. 

Causes the OnlnitialUpdate member function belonging to all 
views in the frame window to be called. 

Returns the active CFrameWnd object. 

Sets the active CView object. 

Returns the active CView object. 

Creates a view within a frame that is not derived from CView. 

Returns the active CDocument object. 

Retrieves the control bar. 

Retrieves message corresponding to a command ID. 

Determines if splitter bar is currently being moved. 

Sets the text of a standard status bar. 

Allows a control bar to be docked. 

Docks a control bar. 

Floats a control bar. 

Sets the frame window to modal. 

Ends the frame window's modal state. Enables all of the windows 
disabled by BeginModalState. 

Returns a value indicating whether or not a frame window is in a 
modal state. 

Shows all windows that are descendants of the CFrameWnd object. 

Repositions the control bars of the CFrameWnd object. 

On Create Client Creates a client window for the frame. 

OnSetPreviewMode Sets the application's main frame window into and out of 
print-preview mode. 

GetMessageBar Returns a pointer to the status bar belonging to the frame window. 

NegotiateBorderSpace Negotiates border space in the frame window. 

Command Handlers 

OnContextHelp Handles SHIff +Fl Help for in-place items. 

Member Functions 
CFrame Wnd: : ActivateFrame 

virtual void ActivateFrame( int nCmdShow = - 1 ); 

754 



Parameters 

Remarks 

nCmdSlzow Specifies the parameter to pass to CWnd::ShowWindow. By default, 
the frame is shown and correctly restored. 

Call this member function to activate and restore the frame window so that it is visible 
and available to the user. This member function is usually called after a non-user 
interface event such as a DDE, OLE, or other event that may show the frame window 
or its contents to the user. 

The default implementation activates the frame and brings it to the top of the Z-order 
and, if necessary, carries out the same steps for the application's main frame window. 

Override this member function to change how a frame is activated. For example, you 
can force MDI child windows to be maximized. Add the appropriate functionality, 
then call the base class version with an explicit nCmdShow. 

CFrame W nd: :BeginModalState 
virtual void BeginModalState( ); 

Remarks 
Call this member function to make a frame window modal. 

CFrame Wnd: :CFrame Wnd 

Remarks 

CFrameWnd( ); 

Constructs a CFrameWnd object, but does not create the visible frame window. 
Call Create to create the visible window. 

See Also: CFrameWnd::Create, CFrameWnd::LoadFrame 

CFrameWnd::Create 
BOOL Create( LPCTSTR lpszClassName, LPCTSTR lpszWindowName, 

... DWORD dwStyle = WS_OVERLAPPEDWINDOW, 

Return Value 

... const RECT& reet = rectDefault, CWnd* pParentWnd = NULL, 

... LPCTSTR lpszMenuName = NULL, DWORD dwExStyle = 0, 

... CCreateContext* pContext = NULL ); 

Nonzero if initialization is successful; otherwise O. 

CFrameWnd::Create 

755 



CFrame Wnd: :Create View 

Parameters 

Remarks 

IpszClassName Points to a null-terminated character string that names the Windows 
class. The class name can be any name registered with the AfxRegisterWndClass 
global function or the RegisterClass Windows function. If NULL, uses the 
predefined default CFrame Wnd attributes. 

IpszWindowName Points to a null-terminated character string that represents the 
window name. Used as text for the title bar. 

dwStyle Specifies the window style attributes. Include the FWS_ADDTOTITLE 
style if you want the title bar to automatically display the name of the document 
represented in the window. 

reet Specifies the size and position of the window. The rectDefault value allows 
Windows to specify the size and position of the new window. 

pParentWnd Specifies the parent window of this frame window. This parameter 
should be NULL for top-level frame windows. 

IpszMenuName Identifies the name of the menu resource to be used with the 
window. Use MAKEINTRESOURCE if the menu has an integer ID instead of a 
string. This parameter can be NULL. 

dwExStyle Specifies the window extended style attributes. 

pContext Specifies a pointer to a CCreateContext structure. This parameter can be 
NULL. 

Construct a CFrameWnd object in two steps. First invoke the constructor, which 
constructs the CFrameWnd object, then call Create, which creates the Windows 
frame window and attaches it to the CFrameWnd object. Create initializes the 
window's class name and window name and registers default values for its style, 
parent, and associated menu. 

Use LoadFrame rather than Create to load the frame window from a resource 
instead of specifying its arguments. 

See Also: CFrameWnd::CFrameWnd, CFrameWnd::LoadFrame, 
CCreateContext, CWnd: :Create, CWnd: :PreCreate Window 

CFrame Wnd: : Create View 
CWnd* CreateView( CCreateContext* pContext, 

... UINT nID = AFX_IDW_PANE_FIRST); 

Return Value 
Pointer to a CWnd object if successful; otherwise NULL. 

756 



CFrameWnd::DockControlBar 

Parameters 

Remarks 

pContext Specifies the type of view and document. 

nID The ID number of a view. 

Call CreateView to create a view within a frame. Use this member function to create 
"views" that are not CView-derived within a frame. After calling CreateView, you 
must manually set the view to active and set it to be visible; these tasks are not 
automatically performed by CreateView. 

Note The MFC Advanced Concepts sample COLLECT uses CreateView to get correct 3D 
effects in Windows 95. 

CFrame W nd: :DockControlBar 
void DockControlBar( CControlBar * pBar, UINT nDockBarID = 0, 

... LPCRECT IpRect = NULL ); 

Parameters 

Remarks 

pBar Points to the control bar to be docked. 

nDockBarID Determines which sides of the frame window to consider for docking. 
It can be 0, or one or more of the following: 

• AFX_IDW _DOCKBAR_ TOP Dock to the top side of the frame window. 

• AFX_IDW _DOCKBAR_BOTTOM Dock to the bottom side of the frame 
window. 

• AFX_IDW _DOCKBAR_LEFT Dock to the left side of the frame window. 

• AFX_IDW _DOCKBAR_RIGHT Dock to the right side of the frame 
window. 

If 0, the control bar can be docked to any side enabled for docking in the 
destination frame window. 

IpRect Determines, in screen coordinates, where the control bar will be docked in the 
nonc1ient area of the destination frame window. 

Causes a control bar to be docked to the frame window. The control bar will be 
docked to one of the sides of the frame window specified in the calls to both 
CControIBar::EnableDocking and CFrameWnd::EnableDocking. The side chosen 
is determined by nDockBarID. 

See Also: CFrame Wnd: :FloatControlBar 

757 



CFrame Wnd: :EnableDocking 

CFrame W nd: : EnableDocking 
void EnableDocking( DWORD dwDockStyle ); 

Parameters 

Remarks 

dwDockStyle Specifies which sides of the frame window can serve as docking sites 
for control bars. It can be one or more of the following: 

• CBRS_ALIGN_TOP Allows docking at the top of the client area. 

• CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area. 

• CBRS_ALIGN_LEFT Allows docking on the left side of the client area. 

• CBRS_ALIGN_RIGHT Allows docking on the right side of the client area. 

• CBRS_ALIGN_ANY Allows docking on any side of the client area. 

Call this function to enable dockable control bars in a frame window. By default, 
control bars will be docked to a side of the frame window in the following order: 
top, bottom, left, right. 

See Also: CControlBar: :EnableDocking, CFrame Wnd: :DockControIBar, 
CFrame Wnd: :FloatControlBar 

CFrame Wnd: : EndModalState 

Remarks 

virtual void EndModaIState(); 

Call this member function to change a frame window from modal to modeless. 
EndModalState enables all of the windows disabled by BeginModalState. 

CFrame Wnd: :FloatControlBar 
CFrameWnd* FloatControlBar( CControlBar * pBar, CPoint point, 

~ DWORD dwStyle = CBRS_ALIGN_TOP ); 

Return Value 
Pointer to the current frame window. 

Parameters 

758 

pBar Points to the control bar to be floated. 

point The location, in screen coordinates, where the top left comer of the control bar 
will be placed. 



CFrame W nd: : GetActiveFrame 

Remarks 

dwStyle Specifies whether to align the control bar horizontally or vertically within its 
new frame window. It can be anyone of the following: 

• CBRS_ALIGN_TOP Orients the control bar vertically. 

• CBRS_ALIGN_BOTTOM Orients the control bar vertically. 

• CBRS_ALIGN_LEFT Orients the control bar horizontally. 

• CBRS_ALIGN_RIGHT Orients the control bar horizontally. 

If styles are passed specifying both horizontal and vertical orientation, the toolbar 
will be oriented horizontally. 

Call this function to cause a control bar to not be docked to the frame window. 
Typically, this is done at application startup when the program is restoring settings 
from the previous execution. 

This function is called by the framework when the user causes a drop operation by 
releasing the left mouse button while dragging the control bar over a location that is 
not available for docking. 

See Also: CFrameWnd::DockControIBar 

CFrame W nd: : GetActi veDocument 
virtual CDocument* GetActiveDocument(); 

Return Value 

Remarks 

A pointer to the current CDocument. If there is no current document, returns NULL. 

Call this member function to obtain a pointer to the current CDocument attached to 
the current active view. 

See Also: CFrame Wnd: : GetActive View 

CFrame W nd: : GetActi veFrame 
virtual CFrameWnd* GetActiveFrame(); 

Return Value 

Remarks 

A pointer to the active MDI child window. If the application is an SDI application, or 
the MDI frame window has no active document, the implicit this pointer will be 
returned. 

Call this member function to obtain a pointer to the active multiple document interface 
(MDI) child window of an MDI frame window. 

759 



CFrame Wnd: : GetActive View 

If there is no active MDI child or the application is a single document interface (SDI), 
the implicit this pointer is returned. 

See Also: CFrameWnd::GetActiveView, CFrameWnd::GetActiveDocument, 
CMDIFrameWnd 

CFrameWnd::GetActiveView 
CView* GetActive View( ) const; 

Return Value 

Remarks 

A pointer to the current CView. If there is no current view, returns NULL. 

Call this member function to obtain a pointer to the active view (if any) attached 
to a frame window (CFrameWnd). 

This function returns NULL when called for an MDI main frame window 
(CMDIFrameWnd). In an MDI application, the MDI main frame window does 
not have a view associated with it. Instead, each individual child window 
(CMDIChildWnd) has one or more associated views. The active view in an MDI 
application can be obtained by first finding the active MDI child window and then 
finding the active view for that child window. The active MDI child window can be 
found by calling the function MDIGetActive or GetActiveFrame as demonstrated 
in the following: 

CMOlFrameWnd *pFrame = 
(CMOlFrameWnd*)AfxGetApp()->m_pMainWnd; 

II Get the active MOl child window. 
CMOlChildWnd *pChild = 

(CMOlChildWnd *) pFrame->GetActiveFrame(); 

II or CMOlChildWnd *pChild = pFrame->MOlGetActive(); 

II Get the active view attached to the active MOl child 
II window. 
CMyView *pView = (CMyView *) pChild->GetActiveView(); 

See Also: CFrame Wnd: :SetActive View, CFrame Wnd: : GetActiveDocument 

CFrame Wnd: : GetControlBar 
CControlBar* GetControlBar( UINT nID ); 

Return Value 
A pointer to the control bar that is associated with the ID. 

Parameters 
nID The ID number of a control bar. 

760 



CFrame W nd: :GetMessageString 

Remarks 
Call GetControlBar to gain access to the control bar that is associated with the ID. 
GetControlBar will return the control bar even if it is floating and thus is not 
currently a child window of the frame. 

CFrame W nd: : GetDockState 
void GetDockState( CDockState& state) const; 

Parameters 

Remarks 

state Contains the current state of the frame window's control bars upon return. 

Call this member function to store state information about the frame window's control 
bars in a CDockState object. You can then write the contents of CDockState to 
storage using CDockState: :SaveState or Serialize. If you later want to restore the 
control bars to a previous state, load the state with CDockState: :LoadState or 
Serialize, then call SetDockState to apply the previous state to the frame window's 
control bars. 

See Also: CFrameWnd::SetDockState, CDockState, CDockState::SaveState, 
CObject: :Serialize 

CFrame W nd: : GetMessageB ar 
virtual CWnd* GetMessageBar(); 

Return Value 
Pointer to the status-bar window. 

Remarks 
Call this member function to get a pointer to the status bar. 

CFrame W nd: : GetMessageString 
virtual void GetMessageString( UINT nID, CString& rMessage ) const; 

Parameters 

Remarks 

nID Resource ID of the desired message. 

rMessage CString object into which to place the message. 

Override this function to provide custom strings for command IDs. The default 
implementation simply loads the string specified by nID from the resource file. This 

761 



CFrame W nd: :InitialU pdateFrame 

function is called by the framework when the message string in the status bar needs 
updating. 

See Also: CFrameWnd::SetMessageText 

CFrame Wnd: : InitialUpdateFrame 
void InitialUpdateFrame( CDocument* pDoc, BOOL bMakeVisible); 

Parameters 

Remarks 

pDoc Points to the document to which the frame window is associated. Can be 
NULL. 

bMakeVisible If TRUE, indicates that the frame should become visible and active. 
If FALSE, no descendants are made visible. 

Call IntitialUpdateFrame after creating a new frame with Create. This causes all 
views in that frame window to receive their OnInitialUpdate calls. 

Also, if there was not previously an active view, the primary view of the frame 
window is made active. The primary view is a view with a child ID of 
AFX_IDW _PANE_FIRST. Finally, the frame window is made visible if 
bMake Visible is nonzero. If bMake Visible is 0, the current focus and visible state of 
the frame window will remain unchanged. It is not necessary to call this function 
when using the framework's implementation of File New and File Open. 

See Also: CView::OnInitiaIUpdate, CFrameWnd::SetActiveView, 
CDocTemplate: :CreateNewFrame 

CFrame Wnd: : InModalState 
BOOL InModalState( ) const; 

Return Value 
Nonzero if yes; otherwise 0. 

Remarks 
Call this member function to check if a frame window is modal or modeless. 

CFrame W nd: : IsTracking 
BOOL IsTracking( ) const; 

Return Value 
Nonzero if a splitter operation is in progress; otherwise 0. 

762 



CFrameWnd::LoadBarState 

Remarks 
Call this member function to determine if the splitter bar in the window is currently 
being moved. 

CFrame W nd: : LoadAccelTable 
BOOL LoadAccelTable( LPCTSTR IpszResourceName); 

Return Value 
Nonzero if the accelerator table was successfully loaded; otherwise O. 

Parameters 

Remarks 

IpszResourceName Identifies the name of the accelerator resource. Use 
MAKEINTRESOURCE if the resource is identified with an integer ID. 

Call to load the specified accelerator table. Only one table can be loaded at a time. 

Accelerator tables loaded from resources are freed automatically when the application 
terminates. 

If you call LoadFrame to create the frame window, the framework loads an 
accelerator table along with the menu and icon resources, and a subsequent call to this 
member function is then unnecessary. 

See Also: CFrame Wnd: :LoadFrame, : :LoadAccelerators 

CFrame Wnd: :LoadBarState 
void LoadBarState( LPCTSTR IpszProfileName ); 

Parameters 

Remarks 

IpszProfileName Name of a section in the initialization file or a key in the Windows 
registry where state information is stored. 

Call this function to restore the settings of each control bar owned by the frame 
window. This information is written to the initialization file using SaveBarState. 
Information restored includes visibility, horizontal/vertical orientation, docking state, 
and control-bar position. 

See Also: CFrameWnd::SaveBarState, CWinApp::SetRegistryKey, 
CWinApp::m_pszProfileName 

763 



CFrame Wnd: :LoadFrame 

CFrame Wnd: : LoadFrame 
virtual BOOL LoadFrame( UINT nIDResource, 

~ DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW I FWS_ADDTOTITLE, 
~ CWnd* pParentWnd = NULL, CCreateContext* pContext = NULL); 

Parameters 

Remarks 

nIDResource The ID of shared resources associated with the frame window. 

dwDefaultStyle The frame's style. Include the FWS_ADDTOTITLE style if you 
want the title bar to automatically display the name of the document represented in 
the window. 

pParentWnd A pointer to the frame's parent. 

pContext A pointer to a CCreateContext structure. This parameter can be NULL. 

Construct a CFrameWnd object in two steps. First invoke the constructor, which 
constructs the CFrameWnd object, then call LoadFrame, which loads the Windows 
frame window and associated resources and attaches the frame window to the 
CFrameWnd object. The nIDResource parameter specifies the menu, the accelerator 
table, the icon, and the string resource of the title for the frame window. 

Use the Create member function rather than LoadFrame when you want to specify 
all of the frame window's creation parameters. 

The framework calls LoadFrame when it creates a frame window using a document 
template object. 

The framework uses the pContext argument to specify the objects to be connected to 
the frame window, including any contained view objects. You can set the pContext 
argument to NULL when you call LoadFrame. 

See Also: CDocTemplate, CFrameWnd::Create, CFrameWnd::CFrameWnd, 
CWnd: :PreCreate Window 

CFrame Wnd: :NegotiateBorderSpace 
virtual BOOL NegotiateBorderSpace( UINT nBorderCmd, LPRECT lpRectBorder ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
nBorderCmd Contains one of the following values from the enum BorderCmd: 

• borderGet = 1 

• borderRequest = 2 

• borderSet = 3 

764 



CFrame Wnd: :OnCreateClient 

Remarks 

IpReetBorder Pointer to a RECT structure or a CRect object that specifies the 
coordinates of the border. 

Call this member function to negotiate border space in a frame window during OLE 
inplace activation. This member function is the CFrameWnd implementation of OLE 
border space negotiation. 

See Also: IOlelnPlaceUIWindow 

CFrame Wnd: :OnContextHelp 

Remarks 

afx_msg void OnContextHelp( ); 

To enable context-sensitive help, you must add an 

ON_COMMAND( ID_CONTEXT_HELP, OnContextHelp 

statement to your CFrameWnd class message map and also add an accelerator-table 
entry, typically SHIFf +Fl, to enable this member function. 

If your application is an OLE Container, OnContextHelp puts all in-place items 
contained within the frame window object into Help mode. The cursor changes to an 
arrow and a question mark, and the user can then move the mouse pointer and press 
the left mouse button to select a dialog box, window, menu, or command button. This 
member function calls the Windows function WinHelp with the Help context of the 
object under the cursor. 

See Also: CWinApp::OnHelp, CWinApp::WinHelp 

CFrame Wnd: :OnCreateClient 
virtual BOOL OnCreateClient( LPCREATESTRUCT [pes, CCreateContext* pContext ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

[pes A pointer to a Windows CREATESTRUCT structure. 

pContext A pointer to a CCreateContext structure. 

Called by the framework during the execution of OnCreate. Never call this function. 

The default implementation of this function creates a CView object from the 
information provided in pContext, if possible. 

765 



CFrame Wnd: :OnSetPreviewMode 

Override this function to override values passed in the CCreateContext object or to 
change the way controls in the main client area of the frame window are created. The 
CCreateContext members you can override are described in the CCreateContext 
class. 

Note Do not replace values passed in the CREATESTRUCT structure. They are for 
informational use only. If you want to override the initial window rectangle, for example, override 
the CWnd member function PreCreateWindow. 

CFrame W nd: : OnSetPreview Mode 
virtual void OnSetPreviewMode( BOOL bPreview, CPrintPreviewState* pModeStuJf); 

Parameters 

Remarks 

bPreview Specifies whether or not to place the application in print-preview mode. 
Set to TRUE to place in print preview, FALSE to cancel preview mode. 

pModeStuJf A pointer to a CPrintPreviewState structure. 

Call this member function to set the application's main frame window into and out of 
print-preview mode. 

The default implementation disables all standard toolbars and hides the main menu 
and the main client window. This turns MDI frame windows into temporary SDI 
frame windows. 

Override this member function to customize the hiding and showing of control bars 
and other frame window parts during print preview. Call the base class 
implementation from within the overridden version. 

CFrame W nd: : RecalcLayout 
virtual void RecalcLayout( BOOL bNotify = TRUE ); 

Parameters 

Remarks 

766 

bNotify Determines whether the active in-place item for the frame window receives 
notification of the layout change. If TRUE, the item is notified; otherwise FALSE. 

Called by the framework when the standard control bars are toggled on or off or when 
the frame window is resized. The default implementation of this member function 
calls the CWnd member function RepositionBars to reposition all the control bars in 
the frame as well as in the main client window (usually a CView or MDICLIENT). 



CFrame W nd: :SetDockState 

Override this member function to control the appearance and behavior of control bars 
after the layout of the frame window has changed. For example, call it when you turn 
control bars on or off or add another control bar. 

See Also: CWnd: :RepositionBars 

CFrame Wnd: :SaveBarState 
void SaveBarState( LPCTSTR lpszProfileNa11le ) const; 

Parameters 

Remarks 

lpszProfileName Name of a section in the initialization file or a key in the Windows 
registry where state information is stored. 

Call this function to store information about each control bar owned by the frame 
window. This information can be read from the initialization file using LoadBarState. 
Information stored includes visibility, horizontal/vertical orientation, docking state, 
and control bar position. 

See Also: CFrameWnd::LoadBarState, CWinApp::SetRegistryKey, 
CWinApp: :m_pszProfileName 

CFrame Wnd: :SetActive View 
void SetActiveView( CView* pViewNew, BOOL bNotify = TRUE); 

Parameters 

Remarks 

p ViewNew Specifies a pointer to a CView object, or NULL for no active view. 

bNotify Specifies whether the view is to be notified of activation. If TRUE, 
OnActivateView is called for the new view; if FALSE, it is not. 

Call this member function to set the active view. The framework will call this function 
automatically as the user changes the focus to a view within the frame window. You 
can explicitly call SetActiveView to change the focus to the specified view. 

See Also: CFrameWnd::GetActiveView, CView::OnActivateView, 
CFrame Wnd: : GetActiveDocument 

CFrame W nd: : SetDockState 
void SetDockState( const CDockState& state); 

Parameters 
state Apply the stored state to the frame window's control bars. 

767 



CFrame Wnd: :SetMessageText 

Remarks 
Call this member function to apply state information stored in a CDockState object 
to the frame window's control bars. To restore a previous state of the control bars, 
you can load the stored state with CDockState: :LoadState or Serialize, then use 
SetDockState to apply it to the frame window's control bars. The previous state is 
stored in the CDockState object with GetDockState 

See Also: CFrame Wnd: :GetDockState, CDockState, CDockState: :LoadState, 
CObject: : Serialize 

CFrame W nd: : SetMessageText 
void SetMessageText( LPCTSTR IpszText); 
void SetMessageText( UINT nID); 

Parameters 

Remarks 

lpszText Points to the string to be placed on the status bar. 

nID String resource ID of the string to be placed on the status bar. 

Call this function to place a string in the status-bar pane that has an ID of O. This is 
typically the leftmost, and longest, pane of the status bar. 

See Also: CStatusBar 

CFrame W nd: : ShowControlB ar 
void ShowControlBar( CControlBar* pBar, BOOL bShow, BOOL bDelay ); 

Parameters 

Remarks 

pBar Pointer to the control bar to be shown or hidden. 

bShow If TRUE, specifies that the control bar is to be shown. If FALSE, specifies 
that the control bar is to be hidden. 

bDelay If TRUE, delay showing the control bar. If FALSE, show the control bar 
immediately. 

Call this member function to show or hide the control bar. 

CFrame W nd:: ShowOwnedWindows 
void ShowOwnedWindows( BOOL bShow ); 

Parameters 
bShow Specifies whether the owned windows are to be shown or hidden. 

768 



Remarks 
Call this member function to show all windows that are descendants of the 
CFrameWnd object. 

Data Members 
CFrame Wnd: :m_bAutoMenuEnable 
Remarks 

When this data member is enabled (which is the default), menu items that do not 
have ON_UPDATE_COMMAND_UI or ON_COMMAND handlers will be 
automatically disabled when the user pulls down a menu. 

Menu items that have an ON_COMMAND handler but no 
ON_UPDATE_COMMAND_UI handler will be automatically enabled. 

When this data member is set, menu items are automatically enabled in the same 
way that toolbar buttons are enabled. 

This data member simplifies the implementation of optional commands based 
on the current selection and reduces the need for an application to write 
ON_UPDATE_COMMAND_UI handlers for enabling and disabling 
menu items. 

See Also: CCmdUI, CCmdTarget 

CFrame W nd: :rectDefault 
Remarks 

Pass this static CRect as a parameter when creating a window to allow Windows 
to choose the window's initial size and position. 

CFrame Wnd: :rectDefault 

769 



CFtpConnection 

CFtpConnection 

CFtpConnection 

The MFC class CFtpConnection both manages your FTP connection to an Internet 
server and allows direct manipulation of directories and files on that server. FTP is 
one of the three Internet services recognized by the MFC WinInet classes. 

To communicate with an FTP Internet server, you must first create an instance of 
ClnternetSession, and then create a CFtpConnection object. You never create a 
CFtpConnection object directly; rather, call ClnternetSession::GetFtpConnection, 
which creates the CFtpConnection object and returns a pointer to it. 

To learn more about how CFtpConnection works with the other MFC Internet 
classes, see the article "Internet Programming with WinInet" in Visual C++ 
Programmer's Guide online. For more information about communicating with the the 
other two supported services, HTTP and gopher, see the classes CHttpConnection 
and CGopherConnection. 

#include <afxinet.h> 

See Also: ClnternetConnection, ClnternetSession 

CFtpConnection Class Members 

770 

Construction 

CFtpConnection 

Operations 

SetCurrentDirectory 

GetCurrentDirectory 

GetCurrentDirectory AsURL 

RemoveDirectory 

CreateDirectory 

Rename 

Remove 

PutFile 

GetFile 

OpenFile 

Close 

Constructs a CFtpConnection object. 

Sets the current FrP directory. 

Gets the current directory for this connection. 

Gets the current directory for this connection as a URL. 

Removes the specified directory from the server. 

Creates a directory on the server. 

Renames a file on the server. 

Removes a file from the server. 

Places a file on the server. 

Gets a file from the connected server 

Opens a file on the connected server. 

Closes the connection to the server. 



CFtpConnection::CreateDirectory 

See Also: ClnternetConnection 

Member Functions 
CFtpConnection: :CFtpConnection 

Remarks 

CFtpConnection( ); 

This member function is called to construct a CFtpConnection object. You never create 
a CFtpConnection object directly. Instead, call ClnternetSession::GetFtpConnection, 
which creates the CFptConnection object. 

See Also: ClnternetSession::GetFtpConnection, CFtpFileFind, 
CGopherConnection, CHttpConnection, ClnternetConnection 

CFtpConnection: :Close 

Remarl<s 

virtual void Close( ); 

Call this member function to close the connection to the server. The connection will 
be closed by the CFtpConnection object's destructor, but you should close the 
connection explicitly to avoid a diagnostic message. 

See Also: CFtpFileFind, CGopherConnection, CHttpConnection, 
ClnternetConnection 

CFtpConnection: : CreateDirectory 
BOOL CreateDirectory( LPCTSTR pstrDirName ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Windows function 
GetLastError may be called to determine the cause of the error. 

Parameters 

Remarks 

pstrDirName A pointer to a string containing the name of the directory to create. 

Call this member function to create a directory on the connected server. 

Use GetCurrentDirectory to determine the current working directory for this 
connection to the server. Do not assume that the remote system has connected you to 
the root directory. 

771 



CFtpConnection::GetCurrentDirectory 

The pstrDirName parameter can be either a partially or a fully qualified filename 
relative to the current directory. A backslash (\) or forward slash (I) can be used as the 
directory separator for either name. CreateDirectory translates the directory name 
separators to the appropriate characters before they are used. 

See Also: CInternetConnection 

CFtpConnection: : GetCurrentDirectory 
BOOL GetCurrentDirectory( CString& strDirName ) const; 
BOOL GetCurrentDirectory( LPTSTR pstrDirName, LPDWORD IpdwLen ) const; 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

strDirName A reference to a string that will receive the name of the directory. 

pstrDirName A pointer to a string that will receive the name of the directory. 

IpdwLen A pointer to a DWORD that contains the following information: 

On entry 

On return 

The size of the buffer referenced by pstrDirName. 

The number of characters stored to pstrDirName. If the member 
function fails and ERROR_INSUFFICIENT_BUFFER is returned, 
then IpdwLen contains the number of bytes that the application must 
allocate in order to receive the string. 

Call this member function to get the name of the current directory. To get the directory 
name as a URL instead, call GetCurrentDirectory AsURL. 

The parameters pstrDirName or strDirName can be either partially qualified filenames 
relative to the current directory or fully qualified. A backslash (\) or forward slash (I) 
can be used as the directory separator for either name. GetCurrentDirectory 
translates the directory name separators to the appropriate characters before they 
are used. 

See Also: CFtpConnection::GetCurrentDirectoryAs URL, CInternetConnection 

CFtpConnection: : GetCurrentDirectory As URL 

772 

BOOL GetCurrentDirectoryAsURL( CString& strDirName) const; 
BOOL GetCurrentDirectory AsURL( LPTSTR pstrDirName, 

... LPDWORD IpdwLen ) const; 



CFtpConnection::GetFile 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

strDirName A reference to a string that will receive the name of the directory. 

pstrDirName A pointer to a string that will receive the name of the directory. 

IpdwLen A pointer to a DWORD that contains the following information: 

On entry 

On return 

The size of the buffer referenced by pstrDirName. 

The number of characters stored to pstrDirName. If the member function 
fails and ERROR_INSUFFICIENT_BUFFER is returned, then /pdwLen 
contains the number of bytes that the application must allocate in order to 
receive the string. 

Call this member function to get the current directory's name as a URL. 
GetCurrentDirectoryAsURL behaves the same as GetCurrentDirectory 

The parameter strDirName can be either partially qualified filenames relative to the 
current directory or fully qualified. A backslash (\) or forward slash (I) can be used as 
the directory separator for either name. GetCurrentDirectoryAsURL translates the 
directory name separators to the appropriate characters before they are used. 

See Also: CFtpConnection::GetCurrentDirectory, ClnternetConnection 

CFtpConnection: : GetFile 
BOOL GetFile( LPCTSTR pstrRemoteFile, LPCTSTR pstrLocalFile, 

.. BOOL bFailIfExists = TRUE, 

Return Value 

.. DWORD dwAttributes = FILE_ATTRIBUTE_NORMAL, 

.. DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY, 

.. DWORD dwContext = 1 ); 

Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 
pstrRemoteFile A pointer to a null-terminated string containing the name of a file to 

retrieve from the FTP server. 

pstrLocalFile A pointer to a null-terminated string containing the name of the file to 
create on the local system. 

bFailIfExists Indicates whether the file name may already be used by an existing file. 
If the local file name already exists, and this parameter is TRUE, GetFile fails. 
Otherwise, GetFile will erase the existing copy of the file. 

773 



CFtpConnection::GetFile 

Remarks 

774 

dwAttributes Indicates the attributes of the file. This can be any combination of the 
following FILE_ATTRIBUTE_ * flags. 

• FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use 
this attribute to mark files for backup or removal. 

• FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For 
a file, compression means that all of the data in the file is compressed. For a 
directory, compression is the default for newly created files and subdirectories. 

• FILE_ATTRIBUTE_DIRECTORY The file is a directory. 

• FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This 
attribute is valid only if used alone. All other file attributes override 
FILE_ATTRIBUTE_NORMAL: 

• FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an 
ordinary directory listing. 

• FILE_ATTRIBUTE_READONLY The file is read only. Applications can read 
the file but cannot write to it or delete it. 

• FILE_ATTRIBUTE_SYSTEM The file is part of or is used exclusively by the 
operating system. 

• FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary 
storage. Applications should write to the file only if absolutely necessary. Most 
of the file's data remains in memory without being flushed to the media because 
the file will soon be deleted. 

dwFlags Specifies the conditions under which the transfer occurs. This can be any of 
the following FTP_TRANSFER_TYPE_* constants: 

• FTP_TRANSFER_TYPE_ASCII Transfers the file using FTP's ASCII (Type 
A) transfer method. Converts control and formatting information to local 
equivalents. 

• FTP_TRANSFER_TYPE_BINARY The file transfers data using FTP Image 
(Type I) transfer method. The file transfers data exactly as it exists, with no 
changes. This is the default transfer method. 

dw Con text The context identifier for the file retrieval. See Remarks for more 
information about dwContext. 

Call this member function to get a file from an FTP server and store it on the local 
machine. 

GetFile is a high-level routine that handles all of the overhead associated with reading 
a file from an FTP server and storing it locally. Applications that only retrieve file 
data, or that require close control over the file transfer, should use OpenFile and 
CInternetFile: :Read instead. 



CFtpConnection::OpenFile 

If dwFlags is FILE_TRANSFER_TYPE_ASCII, translation of file data also converts 
control and formatting characters to Windows equivalents. The default transfer is 
binary mode, where the file is downloaded in the same format as it is stored on the 
server. 

Both pstrRemoteFile and pstrLocalFile can be either partially qualified filenames 
relative to the current directory or fully qualified. A backslash (\) or forward slash (I) 
can be used as the directory separator for either name. GetFile translates the directory 
name separators to the appropriate characters before they are used. 

Override the dwContext default to set the context identifier to a value of your 
choosing. The context identifier is associated with this specific operation of the 
CFtpConnection object created by its CInternetSession object. The value is returned 
to CInternetSession::OnStatusCallback to provide status on the operation with 
which it is identified. See the article "Internet First Steps: WinInet" for more 
information about the context identifier. 

See Also: CInternetConnection 

CFtpConnection: :OpenFile 
CInternetFile* OpenFile( LPCTSTR pstrFileName, 

1.+ DWORD dwAccess = GENERIC_READ, 

Return Value 

1.+ DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY, 
1.+ DWORD dwContext = 1 ); 

A pointer to a CInternetFile object. 

Parameters 
pstrFileName A pointer to a string containing the name of the file to be opened. 

dwAccess Determines how the file will be accessed. Can be either GENERIC_READ 
or GENERIC_WRITE, but not both. 

dwFlags Specifies the conditions under which subsequent transfers occur. This can 
be any of the following FTP_TRANSFER_* constants: 

o FTP_TRANSFER_TYPE_ASCII The file transfers using FTP ASCII (Type A) 
transfer method. Converts control and formatting information to local 
equivalents . 

• FTP_TRANSFER_TYPE_BINARY The file transfers data using FTP's Image 
(Type I) transfer method. The file transfers data exactly as it exists, with no 
changes. This is the default transfer method. 

dwContext The context identifier for opening the file. See Remarks for more 
information about dwContext. 

775 



CFtpConnection::PutFile 

Remarks 
Call this member function to open a file located on an FTP server for reading or 
writing. OpenFile should be used in the following situations: 

• An application has data that needs to be sent and created as a file on the FTP 
server, but that data is not in a local file. Once OpenFile opens a file, the 
application uses CInternetFile::Write to send the FTP file data to the server. 

• An application must retrieve a file from the server and place it into 
application-controlled memory, instead of writing it to disk. The application uses 
CInternetFile: :Read after using OpenFile to open the file. 

• An application needs a fine level of control over a file transfer. For example, the 
application may want to display a progress control indicate the progress of the file 
transfer status while downloading a file. 

After calling OpenFile and until calling Close, the application can only call 
CInternetFile: :Read, CInternetFile:: Write, Close, or CFtpFileFind::FindFile. 
Calls to other FTP functions for the same FTP session will fail and set the error code 
to FTP_ETRANSFER_IN_PROGRESS. 

The pstrFileName parameter can be either a partially qualified filename relative to the 
current directory or fully qualified. A backslash (\) or forward slash (I) can be used as 
the directory separator for either name. OpenFile translates the directory name 
separators to the appropriate characters before using it. 

Override the dwContext default to set the context identifier to a value of your 
choosing. The context identifier is associated with this specific operation of the 
CFtpConnection object created by its CInternetSession object. The value is returned 
to CInternetSession::OnStatusCallback to provide status on the operation with 
which it is identified. See the article "Internet First Steps: WinInet" for more 
information about the context identifier. 

See Also: CInternetConnection, CFtpConnection::GetFile, 
CGopherConnection: :OpenFile, CInternetFile:: Write, CInternetFile: :Read 

CFtpConnection: :PutFile 
BOOL PutFile( LPCTSTR pstrLocalFile, LPCTSTR pstrRemoteFile, 

... DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY, 

... DWORD dwContext = 1 ); 

Return Value 

776 

Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 



CFtpConnection::Remove 

Parameters 

Remarks 

pstrLocalFile A pointer to a string containing the name of the file to send from the 
local system. 

pstrRemoteFile A pointer to a string containing the name of the file to create on the 
FfP server. 

dwFlags Specifies the conditions under which the transfer of the file occurs. Can be 
any of the FfP _ TRANSFER_ * constants described in OpenFile. 

dwContext The context identifier for placing the file. See Remarks for more 
information about dwContext. 

Call this member function to store a file on an FTP server. 

PutFile is a high-level routine that handles all of the operations associated with 
storing a file on an FTP server. Applications that only send data, or that require closer 
control over the file transfer, should use OpenFile and ClnternetFile:: Write. 

Override the dwContext default to set the context identifier to a value of your 
choosing. The context identifier is associated with this specific operation of the 
CFtpConnection object created by its ClnternetSession object. The value is returned 
to ClnternetSession: :OnStatusCallback to provide status on the operation with 
which it is identified. See the article "Internet First Steps: WinInet" in Visual C++ 
Programmer's Guide online for more information about the context identifier. 

See Also: ClnternetConnection 

CFtpConnection: :Remove 
BOOL Remove( LPCTSTR pstrFileName ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

pstrFileName A pointer to a string containing the file name to remove. 

Call this member function to delete the specified file from the connected server. 

The pstrFileName parameter can be either a partially qualified filename relative to the 
current directory or fully qualified. A backslash (\) or forward slash (I) can be used as 
the directory separator for either name. The Remove function translates the directory 
name separators to the appropriate characters before they are used. 

See Also: ClnternetConnection 

777 



CFtpConnection::RemoveDirectory 

CFtpConnection: : RemoveDirectory 
BOOL RemoveDirectory( LPCTSTR pstrDirName ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

pstrDirName A pointer to a string containing the directory to be removed. 

Call this member function to remove the specified directory from the connected 
server. 

Use GetCurrentDirectory to determine the server's current working directory. Do 
not assume that the remote system has connected you to the root directory. 

The pstrDirName parameter can be either a partially or fully qualified filename 
relative to the current directory. A backslash (\) or forward slash (I) can be used as the 
directory separator for either name. RemoveDirectory translates the directory name 
separators to the appropriate characters before they are used. 

See Also: ClnternetConnection 

CFtpConnection: : Rename 
BOOL Rename( LPCTSTR pstrExisting, LPCTSTR pstrNew ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

778 

pstrExisting A pointer to a string containing the current name of the file to be 
renamed. 

pstrNew A pointer to a string containing the file's new name. 

Call this member function to rename the specified file on the connected server. 

The pstrExisting and pstrNew parameters can be either a partially qualified filename 
relative to the current directory or fully qualified. A backslash (\) or forward slash (I) 
can be used as the directory separator for either name. Rename translates the 
directory name separators to the appropriate characters before they are used. 

See Also: ClnternetConnection 



CFtpConnection::SetCurrentDirectory 

CFtpConnection: : S etCurrentDirectory 
BOOL SetCurrentDirectory( LPCTSTR pstrDirName ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

pstrDirName A pointer to a string containing the name of the directory. 

Call this member function to change to a different directory on the FTP server. 

The pstrDirName parameter can be either a partially or fully qualified filename 
relative to the current directory. A backslash (\) or forward slash (I) can be used as the 
directory separator for either name. SetCurrentDirectory translates the directory 
name separators to the appropriate characters before they are used. 

Use GetCurrentDirectory to determine an FTP server's current working directory. 
Do not assume that the remote system has connected you to the root directory. 

See Also: ClnternetConnection 

779 



CFtpFileFind 

CFtpFileFind 

CFtpFiJeFind 

Class CFtpFileFind aids in Internet file searches of FTP servers. CFtpFileFind 
includes member functions that begin a search, locate a file, and return the URL or 
other descriptive information about the file. 

Other MFC classes designed for Internet and local file searched include 
CGopherFileFind and CFileFind. Together with CFtpFileFind, these classes 
provide a seamless mechanism for the client to find specific files, regardless of the 
server protocol or file type (either a local machine or a remote server). Note that there 
is no MFC class for searching on HTTP servers because HTTP does not support the 
direct file manipulation required for searches. 

For more information about how to use CFtpFileFind and the other WinInet classes, 
see the article "Internet Programming with WinInet" in Visual C++ Programmers 
Guide online. 

#include <afxinet.h> 

See Also: CGopherFileFind, CInternetFile, CGopherFile, CHttpFile 

CFtpFileFind Class Members 

780 

Construction 

CFtpFileFind 

Operations 

FindFile 

FindNextFile 

GetFileURL 

Constructs a CFtpFileFind object. 

Finds a file on a FTP server. 

Continues a file search from a previous call 
to FindFile. 

Gets the URL, including path, of the found file. 

See Also: CFtpFileFind, CGopherFileFind, CInternetFile, CGopherFile, 
CHttpFile 



CFtpFileFind::FindFile 

Member Functions 
CFtpFileFind: : CFtpFileFind 

CFtpFileFind( CFtpConnection* pCOllllectioll, DWORD dwContext = 1 ); 

Parameters 

Remarks 

pConnection A pointer to a CFtpConnection object. You can obtain an FTP 
connection by calling ClnternetSession::GetFtpConnection. 

dw Con text The context identifier for the CFtpFileFind object. See Remarks for 
more information about this parameter. 

This member function is called to construct a CFtpFileFind object. 

The default value for dwColltext is sent by MFC to the CFtpFileFind object from the 
ClnternetSession object that created the CFtpFileFind object. You can override the 
default to set the context identifier to a value of your choosing. The context identifier 
is returned to ClnternetSession::OnStatusCallback to provide status on the object 
with which it is identified. See the article "Internet First Steps: WinInet" in the 
Visual C++ Programmer's Guide online for more information about the context 
identifier. 

See Also: CGopberFileFind, CFileFind 

CFtpFileFind: : FindFile 
virtual BOOL FindFile( LPCTSTR pstrName = NULL, 

~ DWORD dwFlags = INTERNET_FLAG_RELOAD ); 

Return Value 
Nonzero if successful; otherwise O. To get extended error information, call the Win32 
function GetLastError. 

Parameters 
pstrName A pointer to a string containing the name of the file to find. If NULL, the 

call will perform a wildcard search (*). 

dwFlags The flags describing how to handle this session. These flags can be 
combined with the bitwise OR operator (I) and are as follows: 

• INTERNET_FLAG_RELOAD Get the data from the wire even if it is locally 
cached. This is the default flag . 

• INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or 
in any gateways. 

781 



CFtpFileFind::FindNextFile 

Remarks 

• INTERNET_FLAG_RAW _DATA Override the default to return the raw data 
(WIN32_FIND_DATA structures for FTP). 

• INTERNET_FLAG_SECURE Secures transactions on the wire with Secure 
Sockets Layer or PCT. This flag is applicable to HTTP requests only. 

• INTERNET_FLAG_EXISTING_CONNECT If possible, reuse the existing 
connections to the server for new FindFile requests instead of creating a new 
session for each request. 

Call this member function to find an FTP file. 

After calling FindFile to retrieve the first FTP file, you can call FindNextFile to 
retrieve subsequent FTP files. 

See Also: CFtpFileFind: :FindN extFile, CFileFind 

CFtpFileFind: : FindN extFile 
virtual BOOL FindNextFile(); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. To get extended error information, call the Win32 
function GetLastError. 

Call this member function to continue a file search begun with a call to the FindFile 
member function. You must call this function at least once before calling any attribute 
function. 

FindNextFile wraps the Win32 function FindNextFile. 

See Also: CFileFind 

CFtpFileFind: : GetFile URL 
CString GetFileURL() const; 

Return Value 

Remarks 

782 

The file and path of the Universal Resource Locator (URL) . 

Call this member function to get the URL of the specified file. 

GetFileURL is similar to the member function CFileFind::GetFilePath, except that 
it returns the URL in the form ftp: I Imoose/di r/fi 1 e. txt. 

See Also: CFtpFileFind::FindFile, CFileFind 



CGdiObject 

The CGdiObject class provides a base class for various kinds of Windows graphics 
device interface (GDI) objects such as bitmaps, regions, brushes, pens, palettes, and 
fonts. You never create a CGdiObject directly. Rather, you create an object from one 
of its derived classes, such as CPen or CBrush. 

For more information on CGdiObject, see "Graphic Objects" in Visual C++ 
Programmer's Guide online. 

#include <afxwin.h> 

See Also: CBitmap, CBrush, CFont, CPalette, CPen, CRgn 

CGdiObject Class Members 
Data Members 

Construction 

CGdiObject 

Operations 

GetSafeHandle 

FromHandle 

Attach 

Detach 

DeleteO bj ect 

DeleteTempMap 

GetObject 

CreateStockObject 

A HANDLE containing the HBITMAP, HPALETTE, HRGN, 
HBRUSH, HPEN, or HFONT attached to this object. 

Constructs a CGdiObject object. 

Returns m_hObject unless this is NULL, in which case NULL is 
returned. 

Returns a pointer to a CGdiObject object given a handle to a Windows 
GDlobject. 

Attaches a Windows GDI object to a CGdiObject object. 

Detaches a Windows GDI object from a CGdiObject object and returns 
a handle to the Windows GDI object. 

Deletes the Windows GDI object attached to the CGdiObject object 
from memory by freeing all system storage associated with the object. 

Deletes any temporary CGdiObject objects created by FromHandle. 

Fills a buffer with data that describes the Windows GDI object attached 
to the CGdiObject object. 

Retrieves a handle to one of the Windows predefined stock pens, 
brushes, or fonts. 

(continued) 

CGdiObject 

783 



CGdi Object: :Attach 

Operations (continued) 

UnrealizeObject 

GetObjectType 

Resets the origin of a brush or resets a logical palette. 

Retrieves the type of the GDI object. 

Member Functions 
CGdiObject: : Attach 

BOOL Attach( HGDIOBJ hObject ); 

Return Value 
Nonzero if attachment is successful; otherwise o. 

Parameters 

Remarks 

hObject A HANDLE to a Windows GDI object (for example, HPEN or HBRUSH). 

Attaches a Windows GDI object to a CGdiObject object. 

See Also: CGdiObject: :Detach 

CGdiObject: :CGdiObject 

Remarks 

CGdiObject( ); 

Constructs a CGdiObject object. You never create a CGdiObject directly. Rather, 
you create an object from one of its derived classes, such as CPen or CBrush. 

See Also: CPen, CBrush, CFont, CBitmap, CRgn, CPalette 

CGdiObject::CreateStockObject 
BOOL CreateStockObject( int nlndex); 

Return Value 
Nonzero if the function is successful; otherwise o. 

Parameters 

784 

nlndex A constant specifying the type of stock object desired. It can be one of the 
following values: 

• BLACK_BRUSH Black brush. 

• DKGRAY _BRUSH Dark gray brush. 

• GRAY_BRUSH Gray brush. 



CGdiObject:: DeleteObject 

Remarks 

o HOLLOW_BRUSH Hollow brush. 

o LTGRAY_BRUSH Light gray brush. 

o NULL_BRUSH Null brush .. 

o WHITE_BRUSH White brush. 

o BLACK_PEN Black pen. 

o NULL_PEN Null pen. 

o WHITE_PEN White pen. 

o ANSI_FIXED_FONT ANSI fixed system font. 

o ANSI_ VAR_FONT ANSI variable system font. 

o DEVICE_DEFAULT_FONT Device-dependent font. 

o OEM_FIXED_FONT OEM-dependent fixed font. 

o SYSTEM_FONT The system font. By default, Windows uses the system font 
to draw menus, dialog-box controls, and other text. In Windows versions 3.0 
and later, the system font is proportional width; earlier versions of Windows use 
a fixed-width system font. 

o SYSTEM_FIXED_FONT The fixed-width system font used in Windows 
prior to version 3.0. This object is available for compatibility with earlier 
versions of Windows. 

o DEFAULT_PALETTE Default color palette. This palette consists of the 20 
static colors in the system palette. 

Retrieves a handle to one of the predefined stock Windows GDI pens, brushes, or 
fonts, and attaches the GDI object to the CGdiObject object. Call this function with 
one of the derived classes that corresponds to the Windows GDI object type, such as 
CPen for a stock pen. 

See Also: CPen::CPen, CBrush::CBrush, CFont::CFont, CPalette::CPalette 

CGdiObject::DeleteObject 
BOOL DeleteObject(); 

Return Value 

Remarks 

Nonzero if the GDI object was successfully deleted; otherwise O. 

Deletes the attached Windows GDI object from memory by freeing all system 
storage associated with the Windows GDI object. The storage associated with the 

785 



CGdiObject: :DeleteTempMap 

CGdiObject object is not affected by this call. An application should not call 
DeleteObject on a CGdiObject object that is currently selected into a device context. 

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. 
The bitmap must be deleted independently. 

See Also: CGdiObject: :Detach 

CGdiObject: : DeleteTempMap 

Remarks 

static void PASCAL DeleteTempMap(); 

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes 
any temporary CGdiObject objects created by FromHandle. DeleteTempMap 
detaches the Windows GDI object attached to a temporary CGdiObject object before 
deleting the CGdiObject object. 

See Also: CGdiObject: :Detach, CGdiObject: :FromHandle 

CGdiObject: :Detach 
HGDIOBJ Detach( ); 

Return Value 

Remarks 

A HANDLE to the Windows GDI object detached; otherwise NULL if no GDI object 
is attached. 

Detaches a Windows GDI object from a CGdiObject object and returns a handle to 
the Windows GDI object. 

See Also: CGdiObject::Attach 

CGdiObject: : FromHandle 
static CGdiObject* PASCAL FromHandle( HGDIOBJ hObject ); 

Return Value 
A pointer to a CGdiObject that may be temporary or permanent. 

Parameters 
hObject A HANDLE to a Windows GDI object. 

786 



CGdiObject: :GetObject 

Remarks 
Returns a pointer to a CGdiObject object given a handle to a Windows GDI object. If 
a CGdiObject object is not already attached to the Windows GDI object, a temporary 
CGdiObject object is created and attached. 

This temporary CGdiObject object is only valid until the next time the application 
has idle time in its event loop, at which time all temporary graphic objects are deleted. 
Another way of saying this is that the temporary object is only valid during the 
processing of one window message. 

See Also: CGdiObject::DeleteTempMap 

CGdiObject: : GetObject 
int GetObject( int nCount, LPVOID lpObject ) const; 

Return Value 
The number of bytes retrieved; otherwise 0 if an error occurs. 

Parameters 

Remarks 

nCount Specifies the number of bytes to copy into the lpObject buffer. 

lpObject Points to a user-supplied buffer that is to receive the information. 

Fills a buffer with data that defines a specified object. The function retrieves a data 
structure whose type depends on the type of graphic object, as shown by the 
following list: 

Object Buffer type 

CPen LOGPEN 

CBrush LOGBRUSH 

CFont LOGFONT 

CBitmap BITMAP 

CPalette WORD 

CRgn Not supported 

If the object is a CBitmap object, GetObject returns only the width, height, and color 
format information of the bitmap. The actual bits can be retrieved by using 
CBitmap: : GetBitmapBits. 

If the object is a CPalette object, GetObject retrieves a WORD that specifies the 
number of entries in the palette. The function does not retrieve the LOGPALETTE 
structure that defines the palette. An application can get information on palette entries 
by calling CPalette: : GetPaletteEntries. 

See Also: CBitmap::GetBitmapBits, CPalette::GetPaletteEntries 

787 



CGdi Object: :GetObjectType 

CGdiObject::GetObjectType 
UINT GetObjectType( ) const; 

Return Value 

Remarks 

The type of the object, if successful; otherwise O. The value can be one of the 
following: 

• OBJ_BITMAP Bitmap 

• OBJ_BRUSH Brush 

• OBJ_FONT Font 

• OBJ_PAL Palette 

• OBJ_PEN Pen 

• OBJ_EXTPEN Extended pen 

• OBJ_REGION Region 

• OBJ_DC Device context 

• OBJ_MEMDC Memory device context 

• OBJ_METAFILE Metafile 

• OBJ_METADC Metafile device context 

• OBJ_ENHMETAFILE Enhanced metafile 

• OBJ_ENHMETADC Enhanced-metafile device context 

Retrieves the type of the GDI object. 

See Also: CGdiObject::GetObject, CDC::SelectObject 

CGdi Obj ect: : GetSafeHandle 
HGDIOBJ GetSafeHandle( ) const; 

Return Value 

Remarks 

788 

A HANDLE to the attached Windows GDI object; otherwise NULL if no object is 
attached. 

Returns m_hObject unless this is NULL, in which case NULL is returned. This is 
part of the general handle interface paradigm and is useful when NULL is a valid or 
special value for a handle. 



CGdiObject::m_hObject 

CGdiObject:: UnrealizeObject 
BOOL UnrealizeObject( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Resets the origin of a brush or resets a logical palette. While UnrealizeObject is a 
member function of the CGdiObject class, it should be invoked only on CBrush or 
CPalette objects. 

For CBrush objects, UnrealizeObject directs the system to reset the origin of the 
given brush the next time it is selected into a device context. If the object is a 
CPalette object, UnrealizeObject directs the system to realize the palette as though 
it had not previously been realized. The next time the application calls the 
CDC::RealizePalette function for the specified palette, the system completely 
remaps the logical palette to the system palette. 

The UnrealizeObject function should not be used with stock objects. The 
UnrealizeObject function must be called whenever a new brush origin is set (by 
means of the CDC::SetBrushOrg function). The UnrealizeObject function must 
not be called for the currently selected brush or currently selected palette of any 
display context. 

See Also: CDC::RealizePalette, CDC::SetBrushOrg 

Data Members 
CGdiObject: :m_hObject 
Remarks 

A HANDLE containing the HBITMAP, HRGN, HBRUSH, HPEN, HPALETTE, 
or HFONT attached to this object. 

789 



CGopherConnection 

CGopherConnection 

CGopherConnection 

The MFC class CGopherConnection manages your connection to a gopher Internet 
server. The gopher service is one of three Internet services recognized by the MFC 
WinInet classes. 

The class CGopherConnection contains a constructor and three additional member 
functions that manage the gopher service: OpenFiIe, CreateLocator, and 
GetAttribute. 

To communicate with a gopher Internet server, you must first create an instance of 
CInternetSession, and then call CInternetSession::GetGopherConnection, which 
creates the CGopherConnection object and returns a pointer to it. You never create a 
CGopherConnection object directly. 

To learn more about how CGopherConnection works with the other MFC Internet 
classes, see the article "Internet Programming with WinInet" in Visual c++ 
Programmer s Guide online. For more information about using the the other two 
supported Internet services, FTP and HTTP see the classes CHttpConnection and 
CFtpConnection. 

#include <afxinet.h> 

See Also: CFtpConnection, CHttpConnection, CInternetConnection, 
CGopherLocator, CGopherFiIe, CInternetSession 

CGopherConnection Class Members 

790 

Construction 

CGopherConnection 

Operations 

OpenFile 

CreateLocator 

GetAttribute 

Constructs a CGopherConnection object. 

Opens a gopher file. 

Creates a CGopherLocator object to find files on a gopher server. 

Retrieves attribute information about the gopher object. 

See Also: CFtpConnection, CHttpConnection, CInternetConnection, 
CGopherFileFind 



CGopherConnection: : Create Locator 

Member Functions 
CGopherConnection: : CGopherConnection 

Remarks 

CGopherConnection( ); 

This member function is called to construct a CGopherConnection object. You never 
create a CGopherConnection directly. Rather, call 
CInternetSession::GetGopherConnection, which creates a CGopherConnection 
object and returns a pointer to it. 

See Also: CFtpConnection, CHttpConnection, CInternetConnection 

CGopherConnection: : CreateLocator 
CGopherLocator CreateLocator( LPCTSTR pstrDisplayString, 

... LPCTSTR pstrSelectorString, DWORD dwGopherType ); 
static CGopherLocator CreateLocator(LPCTSTR pstrLocator ); 
static CGopherLocator CreateLocator( LPCTSTR pstrServerName, 

... LPCTSTR pstrDisplayString, LPCTSTR pstrSelectorString, 

... DWORD dwGopherType, INTERNET_PORT nPort = 

... INTERNET_INVALID_PORT_NUMBER); 

Return Value 
A CGopherLocator object. 

Parameters 
pstrDisplayString A pointer to a string containing the name of the gopher document 

or directory to be retrieved. If the pstrDisplayString parameter is NULL, the 
default directory for the gopher server is returned. 

pstrSelectorString A pointer to the selector string to be sent to the gopher server in 
order to retrieve an item. pstrSelectorString can be NULL. 

dwGopherType This specifies whether pstrSelectorString refers to a directory or 
document, and whether the request is gopher or gopher+. See the attributes for the 
structure GOPHER_FIND_DATA in the ActiveX SDK. 

pstrLocator A pointer to a string identifying the file to open. Generally, this string is 
returned from a call to CGopherFileFind::GetLocator. 

pstrServerName A pointer to a string containing the gopher server name. 

nPort The number identifying the Internet port for this connection. 

791 



CGopherConnection: : GetAttribute 

Remarks 
Call this member function to create a gopher locator to find or identify a file on a 
gopher server. The static version of the member function requires you to specify a 
server, while the non-static version uses the server name from the connection object. 

In order to retrieve information from a gopher server, an application must first get 
a gopher locator. The application must then treat the locator as an opaque token 
(that is, the application can use the locator but not directly manipulate or compare it). 
Normally, the application uses the locator for calls to the CGopberFiIeFind::FindFile 
member function to retrieve a specific piece of information. 

See Also: CFtpConnection, CHttpConnection, CInternetConnection, 
CGopberLocator, CGopberFileFind 

CGopherConnection: : GetAttribute 
BOOL GetAttribute( LPGOPHER_ATTRIBUTE_TYPE& IpType, 

... CString strRequestedAttributes, CGopberLocator& refLocator ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

IpType A pointer to a GOPHER_ATTRIBUTE_TYPE structure. See the ActiveX 
SDK for more information about this structure. 

strRequestedAttributes A space-delimited string specifying the names of the 
requested attributes. 

refLocator A reference to a CGopberLocator object. 

Call this member function to retrieve specific attribute information about an item from 
the gopher server. 

See Also: CFtpConnection, CHttpConnection, ClnternetConnection, 
CGopberLocator 

CGopherConnection: : OpenFile 
CGopberFile* OpenFiIe( CGopberLocator& refLocator, DWORD dwFlags = 0, 

... LPCTSTR pstrView = NULL, DWORD dwContext = 1 ); 

Return Value 
A pointer to the CGopberFile object to be opened. 

792 



CGopherConnection: :OpenFile 

Parameters 

Remarks 

refLocator A reference to a CGopherLocator object. 

dwFlags Any combination of INTERNET_FLAG_ * flags. See 
CInternetSession::OpenUri for further information on INTERNET_FLAG_* 
flags. 

pstrView A pointer to a file-view string. If several views of the file exist at the 
server, this parameter specifies which file view to open. If pstrView is NULL, 
the default file view is used. 

dw Con text The context ID for the file being opened. See Remarks for more 
information about dwContext. 

Call this member function to open a file on a gopher server. 

Override the dwContext default to set the context identifier to a value of your 
choosing. The context identifier is associated with this specific operation of the 
CGopherConnection object created by its CInternetSession object. The value 
is returned to CInternetSession::OnStatusCallback to provide status on the 
operation with which it is identified. See the article "Internet First Steps: WinInet" 
in Visual C++ Programmer's Guide online for more information about the context 
identifier. 

See Also: CFtpConnection, CHttpConnection, CInternetConnection, 
CGopherFile, CGopherLocator, CInternetSession 

793 



CGopherFile 

CGopherFile 

CGopherFile 

The MFC class CGopherFile provides the functionality to find and read files on a 
gopher server. 

The gopher service does not allow users to write data to a gopher file because this 
service functions mainly as a menu-driven interface for finding information. The 
CGopherFile member functions Write, WriteString, and Flush are not implemented 
for CGopherFile. Calling these functions on a CGopherFile object, returns a 
CN otSupportedException. 

To learn more about how CGopherFile works with the other MFC Internet classes, 
see the article "Internet Programming with WinInet" in Visual C++ Programmer's 
Guide online. 

#include <afxinet.h> 

See Also: CInternetFile, CGopherLocator, CGopherFileFind, 
CGopherConnection 

CGopherFile Class Members 

794 

Construction 

CGopberFiIe 

Operations 

Close 

Constructs a CGopberFiIe object. 

Closes the connection to a gopher server. 

See Also: CInternetFile, CGopherLocator, CGopherFileFind, 
CGopherConnection 



Member Functions 
CGopherFile::CGopherFile 

CGopherFile( HINTERNET hFile, CGopherLocator& rejLocator, 
-.. CGopherConnection* pConnection ); 

Parameters 

Remarks 

hFile A handle to an HINTERNET file. 

rejLocator A reference to a CGopherLocator object. 

pConnection A pointer to a CGopherConnection object. 

This member function is called to construct a CGopherFile object. 

You need a CGopherFile object to read from a file during a gopher Internet 
session. 

You never create a CGopherFile object directly. Instead, call 
CGopherConnection::OpenFile to open a file on a gopher server. 

See Also: ClnternetFile, CGopherLocator, CGopherFileFind, 
CGopherConnection 

CGopherFile: :Close 

Remarks 

virtual void Close( ); 

Call this member function to close the gopher file. 

See Also: ClnternetFile, CGopherLocator, CGopherFileFind, 
CGopherConnection 

CGopherFile: :Close 

795 



CGopherFileFind 

CGopherFileFind 

CGopherFileFind 

Class CGopherFileFind aids in Internet file searches of gopher servers. 
CGopherFileFind includes member functions that begin a search, locate a file, 
and return a file's URL. 

Other MFC classes designed for Internet and local file searched include 
CFtpFileFind and CFileFind. Together with CGopherFileFind, these classes 
provide a seamless mechanism for the user to find specific files, regardless of the 
server protocol, file type, or location (either a local machine or a remote server.) 
Note that there is no MFC class for searching on HTTP servers because HTTP 
does not support the direct file manipulation required by searches. 

Note CGopherFileFind does not support the following member functions of its base class 
CFileFind: 

• GetRoot 

• GetFileN arne 

• GetFilePath 

• GetFileTitle 

• GetFileURL 

In addition, when used with CGopherFileFind, the CFileFind member function 
IsDots is always FALSE. 

For more information about how to use CGopherFileFind and the other WinInet 
classes, see the article "Internet Programming with WinInet" in Visual C++ 
Programmer's Guide online. 

#include <afxinet.h> 

See Also: CFtpFileFind, CFileFind, CInternetFile, CGopherFile, CHttpFile 

CGopherFileFind Class Members 
Construction 

CGopherFileFind Constructs a CGopherFileFind object. 

796 



CGopherFileFind: :FindFile 

Attributes 

FindFile 

FindNextFile 

GetLocator 

GetScreenName 

GetLength 

Finds a file on a gopher server. 

Continues a file search from a previous call to FindFile. 

Get a CGopherLocator object. 

Gets the name of a gopher screen. 

Gets the length of the found file, in bytes. 

See Also: CFtpFileFind, CFileFind, ClnternetFile, CGopherFile, CHttpFile 

Member Functions 
CGopherFileFind: : CGopherFileFind 

CGopherFileFind( CGopherConnection* pConnection, DWORD dwContext = 1 ); 

Parameters 

Remarks 

pConnection A pointer to a CGopherConnection object. 

dwContext The context identifier for the operation. See Remarks for more 
information about dwContext. 

This member function is called to construct a CGopherFileFind object. 

The default value for dwContext is sent by MFC to the CGopherFileFind object from 
the ClnternetSession object that created the CGopherFileFind object. When you 
construct a CGopherFileFind object, you can override the default to set the context 
identifier to a value of your choosing. The context identifier is returned to 
ClnternetSession::OnStatusCallback to provide status on the object with which it is 
identified. See the article "Internet First Steps: WinInet" in Visual C++ Programmer's 
Guide online for more information about the context identifier. 

See Also: CFtpFileFind, CFileFind 

CGopherFileFind: : FindFile 
virtual BOOL FindFile( CGopherLocator& refLocator, LPCTSTR pstrString, 

~ DWORD dwFlags = INTERNET_FLAG_RELOAD ); 
virtual BOOL FindFile( LPCTSTR pstrString, 

~ DWORD dwFlags = INTERNET_FLAG_RELOAD ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

797 



CGopherFileFind: :FindN extFile 

Parameters 

Remarks 

refLocator A reference to a CGopherLocator object. 

pstrString A pointer to a string containing the file name. 

dwFlags The flags describing how to handle this session. The valid flags are: 

• INTERNET_FLAG_RELOAD Get the data from the remote server even if it is 
locally cached. 

• INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or 
in any gateways. 

• INTERNET_FLAG_SECURE Request secure transactions on the wire with 
Secure Sockets Layer or PCT. This flag is applicable to HTTP requests only. 

• INTERNET_FLAG_USE_EXISTING If possible, reuse the existing 
connections to the server for new FindFile requests, instead of creating a new 
session for each request. 

Call this member function to find a gopher file. 

After calling FindFile to retrieve the first gopher object, you can call FindNextFile to 
retrieve subsequent gopher files. 

See Also: CFileFind: : FindFile 

CGopherFileFind: : FindN extFile 
virtual BOOL FindNextFile( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. To get extended error information, call the Win32 
function GetLastError. 

Call this member function to continue a file search begun with a call to 
CGopherFileFind: :FindFile. 

See Also: CFileFind: : FindNextFile 

CGopherFileFind: : GetLength 
virtual DWORD GetLength() const; 

Return Value 
The length, in bytes, of the found file. 

798 



CGopherFileFind: :GetScreenN arne 

Remarks 
Call this member function to get the length, in bytes, of the found file. 

GetLength uses the nFileSizeLow member, of the Win32 structure 
WIN32_FIND_DATA to get the low-order DWORD value of the file size in bytes. 
If the file may be more than four gigabytes in size, use the GetLength64 member. 

See Also: CFileFind 

CGopherFileFind: : GetLocator 
CGopherLocator GetLocator( ) const; 

Return Value 

Remarks 

A CGopherLocator object. 

Call this member function to get the CGopherLocator object that FindFile uses to 
find the gopher file. 

See Also: CGopherConnection::CreateLocator 

CGopherFileFind: : GetScreenN arne 
CString GetScreenName() const; 

Return Value 
The name of the gopher screen. 

Remarks 
Call this member function to get the name of the gopher screen. 

799 



CGopherLocator 

CGopherLocator 

CGopherLocator 

The class CGopberLocator gets a gopher "locator" from a gopher server, 
determines the locator's type, and makes the locator available to CGopberFileFind. 

An application must get a gopher server's locator before it can retrieve information 
from that server. Once it has the locator, it must treat the locator as an opaque token. 

Each gopher locator has attributes that determine the type of file or server found. 
See GetLocatorType for a list of types of gopher locators. 

An application normally uses the locator for calls to CGopberFileFind::FindFile 
to retrieve a specific piece of information. 

To learn more about how CGopberLocator works with the other MFC Internet 
classes, see the article "Internet Programming with WinInet" in Visual C++ 
Programmer's Guide online. 

#include <afxinet.b> 

See Also: CGopberFileFind 

CGopherLocator Class Members 

800 

Construction 

CGopherLocator 

Attributes 

GetLocatorType 

Operators 

operator LPCTSTR 

Constructs a CGopherLocator object. 

Parses a gopher locator and determines 
its attributes. 

Directly accesses characters stored 
in a CGopherLocator object as a 
C-style string. 



CGopherLocator: : GetLocatorType 

Member Functions 
CGopherLocator: :CGopherLocator 

CGopherLocator( const CGopherLocator& ref); 

Parameters 

Remarks 

ref A reference to a constant CGopherLocator object. 

This member function is called to create a CGopherLocator object. You 
never create a CGopherLocator object directly. Instead, call 
CGopherConnection::CreateLocator to create and return a pointer to 
the CGopherLocator object. 

See Also: CGopherFileFind, CGopherConnection 

CGopherLocator: : GetLocatorType 
BOOL GetLocatorType( DWORD& dwRef) const; 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function 
GetLastError may be called to determine the cause of the error. 

Parameters 
dwRef A reference to a DWORD that will receive the locator type. See Remarks 

for a table of locator types. 

Remarks 
Call this member function to get the locator type. The possible types are as follows: 

Value Meaning 

GOPHER_TYPE_TEXT_FILE An ASCII text file. 

GOPHER_TYPE_DIRECTORY A directory of additional Gopher items. 

GOPHER_TYPE_CSO A CSO phone book server. 

GOPHER_TYPE_ERROR Indicates an error condition. 

GOPHER_TYPE_MAC_BINHEX A Macintosh file in BINHEX format. 

GOPHER_TYPE_DOS_ARCHIVE A DOS archive file. 

GOPHER_TYPE_UNIX_UUENCODED A UUENCODED file. 

GOPHER_TYPE_INDEX_SERVER An index server. 

GOPHER_TYPE_TELNET A Telnet Server. 

GOPHER_TYPE_BINARY A binary file. 

(continued) 

801 



CGopherLocator: :operator LPCTSTR 

(continued) 

Value 

GOPHER_TYPE_TN3270 

GOPHER_TYPE_GIF 

GOPHER_ TYPE_IMAGE 

GOPHER_ TYPE_BITMAP 

GOPHER_TYPE_MOVIE 

GOPHER_ TYPE_SOUND 

GOPHER_TYPE_HTML 

GOPHER_ TYPE_PDF 

GOPHER_TYPE_CALENDAR 

GOPHER_ TYPE_INLINE 

GOPHER_TYPE_UNKNOWN 

GOPHER_ TYPE_ASK 

GOPHER_TYPE_GOPHER_PLUS 

Meaning 

A duplicated server. The information contained 
within is a duplicate of the primary server. The 
primary server is the last directory entry that did 
not have a GOPHER_TYPE_REDUNDANT type. 

A TN3270 server. 

A GIF graphics file. 

An image file. 

A bitmap file. 

A movie file. 

A sound file. 

An HTML document. 

A PDF file. 

A calendar file. 

An inline file. 

The item type is unknown. 

An Ask+ item. 

A Gopher+ item. 

See Also: CGopherFileFind, CGopherConnection 

Operators 
CGopherLocator: : operator LPCTSTR 

operator LPCTSTR ( ) const; 

Return Value 

Remarks 

802 

A character pointer to the string's data. 

This useful casting operator provides an efficient method to access the null-terminated 
C string contained in a CGopherLocator object. No characters are copied; only a 
pointer is returned. 



CHeaderCtrl 

A "header control" is a window usually positioned above columns of text or numbers. 
It contains a title for each column, and it can be divided into parts. The user can drag 
the dividers that separate the parts to set the width of each column. 

The CHeaderCtrl class provides the functionality of the Windows common header 
control. This control (and therefore the CHeaderCtrl class) is available only to 
programs running under Windows 95 and Windows NT version 3.51 and later. 

For more information on using CHeaderCtrl, see Technical Note 60 online. 

#include <afxcmn.h> 

See Also: CTabCtrl, CListCtrl 

CHeaderCtrl Class Members 
Construction 

CHeaderCtrl 

Create 

Attributes 

GetItemCount 

Getltem 

SetItem 

Operations 

InsertItem 

DeleteItem 

Layout 

Overridables 

Drawltem 

Constructs a CHeaderCtrl object. 

Creates a header control and attaches it to a CHeaderCtrl object. 

Retrieves a count of the items in a header control. 

Retrieves information about an item in a header control. 

Sets the attributes of the specified item in a header control. 

Inserts a new item into a header control. 

Deletes an item from a header control. 

Retrieves the size and position of a header control within a 
given rectangle. 

Draws the specified item of a header control. 

CHeaderCtrl 

803 



CHeaderCtrl: :CHeaderCtrl 

Member Functions 
CHeaderCtrl: : CHeaderCtrl 

Remarks 

CHeaderCtrl( ); 

Creates a CHeaderCtrl object. 

See Also: CHeaderCtrl::Create 

CHeaderCtr 1: : Create 
BOOL Create( DWORD dwStyle, const RECT& reet, 

... CWnd* pParentWnd, UINT nID ); 

Return Value 
Nonzero if initialization was successful; otherwise zero. 

Parameters 

Remarks 

804 

dwStyle Specifies the header control's style. Apply any combination of header 
control styles needed to the control. 

reet Specifies the header control's size and position. It can be either a CRect object 
or a RECT structure. 

pParentWnd Specifies the header control's parent window, usually a CDialog. It 
must not be NULL. 

nID Specifies the header control's ID. 

You construct a CHeaderCtrl object in two steps. First call the constructor, then 
call Create, which creates the header control and attaches it to the CHeaderCtrl 
object. 

The following styles can be applied to a header control (see "About Header 
Control Styles" for more information): 

• HDS_BUTTONS Header items behave like buttons. 

• HDS_HORZ The header control is horizontal. 

• HDS_ VERT The header control is vertical (this style is not currently 
implemented) . 

• HDS_HIDDEN The header control is not visible in details mode. 



In addition, you can use the following common control styles to determine how the 
header control positions and resizes itself (see "Common Control Styles" for more 
information): 

• CCS_BOTTOM Causes the control to position itself at the bottom of the parent 
window's client area and sets the width to be the same as the parent window's 
width. 

• CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top 
of the control. 

• CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of 
the control. 

• CCS_NOMOVEY Causes the control to resize and move itself horizontally, but 
not vertically, in response to a WM_SIZE message. If the CCS_NORESIZE style 
is used, this style does not apply. Header controls have this style by default. 

• CCS_NOPARENTALIGN Prevents the control from automatically moving to 
the top or bottom of the parent window. Instead, the control keeps its position 
within the parent window despite changes to the size of the parent window. If the 
CCS_TOP or CCS_BOTTOM style is also used, the height is adjusted to the 
default, but the position and width remain unchanged. 

• CCS_NORESIZE Prevents the control from using the default width and height 
when setting its initial size or a new size. Instead, the control uses the width and 
height specified in the request for creation or sizing. 

• CCS_TOP Causes the control to position itself at the top of the parent window's 
client area and sets the width to be the same as the parent window's width. 

You can also apply the following window styles to a header control (see "Window 
Styles" for more information): 

• WS_CHILD Creates a child window. Cannot be used with the WS_POPUP 
style. 

• WS_ VISIBLE Creates a window that is initially visible. 

• WS_DISABLED Creates a window that is initially disabled. 

• WS_GROUP Specifies the first control of a group of controls in which the user 
can move from one control to the next with the arrow keys. All controls defined 
with the WS_GROUP style after the first control belong to the same group. The 
next control with the WS_GROUP style ends the style group and starts the next 
group (that is, one group ends where the next begins). 

• WS_TABSTOP Specifies one of any number of controls through which the user 
can move by using the TAB key. The TAB key moves the user to the next control 
specified by the WS_TABSTOP style. 

See Also: CHeaderCtrl::CHeaderCtrl 

CHeaderCtrl: :Create 

805 



CHeaderCtrl: :Deleteltem 

CHeaderCtrl: : DeleteItem 
BOOL DeleteItem( int nPos); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
nPos Specifies the zero-based index of the item to delete. 

Remarks 
Deletes an item from a header control. 

See Also: CHeaderCtrl: :InsertItem 

CHeaderCtrl: :Draw Item 
void DrawItem( LPDRAWITEMSTRUCT /pDrawltemStruct); 

Parameters 

Remarks 

/pDrawltemStruct A pointer to a DRAWITEMSTRUCT structure describing the 
item to be painted. 

Called by the framework when a visual aspect of an owner-draw header control 
changes. The itemAction member of the DRAWITEMSTRUCT structure defines 
the drawing action that is to be performed. 

By default, this member function does nothing. Override this member function to 
implement drawing for an owner-draw CHeaderCtrl object. 

The application should restore all graphics device interface (ODI) objects selected 
for the display context supplied in /pDrawltemStruct before this member function 
terminates. 

See Also: CWnd::OnDrawItem 

CHeaderCtrl: : GetItem 
BOOL GetItem( int nPos, HD_ITEM* pHeaderItem ) const; 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

806 

nPos Specifies the zero-based index of the item to retrieve. 

pHeaderltem Pointer to an HD_ITEM structure that receives the new item. This 
structure is used with the InsertItem and SetItem member functions. You should 



Remarks 

set the flags in the mask element before calling to request the other elements get 
filled in. If mask is zero, no data will be returned. 

Retrieves information about a header control item. 

The HD_ITEM structure is defined as follows: 

typedef struct _HD_ITEM 
{ 

UINT mask; 
int 
LPSTR 
HBITMAP 
int 
int 
LPARAM 

HD_ITEM; 

cxy; 
pszText; 
hbm; 
cchTextMax; 
fmt; 
1 Param; 

II width of item 
II address of item string 
II handle of item bitmap 
II length of item string, in characters 

II application-defined item data 

mask Mask flags that indicate which of the other structure members contain valid 
data. Can be a combination of these flags: 

• HDI_BITMAP The hbm member is valid. 

• HDI_FORMAT The fmt member is valid. 

• HDI_LPARAM The IParam member is valid. 

• HDI_ TEXT The pszText and cchTextMax members are valid. 

• HDI_ WIDTH The cxy member is valid and specifies the width of the item. 
The cxy member, if it has a value, is used for the item's width, even if you do 
not use the HDI_ WIDTH masks. 

Note The cxy member can also return a height of an item if HDLHEIGHT is specified in a 
mask. However, the header control currently cannot have vertical orientation, so cxy always 
returns a width. 

fmt Format flags. Can be a combination of the following values: 

• HDF _CENTER Center contents of item. 

• HDF _LEFT Left justify contents of item. 

• HDF _RIGHT Right justify contents of item. 

• HDF _BITMAP The item displays a bitmap. 

• HDF _OWNERDRAW The owner window of the header control draws the 
item. 

• HDF _STRING The item displays a string. 

See Also: CHeaderCtrl: :SetItem 

CHeaderCtrl: :GetItem 

807 



CHeaderCtrl: : GetltemCount 

CHeaderCtrl::GetItemCount 
int GetltemCount( ) const; 

Return Value 
Number of header control items if successful; otherwise -1. 

Remarks 
Retrieves a count of the items in a header control. 

See Also: CHeaderCtrl: : Getltem, CHeaderCtrl: :Setltem 

CHeaderCtrl: : InsertItem 
int Insertltem( int nPos, HD_ITEM* phdi); 

Return Value 
Index of the new item if successful; otherwise -1. 

Parameters 

Remarks 

nPos The zero-based index of the item to be inserted. If the value is zero, the item 
is inserted at the beginning of the header control. If the value is greater than the 
maximum value, the item is inserted at the end of the header control. 

phdi Pointer to an HD _ITEM structure that contains information about the item to 
be inserted. For more information on this structure, see CHeaderCtrl::Getltem. 

Inserts a new item into a header control at the specified index. 

See Also: CHeaderCtrl::Deleteltem, CHeaderCtrl::Getltem 

CHeaderCtrl: :Layout 
BOOL Layout( HD_LAYOUT* pHeaderLayout); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

808 

pHeaderLayout Pointer to an HD_LAYOUT structure, which contains information 
used to set the size and position of a header control. 

Retrieves the size and position of a header control within a given rectangle. This 
function is used to determine the appropriate dimensions for a new header control that 
is to occupy the given rectangle. 



The HD_LAYOUT structure is defined as follows: 

typedef struct _HD_LAYOUT { II hdl 
REeT FAR* prc; II see below 
WINDOWPOS FAR* pwpos; II see below 

HD_LAYOUT; 

pre Pointer to a RECT structure that contains the coordinates of the rectangle in 
which a header control is to be drawn. 

pwpos Pointer to a WINDOWPOS structure that receives information about the 
appropriate size and position of the header control. 

CHeaderCtrl: : SetItem 
BOOL SetItem( int nPos, HD_ITEM* pHeaderltem); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nPos The zero-based index of the item to be manipulated. 

pHeaderItem Pointer to an HD_ITEM structure that contains information about the 
new item. For more information on this structure, see CHeaderCtrl::GetItem. 

Sets the attributes of the specified item in a header control. 

See Also: CHeaderCtrl::GetItem, CHeaderCtrl::GetItemCount 

CHeaderCtrl:: Setltem 

809 



CHotKeyCtrl 

CHotKeyCtrl 

A "hot key control" is a window that enables the user to create a hot key. A "hot key" 
is a key combination that the user can press to perform an action quickly. (For 
example, a user can create a hot key that activates a given window and brings it to 
the top of the Z order.) The hot key control displays the user's choices and ensures 
that the user selects a valid key combination. ' 

The CHotKeyCtrl class provides the functionality of the Windows common hot key 
control. This control (and therefore the CHotKeyCtri class) is available only to 
programs running under Windows 95 and Windows NT version 3.51 and later. 

When the user has chosen a key combination, the application can retrieve the 
specified key combination from the control and use the WM_SETHOTKEY message 
to set up the hot key in the system. Whenever the user presses the hot key thereafter, 
from any part of the system, the window specified in the WM_SETHOTKEY 
message receives a WM_SYSCOMMAND message specifying SC_HOTKEY. This 
message activates the window that receives it. The hot key remains valid until the 
application that called WM_SETHOTKEY exits. 

This mechanism is different from the hot key support that depends on the 
WM_HOTKEY message and the Windows RegisterHotKey and UnregisterHotKey 
functions. 

For more information on using CHotKeyCtri, see Technical Note 60 online. 

#include <afxcmn.h> 

CHotKeyCtrl Class Members 

810 

Construction 

CHotKeyCtrl 

Create 

Constructs a CHotKeyCtrl object. 

Creates a hot key control and attaches it to a 
CHotKeyCtrl object. 



Attributes 

SetHotKey 

GetHotKey 

Operations 

SetRules 

Sets the hot key combination for a hot key control. 

Retrieves the virtual-key code and modifier flags 
of a hot key from a hot key control. 

Defines the invalid combinations and the default 
modifier combination for a hot key control. 

Member Functions 
CHotKeyCtrl: : CHotKeyCtrl 

Remarks 

CHotKeyCtrl( ); 

Constructs a CHotKeyCtrl object. 

See Also: CHotKeyCtrl::Create 

CHotKeyCtrl: : Create 
BOOL Create( DWORD dwStyle, const RECT & reet, 

... CWnd* pParentWnd, UINT nID ); 

Return Value 
Nonzero, if initialization was successful; otherwise O. 

Parameters 

Remarks 

dwStyle Specifies the hot key control's style. Apply any combination of control 
styles. 

reet Specifies the hot key control's size and position. It can be either a CRect object 
or a RECT structure. 

pParentWnd Specifies the hot key control's parent window, usually a CDialog. It 
must not be NULL. 

nID Specifies the hot key control's ID. 

You construct a CHotKeyCtrl object in two steps. First call the constructor, then call 
Create, which creates the hot key control and attaches it to the CHotKeyCtrl object. 

See Also: CHotKeyCtrl: :CHotKeyCtrl 

CHotKeyCtrl: :Create 

811 



CHotKeyCtrl: : GetHotKey 

CHotKeyCtrl: : GetHotKey 
DWORD GetHotKey( ) const; 
void GetHotKey( WORD &wVirtualKeyCode, WORD &wModifiers ) const; 

Return Value 
In the first usage above, a DWORD containing the virtual-key code and modifier 
flags. The low-order byte is the virtual-key code, and the high-order byte is the 
modifier flags. The 16-bit value can be used as the parameter in the SetHotKey 
member function. 

Parameters 

Remarks 

wVirtualKeyCode Virtual-key code of the hot key. 

wModifiers Modifier flags indicating the keys that, when used in combination with 
wVirtualKeyCode, define a hot key combination. 

Call this function to retrieve the virtual-key code and modifier flags of a hot key from 
a hot key control. 

The modifier flags can be a combination of the following values: 

• HOTKEYF_ALT ALTkey 

• HOTKEYF_CONTROL CTRLkey 

• HOTKEYF _EXT Extended key 

• HOTKEYF _SHIFT SHIFf key 

See Also: CHotKeyCtrl: :SetHotKey 

CHotKeyCtrl:: SetHotKey 
void SetHotKey( WORD wVirtualKeyCode, WORD wModifiers ); 

Parameters 

Remarks 

812 

wVirtualKeyCode Virtual-key code of the hot key. 

wModifiers Modifier flags indicating the keys that, when used in combination with 
wVirtualKeyCode, define a hot key combination. For more information on the 
modifier flags, see GetHotKey. 

Call this function to set the hot key combination for a hot key control. 

See Also: CHotKeyCtrl: : GetHotKey 



CHotKeyCtrl: : SetRules 
void SetRules( WORD wlnvalidComb, WORD wModifiers ); 

Parameters 

Remarks 

wlnvalidComb Array of flags that specifies invalid key combinations. It can be a 
combination of the following values: 

• HKCOMB_A ALT 

• HKCOMB_C CTRL 

• HKCOMB_CA CTRL+ALT 

• HKCOMB_NONE Unmodified keys 

• HKCOMB_S SHIFf 

• HKCOMB_SA SHIFf+ALT 

• HKCOMB_SC SHIFf +CTRL 

• HKCOMB_SCA SHIFT+CTRL+ALT 

wModifiers Array of flags that specifies the key combination to use when the user 
enters an invalid combination. For more information on the modifier flags, see 
GetHotKey. 

Call this function to define the invalid combinations and the default modifier 
combination for a hot key control. When a user enters an invalid key combination, 
as defined by flags specified in wlnvalidComb, the system uses the OR operator to 
combine the keys entered by the user with the flags specified in wModifiers. The 
resulting key combination is converted into a string and then displayed in the hot 
key control. 

See Also: CHotKeyCtrl: : GetHotKey , CHotKeyCtrl: :SetHotKey 

CHotKeyCtrl:: SetRules 

813 



CHtmlStream 

CHtmlStream 
CHtmlStream does not have a base class. 

CHtmlStream is a class that manages in-memory HTML. HTML memory files 
are useful for temporarily storing raw bytes or serialized objects prior to their 
transmission. Although it is not derived from CFile, CHtmlStream behaves like 
the CFile-derived class CMemFile, except CHtmlStream is used to store data in 
a temporary buffer prior to sending it out, and the data stored in a CHtmlStream 
memory file cannot be read. 

CHtmlStream objects usually are created automatically and handed to you 
by CHttpServer::ConstructStream; however, you can override 
CHttpServer::ConstructStream and provide your own special functionality. 

CHtmlStream objects can automatically allocate their own memory or you can 
attach your own memory block to the CHtmlStream object by calling Attach. 
In either case, memory for growing the memory file automatically is allocated in 
nGrowBytes-sized increments if nGrowBytes is not zero. Set nGrowBytes with a 
parameter to the constructor. 

The memory will automatically be deleted upon destruction of the CHtmlStream 
object if the memory was originally allocated by the CHtmlStream object; otherwise, 
you are responsible for deallocating the memory you attached to the object. 

CHtmlStream uses the run-time library functions malloc, realloc, and free to 
allocate, reallocate, and deallocate memory; and the intrinsic memcpy to block copy 
memory when growing the buffer. To change this behavior or the behavior when 
CHtmlStream grows a file, derive your own class from CHtmlStream and override 
the appropriate functions. 

#include <afxisapi.h> 

See Also: CHttpServer, CHttpFilter 

CHtmlStream Class Members 
Data Members 

m_nStreamSize Contains the size of the stream. 

Construction 

CHtmIStream Constructs a CHtmIStream object. 

814 



Operations 

Attach 

GetStreamSize 

Close 

InitStream 

Overridables 

Abort 

Reset 

Alloc 

Realloc 

Memcpy 

Free 

Detach 

GrowStream 

Write 

Operators 

operator « 

Attaches a block of memory to CHtmlStream. 

Gets the size of the CHtmlStream. 

Closes the stream and frees the buffer. 

Initializes a stream associated with a CHtmlStream object. 

Ends a stream and ignores all warnings and errors. 

empties a CHtmlStream object. 

allocates memory in a CHtmlStream object. 

reallocates memory in a CHtmlStream object. 

Copies memory to grow a CHtmlStream object. 

frees memory in a CHtmlStream object. 

closes the CHtmlStream. 

Grows a CHtmlStream object. 

Writes data from the buffer to the current stream. 

Writes data into a stream. 

Member Functions 
CHtmlStream: : Abort 

Remarks 

virtual void Abort( ); 

Called by the framework to end the stream and make the CHtmlStream unavailable 
for writing. 

Use Abort to clean up the stream after a catastrophic error. Use Reset to erase the 
content of the stream if you plan to write to it again. 

Override this member function to implement custom cleanup. 

See Also: CHtmIStream::Reset, CHtmIStream::Close 

CHtmlStream: : Alloc 
virtual BYTE* Alloc( DWORD nBytes ); 

Return Value 
A pointer to the memory block that was allocated, or NULL if the allocation failed. 

CHtmlStream::Alloc 

815 



CHtmlStream: :Attach 

Parameters 

Remarks 

nBytes Number of bytes of memory to be allocated. 

Called by the framework to allocate memory. Override this function to implement 
custom memory allocation. If you override this function, override Free, too. 

The default implementation uses the run-time library function malloc to allocate 
memory. 

See Also: CHtmIStream::Realloc 

CHtmlStream: : Attach 
void Attach( BYTE* lpBuf{er, DINT nBuf{erSize, DINT nGrowBytes = 0 ); 

Parameters 

Remarks 

lpBuf{er Pointer to the buffer to be attached to CHtmlStream. 

nBuf{erSize An integer that specifies the size of the buffer in bytes. 

nGrowBytes The memory allocation increment in bytes. 

Call this function to attach a block of memory to CHtmlStream. This causes 
CHtmlStream to use the block of memory as the memory file. 

If nGrowBytes is 0, CHtmlStream will set the file length to nBuf{erSize. This means 
that the data in the memory block before it was attached to CHtmlStream will be 
used as the file data. Memory files created in this manner cannot be grown. 

Because the file cannot be grown, be careful not to cause CHtmlStream to attempt 
to grow the file. Don't use operator « to add data. 

See Also: CHtmlStream: :Detach 

CHtmlStream: :CHtmlStream 
CHtmlStream( DINT nGrowBytes = 4096 ); 
CHtmlStream( BYTE* lpBuf{er, DINT nBuf{erSize, DINT nGrowBytes = 0 ); 

Parameters 

816 

nGrowBytes The memory allocation increment in bytes. 

lpBuf{er Pointer to a buffer that receives information of the size nBuf{erSize. 

nBuf{erSize An integer that specifies the size of the file buffer, in bytes. 



CHtmlStream: :Detach 

Remarks 
This member function is called by the framework during the construction of a 
CHtmlStream object. 

Normally, a CHtmlStream object is created automatically and handed to you by 
CHttpServer::ConstructStream. You can change the behavior of the CHtmlStream 
object associated with a CHttpServerContext object by overriding 
CHttpServer::ConstructStream. For example, you might want to set nGrowBytes 
to a specific value. Use caution if you set nGrowBytes, because it will affect the 
performance of your code. The nGrowBytes parameter tells MFC how rapidly to 
increase the memory block associated with the stream. If the value is large, your code 
will be faster, but it will waste memory. If the value is small, your code will use less 
memory, but it will waste time by allocating memory more frequently. 

See Also: CHtmIStream::lnitStream, CHtmIStream::Attach, 
CHtmlStream: :Alloc 

CHtmlStream: :Close 

Remarks 

virtual void Close( ); 

Called by the framework to close the HTML stream and free the buffer. 

Override this member function to perform an action before the HTML stream is 
closed. 

See Also: CHtmlStream: :Abort, CHtmlStream: :Reset 

CHtmlStream: :Detach 
BYTE* Detach( ); 

Return Value 

Remarks 

A pointer to the memory block that contains the contents of the HTML stream. 

Call this function to get a pointer to the memory block being used by CHtmlStream. 

Calling this function also closes the CHtmlStream. You can reattach the memory 
block to CHtmlStream by calling Attach. If you want to reattach the file and use the 
data in it, you should call GetStreamSize to get the length of the file before calling 
Detach. Note that if you attach a memory block to CHtmlStream so that you can use 
its data (nGrowBytes == 0), then you will not be able to grow the memory. 

See Also: CHtmlStream: : Attach 

817 



CHtmlStream: : Free 

CHtmlStream: :Free 
virtual void Free( BYTE* IpMem); 

Parameters 

Remarks 

IpMem Pointer to the memory to be deallocated. 

Called by the framework to free memory. Override this function to implement 
custom memory deallocation. If you override this function, you will probably want 
to override Alloc and Realloc as well. 

See Also: CHtmlStream: :Alloc, CHtmlStream: :Realloc 

CHtmlStream: : GetStreamSize 
DWORD GetStreamSize( ) const; 

Return Value 

Remarks 

The length of the file. 

Call this member function to obtain the size of the HTML stream in bytes. 

See Also: CHtmlStream: :m_nStreamSize, CHtmlStream: : GrowStream 

CHtmlStream: : GrowStream 
virtual void GrowStream( DWORD dwNewLen ); 

Parameters 

Remarks 

818 

dwNewLen New size of the memory file. 

Called by the framework to expand memory. You can override it if you want to 
change how CHtmlStream expands its memory. The default implementation 
calls Realloc to increase an existing block (or Alloc to create a memory block), 
allocating memory in multiples of the nGrowBytes value specified in the 
constructor or Attach call. 

See Also: CHtmIStream::m_nStreamSize, CHtmIStream::GetStreamSize 



CHtmlStream: :Realloc 

CHtmlStream: : InitStream 

Remarks 

virtual void InitStream( ); 

Called by the framework to initialize a CHtmlStream. Override InitStream to 
implement per-instance initialization. For example, override this function to specify 
HTML headers that you always need. 

See Also: CHtmIStream::CHtmIStream 

CHtmlStream: :Memcpy 
virtual BYTE* Memcpy( BYTE* IpMemTarget, const BYTE* IpMemSource, UINT nBytes ); 

Return Value 
A copy of IpMemTarget. 

Parameters 

Remarks 

IpMemTarget Pointer to the memory block into which the source memory will be 
copied. 

IpMemSource Pointer to the source memory block. 

nBytes Number of bytes to be copied. 

Called by the framework to transfer data to and from the stream. Override this 
function if you want to change the way that CHtmlStream does these memory copies. 

CHtmlStream: :Realloc 
virtual BYTE* Realloc( BYTE* IpMem, DWORD nBytes ); 

Return Value 
A pointer to the memory block that was reallocated (and possibly moved), or NULL if 
the reallocation failed. 

Parameters 

Remarks 

IpMem A pointer to the memory block to be reallocated. 

nBytes New size for the memory block. 

Called by the framework to reallocate memory. Override this function to implement 
custom memory reallocation. If you override this function, you'll probably want to 
override Alloc and Free as well. 

See Also: CHtmlStream: :Free, CHtmlStream: :Alloc 

819 



CHtmlStream: :Reset 

CHtmlStream: :Reset 

Remarks 

virtual void Reset( ); 

Called by the framework to empty a previously initialized CHtmlStream object. 
Override this member function to require a special action before emptying a 
CHtmlStream object. 

See Also: CHtmIStream::Close, CHtmIStream::Abort 

CHtmlStream:: Write 
virtual void Write( const void* IpBuj, UINT nCount ); 

Parameters 

Remarks 

IpBuJ A pointer to the user-supplied buffer that contains the data to be written to the 
stream. 

nCount The number of bytes to be transferred from the buffer. 

Called by the framework to write data from a buffer to the stream associated with the 
CHtmlStream object. 

See Also: CHtmIStream::operator« 

Operators 
CHtmlStream::operator « 

Remarks 

. 820 

CHtmlStream& operator«( LPCTSTR psz ); 
CHtmlStream& operator«( short int w ); 
CHtmlStream& operator«( long int dw ); 
CHtmlStream& operator«( const CHtmlStream& stream ); 
CHtmlStream& operator«( double d); 
CHtmlStream& operator«( floatJ); 
CHtmlStream& operator«( const CByteArray& array); 
CHtmlStream& operator«( const CLongBinary& blob); 

The CHtmlStream insertion «<) operator writes the specified string or integer to the 
HTML stream. The string version of the operator writes the string without 
modification. The integer override versions of the operator format the value as 
decimal text before writing it. 



CHtmIStream::m_nStreamSize 

You can use the CHtmlStream& override of this function to append the content of 
one HTML stream to another. 

See Also: CHtmIStream:: Write 

Data Members 
CHtmlStream: :m_nStreamSize 
Remarks 

Contains the size for an HTML stream. m_nStreamSize is a protected variable of 
type UINT. Only reference this variable if you want to override functions like Alloc 
and Free and GrowStream. 

See Also: CHtmIStream::GetStreamSize, CHtmIStream::GrowStream 

821 



CHttpConnection 

CHttpConnection 

CHttpConnection 

The MFC class CHttpConnection manages your connection to an HTTP server. HTTP 
is one of three Internet server protocols implemented by the MFC WinInet classes. 

The class CHttpConnection contains a constructor and one member function, 
OpenRequest, that manages connections to a server with an HTTP protocol. 

To communicate with an HTTP server, you must first create an instance of 
ClnternetSession, and then create a CHttpConnection object. You never create a 
CHttpConnection object directly; rather, call ClnternetSession::GetHttpConnection, 
which creates the CHttpConnection object and returns a pointer to it. 

To learn more about how CHttpConnection works with the other MFC Internet classes, 
see the article "Internet Programming with WinInet" in Visual c++ Programmer's Guide 
online. For m~re information about connecting to servers using the other two supported 
Internet protocols, gopher and FTP, see the classes CGopherConnection and 
CFtpConnection. 

#include <afxinet.h> 

See Also: ClnternetConnection, CHttpFile 

CHttpConnection Class Members 
Construction 

CHttpConnection 

Operations 

OpenRequest 

Creates a CHttpConnection object. 

Opens an HTTP request. 

See Also: CFtpConnection, CGopherConnection, ClnternetConnection, 
CHttpFile 

Member Functions 
CHttpConnection: :CHttpConnection 

CHttpConnection( ); 

822 



CHttpConnection::OpenRequest 

Remarks 
This member function is called to construct a CHttpConnection object. You never 
create a CHttpConnection directly. Rather, you create an object by calling 
ClnternetSession:: GetHttpConnection. 

See Also: ClnternetSession::GetHttpConnection, CFtpConnection, 
CGopherConnection, ClnternetConnection 

CHttpConnection: :OpenRequest 
CHttpFile* OpenRequest( LPCTSTR pstrVerb, LPCTSTR pstrObjectName, 

... LPCTSTR pstrReferer = NULL, DWORD dwContext = 1, 

... LPCTSTR* pstrAcceptTypes = NULL, LPCTSTR pstrVersion = NULL, 

... DWORD dwFlags = INTERNET_FLAG_EXISTING_CONNECT ); 
CHttpFile* OpenRequest( int n Verb, LPCTSTR pstrObjectName, 

... LPCTSTR pstrReferer = NULL, DWORD dwContext = 1, 

Return Value 

... LPCTSTR* pstrAcceptTypes = NULL, LPCTSTR pstrVersion = NULL, 

... DWORD dwFlags = INTERNET_FLAG_EXISTING_CONNECT ); 

A pointer to the CHttpFile object requested. 

Parameters 
pstrVerb A pointer to a string containing the verb to use in the request. If NULL, 

"GET" is used. 

pstrObjectName A pointer to a string containing the target object of the specified 
verb. This is generally a filename, an executable module, or a search specifier. 

pstrReferer A pointer to a string that specifies the address (URL) of the document 
from which the URL in the request (pstrObjectName) was obtained. If NULL, no 
HTTP header is specified. 

dwContext The context identifier for the OpenRequest operation. See Remarks for 
more information about dwContext. 

pstrAcceptTypes A pointer to a null-terminated string indicating content types 
accepted by the client. If the string is NULL, the servers interpret that the client 
only accepts documents of type "text/*" (that is, only text documents and not 
pictures or other binary files). The content type is equivalent to the CGI variable 
CONTENT_TYPE, which identifies the type of data for queries that have attached 
information, such as HTTP POST and PUT. 

pstrVersion A pointer to a string defining the HTTP version. If NULL, "HTTP/I.O" 
is used. 

dwFlags Any combination of the INTERNET_ FLAG_ * flags. See the Remarks for 
a description of possible dwFlags values. 

823 



CHttpConnection::OpenRequest 

Remarks 

824 

n Verb A number associated with the HTTP request type. Can be one of the 
following: 

HTTP request type nVerb value 

HTTP_VERB_GET 1 

HTTP_VERB_HEAD 2 

HTTP_VERB_PUT 3 

HTTP_VERB_LINK 4 

HTTP_VERB_DELETE 5 

HTTP_VERB_UNLINK 6 

Call this member function to open an HTTP connection. 

dwFlags can be one of the following: 

Internet flag Description 

INTERNET_FLAG_RELOAD Forces a download of the requested file, 
object, or directory listing from the 
origin server, not from the cache. 

INTERNET_FLAG_DONT_CACHE Does not add the returned entity to the 
cache. 

INTERNET_FLAG_MAKE_PERSISTENT Adds the returned entity to the cache 
as a persistent entity. This means that 
standard cache cleanup, consistency 
checking, or garbage collection cannot 
remove this item from the cache. 

INTERNET_FLAG_SECURE Uses secure transaction semantics. This 
translates to using SSLIPCT and is only 
meaningful in HTTP requests 

INTERNET_FLAG_NO_AUTO_REDIRECT Used only with HTTP, specifies that 
redirections should not be automatically 
handled in CHttpFile::SendRequest. 

Override the dwContext default to set the context identifier to a value of your 
choosing. The context identifier is associated with this specific operation of the 
CHttpConnection object created by its ClnternetSession object. The value is 
returned to ClnternetSession::OnStatusCallback to provide status on the operation 
with which it is identified. See the article "Internet First Steps: WinInet" online for 
more information about the context identifier. 

See Also: CHttpFile, ClnternetSession, CFtpConnection, CGopherConnection, 
ClnternetConnection 



CHttpFile 

CHUpFile 

The class CHttpFile provides the functionality to request and read files on an HTTP 
server. 

If your Internet session reads data from an HTTP server, you must create an instance 
of CHttpFile. 

To learn more about how CHttpFile works with the other MFC Internet classes, see 
the article "Internet Programming with WinInet" in Visual C++ Programmer's Guide 
online. 

#include <afxinet.h> 

See Also: ClnternetFile, CGopherFile, CHttpConnection 

CHttpFile Class Members 
Construction 

CHttpFile 

Attributes 

AddRequestHeaders 

SendRequest 

Querylnfo 

Query InfoStatusCode 

GetVerb 

GetObject 

GetFileURL 

Close 

Creates a CHttpFile object. 

Adds headers to the request sent to an HTTP server. 

Sends a request to an HTIP server. 

Returns the response or request headers from the HTTP server. 

Retrieves the status code associated with an HTTP request 
and places it in the supplied dwStatusCode parameter. 

Gets the verb that was used in a request to an HTTP server. 

Gets the target object of the verb in a request to an HTTP 
server. 

Gets the URL for the specified file. 

Closes the CHttpFile and frees its resources. 

See Also: ClnternetFile, CGopherFile, CHttpConnection 

CHttpFile 

825 



CHttpFile::AddRequestHeaders 

Member Functions 
CHttpFile: : AddRequestHeaders 

BOOL AddRequestHeaders( LPCTSTR pstrHeaders, DWORD dwFlags = 
10+ HTTP_ADDREQ_FLAG_ADD_IF_NEW, int dwHeadersLen = -1 ); 

BOOL AddRequestHeaders( CString& str, DWORD dwFlags = 
10+ HTTP_ADDREQ_FLAG_ADD_IF_NEW ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

826 

pstrHeaders A pointer to a string containing the header or headers to append to the 
request. Each header must be terminated by a CRILF pair. 

dwFlags Modifies the semantics of the new headers. Can be one of the following: 

• HTTP_ADDREQ_FLAG_COALESCE Merges headers of the same name, 
using the flag to add the first header found to the subsequent header. For 
example, "Accept: text/*" followed by "Accept: audio/*" results in the 
formation of the single header "Accept: text/*, audio/*". It is up to the calling 
application to ensure a cohesive scheme with respect to data received by 
requests sent with coalesced or separate headers. 

• HTTP_ADDREQ_FLAG_REPLACE Performs a remove and add to replace 
the current header. The header name will be used to remove the current header, 
and the full value will be used to add the new header. If the header-value is 
empty and the header is found, it is removed. If not empty, the header-value is 
replaced. 

• HTTP_ADDREQ_FLAG_ADD_IF_NEW Only adds the header if it does 
not already exist. If one exists, an error is returned. 

• HTTP_ADDREQ_FLAG_ADD Used with REPLACE. Adds the header if it 
doesn't exist. 

dwHeadersLen The length, in characters, of pstrHeaders. If this is -lL, then 
pstrHeaders is assumed to be zero-terminated and the length is computed. 

str A reference to a CString object containing the request header or headers to be 
added. 

Call this member function to add one or more HTTP request headers to the HTTP 
request handle. 



CHttpFile::CHttpFile 

AddRequestHeaders appends additional, free-format headers to the HTTP request 
handle. It is intended for use by sophisticated clients who need detailed control over 
the exact request sent to the HTTP server. 

Note The application can pass multiple headers in pstrHeaders or strfor an 
AddRequestHeaders call using HTTP_ADOREQ_FLAG_ADD or 
HTTP_ADDREQ_FLAG_ADDJF_NEW. If the application tries to remove or replace a header 
using HTTP_ADDREQ_FLAG_REMOVE or HTTP_ADDREQ_FLAG_REPLACE, only one 
header can be supplied in /pszHeaders. 

See Also: CInternetFile 

CHttpFile: :CHttpFile 
CHttpFile( HINTERNET hFile, HINTERNET hSession, LPCTSTR pstrObject, 

10+ LPCTSTR pstrServer, LPCTSTR pstrVerb, DWORD dwContext ); 
CHttpFile( HINTERNET hFile, LPCTSTR pstrVerb, LPCTSTR pstrObject, 

10+ CHttpConnection* pConnection ); 

Parameters 

Remarks 

hFile A handle to an Internet file. 

hSession A handle to an Internet session. 

pstrObject A pointer to a string containing the CHttpFile object. 

pstrServer A pointer to a string containing the name of the server. 

pstrVerb A pointer to a string containing the method to be used when sending the 
request. Can be POST, HEAD, or GET. 

dwContext The context identifier for the CHttpFile object. See Remarks for more 
information about this parameter. 

pConnection A pointer to a CHttpConnection object. 

This member function is called to construct a CHttpFile object. 

You never construct a CHttpFile object directly; rather call 
CInternetSession::OpenURL or CHttpConnection::OpenRequest instead. 

The default value for dwContext is sent by MFC to the CHttpFile object from the 
CInternetSession object that created the CHttpFile object. When you call 
CInternetSession: :OpenURL or CHttpConnection to construct a CHttpFile object, 
you can override the default to set the context identifier to a value of your choosing. 
The context identifier is returned to CInternetSession: :OnStatusCallback to provide 
status on the object with which it is identified. See the article "Internet First Steps: 
Winlnet" online for more information about the context identifier. 

See Also: CInternetFile 

827 



CHttpFile::Close 

CHttpFile: :Close 

Remarks 

virtual void Close( ); 

Closes a CHttpFile and frees its resources. Use this member function only after a 
successful call to SendRequest or on a CHttpFile object successfully created by 
OpenURL. . 

See Also: CInternetFile 

CHttpFile: : GetFileURL 
virtual CString GetFileURL() const; 

Return Value 

Remarks 

A CString object containing a URL referencing the resource associated with this file. 

Call this member function to get the name of the HTTP file as a URL. Use this 
member function only after a successful call to SendRequest or on a CHttpFile 
object successfully created by OpenURL. 

See Also: ClnternetFile 

CHttpFile: : GetObject 
CString GetObject( ) const; 

Return Value 

Remarks 

A CString object containing the name of the object. 

Call this member function to get the name of the object associated with this 
CHttpFile. Use this member function only after a successful call to SendRequest or 
on a CHttpFile object successfully created by OpenURL. 

See Also: ClnternetFile 

CHttpFile: : GetVerb 
CString GetVerb( ) const; 

Return Value 
A CString object containing the name of the HTTP verb (or method). 

828 



CHttpFi1e::QueryInfo 

Remarks 
Call this member function to get the HTTP verb (or method) associated with this 
CHttpFile. Use this member function only after a successful call to SendRequest 
or on a CHttpFile object successfully created by OpenURL. 

See Also: ClnternetFile 

CHttpFile::QueryInfo 
BOOL QueryInfo( DWORD dwlnfoLevel, LPVOID ZpvBujfer, 

.. LPDWORD IpdwBujferLength, LPDWORD lpdwlndex = NULL) const; 
BOOL QueryInfo( DWORD dwlnfoLevel, CString& str, 

.. LPDWORD dwlndex = NULL) const; 
BOOL Querylnfo( DWORD dwlnfoLevel, SYSTEMTIME* pSysTime, 

.. LPDWORD dwlndex = NULL) const; 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 
dwlnfoLevel A combination of the attribute to query and the following flags that 

specify the type of information requested: 

• HTTP_QUERY_CUSTOM Finds the header name and returns this value in 
IpvBujfer on output. HTTP_QUERY_CUSTOM throws an assertion if the 
header isn't found. 

• HTTP_QUERY_FLAG_REQUEST_HEADERS Typically, the application 
queries the response headers, but an application can also query request headers 
by using this flag. 

• HTTP_QUERY_FLAG_SYSTEMTIME For those headers whose value is a 
date/time string, such as "Last-Modified-Time," this flag returns the header 
value as a standard Win32 SYSTEMTIME structure that does not require the 
application to parse the data. If you use this flag, you may want to use the 
SYSTEMTIME override of the function. 

• HTTP_QUERY_FLAG_NUMBER For those headers whose value is a 
number, such as the status code, this flag returns the data as a 32-bit number. 

IpvBujfer A pointer to the buffer that receives the information. 

IpdwBujferLength On entry, this points to a value containing the length of the data 
buffer, in number of characters or bytes. See the Remarks section for more 
detailed information about this parameter. 

829 



CHttpFile::Querylnfo 

Remarks 

830 

lpdwlndex A pointer to a zero-based header index. Can be NULL. Use this 
flag to enumerate multiple headers with the same name. On input, lpdwlndex 
indicates the index of the specified header to return. On output, lpdwlndex 
indicates the index of the next header. If the next index cannot be found, 
ERROR_HTTP _HEADER_NOT_FOUND is returned. See the Remarks 
section for a table of the possible values. 

str A reference to the CString object receiving the returned information. 

dwlndex An index value. See lpdwlndex. 

pSysTime A pointer to a Win32 SYSTEMTIME structure. 

Call this member function to return response or request headers from an HTTP 
request. Use this member function only after a successful call to SendRequest 
or on a CHttpFile object successfully created by OpenURL. 

You can retrieve the following types of data from QueryInfo: 

• strings (default) 

• SYSTEMTIME (for "Data:" "Expires:" etc, headers) 

• DWORD (for STATUS_CODE, CONTENT_LENGTH, etc.) 

When a string is written to the buffer, and the member function succeeds, 
IpdwBufferLength contains the length of the string in characters minus 1 for 
the terminating NULL character. 

The possible lpdwlndex or dwlndex values include: 

• HTTP_QUERY_MIME_VERSION 

• HTTP_QUERY_CONTENT_TYPE 

• HTTP_QUERY_CONTENT_TRANSFER_ENCODING 

• HTTP_QUERY_CONTENT_ID 

• HTTP_QUERY_CONTENT_DESCRIPTION 

• HTTP_QUERY_CONTENT_LENGTH 

• HTTP_QUERY_ALLOWED_METHODS 

• HTTP_QUERY_PUBLIC_METHODS 

• HTTP_QUERY_DATE 

• HTTP_QUERY_EXPIRES 

• HTTP_QUERY_LAST_MODIFIED 

• HTTP_QUERY_MESSAGE_ID 

• HTTP_QUERY_URI 



CHttpFile::QueryInfoStatusCode 

• HTTP_QUERY_DERIVED_FROM 

• HTTP_QUERY_LANGUAGE 

• HTTP_QUERY_COST 

• HTTP_QUERY_WWW_LINK 

• HTTP_QUERY_PRAGMA 

o HTTP_QUERY _VERSION 

• HTTP_QUERY_STATUS_CODE 

• HTTP_QUERY_STATUS_TEXT 

• HTTP_QUERY_RAW_HEADERS 

• HTTP_QUERY_RAW_HEADERS_CRLF 

See Also: CInternetFile, CHttpConnection::OpenRequest, CFtpConnection, 
CGopherConnection, CInternetConnection 

CHttpFile: : Query InfoStatusCode 
BOOL QueryInfoStatusCode( DWORD& dwStatusCode ) const; 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

dwStatusCode A reference to a status code. Status codes indicate the success or 
failure of the requested event. See Remarks for a selection of status code 
descriptions. 

Call this member function to get the status code associated with an HTTP request and 
place it in the supplied dwStatusCode parameter. Use this member function only after 
a successful call to SendRequest or on a CHttpFile object successfully created by 
OpenURL. 

HTTP status codes fall into groups indicating the success or failure of the request. The 
following tables outline the status code groups and the most common HTTP status 
codes. 

Group 

200-299 

300-399 

400-499 

500-599 

Meaning 

Success 

Information 

Request error 

Server error 

831 



CHttpFile::SendRequest 

Common HTTP Status Codes: 

Status code 

200 

400 

404 

405 

500 

503 

See Also: CInternetFile 

Meaning 

URL located, transmission follows 

Unintelligble request 

Requested URL not found 

Server does not support requested method 

Unknown server error 

Server capacity reached 

CHttpFile: : SendRequest 
BOOL SendRequest( LPCTSTR pstrHeaders = NULL, DWORD dwHeadersLen = 0, 

... LPVOID lpOptional = NULL, DWORD dwOptionalLen = 0 ); 
throw ( CInternetException ) 

BOOL SendRequest( CString& strHeaders, LPVOID lpOptional = NULL, 
... DWORD dwOptionalLen = 0 ); 
throw ( CInternetException ) 

Return Value 
Nonzero if successful; otherwise O. If the call fails, determine the cause of the failure 
by examining the thrown CInternetException object. 

Parameters 

Remarks 

832 

pstrHeaders A pointer to a string containing the name of the headers to send. 

dwHeadersLen The length of the headers identified by pstrHeaders. 

lpOptional Any optional data to send immediately after the request headers. This is 
generally used for POST and PUT operations. This can be NULL if there is no 
optional data to send. 

dwOptionalLen The length of lpOptional. 

strHeaders A string containing the name of the headers for the request being sent. 

Call this member function to send a request to an HTTP server. 

See Also: CInternetFile 



CHttpFilter 
CHttpFilter does not have a base class. 

CHttpFilter creates and manages, with CHttpFilterContext, a Hypertext Transfer 
Protocol (HTTP) filter object. An HTTP filter is a replaceable dynamic link library 
(DLL) that the server calls on every HTTP request. When the filter is loaded, it tells 
the server what sort of notifications it is interested in. After that, whenever the 
selected events occur, the filter is called and given the opportunity to process that 
event. 

ISAPI (Internet Server API) filters are powerful enough to allow for the following 
applications: 

1. Custom authentication schemes 

2. Compression 

3. Encryption 

4. Logging 

5. Traffic analysis or other request analysis 

Multiple filters can be installed. The notification order is based on the priority 
specified by the filter and then the load order in the registry for any ties. Consult your 
filter's documentation to see exactly how to install your filter. 

Note Once a filter begins processing a request, it will receive the data regardless of whether 
the request is for a file, a CGI (Common Gateway Interface) application or an ISAPI application. 

The filter applications sit between the network connection to the client and the HTTP 
server. Depending on the options that the filter application chooses, it can act on 
several server actions, including reading raw data from the client, processing the 
headers, communications over a secure port (PCT -Personal Communications 
Technology, SSL- Secure Sockets Layer, and others), or several other stages in 
the processing of the HTTP request. 

To set the filter notifications that your filter will use, see GetFilterVersion. 

For more information on Internet filters, see "IS API Extensions: Filters" in 
Visual c++ Programmer's Guide online. For information about creating an Internet 
filter with ISAPI Extension Wizard, see "Steps to Create a Typical ISAPI Filter" in 
Visual C++ Programmer's Guide online. 

#include <afxisapi.h> 

See Also: CHttpFilterContext, CHttpServer, CHttpServerContext 

CHttpFilter 

833 



CHttpFilter::CHttpFilter 

CHttpFilter Class Members 
Construction 

CHttpFilter 

Attributes 

GetFilterVersion 

Overridables 

OnReadRawData 

OnPreprocHeaders 

OnAuthentication 

OnUrlMap 

OnSendRawData 

OnLog 

OnEndOfNetSession 

Operation 

HttpFilterProc 

Constructs a CHttpFilter object. 

Gets the version of the filter after the CHttpFilter 
object is constructed. 

Allows the application to see the raw data. The 
data returned will contain both headers and data. 

Notifies the client that the server has preprocessed 
the client headers. 

Authenticates the client. 

Notifies a client when a server is mapping 
a logical URL to a physical path. 

Sends raw data from the server to the client. 

Logs information to a server file. 

Notifies the client that the session is ending. 

Returns a message indicating how an event 
that passed through the filter was processed. 
Called each time an event occurs. 

See Also: CHttpFilterContext 

Member Functions 
CHttpFilter: :CHttpFilter 

Remarks 

834 

CHttpFilter( ); 

This member function is called by the framework during the construction of a 
CHttpFilter object. 



CHttpFilter::GetFilterVersion 

CHttpFilter::GetFilterVersion 
virtual BOOL GetFilterVersion( PHTTP_FILTER_VERSION pVer); 

Return Value 
Nonzero if the filter was properly loaded. If the filter returns 0, then the filter 
application will be unloaded and it will not receive any notifications. 

Parameters 

Remarks 

pVer A pointer to the HTTP_FILTER_VERSION structure containing the server's 
version information and fields for the filter to indicate version number and 
notifications. The filter application also includes space to register a small 
description of itself. The following two flags are set in the structure by the default 
implementation: 

• dwFlags The priority notification flag, SF _NOTIFY_ORDER_DEFAULT, 
is set by default. See Remarks for a list of the notification flags and their 
descriptions. 

• dwFilterVersion HTTP_FILTER_REVISION is set by default. This flag 
indicates the version of the specification used by the server. 

This member function is called by the internet server to get the filter version indicated 
by p Ver. It is called only once, after the CHttpFilter object is constructed. 

Use dwFlags to specify the notifications in the pVer member that interest your server. 
Here is a list of the valid flags for dwFlags: 

SF_NOTIFY_ORDER_DEFAULT Loads the filter at the default priority. This 
value is recommended because other priority notifications can have a strong impact 
on performance and scalability. 

SF_NOTIFY_ORDER_LOW Loads the filter at low priority. 

SF_NOTIFY_ORDER_MEDIUM Loads the filter at medium priority. 

SF_NOTIFY_ORDER_HIGH Loads the filter at high priority. 

SF_NOTIFY_SECURE_PORT Notifies the application that it is passing data 
through a secure port. 

SF _NOTIFY _NONSECURE_PORT Notifies the application that it is passing data 
through a nonsecure port. 

Note If you set neither SF_NOTIFY _NONSECURE_PORT nor SF _NOTIFY _SECURE_PORT, 
the server defaults to both, which allows processing data through any port. 

SF _NOTIFY_READ_RAW _DATA Allows the application to see the raw data. The 
data returned to the client will contain both headers and data. 

SF _NOTIFY _PREPROC_HEADERS The server has pre-processed the headers. 

835 



CHttpFilter::HttpFilterProc 

SF_NOTIFY_AUTHENTICATION The server is authenticating the client. 

SF_NOTIFY _URL_MAP The server is mapping a logical URL to a physical path. 

SF_NOTIFY_SEND _RAW_DATA The server is sending raw data back to the 
client. 

SF_NOTIFY_LOG The server is writing information to the server log. 

SF _NOTIFY_END _ OF _NET_SESSION The session with the client is ending. 

See Also: HTTP_FILTER_VERSION, CHttpFilter::HttpFilterProc 

CHttpFilter: :HttpFilterProc 
virtual DWORD HttpFilterProc( PHTTP_FILTER_CONTEXT pfc, 

.. DWORD NotijicationType, LPVOID pvNotijication ); 

Return Value 
Indicates how the application handled the event. Indicated by a dwFlags value; see 
GetFilterVersion Remarks fQr a list of these values. 

Parameters 

Remarks 

836 

pIc A pointer to an HTTP_FILTER_CONTEXT structure. The 
HTTP_FILTER_CONTEXT structure pointed to by this parameter contains 
context information. The pfc structure member can be used by the filter to associate 
any context information with the HTTP request. The 
SF_NOTIFY_END_OF_NET_SESSION notification can be used to release any 
such context information. 

NotijicationType IndiCates the type of event being processed: Valid types are listed in 
GetFilterVersion. 

pvNotification A notification-specific structure. 

Notification Type pvNotification points to 

SF_NOTIFY _READ_RA W _DATA HTTP_FILTER_RAW_QATA 

SF_NOTIFY _SEND_RAW _DATA HTTP_FILTER_RAW_DATA 

SF_NOTIFY _PREPROC_HEADERS HTTP_FILTER_PREPROC_HEADERS 

SF_NOTIFY_AUTHENTICATION HTTP_FILTER_AUTHENT 

SF_NOTIFY _URL_MAP HTTP_FILTER_URL_MAP 

SF_NOTIFY_LOG HTTP_FILTER_LOG 

MFC Calls 

OnReadRawData 

OnSendRawData 

OnPreprocHeaders 

OnAuthentication 

OnUrlMap 

OnLog 

This member function is called by the framework to process data every time it passes 
through the filter. HttpFilterProc will call the appropriate CHttpFilter member 
functions, depending on the notification types given. For example, HttpFilterProc 
will call OnPreprocHeaders if the notification type is 
SF _NOTIFY _PREPROC_HEADERS. 



CHttpFilter::OnAuthentication 

HttpFilterProc is where the core work of the ISAPI filter applications is done. The 
various structures pointed to by pvNotificatioll (listed in the table above) contain data 
and function pointers specific to these operations. See the structure details for more 
information about how data is processed by HttpFilterProc. 

You can override the individual handlers (listed in the third column, above) to change 
the way data in their associated structures is processed. 

See Also: HTTP_FILTER_CONTEXT, HTTP_FILTER_AUTHENT, 
HTTP_FILTER_PREPROC_HEADERS, HTTP_FILTER_RAW_DATA, 
HTTP _FILTER_URL_MAP, HTTP_FILTER_LOG 

CHttpFilter: : OnAuthentication 
virtual DWORD OnAuthentication( CHttpFilterContext* pic, 

... PHTTP_FILTER_AUTHENT pAuthent); 

Return Value 
One of the following notification types: 

SF _STATUS_REQ_FINISHED The filter has handled the HTTP request. The 
server should disconnect the session. 

SF _STATUS_REQ_FINISHED_KEEP _CONN Same as 
SF _STATUS_REQ_FINISHED except the server should keep the TCP session 
open if the option was negotiated. 

SF _STATUS_REQ_NEXT_NOTIFICATION The next filter in the notification 
chain should be called. 

SF _STATUS_REQ_HANDLED_NOTIFICATION This filter handled the 
notification. No other handlers should be called for this particular notification. 

SF _STATUS_REQ_ERROR An error occurred. The server should use the Win32 
API SetLastError to indicate the error to the client. 

SF _STATUS_REQ_READ_NEXT The filter is an opaque stream filter; Negotiate 
the session parameters. Only valid for raw read notification. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError and 
indicate the error to the client. 

Parameters 
pic A CHttpFilterContext object, which contains context information. The 

CHttpFilterContext object can be used by the filter to associate any context 
information with the HTTP request. 

pAuthent A pointer to an HTTP_FILTER_AUTHENT structure. 

837 



CHttpFilter::OnEndOtNetSession 

Remarks 
This member function is called by the framework to authenticate the client. 

Override this member function to implement your own authentication. The default 
implementation does nothing. 

See Also: CHttpFiiter: :HttpFilterProc, HTTP_FILTER_AUTHENT, 
CHttpFilterContext 

CHttpFilter: : OnEndOfN etSession 
virtual DWORD OnEndOfNetSession( CHttpFilterContext* pfc ); 

Return Value 
One of the following notification types: 

SF _STATUS_REQ_FINISHED The filter has handled the HTTP request. The 
server should disconnect the session. 

SF _STATUS_REQ_FINISHED_KEEP _CONN Same as 
SF _STATUS_REQ_FINISHED except the server should keep the TCP session 
open if the option was negotiated. 

SF _STATUS_REQ_NEXT_NOTIFICATION The next filter in the notification 
chain should be called. 

SF _STATUS_REQ_HANDLED_NOTIFICATION This filter handled the 
notification. No other handlers should be called for this particular notification. 

SF _STATUS_REQ_ERROR An error occurred. The server should use the Win32 
API SetLastError to indicate the error to the client. 

SF _STATUS_REQ_READ_NEXT The filter is an opaque stream filter; Negotiate 
the session parameters. Only valid for raw read notification. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError and 
indicate the error to the client. 

Parameters 

Remarks 

838 

pfc A CHttpFilterContext object, which contains context information and can be 
used by the filter to associate any context information with the HTTP request. 

This member function is called by the framework to notify the filter that the session is 
ending. 

Override this member function to provide your own end of session implementation. 
The default implementation does nothing. 

See Also: CHttpFilter::HttpFiiterProc, CHttpFilterContext 



CHttpFilter: : OnLa g 
virtual DWORD OnLog( CHttpFilterContext* pIc, 

... PHTTP_FILTER_LOG pLog ); 

Return Value 
One of the following notification types: 

SF _STATUS_REQ_FINISHED The filter has handled the HTTP request. The 
server should disconnect the session. 

SF _STATUS_REQ_FINISHED _KEEP _CONN Same as 
SF _STATUS_REQ_FINISHED except the server should keep the TCP session 
open if the option was negotiated. 

SF _STATUS_REQ_NEXT_NOTIFICATION The next filter in the notification 
chain should be called. 

SF _STATUS_REQ_HANDLED_NOTIFICATION This filter handled the 
notification. No other handlers should be called for this particular notification. 

SF _STATUS_REQ_ERROR An error occurred. The server should use the Win32 
API SetLastError to indicate the error to the client. 

SF _STATUS_REQ_READ_NEXT The filter is an opaque stream filter; Negotiate 
the session parameters. Only valid for raw read notification. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError 
and indicate the error to the client. 

Parameters 

Remarks 

pIc A CHttpFilterContext object, which contains context information, and 
can be used by the filter to associate any context information with the HTTP 
request. 

pLog A pointer to an HTTP_FILTER_LOG structure. 

This member function is called by the framework to inform the filter when the server 
is writing information to the server log. 

Override this member function to provide your own method for logging information 
to the server file. The default implementation does nothing. 

See Also: CHttpFilter: :HttpFilterProc, HTTP_FILTER_LOG, 
CHttpFilterContext 

CHttpFilter::OnLog 

839 



CHttpFilter::OnPreprocHeaders 

CHttpFilter: : OnPreprocHeaders 
virtual DWORD OnPreprocHeaders( CHttpFilterContext* pfc, 

... PHTTP_FILTER_PREPROC_HEADERS pHeaders ); 

Return Value 
One of the following notification types: 

SF _STATUS_REQ_FINISHED The filter has handled the HTTP request. The 
server should disconnect the session. 

SF _STATUS_REQ_FINISHED_KEEP _CONN Same as 
SF _STATUS_REQ_FINISHED except the server should keep the TCP session 
open if the option was negotiated. 

SF _STATUS_REQ_NEXT_NOTIFICATION The next filter in the notification 
chain should be called. 

SF _STATUS_REQ_HANDLED_NOTIFICATION This filter handled the 
notification. No other handlers should be called for this particular notification. 

SF _STATUS_REQ_ERROR An error occurred. The server should use the Win32 
API SetLastError to indicate the error to the client. 

SF _STATUS_REQ_READ_NEXT The filter is an opaque stream filter; Negotiate 
the session parameters. Only valid for raw read notification. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError and 
indicate the error to the client. 

Parameters 

Remarks 

840 

pIc A CHttpFilterContext object, which contains context information. The 
CHttpFilterContext object can be used by the filter to associate any context 
information with the HTTP request. 

pHeaders A pointer to a HTTP_FILTER_PREPROC_HEADERS structure. 

This member function is called by the framework to notify the client that the server 
has preprocessed the client headers. 

Override this member function to provide your own method for processing client 
headers. The default does nothing. 

See Also: CHttpFilter: :HttpFilterProc, 
HTTP_FILTER_PREPROC_HEADERS, CHttpFilterContext 



CHttpFilter::OnReadRawData 

CHttpFilter: :OnReadRawData 
virtual DWORD OnReadRawData( CHttpFilterContext* pfc, 

... PHTTP_FILTER_RAW_DATApRawData ); 

Return Value 
One of the following notification types: 

SF _STATUS_REQ_FINISHED The filter has handled the HTTP request. The 
server should disconnect the session. 

SF _STATUS_REQ_FINISHED_KEEP _CONN Same as 
SF _STATUS_REQ_FINISHED except the server should keep the TCP session 
open if the option was negotiated. 

SF _STATUS_REQ_NEXT_NOTIFICATION The next filter in the notification 
chain should be called. 

SF _STATUS_REQ_HANDLED_NOTIFICATION This filter handled the 
notification. No other handlers should be called for this particular notification. 

SF _STATUS_REQ_ERROR An error occurred. The server should use the Win32 
API SetLastError to indicate the error to the client. 

SF _STATUS_REQ_READ_NEXT The filter is an opaque stream filter; Negotiate 
the session parameters. Only valid for raw read notification. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError and 
indicate the error to the client. 

Parameters 

Remarks 

pfc A CHttpFilterContext object, which contains context information. The 
CHttpFilterContext object can be used by the filter to associate any context 
information with the HTTP request. 

pRawData A pointer to an HTTP_FILTER_RAW_DATA structure. 

This member function is called by the framework to allow the application to see the 
raw data. The data returned will contain both headers and data. 

Override this member function to process raw data differently. The default 
implementation does nothing. 

See Also: CHttpFilter::HttpFilterProc, HTTP_FILTER_RAW_DATA, 
CHttpFilterContext, CHttpFilter::OnSendRawData 

841 



CHttpFilter::OnSendRawData 

CHttpFilter: : OnSendRaw Data 
virtual DWORD OnSendRawData( CHttpFilterContext* pfc, 

.. PHTTP_FILTER_RAW_DATApRawData ); 

Return Value 
If successful, the notification type SF _STATUS_REQ_NEXT_NOTIFICATION. 
Call the next filter in the notification chain. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError and 
indicate the error to the client. 

Parameters 

Remarks 

pfc A CHttpFilterContext object, which contains context information. The 
CHttpFilterContext object can be used by the filter to associate any context 
information with the HTTP request. The 
SF_NOTIFY_END_OF_NET_SESSION notification can be used to release any 
such context information. 

pRawData A pointer to an HTTP_FILTER_RAW_DATA structure. 

This member function is called by the framework to notify the client that the server is 
sending raw data back to the client. 

Override this member function only to change the default notification handler used by 
HttpFilterProc and process raw data differently. 

See Also: CHttpFilter::HttpFilterProc, HTTP_FILTER_RAW_DATA, 
CHttpFilterContext, CHttpFilter::OnReadRawData 

CHttpFilter: : On U rlMap 
virtual DWORD OnUrlMap( CHttpFilterContext* pfc, 

.. PHTTP_FILTER_URL_MAP pUrIMap); 

Return Value 

842 

One of the following notification types: 

SF _STATUS_REQ_FINISHED The filter has handled the HTTP request. The 
server should disconnect the session. 

SF _STATUS_REQ_FINISHED_KEEP _CONN Same as 
SF _STATUS_REQ_FINISHED except the server should keep the TCP session 
open if the option was negotiated. 

SF _STATUS_REQ_NEXT_NOTIFICATION The next filter in the notification 
chain should be called. 



CHttpFilter::OnUrlMap 

SF _STATUS_REQ_HANDLED_NOTIFICATION This filter handled the 
notification. No other handlers should be called for this particular notification. 

SF _STATUS_REQ_ERROR An error occurred. The server should use the Win32 
API SetLastError to indicate the error to the client. 

SF _STATUS_REQ_READ_NEXT The filter is an opaque stream filter; Negotiate 
the session parameters. Only valid for raw read notification. 

If unsuccessful, the notification type SF _STATUS_REQ_ERROR should be 
returned. In this case, the server should use the Windows function SetLastError and 
indicate the error to the client. 

Parameters 

Remarks 

pfc A CHttpFilterContext object, which contains context information. The 
CHttpFilterContext object can be used by the filter to associate any context 
information with the HTTP request. 

pUrlMap A pointer to an HTTP_FILTER_URL_MAP structure. 

This member function is called by the framework when the server is mapping a 
logical URL to a physical path. 

Override this member function handle URL mapping differently. The default 
implementation does nothing. 

See Also: CHttpFilter::HttpFiiterProc, HTTP_FILTER_URL_MAP, 
CHttpFilterContext 

843 



CHttpFilterContext 

CHttpFilterContext 
CHttpFilterContext does not have a base class. 

CHttpFilterContext provides the tools that a CHttpFilter object needs to process data 
that passes through the filter. When the filter receives a request, a CHttpFilter object is 
created and initialized, and a CHttpFilterContext object is created. As the filter 
processes requests, it uses CHttpFilterContext member functions to perform tasks. 

A CHttpFilterContext object exists separately from a CHttpFilter object in order to 
allow multi-threading. Only one CHttpFilter object exists in a module, but a filter 
might be required to process multiple client requests simultaneously. 

CHttpFilter will create a CHttpFilterContext for each request to handle these 
multiple requests. A CHttpFilter uses multiple CHttpFilterContext objects to run in 
separate threads. This design allows simultaneous, multiple calls to the CHttpFilter 
object by different client connections. 

When an extension DLL (IS A) is called, the member function ServerSupportFunction 
prompts the server to provide the general ISA information to the client. 

If the filter must communicate something-for example, an error-back to the client 
immediately, call Write Client. 

#include <afxisapi.h> 

See Also: CHttpServer, CHttpFilter, HTTP_FILTER_CONTEXT 

CHttpFilterContext Class Members 

844 

Data Members 

m_pFC 

Construction 

CHttpFilterContext 

Attributes 

GetServer Variable 

AddResponseHeaders 

Write Client 

AllocMem 

ServerSupportFunction 

A pointer to an HTTP_FILTER_CONTEXT structure. 

Constructs a CHttpFilterContext object. 

Copies information relating to an HTTP connection, or to 
the server itself, into a buffer supplied by the caller. 

Adds a header to the HTTP response. 

Writes raw data to the client immediately. 

Allocates memory in a buffer. 

Provides general ISA information to the client. 

See Also: HTTP_FILTER_CONTEXT 



CHttpFilterContext::AllocMem 

Member Functions 
CHttpFilterContext: : AddResponseHeaders 

BOOL AddResponseHeaders( LPTSTR /pszHeaders, DWORD dwReserved =0 ); 

Return Value 
Nonzero if successful, otherwise O. 

Parameters 

Remarks 

/pszHeaders A pointer to a string containing headers to add. 

dwReserved Reserved for future use. Must be o. 

Call this member function to add a header to an HTTP response. The header string 
is contained in /pszHeaders. See the HSE_REQ_SEND_RESPONSE_HEADER 
value described in the CHttpServerContext::ServerSupportFunction topic for 
information about how a CHttpServer object delivers information about an HTTP 
server response header. 

CHttpFilterContext: : AllocMem 
LPVOID AllocMem( DWORD cbSize, DWORD dwReserved ); 

Return Value 
A pointer to a buffer. 

Parameters 

Remarks 

cbSize Specifies the size of the memory buffer to allocate, in bytes. 

dwReserved Reserved for future use. 

Call this member function to allocate memory that is automatically freed when the 
communication with the client is terminated. 

When an HTTP filter is registered, usually it will register for the end-of-net-session 
event. This event is a good time to recycle any buffers used by that client request. For 
performance reasons, most filters will probably keep a pool of filter buffers and only 
allocate or free a buffer when the pool becomes empty or too large to save on the 
overhead of the memory management. Calling AllocMem can have a negative impact 
on performance, but with careful use, it can be a valuable tool. 

Memory blocks allocated with AllocMem cannot be managed with the normal C 
run-time or Windows API memory management functions. 

845 



CHttpFilterContext::CHttpFilterContext 

CHttpFilterContext: :CHttpFilterContext 
CHttpFilterContext( PHTTP_FILTER_CONTEXT pfc ); 

Parameters 

Remarks 

pfc A pointer to a HTTP_FILTER_CONTEXT structure. 

This member function is called by the framework during the construction of a 
CHttpFilterContext object. 

See Also: HTTP_FILTER_CONTEXT 

CHttpFilterContext: : GetServer Variable 
BOOL GetServerVariable( LPTSTR IpszVariableName, LPVOID lpvBujfer, 

LPDWORD lpdwSize); 

Return Value 
Nonzero if successful, otherwise O. The Win32 API call GetLastError can be used to 
determine why the call failed. Possible error values include: 

Value 

ERROR_INVALID_PARAMETER 

ERROR_INVALID_INDEX 

ERROR_INSUFFICIENT_BUFFER 

Meaning 

Bad connection handle. 

Bad or unsupported variable identifier. 

Buffer too small; the required size is returned 
in lpdwSize. 

Buffer too small, only part of data r~turned. 
The total size of the data is not returned. 

ERROR_NO_DATA 

Parameters 

The data requested is not available. 

Remarks 

846 

lpszVariableName Null-terminated string indicating which variable is being 
requested. See the Remarks section below for a selection of possible names. All 
variable names are as defined in the CGI specification located at 
http://hoohoo.ncsa.uiuc.edulcgilenv.htmI. 

lpvBujfer Pointer to buffer to receive the requested information. 

lpdwSize Pointer to DWORD indicating the number of bytes available in the buffer. 
On successful completion the DWORD contains the number of bytes transferred 
into the buffer (including the null-terminating byte). 

This member function is called by the framework to copy information relating to an 
HTTP connection, or to the server itself, into a buffer supplied by the caller. Possible 
lpsz VariableNames include: 



Value 

AUTH_TYPE 

CONTENT_LENGTH 

GATEWAY_INTERFACE 

PATH_TRANSLATED 

REMOTE_ADDR 

REMOTE_HOST 

REMOTE_USER 

REQUEST_METHOD 

SCRIPT_NAME 

CHttpFilterContext::GetServerVariable 

Meaning 

All HTTP headers that were not already parsed into one 
of the above variables. These variables are of the form 
HTTP_<header field name>. 

This will retrieve the password corresponding to 
REMOTE_USER as supplied by the client. It will be a 
null-terminated string. 

Contains the type of authentication used. For example, if 
Basic authentication is used, the string will be "Basic". For 
Windows NT Challenge-response, it will be "NTLM". Other 
authentication schemes will have other strings. Because new 
authentication types can be added to Internet Server, it is not 
possible to list all possible strings. If the string is empty then 
no authentication is used. 

The number of bytes which the script can expect to receive 
from the client. 

The content type of the information supplied in the body of a 
POST request. 

The revision of the CGI specification to which this server 
complies. The current version is CGI/l.l. 

Special case HTTP header. Values of the Accept: fields are 
concatenated, separated by ", ". For example, if the following 
lines are part of the HTTP header: 

accept: *1*: q=0.1 
accept: text/html 
accept: image/jpeg 

then the HTTP_ACCEPT variable will have a value of: 

*1*: q=0.1, text/html, image/jpeg 

Additional path information, as given by the client. This 
comprises the trailing part of the URL after the script name 
but before the query string (if any). 

This is the value of PATH_INFO, but with any virtual path 
name expanded into a directory specification. 

The information which follows the? in the URL which 
referenced this script. 

The IP address of the client. 

The hostname of the client. 

This contains the username supplied by the client and 
authenticated by the server. 

The HTTP request method. 

The name of the script program being executed. 

(continued) 

847 



CHttpFilterContext::ServerSupportFunction 

(continued) 

Value 

SERVER_PORT 

SERVER_PROTOCOL 

SERVER_SOFTWARE 

Meaning 

The server's hostname (or IP address) as it should appear in 
self-referencing URLs. 

The TCP/IP port on which the request was received. 

The name and version of the information retrieval protocol 
relating to this request. Normally HTTPIl.O. 

The name and version of the web server under which the CGI 
program is running. 

CHttpFilterContext: : ServerSupportFunction 
BOOL ServerSupportFunction(enum SF_REQ_TYPE sfReq, PYOID pvData, 

~ LPDWORD IpdwSize, LPDDWORD IpdwDataType ) 

Return Value 
Nonzero if successful, otherwise O. 

Parameters 

Remarks 

848 

sfReq Server request type. See the Remarks section for a list of of the possible 
values. 

pvData A pointer to a zero-terminated string. Its value is specific to the sfReq 
extension. When used with SF _REQ_SEND_RESPONSE_HEADER, it is an 
optional, null-terminated status string (for example, "401 Access Denied") or 
NULL for the default response of "200 OK". When used with 
SF _REQ_ADD_HEADERS_ON_DENIAL, it is a null-terminated string 
pointing to one or more header lines with terminating "\r\n". 

IpdwSize Null-terminated string. Its value is specific to the extension. When used 
with SF _REQ_SEND_RESPONSE_HEADER, it is a null-terminated string 
pointing to optional data to be appended and set with the header. If NULL, the 
header will be terminated with an empty line. When used with 
SF _REQ_ADD_HEADERS_ON_DENIAL, it is the size in bytes for the next 
read. 

IpdwDataType A null-terminated string pointing to optional headers or data to be 
appended and sent with the header. If NULL, the header will be terminated by a 
"\r\n" pair. 

Call this member function to extend the ISA APIs. 

The HTTP Server Extension value represented by sfReq, can be one of the following: 

SF _REQ_SEND_RESPONSE_HEADER Sends a complete HTTP server response 
header including the status, server version, message time, and MIME 



CHttpFilterContext::m_pFC 

(Multipurpose Internet Mail Extension) version. Server extensions should append 
other information at the end, such as Content-type, Content-length, and so forth, 
followed by an extra "\r\n". 

SF_REQ_ADD_HEADERS_ON_DENIAL If the server denies the HTTP request, 
add the specified headers to the server error response. This allows an authentication 
filter to advertise its services without filtering every request. Generally the headers 
will be WWW-Authenticate headers with custom authentication schemes, but no 
restriction is placed on what headers may be specified. 

SF _REQ_SET_NEXT_READ_SIZE Only used by raw data filters that return 
SF _STATUS_READ_NEXT. 

CHttpFilterContext: : Write Client 
BOOL WriteClient( LPVOID lpvBuffer, LPDWORD lpdwBytes, 

.. DWORD dwReserved = 0 ); 

Return Value 
Nonzero if successful, otherwise 0. If 0, use the Windows function GetLastError to 
determine the cause of the error. 

Parameters 

Remarks 

lpvBuffer A pointer to the buffer containing the data. 

lpdwBytes A pointer to a DWORD containing the number of bytes to write from the 
buffer. 

dwReserved Reserved for future use. Must be 0. 

Call this member function to send raw data back to the client immediately. 

See Also: HTTP_FILTER_CONTEXT, CHttpServerContext::WriteClient 

Data Members 
CHttpFilterContext: :m_pFC 
Remarks 

The m_pFC data member is a pointer to an HTTP_FILTER_CONTEXT structure. 
The pointer points at the same structure passed to CHttpFilter::HttpFilterProc. 

See Also: HTTP_FILTER_CONTEXT 

849 



CHttpServer 

CHttpServer 

850 

CHttpServer does not have a base class. 

The class CHttpServer, with CHttpServerContext, provides a means to extend the 
functionality of an ISAPI-compliant HTTP server. The class CHttpServer wraps the 
Internet Server API (ISAPI) functionality and can process all types of client requests, 
including both Common Gateway Interface (CGI) executables and extension DLLs. 
These extension DLLs are sometimes called Internet Server Applications; however, 
they are DLLs, rather than EXEs. For brevity's sake, we refer to an extension DLL 
as an ISA. 

For more information on the difference between CGI and ISA, see "Internet Server 
API (ISAPI) Extensions" in Visual C++ Programmer's Guide online. 

When an ISAPI HTTP server receives a request from a client browser, a 
CHttpServer object is created and initialized, and a CHttpServerContext object is 
created. Only one instance of CHttpServer may exist for each module; however, one 
CHttpServerContext object is created for each call to the server. A CHttpServer 
object uses multiple CHttpServerContext objects to run in separate threads. This 
design allows simultaneous, multiple calls to the CHttpServer object by different 
client connections. The CHttpServer object communicates with the client or server 
itself via the CHttpServerContext object. 

When the server loads the ISA, it calls the ISA at the entry point GetExtension Version 
to get the version number of the specification on which the extension is based. For 
every client request, the HttpExtensionProc member function is called. The default 
(recommended) implementation of HttpExtensionProc will read client data and decide 
what action is to be taken. You can override this member function to customize the 
implementation. 

Other CHttpServer member functions process the client request, format the 
responses, and correspond with the client. 

When a client command is received by a CHttpServer object, the parse maps 
associate the command to its class member function and parameters. Only one parse 
map is created per CHttpServer object. 

See Internet Server API (ISAPI) Parse Maps for general information on using the 
parse map macros. See BEGIN_PARSE_MAP and END_PARSE_MAP for 
information on how to create a parse map to handle client commands. 

See the following macro descriptions for information about how the client commands 
are mapped to member functions and their arguments: 



• ON_PARSE_COMMAND 

• ON_PARSE_COMMAND_PARAMS 

• DEFAULT_PARSE_COMMAND 

For more information on using parse maps to handle client commands, see "IS API 
Extensions: Parse Maps" in Visual C++ Programmer's Guide online. 

For information on debugging internet extension DLLs, see Technical Note 63 online. 

#include <afxisapi.h> 

See Also: CHtmlStream 

CHttpServer Class Members 
Constructor 

CHttpServer 

Overridables 

CallFunction 

OnParseError 

HttpExtcnsionProc 

GetExtension Version 

ConstructStream 

Attributes 

StartContent 

EndContent 

WriteTitle 

GetTitle 

AddHeader 

Initlnstance 

Constructs a CHttpServer object. 

Finds and executes the appropriate function associated with the 
command in the URL. 

Constructs a description of the error to be returned to the client. 

Uses the callback functions to read client data and decide what 
action to take. 

Gets the version number that the DLL extension is based on. 

Constructs a CHtmlStream object. 

Inserts opening HTML tags into a CHtmlStream object to be 
returned to the client. Override to change or omit the default tags. 

Inserts closing HTML tags into a CHtmlStream object to be 
returned to the client. Override to change or omit the default tags. 

Inserts the title between the appropriate HTML tags in the 
CHtmlStream object to be returned to the client. Override to 
provide a different title. 

Gets the title of an HTML document to be sent to the client. 

Adds headers to a response before it is sent to the server. 

Initializes the CHttpServer object. 

See Also: CHtmlStream, CHttpServerContext 

CHttpServer 

851 



CHttpServer: :AddH~ader 

Member Functions 
CHttpServer: : AddHeader 

void AddHeader( CHttpServerContext* pCtxt, LPCTSTR pszString ) const; 

Parameters 

Remarks 

Example 

pCtxt A pointer to a CHttpServerContext object. 

pszString A pointer to a string. 

Call this member function to add a header to the response before the response is 
sent to the server. Use AddHeader to append your own headers to those the server 
supplies when it receives CHttpServerContext::ServerSupportFunction 
HSE_REQ_SEND_RESPONSE_HEADERS. The extra header provides the 
client with more information. 

For example, call AddHeader to specify your own "content-type," then call it to 
specify an encoding, and then call it once more to insert the "content-length" header. 
After you have called AddHeader as many times as you need, use « to stream your 
output until you are done. 

Note Once you put data in the HTML stream in the seNer context, do not call AddHeader 
again. If you do, your HTML stream will not work properly. 

Here's an example of a function that creates an on-the-fly web-page: 

void CHelloExtension::Default(CHttpServerContext* pCtxt) 
{ 

AddHeader(pCtxt. "Content-type = text/plain\r\n"); 
(*pCtxt) « "Hello world!\r\n"; 

See Also: CHttpServerContext, 
CHttpServerContext::ServerSupportFunction 

CHttpServer: :CallFunction 
virtual int CallFunction( CHttpServerContext* pCtxt, LPTSTR pszQuery, 

... LPTSTR pszCommand ); 

Return Value 
A value of one of the following enum types: 

852 



CHttpServer::CallFunction 

Enum value 

callOK 

callParamRequired 

callBadParamCount 

callBadCommand 

callN oS tackS pace 

callNoStream 

callMissingQuote 

callMissingParams 

callBadParam 

Description 

The function call was successful. 

A required,parameter was missing. 

There were too many or too few parameters. 

The command name was not found. 

No stack space was available. 

No CHtmlStream was available. 

A parameter had a bad format. 

No parameters were available. 

A parameter had a bad format (i.e., only one quote). 

Parameters 

Remarks 

pCtxt Pointer to a CHttpServerContext object. 

pszQuery A pointer to a query. Specific to the type of command received from the 
client. See Remarks for more information. 

pszCommand Either a pointer to a query or NULL. Specific to the type of command 
received from the client. See Remarks for more information. 

Called by the framework to find and execute the appropriate function associated with 
the command in the URL. 

Below is a breakdown between the types of methods received and the parameters: 

Method type 

GET 

POST 

pszQuery 

A pointer to the 
EXTENSION_CONTROL_BLOCK 
structure query string. 

A pointer to a query sent in the body 
of the command. 

pszCommand 

NULL 

Pointer to the 
EXTENSION_CONTROL_BLOCK 
structure query string. 

Note Fill-out forms authors are advised to use only the POST method because of browser 
inconsistencies, and because GET methods are limited to a 1024-byte buffer. When writing 
forms for ISAPI, either use only the POST method, or design the ISA so that only the default 
function handles the form. 

For example, some browsers sending a form via GET with an action of: 

TestLet.DLL?Command 

will truncate Command and send: 

TestLet.DLL?name=value 

instead of the correct command: 

TestLet.DLL?Command?name=value 

853 



CHttpServer::CHttpServer 

By truncating Command, the browser removes the association to the ISA function 
needed to map the request. Unless the function Command is the default function, the 
form will not be handled correctly. 

If you want to handle parsing of the EXTENSION_ CONTROL_BLOCK structure 
function IpszQueryString yourself, override CaIIFunction and do not use the 
PARSE_MAP macros. See Internet Server API (ISAPI) Parse Maps for more 
information on using the parse map macros. 

See Also: CHttpServerContext, Internet Server API (ISAPI) Parse Maps 

CHttpServer: : CHttpServer 
CHttpServer( TCHAR cDelimiter ); 

Parameters 

Remarks 

cDelimiter A character identifying the token delimiter. By default, this delimiter 
is '&'. 

The run-time calls this function when constructing a CHttpServer object. Only one 
instance of CHttpServer may exist for each module. Once a CHttpServer object is 
created, it can be initialized with Initlnstance. 

After the ISA has been initiated by a client command and acted upon by the server, the 
client receives a response page that reflects the cDelimiter parameter in the URL. The 
cDelimiter parameter separates the command's arguments that are parsed by the parse 
map macros ON_PARSE_COMMAND and ON_PARSE_COMMAND_PARAMS. 

Example of cDelimiter 

854 

If the client initiates an ISA to view a colorized JPEG image from the URL 
http://www.jungle.org/, the command sent to the server could look like this: 

http://www.Jungle.org/scripts/Apes.dII?Colorize 

where Colorize is the command initiating the Colorize function. 

The URL that the server returns to the client would look like this: 

http://www.jungle.org/scripts/ A pes.dIl ?Colorize ?Target=Picture&Format=JPEG 

The cDelimiter default delimiter & appears in the client's URL between the two 
parameters Picture and Format of the function Colorize. 

See ON_PARSE_COMMAND and ON_PARSE_COMMAND_PARAMS for more 
information about parsing commands. 



CHttpServer::GetExtensionVersion 

CHttpServer: :ConstructStream 
virtual CHtmlStream* ConstructStream( ); 

Return Value 

Remarks 

A pointer to a CHtmlStream object. 

This member function is called by the framework to construct a CHtmlStream object. 
Override this member function to create an instance of your own class to give it 
functionality other than the default. 

See the constructor CHtmIStream::CHtmIStream for information about why you 
might override ConstructStream and provide special functionality for a 
CHtmlStream object. 

CHttpServer: : EndContent 
virtual void EndContent( CHttpServerContext* pCtxt ) const; 

Parameters 

Remarks 

pCtxt A pointer to a CHttpServerContext object. Cannot be NULL. 

This member function is called by the framework to insert the closing HTML tags 
"(I Body>" and "(/HTML>" into an HTML document to be returned to the client. 

Override this member function to implement a behavior different from the default. 
For example, override if you are returning a stream type other than an HTML stream 
(like a JPEG image). 

See Also: CHttpServer::StartContent 

CHttpServer: : GetExtension Version 
virtual BOOL GetExtension Version( HSE_ VERSION_INFO *p Ver ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
p Ver A pointer to the HSE_ VERSION_INFO structure containing version 

information for the server and fields for the client to indicate version number, 
notifications, and priority desired. There is also a space for the filter application to 
register a small description of itself. 

855 



CHttpServer::GetTitle 

Remarks 
This member function is called by the framework when it loads an ISA. 
GetExtension Version gets the version number of the specification the DLL extension 
is based on. It also provides a short text description for server administrators. 

GetExtension Version is one of two necessary entry points for an ISA. The second 
necessary entry point is the function HttpExtensionProc. Both of these are provided 
by MFC, with default implementation. Call the default implementation to set the 
version, and then override to replace the default text string with your own short 
description. 

See Also: HSE_ VERSION_INFO, CHttpServer::HttpExtensionProc 

CHttpServer: : GetTitle 
virtual LPCTSTR GetTitle( ) const; 

Return Value 

Remarks 

A pointer to a string containing the title. 

This member function is called by the framework to get the title of an HTML 
document to be sent to the client. 

Override to supply your own title. 

CHttpServer: :HttpExtensionProc 
virtual DWORD HttpExtensionProc( EXTENSION_CONTROL_BLOCK *pECB ); 

Return Value 

856 

One of the following HTTP Server Extension messages: 

HSE_STATUS_SUCCESS The ISA has finished processing and the server can 
disconnect and free up allocated resources. 

HSE_STATUS_SUCCESS_AND_KEEP _CONN The ISA has finished processing 
and the server should wait for the next HTTP request if the client supports 
persistent connections. The application should only return this if it was able to send 
the correct content-length header to the client. The server is not required to keep 
the session open. 

HSE_STATUS_PENDING The ISA has queued the request for processing and will 
notify the server when it has finished. See HSE_REQ_DONE_ WITH_SESSION 
under CHttpServerContext::ServerSupportFunction. 

HSE_STATUS_ERROR The ISA has encountered an error while processing the 
request and the server can disconnect and free up allocated resources. 



CHttpServer::OnParseError 

Parameters 

Remarks 

pECR A pointer to an EXTENSION_ CONTROL_BLOCK structure. 

This member function is called by the framework for each request for an ISA. 
HttpExtensionProc uses the callback functions to read client data and decide what 
action to take. Before returning to the server, a properly formatted response must be 
sent to the client via either the CHttpServerContext::WriteClient or the 
CHttpServerContext::ServerSupportFunction member function. 

The default implementation of HttpExtensionProc is recommended; however you 
can override this member function to customize the implementation. 

See Also: CHttpServerContext::WriteClient, 
CHttpServerContext::ServerSupportFunction 

CHttpServer: : InitInstance 
virtual BOOL InitInstance(CHttpServerContext* pCtxt); 

Return Value 
Nonzero if initialization is successful; otherwise O. 

Parameters 

Remarks 

pCtxt A pointer to a CHttpServerContext object. 

This member function is called by the framework to initialize a CHttpServer object. 
InitInstance is called in CHttpServer::HttpExtensionProc, which is called by the 
framework for each request for an ISA. 

Override this member function to provide CHttpServer custom initialization. 

CHttpServer: : OnParseError 
virtual BOOL OnParseError( CHttpServerContext* pCtxt, int nCause ); 

Return Value 
Nonzero error is successfully parsed; otherwise O. 

Parameters 
pCtxt A pointer to a CHttpServerContext object that contains an 

EXTENSION_CONTROL_BLOCK structure function dwHttpStatusCode. 
These status values are: 

• HTTP_STATUS_BAD_REQUEST 

• HTTP_STATUS_AUTH_REQUIRED 

857 



CHttpServer::StartContent 

Remarks 

• HTTP_STATUS_FORBIDDEN 

• HTTP_STATUS_NOT_FOUND 

• HTTP_STATUS_SERVER_ERROR 

• HTTP_STATUS_NOT_IMPLEMENTED 

nCause The cause of the error. Can be one of the following values: 

Enum type Description 

call OK 

calIParamRequired 

calIBadParamCount 

calIBadCommand 

calINoStackSpace 

calIN oStream 

calIMissingQuote 

callMissingParams 

calIBadParam 

OnParseError handled the error. 

A required parameter was missing. 

There were too many or too few parameters. 

The command name was not found. 

No stack space was available. 

No CHtmlStream was available. 

A parameter is missing a quote mark. 

No parameters were available. 

A parameter had a bad format. 

Called by the framework to parse errors. Once the error is identified, the message 
associated with the cause of the error is returned to the client either in an HTML 
stream or in a CHttpServerContext::WriteClient message. 

Override this member function to customize the error parsing. 

CHttpServer: : StartContent 
virtual void StartContent( CHttpServerContext* pCtxt ) const; 

Parameters 

Remarks 

858 

pCtxt A pointer to a CHttpServerContext object. 

This member function is called by the framework to insert the starting HTML tags 
"<Body>" and "<HTML>" into an HTML document to be returned to the client. 

Override this member function to implement a behavior different from the default. 
For example, override if you are returning a stream type other than an HTML stream 
(like a JPEG image). 

See Also: CHttpServer::EndContent 



CHttpServer::WriteTitle 

CHttpServer: : Write Title 
virtual void WriteTitle( CHttpServerContext* pCtxt ) const; 

Parameters 

Remarks 

pCtxt A pointer to a CHttpServerContext object. 

This member function is called by the framework to write the title to insert between 
the appropriate HTML tags on the document to be transmitted back to the client. 

The default implementation writes the title returned from GetTitle between the 
HTML tags "<Ti t 1 e>" and "</Ti t 1 e>". Override this member function to provide 
a different title. 

See Also: CHttpServer::GetTitie 

859 



CHttpServerContext 

CHttpServerContext 
CHttpServerContext does not have a base class. 

CHttpServerContext provides the tools that a CHttpServer object needs to process 
data that a client has sent to the HTTP server. When a Microsoft Internet Information 
Server (MIlS) receives a request from a client browser, a CHttpServer object is 
created and initialized, and a CHttpServerContext object is created. As the server 
extension DLL processes requests, it uses CHttpServerContext member functions to 
perform tasks. 

A CHttpServerContext object exists separately from a CHttpServer object in order 
to allow multithreading. Only one CHttpServer exists in a module, but a server might 
be required to process multiple client requests simultaneously. 

CHttpServer creates a CHttpServerContext for each request to handle these 
multiple requests. A CHttpServer uses multiple CHttpServerContext objects to run 
in separate threads. This design allows simultaneous, multiple calls to the 
CHttpServer object by different client connections. 

When an extension DLL (ISA) is called, the member function 
ServerSupportFunction provides the ISA with some general-purpose functions as 
well as functions that are specific to HTTP server implementation. 

If the server extension must communicate something-for example, an error-back 
to the client immediately, call Write Client. Otherwise, the server should output a 
message to the client to the m_pStream data member owned by the pCtxt parameter 
passed to it. 

#include <afxisapi.h> 

CHttpServerContext Class Members 

860 

Data Members 

m_pECB 

m_pStream 

Construction 

CHttpServerContext 

Operations 

GetServerVariable 

Write Client 

A pointer to an EXTENSION_CONTROL_BLOCK structure. 

A pointer to a CHtmlStream. 

Constructs a CHttpServerContext object. 

Copies information relating to an HTTP connection, or to the 
server itself, into a supplied buffer. 

Sends information to the HTTP client immediately. 



CHttpServerContext::GetServerVariable 

Operations (continued) 

ReadClient 

ServerSupportFunction 

Operators 

operator « 

See Also: CHttpServer 

Reads information from the body of the Web client's HTTP 
request into the buffer supplied by the caller. 

Provides ISAs with some general-purpose functions as well as 
functions that are specific to HTTP server implementation. 

Writes data into a stream. 

Member Functions 
CHttpServerContext: : CHttpServerContext 

CHttpServerContext( EXTENSION_CONTROL_BLOCK* pECB ); 

Parameters 

Remarks 

pECR A pointer to an EXTENSION_CONTROL_BLOCK data structure. 

This member function is called by the framework during the construction of a 
CHttpServerContext object. 

CHttpServerContext: : GetServer Variable 
BOOL GetServerVariable( LPTSTR IpszVariableName, LPVOID IpvRujfer, 

"+ LPDWORD IpdwSize ); 

Return Value 
Nonzero if successful, otherwise O. If the call fails, the Windows function 
GetLastError may be called to determine the cause of the error. Possible error values 
include: 

Value 

ERROR_INVALID_PARAMETER 

ERROR_INVALID_INDEX 

ERROR_INSUFFICIENT_BUFFER 

Meaning 

Bad connection handle. 

Bad or unsupported variable identifier. 

Buffer too small, required size returned 
in *lpdwSize. 

Buffer too small, only part of data returned. 
The total size of the data is not returned. 

The data requested is not available. 

861 



CHttpServerContext::OetServerVariable 

Parameters 

Remarks 

862 

IpszVariableName Null terminated string indicating which variable is being 
requested. See the Remarks section for a list of current variables. 

IpvBuffer Pointer to buffer to receive the requested information. 

IpdwSize Pointer to DWORD indicating the number of bytes available in the buffer. 
On successful completion the DWORD contains the number of bytes transferred 
into the buffer (including the null-terminating byte). 

This function copies information relating to an HTTP connection, or to the server 
itself, into a buffer supplied by the caller. 

Possible values for IpszVariableNames include: 

Value 

CONTENT_LENGTH 

GATEWA Y _INTERFACE 

PATH_TRANSLATED 

REMOTE_ADDR 

REMOTE_HOST 

REMOTE_USER 

REQUEST_METHOD 

SCRIPT_NAME 

SERVER_NAME 

SERVER_PORT 

SERVER_PROTOCOL 

Meaning 

Contains the type of authentication used. For example, if 
Basic authentication is used, the string will be "Basic." For 
Windows NT Challenge-response, it will be "NTLM." Other 
authentication schemes will have other strings. Because new 
authentication types can be added to Internet Server, it is not 
possible to list all possible strings. If the string is empty, then 
no authentication is used. 

The number of bytes which the script can expect to receive 
from the client. 

The content type of the information supplied in the body of a 
POST request. 

The revision of the COl specification to which this server 
complies. The current version is COUI.I. 

Additional path information, as given by the client. This 
comprises the trailing part of the URL after the extension DLL 
(script) name but before the query string (if any). 

This is the value of PATH_INFO, but with any virtual path 
name expanded into a directory specification. 

The information which follows the? in the URL which 
referenced this extension DLL. 

The IP address of the client. 

The hostname of the client. 

This contains the username supplied by the client and 
authenticated by the server. 

The HTTP request method. 

The name of the extension DLL that is being executed. 

The server's hostname (or IP address) as it should appear in 
self-referencing URLs. 

The TCPIIP port on which the request was received. 

The name and version of the information retrieval protocol 
relating to this request. Normally HTTP/1.D. 



CHttpServerContext::ReadClient 

(continued) 

Value 

SERVER_SOFTWARE 

Meaning 

The name and version of the web server under which the ISA 
or server extension DLL program is running. 

This will retrieve the password corresponding to 
REMOTE_USER as supplied by the client. It will be a 
null-terminated string. 

All HTTP headers that were not already parsed into one 
of the above variables. These variables are of the form 
HTTP_<header field name>. 

Special case HTTP header. Values of the Accept: fields are 
concatenated, separated by",". For example, if the following 
lines are part of the HTTP header: 

accept: */*; q=0.1 
accept: text/html 
accept: image/jpeg 

then the HTTP_ACCEPT variable will have a value of: 

*/*; q=0.1. text/html. image/jpeg 

CHttpServerContext: : ReadClient 
BOOL ReadClient( LPVOID IpvBuffer, LPDWORD IpdwSize ); 

Return Value 
Nonzero if successful, otherwise O. If the socket used by the server to listen to the 
client is closed, it will return nonzero, but with zero bytes read. 

If the call fails, the Windows function GetLastError may be called to determine the 
cause of the error. 

Parameters 

Remarks 

IpvBuffer Pointer to the buffer area to receive the requested information. 

IpdwSize Pointer to DWORD indicating the number of bytes available in the buffer. 
On return * IpdwSize will contain the number of bytes actually transferred into the 
buffer. 

Call this member function to read information from the body of the Web client's 
HTTP request into the buffer supplied by the caller. ReadClient might be used to read 
data from an HTML form that uses the POST method. If more than * IpdwSize bytes 
are immediately available to be read, ReadClient will return after transferring that 
amount of data into the buffer. Otherwise it will block incoming data and wait for 
buffer space to become available. 

See Also: CHttpServerContext:: Write Client 

863 



CHttpServerContext::ServerSupportFunction 

CHttpServerContext: : ServerSupportFunction 
BOOL ServerSupportFunction( DWORD dwHSERRequest, LPVOID lpvBujfer, 

.. LPDWORD lpdwSize, LPDWORD lpdwDataType); 

Return Value 
Nonzero if successful, otherwise O. 

Parameters 

Remarks 

864 

dwHSERRequest An HTTP Server Extension value. See the Remarks section for a 
list of the supported values. 

lpvBuffer When used with HSE_REQ_SEND_RESPONSE_HEADER, it points to 
a null terminated optional status string (for example, "401 Access Denied"). If this 
buffer is null, a default response of "200 OK" will be sent by this function. When 
used with HSE_REQ_DONE_ WITH_SESSION, it points to a DWORD 
indicating the status code of the request. 

lpdwSize When used with HSE_REQ_SEND_RESPONSE_HEADER, it points to 
the size of the buffer lpdwDataType. 

lpdwDataType When used with HSE_REQ_SEND_RESPONSE_HEADER, this is 
a null-terminated string pointing to optional headers or data to be appended and 
sent with the header. If this is NULL, the header will be terminated by a "\r\n" pair. 

Note General purpose functions should have a dwHSERequest value larger than 
HSE_REQ_END_RESERVED. Values up to HSE_REQ_END_RESERVED are reserved for 
mandatory ServerSupportFunctions and should not be used. 

Call this member function to provide the ISA with some general purpose functions as 
well as functions that are specific to HTTP server implementation. 

The HTTP Server Extension value represented by dwHSERRequest can be one of the 
following: 

HSE_REQ_SEND_URL_REDIRECT_RESP Sends a 302(URL Red; reet) message 
to the client. No further processing is needed after the call. This operation is similar 
to specifying "URI: <URL>" in a COl script header. The variable lpvBuffer should 
point to a null terminated URL string. Variable lpdwSize should have the size of 
lpvBuffer. Variable lpdwDataType is ignored. 

HSE_REQ_SEND_URL Sends the data specified by the URL to the client as if the 
client had requested that URL. The Null terminated URL pointed to by lpvBujfer 
MUST be on the server and must not specify protocol information (i.e. it must 
begin with a "I" ). No further processing is required after this call. Variable 
lpdwSize points to a DWORD holding the size of lpvBujfer. Variable 
lpdwDataType is ignored. 



CHttpServerContext::WriteClient 

HSE_REQ_SEND _RESPONSE_HEADER Sends a complete HTTP server 
response header including the status, server version, message time and MIME 
version. The ISA or server extension should append other HTTP headers at the 
end such as the Content-Type, Content-Length, and so forth, followed by an 
extra "\r\n". 

HSE_REQ_DONE_ WITH_SESSION If the ISA or server extension wants to hold 
onto the session because it has extended processing requirements, it needs to tell 
the server when the session is finished so the server can close it and free the related 
structures. Variables IpvBuffer, IpdwSize, and IpdwDataType are all ignored. 

HSE_REQ_END_RESERVED Functions higher than this value are server specific 
and may not be available on all web servers that support ISAP!. 

HSE_REQ_MAP _URL_TO_PATH The IpvBuffer parameter is a pointer to the 
buffer that contains the logical path on entry and the physical path on exit. The 
IpdwSize parameter is a pointer to the DWORD containing the size of the buffer 
passed in IpvBuffer on entry, and the number of bytes placed in the buffer on exit. 
The IpdwDataType parameter is ignored). A Microsoft-specific extension. 

HSE_REQ_GET_SSPI_INFO The IpvBuffer is filled in with the context handle 
and *lpdwDataType is filled in with the credential handle. A context handle 
specifies a pointer type or a type identifier. A credential handle specifies 
authentication and authorization. 

Note The server does not ensure that the buffers are large enough before filling in the 
handles, and /pdwSize is not updated to reflect the amount of data copied into the /pvBuffer 
buffer. Since these are fixed size structures, it is assumed the pointers passed in are pointers 
to the structure and must be at least as large as the request structures. 

See Also: CHttpFilterContext::ServerSupportFunction 

CHttpServerContext:: WriteClient 
BOOL WriteClient( LPVOID IpvBuffer, LPDWORD IpdwBytes, 

~ DWORD dwReserved = 0 ); 

Return Value 
Nonzero if successful, otherwise O. If the call fails, the Windows function 
GetLastError may be called to determine the cause of the error. 

Parameters 
IpvBuffer Pointer to the buffer where the data is to be written. 

IpdwBytes Pointer to a DWORD that holds the number of characters to write from 
the buffer referenced by Buffer. 

dwReserved Reserved for future use. 

865 



CHttpServerContext::operator « 

Remarks 
Call this member function to send information to the HTTP client immediately. 
For example, use Write Client to send an error message. 

See Also: CHttpServerContext::ReadClient 

Operators 
CHttpServerContext: : operator < < 

Remarks 

void operator«( LPCTSTR psz ); 
void operator«( long int dw); 
void operator«( short-int w); 
void operator«( const CHtmlStream& stream ); 
void operator«( double d); 
void operator«( float!); 
CHttpServerContext& operator«( const CLongBinary& blob); 
CHttpServerContext& operator«( const CByteArray& array); 

The CHttpServerContext insertion «<) operator writes the specified string or 
integer to the HTML stream owned by the CHttpServerContext object. The string 
version of the operator writes the string without modification. The integer overrides 
format the value as decimal text before writing it. 

The operator parameters correspond directly to the ITS_ types that you can use in the 
ISAPI parse map. 

See Also: Internet Server API (IS API) Parse Maps 

Data Members 
CHttpServerContext: :m_pECB 
Remarks 

866 

A pointer to an EXTENSION_ CONTROL_BLOCK structure. This structure 
contains information describing the connection between the client which issued this 
server extension command and the server. See the 
EXTENSION_ CONTROL_BLOCK structure for a description of the individual 
members. 

See Also: EXTENSION_ CONTROL_BLOCK 



CHttpServerContext::m_pStream 

CHttpServerContext: :m_pStream 
Remarks 

The m_pStream data member is the pointer to the initialized CHtmlStream, which 
your server can use to communicate with the client. Most extensions will write data to 
this stream as they do their work. MFC will write all of the data in this stream to the 
client when your function returns. If your function takes a long time to execute, you 
can use the WriteClient function to send data to the client immediately, even before 
your function ends. 

See Also: CHtmlStream 

867 



CImageList 

CImageList 

An "image list" is a collection of same-sized images, each of which can be referred 
to by its zero-based index. Image lists are used to efficiently manage large sets of 
icons or bitmaps. All images in an image list are contained in a single, wide bitmap 
in screen device format. An image list may also include a monochrome bitmap that 
contains masks used to draw images transparently (icon style). The Microsoft Win32 
application programming interface (API) provides image list functions that enable 
you to draw images, create and destroy image lists, add and remove images, replace 
images, merge images, and drag images. 

The CImageList class provides the functionality of the Windows common image 
list control. This control (and therefore the CImageList class) is available only to 
programs running under Windows 95 and Windows NT version 3.51 and later. 

For more information on using CImageList, see Technical Note 60 online. 

#include <afxcmn.h> 

See Also: CListCtrl, CTabCtrl 

CImageList Class Members 

868 

Data Members 

m_hlmageList 

Construction 

ClmageList 

Create 

Attributes 

GetSafeHandle 

GetlmageCount 

SetBkColor 

GetBkColor 

GetImageInfo 

A handle containing the image list attached to this object. 

Constructs a ClmageList object. 

Initializes an image list and attaches it to a ClmageList object. 

Retrieves m_hlmageList. 

Retrieves the number of images in an image list. 

Sets the background color for an image list. 

Retrieves the current background color for an image list. 

Retrieves information about an image. 



Operations 

Attach 

Detach 

DeleteImageList 

Add 

Remove 

Replace 

ExtractIcon 

Draw 

SetOverlay Image 

SetDragCursorImage 

GetDragImage 

Read 

Write 

BeginDrag 

DragEnter 

EndDrag 

DragLeave 

DragMove 

DragShowNolock 

Attaches an image list to a CImageList object. 

Detaches an image list object from a CImageList object and 
returns a handle to an image list. 

Deletes an image list. 

Adds an image or images to an image list. 

Removes an image from an image list. 

Replaces an image in an image list with a new image. 

Creates an icon based on an image and mask in an image list. 

Draws the image that is being dragged during a drag-and-drop 
operation. 

Adds the zero-based index of an image to the list of images to 
be used as overlay masks. 

Creates a new drag image. 

Gets the temporary image list that is used for dragging. 

Reads an image list from an archive. 

Writes an image list to an archive. 

Begins dragging an image. 

Locks updates during a drag operation and displays the drag image 
at a specified position. 

Ends a drag operation. 

Unlocks the window and hides the drag image so that the window 
can be updated. 

Moves the image that is being dragged during a drag-and-drop 
operation. 

Shows or hides the drag image during a drag operation, without 
locking the window. 

Member Functions 
CImageList: :Add 

int Add( CBitmap* pbmlmage, CBitmap* pbmMask ); 
int Add( CBitmap* pbmlmage, COLORREF crMask ); 
int Add( HICON hIcon); 

Return Value 
Zero-based index of the first new image if successful; otherwise -1. 

ClmageList: :Add 

869 



ClmageList: : Attach 

Parameters 

Remarks 

pbmlmage Pointer to the bitmap containing the image or images. The number of 
images is inferred from the width of the bitmap. 

pbmMask Pointer to the bitmap containing the mask. If no mask is used with the 
image list, this parameter is ignored. 

crMask Color used to generate the mask. Each pixel of this color in the given bitmap 
is changed to black and the corresponding bit in the mask is set to one. 

hIcon Handle of the icon that contains the bitmap and mask for the new image. 

Call this function to add one or more images or an icon to an image list. 

See Also: CImageList::Remove, CImageList::Replace, COLORREF 

CImageList: : Attach 
BOOL Attach( HIMAGELIST hlmageList ); 

Return Value 
Nonzero if the attachment was successful; otherwise O. 

Parameters 

Remarks 

hlmageList A handle to an image list object. 

Call this function to attach an image list to a CImageList object. 

See Also: CImageList: :Detach, CImageList: : GetSafeHandle 

CImageList: : BeginDrag 
BOOL BeginDrag( int nlmage, CPoint ptHotSpot ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

870 

nlmage Zero-based index of the image to drag. 

ptHotSpot Coordinates of the starting drag position (typically, the cursor position). 
The coordinates are relative to the upper left corner of the image. 

Call this function to begin dragging an image. This function creates a temporary 
image list that is used for dragging. The image combines the specified image and its 
mask with the current cursor. In response to subsequent WM_MOUSEMOVE 
messages, you can move the drag image by using the DragMove member function. 
To end the drag operation, you can use the EndDrag member function. 



See Also: CImageList: :Draw, CImageList: :EndDrag, ClmageList: :DragMove 

CImageList: : CImageList 

Remarks 

CImageList( ); 

Constructs a CImageList object. 

See Also: CImageList:: Create 

CImageList: : Create 
BOOL Create( int ex, int ey, UINT nFlags, int nlnitial, int nGrow ); 
BOOL Create( UINT nBitmapID, int ex, int nGrow, COLORREF erMask ); 
BOOL Create( LPCTSTR IpszBitmapID, int ex, int nGrow, COLORREF erMask ); 
BOOL Create( CImageList& imagelistl, int nlmagel, CImageList& imagelist2, 

... int nlmage2, int dx, int dy ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
ex Dimensions of each image, in pixels. 

ey Dimensions of each image, in pixels. 

nFlags Specifies the type of image list to create. This parameter can be a 
combination of the following values, but it can include only one of the 
ILC_COLOR values. 

Value 

ILC_COLOR16 

ILC_COLOR24 

ILC_COLOR32 

ILC_COLORDDB 

ILC_MASK 

Meaning 

Use the default behavior if none of the other ILC_COLOR* 
flags is specified. Typically, the default is ILC_COLOR4; 
but for older display drivers, the default is ILC_COLORDDB. 

Use a 4-bit (16 color) device-independent bitmap (DIB) 
section as the bitmap for the image list. 

Use an 8-bit DIB section. The colors used for the color table 
are the same colors as the halftone palette. 

Use a 16-bit (32/64k color) DIB section. 

Use a 24-bit DIB section. 

Use a 32-bit DIB section. 

Use a device-dependent bitmap. 

Uses a mask. The image list contains two bitmaps, one of which 
is a monochrome bitmap used as a mask. If this value is not 
included, the image list contains only one bitmap. 

ClmageList: :Create 

871 



ClmageList: :DeletelmageList 

Remarks 

nlnitial Number of images that the image list initially contains. 

nGrow Number of images by which the image list can grow when the system needs 
to resize the list to make room for new images. This parameter represents the 
number of new images the resized image list can contain. 

nBitmaplD Resource IDs of the bitmap to be associated with the image list. 

crMask Color used to generate a mask. Each pixel of this color in the specified 
bitmap is changed to black, and the corresponding bit in the mask is set to one. 

lpszBitmaplD A string containing the resource IDs of the images. 

imagelistl A pointer to a ClmageList object. 

nlmagel Number of images contained in imagelistl. 

imagelist2 A pointer to a ClmageList object. 

nlmage2 Number of images contained in imagelist2. 

dx Dimensions of each image, in pixels. 

dy Dimensions of each image, in pixels. 

You construct a ClmageList in two steps. First call the constructor, then call Create, 
which creates the image list and attaches it to the ClmageList object. 

See Also: ClmageList::ClmageList, COLORREF 

CImageList: : DeleteImageList 
BOOL DeletelmageList( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this function to delete an image list. 

See Also: ClmageList: :Detach 

CImageList: : Detach 
HIMAGELIST Detach(); 

Return Value 

Remarks 

872 

A handle to an image list object. 

Call this function to detach an image list object from a ClmageList object. This 
function returns a handle to the image list object. 

See Also: ClmageList::Attach, ClmageList::DeletelmageList 



CImageList: :DragLea ve 

CImageList: : DragEnter 
static BOOL DragEnter( CWnd* pWndLock, CPoint point); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

p WndLock Pointer to the window that owns the drag image. 

point Position at which to display the drag image. Coordinates are relative to the 
upper left corner of the window (not the client area). 

During a drag operation, locks updates to the window specified by p WndLock and 
displays the drag image at the position specified by point. 

The coordinates are relative to the window's upper left corner, so you must 
compensate for the widths of window elements, such as the border, title bar, and menu 
bar, when specifying the coordinates. 

If p WndLock is NULL, this function draws the image in the display context associated 
with the desktop window, and coordinates are relative to the upper left comer of the 
screen. 

This function locks all other updates to the given window during the drag operation. If 
you need to do any drawing during a drag operation, such as highlighting the target of 
a drag-and-drop operation, you can temporarily hide the dragged image by using the 
ClmageList: :DragLeave function. 

See Also: ClmageList: :BeginDrag, ClmageList: :EndDrag, 
ClmageList: :DragMove, ClmageList: :DragLeave 

CImageList: : DragLeave 
static BOOL DragLeave( CWnd* p WndLock ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

p WndLock Pointer to the window that owns the drag image. 

Unlocks the window specified by pWndLock and hides the drag image, allowing the 
window to be updated. 

See Also: ClmageList: :BeginDrag, ClmageList: :EndDrag, 
ClmageList: :DragMove, ClmageList: :DragEnter 

873 



CImageList: : DragMove 

CImageList: :DragMove 
static BOOL DragMove( CPoint pt ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pt New drag position. 

Call this function to move the image that is being dragged during a drag-and-drop 
operation. This function is typically called in response to a WM_MOUSEMOVE 
message. To begin a drag operation, use the BeginDrag member function. 

See Also: CImageList: :BeginDrag, CImageList: :EndDrag, CImageList: :Draw 

CImageList: :DragShow N olock 
static BOOL DragShowNolock( BOOL bShow ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

bShow Specifies whether the drag image is to be shown. 

Shows or hides the drag image during a drag operation, without locking the window. 

The CImageList: :DragEnter function locks all updates to the window during a drag 
operation. This function, however, does not lock the window. 

See Also: CImageList: :BeginDrag, CImageList: :EndDrag, 
CImageList: :DragEnter, CImageList: :DragLeave, CImageList: :Draw 

CImageList: :Draw 
BOOL Draw( CDC* pdc, int nlmage, POINT pt, UINT nStyle ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
pdc Pointer to the destination device context. 

nlmage Zero-based index of the image to draw. 

874 



CImageList: :ExtractIcon 

Remarks 

pt Location at which to draw within the specified device context. 

nStyle Flag specifying the drawing style. It can be one or more of these values: 

Value Meaning 

ILD _BLEND2S, 
ILD_FOCUS 

ILD_BLENDSO, 
ILD_SELECTED, 
ILD_BLEND 

ILD_MASK 

ILD_NORMAL 

ILD_TRANSPARENT 

Draws the image, blending 25 percent with the system 
highlight color. This value has no effect if the image list 
does not contain a mask. 

Draws the image, blending 50 percent with the system 
highlight color. This value has no effect if the image list 
does not contain a mask. 

Draws the mask. 

Draws the image using the background color for the image 
list. If the background color is the CLR_NONE value, the 
image is drawn transparently using the mask. 

Draws the image transparently using the mask, regardless of 
the background color. 

Call this function to draw the image that is being dragged during a drag-and-drop 
operation. 

See Also: ClmageList: :BeginDrag, ClmageList: :EndDrag, 
ClmageList:: DragMove 

CImageList: : EndDrag 

Remarks 

static void EndDrag(); 

Call this function to end a drag operation. To begin a drag operation, use the 
BeginDrag member function. 

See Also: ClmageList: :BeginDrag, ClmageList: :Draw, ClmageList::DragMove 

CImageList: : ExtractIcon 
HICON ExtractIcon( int nlmage ); 

Return Value 
Handle of the icon if successful; otherwise NULL. 

Parameters 
nlmage Zero-based index of the image. 

875 



CImageList: :GetBkColor 

Remarks 
Call this function to create an icon based on an image and its related mask in an 
image list. 

See Also: CImageList: :Replace 

CImageList: : GetBkColor 
COLORREF GetBkColor( ) const; 

Return Value 

Remarks 

The ROB color value of the CImageList object background color. 

Call this function to retrieve the current background color for an image list. 

See Also: CImageList::SetBkColor, COLORREF 

CImageList: : GetDragImage 
static CImageList* GetDragImage( LPPOINT IpPoint, LPPOINT IpPointHotSpot); 

Return Value 
If successful, a pointer to the temporary image list that is used for dragging; 
otherwise, NULL. 

Parameters 

Remarks 

IpPoint Address of a POINT structure that receives the current drag position. 

IpPoin tHotSpot Address of a POINT structure that receives the offset of the drag 
image relative to the drag position. 

Gets the temporary image list that is used for dragging. 

See Also: CImageList: :SetDragCursor Image 

CImageList: : GetImageCount 
int GetImageCount( ) const; 

Return Value 

Remarks 

876 

The number of images. 

Call this function to retrieve the number of images in an image list. 

See Also: CImageList: : GetImageInfo 



CImageList:: GetSafeHandle 

CImageList: : GetImageInfo 
BOOL Getlmagelnfo( int nlmage, IMAGEINFO* plmagelnfo ) const; 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nlmage Zero-based index of the image. 

plmagelnfo Pointer to an IMAGEINFO structure that receives information about 
the image. The information in this structure can be used to directly manipulate the 
bitmaps for the image. 

Call this function to retrieve information about an image. 

The IMAGEINFO structure contains information about an image in an image list: 

typedef struct _IMAGEINFO 
HBITMAP hbmlmage; 
HBITMAP hbmMask; 
int cPlanes; 
int cBitsPerPixel; 
RECT rclmage; 

IMAGEINFO; 

{ 

II bitmap containing the images 

II number of color planes in hbmlmage 
II bits per pixel in hbmlmage 

hbmMask Handle of a monochrome bitmap containing the masks for the images. If 
the image list does not contain a mask, this member is NULL. 

rcImage Bounding rectangle of the image within the bitmap specified by 
hbmlmage. 

See Also: ClmageList::GetlmageCount 

CImageList: : GetSafeHandle 
HIMAGELIST GetSafeHandle() const; 

Return Value 

Remarks 

A handle to the attached image list; otherwise NULL if no object is attached. 

Call this function to retrieve the m_hlmageList data member. 

See Also: ClmageList: :Attach, ClmageList: :Detach, 
ClmageList: :m_hlmageList 

877 



ClmageList: :Read 

CImageList: :Read 
BOOL Read( CArchive* pArchive); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pArchive A pointer to a CArchive object from which the image list is to be read. 

Call this function to read an image list from an archive. 

See Also: CImageList:: Write 

CImageList: : Remove 
BOOL Remove( int nlmage ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nlmage Zero-based index of the image to remove. 

Call this function to remove an image from an image list object. 

See Also: CImageList: :DeleteImageList 

CImageList: : Replace 
BOOL Replace( int nlmage, CBitmap* pbmlmage, CBitmap* pbmMask ); 
int Replace( int nlmage, HICON hIcon ); 

Return Value 
The version returning BOOL returns nonzero if successful; otherwise O. 

The version returning int returns the zero-based index of the image if successful; 
otherwise -1. 

Parameters 

878 

nlmage Zero-based index of the image to replace. 

pbmlmage A pointer to the bitmap containing the image. 

pbmMask A pointer to the bitmap containing the mask. If no mask is used with the 
image list, this parameter is ignored. 



ClmageList:: SetDragCursorlmage 

Remarks 

h/con A handle to the icon that contains the bitmap and mask for the new image. 

Call this function to replace an image in an image list with a new image. 

See Also: ClmageList::Remove 

CImageList:: SetBkColor 
COLORREF SetBkColor( COLORREF cr ); 

Return Value 
The previous background color if successful; otherwise CLR_NONE. 

Parameters 

Remarks 

cr Background color to set. It can be CLR_NONE. In that case, images are drawn 
transparently using the mask. 

Call this function to set the background color for an image list. 

See Also: ClmageList: :GetBkColor, COLORREF 

CImageList: : SetDragCursor Image 
BOOL SetDragCursorlmage( int nDrag, CPoint ptHotSpot); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nDrag Index of the new image to be combined with the drag image. 

ptHotSpot Position of the hot spot within the new image. 

Creates a new drag image by combining the given image (typically a mouse cursor 
image) with the current drag image. 

Because the dragging functions use the new image during a drag operation, you 
should use the Windows Show Cursor function to hide the actual mouse cursor after 
calling ClmageList::SetDragCursorlmage. Otherwise, the system may appear to 
have two mouse cursors for the duration of the drag operation. 

See Also: ClmageList: :BeginDrag, ClmageList: :EndDrag, 
ClmageList: : GetDraglmage 

879 



ClmageList::SetOverlaylmage 

CImageList: : SetOverlay Image 
BOOL SetOverlaylmage( int nlmage, int nOverlay ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nlmage Zero-based index of the image to use as an overlay mask. 

nOverlay One-based index of the overlay mask. 

Call this function to add the zero-based index of an image to the list of images to be 
used as overlay masks. Up to four indices can be added to the list. 

An overlay mask is an image drawn transparently over another image. Draw an 
overlay mask over an image by using the ClmageList: :Draw member function with 
the one-based index of the overlay mask specified by using the 
INDEXTOOVERLAYMASK macro 

See Also: ClmageList: :Add 

CImageList: : Write 
BOOL Write( CArchive* pArchive ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pArchive A pointer to a CArchive object in which the image list is to be stored. 

Call this function to write an image list object to an archive. 

See Also: ClmageList: :Read 

Data Members 
CImageList: :m_hImageList 

Remarks 

880 

HIMAGELIST m_hlmageList; 

A handle of the image list attached to this object. The m_hlmageList data member is 
a public variable of type HIMAGELIST. 

See Also: ClmageList: :Attach, ClmageList: :Detach, ClmageList: :Attach 



CInternetConnection 

ClnternetConnection 

The MFC class CInternetConnection manages your connection to an Internet server. 
It is the base class for MFC classes CFtpConnection, CHttpConnection, and 
CGopherConnection. Each of these classes provides additional functionality for 
communicating with the respective FfP, HTTP, or gopher server. 

To communicate directly with an Internet server, you must have a CInternetSession 
object and a CInternetConnection object. 

To learn more about how the WinInet classes work, see the article "Internet 
Programming with WinInet" in Visual C++ Programmer's Guide online. 

#include <afxinet.h> 

CInternetConnection Class Members 
Construction 

ClnternetConnection 

Operations 

GetContext 

GetSession 

GetServerName 

Operators 

operator HINTERNET 

Constructs a CinternetConnection object. 

Gets the context ID for this connection object. 

Gets a pointer to the ClnternetSession object associated with 
the connection. 

Gets the name of the server associated with the connection. 

A handle to an Internet session. 

Member Functions 
ClntemetConnection: : ClnternetConnection 

CInternetConnection( CInternetSession* pSession, LPCTSTR pstrServer, 
... INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER, 
... DWORD dwContext = 1 ); 

CIntemetConnection 

881 



CIntemetConnection: :GetContext 

Parameters 

Remarks 

pSession A pointer to a ClnternetSession object. 

pstrServer A pointer to a string containing the server name. 

nPort The number that identifies the Internet port for this connection. 

dw Con text The context identifier for the ClnternetConnection object. 
See Remarks for more information about dwContext. 

This member function is called when a ClnternetConnection object is created. 

You never call ClnternetConnection yourself; instead, call the ClnternetSession 
member function for the type of connection you want to establish: 

• ClnternetSession:: GetFtpConnection 

• ClnternetSession:: GetHttpConnection 

• ClnternetSession:: GetGopherConnection 

The default value for dwContext is sent by MFC to the ClnternetConnection-derived 
object from the ClnternetSession object that created the InternetConnection-derived 
object. The default is set to 1; however, you can explicitly assign a specific context 
identifier in the ClnternetSession constructor for the connection. The object and any 
work it does will be associated with that context ID. The context identifier is returned 
to ClnternetSession::OnStatusCallback to provide status on the object with which it 
is identified. See the article "Internet First Steps: WinInet" online for more information 
about the context identifier. 

See Also: ClnternetSession, CGopherConnection, CFtpConnection, 
CHttpConnection 

ClnternetConnection: : GetContext 
DWORD GetContext( ) const; 

Return Value 

Remarks 

882 

The application-assigned context ID. 

Call this member function to get the context ID for this session. The context ID is 
originally specified in ClnternetSession and propagates to ClnternetConnection 
and ClnternetFile-derived classes, unless specified differently in the call to a function 
that opens the connection. The context ID is associated with any operation of the 
given object and identifies the operation's status information returned by 
ClnternetSession: :OnStatusCallback. 



ClnternetConnection: :operator HINTERNET 

For more information about how GetContext works with other WinInet classes to 
give the user status information, see the article "Internet First Steps: WinInet" online 
for more information about the context identifier. 

See Also: ClnternetSession::EnableStatusCallback 

ClnternetConnection: : GetServerN arne 
CString GetServerName( ) const; 

Return Value 

Remarks 

The name of the server this connection object is working with. 

Call this member function to get the name of the server associated with this Internet 
connection. 

See Also: ClnternetSession, CGopherConnection, CFtpConnection, 
CHttpConnection 

ClnternetConnection: : GetSession 
ClnternetSession* GetSession( ) const; 

Return Value 

Remarks 

A pointer to a ClnternetSession object associated with this Internet connection 
object. 

Call this member function to get a pointer to the ClnternetSession object that's 
associated with this connection. 

See Also: ClnternetSession, CGopherConnection, CFtpConnection, 
CHttpConnection 

Operators 
ClnternetConnection: : operator HINTERNET 

Remarks 

operator HINTERNET( ) const; 

Use this operator to get the API-level handle for the current Internet session. 

See Also: ClnternetSession, CGopherConnection, CFtpConnection, 
CHttpConnection 

883 



ClntemetException 

ClntemetException 

The CInternetException object represents an exception condition related to an 
Internet operation. The CInternetException class includes two public data members: 
one holds the error code associated with the exception, and the other holds the context 
identifier of the Internet application associated with the error. 

For more information about context identifiers for Internet applications, see the article 
"Internet Programming with WinInet" in Visual C++ Programmer's Guide online. 

#include <afxinet.h> 

See Also: CException 

ClnternetException Class Members 
Construction 

ClnternetException 

Data Members 

m_dwError 

m_dwContext 

See Also: CException 

Constructs a CinternetException object. 

The error that caused the exception. 

The context value associated with the operation that caused 
the exception. 

Member Functions 
CInternetException: :CInternetException 

CInternetException( DWORD dwError ); 

Parameters 
dwError The error that caused the exception. 

884 



ClnternetException: :m_dwError 

Remarks 
This member function is called when a ClnternetException object is created. 
To throw a CInternetException, call the MFC global function 
AfxThrow InternetException. 

See Also: CException 

Data Members 
CInternetException: :m_ d wContext 
Remarks 

The context value associated with the related Internet operation. The context identifier is 
originally specified in ClnternetSession and passed by MFC to ClnternetConnection­
and ClnternetFile-derived classes. You can override this default and assign any 
dwContext parameter a value of your choosing. dwContext is associated with any 
operation of the given object. dwContext identifies the operation's status information 
returned by ClnternetSession:: OnStatusCallback. 

See Also: CException 

CInternetException: :m_dwError 

Remarks 
The error that caused the exception. This error value may be a system error code, 
found in WINERROR.H, or an error value from WININET.H. 

For a list of Win32 error codes, see "Error Codes" in the Win32 SDK. For a list of 
Internet-specific error codes, see the ActiveX SDK documentation. 

See Also: CException 

885 



CInternetFile 

CInternetFile 

ClnternetFile 

The MFC class ClnternetFile provides a base class for the CHttpFile and 
CGopherFile file classes. ClnternetFile and its derived classes allow access to files 
on remote systems that use Internet protocols. You never create a ClnternetFile 
object directly. Instead, create an object of one of its derived classes by calling 
CGopherConnection::OpenFile or CHttpConnection::OpenRequest. You also 
can create a ClnternetFile object by calling CFtpConnection::OpenFile. 

The ClnternetFile member functions Open, LockRange, UnlockRange, and 
Duplicate are not implemented for ClnternetFile. If you call these functions on a 
ClnternetFile object, you will get a CNotSupportedException. 

To learn more about how ClnternetFile works with the other MFC Internet classes, 
see the article "Internet Programming with WinInet" in Visual C++ Programmer's 
Guide online. 

#include <afxinet.h> 

See Also: ClnternetConnection 

CInternetFile Class Members 

886 

Construction 

ClntcrnetFile 

Operations 

SetWriteBufferSize 

SetReadBufferSize 

Overridables 

Seek 

Read 

Write 

Abort 

Constructs a ClnternetFile object. 

Sets the size of the buffer where data will be written. 

Sets the size of the buffer where data will be read. 

Repositions the pointer in an open file. 

Reads the number of specified bytes. 

Writes the number of specified bytes. 

Closes the file, ignoring all warnings and errors. 



ClnternetFile: :ClnternetFile 

Overridables (continued) 

Flush 

Close 

ReadString 

WriteString 

Data Members 

Operators 

operator HINTERNET 

Flushes the contents of the write buffer and 
makes sure the data in memory is written to 
the target machine. 

Closes a ClnternetFile and frees its resources. 

Reads a stream of characters. 

Writes a null-terminated string to a file. 

A handle to a file. 

A casting operator for an Internet handle. 

Member Functions 
CInternetFile: : Abort 

Remarks 

virtual void Abort( ); 

Closes the file associated with this object and makes the file unavailable for reading 
or writing. If you have not closed the file before destroying the object, the destructor 
closes it for you. 

When handling exceptions, Abort differs from Close in two important ways. First, 
the Abort function does not throw an exception on failures because it ignores failures. 
Second, Abort does not ASSERT if the file has not been opened or was closed 
previously. 

CInternetFile: : CInternetFile 

Remarks 

ClnternetFile( ); 

This member function is called when a ClnternetFile object is created. 

You never create a ClnternetFile object directly. Instead, create an object of one 
of its derived classes by calling CGopherConnection::OpenFile or 
CHttpConnection::OpenRequest. You also can create a ClnternetFile object 
by calling CFtpConnection::OpenFile. 

See Also: ClnternetConnection, CHttpFile CGopherFile 

887 



ClntemetFile: :Close 

ClnternetFile: : Close 

Remarks 

virtual void Close( ); 
throw ( CInternetException); 

Closes a CInternetFile and frees any of its resources. If the file was opened for 
writing, there is an implicit call to Flush to assure that all buffered data is written to 
the host. You should call Close when you are finished using a file. 

ClnternetFile: :Flush 

Remarks 

virtual void Flush( ); 
throw ( CInternetException ); 

Call this member function to flush the contents of the write buffer. Use Flush to 
assure that all data in memory has actually been written to the target machine and to 
assure your transaction with the host machine has been completed. Flush is only 
effective on CInternetFile objects opened for writing. 

ClnternetFile: :Read 
virtual UINT Read( void* IpBuf, UINT nCount ); 

throw CInternetException(); 

Return Value 
The number of bytes transferred to the buffer. The return value may be less than 
nCount if the end of file was reached. 

Parameters 

Remarks 

888 

IpBuJ A pointer to a memory address to which file data is read. 

nCount The number of bytes to be written. 

Call this member function to read into the given memory, starting at IpvBuf, the 
specified number of bytes, nCount. The function returns the number of bytes actually 
read-a number that may be less than nCount if the file ends. If an error occurs while 
reading the file, the function throws a CInternetException object that describes the 
error. Note that reading past the end of the file is not considered an error and no 
exception will be thrown. 



CInternetFile: : ReadString 
virtual BOOL ReadString( CString& rString ); 

throw ( CInternetException); 
virtual LPTSTR ReadString( LPTSTR pstr, UINT nMax ); 

throw ( CInternetException ); 

Return Value 
A pointer to the buffer containing the text data. NULL if end-of-file was reached 
without reading any data; or, if boolean, FALSE if end-of-file was reached without 
reading any data. 

Parameters 

Remarks 

pstr A pointer to a string which will receive the line being read. 

nMax The maximum number of characters to be read. 

rString A reference to the CString object that receives the read line. 

Call this member function to read a stream of characters until it finds a newline 
character. The function places the resulting line into the memory referenced by the 
pstr parameter. It stops reading characters when it reaches the maximum number of 
characters, specified by nMax. The buffer always receives a terminating null character. 

If you call ReadString without first calling SetReadBufferSize, you will get a buffer 
of 4096 bytes. 

CIntemetFile:: Seek 
virtual LONG Seek( LONG lOffset, UINT nFrom ); 

throw ( CInternetException); 

Return Value 
The new byte offset from the beginning of the file if the requested position is legal; 
otherwise, the value is undefined and a CInternetException object is thrown. 

Parameters 
lOffset Offset in bytes to move the read/write pointer in the file. 

nFrom Relative reference for the offset. Must be one of the following values: 

• CFile::begin Move the file pointer lOffbytes forward from the beginning of 
the file. 

• CFile::current Move the file pointer lOffbytes from the current position in 
the file. 

ClnternetFile: :Seek 

889 



ClnternetFile: :SetReadB ufferSize 

Remarks 

• CFile::end Move the file pointer IOffbytes from the end of the file. IOffmust 
be negative to seek into the existing file; positive values will seek past the end 
of the file. 

Call this member function to reposition the pointer in a previously opened file. The 
Seek function permits random access to a file's contents by moving the pointer a 
specified amount, absolutely or relatively. No data is actually read during the seek. 

At this time, a call to this member function is only supported for data associated with 
CHttpFile objects. It is not supported for FTP or gopher requests. If you call Seek for 
one of these unsupported services, it will pass back you to the Win32 error code 
ERROR_INTERNET_INVALID_OPERATION. 

When a file is opened, the file pointer is at offset 0, the beginning of the file. 

Note Using Seek may cause an implicit call to Flush. 

CInternetFile: : SetReadB ufferSize 
BOOL SetReadBufferSize( DINT nReadSize ); 

Return Value 
Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

890 

nReadSize The desired buffer size in bytes. 

Call this member function to set the size of the temporary read buffer used by a 
CInternetFile-derived object. The underlying WinInet APIs do not perform 
buffering, so choose a buffer size that allows your application to read data efficiently, 
regardless of the amount of data to be read. If each call to Read normally involves a 
large aount of data (for example, four or more kilobytes), you should not need a 
buffer. However, if you call Read to get small chunks of data, or if you use 
ReadString to read individual lines at a time, then a read buffer improves application 
performance. 

By default, a CInternetFile object does not provide any buffering for reading. If you 
call this member function, you must be sure that the file has been opened for read 
access. 

You can increase the buffer size at any time, but shrinking the buffer will have no 
effect. If you call ReadString without first calling SetReadBufferSize, you will 
get a buffer of 4096 bytes. 



CInternetFile::WriteString 

CInternetFile::SetWriteBufferSize 
BOOL SetWriteBufferSize( UINT n WriteSize ); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

n WriteSize The size of the buffer in bytes. 

Call this member function to set the size of the temporary write buffer used by a 
CInternetFile-derived object. The underlying WinInet APIs don't perform buffering, 
so choose a buffer size that allows your application to write data efficiently regardless 
of the amount of data to be written. If each call to Write normally involves a large 
amount of data (for example, four or more kilobytes at a time), you should not need 
a buffer. However, if you call Write to write small chunks of data, a write buffer 
improves your application's performance. 

By default, a CInternetFile object does not provide any buffering for writing. If you 
call this member function, you must be sure that the file has been opened for write 
access. You can change the size of the write buffer at any time, but doing so causes 
an implicit call to Flush. 

CInternetFile:: Write 
virtual void Write( const void* IpBuf, UINT nCount ); 

throw CInternetException( ); 

Parameters 

Remarks 

IpvBuJ A pointer to the first byte to be written. 

nCount Specifies the number of bytes to be written. 

Call this member function to write into the given memory, IpvBuj, the specified 
number of bytes, nCount. If any error occurs while writing the data, the function 
throws a CInternetException describing the error. 

CInternetFile:: WriteString 
virtual void WriteString( LPCTSTR pstr ); 

throw CInternetException( ); 

Parameters 
pstr A pointer to a string containing the contents to be written. 

891 



CIntemetFile: :m_hFile 

Remarks 
This function writes a null-terminated string to the associated file. 

Data Members 
CInternetFile: :m_hFile 

HINTERNET m_hFile; 

Remarks 
A handle to the file associated with this object. 

Operators 
CIntemetFile::operator HINTERNET 

operator HINTERNET( ) const; 

Remarks 
Use this operator to get the Windows handle for the current Internet session. 

892 



CInternetSession 

ClnternetSession 

Use class ClnternetSession to create and initialize a single or several simultaneous 
Internet sessions and, if necessary, to describe your connection to a proxy server. If 
your Internet connection must be maintained for the duration of an application, you 
can create a ClnternetSession member of the class CWinApp. 

Once you have established an Internet session, you can call OpenURL. 
ClnternetSession then parses the URL for you by calling the global function 
AfxParseURL. Regardless of its protocol type, ClnternetSession interprets the URL 
and manages it for you. It can handle requests for local files identified with the URL 
resource "file://". OpenURL will return a pointer to a CStdioFile object if the name 
you pass it is a local file. 

If you open a URL on an Internet server using Open URL, you can read information 
from the site. If you want to perform service-specific (for example, HTTP, FfP, or 
gopher) actions on files located on a server, you must establish the appropriate 
connection with that server. To open a particular kind of connection directly to a 
particular service, use one of the following member functions: 

• GetGopherConnection to open a connection to a gopher service. 

• GetHttpConnection to open a connection to an HTTP service. 

• GetFtpConnection to open a connection to an FTP service. 

QueryOption and SetOption allow you to set the query options of your session, 
such as time-out values, number of retries, and so on. 

During an Internet session, a transaction such as a search or data download can take 
appreciable time. The user might want to continue working, or might want to have 
status information about the progress of the transaction. To handle this problem, 
ClnternetSession provides for searches and data transfer to occur asychronously, 
allowing the user to perform other tasks while waiting for the transfer to complete. 
If you want to provide the user with status information, or if you want to handle any 
operations asynchronously, three conditions must be set: 

• In the constructor, dwFlags must include INTERNET_FLAG_ASYNC. 

• In the constructor, dwContext must be set to 1. 

• You must establish a call back function by calling EnableStatusCallback 

Use the overridable member function OnStatusCallback to get status information 
on asynchronous retrieval. To use this overridable member function, you must derive 
your own class from ClnternetSession. 

CIntemetSession 

893 



ClnternetSession 

For more information about asynchronous operations, see the article "Internet First 
Steps: WinInet" in Visual C++ Programmer's Guide online. For general information 
about using the MFC WinInet classes, see the article "Internet Programming with 
WinInet" in Visual C++ Programmer's Guide online. 

Note ClnternetSession will throw an AfxThrowNotSupportedException for unsupported 
service types. Only the following service types are currently supported: FTP, HITP, gopher, 
and file. 

#include <afxinet.h> 

See Also: ClnternetConnection, CHttpConnection, CFtpConnection, 
CGopherConnection 

CInternetSession Class Members 

894 

Construction 

ClnternetSession 

Attributes 

QueryOption 

SetOption 

OpenURL 

GetFtpConnection 

GetHttpConnection 

GetGopherConnection 

EnableStatusCallback 

ServiceTypeFromHandle 

Operations 
GetContext 

Close 

Overridables 

OnStatusCallback 

Operators 

operator HINTERNET 

Constructs a ClnternetSession object. 

Provides possible asserts for error checking. 

Sets options for the Internet session. 

Parses and opens a URL. 

Opens an FTP session with a server. Logs on the user. 

Opens an HTTP server for an application that is trying to open 
a connection. 

Opens a gopher server for an application that is trying to open 
a connection. 

Establishes a status callback routine. EnableStatusCallback 
is required for asynchronous operations. 

Gets the type of service from the Internet handle. 

Gets the context value for an Internet or application session. 

Closes the Internet connection when the Internet session is 
terminated. 

Updates the status of an operation when status callback is 
enabled. 

A handle to the current Internet session. 



Cln ternetS essi on: : Cln ternetSession 

Member Functions 
CInternetSes sion: : CInternetSession 

ClnternetSession( LPCTSTR pstrAgent = NULL, DWORD dwContext = 1, 
~ DWORD dwAccessType = INTERNET_OPEN_TYPE_PRECONFIG, 

Parameters 

~ LPCTSTR pstrProxyName = NULL, LPCTSTR pstrProxyBypass = NULL, 
~ DWORD dwFlags = 0 ); 

pstrAgent A pointer to a string that identifies the name of the application or entity 
calling the Internet functions (for example, "Microsoft Internet Browser"). 
If pstrAgent is NULL (the default), the framework calls the global function 
AfxGetAppName, which returns a null-terminated string containing an 
application's name. Some protocols use this string to identify your application 
to the server. 

dwContext The context identifier for the operation. dwContext identifies the 
operation's status information returned by ClnternetSession::OnStatusCallback. 
The default is set to 1; however, you can explicitly assign a specific context ID for 
the operation. The object and any work it does will be associated with that context 
ID. If dwFlags includes INTERNET_FLAG_ASYNC, then objects created by 
this object have asynchronous behavior as long as a status callback routine is 
registered. In order for a function to be completed synchronously, dwContext has 
to be set to zero for that call. 

dwAccessType The type of access required. The following are valid values, exactly 
one of which may be supplied: 

• INTERNET_OPEN_TYPE_PRECONFIG Preconfigured (in the registry). 
This access type is set as the default. 

• INTERNET_OPEN_TYPE_DIRECT Direct to Internet. 

• INTERNET_OPEN_ TYPE_PROXY Through CERN proxy. 

pstrProxyName The name of the preferred CERN proxy if dwAccessType is set as 
INTERNET_OPEN_TYPE_PROXY. The default is NULL. 

pstrProxyBypass A pointer to a string containing an optional list of server addresses. 
These addresses may be bypassed when using proxy access. If a NULL value is 
supplied, the bypass list will be read from the registry. This parameter is 
meaningful only if dwAccessType is set to INTERNET_OPEN_TYPE_PROXY. 

dwFlags Indicates various options such as caching and asynchronous behavior. The 
default is set to O. The possible values include: 

• INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or 
in any gateway servers. 

895 



CInternetSession: :Close 

Remarks 

• INTERNET_FLAG_ASYNC Future operations on this object may fail with 
ERROR_IO_PENDING. A status callback will be made with 
INTERNET_STATUS_REQUEST_COMPLETE when the operation 
finishes. This callback is on a thread other than the one for the original request. 
You must call EnableStatusCallback to establish a status callback routine, or 
the functions will be completed synchronously . 

• INTERNET_FLAG_OFFLINE Download operations are satisfied through 
the persistent cache only. If the item does not exist in the cache, an appropriate 
error code is returned. This flag may be combined with the bitwise OR (I) 
operator. 

This member function is called when a CInternetSession object is created. 
CInternetSession is the first Internet function called by an application. It initializes 
internal data structures and prepares for future calls from the application. 

If dwFlags includes INTERNET_FLAG_ASYNC, then all handles derived from this 
handle will have asynchronous behavior as long as a status callback routine is 
registered. 

If no Internet connection can be opened, CInternetSession throws an 
AfxThrowInternetException. 

See Also: CInternetSession:: Close, CInternetSession: :EnableStatusCallback, 
CInternetSession: :GetContext 

CInternetSession: : Close 

Remarks 

virtual void Close( ); 

Call this member function when your application has finished using the 
CInternetSession object. 

See Also: ClnternetSession::CInternetSession 

CInternetSession: : EnableStatusCallback 
BOOL EnableStatusCallback( BOOL bEnable = TRUE ); 

throw ( ClnternetException); 

Return Value 
Nonzero if successful; otherwise O. If the call fails, determine the cause of the failure 
by examining the thrown CInternetException object. 

Parameters 
bEnable Specifies whether callback is enabled or disabled. The default is TRUE. 

896 



CInternetSession: :GetContext 

Remarks 
Call this member function to enable status callback. When handling status callback, 
you can provide status about the progress of the operation (such as resolving name, 
connecting to server, and so on) in the status bar of the application. Displaying 
operation status is especially desirable during a long-term operation. 

You can set a callback routine for synchronous operations; however, you must 
establish a callback routine for asynchronous operations because the asynchronous 
API makes a callback with INTERNET_STATUS_REQUEST_COMPLETE to 
indicate that the request has completed. 

A callback for an asynchronous operation will be on a thread other than the one for 
the original request. The call can fail with an ERROR_IO_PENDING error if the 
request is not complete when the status callback occurs. The callback may be call1ed 
in a thread context different from the thread which initiated the request. 

Because callbacks occur during the request's processing, the application should spend 
as little time as possible in the callback to prevent degradation of data throughput to 
the network. For example, putting up a dialog box in a callback may be such a lengthy 
operation that the server terminates the request. 

The status callback cannot be removed as long as any callbacks or any asynchronous 
functions are pending. 

Note To handle any operations asynchronously, three conditions must be set: 

• In the constructor, dwFlags must include INTERNET_FLAG_ASYNC. 

• In the constructor, dwContext must be set to 1. 

• You must establish a call back function by calling EnableStatusCallback. 

For more information about asynchronous operations, see the article "Internet First 
Steps: WinInet" in Visual c++ Programmer's Guide online. 

See Also: CInternetSession::CInternetSession 

CInternetSession: : GetContext 
DWORD GetContext( ) const; 

Return Value 

Remarks 

The application-defined context Identifier. 

Call this member function to get the context value for a particular application session. 
OnStatusCallback uses the context ID returned by GetContext to report the status of 
a particular application. For example, when a user activates an Internet request that 
involves returning status information, the status callback uses the context ID to report 
status on that particular request. If the user activates two separate Internet requests 

897 



ClntemetSession: : GetFtpConnection 

that both involve returning status information, OnStatusCallback uses the context 
identifiers to return status about their corresponding requests. Consequently, the 
context identifier is used for all status callback operations, and it is associated with 
the session until the session is ended. 

For more information about asynchronous operations, see the article "Internet First 
Steps: WinInet" in Visual C++ Programmer's Guide online. 

See Also: CInternetConnection, CInternetSession: :EnableStatusCallback, 
CInternetSession: :OnStatusCallback 

CInternetSession: : GetFtpConnection 
CFtpConnection* GetFtpConnection( LPCTSTR pstrServer, 

... LPCTSTRpstrUserName = NULL, LPCTSTRpstrPassword = NULL, 

... INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER, 

... BOOL bPassive = FALSE ); 
throw ( CInternetException); 

Return Value 
A pointer to a CFtpConnection object. If the call fails, determine the cause of the 
failure by examining the thrown CInternetException object. 

Parameters 

898 

pstrServer A pointer to a string containing the FTP server name. 

pstrUserName Pointer to a null-terminated string that specifies the name of the user 
to log in. If NULL, the default is anonymous. 

pstrPassword A pointer to a null-terminated string that specifies the password to 
use to log in. If both pstrPassword and pstrUserName are NULL, the default 
anonymous password is the user's email name. If pstrPassword is NULL (or 
an empty string) but pstrUserName is not NULL, a blank password is used. 
The following table describes the behavior for the four possible settings of 
pstrUserName and pstrPassword: 

Username sent to Password sent to 
pstrUserName pstrPassword FTP server FTP server 

NULL or"" NULLor"" "anonymous" User's email name 

Non-NULL String NULL or"" pstrUserName 

NULL Non-NULL ERROR ERROR 
String 

Non-NULL String Non-NULL String pstrUserName pstrPassword 

nPort A number that identifies the TCPIIP port to use on the server. 

bPassive Specifies passive or active mode for this FTP session. If set to TRUE, 
it sets the Win32 API dwFlag to INTERNET_FLAG_PASSIVE . . 



CInternetSession: :GetGopherConnection 

Remarks 
Call this member function to establish an FTP connection and get a pointer to a 
CFtpConnection object. 

GetFtpConnection connects to an FTP server, and creates and returns a pointer to a 
CFTPConnection object. It does not perform any specific operation on the server. If 
you intend to read or write to files, for example, you must perform those operations as 
separate steps. See the classes CFtpConnection and CFtpFileFind for information 
about searching for files, opening files, and reading or writing to files. See the article 
"Internet Programming with WinInet" in Visual C++ Programmer's Guide online for 
steps in performing common FTP connection tasks. 

See Also: CFtpConnection CInternetSession::GetGopherConnection, 
CInternetSession: : GetHttpConnection, CInternetSession: :OpenURL 

CInternetS es si on: : GetGopherConnecti on 
CGopherConnection* GetGopherConnection( LPCTSTR pstrServer, 

... LPCTSTR pstrUserName = NULL, LPCTSTR pstrPassword = NULL, 

... INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER ); 
throw ( CInternetException ); 

Return Value 
A pointer to a CGopherConnection object. If the call fails, determine the cause of the 
failure by examining the thrown CInternetException object. 

Parameters 

Remarks 

pstrServer A pointer to a string containing the gopher server name. 

pstrUserName A pointer to a string containing the user name. 

pstrPassword A pointer to a string containing the access password. 

nPort A number that identifies the TCPIIP port to use on the server. 

Call this member function to establish a new gopher connection and get a pointer to a 
CGopherConnection object. 

GetGopherConnection connects to a gopher server, and creates and returns a pointer 
to a CGopherConnection object. It does not perform any specific operation on the 
server. If you intend to read or write data, for example, you must perform those 
operations as separate steps. See the classes CGopherConnection, CGopherFile, 
and CGopherFileFind for information about searching for files, opening files, and 
reading or writing to files. For information about browsing an FTP site, see the 
member function OpenURL. See the article "Internet Programming with WinInet" 
in Visual C++ Programmer's Guide online for steps in performing common gopher 
connection tasks. 

899 



ClntemetSession: : GetHttpConnection 

See Also: CGopherConnection, CInternetSession::GetFtpConnection, 
CInternetSession: :GetHttpConnection, CInternetSession: :OpenURL 

CIn ternetS es si on: : GetH ttpConnecti on 
CHttpConnection* GetHttpConnection( LPCTSTR pstrServer, 

... INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER, 

... LPCTSTR pstrUserName = NULL, LPCTSTR pstrPassword = NULL ); 
throw ( CInternetException); 

Return Value 
A pointer to a CHttpConnection object. If the call fails, determine the cause of the 
failure by examining the thrown CInternetException object. 

Parameters 

Remarks 

pstrServer A pointer to a string containing the HTTP server name. 

nPort A number that identifies the TCPIIP port to use on the server. 

pstrUserName A pointer to a string containing the user name. 

pstrPassword A pointer to a string containing the access password. 

Call this member function to establish an HTTP connection and get a pointer to a 
CHttpConnection object. 

GetHttpConnection connects to an HTTP server, and creates and returns a pointer to 
a CHttpConnection object. It does not perform any specific operation on the server. 
If you intend to query an HTTP header, for example, you must perform this operation 
as a separate step. See the classes CHttpConnection and CHttpFile for information 
about operations you can perform by using a connection to an HTTP server. For 
information about browsing an HTTP site, see the member function OpenURL. See 
the article "Internet Programming with WinInet" in Visual c++ Programmer's Guide 
online for steps in performing common HTTP connection tasks. 

See Also: CHttpConnection, CInternetSession::GetGopherConnection, 
CInternetSession:: GetFtpConnection, CInternetSession:: Open URL 

CInternetSession: :OnStatusCallback 
virtual void OnStatusCallback( DWORD dwContext, DWORD dwlnternetStatus, 

... LPVOID IpvStatusln!ormation, DWORD dwStatuslnformationLength); 

Parameters 
dwContext The context value supplied by the application. 

dwlnternetStatus A status code which indicates why the callback is being made. 
See Remarks for a table of possible values. 

900 



Remarks 

CIntemetSession: :OnStatusCallback 

lpvStatuslnJormation A pointer to a buffer containing information pertinent to this 
callback. 

dwStatuslnJormationLength The size of lpvStatuslnJormatioll. 

This member function is called by the framework to update the status when status 
callback is enabled and an operation is pending. You must first call 
EnableStatusCallback to take advantage of status callback. 

The dwlnternetStatus parameter indicates the operation being performed and 
determines what the contents of lpvStatuslnJormation will be. 
dwStatuslnJormationLength indicates the length of the data included in 
lpvStatuslnJormation. The following status values for dwlnternetStatus are defined as 
follows: 

Value Meaning 

INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the name contained in 
IpvStatus!n!ormation. 

INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address of the name 
contained in IpvStatus!n!ormation. 

INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket address (SOCKADDR) 
pointed to by lpvStatus!n!ormation. 

INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket address 
(SOCKADDR) pointed to by lpvStatus!n!ormation. 

INTERNET_STATUS_SENDING_REQUEST Sending the information request to the server. The 
lpvStatus!n!ormation parameter is NULL. 

INTERNET_STATUS_ REQUEST_SENT Successfully sent the information request to the 
server. The lpvStatus!n!ormation parameter is NULL. 

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a request. The 
lpvStatus!n!ormation parameter is NULL. 

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response from the server. 
The lpvStatus!n!ormation parameter is NULL. 

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server. The 
lpvStatus!n!ormation parameter is NULL. 

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to the server. 
The IpvStatus!n!ormation parameter is NULL. 

INTERNET_STATUS_HANDLE_CREATED Used by the Win32 API function InternetConnect 
to indicate that it has created the new handle. This 
lets the application call the Win32 function 
InternetCloseHandle from another thread if the 
connect is taking too long. See the ActiveX SDK for 
more information about these functions. 

INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this handle value. 

(continued) 

901 



CIntemetSession: :Open URL 

(continued) 

Value 

INTERNET_STATUS_REQUEST_COMPLETE 

Meaning 

Successfully completed the asynchronous operation. 
See the ClnternetSession constructor for details on 
INTERNET_FLAG_ASYNC.The 
lpvStatuslnJormation parameter will be NULL and 
dwStatuslnJormationLength will contain the final 
completion status of the asynchronous function. If this 
is ERROR_INTERNET_EXTENDED_ERROR, 
the application can retrieve the server error 
information by using the Win32 function 
InternetGetLastResponselnfo. See the ActiveX SDK 
for more information about this function. 

In the case of INTERNET_STATUS_REQUEST_COMPLETE, IpvStatuslnJormation 
points at an INTERNET_A SYNC_RESULT structure, which is defined as: 

• DWORD dwResult; The return code from the operation . 

• DWORD dwError; If dwResult indicates that the operation failed, this member 
contains the error code. If the operation was successful, this member usually 
contains ERROR_SUCCESS. 

Override this member function to require some action before a status callback routine 
is performed. 

Note Status callbacks need thread-state protection. If you are using MFC in a shared library, 
add the following line to the beginning of your override: 

AFX_MANAGE_STATE( AfxGetStaticModuleState( ) ); 

For more information about asynchronous operations, see the article "Internet First 
Steps: WinInet" in Visual C++ Programmer's Guide online. 

See Also: ClnternetSession: :EnableStatusCaIlback, 
ClnternetSession::GetContext 

CInternetSession: : Open URL 
CStdioFile* OpenURL( LPCTSTR pstrURL, DWORD dwContext = 1, 

... DWORD dwFlags = INTERNET_FLAG_TRANSFER_ASCII, 

... LPCTSTR pstrHeaders = NULL, DWORD dwHeadersLength = 0 ); 
throw ( ClnternetException); 

Return Value 

902 

Returns a file handle for FTP, GOPHER, HTTP, and FILE-type Internet services only. 
Returns NULL if parsing was unsuccessful. 



ClntemetSession::OpenURL 

The pointer that OpenURL returns depends on pszURL's type of service. The table 
below illustrates the possible pointers OpenURL can return. 

URL type 

file:// 

http:// 

gopher:// 

ftp:// 

Returns 

CStdioFile* 

CHttpFile* 

CGopherFile* 

ClnternetFile* 

Parameters 

Remarks 

pstrURL A pointer to the name of the URL to begin reading. Only URLs beginning 
with file:, ftp:, gopher:, or http: are supported. ASSERTS if pszURL is NULL. 

dw Con text An application-defined value passed with the returned handle in callback. 

dwFlags The flags describing how to handle this connection. The valid flags, which 
can be combined with the bitwise OR operator (I), are: 

• INTERNET_FLAG_TRANSFER_ASCII The default. Transfer any data as 
ASCII text. 

• INTERNET_FLAG_RELOAD Get the data from the wire even if it is locally 
cached. 

• INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or 
in any gateways. 

• INTERNET _FLAG_SECURE This flag is applicable to HTTP requests only. 
It requests secure transactions on the wire with Secure Sockets Layer or PCT. 

• INTERNET_OPEN_FLAG_USE_EXISTING_CONNECT If possible, 
reuse the existing connections to the server for new requests generated by 
OpenUri instead of creating a new session for each connection request. 

• INTERNET_FLAG_PASSIVE Used for an FTP site. Uses passive FTP 
semantics. Used with CInternetConnection of OpenURL. 

pstrHeaders A pointer to a string containing the headers to be sent to the HTTP 
server. 

dwHeadersLength The length, in characters, of the additional headers. If this is -lL 
and pstrHeaders is non-NULL, then pstrHeaders is assumed to be zero terminated 
and the length is calculated. 

Call this member function to send the specified request to the HTTP server and allow 
the client to specify additional RFC822, MIME, or HTTP headers to send along with 
the request. 

OpenURL, which wraps the Win32 function InternetOpenURL, allows only 
downloading, retrieving, and reading the data from an Internet server. OpenURL 
allows no file manipulation on a remote location, so it requires no 
CInternetConnection object. 

903 



CInternetSession: : QueryOption 

To use connection-specific (that is, protocol-specific) functions, such as writing to a 
file, you must open a session, then open a particular kind of connection, then use that 
connection to open a file in the desired mode. See CInternetConnection for more 
information about connection-specific functions. 

See Also: CInternetConnection, CGopherConnection, 
CInternetSession:: GetFtpConnection, CInternetSession: :GetHttpConnection 

CInternetSession:: QueryOption 
BOOL QueryOption( DWORD dwOption, LPVOID lpBuffer, 

~ LPDWORD IpdwBufLen ) const; 
BOOL QueryOption( DWORD dwOption, DWORD& dwValue) const; 

Return Value 
If the operation was successful, a value of TRUE is returned. If an error occurred, a 
value of FALSE is returned. If the call fails, the Win32 function GetLastError may 
be called to determine the cause of the error. 

Parameters 

Remarks 

904 

dwOption The Internet option to query. See Remarks for a table of the possible 
options. 

lpBuffer A buffer that receives the option setting. 

lpdwBufLen A pointer to a DWORD containing the length of lpBuffer. On return, 
this contains the length of the data placed into IpBuffer. 

dw Value Sent to QueryOption in place of lpBuffer. 

Provides five possible asserts for basic error-checking. 

See CInternetSession::SetOption to select and set the specific option to query. 

The following table defines values for the parameter dWOption: 

Value 

INTERNET_OPTION_CALLBACK 

INTERNET_OPTION_CONNECT_TIMEOUT 

INTERNET_OPTION_CONNECT_RETRIES 

Meaning 

The address of the callback function defined 
for this handle. 

The time-out value in milliseconds to use for 
Internet connection requests. If a connection 
request takes longer than this timeout, the 
request is canceled. The default timeout is 
infinite. 

The retry count to use for Internet connection 
requests. If a connection attempt still fails after 
the specified number of tries, the request is 
canceled. The default is five. 



(continued) 

Value 

INTERNET_OPTION_CONNECT_BACKOFF 

INTERNET_OPTION_CONTROL_SEND_TIMEOUT 

INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT 

INTERNET_OPTION_DATA_SEND_TIMEOUT 

INTERNET_OPTION_HANDLE_TYPE 

INTERNET_OPTION_PARENT_HANDLE 

INTERNET_OPTION_KEEP _CONNECTION 

INTERNET_OPTION_USERNAME 

CIn ternetSession: :QueryOption 

Meaning 

The delay value in milliseconds to wait 
between connection retries. 

The timeout value in milliseconds to use for 
nondata (control) Internet send requests. If a 
nondata send request takes longer than this 
timeout, the request is canceled. The default 
time-out is infinite. Currently, this value only 
has meaning for FrP sessions. 

The timeout value in milliseconds to use for 
nondata (control) Internet receive requests. If a 
nondata receive request takes longer than this 
timeout, the request is canceled. The default 
timeout is infinite. Currently, this value only 
has meaning for FrP sessions 

The timeout value in milliseconds to use for 
data Internet send requests. If a data send 
request takes longer than this timeout, the 
request is canceled. The default timeout is 
infinite. 

The timeout value in milliseconds to use for 
data Internet receive requests. If a data receive 
request takes longer than this timeout, the 
request is canceled. The default timeout is 
infinite. 

See below for a list of the possible Internet 
options. 

Returns the context value associated with this 
Internet handle. 

Returns the size of the read buffer (in othe 
words, used by CFtpConnection::GetFile). 

Returns the size of the write buffer (in othe 
words used by CFtpConnection::PutFile). 

Returns the 10 of the last async request made 
in this thread context. 

Returns the priority of this download if it is an 
async download. 

Returns the parent handle of this handle. 

Returns an indication whether this handle uses 
persistent connections. 

Returns the user name associated with a handle 
returned by the InternetConnect API. 

(continued) 

905 



ClnternetSession::ServiceTypeFromHandle 

(continued) 

Value 

INTERNET_OPTION_PASSWORD 

INTERNET_OPTION_REQUEST_FLAGS 

INTERNET_OPTION_EXTENDED_ERROR 

Meaning 

Returns the password associated with the 
handle returned by InternetConnect API. 

Returns special status flags about the current 
download in progress. This option is available 
only for querying. The only flag currently 
returned is 
INTERNET_REQFLAG_FROM_CACHE. 
This flag is how the caller can discover whether 
a request is being satisfied from the cache. 

Returns the winsock error code that was 
mapped to the ERROR_INTERNET_ error 
codes last returned in this thread context. 

The possible settings for INTERNET_OPTION_HANDLE_TYPE include the 
following: 

• INTERNET_HANDLE_TYPE_INTERNET 

• INTERNET_HANDLE_TYPE_CONNECT_FTP 

• INTERNET_HANDLE_TYPE_CONNECT_GOPHER 

• INTERNET_HANDLE_TYPE_CONNECT_HTTP 

• INTERNET_HANDLE_TYPE_FTP _FIND 

• INTERNET_HANDLE_TYPE_FTP _FIND_HTML 

• INTERNET_HANDLE_TYPE_FTP _FILE 

• INTERNET_HANDLE_TYPE_FTP _FILE_HTML 

• INTERNET_HANDLE_TYPE_GOPHER_FIND 

• INTERNET _HANDLE_ TYPE_ GOPHER_FIND _HTML 

• INTERNET_HANDLE_TYPE_GOPHER_FILE 

• INTERNET_HANDLE_TYPE_GOPHER_FILE_HTML 

• INTERNET_HANDLE_TYPE_HTTP _REQUEST 

See Also: CInternetSession: :ServiceTypeFromHandle, 
CInternetSession: :SetOption 

CInternetSession: : ServiceTypeFromHandle 
DWORD ServiceTypeFromHandle( HINTERNET hQuery ); 

Return Value 
The Internet service type. See Remarks for a list of recognized service types. 

906 



CInternetSession: :SetOption 

Parameters 

Remarks 

hQuery A handle to an Internet query. 

Call this member function to get the type of service from the Internet handle. The 
following service types are recognized by MFC: 

Service type 

FIP 
HTTP 

Gopher 

File 

Return value 

INTERNET _SERVICE_FTP 

INTERNET _SERVICE_HTTP 

INTERNET_SERVICE_GOPHER 

AFX_INET_SERVICE_FILE 

ClnternetSession will throw an AfxThrowNotSupportedException for unsupported 
service types. 

Note The return value AFXJNET _SERVICE_FILE is used only by MFC and is not recognized 
by Win32. This feature allows the client to access local files in the same way he or she would 
access Internet services. 

See Also: ClnternetSession: :QueryOption, 
ClnternetSession: :operator HINTERNET 

CInternetSession: : SetOption 
BOOL SetOption( DWORD dwOption, LPVOID IpBuffer, 

... DWORD dwBufferLength ); 
BOOL SetOption( DWORD dwOption, DWORD dwValue ); 

Return Value 
If the operation was successful, a value of TRUE is returned. If an error occurred, 
a value of FALSE is returned. If the call fails, the Win32 function GetLastError 
may be called to determine the cause of the error. 

Parameters 

Remarks 

dwOption See ClnternetSession: :QueryOption for list of possible values. 

IpBuffer A buffer that contains the option setting. 

dwBufferLength The length of IpBuffer or the size of dwValue. 

dwValue A DWORD that contains the option setting. 

Call this member function to set options for the Internet session. 

See Also: ClnternetSession: :ServiceTypeFromHandle, 
ClnternetSession: :QueryOption 

907 



ClntemetSession: : operator HINTERNET 

Operators 
CInternetSession: : operator HINTERNET 

Remarks 

908 

operator HINTERNET( ) const; 

Use this operator to get the Windows handle for the current Internet session. 

See Also: ClnternetSession: :ServiceTypeFromHandle 



CList 
I CObject 

'y PUst, 

template< class TYPE, class ARG_TYPE > 
class CList : public CObject 

Parameters 

Remarks 

TYPE Type of object stored in the list. 

ARG_TYPE Type used to reference objects stored in the list. Can be a reference. 

The CList class supports ordered lists of nonunique objects accessible sequentially 
or by value. CList lists behave like doubly-linked lists. 

A variable of type POSITION is a key for the list. You can use a POSITION 
variable as an iterator to traverse a list sequentially and as a bookmark to hold a place. 
A position is not the same as an index, however. 

Element insertion is very fast at the list head, at the tail, and at a known POSITION. 
A sequential search is necessary to look up an element by value or index. This search 
can be slow if the list is long. 

If you need a dump of individual elements in the list, you must set the depth of the 
dump context to 1 or greater. 

Certain member functions of this class call global helper functions that must be 
customized for most uses of the CList class. See "Collection Class Helpers" in the 
"Macros and Globals" section. 

For more information on using CList, see the article "Collections" in Visual C++ 
Programmer's Guide online. 

#include <afxtempl.h> 

See Also: CMap, CArray 

CList 

909 



CList 

CList Class Members 

910 

Construction 

CList 

Headrrail Access 

GetHead 

GetTaii 

Operations 

RemoveHead 

RemoveTaii 

AddHead 

AddTail 

RemoveAIl 

Iteration 

GetHeadPosition 

GetTailPosition 

GetNext 

GetPrev 

Retrieval/Modification 

GetAt 

SetAt 

RemoveAt 

Insertion 

InsertBefore 

InsertAfter 

Searching 

Find 

FindIndex 

Status 

GetCount 

IsEmpty 

Constructs an empty ordered list. 

Returns the head element of the list (cannot be empty). 

Returns the tail element of the list (cannot be empty). 

Removes the element from the head of the list. 

Removes the element from the tail of the list. 

Adds an element (or all the elements in another list) to the head of 
the list (makes a new head). 

Adds an element (or all the elements in another list) to the tail of 
the list (makes a new tail). 

Removes all the elements from this list. 

Returns the position of the head element of the list. 

Returns the position of the tail element of the list. 

Gets the next element for iterating. 

Gets the previous element for iterating. 

Gets the element at a given position. 

Sets the element at a given position. 

Removes an element from this list, specified by position. 

Inserts a new element before a given position. 

Inserts a new element after a given position. 

Gets the position of an element specified by pointer value. 

Gets the position of an element specified by a zero-based index. 

Returns the number of elements in this list. 

Tests for the empty list condition (no elements). 



Member Functions 
CList: : AddHead 

POSITION AddHead( ARG_TYPE newElement); 
void AddHead( CList* pNewList ); 

Return Value 
The first version returns the POSITION value of the newly inserted element. 

Parameters 

Remarks 

ARG_TYPE Template parameter specifying the type of the list element (can be a 
reference). 

newElement The new element. 

pNewList A pointer to another CList list. The elements in pNewList will be added to 
this list. 

Adds a new element or list of elements to the head of this list. The list can be empty 
before the operation. 

See Also: CList::GetHead, CList::RemoveHead 

CList: : AddTail 
POSITION AddTail( ARG_TYPE newElement); 
void AddTail( CList* pNewList ); 

Return Value 
The first version returns the POSITION value of the newly inserted element. 

Parameters 

Remarks 

ARG_TYPE Template parameter specifying the type of the list element (can be a 
reference) . 

newElement The element to be added to this list. 

pNewList A pointer to another CList list. The elements in pNewList will be added to 
this list. 

Adds a new element or list of elements to the tail of this list. The list can be empty 
before the operation. 

See Also: CObList::GetTail, CObList::RemoveTail 

CList: : AddTail 

911 



CList::CList 

CList( int nBlockSize = 10 ); 

Parameters 

Remarks 

nBlockSize The memory-allocation granularity for extending the list. 

Constructs an empty ordered list. As the list grows, memory is allocated in units of 
nBlockSize entries. 

CList: :Find 
POSITION Find( ARG_TYPE searchValue, POSITION startAfter= NULL) const; 

Return Value 
A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
the object is not found. 

Parameters 

Remarks 

ARG_TYPE Template parameter specifying the type of the list element (can be a 
reference). 

search Value The value to be found in the list. 

startAfter The start position for the search. 

Searches the list sequentially to find the first element matching the specified 
searchValue. Note that the pointer values are compared, not the contents of the 
objects. 

See Also: CList::GetNext, CList::GetPrev 

CList: : FindIndex 
POSITION FindIndex( int nlndex ) const; 

Return Value 
A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
nlndex is negative or too large. 

Parameters 

Remarks 

912 

nlndex The zero-based index of the list element to be found. 

Uses the value of nlndex as an index into the list. It starts a sequential scan from the 
head of the list, stopping on the nth element. 



See Also: CObList::Find, CObList::GetNext, CObList::GetPrev 

CList: : GetAt 
TYPE& GetAt( POSITION position ); 
TYPE GetAt( POSITION position) const; 

Return Value 
See the return value description for GetHead. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of object in the list. 

position A POSITION value returned by a previous GetHeadPosition or Find 
member function call. 

A variable of type POSITION is a key for the list. It is not the same as an index, 
and you cannot operate on a POSITION value yourself. GetAt returns the element 
(or a reference to the element) associated with a given position. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

See Also: CList::Find, CList::SetAt, CList::GetNext, CList::GetPrev, 
CList: :GetHead 

CList: : GetCount 
int GetCountO const; 

Return Value 
An integer value containing the element count. 

Remarks 
Gets the number of elements in this list. 

See Also: CList: :IsEmpty 

CList: : GetHead 
TYPE& GetHead( ); 
TYPE GetHead( ) const; 

Return Value 
If the list is const, GetHead returns a copy of the element at the head of the list. 

eList:: GetHead 

913 



CList: :GetHeadPosition 

This allows the function to be used only on the right side of an assignment statement 
and protects the list from modification. 

If the list is not const, GetHead returns a reference to an element of the list. This 
allows the function to be used on either side of an assignment statement and thus 
allows the list entries to be modified. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of object in the list. 

Gets the head element (or a reference to the head element) of this list. 

You must ensure that the list is not empty before calling GetHead. If the list is empty, 
then the Debug version of the Microsoft Foundation Class Library asserts. Use 
IsEmpty to verify that the list contains elements. 

See Also: CList: : GetTail, CList: : GetTailPosition , CList: :AddHead, 
CList: :RemoveHead 

CList: : GetHeadPosition 
POSITION GetHeadPosition( ) const; 

Return Value 

Remarks 

A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
the list is empty. 

Gets the position of the head element of this list. 

See Also: CList:: GetTailPosition 

CList::GetNext 
TYPE& GetNext( POSITION& rPosition ); 
TYPE GetNext( POSITION& rPosition) const; 

Return Value 
If the list is const, GetNext returns a copy of the element at the head of the list. This 
allows the function to be used only on the right side of an assignment statement and 
protects the list from modification. 

If the list is not const, GetNext returns a reference to an element of the list. This 
allows the function to be used on either side of an assignment statement and thus 
allows the list entries to be modified. 

Parameters 
TYPE Template parameter specifying the type of the elements in the list. 

914 



Remarks 

rPosition A reference to a POSITION value returned by a previous GetNext, 
GetHeadPosition, or other member function call. 

Gets the list element identified by rPosition, then sets rPosition to the POSITION 
value of the next entry in the list. You can use GetNext in a forward iteration loop 
if you establish the initial position with a call to GetHeadPosition or Find. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

If the retrieved element is the last in the list, then the new value of rPosition is set 
to NULL. 

See Also: CList::Find, CList::GetHeadPosition, CList::GetTailPosition, 
CList: :GetPrev, CList:: GetHead 

CList: : GetPrev 
TYPE& GetPrev( POSITION& rPosition); 
TYPE GetPrev( POSITION& rPosition) const; 

Return Value 
If the list is const, GetPrev returns a copy of the element at the head of the list. This 
allows the function to be used only on the right side of an assignment statement and 
protects the list from modification. 

If the list is not const, GetPrev returns a reference to an element of the list. This 
allows the function to be used on either side of an assignment statement and thus 
allows the list entries to be modified. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of the elements in the list. 

rPosition A reference to a POSITION value returned by a previous GetPrev or 
other member function call. 

Gets the list element identified by rPosition, then sets rPosition to the POSITION 
value of the previous entry in the list. You can use GetPrev in a reverse iteration loop 
if you establish the initial position with a call to GetTailPosition or Find. 

You must ensure that your POSITION value represents a valid position in the list. If it 
is invalid, then the Debug version of the Microsoft Foundation Class Library asserts. 

If the retrieved element is the first in the list, then the new value of rPosition is set to 
NULL. 

See Also: CList::Find, CList::GetTailPosition, CList::GetHeadPosition, 
CList::GetNext, CList::GetHead 

CList: :GetPrev 

915 



CList: :GetTail 

CList::GetTail 
TYPE& GetTail(); 
TYPE GetTaiIO const; 

Return Value 
See the return value description for GetHead. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of elements in the list. 

Gets the CObject pointer that represents the tail element of this list. 

You must ensure that the list is not empty before calling GetTail. If the list is empty, 
then the Debug version of the Microsoft Foundation Class Library asserts. Use 
IsEmpty to verify that the list contains elements. 

See Also: CList: :AddTaiI, CList: :AddHead, CList: :RemoveHead, 
CList: :GetHead 

CList: : GetTailPosition 
POSITION GetTailPosition( ) const; 

Return Value 

Remarks 

A POSITION value that can be used for iteration or object pointer retrieval; NULL 
if the list is empty. 

Gets the position of the tail element of this list; NULL if the list is empty. 

See Also: CList::GetHeadPosition, CList::GetTail 

CList: : InsertAfter 
POSITION InsertAfter( POSITION position, ARG_TYPE newElement); 

Return Value 
A POSITION value that can be used for iteration or list element retrieval. 

Parameters 

916 

position A POSITION value returned by a previous GetNext, GetPrev, or Find 
member function call. 

ARG _TYPE Template parameter specifying the type of the list element. 

newElement The element to be added to this list. 



Remarks 
Adds an element to this list after the element at the specified position. 

See Also: CList::Find, CList::InsertBefore 

CList: :InsertBefore 
POSITION InsertBefore( POSITION position, ARG_TYPE newElement); 

Return Value 
A POSITION value that can be used for iteration or list element retrieval; NULL if 
the list is empty. 

Parameters 

Remarks 

position A POSITION value returned by a previous GetNext, GetPrev, or Find 
member function call. 

ARG_TYPE Template parameter specifying the type of the list element (can be a 
reference). 

new Element The element to be added to this list. 

Adds an element to this list before the element at the specified position. 

See Also: CList: :Find, CList: : InsertAfter 

CList: : IsEmpty 
BOOL IsEmpty( ) const; 

Return Value 
Nonzero if this list is empty; otherwise O. 

Remarks 
Indicates whether this list contains no elements. 

See Also: CList::GetCount 

CList: : RemoveAll 

Remarks 

void RemoveAll(); 

Removes all the elements from this list and frees the associated memory. No error is 
generated if the list is already empty. 

See Also: CList::RemoveAt 

CList: : RemoveAll 

917 



CList: :RemoveAt 

CList: : RemoveAt 
void RemoveAt( POSITION position); 

Parameters 

Remarks 

position The position of the element to be removed from the list. 

Removes the specified element from this list. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

See Also: CList: :RemoveAll 

CList: : RemoveHead 
TYPE RemoveHead(); 

Return Value 
The element previously at the head of the list. 

Parameters 

Remarks 

TYPE Template parameter specifying the type of elements in the list. 

Removes the element from the head of the list and returns a pointer to it. 

You must ensure that the list is not empty before calling RemoveHead. If the list is 
empty, then the Debug version of the Microsoft Foundation Class Library asserts. 
Use IsEmpty to verify that the list contains elements. 

See Also: CList: : GetHead, CList: :AddHead 

CList: : RemoveTail 
TYPE RemoveTail(); 

Return Value 
The element that was at the tail of the list. 

Parameters 
TYPE Template parameter specifying the type of elements in the list. 

Remarks 
Removes the element from the tail of the list and returns a pointer to it. 

918 



You must ensure that the list is not empty before calling RemoveTail. If the list is 
empty, then the Debug version of the Microsoft Foundation Class Library asserts. 
Use IsEmpty to verify that the list contains elements. 

See Also: CList::GetTail, CList::AddTail 

CList::SetAt 
void SetAt( POSITION pos, ARG_TYPE newElement); 

Parameters 

Remarks 

pos The POSITION of the element to be set. 

ARG_TYPE Template parameter specifying the type of the list element (can be a 
reference) . 

newElement The element to be added to the list. 

A variable of type POSITION is a key for the list. It is not the same as an index, 
and you cannot operate on a POSITION value yourself. SetAt writes the element 
to the specified position in the list. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

See Also: CList::Find, CList::GetAt, CList::GetNext, CList::GetPrev 

CList::SetAt 

919 



CListBox 

CListBox 

920 

CListBox 

The CListBox class provides the functionality of a Windows list box. A list box 
displays a list of items, such as filenames, that the user can view and select. 

In a single-selection list box, the user can select only one item. In a multiple-selection 
list box, a range of items can be selected. When the user selects an item, it is 
highlighted and the list box sends a notification message to the parent window. 

You can create a list box either from a dialog template or directly in your code. To 
create it directly, construct the CListBox object, then call the Create member function 
to create the Windows list-box control and attach it to the CListBox object. To use a 
list box in a dialog template, declare a list-box variable in your dialog box class, then 
use DDX_Control in your dialog box class's DoDataExchange function to connect 
the member variable to the control. (ClassWizard does this for you automatically 
when you add a control variable to your dialog box class.) 

Construction can be a one-step process in a class derived from CListBox. Write a 
constructor for the derived class and call Create from within the constructor. 

If you want to handle Windows notification messages sent by a list box to its parent 
(usually a class derived from CDialog), add a message-map entry and 
message-handler member function to the parent class for each message. 

Each message-map entry takes the following form: 

ON_Notification( id, memberFxn ) 

where id specifies the child window ID of the list-box control sending the notification 
and memberFxn is the name of the parent member function you have written to handle 
the notification. 

The parent's function prototype is as follows: 

afx_msg void memberFxn( ); 

Following is a list of potential message-map entries and a description of the cases in 
which they would be sent to the parent: 

• ON_LBN_DBLCLK The user double-clicks a string in a list box. Only a list box 
that has the LBS_NOTIFY style will send this notification message. 



• ON_LBN_ERRSPACE The list box cannot allocate enough memory to meet the 
request. 

• ON_LBN_KILLFOCUS The list box is losing the input focus. 

• ON_LBN_SELCANCEL The current list-box selection is canceled. This 
message is only sent when a list box has the LBS_NOTIFY style. 

• ON_LBN_SELCHANGE The selection in the list box is about to change. This 
notification is not sent if the selection is changed by the CListBox::SetCurSel 
member function. This notification applies only to a list box that has the 
LBS_NOTIFY style. The LBN_SELCHANGE notification message is sent for a 
multiple-selection list box whenever the user presses an arrow key, even if the 
selection does not change. 

• ON_LBN_SETFOCUS The list box is receiving the input focus. 

• ON_ WM_CHARTOITEM An owner-draw list box that has no strings receives a 
WM_ CHAR message. 

• ON_ WM_ VKEYTOITEM A list box with the 
LBS_ WANTKEYBOARDINPUT style receives a WM_KEYDOWN message. 

If you create a CListBox object within a dialog box (through a dialog resource), the 
CListBox object is automatically destroyed when the user closes the dialog box. 

If you create a CListBox object within a window, you may need to destroy the 
CListBox object. If you create the CListBox object on the stack, it is destroyed 
automatically. If you create the CListBox object on the heap by using the new 
function, you must call delete on the object to destroy it when the user closes the 
parent window. 

If you allocate any memory in the CListBox object, override the CListBox destructor 
to dispose of the allocation. 

#include <afxwin.h> 

See Also: CWnd, CButton, CComboBox, CEdit, CScrollBar, CStatic 

CListBox Class Members 
Construction 

CListBox 

Initialization 

Create 

InitStorage 

Constructs a CListBox object. 

Creates the Windows list box and attaches it to the 
CListBox object. 

Preallocates blocks of memory for list box items 
and strings. 

CListBox 

921 



CListBox 

922 

General Operations 

GetCount 

GetHorizontalExtent 

SetHorizontalExtent 

GetToplndex 

SetToplndex 

GetItemData 

GetItemDataPtr 

SetItemData 

SetItemDataPtr 

GetItemRect 

ItemFromPoint 

SetItemHeight 

GetItemHeight 

GetSel 

GetText 

GetTextLen 

Set Column Width 

SetTabStops 

GetLocale 

SetLocale 

Returns the number of strings in a list box. 

Returns the width in pixels that a list box can be scrolled horizontally. 

Sets the width in pixels that a list box can be scrolled horizontally. 

Returns the index of the first visible string in a list box. 

Sets the zero-based index of the first visible string in a list box. 

Returns the 32-bit value associated with the list-box item. 

Returns a pointer to a list-box item. 

Sets the 32-bit value associated with the list-box item. 

Sets a pointer to the list-box item. 

Returns the bounding rectangle of the list-box item as it is currently 
displayed. 

Returns the index of the list-box item nearest a point. 

Sets the height of items in a list box. 

Determines the height of items in a list box. 

Returns the selection state of a list-box item. 

Copies a list-box item into a buffer. 

Returns the length in bytes of a list-box item. 

Sets the column width of a multi column list box. 

Sets the tab-stop positions in a list box. 

Retrieves the locale identifier for a list box. 

Sets the locale identifier for a list box. 

Single-Selection Operations 

GetCurSel 

SetCurSel 

Returns the zero-based index of the currently selected string in a 
list box. 

Selects a list-box string. 

Multiple-Selection Operations 

SetSel 

GetCaretIndex 

SetCaretIndex 

GetSel Count 

GetSelItems 

SelItemRange 

SetAnchorlndex 

GetAnchorlndex 

Selects or deselects a list-box item in a multiple-selection list box. 

Determines the index of the item that has the focus rectangle in a 
multiple-selection list box. 

Sets the focus rectangle to the item at the specified index in a 
multiple-selection list box. 

Returns the number of strings currently selected in a 
multiple-selection list box. 

Returns the indices of the strings currently selected in a list box. 

Selects or deselects a range of strings in a multiple-selection list box. 

Sets the anchor in a multiple-selection list box to begin an extended 
selection. 

Retrieves the zero-based index of the current anchor item in a 
list box. 



String Operations 

AddString 

DeleteString 

InsertString 

ResetContent 

Dir 

FindString 

FindStringExact 

SelectString 

Overridables 

DrawItem 

Measureltem 

Compareltem 

Deleteltem 

VKeyToItem 

CharToItem 

Adds a string to a list box. 

Deletes a string from a list box. 

Inserts a string at a specific location in a list box. 

Clears all the entries from a list box. 

Adds filenames from the current directory to a list box. 

Searches for a string in a list box. 

Finds the first list-box string that matches a specified string. 

Searches for and selects a string in a single-selection list box. 

Called by the framework when a visual aspect of an owner-draw 
list box changes. 

Called by the framework when an owner-draw list box is created to 
determine list-box dimensions. 

Called by the framework to determine the position of a new item in a 
sorted owner-draw list box. 

Called by the framework when the user deletes an item from an 
owner-draw list box. 

Override to provide custom WM_KEYDOWN handling for list 
boxes with the LBS_ W ANTKEYBOARDINPUT style set. 

Override to provide custom WM_CHAR handling for owner-draw 
list boxes which don't have strings. 

Member Functions 
CListBox: : AddString 

int AddString( LPCTSTR lpszltem ); 

Return Value 
The zero-based index to the string in the list box. The return value is LB_ERR if an 
error occurs; the return value is LB_ERRSPACE if insufficient space is available to 
store the new string. 

Parameters 

Remarks 

lpsz/tem Points to the null-terminated string that is to be added. 

Call this member function to add a string to a list box. If the list box was not created 
with the LBS_SORT style, the string is added to the end of the list. Otherwise, the 
string is inserted into the list, and the list is sorted. If the list box was created with the 

CListBox: :AddString 

923 



CListBox::CharToItem 

LBS_SORT style but not the LBS_HASSTRINGS style, the framework sorts the list 
by one or more calls to the Compareltem member function. 

Use InsertString to insert a string into a specific location within the list box. 

See Also: CListBox::InsertString, CListBox::Compareltem, LB_ADDSTRING 

CListBox: :CharToItem 
virtual int CharToltem( UINT nKey, UINT nlndex); 

Return Value 
Returns -lor -2 for no further action or a nonnegative number to specify an index of 
a list-box item on which to perform the default action for the keystroke. The default 
implementation returns -1. 

Parameters 

Remarks 

924 

nKey The ANSI code of the character the user typed. 

nlndex The current position of the list-box caret. 

This function is called by the framework when the list box's parent window receives 
a WM_CHARTOITEM message from the list box. The WM_CHARTOITEM 
message is sent by the list box when it receives a WM_CHAR message, but only if 
the list box meets all of these criteria: 

• Is an owner-draw list box. 

• Does not have the LBS_HASSTRINGS style set. 

• Has at least one item. 

You should never call this function yourself. Override this function to provide your 
own custom handling of keyboard messages. 

In your override, you must return a value to tell the framework what action you 
performed. A return value of -lor -2 indicates that you handled all aspects of 
selecting the item and requires no further action by the list box. Before returning -1 
or -2, you could set the selection or move the caret or both. To set the selection, use 
SetCurSel or SetSel. To move the caret, use SetCaretIndex. 

A return value of 0 or greater specifies the index of an item in the list box and 
indicates that the list box should perform the default action for the keystroke on the 
given item. 

See Also: CListBox:: VKeyToltem, CListBox: :SetCurSel, CListBox: :SetSel, 
CListBox: :SetCaretIndex, WM_ CHARTOITEM 



CListBox: :CListBox 

Remarks 

CListBox( ); 

You construct a CListBox object in two steps. First call the constructor CListBox, 
then call Create, which initializes the Windows list box and attaches it to the 
CListBox. 

See Also: CListBox::Create 

CListBox: :CompareItem 
virtual int Compareltem( LPCOMPAREITEMSTRUCT IpCompareltemStruet ); 

Return Value 
Indicates the relative position of the two items described in the 
COMPAREITEMSTRUCT structure. It may be any of the following values: 

Value 

-1 

o 

Meaning 

Item 1 sorts before item 2. 

Item 1 and item 2 sort the same. 

Item 1 sorts after item 2. 

See CWnd::OnCompareltem for a description of the COMPAREITEMSTRUCT 
structure. 

Parameters 

Remarks 

IpCompareltemStruet A long pointer to a COMPAREITEMSTRUCT structure. 

Called by the framework to determine the relative position of a new item in a sorted 
owner-draw list box. By default, this member function does nothing. If you create 
an owner-draw list box with the LBS_SORT style, you must override this member 
function to assist the framework in sorting new items added to the list box. 

See Also: WM_COMPAREITEM, CWnd::OnCompareltem, 
CListBox: :Drawltem, CListBox: :Measureltem, CListBox: :Deleteltem 

CListBox: : Create 
BOOL Create( DWORD dwStyle, const RECT& reet, 

... CWnd* pParentWnd, UINT nID ); 

Return Value 
Nonzero if successful; otherwise O. 

CListBox: :Create 

925 



CListBox: : Deleteltem 

Parameters 

Remarks 

dwStyle Specifies the style of the list box. Apply any combination of list-box styles 
to the box. 

reet Specifies the list-box size and position. Can be either a CRect object or a RECT 
structure. 

pParentWnd Specifies the list box's parent window (usually a CDialog object). It 
must not be NULL. 

nID Specifies the list box's control ID. 

You construct a CListBox object in two steps. First call the constructor, then call 
Create, which initializes the Windows list box and attaches it to the CListBox object. 

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE, 
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the list-box 
control. 

These messages are handled by default by the OnNcCreate, OnCreate, 
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base class. 
To extend the default message handling, derive a class from CListBox, add a message 
map to the new class, and override the preceding message-handler member functions. 
Override OnCreate, for example, to perform needed initialization for a new class. 

Apply the following window styles to a list-box control. 

• WS_CHILD Always 

• WS_ VISIBLE Usually 

• WS_DISABLED Rarely 

• WS_ VSCROLL To add a vertical scroll bar 

• WS_HSCROLL To add a horizontal scroll bar 

• WS_GROUP To group controls 

• WS_ TABSTOP To allow tabbing to this control 

See Also: CListBox::CListBox 

CListBox: : DeleteItem 
virtual void DeleteItem( LPDELETEITEMSTRUCT lpDeleteltemStruet ); 

Parameters 

Remarks 

926 

lpDeleteltemStruet A long pointer to a Windows DELETEITEMSTRUCT structure 
that contains information about the deleted item. 

Called by the framework when the user deletes an item from an owner-draw 
CListBox object or destroys the list box. The default implementation of this function 
does nothing. Override this function to redraw an owner-draw list box as needed. 



See CWnd::OnDeleteltem for a description of the DELETEITEMSTRUCT 
structure. 

See Also: CListBox::Compareltem, CWnd::OnDeleteltem, 
CListBox: :Draw Item, CListBox: : Measureltem, : :Deleteltem 

CListBox: : DeleteString 
int DeleteString( UINT nlndex); 

Return Value 
A count of the strings remaining in the list. The return value is LB_ERR if nlndex 
specifies an index greater than the number of items in the list. 

Parameters 
1l11ldex Specifies the zero-based index of the string to be deleted. 

Remarks 
Deletes an item in a list box. 

See Also: LB_DELETESTRING, CListBox::AddString, CListBox::InsertString 

CListBox: :Dir 
int Dir( UINT attr, LPCTSTR IpszWildCard); 

Return Value 
The zero-based index of the last filename added to the list. The return value is 
LB_ERR if an error occurs; the return value is LB_ERRSPACE if insufficient space 
is available to store the new strings. 

Parameters 
attr Can be any combination of the en urn values described in CFile::GetStatus, or 

any combination of the following values: 

Value Meaning 

OxOOOO 

OxOOOl 

Ox0002 
Ox0004 

OxOOlO 

Ox0020 

Ox4000 

Ox8000 

File can be read from or written to. 

File can be read from but not written to. 

File is hidden and does not appear in a directory listing. 

File is a system file. 

The name specified by Ipsz WildCard specifies a directory. 

File has been archived. 

Include all drives that match the name specified by IpszWildCard. 

Exclusive flag. If the exclusive flag is set, only files of the specified type 
are listed. Otherwise, files of the specified type are listed in addition to 
"normal" files. 

CListBox::Dir 

927 



CListBox: :Draw Item 

Remarks 

IpszWildCard Points to a file-specification string. The string can contain wildcards 
(for example, *. *). 

Adds a list of filenames and/or drives to a list box. 

See Also: CWnd::DIgDirList, LB_DIR, CFile::GetStatus 

CListBox: : Draw Item 
virtual void DrawItem( LPDRAWITEMSTRUCT IpDrawltemStruct); 

Parameters 

Remarks 

IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that contains 
information about the type of drawing required. 

Called by the framework when a visual aspect of an owner-draw list box changes. The 
itemAction and itemState members of the DRAWITEMSTRUCT structure define 
the drawing action that is to be performed. 

By default, this member function does nothing. Override this member function to 
implement drawing for an owner-draw CListBox object. The application should 
restore all graphics device interface (GDI) objects selected for the display context 
supplied in IpDrawltemStruct before this member function terminates. 

See CWnd::OnDrawItem for a description of the DRAWITEMSTRUCT structure. 

See Also: CListBox::Compareltem, CWnd::OnDrawItem, WM_DRAWITEM, 
CListBox: :MeasureItem, CListBox: :DeleteItem 

CListBox: : FindString 
int FindString( int nStartAfter, LPCTSTR lpszltem ) const; 

Return Value 
The zero-based index of the matching item, or LB_ERR if the search was 
unsuccessful. 

Parameters 

928 

nStartAfter Contains the zero-based index of the item before the first item to be 
searched. When the search reaches the bottom of the list box, it continues from the 
top of the list box back to the item specified by nStartAfter. If nStartAfter is -1, the 
entire list box is searched from the beginning. 

IpszItem Points to the null-terminated string that contains the prefix to search for. 
The search is case independent, so this string may contain any combination of 
uppercase and lowercase letters. 



CListBox: :GetAnchorIndex 

Remarks 
Finds the first string in a list box that contains the specified prefix without changing 
the list-box selection. Use the SelectString member function to both find and select 
a string. 

See Also: CListBox: :SelectString, CListBox: :AddString, 
CListBox: :InsertString, LB_FINDSTRING 

CListBox: :FindStringExact 
int FindStringExact( int nlndexStart, LPCTSTR lpszFind ) const; 

Return Value 
The index of the matching item, or LB_ERR if the search was unsuccessful. 

Parameters 

Remarks 

nlndexStart Specifies the zero-based index of the item before the first item to be 
searched. When the search reaches the bottom of the list box, it continues from the 
top of the list box back to the item specified by nlndexStart. If nlndexStart is -1, 
the entire list box is searched from the beginning. 

lpszFind Points to the null-terminated string to search for. This string can contain a 
complete filename, including the extension. The search is not case sensitive, so the 
string can contain any combination of uppercase and lowercase letters. 

An application calls the FindStringExact member function to find the first list-box 
string that matches the string specified in lpszFind. If the list box was created with an 
owner-draw style but without the LBS_HASSTRINGS style, the FindStringExact 
member function attempts to match the doubleword value against the value of 
lpszFind. 

See Also: CListBox::FindString, LB_FINDSTRING, LB_FINDSTRINGEXACT 

CListBox::GetAnchorIndex 
int GetAnchorIndex( ) const; 

Return Value 

Remarks 

The index of the current anchor item, if successful; otherwise LB_ERR. 

Retrieves the zero-based index of the current anchor item in the list box. In a 
multiple-selection list box, the anchor item is the first or last item in a block of 
contiguous selected items. 

See Also: CListBox::SetAnchorIndex 

929 



CListBox: :GetCaretlndex 

CListB ox: : GetCaretIndex 
int GetCaretIndex( ) const; 

Return Value 

Remarks 

The zero-based index of the item that has the focus rectangle in a list box. If the list 
box is a single-selection list box, the return value is the index of the item that is 
selected, if any. 

An application calls the GetCaretIndex member function to determine the index of 
the item that has the focus rectangle in a multiple-selection list box. The item mayor 
may not be selected. 

See Also: CListBox::SetCaretIndex, LB_GETCARETINDEX 

CListBox: : GetCount 
int GetCount( ) const; 

Return Value 

Remarks 

The number of items in the list box, or LB_ERR if an error occurs. 

Retrieves the number of items in a list box. 

The returned count is one greater than the index value of the last item (the index is 
zero-based). 

See Also: LB_GETCOUNT 

CListBox: : GetCurSel 
int GetCurSel( ) const; 

Return Value 

Remarks 

930 

The zero-based index of the currently selected item. It is LB_ERR if no item is 
currently selected or if the list box is a multiple-selection list box. 

Retrieves the zero-based index of the currently selected item, if any, in a 
single-selection list box. 

GetCurSel should not be called for a multiple-selection list box. 

See Also: LB_GETCURSEL, CListBox::SetCurSel 



CListBox::GetItemDataPtr 

CListB ox: : GetHorizontalExtent 
int GetHorizontalExtent( ) const; 

Return Value 

Remarks 

The scrollable width of the list box, in pixels. 

Retrieves from the list box the width in pixels by which it can be scrolled horizontally. 
This is applicable only if the list box has a horizontal scroll bar. 

See Also: CListBox: :SetHorizontalExtent, LB_ G ETHORIZONTALEXTENT 

CListBox: : GetItemData 
DWORD GetltemData( int nlndex ) const; 

Return Value 
The 32-bit value associated with the item, or LB_ERR if an error occurs. 

Parameters 

Remarks 

nIlldex Specifies the zero-based index of the item in the list box. 

Retrieves the application-supplied doubleword value associated with the specified 
list-box item. 

The doubleword value was the dwltemData parameter of a SetltemData call. 

See Also: CListBox::AddString, CListBox::GetltemDataPtr, 
CListBox: :SetltemDataPtr, CListBox: :InsertString, CListBox: :SetltemData, 
LB_GETITEMDATA 

CListBox: : GetItemDataPtr 
void * GetltemDataPtr( int nIlldex ) const; 

Return Value 
Retrieves a pointer, or -1 if an error occurs. 

Parameters 

Remarks 

IlIndex Specifies the zero-based index of the item in the list box. 

Retrieves the application-supplied 32-bit value associated with the specified list-box 
item as a pointer (void*). 

See Also: CListBox::AddString, CListBox::GetItemData, 
CListBox: : InsertString, CListBox: :SetItemData, LB _ GETITEMDATA 

931 



CListBox: : GetItemHeight 

CListBox: : GetItemHeight 
int GetItemHeight( int nlndex ) const; 

Return Value 
The height, in pixels, of the items in the list box. If the list box has the 
LBS_OWNERDRAWVARIABLE style, the return value is the height of the item 
specified by nlndex. If an error occurs, the return value is LB_ERR. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the item in the list box. This parameter is 
used only if the list box has the LBS_OWNERDRAWVARIABLE style; 
otherwise, it should be set to O. 

An application calls the GetItemHeight member function to determine the height of 
items in a list box. 

See Also: LB_GETITEMHEIGHT, CListBox::SetItemHeight 

CListBox: : GetItemRect 
int GetItemRect( int nlndex, LPRECT IpRect ) const; 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the item. 

IpRect Specifies a long pointer to a RECT tructure that receives the list-box client 
coordinates of the item. 

Retrieves the dimensions of the rectangle that bounds a list-box item as it is currently 
displayed in the list-box window. 

See Also: LB_GETITEMRECT 

CListBox:: GetLocale 
LCID GetLocale( ) const; 

Return Value 

Remarks 

932 

The locale identifier (LCID) value for the strings in the list box. 

Retrieves the locale used by the list box. The locale is used, for example, to determine 
the sort order of the strings in a sorted list box. 



CListBox: :GetSelItems 

See Also: CListBox::SetLocale, ::GetStringTypeW, ::GetSystemDefaultLCID, 
: : GetUserDefaultLCID 

CListBox: :GetSel 
int GetSel( int nlndex ) const; 

Return Value 
A positive number if the specified item is selected; otherwise, it is o. The return value 
is LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the item. 

Retrieves the selection state of an item. This member function works with both single­
and multiple-selection list boxes. 

See Also: LB_GETSEL, CListBox::SetSel 

CListBox: : GetSelCount 
int GetSeICount() const; 

Return Value 

Remarks 

The count of selected items in a list box. If the list box is a single-selection list box, 
the return value is LB _ERR. 

Retrieves the total number of selected items in a multiple-selection list box. 

See Also: CListBox::SetSel, LB_GETSELCOUNT 

CListBox: : GetSelItems 
int GetSelItems( int nMaxltems, LPINT rglndex ) const; 

Return Value 
The actual number of items placed in the buffer. If the list box is a single-selection list 
box, the return value is LB_ERR. 

Parameters 
nMaxltems Specifies the maximum number of selected items whose item numbers 

are to be placed in the buffer. 

rglndex Specifies a long pointer to a buffer large enough for the number of integers 
specified by nMaxltems. 

933 



CListBox: : GetText 

Remarks 
Fills a buffer with an array of integers that specifies the item numbers of selected 
items in a multiple-selection list box. 

See Also: LB_GETSELITEMS 

CListBox: : GetText 
int GetText( int nlndex, LPTSTR lpszBuJfer ) const; 
void GetText( int nlndex, CString& rString ) const; 

Return Value 
The length (in bytes) of the string, excluding the terminating null character. If nlndex 
does not specify a valid index, the return value is LB_ERR. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the string to be retrieved. 

lpszBuJfer Points to the buffer that receives the string. The buffer must have 
sufficient space for the string and a terminating null character. The size of the 
string can be determined ahead of time by calling the GetTextLen member 
function. 

rString A reference to a CString object. 

Gets a string from a list box. The second form of this member function fills a CString 
object with the string text. 

See Also: CListBox::GetTextLen, LB_GETTEXT 

CListBox: : GetTextLen 
int GetTextLen( int nlndex) const; 

Return Value 
The length of the string in bytes, excluding the terminating null character. If nlndex 
does not specify a valid index, the return value is LB_ERR. 

Parameters 
nlndex Specifies the zero-based index of the string. 

Remarks 
Gets the length of a string in a list-box item. 

See Also: CListBox::GetText, LB_GETTEXTLEN 

934 



CListBox: : GetToplndex 
int GetTopIndex( ) const; 

Return Value 

Remarks 

The zero-based index of the first visible item in a list box if successful, CB_ERR 
otherwise. 

Retrieves the zero-based index of the first visible item in a list box. Initially, item 0 is 
at the top of the list box, but if the list box is scrolled, another item may be at the top. 

See Also: CListBox::SetTopIndex, LB_GETTOPINDEX 

CListBox: : InitStorage 
int InitStorage( int nltems, DINT nBytes ); 

Return Value 
If successful, the maximum number of items that the list box can store before a 
memory reallocation is needed, otherwise LB_ERRSPACE, meaning not enough 
memory is available. 

Parameters 

Remarks 

nltems Specifies the number of items to add. 

nBytes Specifies the amount of memory, in bytes, to allocate for item strings. 

Allocates memory for storing list-box items. Call this function before adding a large 
number of items to a CListBox. 

This function helps speed up the initialization of list boxes that have a large number 
of items (more than 100). It preallocates the specified amount of memory so that 
subsequent AddString, InsertString, and Dir functions take the shortest possible 
time. You can use estimates for the parameters. If you overestimate, some extra 
memory is allocated; if you underestimate, the normal allocation is used for items 
that exceed the preallocated amount. 

Windows 95 only: The nltems parameter is limited to 16-bit values. This means 
list boxes cannot contain more than 32,767 items. Although the number of items is 
restricted, the total size of the items in a list box is limited only by available memory. 

See Also: CListBox::CListBox, CListBox::Create, CListBox::ResetContent, 
LB_INITSTORAGE 

CListBox: :InitStorage 

935 



CListBox: :InsertString 

CListBox: :InsertString 
int InsertString( int nlndex, LPCTSTR lpsz/tem ); 

Return Value 
The zero-based index of the position at which the string was inserted. The return value 
is LB_ERR if an error occurs; the return value is LB_ERRSPACE if insufficient 
space is available to store the new string. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the position to insert the string. If this 
parameter is -1, the string is added to the end of the list. 

lpsz/tem Points to the null-terminated string that is to be inserted. 

Inserts a string into the list box. Unlike the AddString member function, InsertString 
does not cause a list with the LBS_SORT style to be sorted. 

See Also: CListBox::AddString, LB_INSERTSTRING 

CListBox: : IternFromPoint 
UINT ItemFromPoint( CPoint pt, BOOL& bOutside ) const; 

Return Value 
The index of the nearest item to the point specified in pt. 

Parameters 

Remarks 

pt Point for which to find the nearest item, specified relative to the upper-left comer 
of the client area of the list box. 

bOutside Reference to a BOOL variable which will be set to TRUE if pt is outside 
the client area of the list box, FALSE if pt is inside the client area of the list box. 

Call this function to determine the list-box item nearest the point specified in pt. You 
could use this function to determine which list-box item the mouse cursor moves over. 

Note Because the Win32 message LBJTEMFROMPOINT works only with Windows 95, 
Item From Point, which wraps the Win32 message also works only with Windows 95. 

See Also: CListBox::GetItemRect, LB_ITEMFROMPOINT 

CListBox: : MeasureItem 
virtual void MeasureItem( LPMEASUREITEMSTRUCT IpMeasureltemStruct ); 

Parameters 
IpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure. 

936 



CListBox::SelectString 

Remarks 
Called by the framework when a list box with an owner-draw style is created. 

By default, this member function does nothing. Override this member function and fill 
in the MEASUREITEMSTRUCT structure to inform Windows of the list-box 
dimensions. If the list box is created with the LBS_OWNERDRAWVARIABLE 
style, the framework calls this member function for each item in the list box. 
Otherwise, this member is called only once. 

For further information about using the LBS_OWNERDRAWFIXED style in an 
owner-draw list box created with the SubclassDIgItem member function of CWnd, 
see the discussion in Technical Note 14 online. 

See CWnd::OnMeasureItem for a description of the MEASUREITEMSTRUCT 
structure. 

See Also: CListBox: :CompareItem, CWnd: :OnMeasureItem, 
CListBox: :DrawItem, CListBox: :DeleteItem 

CListBox: : ResetContent 
void ResetContent(); 

Remarks 
Removes all items from a list box. 

See Also: LB_RESETCONTENT 

CListBox: :SelectString 
int SelectString( int nStartAfter, LPCTSTR lpsz/tem ); 

Return Value 
The index of the selected item if the search was successful. If the search was 
unsuccessful, the return value is LB_ERR and the current selection is not changed. 

Parameters 

Remarks 

nStartAfter Contains the zero-based index of the item before the first item to be 
searched. When the search reaches the bottom of the list box, it continues from the 
top of the list box back to the item specified by nStartAfter. If nStartAfter is -1, the 
entire list box is searched from the beginning. 

lpsz/tem Points to the null-terminated string that contains the prefix to search for. 
The search is case independent, so this string may contain any combination of 
uppercase and lowercase letters. 

Searches for a list-box item that matches the specified string, and if a matching item is 
found, it selects the item. 

937 



CListBox:: SelItemRange 

The list box is scrolled, if necessary, to bring the selected item into view. 

This member function cannot be used with a list box that has the 
LBS_MULTIPLESEL style. 

An item is selected only if its initial characters (from the starting point) match the 
characters in the string specified by lpszltem. 

Use the FindString member function to find a string without selecting the item. 

See Also: CListBox::FindString, LB_SELECTSTRING 

CListBox: :SelItemRange 
int SelItemRange( BOOL bSelect, int nFirstltem, int nLastltem ); 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

bSelect Specifies how to set the selection. If bSelect is TRUE, the string is selected 
and highlighted~ if FALSE, the highlight is removed and the string is no longer 
selected. 

nFirstItem Specifies the zero-based index of the first item to set. 

nLastltem Specifies the zero-based index of the last item to set. 

Selects multiple consecutive items in a multiple-selection list box. 

Use this member function only with multiple-selection list boxes. If you need to select 
only one item in a multiple-selection list box-that is, if nFirstIem is equal to 
nLastItem--{;all the SetSel member function instead. 

See Also: LB_SELITEMRANGE, CListBox::GetSelItems 

CListBox: : SetAnchorIndex 
void SetAnchorIndex( int nlndex); 

Parameters 

Remarks 

938 

nlndex Specifies the zero-based index of the list-box item that will be the anchor. 

Sets the anchor in a multiple-selection list box to begin an extended selection. In a 
multiple-selection list box, the anchor item is the first or last item in a block of 
contiguous selected items. 

See Also: CListBox: : GetAnchorIndex 



CListBox: :SetCaretIndex 
int SetCaretIndex( int nlndex, BOOL bScroli = TRUE ); 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the item to receive the focus rectangle in 
the list box. 

bScroli If this value is 0, the item is scrolled until it is fully visible. If this value is 
not 0, the item is scrolled until it is at least partially visible. 

An application calls the SetCaretIndex member function to set the focus rectangle to 
the item at the specified index in a multiple-selection list box. If the item is not visible, 
it is scrolled into view. 

See Also: CListBox::GetCaretIndex, LB_SETCARETINDEX 

CListBox:: SetColumn Width 
void SetColumnWidth( int cxWidth); 

Parameters 

Remarks 

cxWidth Specifies the width in pixels of all columns. 

Sets the width in pixels of all columns in a multicolumn list box (created with the 
LBS_MULTICOLUMN style). 

See Also: LB_SETCOLUMNWIDTH 

CListBox: :SetCurSel 
int SetCurSel( int nSelect ); 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

nSelect Specifies the zero-based index of the string to be selected. If nSelect is -1, 
the list box is set to have no selection. 

Selects a string and scrolls it into view, if necessary. When the new string is selected, 
the list box removes the highlight from the previously selected string. 

CListBox: :SetCurSel 

939 



CListBox::SetHorizontalExtent 

Use this member function only with single-selection list boxes. It cannot be used to set 
or remove a selection in a multiple-selection list box. 

See Also: LB_SETCURSEL, CListBox::GetCurSel 

CListBox:: SetHorizontalExtent 
void SetHorizontalExtent( int cxExtent); 

Parameters 

Remarks 

cxExtent Specifies the number of pixels by which the list box can be scrolled 
horizon tall y. 

Sets the width, in pixels, by which a list box can be scrolled horizontally. If the size of 
the list box is smaller than this value, the horizontal scroll bar will horizontally scroll 
items in the list box. If the list box is as large or larger than this value, the horizontal 
scroll bar is hidden. 

To respond to a call to SetHorizontalExtent, the list box must have been defined with 
the WS_HSCROLL style. 

This member function is not useful for multicolumn list boxes. For multicolumn list 
boxes, call the SetColumn Width member function. 

See Also: CListBox::GetHorizontaIExtent, CListBox::SetColumnWidth, 
LB_SETHORIZONTALEXTENT 

CListBox:: SetItemData 
int SetltemData( int nlndex, DWORD dwltemData ); 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

940 

nlndex Specifies the zero-based index of the item. 

dwltemData Specifies the value to be associated with the item. 

Sets a 32-bit value associated with the specified item in a list box. 

See Also: CListBox::SetltemDataPtr, CListBox::GetItemData, 
LB_SETITEMDATA 



CListBox::SetItemHeight 

CListBox:: SetItemDataPtr 
int SetltemDataPtr( int nlndex, void* pData ); 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the item. 

pData Specifies the pointer to be associated with the item. 

Sets the 32-bit value associated with the specified item in a list box to be the specified 
pointer (void*). This pointer remains valid for the life of the list box, even though 
the item's relative position within the list box might change as items are added or 
removed. Hence, the item's index within the box can change, but the pointer remains 
reliable. 

See Also: CListBox::SetltemData, CListBox::GetltemData, 
CListBox: : GetltemDataPtr, LB_SETITEMDATA 

CListB OX: : SetItemHeight 
int SetltemHeight( int nlndex, UINT cyltemHeight); 

Return Value 
LB _ERR if the index or height is invalid. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the item in the list box. This parameter 
is used only if the list box has the LBS_OWNERDRAWVARIABLE style; 
otherwise, it should be set to O. 

cyltemHeight Specifies the height, in pixels, of the item. 

An application calls the SetltemHeight member function to set the height of items 
in a list box. If the list box has the LBS_OWNERDRAWVARIABLE style, this 
function sets the height of the item specified by nlndex. Otherwise, this function 
sets the height of all items in the list box. 

See Also: CListBox::GetltemHeight, LB_SETITEMHEIGHT 

941 



CListBox: :SetLocale 

CListBox: :SetLocale 
LCID SetLocale( LCID nNewLocale); 

Return Value 
The previous locale identifier (LCID) value for this list box. 

Parameters 

Remarks 

nNewLocale The new locale identifier (LCID) value to set for the list box. 

Sets the locale identifier for this list box. If SetLocale is not called, the default locale 
is obtained from the system. This system default locale can be modified by using 
Control Panel's Regional (or International) application. 

See Also: CListBox::GetLocale 

CListBox::SetSel 
int SetSel( int nlndex, BOOL bSelect = TRUE ); 

Return Value 
LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Contains the zero-based index of the string to be set. If -1, the selection is 
added to or removed from all strings, depending on the value of bSelect. 

bSelect Specifies how to set the selection. If bSelect is TRUE, the string is selected 
and highlighted; if FALSE, the highlight is removed and the string is no longer 
selected. The specified string is selected and highlighted by default. 

Selects a string in a multiple-selection list box. 

Use this member function only with multiple-selection list boxes. 

See Also: CListBox::GetSel, LB_SETSEL 

CListB OX: : SetTabStops 
void SetTabStops(); 
BOOL SetTabStops( const int& cxEachStop); 
BOOL SetTabStops( int nTabStops, LPINT rgTabStops ); 

Return Value 
Nonzero if all the tabs were set; otherwise O. 

942 



CListBox: :SetToplndex 

Parameters 

Remarks 

cxEachStop Tab stops are set at every cxEachStop dialog units. See rgTabStops for a 
description of a dialog unit. 

nTabStops Specifies the number of tab stops to have in the list box. 

rgTabStops Points to the first member of an array of integers containing the tab-stop 
positions in dialog units. A dialog unit is a horizontal or vertical distance. One 
horizontal dialog unit is equal to one-fourth of the current dialog base width unit, 
and one vertical dialog unit is equal to one-eighth of the current dialog base height 
unit. The dialog base units are computed based on the height and width of the 
current system font. The GetDialogBaseUnits Windows function returns the 
current dialog base units in pixels. The tab stops must be sorted in increasing order; 
back tabs are not allowed. 

Sets the tab-stop positions in a list box. 

To set tab stops to the default size of 2 dialog units, call the parameterless version of 
this member function. To set tab stops to a size other than 2, call the version with the 
cxEachStop argument. 

To set tab stops to an array of sizes, use the version with the rgTabStops and 
nTabStops arguments. A tab stop will be set for each value in rgTabStops, up to the 
number specified by nTabStops. 

To respond to a call to the SetTabStops member function, the list box must have been 
created with the LBS_USETABSTOPS style. 

See Also: LB_SETTABSTOPS, ::GetDialogBaseUnits 

CListBox: :SetTopIndex 
int SetToplndex( int nlndex ); 

Return Value 
Zero if successful, or LB_ERR if an error occurs. 

Parameters 

Remarks 

nlndex Specifies the zero-based index of the list-box item. 

Ensures that a particular list-box item is visible. 

The system scrolls the list box until either the item specified by nlndex appears at the 
top of the list box or/the maximum scroll range has been reached. 

See Also: CListBox::GetToplndex, LB_SETTOPINDEX 

943 



CListBox:: VKeyToltem 

CListBox:: VKeyToItem 
virtual int VKeyToltem( UINT nKey, UINT nlndex); 

Return Value 
Returns -2 for no further action, -1 for default action, or a nonnegative number to 
specify an index of a list box item on which to perform the default action for the 
keystroke. 

Parameters 

Remarks 

944 

nKey The virtual-key code of the key the user pressed. 

nlndex The current position of the list-box caret. 

This function is called by the framework when the list box's parent window receives 
a WM_ VKEYTOITEM message from the list box. The WM_ VKEYTOITEM 
message is sent by the list box when it receives a WM_KEYDOWN message, but 
only if the list box meets both of the following: 

• Has the LBS_ WANTKEYBOARDINPUT style set. 

• Has at least one item. 

You should never call this function yourself. Override this function to provide your 
own custom handling of keyboard messages. 

You must return a value to tell the framework what action your override performed. 
A return value of - 2 indicates that the application handled all aspects of selecting the 
item and requires no further action by the list box. Before returning - 2, you could set 
the selection or move the caret or both. To set the selection, use SetCurSel or SetSel. 
To move the caret, use SetCaretIndex. 

A return value of -1 indicates that the list box should perform the default action in 
response to the keystroke. The default implementation returns -1. 

A return value of 0 or greater specifies the index of an item in the list box and 
indicates that the list box should perform the default action for the keystroke on the 
given item. 

See Also: CListBox::CharToltem, CListBox::SetCurSel, CListBox::SetSel, 
CListBox: :SetCaretIndex 



CListCtrl 

Views 

The CListCtrl class encapsulates the functionality of a "list view control," which 
displays a collection of items each consisting of an icon and a label. List views 
provide several ways of arranging items and displaying individual items. For example, 
additional information about each item can be displayed in colums to the right of the 
icon and label. 

The CListCtrl class provides the functionality of the Windows common list view 
control. This control (and therefore the CListCtrl class) is available only to programs 
running under Windows 95 and Windows NT version 3.51 and later. 

List view controls can display their contents in four different ways, called "views." 
The current view is specified by the control's window style. Additional window styles 
specify the alignment of items and control-specific aspects of the list view control's 
functionality. Information about the four views follows. 

View 

Icon view 

Small icon view 

List view 

Report view 

Description 

Specified by the L VS_ICON window style. 

Each item appears as a full-sized icon with a label below it. 
The user can drag the items to any location in the list view window. 

Specified by the LVS_SMALLICON window style. 

Each item appears as a small icon with the label to the right of it. 
The user can drag the items to any location. 

Specified by the L VS_LIST window style. 

Each item appears as a small icon with a label to the right of it. 
Items are arranged in columns and cannot be dragged to any arbitrary 
location by the user. 

Specified by the L VS_REPORT window style. 

Each item appears on its own line with information arranged in 
columns. The leftmost column contains the small icon and label, and 
subsequent columns contain subitems as specified by the application. 
Unless the LVS_NOCOLUMNHEADER window style is also 
specified, each column has a header. 

CListCtrl 

945 



CListCtrl 

To change the view and alignment style after creating the control, use the Windows 
functions GetWindowLong and SetWindowLong. 

You can control the way items are arranged in icon or small icon view by specifying a 
window style of LVS_ALIGNTOP (the default style) or LVS_ALIGNLEFT. You 
can change the alignment after a list view control is created. To isolate the window 
styles that specify the alignment of items, use the LVS_ALIGNMASK value. 

Additional window styles control other options-for example, whether a user can edit 
labels in place, whether more than one item can be selected at a time, and so on. 

Image Lists 

946 

The icons for list view items are contained in image lists, which you create and assign 
to the list view control. One image list contains the full-sized icons used in icon view, 
and a separate image list contains smaller versions of the same icons for use in other 
views. You can also specify a third image list that contains state images, which are 
displayed next to an item's icon to indicate an application-defined state. 

You assign an image list to a list view control by using the CListCtrl::SetlmageList 
function, specifying whether the image list contains large icons, small icons, or state 
images. You can retrieve the handle of an image list currently assigned to a list view 
control by using the CListCtrl::GetlmageList function. 

The large and small icon image lists typically contain icons for each type of list view 
item. You need not create both of these image lists if only one is used-for example, 
if a list view control is never in icon view. If you create both image lists, they must 
contain the same images in the same order because a single value is used to identify a 
list view item's icon in both image lists. 

The large and small icon image lists can also contain overlay images, which are 
designed to be superimposed on item icons. A nonzero value in bits 8 through 11 of a 
list view item's state specifies the one-based index of an overlay image (zero indicates 
no overlay image). Because a 4-bit, one-based index is used, overlay images must be 
among the first 15 images in the image lists. 

If a state image list is specified, a list view control reserves space to the left of each 
item's icon for a state image. An application can use state images, such as checked 
and cleared check boxes, to indicate application-defined item states. A nonzero value 
in bits 12 through 15 specifies the one-based index of a state image (zero indicates no 
state image). State images are typically not used in icon view. 

By default, a list view control destroys the image lists assigned to it when it is 
destroyed. If a list view control has the LVS_SHAREIMAGELISTS window style, 
however, the application is responsible for destroying the image lists when they are 
no longer in use. You should specify this style if you assign the same image lists to 
multiple list view controls; otherwise, more than one control might try to destroy the 
same image list. 



Items and Subitems 
Each item in a list view control consists of an icon, a label, a current state, and an 
application-defined value. One or more subitems can also be associated with each 
item. A "subitem" is a string that, in report view, can be displayed in a column to the 
right of an item's icon and label. All items in a list view control have the same number 
of subitems. By using list view messages, you can add, modify, retrieve information 
about, and delete items. You can also find items with specific attributes. 

The LV_ITEM structure defines a list view item or subitem. The iItem member is 
the zero-based index of the item. The iSubItem member is the one-based index of 
a sub item, or zero if the structure contains information about an item. Additional 
members specify the item's text, icon, state, and item data. "Item data" is an 
application-defined value associated with a list view item. For more information 
about the LV_ITEM structure, see CListCtrl::GetItem. 

Callback Items 
A "callback item" is a list view item for which the application-rather than the 
control-stores the text, icon, or both. Although a list view control can store these 
attributes for you, you may want to use callback items if your application already 
maintains some of this information. The callback mask specifies which item state bits 
are maintained by the application, and it applies to the whole control rather than to a 
specific item. The callback mask is zero by default, meaning that the control tracks all 
item states. If an application uses callback items or specifies a nonzero callback mask, 
it must be able to supply list view item attributes on demand. 

You can define a callback item by specifying appropriate values for the pszText 
and iImage members of the LV_ITEM structure (see CListCtrl::GetItem). 
If the application maintains the item's or subitem's text, specify the 
LPSTR_TEXTCALLBACK value for the pszText member. If the application 
keeps track of the icon for the item, specify the I_IMAGECALLBACK value for 
the iImage member. 

For more information on using CListCtrl, see Technical Note 60 online. 

#include <afxcmn.h> 

See Also: CImageList 

CListCtrl Class Members 
Construction 

ListCtrl 

Create 

Constructs a CListCtrl object. 

Creates a list control and attaches it to 
a CListCtrl object. 

CListCtrl 

947 



CListCtrl 

Attributes 

GetBkColor 

SetBkColor 

GetImageList 

SetImageList 

GetItemCount 

Getltem 

GetltemData 

Setltem 

SetltemData 

GetCallbackMask 

SetCaIlbackMask 

GetNextltem 

GetItemRect 

SetItemPosition 

GetItemPosition 

GetString Width 

GetEditControl 

GetColumn 

SetColumn 

GetColumn Width 

SetColumn Width 

GetViewRect 

GetTextColor 

SetTextColor 

GetTextBkColor 

SetTextBkColor 

GetToplndex 

GetCountPerPage 

GetOrigin 

SetItemState 

GetltemState 

GetltemText 

SetItemText 

SetItemCount 

GetSelected Count 

948 

Retrieves the background color of a list view control. 

Sets the background color of the list view control. 

Retrieves the handle of an image list used for drawing list view items. 

Assigns an image list to a list view control. 

Retrieves the number of items in a list view control. 

Retrieves a list view item's attributes. 

Retrieves the application-specific value associated with an item. 

Sets some or all of a list view item's attributes. 

Sets the item's application-specific value. 

Retrieves the callback mask for a list view control. 

Sets the callback mask for a list view control. 

Searches for a list view item with specified properties and with 
specified relationship to a given item. 

Retrieves the bounding rectangle for an item. 

Moves an item to a specified position in a list view control. 

Retrieves the position of a list view item. 

Determines the minimum column width necessary to display all of a 
given string. 

Retrieves the handle of the edit control used to edit an item's text. 

Retrieves the attributes of a control's column. 

Sets the attributes of a list view column. 

Retrieves the width of a column in report view or list view. 

Changes the width of a column in report view or list view. 

Retrieves the bounding rectangle of all items in the list view control. 

Retrieves the text color of a list view control. 

Sets the text color of a list view control. 

Retrieves the text background color of a list view control. 

Sets the background color of text in a list view control. 

Retrieves the index of the topmost visible item. 

Calculates the number of items that can fit vertically in a list view 
control. 

Retrieves the current view origin for a list view control. 

Changes the state of an item in a list view control. 

Retrieves the state of a list view item. 

Retrieves the text of a list view item or subitem. 

Changes the text of a list view item or subitem. 

Prepares a list view control for adding a large number of items. 

Retrieves the number of selected items in the list view control. 



Operations 

Insertltem Inserts a new item in a list view control. 

Deleteltem Deletes an item from the control. 

DeleteAllItems Deletes all items from the control. 

Findltem Searches for a list view item having specified characteristics. 

Sortltems Sorts list view items using an application-defined comparison 
function. 

HitTest Determines which list view item is at a specified position. 

Ensure Visible Ensures that an item is visible. 

Scroll Scrolls the content of a list view control. 

Redrawltems Forces a list view control to repaint a range of items. 

Update Forces the control to repaint a specified item. 

Arrange Aligns items on a grid. 

EditLabel Begins in-place editing of an item's text. 

InsertColumn Inserts a new column in a list view control. 

DeleteColumn Deletes a column from the list view control. 

CreateDragImage Creates a drag image list for a specified item. 

Overridables 

Drawltem Called when a visual aspect of an owner-draw control changes. 

Member Functions 
CListCtrl: : Arrange 

BOOL Arrange( UINT nCode ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
nCode Specifies the alignment style for the items. It can be one of the following 

values: 

• LVA_ALIGNLEFT Aligns items along the left edge of the window. 

• LVA_ALIGNTOP Aligns items along the top edge of the window. 

• LV A_DEFAULT Aligns items according to the list view's current alignment 
styles (the default value). 

• LVA_SNAPTOGRID Snaps all icons to the nearest grid position. 

CListCtrl: : Arrange 

949 



CListCtr1: :CListCtrl 

Remarks 
Call this function to reposition items in an icon view so that they align on a grid. 
The nCode parameter specifies the alignment style. 

See Also: CListCtrl: :Ensure Visible 

C:~istC:trl::C:~istC:trl 

Remarks 

CListCtrl( ); 

Constructs a CListCtrl object. 

See Also: CListCtrl::Create 

C:~istC:trl: :C:reate 
BOOL Create( DWORD dwStyle, const RECT& reet, CWnd* pParentWnd, UINT nID); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

950 

dwStyle Specifies the list control's style. Apply any combination of list control styles 
to the control. See the Remarks section for a list of possible styles. 

reet Specifies the list control's size and position. It can be either a CRect object or a 
RECT structure. 

pParentWnd Specifies the list control's parent window, usually a CDialog. It must 
not be NULL. 

nID Specifies the list control's ID. 

You construct a CListCtrl in two steps. First call the constructor, then call Create, 
which creates the list view control and attaches it to the CListCtrl object. 

The dwStyle parameter can be a combination of the following values: 

• LVS_ALIGNLEFT Specifies that items are left-aligned in icon and small icon 
view. 

• LVS_ALIGNTOP Specifies that items are aligned with the top of the control in 
icon and small icon view. 

• LVS_AUTOARRANGE Specifies that icons are automatically kept arranged in 
icon view and small icon view. 

• LVS_EDITLABELS Allows item text to be edited in place. The parent window 
must process the LVN_ENDLABELEDIT notification message. 



CListCtrl: :CreateDraglmage 

• LVS_ICON Specifies icon view. 

• LVS_LIST Specifies list view. 

• LVS_NOCOLUMNHEADER Specifies that a column header is not displayed in 
report view. By default, columns have headers in report view. 

• LVS_NOLABELWRAP Displays item text on a single line in icon view. By 
default, item text can wrap in icon view. 

• LVS_NOSCROLL Disables scrolling. All items must be within the client area. 

• LVS_NOSORTHEADER Specifies that column headers do not work like 
buttons. This style is useful if clicking a column header in report view does not 
carry out an action, such as sorting. 

• LVS_OWNERDRAWFIXED Enables the owner window to paint items in report 
view. The list view control sends a WM_DRAWITEM message to paint each 
item; it does not send separate messages for each subitem. The itemData member 
of the DRAWITEMSTRUCT structure contains the item data for the specified list 
view item. 

• LVS_REPORT Specifies report view. 

• LVS_SHAREIMAGELISTS Specifies that the control does not take ownership 
of the image lists assigned to it (that is, it does not destroy the image lists when it is 
destroyed). This style enables the same image lists to be used with multiple list 
view controls. 

• LVS_SHOWSELALWAYS Always show the selection, if any, even if the control 
does not have the focus. 

• LVS_SINGLESEL Allows only one item at a time to be selected. By default, 
multiple items can be selected. 

• LVS_SMALLICON Specifies small icon view. 

• LVS_SORTASCENDING Sorts items based on item text in ascending order. 

• LVS_SORTDESCENDING Sorts items based on item text in descending order. 

See Also: CListCtrl::CListCtrl 

CListCtrl: :CreateDragImage 
CImageList* CreateDragImage( int nltem, LPPOINT IpPoint ); 

Return Value 
A pointer to the drag image list if successful; otherwise NULL. 

Parameters 
nltem Index of the item whose drag image list is to be created. 

IpPoint Address of a POINT structure that receives the initial location of the 
upper-left comer of the image, in view coordinates. 

951 



CListCtrl: : DeleteAllItems 

Remarks 
Call this function to create a drag image list for the item specified by nltem. The 
CImageList object is permanent, and you must delete it when finished. For example: 

ClmageList* plmageList = MyListCtrl .CreateDraglmage(nltem, &point); 

delete plmageList; 

See Also: CImageList, CListCtrl::GetlmageList, CListCtrI::SetlmageList 

CListCtrl: : DeleteAllItems 
BOOL DeleteAIIItems(); 

Return Value 
Nonzero if successful; otherwise zero. 

Remarks 
Call this function to delete all items from the list view control. 

See Also: CListCtrI::Insertltem, CListCtrI::DeleteItem 

CListCtrl: : DeleteColumn 
BOOL DeleteColumn( int nCol ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
nCol Index of the column to be deleted. 

Remarks 
Call this function to delete a column from the list view control. 

See Also: CListCtrl: :InsertColumn, CListCtrl: :DeleteAIIItems 

CListCtrl: : DeleteItem 
BOOL DeleteItem( int nltem ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
nltem Specifies the index of the item to be deleted. 

952 



Remarks 
Call this function to delete an item from a list view control. 

See Also: CListCtrl: :Insertltem, CListCtrl: : DeleteAlIItems 

CListCtrl: :Draw Item 
virtual void DrawItem( LPDRAWITEMSTRUCT lpDrawltemStruct); 

Parameters 

Remarks 

lpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that contains 
information about the type of drawing required. 

Called by the framework when a visual aspect of an owner-draw list view control 
changes. The itemAction member of the DRAWITEMSTRUCT structure defines 
the drawing action that is to be performed. 

By default, this member function does nothing. Override this member function to 
implement drawing for an owner-draw CListCtrl object. 

The application should restore all graphics device interface (GDI) objects selected for 
the display context supplied in lpDrawltemStruct before this member function 
terminates. 

See Also: CWnd::OnDrawItem 

CListCtrl: : EditLabel 
CEdit* EditLabel( int nltem ); 

Return Value 
If successful, a pointer to the CEdit object that is used to edit the item text; otherwise 
NULL. 

Parameters 

Remarks 

nltem Index of the list view item that is to be edited. 

A list view control that has the LVS_EDITLABELS window style enables a user to 
edit item labels in place. The user begins editing by clicking the label of an item that 
has the focus. 

Use this function to begin in-place editing of the specified list view item's text. 

See Also: CListCtrl: : GetEditControl 

CListCtrl: : EditLabel 

953 



CListCtrI: :Ensure Visible 

CListCtrl: :Ensure Visible 
BOOL EnsureVisible( int nltem, BOOL bPartiaIOK); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nltem Index of the list view item that is to be visible. 

bPartialOK Specifies whether partial visibility is acceptable. 

Call this function to ensure that a list view item is at least partially visible. The list 
view control is scrolled if necessary. If the bPartialOK parameter is nonzero, no 
scrolling occurs if the item is partially visible. 

See Also: CListCtrl::Scroll 

CListCtrl: : FindItem 
int Findltem( LV _FINDINFO* pFindlnfo, int nStart = -1) const; 

Return Value 
The index of the item if successful or -1 otherwise. 

Parameters 

Remarks 

954 

pFindlnfo A pointer to a LV _FINDINFO structure containing information about the 
item to be searched for. 

nStart Index of the item to begin the search with, or -1 to start from the beginning. 
The item at nStart is excluded from the search if nStart is not equal to -1. 

Use this function to search for a list view item having specified characteristics. 

The pFindlnfo parameter points to an LV _FINDINFO structure, which contains 
information used to search for a list view item: 

typedef struct _LV_FINDINFO { 
UINT flags; //see below 
LPCSTR psz; //see below 
LPARAM lParam; //see below 

LV_FINDINFO; 

The members are as follows: 

flags Type of search to perform. It can be one or more of these values: 

• LVFI_PARAM Searches based on the IParam member. The IParam 
member of the matching item's LV _ITEM structure must match the IParam 
member of this structure. (For information on the LV_ITEM structure, see 
CListCtrl::Getltem.) If this value is specified, all other values are ignored. 



CListCtrl:: GetCallbackMask 

• LVFI_PARTIAL Matches if the item text begins with the string pointed to by 
the psz member. This value implies use of the LVFI_STRING value. 

• LVFI_STRING Searches based on item text. Unless additional values are 
specified, the item text of the matching item must exactly match the string 
pointed to by the psz member. 

• LVFI_ WRAP Continues the search at the beginning if no match is found. 

• LVFI_NEARESTXY Finds the item nearest the specified position in the 
specified direction. 

psz Address of a null-terminated string to compare with item text if the flags 
member specifies the LVFI_STRING or LVFI_PARTIAL value. 

IParam Value to compare with the IParam member of a list view item's LV_ITEM 
structure if the flags member specifies the LVFI_PARAM value. 

See Also: CListCtrl: :SortItems 

CListCtrl: : GetBkColor 
COLORREF GetBkColor( ) const; 

Return Value 

Remarks 

A 32-bit value used to specify an RGB color. 

Retrieves the background color of a list view control. 

See Also: CListCtrl: :SetBkColor COLORREF 

CListCtrl: : GetCallbackMask 
UINT GetCallbackMask( ) const; 

Return Value 

Remarks 

The list view control's callback mask. 

Retrieves the callback mask for a list view control. 

A "callback item" is a list view item for which the application-rather than the 
control-stores the text, icon, or both. Although a list view control can store these 
attributes for you, you may want to use callback items if your application already 
maintains some of this information. The callback mask specifies which item state bits 
are maintained by the application, and it applies to the whole control rather than to a 
specific item. The callback mask is zero by default, meaning that the control tracks all 

955 



CListCtr1: :GetColumn 

item states. If an application uses callback items or specifies a nonzero callback mask, 
it must be able to supply list view item attributes on demand. 

See Also: CListCtrl: :SetCallbaekMask 

CListCtrl: : GetColumn 
BOOL GetColumn( int nCol, LV _COLUMN* pColumn ) eonst; 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

956 

nCol Index of the column whose attributes are to be retrieved. 

pColumn Address of an LV_COLUMN structure that specifies the information to 
retrieve and receives information about the column. The mask member specifies 
which column attributes to retrieve. If the mask member specifies the 
LVCF _TEXT value, the pszText member must contain the address of the buffer 
that receives the item text and the eehTextMax member must specify the size of 
the buffer. 

Retrieves the attributes of a list view control's column. 

The LV_COLUMN structure contains information about a column in report view: 

typedef struct _LV_COLUMN { 
UINT mask; II see below 
int fmt; II see below 
int cx; II width of the column, in pixels 
LPSTR pszText; II see below 
int cchTextMax; II see below 
int iSubltem; II index of subitem associated with column 

LV_COLUMN; 

The members are as follows: 

mask Variable specifying which members contain valid information. It can be zero 
or one or more of these values (combine values with the bitwise-OR operator): 

• LVCF _FMT The rmt member is valid. 

• LVCF _SUBITEM The iSubltem member is valid. 

• LVCF _TEXT The pszText member is valid. 

• LVCF _ WIDTH The ex member is valid. 

rmt Alignment of the column. It can be one of these values: LVCFMT_LEFT, 
LVCFMT_RIGHT, or LVCFMT_CENTER. 

pszText Address of a null-terminated string containing the column heading if the 
structure contains information about a column. If the structure is receiving 



CListCtrl: :GetEditContro 1 

information about a column, this member specifies the address of the buffer that 
receives the column heading. 

cchTextMax Size of the buffer pointed to by the pszText member. If the structure is 
not receiving information about a column, this member is ignored. 

See Also: CListCtrl::SetColumn, CListCtrl::GetColumnWidth 

CListCtrl: : GetColumn Width 
int GetColumn Width( int nCol ) const; 

Return Value 
The width, in pixels, of the column specified by nCol. 

Parameters 
nCol Specifies the index of the column whose width is to be retrieved. 

Remarks 
Retrieves the width of a column in report view or list view. 

See Also: CListCtrl::SetColumnWidth, CListCtrl::GetColumn 

CListCtrl: : GetCountPerPage 
int GetCountPerPage( ) const; 

Return Value 

Remarks 

The number of items that can fit vertically in the visible area of a list view control 
when in list view or report view. 

Calculates the number of items that can fit vertically in the visible area of a list view 
control when in list view or report view. 

See Also: CListCtrl:: GetTopIndex 

CListCtrl: : GetEditControl 
CEdit* GetEditControl( ) const; 

Return Value 

Remarks 

If successful, a pointer to the CEdit object that is used to edit the item text; otherwise 
NULL. 

Retrieves the handle of the edit control used to edit a list view item's text. 

957 



CListCtrl: :GetlmageList 

See Also: CListCtrl: :EditLabel 

CListCtrl: : GetImageList 
CImageList* GetlmageList( int nlmageList ) const; 

Return Value 
A pointer to the image list used for drawing list view items. 

Parameters 

Remarks 

nlmageList Value specifying which image list to retrieve. It can be one of these 
values: 

• LVSIL_NORMAL Image list with large icons. 

• LVSIL_SMALL Image list with small icons. 

• LVSIL_STATE Image list with state images. 

Retrieves the handle of an image list used for drawing list view items. 

See Also: CImageList, CListCtrl: :SetlmageList 

CListCtrl: : GetItem 
BOOL GetItem( LV _ITEM* pltem) const; 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
pltem Pointer to an LV_ITEM structure that receives the item's attributes. 

Remarks 
Retrieves some or all of a list view item's attributes. 

The LV_ITEM structure specifies or receives the attributes of a list view item: 

typedef struct - LV - ITEM { 

UINT mask; II see below 
int i Item; II see below 
int i SubItem; II see below 
UINT state; II see below 
UINT stateMask; II see below 
LPSTR pszText; II see below 
int cchTextMax; II see below 
int ilmage; II see below 
LPARAM lParam; II 32-bit val ue to associate with item 

LV_ITEM; 

958 



Members are as follows: 

mask Variable specifying which members contain valid data or which members are 
to be filled in. It can be one or more of these values: 

• LVIF _TEXT The pszText member is valid. 

• LVIF _IMAGE The iImage member is valid 

• LVIF_PARAM The IParam member is valid. 

• LVIF _STATE The state member is valid. 

iItem Index of the item this structure refers to. 

iSubItem A "subitem" is a string that, in report view, can be displayed in a column 
to the right of an item's icon and label. All items in a list view have the same 
number of subitems. This member is the one-based index of a subitem, or zero if 
the structure contains information about an item. 

state and stateMask Current state of the item, and the valid states of the item. These 
members can be any valid combination of the following state flags: 

• LVIS_CUT The item is marked for a cut and paste operation. 

• LVIS_DROPHILITED The item is highlighted as a drag and drop target. 

• LVIS_FOCUSED The item has the focus, so it is surrounded by a standard 
focus rectangle. Although more than one item may be selected, only one item 
can have the focus. 

• LVIS_SELECTED The item is selected. The appearance of a selected item 
depends on whether it has the focus and on the system colors used for selection. 

• LVIS_OVERLAYMASK The application stores the image list index of the 
current overlay image for each item. 

• LVIS_STATEIMAGEMASK The application stores the image list index of 
the current state image for each item. 

pszText Address of a null-terminated string containing the item text if the structure 
specifies item attributes. If this member is the LPSTR_TEXTCALLBACK value, 
the item is a callback item. If the structure is receiving item attributes, this member 
is the address of the buffer that receives the item text. 

cchTextMax Size of the buffer pointed to by the pszText member if the structure is 
receiving item attributes. If the structure specifies item attributes, this member is 
ignored. 

iImage Index of the list view item's icon in the large icon and small icon image lists. 
If this member is the I_IMAGECALLBACK value, the item is a callback item. 

See Also: CListCtrl: :SetItem 

CListCtrl:: GetItem 

959 



CListCtrl: : GetItemCount 

CListCtrl: : GetItemCount 
int GetItemCount(); 

Return Value 
The number of items in the list view control. 

Remarks 
Retrieves the number of items in a list view control. 

See Also: CListCtrl::SetItemCount, CListCtrl::GetSelectedCount 

CListCtrl: : GetItemData 
DWORD GetItemData( int nltem ) const; 

Return Value 
A 32-bit application-specific value associated with the specified item. 

Parameters 

Remarks 

nltem Index of the list item whose data is to be retrieved. 

This function retrieves the 32-bit application-specific value associated with the item 
specified by nltem. This value is the IParam member of the LV_ITEM structure; for 
more information on this structure, see GetItem. 

See Also: CListCtrl: :SetItemData 

CListCtrl: : GetItemPosition 
BOOL GetItemPosition( int nltem, LPPOINT ipPoint ) const; 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

960 

nltem The index of the item whose position is to be retrieved. 

ipPoint Address of a POINT structure that receives the position of the item's 
upper-left comer, in view coordinates. 

Retrieves the position of a list view item. 

See Also: CListCtrl::SetItemPosition, CListCtrl::GetOrigin 



CListCtrl:: GetItemState 

CListCtrl: : GetItemRect 
BOOL GetItemRect( int nltem, LPRECT IpRect, UINT nCode ) const; 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nltem The index of the item whose position is to be retrieved. 

IpRect Address of a RECT structure that receives the bounding rectangle. 

nCode Portion of the list view item for which to retrieve the bounding rectangle. It 
can be one of these values: 

• LVIR_BOUNDS Returns the bounding rectangle of the entire item, including 
the icon and label. 

• LVIR_ICON Returns the bounding rectangle of the icon or small icon. 

• LVIR_LABEL Returns the bounding rectangle of the item text. 

Retrieves the bounding rectangle for all or part of an item in the current view. 

See Also: CListCtrl::GetItemPosition, CListCtrl::SetItemPosition, 
CListCtrl:: GetOrigin 

CListCtrl: : GetItemState 
UINT GetItemState( int nltem, UINT nMask ) const; 

Return Value 
The state flags for the specified list view item. 

Parameters 

Remarks 

nltem The index of the item whose state is to be retrieved. 

nMask Mask specifying which of the item's state flags to return. 

Retrieves the state of a list view item. 

An item's state is specified by the state member of the LV_ITEM structure. When 
you specify or change an item's state, the stateMask member specifies which state 
bits you want to change. For more information on the LV_ITEM structure, see 
CListCtrl:: GetItem. 

See Also: CListCtrl::SetItemState, CListCtrl::GetItem 

961 



CListCtrl: : GetItemText 

CListCtrl: : GetItem Text 
int GetItemText( int nltem, int nSubltem, LPTSTR IpszText, int nLen ) const; 
CString GetItemText( int nltem, int nSubltem ) const; 

Return Value 
The version returning int returns the length of the retrieved string. 

The version returning a CString returns the item text. 

Parameters 

Remarks 

nltem The index of the item whose text is to be retrieved. 

nSubltem Specifies the subitem whose text is to be retrieved. 

IpszText Pointer to a string that is to receive the item text. 

nLen Length of the buffer pointed to by IpszText. 

Retrieves the text of a list view item or subitem. If nSubltem is zero, this function 
retrieves the item label; if nSubltem is nonzero, it retrieves the text of the subitem. 
For more information on the sub item argument, see the discussion of the LV_ITEM 
structure in CListCtrl: :GetItem. 

See Also: CListCtrl::Getltem 

CListCtrl: : GetNextItem 
int GetNextltem( int nltem, int nFlags) const; 

Return Value 
The index of the next item if successful, or -1 otherwise. 

Parameters 

962 

nltem Index of the item to begin the searching with, or -1 to find the first item that 
matches the specified flags. The specified item itself is excluded from the search. 

nFlags Geometric relation of the requested item to the specified item, and the state of 
the requested item. The geometric relation can be one of these values: 

• LVNI_ABOVE Searches for an item that is above the specified item. 

• LVNI_ALL Searches for a subsequent item by index (the default value). 

• LVNI_BELOW Searches for an item that is below the specified item. 

• LVNI_TOLEFT Searches for an item to the left of the specified item. 

• LVNI_TORIGHT Searches for an item to the right of the specified item. 

The state can be zero, or it can be one or more of these values: 



CListCtrl:: GetS tring Width 

Remarks 

• LVNI_DROPHILITED The item has the LVIS_DROPHILITED state flag 
set. 

• LVNI_FOCUSED The item has the LVIS_FOCUSED state flag set. 

• LVNI_SELECTED The item has the LVIS_SELECTED state flag set. 

If an item does not have all of the specified state flags set, the search continues 
with the next item. 

Searches for a list view item that has the specified properties and that bears the 
specified relationship to a given item. 

See Also: CListCtrl::GetItem 

CListCtrl: : GetOrigin 
BOOL GetOrigin( LPPOINT lpPoint) const; 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
ipPoint Address of a POINT structure that receives the view origin. 

Remarks 
Retrieves the current view origin for a list view control. 

See Also: CListCtrl: : GetItemPosition, CListCtrl: :SetItemPosition 

CListCtrl:: GetSelectedCount 
UINT GetSelectedCount( ) const; 

Return Value 
The number of selected items in the list view control. 

Remarks 
Retrieves the number of selected items in the list view control. 

See Also: CListCtrl: :SetItemCount, CListCtrl: : GetItemCount 

CListCtrl::GetStringWidth 
int GetString Width( LPCTSTR lpsz ) const; 

Return Value 
The width, in pixels, of the string pointed to by lpsz. 

963 



CListCtrl: :GetTextBkColor 

Parameters 

Remarks 

lpsz Address of a null-terminated string whose width is to be determined. 

Determines the minimum column width necessary to display all of a given string. 

The returned width takes into account the control's current font and column margins, 
but not the width of a small icon. 

See Also: CListCtrl::GetColumnWidth, CListCtrl::SetColumnWidth 

CListCtrl: : GetTextBkColor 
COLORREF GetTextBkColor() const; 

Return Value 
A 32-bit value used to specify an RGB color. 

Remarks 
Retrieves the text background color of a list view control. 

See Also: CListCtrl::SetTextBkColor, CListCtrl::GetTextColor COLORREF 

CListCtrl: : GetTextColor 
COLORREF GetTextColor( ) const; 

Return Value 
A 32-bit value used to specify an RGB color. 

Remarks 
Retrieves the text color of a list view control. 

See Also: CListCtrl::SetTextColor, CListCtrl::GetTextBkColor COLORREF 

CListCtrl: : GetTopIndex 
int GetTopIndex( ) const; 

Return Value 

Remarks 

964 

The index of the topmost visible item. 

Retrieves the index of the topmost visible item when in list view or report view. 

See Also: CListCtrl: : GetCountPerPage 



CListCtrl: : GetViewRect 
BOOL GetViewRect( LPRECT IpRect) const; 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

IpRect Address of a RECT structure. 

Retrieves the bounding rectangle of all items in the list view control. The list view 
must be in icon view or small icon view. 

See Also: CListCtrl::GetToplndex 

CListCtrl::lIit1Lest 
int HitTest( LV _HITTESTINFO* pHitTestInfo) const; 
int HitTest( CPoint pt, UINT* pFlags = NULL) const; 

Return Value 
The index of the item at the position specified by pHitTestlnfo, if any, or -1 otherwise. 

Parameters 

Remarks 

pHitTestlnfo Address of a LV _HITTESTINFO structure that contains the position 
to hit test and that' receives information about the results of the hit test. 

pt Point to be tested. 

pFlags Pointer to an integer that receives information about the results of the test. 
See the explanation of the flags member of the LV _HITTESTINFO structure 
under Remarks. 

Determines which list view item, if any, is at a specified position. 

The LV _HITTESTINFO structure contains information about a hit test: 

typedef struct _LV_HITTESTINFO { 
POINT pt; II position to hit test. in client coordinates 
UINT flags; II see below 
int iItem; II receives the index of the matching item 

} LV_HITTESTINFO; 

Its members are as follows: 

flags Variable that receives information about the results of a hit test. It can be one or 
more of these values: 

• LVHT_ABOVE The position is above the client area of the control. 

• LVHT_BELOW The position is below the client area of the control. 

CListCtrl::HitTest 

965 



CListCtrl: :InsertColumn 

• LVHT_NOWHERE The position is inside the list view control's client 
window but is not over a list item. 

• LVHT_ONITEMICON The position is over a list view item's icon. 

• LVHT_ONITEMLABEL The position is over a list view item's text. 

• LVHT_ONITEMSTATEICON The position is over the state image of a list 
view item. 

• LVHT_TOLEFT The position is to the left of the list view control's client 
area. 

• LVHT_TORIGHT The position is to the right of the list view control's client 
area. 

You can use the LVHT_ABOVE, LVHT_BELOW, LVHT_TOLEFT, and 
LVHT_TORIGHT values to determine whether to scroll the contents of a list view 
control. Two of these flags can be combined, for example, if the position is above and 
to the left of the client area. 

You can test for the LVHT_ONITEM value to determine whether a given position is 
over a list view item. This value is a bitwise-OR operation on the 
LVHT_ONITEMICON, LVHT_ONITEMLABEL, and 
LVHT_ONITEMSTATEICON values. 

See Also: CListCtrl: :SetltemPosition, CListCtrl: : GetltemPosition 

CListCtrl: : InsertColumn 
int InsertColumn( int nCol, const LV _COLUMN* pColumn); 
int InsertColumn( int nCol, LPCTSTR ipszColumnHeading, 

~ int nFormat = LVCFMT_LEFT, int nWidth = -1, int nSubltem = -1); 

Return Value 
The index of the new column if successful or -1 otherwise. 

Parameters 

966 

nCol The index of the new column. 

pColumn Address of an LV_COLUMN structure that contains the attributes of the 
new column. 

lpszColumnHeading Address of a string containing the column's heading. 

nFormat Integer specifying the alignment of the column. It can be one of these 
values: LVCFMT_LEFT, LVCFMT_RIGHT, or LVCFMT_CENTER. 

n Width Width of the column, in pixels. If this parameter is -1, the column width is 
not set. 



Remarks 

nSubltel1l Index of the subitem associated with the column. If this parameter is -1, 
no subitem is associatied with the column. 

Inserts a new column in a list view control. 

The LV_COLUMN structure contains the attributes of a column in report view. 
It is also used to receive information about a column. For more information on the 
LV_COLUMN structure, see CListCtrl::GetColumn. 

See Also: CListCtrl: :DeleteColumn 

CListCtrl: : InsertItem 
int Insertltem( const LV _ITEM* pltel1l ); 
int Insertltem( int nltel1l, LPCTSTR Ipszltel1l ); 
int InsertItem( int nltem, LPCTSTR lpsz/tem, int nIl1lage ); 
int Insertltem( UINT nMask, int nltem, LPCTSTR lpszltem, UINT nState, 

... UINT nStateMask, int nlmage, LPARAM IParam ); 

Return Value 
The index of the new item if successful or -1 otherwise. 

Parameters 

Remarks 

pltem Pointer to an LV_ITEM structure that specifies the item's attributes. For 
information on the LV_ITEM structure, see CListCtrl::GetItem. 

nltem Index of the item to be inserted. 

IpsZltem Address of a string containing the item's label, or 
LPSTR_TEXTCALLBACK if the item is a callback item. For information on 
callback items, see CListCtrl::GetCallbackMask. 

nlmage Index of the item's image, or I_IMAGECALLBACK if the item is a 
callback item. For information on callback items, see 
CListCtrl::GetCallbackMask. 

nMask Specifies which attributes are valid (see the Remarks). 

nState Specifies values for states to be changed (see the Remarks). 

nStateMask Specifies which states are valid (see the Remarks). 

nlmage Index of the item's image within the image list. 

IParam A 32-bit application-specific value associated with the item. 

Inserts an item into the list view control. 

CListCtrl::InsertItem 

967 



CListCtr1::Redrawltems 

The nMask parameter specifies which item attributes passed as parameters are valid. It 
can be one or more of the following values, combined with the bitwise OR operator: 

• LVIF _TEXT The lpsz/tem parameter is the address of a null-terminated string. 

• LVIF _STATE The nStateMask parameter specifies which item states are valid 
and the nState parameter contains the values for those states. 

• LVIF _IMAGE The nlmage parameter specifies the index in the image list, 
established by CListCtrl: :SetImageList, of the image to be displayed. 

See Also: CListCtrl: :Deleteltem, CListCtrl: :DeleteAllltems 

CListCtrl: : Redraw Items 
BOOL RedrawItems( iot nFirst, iot nLast ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nFirst Index of the first item to be repainted. 

nLast Index of the last item to be repainted. 

Forces a list view control to repaint a range of items. 

The specified items are not actually repainted until the list view window receives a 
WM_PAINT message. To repaint immediately, call the Windows UpdateWiodow 
function after using this function. 

See Also: CListCtrl::DrawItem 

CListCtrl:: Scroll 
BOOL Scroll( CSize size ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

968 

size A CSize object specifying the amount of horizontal and vertical scrolling, in 
pixels. The y member of size is divided by the height, in pixels, of the list view 
control's line, and the control is scrolled by the resulting number of lines. 

Scrolls the content of a list view control. 

See Also: CListCtrl::EosureVisible 



CListCtrl:: SetBkColor 
BOOL SetBkColor( COLORREF cr ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

cr Background color to set, or the CLR_NONE value for no background color. List 
view controls with background colors redraw themselves significantly faster than 
those without background colors. For information, see COLORREF in the Win32 
Programmer's Reference. 

Sets the background color of the list view control. 

See Also: CListCtrl: :GetBkColor 

CListCtrl::SetCallbackMask 
BOOL SetCallbackMask( UINT nMask ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
nMask New value of the callback mask. 

Remarks 
Sets the callback mask for a list view control. 

See Also: CListCtrl::GetCallbackMask 

CListCtrl: : SetColumn 
BOOL SetColumn( int nCol, const LV _COLUMN* pColumn ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
nCol Index of the column whose attributes are to be set. 

pColumn Address of an LV_COLUMN structure that contains the new column 
attributes. The mask member specifies which column attributes to set. If the mask 
member specifies the LVCF _TEXT value, the pszText member is the address of a 
null-terminated string and the cchTextl\fax member is ignored. For more 
information on the LV_COLUMN structure, see CListCtrl::GetColumn. 

CListCtrl: :SetColumn 

969 



CListCtr1: :SetColumn Width 

Remarks 
Sets the attributes of a list view column. 

See Also: CListCtrl: :GetColumo 

CListCtrl: :SetColumn Width 
BOOL SetColumo Width( iot nCol, iot ex ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nCol Index of the column whose width is to be set. In list view, this parameter 
must be -1. 

ex The new width of the column. 

Changes the width of a column in report view or list view. 

See Also: CListCtrl::GetColumoWidth, CListCtrl::GetStriogWidth 

CListCtrl: : SetImageList 
CImageList* SetlmageList( CImageList* plmageList, iot nlmageList); 

Return Value 
A pointer to the previous image list. 

Parameters 
plmageList Pointer to the image list to assign. 

nlmageList Type of image list. It can be one of these values: 

• LVSIL_NORMAL Image list with large icons. 

• LVSIL_SMALL Image list with small icons. 

• LVSIL_STATE Image list with state images. 

Remarks 
Assigns an image list to a list view control. 

See Also: CImageList, CListCtrl: : GetlmageList 

970 



CListCtrl:: SetItem 
BOOL Setltem( const LV _ITEM* pltem ); 
BOOL Setltem( int nltem, int nSubltem, UINT nMask, LPCTSTR lpsz/tem, 

... int nlmage, UINT nState, UINT nStateMask, LPARAM IParam ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

pltem Address of an LV_ITEM structure that contains the new item attributes. The 
iItem and iSubltem members identify the item or subitem, and the mask member 
specifies which attributes to set. For more information on the mask member, see 
the Remarks. For more information on the LV_ITEM structure, see 
CListCtrl: :Getltem. 

nltem Index of the item whose attributes are to be set. 

nSubltem Index of the subitem whose attributes are to be set. 

nMask Specifies which attributes are to be set (see the Remarks). 

lpsz/tem Address of a null-terminated string specifying the item's label. 

nlmage Index of the item's image within the image list. 

nState Specifies values for states to be changed (see the Remarks). 

nStateMask Specifies which states are to be changed (see the Remarks). 

IParam A 32-bit application-specific value to be associated with the item. 

Sets some or all of a list view item's attributes. 

The iItem and iSubItem members of the LV_ITEM structure and the nltem and 
nSubltem parameters identify the item and sub item whose attributes are to be set. 

The mask member of the LV_ITEM structure and the nMask parameter specify 
which item attributes are to be set: 

• LVIF _TEXT The pszText member or the lpsz/tem parameter is the address of a 
null-terminated string; the cchTextMax member is ignored. 

• LVIF _STATE The stateMask member or nStateMask parameter specifies which 
item states to change and the state member or nState parameter contains the values 
for those states. 

See Also: CListCtrl: : Getltem 

CListCtrl::Setltem 

971 



CListCtrl:: SetltemCount 

CListCtrl:: SetItemCount 
void SetItemCount( int nltems ); 

Parameters 

Remarks 

nltems Number of items that the control will ultimately contain. 

Prepares a list view control for adding a large number of items. 

By calling this function before adding a large number of items, you enable a list view 
control to reallocate its internal data structures only once rather than every time you 
add an item. 

See Also: CListCtrl: :GetItemCount, CListCtrl: :GetSelectedCount 

CListCtrl: : SetItemData 
BOOL SetItemData( int nltem, DWORD dwData ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

nltem Index of the list item whose data is to be set. 

dwData A 32-bit value to be associated with the item. 

This function sets the 32-bit application-specific value associated with the item 
specified by nltem. This value is the IParam member of the LV_ITEM structure; 
for more information on this structure, see GetItem. 

See Also: CListCtrl: : GetItemData 

CListCtrl: : SetItemPosition 
BOOL SetItemPosition( int nltem, POINT pt ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

972 

nltem Index of the item whose position is to be set. 

pt A POINT structure specifying the new position, in view coordinates, of the item's 
upper-left comer. 



CListCtrl:: SetItemText 

Remarks 
Moves an item to a specified position in a list view control. The control must be in 
icon or small icon view. 

If the list view control has the LVS_AUTOARRANGE style, the list view is arranged 
after the position of the item is set. 

See Also: CListCtrl::GetltemPositioo, CListCtrl::GetOrigio 

CListCtrl:: SetItemState 
BOOL SetItemState( iot nltem, LV _ITEM* pltem ); 
BOOL SetltemState( iot nltem, UINT nState, UINT nMask ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nltem Index of the item whose state is to be set. 

pltem Address of an LV_ITEM structure. The stateMask member specifies which 
state bits to change, and the state member contains the new values for those bits. 
The other members are ignored. For more information on the LV_ITEM structure, 
see CListCtrl::GetItem. 

nState New values for the state bits. 

nMask Mask specifying which state bits to change. 

Changes the state of an item in a list view control. 

An item's "state" is a value that specifies the item's availability, indicates user actions, 
or otherwise reflects the item's status. A list view control changes some state bits, 
such as when the user selects an item. An application might change other state bits to 
disable or hide the item, or to specify an overlay image or state image. 

See Also: CListCtrl: : GetItemState 

CListCtrl: :SetItemText 
BOOL SetItemText( iot nltem, iot nSubltem, LPTSTR IpszText ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 
nltem Index of the item whose text is to be set. 

nSubltem Index of the subitem, or zero to set the item label. 

973 



CListCtrl:: SetTextBkColor 

Remarks 

IpszText Pointer to a string that contains the new item text. 

Changes the text of a list view item or subitem. 

See Also: CListCtrl: : GetltemText 

CListCtrl: :SetTextBkColor 
BOOL SetTextBkColor( COLORREF cr ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

cr A COLORREF specifying the new text background color. For information, 
see COLORREF in the Win32 Programmer's Reference. 

Sets the background color of text in a list view control. 

See Also: CListCtrl: : GetTextBkColor 

CListCtrl: : SetTextColor 
BOOL SetTextColor( COLORREF cr ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

cr A COLORREF specifying the new text color. For information, see COLORREF 
in the Win32 Programmer's Reference. 

Sets the text color of a list view control. 

See Also: CListCtrl::SetTextBkColor 

CListCtrl: : SortItems 
BOOL Sortltems( PFNLVCOMPARE pjnCompare, DWORD dwData ); 

Return Value 
Nonzero if successful; otherwise zero. 

974 



Parameters 

Remarks 

pfnCompare Address of the application-defined comparison function. The 
comparison function is called during the sort operation each time the relative order 
of two list items needs to be compared. The comparison function must be either a 
static member of a class or a stand alone function that is not a member of any class. 

dwData Application-defined value that is passed to the comparison function. 

Sorts list view items using an application-defined comparison function. The index of 
each item changes to reflect the new sequence. 

The comparison function has the following form: 

int CALLBACK CompareFunc(LPARAM lParaml, LPARAM lParam2, 
LPARAM lParamSort); 

The comparison function must return a negative value if the first item should precede 
the second, a positive value if the first item should follow the second, or zero if the 
two items are equivalent. 

The lParaml and lParam2 parameters specify the item data for the two items being 
compared. The lParamSort parameter is the same as the dwData value. 

See Also: CListCtrl::Fiodltem 

CListCtrl:: Update 
BOOL Update( iot nltem ); 

Return Value 
Nonzero if successful; otherwise zero. 

Parameters 

Remarks 

nltem Index of the item to be updated. 

Call this function to force the list view control to repaint the item specified by nltem. 
This function also arranges the list view control if it has the LVS_AUTOARRANGE 
style. 

See Also: CListCtrl::Drawltem 

CListCtrl::Update 

975 



CListView 

CListView 

CListView 

The CListView class simplifies use of the list control and of CListCtrl, the class that 
encapsulates list-control functionality, with MFC's document-view architecture. For 
more information on this architecture, see the overview for the CView class and the 
cross-references cited there. 

#include <afxcview.h> 

See Also: CCtrlView 

CList View Class Members 
Construction 

CListView Constructs a CListView object. 

Attributes 

GetListCtrI Returns the list control associated with the view. 

Member Functions 
CListView::CListView 

CList View( ); 

Remarks 
Constructs a CListView object. 

976 



CListView: : GetListCtrl 
CListCtrl& GetListCtrl( ) const; 

Return Value 

Remarks 

A reference to the list control associated with the view. 

Call this member function to get a reference to the list control associated with 
the view. 

See Also: CListCtrl 

CList View: :GetListCtrl 

977 



CLongBinary 

CLongBinary 

978 

Class CLongBinary simplifies working with very large binary data objects (often 
called BLOBs, or "binary large objects") in a database. For example, a record field in 
an SQL table might contain a bitmap representing a picture. A CLongBinary object 
stores such an object and keeps track of its size. 

Note In general, it is better practice now to use CByteArray in conjunction with the 
DFX_Binary function. You can still use CLongBinary, but in general CByteArray provides 
more functionality under Win32, since there is no longer the size limitation encountered with 
16-bit CByteArray. This advice applies to programming with Data Access Objects (DAO) as 
well as Open Database Connectivity (ODSC). 

To use a CLongBinary object, declare a field data member of type CLongBinary in 
your recordset class. This member will be an embedded member of the recordset class 
and will be constructed when the recordset is constructed. After the CLongBinary 
object is constructed, the record field exchange (RFX) mechanism loads the data 
object from a field in the current record on the data source and stores it back to the 
record when the record is updated. RFX queries the data source for the size of the 
binary large object, allocates storage for it (via the CLongBinary object's m_hData 
data member), and stores an HGLOBAL handle to the data in m_hData. RFX also 
stores the actual size of the data object in the m_dwDataLength data member. Work 
with the data in the.object through m_hData, using the same techniques you would 
normally use to manipulate the data stored in a Windows HGLOBAL handle. 

When you destroy your recordset, the embedded CLongBinary object is also 
destroyed, and its destructor deallocates the HGLOBAL data handle. 

For more information about large objects and the use of CLongBinary, see the 
articles "Record set (ODBC)" and "Recordset: Working with Large Data Items 
(ODBC)" in Visual C++ Programmer's Guide online. 

#include <afxdb.h> 

See Also: CRecordset 



CLongBinary Class Members 
Data Members 

m_dwDataLength 

m_hData 

Construction 

CLongBinary 

Contains the actual size in bytes of the data object whose handle is 
stored in m_hData. 

Contains a Windows HGLOBAL handle to the actual image object. 

Constructs a CLongBinary object. 

Member Functions 
CLongB inary: : CLongB inary 

CLongBinary( ); 

Remarks 
Constructs a CLongBinary object. 

Data Members 
CLongBinary: :m_dw DataLength 
Remarks 

Stores the actual size in bytes of the data stored in the HGLOBAL handle in 
ID_hData. This size may be smaller than the size of the memory block allocated for 
the data. Call ::GlobalSize to get the allocated size. 

CLongBinary: :m_hData 
Remarks 

Stores a Windows HGLOBAL handle to the actual binary large object data. 

CLongBinary: :m_hData 

979 



CMap 

CMap 

template< class KEY, class ARG_KEY, class VALUE, 
... class ARG_ VALUE >class CMap : public CObject 

Parameters 

Remarks 

980 

KEY Class of the object used as the key to the map. 

ARG_KEY Data type used for KEY arguments; usually a reference to KEY. 

VALUE Class of the object stored in the map. 

ARG_ VALUE Data type used for VALUE arguments; usually a reference to VALUE. 

CMap is a dictionary collection class that maps unique keys to values. Once you have 
inserted a key-value pair (element) into the map, you can efficiently retrieve or delete 
the pair using the key to access it. You can also iterate over all the elements in the map. 

A variable of type POSITION is used for alternate access to entries. You can use a 
POSITION to "remember" an entry and to iterate through the map. You might think 
that this iteration is sequential by key value; it is not. The sequence of retrieved 
elements is indeterminate. 

Certain member functions of this class call global helper functions that must be 
customized for most uses of the CMap class. See "Collection Class Helpers" in the 
"Macros and Globals" section of the MFC Reference. 

CMap incorporates the IMPLEMENT_SERIAL macro to support serialization and 
dumping of its elements. Each element is serialized in turn if a map is stored to an 
archive, either with the overloaded insertion «<) operator or with the Serialize 
member function. 

If you need a diagnostic dump of the individual elements in the map (the keys and the 
values), you must set the depth of the dump context to 1 or greater. 

When a CMap object is deleted, or when its elements are removed, the keys and 
values both are removed. 

Map class derivation is similar to list derivation. See the article "Collections" in 
Visual C++ Programmer's Guide online for an illustration of the derivation of a 
special-purpose list class. 

#include <afxtempl.h> 



CMap Class Members 
Construction 

CMap 

Operations 

Lookup 

SetAt 

operator [] 

RemoveKey 

RemoveAll 

GetStartPosition 

GetNextAssoc 

GetHashTableSize 

InitHashTable 

Status 

GetCount 

IsEmpty 

Constructs a collection that maps keys to values. 

Looks up the value mapped to a given key. 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the size (number of elements) of the hash table. 

Initializes the hash table and specifies its size. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

Member Functions 
CMap::CMap 

CMap( int nBlockSize = 10); 

Parameters 

Remarks 

nBlockSize Specifies the memory-allocation granularity for extending the map. 

Constructs an empty map. As the map grows, memory is allocated in units of 
nBlockSize entries. 

CMap::GetCount 
int GetCount( ) const; 

Return Value 
The number of elements. 

CMap: :GetCount 

981 



CMap::GetHashTableSize 

Remarks 
Call this member function to retrieve the number of elements in the map. 

See Also: CMap::IsEmpty 

CMap: : GetHash TableSize 
UINT GetHashTableSize( ) const; 

Return Value 

Remarks 

The number of elements in the hash table. 

Call this member function to determine the number of elements in the hash table for 
the map. 

See Also: CMap: : InitHashTable 

CMap: : GetN extAssoc 
void GetNextAssoc( POSITION& rNextPosition, KEY& rKey, 

... VALUE& rValue ) const; 

Parameters 

Remarks 

982 

rNextPosition Specifies a reference to a POSITION value returned by 
a previous GetNextAssoc or GetStartPosition call. 

KEY Template parameter specifying the type of the map's key. 

rKey Specifies the returned key of the retrieved element. 

VALUE Template parameter specifying the type of the map's value. 

rValue Specifies the returned value of the retrieved element. 

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to the 
next element in the map. This function is most useful for iterating through all the 
elements in the map. Note that the position sequence is not necessarily the same as the 
key value sequence. 

If the retrieved element is the last in the map, then the new value of rNextPosition is 
set to NULL. 

See Also: CMap::GetStartPosition 



CMap: : GetS tartPosition 
POSITION GetStartPosition( ) const; 

Return Value 

Remarks 

A POSITION value that indicates a starting position for iterating the map; or NULL 
if the map is empty. 

Starts a map iteration by returning a POSITION value that can be passed to a 
GetNextAssoc call. The iteration sequence is not predictable; therefore, the "first 
element in the map" has no special significance. 

See Also: CMap::GetNextAssoc 

CMap: : InitHashTable 
void InitHashTable( UINT hashSize ); 

Parameters 

Remarks 

hashSize Number of entries in the hash table. 

Initializes the hash table. For best performance, the hash table size should be a prime 
number. To minimize collisions the size should be roughly 20 percent larger than the 
largest anticipated data set. 

See Also: CMap::GetHashTableSize 

CMap: : IsEmpty 
BOOL IsEmpty( ) const; 

Return Value 

Remarks 

Example 

Nonzero if this map contains no elements; otherwise O. 

Call this member function to determine whether the map is empty. 

See the example for CMapStringToOB::RemoveAll. 

See Also: CMap::GetCount 

CMap: :IsEmpty 

983 



CMap: :Lookup 

CMap::Lookup 
BOOL Lookup( ARG_KEY key, VALUE& rValue ) const; 

Return Value 
Nonzero if the element was found; otherwise O. 

Parameters 

Remarks 

ARG_KEY Template parameter specifying the type of the key value. 

key Specifies the key that identifies the element to be looked up. 

VALUE Specifies the type of the value to be looked up. 

rValue Receives the looked-up value. 

Lookup uses a hashing algorithm to quickly find the map element with a key that 
exactly matches the given key. 

See Also: CMap::operator [] 

CMap: : RemoveAll 

Remarks 

void RemoveAll(); 

Removes all the values from this map by calling the global helper function 
DestructElements. 

The function works correctly if the map is already empty. 

See Also: CMap::RemoveKey, DestructElements 

CMap: : RemoveKey 
BOOL RemoveKey( ARG_KEY key); 

Return Value 
Nonzero if the entry was found and successfully removed; otherwise O. 

Parameters 

Remarks 

984 

ARG _KEY Template parameter specifying the type of the key. 

key Key for the element to be removed. 

Looks up the map entry corresponding to the supplied key; then, if the key is found, 
removes the entry. 



The DestructElements helper function is used to remove the entry. 

See Also: CMap::RemoveAll 

CMap::SetAt 
void SetAt( ARG_KEY key, ARG_VALUE newValue); 

Parameters 

Remarks 

ARG_KEY Template parameter specifying the type of the key parameter. 

key Specifies the key of the new element. 

ARG_VALUE Template parameter specifying the type of the newValue parameter. 

new Value Specifies the value of the new element. 

The primary means to insert an element in a map. First, the key is looked up. If the 
key is found, then the corresponding value is changed; otherwise a new key-value pair 
is created. 

See Also: CMap::Lookup, CMap::operator [] 

Operators 
CMap::operator [ ] 

VALUE& operator[]( ARG_KEY key); 

Parameters 

Remarks 

VALUE Template parameter specifying the type of the map value. 

ARG _KEY Template parameter specifying the type of the key value. 

key The key used to retrieve the value from the map. 

This operator is a convenient substitute for the SetAt member function. Thus it can be 
used only on the left side of an assignment statement (an I-value). If there is no map 
element with the specified key, then a new element is created. 

There is no "right side" (r-value) equivalent to this operator because there is a 
possibility that a key may not be found in the map. Use the Lookup member function 
for element retrieval. 

See Also: CMap::SetAt, CMap::Lookup 

CMap::operator [] 

985 



CMapPtrToPtr 

CMapPtrToPtr 

The CMapPtrToPtr class supports maps of void pointers keyed by void pointers. 

The member functions of CMapPtrToPtr are similar to the member functions of 
class CMapStringToOb. Because of this similarity, you can use the 
CMapStringToOb reference documentation for member function specifics. Wherever 
you see a CObject pointer as a function parameter or return value, substitute a pointer 
to void. Wherever you see a CString or a const pointer to char as a function 
parameter or return value, substitute a pointer to void. 

BOOl CMapStringTaOb::laakup( canst char* <key>, 
CObject*& <rValue> ) canst; 

for example, translates to 

BOOl CMapPtrTaPtr::laakup( vaid* <key>, vaid*& <rValue> ) canst; 

CMapPtrToPtr incorporates the IMPLEMENT_DYNAMIC macro to support 
run-time type access and dumping to a CDumpContext object. If you need a dump of 
individual map elements (pointer values), you must set the depth of the dump context 
to 1 or greater. 

Pointer-to-pointer maps may not be serialized. 

When a CMapPtrToPtr object is deleted, or when its elements are removed, only the 
pointers are removed, not the entities they reference. 

For more information on CMapPtrToPtr, see the article "Collections" in Visual C++ 
Programmer's Guide online. 

#include <afxcoll.h> 

CMapPtrToPtr Class Members 

986 

Construction 

CMapPtrToPtr 

Operations 

Lookup 

Constructs a collection that maps void pointers to void pointers. 

Looks up a void pointer based on the void pointer key. The pointer 
value, not the entity it points to, is used for the key comparison. 



Operations (continued) 

SetAt 

operator [] 

RemoveKey 

RemoveAll 

GetStartPosition 

GetNextAssoc 

Status 

GetCount 

IsEmpty 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

CMapPtrToPtr 

987 



CMapPtrToWord 

CMapPtrTo Word 

The CMapPtrTo Word class supports maps of 16-bit words keyed by void pointers. 

The member functions of CMapPtrTo Word are similar to the member functions of 
class CMapStringToOb. Because of this similarity, you can use the 
CMapStringToOb reference documentation for member function specifics. Wherever 
you see a CObject pointer as a function parameter or return value, substitute WORD. 
Wherever you see a CString or a const pointer to char as a function parameter or 
return value, substitute a pointer to void. 

BOOl CMapStringToOb::lookup( const char* <key>. 
CObject*& <rValue> ) const; 

for example, translates to 

BOOl CMapPtrToWord::lookup( const void* <key>. WORD& <rValue> ) const; 

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to support 
run-time type access and dumping to a CDumpContext object. If you need a dump of 
individual map elements, you must set the depth of the dump context to 1 or greater. 

Pointer-to-word maps may not be serialized. 

When a CMapPtrTo Word object is deleted, or when its elements are removed, the 
pointers and the words are removed. The entities referenced by the key pointers are 
not removed. 

For more information on CMapPtrTo Word, see the article "Collections" in 
Visual C++ Programmer's Guide online. 

#include <afxcoll.h> 

CMapPtrTo Word Class Members 

988 

Construction 

CMapPtrTo Word 

Operations 

Lookup 

Constructs a collection that maps void pointers to 16-bit words. 

Returns a WORD using a void pointer as a key. The pointer value, 
not the entity it points to, is used for the key comparison. 



Operations (continued) 

SetAt 

operator [] 

RemoveKey 

RemoveAll 

GetStartPosition 

GetN extAssoc 

Status 

GetCount 

IsEmpty 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

CMapPtrTo Word 

989 



CMapStringToOb 

CMapStringToOb 

CMapStringToOb is a dictionary collection class that maps unique CString objects 
to CObject pointers. Once you have inserted a CString-CObject* pair (element) into 
the map, you can efficiently retrieve or delete the pair using a string or a CString 
value as a key. You can also iterate over all the elements in the map. 

A variable of type POSITION is used for alternate entry access in all map variations. 
You can use a POSITION to "remember" an entry and to iterate through the map. 
You might think that this iteration is sequential by key value; it is not. The sequence of 
retrieved elements is indeterminate. 

CMapStringToOb incorporates the IMPLEMENT_SERIAL macro to support 
serialization and dumping of its elements. Each element is serialized in turn if a map is 
stored to an archive, either with the overloaded insertion «<) operator or with the 
Serialize member function. 

If you need a diagnostic dump of the individual elements in the map (the CString 
value and the CObject contents), you must set the depth of the dump context to 1 or 
greater. 

When a CMapStringToOb object is deleted, or when its elements are removed, the 
CString objects and the CObject pointers are removed. The objects referenced by the 
CObject pointers are not destroyed. 

Map class derivation is similar to list derivation. See the article "Collections" in 
Visual C++ Programmer's Guide online for an illustration of the derivation of a 
special-purpose list class. 

#include <afxcoll.h> 

See Also: CMapPtrToPtr, CMapPtrToWord, CMapStringToPtr, 
CMapStringToString, CMap WordToOb, CMap WordToPtr 

CMapStringToOb Class Members 
Construction 

CMapStringToOb Constructs a collection that maps CString values to CObject pointers. 

Operations 

Lookup Returns a CObject pointer based on a CString value. 

990 



CMapStringToOb: :GetCount 

Operations (continued) 

SetAt 

operator [] 

RemoveKey 

RemoveAIl 

GetStartPosition 

GetN extAssoc 

Status 

GetCount 

IsEmpty 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

Member Functions 
CMapStringToOb: :CMapStringToOb 

CMapStringToOb( int nBlockSize = 10 ); 

Parameters 

Remarks 

Example 

nBlockSize Specifies the memory-allocation granularity for extending the map. 

Constructs an empty CString-to-CObject* map. As the map grows, memory is 
allocated in units of nBlockSize entries. 

II example for CMapStringToOb::CMapStringToOb 
CMapStringToOb map(20); II Map on the stack with blocksize of 20 

CMapStringToOb* pm = new CMapStringToOb; II Map on the heap 
II with default blocksize 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

CMapStringToOb: : GetCount 
int GetCount( ) const; 

Return Value 
The number of elements in this map. 

Remarks 
Call this member function to determine how many elements are in the map. 

991 



CMapStringToOb::GetNextAssoc 

Example 
See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::GetCount 
CMapStringToOb map; 

map.SetAt( "Bart", new CAge( 13 ) ); 
map.SetAt( "Homer", new CAge( 36 ) ); 
ASSERT( map.GetCount() == 2 ); 

See Also: CMapStringToOb::IsEmpty 

CMapStringToOb: : GetN extAssoc 
void GetNextAssoc( POSITION& rNextPosition, CString& rKey, 

... CObject*& rValue ) const; 

Parameters 

Remarks 

Example 

992 

rNextPosition Specifies a reference to a POSITION value returned by a previous 
GetNextAssoc or GetStartPosition call. 

rKey Specifies the returned key of the retrieved element (a string). 

rValue Specifies the returned value of the retrieved element (a CObject pointer). 
See Remarks for more about this parameter. 

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to the 
next element in the map. This function is most useful for iterating through all the 
elements in the map. Note that the position sequence is not necessarily the same as the 
key value sequence. 

If the retrieved element is the last in the map, then the new value of rNextPosition is 
set to NULL. 

For the rValue parameter, be sure to cast your object type to CObject*&, which is 
what the compiler requires, as shown in the following example: 

CMyObject* ob; 
map.GetNextAssoc(pos, key, (CObject*&)ob); 

This is not true of GetNextAssoc for maps based on templates. 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::GetNextAssoc 
II and CMapStringToOb::GetStartPosition 

CMapStringToOb map; 
POSITION pos; 
CString key; 
CAge* pa; 



CMapStringToOb: :IsEmpty 

map.SetAt( "Bart", new CAge( 13 ) ); 
map.SetAt( "Lisa", new CAge( 11 ) ); 
map.SetAt( "Homer", new CAge( 36 ) ); 
map.SetAt( "Marge", new CAge( 35 ) ); 
II Iterate through the entire map, dumping both name and age. 
for( pos ~ map.GetStartPosition(); pos != NULL; ) 
{ 

map.GetNextAssoc( pos, key, (CObject*&)pa ); 
41ifdef _DEBUG 

afxDump « key « " : " « pa « "\n"; 
41endif 

} 

The results from this program are as follows: 

Lisa: a CAge at $4724 11 
Marge : a CAge at $47A8 35 
Homer : a CAge at $4766 36 
Bart : a CAge at $4504 13 

See Also: CMapStringToOb::GetStartPosition 

CMapStringToOb: : GetStartPosition 
POSITION GetStartPosition( ) const; 

Return Value 

Remarks 

A POSITION value that indicates a starting position for iterating the map; or NULL 
if the map is empty. 

Starts a map iteration by returning a POSITION value that can be passed to a 
GetNextAssoc call. The iteration sequence is not predictable; therefore, the "first 
element in the map" has no special significance. 

CMapStringToOb: : IsEmpty 
BOOL IsEmpty( ) const; 

Return Value 
Nonzero if this map contains no elements; otherwise O. 

Remarks 
Call this member function to determine whether the map is empty. 

Example 
See the example for RemoveAll. 

993 



CMapStringToOb: : Lookup 

CMapStringToOb: : Lookup 
BOOL Lookup( LPCTSTR key, CObject*& rValue ) const; 

Return Value 
Nonzero if the element was found; otherwise O. 

Parameters 

Remarks 

Example 

key Specifies the string key that identifies the element to be looked up. 

rValue Specifies the returned value from the looked-up element. 

Lookup uses a hashing algorithm to quickly find the map element with a key that 
matches exactly (CString value). 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::LookUp 

CMapStringToOb map; 
CAge* pa; 

map.SetAt( "Bart", new CAge( 13 ) ); 
map.SetAt( "Lisa", new CAge( 11 ) ); 
map.SetAt( "Homer", new CAge( 36 ) ); 
map.SetAt( "Marge", new CAge( 35 ) ); 
ASSERT( map.Lookup( "Lisa", ( CObject*& ) pa ) ); II Is "Lisa" in the map? 
ASSERT( *pa == CAge( 11 ) ); II Is she II? 

See Also: CMapStringToOb::operator [] 

CMapStringToOb: : RemoveAll 

Remarks 

Example 

994 

void RemoveAll(); 

Removes all the elements from this map and destroys the CString key objects. The 
CObject objects referenced by each key are not destroyed. The RemoveAll function 
can cause memory leaks if you do not ensure that the referenced CObject objects are 
destroyed. 

The function works correctly if the map is already empty. 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::RemoveAll 
{ 

CMapStringToOb map; 



CMapStringToOb: :RemoveKey 

CAge age1( 13 ); II Two objects on the stack 
CAge age2( 36 ); 
map.SetAt( "Bart", &age1 ); 
map.SetAt( "Homer", &age2 ); 
ASSERT( map.GetCount() == 2 ); 
map.RemoveAll(); II CObject pointers removed; objects not removed. 
ASSERT( map.GetCount() == 0 ); 
ASSERT( map. IsEmpty() ); 

II The two CAge objects are deleted when they go out of scope. 

See Also: CMapStringToOb::RemoveKey 

CMapStringToOb: : RemoveKey 
BOOL RemoveKey( LPCTSTR key); 

Return Value 
Nonzero if the entry was found and successfully removed; otherwise O. 

Parameters 

Remarks 

Example 

key Specifies the string used for map lookup. 

Looks up the map entry corresponding to the supplied key; then, if the key is found, 
removes the entry. This can cause memory leaks if the CObject object is not deleted 
elsewhere. 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::RemoveKey 
CMapStringToOb map; 

map.SetAt( "Bart", new CAge( 13 ) ); 
map.SetAt( "Lisa", new CAge( 11 ) ); 
map.SetAt( "Homer", new CAge( 36 ) ); 
map.SetAt( "Marge", new CAge( 35 ) ); 
map.RemoveKey( "Lisa" ); II Memory leak: CAge object not 

II deleted. 
flifdef _DEBUG 

afxDump.SetDepth( 1 ); 
afxDump « "RemoveKey exampl e: " « &map « "\n"; 

flendif 

The results from this program are as follows: 

RemoveKey example: A CMapStringToOb with 3 elements 
[Marge] = a CAge at $49A0 35 
[Homer] = a CAge at $495E 36 
[Bart] = a CAge at $4634 13 

See Also: CMapStringToOb: : RemoveAll 

995 



CMapStringToOb: :SetAt 

CMapStringToOb:: SetAt 
void SetAt( LPCTSTR key, CObject* newValue); 

throw( CMemoryException); 

Parameters 

Remarks 

Example 

996 

key Specifies the string that is the key of the new element. 

newValue Specifies the CObject pointer that is the value of the new element. 

The primary means to insert an element in a map. First, the key is looked up. If the 
key is found, then the corresponding value is changed; otherwise a new key-value 
element is created. 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::SetAt 
CMapStringToOb map; 
CAge* pa; 

map.SetAt( "Bart", new CAge( 13 
map.SetAt( "Lisa", new CAge( 11 

flifdef _DEBUG 
afxDump.SetDepth( 1 ); 

) ; 

)~ II Map contains 2 
II elements. 

afxDump « "before Lisa's birthday: " « &map « "\n"; 
flendif 

if( map.Lookup( "Lisa", (CObject *&)pa ) ) 
{ II CAge 12 pointer replaces CAge 11 pointer. 

map.SetAt( "Lisa", new CAge( 12 ) ); 
delete pa; II Must delete CAge 11 to avoid memory leak. 

} 

Ifi fdef _DEBUG 
afxDump « "after Lisa's birthday: " « &map « "\n"; 

flendif 

The results from this program are as follows: 

before Lisa's birthday: A CMapStringToOb with 2 elements 
[Lisa] = a CAge at $493C 11 
[Bart] = a CAge at $4654 13 

after Lisa's birthday: A CMapStringToOb with 2 elements 
[Lisa] = a CAge at $49C0 12 
[Bart] = a CAge at $4654 13 

See Also: CMapStringToOb: :Lookup, CMapStringToOb: :operator [] 



CMapStringToOb::operator [] 

Operators 
CMapStringToOb: : operator [ ] 

CObject*& operator []( LPCTSTR key); 

Return Value 

Remarks 

Example 

A reference to a pointer to a CObject object; or NULL if the map is empty or key is 
out of range. 

This operator is a convenient substitute for the SetAt member function. Thus it can be 
used only on the left side of an assignment statement (an I-value). If there is no map 
element with the specified key, then a new element is created. 

There is no "right side" (r-value) equivalent to this operator because there is a 
possibility that a key may not be found in the map. Use the Lookup member function 
for element retrieval. 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMapStringToOb::operator[] 
CMapStringToOb map; 

map["Bart"] = new CAge( 13 ); 
map["Lisa"] = new CAge( 11 ); 

1fifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "Operator [] example: " « &map « "\n"; 

1fendif 

The results from this program are as follows: 

Operator [] example: A CMapStringToOb with 2 elements 
[Lisa] = a CAge at $4A02 11 
[Bart] = a CAge at $497E 13 

See Also: CMapStringToOb::SetAt, CMapStringToOb::Lookup 

997 



CMapStringToPtr 

CMapStringToPtr 

The CMapStringToPtr class supports maps of void pointers keyed by CString 
objects. 

The member functions of CMapStringToPtr are similar to the member functions of 
class CMapStringToOb. Because of this similarity, you can use the 
CMapStringToOb reference documentation for member function specifics. Wherever 
you see a CObject pointer as a function parameter or return value, substitute a pointer 
to void. 

BOOl CMapStringTaOb::laakupC canst char* <key>, 
CObject*& <rValue> ) canst; 

for example, translates to 

BOOl CMapStringTaPtr::laakupC lPCTSTR <key>, vaid*& <rValue> ) 
canst; 

CMapStringToPtr incorporates the IMPLEMENT_DYNAMIC macro to support 
run-time type access and dumping to a CDumpContext object. If you need a dump of 
individual map elements, you must set the depth of the dump context to 1 or greater. 

String-to-pointer maps may not be serialized. 

When a CMapStringToPtr object is deleted, or when its elements are removed, the 
CString key objects and the words are removed. 

#include <afxcoll.h> 

CMapStringToPtr Class Members 

998 

Construction 

CMapStringToPtr 

Operations 

Lookup 

SetAt 

operator [] 

RemoveKey 

Constructs a collection that maps CString objects to void pointers. 

Returns a void pointer based on a CString value. 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 



Operations (continued) 

RemoveAll 

GetStartPosition 

GetNextAssoc 

Status 

GetCount 

IsEmpty 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

CMapStringToPtr 

999 



CMapStringToString 

CMapStringToString 

The CMapStringToString class supports maps of CString objects keyed by CString 
objects. 

The member functions of CMapStringToString are similar to the member functions of 
class CMapStringToOb. Because of this similarity, you can use the CMapStringToOb 
reference documentation for member function specifics. Wherever you see a CObject 
pointer as a return value or "output" function parameter, substitute a pointer to char. 
Wherever you see a CObject pointer as an "input" function parameter, substitute a 
pointer to char. 

BOOl CMapStringTaOb::laakup( canst char* <key>. 
CObject*& <rValue> ) canst; 

for example, translates to 

BOOl CMapStringTaString::laakup( lPCTSTR <key>. 
CString& <rValue> ) canst; 

CMapStringToString incorporates the IMPLEMENT_SERIAL macro to support 
serialization and dumping of its elements. Each element is serialized in tum if a map is 
stored to an archive, either with the overloaded insertion «<) operator or with the 
Serialize member function. 

If you need a dump of individual CString-CString elements, you must set the depth 
of the dump context to 1 or greater. 

When a CMapStringToString object is deleted, or when its elements are removed, 
the CString objects are removed as appropriate. 

For more information on CMapStringToString, see the article "Collections" in 
Visual C++ Programmer's Guide. 

#include <afxcoll.h> 

CMapStringToString Class Members 
Construction 

CMapStringToString 

1000 

Constructs a collection that maps CString objects to CString 
objects. 



Operations 

Lookup 

SetAt 

operator [] 

RemoveKey 

RemoveAll 

GetStartPosition 

GetNextAssoc 

Status 

GetCount 

IsEmpty 

Returns a CString using a CString value as a key. 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

CMapS tringToString 

1001 



CMapWordToOb 

CMap WordToOb 

The CMapWordToOb class supports maps of CObject pointers keyed by 16-bit words. 

The member functions of CMap WordToOb are similar to the member functions of 
class CMapStringToOb. Because of this similarity, you can use the CMapStringToOb 
reference documentation for member function specifics. Wherever you see a CString or 
a const pointer to char as a function parameter or return value, substitute WORD. 

BOOl CMapStringTaOb::laakup( canst char* <key>. 
CObject*& <rValue> ) canst; 

for example, translates to 

BOOl CMapWardTaOb::laakup( WORD <key>. CObject*& <rValue> ) canst; 

CMapWordToOb incorporates the IMPLEMENT_SERIAL macro to support 
serialization and dumping of its elements. Each element is serialized in turn if a map 
is stored to an archive, either with the overloaded insertion «<) operator or with the 
Serialize member function. 

If you need a dump of individual WORD-CObject elements, you must set the depth 
of the dump context to 1 or greater. 

When a CMapWordToOb object is deleted, or when its elements are removed, the 
CObject objects are deleted as appropriate. 

For more information on CMap WordToOb, see the article "Collections" in 
Visual C++ Programmer's Guide online. 

#include <afxcoIl.h> 

CMapWordToOb Class Members 

1002 

Construction 

CMapWordToOb 

Operations 

Lookup 

SetAt 

operator [] 

Constructs a collection that maps words to CObject pointers. 

Returns a CObject pointer using a word value as a key. 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 

Inserts an element into the map-operator substitution for SetAt. 



Operations (continued) 

RemoveKey 

RemoveAll 

GetStartPosition 

GetNextAssoc 

Status 

GetCount 

IsEmpty 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

CMapWordToOb 

1003 



CMapWordToPtr 

CMap WordToPtr 

The CMap WordToPtr class supports maps of void pointers keyed by 16-bit words. 

The member functions of CMap WordToPtr are similar to the member functions of 
class CMapStringToOb. Because of this similarity, you can use the CMapStringToOb 
reference documentation for member function specifics. Wherever you see a CObject 
pointer as a function parameter or return value, substitute a pointer to void. Wherever 
you see a CString or a const pointer to char as a function parameter or return value, 
substitute WORD. 

Baal CMapStringTaOb::laakup( canst char* <key>, 
CObject*& <rValue> ) canst; 

for example, translates to 

Baal CMapWardTaPtr::laakup( WORD <key>, vaid*& <rValue> ) canst; 

CMap WordToPtr incorporates the IMPLEMENT _DYNAMIC macro to support 
run-time type access and dumping to a CDumpContext object. If you need a dump of 
individual map elements, you must set the depth of the dump context to 1 or greater. 

Word-to-pointer maps may not be serialized. 

When a CMap WordToPtr object is deleted, or when its elements are removed, the 
words and the pointers are removed. The entities referenced by the pointers are not 
removed. 

For more information on CMapWordToPtr, see the article "Collections" in 
Visual C++ Programmer's Guide online. 

#include <afxcoll.h> 

CMapWordToPtr Class Members 

1004 

Construction 

CMapWordToPtr 

Operations 

Lookup 

SetAt 

Constructs a collection that maps words to void pointers. 

Returns a void pointer using a word value as a key. 

Inserts an element into the map; replaces an existing element if a 
matching key is found. 



Operations (continued) 

operator [] 

RemoveKey 

RemoveAll 

GetStartPosition 

GetNextAssoc 

Status 

GetCount 

IsEmpty 

Inserts an element into the map-operator substitution for SetAt. 

Removes an element specified by a key. 

Removes all the elements from this map. 

Returns the position of the first element. 

Gets the next element for iterating. 

Returns the number of elements in this map. 

Tests for the empty-map condition (no elements). 

CMapWordToPtr 

1005 



CMDIChildWnd 

CMDIChildWnd 

1006 

CMDIChildWnd 

The CMDIChildWnd class provides the functionality of a Windows multiple 
document interface (MDI) child window, along with members for managing the 
window. 

An MDI child window looks much like a typical frame window, except that the MDI 
child window appears inside an MDI frame window rather than on the desktop. An 
MDI child window does not have a menu bar of its own, but instead shares the menu 
of the MDI frame window. The framework automatically changes the MDI frame 
menu to represent the currently active MDI child window. 

To create a useful MDI child window for your application, derive a class from 
CMDIChildWnd. Add member variables to the derived class to store data specific to 
your application. Implement message-handler member functions and a message map 
in the derived class to specify what happens when messages are directed to the 
window. 

There are three ways to construct an MDI child window: 

• Directly construct it using Create. 

• Directly construct it using LoadFrame. 

• Indirectly construct it through a document template. 

Before you call Create or LoadFrame, you must construct the frame-window object 
on the heap using the C++ new operator. Before calling Create you can also register 
a window class with the AfxRegisterWndClass global function to set the icon and 
class styles for the frame. 

Use the Create member function to pass the frame's creation parameters as immediate 
arguments. 

LoadFrame requires fewer arguments than Create, and instead retrieves most of its 
default values from resources, including the frame's caption, icon, accelerator table, 
and menu. To be accessible by LoadFrame, all these resources must have the same 
resource ID (for example, IDR_MAINFRAME). 



When a CMDIChildWnd object contains views and documents, they are 
created indirectly by the framework instead of directly by the programmer. The 
CDocTemplate object orchestrates the creation of the frame, the creation of the 
containing views, and the connection of the views to the appropriate document. The 
parameters of the CDocTemplate constructor specify the CRuntimeClass of the three 
classes involved (document, frame, and view). A CRuntimeClass object is used by 
the framework to dynamically create new frames when specified by the user (for 
example, by using the File New command or the MDI Window New command). 

A frame-window class derived from CMDIChildWnd must be declared with 
DECLARE_DYNCREATE in order for the above RUNTIME_CLASS mechanism 
to work correctly. 

The CMDIChildWnd class inherits much of its default implementation from 
CFrameWnd. For a detailed list of these features, please refer to the CFrameWnd 
class description. The CMDIChildWnd class has the following additional features: 

• In conjunction with the CMultiDocTemplate class, multiple CMDIChildWnd 
objects from the same document template share the same menu, saving Windows 
system resources. 

• The currently active MDI child window menu entirely replaces the MDI frame 
window's menu, and the caption of the currently active MDI child window is 
added to the MDI frame window's caption. For further examples of MDI child 
window functions that are implemented in conjunction with an MDI frame 
window, see the CMDIFrameWnd class description. 

Do not use the C++ delete operator to destroy a frame window. Use 
CWnd::DestroyWindow instead. The CFrameWnd implementation of 
PostNcDestroy will delete the C++ object when the window is destroyed. When the 
user closes the frame window, the default OnClose handler will call DestroyWindow. 

For more information on CMDIChildWnd, see "Frame Window Topics" in 
Visual C++ Programmer's Guide online. 

#include <afxwin.h> 

See Also: CWnd, CMDIFrameWnd 

CMDIChildWnd Class Members 
Construction 

CMDIChildWnd 

Initialization 

Create 

Constructs a CMDIChildWnd object. 

Creates the Windows MDI child window associated with the 
CMDIChildWnd object. 

CMDIChildW nd 

1007 



CMDIChildWnd::CMDIChildWnd 

Operations 

MDIDestroy 

MDIActivate 

MDIMaximize 

MDIRestore 

GetMDIFrame 

Destroys this MDI child windo·w. 

Activates this MDI child window. 

Maximizes this MDI child window. 

Restores this MDI child window from maximized or minimized size. 

Returns the parent MDI frame of the MDI client window. 

Member Functions 
CMDIChildWnd: :CMDIChildWnd 

Remarks 

CMDIChildWnd( ); 

Call to construct a CMDIChildWnd object. Call Create to create the visible window. 

See Also: CMDIChildWnd::Create 

CMD IChildW nd: : Create 
BOOL Create( LPCTSTR IpszClassName, LPCTSTR IpszWindowName, 

... DWORD dwStyle = WS_CHILD I WS_ VISIBLE I WS_OVERLAPPEDWINDOW, 

... const RECT& reet = rectDefault, CMDIFrameWnd* pParentWnd = NULL, 

... CCreateContext* pContext = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

1008 

IpszClassName Points to a null-tenninated character string that names the Windows 
class (a WNDCLASS structure). The class name can be any name registered with 
the AfxRegisterWndClass global function. Should be NULL for a standard 
CMDIChildWnd. 

IpszWindowName Points to a null-terminated character string that represents the 
window name. Used as text for the title bar. 

dwStyle Specifies the window style attributes. The WS_ CHILD style is required. 

reet Contains the size and position of the window. The rectDefault value allows 
Windows to specify the size and position of the new CMDIChildWnd. 

pParentWnd Specifies the window's parent. If NULL, the main application window 
is used. 

pContext Specifies a CCreateContext structure. This parameter can be NULL. 



CMDIChildWnd::MDIActivate 

Remarks 
Call this member function to create a Windows MDI child window and attach it 
to the CMDIChildWnd object. 

The currently active MDI child frame window can determine the caption of the parent 
frame window. This feature is disabled by turning off the FWS_ADDTOTITLE style 
bit of the child frame window. 

The framework calls this member function in response to a user command to 
create a child window, and the framework uses the pContext parameter to 
properly connect the child window to the application. When you call Create, 
pContext can be NULL. 

See Also: CMDIChildWnd::CMDIChildWnd, CWnd::PreCreateWindow 

CMDIChildWnd::GetMDIFrame 
CMDIFrameWnd* GetMDIFrame( ); 

Return Value 

Remarks 

A pointer to the MDI parent frame window. 

Call this function to return the MDI parent frame. The frame returned is 
two parents removed from the CMDIChildWnd and is the parent of the 
window of type MDICLIENT that manages the CMDIChildWnd object. 
Call the GetParent member function to return the CMDIChildWnd 
object's immediate MDICLIENT parent as a temporary CWnd 
pointer. 

See Also: CWnd: :GetParent 

CMDIChildWnd::MDIActivate 

Remarks 

void MDIActivate( ); 

Call this member function to activate an MDI child window independently of the 
MDI frame window. When the frame becomes active, the child window that was last 
activated will be activated as well. 

See Also: CMDIFrameWnd::MDIGetActive, CWnd::OnNcActivate, 
CMDIFrameWnd::MDINext, WM_MDIACTIVATE 

1009 



CMDIChildWnd::MDIDestroy 

CMDIChildWnd: :MDIDestroy 

Remarks 

void MDIDestroy(); 

Call this member function to destroy an MDI child window. 

The member function removes the title of the child window from the frame window 
and deactivates the child window. 

See Also: WM_MDIDESTROY, CMDIChiIdWnd::Create 

CMDIChildWnd::MDIMaximize 

Remarks 

void MDIMaximize( ); 

Call this member function to maximize an MDI child window. When a child window 
is maximized, Windows resizes it to make its client area fill the client area of the 
frame window. Windows places the child window's Control menu in the frame's menu 
bar so that the user can restore or close the child window and adds the title of the child 
window to the frame-window title. 

See Also: WM_MDIMAXIMIZE, CMDIChildWnd::MDIRestore 

CMDIChildWnd::MDIRestore 

Remarks 

1010 

void MDIRestore( ); 

Call this member function to restore an MDI child window from maximized or 
minimized size. 

See Also: CMDIChildWnd::MDIMaximize, WM_MDIRESTORE 



CMDIFrame Wnd 

CMDIFrameWnd 

The CMDIFrameWnd class provides the functionality of a Windows multiple 
document interface (MDI) frame window, along with members for managing the 
window. 

To create a useful MDI frame window for your application, derive a class from 
CMDIFrameWnd. Add member variables to the derived class to store data specific 
to your application. Implement message-handler member functions and a message 
map in the derived class to specify what happens when messages are directed to the 
window. 

You can construct an MDI frame window by calling the Create or LoadFrame 
member function of CFrameWnd. 

Before you call Create or LoadFrame, you must construct the frame window object 
on the heap using the C++ new operator. Before calling Create you can also register 
a window class with the AfxRegisterWndClass global function to set the icon and 
class styles for the frame. 

Use the Create member function to pass the frame's creation parameters as immediate 
arguments. 

LoadFrame requires fewer arguments than Create, and instead retrieves most of its 
default values from resources, including the frame's caption, icon, accelerator table, 
and menu. To be accessed by LoadFrame, all these resources must have the same 
resource ID (for example, IDR_MAINFRAME). 

Though MDIFrameWnd is derived from CFrameWnd, a frame window class 
derived from CMDIFrameWnd need not be declared with 
DECLARE_DYNCREATE. 

The CMDIFrameWnd class inherits much of its default implementation from 
CFrameWnd. For a detailed list of these features, refer to the CFrameWnd class 
description. The CMDIFrameWnd class has the following additional features: 

• An MDI frame window manages the MDICLIENT window, repositioning it in 
conjunction with control bars. The MDI client window is the direct parent of MDI 
child frame windows. The WS_HSCROLL and WS_ VSCROLL window styles 

CMDIFrame W nd 

1011 



CMDIFrameWnd 

specified on a CMDIFrameWnd apply to the MDI client window rather than the 
main frame window so the user can scroll the MDI client area (as in the Windows 
Program Manager, for example). 

• An MDI frame window owns a default menu that is used as the menu bar when 
there is no active MDI child window. When there is an active MDI child, the MDI 
frame window's menu bar is automatically replaced by the MDI child window 
menu. 

• An MDI frame window works in conjunction with the current MDI child window, 
if there is one. For instance, command messages are delegated to the currently 
active MDI child before the MDI frame window. 

• An MDI frame window has default handlers for the following standard Window 
menu commands: 

• ID_WINDOW_TILE_VERT 

• ID_WINDOW_TILE_HORZ 

• ID_WINDOW_CASCADE 

• ID_WINDOW_ARRANGE 

• An MDI frame window also has an implementation of ID _WINDOW_NEW, 
which creates a new frame and view on the current document. An application can 
override these default command implementations to customize MDI window 
handling. 

Do not use the c++ delete operator to destroy a frame window. Use 
CWnd::DestroyWindow instead. The CFrameWnd implementation of 
PostNcDestroy will delete the C++ object when the window is destroyed. When the 
user closes the frame window, the default On Close handler will call DestroyWindow. 

For more information on CMDIFrameWnd, see "Frame Window Topics" in 
Visual C++ Programmer's Guide online. 

#incIude <afxwin.h> 

See Also: CWnd, CMDIChiIdWnd 

CMDIFrameWnd Class Members 

1012 

Construction 

CMDIFrameWnd 

Operations 

MDIActivate 

MDIGetActive 

Constructs a CMDIFrameWnd. 

Activates a different MDI child window. 

Retrieves the currently active MDI child window, along with 
a flag indicating whether or not the child is maximized. 



CMD IFrame W nd:: CreateClient 

Operations (continued) 

MDIIconArrange 

MDIMaximize 

MDINext 

MDIRestore 

MDISetMenu 

MDITile 

MDICascade 

Overridables 

Create Client 

GetWindowMenuPopup 

Arranges all minimized document child windows. 

Maximizes an MDl child window. 

Activates the child window immediately behind the currently 
active child window and places the currently active child 
window behind all other child windows. 

Restores an MOl child window from maximized or minimized 
size. 

Replaces the menu of an MDl frame window, the Window 
pop-up menu, or both. 

Arranges all child windows in a tiled format. 

Arranges all child windows in a cascaded format. 

Creates a Windows MDICLIENT window for this 
CMDIFrameWnd. Called by the OnCreate member function 
ofCWnd. 

Returns the Window pop-up menu. 

Member Functions 
CMDIFrame Wnd: :CMDIFrame Wnd 

Remarks 

CMDIFrameWnd( ); 

Call this member function to construct a CMDIFrameWnd object. Call the Create or 
LoadFrame member function to create the visible MDI frame window. 

See Also: CFrameWnd::Create, CFrameWnd::LoadFrame 

CMD IFrame W nd: : CreateClient 
virtual BOOL CreateClient( LPCREATESTRUCT IpCreateStruct, 

... CMenu* p WindowMenu ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
IpCreateStruct A long pointer to a CREATESTRUCT structure. 

p WindowMenu A pointer to the Window pop-up menu. 

1013 



CMDIFrame W nd: :GetWindowMenuPopup 

Remarks 
Creates the MDI client window that manages the CMDIChildWnd 
objects. 

This member function should be called if you override the OnCreate 
member function directly. 

See Also: CMDIFrameWnd::CMDIFrameWnd 

CMDIFrame Wnd: : GetWindow MenuPopup 
virtual HMENU GetWindowMenuPopup( HMENU hMenuBar ); 

Return Value 
The Window pop-up menu if one exists; otherwise NULL. 

Parameters 

Remarks 

hMenuBar The current menu bar. 

Call this member function to obtain a handle to the current pop-up menu 
named "Window" (the pop-up menu with menu items for MDI window 
management). 

The default implementation looks for a pop-up menu containing standard 
Window menu commands such as ID _ WINDOW _NEW and 
ID_ WINDOW _TILE_HORZ. 

Override this member function if you have a Window menu that does not use the 
standard menu command IDs. 

See Also: CMDIFrameWnd::MDIGetActive 

CMDIFrame Wnd: :MDIActivate 
void MDIActivate( CWnd* p WndActivate ); 

Parameters 

Remarks 

1014 

p WndActivate Points to the MDI child window to be activated. 

Call this member function to activate a different MDI child window. This member 
function sends the WM_MDIACTIVATE message to both the child window being 
activated and the child window being deactivated. 

This is the same message that is sent if the user changes the focus to an MDI child 
window by using the mouse or keyboard. 



CMDIFrameWnd::MDIGetActive 

Note An MDI child window is activated independently of the MDI frame window. 
When the frame becomes active, the child window that was last activated is sent a 
WM_NCACTIVATE message to draw an active window frame and caption bar, but 
it does not receive another WM_MDIACTIVATE message. 

See Also: CMDIFrameWnd::MDIGetActive, CMDIFrameWnd::MDINext, 
WM_ACTIVATE, WM_NCACTIVATE 

CMDIFrame Wnd: :MDICascade 
void MDICascade( ); 
void MDICascade( int nType); 

Parameters 

Remarks 

nType Specifies a cascade flag. Only the following flag can be specified: 
MDITILE_SKIPDISABLED, which prevents disabled MDI child windows 
from being cascaded. 

Call this member function to arrange all the MDI child windows in a cascade format. 

The first version of MDICascade, with no parameters, cascades all MDI child 
windows, including disabled ones. The second version optionally does not cascade 
disabled MDI child windows if you specify MDITILE_SKIPDISABLED for the 
nType parameter. 

See Also: CMDIFrameWnd::MDIIconArrange, CMDIFrameWnd::MDITile, 
WM_MDICASCADE 

CMDIFrame Wnd: :MDIGetActive 
CMDIChildWnd* MDIGetActive( BOOL* pbMaximized = NULL) const; 

Return Value 
A pointer to the active MDI child window. 

Parameters 

Remarks 

pbMaximized A pointer to a BOOL return value. Set to TRUE on return if the 
window is maximized; otherwise FALSE. 

Retrieves the current active MDI child window, along with a flag indicating whether 
the child window is maximized. 

See Also: CMDIFrameWnd::MDIActivate, WM_MDIGETACTIVE 

1015 



CMDIFrameWnd::MDIIconArrange 

CMDIFrame Wnd: :MDIIconArrange 

Remarks 

void MDIIconArrange(); 

Arranges all minimized document child windows. It does not affect child windows 
that are not minimized. 

See Also: CMDIFrameWnd::MDICascade, CMDIFrameWnd::MDITile, 
WM_MDIICONARRANGE 

CMDIFrame Wnd: :MDIMaximize 
void MDIMaximize( CWnd* p Wnd ); 

Parameters 

Remarks 

p Wnd Points to the window to maximize. 

Call this member function to maximize the specified MDI child window. When a 
child window is maximized, Windows resizes it to make its client area fill the client 
window. Windows places the child window's Control menu in the frame's menu bar 
so the user can restore or close the child window. It also adds the title of the child 
window to the frame-window title. 

If another MDI child window is activated when the currently active MDI child 
window is maximized, Windows restores the currently active child and maximizes 
the newly activated child window. 

See Also: WM_MDIMAXIMIZE, CMDIFrameWnd::MDIRestore 

CMDIFrameWnd::MDINext 

Remarks 

1016 

void MD IN ext( ); 

Activates the child window immediately behind the currently active child window and 
places the currently active child window behind all other child windows. 

If the currently active MDI child window is maximized, the member function restores 
the currently active child and maximizes the newly activated child. 

See Also: CMDIFrame Wnd: :MDIActivate, CMDIFrame Wnd: :MDIGetActive, 
WM_MDINEXT 



CMDIFrameWnd::MDISetMenu 

CMDIFrame Wnd: :MDIRestore 
void MDIRestore( CWnd* pWnd); 

Parameters 
p Wnd Points to the window to restore. 

Remarks 
Restores an MDI child window from maximized or minimized size. 

See Also: CMDIFrameWnd::MDIMaximize, WM_MDIRESTORE 

CMDIFrame Wnd: :MDISetMenu 
CMenu* MDISetMenu( CMenu* pFrameMenu, CMenu* pWindowMenu); 

Return Value 
A pointer to the frame-window menu replaced by this message. The pointer may be 
temporary and should not be stored for later use. 

Parameters 

Remarks 

pFrameMenu Specifies the menu of the new frame-window menu. If NULL, the 
menu is not changed. 

pWindowMenu Specifies the menu of the new Window pop-up menu. If NULL, the 
menu is not changed. 

Call this member function to replace the menu of an MDI frame window, the Window 
pop-up menu, or both. 

After calling MDISetMenu, an application must call the DrawMenuBar member 
function of CWnd to update the menu bar. 

If this call replaces the Window pop-up menu, MDI child-window menu items are 
removed from the previous Window menu and added to the new Window pop-up 
menu. 

If an MDI child window is maximized and this call replaces the MDI frame-window 
menu, the Control menu and restore controls are removed from the previous 
frame-window menu and added to the new menu. 

Do not call this member function if you use the framework to manage your MDI child 
windows. 

See Also: CWnd::DrawMenuBar, WM_MDISETMENU 

1017 



CMDIFrameWnd::MDITile 

CMDIFrame Wnd: :MDITile 
void MDITile( ); 
void MDITile( int nType); 

Parameters 

Remarks 

1018 

nType Specifies a tiling flag. This parameter can be anyone of the following flags: 

• MDITILE_HORIZONTAL Tiles MDI child windows so that one window 
appears above another. 

• MDITILE_SKIPDISABLED Prevents disabled MDI child windows from 
being tiled. 

• MDITILE_ VERTICAL Tiles MDI child windows so that one window 
appears beside another. 

Call this member function to arrange all child windows in a tiled format. 

The first version of MDITile, without parameters, tiles the windows vertically under 
Windows versions 3.1 and later. The second version tiles windows vertically or 
horizontally, depending on the value of the nType parameter. 

See Also: CMDIFrameWnd::MDICascade, 
CMDIFrameWnd: :MDIIconArrange, WM_MDITILE 



CMemFile 

CMemFile 

CMemFile is the CFile-derived class that supports memory files. These memory 
files behave like disk files except that the file is stored in RAM rather than on disk. 
A memory file is useful for fast temporary storage or for transferring raw bytes or 
serialized objects between independent processes. 

CMemFile objects can automatically allocate their own memory or you can attach 
your own memory block to the CMemFile object by calling Attach. In either case, 
memory for growing the memory file automatically is allocated in nGrowBytes-sized 
increments if nGrowBytes is not zero. 

The memory block will automatically be deleted upon destruction of the CMemFile 
object if the memory was originally allocated by the CMemFile object; otherwise, 
you are responsible for deallocating the memory you attached to the object. 

You can access the memory block through the pointer supplied when you detach it 
from the CMemFile object by calling Detach. 

The most common use of CMemFile is to create a CMemFile object and use it by 
calling CFile member functions. Note that creating a CMemFile automatically opens 
it: you do not call CFile: :Open, which is only used for disk files. Because CMemFile 
doesn't use a disk file, the data member CFile::m_hFile is not used and has no 
meaning. 

The CFile member functions Duplicate, LockRange, and UnlockRange are not 
implemented for CMemFile. If you call these functions on a CMemFile object, you 
will get a CNotSupportedException. 

CMemFile uses the run-time library functions malloc, realloc, and free to allocate, 
reallocate, and deallocate memory; and the intrinsic memcpy to block copy memory 
when reading and writing. If you'd like to change this behavior or the behavior when 
CMemFile grows a file, derive your own class from CMemFile and override the 
appropriate functions. 

For more information on CMemFile, see the articles "Files in MFC" and "Memory 
Management Topics (MFC)" in the Visual C++ Programmer's Guide online and see 
"File Handling" in the Run-Time Library Reference. 

#include <afx.h> 

CMemFile 

1019 



CMemFile: :Alloc 

CMemFile Class Members 
Construction 

CMemFile 

Operations 

Attach 

Detach 

Constructs a memory file object. 

Attaches a block of memory to CMemFile. 

Detaches the block of memory from CMemFile and returns a pointer to 
the block of memory detached. 

Advanced Overridables 

Alloc 

Free 

Realloc 

Memcpy 

GrowFile 

Override to modify memory allocation behavior. 

Override to modify memory deallocation behavior. 

Override to modify memory reallocation behavior. 

Override to modify memory copy behavior when reading and writing files. 

Override to modify behavior when growing a file. 

Member Functions 
CMemFile: :Alloc 

BYTE * AIloc( DWORD nBytes ); 

Return Value 
A pointer to the memory block that was allocated, or NULL if the 
allocation failed. 

Parameters 

Remarks 

1020 

nBytes Number of bytes of memory to be allocated. 

This function is called by CMemFile member functions. Override this 
function to implement custom memory allocation. If you override this 
function, you'll probably want to override Free and Realloc 
as well. 

The default implementation uses the run-time library function malloc 
to allocate memory. 

See Also: CMemFile: :Free, CMemFile: :ReaIloc, malloc 



CMemFile::CMemFile 

CMemFile: : Attach 
void Attaeh( BYTE* IpBujfer, UINT nBujferSize, UINT llGrowBytes = 0 ); 

Parameters 

Remarks 

IpBujfer Pointer to the buffer to be attached to CMemFile. 

nBlljferSize An integer that specifies the size of the buffer in bytes. 

nGrowBytes The memory allocation increment in bytes. 

Call this function to attach a block of memory to CMemFile. This causes CMemFile 
to use the block of memory as the memory file. 

If nGrowBytes is 0, CMemFile will set the file length to nBlljferSize. This means that 
the data in the memory block before it was attached to CMemFile will be used as the 
file. Memory files created in this manner cannot be grown. 

Since the file cannot be grown, be careful not to cause CMemFile to attempt to grow 
the file. For example, don't call the CMemFile overrides of CFile:Write to write past 
the end or don't call CFile:SetLength with a length longer than nBujferSize. 

If nGrowBytes is greater than 0, CMemFile will ignore the contents of the memory 
block you've attached. You'll have to write the contents of the memory file from 
scratch using the CMemFile override of CFile::Write. If you attempt to write 
past the end of the file or grow the file by calling the CMemFile override of 
CFile::SetLength, CMemFile will grow the memory allocation in increments of 
nGrowBytes. Growing the memory allocation will fail if the memory block you pass 
to Attach wasn't allocated with a method compatible with Alloe. To be compatible 
with the default implementation of Alloe, you must allocate the memory with the 
run-time library function malloe or ealloe. 

See Also: CMemFile:: CMemFile, CMemFile: :Detaeh, CMemFile: :Alloe, 
CFile:: Write, CFile: :SetLength 

CMemFile: :CMemFile 
CMemFile( UINT nGrowBytes = 1024); 
CMemFile( BYTE* lpBujfer, UINT nBujferSize, UINT nGrowBytes = 0 ); 

Parameters 
nGrowBytes The memory allocation increment in bytes. 

IpBujfer Pointer to a buffer that receives information of the size nBujferSize. 

nBujferSize . An integer that specifies the size of the file buffer, in bytes. 

1021 



CMemFile: :Detach 

Remarks 

Example 

The first overload opens an empty memory file. Note that the file is opened by the 
constructor and that you should not call CFile::Open. 

The second overload acts the same as if you used the first constructor and immediately 
called Attach with the same parameters. See Attach for details. 

II example for CMemFile::CMemFile 
CMemFile f; II Ready to use - no Open necessary. 

BYTE * pBuf = (BYTE *)new char [1024]; 
CMemFile g( pBuf, 1024, 256 ); 
II same as CMemFile g; g.Attach( pBuf, 1024, 256 ); 

See Also: CMemFile: :Attach 

CMemFile: :Detach 
BYTE * Detach( ); 

Return Value 

Remarks 

A pointer to the memory block that contains the contents of the memory file. 

Call this function to get a pointer to the memory block being used by CMemFile. 

Calling this function also closes the CMemFile. You can reattach the memory block 
to CMemFile by calling Attach. If you want to reattach the file and use the data in it, 
you should call CFile::GetLength to get the length of the file before calling Detach. 
Note that if you attach a memory block to CMemFile so that you can use its data 
(nGrowBytes == 0), then you won't be able to grow the memory file. 

See Also: CMemFile::Attach, CFile::GetLength 

CMemFile: : Free 
void Free( BYTE * lpMem); 

Parameters 

Remarks 

1022 

lpMem Pointer to the memory to be deallocated. 

This function is called by CMemFile member functions. Override this function to 
implement custom memory deallocation. If you override this function, you'll probably 
want to override Alloc and Realloc as well. 

See Also: CMemFile: :Alloc, CMemFile: :Realloc 



CMemFile: : GrowFile 
void GrowFile( DWORD dwNewLen ); 

Parameters 

Remarks 

dwNewLen New size of the memory file. 

This function is called by several of the CMemFile member functions. You can 
override it if you want to change how CMemFile grows its file. The default 
implementation calls Realloc to grow an existing block (or Alloc to create a memory 
block), allocating memory in multiples of the nGrowBytes value specified in the 
constructor or Attach call. 

See Also: CMemFile: :Alloc, CMemFile: :Realloc, CMemFile: :CMemFile, 
CMemFile: :Attach 

CMemFile: :Memcpy 
BYTE * Memcpy( BYTE* IpMemTarget, BYTE* IpMemSource, UINT nBytes ); 

Return Value 
A copy of IpMemTarget. 

Parameters 

Remarks 

IpMemTarget Pointer to the memory block into which the source memory will be 
copied. 

IpMemSource Pointer to the source memory block. 

nBytes Number of bytes to be copied. 

This function is called by the CMemFile overrides of CFile::Read and CFile::Write 
to transfer data to and from the memory file. Override this function if you want to 
change the way that CMemFile does these memory copies. 

See Also: CFile::Read, CFile::Write 

CMemFile: :Realloc 
BYTE * Realloc( BYTE* IpMem, DWORD nBytes ); 

Return Value 
A pointer to the memory block that was reallocated (and possibly moved), or NULL if 
the reallocation failed. 

CMemFile: :Realloc 

1023 



CMemFile: :Realloc 

Parameters 

Remarks 

1024 

IpMem A pointer to the memory block to be reallocated. 

nBytes New size for the memory block. 

This function is called by CMemFile member functions. Override this function to 
implement custom memory reallocation. If you override this function, you'll probably 
want to override Alloc and Free as well. 

See Also: CMemFile: :Alloc, CMemFile: :Free 



CMemory Exception 

CMemoryException 

A CMemoryExeeption object represents an out-of-memory exception condition. 
No further qualification is necessary or possible. Memory exceptions are thrown 
automatically by new. If you write your own memory functions, using malIoe, for 
example, then you are responsible for throwing memory exceptions. 

For more information on CMemoryExeeption, see the article "Exceptions" in 
Visual C++ Programmer's Guide online. 

#include <afx.h> 

CMemoryException Class Members 
Construction 

CMemory Exception Constructs a CMemoryException object. 

Member Functions 
CMemory Exception: : CMemory Exception 

Remarks 

CMemoryExeeption( ); 

Constructs a CMemoryExeeption object. Do not use this constructor directly, but 
rather call the global function AfxThrowMemoryExeeption. This global function 
can succeed in an out-of-memory situation because it constructs the exception object 
in previously allocated memory. For more information about exception processing, 
see the article "Exceptions" in Visual C++ Programmer's Guide online. 

See Also: Exception Processing 

CMemoryException 

1025 



CMemoryState 

CMemoryState 

1026 

CMemoryState does not have a base class. 

CMemoryState provides a convenient way to detect memory leaks in your program. 
A "memory leak" occurs when memory for an object is allocated on the heap but not 
deallocated when it is no longer required. Such memory leaks can eventually lead to 
out-of-memory errors. There are several ways to allocate and deallocate memory in 
your program: 

• Using the malloc/free family of functions from the run-time library. 

• Using the Windows API memory management functions, LocalAlloclLocalFree 
and GlobalAlloc/GlobalFree. 

• Using the C++ new and delete operators. 

The CMemoryState diagnostics only help detect memory'leaks caused when memory 
allocated using the new operator is not deallocated using delete. The other two groups 
of memory-management functions are for non-C++ programs, and mixing them 
with new and delete in the same program is not recommended. An additional macro, 
DEBUG_NEW, is provided to replace the new operator when you need file and 
line-number tracking of memory allocations. DEBUG_NEW is used whenever you 
would normally use the new operator. 

As with other diagnostics, the CMemoryState diagnostics are only available in debug 
versions of your program. A debug version must have the _DEBUG constant defined. 

If you suspect your program has a memory leak, you can use the Checkpoint, 
Difference, and DumpStatistics functions to discover the difference between the 
memory state (objects allocated) at two different points in program execution. This 
information can be useful in determining whether a function is cleaning up all the 
objects it allocates. 

If simply knowing where the imbalance in allocation and deallocation occurs does 
not provide enough information, you can use the DumpAIIObjectsSince function to 
dump all objects allocated since the previous call to Checkpoint. This dump shows 
the order of allocation, the source file and line where the object was allocated (if you 
are using DEBUG_NEW for allocation), and the derivation of the object, its address, 
and its size. DumpAIIObjectsSince also calls each object's Dump function to provide 
information about its current state. 

For more information about how to use CMemoryState and other diagnostics, see 
"MFC Debugging Support" in Visual C++ Programmer's Guide online. 

Note Declarations of objects of type CMemoryState and calls to member functions should 
be bracketed by 1Ii f defi ned (_DEBUG) 11Iend if directives. This causes memory 
diagnostics to be included only in debugging builds of your program. 



CMemoryState::CMemoryState 

CMemoryState Class Members 
Construction 

CMemoryState 

Checkpoint 

Operations 

Constructs a class-like structure that controls memory checkpoints. 

Obtains a snapshot or "checkpoint" of the current memory state. 

Difference Computes the difference between two objects of type 
CMemoryState. 

DumpAllObjectsSince Dumps a summary of all currently allocated objects since a 
previous checkpoint. 

DumpStatistics Prints memory allocation statistics for a CMemoryState object. 

Member Functions 
CMemoryState: : Checkpoint 

Remarks 

Example 

void Checkpoint(); 

Takes a snapshot summary of memory and stores it in this CMemoryState object. 
The CMemoryState member functions Difference and DumpAIIObjectsSince use 
this snapshot data. 

See the example for the CMemoryState constructor. 

CMemoryState: : CMemoryState 

Remarks 

Example 

CMemoryState( ); 

Constructs an empty CMemoryState object that must be filled in by the Checkpoint 
or Difference member function. 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CMemoryState::CMemoryState 
II Includes all CMemoryState functions 
CMemoryState msOld. msNew. msDif; 
msOld.Checkpoint(); 
CAge* pagel new CAge( 21 ); 
CAge* page2 = new CAge( 22 ); 

1027 



CMemoryState: :Difference 

msOld.DumpAllObjectsSince(); 
msNew.Checkpoint(); 
msDif.Difference( msOld. msNew ); 
msDif.DumpStatistics(); 

The results from this program are as follows: 

Dumping objects -> 
{2} a CObject at $190A 
{I} a CObject at $18EA 
Object dump complete. 
o bytes in 0 Free Blocks 
8 bytes in 2 Object Blocks 
o bytes in 0 Non-Object Blocks 
Largest number used: 8 bytes 
Total allocations: 8 bytes 

CMemoryState: : Difference 
BOOL Difference( const CMemoryState& oldState, const CMemoryState& newState ); 

Return Value 
Nonzero if the two memory states are different; otherwise O. 

Parameters 

Remarks 

Example 

oldState The initial memory state as defined by a CMemoryState checkpoint. 

newState The new memory state as defined by a CMemoryState checkpoint. 

Compares two CMemoryState objects, then stores the difference into this 
CMemoryState object. Checkpoint must have been called for each of the two 
memory-state parameters. 

See the example for the CMemoryState constructor. 

CMemoryState: :DumpAIIObjectsSince 

Remarks 

1028 

void DumpAIIObjectsSince( ) const; 

Calls the Dump function for all objects of a type derived from class CObject that 
were allocated (and are still allocated) since the last Checkpoint call for this 
CMemoryState object. 

Calling DumpAIIObjectsSince with an uninitialized CMemo!,yState object will 
dump out all objects currently in memory. 



CMemoryS tate: :DumpStatistics 

Example 
See the example for the CMemoryState constructor. 

CMemoryState: : DumpStatistics 

Remarks 

Example 

void DumpStatistics( ) const; 

Prints a concise memory statistics report from a CMemoryState object that is filled 
by the Difference member function. The report, which is printed on the afxDump 
device, shows the following: 

• Number of "object" blocks (blocks of memory allocated using CObject::operator 
new) still allocated on the heap. 

• Number of nonobject blocks still allocated on the heap. 

• The maximum memory used by the program at anyone time (in bytes). 

• The total memory currently used by the program (in bytes). 

A sample report looks like this: 

o bytes in 0 Free Blocks 
8 bytes in 2 Object Blocks 
o bytes in 0 Non-Object Blocks 
Largest number used: 8 bytes 
Total allocations: 8 bytes 

• The first line describes the number of blocks whose deallocation was delayed if 
afxMemDF was set to delayFreeMemDF. For more information, see afxMemDF, 
in the "Macros and Globals" section. 

• The second line describes how many object blocks still remain allocated on the 
heap. 

• The third line describes how many nonobject blocks (arrays or structures allocated 
with new) were allocated on the heap and not deallocated. 

• The fourth line gives the maximum memory used by your program at anyone time. 

• The last line lists the total amount of memory used by your program. 

See the example for the CMemoryState constructor. 

1029 



CMenu 

CMenu 

The CMenu class is an encapsulation of the Windows HMENU. It provides member 
functions for creating, tracking, updating, and destroying a menu. 

Create a CMenu object on the stack frame as a local, then call CMenu's member 
functions to manipulate the new menu as needed. Next, call CWnd::SetMenu to set 
the menu to a window, followed immediately by a call to the CMenu object's Detach 
member function. The CWnd::SetMenu member function sets the window's menu 
to the new menu, causes the window to be redrawn to reflect the menu change, and 
also passes ownership of the menu to the window. The call to Detach detaches the 
HMENU from the CMenu object, so that when the local CMenu variable passes out 
of scope, the CMenu object destructor does not attempt to destroy a menu it no longer 
owns. The menu itself is automatically destroyed when the window is destroyed. 

You can use the LoadMenulndirect member function to create a menu from a 
template in memory, but a menu created from a resource by a call to LoadMenu is 
more easily maintained, and the menu resource itself can be created and modified 
by the menu editor. 

#include <afxwin.h> 

See Also: CObject 

CMenu Class Members 

1030 

Data Members 

Construction 

CMenu 

Initialization 

Attach 

Detach 

FromHandle 

Specifies the handle to the Windows menu attached to the 
CMenu object. 

Constructs a CMenu object. 

Attaches a Windows menu handle to a CMenu object. 

Detaches a Windows menu handle from a CMenu object and 
returns the handle. 

Returns a pointer to a CMenu object given a Windows menu 
handle. 



Initialization (continued) 

GetSafeHmenu 

DeleteTempMap 

CreateMenu 

CreatePopupMenu 

LoadMenu 

LoadMenuIndirect 

DestroyMenu 

Menu Operations 

DeleteMenu 

TrackPopupMenu 

Menu Item Operations 

AppendMenu 

CheckMenuItem 

CheckMenuRadioItem 

EnableMenuItem 

GetMenuItemCount 

GetMenuItemID 

GetMenuState 

GetMenuString 

GetSubMenu 

InsertMenu 

ModifyMenu 

RemoveMenu 

SetMenuItemBitmaps 

GetMenuContextHelpId 

SetMenuContextHelpId 

Returns the m_hMenu wrapped by this CMenu object. 

Deletes any temporary CMenu objects created by the 
FromHandle member function. 

Creates an empty menu and attaches it to a CMenu object. 

Creates an empty pop-up menu and attaches it to a CMenu object. 

Loads a menu resource from the executable file and attaches it to a 
CMenu object. 

Loads a menu from a menu template in memory and attaches it to 
a CMenu object. 

Destroys the menu attached to a CMenu object and frees any 
memory that the menu occupied. 

Deletes a specified item from the menu. If the menu item has an 
associated pop-up menu, destroys the handle to the pop-up menu 
and frees the memory used by it. 

Displays a floating pop-up menu at the specified location and 
tracks the selection of items on the pop-up menu. 

Appends a new item to the end of this menu. 

Places a check mark next to or removes a check mark from a menu 
item in the pop-up menu. 

Places a radio button next to a menu item and removes the radio 
button from all of the other menu items in the group. 

Enables, disables, or dims (grays) a menu item. 

Determines the number of items in a pop-up or top-level menu. 

Obtains the menu-item identifier for a menu item located at the 
specified position. 

Returns the status of the specified menu item or the number of 
items in a pop-up menu. 

Retrieves the label of the specified menu item. 

Retrieves a pointer to a pop-up menu. 

Inserts a new menu item at the specified position, moving other 
items down the menu. 

Changes an existing menu item at the specified position. 

Deletes a menu item with an associated pop-up menu from the 
specified menu. 

Associates the specified check-mark bitmaps with a menu item. 

Retrieves the help context ID associated with the menu. 

Sets the help context ID to be associated with the menu. 

CMenu 

1031 



CMenu: :AppendMenu 

Overridables 

Drawltem 

Measureltem 

Called by the framework when a visual aspect of an owner-drawn 
menu changes. 

Called by the framework to determine menu dimensions when an 
owner-drawn menu is created. 

Member Functions 
CMenu: : AppendMenu 

BOOL AppendMenu( UINT nFlags, UINT nIDNewltem = 0, 
~ LPCTSTR IpszNewltem = NULL ); 

BOOL AppendMenu( UINT nFlags, UINT nIDNewltem, const CBitmap* pBmp ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

1032 

nFlags Specifies information about the state of the new menu item when it is added 
to the menu. It consists of one or more of the values listed in the Remarks section. 

nIDNewltem Specifies either the command ID of the new menu item or, if nFlags is 
set to MF _POPUP, the menu handle (HMENU) of a pop-up menu. The 
nIDNewltem parameter is ignored (not needed) if nFlags is set to 
MF _SEPARATOR. 

IpszNewltem Specifies the content of the new menu item. The nFlags parameter is 
used to interpret IpszNewltem in the following way: 

nFlags Interpretation of IpszNewltem 

MF _OWNERDRA W Contains an application-supplied 32-bit value that the application 
can use to maintain additional data associated with the menu item. 
This 32-bit value is available to the application when it processes 
WM_MEASUREITEM and WM_DRA WITEM messages. The 
value is stored in the itemData member of the structure supplied 
with those messages. 

MF _STRING Contains a pointer to a null-terminated string. This is the default 
interpretation. 

MF_SEPARATOR The lpszNewltem parameter is ignored (not needed). 

pBmp Points to a CBitmap object that will be used as the menu item. 

Appends a new item to the end of a menu. The application can specify the state of the 
menu item by setting values in nFlags. When nIDNewltem specifies a pop-up menu, 
it becomes part of the menu to which it is appended. If that menu is destroyed, the 



CMenu: :AppendMenu 

appended menu will also be destroyed. An appended menu should be detached from a 
CMenu object to avoid conflict. Note that MF _STRING and MF _OWNERDRAW 
are not valid for the bitmap version of AppendMenu. 

The following list describes the flags that may be set in nFlags: 

• MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the default 
check mark next to the item. When the application supplies check-mark bitmaps 
(see the SetMenuItemBitmaps member function), the "check mark on" bitmap is 
displayed. 

• MF _UNCHECKED Acts as a toggle with MF _CHECKED to remove a check 
mark next to the item. When the application supplies check-mark bitmaps (see the 
SetMenuItemBitmaps member function), the "check mark off' bitmap is 
displayed. 

• MF _DISABLED Disables the menu item so that it cannot be selected but does 
not dim it. 

• MF _ENABLED Enables the menu item so that it can be selected and restores it 
from its dimmed state. 

• MF_GRAYED Disables the menu item so that it cannot be selected and dims it. 

• MF _MENUBARBREAK Places the item on a new line in static menus or in a 
new column in pop-up menus. The new pop-up menu column will be separated 
from the old column by a vertical dividing line. 

• MF _MENUBREAK Places the item on a new line in static menus or in a new 
column in pop-up menus. No dividing line is placed between the columns. 

• MF _OWNERDRAW Specifies that the item is an owner-draw item. When the 
menu is displayed for the first time, the window that owns the menu receives a 
WM_MEASUREITEM message, which retrieves the height and width of the 
menu item. The WM_DRA WITEM message is the one sent whenever the owner 
must update the visual appearance of the menu item. This option is not valid for a 
top-level menu item. 

• MF _POPUP Specifies that the menu item has a pop-up menu associated with it. 
The ID parameter specifies a handle to a pop-up menu that is to be associated with 
the item. This is used for adding either a top-level pop-up menu or a hierarchical 
pop-up menu to a pop-up menu item. 

• MF _SEPARATOR Draws a horizontal dividing line. Can only be used in a 
pop-up menu. This line cannot be dimmed, disabled, or highlighted. Other 
parameters are ignored. 

• MF _STRING Specifies that the menu item is a character string. 

Each of the following groups lists flags that are mutually exclusive and cannot be used 
together: 

• MF _DISABLED, MF _ENABLED, and MF _GRAYED 

1033 



CMenu: :Attach 

• MF_STRING, MF_OWNERDRAW, MF_SEPARATOR, and the bitmap 
version 

• MF _MENUBARBREAK and MF _MENUBREAK 

• MF _CHECKED and MF _UNCHECKED 

Whenever a menu that resides in a window is changed (whether or not the window is 
displayed), the application should call CWnd::DrawMenuBar. 

See Also: CWnd::DrawMenuBar, CMenu::InsertMenu, CMenu::RemoveMenu, 
CMenu: :SetMenuItemBitmaps, CMenu: :Detach, : :AppendMenu 

CMenu: : Attach 
BOOL Attach( HMENU hMenu ); 

Return Value 
Nonzero if the operation was successful; otherwise O. 

Parameters 

Remarks 

Example 

hMenu Specifies a handle to a Windows menu. 

Attaches an existing Windows menu to a CMenu object. This function should not be 
called if a menu is already attached to the CMenu object. The menu handle is stored 
in the m_hMenu data member. 

If the menu you want to manipulate is already associated with a window, you can use 
the CWnd: : GetMenu function to get a handle to the menu. 

CMenu mnu; 
HMENU hmnu = pWnd->GetMenu( ); 
mnu.Attach( hmnu ); 
II Now you can manipulate the window's menu as a CMenu 
Ilobject ... 

See Also: CMenu::Detach, CMenu::CMenu, CWnd::GetMenu 

CMenu:: CheckMenuItem 
UINT CheckMenuItem( UINT nIDCheckltem, UINT nCheck ); 

Return Value 

1034 

The previous state of the item: MF _CHECKED or MF _UNCHECKED, or 
OxFFFFFFFF if the menu item did not exist. 



CMenu: :CheckMenuRadioItem 

Parameters 

Remarks 

nIDCheckltem Specifies the menu item to be checked, as determined by nCheck. 

nCheck Specifies how to check the menu item and how to determine the item's 
position in the menu. The nCheck parameter can be a combination of 
MF _CHECKED or MF _UNCHECKED with MF _BYPOSITION or 
MF _BY COMMAND flags. These flags can be combined by using the bitwise 
OR operator. They have the following meanings: 

• MF _BY COMMAND Specifies that the parameter gives the command ID of 
the existing menu item. This is the default. 

• MF _BYPOSITION Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

• MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the 
default check mark next to the item. 

• MF_UNCHECKED Acts as a toggle with MF_CHECKED to remove a 
check mark next to the item. 

Adds check marks to or removes check marks from menu items in the pop-up menu. 
The nIDCheckltem parameter specifies the item to be modified. 

The nIDCheckltem parameter may identify a pop-up menu item as well as a menu 
item. No special steps are required to check a pop-up menu item. Top-level menu 
items cannot be checked. A pop-up menu item must be checked by position since it 
does not have a menu-item identifier associated with it. 

See Also: CMenu: :GetMenuState, :: CheckMenultem, 
CMenu: :CheckMenuRadioltem 

CMenu: :CheckMenuRadioItem 
BOOL CheckMenuRadioltem( UINT nIDFirst, UINT nIDLast, UINT nIDltem, UINT nFlags ); 

Return Value 
Nonzero if successful; otherwise 0 

Parameters 
nIDFirst Specifies (as an ID or offset, depending on the value of nFlags) the first 

menu item in the radio button group. 

nIDLast Specifies (as an ID or offset, depending on the value of nFlags) the last 
menu item in the radio button group. 

nIDltem Specifies (as an ID or offset, depending on the value of nFlags) the item in 
the group which will be checked with a radio button. 

1035 



CMenu::CMenu 

Remarks 

nFlags Specifies interpretation of nIDFirst, nIDLast, and nIDltem in the following 
way: 

nFlags 

MF _BYPOSITION 

Interpretation 

Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BY COMMAND nor MF _BYPOSITION is set. 

Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

Checks a specified menu item and makes it a radio item. At the same time, the 
function unchecks all other menu items in the associated group and clears the 
radio-item type flag for those items. The checked item is displayed using a radio 
button (or bullet) bitmap instead of a check mark bitmap. 

See Also: CMenu: :CheckMenuItem, CMenu: : GetMenuState, 
:: CheckMenuRadioItem 

CMenu::CMenu 

Remarks 

CMenu( ); 

The menu is not created until you call one of the create or load member functions of 
CMenu: 

• CreateMenu 

• CreatePopupMenu 

• LoadMenu 

• LoadMenulndirect 

• Attach 

See Also: CMenu::CreateMenu, CMenu::CreatePopupMenu, 
CMenu: :LoadMenu, CMenu: : LoadMenulndirect, CMenu: :Attach 

CMenu: :CreateMenu 
BOOL CreateMenu( ); 

Return Value 
Nonzero if the menu was created successfully; otherwise O. 

1036 



Remarks 
Creates a menu and attaches it to the CMenu object. 

The menu is initially empty. Menu items can be added by using the AppendMenu or 
InsertMenu member function. 

If the menu is assigned to a window, it is automatically destroyed when the window is 
destroyed. 

Before exiting, an application must free system resources associated with a menu if 
the menu is not assigned to a window. An application frees a menu by calling the 
DestroyMenu member function. 

See Also: CMenu::CMenu, CMenu::DestroyMenu, CMenu::InsertMenu, 
CWnd::SetMenu, ::CreateMenu, CMenu::AppendMenu 

CMenu: :CreatePopupMenu 
BOOL CreatePopupMenu( ); 

Return Value 

Remarks 

Nonzero if the pop-up menu was successfully created; otherwise O. 

Creates a pop-up menu and attaches it to the CMenu object. 

The menu is initially empty. Menu items can be added by using the AppendMenu 
or InsertMenu member function. The application can add the pop-up menu to an 
existing menu or pop-up menu. The TrackPopupMenu member function may be 
used to display this menu as a floating pop-up menu and to track selections on the 
pop-up menu. 

If the menu is assigned to a window, it is automatically destroyed when the window 
is destroyed. If the menu is added to an existing menu, it is automatically destroyed 
when that menu is destroyed. 

Before exiting, an application must free system resources associated with a pop-up 
menu if the menu is not assigned to a window. An application frees a menu by calling 
the DestroyMenu member function. 

See Also: CMenu::CreateMenu, CMenu::InsertMenu, CWnd::SetMenu, 
CMenu: : TrackPopupMenu, : :CreatePopupMenu, CMenu: :AppendMenu 

CMenu: : DeleteMenu 
BOOL DeleteMenu( UINT nPosition, UINT nFlags ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

CMenu: :DeleteMenu 

1037 



CMenu: :DeleteTempMap 

Parameters 

Remarks 

nPosition Specifies the menu item that is to be deleted, as detennined by nFlags. 

nFlags Is used to interpret nPosition in the following way: 

nFlags 

MF _BY COMMAND 

MF _BYPOSITION 

Interpretation of nPosition 

Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BYCOMMAND nor MF _BYPOSITION is set. 

Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

Deletes an item from the menu. If the menu item has an associated pop-up menu, 
DeleteMenu destroys the handle to the pop-up menu and frees the memory used by 
the pop-up menu. 

Whenever a menu that resides in a window is changed (whether or not the window is 
displayed), the application must call CWnd::DrawMenuBar. 

See Also: CWnd::DrawMenuBar, ::DeleteMenu 

CMenu: : DeleteTempMap 
static void PASCAL DeleteTempMap( ); 

Remarks 
Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes 
any temporary CMenu objects created by the FromHandle member function. 
DeleteTempMap detaches the Windows menu object attached to a temporary CMenu 
object before deleting the CMenu object. 

CMenu: : DestroyMenu 
BOOL DestroyMenu( ); 

Return Value 

Remarks 

1038 

Nonzero if the menu is destroyed; otherwise O. 

Destroys the menu and any Windows resources that were used. The menu is detached 
from the CMenu object before it is destroyed. The Windows DestroyMenu function 
is automatically called in the CMenu destructor. 

See Also: ::DestroyMenu 



CMenu: :EnableMenuItem 

CMenu: :Detach 
HMENU Detach(); 

Return Value 

Remarks 

The handle, of type HMENU, to a Windows menu, if successful; otherwise NULL. 

Detaches a Windows menu from a CMenu object and returns the handle. The 
m_hMenu data member is set to NULL. 

See Also: CMenu::Attach 

CMenu: :Draw Item 
virtual void DrawItem( LPDRAWITEMSTRUCT lpDrawltemStruct); 

Parameters 

Remarks 

lpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure that contains 
information about the type of drawing required. 

Called by the framework when a visual aspect of an owner-drawn menu changes. 
The itemActioll member of the DRAWITEMSTRUCT structure defines the drawing 
action that is to be performed. Override this member function to implement drawing 
for an owner-draw CMenu object. The application should restore all graphics device 
interface (ODI) objects selected for the display context supplied in lpDrawltemStruct 
before the termination of this member function. 

See CWnd::OnDrawItem for a description of the DRAWITEMSTRUCT structure. 

CMenu: : EnableMenuItem 
UINT EnableMenuItem( UINT nIDEnableltem, UINT nEnable); 

Return Value 
Previous state (MF _DISABLED, MF _ENABLED, or MF _GRAYED) or -1 if 
not valid. 

Parameters 
nIDEnableltem Specifies the menu item to be enabled, as determined by nEnable. 

This parameter can specify pop-up menu items as well as standard menu items. 

nEnable Specifies the action to take. It can be a combination of MF _DISABLED, 
MF _ENABLED, or MF _GRAYED, with MF _BYCOMMAND or 
MF _BYPOSITION. These values can be combined by using the bitwise OR 
operator. These values have the following meanings: 

1039 



CMenu: :FromHandle 

Remarks 

• MF_BYCOMMAND Specifies that the parameter gives the command ID of 
the existing menu item. This is the default. 

• MF _BYPOSITION Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

• MF _DISABLED Disables the menu item so that it cannot be selected but does 
not dim it. 

• MF _ENABLED Enables the menu item so that it can be selected and restores 
it from its dimmed state. 

• MF _GRAYED Disables the menu item so that it cannot be selected and 
dims it. 

Enables, disables, or dims a menu item. The CreateMenu, InsertMenu, 
ModifyMenu, and LoadMenuIndirect member functions can also set the state 
(enabled, disabled, or dimmed) of a menu item. 

Using the MF _BYPOSITION value requires an application to use the correct 
CMenu. If the CMenu of the menu bar is used, a top-level menu item (an item in the 
menu bar) is affected. To set the state of an item in a pop-up or nested pop-up menu 
by position, an application must specify the CMenu of the pop-up menu. 

When an application specifies the MF _BY COMMAND flag, Windows checks all 
pop-up menu items that are subordinate to the CMenu; therefore, unless duplicate 
menu items are present, using the CMenu of the menu bar is sufficient. 

See Also: CMenu: : GetMenuState, : : EnableMenultem 

CMenu: : FromHandle 
static CMenu* PASCAL FromHandle( HMENU hMenu ); 

Return Value 
A pointer to a CMenu that may be temporary or permanent. 

Parameters 

Remarks 

1040 

hMenu A Windows handle to a menu. 

Returns a pointer to a CMenu object given a Windows handle to a menu. If a CMenu 
object is not already attached to the Windows menu object, a temporary CMenu 
object is created and attached. 

This temporary CMenu object is only valid until the next time the application has 
idle time in its event loop, at which time all temporary objects are deleted. 



CMenu: :GetMenuItemID 

CMenu: : GetMenuContextHelpId 
DWORD GetMenuContextHelpId() const; 

Return Value 

Remarks 

The context help ID currently associated with CMenu if it has one; zero otherwise. 

Call this function to retrieve the context help ID associated with CMenu. 

See Also: CMenu: :SetMenuContextHelpID, : : GetMenuContextHelpId 

CMenu: : GetMenuItemCount 
UINT GetMenuItemCount( ) const; 

Return Value 

Remarks 

The number of items in the menu if the function is successful; otherwise -1. 

Determines the number of items in a pop-up or top-level menu. 

See Also: CWnd::GetMenu, CMenu::GetMenuItemID, CMenu::GetSubMenu, 
: :GetMenuItemCount 

CMenu: : GetMenuItemID 
UINT GetMenuItemID( int nPos) const; 

Return Value 
The item ID for the specified item in a pop-up menu if the function is successful. If 
the specified item is a pop-up menu (as opposed to an item within the pop-up menu), 
the return value is -1. If nPos corresponds to a SEPARATOR menu item, the return 
value is O. 

Parameters 

Remarks 

nPos Specifies the position (zero-based) of the menu item whose ID is being 
retrieved. 

Obtains the menu-item identifier for a menu item located at the position defined by 
nPos. 

See Also: CWnd::GetMenu, CMenu::GetMenuItemCount, 
CMenu: : GetSubMenu, : : GetMenultemID 

1041 



CMenu: :GetMenuState 

CMenu:: GetMenuState 
UINT GetMenuState( UINT nID, UINT nFlags ) const; 

Return Value 
The value OxFFFFFFFF if the specified item does not exist. If nld identifies a pop-up 
menu, the high-order byte contains the number of items in the pop-up menu and the 
low-order byte contains the menu flags associated with the pop-up menu. Otherwise 
the return value is a mask (Boolean OR) of the values from the following list (this 
mask describes the status of the menu item that nld identifies): 

• MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the default 
check mark next to the item. When the application supplies check-mark bitmaps 
(see the SetMenultemBitmaps member function), the "check mark on" bitmap is 
displayed. 

• MF _DISABLED Disables the menu item so that it cannot be selected but does 
not dim it. 

• MF _ENABLED Enables the menu item so that it can be selected and restores 
it from its dimmed state. Note that the value of this constant is 0; an application 
should not test against 0 for failure when using this value. 

• MF _GRAYED Disables the menu item so that it cannot be selected and dims it. 

• MF _MENUBARBREAK Places the item on a new line in static menus or in a 
new column in pop-up menus. The new pop-up menu column will be separated 
from the old column by a vertical dividing line. 

• MF _MENUBREAK Places the item on a new line in static menus or in a new 
column in pop-up menus. No dividing line is placed between the columns. 

• MF _SEPARATOR Draws a horizontal dividing line. Can only be used in a 
pop-up menu. This line cannot be dimmed, disabled, or highlighted. Other 
parameters are ignored. 

• MF_UNCHECKED Acts as a toggle with MF_CHECKED to remove a check 
mark next to the item. When the application supplies check-mark bitmaps (see 
the SetMenultemBitmaps member function), the "check mark off' bitmap is 
displayed. Note that the value of this constant is 0; an application should not test 
against 0 for failure when using this value. 

Parameters 

1042 

nID Specifies the menu item ID, as determined by nFlags. 

nFlags Specifies the nature of nID. It can be one of the following values: 

• MF _BY COMMAND Specifies that the parameter gives the command ID of 
the existing menu item. This is the default. 

• MF _BYPOSITION Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 



CMenu: :GetMenuString 

Remarks 
Returns the status of the specified menu item or the number of items in a pop-up 
menu. 

See Also: :: GetMenuState, CMenu:: CheckMenuItem, 
CMenu: :EnableMenuItem 

CMenu: : GetMenuString 
int GetMenuString( UINT nIDltem, LPTSTR IpString, int nMaxCount, 

... UINT nFlags ) const; 
int GetMenuString( UINT nIDltem, CString& rString, UINT nFlags) const; 

Return Value 
Specifies the actual number of bytes copied to the buffer, not induding the null 
terminator. 

Parameters 

Remarks 

nIDltem Specifies the integer identifier of the menu item or the offset of the menu 
item in the menu, depending on the value of nFlags. 

IpString Points to the buffer that is to receive the label. 

rString A reference to a CString object that is to receive the copied menu string. 

nMaxCount Specifies the maximum length (in bytes) of the label to be copied. If the 
label is longer than the maximum specified in nMaxCount, the extra characters are 
truncated. 

IlFlags Specifies the interpretation of the nIDltem parameter. It can be one of the 
following values: 

nFlags Interpretation of nlDltem 

MF _BYPOSITION 

Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BY COMMAND nor MF _BYPOSITION is set. 

Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

Copies the label of the specified menu item to the specified buffer. 

The nMaxCount parameter should be one larger than the number of characters in the 
label to accommodate the null character that terminates a string. 

See Also: CMenu::GetMenuState, CMenu::ModifyMenu, ::GetMenuString 

1043 



CMenu: :GetSubMenu 

CMenu: : GetSubMenu 
CMenu* GetSubMenu( int nPos ) const; 

Return Value 
A pointer to a CMenu object whose m_hMenu member contains a handle to the 
pop-up menu if a pop-up menu exists at the given position; otherwise NULL. If a 
CMenu object does not exist, then a temporary one is created. The CMenu pointer 
returned should not be stored. 

Parameters 

Remarks 

nPos Specifies the position of the pop-up menu contained in the menu. Position 
values start at 0 for the first menu item. The pop-up menu's identifier cannot be 
used in this function. 

Retrieves the CMenu object of a pop-up menu. 

See Also: CWnd::GetMenu, CMenu::GetMenuItemID, ::GetMenuString 

CMenu:: GetSafeHmenu 

Remarks 

HMENU GetSafeHmenu( ) const; 

Returns the HMENU wrapped by this CMenu object, or a NULL CMenu pointer. 

See Also: ::GetSubMenu 

CMenu: : InsertMenu 
BOOL InsertMenu( UINT nPosition, UINT nFZags, UINT nIDNewltem = 0, 

... LPCTSTR ZpszNewltem = NULL ); 
BOOL InsertMenu( UINT nPosition, UINT nFZags, UINT nIDNewltem, 

... const CBitmap* pBmp); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

1044 

nPosition Specifies the menu item before which the new menu item is to be inserted. 
The nFZags parameter can be used to interpret nPosition in the following ways: 

nFlags Interpretation of nPosition 

MF _BY COMMAND Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BY COMMAND nor MF _BYPOSITION is set. 



Remarks 

(continued) 

nFlags 

MF _BYPOSITION 

Interpretation of nPosition 

Specifies that the parameter gives the position of the existing 
menu item. The first item is at position O. If IlPositioll is -1, 
the new menu item is appended to the end of the menu. 

nFlags Specifies how nPosition is interpreted and specifies information about the 
state of the new menu item when it is added to the menu. For a list of the flags that 
may be set, see the AppendMenu member function. To specify more than one 
value, use the bitwise OR oper~tor to combine them with the 
MF _BY COMMAND or MF _BYPOSITION flag. 

nIDNewltem Specifies either the command ID of the new menu item or, if nFlags 
is set to MF _POPUP, the menu handle (HMENU) of the pop-up menu. The 
nIDNewltem parameter is ignored (not needed) if nFlags is set to 
MF _SEPARATOR. 

lpszNewltem Specifies the content of the new menu item. nFlags can be used to 
interpret IpszNewltem in the following ways: 

nFlags Interpretation of IpszNewltem 

MF_STRING 

Contains an application-supplied 32-bit value that the 
application can use to maintain additional data associated 
with the menu item. This 32-bit value is available to the 
application in the itemData member of the structure 
supplied by the WM_MEASUREITEM and 
WM_DRA WITEM messages. These messages are sent 
when the menu item is initially displayed or is changed. 

Contains a long pointer to a null-terminated string. This is 
the default interpretation. 

The lpszNew!tem parameter is ignored (not needed). 

pBmp Points to a CBitmap object that will be used as the menu item. 

Inserts a new menu item at the position specified by nPosition and moves other items 
down the menu. The application can specify the state of the menu item by setting 
values in nFlags. 

Whenever a menu that resides in a window is changed (whether or not the window is 
displayed), the application should call CWnd::DrawMenuBar. 

When nIDNewltem specifies a pop-up menu, it becomes part of the menu in which 
it is inserted. If that menu is destroyed, the inserted menu will also be destroyed. An 
inserted menu should be detached from a CMenu object to avoid conflict. 

If the active multiple document interface (MDI) child window is maximized and an 
application inserts a pop-up menu into the MDI application's menu by calling this 
function and specifying the MF _BYPOSITION flag, the menu is inserted one 

CMenu: :InsertMenu 

1045 



CMenu: :LoadMenu 

position farther left than expected. This happens because the Control menu of the 
active MDI child window is inserted into the first position of the MDI frame 
window's menu bar. To position the menu properly, the application must add I 
to the position value that would otherwise be used. An application can use the 
WM_MDIGETACTIVE message to determine whether the currently active 
child window is maximized. 

See Also: CMenu::AppendMenu, CWnd::DrawMenuBar, 
CMenu: :SetMenultemBitmaps, CMenu: :Detach, : : InsertMenu 

CMenu: :LoadMenu 
BOOL LoadMenu( LPCTSTR IpszResourceName ); 
BOOL LoadMenu( UINT nIDResource ); 

Return Value 
Nonzero if the menu resource was loaded successfully; otherwise O. 

Parameters 

Remarks 

IpszResourceName Points to a null-terminated string that contains the name of the 
menu resource to load. 

nIDResource Specifies the menu ID of the menu resource to load. 

Loads a menu resource from the application's executable file and attaches it to the 
CMenu object. 

Before exiting, an application must free system resources associated with a menu if 
the menu is not assigned to a window. An application frees a menu by calling the 
DestroyMenu member function. 

See Also: CMenu: :AppendMenu, CMenu: :DestroyMenu, 
CMenu: :LoadMenuIndirect, : :LoadMenu 

CMenu: : LoadMenuIndirect 
BOOL LoadMenuIndirect( const void* IpMenuTemplate ); 

Return Value 
Nonzero if the menu resource was loaded successfully; otherwise O. 

Parameters 

1046 

IpMenuTemplate Points to a menu template (which is a single 
MENUITEMTEMPLATEHEADER structure and a collection of one or 
more MENU ITEM TEMPLATE structures). For more information on these 
two structures, see the Win32 SDK documentation. 



CMenu: :ModifyMenu 

Remarks 
Loads a resource from a menu template in memory and attaches it to the CMenu 
object. A menu template is a header followed by a collection of one or more 
MENUITEMTEMPLATE structures, each of which may contain one or more 
menu items and pop-up menus. 

The version number should be O. 

The mtOption flags should include MF _END for the last item in a pop-up list and for 
the last item in the main list. See the AppendMenu member function for other flags. 
The mtld member must be omitted from the MENUITEMTEMPLATE structure 
when MF _POPUP is specified in mtOption. 

The space allocated for the MENUITEMTEMPLATE structure must be large 
enough for mtString to contain the name of the menu item as a null-terminated string. 

Before exiting, an application must free system resources ,associated with a menu if 
the menu is not assigned to a window. An application frees a menu by calling the 
DestroyMenu member function. 

See Also: CMenu::DestroyMenu, CMenu::LoadMenu, ::LoadMenuIndirect, 
CMenu: :AppendMenu 

CMenu: :MeasureItem 
virtual void MeasureItem( LPMEASUREITEMSTRUCT IpMeasureltemStruct); 

Parameters 

Remarks 

lpMeasureltemStruct A pointer to a MEASUREITEMSTRUCT structure. 

Called by the framework when a menu with the owner-draw style is created. By 
default, this member function does nothing. Override this member function and fill 
in the MEASUREITEMSTRUCT structure to inform Windows of the menu's 
dimensions. 

See CWnd::OnMeasureItem for a description of the MEASUREITEMSTRUCT 
structure. 

CMenu: :Modify Menu 
BOOL ModifyMenu( UINT nPosition, UINT nFlags, 

.. UINT nIDNewltem = 0, LPCTSTR IpszNewltem = NULL ); 
BOOL ModifyMenu( UINT nPosition, UINT nFlags, UINT nIDNewltem, 

.. const CBitmap* pBmp ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

1047 



CMenu::ModifyMenu 

Parameters 

Remarks 

1048 

nPosition Specifies the menu item to be changed. The nFlags parameter can be used 
to interpret nPosition in the following ways: 

nFlags Interpretation of nPosition 

MF _BYPOSITION 

Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BYCOMMAND nor MF _BYPOSITION is set. 

Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

nFlags Specifies how nPosition is interpreted and gives information about the 
changes to be made to the menu item. For a list of flags that may be set, see the 
AppendMenu member function. 

nIDNewltem Specifies either the command ID of the modified menu item or, if 
nFlags is set to MF _POPUP, the menu handle (HMENU) of a pop-up menu. 
The nIDNewltem parameter is ignored (not needed) if nFlags is set to 
MF _SEPARATOR. 

lpszNewltem Specifies the content of the new menu item. The nFlags parameter can 
be used to interpret lpszNewltem in the following ways: 

nFlags Interpretation of IpszNewltem 

MF_STRING 

MF _SEPARATOR 

Contains an application-supplied 32-bit value that the 
application can use to maintain additional data associated 
with the menu item. This 32-bit value is available to the 
application when it processes MF _MEASUREITEM 
and MF _DRA WITEM. 

Contains a long pointer to a null-terminated string or 
to a CString. 

The IpszNewltem parameter is ignored (not needed). 

pBmp Points to a CBitmap object that will be used as the menu item. 

Changes an existing menu item at the position specified by nPosition. The application 
specifies the new state of the menu item by setting values in nFlags. If this function 
replaces a pop-up menu associated with the menu item, it destroys the old pop-up 
menu and frees the memory used by the pop-up menu. 

When nIDNewltem specifies a pop-up menu, it becomes part of the menu in which it 
is inserted. If that menu is destroyed, the inserted menu will also be destroyed. An 
inserted menu should be detached from a CMenu object to avoid conflict. 

Whenever a menu that resides in a window is changed (whether or not the window is 
displayed), the application should call CWnd: :DrawMenuBar. To change the 
attributes of existing menu items, it is much faster to use the CheckMenultem and 
EnableMenultem member functions. 



CMenu:: SetMenuContextHelpId 

See Also: CMenu::AppendMenu, CMenu::InsertMenu, 
CMenu: :CheckMenultem, CWnd: :DrawMenuBar, CMenu: :EnableMenultem, 
CMenu: :SetMenultemBitmaps, CMenu: :Detach, : :ModifyMenu 

CMenu: : RemoveMenu 
BOOL RemoveMenu( UINT nPosition, UINT nFlags ); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

nPosition Specifies the menu item to be removed. The nFlags parameter can be used 
to interpret nPosition in the following ways: 

nFlags Interpretation of nPosition 

MF _BYPOSITION 

Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BY COMMAND nor MF _BYPOSITION is set. 

Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

nFlags Specifies how nPosition is interpreted. 

Deletes a menu item with an associated pop-up menu from the menu. It does not 
destroy the handle for a pop-up menu, so the menu can be reused. Before calling this 
function, the application may call the GetSubMenu member function to retrieve the 
pop-up CMenu object for reuse. 

Whenever a menu that resides in a window is changed (whether or not the window is 
displayed), the application must call CWnd::DrawMenuBar. 

See Also: CWnd: :DrawMenuBar, CMenu: :GetSubMenu, : : RemoveMenu 

CMenu: : SetMenuContextHelpId 
BOOL SetMenuContextHelpld( DWORD dwContextHelpld ); 

Return Value 
Nonzero if successful; otherwise 0 

Parameters 
dwContextHelpld Context help ID to associate with CMenu. 

1049 



CMenu:: SetMenuItemBitmaps 

Remarks 
Call this function to associate a context help ID with CMenu. All items in the menu 
share this identifier% it is not possible to attach a help context identifier to the 
individual menu items. 

See Also: CMenu::GetMenuContextHelpID, ::SetMenuContextHelpId 

CMenu::SetMenuItemBitmaps 
BOOL SetMenultemBitmaps( UINT nPosition, UINT nFlags, 

... const CBitmap* pBmpUnchecked, const CBitmap* pBmpChecked); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 

Remarks 

1050 

nPosition Specifies the menu item to be changed. The nFlags parameter can be used 
to interpret nPosition in the following ways: 

nFlags Interpretation of nPosition 

MF _BY COMMAND Specifies that the parameter gives the command ID of 
the existing menu item. This is the default if neither 
MF _BY COMMAND nor MF _BYPOSITION is set. 

MF _BYPOSITION Specifies that the parameter gives the position of the 
existing menu item. The first item is at position O. 

nFlags Specifies how nPosition is interpreted. 

pBmpUnchecked Specifies the bitmap to use for menu items that are not checked. 

pBmpChecked Specifies the bitmap to use for menu items that are checked. 

Associates the specified bitmaps with a menu item. Whether the menu item is checked 
or unchecked, Windows displays the appropriate bitmap next to the menu item. 

If either pBmpUnchecked or pBmpChecked is NULL, then Windows displays nothing 
next to the menu item for the corresponding attribute. If both parameters are NULL, 
Windows uses the default check mark when the item is checked and removes the 
check mark when the item is unchecked. 

When the menu is destroyed, these bitmaps are not destroyed; the application must 
destroy them. 

The Windows GetMenuCheckMarkDimensions function retrieves the dimensions of 
the default check mark used for menu items. The application uses these values to 
determine the appropriate size for the bitmaps supplied with this function. Get the 
size, create your bitmaps, then set them. 

See Also: ::GetMenuCheckMarkDimensions, ::SetMenultemBitmaps 



CMenu: :TrackPopupMenu 

CMenu: : TrackPopupMenu 
BOOL TrackPopupMenu( UINT IlFlags, int x, int y, 

'+ CWnd* p Wild, LPCRECT lpRect = NULL ); 

Return Value 
Nonzero if the function is successful; otherwise 0. 

Parameters 
nFlags Specifies a screen-position flag and a mouse-button flag. The screen-position 

flag can be one of the following: 

• TPM_CENTERALIGN Centers the pop-up menu horizontally relative to the 
coordinate specified by x. 

• TPM_LEFTALIGN Positions the pop-up menu so that its left side is aligned 
with the coordinate specified by x. 

• TPM_RIGHTALIGN Positions the pop-up menu so that its right side is 
aligned with the coordinate specified by x. 

The mouse-button flag can be either of the following: 

• TPM_LEFTBUTTON Causes the pop-up menu to track the left mouse 
button. 

• TPM_RIGHTBUTTON Causes the pop-up menu to track the right mouse 
button. 

x Specifies the horizontal position in screen coordinates of the pop-up menu. 
Depending on the value of the nFlags parameter, the menu can be left-aligned, 
right-aligned, or centered relative to this position. 

y Specifies the vertical position in screen coordinates of the top of the menu on the 
screen. 

pWnd Identifies the window that owns the pop-up menu. This window receives 
all WM_COMMAND messages from the menu. In Windows versions 3.1 
and later, the window does not receive WM_COMMAND messages until 
TrackPopupMenu returns. In Windows 3.0, the window receives 
WM_COMMAND messages before TrackPopupMenu returns. 

IpRect Points to a RECT structure or CRect object that contains the screen 
coordinates of a rectangle within which the user can click without dismissing the 
pop-up menu. If this parameter is NULL, the pop-up menu is dismissed if the 
user clicks outside the pop-up menu. This must be NULL for Windows 3.0. 

For Windows 3.1 and later, you can use the following constants: 

• TPM_CENTERALIGN 

• TPM_LEFTALIGN 

1051 



CMenu: :m_hMenu 

Remarks 

• TPM_RIGHTALIGN 

• TPM_RIGHTBUTTON 

Displays a floating pop-up menu at the specified location and tracks the selection of 
items on the pop-up menu. A floating pop-up menu can appear anywhere on the 
screen. 

See Also: CMenu::CreatePopupMenu, CMenu::GetSubMenu, 
: : TrackPopupMenu 

Data Members 
CMenu: :m_hMenu 
Remarks 

Specifies the HMENU handle of the Windows menu attached to the CMenu object. 

1052 



CMetaFileDC 

CMetaFileDC 

A Windows metafile contains a sequence of graphics device interface (GDI) 
commands that you can replay to create a desired image or text. 

To implement a Windows metafile, first create a CMetaFileDC object. Invoke the 
CMetaFileDC constructor, then call the Create member function, which creates a 
Windows metafile device context and attaches it to the CMetaFileDC object. 

Next send the CMetaFileDC object the sequence of CDC GDI commands that you 
intend for it to replay. Only those GDI commands that create output, such as MoveTo 
and LineTo, can be used. 

After you have sent the desired commands to the metafile, call the Close member 
function, which closes the metafile device contexts and returns a metafile handle. 
Then dispose of the CMetaFileDC object. 

CDC::PlayMetaFile can then use the metafile handle to play the metafile repeatedly. 
The metafile can also be manipulated by Windows functions such as CopyMetaFile, 
which copies a metafile to disk. 

When the metafile is no longer needed, delete it from memory with the 
DeleteMetaFile Windows function. 

You can also implement the CMetaFileDC object so that it can handle both output 
calls and attribute GDI calls such as GetTextExtent. Such a metafile is more flexible 
and can more easily reuse general GDI code, which often consists of a mix of output 
and attribute calls. The CMetaFileDC class inherits two device contexts, m_hDC and 
m_hAttribDC, from CDC. The m_hDC device context handles all CDC GDI output 
calls and the m_hAttribDC device context handles all CDC GDI attribute calls. 
Normally, these two device contexts refer to the same device. In the case of 
CMetaFileDC, the attribute DC is set to NULL by default. 

Create a second device context that points to the screen, a printer, or device other than a 
metafile, then call the SetAttribDC member function to associate the new device 
context with m_hAttribDC. GDI calls for information will now be directed to the new 
m_hAttrihDC. Output GDI calls will go to m_hDC, which represents the metafile. 

For more information on CMetaFileDC, see "Device Contexts" in Visual c++ 
Programmer's Guide online. 

#incIude <afxext.h> 

CMetaFileDC 

1053 



CMetaFileDC: :Close 

CMetaFileDC Class Members 
Construction 

CMetaFileDC 

Initialization 

Create 

CreateEnhanced 

Operations 

Close 

CloseEnhanced 

Constructs a CMetaFileDC object. 

Creates the Windows metafile device context and attaches it to the 
CMetaFileDC object. 

Creates a metafile device context for an enhanced-format metafile. 

Closes the device context and creates a metafile handle. 

Closes an enhanced-metafile device context and creates an 
enhanced-metafile handle. 

Member Functions 
CMetaFileDC: : Close 

HMETAFILE Close( ); 

Return Value 

Remarks 

A valid HMETAFILE if the function is successful; otherwise NULL. 

Closes the metafile device context and creates a Windows metafile handle that can be 
used to play the metafile by using the CDC::PlayMetaFile member function. The 
Windows metafile handle can also be used to manipulate the metafile with Windows 
functions such as CopyMetaFile. 

Delete the metafile after use by calling the Windows DeleteMetaFile function. 

See Also: CDC::PlayMetaFile, ::CloseMetaFile, ::CopyMetaFile, 
: :DeleteMetaFile 

CMetaFileDC: :CloseEnhanced 
HENHMETAFILE CloseEnhanced( ); 

Return Value 
A handle of an enhanced metafile, if successful; otherwise NULL. 

1054 



Remarks 
Closes an enhanced-metafile device context and returns a handle that identifies an 
enhanced-format metafile. An application can use the enhanced-metafile handle 
returned by this function to perform the following tasks: 

• Display a picture stored in an enhanced metafile 

• Create copies of the enhanced metafile 

o Enumerate, edit, or copy individual records in the enhanced metafile 

• Retrieve an optional description of the metafile contents from the 
enhanced-metafile header 

• Retrieve a copy of the enhanced-metafile header 

• Retrieve a binary copy of the enhanced metafile 

• Enumerate the colors in the optional palette 

o Convert an enhanced-format metafile into a Windows-format metafile 

When the application no longer needs the enhanced metafile handle, it should release 
the handle by calling the : :DeleteEnhMetaFile function. 

See Also: CDC::PlayMetaFile, CMetaFileDC::CreateEnhanced, 
: :DeleteEnhMetaFile 

CMetaFileDC: : CMetaFileDC 

Remarks 

CMetaFileDC( ); 

Construct a CMetaFileDC object in two steps. First, call CMetaFileDC, then call 
Create, which creates the Windows metafile device context and attaches it to the 
CMetaFileDC object. 

See Also: CMetaFileDC::Create 

CMetaFileDC: : Create 
BOOL Create( LPCTSTR IpszFilename = NULL); 

Return Value 
Nonzero if the function is successful; otherwise O. 

Parameters 
IpszFilename Points to a null-terminated character string. Specifies the filename 

of the metafile to create. If IpszFilename is NULL, a new in-memory metafile 
is created. 

CMetaFileDC: :Create 

1055 



CMetaFileDC: :CreateEnhanced 

Remarks 
Construct a CMetaFileDC object in two steps. First, call the constructor 
CMetaFileDC, then call Create, which creates the Windows metafile device 
context and attaches it to the CMetaFileDC object. 

See Also: CMetaFileDC:: CMetaFileDC, CDC: :SetAttribDC, : :CreateMetaFile 

CMetaFileDC:: CreateEnhanced 
BOOL CreateEnhanced( CDC* pDCRej, LPCTSTR IpszFileName, 

... LPCRECT IpBounds, LPCTSTR IpszDescription ); 

Return Value 
A handle of the device context for the enhanced metafile, if successful; otherwise 
NULL. 

Parameters 

Remarks 

1056 

pDCRej Identifies a reference device for the enhanced metafile. 

IpszFileName Points to a null-terminated character string. Specifies the filename 
for the enhanced metafile to be created. If this parameter is NULL, the enhanced 
metafile is memory based and its contents lost when the object is destroyed or 
when the : :DeleteEnhMetaFile function is called. 

IpBounds Points to a RECT data structure or a CRect object that specifies the 
dimensions in HIMETRIC units (in .OI-millimeter increments) of the picture 
to be stored in the enhanced metafile. 

IpszDescriptioll Points to a zero-terminated string that specifies the name of the 
application that created the picture, as well as the picture's title. 

Creates a device context for an enhanced-format metafile. This DC can be used to 
store a device-independent picture. 

Windows uses the reference device identified by the pDCRej parameter to record 
the resolution and units of the device on which a picture originally appeared. If the 
pDCRejparameter is NULL, it uses the current display device for reference. 

The left and top members of the RECT data structure pointed to by the IpBounds 
parameter must be smaller than the right and bottom members, respectively. Points 
along the edges of the rectangle are included in the picture. If IpBounds is NULL, the 
graphics device interface (GDI) computes the dimensions of the smallest rectangle 
that can enclose the picture drawn by the application. The IpBounds parameter should 
be supplied where possible. 

The string pointed to by the IpszDescription parameter must contain a null character 
between the application name and the picture name and must terminate with two null 
characters-for example, "XYZ Graphics Editor\OBald Eagle\O\O," where \0 



CMetaFileDC::CreateEnhanced 

represents the null character. If IpszDescription is NULL, there is no corresponding 
entry in the enhanced-metafile header. 

Applications use the DC created by this function to store a graphics picture in an 
enhanced metafile. The handle identifying this DC can be passed to any GDI function. 

After an application stores a picture in an enhanced metafile, it can display the picture 
on any output device by calling the CDC::PlayMetaFile function. When displaying 
the picture, Windows uses the rectangle pointed to by the IpBounds parameter and the 
resolution data from the reference device to position and scale the picture. The device 
context returned by this function contains the same default attributes associated with 
any new DC. 

Applications must use the ::GetWinMetaFileBits function to convert an enhan~ed 
metafile to the older Windows metafile format. 

The filename for the enhanced metafile should use the .EMF extension. 

See Also: CMetaFileDC::CloseEnhanced, CDC::PlayMetaFile, 
:: CloseEnhMetaFile, : :DeleteEnhMetaFile, :: GetEnhMetaFileDescription, 
:: GetEnhMetaFileHeader, : :Get WinMetaFileBits, : :Play EnhMetaFile 

1057 



CMiniFrameWnd 

CMiniFrame W nd 

CMiniFrameWnd 

A CMiniFrameWnd object represents a half-height frame window typically seen 
around floating toolbars. These mini-frame windows behave like normal frame 
windows, except that they do not have minimize/maximize buttons or menus and 
you only have to single-click on the system menu to dismiss them. 

To use a CMiniFrame Wnd object, first define the object. Then call the Create 
member function to display the mini-frame window. 

For more information on how to use CMiniFrameWnd objects, see the article 
"Toolbars: Docking and Floating" in Visual C++ Programmer's Guide online. 

#incIude <afxwin.h> 

See Also: CFrame Wnd 

CMiniFrameWnd Class Members 
Construction 

CMiniFrame Wnd 

Create 

Constructs a CMiniFrameWnd object. 

Creates a CMiniFrameWnd object after construction. 

Member Functions 
CMiniFrame Wnd: :CMiniFrame W nd 

Remarks 

1058 

CMiniFrame Wnd( ); 

Constructs a CMiniFrameWnd object, but does not create the window. To create the 
window, call CMiniFrameWnd::Create. 

See Also: CFrame Wnd 



CMiniFrame Wnd: :Create 

CMiniFrame W nd: : Create 
BOOL Create( LPCTSTR IpClassName, LPCTSTR lp WindowNa11le, DWORD dwStyle, 

~ const RECT& reet, CWnd* pParentWnd = NULL, UINT IlID = 0); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpClassNa11le Points to a null-terminated character string that names the 
Windows class. The class name can be any name registered with the global 
AfxRegisterWndClass function. If NULL, the window class will be registered 
for you by the framework. 

lp Win do wNa 11l e Points to a null-terminated character string that contains the 
window name. 

dwStyle Specifies the window style attributes. These can include standard window 
styles and one or more of the following special styles: 

• MFS_MOVEFRAME Allows the mini-frame window to be moved by 
clicking on any edge of the window, not just the caption. 

• MFS_ 4THICKFRAME Disables resizing of the mini-frame window. 

• MFS_SYNCACTIVE Synchronizes the activation of the mini-frame window 
to the activation of its parent window. 

o MFS_THICKFRAME Allows the mini-frame window to be sized as small as 
the contents of the client area allow. 

See CWnd::Create for a description of possible window style values. The typical 
combination used for mini-frame windows is 
WS_POPUPIWS_CAPTIONIWS_SYSMENU. 

reet A RECT structure specifying the desired dimensions of the window. 

pParentWnd Points to the parent window. Use NULL for top-level windows. 

nID If the mini-frame window is created as a child window, this is the identifier of 
the child control; otherwise O. 

Creates the Windows mini-frame window and attaches it to the CMiniFrameWnd 
object. Create initializes the window's class name and window name and registers 
default values for its style and parent. 

See Also: CFrameWnd::Create, CWnd::Create, CWnd::CreateEx, 
CFrameWnd 

1059 



CMonikerFile 

CMonikerFile 

CMonikerFile 

A CMonikerFile object represents a stream of data (IStream) named by an 
IMoniker. 

A moniker contains information much like a pathname to a file. If you have a pointer 
to a moniker object's IMoniker interface, you can get access to the identified file 
without having any other specific information about where the file is actually located. 

Derived from COleStreamFile, CMonikerFile takes a moniker or a string 
representation it can make into a moniker and binds to the stream for which the 
moniker is a name. You can then read and write to that stream. The real purpose of 
CMonikerFile is to provide simple access to IStreams named by IMonikers so that 
you do not have to bind to a stream yourself, yet have CFile functionality to the 
stream. 

CMonikerFile cannot be used to bind to anything other than a stream. If you want to 
bind to storage or an object, you must use the IMoniker interface directly. 

For more information on streams and monikers, see COleStreamFile in the MFC 
Class Library Reference and IStream and IMoniker in the OLE Programmer's 
Reference. 

#include <afxole.h> 

See Also: CAsyncMonikerFile 

CMonikerFile Class Members 

1060 

Construction 

CMonikerFiIe 

Operations 

Close 

Detach 

GetMoniker 

Constructs a CMonikerFiIe object. 

Detaches and releases the stream and releases the moniker. 

Detaches the IMoniker from this CMonikerFile object. 

Returns the current moniker. 



CMonikerFile:: CreateBindContext 

Overridables 

CreateBindContext 

Open 

Obtains the bind context or creates a default initialized bind context. 

Opens the specified file to obtain a stream. 

Member Functions 
CMonikerFile: :Close 

Remarks 

void Close( ); 

Call this function to detach and release the stream and to release the moniker. Can be 
called on unopened or already closed streams. 

See Also: CMonikerFile::Open 

CMonikerFile: : CMonikerFile 
CMonikerFile( ); 

Remarks 
Constructs a CMonikerFile object. 

See Also: CAsyncMonikerFile, CMonikerFile::Open 

CMonikerFile: :CreateBindContext 
virtual IBindCtx* CreateBindContext( CFileException* pError ); 

Return Value 
A pointer to the bind context IBindCtx to bind with if successful; otherwise NULL. 
If the instance was opened with an IBindHost interface, the bind context is retrieved 
from the IBindHost. If there is no IBindHost interface or the interface fails to return 
a bind context, a bind context is created. For a description of the IBindHost interface, 
see the ActiveX SDK. 

Parameters 

Remarks 

pError A pointer to a file exception. In the event of an error, it will be set to the 
cause. 

Call this function to create a default initialized bind context. A bind context is an 
object that stores information about a particular moniker binding operation. You can 
override this function to provide a custom bind context. 

1061 



CMonikerFile: :Detach 

CMonikerFile: :Detach 
BOOL Detach( CFileException* pError = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pError A pointer to a file exception. In the event of an error, it will be set to the 
cause. 

Call this function to close the stream. 

See Also: CMonikerFile::Close, CMonikerFile::Open 

CMonikerFile: : GetMoniker 
IMoniker* GetMoniker( ) const; 

Return Value 

Remarks 

A pointer to the current moniker interface (IMoniker). 

Call this function to retrieve a pointer to the current moniker. Since CMonikerFile is 
not an interface, the pointer returned does not increment the reference count (through 
AddRef), and the moniker is released when the CMonikerFile object is released. If 
you want to hold onto the moniker or release it yourself, you must AddRef it. 

CMonikerFile: :Open 
BOOL Open( LPCTSTR lpszURL, CFileException* pError = NULL ); 
BOOL Open( IMoniker* pMoniker, CFileException* pError = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

1062 

lpszURL A URL or filename of the file to be opened. 

pError A pointer to a file exception. In the event of an error, it will be set to the 
cause. 

pMoniker A pointer to the moniker interface IMoniker to be used to obtain a stream. 



Remarks 
Call this member function to open a file or moniker object. 

The lpszURL parameter cannot be used on a Macintosh. Only the pMoniker form of 
Open can be used on a Macintosh. 

You can use a URL or a filename for the lpszURL parameter. For example: 

CMyMonFile mymonf; 
mymonf. Open (_ T( .. http://www.microsoft.com .. ) ) ; 

-or-

CMyMonFile mymonf; 
my m 0 n f . 0 pen (_ T( "f il e : C : \ my d a t a • d at" ) ) ; 

See Also: CMonikerFile::CMonikerFile, CAsyncMonikerFile::Open 

CMonikerFile: :Open 

1063 



CMultiDocTemplate 

CMultiDocTemplate 

1064 

The CMultiDocTemplate class defines a document template that implements the 
multiple document interface (MDI). An MDI application uses the main frame window 
as a workspace in which the user can open zero or more document frame windows, 
each of which displays a document. For a more detailed description of the MDI, see 
Windows Interface Guidelines for Software Design. 

A document template defines the relationships among three types of classes: 

• A document class, which you derive from CDocument. 

• A view class, which displays data from the document class listed above. You can 
derive this class from CView, CScrollView, CFormView, or CEditView. (You 
can also use CEditView directly.) 

• A frame window class, which contains the view. For an MDI document template, 
you can derive this class from CMDIChildWnd, or, if you don't need to customize 
the behavior of the document frame windows, you can use CMDIChildWnd 
directly without deriving your own class. 

An MDI application can support more than one type of document, and documents 
of different types can be open at the same time. Your application has one document 
template for each document type that it supports. For example, if your MDI 
application supports both spreadsheets and text documents, the application has 
two CMultiDocTemplate objects. 

The application uses the document template(s) when the user creates a new document. 
If the application supports more than one type of document, then the framework gets 
the names of the supported document types from the document templates and displays 
them in a list in the File New dialog box. Once the user has selected a document type, 
the application creates a document class object, a frame window object, and a view 
object and attaches them to each other. 

You do not need to call any member functions of CMultiDocTemplate except the 
constructor. The framework handles CMultiDocTemplate objects internally. 

For more information on CMultiDocTemplate, see "Document Templates and the 
DocumentlView Creation Process" in Visual C++ Programmer's Guide online. 

include# <afxwin.h> 



CMultiDocTemplate: :CMultiDocTemplate 

See Also: CDocTemplate, CSingleDocTemplate, CWinApp 

CMultiDocTemplate Class Members 
Construction 

CMultiDocTemplate Constructs a CMultiDocTemplate object. 

Member Functions 
CMultiDocTemplate: : CMultiDocTemplate 

CMultiDocTemplate( UINT nIDResource, CRuntimeClass* pDocClass, 
... CRuntimeClass* pFrameClass, CRuntimeClass* p ViewClass ); 

Parameters 
nIDResource Specifies the ID of the resources used with the document type. 

This may include menu, icon, accelerator table, and string resources. 

The string resource consists of up to seven substrings separated by the 
'\n' character (the '\n' character is needed as a place holder if a substring 
is not included; however, trailing '\n' characters are not necessary); these 
substrings describe the document type. For information on the substrings, 
see CDocTemplate::GetDocString. This string resource is found in the 
application's resource file. For example: 

II MYCALC.RC 
STRINGTABLE PRELOAD DISCARDABLE 
BEGIN 

IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets (*.myc)\n.myc\n 
... MyCa 1 cSheet\nMyCa 1 c Worksheet" 

END 

Note that the string begins with a '\n' character; this is because the first substring 
is not used for MDI applications and so is not included. You can edit this string 
using the string editor; the entire string appears as a single entry in the String 
Editor, not as seven separate entries. 

For more information about these resource types, see "Resource Editors" in the 
Developer Studio User's Guide online. 

pDocClass Points to the CRuntimeClass object of the document class. This class is 
a CDocument-derived class you define to represent your documents. 

pFrameClass Points to the CRuntimeClass object of the frame-window class. This 
class can be a CMDIChildWnd-derived class, or it can be CMDIChildWnd itself 
if you want default behavior for your document frame windows. 

1065 



CMultiDocTemplate: :CMultiDocTemplate 

Remarks 

Example 

1066 

p ViewClass Points to the CRuntimeClass object of the view class. This class is a 
CView-derived class you define to display your documents. 

Constructs a CMultiDocTemplate object. Dynamically allocate one 
CMultiDocTemplate object for each document type that your application supports 
and pass each one to CWinApp::AddDocTemplate from the Initlnstance member 
function of your application class. 

Ilexample for CMultiDocTemplate 
BOOl CMyApp::lnitlnstance() 
{ 

II 
II Establish all of the document types 
II supported by the application 

AddDocTemplate( new CMultiDocTemplate( IDR_SHEETTYPE, 
RUNTIME_ClASS( CSheetDoc ), 
RUNTIME_ClASS( CMDIChildWnd ), 
RUNTIME_ClASS( CSheetView ) ) ); 

AddDocTemplate( new CMultiDocTemplate( IDR_NOTETYPE, 
RUNTIME_ClASS( CNoteDoc ), 
RUNTIME_ClASS( CMDIChildWnd ), 
RUNTIME_ClASS( CNoteView ) ) ); 

II 

See Also: CDocTemplate::GetDocString, CWinApp::AddDocTemplate, 
CWinApp: :Initlnstance, CRuntimeClass 



CMultiLock 
CMultiLock does not have a base class. 

A object of class CMultiLock represents the access-control mechanism used in 
controlling access to resources in a multithreaded program. To use the synchronization 
classes CSemaphore, CMutex, CCriticalSection, and CEvent, you can create either 
a CMultiLock or CSingleLock object to wait on and release the synchronization 
object. Use CMultiLock when there are multiple objects that you could use at a 
particular time. Use CSingleLock when you only need to wait on one object at a time. 

To use a CMultiLock object, first create an array of the synchronization objects that 
you wish to wait on. Next, call the CMultiLock object's constructor inside a member 
function in the controlled resource's class. Then call the Lock member function to 
determine if a resource is available (signaled). If one is, continue with the remainder 
of the member function. If no resource is available, either wait for a specified amount 
of time for a resource to be released, or return failure. After use of a resource is 
complete, either call the Unlock function if the CMultiLock object is to be used 
again, or allow the CMultiLock object to be destroyed. 

CMultiLock objects are most useful when a thread has a large number of CEvent 
objects it can respond to. Create an array containing all the CEvent pointers, and 
call Lock. This will cause the thread to wait until one of the events is signaled. 

For more information on how to use CMultiLock objects, see the article 
"Multithreading: How to Use the Synchronization Classes" in Visual C++ 
Programmer's Guide online. 

#include <afxmt.h> 

CMultiLock Class Members 
Construction 

CMultiLock 

Methods 

IsLocked 

Lock 

Unlock 

Constructs a CMultiLock object. 

Determines if a specific synchronization object in the array is locked. 

Waits on the array of synchronization objects. 

Releases any owned synchronization objects. 

CMultiLock 

1067 



CMultiLock: :CMultiLock 

Member Functions 
CMultiLock: :CMultiLock 

CMultiLock( CSyncObject* ppObjects[ ], DWORD dwCount, 
.. BOOL blnitialLock = FALSE ); 

Parameters 

Remarks 

ppObjects Array of pointers to the synchronization objects to be waited on. Cannot 
be NULL. 

dwCount Number of objects in ppObjects. Must be greater than O. 

blnitialLock Specifies whether to initially attempt to access any of the supplied 
objects. 

Constructs a CMultiLock object. This function is called after creating the array of 
synchronization objects to be waited on. It is usually called from within the thread that 
must wait for one of the synchronization objects to become available. 

CMultiLock: :IsLocked 
BOOL IsLocked( DWORD dwObject ); 

Return Value 
Nonzero if the specified object is locked; otherwise O. 

Parameters 

Remarks 

dwObject The index in the array of objects corresponding to the object whose state is 
being queried. 

Determines if the specified object is nonsignaled (unavailable). 

CMultiLock: :Lock 
DWORD Lock( DWORD dwTimeOut = INFINITE, 

.. BOOL bWaitForAll = TRUE, DWORD dwWakeMask = 0); 

Return Value 
If Lock fails, it returns -1. If successful, it returns one of the following values: 

• Between WAIT_OBJECT_O and WAIT_OBJECT_O + (number of objects - 1) 

1068 



If bWaitForAIl is TRUE, all objects are signaled (available). If bWaitForAIl is 
FALSE, the return value - WAIT_OBJECT_O is the index in the array of objects 
of the object that is signaled (available). 

• WAIT_OBJECT_O + (number of objects) 

An event specified in dwWakeMask is available in the thread's input queue. 

• Between WAIT_ABANDONED_O and WAIT_ABANDONED_O + (number of 
objects - 1) 

If bWaitForAll is TRUE, all objects are signaled, and at least one of the objects 
is an abandoned mutex object. If bWaitForAIl is FALSE, the return value -
WAIT_ABANDONED_O is the index in the array of objects of the abandoned 
mutex object that satisfied the wait. 

• WAIT_TIMEOUT 

The timeout interval specified in dwTimeOut expired without the wait succeeding. 

Parameters 

Remarks 

dwTimeOut Specifies the amount of time to wait for the synchronization object to be 
available (signaled). If INFINITE, Lock will wait until the object is signaled 
before returning. 

bWaitForAIl Specifies whether all objects waited on must become signaled at the 
same time before returning. If FALSE, Lock will return when anyone of the 
objects waited on is signaled. 

dwWakeMask Specifies other conditions that are allowed to abort the wait. 
For a full list of the available options for this parameter, see 
MsgWaitForMultipleObjects in the Win32 Programmer's 
Reference. 

Call this function to gain access to one or more of the resources controlled 
by the synchronization objects supplied to the CMultiLock constructor. If 
bWaitForAli is TRUE, Lock will return successfully as soon as all the 
synchronization objects become signaled simultaneously. If bWaitForAll is 
FALSE, Lock will return as soon as one or more of the synchronization 
objects becomes signaled. 

If Lock is not able to return immediately, it will wait for no more than the 
number of milliseconds specified in the dwTimeOut parameter before returning. 
If dwTimeOut is INFINITE, Lock will not return until access to an object is 
gained or a condition specified in dwWakeMask was met. Otherwise, if Lock 
was able to acquire a synchronization object, it will return successfully; if not, 
it will return failure. 

CMultiLock: :Lock 

1069 



CMultiLock:: Unlock 

CMultiLock:: Unlock 
BOOL Unlock( ); 
BOOL Unlock( LONG lCount, LPLONG lPrevCount = NULL ); 

Return Value 
Nonzero if the function was successful; otherwise O. 

Parameters 

Remarks 

1070 

lCount Number of reference counts to release. Must be greater than O. If the 
specified amount would cause the object's count to exceed its maximum, the count 
is not changed and the function returns FALSE. 

lPrevCount Points to a variable to receive the previous count for the synchronization 
object. If NULL, the previous count is not returned. 

Releases the synchronization object owned by CMultiLock. This function is called by 
CMultiLock's destructor. 

The first form of Unlock tries to unlock the synchronization object managed by 
CMultiLock. The second form of Unlock tries to unlock the CSemaphore objects 
owned by CMultiLock. If CMultiLock does not own any locked CSemaphore 
object, the function returns FALSE; otherwise, it returns TRUE. lCount and 
lpPrevCount are exactly the same as the parameters of CSingleLock:: Unlock. 
The second form of Unlock is rarely applicable to multilock situations. 



CMutex 

An object of class CMutex represents a "mutex" -a synchronization object that 
allows one thread mutually exclusive access to a resource. Mutexes are useful when 
only one thread at a time can be allowed to modify data or some other controlled 
resource. For example, adding nodes to a linked list is a process that should only be 
allowed by one thread at a time. By using a CMutex object to control the linked list, 
only one thread at a time can gain access to the list. 

To use a CMutex object, construct the CMutex object when it is needed. Specify 
the name of the mutex you wish to wait on, and that your application should 
initially own it. You can then access the mutex when the constructor returns. Call 
CSyncObject::Unlock when you are done accessing the controlled resource. 

An alternative method for using CMutex objects is to add a variable of type CMutex 
as a data member to the class you wish to control. During construction of the 
controlled object, call the constructor of the CMutex data member specifying if the 
mutex is initially owned, the name of the mutex (if it will be used across process 
boundaries), and desired security attributes. 

To access resources controlled by CMutex objects in this manner, first create a 
variable of either type CSingleLock or type CMultiLock in your resource's access 
member function. Then call the lock object's Lock member function (for example, 
CSingleLock::Lock). At this point, your thread will either gain access to the 
resource, wait for the resource to be released and gain access, or wait for the resource 
to be released and time out, failing to gain access to the resource. In any case, your 
resource has been accessed in a thread-safe manner. To release the resource, use the 
lock object's Unlock member function (for example, CSingleLock::Unlock), or 
allow the lock object to fall out of scope. 

For more information on using CMutex objects, see the article "Multithreading: How 
to Use the Synchronization Classes" in Visual C++ Programmer's Guide online. 

#include <afxmt.h> 

CMutex 

1071 



CMutex: :CMutex 

CMutex Class Members 
Construction 

CMutex Constructs a CMutex object. 

Member Functions 
CMutex::CMutex 

CMutex( BOOL blnitiailyOwn = FALSE, LPCTSTR IpszName = NULL, 
"+ LPSECURITY _ATTRIBUTES IpsaAttribute = NULL ); 

Parameters 

Remarks 

1072 

blnitiallyOwn Specifies if the thread creating the CMutex object initially has access 
to the resource controlled by the mutex. 

IpszName Name of the CMutex object. If another mutex with the same name exists, 
IpszName must be supplied if the object will be used across process boundaries. 
If NULL, the mutex will be unnamed. If the name matches an existing mutex, the 
constructor builds a new CMutex object which references the mutex of that name. 
If the name matches an existing synchronization object that is not a mutex, the 
construction will fail. 

IpsaAttribute Security attributes for the mutex object. For a full description of this 
structure, see SECURITY_ATTRIBUTES in the Win32 Programmer's Reference. 

Constructs a named or unnamed CMutex object. To access or release a CMutex 
object, create a CMultiLock or CSingleLock object and call its Lock and Unlock 
member functions. If the CMutex object is being used stand-alone, call its Unlock 
member function to release it. 



CNotSupportedException 

CN otSupportedException 

A CNotSupportedException object represents an exception that is the result of a 
request for an unsupported feature. No further qualification is necessary or possible. 

For more information on using CNotSupportedException, see the article 
"Exceptions" in Visual C++ Programmer's Guide online. 

#include <afx.h> 

CN otSupportedException Class Members 
Construction 

CNotSupportedException Constructs a CNotSupportedException object. 

Member Functions 
CN otSupportedException: : CN otSupportedException 

Remarks 

CNotSupportedException( ); 

Constructs a CNotSupportedException object. 

Do not use this constructor directly, but rather call the global function 
AfxThrowNotSupportedException. For more information about exception 
processing, see the article "Exceptions" in Visual C++ Programmer's Guide online. 

See Also: AfxThrowNotSupportedException 

1073 



CObArray 

CObArray 

1074 

The CObArray class supports arrays of CObject pointers. These object arrays are 
similar to C arrays, but they can dynamically shrink and grow as necessary. 

Array indexes always start at position O. You can decide whether to fix the upper 
bound or allow the array to expand when you add elements past the current bound. 
Memory is allocated contiguously to the upper bound, even if some elements are null. 

Under Win32, the size of a CObArray object is limited only to available memory. 

As with a C array, the access time for a CObArray indexed element is constant and is 
independent of the array size. 

CObArray incorporates the IMPLEMENT_SERIAL macro to support serialization 
and dumping of its elements. If an array of CObject pointers is stored to an archive, 
either with the overloaded insertion operator or with the Serialize member function, 
each CObject element is, in tum, serialized along with its array index. 

If you need a dump of individual CObject elements in an array, you must set the 
depth of the CDumpContext object to I or greater. 

When a CObArray object is deleted, or when its elements are removed, only the 
CObject pointers are removed, not the objects they reference. 

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you 
do not use SetSize, adding elements to your array causes it to be frequently reallocated and 
copied. Frequent reallocation and copying are inefficient and can fragment memory. 

Array class derivation is similar to list derivation. For details on the derivation of a 
special-purpose list class, see the article "Collections" in Visual C++ Programmer's 
Guide online. 

Note You must use the IMPLEMENT_SERIAL macro in the implementation of your derived 
class if you intend to serialize the array. 

#include <afxcoll.h> 

See Also: CStringArray, CPtrArray, CByteArray, CWordArray, 
CDWordArray 



CObArray Class Members 
Construction 

CObArray 

Bounds 

GetSize 

GetUpperBound 

SetSize 

Operations 

FreeExtra 

RemoveAll 

Element Access 

GetAt 

SetAt 

ElementAt 

GetData 

Growing the Array 

SetAtGrow 

Add 

Append 

Copy 

Insertion/Removal 

InsertAt 

RemoveAt 

Operators 

operator [] 

Constructs an empty array for CObject pointers. 

Gets the number of elements in this array. 

Returns the largest valid index. 

Sets the number of elements to be contained in this array. 

Frees all unused memory above the current upper bound. 

Removes all the elements from this array. 

Returns the value at a given index. 

Sets the value for a given index; array not allowed to grow. 

Returns a temporary reference to the element pointer within the array. 

Allows access to elements in the array. Can be NULL. 

Sets the value for a given index; grows the array if necessary. 

Adds an element to the end of the array; grows the array if necessary. 

Appends another array to the array; grows the array if necessary. 

Copies another array to the array; grows the array if necessary. 

Inserts an element (or all the elements in another array) at a specified 
index. 

Removes an element at a specific index. 

Sets or gets the element at the specified index. 

CObArray 

1075 



CObArray: :Add 

Member Functions 
CObArray: :Add 

int Add( CObject* newElement); 
throw( CMemoryException ); 

Return Value 
The index of the added element. 

Parameters 

Remarks 

Example 

1.076 

newElement The CObject pointer to be added to this array. 

Adds a new element to the end of an array, growing the array by 1. If SetSize has been 
used with an nGrowBy value greater than 1, then extra memory may be allocated. 
However, the upper bound will increase by only 1. 

The following table shows other member functions that are similar to 
CObArray: :Add. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

Member Function 

int Add( BYTE newElement ); 
throw( CMemoryException); 

int Add( DWORD newElement ); 
throw( CMemoryException); 

int Add( void* newElement); 
throw( CMemoryException); 

int Add( LPCTSTR newElement ); 
throw( CMemoryException ); 

int Add( UINT newElement ); 
throw( CMemoryException); 

int Add( WORD newElement ); 
throw( CMemoryException); 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::Add 

CObArray array; 

array.Add( new CAge( 21 
array.Add( new CAge( 40 

1Iifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "Add example: 

1Iendif 

); II El ement 0 
); II Element 1 

" « &array « "\n"; 



The results from this program are as follows: 

Add example: A CObArray with 2 elements 
[0] = a CAge at $442A 21 
[1] = a CAge at $4468 40 

See Also: CObArray::SetAt, CObArray::SetAtGrow, CObArray::lnsertAt, 
CObArray: :operator [] 

CObArray: :Append 
int Append( const CObArray& src); 

Return Value 
The index of the first appended element. 

Parameters 

Remarks 

src Source of the elements to be appended to the array. 

Call this member function to add the contents of another array to the end of the given 
array. The arrays must be of the same type. 

If necessary, Append may allocate extra memory to accommodate the elements 
appended to the array. 

The following table shows other member functions that are similar to 
CObArray: :Append. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

Member Function 

int Append( const CByteArray& src); 

int Append( const CDWordArray& src); 

int Append( const CPtrArray& src ); 

int Append( const CStringArray& src ); 

int Append( const CUIntArray& src ); 

int Append( const CWordArray& src); 

See Also: CObArray::Copy 

CObArray: :Copy 
void Copy( const CObArray& src); 

Parameters 
src Source of the elements to be copied to the array. 

CObArray: :Copy 

1077 



CObArray::CObArray 

Remarks 
Call this member function to overwrite the elements of the given array with the 
elements of another array of the same type. 

Copy does not free memory; however, if necessary, Copy may allocate extra memory 
to accommodate the elements copied to the array. 

The following table shows other member functions that are similar to 
CObArray::Copy. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUlntArray 

CWordArray 

Member Function 

void Copy( const CByteArray& src); 

void Copy( const CDWordArray& src); 

void Copy( const CPtrArray& src); 

void Copy( const CStringArray& src); 

void Copy( const CUlntArray& src); 

void Copy( const CWordArray& src); 

See Also: CObArray::Append 

CObArray: :CObArray 

Remarks 

Example 

1078 

CObArray( ); 

Constructs an empty CObject pointer array. The array grows one element at a time. 

The following table shows other constructors that are similar to 
CObArray::CObArray. 

Class Constructor 

CByteArray CByteArray( ); 

CDWordArray CDWordArray( ); 

CPtrArray CPtr Array( ); 

CStringArray CStringArray( ); 

CUlntArray CUlntArray( ); 

CWordArray CWordArray( ); 

CObArray array; IIArray with default blocksize 
CObArray* pArray = new CObArray; IIArray on the heap with default blocksize 

See Also: CObList::CObList 



CObArray: :FreeExtra 

CObArray: : ElementAt 
CObject*& ElementAt( int nlndex); 

Return Value 
A reference to a CObject pointer. 

Parameters 

Remarks 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

Returns a temporary reference to the element pointer within the array. It is used to 
implement the left-side assignment operator for arrays. Note that this is an advanced 
function that should be used only to implement special array operators. 

The following table shows other member functions that are similar to 
CObArray: : ElementAt. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUlntArray 

CWordArray 

Member Function 

BYTE& ElementAt( int nlndex); 

DWORD& ElementAt( int nIndex ); 

void*& ElementAt( int nIndex); 

CString& ElementAt( int nIndex ); 

UINT& ElementAt( int nIndex); 

WORD& ElementAt( int nIndex ); 

See Also: CObArray::operator [] 

CObArray: : FreeExtra 
void FreeExtra( ); 

Remarks 
Frees any extra memory that was allocated while the array was grown. This function 
has no effect on the size or upper bound of the array. 

The following table shows other member functions that are similar to 
CObArray: :FreeExtra. 

Class Member Function 

CByteArray void FreeExtra(); 

CDWordArray void FreeExtra(); 

CPtrArray void FreeExtra( ); 

CStringArray void FreeExtra(); 

CUlntArray void FreeExtra(); 

CWordArray void FreeExtra( ); 

1079 



CObArray: :GetAt 

CObArray::GetAt 
CObject* GetAt( int nlndex ) const; 

Return Value 
The CObject pointer element currently at this index. 

Parameters 

Remarks 

Example 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

Returns the array element at the specified index. 

Note Passing a negative value or a value greater than the value returned by GetUpperBound 
will result in a failed assertion. 

The following table shows other member functions that are similar to 
CObArray: : GetAt. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

Member Function 

BYTE GetAt( int nIndex ) const; 

DWORD GetAt( int nIndex ) const; 

void* GetAt( int nIndex ) const; 

CString GetAt( int nIndex ) const; 

UINT GetAt( int nIndex) const; 

WORD GetAt( int nIndex ) const; 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::GetAt 

CObArray array; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 
ASSERT( *(CAge*) array.GetAt( 0 ) == CAge( 21 ) ); 

See Also: CObArray: :SetAt, CObArray: :operator [] 

CObArray: : GetData 
const CObject** GetData( ) const; 
CObject** GetData( ); 

Return Value 
A pointer to the array of CObject pointers. 

1080 



Remarks 
Use this member function to gain direct access to the elements in the array. If no 
elements are available, GetData returns a null value. 

While direct access to the elements of an array can help you work more quickly, use 
caution when calling GetData; any errors you make directly affect the elements of 
your array. 

The following table shows other member functions that are similar to 
CObArray: :GetData. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUlntArray 

CWordArray 

Member Function 

const BYTE* GetData( ) const; 
BYTE* GetData( ); 

const DWORD* GetData( ) const; 
DWORD* GetData( ); 

const void** GetData() const; 
void** GetData(); 

const CString* GetData( ) const; 
CString* GetData( ); 

const UINT* GetData( ) const; 
UINT* GetData( ); 

const WORD* GetData( ) const; 
WORD* GetData(); 

See Also: CObArray::GetAt, CObArray::SetAt, CObArray::ElementAt 

CObArray: :GetSize 

Remarks 

int GetSize( ) const; 

Returns the size of the array. Since indexes are zero-based, the size is 1 greater than 
the largest index. 

The following table shows other member functions that are similar to 
CObArray: :GetSize. 

Class Member Function 

CByteArray int GetSize( ) const; 

CDWordArray int GetSize( ) const; 

CPtrArray int GetSize( ) const; 

CStringArray int GetSize( ) const; 

CUlntArray int GetSize( ) const; 

CWordArray int GetSize( ) const; 

See Also: CObArray::GetUpperBound, CObArray::SetSize 

CObArray::GetSize 

1081 



CObArray: : GetUpperBound 

CObArray: : GetUpperBound 
int GetUpperBound( ) const; 

Return Value 

Remarks 

Example 

The index of the upper bound (zero-based). 

Returns the current upper bound of this array. Because array indexes are zero-based, 
this function returns a value 1 less than GetSize. 

The condition GetUpperBound() = -1 indicates that the array contains no elements. 

The following table shows other member functions that are similar to 
CObArray::GetUpperBound. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUlntArray 

CWordArray 

Member Function 

int GetUpperBound() const; 

int GetUpperBound( ) const; 

int GetUpperBound( ) const; 

int GetUpperBound( ) const; 

int GetUpperBound( ) const; 

int GetUpperBound( ) const; 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::GetUpperBound 

CObArray array; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 
ASSERT( array.GetUpperBound() == 1 ); II Largest index 

See Also: CObArray: :GetSize, CObArray: :SetSize 

CObArray: : InsertAt 
void InsertAt( int nlndex, CObject* newElement, int nCount = 1 ); 

throw( CMemoryException); 
void InsertAt( int nStartIndex, CObArray* pNewArray ); 

throw( CMemoryException); 

Parameters 

1082 

nlndex An integer index that may be greater than the value returned by 
GetUpperBound. 



Remarks 

newElement The CObject pointer to be placed in this array. A newElement of 
value NULL is allowed. 

nCoullt The number of times this element should be inserted (defaults to 1). 

nStartlndex An integer index that may be greater than the value returned by 
GetUpperBound. 

pNewArray Another array that contains elements to be added to this array. 

The first version of InsertAt inserts one element (or multiple copies of an element) at 
a specified index in an array. In the process, it shifts up (by incrementing the index) 
the existing element at this index, and it shifts up all the elements above it. 

The second version inserts all the elements from another CObArray collection, 
starting at the nStartlndex position. 

The SetAt function, in contrast, replaces one specified array element and does not 
shift any elements. 

The following table shows other member functions that are similar to 
CObArray: :InsertAt. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

Member Function 

void InsertAt( int nlndex, BYTE newElement, int nCount = 1 ); 
throw( CMemoryException); 

void InsertAt( int nStartIndex, CByteArray* pNewArray ); 
throw( CMemoryException); 

void InsertAt( int nlndex, DWORD newElement, int nCoul1t = 1 ); 
throw( CMemoryException); 

void InsertAt( int nStartIndex, CDWordArray* pNewArray); 
throw( CMemoryException); 

void InsertAt( int nlndex, void* newElement, int nCount = 1 ); 
throw( CMemoryException); 

void InsertAt( int nStartIndex, CPtrArray* pNewArray ); 
throw( CMemoryException); 

void InsertAt( int nlndex, LPCTSTR newElement, int nCount = 1 ); 
throw( CMemory Exception ); 

void InsertAt( int nStartIndex, CStringArray* pNewArray ); 
throw( CMemoryException); 

void InsertAt( int nlndex, UINT newElement, int nCount = 1 ); 
throw( CMemoryException); 

void InsertAt( int nStartIndex, CUIntArray* pNewArray ); 
throw( CMemoryException); 

void InsertAt( int nlndex, WORD newElement, int nCount = 1 ); 
throw( CMemoryException); 

void InsertAt( int nStartIndex, CWordArray* pNewArray); 
throw( CMemoryException); 

CObArray: :InsertAt 

1083 



CObArray: : RemoveAll 

Example 
See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::lnsertAt 

CObArray array; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 (will become 2). 
array.lnsertAt( 1. new CAge( 30 »; II New element 1 

#ifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "InsertAt example: " « &array « "\n"; 

#endif 

The results from this program are as follows: 

InsertAt example: A CObArray with 3 elements 
[0] a CAge at $45C8 21 
[1] = a CAge at $4646 30 
[2] = a CAge at $4606 40 

See Also: CObArray: :SetAt, CObArray: :RemoveAt 

CObArray: : RemoveAll 

Remarks 

Example 

1084 

void RemoveAll(); 

Removes all the pointers from this array but does not actually delete the CObject 
objects. If the array is already empty, the function still works. 

The RemoveAll function frees all memory used for pointer storage. 

The following table shows other member functions that are similar to 
CObArray: :RemoveAll. 

Class Member Function 

CByteArray void RemoveAlI( ); 

CDWordArray void RemoveAlI( ); 

CPtrArray void RemoveAlI( ); 

CStringArray void RemoveAlI( ); 

CUlntArray void RemoveAlI( ); 

CWordArray void RemoveAlI( ); 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::RemoveAll 



CObArray: :RemoveAt 

CObArray array; 
CAge* pal; 
CAge* pa2; 

array.Add( pal = new CAge( 21 ) ); II Element 0 
array.Add( pa2 = new CAge( 40 ) ); II Element 1 
ASSERT( array.GetSize() == 2 ); 
array.RemoveAll(); II Pointers removed but objects not deleted. 
ASSERT( array.GetSize() == 0 ); 
delete pal; 
delete pa2; II Cleans up memory. 

CObArray: : RemoveAt 
void RemoveAt( int nlndex, int nCount = 1 ); 

Parameters 

Remarks 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

nCount The number of elements to remove. 

Removes one or more elements starting at a specified index in an array. In the process, 
it shifts down all the elements above the removed element(s). It decrements the upper 
bound of the array but does not free memory. 

If you try to remove more elements than are contained in the array above the removal 
point, then the Debug version of the library asserts. 

The RemoveAt function removes the CObject pointer from the array, but it does not 
delete the object itself. 

The following table shows other member functions that are similar to 
CObArray: : RemoveAt. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUlntArray 

CWordArray 

Member Function 

void RemoveAt( int nlndex, int nCount = 1 ); 

void RemoveAt( int nlndex, int nCount = 1 ); 

void RemoveAt( int nlndex, int nCoullt = 1 ); 

void RemoveAt( int nlndex, int nCounf = 1 ); 

void RemoveAt( int nlndex, int nCount = 1 ); 

void RemoveAt( int nlndex, int nCount = 1 ); 

1085 



CObArray: :SetAt 

Example 
See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::RemoveAt 

CObArray array; 
CObject* pa; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 
if( ( pa = array.GetAt( 0 ) ) != NULL) 
( 

} 

array.RemoveAt( 0); II Element 1 moves to 0. 
delete pa; II Delete the original element at 0. 

4Fifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "RemoveAt exampl e: " « &a rray « "\n"; 

4Fendif 

The results from this program are as follows: 

RemoveAt example: A CObArray with 1 elements 
[0] = a CAge at $4606 40 

See Also: CObArray::SetAt, CObArray::SetAtGrow, CObArray::lnsertAt 

CObArray::SetAt 
void SetAt( int nlndex, CObject* newElement ); 

Parameters 

Remarks 

1086 

nlndex An integer index that is greater than or equal to 0 and less than or equal to the 
value returned by GetUpperBound. 

newElement The object pointer to be inserted in this array. A NULL value is 
allowed. 

Sets the array element at the specified index. SetAt will not cause the array to grow. 
Use SetAtGrow if you want the array to grow automatically. 

You must ensure that your index value represents a valid position in the array. If it is 
out of bounds, then the Debug version of the library asserts. 

The following table shows other member functions that are similar to 
CObArray: :SetAt. 

Class 

CByteArray 

CDWordArray 

Member Function 

void SetAt( int nlndex, BYTE newElement ); 

void SetAt( int nlndex, DWORD newElement ); 



CObArray::SetAtGrow 

Example 

(continued) 

Class 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

Member Function 

void SetAt( int nlndex, void* newElement); 

void SetAt( int nlndex, LPCTSTR newElement); 

void SetAt( int nlndex, UINT newElement); 

void SetAt( int nlndex, WORD newElement); 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::SetAt 

CObArray array; 
CObject* pa; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 
if( ( pa = array.GetAt( 0 ) ) != NULL) 
{ 

} 

array.SetAt( 0, new CAge( 30 »; II Replace element 0. 
delete pa; II Delete the original element at 0. 

#ifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "SetAt example: " « &array « "\n"; 

#endif 

The results from this program are as follows: 

SetAt example: A CObArray with 2 elements 
[0J = a CAge at $47E0 30 
[1J = a CAge at $47A0 40 

See Also: CObArray::GetAt, CObArray::SetAtGrow, CObArray::ElementAt, 
CObArray: :operator [] 

CObArray:: SetAtGrow 
void SetAtGrow( int nlndex, CObject* newElement ); 

throw( CMemoryException); 

Parameters 

Remarks 

nlndex An integer index that is greater than or equal to O. 

newElement The object pointer to be added to this array. A NULL value is allowed. 

Sets the array element at the specified index. The array grows automatically if 
necessary (that is, the upper bound is adjusted to accommodate the new element). 

1087 



CObArray: :SetAtGrow 

Example 

1088 

The following table shows other member functions that are similar to 
CObArray: :SetAtGrow. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

Member Function 

void SetAtGrow( int nlndex, BYTE newElement ); 
throw( CMernoryException); 

void SetAtGrow( int nlndex, DWORD newElement ); 
throw( CMernoryException); 

void SetAtGrow( int nlndex, void* newElement); 
throw( CMernoryException); 

void SetAtGrow( int nlndex, LPCTSTR newElement ); 
throw( CMernoryException); 

void SetAtGrow( int nlndex, UINT newElement ); 
throw( CMcrnoryException); 

void SetAtGrow( int nlndex, WORD newElement ); 
throw( CMernoryException); 

See CObList::CObList for a listing of the CAge class used in all collection 
examples. 

II example for CObArray::SetAtGrow 

CObArray array; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 
array.SetAtGrow( 3. new CAge( 65 ) ); II Element 2 deliberately 

II skipped. 
flifdef _DEBUG 

afxDump.SetDepth( 1 ); 
afxDump « "SetAtGrow example: " « &array « "\n"; 

flendif 

The results from this program are as follows: 

SetAtGrow example: A CObArray with 4 elements 
[0] = a CAge at $47C0 21 
[1] a CAge at $4800 40 
[2] NULL 
[3] a CAge at $4840 65 

See Also: CObArray::GetAt, CObArray::SetAt, CObArray::ElementAt, 
CObArray: :operator [] 



CObArray: :SetSize 
void SetSize( int nNewSize, int nGrowBy = -1 ); 

throw( CMemoryException); 

Parameters 

Remarks 

nNewSize The new array size (number of elements). Must be greater than or 
equal to O. 

nGrowBy The minimum number of element slots to allocate if a size increase is 
necessary. 

Establishes the size of an empty or existing array; allocates memory if necessary. If 
the new size is smaller than the old size, then the array is truncated and all unused 
memory is released. For efficiency, call SetSize to set the size of the array before 
using it. This prevents the need to reallocate and copy the array each time an item 
is added. 

The nGrowBy parameter affects internal memory allocation while the array is 
growing. Its use never affects the array size as reported by GetSize and 
GetUpperBound. 

The following table shows other member functions that are similar to 
CObArray:: SetSize. 

Class 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUlntArray 

CWordArray 

Member Function 

void SetSize( int IlNewSize, int IlGrowBy = -1 ); 
throw( CMemoryException ); 

void SetSize( int nNewSize, int nGrowBy = -1 ); 
throw( CMemoryException ); 

void SetSize( int nNewSize, int nGrowBy = -1 ); 
throw( CMemoryException ); 

void SetSize( int nNewSize, int nGrowBy = -1 ); 
throw( CMemoryException); 

void SetSize( int nNewSize, int nGrowBy = -1 ); 
throw( CMemoryException ); 

void SetSize( int nNewSize, int nGrowBy = -1 ); 
throw( CMemoryException); 

CObArray: :SetSize 

1089 



CObArray: :operator [ ] 

Operators 
CObArray::operator [ ] 

Remarks 

Example 

1090 

CObject*& operator []( int nlndex); 
CObject* operator []( int nlndex ) const; 

These subscript operators are a convenient substitute for the SetAt and GetAt functions. 

The first operator, called for arrays that are not const, may be used on either the right 
(r-value) or the left (I-value) of an assignment statement. The second, called for const 
arrays, may be used only on the right. 

The Debug version of the library asserts if the subscript (either on the left or right side 
of an assignment statement) is out of bounds. 

The following table shows other operators that are similar to CObArray::operator []. 

Class Operator 

CByteArray 

CDWordArray 

CPtrArray 

CStringArray 

CUIntArray 

CWordArray 

BYTE& operator []( int nlndex ); 
BYTE operator []( int nlndex ) const; 

DWORD& operator []( int nlndex ); 
DWORD operator []( int nlndex) const; 

void*& operator []( int nlndex); 
void* operator []( int nlndex ) const; 

CString& operator []( int nlndex ); 
CString operator []( int nlndex ) const; 

UINT& operator []( int nlndex); 
UINT operator []( int nlndex ) const; 

WORD& operator []( int nlndex ); 
WORD operator []( int nlndex ) const; 

See CObList::CObList for a listing of the CAge class used in all collection examples. 

II example for CObArray::operator [] 

CObArray array; 
CAge* pa; 

array.Add( new CAge( 21 ) ); II Element 0 
array.Add( new CAge( 40 ) ); II Element 1 
pa = (CAge*)array[0]; II Get element 0 
ASSERT( *pa == CAge( 21 ) ); II Get element 0 
array[0] = new CAge( 30); II Replace element 0 
delete pa; 
ASSERT( *(CAge*) array[0] == CAge( 30 ) ); II Get new element 0 

See Also: CObArray::GetAt, CObArray::SetAt 



CObject 
CObject is the principal base class for the Microsoft Foundation Class Library. 
It serves as the root not only for library classes such as CFile and CObList, but 
also for the classes that you write. CObject provides basic services, including 

• Serialization support 

• Run-time class information 

• Object diagnostic output 

• Compatibility with collection classes 

Note that CObject does not support multiple inheritance. Your derived classes 
can have only one CObject base class, and that CObject must be leftmost in the 
hierarchy. It is permissible, however, to have structures and non-CObject-derived 
classes in right-hand multiple-inheritance branches. 

You will realize major benefits from CObject derivation if you use some of the 
optional macros in your class implementation and declarations. 

The first-level macros, DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC, 
permit run-time access to the class name and its position in the hierarchy. This, in turn, 
allows meaningful diagnostic dumping. 

The second-level macros, DECLARE_SERIAL and IMPLEMENT_SERIAL, 
include all the functionality of the first-level macros, and they enable an object to be 
"serialized" to and from an "archive." 

For information about deriving Microsoft Foundation classes and C++ classes in 
general and using CObject, see "CObject Class Topics" and "Serialization (Object 
Persistence)" in Visual C++ Programmer's Guide online. 

#include <afx.h> 

CObject Class Members 
Construction 

CObject 

CObject 

operator new 

operator delete 

operator = 

Diagnostics 

Assert Valid 

Dump 

Default constructor. 

Copy constructor. 

Special new operator. 

Special delete operator. 

Assignment operator. 

Validates this object's integrity. 

Produces a diagnostic dump of this object. 

CObject 

1091 



CObject: :AssertValid 

Serialization 

IsSerializable 

Serialize 

Miscellaneous 

GetRuntimeClass 

IsKindOf 

Tests to see whether this object can be serialized. 

Loads or stores an object from/to an archive. 

Returns the CRuntimeClass structure corresponding to this 
object's class. 

Tests this object's relationship to a given class. 

Member Functions 
CObject: :Assert Valid 

Remarks 

Example 

1092 

virtual void AssertValid( ) const; 

AssertValid performs a validity check on this object by checking its internal state. 
In the Debug version of the library, AssertValid may assert and thus terminate the 
program with a message that lists the line number and filename where the assertion 
failed. 

When you write your own class, you should override the AssertValid function to 
provide diagnostic services for yourself and other users of your class. The overridden 
AssertValid usually calls the AssertValid function of its base class before checking 
data members unique to the derived class. 

Because AssertValid is a const function, you are not permitted to change the object 
state during the test. Your own derived class AssertValid functions should not throw 
exceptions but rather should assert whether they detect invalid object data. 

The definition of "validity" depends on the object's class. As a rule, the function 
should perform a "shallow check." That is, if an object contains pointers to other 
objects, it should check to see whether the pointers are not null, but it should not 
perform validity testing on the objects referred to by the pointers. 

See CObList::CObList for a listing of the CAge class used in all CObject examples. 

II example for CObject::AssertValid 
void CAge::AssertValid() canst 
{ 

CObject::AssertValid(); 
ASSERT( m-years > 0 ); 
ASSERT( m_years < 105 ); 



CObject::CObject 
CObject( ); 
CObject( constCObject& objeetSre ); 

Parameters 

Remarks 

objeetSre A reference to another Cobject 

These functions are the standard CObject constructors. The default version is 
automatically called by the constructor of your derived class. 

If your class is serializable (it incorporates the IMPLEMENT_SERIAL macro), 
then you must have a default constructor (a constructor with no arguments) in your 
class declaration. If you do not need a default constructor, declare a private or 
protected "empty" constructor. For more information, see "CObject Class Topics" 
in Visual C++ Programmer's Guide online. 

The standard C++ default class copy constructor does a member-by-member copy. 
The presence of the private CObject copy constructor guarantees a compiler error 
message if the copy constructor of your class is needed but not available. You must 
therefore provide a copy constructor if your class requires this capability. 

CObject::Dump 
virtual void Dump( CDumpContext& de ) const; 

Parameters 

Remarks 

de The diagnostic dump context for dumping, usually afxDump. 

Dumps the contents of your object to a CDumpContext object. 

When you write your own class, you should override the Dump function to provide 
diagnostic services for yourself and other users of your class. The overridden Dump 
usually calls the Dump function of its base class before printing data members unique 
to the derived class. CObject::Dump prints the class name if your class uses the 
IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro. 

Note Your Dump function should not print a newline character at the end of its output. 

Dump calls make sense only in the Debug version of the Microsoft Foundation Class 
Library. You should bracket calls, function declarations, and function implementations 
with #ifdef _DEBUG/#endif statements for conditional compilation. 

Since Dump is a const function, you are not permitted to change the object state 
during the dump. 

CObject: :Dump 

1093 



CObject: :GetRuntimeClass 

Example 

The CDumpContext insertion «<) operator calls Dump when a CObject pointer 
is inserted. 

Dump permits only "acyclic" dumping of objects. You can dump a list of objects, 
for example, but if one of the objects is the list itself, you will eventually overflow 
the stack. 

See CObList::CObList for a listing of the CAge class used in all CObject examples. 

II example for CObject::Dump 
void CAge::Dump( CDumpContext &dc ) const 

{ 

CObject::Dump( de ); 
de « "Age = " « m-years; 
} 

CObject::GetRuntimeClass 
virtual CRuntimeClass* GetRuntimeClass( ) const; 

Return Value 

Remarks 

1094 

A pointer to the CRuntimeClass structure corresponding to this object's class; 
never NULL. 

There is one CRuntimeClass structure for each CObject-derived class. The structure 
members are as follows: 

• LPCSTR m_IpszClassName A null-terminated string containing the ASCII class 
name. 

• int m_nObjectSize The size of the object, in bytes. If the object has data 
members that point to allocated memory, the size of that memory is not included. 

• UINT m_ wSchema The schema number (-1 for nonserializable classes). See the 
IMPLEMENT_SERIAL macro for a description of schema number. 

• CObject* ( PASCAL* m_pfnCreateObject )() A function pointer to the default 
constructor that creates an object of your class (valid only if the class supports 
dynamic creation; otherwise, returns NULL). 

• CRuntimeClass* (PASCAL* m_pfn_GetBaseClass)() If your application is 
dynamically linked to the AFXDLL version of MFC, a pointer to a function that 
returns the CRuntimeClass structure of the base class. 

• CRuntimeClass* m_pBaseClass If your application is statically linked to MFC, 
a pointer to the CRuntimeClass structure of the base class. 

Feature Only in Professional and Enterprise Editions Static linking to MFC is supported 
only in Visual C++ Professional and Enterprise Editions. For more information, see "Visual C++ 
Editions" online. 



CObject: :IsSerializable 

Example 

This function requires use of the IMPLEMENT_DYNAMIC or 
IMPLEMENT_SERIAL macro in the class implementation. You will get 
incorrect results otherwise. 

See CObList::CObList for a listing of the CAge class used in all CObject examples. 

II example for CObject::GetRuntimeClass 
CAge a(21): 
CRuntimeClass* prt ~ a.GetRuntimeClass(): 
ASSERT< strcmp( prt->m_lpszClassName. "CAge" == 0 ): 

See Also: CObject::IsKindOf, RUNTIME_CLASS 

CObject: :IsKindOf 
BOOL IsKindOf( const CRuntimeClass* pClass ) const; 

Return Value 
Nonzero if the object corresponds to the class; otherwise O. 

Parameters 

Remarks 

Example 

pClass A pointer to a CRuntimeClass structure associated with your 
CObject-derived class. 

Tests pClass to see if (1) it is an object of the specified class or (2) it is an object of a 
class derived from the specified class. This function works only for classes declared 
with the DECLARE_DYNAMIC or DECLARE_SERIAL macro. 

Do not use this function extensively because it defeats the C++ polymorphism feature. 
Use virtual functions instead. 

See CObList::CObList for a listing of the CAge class used in all CObject examples. 

II example for CObject::IsKindOf 
CAge a(21): II Must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL 
ASSERT( a.IsKindOf( RUNTIME_CLASS( CAge) ) ): 
ASSERT( a.IsKindOf( RUNTIME_CLASS( CObject ) ) ): 

See Also: CObject::GetRuntimeClass, RUNTIME_CLASS, CObject Class: 
Accessing Run-Time Class Information 

CObject: : IsSerializable 
BOOL IsSerializable( ) const; 

Return Value 
Nonzero if this object can be serialized; otherwise O. 

1095 



CObject: :Serialize 

Remarks 

Example 

Tests whether this object is eligible for serialization. For a class to be serializable, its 
declaration must contain the DECLARE_SERIAL macro, and the implementation 
must contain the IMPLEMENT_SERIAL macro. 

Note Do not override this function. 

See CObList::CObList for a listing of the CAge class used in all CObject examples. 

II example for CObject::IsSerializable 
CAge a(21); 
ASSERT( a.IsSerializable() ); 

See Also: CObject::Serialize 

CObj ect: : Serialize 
virtual void Serialize( CArchive& ar); 

throw( CMemoryException); 
throw( CArchiveException); 
throw( CFiIeException); 

Parameters 

Remarks 

Example 

1096 

ar A CArchive object to serialize to or from. 

Reads or writes this object from or to an archive. 

You must override Serialize for each class that you intend to serialize. The overridden 
Serialize must first call the Serialize function of its base class. 

You must also use the DECLARE_SERIAL macro in your class declaration, and you 
must use the IMPLEMENT_SERIAL macro in the implementation. 

Use CArchive::IsLoading or CArchive::IsStoring to determine whether the archive 
is loading or storing. 

Serialize is called by CArchive::ReadObject and CArchive::WriteObject. These 
functions are associated with the CArchive insertion operator «<) and extraction 
operator (»). 

For serialization examples, see the article "Serialization (Object Persistence)" in 
Visual C++ Programmer's Guide online. 

See CObList::CObList for a listing of the CAge class used in all CObject examples. 

II example for CObject::Serialize 
void CAge::Serialize( CArchive& ar ) 

{ 



CObject::operator new 

CObject::Serialize( ar ): 
if( ar.IsStoring() ) 
a r « m-y ear s : 
else 
a r » m-ye a r s : 

Operators 
CObject: : operator 

Remarks 

void operator =( eonst CObjeet& src ); 

The standard C++ default class assignment behavior is a member-by-member copy. 
The presence of this private assignment operator guarantees a compiler error message 
if you assign without the overridden operator. You must therefore provide an 
assignment operator in your derived class if you intend to assign objects of your 
derived class. 

CObj ect: : operator delete 

Remarks 

void operator delete( void* p ); 

For the Release version of the library, operator delete simply frees the memory 
allocated by operator new. In the Debug version, operator delete participates in an 
allocation-monitoring scheme designed to detect memory leaks. If you override 
operators new and delete, you forfeit the diagnostic capability. 

See Also: CObjeet: :operator new 

CObject::operator new 

Remarks 

void* operator new( size_t nSize ); 
throw( CMemoryExeeption); 

void* operator new( size_t nSize, LPCSTR lpszFileName, int nLine ); 
throw( CMemoryExeeption); 

For the Release version of the library, operator new performs an optimal memory 
allocation in a manner similar to malloe. In the Debug version, operator new 
participates in an allocation-monitoring scheme designed to detect memory leaks. 

If you use the code line 

1097 



CObject::operator new 

1098 

#define new DEBUG_NEW 

before any of your implementations in a .CPP file, then the second version of new 
will be used, storing the filename and line number in the allocated block for later 
reporting. You do not have to worry about supplying the extra parameters; a macro 
takes care of that for you. 

Even if you do not use DEBUG_NEW in Debug mode, you still get leak detection, 
but without the source-file line-number reporting described above. 

Note If you override this operator, you must also override delete. Do not use the standard 
library _new_handler function. 

See Also: CObject::operator delete 



CObList 
I cObject h Iq COb List 

! h 
The CObList class supports ordered lists of nonunique CObject pointers accessible 
sequentially or by pointer value. COb List lists behave like doubly-linked lists. 

A variable of type POSITION is a key for the list. You can use a POSITION 
variable both as an iterator to traverse a list sequentially and as a bookmark to hold 
a place. A position is not the same as an index, however. 

Element insertion is very fast at the list head, at the tail, and at a known POSITION. 
A sequential search is necessary to look up an element by value or index. This search 
can be slow if the list is long. 

CObList incorporates the IMPLEMENT_SERIAL macro to support serialization 
and dumping of its elements. If a list of CObject pointers is stored to an archive, 
either with an overloaded insertion operator or with the Serialize member function, 
each CObject element is serialized in turn. 

If you need a dump of individual CObject elements in the list, you must set the depth 
of the dump context to 1 or greater. 

When a CObList object is deleted, or when its elements are removed, only the 
CObject pointers are removed, not the objects they reference. 

You can derive your own classes from COb List. Your new list class, designed to hold 
pointers to objects derived from CObject, adds new data members and new member 
functions. Note that the resulting list is not strictly type safe, because it allows 
insertion of any CObject pointer. 

Note You must use the IMPLEMENT_SERIAL macro in the implementation of your derived 
class if you intend to serialize the list. 

For more information on using CObList, see the article "Collections" in Visual C++ 
Programmer's Guide online. 

#include <afxcoll.h> 

See Also: CStringList, CPtrList 

CObList 

1099 



CObList 

CObList Class Members 

1100 

Construction 

CObList 

HeadfTaii Access 

GetHead 

GetTail 

Operations 

RemoveHead 

RemoveTail 

AddHead 

AddTail 

RemoveAll 

Iteration 

GetHeadPosition 

GetTailPosition 

GetNext 

GetPrev 

Retrieval/Modification 

GetAt 

SetAt 

RemoveAt 

Insertion 

InsertBefore 

InsertAfter 

Searching 

Find 

Findlndex 

Status 

GetCount 

IsEmpty 

Constructs an empty list for CObject pointers. 

Returns the head element of the list (cannot be empty). 

Returns the tail element of the list (cannot be empty). 

Removes the element from the head of the list. 

Removes the element from the tail of the list. 

Adds an element (or all the elements in another list) to the head of 
the list (makes a new head). 

Adds an element (or all the elements in another list) to the tail of 
the list (makes a new tail). 

Removes all the elements from this list. 

Returns the position of the head element of the list. 

Returns the position of the tail element of the list. 

Gets the next element for iterating. 

Gets the previous element for iterating. 

Gets the element at a given position. 

Sets the element at a given position. 

Removes an element from this list, specified by position. 

Inserts a new element before a given position. 

Inserts a new element after a given position. 

Gets the position of an element specified by pointer value. 

Gets the position of an element specified by a zero-based index. 

Returns the number of elements in this list. 

Tests for the empty list condition (no elements). 



Member Functions 
CObList: : AddHead 

POSITION AddHead( CObject* newElement ); 
throw( CMemory Exception); 

void AddHead( CObList* pNewList ); 
throw( CMemoryException); 

Return Value 
The first version returns the POSITION value of the newly inserted element. 

Parameters 

Remarks 

Example 

newElement The CObject pointer to be added to this list. 

pNewList A pointer to another CObList list. The elements in pNewList will be added 
to this list. 

Adds a new element or list of elements to the head of this list. The list can be empty 
before the operation. 

CObList list; 
list.AddHead( new CAge( 21 ); II 21 is now at head. 
list.AddHead( new CAge( 40 ); II 40 replaces 21 at head. 

#ifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "AddHead example: " « &list « "\n"; 

#endif 

The results from this program are as follows: 

AddHead example: A CObList with 2 elements 
a CAge at $44A8 40 
a CAge at $442A 21 

See Also: CObList::GetHead, CObList::RemoveHead 

CObList: : AddTail 
POSITION AddTail( CObject* newElement ); 

throw( CMemoryException); 
void AddTail( CObList* pNewList); 

throw( CMemoryException); 

Return Value 
The first version returns the POSITION value of the newly inserted element. 

CObList: : AddTail 

1101 



CObList: :CObList 

Parameters 

Remarks 

Example 

newElement The CObject pointer to be added to this list. 

pNewList A pointer to another CObList list. The elements in pNewList will be added 
to this list. 

Adds a new element or list of elements to the tail of this list. The list can be empty 
before the operation. 

CObList list; 
list.AddTail( new CAge( 21 ); 
list.AddTail( new CAge( 40 ); II List now contains (21, 40). 

#ifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "AddTail example: " « &list « "\n"; 

#endif 

The results from this program are as follows: 

AddTail example: A CObList with 2 elements 
a CAge at $444A 21 
a CAge at $4526 40 

See Also: CObList::GetTail, CObList::RemoveTail 

CObList: :CObList 
CObList( int nBlockSize = 10); 

Parameters 

Remarks 

Example 

1102 

nBlockSize The memory-allocation granularity for extending the list. 

Constructs an empty CObject pointer list. As the list grows, memory is allocated in 
units of nBlockSize entries. If a memory allocation fails, a CMemoryException is 
thrown. 

Below is a listing of the CObject-derived class CAge used in all the collection 
examples: 

II Simple CObject-derived class for CObList examples 
class CAge: public CObject 
{ 

DECLARE_SERIAL( CAge ) 
private: 

int m-years; 
public: 

CAge() { m-years = 0; } 
CAge( int age) {m-years age;} 



CAge( const CAge& a ) { m-years = a.m-years; } II Copy constructor 
void Serialize( CArchive& ar); 
void AssertValid() const; 
const CAge& aperator=( canst CAge& a ) 
{ 

m-years = a.m-years; return *this; 
} 

BOOl operator==(CAge a) 
{ 

return m-years a. m-yea rs; 
} 

#ifdef _DEBUG 
void Dump( CDumpContext& dc ) canst 
( 

CObject::Dump( dc ); 
dc « m-yea rs ; 

} 

#endif 
} ; 

Below is an example of CObList constructor usage: 

COblist list( 20); II list an the stack with blacksize = 20. 

COblist* plist = new COblist; II list an the heap with default 
II blocksize. 

CObList: :Find 
POSITION Find( CObject* search Value, POSITION startAfter = NULL) const; 

Return Value 
A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
the object is not found. 

Parameters 

Remarks 

Example 

search Value The object pointer to be found in this list. 

startAfter The start position for the search. 

Searches the list sequentially to find the first CObject pointer matching the specified 
CObject pointer. Note that the pointer values are compared, not the contents of the 
objects. 

COblist list; 
CAge* pal; 
CAge* pa2; 
POSITION pas; 
list.AddHead( pal = new CAge( 21 ) ); 
list.AddHead( pa2 = new CAge( 40 ) ); 
if( ( pas = list.Find( pal) ) 1= NUll 

II list naw contains (40, 21). 
II Hunt for pal 

CObList::Find 

1103 



CObList: :FindIndex 

II starting at head by default. 
ASSERT( *(CAge*) list.GetAt( pos ) == CAge( 21 ) ); 

See Also: CObList::GetNext, CObList::GetPrev 

CObList: : FindIndex 
POSITION FindIndex( int nlndex ) const; 

Return Value 
A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
nlndex is too large. (The framework generates an assertion if nlndex is negative.) 

Parameters 

Remarks 

Example 

nlndex The zero-based index of the list element to be found. 

Uses the value of nlndex as an index into the list. It starts a sequential scan from the 
head of the list, stopping on the nth element. 

CObList list; 
POSITION pos; 

list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40, 21). 
if( ( pos = list.FindIndex( 0 )) != NULL) 
{ 

ASSERT( *(CAge*) list.GetAt( pos ) == CAge( 40 ) ); 

See Also: CObList::Find, CObList::GetNext, CObList::GetPrev 

CObList: : GetAt 
CObject*& GetAt( POSITION position ); 
CObject* GetAt( POSITION position) const; 

Return Value 
See the return value description for GetHead. 

Parameters 

1104 

position A POSITION value returned by a previous GetHeadPosition or Find 
member function call. 



Remarks 

Example 

A variable of type POSITION is a key for the list. It is not the same as an index, and 
you cannot operate on a POSITION value yourself. GetAt retrieves the CObject 
pointer associated with a given position. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

See the example for FindIndex. 

See Also: CObList: :Find, CObList: :SetAt, CObList: :GetN ext, 
CObList::GetPrev, CObList::GetHead 

CObList: : GetCount 
int GetCount( ) const; 

Return Value 
An integer value containing the element count. 

Remarks 
Gets the number of elements in this list. 

Example 
CObList list; 

list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40. 21). 
ASSERT( list.GetCount() 2); 

See Also: CObList: : IsEmpty 

CObList: : GetHead 
CObject*& GetHead( ); 
CObject* GetHead( ) const; 

Return Value 
If the list is accessed through a pointer to a const CObList, then GetHead returns 
a CObject pointer. This allows the function to be used only on the right side of an 
assignment statement and thus protects the list from modification. 

If the list is accessed directly or through a pointer to a CObList, then GetHead 
returns a reference to a CObject pointer. This allows the function to be used on either 
side of an assignment statement and thus allows the list entries to be modified. 

CObList: :GetHead 

1105 



CObList: :GetHeadPosition 

Remarks 

Example 

Gets the CObject pointer that represents the head element of this 
list. 

You must ensure that the list is not empty before calling GetHead. 
If the list is empty, then the Debug version of the Microsoft Foundation 
Class Library asserts. Use IsEmpty to verify that the list contains 
elements. 

The following example illustrates the use of GetHead on the left side of an 
assignment statement. 

canst CObList* cplist; 

CObList* plist = new CObList; 
CAge* pagel = new CAge( 21 ); 
CAge* page2 = new CAge( 30 ); 
CAge* page3 = new CAge( 40 ); 
plist->AddHead( pagel ); 
plist->AddHead( page2); II List now contains (30. 21). 
II The following statement REPLACES the head element. 
plist->GetHead() = page3; II List now contains (40. 21). 
ASSERT( *(CAge*) plist->GetHead() == CAge( 40 ) ); 
cplist = plist; II cplist is a pointer to a canst list. 
cplist->GetHead() = page3; II Error: can't assign a pointer to a canst list 
ASSERT( *(CAge*) plist->GetHead() == CAge( 40 ) ); II OK 

delete pagel; 
delete page2; 
delete page3; 
delete plist; II Cleans up memory. 

See Also: CObList::GetTaiI, CObList::GetTaiIPosition, CObList::AddHead, 
CObList: :RemoveHead 

CObList:: GetHeadPosition 
POSITION GetHeadPosition( ) const; 

Return Value 

Remarks 

1106 

A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
the list is empty. 

Gets the position of the head element of this list. 



Example 
CObList list; 
POSITION pos; 

list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40, 21). 
if( ( pos = list.GetHeadPosition() ) != NULL) 
{ 

ASSERT( *(CAge*) list.GetAt( pos ) == CAge( 40 ) ); 

See Also: CObList::GetTailPosition 

CObList: : GetN ext 
CObject*& GetNext( POSITION& rPosition ); 
CObject* GetNext( POSITION& rPosition ) const; 

Return Value 
See the return value description for GetHead. 

Parameters 

Remarks 

Example 

rPosition A reference to a POSITION value returned by a previous GetNext, 
GetHeadPosition, or other member function call. 

Gets the list element identified by rPosition, then sets rPosition to the POSITION 
value of the next entry in the list. You can use GetNext in a forward iteration loop 
if you establish the initial position with a call to GetHeadPosition or Find. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

If the retrieved element is the last in the list, then the new value of rPosition is set 
to NULL. 

It is possible to remove an element during an iteration. See the example for 
RemoveAt. 

CObList list; 
POSITION pos; 
list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40, 21). 
II Iterate through the list in head-to-tail order. 

/fifdef _DEBUG 
fore pos list.GetHeadPosition(); pos != NULL; ) 
{ 

afxDump « list.GetNext( pos ) « "\n"; 
} 

/fend if 

CObList::GetNext 

1107 



CObList: : GetPrev 

The results from this program are as follows: 

a CAge at $479C 40 
a CAge at $46C0 21 

See Also: CObList::Find, CObList::GetHeadPosition, 
CObList:: GetTaiIPosition, CObList:: GetPrev, CObList:: GetHead 

CObList: : GetPrev 
CObject*& GetPrev( POSITION& rPosition); 
CObject* GetPrev( POSITION & rPosition ) const; 

Return Value 
See the return value description for GetHead. 

Parameters 

Remarks 

Example 

1108 

rPosition A reference to a POSITION value returned by a previous GetPrev or 
other member function call. 

Gets the list element identified by rPosition, then sets rPosition to the POSITION 
value of the previous entry in the list. You can use GetPrev in a reverse iteration loop 
if you establish the initial position with a call to GetTaiIPosition or Find. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

If the retrieved element is the first in the list, then the new value of rPosition is set 
to NULL. 

CObList list; 
POSITION pos; 

list.AddHead( new CAge(21) ); 
list.AddHead( new CAge(40) ); II List now contains (40, 21). 
II Iterate through the list in tail-to-head order. 
for( pos = list.GetTailPosition(); pos != NULL; ) 
{ 

/lifdef _DEBUG 
afxDump « list.GetPrev( pos ) « "\n"; 

fiend if 
} 

The results from this program are as follows: 

a CAge at $421C 21 
a CAge at $421C 40 

See Also: CObList: :Find, CObList: : GetTaiIPosition, 
CObList: : GetHeadPosition, CObList: : GetNext, CObList: : GetHead 



CObList: :GetTailPosition 

CObList: : GetTail 
CObject*& GetTail(); 
CObject* GetTail( ) const; 

Return Value 

Remarks 

Example 

See the return value description for GetHead. 

Gets the CObject pointer that represents the tail element of this list. 

You must ensure that the list is not empty before calling GetTail. If the list is empty, 
then the Debug version of the Microsoft Foundation Class Library asserts. Use 
IsEmpty to verify that the list contains elements. 

CObList list; 

list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40, 21). 
ASSERT( *(CAge*) list.GetTail() == CAge( 21 ) ); 

See Also: CObList: :AddTail, CObList: :AddHead, CObList: :RemoveHead, 
CObList: :GetHead 

CObList: : GetTailPosition 
POSITION GetTailPosition( ) const; 

Return Value 

Remarks 

Example 

A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
the list is empty. 

Gets the position of the tail element of this list; NULL if the list is empty. 

CObList list; 
POSITION pos; 

list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40, 21). 
if( ( pos = list.GetTailPosition() ) != NULL) 
{ 

ASSERT( *(CAge*) list.GetAt( pos ) == CAge( 21 ) ); 

See Also: CObList::GetHeadPosition, CObList::GetTail 

1109 



CObList: :InsertAfter 

CObList: : InsertAfter 
POSITION InsertAfter( POSITION position, CObject* newElement); 

throw ( CMemoryException ); 

Parameters 

Remarks 

Example 

position A POSITION value returned by a previous GetNext, GetPrev, or Find 
member function call. 

newElement The object pointer to be added to this list. 

Adds an element to this list after the element at the specified position. 

CObList list: 
POSITION posl. pos2; 
list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40. 21). 
if( ( posl = list.GetHeadPosition() ) != NULL) 
{ 

pos2 = list.InsertAfter( posl. new CAge( 65 ) ); 
} 

1Iifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "InsertAfter example: " « &list « "\n"; 

1Iendif 

The results from this program are as follows: 

InsertAfter example: A CObList with 3 elements 
a CAge at $4A44 40 
a CAge at $4A64 65 
a CAge at $4968 21 

See Also: CObList: :Find, CObList: : InsertBefore 

CObList: : InsertBefore 
POSITION InsertBefore( POSITION position, CObject* newElement ); 

throw (CMemoryException); 

Return Value 
A POSITION value that can be used for iteration or object pointer retrieval; NULL if 
the list is empty. 

Parameters 

1110 

position A POSITION value returned by a previous GetNext, GetPrev, or Find 
member function call. 

newElement The object pointer to be added to this list. 



Remarks 

Example 

Adds an element to this list before the element at the specified position. 

CObList list: 
POSITION posl. pos2; 
list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40. 21). 
if( ( posl = list.GetTailPosition() ) != NULL) 
( 

pos2 = list.InsertBefore( posl. new CAge( 65 ) ): 
} 

#ifdef _DEBUG 
afxDump.SetDepth( 1 ): 
afxDump « "InsertBefore example: " «' &list « "\n"; 

#endif 

The results from this program are as follows: 

InsertBefore example: A CObList with 3 elements 
a CAge at $4AE2 40 
a CAge at $4B02 65 
a CAge at $49E6 21 

See Also: CObList: :Find, CObList: :InsertAfter 

CObList: : IsEmpty 
BOOL IsEmpty( ) const; 

Return Value 

Remarks 

Example 

Nonzero if this list is empty; otherwise O. 

Indicates whether this list contains no elements. 

See the example for RemoveAll. 

See Also: CObList::GetCount 

CObList: : RemoveAl1 

Remarks 

void RemoveAll( ); 

Removes all the elements from this list and frees the associated CObList memory. 
No error is generated if the list is already empty. 

When you remove elements from a CObList, you remove the object pointers from the 
list. It is your responsibility to delete the objects themselves. 

CObList: :RemoveAll 

1111 



CObList: :RemoveAt 

Example 
CObList list; 
CAge* pal; 
CAge* pa2; 
ASSERT( list.IsEmpty(»; II Yes it is. 
list.AddHead( pal = new CAge( 21 ) ); 
list.AddHead( pa2 = new CAge( 40 ) ); II List now contains (40. 21). 
ASSERT( !list.IsEmpty(); II No it isn't. 
list.RemoveAll(); II CAge's aren't destroyed. 
ASSERT( list.IsEmpty(); II Yes it is. 
delete pal; II Now delete the CAge objects. 
delete pa2; 

CObList: : RemoveAt 
void RemoveAt( POSITION position ); 

Parameters 

Remarks 

Example 

1112 

position The position of the element to be removed from the list. 

Removes the specified element from this list. 

When you remove an element from a CObList, you remove the object pointer from 
the list. It is your responsibility to delete the objects themselves. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

Be careful when removing an element during a list iteration. The following example 
shows a removal technique that guarantees a valid POSITION value for GetNext. 

CObList list; 
POSITION posl. pos2; 
CObject* pa; 

list.AddHead( new CAge( 21 ); 
list.AddHead( new CAge( 40 ); 
list.AddHead( new CAge( 65 ); II List now contains (65 40. 21). 
fore posl = list.GetHeadPosition(); ( pos2 = posl ) != NULL; ) 
{ 

} 

if( *(CAge*) list.GetNext( posl ) == CAge( 40 ) ) 
{ 

pa = list.GetAt( pos2 ); II Save the old pointer for 
Iideletion. 

list.RemoveAt( pos2 ); 
delete pa; II Deletion avoids memory leak. 

lIifdef _DEBUG 



afxDump.SetDepth( 1 ); 
afxDump « "RemoveAt example: " « &list « "\n"; 

41endif 

The results from this program are as follows: 

RemoveAt example: A CObList with 2 elements 
a CAge at $4C1E 65 
a CAge at $4B22 21 

CObList: : RemoveHead 
CObject* RemoveHead( ); 

Return Value 

Remarks 

Example 

The CObject pointer previously at the head of the list. 

Removes the element from the head of the list and returns a pointer to it. 

You must ensure that the list is not empty before calling RemoveHead. If the list is 
empty, then the Debug version of the Microsoft Foundation Class Library asserts. 
Use IsEmpty to verify that the list contains elements. 

CObList list; 
CAge* pal; 
CAge* pa2; 

list.AddHead( pal = new CAge( 21 ) ); 
list.AddHead( pa2 = new CAge( 40 ) ); II List now contains (40. 21). 
ASSERT( *(CAge*) list.RemoveHead() == CAge( 40 »; II Old head 
ASSERT( *(CAge*) list.GetHead() == CAge( 21 »; II New head 
delete pal; 
delete pa2; 

See Also: CObList::GetHead, CObList::AddHead 

CObList: : RemoveTail 
CObject* RemoveTail( ); 

Return Value 

Remarks 

A pointer to the object that was at the tail of the list. 

Removes the element from the tail of the list and returns a pointer to it. 

You must ensure that the list is not empty before calling RemoveTail. If the list is 
empty, then the Debug version of the Microsoft Foundation Class Library asserts. 
Use IsEmpty to verify that the list contains elements. 

CObList: :RemoveTail 

1113 



CObList::SetAt 

Example 
CObList list; 
CAge* pal; 
CAge* pa2; 

list.AddHead( pal = new CAge( 21 ) ); 
list.AddHead( pa2 = new CAge( 40 ) ); II List now contains (40, 21). 
ASSERT( *(CAge*) list.RemoveTail() == CAge( 21 )); II Old tail 
ASSERT( *(CAge*) list.GetTail() == CAge( 40 )); II New tail 
delete pal; 
delete pa2; II Clean up memory. 

See Also: CObList::GetTail, CObList::AddTail 

CObList: :SetAt 
void SetAt( POSITION pas, CObject* newElement); 

Parameters 

Remarks 

Example 

1114 

pas The POSITION of the element to be set. 

newElement The CObject pointer to be written to the list. 

A variable of type POSITION is a key for the list. It is not the same as an index, and 
you cannot operate on a POSITION value yourself. SetAt writes the CObject pointer 
to the specified position in the list. 

You must ensure that your POSITION value represents a valid position in the list. 
If it is invalid, then the Debug version of the Microsoft Foundation Class Library 
asserts. 

CObList list; 
CObject* pa; 
POSITION pos; 

list.AddHead( new CAge( 21 ) ); 
list.AddHead( new CAge( 40 ) ); II List now contains (40, 21). 
if( ( pos = list.GetTailPosition()) != NULL) 
{ 

} 

pa = list.GetAt( pos ); II Save the old pointer for 
Iideletion. 

list.SetAt( pos, new CAge( 65 )); II Replace the tail 
Ilelement. 

delete pa; II Deletion avoids memory leak. 

4fifdef _DEBUG 
afxDump.SetDepth( 1 ); 
afxDump « "SetAt example: " « &list « "\n"; 

4fend if 



The results from this program are as follows: 

SetAt example: A CObList with 2 elements 
a CAge at $4098 40 
a CAge at $40B8 65 

See Also: CObList::Find, CObList::GetAt, CObList::GetNext, 
CObList: :GetPrev 

CObList::SetAt 

1115 



COleBusyDialog 

COleBusyDialog 

The COleBusyDialog class is used for the OLE Server Not Responding or Server 
Busy dialog boxes. Create an object of class COleBusyDialog when you want to call 
these dialog boxes. After a COleBusyDialog object has been constructed, you can use 
the m_bz structure to initialize the values or states of controls in the dialog box. The 
m_bz structure is of type OLEUIBUSY. For more information about using this dialog 
class, see the DoModal member function. 

Note AppWizard-generated container code uses this class. 

For more information, see the OLEUIBUSY structure in the OLE 2.01 User Inteiface 
Library. 

For more information on OLE-specific dialog boxes, see the article "Dialog Boxes in 
OLE" in Visual C++ Programmer's Guide online. 

#include <afxodlgs.h> 

See Also: COleDialog 

COleBusyDialog Class Members 

1116 

Data Members 

Construction 

COleBusyDialog 

Operations 

DoModal 

GetSelectionType 

Structure of type OLEUIBUSY that controls the behavior of 
the dialog box. 

Constructs a COleBusyDialog object. 

Displays the OLE Server Busy dialog box. 

Determines the choice made in the dialog box. 



COleBusyDialog::DoModal 

Member Functions 
COleBusyDialog::COleBusyDialog 

COleBusyDialog( HTASK htaskBusy, BOOL bNotResponding = FALSE, 
"+ DWORD dwFlags = 0, CWnd* pParentWnd = NULL ); 

Parameters 

Remarks 

htaskBusy Handle to the server task that is busy. 

bNotResponding If TRUE, call the Not Responding dialog box instead of the Server 
Busy dialog box. The wording in the Not Responding dialog box is slightly 
different than the wording in the Server Busy dialog box, and the Cancel button is 
disabled. 

dwFlags Creation flag. Can contain zero or more of the following values combined 
with the bitwise-OR operator: 

• BZ_DISABLECANCELBUTTON Disable the Cancel button when calling 
the dialog box. 

• BZ_DISABLESWITCHTOBUTTON Disable the Switch To button when 
calling the dialog box. 

• BZ_DISABLERETRYBUTTON Disable the Retry button when calling the 
dialog box. 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the parent window of the dialog object is 
set to the main application window. 

This function only constructs a COleBusyDialog object. To display the dialog box, 
call DoModal. 

For more information, see the OLEUIBUSY structure in the OLE 2.01 User 1nterface 
Library. 

See Also: COleBusyDialog::DoModal 

COleBusyDialog: :DoModal 
virtual int DoModal( ) const; 

Return Value 
Completion status for the dialog box. One of the following values: 

• IDOK if the dialog box was successfully displayed. 

• IDCANCEL if the user canceled the dialog box. 

1117 



COleBusy Dialog: :GetSelectionType 

Remarks 

• IDABORT if an error occurred. If IDABORT is returned, call the 
COleDialog: : GetLastError member function to get more information about the 
type of error that occurred. For a listing of possible errors, see the OleUIBusy 
function in the OLE 2.01 User Interface Library. 

Call this function to display the OLE Server Busy or Server Not Responding dialog 
box. 

If you want to initialize the various dialog box controls by setting members of the 
m_bz structure, you should do this before calling DoModal, but after the dialog 
object is constructed. 

If DoModal returns IDOK, you can call other member functions to retrieve the 
settings or information that was input by the user into the dialog box. 

See Also: COleDialog::GetLastError, CDialog::DoModal, 
COleBusyDialog:: GetSelectionType, COleBusy Dialog: :m_bz 

COleBusyDialog::GetSelectionType 
UINT GetSelectionType(); 

Return Value 

Remarks 

1118 

Type of selection made. 

Call this function to get the selection type chosen by the user in the Server Busy 
dialog box. 

The return type values are specified by the Selection enumeration type declared in the 
COleBusyDialog class. 

enum Selection 
{ 

} ; 

switchTo, 
retry, 
callUnblocked 

Brief descriptions of these values follow: 

• COleBusyDialog::switchTo Switch To button was pressed. 

• COleBusyDialog::retry Retry button was pressed. 

• COleBusyDialog::callUnblocked Call to activate the server is now unblocked. 

See Also: COleBusyDialog: :DoModal 



COleBusy Dialog: :m_bz 

Data Members 
COleBusyDialog: :m_bz 
Remarks 

Structure of type OLEUIBUSY used to control the behavior of the Server Busy 
dialog box. Members of this structure can be modified directly or through member 
functions. 

For more information, see the OLEUIBUSY structure in the OLE 2.01 User Interface 
Library. 

See Also: COleBusyDialog::COleBusyDialog, COleBusyDialog::DoModal 

1119 



COleChangelconDialog 

COleChangeIconDialog 

The COleChangeIconDialog class is used for the OLE Change Icon dialog box. 
Create an object of class COleChangeIconDialog when you want to call this dialog 
box. After a COleChangeIconDialog object has been constructed, you can use the 
m_ci structure to initialize the values or states of controls in the dialog box. The m_ci 
structure is of type OLEUICHANGEICON. For more information about using this 
dialog class, see the DoModal member function. 

For more information, see the OLEUICHANGEICON structure in the OLE 2.01 
User Inteiface Library. 

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes 
in OLE" in Visual C++ Programmer's Guide online. 

#include <afxodlgs.h> 

See Also: COleDialog 

COleChangeIconDialog Class Members 

1120 

Data Members 

Construction 

COleChangeIconDialog 

Operations and Attributes 

DoModal 

DoChangeIcon 

GetlconicMetafile 

A structure that controls the behavior of the dialog box. 

Constructs a COleChangeIconDialog object. 

Displays the OLE 2 Change Icon dialog box. 

Perfonns the change specified in the dialog box. 

Gets a handle to the metafile associated with the iconic fonn 
of this item. 



COleChangeIconDialog: :DoChangeIcon 

Member Functions 
COleChangeIconDialog: : COleChangeIconDialog 

COleChangelconDialog (COleClientltem* pite11l, DWORD dwFlags = 
... CIF _SELECTCURRENT, CWnd* pParentWnd = NULL ); 

Parameters 

Remarks 

pite11l Points to the item to be converted. 

dwFlags Creation flag, which contains any number of the following values combined 
using the bitwise-or operator: 

• CIF _SELECTCURRENT Specifies that the Current radio button will be 
selected initially when the dialog box is called. This is the default. 

• CIF _SELECTDEFAULT Specifies that the Default radio button will be 
selected initially when the dialog box is called. 

• CIF _SELECTFROMFILE Specifies that the From File radio button will be 
selected initially when the dialog box is called. 

• CIF _SHOWHELP Specifies that the Help button will be displayed when the 
dialog box is called. 

• CIF _USEICONEXE Specifies that the icon should be extracted from the 
executable specified in the szlconExe field of m_ci instead of retrieved from 
the type. This is useful for embedding or linking to non-OLE files. 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the parent window of the dialog box will 
be set to the main application window. 

This function constructs only a COleChangelconDialog object. To display the dialog 
box, call the DoModal function. 

For more information, see the OLEUICHANGEICON structure in the OLE 2.01 
User 1nteiface Library. 

See Also: COleClientltem, COleChangelconDialog: :DoModal 

COleChangeIconDialog: :DoChangeIcon 
BOOL DoChangelcon( COleClientltem* pite11l ); 

Return Value 
Nonzero if change is successful; otherwise O. 

1121 



COleChangeIconDialog: :DoModal 

Parameters 

Remarks 

pltem Points to the item whose icon is changing. 

Call this function to change the icon representing the item to the one selected in the 
dialog box after DoModal returns IDOK. 

See Also: COleChangelconDialog: :DoModal 

COleChangeIconDialog: :DoModal 
virtual int DoModal(); 

Return Value 

Remarks 

Completion status for the dialog box. One of the following values: 

• IDOK if the dialog box was successfully displayed. 

• IDCANCEL if the user canceled the dialog box. 

• IDABORT if an error occurred. If IDABORT is returned, call the 
COleDialog::GetLastError member function to get more information about the 
type of error that oq;urred. For a listing of possible errors, see the 
OleUIChangelcon function in the OLE 2.01 User Inteiface Library. 

Call this function to display the OLE Change Icon dialog box. 

If you want to initialize the various dialog box controls by setting members of the 
m_ci structure, you should do this before calling DoModal, but after the dialog object 
is constructed. 

If DoModal returns IDOK, you can call other member functions to retrieve the 
settings or information that was input by the user into the dialog box. 

See Also: COleDialog::GetLastError, CDialog::DoModal, 
CO leChangelconDialog: :m_ci, COleChangelconDialog: :DoChangelcon, 
CO leChangelconDialog: : GetIconicMetafile 

COleChangeIconDialog: : GetIconicMetafile 
HGLOBAL GetIconicMetafile() const; 

Return Value 

1122 

The handle to the metafile containing the iconic aspect of the new icon, if the dialog 
box was dismissed by choosing OK; otherwise, the icon as it was before the dialog 
was displayed. 



COleChangeIconDialog::m_ci 

Remarks 
Call this function to get a handle to the metafile that contains the iconic aspect of the 
selected item. 

See Also: COleChangeIconDialog: :DoModaI, 
COleChangeIconDialog:: COleChangeIconDialog, 
COleChangeIconDialog: :DoChangeIcon 

Data Members 
COleChangelconDialog: :m_ci 
Remarks 

Structure of type OLEUICHANGEICON used to control the behavior of the Change 
Icon dialog box. Members of this structure can be modified either directly or through 
member functions. 

For more information, see the OLEUICHANGEICON structure in the OLE 2.01 
User 1nteiface Library. 

See Also: COleChangeIconDialog:: COleChangeIconDialog 

1123 



COleChangeSourceDialog 

COleChangeSourceDialog 

The COleChangeSourceDialog class is used for the OLE Change Source dialog box. 
Create an object of class COleChangeSourceDialog when you want to call this 
dialog box. After a COleChangeSourceDialog object has been constructed, you can 
use the m_cs structure to initialize the values or states of controls in the dialog box. 
The m_cs structure is of type OLEUICHANGESOURCE. For more information 
about using this dialog class, see the DoModal member function. 

For more information, see the OLEUICHANGESOURCE structure in OLE 2.01 
User Inteiface Library. 

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes 
in OLE" in Visual C++ Programmer's Guide online. 

#include <afxodlgs.h> 

See Also: COleDialog 

COleChangeSourceDialog Class Members 

1124 

Constructor 

COleChangeSourceDialog Constructs a COleChangeSourceDialog object. 

Operations 

DoModal 

Attributes 

Is ValidSource 

GetFileName 

GetDisplayName 

Displays the OLE Change Source dialog box. 

Indicates if the source is valid. 

Gets the filename from the source name. 

Gets the complete source display name. 



COleChangeSourceDialog: :DoModal 

Attributes (continued) 

GetltemName 

GetFromPrefix 

GetToPrefix 

Data Member 

Gets the item name from the source name. 

Gets the prefix of the previous source. 

Gets the prefix of the new source 

A structure that controls the behavior of the dialog box. 

Member Functions 
COleChangeSourceDialog: :COleChangeSourceDialog 

COleChangeSourceDialog( COleClientItem* pItem, CWnd* pParentWnd = NULL ); 

Parameters 

Remarks 

pItem Pointer to the linked COleClientltem whose source is to be updated. 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the parent window of the dialog box will 
be set to the main application window. 

This function constructs a COleChangeSourceDialog object. To display the dialog 
box, call the DoModal function. 

For more information, see the OLEUICHANGESOURCE structure and 
OleUIChangeSource function in OLE 2.01 User Interface Library. 

COleChangeSourceDialog: :DoModal 
virtual int DoModal(); 

Return Value 
Completion status for the dialog box. One of the following values: 

• IDOK if the dialog box was successfully displayed. 

• IDCANCEL if the user canceled the dialog box. 

• IDABORT if an error occurred. If IDABORT is returned, call the 
COleDialog::GetLastError member function to get more information about the 
type of error that occurred. For a listing of possible errors, see the 
OleUIChangeSource function in OLE 2.01 User Inteiface Library. 

1125 



COleChangeSourceDialog::GetDisplayName 

Remarks 
Call this function to display the OLE Change Source dialog box. 

If you want to initialize the various dialog box controls by setting members of the 
rn_cs structure, you should do this before calling DoModal, but after the dialog object 
is constructed. 

If DoModal returns IDOK, you can call member functions to retrieve user-entered 
settings or information from the dialog box. The following list names typical query 
functions: 

• GetFileN arne 

• GetDisplayNarne 

• GetIternNarne 

See Also: COleChangeSourceDialog:: CO leChangeSourceDialog 

COleChangeSourceDialog: : GetDisplay N arne 
CString GetDisplayNarne(); 

Return Value 

Remarks 

The complete source display name (moniker) for the COleClientltern specified in the 
constructor. 

Call this function to retrieve the complete display name for the linked client item. 

See Also: COleChangeSourceDialog::GetFileNarne, 
COleChangeSourceDialog: : GetIternN arne 

COleChangeSourceDialo g: : GetFileN arne 
CString GetFileNarne(); 

Return Value 

Remarks 

1126 

The file moniker portion of the source display name for the COleClientItern specified 
in the constructor. 

Call this function to retrieve the file moniker portion of the display name for the 
linked client item. The file moniker together with the item moniker gives the complete 
display name. 

See Also: COleChangeSourceDialog::GetDisplayNarne, 
COleChangeSourceDialog: : GetIternNarne 



CO leChangeSourceDialog:: GetToPrefix 

COleChangeSourceDialo g: : GetFrornPrefix 
CString GetFrornPrefix(); 

Return Value 

Remarks 

The previous prefix string of the source. 

Call this function to get the previous prefix string for the source. Call this function 
only after DoModal returns IDOK. 

This value comes directly from the IpszFrorn member of the 
OLEUICHANGESOURCE structure. 

For more information, see the OLEUICHANGESOURCE structure in OLE 2.01 
User Interface Library. 

See Also: COleChangeSourceDialog::GetToPrefix 

COleChangeSourceDialog: : GetIternN arne 
CString GetIternNarne( ); 

Return Value 

Remarks 

The item moniker portion of the source display name for the COleClientItern 
specified in the constructor. 

Call this function to retrieve the item moniker portion of the display name for the 
linked client item. The file moniker together with the item moniker gives the complete 
display name. 

See Also: COleChangeSourceDialog::GetFileNarne, 
COleChangeSourceDialog:: GetDisplay N arne 

COleChangeSourceDialog:: GetToPrefix 
CString GetToPrefix(); 

Return Value 

Remarks 

The new prefix string of the source. 

Call this function to get the new prefix string for the source. Call this function only 
after DoModal returns IDOK. 

This value comes directly from the IpszTo member of the 
OLEUICHANGESOURCE structure. 

1127 



COleChangeSourceDialog: :Is ValidSource 

For more information, see the OLEUICHANGESOURCE structure in OLE 2.01 
User 1nteiface Library. 

See Also: COleChangeSourceDialog: : GetFromPrefix 

COleChangeSourceDialog: :Is ValidSource 
BOOL IsValidSource(); 

Return Value 

Remarks 

Nonzero if the new source is valid, otherwise O. 

Call this function to determine if the new source is valid. Call this function only after 
DoModal returns IDOK. 

For more information, see the OLEUICHANGESOURCE structure in OLE 2.01 
User 1nteiface Library. 

See Also: COleChangeSourceDialog: :DoModal 

Data Members 
COleChangeSourceDialog: :m_cs 
Remarks 

1128 

This data member is a structure of type OLEUICHANGESOURCE. 
OLEUICHANGESOURCE is used to control the behavior of the OLE Change 
Source dialog box. Members of this structure can be modified directly. 

For more information, see the OLEUICHANGESOURCE structure in OLE 2.01 
User 1nteiface Library. 

See Also: COleChangeSourceDialog: :COleChangeSourceDialog 



COleClientItem 

COleClientitem 

The COleClientItem class defines the container interface to OLE items. An OLE 
item represents data, created and maintained by a server application, which can be 
"seamlessly" incorporated into a document so that it appears to the user to be a single 
document. The result is a "compound document" made up of the OLE item and a 
containing document. 

An OLE item can be either embedded or linked. If it is embedded, its data is stored as 
part of the compound document. If it is linked, its data is stored as part of a separate 
file created by the server application, and only a link to that file is stored in the 
compound document. All OLE items contain information specifying the server 
application that should be called to edit them. 

COleClientltem defines several overridable functions that are called in response to 
requests from the server application; these overridables usually act as notifications. 
This allows the server application to inform the container of changes the user makes 
when editing the OLE item, or to retrieve information needed during editing. 

COleClientltem can be used with either the COleDocument, COleLinkingDoc, or 
COleServerDoc class. To use COleClientltem, derive a class from it and implement 
the On Change member function, which defines how the container responds to 
changes made to the item. To support in-place activation, override the 
OnGetItemPosition member function. This function provides information about the 
displayed position of the OLE item. 

For more information about using the container interface, see the articles "Containers: 
Implementing a Container and Activation" in Visual C++ Programmer's Guide 
online. 

Note The OLE documentation refers to embedded and linked items as "objects" and refers to 
types of items as "classes." This reference uses the term "item" to distinguish the OLE entity 
from the corresponding C++ object and the term "type" to distinguish the OLE category from the 
C++ class. 

#include <afxole.h> 

See Also: COleServerltem 

COleClientltem 

1129 



COleClientltem 

COleClientItem Class Members 

1130 

Construction 

COleCIientItem 

Creation 

CreateFromCIipboard 

CreateFromData 

CanCreateFromData 

CreateFromFiIe 

CreateStaticFromClipboard 

CreateStaticFromData 

CreateLinkFromClipboard 

CreateLinkFromData 

CanCreateLinkFromData 

CreateLinkFromFiIe 

CreateNewItem 

CreateCloneFrom 

Status 

GetLastStatus 

GetType 

GetExtent 

GetCachedExtent 

GetClassID 

GetUserType 

GetIconicMetafile 

SetIconicMetafile 

GetDraw Aspect 

SetDraw Aspect 

GetItemState 

GetActive View 

IsModified 

Constructs a COleClientItem object. 

Creates an embedded item from the Clipboard. 

Creates an embedded item from a data object. 

Indicates whether a container application can create an 
embedded object. 

Creates an embedded item from a file. 

Creates a static item from the Clipboard. 

Creates a static item from a data object. 

Creates a linked item from the Clipboard. 

Creates a linked item from a data object. 

Indicates whether a container application can create a linked 
object. 

Creates a linked item from a file. 

Creates a new embedded item by launching the server 
application. 

Creates a duplicate of an existing item. 

Returns the status of the last OLE operation. 

Returns the type (embedded, linked, or static) of the 
OLE item. 

Returns the bounds of the OLE item's rectangle. 

Returns the bounds of the OLE item's rectangle. 

Gets the present item's class ID. 

Gets a string describing the item's type. 

Gets the metafile used for drawing the item's icon. 

Caches the metafile used for drawing the item's icon. 

Gets the item's current view for rendering. 

Sets the item's current view for rendering. 

Gets the item's current state. 

Gets the view on which the item is activated in place. 

Returns TRUE if the item has been modified since it was 
last saved. 



Status (continued) 

IsRunning 

IsInPlaceActive 

IsOpen 

Data Access 

GetDocument 

AttachDataObject 

Object Conversion 

ConvertTo 

ActivateAs 

Reload 

Clipboard Operations 

CanPaste 

CanPasteLink 

DoDragDrop 

CopyToClipboard 

GetClipboardData 

General Operations 

Close 

Release 

Delete 

Draw 

Run 

SetPrintDevice 

Activation 

Activate 

DoVerb 

Deactivate 

Returns TRUE if the item's server application is running. 

Returns TRUE if the item is in-place active. 

Returns TRUE if the item is currently open in the server 
application. 

Returns the COleDocument object that contains the 
present item. 

Accesses the data in the OLE object. 

Converts the item to another type. 

Activates the item as another type. 

Reloads the item after a call to ActivateAs. 

Indicates whether the Clipboard contains an embeddable 
or static OLE item. 

Indicates whether the Clipboard contains a linkable 
OLE item. 

Performs a drag-and-drop operation. 

Copies the OLE item to the Clipboard. 

Gets the data that would be placed on the Clipboard by 
calling the CopyToClipboard member function. 

Closes a link to a server but does not destroy the OLE item. 

Releases the connection to an OLE linked item and closes it 
if it was open. Does not destroy the client item. 

Deletes or closes the OLE item if it was a linked item. 

Draws the OLE item. 

Runs the application associated with the item. 

Sets the print-target device for this client item. 

Opens the OLE item for an operation and then executes the 
specified verb. 

Executes the specified verb. 

Deactivates the item. 

(continued) 

COleClientItem 

1131 



COleClientItem 

Activation (continued) 

DeactivateUI 

ReactivateAndUndo 

SetltemRects 

GetInPlace Window 

Embedded Object Operations 

SetHostNames 

SetExtent 

Restores the container application's user interface to its 
original state. 

Reactivates the item and undoes the last in-place editing 
operation. 

Sets the item's bounding rectangle. 

Returns a pointer to the item's in-place editing window. 

Sets the names the server displays when editing the 
OLE item. 

Sets the bounding rectangle of the OLE item. 

Linked Object Operations and Status 

1132 

GetLinkUpdateOptions 

SetLinkUpdateOptions 

UpdateLink 

IsLinkUpToDate 

Overridables 

On Change 

OnGetClipboardData 

OnInsertMenus 

OnSetMenu 

OnRemoveMenus 

OnUpdateFrameTitle 

OnShowControIBars 

OnGetItemPosition 

OnScrollBy 

OnDeactivateUI 

OnDiscardUndoState 

OnDeactivateAndU ndo 

OnShowltem 

Returns the update mode for a linked item (advanced 
feature). 

Sets the update mode for a linked item (advanced feature). 

Updates the presentation cache of an item. 

Returns TRUE if a linked item is up to date with its source 
document. 

Called when the server changes the OLE item. 
Implementation required. 

Called by the framework to get the data to be copied to the 
Clipboard. 

Called by the framework to create a composite menu. 

Called by the framework to install and remove a composite 
menu. 

Called by the framework to remove the container's menus 
from a composite menu. 

Called by the framework to update the frame window's 
title bar. 

Called by the framework to show and hide control bars. 

Called by the framework to get the item's position relative 
to the view. 

Called by the framework to scroll the item into view. 

Called by the framework when the server has removed its 
in-place user interface. 

Called by the framework to discard the item's undo state 
information. 

Called by the framework to undo after activation. 

Called by the framework to display the OLE item. 



COleClientltem::Activate 

Overridables (continued) 

OnGetClipRect 

CanActivate 

OnActivate 

OnActivateUI 

OnGetWindowContext 

OnDeactivate 

OnChangeItemPosition 

Called by the framework to get the item's clipping-rectangle 
coordinates. 

Called by the framework to determine whether in-place 
activation is allowed. 

Called by the framework to notify the item that it is 
activated. 

Called by the framework to notify the item that it is activated 
and should show its user interface. 

Called by the framework when an item is activated in place. 

Called by the framework when an item is deactivated. 

Called by the framework when an item's position changes. 

Member Functions 
COleClientItem: : Activate 

void Activate( LONG n Verb, CView* p View, LPMSG IpMsg = NULL ); 

Parameters 
n Verb Specifies the verb to execute. It can be one of the following: 

Value Meaning Symbol 

0 Primary verb OLEIVERB_PRIMARY 

Secondary verb (None) 

-1 Display item for editing OLEIVERB_SHOW 

-2 Edit item in separate window OLEIVERB_OPEN 

-3 Hide item OLEIVERB_HIDE 

The -1 value is typically an alias for another verb. If open editing is not 
supported, -2 has the same effect as -1. For additional values, see 
IOleObject: :Do Verb in the OLE documentation. 

p View Pointer to the container view window that contains the OLE item; 
this is used by the server application for in-place activation. This 
parameter should be NULL if the container does not support in-place 
activation. 

IpMsg Pointer to the message that caused the item to be activated. 

1133 



COleClientltem: :Acti vateAs 

Remarks 
Call this function to execute the specified verb instead of Do Verb so that you can do 
your own processing when an exception is thrown. 

If the server application was written using the Microsoft Foundation Class Library, 
this function causes the OnDo Verb member function of the corresponding 
COleServerItem object to be executed. 

If the primary verb is Edit and zero is specified in the n Verb parameter, the server 
application is launched to allow the OLE item to be edited. If the container application 
supports in-place activation, editing can be done in place. If the container does not 
support in-place activation (or if the Open verb is specified), the server is launched in 
a separate window and editing can be done there. Typically, when the user of the 
container application double-clicks the OLE item, the value for the primary verb in 
the n Verb parameter determines which action the user can take. However, if the server 
supports only one action, it takes that action, no matter which value is specified in the 
n Verb parameter. 

For more information, see IOleObject::DoVerb in the OLE documentation. 

See Also: COleClientItem: :Do Verb, COleServerItem: :OnDo Verb 

COleClientItem: : ActivateAs 
BOOL ActivateAs( LPCTSTR IpszUserType, REFCLSID clsidOld, 

10+ REFCLSID clsidNew); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1134 

IpszUserType Pointer to a string representing the target user type, such as "Word 
Document." 

clsidOld A reference to the item's current class ID. The class ID should represent the 
type of the actual object, as stored, unless it is a link. In that case, it should be the 
CLSID of the item to which the link refers. The COleConvertDialog automatically 
provides the correct class ID for the item. 

clsidNew A reference to the target class ID. 

Uses OLE's object conversion facilities to activate the item as though it were an item 
of the type specified by clsidNew. This is called automatically by 
COleConvertDialog: :DoConvert. It is not usually called directly. 

See Also: COleConvertDialog, COleClientItem::ConvertTo, 
COleClientltem: :Reload 



COleClientI tern: :CanCreateFrornData 

COleClientItem: :AttachD'ataObject 
void AttachDataObject( COleDataObject& rDataObject ) const; 

Parameters 

Remarks 

rDataObject Reference to a COleDataObject object that will be initialized to allow 
access to the data in the OLE item. 

Call this function to initialize a COleDataObject for accessing the data in the OLE 
item. 

See Also: COleDataObject 

COleClientItem:: CanActi vate 
virtual BOOL CanActivate( ); 

Return Value 

Remarks 

Nonzero if in-place activation is allowed; otherwise O. 

Called by the framework when the user requests in-place activation of the OLE item; 
this function's return value determines whether in-place activation is allowed. The 
default implementation allows in-place activation if the container has a valid window. 
Override this function to implement special logic for accepting or refusing the 
activation request. For example, an activation request can be refused if the OLE item 
is too small or not currently visible. 

For more information, see IOleInPlaceSite::CanInPlaceActivate in the OLE 
documentation. 

COleClientItem: : CanCreateFromData 
static BOOL PASCAL CanCreateFromData( const COleDataObject* pDataObject); 

Return Value 
Nonzero if the container can create an embedded object from the COleDataObject 
object; otherwise o. 

Parameters 
pDataObject Pointer to the COleDataObject object from which the OLE item is to 

be created. 

1135 



COleClientltem::CanCreateLinkFromData 

Remarks 
Checks whether a container application can create an embedded object from the given 
COleDataObject object. The COleDataObject class is used in data transfers for 
retrieving data in various formats from the Clipboard, through drag and drop, or from 
an embedded OLE item. 

Containers can use this function to decide to enable or disable their Edit Paste and 
Edit Paste Special commands. 

For more information, see the article "Data Objects and Data Sources (OLE)" in 
Visual C++ Programmer's Guide online. 

See Also: COleDataObject 

COleClientItem: :CanCreateLinkFromData 
static BOOL PASCAL CanCreateLinkFromData( const COleDataObject* pDataObject ); 

Return Value 
Nonzero if the container can create a linked object from the COleDataObject object. 

Parameters 

Remarks 

pDataObject Pointer to the COleDataObject object from which the OLE item is to 
be created. 

Checks whether a container application can create a linked object from the given 
COleDataObject object. The COleDataObject class is used in data transfers for 
retrieving data in various formats from the Clipboard, through drag and drop, or from 
an embedded OLE item. 

Containers can use this function to decide to enable or disable their Edit Paste Special 
and Edit Paste Link commands. 

For more information, see the article "Data Objects and Data Sources (OLE)" in 
Visual C++ Programmer:" Guide online. 

See Also: COleDataObject 

CO leClientItem: : CanPaste 
static BOOL PASCAL CanPaste( ); 

Return Value 

Remarks 

1136 

Nonzero if an embedded OLE item can be pasted from the Clipboard; otherwise O. 

Call this function to see whether an embedded OLE item can be pasted from the 
Clipboard. 



CO 1eClientltem: :Close 

For more information, see OleGetClipboard and OleQueryCreateFromData in the 
OLE documentation. 

See Also: COleClientItem:: CanPasteLink, 
COleClientItem: :CreateFrom Clip board, 
COleClientItem::CreateStaticFromClipboard, COleDocument 

COleClientItem: : CanPasteLink 
static BOOL PASCAL CanPasteLink( ); 

Return Value 

Remarks 

Nonzero if a linked OLE item can be pasted from the Clipboard; otherwise O. 

Call this function to see whether a linked OLE item can be pasted from the Clipboard. 

For more information, see OleGetClipboard and OleQueryLinkFromData in the 
OLE documentation. 

See Also: COleClientItem::CanPaste, 
COleClientItem::CreateLinkFromClipboard 

COleClientItem: : Close 
void Close( OLECLOSE dwCloseOption = OLECLOSE_SAVEIFDIRTY); 

Parameters 

Remarks 

dwCloseOption Flag specifying under what circumstances the OLE item is saved 
when it returns to the loaded state. It can have one of the following values: 

• OLECLOSE_SAVEIFDIRTY Save the OLE item. 

• OLECLOSE_NOSAVE Do not save the OLE item. 

• OLECLOSE_PROMPTSAVE Prompt the user on whether to save the OLE 
item. 

Call this function to change the state of an OLE item from the running state to the 
loaded state, that is, loaded with its handler in memory but with the server not 
running. This function has no effect when the OLE item is not running. 

For more information, see IOleObject::Close in the OLE documentation. 

See Also: COleClientItem::UpdateLink 

1137 



COleClientI tern: :COleClientItern 

COleClientItem: :COleClientItem 
COleClientltem( COleDocument* pContainerDoc = NULL ); 

Parameters 

Remarks 

pContainerDoc Pointer to the container document that will contain this item. This 
can be any COleDocument derivative. 

Constructs a COleClientltem object and adds it to the container document's 
collection of document items, which constructs only the C++ object and does not 
perform any OLE initialization. If you pass a NULL pointer, no addition is made to 
the container document. You must explicitly call COleDocument::Addltem. 

You must call one of the following creation member functions before you use the OLE 
item: 

• CreateFromClipboard 

• CreateFromData 

• CreateFromFile 

• CreateStaticFromClipboard 

• CreateStaticFromData 

• CreateLinkFromClipboard 

• CreateLinkFromData 

• CreateLinkFromFile 

• CreateNewltem 

• CreateCloneFrom 

See Also: COleDocument, COleDocument: :Addltem 

COleClientItem: :ConvertTo 
BOOL ConvertTo( REFCLSID clsidNew ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1138 

clsidNew The class ID of the target type. 

Call this member function to convert the item to the type specified by clsidNew. This 
is called automatically by COleConvertDialog. It is not necessary to call it directly. 

See Also: COleClientItem: :ActivateAs, COleConvertDialog 



CO leClientltem: :CreateFromClipboard 

COleClientItem: :CopyToClipboard 
void CopyToClipboard( BOOL blncludeLink = FALSE ); 

Parameters 

Remarks 

bIllcludeLink TRUE if link information should be copied to the Clipboard, allowing 
a linked item to be pasted; otherwise FALSE. 

Call this function to copy the OLE item to the Clipboard. Typically, you call this 
function when writing message handlers for the Copy or Cut commands from the Edit 
menu. You must implement item selection in your container application if you want to 
implement the Copy or Cut commands. 

For more information, see OleSetClipboard in the OLE documentation. 

CO leClientItem: : CreateCloneFrom 
BOOL CreateCloneFrom( const COleClientltem* pSrcItem ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pSrcItem Pointer to the OLE item to be duplicated. 

Call this function to create a copy of the specified OLE item. The copy is identical to 
the source item. You can use this function to support undo operations. 

See Also: COleClientltem::CreateNewItem 

COleClientItem: :CreateFromClipboard 
BOOL CreateFromClipboard( OLERENDER render = OLERENDER_DRAW, 

~ CLIPFORMAT cfFormat = 0, LPFORMATETC lpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
render Flag specifying how the server will render the OLE item. For the possible 

values, see OLERENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating the OLE 
item. 

1139 



COleClientItem: :CreateFromData 

Remarks 

IpFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfFormat. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create an embedded item from the contents of the Clipboard. You 
typically call this function from the message handler for the Paste command on the 
Edit menu. (The Paste command is enabled by the framework if the CanPaste 
member function returns nonzero.) 

For more information, see OLE RENDER and FORMATETC in the OLE 
documentation. 

See Also: COleDataObject::AttachClipboard, 
COleClientltem:: CreateFromData, COleClientltem:: CanPaste 

COleClientItem: :CreateFromData 
BOOL CreateFromData( COleDataObject* pDataObject, 

~ OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0, 
~ LPFORMATETC IpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1140 

pDataObject Pointer to the COleDataObject object from which the OLE item is to 
be created. 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating the OLE 
item. 

IpFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfFormat. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create an embedded item from a COleDataObject object. Data 
transfer operations, such as pasting from the Clipboard or drag-and-drop operations, 
provide COleDataObject objects containing the information offered by a server 
application. It is usually used in your override of CView::OnDrop. 



COleClientItem: :CreateFromFile 

For more information, see OleCreateFromData, OLERENDER, and 
FORMATETC in the OLE documentation. 

See Also: COleDataObject: :AttachClipboard, 
COleClientItem::CreateFromClipboard, COleDataObject 

COleClientItem: : CreateFromFile 
BOOL CreateFromFile( LPCTSTR IpszFileName, 

... REFCLSID clsid = CLSID _NULL, 

... OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0, 

... LPFORMATETC IpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpszFileName Pointer to the name of the file from which the OLE item is to be 
created. 

clsid Reserved for future use. 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating t 
he OLE item. 

ipFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value 
for this parameter only if you want to specify additional format information 
beyond the Clipboard format specified by cfFormat. If you omit this 
parameter, default values are used for the other fields in the FORMATETC 
structure. 

Call this function to create an embedded OLE item from a file. The framework 
calls this function from COleInsertDialog::CreateItem if the user chooses 
OK from the Insert Object dialog box when the Create from File button 
is selected. 

For more information, see OleCreateFromFile, OLERENDER, and FORMATETC 
in the OLE documentation. 

See Also: COleInsertDialog::CreateItem 

1141 



COleClientltem::CreateLinkFromClipboard 

COleClientItem: : CreateLinkFromClipboard 
BOOL CreateLinkFromClipboard( 

... OLERENDER render = OLERENDER_DRA W, 

... CLIPFORMAT cfFormat = 0, LPFORMATETC lpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating the OLE 
item. 

lpFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfFormat. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create a linked item from the contents of the Clipboard. You 
typically call this function from the message handler for the Paste Link command on 
the Edit menu. (The Paste Link command is enabled in the default implementation of 
COleDocument if the Clipboard contains an OLE item that can be linked to.) 

For more information, see OLERENDER and FORMATETC in the OLE 
documentation. 

See Also: COleClientltem::CanPasteLink, 
COleClientltem::CreateLinkFromData, COleDataObject::AttachClipboard 

COleClientItem: :CreateLinkFromData 
BOOL CreateLinkFromData( COleDataObject* pDataObject, 

... OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat= 0, 

... LPFORMATETC lpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

1142 

pDataObject Pointer to the COleDataObject object from which the OLE item is to 
be created. 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 



COleClientI tern:: CreateLinkFrornFile 

Remarks 

cfForl11at Specifies the Clipboard data format to be cached when creating the OLE 
item. 

lpFormatEtc Pointer to a FORMATETC structure used if rellder is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfForl11at. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create a linked item from a COleDataObject object. Call this 
during a drop operation when the user indicates a link should be created. It can also be 
used to handle the Edit Paste command. It is called by the framework in 
COleClientItem::CreateLinkFromClipboard and in 
COlePasteSpeciaIDialog::CreateItem when the Link option has been selected. 

For more information, see OleCreateLinkFromData, OLERENDER, and 
FORMATETC in the OLE documentation. 

See Also: COleDataObject: :AttachClipboard, COleDataObject, 
COleClientItem:: CreateLinkFrom Clipboard 

COleClientItem: : CreateLinkFromFile 
BOOL CreateLinkFromFile( LPCTSTR IpszFileName, 

Return Value 

... OLERENDER render = OLERENDER_DRAW, CLIPFORMAT cfFormat = 0, 

... LPFORMATETC IpForl11atEtc = NULL ); 

Nonzero if successful; otherwise O. 

Parameters 
IpszFileNal11e Pointer to the name of the file from which the OLE item is to be 

created. 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 

cfForl11at Specifies the Clipboard data format to be cached when creating the OLE 
item. 

IpForl11atEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfForl11at. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

1143 



COleClientltem: :CreateNewItem 

Remarks 
Call this function to create a linked OLE item from a file. The framework calls this 
function if the user chooses OK from the Insert Object dialog box when the Create 
from File button is selected and the Link check box is checked. It is called from 
CO leInsertDialog:: Createltem. 

For more information, see OleCreateLinkToFile, OLERENDER, and 
FORMATETC in the OLE documentation. 

See Also: COlelnsertDialog::CreateItem 

COleClientItem: : CreateN ew Item 
BOOL CreateNewItem( REFCLSID clsid, 

... OLERENDER render = OLERENDER_DRAW, 

... CLIPFORMAT cfFormat = 0, LPFORMATETC ipFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1144 

clsid ID that uniquely identifies the type of OLE item to create. 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating the OLE 
item. 

lpFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfFormat. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create an embedded item; this function launches the server 
application that allows the user to create the OLE item. The framework calls this 
function if the user chooses OK from the Insert Object dialog box when the Create 
New button is selected. 

For more information, see OleCreate, OLERENDER, and FORMATETC in the 
OLE documentation. 

See Also: COlelnsertDialog::CreateItem 



CO leClientltem: :CreateS taticFromData 

COleClientItem: :CreateStaticFromClipboard 
BOOL CreateStaticFromClipboard( 

... OLE RENDER render = OLERENDER_DRAW, 

... CLIPFORMAT cfFormat = 0, LPFORMATETC /pFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLERENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating the OLE 
item. 

IpFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfFormat. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create a static item from the contents of the Clipboard. A static 
item contains the presentation data but not the native data; consequently it cannot be 
edited. You typically call this function if the CreateFromClipboard member function 
fails. 

For more information, see OLERENDER and FORMATETC in the OLE 
documentation. 

See Also: COleDataObject::AttachClipboard, COleClientltem::CanPaste, 
COleClientltem::CreateStaticFromData 

CO leClientItem: : CreateStaticFromData 
BOOL CreateStaticFromData( COleDataObject* pDataObject, 

... OLERENDER render = OLERENDER_DRAW, 

... CLIPFORMAT cfFormat = 0, LPFORMATETC lpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
pDataObject Pointer to the COleDataObject object from which the OLE item is to 

be created. 

1145 



COleClientItem: :Deactivate 

Remarks 

render Flag specifying how the server will render the OLE item. For the possible 
values, see OLE RENDER in the OLE documentation. 

cfFormat Specifies the Clipboard data format to be cached when creating the OLE 
item. 

IpFormatEtc Pointer to a FORMATETC structure used if render is 
OLERENDER_FORMAT or OLERENDER_DRAW. Provide a value for this 
parameter only if you want to specify additional format information beyond the 
Clipboard format specified by cfFormat. If you omit this parameter, default values 
are used for the other fields in the FORMATETC structure. 

Call this function to create a static item from a COleDataObject object. A static item 
contains the presentation data but not the native data; consequently, it cannot be 
edited. This is essentially the same as CreateStaticFromClipboard except that a 
static item can be created from an arbitrary COleDataObject, not just from the 
Clipboard. 

Used in COlePasteSpeciaIDialog::Createltem when Static is selected. 

For more information, see OleCreateStaticFromData, OLERENDER, and 
FORMATETC in the OLE documentation. 

See Also: COleDataObject::AttachClipboard, COleDataObject 

COleClientItem: : Deactivate 

Remarks 

1146 

void Deactivate( ); 

Call this function to deactivate the OLE item and free any associated resources. 
You typically deactivate an in-place active OLE item when the user clicks the 
mouse on the client area outside the bounds of the item. Note that deactivating 
the OLE item will discard its undo state, making it impossible to call the 
ReactivateAndVndo member function. 

If your application supports undo, do not call Deactivate; instead, call 
Deactivate VI. 

For more information, see IOlelnPlaceObject::lnPlaceDeactivate in the OLE 
documentation. 

See Also: COleClientltem: : ReactivateAndVndo, COleClientltem: :DeactivateVI 



COleClientltem: :DoDragDrop 

COleClientItem: : DeactivateUI 

Remarks 

void DeactivateUI( ); 

Call this function when the user deactivates an item that was activated in place. This 
function restores the container application's user interface to its original state, hiding 
any menus and other controls that were created for in-place activation. 

This function does not flush the undo state information for the item. That information 
is retained so that ReactivateAndUndo can later be used to execute an undo 
command in the server application, in case the container's undo command is chosen 
immediately after deactivating the item. 

For more information, see IOlelnPlaceObject::lnPlaceDeactivate in the OLE 
documentation. 

See Also: COleClientltem::ReactivateAndUndo, COleClientltem::Activate 

COleClientItem: :Delete 
void Delete( BOOL bAutoDelete = TRUE); 

Parameters 

Remarks 

bAutoDelete Specifies whether the item is to be removed from the document. 

Call this function to delete the OLE item from the container document. This function 
calls the Release member function, which in turn deletes the C++ object for the item, 
permanently removing the OLE item from the document. If the OLE item is 
embedded, the native data for the item is deleted. It always closes a running server; 
therefore, if the item is an open link, this function closes it. 

See Also: COleClientltem::Release 

COleClientItem: : DoDragDrop 
DROPEFFECT DoDragDrop( LPCRECT IpltemRect, CPoint ptOffset, 

.. BOOL blncludeLink = FALSE, 

Return Value 

.. DWORD dwEffects = DROPEFFECT_COPY I DROPEFFECT_MOVE, 

.. LPCRECT lpRectStartDrag = NULL ); 

A DROPEFFECT value. If it is DROPEFFECT_MOVE, the original data should 
be removed. 

1147 



COleClientItem: :Do Verb 

Parameters 

Remarks 

lpltemRect The item's rectangle on screen in client coordinates (pixels). 

ptOffset The offset from lpltemRect where the mouse position was at the time of the 
drag. 

blncludeLink Set this to TRUE if the link data should be copied to the Clipboard. Set 
it to FALSE if your server application does not support links. 

dwEffects Determines the effects that the drag source will allow in the drag 
operation. 

lpRectStartDrag Pointer to the rectangle that defines where the drag actually starts. 
For more information, see the following Remarks section. 

Call the DoDragDrop member function to perform a drag-and-drop operation. The 
drag-and-drop operation does not start immediately. It waits until the mouse cursor 
leaves the rectangle specified by lpRectStartDrag or until a specified number of 
milliseconds have passed. If lpRectStartDrag is NULL, the size of the rectangle is one 
pixel. The delay time is specified by the DragDelay value in the [Windows] section of 
WIN.INI. If this value is not in WIN.INI, the default value of 200 milliseconds is 
used. 

See Also: COleDataSource: :DoDragDrop, COleClientltem:: CopyToClipboard 

COleClientItem: :Do Verb 
virtual BOOL DoVerb( LONG nVerb, CView* pView, LPMSG lpMsg = NULL); 

Return Value 
Nonzero if the verb was successfully executed; otherwise O. 

Parameters 

1148 

n Verb Specifies the verb to execute. It can include one of the following: 

Value Meaning Symbol 

0 Primary verb OLEIVERB_PRIMARY 

Secondary verb (None) 

-1 Display item for editing OLEIVERB_SHOW 

-2 Edit item in separate window OLEIVERB_OPEN 

-3 Hide item OLEIVERB_HIDE 

The -1 value is typically an alias for another verb. If open editing is not supported, 
-2 has the same effect as -1. For additional values, see IOleObject::DoVerb in the 
OLE documentation. 



COleClientItem: :Draw 

Remarks 

This parameter should be NULL if the container application does not allow in-place 
activation. 

IpMsg Pointer to the message that caused the item to be activated. 

Call Do Verb to execute the specified verb. This function calls the Activate member 
function to execute the verb. It also catches exceptions and displays a message box to 
the user if one is thrown. 

If the primary verb is Edit and zero is specified in the Il Verb parameter, the server 
application is launched to allow the OLE item to be edited. If the container application 
supports in-place activation, editing can be done in place. If the container does not 
support in-place activation (or if the Open verb is specified), the server is launched in 
a separate window and editing can be done there. Typically, when the user of the 
container application double-clicks the OLE item, the value for the primary verb in 
the n Verb parameter determines which action the user can take. However, if the server 
supports only one action, it takes that action, no matter which value is specified in the 
n Verb parameter. 

See Also: COleClientItem: :Activate 

COleClientItem: : Draw 
BOOL Draw( CDC* pDC, LPCRECT IpBounds, 

1+ DVASPECT nDrawAspect = (DVASPECT)-l ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pDC Pointer to a CDC object used for drawing the OLE item. 

IpBounds Pointer to a CRect object or RECT structure that defines the bounding 
rectangle in which to draw the OLE item (in logical units determined by the device 
context). 

nDrawAspect Specifies the aspect of the OLE item, that is, how it should be 
displayed. If nDrawAspect is -1, the last aspect set by using SetDraw Aspect is 
used. For more information about possible values for this flag, see 
SetDraw Aspect. 

Call this function to draw the OLE item into the specified bounding rectangle using 
the specified device context. The function may use the metafile representation of the 
OLE item created by the OnDraw member function of COleServerltem. 

Typically you use Draw for screen display, passing the screen device context as pDC. 
In this case, you need to specify only the first two parameters. 

1149 



COleClientItem: : GetActive View 

The IpBounds parameter identifies the rectangle in the target device context (relative 
to its current mapping mode). Rendering may involve scaling the picture and can be 
used by container applications to impose a view that scales between the displayed 
view and the final printed image. 

For more information, see IViewObject: :Draw in the OLE documentation. 

See Also: COleClientItem::SetExtent, COleServerItem::OnDraw 

COleClientItem: : GetActive View 
CView* GetActive View( ) const; 

Return Value 
A pointer to the view; otherwise NULL if the item is not in-place activated. 

Remarks 
Returns the view on which the item is in-place activated. 

See Also: COleClientItem: :IsInPlaceActive, COleClientItem: :GetDocument 

COleClientItem: : GetCachedExtent 
BOOL GetCachedExtent( LPSIZE IpSize, 

... DVASPECT nDrawAspect = (DVASPECT)-l); 

Return Value 
Nonzero if successful; 0 if the OLE item is blank. 

Parameters 

Remarks 

1150 

IpSize Pointer to a SIZE structure or a CSize object that will receive the size 
information. 

nDrawAspect Specifies the aspect of the OLE item whose bounds are to be retrieved. 
For possible values, see SetDraw Aspect. 

Call this function to retrieve the OLE item's size. This function provides the same 
information as GetExtent. However, you can call GetCachedExtent to get extent 
information during the processing of other OLE handlers, such as OnChange. The 
dimensions are in MM_HIMETRIC units. 

This is possible because GetCachedExtent uses the IViewObject2 interface rather 
than use the IOleObject interface to get the extent of this item. The IViewObject2 
COM object caches the extent information used in the previous call to 
IViewObject: :Draw. 

For more information, see IViewObject2::GetExtent in the OLE documentation. 

See Also: COleClientItem: : GetExtent, COleClientItem: :SetExtent, 
COleServerltem::OnGetExtent 



COleClientltem: :GetClipboardData 

COleClientItem: : GetClassID 
void GetClassID( CLSID* pClassID ) const; 

Parameters 

Remarks 

pClassID Pointer to an identifier of type CLSID to retrieve the class ID. For 
information on CLSID, see the OLE documentation. 

Returns the class ID of the item into the memory pointed to by pClassID. The class ID 
is a 128-bit number that uniquely identifies the application that edits the item. 

For more information, see IPersist: :GetClassID in the OLE documentation. 

COleClientItem: : GetClipboardData 
void GetClipboardData( COleDataSource* pDataSource, 

~ BOOL blncludeLink = FALSE, LPPOINT IpOffset = NULL, 
~ LPSIZE IpSize = NULL); 

Parameters 

Remarks 

pDataSource Pointer to a COleDataSource object that will receive the data 
contained in the OLE item. 

blncludeLink TRUE if link data should be included; otherwise FALSE. 

IpOffset The offset of the mouse cursor from the origin of the object in pixels. 

IpSize The size of the object in pixels. 

Call this function to get a COleDataSource object containing all the data that 
would be placed on the Clipboard by a call to the CopyToClipboard member 
function. 

Override GetClipboardData only if you want to offer data formats in addition to 
those offered by CopyToClipboard. Place those formats in the COleDataSource 
object before or after calling CopyToClipboard, and then pass the COleDataSource 
object to the COleDataSource: :SetClipboard function. For example, if you want the 
OLE item's position in its container document to accompany it on the Clipboard, you 
would define your own format for passing that information and place it in the 
COleDataSource before calling CopyToClipboard. 

See Also: COleDataSource, COleClientItem: :CopyToClipboard, 
COleDataSource: :SetClipboard 

1151 



COleClientltem: :GetDocument 

COleClientItem: : GetDocument 
COleDocument* GetDocument( ) const; 

Return Value 

Remarks 

A pointer to the document that contains the OLE item. NULL if the item is not part of 
a document. 

Call this function to get a pointer to the document that contains the OLE item. This 
pointer allows access to the COleDocument object that you passed as an argument to 
the COleClientltem constructor. 

See Also: COleClientltem::COleClientltem, COleDocument, COleLinkingDoc 

COleClientItem: : GetDraw Aspect 
DVASPECT GetDrawAspect() const; 

Return Value 

Remarks 

A value from the DVASPECT enumeration, whose values are listed in the reference 
for SetDraw Aspect. 

Call the GetDraw Aspect member function to determine the current "aspect," or view, 
of the item. The aspect specifies how the item is to be rendered. 

See Also: COleClientItem: :SetDraw Aspect, COleClientltem: :Draw 

CO leClientItem: : GetExtent 
BOOL GetExtent( LPSIZE IpSize, DVASPECT nDrawAspect = (DVASPECT)-l); 

Return Value 
Nonzero if successful; 0 if the OLE item is blank. 

Parameters 

Remarks 

1152 

IpSize Pointer to a SIZE structure or a CSize object that will receive the size 
information. 

nDrmvAspect Specifies the aspect of the OLE item whose bounds are to be retrieved. 
For possible values, see SetDraw Aspect. 

Call this function to retrieve the OLE item's size. 

If the server application was written using the Microsoft Foundation Class Library, 
this function causes the OnGetExtent member function of the corresponding 



COleClientltem: :GetlnPlace Window 

COleServerItem object to be called. Note that the retrieved size may differ 
from the size last set by the SetExtent member function; the size specified 
by SetExtent is treated as a suggestion. The dimensions are in MM_HIMETRIC 
units. 

Note Do not call Get Extent during the processing of an OLE handler, such as OnChange. 
Call GetCachedExtent instead. 

For more information, see IOleObject::GetExtent in the OLE documentation. 

See Also: COleClientItem::SetExtent, COleClientItem::GetCachedExtent, 
COleServer Item: :OnGetExtent 

COleClientItem: : GetIconicMetafile 
HGLOBAL GetlconicMetafile( ); 

Return Value 

Remarks 

A handle to the metafile if successful; otherwise NULL. 

Retrieves the metafile used for drawing the item's icon. If there is no current icon, a 
default icon is returned. This is called automatically by the MFC/OLE dialogs and is 
usually not called directly. 

This function also calls SetlconicMetafile to cache the metafile for later use. 

See Also: COleClientltem::SetlconicMetafile 

COleClientItem: : GetInPlace Window 
CWnd* GetlnPlaceWindow(); 

Return Value 

Remarks 

A pointer to the item's in-place editing window; NULL if the item is not active or if 
its server is unavailable. 

Call the GetlnPlaceWindow member function to get a pointer to the window in 
which the item has been opened for in-place editing. This function should be called 
only for items that are in-place active. 

See Also: COleClientltem: :Activate, COleClientItem: :Deactivate, 
COleClientItem: :SetItemRects 

1153 



C01eClientItem: : GetItemState 

COleClientItem: : GetItemState 
UINT GetltemState() const; 

Return Value 

Remarks 

A COleClientItem::ItemState enumerated value, which can be one of the following: 
emptyState, loadedState, openState, activeState, activeUIState. For information 
about these states, see the article "Containers: Client-Item States" in Visual C++ 
Programmer's Guide online. 

Call this function to get the OLE item's current state. To be notified when the OLE 
item's state changes, use the On Change member function. 

For more information, see the article "Containers: Client-Item States" in Visual C++ 
Programmer's Guide online. 

See Also: COleClientltem::OnChange 

COleClientItem:: GetLastStatus 
SCODE GetLastStatus( ) const; 

Return Value 

Remarks 

An SCODE value. 

Returns the status code of the last OLE operation. For member functions that return a 
BOOL value of FALSE, or other member functions that return NULL, 
GetLastStatus returns more detailed failure information. Be aware that most OLE 
member functions throw exceptions for more serious errors. The specific information 
on the interpretation of the SCODE depends on the underlying OLE call that last 
returned an SCODE value. 

For more information on SCODE, see "Structure of OLE Error Codes" in the OLE 
documentation. 

COleClientItem: : GetLink U pdateOptions 
OLEUPDATE GetLinkUpdateOptions( ); 

Return Value 

1154 

One of the following values: 

• OLEUPDATE_ALWAYS Update the linked item whenever possible. This option 
supports the Automatic link-update radio button in the Links dialog box. 



COleClientl tern: :Get U serType 

Remarks 

• OLEUPDATE_ONCALL Update the linked item only on request from the 
container application (when the UpdateLink member function is called). This 
option supports the Manual link-update radio button in the Links dialog box. 

Call this function to get the current value of the link-update option for the OLE item. 
This is an advanced operation. 

This function is called automatically by the COleLinksDialog class. 

For more information, see IOleLink::GetUpdateOptions in the OLE documentation. 

See Also: COleClientltem::SetLinkUpdateOptions, COleLinksDialog 

COleClientItem: : GetType 
OLE_OBJTYPE GetType() const; 

Return Value 

Remarks 

An unsigned integer with one of the following values: 

• OT_LINK The OLE item is a link. 

• OT_EMBEDDED The OLE item is embedded. 

• OT_STATIC The OLE item is static, that is, it contains only presentation data, 
not native data, and thus cannot be edited. 

Call this function to determine whether the OLE item is embedded or linked, or static. 

See Also: COleClientItem::GetUserType 

COleClientItem: : Get U serType 
void GetUserType( USERCLASSTYPE nUserClassType, CString& rString ); 

Parameters 
nUserClassType A value indicating the desired variant of the string describing the 

OLE item's type. This can have one of the following values: 

• USERCLASSTYPE_FULL The full type name displayed to the user. 

• USERCLASSTYPE_SHORT A short name (15 characters maximum) for use 
in pop-up menus and the Edit Links dialog box. 

• USERCLASSTYPE_APPNAME Name of the application servicing the class. 

rString A reference to a CString object to which the string describing the OLE 
item's type is to be returned. 

1155 



COleClientItem::IslnPlaceActive 

Remarks 
Call this function to get the user-visible string describing the OLE item's type, such as 
"Word document." This is often the entry in the system registration database. 

If the full type name is requested but not available, the short name is used instead. If 
no entry for the type of OLE item is found in the registration database, or if there are 
no user types registered for the type of OLE item, then the user type currently stored 
in the OLE item is used. If that user type name is an empty string, "Unknown Object" 
is used. 

For more information, see IOleObject: : GetUserType in the OLE documentation. 

See Also: COleClientltem::GetType 

COleClientItem: : IsInPlaceActive 
BOOL IsInPlaceActive( ) const; 

Return Value 

Remarks 

Nonzero if the OLE item is in-place active; otherwise O. 

Call this function to see whether the OLE item is in-place active. It is common to 
execute different logic depending on whether the item is being edited in place. The 
function checks whether the current item state is equal to either the activeS tate or the 
activeUIState. 

See Also: COleClientItem::GetItemState 

COleClientItem: : I sLinkUpToD ate 
BOOL IsLinkUpToDate() const; 

Return Value 

Remarks 

1156 

Nonzero if the OLE item is up to date; otherwise O. 

Call this function to see whether the OLE item is up to date. A linked item can be out 
of date if its source document has been updated. An embedded item that contains links 
within it can similarly become out of date. The function does a recursive check of the 
OLE item. Note that determining whether an OLE item is out of date can be as 
expensive as actually performing an update. 

This is called automatically by the COleLinksDialog implementation. 

For more information, see IOleObject::IsUpToDate in the OLE documentation. 



COleClientltem: :IsRunning 

COleClientItem: :IsModified 
BOOL IsModified() const; 

Return Value 

Remarks 

Nonzero if the OLE item is dirty; otherwise O. 

Call this function to see whether the OLE item is dirty (modified since it 
was last saved). 

For more information, see IPersistStorage::IsDirty in the OLE 
documentation. 

COleClientItem: :IsOpen 
BOOL IsOpen( ) const; 

Return Value 

Remarks 

Nonzero if the OLE item is open; otherwise O. 

Call this function to see whether the OLE item is open; that is, opened in an 
instance of the server application running in a separate window. It is used to 
determine when to draw the object with a hatching pattern. An open object should 
have a hatch pattern drawn on top of the object. You can use a CRectTracker 
object to accomplish this. 

See Also: COleClientItem::GetItemState, CRectTracker 

COleClientItem: : IsRunning 
BOOL IsRunning( ) const; 

Return Value 

Remarks 

Nonzero if the OLE item is running; otherwise O. 

Call this function to see whether the OLE item is running; that is, 
whether the item is loaded and running in the server application. 

For more information, see OleIsRunning in the OLE documentation. 

1157 



COleClientltem:: OnActivate 

COleClientItem: :OnActivate 

Remarks 

virtual void OnActivate(); 

Called by the framework to notify the item that it has just been activated in place. 
Note that this function is called to indicate that the server is running, not to indicate 
that its user interface has been installed in the container application. At this point, the 
object does not have an active user interface (is not activeUIState). It has not 
installed its menus or toolbar. The OnActivateUI member function is called when that 
happens. 

The default implementation calls the On Change member function with 
OLE_CHANGEDSTATE as a parameter. Override this function to perform custom 
processing when an item becomes in-place active. 

See Also: COleClientltem: :OnDeactivate, COleClientItem: :OnDeactivateUI, 
COleClientltem: :OnActivateUI, COleClientltem:: CanActivate 

COleClientItem: : OnActi vate VI 

Remarks 

virtual void OnActivateUI( ); 

The framework calls OnActivateUI when the object has entered the active UI state. 
The object has now installed its tool bar and menus. 

The default implementation remembers the server's HWND for later 
GetServerWindow calls. 

See Also: COleClientltem: :OnDeactivate, COleClientltem: :OnDeactivateUI, 
COleClientltem: :OnActivate, COleClientItem: :CanActivate 

COleClientItem:: OnChange 
virtual void OnChange( OLE_NOTIFICATION nCode, DWORD dwParam ); 

Parameters 

1158 

nCode The reason the server changed this item. It can have one of the following 
values: 

• OLE_CHANGED The OLE item's appearance has changed. 

• OLE_SAVED The OLE item has been saved. 

• OLE_CLOSED The OLE item has been closed. 



CO leClientltem: :OnChangeItemPosition 

Remarks 

• OLE_CHANGED_STATE The OLE item has changed from one state to 
another. 

dwParam If nCode is OLE_SAVED or OLE_CLOSED, this parameter is not used. 
If nCode is OLE_CHANGED, this parameter specifies the aspect of the OLE item 
that has changed. For possible values, see the dwParam parameter of 
COleClientItem::Draw. If nCode is OLE_CHANGED_STATE, this parameter 
is a COleClientItem: :ItemState enumerated value and describes the state being 
entered. It can have one of the following values: emptyState, loadedState, 
openState, activeS tate, or activeUIState. 

Called by the framework when the user modifies, saves, or closes the OLE item. (If 
the server application is written using the Microsoft Foundation Class Library, this 
function is called in response to the Notify member functions of COleServerDoc or 
COleServerItem.) The default implementation marks the container document as 
modified if nCode is OLE_CHANGED or OLE_SAVED. 

For OLE_CHANGED_STATE, the current state returned from GetItemState will 
still be the old state, meaning the state that was current prior to this state change. 

Override this function to respond to changes in the OLE item's state. Typically you 
update the item's appearance by invalidating the area in which the item is displayed. 
Call the base class implementation at the beginning of your override. 

See Also: COleClientItem::GetItemState, COleServerItem::NotifyChanged, 
CO leServer Doc::N otifyChanged, COleServer Doc: :N otifyClosed, 
CO leServer Doc::N otifySaved 

COleClientItem: :OnChangeItemPosition 
virtual BOOL OnChangeItemPosition( const CRect& rectPos ); 

Return Value 
Nonzero if the item's position is successfully changed; otherwise O. 

Parameters 

Remarks 

rectPos Indicates the item's position relative to the container application's client 
area. 

Called by the framework to notify the container that the OLE item's extent has 
changed during in-place activation. The default implementation determines the new 
visible rectangle of the OLE item and calls SetItemRects with the new values. The 
default implementation calculates the visible rectangle for the item and passes that 
information to the server. 

1159 



COleClientltem: :OnDeactivate 

Override this function to apply special rules to the resize/move operation. If the 
application is written in MFC, this call results because the server called 
COleServerDoc: :RequestPositionChange. 

See Also: COleServerDoc: :RequestPositionChange 

COleClientItem: : OnDeacti vate 

Remarks 

virtual void OnDeactivate( ); 

Called by the framework when the OLE item transitions from the in-place active state 
(activeState) to the loaded state, meaning that it is deactivated after an in-place 
activation. Note that this function is called to indicate that the OLE item is closed, not 
that its user interface has been removed from the container application. When that 
happens, the OnDeactivateUI member function is called. 

The default implementation calls the On Change member function with 
OLE_CHANGEDSTATE as a parameter. Override this function to perform custom 
processing when an in-place active item is deactivated. For example, if you support 
the undo command in your container application, you can override this function to 
discard the undo state, indicating that the last operation performed on the OLE item 
cannot be undone once the item is deactivated. 

See Also: COleClientItem::OnGetWindowContext, 
COleClientItem::OnDeactivateUI, COleClientItem::OnActivateUI, 
COleClientItem:: OnActivate, COleClientItem: :CanActivate, 
CDocTemplate: :SetContainerInfo 

COleClientItem: : OnDeacti vateAndU ndo 

Remarks 

1160 

virtual void OnDeactivateAndUndo( ); 

Called by the framework when the user invokes the undo command after activating 
the OLE item in place. The default implementation calls DeactivateUI to deactivate 
the server's user interface. Override this function if you are implementing the undo 
command in your container application. In your override, call the base class version of 
the function and then undo the last command executed in your application. 

For more information, see IOlelnPlaceSite::DeactivateAndUndo in the OLE 
documentation. 

See Also: COleClientItem: :DeactivateUI 



COleClientltem: :OnGetClipboardData 

COleClientItem: : OnDeacti vate UI 
virtual void OnDeactivateUI( BOOL bUndoable); 

Parameters 

Remarks 

bUndoable Specifies whether the editing changes are undoable. 

Called when the user deactivates an item that was activated in place. This function 
restores the container application's user interface to its original state, hiding any 
menus and other controls that were created for in-place activation. 

If bUndoable is FALSE, the container should disable the undo command, in effect 
discarding the undo state of the container, because it indicates that the last operation 
performed by the server is not undoable. 

See Also: COleClientltem: :OnActivateUI, 
COleClientItem:: OnDeactivateAndU ndo, COleClientItem:: OnDeactivate 

COleClientItem: : OnDiscardU ndoState 

Remarks 

virtual void OnDiscardUndoState(); 

Called by the framework when the user performs an action that discards the undo state 
while editing the OLE item. The default implementation does nothing. Override this 
function if you are implementing the undo command in your container application. In 
your override, discard the container application's undo state. 

If the server was written with the Microsoft Foundation Class Library, the server can 
cause this function to be called by calling COleServerDoc::DiscardUndoState. 

For more information, see IOlelnPlaceSite::DiscardUndoState in the OLE 
documentation. 

See Also: COleServerDoc::DiscardUndoState 

COleClientItem: : OnGetClipboardData 
virtual COleDataSource* OnGetClipboardData( BOOL blncludeLink, 

.. LPPOINT IpOffset, LPSIZE IpSize); 

Return Value 
A pointer to a COleDataSource object containing the Clipboard data. 

Parameters 
blncludeLink Set this to TRUE if link data should be copied to the Clipboard. Set 

this to FALSE if your server application does not support links. 

1161 



COleClientltem: :OnGetClipRect 

Remarks 

IpOf!set Pointer to the offset of the mouse cursor from the origin of the object in 
pixels. 

IpSize Pointer to the size of the object in pixels. 

Called by the framework to get a COleDataSource object containing all the data that 
would be placed on the Clipboard by a call to either the CopyToClipboard or the 
DoDragDrop member function. The default implementation of this function calls 
GetClipboardData. 

See Also: COleDataSource, COleClientltem:: CopyToClipboard, 
COleClientItem:: GetClipboardData, COleDataSource: :SetClipboard 

COleClientItem: :OnGetClipRect 
virtual void OnGetClipRect( CRect& rClipRect ); 

Parameters 

Remarks 

rClipRect Pointer to an object of class CRect that will hold the clipping-rectangle 
coordinates of the item. 

The framework calls the OnGetClipRect member function to get the 
clipping-rectangle coordinates of the item that is being edited in place. Coordinates 
are in pixels relative to the container application window's client area. 

The default implementation simply returns the client rectangle of the view on which 
the item is in-place active. 

See Also: COleClientItem::OnActivate 

COleClientItem: : On GetItemPosition 
virtual void OnGetItemPosition( CRect& rPosition ); 

Parameters 

Remarks 

1162 

rPosition Reference to the CRect object that will contain the item's position 
coordinates. 

The framework calls the OnGetItemPosition member function to get the coordinates 
of the item that is being edited in place. Coordinates are in pixels relative to the 
container application window's client area. 

The default implementation of this function does nothing. Applications that support 
in-place editing require its implementation. 

See Also: COleClientltem::OnActivate, COleClientItem::OnActivateUI 



COleClientltem: :OnInsertMenus 

COleClientItem: :OnGetWindowContext 
virtual BOOL OnGetWindowContext( CFrameWnd** ppMainFra11le, 

.... CFrameWnd** ppDocFra11le, 

.... LPOLEINPLACEFRAMEINFO IpFra11lelnfo); 

Return Value 
Nonzero if successful; otherwise 0. 

Parameters 

Remarks 

ppMainFrame Pointer to a pointer to the main frame window. 

ppDocFra11le Pointer to a pointer to the document frame window. 

lpFra11leIllfo Pointer to an OLEINPLACEFRAMEINFO structure that will receive 
frame window information. 

Called by the framework when an item is activated in place. This function is used to 
retrieve information about the OLE item's parent window. 

If the container is an MDI application, the default implementation returns a pointer to 
the CMDIFrameWnd object in ppMaillFra11le and a pointer to the active 
CMDIChildWnd object in ppDocFra11le. If the container is an SDI application, the 
default implementation returns a pointer to the CFrameWnd object in ppMainFra11le 
and returns NULL in ppDocFrame. The default implementation also fills in the 
members of IpFramelnfo. 

Override this function only if the default implementation does not suit your 
application; for example, if your application has a user-interface paradigm that differs 
from SDI or MDI. This is an advanced overridable. 

For more information, see IOlelnPlaceSite::GetWindowContext and the 
OLEINPLACEFRAMEINFO structure in the OLE documentation. 

COleClientItem: :OnInsertMenus 
virtual void OnlnsertMenus( CMenu* pMenuShared, 

... LPOLEMENUGROUPWIDTHS lpMenuWidths); 

Parameters 
pMenuShared Points to an empty menu. 

lpMenu Widths Points to an array of six LONG values indicating how many menus 
are in each of the following menu groups: File, Edit, Container, Object, Window, 
Help. The container application is responsible for the File, Container, and Window 
menu groups, corresponding to elements 0, 2, and 4 of this array. 

1163 



COleClientItem: :OnRemoveMenus 

Remarks 
Called by the framework during in-place activation to insert the container 
application's menus into an empty menu. This menu is then passed to the server, 
which inserts its own menus, creating a composite menu. This function can be called 
repeatedly to build several composite menus. 

The default implementation inserts into pMenuShared the in-place container menus; 
that is, the File, Container, and Window menu groups. 
CDocTemplate: :SetContainerInfo is used to set this menu resource. The default 
implementation also assigns the appropriate values to elements 0, 2, and 4 in 
lpMenuWidths, depending on the menu resource. Override this function if the default 
implementation is not appropriate for your application; for example, if your 
application does not use document templates for associating resources with document 
types. If you override this function, you should also override OnSetMenu and 
OnRemoveMenus. This is an advanced overridable. 

For more information, see IOleInPlaceFrame::InsertMenus in the OLE 
documentation. 

See Also: COleClientItem: :OnRemoveMenus, COleClientItem: :OnSetMenu 

COleClientItem: : OnRemoveMenus 
virtual void OnRemoveMenus( CMenu* pMenuShared); 

Parameters 

Remarks 

1164 

pMenuShared Points to the composite menu constructed by calls to the 
OnInsertMenus member function. 

Called by the framework to remove the container's menus from the specified 
composite menu when in-place activation ends. 

The default implementation removes from pMenuShared the in-place container 
menus, that is, the File, Container, and Window menu groups. Override this function 
if the default implementation is not appropriate for your application; for example, if 
your application does not use document templates for associating resources with 
document types. If you override this function, you should probably override 
OnInsertMenus and OnSetMenu as well. This is an advanced overridable. 

The submenus on pMenuShared may be shared by more than one composite menu if 
the server has repeatedly called OnInsertMenus. Therefore you should not delete any 
submenus in your override of OnRemoveMenus; you should only detach them. 

For more information, see IOleInPlaceFrame: : RemoveMenus in the OLE 
documentation. 

See Also: COleClientItem: :OnInsertMenus, COleClientItem: :OnSetMenu 



COleClientItem::OnSetMenu 

COleClientItem: : OnScrollB y 
virtual BOOL OnScrollBy( CSize sizeExtent ); 

Return Value 
Nonzero if the item was scrolled; 0 if the item could not be scrolled. 

Parameters 

Remarks 

sizeExtellt Specifies the distances, in pixels, to scroll in the x and y directions. 

Called by the framework to scroll the OLE item in response to requests from the 
server. For example, if the OLE item is partially visible and the user moves outside the 
visible region while performing in-place editing, this function is called to keep the 
cursor visible. The default implementation does nothing. Override this function to 
scroll the item by the specified amount. Note that as a result of scrolling, the visible 
portion of the OLE item can change. Call SetItemRects to update the item's visible 
rectangle. 

For more information, see IOlelnPlaceSite: :Scroll in the OLE documentation. 

See Also: COleClientItem::SetItemRects 

COleClientItem: : OnSetMenu 
virtual void OnSetMenu( CMenu* pMenuShared, 

... HOLEMENU holemenu, HWND hwndActiveObject); 

Parameters 

Remarks 

pMenuShared Pointer to the composite menu constructed by calls to the 
OnlnsertMenus member function and the: :InsertMenu function. 

holemenu Handle to the menu descriptor returned by the 
::OleCreateMenuDescriptor function, or NULL if the dispatching code is to be 
removed. 

hwndActiveObject Handle to the editing window for the OLE item. This is the 
window that will receive editing commands from OLE. 

Called by the framework two times when in-place activation begins and ends; the first 
time to install the composite menu and the second time (with holemenu equal to 
NULL) to remove it. The default implementation installs or removes the composite 
menu and then calls the OleSetMenuDescriptor function to install or remove the 
dispatching code. Override this function if the default implementation is not 
appropriate for your application. If you override this function, you should probably 
override OnlnsertMenus and OnRemoveMenus as well. This is an advanced 
overridable. 

1165 



COleClientItem:: OnShowControlBars 

For more information, see OleCreateMenuDescriptor, OleSetMenuDescriptor, and 
IOleInPlaceFrame::SetMenu in the OLE documentation. 

See Also: COleClientltem::OnlnsertMenus, COleClientltem::OnRemoveMenus 

COleClientItem: : OnShowControlB ars 
virtual BOOL OnShowControlBars( CFrameWnd* pFrameWnd, BOOL bShow); 

Return Value 
Nonzero if the function call causes a change in the control bars' state; 0 if the call 
causes no change, or if pFrameWnd does not point to the container's frame window. 

Parameters 

Remarks 

pFrameWnd Pointer to the container application's frame window. This can be either 
a main frame window or an MDI child window. 

bShow Specifies whether control bars are to be shown or hidden. 

Called by the framework to show and hide the container application's control 
bars. This function returns 0 if the control bars are already in the state specified by 
bShow. This would occur, for example, if the control bars are hidden and bShow 
is FALSE. 

The default implementation removes the toolbar from the top-level frame window. 

See Also: COleClientltem: :OnlnsertMenus, COleClientltem: :OnSetMenu, 
COleClientltem: :OnRemoveMenus, COleClientltem: :OnUpdateFrameTitle 

CO leClientItem: : OnShow Item 

Remarks 

1166 

virtual void OnShowltem( ); 

Called by the framework to display the OLE item, making it totally visible during 
editing. It is used when your container application supports links to embedded items 
(that is, if you have derived your document class from COleLinkingDoc). This 
function is called during in-place activation or when the OLE item is a link source and 
the user wants to edit it. The default implementation activates the first view on the 
container document. Override this function to scroll the document so that the OLE 
item is visible. 

See Also: COleLinkingDoc 



COleClientltem: :Release 

COleClientItem: : On U pdateFrameTitle 
virtual BOOL OnUpdateFrameTitle( ); 

Return Value 

Remarks 

Nonzero if this function successfully updated the frame title, otherwise zero. 

Called by the framework during in-place activation to update the frame window's title 
bar. The default implementation does not change the frame window title. Override this 
function if you want a different frame title for your application, for example "server 
app - item in docname" (as in, "Microsoft Excel- spreadsheet in REPORT.DOC"). 
This is an advanced overridable. 

COleClientItem: : Reacti vateAndU ndo 
BOOL ReactivateAndUndo( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this function to reactivate the OLE item and undo the last operation performed by 
the user during in-place editing. If your container application supports the undo 
command, call this function if the user chooses the undo command immediately after 
deactivating the OLE item. 

If the server application is written with the Microsoft Foundation Class Libraries, this 
function causes the server to call COleServerDoc::OnReactivateAndUndo. 

For more information, see IOlelnPlaceObject::ReactivateAndUndo in the OLE 
documentation. 

See Also: COleServerDoc::OnReactivateAndUndo, 
COleClientltem:: OnDeactivateAndUndo 

COleClientItem: :Release 
virtual void Release( OLE CLOSE dwCloseOption = OLECLOSE_NOSAVE); 

Parameters 
dwCloseOption Flag specifying under what circumstances the OLE item is saved 

when it returns to the loaded state. For a list of possible values, see 
COleClientltem:: Close. 

1167 



COleClientItem: :Reload 

Remarks 
Call this function to clean up resources used by the OLE item. Release is called by the 
COleClientItem destructor. 

For more information, see IUnknown::Release in the OLE documentation. 

See Also: COleClientItem::Close, COleClientItem::Delete 

COleClientltem: :Reload 
BOOL Reload( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Closes and reloads the item. Call the Reload function after activating the item as an 
item of another type by a call to ActivateAs. 

See Also: COleClientltem::ActivateAs 

COleClientltem: : Run 

Remarks 

void Run(); 

Runs the application associated with this item. 

Call the Run member function to launch the server application before activating the 
item. This is done automatically by Activate and Do Verb, so it is usually not 
necessary to call this function. Call this function if it is necessary to run the server in 
order to set an item attribute, such as SetExtent, before executing Do Verb. 

See Also: COleClientItem::IsRunning 

COleClientltem:: SetDraw Aspect 
void SetDrawAspect( DVASPECT nDrawAspect); 

Parameters 

1168 

nDrawAspect A value from the DVASPECT enumeration. This parameter can have 
one of the following values: 

• DVASPECT_CONTENT Item is represented in such a way that it can be 
displayed as an embedded object inside its container . 

• DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation 
so that it can be displayed in a browsing tool. 



CO leClientItem:: SetHostN ames 

Remarks 

• DVASPECT_ICON Item is represented by an icon. 

• DVASPECT_DOCPRINT Item is represented as if it were printed using the 
Print command from the File menu. 

Call the SetDrawAspect member function to set the "aspect," or view, of the item. 
The aspect specifies how the item is to be rendered by Draw when the default value 
for that function's nDrawAspect argument is used. 

This function is called automatically by the Change Icon (and other dialogs that call 
the Change Icon dialog directly) to enable the iconic display aspect when requested by 
the user. 

See Also: COleClientltem: :GetDraw Aspect, COleClientltem: :Draw 

COleClientItem: : SetExtent 
void SetExtent( const CSize& size, 

... DVASPECT nDrawAspect = DVASPECT_CONTENT ); 

Parameters 

Remarks 

size A CSize object that contains the size information. 

nDrawAspect Specifies the aspect of the OLE item whose bounds are to be set. For 
possible values, see SetDrawAspect. 

Call this function to specify how much space is available to the OLE item. If the 
server application was written using the Microsoft Foundation Class Library, this 
causes the OnSetExtent member function of the corresponding COleServerItem 
object to be called. The OLE item can then adjust its display accordingly. The 
dimensions must be in MM_HIMETRIC units. Call this function when the user 
resizes the OLE item or if you support some form of layout negotiation. 

For more information, see IOleObject::SetExtent in the OLE documentation. 

See Also: CO leClientltem: :GetExtent, COleClientItem:: GetCachedExtent, 
COleServerItem::OnSetExtent 

COleClientItem: : SetHostN ames 
void SetHostNames( LPCTSTR IpszHost, LPCTSTR IpszHostObj ); 

Parameters 
IpszHost Pointer to the user-visible name of the container application. 

IpszHostObj Pointer to an identifying string of the container that contains the OLE 
item. 

1169 



COleClientItem:: SetIconicMetafile 

Remarks 
Call this function to specify the name of the container application and the container's 
name for an embedded OLE item. If the server application was written using the 
Microsoft Foundation Class Library, this function calls the OnSetHostNames 
member function of the COleServerDoc document that contains the OLE item. This 
information is used in window titles when the OLE item is being edited. Each time a 
container document is loaded, the framework calls this function for all the OLE items 
in the document. SetHostNames is applicable only to embedded items. It is not 
necessary to call this function each time an embedded OLE item is activated for 
editing. 

This is also called automatically with the application name and document name when 
an object is loaded or when a file is saved under a different name. Accordingly, it is 
not usually necessary to call this function directly. 

For more information, see IOleObject::SetHostNames in the OLE documentation. 

See Also: COleServerDoc::OnSetHostNames 

COleClientItem: : SetIconicMetafile 
BOOL SetlconicMetafile( HGLOBAL hMetaPict ); 

Return Value 
Nonzero if successful; otherwise o. 

Parameters 

Remarks 

hMetaPict A handle to the metafile used for drawing the item's icon. 

Caches the metafile used for drawing the item's icon. Use GetlconicMetafile to 
retrieve the metafile. 

The hMetaPict parameter is copied into the item; therefore, hMetaPict must be freed 
by the caller. 

See Also: COleClientltem::GetlconicMetafile 

COleClientItem: : SetItemRects 
BOOL SetItemRects( LPCRECT IpPosRect = NULL, 

... LPCRECT IpClipRect = NULL ); 

Return Value 
Nonzero if successful; otherwise, O. 

1170 



CO leClientItem:: SetLink U pdateOptions 

Parameters 

Remarks 

lprcPosRect Pointer to the rectangle containing the bounds of the OLE item relative 
to its parent window, in client coordinates. 

lprcClipRect Pointer to the rectangle containing the bounds of the visible portion of 
the OLE item relative to its parent window, in client coordinates. 

Call this function to set the bounding rectangle or the visible rectangle of the OLE 
item. This function is called by the default implementation of the 
OnChangeltemPosition member function. You should call this function whenever 
the position or visible portion of the OLE item changes. Usually this means that you 
call it from your view's OnSize and OnScrollBy member functions. 

For more information, see IOlelnPlaceObject::SetObjectRects in the OLE 
documentation. 

See Also: COleClientltem::OnChangeltemPosition, 
COleClientItem:: OnGetltemPosition 

COleClientItem:: SetLinkUpdateOptions 
void SetLinkUpdateOptions( OLEUPDATE dwUpdateOpt ); 

Parameters 

Remarks 

dwUpdateOpt The value of the link-update option for this item. This value must be 
one of the following: 

• OLEUPDATE_ALWAYS Update the linked item whenever possible. 
This option supports the Automatic link-update radio button in the Links 
dialog box. 

• OLEUPDATE_ONCALL Update the linked item only on request from the 
container application (when the UpdateLink member function is called). This 
option supports the Manual link-update radio button in the Links dialog box. 

Call this function to set the link-update option for the presentation of the specified 
linked item. Typically, you should not change the update options chosen by the user in 
the Links dialog box. 

For more information, see IOleLink::SetUpdateOptions in the OLE 
documentation. 

See Also: COleClientltem::GetLinkUpdateOptions, COleLinksDialog 

1171 



COleClientltem:: SetPrintDevice 

COleClientItem: : SetPrintDevice 
BOOL SetPrintDevice( const DVTARGETDEVICE* ptd ); 
BOOL SetPrintDevice( const PRINTDLG* ppd ); 

Return Value 
Nonzero if the function was successful; otherwise O. 

Parameters 

Remarks 

ptd Pointer to a DVTARGETDEVICE data structure, which contains information 
about the new print-target device. Can be NULL. 

ppd Pointer to a PRINTDLG data structure, which contains information about the 
new print-target device. Can be NULL. 

Call this function to change the print-target device for this item. This function updates 
the print-target device for the item but does not refresh the presentation cache. To 
update the presentation cache for an item, call UpdateLink. 

The arguments to this function contain information that the OLE system uses to 
identify the target device. The PRINTDLG structure contains information that 
Windows uses to initialize the common Print dialog box. After the user closes the 
dialog box, Windows returns information about the user's selections in this structure. 
The m_pd member of a CPrintDialog object is a PRINTDLG structure. 

For more information about this structure, see PRINTDLG in the Win32 
documentation. 

For more information, see DVTARGETDEVICE in the OLE documentation. 

See Also: COleClientItem::UpdateLink, CPrintDialog 

COleClientItem:: UpdateLink 
BOOL UpdateLink( ); 

Return Value 

Remarks 

1172 

Nonzero on success; otherwise O. 

Call this function to update the presentation data of the OLE item immediately. For 
linked items, the function finds the link source to obtain a new presentation for the 
OLE item. This process may involve running one or more server applications, which 
could be time-consuming. For embedded items, the function operates recursively, 
checking whether the embedded item contains links that might be out of date and 
updating them. The user can also manually update individual links using the Links 
dialog box. 

For more information, see IOleLink:: Update in the OLE documentation. 

See Also: COleLinksDialog 



COleCmdUI 
I CCmdUI 

'q COleCmdUI !] 

The COleCmdUI class implements a method for MFC to update the state of 
user-interface objects related to the IOleCommandTarget-driven features of your 
application. In an application that is not enabled for DocObjects, when the user views 
a menu in the application, MFC processes UPDATE_COMMAND_UI notifcations. 
Each notification is given a CCmdUI object that can be manipulated to reflect the 
state of a particular command. However, when your application is enabled for 
DocObjects, MFC processes UPDATE_OLE_COMMAND_UI notifications and 
assigns COleCmdUI objects. 

COleCmdUI allows a DocObject to receive commands that originate in its 
container's user interface (such as FileNew, Open, Print, and so on), and allows a 
container to receive commands that originate in the DocObject's user interface. 
Although IDispatch could be used to dispatch the same commands, 
IOleCommandTarget provides a simpler way to query and execute because it relies 
on a standard set of commands, usually without arguments, and no type information is 
involved. COleCmdUI can be used to enable, update, and set other properties of 
DocObject user interface commands. When you want to invoke the command, call 
COleServerDoc: :OnExecOleCmd. 

For further information on DocObjects, see CDocObjectServer and 
CDocObjectServerItem. Also see "Internet First Steps: ActiveX Documents" and 
"ActiveX Documents" in Visual C++ Programmer's Guide online. 

#include <afxdocobj.h> 

COleCmdUI Class Members 
Constructors 

COleCmdUI 

Overridables 

Enable 

SetCheck 

SetText 

Constructs a COleCmdUI object. 

Sets or clears the enable command flag. 

Sets the state of an on/off toggle command. 

Returns a text name or status string for a command. 

COleCmdUI 

1173 



COleCmdUI::COleCmdUI 

Member Functions 
COleCmdUI: :COleCmdUI 

COleCmdUI( OLECMD* rgCmds, ULONG cCmds, const GUID* pGroup ); 

Parameters 

Remarks 

rgCmds A list of supported commands associated with the given GUID. The 
OLECMD structure associates commands with command flags. 

cCmds The count of commands in rgCmds. 

pGroup A pointer to a GUID that identifies a set of commands. 

Constructs a COleCmdUI object associated with a particular user-interface command. 
The COleCmdUI object provides a programmatic interface for updating DocObject 
user-interface objects such as menu items or control-bar buttons. The user-interface 
objects can be enabled, disabled, checked, and/or cleared through the COleCmdUI 
object. 

COleCmdUI: :Enable 
virtual void Enable( BOOL bOn = TRUE ); 

Parameters 

Remarks 

bOn Indicates whether the command associated with the COleCmdUI object 
should be enabled or disabled. Nonzero enables the command; 0 disables the 
command. 

Call this function to set the command flag of the COleCmdUI object to 
OLECOMDF _ENABLED, which tells the interface the command is available 
and enabled, or to clear the command flag. 

COleCmdUI:: SetCheck 
virtual void SetCheck( int nCheck = 1 ); 

Parameters 
nCheck A value determining the state to set an on/off toggle command. 

Values are: 

1174 



Remarks 

Value 

1 

2 

any other value 

Description 

Sets the command to on. 

Sets the command to indeterminate; the state cannot be determined 
because the attribute of this command is in both on and off states in 
the relevant selection. 

Sets the command to off. 

Call this function to set the state of an on/off toggle command. 

See Also: COleCmdUI: :SetText 

COleCmdUI: :SetText 
virtual void SetText( LPCTSTR IpszText); 

Parameters 

Remarks 

lpszText A pointer to the text to be used with the command. 

Call this function to return a text name or status string for a command. 

See Also: COleCmdUI: :SetCheck 

C01eCmdUI:: SetText 

1175 



COleControl 

COleControl 

1176 

1 
COleControl 

The COleControl class is a powerful base class for developing OLE controls. 
Derived from CWnd, this class inherits all the functionality of a Windows window 
object plus additional functionality specific to OLE, such as event firing and the 
ability to support methods and properties. 

OLE controls can be inserted into OLE container applications and communicate with 
the container by using a two-way system of event firing and exposing methods and 
properties to the container. Note that standard OLE containers only support the basic 
functionality of an OLE control. They are unable to support extended features of an 
OLE control. Event firing occurs when events are sent to the container as a result of 
certain actions taking place in the control. In tum, the container communicates with 
the control by using an exposed set of methods and properties analogous to the 
member functions and data members of a C++ class. This approach allows the 
developer to control the appearance of the control and notify the container when 
certain actions occur. 

Windowless Controls 
OLE controls can be used in-place active without a window. Windowless controls 
have significant advantages: 

• Windowless controls can be transparent and non-rectangular 

• Windowless controls reduce instance size and creation time of the object 

Controls do not need a window. Services that a window offers can easily be provided 
via a single shared window (usually the container'S) and a bit of dispatching code. 
Having a window is mostly an unnecessary complication on the object. 

When windowless activation is used, the container (which does have a window) is 
responsible for providing services that would otherwise have been provided by the 
control's own window. For example, if your control needs to query the keyboard 
focus, query the mouse capture, or obtain a device context, these operations are 
managed by the container. The COleControl windowless-operation member 
functions invoke these operations on the container. 

When windowless activation is enabled, the container delegates input messages 
to the control's IOleInPlaceObjectWindowless interface (an extension of 
IOleInPlaceObject for windowless support). COleControl's implementation of 



this interface will dispatch these messages through your control's message map, after 
adjusting the mouse coordinates appropriately. You can process these messages like 
ordinary window messages, by adding the corresponding entries to the message map. 

In a windowless control, you should always use the COle Control member functions 
instead of the corresponding CWnd member functions or their related Windows API 
functions. 

OLE control objects can also create a window only when they become active, but the 
amount of work needed for the inactive-active transition goes up and the speed of the 
transition goes down. There are cases when this is a problem: as an example, consider 
a grid of text boxes. When cursoring up and down through the column, each control 
must be in-place activated and then deactivated. The speed of the inactive/active 
transition will directly affect the scrolling speed. 

For more information on developing an OLE control framework, see the articles 
"ActiveX Controls" and "Create a Program with the ActiveX ControlWizard" in 
Visual C++ Programmer's Guide online. For more information on adding 
functionality beyond the basic framework, see "Building an ActiveX Control" (the 
Circle tutorial) in Visual C++ Tutorials online. For information on optimizing OLE 
controls, including windowless and flicker-free controls, see "ActiveX Controls: 
Optimization" in Visual C++ Programmer's Guide online. 

#include <afxctl.h> 

See Also: COlePropertyPage, CFontHolder, CPictureHolder 

COleControl Class Members 
Construction/Destruction 

COleControl 

RecreateControlWindow 

Initialization 

InitializelIDs 

ResetStockProps 

ResetVersion 

SetInitialSize 

Control Modification Functions 

GetControlFlags 

IsModified 

SetModifiedFlag 

Creates a COleControl object. 

Destroys and re-creates the control's window. 

Informs the base class of the IIDs the control will use. 

Initializes COleControl stock properties to their 
default values. 

Initializes the version number to a given value. 

Sets the size of an OLE control when first displayed in 
a container. 

Retrieves the control flag settings. 

Determines if the control state has changed. 

Changes the modified state of a control. 

C01eControl 

1177 



COleControl 

1178 

Persistence 

ExchangeExtent 

ExchangeStockProps 

Exchange Version 

IsConvertingVBX 

SerializeExtent 

SerializeStockProps 

Serialize Version 

Serializes the control's width and height. 

Serializes the control's stock properties. 

Serializes the control's version number. 

Allows specialized loading of an OLE control. 

Serializes or initializes the display space for the 
control. 

Serializes or initializes the COleControl stock 
properties. 

Serializes or initializes the control's version 
information. 

SetModifiedFlag Changes the modified state of a control. 

WiIlAmbientsBeValidDuringLoad Determines whether ambient properties will be 
available the next time the control is loaded. 

Update/Painting Functions 

DoSuperclassPaint 

InvalidateControl 

IsOptimizedDraw 

SelectFontObject 

SelectStockF ont 

TranslateColor 

Dispatch Exceptions 

GetNotSupported 

SetNotPermitted 

SetNotSupported 

ThrowError 

Ambient Property Functions 

AmbientBackColor 

AmbientDisplayName 

AmbientForeColor . 

AmbientFont 

AmbientLocaleID 

Redraws an OLE control that has been subc1assed from 
a Windows control. 

Invalidates an area of the displayed control, causing it 
to be redrawn. 

Indicates whether the container supports optimized 
drawing for the current drawing operation. 

Selects a custom Font property into a device context. 

Selects the stock Font property into a device context. 

Converts an OLE_COLOR value to a COLORREF 
value. 

Prevents access to a control's property value by the 
user. 

Indicates that an edit request has failed. 

Prevents modification to a control's property value by 
the user. 

Signals that an error has occurred in an OLE control. 

Returns the value of the ambient BackColor property. 

Returns the name of the control as specified by the 
container. 

Returns the value of the ambient ForeColor property. 

Returns the value of the ambient Font property. 

Returns the container's locale ID. 



Ambient Property Functions (continued) 

AmbientScale U ni ts 

AmbientShowGrabHandles 

AmbientShow Hatching 

AmbientTextAlign 

AmbientUIDead 

AmbientUserMode 

GetAmbientProperty 

Event Firing Functions 

FireClick 

FireD bl Click 

FireError 

FireEvent 

FireKey Down 

FireKeyPress 

FireKeyUp 

FireMouseDown 

FireMouseMove 

FireMouseUp 

FireReadyStateChange 

Stock Methods/Properties 

DoClick 

Refresh 

GetAppearance 

SetAppearance 

GetBackColor 

SetBackColor 

GetBorderStyle 

SetBorderStyle 

GetEnabled 

SetEnabled 

GetForeColor 

SetForeColor 

GetFont 

GetFontTextMetrics 

Returns the type of units used by the container. 

Determines if grab handles should be displayed. 

Determines if hatching should be displayed. 

Returns the type of text alignment specified by the 
container. 

Determines if the control should respond to 
user-interface actions. 

Determines the mode of the container. 

Returns the value of the specified ambient property. 

Fires the stock Click event. 

Fires the stock DblClick event. 

Fires the stock Error event. 

Fires a custom event. 

Fires the stock KeyDown event. 

Fires the stock KeyPress event. 

Fires the stock KeyUp event. 

Fires the stock MouseDown event. 

Fires the stock MouseMove event. 

Fires the stock MouseUp event. 

Fires an event when the control's ready state changes. 

Implementation of the stock DoClick method. 

Forces a repaint of a control's appearance. 

Returns the value of the stock Appearance property. 

Sets the value of the stock Appearance property. 

Returns the value of the stock BackColor property. 

Sets the value of the stock BackColor property. 

Returns the value of the stock BorderStyle property. 

Sets the value of the stock BorderStyle property. 

Returns the value of the stock Enabled property. 

Sets the value of the stock Enabled property. 

Returns the value of the stock ForeColor property. 

Sets the value of the stock ForeColor property. 

Returns the value of the stock Font property. 

Returns the metrics of a CFontHolder object. 

(continued) 

COleControl 

1179 



COleControl 

1180 

Stock Methods/Properties (continued) 

GetStockTextMetrics 

InternalGetFont 

SetFont 

SelectStockFont 

GetHwnd 

GetText 

InternalGetText 

SetText 

OLE Control Sizing Functions 

GetControlSize 

SetControlSize 

GetRectIn Container 

SetRectlnContainer 

OLE Data Binding Functions 

BoundPropertyChanged 

BoundPropertyRequestEdit 

Simple Frame Functions 

EnableSimpleFrame 

OLE Control Site Functions 

ControlInfoChanged 

GetClientSite 

GetExtendedControl 

LockInPlaceActive 

TransformCoords 

Returns the metrics of the stock Font property. 

Returns a CFontHolder object for the stock Font 
property. 

Sets the value of the stock Font property. 

Selects the control's stock Font property into a device 
context. 

Returns the value of the stock hWnd property. 

Returns the value of the stock Text or Caption 
property. 

Retrieves the stock Caption or Text property. 

Sets the value of the stock Text or Caption property. 

Returns the position and size of the OLE control. 

Sets the position and size of the OLE control. 

Returns the control's rectangle relative to its container. 

Sets the control's rectangle relative to its container. 

Notifies the container that a bound property has been 
changed. 

Requests permission to edit the property value. 

Enables simple frame support for a control. 

Call this function after the set of mnemonics handled 
by the control has changed. 

Queries an object for the pointer to its current client 
site within its container. 

Retrieves a pointer to an extended control object 
belonging to the container. 

Determines if your control can be deactivated by the 
container. 

Transforms coordinate values between a container and 
the control. 



Modal Dialog Functions 

PreModalDialog 

PostModalDialog 

Windowless Operations 

Cli pCaretRect 

GetCapture 

GetClientRect 

GetDC 

GetFocus 

GetWindowlessDropTarget 

InvalidateRgn 

On WindowlessMessage 

ReleaseCapture 

ReleaseDC 

ScrollWindow 

SetCapture 

SetFocus 

Inactive Pointer Handling Functions 

ClientToParent 

GetActivationPolicy 

GetClientOffset 

Notifies the container that a modal dialog box is about 
to be displayed. 

Notifies the container that a modal dialog box has been 
closed. 

Adjusts a caret rectangle if it is overlapped by a 
control. 

Determines whether a windowless, activated control 
object has the mouse capture. 

Retrieves the size of the control's client area. 

Provides a means for a windowless control to get a 
device context from its container. 

Determines whether the control has the focus. 

Override to allow a windowless control to be the target 
of drag and drop operations. 

Invalidates the container window's client area within 
the given region. Can be used to redraw windowless 
controls in the region. 

Processes window messages (other than mouse and 
keyboard messages) for windowless controls. 

Releases mouse capture. 

Releases the display device context of a container of a 
windowless control. 

Allows a windowless control to scroll an area within its 
in-place active image on the display. 

Causes the control's container window to take 
possession of the mouse capture on the control's 
behalf. 

Causes the control's container window to take 
possession of the input focus on the control's behalf. 

Translates a point relative to the control's origin to a 
point relative to its container's origin. 

Alters the default activation behavior of a control that 
supports the IPointerInactive interface. 

Retrieves the difference between the upper left comer 
of the control's rectangular area and the upper left 
comer of its client area. 

(continued) 

COleControl 

1181 



COleControl 

Inactive Pointer Handling Functions (continued) 

1182 

OnInactiveMouseMove 

OnInactiveSetCursor 

ParentToClient 

Asynchronous Control Functions 

GetReadyState 

InternalSetReadyState 

Load 

Overridables 

DisplayError 

DoPropExchange 

GetClassID 

GetMessageString 

IsSubclassed Control 

OnClick 

OnDoVerb 

OnDraw 

OnDrawMetafile 

OnEdit 

OnEnum Verbs 

OnEventAdvise 

OnKeyDownEvent 

OnKeyPressEvent 

OnKeyUpEvent 

OnProperties 

OnResetState 

Override to have the container for the inactive control 
under the mouse pointer dispatch 
WM_MOUSEMOVE messages to the control. 

Override to have the container for the inactive control 
under the mouse pointer dispatch WM_SETCURSOR 
messages to the control. 

Translates a point relative to the container's origin to a 
point relative to the control's origin. 

Returns the control's readiness state. 

Sets the control's readiness state and fires the 
ready-state-change event. 

Resets any previous asynchronous data and initiates a 
new load of the control's asynchronous property. 

Displays stock Error events to the control's user. 

Serializes the properties of a COle Control object. 

Retrieves the OLE class ID of the control. 

Provides status bar text for a menu item. 

Called to determine if the control subclasses a 
Windows control. 

Called to fire the stock Click event. 

Called after a control verb has been executed. 

Called when a control is requested to redraw itself. 

Called by the container when a control is requested to 
redraw itself using a metafile device context. 

Called by the container to UI Activate an OLE control. 

Called by the container to enumerate a control's verbs. 

Called when event handlers are connected or 
disconnected from a control. 

Called after the stock KeyDown event has been fired. 

Called after the stock KeyPress event has been fired. 

Called after the stock KeyUp event has been fired. 

Called when the control's "Properties" verb has been 
invoked. 

Resets a control's properties to the default values. 



Change Notification Functions 

OnAppearanceChanged 

OnBackColorChanged 

OnBorderStyleChanged 

OnEnabledChanged 

OnFontChanged 

OnForeColorChanged 

OnTextChanged 

OLE Interface Notification Functions 

OnAmbientPropertyChange 

OnClose 

OnFreezeEvents 

OnGetControlInfo 

OnMnemonic 

OnRenderData 

OnRenderFileData 

OnRenderGlobalData 

OnSetClientSite 

OnSetData 

OnSetExtent 

OnSetObjectRects 

Called when the stock Appearance property is changed. 

Called when the stock BackColor property is changed. 

Called when the stock BorderStyle property is changed. 

Called when the stock Enabled property is changed. 

Called when the stock Font property is changed. 

Called when the stock ForeColor property is changed. 

Called when the stock Text or Caption property is 
changed. 

Called when an ambient property is changed. 

Notifies the control that IOleControl::Close has been 
called. 

Called when a control's events are frozen or unfrozen. 

Provides mnemonic information to the container. 

Called when a mnemonic key of the control has been 
pressed. 

Called by the framework to retrieve data in the 
specified format. 

Called by the framework to retrieve data from a file in 
the specified format. 

Called by the framework to retrieve data from global 
memory in the specified format. 

Notifies the control that IOleControl::SetClientSite 
has been called. 

Replaces the control's data with another value. 

Called after the control's extent has changed. 

Called after the control's dimensions have been 
changed. 

IViewObject Interface Notification Overridables 

OnGetColorSet 

OnGetNaturalExtent 

OnGetViewExtent 

OnGetViewRect 

Notifies the control that IOleObject::GetColorSet has 
been called. 

Override to retrieve the control's display size closest to 
the proposed size and extent mode. 

Override to retrieve the size of the control's display 
areas (can be used to enable two-pass drawing). 

Override to convert control's size into a rectangle 
starting at a specific position. 

(continued) 

COleControl 

1183 



COleControl::AmbientBackColor 

IViewObject Interface Notification Overridables (continued) 

OnGetViewStatus 

OnQuery HitPoint 

OnQuery HitRect 

In-Place Activation Functions 

OnGetInPlaceMenu 

OnHideToolBars 

OnShowToolBars 

Property Browsing Functions 

OnGetDisplayString 

OnGetPredefinedStrings 

OnGetPredefinedValue 

OnMapPropertyToPage 

Override to retrieve the control's view status. 

Override to query whether a control's display overlaps 
a given point. 

Override to query whether a control's display overlaps 
any point in a given rectangle. 

Requests the handle of the control's menu that will be 
merged with the container menu. 

Called by the container when the control is UI 
deactivated. 

Called when the control has been UI activated. 

Called to obtain a string to represent a property value. 

Returns strings representing possible values for a 
property. 

Returns the value corresponding to a predefined string. 

Indicates which property page to use for editing a 
property. 

Member Functions 
COleControl: :AmbientBackColor 

OLE_COLOR AmbientBackColor( ); 

Return Value 

Remarks 

1184 

The current value of the container's ambient BackColor property, if any. If the 
property is not supported, this function returns the system-defined Windows 
background color. 

The ambient BackColor property is available to all controls and is defined 
by the container. Note that the container is not required to support this 
property. 

See Also: COleControl::TranslateColor, COleControl::GetBackColor, 
COleControl::AmbientForeColor 



COleControl::AmbientForeColor 

COleControl: : ArnbientDisplay N arne 
CString AmbientDisplayName(); 

Return Value 

Remarks 

The name of the OLE control. The default is a zero-length string. 

The name the container has assigned to the control can be used in error messages 
displayed to the user. Note that the container is not required to support this property. 

COleControl: : ArnbientFont 
LPFONTDISP AmbientFont( ); 

Return Value 

Remarks 

A pointer to the container's ambient Font dispatch interface. The default value is 
NULL. If the return is not equal to NULL, you are responsible for releasing the font 
by calling its IUnknown::Release member function. 

The ambient Font property is available to all controls and is defined by the container. 
Note that the container is not required to support this property. 

See Also: COleControl: : GetFont, COleControl: :SetFont 

COleControl: : ArnbientForeColor 
OLE_COLOR AmbientForeColor( ); 

Return Value 

Remarks 

The current value of the container's ambient ForeColor property, if any. 
If not supported, this function returns the system-defined Windows text 
color. 

The ambient ForeColor property is available to all controls and is defined 
by the container. Note that the container is not required to support this 
property. 

See Also: COleControl::AmbientBackColor, COleControl::GetForeColor, 
COleControl: :TranslateColor 

1185 



COleControl: :AmbientLocaleID 

COleControl: : AmbientLocaleID 
LCID AmbientLocaleID(); 

Return Value 

Remarks 

The value of the container's LocaleID property, if any. If this property is not 
supported, this function returns O. 

The control can use the LocaleID to adapt its user interface for specific 
locales. Note that the container is not required to support this 
property. 

COleControl: : AmbientScaleUnits 
CString AmbientScaleUnits( ); 

Return Value 

Remarks 

A string containing the ambient ScaleUnits of the container. If this 
property is not supported, this function returns a zero-length string. 

The container's ambient ScaleUnits property can be used to display 
positions or dimensions, labeled with the chosen unit, such as twips or 
centimeters. Note that the container is not required to support this 
property. 

See Also: COleControl: : TransformCoords 

COleControl: : AmbientShowGrabHandles 
BOOL AmbientShowGrabHandles(); 

Return Value 

Remarks 

1186 

Nonzero if grab handles should be displayed; otherwise O. If this property is not 
supported, this function returns nonzero. 

Call this function to determine whether the container allows the control to display 
grab handles for itself when active. Note that the container is not required to support 
this property. 

See Also: COleControl: :AmbientShowHatching 



COleControl::AmbientUIDead 

COleControl: : AmbientShow Hatching 
BOOL AmbientShowHatching( ); 

Return Value 

Remarks 

Nonzero if the hatched pattern should be shown; otherwise O. If this property is not 
supported, this function returns nonzero. 

Call this function to determine whether the container allows the control to display 
itself with a hatched pattern when UI active. Note that the container is not required to 
support this property. 

See Also: COleControl: :AmbientShowGrabHandles 

COleControl: : AmbientTextAlign 
short AmbientTextAlign(); 

Return Value 

Remarks 

The status of the container's ambient TextAlign property. If this property is not 
supported, this function returns O. 

The following is a list of valid return values: 

Return Value 

a 

2 

3 

Meaning 

General alignment (numbers to the right, text to the left). 

Left justify 

Center 

Right justify 

Call this function to determine the ambient text alignment preferred by the control 
container. This property is available to all embedded controls and is defined by the 
container. Note that the container is not required to support this property. 

COleControl: : AmbientUIDead 
BOOL AmbientUIDead( ); 

Return Value 
Nonzero if the control should respond to user-interface actions; otherwise O. If this 
property is not supported, this function returns O. 

1187 



COleControl::AmbientUserMode 

Remarks 
Call this function to determine if the container wants the control to respond to 
user-interface actions. For example, a container might set this to TRUE in design 
mode. 

See Also: COleControl::AmbientUserMode 

COleControl: : AmbientU serMode 
BOOL AmbientUserMode( ); 

Return Value 

Remarks 

Nonzero if the container is in user mode; otherwise 0 (in design mode). If this 
property is not supported, this function returns O. 

Call this function to determine if the container is in design mode or user mode. For 
example, a container might set this to FALSE in design mode. 

See Also: COleControl::AmbientUIDead 

COleControl: :BoundPropertyChanged 
void BoundPropertyChanged( DISPID dispid ); 

Parameters 

Remarks 

dispid The dispatch ID of a bound property of the control. 

Call this function to signal that the bound property value has changed. This must be 
called every time the value of the property changes, even in cases where the change 
was not made through the property Set method. Be particularly aware of bound 
properties that are mapped to member variables. Any time such a member variable 
changes, BoundPropertyChanged must be called. 

See Also: COleControl: :BoundProperty RequestEdit 

COleControl::BoundPropertyRequestEdit 
BOOL BoundPropertyRequestEdit( DISPID dispid ); 

Return Value 
Nonzero if the change is permitted; otherwise O. The default value is nonzero. 

Parameters 
dispid The dispatch ID of a bound property of the control. 

1188 



COleControl::ClipCaretRect 

Remarks 
Call this function to request permission from the IPropertyNotifySink interface to 
change a bound property value provided by the control. If permission is denied, the 
control must not let the value of the property change. This can be done by ignoring or 
failing the action that attempted to change the property value. 

See Also: COleControl: :BoundPropertyChanged 

COleControl: :ClientToParent 
virtual void CIientToParent( LPCRECT lprcBounds, LPPOINT pPoint) const; 

Parameters 

Remarks 

IprcBoullds Pointer to the bounds of the OLE control within the container. Not the 
client area but the area of the entire control including borders and scroll bars. 

pPoint Pointer to the OLE client area point to be translated into the coordinates of 
the parent (container). 

Call this function to translate the coordinates of pPoint into parent coordinates. On 
input pPoint is relative to the origin of the client area of the OLE control (upper left 
corner of the client area of the control). On output pPoint is relative to the origin of 
the parent (upper left corner of the container). 

See Also: COleControl::ParentToClient, COleControl::GetCIientOffset 

COleControl: :ClipCaretRect 
BOOL CIipCaretRect( LPRECT IpRect ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpRect On input, a pointer to a RECT structure that contains the caret area to be 
adjusted. On output, the adjusted caret area, or NULL if the caret rectangle is 
completely covered. 

Call this function to adjust a caret rectangle if it is entirely or partially covered by 
overlapping, opaque objects. A caret is a flashing line, block, or bitmap that typically 
indicates where text or graphics will be inserted. 

A windowless object cannot safely show a caret without first checking whether the 
caret is partially or totally hidden by overlapping objects. In order to make that 
possible, an object can use CIipCaretRect to get the caret adjusted (reduced) to 
ensure it fits in the clipping region. 

1189 



COleControl: :COleControl 

Objects creating a caret should submit the caret rectangle to ClipCaretRect and use 
the adjusted rectangle for the caret. If the caret is entirely hidden, this method will 
return FALSE and the caret should not be shown at all in this case. 

COleControl: :COleControl 

Remarks 

COleControl( ); 

Constructs a COleControl object. This function is normally not called directly. 
Instead the OLE control is usually created by its class factory. 

COleControl: :ControlInfoChanged 

Remarks 

void ControlInfoChanged(); 

Call this function when the set of mnemonics supported by the control has changed. 
Upon receiving this notification, the control's container obtains the new set of 
mnemonics by making a call to IOleControl::GetControlInfo. Note that the 
container is not required to respond to this notification. 

COleControl::DisplayError 
virtual void DisplayError( SCODE scode, LPCTSTR IpszDescription, 

.. LPCTSTR IpszSource, LPCTSTR IpszHelpFile, UINT nHelpID ); 

Parameters 

Remarks 

1190 

scode The status code value to be reported. For a complete list of possible codes, see 
the article "ActiveX Controls: Advanced Topics" in Visual C++ Programmer's 
Guide online. 

IpszDescription The description of the error being reported. 

IpszSource The name of the module generating the error (typically, the name of the 
OLE control module). 

IpszHelpFile The name of the help file containing a description of the error. 

nHeipID The Help Context ID of the error being reported. 

Called by the framework after the stock Error event has been handled (unless the 
event handler has suppressed the display of the error). The default behavior displays a 
message box containing the description of the error, contained in IpszDescription. 

Override this function to customize how errors are displayed. 



COleControl: :DoPropExchange 

See Also: COleControl: :FireError 

COleControl: :DoClick 

Remarks 

void DoClick(); 

Call this function to simulate a mouse click action on the control. The 
overridable COleControl::OnClick member function will be called, 
and a stock Click event will be fired, if supported by the control. 

This function is supported by the COleControl base class as a stock 
method, called DoClick. For more information, see the article "ActiveX 
Controls: Methods" in Visual C++ Programmer's Guide online. 

See Also: COleControl::OnClick 

COleControl: : DoPropExchange 
virtual void DoPropExchange( CPropExchange* pPX ); 

Parameters 

Remarks 

pPX A pointer to a CPropExchange object. The framework supplies 
this object to establish the context of the property exchange, including 
its direction. 

Called by the framework when loading or storing a control from a persistent 
storage representation, such as a stream or property set. This function normally 
makes calls to the PX_ family of functions to load or store specific user-defined 
properties of an OLE control. 

If Control Wizard has been used to create the OLE control project, the 
overridden version of this function will serialize the stock properties supported by 
COleControl with a call to the base class function, 
COleControl: :DoPropExchange. As you add user-defined properties to 
your OLE control you will need to modify this function to serialize your 
new properties. For more information on serialization, see the article "ActiveX 
Controls: Serializing" in Visual C++ Programmer's Guide online. 

1191 



COleControl: :DoSuperclassPaint 

COleControl: : DoSuperclassPaint 
void DoSuperclassPaint( CDC* pDC, const CRect& reBounds ); 

Parameters 

Remarks 

pDC A pointer to the device context of the control container. 

reBounds The area in which the control is to be drawn. 

Call this function to properly handle the painting of a nonactive OLE control. This 
function should only be used if the OLE control subclasses a Windows control and 
should be called in the OnDraw function of your control. 

For more information on this function and subclassing a Windows control, see the 
article "ActiveX Controls: Subclassing a Windows Control" in Visual C++ 
Programmer's Guide online. 

See Also: COleControl: :OnDraw 

COleControl: : DrawContent 
void DrawContent( CDC* pDC, CRect& re ); 

Parameters 

Remarks 

pDC Pointer to the device context. 

re Rectangular area to be drawn in. 

Called by the framework when the control's appearance needs to be updated. This 
function directly calls the overridable OnDraw function. 

See Also: COleControl: :OnDraw, COleControl: :DrawMetafile, 
COleControl: :OnDrawMetafile 

COleControl: : DrawMetafile 
void DrawMetafile(CDC* pDC, CRect& re); 

Parameters 
pDC Pointer to the metafile device context. 

re Rectangular area to be drawn in. 

Remarks 
Called by the framework when the metafile device context is being used. 

1192 



COleControl: :ExchangeStockProps 

See Also: COleControl: :OnDraw, COleControl: :DrawContent, 
COleControl: :OnDraw Metafile 

COleControl: : EnableSimpleFrame 

Remarks 

void EnableSimpleFrame(); 

Call this function to enable the simple frame characteristic for an OLE control. This 
characteristic allows a control to support visual containment of other controls, but not 
true OLE containment. An example would be a group box with several controls 
inside. These controls are not OLE contained, but they are in the same group box. 

COleControl: : ExchangeExtent 
BOOL ExchangeExtent( CPropExchange* pPX ); 

Return Value 
Nonzero if the function succeeded; 0 otherwise. 

Parameters 

Remarks 

pPX A pointer to a CPropExchange object. The framework supplies this object to 
establish the context of the property exchange, including its direction. 

Call this function to serialize or initialize the state of the control's extent (its 
dimensions in HIMETRIC units). This function is normally called by the default 
implementation of COleControl: :DoPropExchange. 

See Also: COleControl: :DoPropExchange 

COleControl: : ExchangeStockProps 
void ExchangeStockProps( CPropExchange* pPX); 

Parameters 

Remarks 

pPX A pointer to a CPropExchange object. The framework supplies this object to 
establish the context of the property exchange, including its direction. 

Call this function to serialize or initialize the state of the control's stock properties. 
This function is normally called by the default implementation of 
COleControl: :DoPropExchange. 

See Also: COleControl: :DoPropExchange 

1193 



COleControl: :Exchange Version 

COleControl: : Exchange Version 
BOOL Exchange Version( CPropExchange* pPX, DWORD dw VersionDefault, 

... BOOL bConvert = TRUE ); 

Return Value 
Nonzero of the function succeeded; 0 otherwise. 

Parameters 

Remarks 

pPX A pointer to a CPropExchange object. The framework supplies this object to 
establish the context of the property exchange, including its direction. 

dw VersionDefault The current version number of the control. 

bConvert Indicates whether persistent data should be converted to the latest format 
when saved, or maintained in the same format that was loaded. 

Call this function to serialize or initialize the state of a control's version information. 
Typically, this will be the first function called by a control's override of 
COleControl: :DoPropExchange. When loading, this function reads the version 
number of the persistent data, and sets the version attribute of the CPropExchange 
object accordingly. When saving, this function writes the version number of the 
persistent data. 

For more information on persistence and versioning, see the article "ActiveX 
Controls: Serializing" in Visual c++ Programmer's Guide online. 

See Also: COleControl::DoPropExchange 

COleControl: : FireClick 

Remarks 

1194 

void FireClick( ); 

Called by the framework when the mouse is clicked over an active control. If this 
event is defined as a custom event, you determine when the event is fired. 

For automatic firing of a Click event to occur, the control's Event map must have a 
stock Click event defined. 

See Also: COleControl::FireDbIClick, COleControl::FireMollseDown, 
COleControl::FireMollseUp 



CO leControl: : FireError 

COleControl: : FireDblClick 

Remarks 

void FireDbIClick(); 

Called by the framework when the mouse is double-clicked over an active control. If 
this event is defined as a custom event, you determine when the event is fired. 

For automatic firing of a DblClick event to occur, the control's Event map must have a 
stock DblClick event defined. 

See Also: COleControl: :FireClick, COleControl: :FireMouseDown, 
COleControl: :FireMouse Up 

COleControl: : FireError 
void FireError( SCODE scode, LPCTSTR IpszDescription, UINT nHelpID = 0 ); 

Parameters 

Remarks 

scode The status code value to be reported. For a complete list of possible codes, see 
the article "ActiveX Controls: Advanced Topics" in Visual C++ Programmer's 
Guide online. 

IpszDescription The description of the error being reported. 

nHelpID The Help ID of the error being reported. 

Call this function to fire the stock Error event. This event provides a way of 
signalling, at appropriate places in your code, that an error has occurred within your 
control. Unlike other stock events, such as Click or MouseMove, Error is never fired 
by the framework. 

To report an error that occurs during a property get function, property set function, or 
automation method, call COleControl::ThrowError. 

The implementation of an OLE control's Stock Error event uses an SCODE value. If 
your control uses this event, and is intended to be used in Visual Basic 4.0, you will 
receive errors because the SCODE value is not supported in Visual Basic. 

To fix this, manually change the SCODE parameter in the control's .ODL file to a 
long. In addition, any custom event, method, or property that uses an SCODE 
parameter also causes the same problem. 

See Also: COleControl::DisplayError 

1195 



COleControl: : FireEvent 

COleControl: : FireEvent 
void FireEvent( DISPID dispid, BYTE FAR* pbParams, 000 ); 

Parameters 

Remarks 

1196 

dispid The dispatch ID of the event to be fired. 

pbParams A descriptor for the event's parameter types. 

Call this function, with any number of optional arguments, to fire a user-defined event 
from your control. Usually this function should not be called directly. Instead you will 
call the event-firing functions generated by ClassWizard in the event map section of 
your control's class declaration. 

The pbParams argument is a space-separated list of VTS_. One or more of these 
values, separated by spaces (not commas), specifies the function's parameter list. 
Possible values are as follows: 

Symbol Parameter Type 

VTS_COLOR OLE_COLOR 

VTS_FONT IFontDisp* 

VTS_HANDLE HWND 

VTS_PICTURE IPictureDisp* 

VTS_ OPTEXCLUSIVE OLE_OPTEXCLUSIVE* 

VTS_TRISTATE OLE_TRISTATE 

VTS_XPOS_HIMETRIC OLE_XPOS_HIMETRIC 

VTS_ YPOS_HIMETRIC OLE_ YPOS_HIMETRIC 

VTS_XPOS_PIXELS OLE_XPOS_PIXELS 

VTS_ YPOS_PIXELS OLE_ YPOS_PIXELS 

VTS_XSIZE_PIXELS OLE_X SIZE_PIXELS 

VTS_ YSIZE_PIXELS OLE_XSIZE_PIXELS 

VTS_XSIZE_HIMETRIC OLE_XSIZE_HIMETRIC 

VTS_ YSIZE_HIMETRIC OLE_XSIZE_HIMETRIC 

Note Additional variant constants have been defined for all variant types, with the exception of 
VTS_FONT and VTS_PICTURE, that provide a pointer to the variant data constant. These 
constants are named using the VTS_Pconstantname convention. For example, VTS_PCOLOR 
is a pointer to a VTS_COLOR constant. 



COleControl::FireKeyPress 

COleControl: : FireKey Down 
void FireKeyDown( USHORT* pnChar, short nShiftState ); 

Parameters 

Remarks 

pnChar Pointer to the virtual-key code value of the pressed key. 

nShiftState Contains a combination of the following flags: 

• SHIFT_MASK The SHIff key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT_MASK The ALT key was pressed during the action. 

Called by the framework when a key is pressed while the control is VI active. If this 
event is defined as a custom event, you determine when the event is fired. 

For automatic firing of a KeyDown event to occur, the control's Event map must have 
a stock KeyDown event defined. 

See Also: COleControl: :FireKeyUp, COleControl: :FireKeyPress, 
COleControl: :OnKeyPressEvent 

COleControl: :FireI(eyPress 
void FireKeyPress( USHORT* pnChar); 

Parameters 

Remarks 

pnChar A pointer to the character value of the key pressed. 

Called by the framework when a key is pressed and released while the custom control 
is VI Active within the container. If this event is defined as a custom event, you 
determine when the event is fired. 

The recipient of the event may modify pnChar, for example, convert all lowercase 
characters to uppercase. If you want to examine the modified character, override 
OnKey PressEvent. 

For automatic firing of a KeyPress event to occur, the control's Event map must have 
a stock KeyPress event defined. 

See Also: COleControl: :OnKeyPressEvent, COleControl: :FireKeyDown, 
COleControl: : FireKeyUp 

1197 



COleControl::FireKeyUp 

COleControl: : FireKey Up 
void FireKeyUp( USHORT* pnChar, short nShiftState ); 

Parameters 

Remarks 

pnChar Pointer to the virtual-key code value of the released key. 

nShiftState Contains a combination of the following flags: 

• SHIFT_MASK The SHIff key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT_MASK The ALT key was pressed during the action. 

Called by the framework when a key is released while the custom control is UI Active 
within the container. If this event is defined as a custom event, you determine when 
the event is fired. 

For automatic firing of a KeyUp event to occur, the control's Event map must have a 
stock KeyUp event defined. 

See Also: COleControl::FireKeyDown, COleControl::FireKeyPress, 
COleControl::OnKeyUpEvent 

COleControl: :FireMouseDown 
void FireMouseDown( short nButton, short nShijtState, OLE_XPOS_PIXELS x, 

... OLE_YPOS_PIXELy); 

Parameters 

1198 

nButton The numeric value of the mouse button pressed. It can contain one of the 
following values: 

• LEFT_BUTTON The left mouse button was pressed down. 

• MIDDLE_BUTTON The middle mouse button was pressed down. 

• RIGHT_BUTTON The right mouse button was pressed down. 

nShiftState Contains a combination of the following flags: 

• SHIFT_MASK The SHIff key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT_MASK The ALT key was pressed during the action. 

x The x-coordinate of the cursor when a mouse button was pressed down. 
The coordinate is relative to the upper-left corner of the control window. 



COleControl: :FireMouseMove 

Remarks 

y The y-coordinate of the cursor when a mouse button was pressed down. 
The coordinate is relative to the upper-left corner of the control window. 

Called by the framework when a mouse button is pressed over an active custom 
control. If this event is defined as a custom event, you determine when the event is 
fired. 

For automatic firing of a MouseDown event to occur, the control's Event map must 
have a stock MouseDown event defined. 

See Also: COleControl::FireMouseUp, COleControl::FireMouseMove, 
COleControl: :FireClick 

COleControl: : FireMouseMove 
void FireMouseMove( short nButton, short nShijtState, OLE_XPOS_PIXELS x, 

~ OLE_YPOS_PIXELS y); 

Parameters 

Remarks 

nButton The numeric value of the mouse buttons pressed. Contains a combination of 
the following values: 

• LEFT_BUTTON The left mouse button was pressed down during the action. 

• MIDDLE_BUTTON The middle mouse button was pressed down during the 
action. 

• RIGHT_BUTTON The right mouse button was pressed down during the 
action. 

nShijtState Contains a combination of the following flags: 

• SHIFT_MASK The SHIFT key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT_MASK The ALT key was pressed during the action. 

x The x-coordinate of the cursor. The coordinate is relative to the upper-left corner of 
the control window. 

y The y-coordinate of the cursor. The coordinate is relative to the upper-left corner of 
the control window. 

Called by the framework when the cursor is moved over an active custom control. If 
this event is defined as a custom event, you determine when the event is fired. 

For automatic firing of a MouseMove event to occur, the control's Event map must 
have a stock MouseMove event defined. 

1199 



COleControl: :FireMouseUp 

COleControl: :FireMouseUp 
void FireMouseUp( short nButton, short nShijtState, OLE_XPOS_PIXELS x, 

... OLE_ YPOS_PIXELS y ); 

Parameters 

Remarks 

nButton The numeric value of the mouse button released. It can have one of the 
following values: 

• LEFT_BUTTON The left mouse button was released. 

• MIDDLE_BUTTON The middle mouse button was released. 

• RIGHT_BUTTON The right mouse button was released. 

nShiftState Contains a combination of the following flags: 

• SHIFT_MASK The SHIFT key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT_MASK The ALT key was pressed during the action. 

x The x-coordinate of the cursor when a mouse button was released. The coordinate 
is relative to the upper-left comer of the control window. 

y The y-coordinate of a cursor when a mouse button was released. The coordinate is 
relative to the upper-left comer of the control window. 

Called by the framework when a mouse button is released over an active custom 
control. If this event is defined as a custom event, you determine when the event is 
fired. 

For automatic firing of a MouseUp event to occur, the control's Event map must have 
a stock MouseUp event defined. 

See Also: COleControl: :FireMouseDown, COleControl: :FireClick, 
COleControl::FireDbIClick 

COleControl: : FireReadyStateChange 

Remarks 

1200 

void FireReadyStateChange( ); 

Call this function to fire an event with the current value of the ready state of control. 
The ready state can be one of the following values: 

READYSTATE_ UNINITIALIZED Default initialization state 

READYSTATE_LOADING Control is currently loading its properties 

READYSTATE_LOADED Control has been initialized 



COleControl: :GetActi vationPolicy 

READYSTATE_INTERACTIVE Control has enough data to be interactive but not 
all asynchronous data is yet loaded 

READYSTATE_COMPLETE Control has all its data 

Use GetReadyState to determine the control's current readiness. 

InternalSetReadyState changes the ready state to the value supplied, then calls 
FireReadyStateChange. 

See Also: COleControl: :GetReadyState, COleControl: :InternalSetReadyState 

COleControl:: GetActivationPolicy 
virtual DWORD GetActivationPolicy(); 

Return Value 

Remarks 

A combination of flags from the POINTERINACTIVE enumeration. Possible flags 
are: 

POINTERINACTIVE_ACTIVATEONENTRY The object should be in-place 
activated when the mouse enters it during a mouse move operation. 

POINTERINACTIVE_DEACTIVATEONLEAVE The object should be 
deactivated when the mouse leaves the object during a mouse move operation. 

POINTERINACTIVE_ACTIVATEONDRAG The object should be in-place 
activated when the mouse is dragged over it during a drag and drop operation. 

Override this function to alter the default activation behavior of a control that supports 
the IPointerInactive interface. 

When the IPointerInactive interface is enabled, the container will delegate 
WM_SETCURSOR and WM_MOUSEMOVE messages to it. COleControl's 
implementation of this interface will dispatch these messages through your control's 
message map, after adjusting the mouse coordinates appropriately. 

Whenever the container receives a WM_SETCURSOR or WM_MOUSEMOVE 
message with the mouse pointer over an inactive object supporting IPointerInactive, 
it should call GetActivationPolicy on the interface and return flags from the 
POINTERINACTIVE enumeration. 

You can process these messages just like ordinary window messages, by adding the 
corresponding entries to the message map. In your handlers, avoid using the m_hWnd 
member variable (or any member functions that uses it) without first checking that its 
value is non-NULL. 

Any object intended to do more than set the mouse cursor and/or fire a mouse move 
event, such as give special visual feedback, should return the 
POINTERINACTIVE_ACTIVATEONENTRY flag and draw the feedback only 

1201 



COleControl: : GetActivationPolicy 

1202 

when active. If the object returns this flag, the container should activate it in-place 
immediately and then forward it the same message that triggered the call to 
GetActivationPolicy. 

If both the POINTERINACTIVE_ACTIVATEONENTRY and 
POINTERINACTIVE_DEACTIVATEONLEAVE flags are returned, then the 
object will only be activated when the mouse is over the object. If only the 
POINTERINACTIVE_ACTIVATEONENTRY flag is returned, then the object will 
only be activated once when the mouse first enters the object. 

You may also want an inactive control to be the target of an OLE drag and drop 
operation. This requires activating the control at the moment the user drags an object 
over it, so that the control's window can be registered as a drop target. To cause 
activation to occur during a drag, return the 
POINTERINACTIVE_ACTIVATEONDRAG flag: 

DWORD CMyCtrl ::GetActivationPolicy() 
{ 

return POINTERINACTIVE_ACTIVATEONDRAG; 

The information communicated by GetActivationPolicy should not be cached by a 
container. Instead, this method should be called every time the mouse enters an 
inactive object. 

If an inactive object does not request to be in-place activated when the mouse enters 
it, its container should dispatch subsequent WM_SETCURSOR messages to this 
object by calling OnlnactiveSetCursor as long as the mouse pointer stays over the 
object. 

Enabling the IPointerInactive interface typically means that you want the control to 
be capable of processing mouse messages at all times. To get this behaviour in a 
container that doesn't support the IPointerInactive interface, you will need to have 
your control always activated when visible, which means the control should have the 
OLEMISC_ACTIVATEWHENVISIBLE flag among its miscellaneous flags. 
However, to prevent this flag from taking effect in a container that does support 
IPointerInactive, you can also specify the 
OLEMISC_IGNOREACTIVATEWHENVISIBLE flag: 

static const DWORD BASED_CODE _dwMyOleMisc 
OLEMISC_ACTIVATEWHENVISIBLE I 
OLEMISC_IGNOREACTIVATEWHENVISIBLE 
OLEMISC_SETCLIENTSITEFIRST I 
OLEMISC_INSIDEOUT I 
OLEMISC_CANTLINKINSIDE I 
OLEMISC_RECOMPOSEONRESIZE; 

See Also: COleControl::OnlnactiveSetCursor, 
COleControl: :OnlnactiveMouseMove 



COleControl: : GetAmbientProperty 

COleControl: : GetAmbientProperty 
BOOL GetAmbientProperty( DISPID dwDispid, VARTYPE vtProp, void* pvProp ); 

Return Value 
Nonzero if the ambient property is supported; otherwise O. 

Parameters 

Remarks 

dwDispid The dispatch ID of the desired ambient property. 

vtProp A variant type tag that specifies the type of the value to be returned in 
pvProp. 

pvProp A pointer to the address of the variable that will receive the property value or 
return value. The actual type of this pointer must match the type specified by 
vtProp. 

vtProp Type of pvProp 

VT_BOOL BOOL* 

VT_BSTR CString* 

VT_I2 short* 

VT_I4 long* 

VT_R4 float* 

VT_RS double* 

VT_CY Cy* 

VT_COLOR OLE_COLOR* 

VT_DISPATCH LPDISPATCH* 

VT_FONT LPFONTDISP* 

Call this function to get the value of an ambient property of the container. 
If you use GetAmbientProperty to retrieve the ambient Display Name and 
ScaleUnits properties, set vtProp to VT_BSTR and pvProp to CString*. If you 
are retrieving the ambient Font property, set vtProp to VT_FONT and pvProp 
to LPFONTDISP*. 

Note that functions have already been provided for common ambient properties, such 
as AmbientBackColor and AmbientFont. 

See Also: COleControl: :AmbientForeColor, COleControl: :AmbientScaleUnits, 
COleControl: :AmbientShowGrabHandles 

1203 



COleControl::GetAppearance 

COleControl: : GetAppearance 
short GetAppearance (); 

Return Value 

Remarks 

The return value specifies the current appearance setting as a short (VT_I2) value, if 
successful. This value is zero if the control's appearance is flat and 1 if the control's 
appearance is 3D. 

This function implements the Get function of your control's stock Appearance 
property. 

See Also: COleControl::SetAppearance, COleControI::OnAppearanceChanged 

COleControl: : GetBackColor 
OLE_COLOR GetBackColor( ); 

Return Value 

Remarks 

The return value specifies the current background color as a OLE_COLOR value, if 
successful. This value can be translated to a COLORREF value with a call to 
TranslateColor. 

This function implements the Get function of your control's stock BackColor 
property. 

See Also: COleControl: :AmbientBackColor, COleControI: :TranslateColor, 
COleControI: :SetBackColor, COleControI: : GetForeColor 

COleControl::GetBorderStyle 
short GetBorderStyle( ); 

Return Value 

Remarks 

1204 

1 if the control has a normal border; 0 if the control has no border. 

This function implements the Get function of your control's stock BorderStyle 
property. 

See Also: COleControI: :SetBorderStyle, COleControl: :OnBorderStyleChanged 



CO leControl: : GetClientOffset 

COleControl: : GetCapture 
CWnd* GetCapture( ); 

Return Value 

Remarks 

If the control is activated and windowless, returns this if the control currently has the 
mouse capture (as determined by the control's container), or NULL if it does not have 
the capture. 

Otherwise, returns the CWnd object that has the mouse capture (same as 
CWnd::GetCapture). 

Call this function to determine whether the COleControl object has the mouse 
capture. An activated windowless control receives the mouse capture when 
SetCapture is called. 

See Also: COleControl::SetCapture, COleControl::ReleaseCapture 

COleControl:: GetClassID 
virtual HRESULT GetClassID( LPCLSID pclsid ) = 0; 

Return Value 
Nonzero if the call was not successful; otherwise O. 

Parameters 

Remarks 

pclsid Pointer to the location of the class ID. 

Called by the framework to retrieve the OLE class ID of the control. Usually 
implemented by the IMPLEMENT_OLE CREATE_EX macro. 

COleControl: : GetClientOffset 
virtual void GetClientOffset( long* pdxOffset, long* pdyOffset ) const; 

Parameters 

Remarks 

pdxOffset Pointer to the horizontal offset of the OLE control's client area. 

pdyOffset Pointer to the vertical offset of the OLE control's client area. 

The OLE control has a rectangular area within its container. The client area of the 
control is the control area excluding borders and scroll bars. The offset retrieved by 
GetClientOffset is the difference between the upper left comer of the control's 
rectangular area and the upper left corner of its client area. If your control has 

1205 



COleControl: :GetClientRect 

non-client elements other than the standard borders and scrollbars, override this 
member function to specify the offset. 

See Also: COleControl::ParentToClient, COleControl::ClientToParent 

COleControl: : GetClientRect 
virtual void GetClientRect( LPRECT IpRect ) const; 

Parameters 

Remarks 

IpRect Pointer to a RECT structure containing the dimensions of the windowless 
control's client area~ that is, the control's size minus window borders, frames, scroll 
bars, and so on. The IpRect parameter indicates the size of the control's client 
rectangle, not its position. 

Call this function to retrieve the size of the control's client area. 

COleControl:: GetClientSite 
LPOLECLIENTSITE GetClientSite(); 

Return Value 

Remarks 

A pointer to the control's current client site in its container. 

Call this function to query an object for the pointer to its current client site within its 
container. 

The returned pointer points to an instance of IOleClientSite. The IOleClientSite 
interface, implemented by containers, is the object's view of its context: where it is 
anchored in the document, where it gets its storage, user interface, and other 
resources. 

COleControl: : GetControlFlags 
virtual DWORD GetControIFlags(); 

Return Value 
An ORed combination of the flags in the Con t r 0 1 F 1 a 9 s enumeration: 

enum Control Flags { 
fastBeginPaint = 0x0001, 
clipPaintDC = 0x0002, 
pointerlnactive = 0x0004, 

1206 



C01eControl: :GetControlSize 

Remarks 

} : 

noFlickerActivate = 0x0008. 
windowlessActivate = 0x0010. 
canOptimizeOraw = 0x0020. 

fastBegi nPai nt If set, uses a begin-paint function tailored for OLE controls 
instead of the BeginPaint API (set by default). 

c 1 i P P a i n toe If not set, disables the call to IntersectClipRect made by 
COleControl and gains a small speed advantage. If you are using windowless 
activation, the flag has no effect. 

poi nte r I na ct i ve If set, provides mouse interaction while your control is inactive 
by enabling COleControl's implementation of the IPointerInactive interface, 
which is disabled by default. 

noFl i ckerAct i vate If set, eliminates extra drawing operations and the 
accompanying visual flicker. Use when your control draws itself identically in the 
inactive and active states. If you are using windowless activation, the flag has no 
effect. 

wi ndowl es sAct iva te If set, indicates your control uses windowless activation. 

can 0 p tim i zeD raw If set, indicates that the control will perform optimized drawing, 
if the container supports it. 

For more information about GetControlFlags and other optimizations of OLE 
controls, see "ActiveX Controls: Optimization." 

See Also: CDC::lntersectClipRect, COleControl::SetControISize 

COleControl:: GetControlSize 
void GetControlSize( int* pcx, int* pcy ); 

Parameters 

Remarks 

pcx Specifies the width of the control in pixels. 

pcy Specifies the height of the control in pixels. 

Call this function to retrieve the size of the OLE control window. 

Note that all coordinates for control windows are relative to the upper-left comer of 
the control. 

See Also: COleControl::GetRectInContainer, COleControl::SetControISize 

1207 



COleControl: :GetDC 

COleControl: : GetDC 
CDC* GetDC( LPCRECT IprcRect = NULL, 

.. DWORD dwFlags = OLEDC_PAINTBKGND ); 

Return Value 
Pointer to the display device context for the container CWnd client area if successful; 
otherwise, the return value is NULL. The display device context can be used in 
subsequent GDI functions to draw in the client area of the container's window. 

Parameters 

Remarks 

1208 

IprcRect A pointer to the rectangle the windowless control wants to redraw, in client 
coordinates of the control. NULL means the full object's extent. 

dwFlags Drawing attributes of the device context. Choices are: 

• OLEDC_NODRAW Indicates that the object won't use the device context 
to perform any drawing but merely to get information about the display device. 
The container should simply pass the window's DC without further 
processing. 

• OLEDC_PAINTBKGND Requests that the container paint the background 
before returning the DC. An object should use this flag if it is requesting a DC 
for redrawing an area with transparent background. 

• OLEDC_OFFSCREEN Informs the container that the object wishes to render 
into an off-screen bitmap that should then be copied to the screen. An object 
should use this flag when the drawing operation it is about to perform generates 
a lot of flicker. The container is free to honor this request or not. However, if 
this flag is not set, the container must hand back an on-screen DC. This allows 
objects to perform direct screen operations such as showing a selection (via an 
XOR operation). 

Call this function to provide a means for a windowless object to get a screen (or 
compatible) device context from its container. The ReleaseDC member function must 
be called to release the context after painting. When calling GetDC, objects pass the 
rectangle they wish to draw into in their own client coordinates. GetDC translates 
these to coordinates of the container client area. The object should not request a 
desired drawing rectangle larger than its own client area rectangle, the size of which 
can be retrieved with GetClientRect. This prevents objects from inadvertently 
drawing where they are not supposed to. 

See Also: COleControl: :ReleaseDC 



COleControl: :GetFocus 

COleControl: : GetEnabled 
BOOL GetEnabled( ); 

Return Value 

Remarks 

Nonzero if the control is enabled; otherwise O. 

This function implements the Get function of your control's stock Enabled property. 

See Also: COleControl::SetEnabled, COleControl::OnEnabledChanged 

COleControl: : GetExtendedControl 
LPDISPATCH GetExtendedControl(); 

Return Value 

Remarks 

A pointer to the container's extended control object. If there is no object available, the 
value is NULL. 

This object may be manipulated through its IDispatch interface. You can also use 
Querylnterface to obtain other available interfaces provided by the object. However, 
the object is not required to support a specific set of interfaces. Note that relying on 
the specific features of a container's extended control object limits the portability of 
your control to other arbitrary containers. 

Call this function to obtain a pointer to an object maintained by the container that 
represents the control with an extended set of properties. The function that calls this 
function is responsible for releasing the pointer when finished with the object. Note 
that the container is not required to support this object. 

COleControl: : GetFocus 
CWnd* GetFocus( ); 

Return Value 

Remarks 

If the control is activated and windowless, returns this if the control currently has the 
keyboard focus (as determined by the control's container), or NULL if it does not 
have the focus. 

Otherwise, returns the CWnd object that has the focus (same as CWnd::GetFocus). 

Call this function to determine whether the COleControl object has the focus. An 
activated windowless control receives the focus when SetFocus is called. 

See Also: COleControl::SetFocus 

1209 



COleControl: : GetFont 

COleControl: : GetFont 
LPFONTDISP GetFont( ); 

Return Value 

Remarks 

A pointer to the font dispatch interface of the control's stock Font property. 

This function implements the Get function of the stock Font property. Note that the 
caller must release the object when finished. Within the implementation of the control, 
use InternalGetFont to access the control's stock Font object. For more information 
on using fonts in your control, see the article "ActiveX Controls: Using Fonts in an 
ActiveX Control" in Visual c++ Programmer's Guide online. 

See Also: COleControl: :SetFont, COle Control: :AmbientFont, 
COleControl: :InternalGetFont 

COleControl: : GetFontTextMetrics 
void GetFontTextMetrics( LPTEXTMETRIC lptm, CFontHolder& fontHolder ); 

Parameters 

Remarks 

lptm Pointer to a TEXTMETRIC structure. 

fontHolder Reference to a CFontHolder object. 

Call this function to measure the text metrics for any CFontHolder object owned by 
the control. Such a font can be selected with the COleControl: :SelectFontObject 
function. GetFontTextMetrics will initialize the TEXTMETRIC structure pointed to 
by lptm with valid metrics information aboutfontHolder's font if successful, or fill the 
structure with zeros if not successful. You should use this function instead of 
::GetTextMetrics when painting your control because controls, like any embedded 
OLE object, may be required to render themselves into a metafile. 

The TEXTMETRIC structure for the default font is refreshed when the 
SelectFontObject function is called. You should call GetFontTextMetrics only after 
selecting the stock Font property to assure the information it provides is valid. 

COleControl::GetForeColor 
OLE_COLOR GetForeColor( ); 

Return Value 

1210 

The return value specifies the current foreground color as a OLE_COLOR value, if 
successful. This value can be translated to a COLORREF value with a call to 
TranslateColor. 



COleControl::GetNotSupported 

Remarks 
This function implements the Get function of the stock ForeColor property. 

See Also: COleControl: :AmbientForeColor, COleControl: :TranslateColor, 
COleControl: :GetBackColor, COleControl: :SetForeColor 

COleControl: : GetHwnd 
OLE_HANDLE GetHwnd( ); 

Return Value 
The OLE control's window handle, if any; otherwise NULL. 

Remarks 
This function implements the Get function of the stock hWnd property. 

COleControl: : GetMessageString 
virtual void GetMessageString( UINT nID, CString& rMessage) const; 

Parameters 

Remarks 

nID A menu item ID. 

rMessage A reference to a CString object through which a string will 
be returned. 

Called by the framework to obtain a short string that describes the purpose of the 
menu item identified by nID. This can be used to obtain a message for display in a 
status bar while the menu item is highlighted. The default implementation attempts to 
load a string resource identified by nID. 

COleControl: : GetN otSupported 
void GetNotSupported( ); 

Remarks 
Call this function in place of the Get function of any property where retrieval of the 
property by the control's user is not supported. One example would be a property that 
is write-only. 

See Also: COleControl::SetNotSupported 

1211 



COleControl: :GetReadyState 

COleControl: : GetReadyState 
long GetReadyState(); 

Return Value 

Remarks 

The readiness state of the control, one of the following values: 

READYSTATE_ UNINITIALIZED Default initialization state 

READYSTATE_LOADING Control is currently loading its properties 

READYSTATE_LOADED Control has been initialized 

READYSTATE_INTERACTIVE Control has enough data to be interactive but not 
all asynchronous data is yet loaded 

READYSTATE_COMPLETE Control has all its data 

Call this function to return the readiness state of the control. 

Most simple controls never need to differentiate between LOADED and 
INTERACTIVE. However, controls that support data path properties may not be 
ready to be interactive until at least some data is received asynchronously. A control 
should attempt to become interactive as soon as possible. 

See Also: COleControl: :FireReadyStateChange, 
COleControl::InternaISetReadyState 

COleControl: : GetRectInContainer 
BOOL GetRectInContainer( LPRECT IpRect ); 

Return Value 
Nonzero if the control is in-place active; otherwise O. 

Parameters 

Remarks 

1212 

IpRect A pointer to the rectangle structure into which the control's coordinates will 
be copied. 

Call this function to obtain the coordinates of the control's rectangle relative to the 
container, expressed in device units. The rectangle is only valid if the control is 
in-place active. 

See Also: COleControl: :SetRectInContainer, COleControl: : GetControlSize 



COleContro 1: :Get Window less Drop Target 

COleControl: : GetS tockTextMetrics 
void GetStockTextMetrics( LPTEXTMETRIC lptm ); 

Parameters 

Remarks 

lptm A pointer to a TEXTMETRIC structure. 

Call this function to measure the text metrics for the control's stock Font property, 
which can be selected with the SelectStockFont function. The GetStockTextMetrics 
function will initialize the TEXTMETRIC structure pointed to by lptm with valid 
metrics information if successful, or fill the structure with zeros if not successful. Use 
this function instead of ::GetTextMetrics when painting your control because 
controls, like any embedded OLE object, may be required to render themselves into a 
metafile. 

The TEXTMETRIC structure for the default font is refreshed when the 
SelectStockFont function is called. You should call this function only after selecting 
the stock font to assure the information it provides is valid. 

COleControl: : GetText 
BSTR GetText( ); 

Return Value 

Remarks 

The current value of the control text string or a zero-length string if no string is 
present. 

Note For more information on the BSTR data type, see "Data Types" in the Macros and 
Globals section. 

This function implements the Get function of the stock Text or Caption property. Note 
that the caller of this function must call SysFreeString on the string returned in order 
to free the resource. Within the implementation of the control, use InternalGetText to 
access the control's stock Text or Caption property. 

See Also: COleControl: : InternalGetText, COleControl: :SetText 

COleControl: : Get Window lessDropTarget 
virtual IDropTarget* GetWindowlessDropTarget(); 

Return Value 
Pointer to the object's IDropTarget interface. Since it does not have a window, a 
windowless object cannot register an IDropTarget interface. However, to participate 

1213 



COleControl::lnitializeIIDs 

Remarks 

in drag and drop, a windowless object can still implement the interface and return it in 
Get WindowlessDropTarget. 

Override GetWindowlessDropTarget when you want a windowless control to be the 
target of an OLE drag and drop operation. Normally, this would require that the 
control's window be registered as a drop target. But since the control has no window 
of its own, the container will use its own window as a drop target. The control simply 
needs to provide an implementation of the IDropTarget interface to which the 
container can delegate calls at the appropriate time. For example: 

IDropTarget* CMyCtrl ::GetWindowlessDropTarget() 
( 

m_xDropTarget.AddRef(); 
return &m_xDropTarget; 

COleControl: : InitializeIIDs 
void InitializeIIDs( const IID* piidPrimary, const IID* piidEvents ); 

Parameters 

Remarks 

piidPrimary Pointer to the interface ID of the control's primary dispatch interface. 

piidEvents Pointer to the interface ID of the control's event interface. 

Call this function in the control's constructor to inform the base class of the interface 
IDs your control will be using. 

COleControl::InternaIGetFont 
CFontHolder& InternalGetFont( );. 

Return Value 

Remarks 

A reference to a CFontHolder object that contains the stock Font object. 

Call this function to access the stock Font property of your control 

See Also: COleControl: :GetFont, COleControl: :SetFont 

COleControl: : InternalGetText 
const CString& InternaIGetText(); 

Return Value 
A reference to the control text string. 

1214 



CO leControl:: In validate Control 

Remarks 
Call this function to access the stock Text or Caption property of your control. 

See Also: COleControl::GetText, COleControl::SetText 

COleControl: : InternalSetReadyState 
void InternalSetReadyState( long lNewReadyState ); 

Parameters 

Remarks 

lNewReadyState The readiness state to set for the control, one of the following 
values: 

READYSTATE_UNINITIALIZED Default initialization state 

READYSTATE_LOADING Control is currently loading its properties 

READYSTATE_LOADED Control has been initialized 

READYSTATE_INTERACTIVE Control has enough data to be interactive but not 
all asynchronous data is yet loaded 

READYSTATE_COMPLETE Control has all its data 

Call this function to set the readiness state of the control. 

Most simple controls never need to differentiate between LOADED and 
INTERACTIVE. However, controls that support data path properties may not be 
ready to be interactive until at least some data is received asynchronously. A control 
should attempt to become interactive as soon as possible. 

See Also: COleControl: :FireReadyStateChange, COleControl: : GetReadyState 

COleControl: : InvalidateControl 
void InvalidateControl( LPCRECT IpRect = NULL ); 

Parameters 

Remarks 

lpRect A pointer to the region of the control to be invalidated. 

Call this function to force the control to redraw itself. If lpRect has a NULL value, the 
entire control will be redrawn. If lpRect is not NULL, this indicates the portion of the 
control's rectangle that is to be invalidated. In cases where the control has no window, 
or is currently not active, the rectangle is ignored, and a call is made to the client site's 
IAdviseSink::OnViewChange member function. Use this function instead of 
CWnd: : InvalidateRect or : : InvalidateRect. 

See Also: COleControl: : Refresh 

1215 



COleControl: : InvalidateRgn 

COleControl: : InvalidateRgn 
void InvalidateRgn( CRgn* pRgn, BOOL bErase = TRUE ); 

Parameters 

Remarks 

pRgn A pointer to a CRgn object that identifies the display region of the OLE object 
to invalidate, in client coordinates of the containing window. If this parameter is 
NULL, the extent is the entire object. 

bErase Specifies whether the background within the invalidated region is to be 
erased. If TRUE, the background is erased. If FALSE, the background remains 
unchanged. 

Call this function to invalidate the container window's client area within the given 
region. This can be used to redraw windowless controls within the container. The 
invalidated region, along with all other areas in the update region, is marked for 
painting when the next WM_PAINT message is sent. 

If bErase is TRUE for any part of the update region, the background in the entire 
region, not just in the given part, is erased. 

COleControl: : IsConverting VBX 
BOOL IsConvertingVBX( ); 

Return Value 

Remarks 

1216 

Nonzero if the control is being converted; otherwise O. 

When converting a form that uses VBX controls to one that uses OLE controls, 
special loading code for the OLE controls may be required. For example, if you are 
loading an instance of your OLE control, you might have a call to PX_Font in your 
DoPropExchange: 

PX_Font(pPx, "Font", m_MyFont. pDefaultFont); 

However, VBX controls did not have a Font object; each font property was saved 
individually. In this case, you would use IsConvertingVBX to distinguish between 
these two cases: 

if (IsConvertingVBX()==FALSE) 
PX_Font(pPX, "Font", m_MyFont. pDefaultFont); 

else 
{ 

PX_String(pPX, "FontName", tempString. DefaultName); 
m_MyFont->put_Name(tempString); 
PX_Bool (pPX. "FontUnderl i ne", tempBool. Defaul tVa 1 ue); 
m_MyFont->put_Underline(tempBool ); 



COleControl::IsOptimizedDraw 

Another case would be if your VBX control saved proprietary binary data (in its 
VBM_SAVEPROPERTY message handler), and your OLE control saves its binary 
data in a different format. If you want your OLE control to be backward-compatible 
with the VBX control, you could read both the old and new fonnats using the 
IsConvertingVBX function by distinguishing whether the VBX control or the OLE 
control was being loaded. 

In your control's DoPropExchange function, you can check for this condition and if 
true, execute load code specific to this conversion (such as the previous examples). If 
the control is not being converted, you can execute normal load code. This ability is 
only applicable to controls being converted from VBX counterparts. 

See Also: COleControl::DoPropExchange 

COleControl: :IsModified 
BOOL IsModified( ); 

Return Value 

Remarks 

Nonzero if the control's state has been modified since it was last saved; otherwise o. 

Call this function to determine if the control's state has been modified. The state of a 
control is modified when a property changes value. 

See Also: COleControl: :SetModifiedFlag 

COleControl: : IsOptimizedDraw 
BOOL IsOptimizedDraw( ); 

Return Value 

Remarks 

TRUE if the container supports optimized drawing for the current drawing operation; 
otherwise FALSE. 

Call this function to determine whether the container supports optimized drawing for 
the current drawing operation. If optimized drawing is supported, then the control 
need not select old objects (pens, brushes, fonts, etc.) into the device context when 
drawing is finished. 

1217 



COleControl: :IsSubc1assedControl 

COleControl: :IsSubclassedControl 
virtual BOOL IsSubclassedControl(); 

Return Value 

Remarks 

Nonzero if the control is subclassed; otherwise O. 

Called by the framework to determine if the control subclasses a Windows control. 
You must override this function and return TRUE if your OLE control subclasses a 
Windows control. 

COleControl: :Load 
void Load( LPCTSTR strNewPath, CDataPathProperty& prop); 

Parameters 

Remarks 

strNewPath A pointer to a string containing the path that references the absolute 
location of the asynchronous control property. 

prop A CDataPathProperty object implementing an asynchronous control property. 

Call this function to reset any previous data loaded asynchronously and to initiate a 
new loading of the control's asynchronous property. 

See Also: CDataPathProperty 

COleControl: : LockInPlaceActive 
BOOL LocklnPlaceActive( BOOL bLock); 

Return Value 
Nonzero if the lock was successful; otherwise O. 

Parameters 

Remarks 

1218 

bLock TRUE if the in-place active state of the control is to be locked~ FALSE if it is 
to be unlocked. 

Call this function to prevent the container from deactivating your control. Note that 
every locking of the control must be paired with an unlocking of the control when 
finished. You should only lock your control for short periods, such as while firing an 
event. 



CO leCon trol: :OnBorderSty Ie Changed 

COleControl: : OnAmbientPropertyChange 
virtual void OnAmbientPropertyChange( DISPID dispID ); 

Parameters 

Remarks 

dispID The dispatch ID of the ambient property that changed, or 
DISPID_UNKNOWN if multiple properties have changed. 

Called by the framework when an ambient property of the container has changed 
value. 

See Also: COleControl: :GetAmbientProperty 

COleControl: :OnAppearanceChanged 

Remarks 

virtual void OnAppearanceChanged ( ); 

Called by the framework when the stock Appearance property value has changed. 

Override this function if you want notification after this property changes. The default 
implementation calls InvalidateControl. 

See Also: COleControl::GetAppearance, COleControl::SetAppearance, 
COleControl: :InvalidateControl 

COleControl: :OnBackColorChanged 

Remarks 

virtual void OnBackColorChanged(); 

Called by the framework when the stock BackColor property value has changed. 

Override this function if you want notification after this property changes. The default 
implementation calls InvalidateControl. 

See Also: COleControl::GetBackColor, COleControl::lnvalidateControl 

COleControl: : OnB orderSty leChanged 

Remarks 

virtual void OnBorderStyleChanged(); 

Called by the framework when the stock BorderStyle property value has changed. The 
default implementation calls InvalidateControl. 

1219 



COleControl: :OnClick 

Override this function if you want notification after this property changes. 

See Also: COleControl: :SetBorderStyle, COleControl: :InvalidateControl 

COleControl: :OnClick 
virtual void OnClick( USHORT iButton ); 

Parameters 

Remarks 

iButton Index of a mouse button. Can have one of the following values: 

• LEFT_BUTTON The left mouse button was clicked. 

• MIDDLE_BUTTON The middle mouse button was clicked. 

• RIGHT_BUTTON The right mouse button was clicked. 

Called by the framework when a mouse button has been clicked or the 
DoClick stock method has been invoked. The default implementation calls 
COleControl: : FireClick. 

Override this member function to modify or extend the default handling. 

See Also: COleControl: :DoClick, COleControl: :FireClick 

COleControl: :OnClose 
virtual void OnClose( DWORD dwSaveOption ); 

Parameters 

Remarks 

1220 

dWSaveOption Flag that indicates whether the object should be saved before loading. 
Valid values are: 

• OLECLOSE_SAVEIFDIRTY 

• OLECLOSE_NOSAVE 

• OLECLOSE_PROMPTSAVE 

Called by the framework when the container has called the control's 
IOleControl::Close function. By default, OnClose saves the control object if it has 
been modified and dwSaveOption is either OLECLOSE_SAVEIFDIRTY or 
OLECLOSE_PROMPTSAVE. 



COleControl: :OnDraw 

COleControl: :OnDo Verb 
virtual BOOL OnDoVerb( LONG iVerb, LPMSG IpMsg, HWND hWndParent, 

... LPCRECT IpReet ); 

Return Value 
Nonzero if call was successful; otherwise O. 

Parameters 

Remarks 

iVerb The index of the control verb to be invoked. 

IpMsg A pointer to the Windows message that caused the verb to be invoked. 

h WndParent The handle to the parent window of the control. If the execution of the 
verb creates a window (or windows), hWndParent should be used as the parent. 

IpReet A pointer to a RECT structure into which the coordinates of the control, 
relative to the container, will be copied. 

Called by the framework when the container calls the IOleObject::DoVerb member 
function. The default implementation uses the ON_ OLEVERB and 
ON_STDOLEVERB message map entries to determine the proper function to 
invoke. 

Override this function to change the default handling of verb. 

See Also: ON_ OLEVERB, ON_STDOLEVERB, COleControl::OnEnum Verbs 

COleControl: :OnDraw 
virtual void OnDraw( CDC* pDC, const CRect& reBounds, const CRect& reIn va lid ); 

Parameters 

Remarks 

pDC The device context in which the drawing occurs. 

reBounds The rectangular area of the control, including the border. 

rcInvalid The rectangular area of the control that is invalid. 

Called by the framework to draw the OLE control in the specified bounding rectangle 
using the specified device context. 

OnDraw is typically called for screen display, passing a screen device context as 
pDC. The reBounds parameter identifies the rectangle in the target device context 
(relative to its current mapping mode). The rcInvalid parameter is the actual rectangle 
that is invalid. In some cases this will be a smaller area than reBounds. 

See Also: COle Control: :OnDrawMetafile, COleControl: :DrawContent, 
COleControl: :DrawMetafile 

1221 



COleControl: :OnDraw Metafile 

COleControl::OnDrawMetafile 
virtual void OnDrawMetafile( CDC* pDC, const CRect& reBounds); 

Parameters 

Remarks 

pDC The device context in which the drawing occurs. 

reBounds The rectangular area of the control, including the border. 

Called by the framework to draw the OLE control in the specified bounding rectangle 
using the specified metafile device context. The default implementation calls the 
OnDraw function. 

See Also: COleControl::OnDraw, COleControl::DrawContent, 
COleControl: :DrawMetafile 

COleControl: :OnEdit 
virtual BOOL OnEdit( LPMSG IpMsg, HWND h WndParent, LPCRECT IpReet ); 

Return Value 
Nonzero if the call is successful; otherwise O. 

Parameters 

Remarks 

IpMsg A pointer to the Windows message that invoked the verb. 

h WndParent A handle to the parent window of the control. 

IpReet A pointer to the rectangle used by the control in the container. 

Call this function to cause the control to be UI activated. This has the same effect as 
invoking the control's OLEIVERB_UIACTIVATE verb. 

This function is typically used as the handler function for an ON_OLEVERB 
message map entry. This makes an "Edit" verb available on the control's "Object" 
menu. For example: 

ON_OLEVERB(AFX_IDS_VERB_EDIT. OnEdit) 

COleControl: :OnEnabledChanged 
virtual void OnEnabledChanged(); 

Remarks 

1222 

Called by the framework when the stock Enabled property value has changed. 

Override this function if you want notification after this property changes. The default 
implementation calls InvalidateControl. 



COleControl: :OnFontChanged 

See Also: COleControl::SetEnabled, COleControl::GetEnabled 

COleControl: :OnEnum Verbs 
virtual BOOL OnEnumVerbs( LPENUMOLEVERB FAR* ppenumOleVerb); 

Return Value 
Nonzero if verbs are available; otherwise O. 

Parameters 

Remarks 

ppellumOleVerb A pointer to the IEnumOLEVERB object that enumerates the 
control's verbs. 

Called by the framework when the container calls the IOleObject: :Enum Verbs 
member function. The default implementation enumerates the ON_OLEVERB 
entries in the message map. 

Override this function to change the default way of enumerating verbs. 

See Also: ON_OLEVERB,ON_STDOLEVERB 

COleControl: :OnEventAdvise 
virtual void OnEventAdvise( BOOL bAdvise ); 

Parameters 

Remarks 

bAdvise TRUE indicates that an event handler has been connected to the control. 
FALSE indicates that an event handler has been disconnected from the control. 

Called by the framework when an event handler is connected to or disconnected from 
an OLE control. 

COleControl: :OnFontChanged 

Remarks 

virtual void OnFontChanged(); 

Called by the framework when the stock Font property value has changed. The default 
implementation calls COleControl: :InvalidateControl. If the control is subc1assing a 
Windows control, the default implementation also sends a WM_SETFONT message 
to the control's window. 

Override this function if you want notification after this property changes. 

1223 



COleControl: :OnForeColorChanged 

See Also: COleControl::GetFont, COleControl::lnternaIGetFont, 
COleControl: :InvalidateControl 

COleControl: :OnForeColorChanged 

Remarks 

virtual void OnForeColorChanged( ); 

Called by the framework when the stock ForeColor property value has changed. The 
default implementation calls InvalidateControl. 

Override this function if you want notification after this property changes. 

See Also: COleControl::SetForeColor, COleControl::lnvalidateControl 

COleControl:: OnFreezeEvents 
virtual void OnFreezeEvents( BOOL bFreeze); 

Parameters 

Remarks 

bFreeze TRUE if the control's event handling is frozen; otherwise FALSE. 

Called by the framework after the container calls IOleControl::FreezeEvents. The 
default implementation does nothing. 

Override this function if you want additional behavior when event handling is frozen 
or unfrozen. 

COleControl: :OnGetColorSet 
virtual BOOL OnGetColorSet( DVTARGETDEVICE FAR* ptd, 

... HDC hicTargetDev, LPLOGPALETTE FAR* ppColorSet); 

Return Value 
Nonzero if a valid color set is returned; otherwise O. 

Parameters 

1224 

ptd Points to the target device for which the picture should be rendered. If this value 
is NULL, the picture should be rendered for a default target device, usually a 
display device. 

hicTargetDev Specifies the information context on the target device indicated by ptd. 
This parameter can be a device context, but is not one necessarily. If ptd is NULL, 
hicTargetDev should also be NULL. 

ppColorSet A pointer to the location into which the set of colors that would be used 
should be copied. If the function does not return the color set, NULL is returned. 



CO leControl:: OnGetDisplayS tring 

Remarks 
Called by the framework when the container calls the IOleObject: :GetColorSet 
member function. The container calls this function to obtain all the colors needed to 
draw the OLE control. The container can use the color sets obtained in conjunction 
with the colors it needs to set the overall color palette. The default implementation 
returns FALSE. 

Override this function to do any special processing of this request. 

COleControl::OnGetControlInfo 
virtual void OnGetControlInfo( LPCONTROLINFO pControlInfo ); 

Parameters 

Remarks 

pControlInfo Pointer to a CONTROLINFO structure to be filled in. 

Called by the framework when the control's container has requested information about 
the control. This information consists primarily of a description of the control's 
mnemonic keys. The default implementation fills pControlInfo with default 
information. 

Override this function if your control needs to process mnemonic keys. 

COleControl::OnGetDisplayString 
virtual BOOL OnGetDisplayString( DISPID dispid, CString& strValue); 

Return Value 
Nonzero if a string has been returned in strValue; otherwise O. 

Parameters 

Remarks 

dispid The dispatch ID of a property of the control. 

strValue A reference to a CString object through which a string will be returned. 

Called by the framework to obtain a string that represents the current value of the 
property identified by dispid. 

Override this function if your control has a property whose value cannot be directly 
converted to a string and you want the property's value to be displayed in a 
container-supplied property browser. 

See Also: COleControl: :OnMapPropertyToPage 

1225 



COleControl: :OnGetInPlaceMenu 

COleControl: :OnGetInPlaceMenu 
virtual HMENU OnGetlnPlaceMenu( ); 

Return Value 

Remarks 

The handle of the control's menu, or NULL if the control has none. The default 
implementation returns NULL. 

Called by the framework when the control is VI activated to obtain the menu to be 
merged into the container's existing menu. 

For more information on merging OLE resources, see the article "Menus and 
Resources (OLE)" in Visual C++ Programmer's Guide online. 

COleControl::OnGetNaturaIExtent 
virtual BOOL OnGetNaturalExtent( DWORD dwAspect, LONG lindex, 

... DVTARGETDEVICE* ptd, HDC hicTargetDev, 

... DVEXTENTINFO* pExtentlnfo, LPSIZEL psizel ); 

Return Value 
Nonzero if it successfully returns or adjusts the size; otherwise O. 

Parameters 

1226 

dwAspect Specifies how the object is to be represented. Representations include 
content, an icon, a thumbnail, or a printed document. Valid values are taken from 
the enumeration DVASPECT or DVASPECT2. 

lindex The portion of the object that is of interest. Currently only -1 is valid. 

ptd Points to the DVTARGETDEVICE structure defining the target device for 
which the object's size should be returned. 

hicTargetDev Specifies the information context for the target device indicated by the 
ptd parameter from which the object can extract device metrics and test the 
device's capabilities. If ptd is NULL, the object should ignore the value in the 
hicTargetDev parameter. 

pExtentlnfo Points to the DVEXTENTINFO structure that specifies sizing data. The 
DVEXTENTINFO structure is: 

typedef struct tagExtentlnfo 
{ 

UINT cb; 
DWORD dwExtentMode; 
SIZEL sizelProposed; 
} DVEXTENTINFO; 



COleControl: :OnGetPredefinedStrings 

Remarks 

The structure member dwExtentMode can take one of two values: 

• DVEXTENT_CONTENT Inquire how big the control should be to exactly fit 
content (snap-to-size) 

• DVEXTENT_INTEGRAL When resizing, pass proposed size to control 

psizel Points to sizing data returned by control. The returned sizing data is set to -1 
for any dimension that was not adjusted. 

Called by the framework in response to a container's 
IViewObjectEx: : GetNaturalExtent request. Override this function to return the 
object's display size closest to the proposed size and extent mode in the 
DVEXTENTINFO structure. The default implementation returns FALSE and makes 
no adjustments to the size. 

See Also: COleControl::OnGetViewExtent 

CO leControl: : OnGetPredefinedStrings 
virtual BOOL OnGetPredefinedStrings( DISPID dispid, 

... CStringArray* pStringArray, CDWordArray* pCookieArray ); 

Return Value 
Nonzero if elements have been added to pStringArray and pCookieArray. 

Parameters 

Remarks 

dispid The dispatch ID of a property of the control. 

pStringArray A string array to be filled in with return values. 

pCookieArray A DWORD array to be filled in with return values. 

Called by the framework to obtain a set of predefined strings representing the possible 
values for a property. 

Override this function if your control has a property with a set of possible values that 
can be represented by strings. For each element added to pStringArray, you should 
add a corresponding "cookie" element to pCookieArray. These "cookie" values may 
later be passed by the framework to the COleControl::OnGetPredefinedValue 
function. 

See Also: COleControl: :OnGetPredefinedValue, 
COleControl:: OnGetDisplayString 

1227 



COleControl: :On GetPredefinedVal ue 

COleControl: : On GetPredefinedValue 
virtual BOOL OnGetPredefinedValue( DISPID dispid, DWORD dwCookie, 

... VARIANT FAR* IpvarOut); 

Return Value 
Nonzero if a value has been returned in IpvarOut; otherwise O. 

Parameters 

Remarks 

dispid The dispatch ID of a property of the control. 

dwCookie A cookie value previously returned by an override of 
COleControl: :OnGetPredefinedStrings. 

IpvarOut Pointer to a VARIANT structure through which a property value will be 
returned. 

Called by the framework to obtain the value corresponding to one of the predefined 
strings previously returned by an override of 
COleControl: :OnGetPredefinedStrings. 

See Also: COleControl: :OnGetPredefinedStrings, 
COleControl: :OnGetDisplayString 

COleControl::OnGetViewExtent 
virtual BOOL OnGetViewExtent( DWORD dwDrawAspect, LONG lindex, 

... DVTARGETDEVICE* ptd, LPSIZEL Ipsizel ); 

Return Value 
Nonzero if extent information is successfully returned; otherwise O. 

Parameters 

Remarks 

1228 

dwDrawAspect DWORD describing which form, or aspect, of an object is to be 
displayed. Valid values are taken from the enumeration DVASPECT or 
DVASPECT2. 

lindex The portion of the object that is of interest. Currently only -1 is valid. 

ptd Points to the DVTARGETDEVICE structure defining the target device for 
which the object's size should be returned. 

Ipsizel Points to the location where the object's size is returned. 

Called by the framework in response to a container's IViewObjectEx::GetExtent 
request. Override this function if your control uses two-pass drawing, and its opaque 
and transparent parts have different dimensions. 

See Also: COleControl::OnGetViewRect 



CO leControl:: OnGet ViewS tatus 

COleControl: :OnGetViewRect 
virtual BOOL OnGetViewRect( DWORD dwAspect, LPRECTL pRect); 

Return Value 
Nonzero if the rectangle sized to the object is successfully returned; otherwise O. 

Parameters 

Remarks 

dwAspect DWORD describing which form, or aspect, of an object is to be displayed. 
Valid values are taken from the enumeration DVASPECT or DVASPECT2: 

• DVASPECT_CONTENT Bounding rectangle of the whole object. Top-left 
corner at the object's origin and size equal to the extent returned by 
Get View Extent. 

• DVASPECT_OPAQUE Objects with a rectangular opaque region return that 
rectangle. Others fail. 

• DVASPECT_TRANSPARENT Rectangle covering all transparent or 
irregular parts. 

pRect Points to the RECTL structure specifying the rectangle in which the object 
should be drawn. This parameter controls the positioning and stretching of the 
object. 

Called by the framework in response to a container's IViewObjectEx::GetRect 
request. The object's size is converted by OnGetViewRect into a rectangle starting at 
a specific position (the default is the upper left corner of the display). Override this 
function if your control uses two-pass drawing, and its opaque and transparent parts 
have different dimensions. 

See Also: COleControl::OnGetViewExtent 

COleControl::OnGetViewStatus 
virtual DWORD OnGetViewStatus( ); 

Return Value 
One of the values of the VIEWSTATUS enumeration if successful; otherwise O. 
Possible values are any combination of the following: 

VIEWSTATUS_OPAQUE Object is completely opaque. If this bit is not set, the 
object contains transparent parts. This bit applies only to content-related aspects 
and not to DVASPECT_ICON or DVASPECT_DOCPRINT. 

1229 



COleControl::OnHideToolBars 

Remarks 

VIEWSTATUS_SOLIDBKGND Object has a solid background (consisting in a 
solid color, not a brush pattern). This bit is meaningful only if 
VIEWSTATUS_OPAQUE is set and applies only to content-related aspects and 
not to DVASPECT_ICON or DVASPECT_DOCPRINT. 

VIEWSTATUS_DVASPECTOPAQUE Object supports DVASPECT_OPAQUE. 
All IViewObjectEx methods that take a drawing aspect as a parameter can be 
called with this aspect. 

VIEWSTATUS_DVASPECTTRANSPARENT Object supports 
DVASPECT_TRANSPARENT. All IViewObjectEx methods that take a drawing 
aspect as a parameter can be called with this aspect. 

Called by the framework in response to a container's 
IViewObjectEx::GetViewStatus request. Override this function if your control uses 
two-pass drawing. The default implementation returns VIEWSTATUS_OPAQUE. 

See Also: DVASPECT 

COleControl::OnHideTooIBars 

Remarks 

virtual void OnHideTooIBars(); 

Called by the framework when the control is UI deactivated. The implementation 
should hide all toolbars displayed by OnShowToolbars. 

See Also: COleControl::OnShowToolbars 

COleControl: :OnInactiveMouseMove 
virtual void OnInactiveMouseMove( LPCRECT lprcBounds, long x, long y, 

~ DWORD dwKeyState ); 

Parameters 

1230 

lprcBounds The object bounding rectangle, in client coordinates of the containing 
window. Tells the object its exact position and size on the screen when the 
WM_MOUSEMOVE message was received. 

x The x coordinate of the mouse location in client coordinates of the containing 
window. 

y The y coordinate of the mouse location in client coordinates of the containing 
window. 

dwKeyState Identifies the current state of the keyboard modifier keys on the 
keyboard. Valid values can be a combination of any of the flags MK_CONTROL, 
MK_SHIFT, MK_ALT, MK_BUTTON, MK_LBUTTON, MK_MBUTTON, 
and MK_RBUTTON. 



COleControl: :Onlnacti veSetCursor 

Remarks 
Called by the container for the inactive object under the mouse pointer on receipt of a 
WM_MOUSEMOVE message. Note that window client coordinates (pixels) are 
used to pass the mouse cursor position. This is made possible by also passing the 
bounding rectangle of the object in the same coordinate system. 

See Also: COleControl::GetActivationPolicy, 
COleControl: :OnlnactiveSetCursor 

COleControl: :OnInactiveSetCursor 
virtual BOOL OnlnactiveSetCursor( LPCRECT IprcBounds, long x, long y, 

... DWORD dwMouseMsg, BOOL bSetAlways ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

/prcBounds The object bounding rectangle, in client coordinates of the containing 
window. Tells the object its exact position and size on the screen when the 
WM_SETCURSOR message was received. 

x The x coordinate of the mouse location in client coordinates of the containing 
window. 

y The y coordinate of the mouse location in client coordinates of the containing 
window. 

dwMollseMsg The identifier of the mouse message for which a WM_SETCURSOR 
occurred. 

bSetAlways Specifies whether or not the object must set the cursor. If TRUE, the 
object must set the cursor; if FALSE, the cursor is not obligated to set the cursor, 
and should return S_FALSE in that case. 

Called by the container for the inactive object under the mouse pointer on receipt of a 
WM_SETCURSOR message. Note that window client coordinates (pixels) are used 
to pass the mouse cursor position. This is made possible by also passing the bounding 
rectangle of the object in the same coordinate system. 

See Also: COleControl: : GetActivationPolicy , 
COleControl: :OnlnactiveMouseMove 

1231 



COleControl::OnKeyDownEvent 

COleControl: : OnKey DownEvent 
virtual void OnKeyDownEvent( USHORT nChar, USHORT nShiftState ); 

Parameters 

Remarks 

nChar The virtual-key code value of the pressed key. 

nShiftState Contains a combination of the following flags: 

• SHIFT_MASK The SHIFT key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT _MASK The ALT key was pressed during the action. 

Called by the framework after a stock KeyDown event has been processed. 

Override this function if your control needs access to the key information after the 
event has been fired. 

See Also: COleControl: :OnKeyUpEvent, COleControl: :OnKeyPressEvent 

COleControl: :OnKeyPressEvent 
virtual void OnKeyPressEvent( USHORT nChar ); 

Parameters 

Remarks 

nChar Contains the virtual-key code value of the key pressed. 

Called by the framework after the stock KeyPress event has been fired. Note that the 
nChar value may have been modified by the container. 

Override this function if you want notification after this event occurs. 

See Also: COleControl: : FireKeyPress 

COleControl: :OnKeyUpEvent 
virtual void OnKeyUpEvent( USHORT nChar, USHORT nShiftState ); 

Parameters 
nChar The virtual-key code value of the pressed key. 

nShiftState Contains a combination of the following flags: 

• SHIFT_MASK The SHIFT key was pressed during the action. 

• CTRL_MASK The CTRL key was pressed during the action. 

• ALT_MASK The ALT key was pressed during the action. 

1232 



COleControl: :OnMnemonic 

Remarks 
Called by the framework after a stock KeyDown event has been processed. 

Override this function if your control needs access to the key information after the 
event has been fired. 

See Also: COleControl: :OnKeyDownEvent, COleControl: :OnKeyPressEvent 

COleControl: :OnMapPropertyToPage 
virtual BOOL OnMapPropertyToPage( DISPID dispid, LPCLSID lpclsid, 

... BOOL* pbPageOptional); 

Return Value 
Nonzero if a class ID has been returned in lpclsid; otherwise O. 

Parameters 

Remarks 

dispid The dispatch ID of a property of the control. 

lpclsid Pointer to a CLSID structure through which a class ID will be returned. 

pbPageOptional Returns an indicator of whether use of the specified property page 
is optional. 

Called by the framework to obtain the class ID of a property page that implements 
editing of the specified property. 

Override this function to provide a way to invoke your control's property pages from 
the container's property browser. 

See Also: COleControl::OnGetDisplayString 

COleControl: : OnMnemonic 
virtual void OnMnemonic( LPMSG pMsg ); 

Parameters 

Remarks 

pMsg Pointer to the Windows message generated by a mnemonic key press. 

Called by the framework when the container has detected that a mnemonic key of the 
OLE control has been pressed. 

1233 



COleControl: :OnProperties 

COleControl:: OnProperties 
virtual BOOL OnProperties( LPMSG IpMsg, HWND h WndParent, LPCRECT IpRect ); 

Return Value 
Nonzero if the call is successful; otherwise O. 

Parameters 

Remarks 

IpMsg A pointer to the Windows message that invoked the verb. 

h WndParent A handle to the parent window of the control. 

IpRect A pointer to the rectangle used by the control in the container. 

Called by the framework when the control's properties verb has been invoked by the 
container. The default implementation displays a modal property dialog box. 

COleControl::OnQueryHitPoint 
virtual BOOL OnQueryHitPoint( DWORD dwAspect, LPCRECT pRectBounds, 

1+ POINT ptlLoc, LONG lCloseHint, DWORD* pHitResult ); 

Return Value 
Nonzero if a hit result is successfully returned; otherwise O. A hit is an overlap with 
the OLE control display area. 

Parameters 

1234 

dwAspect Specifies how the object is represented. Valid values are taken from the 
enumeration DVASPECT or DVASPECT2. 

pRectBounds Pointer to a RECT structure specifying the bounding rectangle of the 
OLE control client area. 

ptlLoc Pointer to the POINT structure specifying the point to be checked for a hit. 
The point is specified in OLE client area coordinates. 

lCloseHint The distance that defines "close" to the point checked for a hit. 

pHitResult Pointer to the result of the hit query. One of the following values: 

• HITRESULT_OUTSIDE ptlLoc is outside the OLE object and not close. 

• HITRESULT_TRANSPARENT ptlLoc is within the bounds of the OLE 
object, but not close to the image. For example, a point in the middle of a 
transparent circle could be HITRESULT_TRANSPARENT. 

• HITRESULT_CLOSE ptlLoc is inside or outside the OLE object but close 
enough to the object to be considered inside. Small, thin, or detailed objects may 
use this value. Even if a point is outside the bounding rectangle of an object it 
may still be close (this is needed for hitting small objects). 

• HITRESULT _HIT ptlLoc is within the image of the object. 



COle Con trol: :OnRenderData 

Remarks 
Called by the framework in response to a container's 
IViewObjectEx::QueryHitPoint request. Queries whether an object's display 
rectangle overlaps the given point (hits the point). QueryHitPoint can be overridden 
to test hits for non-rectangular objects. 

See Also: COleControl::OnQueryHitRect 

COleControl::OnQueryHitRect 
virtual BOOL OnQueryHitRect( DWORD dwAspect, LPCRECT pRectBounds, 

~ LPCRECT prcLoc, LONG lCloseHint, DWORD* pHitResult ); 

Return Value 
Nonzero if a hit result is successfully returned; otherwise O. 

Parameters 

Remarks 

dwAspect Specifies how the object is to be represented. Valid values are taken from 
the enumeration DVASPECT or DVASPECT2. 

pRectBounds Pointer to a RECT structure specifying the bounding rectangle of the 
OLE control client area. 

prcLoc Pointer to the RECT structure specifying the rectangle to be checked for a hit 
(overlap with the object rectangle), relative to the upper left corner of the object. 

lCloseHint Not used. 

pHitResult Pointer to the result of the hit query. One of the following values: 

• HITRESULT_OUTSIDE no point in the rectangle is hit by the OLE object. 

• HITRESULT_HIT at least one point in the rectangle would be a hit on the 
object. 

Called by the framework in response to a container's IViewObjectEx::QueryHitRect 
request. Queries whether an object's display rectangle overlaps any point in the given 
rectangle (hits the rectangle). QueryHitRect can be overridden to test hits for 
non-rectangular objects. 

See Also: COleControl::OnQueryHitPoint 

COleControl: : OnRenderData 
virtual BOOL OnRenderData( LPFORMATETC lpFonnatEtc, 

~ LPSTGMEDIUM lpStgMedium ); 

Return Value 
Nonzero if successful; otherwise O. 

1235 



COleControl: :OnRenderFileData 

Parameters 

Remarks 

IpFormatEtc Points to the FORMATETC structure specifying the format in which 
information is requested. 

IpStgMedium Points to a STGMEDIUM structure in which the data is to be 
returned. 

Called by the framework to retrieve data in the specified format. The specified format 
is one previously placed in the control object using the DelayRenderData or 
DelayRenderFileData member functions for delayed rendering. The default 
implementation of this function calls OnRenderFileData or OnRenderGlobalData, 
respectively, if the supplied storage medium is either a file or memory. If the requested 
format is CF _METAFILEPICT or the persistent property set format, the default 
implementation renders the appropriate data and returns nonzero. Otherwise, it returns 
o and does nothing. 

If IpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should be allocated 
and filled as specified by IpFormatEtc->tymed. If not TYMED_NULL, the 
STGMEDIUM should be filled in place with the data. 

Override this function to provide your data in the requested format and medium. 
Depending on your data, you may want to override one of the other versions of this 
function instead. If your data is small and fixed in size, override 
OnRenderGlobalData. If your data is in a file, or is of variable size, override 
OnRender FileData. 

For more information, see the FORMATETC and STGMEDIUM structures in the 
OLE documentation. 

See Also: COleControl::OnRenderFileData, 
COleC.ontrol: :OnRenderGlobalData 

COleControl: :OnRenderFileData 
virtual BOOL OnRenderFileData( LPFORMATETC IpFormatEtc, CFile* pFile ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1236 

IpFormatEtc Points to the FORMATETC structure specifying the format in which 
information is requested. 

pFile Points to a CFile object in which the data is to be rendered. 

Called by the framework to retrieve data in the specified format when the storage 
medium is a file. The specified format is one previously placed in the control object 



COleControl: :OnRenderGlobalData 

using the DelayRenderData member function for delayed rendering. The default 
implementation of this function simply returns FALSE. 

Override this function to provide your data in the requested format and medium. 
Depending on your data, you might want to override one of the other versions of this 
function instead. If you want to handle multiple storage mediums, override 
OnRenderData. If your data is in a file, or is of variable size, override 
OnRenderFileData. 

For more information, see the FORMATETC structure in the OLE documentation. 

See Also: COleControl: :OnRenderData, COleControl: :OnRenderGlobalData 

COleControl::OnRenderGlobalData 
virtual BOOL OnRenderGlobalData( LPFORMATETC lpFormatEtc, 

.. HGLOBAL* ph Global ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpF ormatEtc Points to the FORMATETC structure specifying the format in which 
information is requested. 

phGlobal Points to a handle to global memory in which the data is to be returned. If 
no memory has been allocated, this parameter can be NULL. 

Called by the framework to retrieve data in the specified format when the specified 
storage medium is global memory. The specified format is one previously placed in 
the control object using the DelayRenderData member function for delayed 
rendering. The default implementation of this function simply returns FALSE. 

If phGlobal is NULL, then a new HGLOBAL should be allocated and returned in 
phGlobal. Otherwise, the HGLOBAL specified by phGlobal should be filled with the 
data. The amount of data placed in the HGLOBAL must not exceed the current size 
of the memory block. Also, the block cannot be reallocated to a larger size. 

Override this function to provide your data in the requested format and medium. 
Depending on your data, you may want to override one of the other versions of this 
function instead. If you want to handle multiple storage mediums, override 
OnRenderData. If your data is in a file, or is of variable size, override 
OnRenderFileData. 

For more information, see the FORMATETC structure in the OLE documentation. 

See Also: COleControl::OnRenderFileData, COleControl::OnRenderData 

1237 



COleControl: :OnResetState 

COleControl: :OnResetState 

Remarks 

virtual void OnResetState(); 

Called by the framework when the control's properties should be set to their default 
values. The default implementation calls DoPropExchange, passing a 
CPropExchange object that causes properties to be set to their default values. 

The control writer can insert initialization code for the OLE control in this 
overridable. This function is called when IPersistStream::Load or 
IPersistStorage::Load fails, or IPersistStreamInit::InitNew or 
IPersistStorage::lnitNew is called, without first calling either IPersistStream::Load 
or IPersistStorage: :Load. 

See Also: COleControl: :OnSetClientSite 

COleControl: :OnSetClientSite 

Remarks 

virtual void OnSetClientSite( ); 

Called by the framework when the container has called the control's 
IOleControl::SetClientSite function. By default, OnSetClientSite checks whether 
data path properties are loaded and, if they are, calls DaDa ta Path P rapExcha nge. 

Override this function to do any special processing of this notification. In particular, 
overrides of this function should call the base class. 

COleControl: : OnSetData 
virtual BOOL OnSetData( LPFORMATETC IpFormatEtc, 

... LPSTGMEDIUM IpStgMedium, BOOL bRelease ); 

Return Value 
Nonzero if successful~ otherwise O. 

Parameters 

Remarks 

1238 

IpFormatEtc Pointer to a FORMATETC structure specifying the format of the data. 

IpStgMedium Pointer to a STGMEDIUM structure in which the data resides. 

bRelease TRUE if the control should free the storage medium~ FALSE if if the 
control should not free the storage medium. 

Called by the framework to replace the control's data with the specified data. If the 
data is in the persistent property set format, the default implementation modifies the 



CO leControl: :OnSetObjectRects 

control's state accordingly. Otherwise, the default implementation does nothing. If 
bRelease is TRUE, then a call to ReleaseStgMedium is made; otherwise not. 

Override this function to replace the control's data with the specified data. 

For more information, see the FORMATETC and STGMEDIUM structures in the 
OLE documentation. 

See Also: COleControl: :DoPropExchange 

COleControl: :OnSetExtent 
virtual BOOL OnSetExtent( LPSIZEL IpSizeL); 

Return Value 
Nonzero if the size change was accepted; otherwise O. 

Parameters 

Remarks 

IpSizeL A pointer to the SIZEL structure that uses long integers to represent the 
width and height of the control, expressed in HIMETRIC units. 

Called by the framework when the control's extent needs to be changed, as a result of 
a call to IOleObject::SetExtent. The default implementation handles the resizing of 
the control's extent. If the control is in-place active, a call to the container's 
OnPosRectChanged is then made. 

Override this function to alter the default resizing of your control. 

COleControl: : OnSetObjectRects 
virtual BOOL OnSetObjectRects( LPCRECT IpRectPos, LPCRECT IpRectClip ); 

Return Value 
Nonzero if the repositioning was accepted; otherwise O. 

Parameters 

Remarks 

IpRectPos A pointer to a RECT structure indicating the control's new position and 
size relative to the container. 

IpRectClip A pointer to a RECT structure indicating a rectangular area to which the 
control is to be clipped. 

Called by the framework to implement a call to IOlelnPlaceObject: :SetObjectRects. 
The default implementation automatically handles the repositioning and resizing of 
the control window and returns TRUE. 

Override this function to alter the default behavior of this function. 

1239 



COleControl:: OnShowToolBars 

COleControl: : OnShowToolBars 

Remarks 

virtual void OnShowTooIBars(); 

Called by the framework when the control has been VI activated. The default 
implementation does nothing. 

See Also: COleControl: :OnHideToolbars 

COleControl: :OnTextChanged 

Remarks 

virtual void OnTextChanged(); 

Called by the framework when the stock Caption or Text property value has changed. 
The default implementation calls InvalidateControl. 

Override this function if you want notification after this property changes. 

See Also: COleControl: :SetText, COleControl: :InternaIGetText, 
COleControl: :InvalidateControl 

COleControl: :On WindowlessMessage 
virtual BOOL OnWindowlessMessage( UINT msg, WPARAM wParam, 

'+ LPARAM IParam, LRESULT* plResult ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1240 

msg Message identifier as passed by Windows. 

wParam As passed by Windows. Specifies additional message-specific information. 
The contents of this parameter depend on the value of the msg parameter. 

IParam As passed by Windows. Specifies additional message-specific information. 
The contents of this parameter depend on the value of the msg parameter. 

plResult Windows result code. Specifies the result of the message processing and 
depends on the message sent. 

Called by the framework in response to a container's 
IOleInPlaceObject Windowless:: On WindowMessage request. Processes window 
messages for windowless controls. COleControl's OnWindowlessMessage should 
be used for window messages other than mouse messages and keyboard messages. 



COleControl: :ParentToClient 

COleControl provides SetCapture and SetFocus specifically to get mouse capture 
and keyboard focus for windowless OLE objects. 

Since windowless objects do not have a window, they need a mechanism to let the 
container dispatch messages to them. A windowless OLE object gets messages from 
its container, via the On WindowMessage method on the 
IOleInPlaceObjectWindowless interface (an extension of IOleInPlaceObject for 
windowless support). OnWindowMessage does not take an HWND parameter. 

See Also: COleControl: :SetCapture, COleControl: :SetFocus, 
COleControl: :Get WindowlessDropTarget 

COleControl: :ParentToClient 
virtual UINT ParentToClient( LPCRECT IprcBounds, LPPOINT pPoint, 

... BOOL bHitTest = FALSE) const; 

Return Value 
If bHitTest is FALSE, returns HTNOWHERE. If bHitTest is TRUE, returns the 
location in which the parent (container) point landed in the client area of the OLE 
control and is one of the following mouse hit-test values: 

• HTBORDER In the border of a window that does not have a sizing border. 

• HTBOTTOM In the lower horizontal border of the window. 

• HTBOTTOMLEFT In the lower-left corner of the window border. 

• HTBOTTOMRIGHT In the lower-right corner of the window border. 

o HTCAPTION In a title-bar area. 

• HTCLIENT In a client area. 

• HTERROR On the screen background or on a dividing line between windows 
(same as HTNOWHERE except that the DefWndProc Windows function 
produces a system beep to indicate an error). 

• HTGROWBOX In a size box. 

• HTHSCROLL In the horizontal scroll bar. 

• HTLEFT In the left border of the window. 

• HTMAXBUTTON In a Maximize button. 

• HTMENU In a menu area. 

• HTMINBUTTON In a Minimize button. 

• HTNOWHERE On the screen background or on a dividing line between 
windows. 

• HTREDUCE In a Minimize button. 

• HTRIGHT In the right border of the window. 

1241 



COleControl: :PostModalDialog 

• HTSIZE In a size box (same as HTGROWBOX). 

• HTSYSMENU In a Control menu or in a Close button in a child window. 

• HTTOP In the upper horizontal border of the window. 

• HTTOPLEFT In the upper-left comer of the window border. 

• HTTOPRIGHT In the upper-right comer of the window border. 

• HTTRANSPARENT In a window currently covered by another window. 

• HTVSCROLL In the vertical scroll bar. 

• HTZOOM In a Maximize button. 

Parameters 

Remarks 

lp reB 0 unds Pointer to the bounds of the OLE control within the container. Not the 
client area but the area of the entire control including borders and scroll bars. 

pPoint Pointer to the parent (container) point to be translated into the coordinates of 
the client area of the control. 

bHitTest Specifies whether or not hit testing is to be done on the point. 

Call this function to translate the coordinates of pPoint into client coordinates. On 
input pPoint is relative to the origin of the parent (upper left comer of the container). 
On output pPoint is relative to the origin of the client area of the OLE control (upper 
left comer of the client area of the control). 

See Also: COleControI: :CIientToParent, COleControI: : GetCIientOffset 

COleControl: :PostModalDialog 
void PostModaIDialog( ); 

Remarks 
Call this function after displaying any modal dialog box. You must call this function 
so that the container can enable any top-level windows disabled by PreModalDialog. 
This function should be paired with a call to PreModaIDialog. 

See Also: COleControI: :PreModaIDialog 

COleControl: :PreModalDialog 
void PreModaIDialog(); 

Remarks 

1242 

Call this function prior to displaying any modal dialog box. You must call this 
function so that the container can disable all its top-level windows. After the modal 
dialog box has been displayed, you must then call PostModalDialog. 



CO leControl: :ReleaseDC 

See Also: COleControl::PostModaIDialog 

COleControl: : RecreateControlWindow 

Remarks 

void RecreateControlWindow( ); 

Call this function to destroy and re-create the control's window. This may be 
necessary if you need to change the window's style bits. 

COleControl: : Refresh 

Remarks 

void Refresh( ); 

Call this function to force a repaint of the OLE control. 

This function is supported by the COleControl base class as a stock method, called 
Refresh. This allows users of your OLE control to repaint the control at a specific 
time. For more information on this method, see the article "ActiveX Controls: 
Methods" in Visual C++ Programmer's Guide online. 

See Also: COleControl: :InvalidateControl 

COleControl: : ReleaseCapture 
BOOL ReleaseCapture( ); 

Return Value 

Remarks 

Nonzero if successful; otherwise O. 

Call this function to release mouse capture. If the control currently has the mouse 
capture, the capture is released. Otherwise, this function has no effect. 

See Also: COleControl: :SetCapture, COleControl: : GetCapture 

COleControl: :ReleaseDC 
int ReleaseDC( CDC* pDC ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 
pDC Identifies the container device context to be released. 

1243 



COleControl: :ResetStockProps 

Remarks 
Call this function to release the display device context of a container of a windowless 
control, freeing the device context for use by other applications. The application must 
call ReleaseDC for each call to GetDC. 

See Also: COleControl::GetDC 

COleControl: : ResetStockProps 
void ResetStockProps(); 

Remarks 

Example 

Call this function to initialize the state of the COleControl stock properties to their 
default values. The properties are: Appearance, BackColor, BorderStyle, Caption, 
Enabled, Font, ForeColor, hWnd, and Text. For a description of stock properties, see 
"ActiveX Controls: Adding Stock Properties." 

You can improve a control's binary initialization performance by using 
ResetStockProps and ResetVersion to override COleControl::OnResetState. See 
the example below. For further information on optimizing initialization, see "ActiveX 
Controls: Optimization." 

void CMyCtrl ::OnResetState() 
{ 

ResetVersion(MAKELONG(_wVerMinor. _wVerMajor»; 
ResetStockProps(); 

II initialize custom properties here 

See Also: COleControl: :ResetVersion, COleControl: :SerializeStockProps 

COleControl: :Reset Version 
void ResetVersion( DWORD dwVersionDefault); 

Parameters 

Remarks 

1244 

dw VersionDefault The version number to be assigned to the control. 

Call this function to initialize the version number to specified value. 

You can improve a control's binary initialization performance by using ResetVersion 
and ResetStockProps to override COleControl::OnResetState. See the example at 
ResetStockProps. For further information on optimizing initialization, see "ActiveX 
Controls: Optimization." 



CO leControl:: SelectFontObject 

See Also: COleControl::ResetStockProps, COleControl::SerializeVersion 

COleControl:: ScrollWindow 
void ScrollWindow( int xA11launt, int yA11launt, LPCRECT IpRect = NULL, 

... LPCRECT IpClipRect = NULL ); 

Parameters 

Remarks 

xA11launt Specifies the amount, in device units, of horizontal scrolling. This 
parameter must be a negative value to scroll to the left. 

yA11lalillt Specifies the amount, in device units, of vertic all scrolling. This parameter 
must be a negative value to scroll upward. 

lpRect Points to a CRect object or RECT structure that specifies the portion of the 
OLE object's client area to scroll, in client coordinates of the containing window. If 
IpRect is NULL, the entire OLE object's client area is scrolled. 

IpClipRect Points to a CRect object or RECT structure that specifies the rectangle to 
clip to. Only pixels inside the rectangle are scrolled. Bits outside the rectangle are 
not affected even if they are in the lpRect rectangle. If lpClipRect is NULL, no 
clipping is performed on the scroll rectangle. 

Call this function to allow a windowless OLE object to scroll an area within its 
in-place active image on the screen. 

COleControl::SelectFontObject 
CFont* SelectFontObject( CDC* pDC, CFontHolder& fantHalder ); 

Return Value 
A pointer to the previously selected font. When the caller has finished all drawing 
operations that use fantHalder, it should reselect the previously selected font by 
passing it as a parameter to CDC::SelectObject. 

Parameters 

Remarks 

pDC Pointer to a device context object. 

fantHalder Reference to the CFontHolder object representing the font to be 
selected. 

Call this function to select a font into a device context. 

1245 



COleControl: :SelectStockFont 

COleControl:: SelectStockFont 
CFont* SelectStockFont( CDC* pDC ); 

Return Value 
A pointer to the previously selected CFont object. You should use 
CDC::SelectObject to select this font back into the device context when you are 
finished. 

Parameters 

Remarks 

pDC The device context into which the font will be selected. 

Call this function to select the stock Font property into a device context. 

See Also: COleControl::GetFont, COleControl::SetFont 

COleControl:: SerializeExtent 
void SerializeExtent( CArchive& ar); 

Parameters 

Remarks 

Example 

1246 

ar A CArchive object to serialize to or from. 

Call this function to serialize or initialize the state of the display space allotted to the 
control. 

You can improve a control's binary persistence performance by using 
SerializeExtent, SerializeStockProps, and Serialize Version to override 
COleControl::Serialize. See the example below. For further information on 
optimizing initialization, see "ActiveX Controls: Optimization" online. 

void CMyCtrl ::Serialize(CArchive& ar) 
{ 

DWORD dwVersion = 
SerializeVersion(ar, MAKELONGCwVerMinor, _wVerMajor)); 

SerializeExtent(ar); 
SerializeStockProps(ar); 

if (ar.lsLoading()) 
{ 

II load custom properties here 
} 
else 
{ 

II save custom properties here 

See Also: COleControl: :SerializeStockProps, COleControl: : Serialize Version 



COleControl: :Serialize Version 

COleControl:: SerializeStockProps 
void SerializeStockProps( CArchive& ar); 

Parameters 

Remarks 

ar A CArchive object to serialize to or from. 

Call this function to serialize or initialize the state of the COleControl stock 
properties: Appearance, BackColor, BorderStyle, Caption, Enabled, Font, ForeColor, 
and Text. For a description of stock properties, see "ActiveX Controls: Adding Stock 
Properties" online. 

You can improve a control's binary persistence performance by using 
SerializeStockProps, SerializeExtent, and Serialize Version to override 
COleControl: :Serialize. For an example, see the code at SerializeExtent. For further 
information on optimizing initialization, see "ActiveX Controls: Optimization" online. 

See Also: COleControl: :SerializeExtent, COleControl: :Serialize Version, 
COleControl: : ResetStockProps 

COleControl:: Serialize Version 
DWORD SerializeVersion( CArchive& ar, DWORD dwVersionDefault, 

... BOOL bConvert = TRUE ); 

Return Value 
The version number of the control. If the specified archive is loading, 
Serialize Version returns the version loaded from that archive. Otherwise, it returns 
the currently loaded version. 

Parameters 

Remarks 

ar A CArchive object to serialize to or from. 

dw VersionDefault The current version number of the control. 

bConvert Indicates whether persistent data should be converted to the latest format 
when it is saved, or maintained in the same format it had when it was loaded. 

Call this function to serialize or initialize the state of a control's version information. 

You can improve a control's binary persistence performance by using 
Serialize Version, SerializeExtent, and SerializeStockProps to override 
COleControl: : Serialize. For an example, see the code at SerializeExtent. For further 
information on optimizing initialization, see "ActiveX Controls: Optimization" online. 

See Also: COleControl: :SerializeExtent, COleControl: :SerializeStockProps, 
COleControl: : ResetVersion 

1247 



COleControl:: SetAppearance 

COleControl: :SetAppearance 
void SetAppearance ( short sAppearance ); 

Parameters 

Remarks 

sAppearance A short (VT_I2) value to be used for the appearance of your control. 
A value of zero sets the control's appearance to flat and a value of 1 sets the 
control's appearance to 3D. 

Call this function to set the stock Appearance property value of your control. For 
more about stock properties, see "ActiveX Controls: Properties" in Visual C++ 
Programmer's Guide online. 

See Also: COleControl::GetAppearance, COleControl::OnAppearanceChanged 

COleControl:: SetBackColor 
void SetBackColor( OLE_COLOR dwBackColor); 

Parameters 

Remarks 

dwBackColor An OLE_COLOR value to be used for background drawing of your 
control. 

Call this function to set the stock BackColor property value of your control. For more 
information on using this property and other related properties, see "Adding a Custom 
Notification Property" in the Circle Sample Tutorial in Visual C++ Tutorials online 
and the article "ActiveX Controls: Properties" in Visual C++ Programmer's Guide 
online. 

See Also: COleControl: :SetForeColor, COleControl: : GetBackColor, 
COleControl: :OnBackColorChanged 

COleControl::SetBorderStyle 
void SetBorderStyle( short sBorderStyle ); 

Parameters 

Remarks 

1248 

sBorderStyle The new border style for the control; 0 indicates no border and 1 
indicates a normal border. 

Call this function to set the stock BorderStyle property value of your control. The 
control window will then be re-created and OnBorderStyleChanged called. 

See Also: COleControl: :GetBorderStyle, COleControl: :OnBorderStyleChanged 



COleControl:: SetEnabled 

COleControl: :SetCapture 
CWnd* SetCapture( ); 

Return Value 

Remarks 

A pointer to the CWnd window object that previously received mouse input. 

If the control is activated and windowless, this function causes the control's container 
window to take possession of the mouse capture, on the control's behalf. 

Otherwise, this function causes the control itself to take possession of the mouse 
capture (same as CWnd::SetCapture). 

See Also: COleControl::GetCapture, COleControl::ReleaseCapture 

COleControl:: SetControlSize 
BOOL SetControlSize( int ex, int ey); 

Return Value 
Nonzero if the call was successful; otherwise O. 

Parameters 

Remarks 

ex Specifies the new width of the control in pixels. 

ey Specifies the new height of the control in pixels. 

Call this function to set the size of the OLE control window and notify the container 
that the control site is changing. This function should not be used in your control's 
constructor. 

Note that all coordinates for control windows are relative to the upper-left corner of 
the control. 

See Also: COleControl::GetControISize, COleControl::GetRectlnContainer 

COleControl: : SetEnabled 
void SetEnabled( BOOL bEnabled ); 

Parameters 

Remarks 

bEnabled TRUE if the control is to be enabled; otherwise FALSE. 

Call this function to set the stock Enabled property value of your control. After setting 
this property, OnEnabledChange is called. 

See Also: COleControl::GetEnabled, COleControl::OnEnabledChanged 

1249 



COleControl: :SetFocus 

COleControl: :SetFocus 
CWnd* SetFocus(); 

Return Value 

Remarks 

A pointer to the CWnd window object that previously had the input focus, or NULL 
if there is no such window. 

If the control is activated and windowless, this function causes the control's container 
window to take possession of the input focus, on the control's behalf. The input focus 
directs keyboard input to the container's window, and the container dispatches all 
subsequent keyboard messages to the OLE object that calls SetFocus. Any window 
that previously had the input focus loses it. 

If the control is not windowless, this function causes the control itself to take 
possession of the input focus (same as CWnd::SetFocus). 

See Also: COleControl: :GetFocus 

COleControl: :SetFont 
void SetFont( LPFONTDISP pFontDisp); 

Parameters 

Remarks 

pFontDisp A pointer to a Font dispatch interface. 

Call this function to set the stock Font property of your control. 

See Also: COleControl: :GetFont, COleControl: :InternaIGetText, 
COleControl: :OnFontChanged 

COleControl:: SetForeColor 
void SetForeColor( OLE_COLOR dwForeColor); 

Parameters 

Remarks 

1250 

dwForeColor An OLE_COLOR value to be used for foreground drawing of your 
control. 

Call this function to set the stock ForeColor property value of your control. For more 
information on using this property and other related properties, see "Adding a Custom 
Notification Property," in the Circle Sample Tutorial in Visual c++ Tutorials and the 
article "ActiveX Controls: Properties" in Visual C++ Programmer's Guide online. 



CO leControl: :SetModifiedFlag 

See Also: COleControl::SetBackColor, COleControl::GetForeColor, 
COleControl: :OnForeColorChanged 

COleControl: : SetInitialDataF ormats 

Remarks 

virtual void SetlnitialDataFormats( ); 

Called by the framework to initialize the list of data formats supported by the control. 

The default implementation specifies two formats: CF _METAFILEPICT and the 
persistent property set. 

COleControl:: SetInitialSize 
void SetlnitialSize( int ex, int ey ); 

Parameters 

Remarks 

ex The initial width of the OLE control in pixels. 

ey The initial height of the OLE control in pixels. 

Call this function in your constructor to set the initial size of your control. The initial 
size is measured in device units, or pixels. It is recommended that this call be made in 
your control's constructor. 

COleControl:: SetModifiedFlag 
void SetModifiedFlag( BOOL bModified = TRUE); 

Parameters 

Remarks 

bModified The new value for the control's modified flag. TRUE indicates that the 
control's state has been modified; FALSE indicates that the control's state has just 
been saved. 

Call this function whenever a change occurs that would affect your control's persistent 
state. For example, if the value of a persistent property changes, call this function with 
bModified TRUE. 

See Also: COleControl::IsModified 

1251 



COleControl: :SetN otPermitted 

COleControl:: SetN otPermitted 

Remarks 

void SetNotPermitted(); 

Call this function when BoundPropertyRequestEdit fails. This function throws an 
exception of type COleDispScodeException to indicate that the set operation was not 
permitted. 

See Also: COleControl::BoundPropertyRequestEdit 

COleControl:: SetN otSupported 

Remarks 

void SetNotSupported(); 

Call this function in place of the Set function of any property where modification of 
the property value by the control's user is not supported. One example would be a 
property that is read-only. 

See Also: COleControl: : GetNotSupported 

COleControl: :SetRectInContainer 
BOOL SetRectlnContainer( LPRECT IpRect ); 

Return Value 
Nonzero if the call was successful; otherwise O. 

Parameters 

Remarks 

IpRect A pointer to a rectangle containing the control's new coordinates relative to 
the container. 

Call this function to set the coordinates of the control's rectangle relative to the 
container, expressed in device units. If the control is open, it is resized; otherwise the 
container's OnPosRectChanged function is called. 

See Also: COleControl::GetRectlnContainer, COleControl::GetControISize 

COleControl: :SetText 
void SetText( LPCTSTR pszText ); 

Parameters 
pszText A pointer to a character string. 

1252 



COleControl: :TransformCoords 

Remarks 
Call this function to set the value of your control's stock Caption or Text property. 

Note that the stock Caption and Text properties are both mapped to the same value. 
This means that any changes made to either property will automatically change both 
properties. In general, a control should support either the stock Caption or Text 
property, but not both. 

See Also: COleControl::GetText, COleControl::InternalGetText, 
COleControl: :OnTextChanged 

COleControl: : ThrowError 
void ThrowError( SCODE sc, UINT nDescriptionID, UINT nHelpID = -1 ); 
void ThrowError( SCODE sc, LPCTSTR pszDescription = NULL, UINT nHelpID = 0 ); 

Parameters 

Remarks 

sc The status code value to be reported. For a complete list of possible codes, see the 
article "ActiveX Controls: Advanced Topics" in Visual C++ Programmer's Guide 
online. 

nDescriptionID The string resource ID of the exception to be reported. 

nHelpID The help ID of the topic to be reported on. 

pszDescription A string containing an explanation of the exception to be reported. 

Call this function to signal the occurrence of an error in your control. This function 
should only be called from within a Get or Set function for an OLE property, or the 
implementation of an OLE automation method. If you need to signal errors that occur 
at other times, you should fire the stock Error event. 

See Also: COleControl::FireError, COleControl::DisplayError 

COleControl: : TransformCoords 
void TransformCoords( POINTL FAR* IpptlHimetric, 

... POINTF FAR* IpptjContainer, DWORD flags ); 

Parameters 
IpptlHimetric Pointer to a POINTL structure containing coordinates in HIMETRIC 

units. 

IpptjContainer Pointer to a POINTF structure containing coordinates in the 
container's unit size. 

flags A combination of the following values: 

• XFORMCOORDS_POSITION A position in the container. 

1253 



COleControl: :TranslateColor 

Remarks 

• XFORMCOORDS_SIZE A size in the container. 

• XFORMCOORDS_HIMETRICTOCONTAINER Transform HIMETRIC 
. units to the container's units. 

• XFORMCOORDS_CONTAINERTOHIMETRIC Transform the 
container's units to HIMETRIC units. 

Call this function to transform coordinate values between HIMETRIC units and the 
container's native units. 

The first two flags, XFORMCOORDS_POSITION and XFORMCOORDS_SIZE, 
indicate whether the coordinates should be treated as a position or a size. The 
remaining two flags indicate the direction of transformation. 

See Also: COleControI::AmbientScaleUnits 

COleControl: : TranslateColor 
COLORREF TranslateColor( OLE_COLOR clrColor, HPALETTE hpal = NULL ); 

Return Value 
An RGB (red, green, blue) 32-bit color value that defines the solid color closest to the 
clrColor value that the device can represent. 

Parameters 

Remarks 

clrColor A OLE_COLOR data type. For more information, see the Windows 
OIeTranslateColor function. 

hpal A handle to an optional palette; can be NULL. 

Call this function to convert a color value from the OLE_COLOR data type to the 
COLORREF data type. This function is useful to translate the stock ForeColor and 
BackColor properties to COLORREF types used by CDC member functions. 

See Also: COleControI::GetForeColor, COleControI::GetBackColor 

COleControl:: WillAmbientsBe ValidDuringLoad 
BOOL WiIlAmbientsBeVaiidDuringLoad(); 

Return Value 

1254 

Nonzero indicates that ambient properties will be valid; otherwise ambient properties 
will not be valid. 



Remarks 

COleControl:: WillAmbientsBe ValidDuringLoad 

Call this function to determine whether your control should use the values of ambient 
properties as default values, when it is subsequently loaded from its persistent state. 

In some containers, your control may not have access to its ambient properties during 
the initial call to the override of COleControl::DoPropExchange. This is the case if 
the container calls IPersistStreamlnit::Load or IPersistStorage::Load prior to 
calling IOleObject::SetClientSite (that is, if it does not honor the 
OLEMISC_SETCLIENTSITEFIRST status bit). 

See Also: COleControl: :DoPropExchange, COleControl: : GetAmbientProperty 

1255 



COleControlModule 

COleControlModule 

1256 

The COleControlModule class is the base class from which you derive an OLE 
control module object. This class provides member functions for initializing your 
control module. Each OLE control module that uses the Microsoft Foundation classes 
can only contain one object derived from COleControlModule. This object is 
constructed when other C++ global objects are constructed. Declare your derived 
COleControlModule object at the global level. 

For more information on using the COleControlModule class, see the CWinApp 
class and the article "ActiveX Controls" in Visual C++ Programmer's Guide online. 

#include <afxctl.h> 



C01eConvertDialog 

COleConvertDialog 

The COleConvertDialog class is used for the OLE Convert dialog box. Create an 
object of class COleConvertDialog when you want to call this dialog box. After a 
COleConvertDialog object has been constructed, you can use the m_cv structure to 
initialize the values or states of controls in the dialog box. The m_cv structure is of 
type OLEUICONVERT. For more information about using this dialog class, see the 
DoModal member function. 

Note AppWizard-generated container code uses this class. 

For more information, see the OLEUICONVERT structure in the OLE documentation. 

For more information about OLE-specific dialog boxes, see the article "Dialog Boxes 
in OLE" in Visual C++ Programmer's Guide online. 

#include <afxodlgs.h> 

See Also: COleDialog 

COleConvertDialog Class Members 
Data Members 

Construction 

COleConvertDialog 

Operations and Attributes 

DoModal 

DoConvert 

A structure that controls the behavior of the dialog box. 

Constructs a COleConvertDialog object. 

Displays the OLE Change Item dialog box. 

Performs the conversion specified in the dialog box. 

(continued) 

1257 



COleConvertDialog: :COleConvertDialog 

Operations and Attributes (continued) 

GetSelectionType 

GetClassID 

GetDraw Aspect 

GetIconicMetafile 

Gets the type of selection chosen. 

Gets the CLSID associated with the chosen item. 

Specifies whether to draw item as an icon. 

Gets a handle to the metafile associated with the iconic form 
of this item. 

Member Functions 
COleConvertDialog::COleConvertDialog 

COleConvertDialog ( COleClientltem* pltem, 
... DWORD dwFlags = CF _SELECTCONVERTTO, 
... CLSID FAR* pClassID = NULL, CWnd* pParentWnd = NULL); 

Parameters 

1258 

pltem Points to the item to be converted or activated. 

dwFlags Creation flag, which contains any number of the following values combined 
using the bitwise-or operator: 

o CF _SELECTCONVERTTO Specifies that the Convert To radio button will 
be selected initially when the dialog box is called. This is the default. 

• CF _SELECTACTIVATEAS Specifies that the Activate As radio button will 
be selected initially when the dialog box is called. 

• CF_SETCONVERTDEFAULT Specifies that the class whose CLSID is 
specified by the clsidConvertDefault member of the m_cv structure will be 
used as the default selection in the class list box when the Convert To radio 
button is selected. 

• CF _SETACTIVATEDEFAULT Specifies that the class whose CLSID is 
specified by the clsidActivateDefault member of the m_cv structure will be 
used as the default selection in the class list box when the Activate As radio 
button is selected. 

• CF _SHOWHELPBUTTON Specifies that the Help button will be displayed 
when the dialog box is called. 

pClassID Points to the CLSID of the item to be converted or activated. If NULL, the 
CLSID associated with pltem will be used. 

pParentWnd Points to the parent or owner window object (of type CWnd) to which 
the dialog object belongs. If it is NULL, the parent window of the dialog box is set 
to the main application window. 



COleConvertDialog: :DoModal 

Remarks 
Constructs only a COleConvertDialog object. To display the dialog box, call the 
DoModal function. 

For more information, see CLSID Key and the OLEUICONVERT structure. 

See Also: COleConvertDialog: :DoModal, COleConvertDialog: :m_cv 

COleConvertDialog: :DoConvert 
BOOL DoConvert( COleClientItem* pltem ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

pltem Points to the item to be converted or activated. Cannot be NULL. 

Call this function, after returning successfully from DoModal, either to convert or to 
activate an object of type COleClientItem. The item is converted or activated 
according to the information selected by the user in the Convert dialog box. 

See Also: COleClientItem, COleConvertDialog: :DoModal, 
COleConvertDialog: :GetSelectionType, COleClientItem: :ConvertTo, 
COleClientItem: :ActivateAs 

COleConvertDialog: :DoModal 
virtual int DoModal( ); 

Return Value 

Remarks 

Completion status for the dialog box. One of the following values: 

• IDOK if the dialog box was successfully displayed. 

• IDCANCEL if the user canceled the dialog box. 

• IDABORT if an error occurred. If IDABORT is returned, call the 
COleDialog: : GetLastError member function to get more information about the 
type of error that occurred. For a listing of possible errors, see the OleUIConvert 
function in the OLE documentation. 

Call this function to display the OLE Convert dialog box. 

If you want to initialize the various dialog box controls by setting members of the 
m_cv structure, you should do this before calling DoModal, but after the dialog 
object is constructed. 

1259 



COleConvertDialog::GetClassID 

If DoModal returns IDOK, you can call other member functions to retrieve the 
settings or information that was input by the user into the dialog box. 

See Also: COleDialog::GetLastError, CDialog::DoModal, 
COleConvertDialog: :m_ cv, COleConvertDialog: :DoConvert, 
COleConvertDialog:: GetSelectionType, COleConvertDialog: :GetClassID, 
COleConvertDialog: :GetDraw Aspect, COleConvertDialog: : GetlconicMetafile 

COleConvertDialog: :GetClassID 
const CLSID& GetClassID( ) const; 

Return Value 

Remarks 

The CLSID associated with the item that was selected in the Convert dialog box. 

Call this function to get the CLSID associated with the item the user selected in the 
Convert dialog box. Call this function only after DoModal returns IDOK. 

For more information, see CLSID Key in the OLE documentation. 

See Also: COleConvertDialog::DoModal 

COleConvertDialog: : GetDraw Aspect 
DVASPECT GetDrawAspect() const; 

Return Value 

Remarks 

1260 

The method needed to render the object. 

• DVASPECT_CONTENT Returned if the Display As Icon check box 
was not checked . 

• DVASPECT_ICON Returned if the Display As Icon check box was 
checked. 

Call this function to determine whether the user chose to display the selected item as 
an icon. Call this function only after DoModal returns IDOK. 

For more information on drawing aspect, see the FORMATETC data structure in the 
OLE documentation. 

See Also: COleConvertDialog::DoModal, 
COleConvertDialog:: COleConvertDialog 



COleCon vertDialog: :GetSelectionType 

COleConvertDialog: : GetlconicMetafile 
HGLOBAL GetIconPicture() const; 

Return Value 

Remarks 

The handle to the metafile containing the iconic aspect of the selected item, if the 
Display As Icon check box was checked when the dialog was dismissed by choosing 
OK; otherwise NULL. 

Call this function to get a handle to the metafile that contains the iconic aspect of the 
selected item. 

See Also: COleConvertDialog::DoModal, 
COleConvertDialog: :COleConvertDialog, COleConvertDialog: :GetDraw Aspect 

COleConvertDialog: : GetS election Type 
UINT GetSelectionType( ) const; 

. Return Value 

Remarks 

Type of selection made. 

Call this function to determine the type of conversion selected in the Convert dialog box. 

The return type values are specified by the Selection enumeration type declared in the 
COleConvertDialog class. 

enum Selection 
{ 

} ; 

noConversion, 
convertItem, 
activateAs 

Brief descriptions of these values follow: 

• COleConvertDialog: :noConversion Returned if either the dialog box was 
canceled or the user selected no conversion. If COleConvertDialog: :DoModal 
returned IDOK, it is possible that the user selected a different icon than the one 
previously selected. 

• COleConvertDialog: :convertItem Returned if the Convert To radio button was 
checked, the user selected a different item to convert to, and DoModal returned 
IDOK. 

• COleConvertDialog::activateAs Returned if the Activate As radio button was 
checked, the user selected a different item to activate, and DoModal returned 
IDOK. 

1261 



COleConvertDialog: :m3v 

See Also: COleConvertDialog::DoModaI, 
COleConvertDialog: :COleConvertDialog 

Data Members 
COleConvertDialog: :m_cv 
Remarks 

1262 

Structure of type OLEUICONVERT used to control the behavior of the Convert 
dialog box. Members of this structure can be modified either directly or through 
member functions. 

For more information, see the OLEUICONVERT structure in the OLE documentation. 

See Also: COleConvertDialog::COleConvertDialog, 
COleConvertDialog: :DoModal 



COleCurrency 
COleCurrency does not have a base class. 

A COle Currency object encapsulates the CURRENCY data type of OLE 
automation. CURRENCY is implemented as an 8-byte, two's-complement integer 
value scaled by 10,000. This gives a fixed-point number with 15 digits to the left of 
the decimal point and 4 digits to the right. The CURRENCY data type is extremely 
useful for calculations involving money, or for any fixed-point calculation where 
accuracy is important. It is one of the possible types for the VARIANT data type of 
OLE automation. 

COleCurrency also implements some basic arithmetic operations for this fixed-point 
type. The supported operations have been selected to control the rounding errors 
which occur during fixed-point calculations. 

For more information, see the CURRENCY and VARIANT entries in the Win32 
SDK OLE Programmer's Reference. 

#include <afxdisp.h> 

See Also: COle Variant 

COleCurrency Class Members 
Construction 

COleCurrency 

Attributes 

GetStatus 

SetStatus 

Operations 

SetCurrency 

Format 

ParseCurrency 

Operators 

operator CURRENCY 

operator = 

Constructs a COle Currency object. 

Gets the status (validity) of this COleCurrency object. 

Sets the status (validity) for this COleCurrency object. 

Sets the value of this COle Currency object. 

Generates a formatted string representation of a 
COleCurrency object. 

Reads a CURRENCY value from a string and sets the value 
of COleCurrency. 

Converts a COleCurrency value into a CURRENCY. 

Copies a COleCurrency value. 

(continued) 

COleCurrency 

1263 



COleCurrency: :COleCurrency 

Operators (continued) 

operator +, -

operator +=, -= 

operator *, 1 

operator *=, 1= 

operator ==, <, <=, etc. 

Data Members 

Archive/Dump 

operator « 

operator » 

Adds, subtracts, and changes sign of COle Currency values. 

Adds and subtracts a COleCurrency value from this 
COle Currency object. 

Scales a COleCurrency value by an integer value. 

Scales this COleCurrency value by an integer value. 

Compares two COleCurrency values. 

Contains the underlying CURRENCY for this 
COleCurrency object. 

Contains the status of this COleCurrency object. 

Outputs a COleCurrency value to CArchive or 
CDumpContext. 

Inputs a COleCurrency object from CArchive. 

Member Functions 
COleCurrency: :COleCurrency 

COleCurrency( ); 
COleCurrency( CURRENCY cySrc); 
COleCurrency( const COleCurrency& curSrc); 
COleCurrency( const VARIANT& varSrc); 
COleCurrency( long nUnits, long nFractionaIUnits); 

Parameters 

Remarks 

1264 

cySrc A CURRENCY value to be copied into the new COleCurrency object. 

curSrc An existing COleCurrency object to be copied into the new COleCurrency 
object. 

varSrc An existing VARIANT data structure (possibly a COleVariant object) to be 
converted to a currency value (VT _ CY) and copied into the new COleCurrency 
object. 

nUnits, nFractionalUnits Indicate the units and fractional part (in 1110,000's) of the 
value to be copied into the new COleCurrency object. 

All of these constructors create new COleCurrency objects initialized to the specified 
value. A brief description of each of these constructors follows. Unless otherwise 
noted, the status of the new COleCurrency item is set to valid. 



COleCurrency: : Forrnat 

Example 

• COleCurrency() Constructs a COleCurrency object initialized to 0 (zero). 

• COleCurrency( cySrc) Constructs a COleCurrency object from a 
CURRENCY value. 

• COleCurrency( curSrc) Constructs a COle Currency object from an existing 
COleCurrency object. The new object has the same status as the source object. 

• COleCurrency( varSrc) Constructs a COleCurrency object. Attempts to 
convert a VARIANT structure or COleVariant object to a currency (VT_CY) 
value. If this conversion is successful, the converted value is copied into the new 
COleCurrency object. If it is not, the value of the COleCurrency object is set to 
zero (0) and its status to invalid. 

• COleCurrency( nUnits, nFractionalUnits) Constructs a COleCurrency object 
from the specified numerical components. If the absolute value of the fractional 
part is greater than 10,000, the appropriate adjustment is made to the units. Note 
that the units and fractional part are specified by signed long values. 

For more information, see the CURRENCY and VARIANT entries in the Win32 
SDK OLE Programmer's Reference. 

The following examples show the effects of the zero-parameter ~nd two-parameter 
constructors: 

COleCurrency curZero; II value: 0.0000 
COleCurrency curA(4, 500); II value: 4.0500 
COleCurrency curB(2, 11000) ; II value: 3.1000 
COleCurrency curC(2, -50); II value: 1.9950 

See Also: COleCurrency: :SetCurrency, COleCurrency: :operator =, 
COleCurrency: : GetStatus, COleCurrency: :m_cur, COleCurrency: :m_status 

COleCurrency: : Format 
CString Format( DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT ); 

Return Value 
A CString that contains the formatted currency value. 

Parameters 

Remarks 

dwFlags Indicates flags for locale settings, possibly the following flag: 

• LOCALE_NOUSEROVERRIDE Use the system default locale settings, 
rather than custom user settings. 

lcid Indicates locale ID to use for the conversion. 

Call this member function to create a formatted representation of the currency value. It 
formats the value using the national language specifications (locale IDs). A currency 

1265 



COleCurrency: :GetStatus 

Example 

symbol is not included in the value returned. If the status of this COleCurrency 
object is null, the return value is an empty string. If the status is invalid, the return 
string is specified by the string resource IDS_INVALID_CURRENCY. 

COleCurrency curA; 
curA.SetCurrency(4, 500); 

II value returned: 4.05 

II value: 0.0000 
II value: 4.0500 

curA.Format(0, MAKELCID(MAKELANGID(LANG_CHINESE, 
SUBLANG_CHINESE_SINGAPORE), SORT_DEFAULT)); 

II value returned: 4,05 
curA.Format(0, MAKELCID(MAKELANGID(LANG_GERMAN, 

SUBLANG_GERMAN_AUSTRIAN), SORT_DEFAULT)); 

Note For a discussion of locale 10 values, see the section "Supporting Multiple National 
Languages" in the Win32 SDK OLE Programmer's Reference. 

See Also: COleCurrency::ParseCurrency, COleCurrency::GetStatus 

COleCurrency: : GetStatus 
CurrencyStatus GetStatus( ) const; 

Return Value 

Remarks 

1266 

Returns the status of this COleCurrency value. 

Call this member function to get the status (validity) of a given COleCurrency object. 

The return value is defined by the CurrencyStatus enumerated type which is defined 
within the COleCurrency class. 

enum CurrencyStatus{ 

} ; 

valid = 0, 
invalid = 1, 
null == 2, 

For a brief description of these status values, see the following list: 

• COleCurrency::valid Indicates that this COleCurrency object is valid. 

• COleCurrency: : invalid Indicates that this COleCurrency object is invalid; that 
is, its value may be incorrect. 

• COleCurrency: : null Indicates that this COleCurrency object is null, that is, that 
no value has been supplied for this object. (This is "null" in the database sense of 
"having no value," as opposed to the C++ NULL.) 

The status of a COle Currency object is invalid in the following cases: 



COleCurrency: :ParseCurrency 

• If its value is set from a VARIANT or COleVariant value that could not be 
converted to a currency value. 

• If this object has experienced an overflow or underflow during an arithmetic 
assignment operation, for example += or *=. 

• If an invalid value was assigned to this object. 

• If the status of this object was explicitly set to invalid using SetStatus. 

For more information on operations that may set the status to invalid, see the 
following member functions: 

• COleCurrency 

• operator = 
• operator +, -

• operator +=,-= 

• operator *,1 

• operator *=, 1= 

See Also: COleCurrency::SetStatus, COleCurrency::m_status 

COleCurrency: :ParseCurrency 
BOOL ParseCurrency( LPCTSTR IpszCurrency, DWORD dwFlags = 0, 

.. LCID lcid = LANG_USER_DEFAULT ); 
throw( CMemoryException ); 
throw( COleException ); 

Return Value 
Nonzero if the string was successfully converted to a currency value, otherwise O. 

Parameters 

Remarks 

IpszCurrency A pointer to the null-terminated string which is to be parsed. 

dwFlags Indicates flags for locale settings, possibly the following flag: 

• LOCALE_NOUSEROVERRIDE Use the system default locale settings, 
rather than custom user settings. 

lcid Indicates locale ID to use for the conversion. 

Call this member function to parse a string to read a currency value. It uses national 
language specifications (locale IDs) for the meaning of nonnumeric characters in the 
source string. 

For a discussion of locale ID values, see the section "Supporting Multiple National 
Languages" in the Win32 SDK OLE Programmer's Reference. 

1267 



COleCurrency: :SetCurrency 

If the string was successfully converted to a currency value, the value of this 
COleCurrency object is set to that value and its status to valid. 

If the string could not be converted to a currency value or if there was a numerical 
overflow, the status of this COleCurrency object is invalid. 

If the string conversion failed due to memory allocation errors, this function throws a 
CMemoryException. In any other error state, this function throws a COleException. 

See Also: COleCurrency::Format, COleCurrency::GetStatus 

COleCurrency: : SetCurrency 
void SetCurrency( long nUnits, long nFractionaIUnits); 

Parameters 

Remarks 

Example 

nUnits, nFractionalUnits Indicate the units and fractional part (in 1110,000's) of the 
value to be copied into this COleCurrency object. 

Call this member function to set the units and fractional part of this COleCurrency 
object. 

If the absolute value of the fractional part is greater than 10,000, the appropriate 
adjustment is made to the units, as shown in the third of the following examples. 

Note that the units and fractional part are specified by signed long values. The fourth 
of the following examples shows what happens when the parameters have different 
signs. 

COleCurrency curA; 
curA.SetCurrency(4. 500); 
curA.SetCurrency(2. 11000); 
curA.SetCurrency(2. -50); 

II value: 0.0000 
II value: 4.0500 
II value: 3.1000 
I I val u e: 1. 99 50 

See Also: COleCurrency::COleCurrency, COleCurrency::operator =, 
COleCurrency: :m_cur 

CO leCurrency: : SetS tatus 
void SetStatus( CurrencyStatus nStatus); 

Parameters 
nStatus The new status for this COleCurrency object. 

1268 



COleCurrency::operator = 

Remarks 
Call this member function to set the status (validity) of this COleCurrency object. 
The IlStatus parameter value is defined by the CurrencyStatus enumerated type, 
which is defined within the COleCurrency class. 

enum CurrencyStatus{ 

} : 

valid = 0, 
invalid = I, 
null = 2, 

For a brief description of these status values, see the following list: 

• COleCurrency: :valid Indicates that this COleCurrency object is valid. 

• COleCurrency: : invalid Indicates that this COle Currency object is invalid; that 
is, its value may be incorrect. 

• COleCurrency: :null Indicates that this COleCurrency object is null, that is, that 
no value has been supplied for this object. (This is "null" in the database sense of 
"having no value," as opposed to the C++ NULL.) 

Caution This function is for advanced programming situations. This function does not alter the 
data in this object. It will most often be used to set the status to null or invalid. Note that the 
assignment operator (operator =) and SetCurrency do set the status to of the object based on 
the source value(s). 

See Also: COleCurrency::GetStatus, COleCurrency::operator =, 
COleCurrency: :SetCurrency, COleCurrency: :m_status 

Operators 
COleCurrency::operator = 

Remarks 

const COleCurrency& operator =( CURRENCY cySrc); 
const COleCurrency& operator =( const COleCurrency& curSrc); 
const COleCurrency& operator =( const VARIANT& varSrc); 

These overloaded assignment operators copy the source currency value into this 
COleCurrency object. A brief description of each operator follows: 

• operator =( cySrc) The CURRENCY value is copied into the COleCurrency 
object and its status is set to valid. 

• operator =( curSrc) The value and status of the operand, an existing 
COleCurrency object are copied into this COleCurrency object. 

1269 



COleCurrency::operator +, -

• operator =( varSrc) If the conversion of the VARIANT value (or COleVariant 
object) to a currency (VT_CY) is successful, the converted value is copied into this 
COleCurrency object and its status is set to valid. If the conversion is not 
successful, the value of the COleCurrency object is set to 0 and its status to 
invalid. 

For more information, see the CURRENCY and VARIANT entries in the Win32 
SDK OLE Programmer's Reference. 

See Also: COleCurrency::COleCurrency, COleCurrency::SetCurrency, 
COleCurrency:: GetStatus 

COleCurrency::operator +, -

Remarks 

COle Currency operator +( const COleCurrency& cur) const; 
COleCurrency operator -( const COleCurrency& cur) const; 
COleCurrency operator -( ) const; 

These operators allow you to add and subtract two COleCurrency values to and from 
each other and to change the sign of a COleCurrency value. 

If either of the operands is null, the status of the resulting COleCurrency value is null. 

If the arithmetic operation overflows, the resulting COleCurrency value is invalid. 

If the operands is invalid and the other is not null, the status of the resulting 
COleCurrency value is invalid. 

For more information on the valid, invalid, and null status values, see the m_status 
member variable. 

See Also: OleCurrency::operator +=, -=, COleCurrency::GetStatus 

COleCurrency::operator +=, -= 

Remarks 

1270 

const COleCurrency& operator +=( const COleCurrency& cur); 
const COleCurrency& operator -=( const COleCurrency& cur); 

These operators allow you to add and subtract a COle Currency value to and from 
this COleCurrency object. 

If either of the operands is null, the status of this COleCurrency object is set to null. 

If the arithmetic operation overflows, the status of this COleCurrency object is set 
to invalid. 



C01eCurrency::operator *=, /= 

If either of the operands is invalid and the other is not null, the status of this 
COle Currency object is set to invalid. 

For more information on the valid, invalid, and null status values, see the m_status 
member variable. 

See Also: COleCurrency::operator +,., COleCurrency::GetStatus 

COleCurrency: : operator *, / 

Remarks 

COle Currency operator *( long nOpe rand ) const; 
COleCurrency operator I( long nOperand ) const; 

These operators allow you to scale a COleCurrency value by an integral value. 

If the COle Currency operand is null, the status of the resulting COleCurrency value 
is null. 

If the arithmetic operation overflows or underflows, the status of the resulting 
COle Currency value is invalid. 

If the COleCurrency operand is invalid, the status of the resulting COleCurrency 
value is invalid. 

For more information on the valid, invalid, and null status values, see the m_status 
member variable. 

See Also: COleCurrency::operator *=,1=, COleCurrency::GetStatus 

COleCurrency::operator *=, /= 

Remarks 

const COleCurrency& operator *=( long nOperand); 
const COleCurrency& operator 1=( long nOperand); 

These operators allow you to scale this COleCurrency value by an integral value. 

If the COleCurrency operand is null, the status of this COle Currency object is set 
to null. 

If the arithmetic operation overflows, the status of this COleCurrency object is set 
to invalid. 

If the COle Currency operand is invalid, the status of this COleCurrency object is 
set to invalid. 

For more information on the valid, invalid, and null status values, see the ill_status 
member variable. 

See Also: COleCurrency: :operator *, I, COleCurrency: :GetStatus 

1271 



COleCurrency: :operator CURRENCY 

COleCurrency: : operator CURRENCY 

Remarks 

operator CURRENCY() const; 

This operator returns a CURRENCY structure whose value is copied from this 
COleCurrencyobject. 

For more information, see the CURRENCY entry in the Win32 SDK OLE 
Programmer's Reference. 

See Also: COleCurrency: :m_cur, COleCurrency: :SetCurrency 

COleCurrency Relational Operators 

Remarks 

Example 

1272 

BOOL operator ==( const COleCurrency& cur) const; 
BOOL operator !=( const COleCurrency& cur) const; 
BOOL operator « const COleCurrency& cur) const; 
BOOL operator >( const COleCurrency& cur) const; 
BOOL operator <=( const COleCurrency& cur) const; 
BOOL operator >=( const COleCurrency& cur) const; 

These operators compare two currency values and return nonzero if the condition is 
true; otherwise O. 

Note The return value of the ordering operations «, <=, >, >=) is undefined if the status of 
either operand is null or invalid. The equality operators (==, !=) consider the status of the 
operands. 

COleCurrency curOne(3, 5000); 
COleCurrency curTwo(curOne); 
BOOl b; 
b = curOne == curTwo; 

curTwo.SetStatus(COleCurrency::invalid); 
b = curOne == curTwo; 
b = curOne != curTwo; 
b = curOne < curTwo; 
b = curOne ) curTwo; 
b = curOne <= curTwo; 
b = curOne )= curTwo; 

II 3.5 
II 3.5 

II TRUE 

II FALSE, different status 
II TRUE, different status 
II FALSE, same value 
II FALSE, same value 
II TRUE, same value 
II TRUE, same value 

Note The last four lines of the preceding example will ASSERT in debug mode. 

See Also: COleCurrency: : GetStatus 



COleCurrency: :m_status 

COleCurrency::operator «, » 

Remarks 

friend CDumpContext& operator «( CDumpContext& dc, COleCurrency curSrc ); 
friend CArchive& operator «( CArchive& ar, COleCurrency curSrc ); 
friend CArchive& operator »( CArchive& ar, COleCurrency& curSrc); 

The COle Currency insertion «<) operator supports diagnostic dumping and storing 
to an archive. The extraction (») operator supports loading from an archive. 

See Also: CDumpContext, CArchive 

Data Members 
COleCurrency: :m_cur 
Remarks 

The underlying CURRENCY structure for this COleCurrency object. 

Caution Changing the value in the CURRENCY structure accessed by the pointer returned by 
this function will change the value of this COleCurrency object. It does not change the status of 
this COleCurrency object. 

For more information, see the CURRENCY entry in the Win32 SDK OLE 
Programmer's Reference. 

See Also: COleCurrency:: COleCurrency, COleCurrency: :operator 
CURREN CY, COleCurrency: :SetCurrency 

COleCurrency: :m_status 
Remarks 

The type of this data member is the enumerated type CurrencyStatus, which is 
defined within the COleCurrency class. 

enum CurrencyStatus{ 
valid = 0, 
invalid = 1, 
null = 2, 

} ; 

For a brief description of these status values, see the following list: 

1273 



COleCurrency: :m_status 

1274 

• COleCurrency::valid Indicates that this COleCurrency object is valid. 

• COleCurrency: : invalid Indicates that this COleCurrency object is invalid; that 
is, its value may be incorrect. 

• COleCurrency: : null Indicates that this COleCurrency object is null, that is, that 
no value has been supplied for this object. (This is "null" in the database sense of 
"having no value," as opposed to the C++ NULL.) 

The status of a COleCurrency object is invalid in the following cases: 

• If its value is set from a VARIANT or COleVariant value that could not be 
converted to a currency value. 

• If this object has experienced an overflow or underflow during an arithmetic 
assignment operation, for example += or *=. 

• If an invalid value was assigned to this object. 

• If the status of this object was explicitly set to invalid using SetStatus. 

For more information on operations that may set the status to invalid, see the 
following member functions: 

• COle Currency 

• operator = 
• operator +, -

• operator +=, -= 
• operator *, I 
• operator *=, 1= 

Caution This data member is for advanced programming situations. You should use the inline 
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding 
explicitly setting this data member. 

See Also: COleCurrency::GetStatus, COleCurrency::SetStatus 



COleDataObject 
COleDataObject does not have a base class. 

The COleDataObject class is used in data transfers for retrieving data in various 
formats from the Clipboard, through drag and drop, or from an embedded OLE item. 
These kinds of data transfers include a source and a destination. The data source is 
implemented as an object of the COleDataSource class. Whenever a destination 
application has data dropped in it or is asked to perform a paste operation from the 
Clipboard, an object of the COleDataObject class must be created. 

This class enables you to determine whether the data exists in a specified format. You 
can also enumerate the available data formats or check whether a given format is 
available and then retrieve the data in the preferred format. Object retrieval can be 
accomplished in several different ways, including the use of a CFile, an HGLOBAL, 
or an STGMEDIUM structure. 

For more information, see the STGMEDIUM structure in the OLE 2 Programmer's 
Reference, Volume 1. 

For more information about using data objects in your application, see the article 
"Data Objects and Data Sources (OLE)" in Visual C++ Programmer's Guide online. 

#include <afxole.h> 

See Also: COleDataSource, COleClientItem, COleServerItem, 
COleDataSource: :DoDragDrop, CView: :OnDrop 

COleDataObject Class Members 
Construction 

COleDataObject 

Operations 

AttachClipboard 

IsDataA vailable 

GetData 

GetFileData 

GetGlobalData 

BeginEnumFormats 

GetNextFormat 

Constructs a COleDataObject object. 

Attaches the data object that is on the Clipboard. 

Checks whether data is available in a specified format. 

Copies data from the attached OLE data object in a specified format. 

Copies data from the attached OLE data object into a CFile pointer 
in the specified format. 

Copies data from the attached OLE data object into an HGLOBAL 
in the specified format. 

Prepares for one or more subsequent GetNextFormat calls. 

Returns the next data format available. 

(continued) 

COleDataObject 

1275 



COleDataObject: :Attach 

Operations (continued) 

Attach 

Release 

Detach 

Attaches the specified OLE data object to the COleDataObject. 

Detaches and releases the associated IDataObject object. 

Detaches the associated IDataObject object. 

Member Functions 
COleDataObject: : Attach 

void Attach( LPDATAOBJECT IpDataObject, BOOL bAutoRelease = TRUE ); 

Parameters 

Remarks 

IpDataObject Points to an OLE data object. 

bAutoRelease TRUE if the OLE data object should be released when the 
COleDataObject object is destroyed; otherwise FALSE. 

Call this function to associate the COleDataObject object with an OLE data object. 

For more information, see IDataObject in the OLE 2 Programmer's Reference, 
Volume 1. 

See Also: COleDataObject::AttachClipboard, COleDataObject::Detach, 
COleDataObject: : Release 

COleDataObject: : AttachClipboard 
BOOL AttachClipboard( ); 

Return Value 

Remarks 

1276 

Nonzero if successful; otherwise O. 

Call this function to attach the data object that is currently on the Clipboard to the 
COleDataObject object. 

Note Calling this function locks the Clipboard until this data object is released. The data object is 
released in the destructor for the COleDataObject. For more information, see OpenClipboard 
and CloseClipboard in the Win32 documention. 

See Also: COleDataObject: :Attach, COleDataObject: :Detach, 
COleDataObject: :Release 



CO leDataObject: :Detach 

COleDataObject: :BeginEnumFormats 

Remarks 

void BeginEnumFormats(); 

Call this function to prepare for subsequent calls to GetNextFormat for retrieving a 
list of data formats from the item. 

After a call to BeginEnumFormats, the position of the first format supported by this 
data object is stored. Successive calls to GetNextFormat will enumerate the list of 
available formats in the data object. 

To check on the availability of data in a given format, use 
COleDataObject: :IsDataAvaiiable. 

For more information, see IDataObject::EnumFormatEtc in the OLE 2 
Programmer's Reference, Volume 1. 

See Also: COleDataObject: : GetNextFormat, COleDataObject: : IsDataAvaiiable 

COleDataObject: :COleDataObject 

Remarks 

COleDataObject( ); 

Constructs a COleDataObject object. A call to COleDataObject::Attach or 
COleDataObject::AttachClipboard must be made before calling other 
COleDataObject functions. 

Note Since one of the parameters to the drag-and-drop handlers is a pointer to a 
COleDataObject, there is no need to call this constructor to support drag and drop. 

See Also: COleDataObject::Attach, COleDataObject::AttachClipboard, 
COleDataObject: :Release 

COleDataObject: :Detach 
LPDATAOBJECT Detach(); 

Return Value 

Remarks 

A pointer to the OLE data object that was detached. 

Call this function to detach the COleDataObject object from its associated OLE data 
object without releasing the data object. 

See Also: COleDataObject::Attach, COleDataObject::Release 

1277 



COleDataObject::GetData 

COleDataObject: : GetData 
BOOL GetData( CLIPFORMAT cfFormat, LPSTGMEDIUM IpStgMedium, 

... LPFORMATETC IpFormatEtc = NULL ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

cfFormat The format in which data is to be returned. This parameter can be one of 
the predefined Clipboard formats or the value returned by the native Windows 
RegisterClipboardFormat function. 

IpStgMedium Points to a STGMEDIUM structure that will receive data. 

lpFormatEtc Points to a FORMATETC structure describing the format in which 
data is to be returned. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, the default values are used for the other fields in the FORMATETC 
structure. 

Call this function to retrieve data from the item in the specified format. 

For more information, see IDataObject: :GetData, STGMEDIUM, and 
FORMATETC in the OLE 2 Programmer's Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

See Also: COleDataObject: : GetFileData, COleDataObject: :GetGlobaIData, 
COleDataObject: : IsDataAvailable 

COleDataObject: : GetFileData 
CFile* GetFileData( CLIPFORMAT cfFormat, LPFORMATETC IpFormatEtc = NULL ); 

Return Value 
Pointer to the new CFile or CFile-derived object containing the data if successful; 
otherwise NULL. 

Parameters 

1278 

cfFormat The format in which data is to be returned. This parameter can be one of 
the predefined Clipboard formats or the value returned by the native Windows 
RegisterClipboardFormat function. 

lpFormatEtc Points to a FORMATETC structure describing the format in which data 
is to be returned. Provide a value for this parameter if you want to specify additional 
format information beyond the Clipboard format specified by cfFormat. If it is NULL, 
the default values are used for the other fields in the FORMATETC structure. 



COleDataObject: :GetGlobalData 

Remarks 
Call this function to create a CFile or CFile-derived object and to retrieve data in the 
specified format into a CFile pointer. Depending on the medium the data is stored in, 
the actual type pointed to by the return value may be CFile, CSharedFile, or 
COleStreamFile. 

Note The CFile object accessed by the return value of this function is owned by the caller. It is 
the responsibility of the caller to delete the CFile object, thereby closing the file. 

For more information, see FORMATETC in the OLE 2 Programmer's Reference, 
Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

See Also: COleDataObject: :GetData, COleDataObject: : GetGlobalData, 
COleDataObject: : IsDataAvailable 

COleDataObject:: GetGlobalData 
HGLOBAL GetGlobalData( CLIPFORMAT cfFormat, 

... LPFORMATETC lpFormatEtc = NULL ); 

Return Value 
The handle of the global memory block containing the data if successful; otherwise 
NULL. 

Parameters 

Remarks 

cfFormat The format in which data is to be returned. This parameter can be one of 
the predefined Clipboard formats or the value returned by the native Windows 
RegisterClipboardFormat function. 

lpFormatEtc Points to a FORMATETC structure describing the format in which 
data is to be returned. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, the default values are used for the other fields in the FORMATETC 
structure. 

Call this function to allocate a global memory block and to retrieve data in the 
specified format into an HGLOBAL. 

For more information, see FORMATETC in the OLE 2 Programmer's Reference, 
Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

See Also: COleDataObject::GetData, COleDataObject::GetFileData, 
COleDataObject::IsDataAvailable 

1279 



COleDataObject: :GetN extFonnat 

COleDataObject::GetNextFormat 
BOOL GetNextFormat( LPFORMATETC lpFormatEtc ); 

Return Value 
Nonzero if another format is available; otherwise O. 

Parameters 

Remarks 

lpFormatEtc Points to the FORMATETC structure that receives the format 
information when the function call returns. 

Call this function repeatedly to obtain all the formats available for retrieving data from 
the item. 

After a call to COleDataObject: :BeginEnumFormats, the position of the first 
format supported by this data object is stored. Successive calls to GetNextFormat 
will enumerate the list of available formats in the data object. Use these functions to 
list the available formats. 

To check for the availability of a given format, call COleDataObject::IsDataAvaiiable. 

For more information, see IEnumXXXX::Next in the OLE 2 Programmer's 
Reference, Volume 1. 

See Also: COleDataObject::BeginEnumFormats, COleDataObject::GetData, 
COleDataObject: : GetFileData, COleDataObject:: GetGlobalData 

COleDataObject: : IsDataAvailable 
BOOL IsDataAvaiiable( CLIPFORMAT cfFormat, 

1+ LPFORMATETC lpFormatEtc = NULL ); 

Return Value 
Nonzero if data is available in the specified format; otherwise O. 

Parameters 

1280 

cfFormat The Clipboard data format to be used in the structure pointed to by 
lpFormatEtc. This parameter can be one of the predefined Clipboard formats or 
the value returned by the native Windows RegisterClipboardFormat function. 

lpFormatEtc Points to a FORMATETC structure describing the format desired. 
Provide a value for this parameter only if you want to specify additional format 
information beyond the Clipboard format specified by cfFormat. If it is NULL, 
the default values are used for the other fields in the FORMATETC structure. 



COleDataObject:: Release 

Remarks 
Call this function to determine if a particular format is available for retrieving data 
from the OLE item. This function is useful before calling GetData, GetFileData, or 
GetGlobalData. 

For more information, see IDataObject::QueryGetData and FORMATETC in the 
OLE 2 Programmer's Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

See Also: COleDataObject::BeginEnumFormats, COleDataObject::GetData, 
COleDataObject: : GetFileData, COleDataObject: :GetGlobaIData, 
COleDataObject: : GetNextFormat 

COleDataObject: :Release 

Remarks 

void Release( ); 

Call this function to release ownership of the IDataObject object that was previously 
associated with the COleDataObject object. The IDataObject was associated with 
the COleDataObject by calling Attach or AttachClipboard explicitly or by the 
framework. If the bAutoRelease parameter of Attach is FALSE, the IDataObject 
object will not be released. In this case, the caller is responsible for releasing the 
IDataObject by calling IUnknown::Release. 

See Also: COleDataObject: :Attach, COleDataObject:: COleDataObject, 
COleDataObject: :Detach 

1281 



COleDataSource 

COleDataSource 

The COleDataSource class acts as a cache into which an application places the data 
that it will offer during data transfer operations, such as Clipboard or drag-and-drop 
operations. 

You can create OLE data sources directly. Alternately, the COleClientItem and 
COleServerItem classes create OLE data sources in response to their CopyToClipboard 
and DoDragDrop member functions. See COleServerItem::CopyToClipboard for a 
brief description. Override the OnGetClipboardData member function of your client 
item or server item class to add additional Clipboard formats to the data in the OLE data 
source created for the CopyToClipboard or DoDragDrop member function. 

Whenever you want to prepare data for a transfer, you should create an object of this 
class and fill it with your data using the most appropriate method for your data. The 
way it is inserted into a data source is directly affected by whether the data is supplied 
immediately (immediate rendering) or on demand (delayed rendering). For every 
Clipboard format in which you are providing data by passing the Clipboard format to 
be used (and an optional FORMATETC structure), call DelayRenderData. 

For more information about data sources and data transfer, see the article "Data 
Objects and Data Sources (OLE)." In addition, the article "Clipboard Topics" in 
Visual C++ Programmer's Guide online describes the OLE Clipboard mechanism. 

#include <afxole.h> 

See Also: COleDataObject 

COleDataSource Class Members 

1282 

Construction 

COleDataSource 

Operations 

CacheData 

CacheGlobaIData 

DoDragDrop 

SetClipboard 

Constructs a COleDataSource object. 

Offers data in a specified format using a STGMEDIUM structure. 

Offers data in a specified format using an HGLOBAL. 

Performs drag-and-drop operations with a data source. 

Places a COleDataSource object on the Clipboard. 



COleDataSource: :CacheData 

Operations (continued) 

Empty 

FlushClipboard 

GetCIipboardOwner 

OnRenderData 

OnRenderFileData 

OnRenderGlobalData 

OnSetData 

DelayRenderData 

DelayRenderFileData 

DelaySetData 

Empties the COleDataSource object of data. 

Renders all data to the Clipboard. 

Verifies that the data placed on the Clipboard is still there. 

Retrieves data as part of delayed rendering. 

Retrieves data into a CFile as part of delayed rendering. 

Retrieves data into an HGLOBAL as part of delayed rendering. 

Called to replace the data in the COleDataSource object. 

Offers data in a specified format using delayed rendering. 

Offers data in a specified format in a CFile pointer. 

Called for every format that is supported in OnSetData. 

Member Functions 
COleDataSource: : CacheData 

void CacheData( CLIPFORMAT cfFormat, LPSTGMEDIUM IpStgMedium, 
... LPFORMATETC IpFormatEtc = NULL ); 

Parameters 

Remarks 

cfFormat The Clipboard format in which the data is to be offered. This parameter 
can be one of the predefined Clipboard formats or the value returned by the native 
Windows RegisterClipboardFormat function. 

IpStgMedium Points to a STGMEDIUM structure containing the data in the format 
specified. 

IpFormatEtc Points to a FORMATETC structure describing the format in which 
the data is to be offered. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, default values are used for the other fields in the FORMATETC 
structure. 

Call this function to specify a format in which data is offered during data transfer 
operations. You must supply the data, because this function provides it by using 
immediate rendering. The data is cached until needed. 

Supply the data using a STGMEDIUM structure. You can also use the 
CacheGlobalData member function if the amount of data you are supplying is small 
enough to be transferred efficiently using an HGLOBAL. 

After the call to CacheData the ptd member of IpFormatEtc and the contents of 
lpStgMedium are owned by the data object, not by the caller. 

1283 



COleDataSource: :CacheGlobalData 

To use delayed rendering, call the DelayRenderData or DelayRenderFileData 
member function. For more information on delayed rendering as handled by MFC, 
see the article "Data Objects and Data Sources: Manipulation" in Visual C++ 
Programmer s Guide online. 

For more information, see the STGMEDIUM and FORMATETC structures in the 
OLE 2 Programmers Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

See Also: COleDataSource: :CacheGlobaIData, 
COleDataSource: :DelayRenderData, COleDataSource: :Delay RenderFileData, 
COleDataSource: :SetClipboard, COleDataSource: :DoDragDrop 

COleDataSource: :CacheGlobalData 
void CacheGlobalData( CLIPFORMAT cfFormat, HGLOBAL hGlobal, 

... LPFORMATETC IpFormatEtc = NULL ); 

Parameters 

Remarks 

1284 

cfFormat The Clipboard format in which the data is to be offered. This parameter 
can be one of the predefined Clipboard formats or the value returned by the native 
Windows RegisterClipboardFormat function. 

hGlobal Handle to the global memory block containing the data in the format 
specified. 

IpFormatEtc Points to a FORMATETC structure describing the format in which the 
data is to be offered. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, default values are used for the other fields in the FORMATETC 
structure. 

Call this function to specify a format in which data is offered during data transfer 
operations. This function provides the data using immediate rendering, so you must 
supply the data when calling the function; the data is cached until needed. Use the 
CacheData member function if you are supplying a large amount of data or if you 
require a structured storage medium. 

To use delayed rendering, call the DelayRenderData or DelayRenderFileData 
member function. For more information on delayed rendering as handled by MFC, see 
the article "Data Objects and Data Sources: Manipulation" in Visual C++ 
Programmers Guide online. 

For more information, see the FORMATETC structure in the OLE 2 Programmers 
Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 



COleDataSource:: Delay RenderData 

See Also: COleDataSource: :CacheData, COleDataSource: :Delay RenderData, 
COleDataSource::DelayRenderFileData 

COleDataSource: :COleDataSource 
COleDataSource( ); 

Remarks 
Constructs a COleDataSource object. 

COleDataSource: :Delay RenderData 
void DelayRenderData( CLIPFORMAT cfFormat, 

... LPFORMATETC IpFormatEtc = NULL ); 

Parameters 

Remarks 

cfFormat The Clipboard format in which the data is to be offered. This parameter 
can be one of the predefined Clipboard formats or the value returned by the native 
Windows RegisterClipboardFormat function. 

IpFormatEtc Points to a FORMATETC structure describing the format in which the 
data is to be offered. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, default values are used for the other fields in the FORMATETC 
structure. 

Call this function to specify a format in which data is offered during data transfer 
operations. This function provides the data using delayed rendering, so the data is not 
supplied immediately. The OnRenderData or OnRenderGlobalData member 
function is called to request the data. 

Use this function if you are not going to supply your data through a CFile object. If 
you are going to supply the data through a CFile object, call the 
DelayRenderFileData member function. For more information on delayed rendering 
as handled by MFC, see the article "Data Objects and Data Sources: Manipulation" in 
Visual C++ Programmer's Guide online. 

To use immediate rendering, call the CacheData or CacheGlobalData member 
function. 

For more information, see the FORMATETC structure in the OLE 2 Programmer's 
Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

1285 



COleDataSource::DelayRenderFileData 

See Also: COleDataSource:: CacheData, COleDataSource:: CacheGlobalData, 
COleDataSource: :Delay RenderFileData, COleDataSource: :OnRenderData, 
COleDataSource: :OnRenderGlobalData 

COleDataSource: :Delay RenderFileData 
void DelayRenderFileData( CLIPFORMAT cfFormat, 

.. LPFORMATETC IpFormatEtc = NULL); 

Parameters 

Remarks 

1286 

cfFormat The Clipboard format in which the data is to be offered. This parameter 
can be one of the predefined Clipboard formats or the value returned by the native 
Windows RegisterClipboardFormat function. 

IpFormatEtc Points to a FORMATETC structure describing the format in which the 
data is to be offered. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, default values are used for the other fields in the FORMATETC 
structure. 

Call this function to specify a format in which data is offered during data transfer 
operations. This function provides the data using delayed rendering, so the data is not 
supplied immediately. The OnRenderFileData member function is called to request 
the data. 

Use this function if you are going to use a CFile object to supply the data. If you 
are not going to use a CFile object, call the DelayRenderData member function. 
For more information on delayed rendering as handled by MFC, see the article 
"Data Objects and Data Sources: Manipulation" in Visual C++ Programmer's 
Guide online. 

To use immediate rendering, call the CacheData or CacheGlobalData member 
function. 

For more information, see the FORMATETC structure in the OLE 2 
Programmer's Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 
documentation. 

See Also: COleDataSource:: CacheData, COleDataSource:: CacheGlobalData, 
COleDataSource: :DelayRenderData, COleDataSource: :OnRenderFileData 



C01eDataSource: :DoDragDrop 

COleDataSource: :DelaySetData 
void DelaySetData( CLIPFORMAT cfFormat, 

... LPFORMATETC IpFormatEtc = NULL) const; 

Parameters 

Remarks 

cfFormat The Clipboard format in which the data is to be placed. This parameter can 
be one of the predefined Clipboard formats or the value returned by the native 
Windows RegisterClipboardFormat function. 

IpFormatEtc Points to a FORMATETC structure describing the format in which the 
data is to be replaced. Provide a value for this parameter if you want to specify 
additional format information beyond the Clipboard format specified by cfFormat. 
If it is NULL, default values are used for the other fields in the FORMATETC 
structure. 

Call this function to support changing the contents of the data source. OnSetData will 
be called by the framework when this happens. This is only used when the framework 
returns the data source from COleServerItem: : GetDataSource. If DelaySetData is 
not called, your OnSetData function will never be called. DelaySetData should be 
called for each Clipboard or FORMATETC format you support. 

For more information, see the FORMATETC structure in the OLE 2 Programmer's 
Reference, Volume 1. 

For more information, see RegisterClipboardFormat in the Win32 documentation. 

See Also: COleServerItem: :GetDataSource, COleDataSource: :OnSetData 

COleDataSource: : DoDragDrop 
DROPEFFECT DoDragDrop( DWORD dwEffects = 

... DROPEFFECT_COPYIDROPEFFECT_MOVEIDROPEFFECT_LINK, 

... LPCRECT IpRectStartDrag = NULL, COleDropSource* pDropSource = NULL ); 

Return Value 
Drop effect generated by the drag-and-drop operation; otherwise 
DROPEFFECT_NONE if the operation never begins because the user released the 
mouse button before leaving the supplied rectangle. 

Parameters 
dwEffects Drag-and-drop operations that are allowed on this data source. Can be one 

or more of the following: 

• DROPEFFECT_COPY A copy operation could be performed. 

o DROPEFFECT_MOVE A move operation could be performed. 

1287 



COleDataSource: :Empty 

Remarks 

• DROPEFFECT_LINK A link from the dropped data to the original data 
could be established . 

• DROPEFFECT_SCROLL Indicates that a drag scroll operation could occur. 

IpRectStartDrag Pointer to the rectangle that defines where the drag actually starts. 
For more information, see the following Remarks section. 

pDropSource Points to a drop source. If NULL then a default implementation of 
COleDropSource will be used. 

Call the DoDragDrop member function to perform a drag-and-drop operation for this 
data source, typically in an CWnd: :OnLButtonDown handler. 

The drag-and-drop operation does not start immediately. It waits until the mouse 
cursor leaves the rectangle specified by IpRectStartDrag or until a specified number 
of milliseconds have passed. If IpRectStartDrag is NULL, the size of the rectangle is 
one pixel. The delay time is specified by the DragDelay value in the [Windows] 
section of WIN.INI. If this value is not in WIN.INI, the default value of 200 
milliseconds is used. 

For more information, see the article "Drag and Drop: Implementing a Drop Source" 
in Visual C++ Programmer's Guide online. 

See Also: COleDropSource: :OnBeginDrag, COleDropSource 

COleDataSource: : Empty 

Remarks 

void Empty(); 

Call this function to empty the COleDataSource object of data. Both cached and 
delay render formats are emptied so they can be reused. 

For more information, see ReleaseStgMedium in the OLE 2 Programmer's 
Reference, Volume 1. 

COleDataSource: : FlushClipboard 

Remarks 

1288 

static void FlushClipboard( ); 

Removes data from the Clipboard that was placed there by a previous 
call to SetClipboard. This function also causes any data still on the 
Clipboard to be immediately rendered. Call this function when it is necessary 
to delete the data object last placed on the Clipboard from memory. 



COleDataSource:: OnRenderData 

Calling this function ensures that OLE will not require the original data 
source to perform Clipboard rendering. 

See Also: COleDataSource::GetClipboardOwner, 
COleDataSource: :SetClipboard 

COleDataSource: : GetClip boardOwner 
static COleDataSource* GetClipboardOwner(); 

Return Value 

Remarks 

The data source currently on the Clipboard, or NULL if there is nothing on the 
Clipboard or if the Clipboard is not owned by the calling application. 

Determines whether the data on the Clipboard has changed since SetClipboard was 
last called and, if so, identifies the current owner. 

See Also: COleDataSource::FlushClipboard, COleDataSource::SetClipboard 

COleDataSource: :OnRenderData 
virtual BOOL OnRenderData( LPFORMATETC lpFormatEtc, 

.. LPSTGMEDIUM lpStgMedium ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

lpFormatEtc Points to the FORMATETC structure specifying the format in which 
information is requested. 

lpStgMedium Points to a STGMEDIUM structure in which the data is to be 
returned. 

Called by the framework to retrieve data in the specified format. The specified format 
is one previously placed in the COleDataSource object using the DelayRenderData 
or DelayRenderFileData member function for delayed rendering. The default 
implementation of this function will call OnRenderFileData or OnRenderGlobalData 
if the supplied storage medium is either a file or memory, respectively. If neither of these 
formats are supplied, then the default implementation will return 0 and do nothing. For 
more information on delayed rendering as handled by MFC, see the article "Data 
Objects and Data Sources: Manipulation" in Visual C++ Programmer's Guide online. 

If lpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should be allocated 
and filled as specified by lpFormatEtc->tymed.1f it is not TYMED_NULL, the 
STGMEDIUM should be filled in place with the data. 

1289 



C01eDataSource: :OnRenderFileData 

This is an advanced overridable. Override this function to supply your data in the 
requested format and medium. Depending on your data, you may want to override one 
of the other versions of this function instead. If your data is small and fixed in size, 
override OnRenderGlobalData. If your data is in a file, or is of variable size, 
override OnRenderFileData. 

For more information, see the STGMEDIUM and FORMATETC structures, the 
TYMED enumeration type, and IDataObject::GetData in the OLE 2 Programmer's 
Reference, Volume 1. 

See Also: COleDataSource::DelayRenderData, 
COleDataSource: :Delay RenderFileData, COleDataSource: :OnRenderFileData, 
COleDataSource: :OnRenderGlobaIData, COleDataSource: :OnSetData 

COleDataSource: :OnRenderFileData 
virtual BOOL OnRenderFileData( LPFORMATETC lpFormatEtc, CFile* pFile ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

1290 

lpFormatEtc Points to the FORMATETC structure specifying the format in which 
information is requested. 

pFile Points to a CFile object in which the data is to be rendered. 

Called by the framework to retrieve data in the specified format when the 
specified storage medium is a file. The specified format is one previously 
placed in the COleDataSource object using the DelayRenderData member 
function for delayed rendering. The default implementation of this function 
simply returns FALSE. 

This is an advanced overridable. Override this function to supply your data 
in the requested format and medium. Depending on your data, you might want 
to override one of the other versions of this function instead. If you want to 
handle multiple storage media, override OnRenderData. If your data is in 
a file, or is of variable size, override OnRenderFileData. For more 
information on delayed rendering as handled by MFC, see the article 
"Data Objects and Data Sources: Manipulation" in Visual C++ Programmer's 
Guide online. 

For more information, see the FORMATETC structure and IDataObject::GetData 
in the OLE 2 Programmer's Reference, Volume 1. 

See Also: COleDataSource: :Delay RenderData, 
COleDataSource: :Delay RenderFileData, COleDataSource: :OnRenderData, 
COleDataSource: :OnRenderGlobaIData, COleDataSource: :OnSetData, CFile 



COleDataSource: :OnRenderGlobalData 

COleDataSource: :OnRenderGlobalData 
virtual BOOL OnRenderGlobalData( LPFORMATETC IpFormatEtc, 

.. HGLOBAL* phGlobal ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpFormatEtc Points to the FORMATETC structure specifying the format in which 
information is requested. 

phGlobal Points to a handle to global memory in which the data is to be returned. If 
one has not yet been allocated, this parameter can be NULL. 

Called by the framework to retrieve data in the specified format when the specified 
storage medium is global memory. The specified format is one previously placed in 
the COleDataSource object using the DelayRenderData member function for 
delayed rendering. The default implementation of this function simply returns 
FALSE. 

If ph Global is NULL, then a new HGLOBAL should be allocated and returned 
in phGlobal. Otherwise, the HGLOBAL specified by phGlobal should be filled 
with the data. The amount of data placed in the HGLOBAL must not exceed the 
current size of the memory block. Also, the block cannot be reallocated to a 
larger size. 

This is an advanced overridable. Override this function to supply your data in the 
requested format and medium. Depending on your data, you may want to override one 
of the other versions of this function instead. If you want to handle multiple storage 
media, override OnRenderData. If your data is in a file, or is of variable size, override 
OnRenderFileData. For more information on delayed rendering as handled by MFC, 
see the article "Data Objects and Data Sources: Manipulation" in Visual C++ 
Programmer's Guide online. 

For more information, see the FORMATETC structure and IDataObject: :GetData 
in the OLE 2 Programmer's Reference, Volume 1. 

See Also: COleDataSource::DelayRenderData, 
COleDataSource: :Delay RenderFileData, COleDataSource: :OnRenderData, 
COleDataSource: :OnRenderFileData, COleDataSource: :OnSetData 

1291 



COleDataSource: :OnSetData 

COleDataSource::OnSetData 
virtual BOOL OnSetData( LPFORMATETC IpFormatEtc, 

... LPSTGMEDIUM IpStgMedium, BOOL bRelease ); 

Return Value 
Nonzero if successful; otherwise O. 

Parameters 

Remarks 

IpFormatEtc Points to the FORMATETC structure specifying the format in which 
data is being replaced. 

IpStgMedium Points to the STGMEDIUM structure containing the data that will 
replace the current contents of the COleDataSource object. 

bRelease Indicates who has ownership of the storage medium after completing the 
function call. The caller decides who is responsible for releasing the resources 
allocated on behalf of the storage medium. The caller does this by setting bRelease. 
If bRelease is nonzero, the data source takes ownership, freeing the medium when 
it has finished using it. When bRelease is 0, the caller retains ownership and the 
data source can use the storage medium only for the duration of the call. 

Called by the framework to set or replace the data in the COleDataSource object in 
the specified format. The data source does not take ownership of the data until it has 
successfully obtained it. That is, it does not take ownership if OnSetData returns O. 
If the data source takes ownership, it frees the storage medium by calling the 
ReleaseStgMedium function. 

The default implementation does nothing. Override this function to replace the data in 
the specified format. This is an advanced overridable. 

For more information, see the STGMEDIUM and FORMATETC structures and the 
ReleaseStgMedium and IDataObject::GetData functions in the OLE 2 
Programmer's Reference, Volume 1. 

See Also: COleDataSource: :DelaySetData, COleDataSource: :OnRenderData, 
COleDataSource: : OnRenderFileData, COleDataSource: :OnRenderGlobaIData, 
COleServerltem::OnSetData 

COleDataSource:: SetClipboard 
void SetClipboard(); 

Remarks 

1292 

Puts the data contained in the COleDataSource object on the Clipboard after calling 
one of the following functions: CacheData, CacheGlobalData, DelayRenderData, 
or DelayRenderFileData. 

See Also: COleDataSource: :GetClipboardOwner, COleDataSource: :FlushClipboard 



COleDateTime 
COleDateTime does not have a base class. 
A COleDateTime object encapsulates the DATE data type used in OLE automation. 
It is one of the possible types for the VARIANT data type of OLE automation. A 
COleDateTime value represents an absolute date and time value. 

The DATE type is implemented as a floating-point value, measuring days from 
midnight, 30 December 1899. So, midnight, 31 December 1899 is represented by 1.0. 
Similarly, 6 AM, 1 January 1900 is represented by 2.25, and midnight, 29 December 
1899 is -1.0. However, 6 AM, 29 December 1899 is -1.25. 

Note To interpret the time portion, take the absolute value of the fractional part of the number. 

The COleDateTime class handles dates from 1 January 100-31 December 9999. 

This type is also used to represent date-only or time-only values. By convention, the 
date 0 (30 December 1899) is used for time-only values. Similarly, the time 0:00 
(midnight) is used for date-only values. 

Basic arithmetic operations for the COleDateTime values use the companion class 
COleDateTimeSpan. COleDateTimeSpan values represent relative time, an interval. 
The relation between these classes is analogous to the one between CTime and 
CTimeSpan. 

For more information on the COleDateTime and COleDateTimeSpan classes, see 
the article "Date and Time: Automation Support" in Visual C++ Programmer's Guide 
online. 

#include <afxdisp.h> 

See Also: COle Variant 

COleDateTime Class Members 
Construction 

COleDateTime 

GetCurrentTime 

Attributes 

GetStatus 

SetStatus 

GetYear 

Constructs a COleDateTime object. 

Creates a COleDateTime object that represents the current time 
(static member function). 

Gets the status (validity) of this COleDateTime object. 

Sets the status (validity) of this COleDateTime object. 

Returns the year this COleDateTime object represents. 

(continued) 

COleDateTime 

1293 



COleDateTime 

1294 

Attributes (continued) 

GetMonth 

GetDay 

GetHour 

GetMinute 

GetSecond 

GetDayOfWeek 

GetDayOfY ear 

Operations 

SetDateTime 

SetDate 

SetTime 

Format 

ParseDateTime 

Operators 

operator DATE 

operator DATE* 

operator = 
operator +, -

operator +=,-= 

operator ==, <, <=, etc. 

Data Members 

Archive/Dump 

operator « 

operator » 

Returns the month this COleDateTime object represents (1-12). 

Returns the day this COleDateTime object represents (1-31). 

Returns the hour this COleDateTime object represents (0-23). 

Returns the minute this COleDateTime object represents (0-59). 

Returns the second this COleDateTime object represents (0-59). 

Returns the day of the week this COleDateTime object represents 
(Sunday = 1). 

Returns the day of the year this COleDateTime object represents 
(Jan 1 = 1). 

Sets the value of this COleDateTime object to the specified 
date/time value. 

Sets the value of this COleDateTime object to the specified 
date-only value. 

Sets the value of this COleDateTime object to the specified 
time-only value. 

Generates a formatted string representation of a COleDateTime 
object. 

Reads a date/time value from a string and sets the value of 
COleDateTime. 

Converts a COleDateTime value into a DATE. 

Converts a COleDateTime value into a DATE*. 

Copies a COleDateTime value. 

Add and subtract COleDateTime values. 

Add and subtract a COleDateTime value from this 
COleDateTime object. 

Compare two COleDateTime values. 

Contains the underlying DATE for this COleDateTime object. 

Contains the status of this COleDateTime object. 

Outputs a COleDateTime value to CArchive or CDumpContext. 

Inputs a COleDateTime object from CArchive. 



COleDateTime: :COleDateTime 

Member Functions 
COleDateTime: :COleDateTime 

COleDateTime( ); 
COleDateTime( const COleDateTime& dateSrc ); 
COleDateTime( const VARIANT& varSrc); 
COleDateTime( DATE dtSrc); 
COleDateTime( time_t timeSrc ); 
COleDateTime( const SYSTEMTIME& systimeSrc ); 
COleDateTime( const FILETIME&filetimeSrc); 
COleDateTime( int nYear, int nMonth, int nDay, int nHour, int nMin, int nSec ); 
COleDateTime( WORD wDosDate, WORD wDosTime ); 

Parameters 

Remarks 

dateSrc An existing COleDateTime object to be copied into the new 
COleDateTime object. 

varSrc An existing VARIANT data structure (possibly a COleVariant object) to be 
converted to a date/time value (VT_DATE) and copied into the new 
COleDateTime object. 

dtSrc A date/time (DATE) value to be copied into the new COleDateTime object. 

timeSrc A time_t value to be converted to a date/time value and copied into the new 
COleDateTime object. 

systimeSrc A SYSTEMTIME structure to be converted to a date/time value and 
copied into the new COleDateTime object. 

filetimeSrc A FILETIME structure to be converted to a date/time value and copied 
into the new COleDateTime object. 

nYear, nMonth, nDay, llHour, nMin, nSec Indicate the date and time values to be 
copied into the new COleDateTime object. 

wDosDate, wDosTime MS-DOS date and time values to be converted to a date/time 
value and copied into the new COleDateTime object. 

All of these constructors create new COleDateTime objects initialized to the 
specified value. The following table shows valid ranges for each date and time 
component: 

DatelTime Component 

year 

month 

Valid Range 

100-9999 

0-12 

(continued) 

1295 



COleDateTime: :COleDateTime 

1296 

(continued) 

DatefTime Component 

day 

hour 

minute 

second 

Valid Range 

0-31 

0-23 

0-59 

0-59 

Note that the actual upper bound for the day component varies based on the month 
and year components. For details, see the SetDate or SetDateTime member functions. 

Following is a brief description of each constructor: 

• COleDateTime() Constructs a COleDateTime object initialized to 0 (midnight, 
30 December 1899). 

• COleDateTime( dateSrc) Constructs a COleDateTime object from an existing 
COleDateTime object. 

• COleDateTime( varSrc) Constructs a COleDateTime object. Attempts to 
convert a VARIANT structure or COleVariant object to a date/time (VT_DATE) 
value. If this conversion is successful, the converted value is copied into the new 
COleDateTime object. If it is not, the value of the COleDateTime object is set to 
o (midnight, 30 December 1899) and its status to invalid. 

• COleDateTime( dtSrc) Constructs a COleDateTime object from a DATE value. 

• COleDateTime( timeSrc) Constructs a COleDateTime object from a time_t 
value. 

• COleDateTime( systimeSrc) Constructs a COleDateTime object from a 
SYSTEMTIME value. 

• COleDateTime(filetimeSrc) Constructs a COleDateTime object from a 
FILE TIME value. 

• COleDateTime( nYear, nMonth, nDay, nHour, nMin, nSec) Constructs a 
COleDateTime object from the specified numerical values. 

• COleDateTime( wDosDate, wDosTime) Constructs a COleDateTime object 
from the specified MS-DOS date and time values. 

For more information, see the VARIANT entry in the Win32 SDK OLE Programmer's 
Reference. 

For more information on the time_t data type, see the time function in the Run-Time 
Library Reference. 

For more information, see the SYSTEMTIME and FILE TIME structures in the 
Win32 SDK documentation. 

For more information on MS-DOS date and time values, see 
DosDateTimeTo VariantTime in the Win32 SDK documentation. 



COleDateTime: :Format 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime::SetDate, COleDateTime::SetDateTime, 
COleDateTime:: SetTime, COleDateTime: :GetStatus, COleDateTime: :operator 
=, COleDateTime: :m_dt, COleDateTime: :m_status 

COleDateTime: : Format 
CString Format( DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT ); 
CString Format( LPCTSTR lpszFor111at) const; 
CString Format( UINT nF ormatID ) const; 

Return Value 
A CString that contains the formatted date/time value. 

Parameters 

Remarks 

dwFlags Indicates flags for locale settings, possibly the following flag: 

• LOCALE_NOUSEROVERRIDE Use the system default locale settings, 
rather than custom user settings. 

• VAR_TIMEVALUEONLY Ignore the date portion during parsing. 

• VAR_DATEVALUEONLY Ignore the time portion during parsing. 

lcid Indicates locale ID to use for the conversion. 

IpszFor111at A formatting string similar to the printf formatting string. Formatting 
codes, preceded by a percent (%) sign, are replaced by the corresponding 
COleDateTime component. Other characters in the formatting string are copied 
unchanged to the returned string. See the run-time function strftime for details. 
The value and meaning of the formatting codes for Format are listed below: 

• %D Total days in this COleDateTime 

• %H Hours in the current day 

• %M Minutes in the current hour 

• %S Seconds in the current minute 

• % % Percent sign 

nFor111atID The resource ID for the format-control string. 

Call this member function to create a formatted representation of the date/time value. 
If the status of this COleDateTime object is null, the return value is an empty string. 
If the status is invalid, the return string is specified by the string resource 
IDS_INVALID_DATETIME. 

1297 



COleDateTime: : GetCurrentTime 

A brief description of the three forms for this function follows: 

Format( dwFlags, lcid) This form formats the value using the national language 
specifications (locale IDs) for date/time. Using the default parameters, this form 
will print a time only if the date portion of the date/time value is date 0 (30 
December 1899). Similarly, with the default parameters, this form will print a date 
only if the time portion of the date/time value is time 0 (midnight). If the date/time 
value is 0 (30 December 1899, midnight), this form with the default parameters 
will print midnight. 

Format( IpszFormat) This form formats the value using the format string which 
contains special formatting codes that are preceded by a percent sign (%), as in 
printf. The formatting string is passed as a parameter to the function. For more 
information about the formatting codes, see strftime, wcsftime in the Run-Time 
Library Reference. 

Format( nFormatID) This form formats the value using the format string which 
contains special formatting codes that are preceded by a percent sign (%), as in 
printf. The formatting string is a resource. The ID of this string resource is passed 
as the parameter. For more information about the formatting codes, see strftime, 
wcsftime in the Run-Time Library Reference. 

For a listing of locale ID values, see the section "Supporting Multiple National 
Languages" in the Win32 SDK OLE Programmer's Reference. 

See Also: COleDateTime: :ParseDateTime, COleDateTime: :GetStatus 

COleDateTime::GetCurrentTime 

Remarks 

Example 

static COleDateTime PASCAL GetCurrentTime( ); 

Call this static member function to return the current date/time value. 

COleDateTime dateTest; 
II dateTest value = midnight 30 December 1899 

dateTest = COleDateTime::GetCurrentTime(); 
II dateTest value = current date and time 

COleDateTime: : GetDay 
int GetDay( ) const; 

Return Value 
The day of the month represented by the value of this COleDateTime object. 

1298 



COleDateTime: : GetDayOtw eek 

Remarks 
Call this member function to get the day of the month represented by this date/time 
value. 

Valid return values range between 1 and 31. If the status of this COleDateTime object 
is not valid, the return value is AFX_OLE_DATETIME_ERROR. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

• GetDayOfYear 

See Also: COleDateTime: :COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime::operator =, COleDateTime::GetStatus 

COleDateTime::GetDayOfWeek 
int GetDayOfWeek( ) const; 

Return Value 

Remarks 

The day of the week represented by the value of this COleDateTime object. 

Call this member function to get the day of the month represented by this date/time 
value. 

Valid return values range between 1 and 7, where 1 =Sunday, 2=Monday, and so on. 
If the status of this COleDateTime object is not valid, the return value is 
AFX_OLE_DATETIME_ERROR. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfYear 

1299 



COleDateTime::GetDayOfY ear 

See Also: COleDateTime::COleDateTime, COleDateTime::SetDateTime, 
COleDateTime: :operator =, COleDateTime: :GetStatus 

COleDateTime::GetDayOfYear 
int GetDayOfYear() const; 

Return Value 

Remarks 

The day of the year represented by the value of this COleDateTime object. 

Call this member function to get the day of the year represented by this date/time 
value. 

Valid return values range between 1 and 366, where January 1 = 1. If the status of this 
COleDateTime object is not valid, the return value is 
AFX_OLE_DATETIME_ERROR. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

See Also: COleDateTime::COleDateTime, COleDateTime::SetDateTime, 
COleDateTime: :operator =, COleDateTime: :GetStatus 

COleDateTime: : GetHour 
int GetHour( ) const; 

Return Value 

Remarks 

1300 

The hour represented by the value of this COleDateTime object. 

Call this member function to get the hour represented by this date/time value. 

Valid return values range between 0 and 23. If the status of this COleDateTime object 
is not valid, the return value is AFX_OLE_DATETIME_ERROR. 



COleDateTime: :GetMinute 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

• GetDayOfYear 

See Also: COleDateTime::COleDateTime, COleDateTime::SetDateTime, 
COleDateTime::operator =, COleDateTime::GetStatus 

COleDateTime: : GetMinute 
int GetMinute( ) const; 

Return Value 

Remarks 

The minute represented by the value of this COleDateTime object. 

Call this member function to get the minute represented by this date/time value. 

Valid return values range between 0 and 59. If the status of this COleDateTime object 
is not valid, the return value is AFX_OLE_DATETIME_ERROR. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetSecond 

• GetDayOfWeek 

• GetDayOfYear 

See Also: COleDateTime:: COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime::operator =, COleDateTime::GetStatus 

1301 



COleDateTime: :GetMonth 

COleDateTime: : GetMonth 
int GetMonth( ) const; 

Return Value 

Remarks 

The month represented by the value of this COleDateTime object. 

Call this member function to get the month represented by this date/time value. 

Valid return values range between 1 and 12. If the status of this COleDateTime object 
is not valid, the return value is AFX_OLE_DATETIME_ERROR. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetDay 

• GetYear 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

• GetDayOfYear 

See Also: COleDateTime:: COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime::operator =, COleDateTime::GetStatus 

COleDateTime: : GetSecond 
int GetSecond( ) const; 

Return Value 

Remarks 

1302 

The second represented by the value of this COleDateTime object. 

Call this member function to get the second represented by this date/time value. 

Valid return values range between 0 and 59. If the status of this COleDateTime object 
is not valid, the return value is AFX_OLE_DATETIME_ERROR. 

Note The COleDateTime class does not support leap seconds. 

For more information about the implementation for COleDateTime, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 



COleDateTime: :GetStatus 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 

• GetDayOfWeek 

• GetDayOfYear 

See Also: COleDateTime:: COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime::operator =, COleDateTime::GetStatus 

COleDateTime: : GetStatus 
DateTimeStatus GetStatus( ) const; 

Return Value 

Remarks 

Returns the status of this COleDateTime value. 

Call this member function to get the status (validity) of a given COleDateTime 
object. 

The return value is defined by the DateTimeStatus enumerated type, which is defined 
within the COleDateTime class. 

enum DateTimeStatus{ 
valid = 0, 
invalid = 1, 
null = 2, 

} ; 

For a brief description of these status values, see the following list: 

• COleDateTime: :valid Indicates that this COleDateTime object is valid. 

• COleDateTime: :invalid Indicates that this COleDateTime object is invalid; that 
is, its value may be incorrect. 

• COleDateTime: : null Indicates that this COleDateTime object is null, that is, 
that no value has been supplied for this object. (This is "null" in the database sense 
of "having no value," as opposed to the C++ NULL.) 

The status of a COleDateTime object is invalid in the following cases: 

• If its value is set from a VARIANT or COleVariant value that could not be 
converted to a date/time value. 

• If its value is set from a time_t, SYSTEMTIME, or FILETIME value that could 
not be converted to a valid date/time value. 

1303 



COleDateTime: :GetYear 

• If its value is set by SetDateTime with invalid parameter values. 

• If this object has experienced an overflow or underflow during an arithmetic 
assignment operation, namely, += or -=. 

• If an invalid value was assigned to this object. 

• If the status of this object was explicitly set to invalid using SetStatus. 

For more information about the operations that may set the status to invalid, see the 
following member functions: 

• COleDateTime 

• SetDateTime 

• operator +, -

• operator +=, -= 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime: :SetStatus, COleDateTime: :m_status 

COleDateTime: : Get Year 
int GetYear() const; 

Return Value 

Remarks 

1304 

The year represented by the value of this COleDateTime object. 

Call this member function to get the year represented by this date/time value. 

Valid return values range between 100 and 9999, which includes the century. If the 
status of this COleDateTime object is not valid, the return value is 
AFX_OLE_DATETIME_ERROR. 

For information on other member functions that query the value of this 
COleDateTime object, see the following member functions: 

• GetDay 

• GetMonth 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

• GetDayOfYear 



COleDateTime: :ParseDateTime 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime: :COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime: :operator =, COleDateTime: :GetStatus 

COleDateTime: :ParseDateTime 
BOOL ParseDateTime( LPCTSTR IpszDate, DWORD dwFlags = 0, 

'+ LCID lcid = LANG_USER_DEFAULT ); 
throw( CMemoryException); 
throw( COleException ); 

Return Value 
Nonzero if the string was successfully converted to a date/time value, otherwise O. 

Parameters 

Remarks 

IpszDate A pointer to the null-terminated string which is to be parsed. For details, 
see Remarks. 

dwFlags Indicates flags for locale settings and parsing. One or more of the following 
flags: 

• LOCALE_NOUSEROVERRIDE Use the system default locale settings, 
rather than custom user settings. 

• VAR_TIMEVALUEONLY Ignore the date portion during parsing. 

• VAR_DATEVALUEONLY Ignore the time portion during parsing. 

lcid Indicates locale ID to use for the conversion. 

Call this member function to parse a string to read a date/time value. If the string was 
successfully converted to a date/time value, the value of this COleDateTime object is 
set to that value and its status to valid. 

Note Year values must lie between 100 and 9999, inclusively. 

The lpszDate parameter can take a variety of formats. For example, the following 
strings contain acceptable date/time formats: 

"25 January 1996" 
"8:30:00" 
"20:30:00" 
"January 25. 1996 8:30:00" 
"8:30:00 Jan. 25. 1996" 
"1/25/1996 8:30:00" II always specify the full year. 

II even in a 'short date' format 

Note that the locale ID will also affect whether the string format is acceptable for 
conversion to a date/time value. 

1305 



COleDateTime:: SetDate 

In the case of VAR_DATEVALUEONLY, the time value is set to time 0, or midnight. 
In the case of VAR_TIMEVALUEONLY, the date value is set to date 0, meaning 30 
December 1899. 

If the string could not be converted to a date/time value or if there was a numerical 
overflow, the status of this COleDateTime object is invalid. 

If the string conversion failed due to memory allocation errors, this function throws a 
CMemoryException. In any other error state, this function throws a COleException. 

For a listing of locale ID values, see the section "Supporting Multiple National 
Languages" in the Win32 SDK OLE Programmer's Reference. 

For more information about the bounds and implementation for COleDateTime 
values, see the article "Date and Time: Automation Support" in Visual C++ 
Programmer's Guide online. 

See Also: COleDateTime: :Format, COleDateTime: :GetStatus 

COleDateTime:: SetDate 
int SetDate( int nYear, int nMonth, int nDay ); 

Return Value 
Zero if the value of this COleDateTime object was set successfully; otherwise, 1. 
This return value is based on the DateTimeStatus enumerated type. For more 
information, see the SetStatus member function. 

Parameters 

Remarks 

1306 

nYear, nMonth, nDay Indicate the date components to be copied into this 
COleDateTime object. 

Call this member function to set the date and time of this COleDateTime object. The 
date is set to the specified values. The time is set to time 0, midnight. 

See the following table for bounds for the parameter values: 

Parameter 

nYear 

nMonth 

nDay 

Bounds 

100-9999 

1-12 

1-31 

The actual upper bound for nDay values varies based on the month and year. For 
months 1,3,5, 7, 8, 10, and 12, the upper bound is 31. For months 4,6,9, and 11, it is 
30. For month 2, it is 28, or 29 in a leap year. 

If the date value specified by the parameters is not valid, the status of this object is set 
to invalid and the value of this object is not changed. 



COleDateTime: :SetDateTime 

Here are some examples of date values: 

nYear nMonth nDay Value 

1995 4 15 15 April 1995 

1789 7 14 17 July 1789 

1925 2 30 Invalid 

10000 Invalid 

To set both date and time, see COleDateTime::SetDateTime. 

For information on member functions that query the value of this COleDateTime 
object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

• GetDayOfYear 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime: :COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime: :operator =, COleDateTime: :GetStatus, COleDateTime: :m_dt 

COleDateTime: :SetDateTime 
int SetDateTime( int nYear, int nMonth, int nDay, int nHour, int nMin, int nSec ); 

Return Value 
Zero if the value of this COleDateTime object was set successfully; otherwise, l. 
This return value is based on the DateTimeStatus enumerated type. For more 
information, see the SetStatus member function. 

Parameters 

Remarks 

nYear, nMonth, nDay, nHour, nMin, nSec Indicate the date and time components to 
be copied into this COleDateTime object. 

Call this member function to set the date and time of this COleDateTime object. 

See the following table for bounds for the parameter values: 

1307 



COleDateTime: :SetDateTime 

1308 

Parameter 

nYear 

nMonth 

nDay 

nHour 

nMin 

nSec 

Bounds 

100-9999 

1-12 

1-31 

0-23 

0-59 

0-59 

The actual upper bound for nDay values varies based on the month and year. For 
months 1,3,5,7,8, 10, and 12, the upper bound is 31. For months 4,6,9, and 11, it is 
30. For month 2, it is 28, or 29 in a leap year. 

If the date or time value specified by the parameters is not valid, the status of this 
object is set to invalid and the value of this object is not changed. 

Here are some examples of time values: 

nHour nMin nSec Value 

1 3 3 01:03:03 

23 45 0 23:45:00 

25 30 0 Invalid 

9 60 0 Invalid 

Here are some examples of date values: 

nYear nMonth nDay Value 

1995 4 15 15 Apri11995 

1789 7 14 17 July 1789 

1925 2 30 Invalid 

10000 Invalid 

To set the date only, see COleDateTime: :SetDate. To set the time only, see 
COleDateTime: :SetTime. 

For information on member functions that query the value of this COleDateTime 
object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 

• GetSecond 

• GetDayOfWeek 

• GetDayOtYear 



CO 1eDateTime:: SetS tatus 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime:: COleDateTime, COleDateTime: :SetDate, 
COleDateTime::SetTime, COleDateTime::operator =, 
COleDateTime: : GetStatus, COleDateTime: :m_dt 

COleDateTime:: SetStatus 
void SetStatus( DateTimeStatus nStatus ); 

Parameters 

Remarks 

nStatus The new status value for this COleDateTime object. 

Call this member function to set the status of this COleDateTime object. The nStatus 
parameter value is defined by the DateTimeStatus enumerated type, which is defined 
within the COleDateTime class. 

enum DateTimeStatus{ 
valid = 0, 
invalid = 1, 
null = 2, 

} ; 

For a brief description of these status values, see the following list: 

• COleDateTime: :valid Indicates that this COleDateTime object 
is valid. 

• COleDateTime: :invalid Indicates that this COleDateTime object 
is invalid; that is, its value may be incorrect. 

• COleDateTime::null Indicates that this COleDateTime object is null, that is, 
that no value has been supplied for this object. (This is "null" in the database sense 
of "having no value," as opposed to the C++ NULL.) 

Caution This function is for advanced programming situations. This function does not alter the 
data in this object. It will most often be used to set the status to null or invalid. Note that the 
assignment operator (operator =) and SetDateTime do set the status of the object based on 
the source value(s). 

See Also: COleDateTime::GetStatus, COleDateTime::operator =, 
COleDateTime: :SetDateTime, COleDateTime: :m_dt 

1309 



COleDateTime: :SetTime 

COleDateTime: :SetTime 
int SetTime( int nHour, int nMin, int nSec ); 

Return Value 
Zero if the value of this COleDateTime object was set successfully; otherwise, 1. 
This return value is based on the DateTimeStatus enumerated type. For more 
information, see the SetStatus member function. 

Parameters 

Remarks 

1310 

nHour, nMin, nSec Indicate the time components to be copied into this 
COleDateTime object. 

Call this member function to set the date and time of this COleDateTime object. The 
time is set to the specified values. The date is set to date 0, meaning 30 December 
1899. 

See the following table for bounds for the parameter values: 

Parameter 

nHour 

nMin 

nSec 

Bounds 

0-23 

0-59 

0-59 

If the time value specified by the parameters is not valid, the status of this object is set 
to invalid and the value of this object is not changed. 

Here are some examples of time values: 

nHour nMin nSec Value 

3 3 01:03:03 

23 45 0 23:45:00 

25 30 0 Invalid 

9 60 0 Invalid 

To set both date and time, see COleDateTime::SetDateTime. 

For information on member functions that query the value of this COleDateTime 
object, see the following member functions: 

• GetDay 

• GetMonth 

• GetYear 

• GetHour 

• GetMinute 



COleDateTime::operator = 

• GetSecond 

o GetDayOfWeek 

o GetDayOfYear 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime: :COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime::operator =, COleDateTime::GetStatus, COleDateTime::m_dt 

Operators 
COleDateTime: : operator = 

Remarks 

const COleDateTime& operator =( const COleDateTime& dateSrc ); 
const COleDateTime& operator =( const VARIANT& varSrc); 
const COleDateTime& operator =( DATE dtSrc ); 
const COleDateTime& operator =( const time_t& timeSrc ); 
const COleDateTime& operator =( const SYSTEMTIME& systimeSrc ); 
const COleDateTime& operator =( const FILETIME& filetimeSrc ); 

These overloaded assignment operators copy the source date/time value into this 
COleDateTime object. A brief description of each these overloaded assignment 
operators follows: 

o operator =( dateSrc) The value and status of the operand are copied into this 
COleDateTime object. 

o operator =( varSrc) If the conversion of the VARIANT value (or COleVariant 
object) to a date/time (VT_DATE) is successful, the converted value is copied into 
this COleDateTime object and its status is set to valid. If the conversion is not 
successful, the value of this object is set to zero (30 December 1899, midnight) and 
its status to invalid. 

o operator =( dtSrc) The DATE value is copied into this COleDateTime object 
and its status is set to valid. 

• operator =( timeSrc) The time_t value is converted and copied into this 
COleDateTime object. If the conversion is successful, the status of this object is 
set to valid; if unsuccessful, it is set to invalid. 

• operator =( systimeSrc) The SYSTEMTIME value is converted and copied into 
this COleDateTime object. If the conversion is successful, the status of this object 
is set to valid; if unsuccessful, it is set to invalid. 

1311 



COleDateTime::operator +,-

• operator =(filetimeSrc) The FILE TIME value is converted and copied into this 
COleDateTime object. If the conversion is successful, the status of this object is 
set to valid; if unsuccessful, it is set to invalid. 

For more information, see the VARIANT entry in the Win32 SDK OLE Programmer's 
Reference. 

For more information on the time_t data type, see the time function in the Run-Time 
Library Reference. 

For more information, see the SYSTEMTIME and FILE TIME structures in the 
Win32 SDK documentation. 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime::COleDateTime, COleDateTime::SetDateTime, 
COleDateTime: :GetStatus 

COleDateTime: : operator +, -

Remarks 

1312 

COleDateTime operator +( const COleDateTimeSpan& dateSpan ) const; 
COleDateTime operator -( const COleDateTimeSpan& dateSpan ) const; 
COleDateTimeSpan operator -( const COleDateTime& date) const; 

COleDateTime objects represent absolute times. COleDateTimeSpan objects 
represent relative times. The first two operators allow you to add and subtract a 
COleDateTimeSpan value from a COleDateTime value. The third operator allows 
you to subtract one COleDateTime value from another to yield a 
COleDateTimeSpan value. 

If either of the operands is null, the status of the resulting COleDateTime value is 
null. 

If the resulting COleDateTime value falls outside the bounds of acceptable values, 
the status of that COleDateTime value is invalid. 

If either of the operands is invalid and the other is not null, the status of the resulting 
COleDateTime value is invalid. 

For more information on the valid, invalid, and null status values, see the m_status 
member variable. . 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime::operator +=, -=, COleDateTime::GetStatus, 
COleDateTimeSpan 



COleDateTime Relational Operators 

COleDateTime::operator +=, 

Remarks 

const COleDateTime& operator +=( const COleDateTimeSpan dateSpan ); 
const COleDateTime& operator -=( const COleDateTimeSpan dateSpan ); 

These operators allow you to add and subtract a COleDateTimeSpan value to and 
from this COleDateTime. 

If either of the operands is null, the status of the resulting COleDateTime value is 
null. 

If the resulting COleDateTime value falls outside the bounds of acceptable values, 
the status of this COleDateTime value is set to invalid. 

If either of the operands is invalid and other is not null, the status of the resulting 
COleDateTime value is invalid. 

For more information on the valid, invalid, and null status values, see the m_status 
member variable. 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime::operator +, -, COleDateTime::GetStatus 

COleDateTime::operator DATE 

Remarks 

operator DATE( ) const; 

This operator returns a DATE object whose value is copied from this COleDateTime 
object. 

For more information about the implementation of the DATE object, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime: :m_dt 

COleDateTime Relational Operators 
BOOL operator ==( const COleDateTime& date) const; 
BOOL operator !=( const COleDateTime& date) const; 
BOOL operator « const COleDateTime& date) const; 
BOOL operator >( const COleDateTime& date) const; 
BOOL operator <=( const COleDateTime& date) const; 
BOOL operator >=( const COleDateTime& date) const; 

1313 



COleDateTime::operator «, » 

Remarks 

Example 

These operators compare two date/time values and return nonzero if the condition is 
true; otherwise O. 

Note The return value of the ordering operations «, <=, >, >=) is undefined if the status of 
either operand is null or invalid. The equality operators (==, !=) consider the status of the 
operands. 

COleDateTime dateOne(95. 3. 15. 12. 0. 0); II 15 March 1995 12 noon 
COleDateTime dateTwo(dateOne); II 15 March 1995 12 noon 
BOOL b; 
b = dateOne == dateTwo; 

dateTwo.SetStatus(COleDateTime::invalid); 
b = dateOne == dateTwo: 
b = dateOne != dateTwo; 
b = dateOne < dateTwo; 
b = dateOne > dateTwo: 
b = dateOne <= dateTwo; 
b = dateOne >= dateTwo; 

II TRUE 

II FALSE. different status 
II TRUE. different status 
II FALSE. same value 
II FALSE. same value 
II TRUE. same value 
II TRUE. same value 

Note The last four lines of the preceding example will ASSERT in debug mode. 

See Also: COleDateTime::GetStatus 

COleDateTime::operator «, » 

Remarks 

friend CDumpContext& AFXAPI operator «( CDumpContext& dc, 
... COleDateTime timeSrc ); 

friend CArchive& AFXAPI operator «( CArchive& ar, COleDateTime dateSrc ); 
friend CArchive& AFXAPI operator »( CArchive& ar, COleDateTime& dateSrc ); 

The COleDateTime insertion «<) operator supports diagnostic dumping and storing 
to an archive. The extraction (») operator supports loading from an archive. 

See Also: CDumpContext, CArchive 

Data Members 
COleDateTime: :m_dt 
Remarks 

The underlying DATE structure for this COleDateTime object. 

1314 



CO leDateTime: :m_status 

Caution Changing the value in the DATE object accessed by the pointer returned by this 
function will change the value of this COleDateTime object. It does not change the status of this 
COleDateTime object. 

For more information about the implementation of the DATE object, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime: :COleDateTime, COleDateTime: :SetDateTime, 
COleDateTime: :SetDate, COleDateTime: :SetTime, COleDateTime: :operator 
DATE 

COleDateTime: :m_status 
Remarks 

The type of this data member is the enumerated type DateTimeStatus, which is 
defined within the COleDateTime class. 

enum DateTimeStatus{ 
valid ~ 0, 
invalid"" 1, 
null = 2, 

} ; 

For a brief description of these status values, see the following list: 

• COleDateTime: : valid Indicates that this COleDateTime object is valid. 

• COleDateTime::invalid Indicates that this COleDateTime object is invalid; that 
is, its value may be incorrect. 

• COleDateTime::null Indicates that this COleDateTime object is null, that is, 
that no value has been supplied for this object. (This is "null" in the database sense 
of "having no value," as opposed to the C++ NULL.) 

The status of a COleDateTime object is invalid in the following cases: 

• If its value is set from a VARIANT or COleVariant value that could not be 
converted to a date/time value. 

• If its value is set from a time_t, SYSTEMTIME, or FILETIME value that could 
not be converted to a valid date/time value. 

• If its value is set by SetDateTime with invalid parameter values. 

• If this object has experienced an overflow or underflow during an arithmetic 
assignment operation, namely, += or -=. 

• If an invalid value was assigned to this object. 

• If the status of this object was explicitly set to invalid using SetStatus. 

1315 



COleDateTime: :m_status 

1316 

For more information about the operations that may set the status to invalid, see the 
following member functions: 

• COleDateTime 

• SetDateTime 

• operator +, -

• operator +=, -= 

Caution This data member is for advanced programming situations. You should use the in line 
member functions GetStatus and SetStatus. See SetStatus for further cautions regarding 
explicitly setting this data member. 

For more information about the bounds for COleDateTime values, see the article 
"Date and Time: Automation Support" in Visual C++ Programmer's Guide online. 

See Also: COleDateTime::GetStatus, COleDateTime::SetStatus 



A 
ABC structure 2489 
ABCFLOAT structure 2489 
ability to transact, Recordset 1583 
ability to update records, Recordset 1584 
Abort member function 

CHtmlStream class 815 
ClnternetFile class 887 
CArchive class 42 
CFile class 677 

AbortDoc member function, CDC class 445 
aborting database transactions 414 
AbortPath member function, CDC class 446 
Accept member function, CAsyncSocket class 82 
AccessData member function, 

COleSafeArray class 1420 
Action queries 

defined 238 
described 261 
executing 238 

Activate member function 
COleClientItem class 1133 
CToolTipCtrl class 1941 

ActivateAs member function, 
COleClientItem class 1134 

ActivateDocObject member function, 
CDocObjectServer class 583 

ActivateFrame member function, 
CFrameWnd class 754 

ActivatelnPlace member function, 
COleServerDoc class 1433 

ActivateNext member function, 
CSplitterWnd class 1797 

Activation 1433 
Add member function 

CArray class 63 
ClmageList class 869 
CObArray class 1076 
CRecentFileList class 1572 

Index 

AddBitmap member function, 
CToolBarCtrl class 1920 

AddButtons member function, 
CToolBarCtrl class 1921 

AddDocTemplate member function, 
CWinApp class 2025 

AddDocument member function, 
CDocTemplate class 591 

AddFormat member function, 
COlePasteSpecialDialog class 1399 

AddHead member function 
CList class 911 
CObList class 1101 
CTypedPtrList class 1982 

AddHeader member function, 
CHttpServer class 852 

Adding new records 1580 
AddItem member function, COleDocument class 1346 
AddMetaFileComment member function, 

CDC class 446 
AddNew member function 

CDaoRecordset class 286 
CRecordset class 1580 

AddOtherClipboardData member function, 
COleServeritem class 1452 

AddPage member function, CPropertySheet class 1552 
AddRequestHeaders member function, 

CHttpFile class 826 
AddResponseHeaders member function, 

CHttpFilterContext class 845 
AddStandardFormats member function, 

COlePasteSpecialDialog class 1400 
AddString member function 

CComboBox class 181 
CListBox class 923 
CToolBarCtrl class 1923 

AddTail member function 
CList class 911 
CObList class 1101 

AddTool member function, CToolTipCtrl class 1941 



Index 

AddToParameterList, Record field exchange (DFX) 
described 258 
PARAMETERS clause, SQL 258 

AddToRecentFileList member function, 
CWinApp class 2025 

AddToSelectList, Record field exchange (DFX) 
described 258 
SELECT clause, SQL 258 

AddView member function, CDocument class 603 
AdjustDialogPosition member function, 

CRichEditView class 1716 
AdjustRect member function 

CRectTracker class 1658 
CTabCtrl class 1871 

AFX_DAO_ALL_INFO 
for database objects 388 
querydefs 242 
tabledefs 246 
workspaces 393 

AFX_DAO_ERROR_DFX_BIND, 
error code described 254 

AFX_DAO_ERROR_ENGINE_INITIALIZATION, 
error code described 254 

AFX_DAO_ERROR_OBJECT_NOT_OPEN, 
error code described 254 

AFX_DAO_PRIMARY _INFO 
for database objects 388 
querydefs 242 
relations 244 
tabledefs 246 
workspaces 393 

AFX_DAO_SECONDARY _INFO 
for database objects 388 
querydefs 242 
relations 244 
tabledefs 246 
workspaces 393 

AFX_DATA, ClassWizard comment 2484 
AFX_DATA_INIT, ClassWizard comment 2484 
AFX_DATA_MAP, ClassWizard comment 2484 
AFX_DISP, ClassWizard comment 2485 
AFX_DISP _MAP, ClassWizard comment 2485 
AFX_EVENT, ClassWizard comment 2485 
AFX_EVENT_MAP, ClassWizard comment 2486 
AFX_FIELD, ClassWizard comment 2486 
AFX_FIELD_INIT, ClassWizard comment 2486 
AFX_FIELD _MAP, Class Wizard comment 2487 
AFX_MANAGE_STATE global function/macro 2322 
AFX_MSG, ClassWizard comment 2487 

AFX_MSG_MAP, ClassWizard comment 2487 
AFX_SQL_ASYNC global function/macro 2294, 2341 
AFX_SQL_ERROR codes 428 
AFX_SQL_SYNC global function/macro 2294, 2342 
AFX_ VIRTUAL, ClassWizard comment 2488 
AfxAbort global function/macro 2304 
AfxBeginThread global function/macro 2305 
AfxCheckMemory global function/macro 2306 
AfxConnectionAdvise global function/macro 2307 
AfxConnectionUnadvise global function/macro 2308 
AfxDoForAllClasses global function/macro 2308 
AfxDoForAllObjects global function/macro 2310 
afxDump global function/macro 2310-2311 
AfxEnableControlContainer 

global function/macro 2311 
AfxEnableMemoryTracking 

global function/macro 2312 
AfxEndThread global function/macro 2312 
AfxFormatStringl global function/macro 2312 
AfxFormatString2 global function/macro 2313 
AfxGetApp global function/macro 2315 
AfxGetAppName global function/macro 2315 
AfxGetlnstanceHandle global function/macro 2315 
AfxGetMainWnd global function/macro 2316 
AfxGetResourceHandle global function/macro 2317 
AfxGetThread global function/macro 2318 
AfxIsMemory Block global function/macro 2319 
AfxIsValidAddress global function/macro 2320 
AfxIsValidString global function/macro 2320 
afxMemDF global function/macro 2323 
AfxMessageBox global function/macro 2324 
AfxOleCanExitApp global function/macro 2324 
AfxOleGetMessageFilter global function/macro 2326 
AfxOleGetUserCtrl global function/macro 2327 
AfxOleInit global function/macro 2327 
AfxOleLockApp global function/macro 2327 
AfxOleRegisterControlClass 

global function/macro 2329 
AfxOleRegisterPropertyPageClass 

global function/macro 2331 
AfxOleRegisterServerClass 

global function/macro 2332 
AfxOleRegisterTypeLib global function/macro 2333 
AfxOleSetEditMenu global function/macro 2334 
AfxOleSetUserCtrl global function/macro 2335 
AfxOleTypeMatchGuid 

global function/macro 2335, 2337 
AfxOleUnlockApp global function/macro 2336 
AfxOleUnregisterTypeLib global function/macro 2337 



AfxRegisterClass global function/macro 2337 
AfxRegisterWndClass global function/macro 2339 
AfxSetAllocHook global function/macro 2340 
AfxSetResourceHandle global function/macro 2341 
AfxSocketInit global function/macro 2341 
AfxThrow ArchiveException 

global function/macro 2343 
AfxThrow DaoException 

global function/macro 251, 2344 
AfxThrowDBException global function/macro 2344 
AfxThrowFileException global function/macro 2345 
AfxThrow MemoryException 

global function/macro 2345 
AfxThrow N otS u pportedException 

global function/macro 2346 
AfxThrowOleDispatchException 

global function/macro 2346 
AfxThrowOleException global function/macro 2347 
AfxThrowResourceException 

global function/macro 2347 
AfxThrowUserException global function/macro 2347 
afxTraceEnabled global function/macro 2348 
afxTraceFlags global function/macro 2348 
AfxVerifyLicFile global function/macro 2349 
Aggregate data 

collection classes, template-based classes 61,909, 
980, 1976, 1989 

storing, collection classes 145, 629, 986, 988, 990, 
998, 1000, 1002, 1004, 1074 

Alloc member function 
CHtmlStream class 815 

Alloc member function, CmernFile class 1020 
AllocCache, Record field exchange (DFX) 258 
AllocData member function, 

COleSafeArray class 1421 
AllocDescriptor member function, 

COleSafeArray class 1421 
AllocMem member function, 

CHttpFilterContext class 845 
AllocSysString member function, CString class 1840 
AmbientBackColor member function, 

COleControl class 1184 
AmbientDisplayName member function, 

COleControl class 1185 
AmbientFont member function, 

COleControl class 1185 
AmbientForeColor member function, 

COleControl class 1185 

AmbientLocaleID member function, 
COleControl class 1186 

AmbientScaleUnits member function, 
COleControl class 1186 

AmbientShowGrabHandles member function, 
COleControl class 1186 

AmbientShowHatching member function, 
COleControl class 1187 

AmbientTextAlign member function, 
COleControl class 1187 

AmbientUIDead member function, 
COleControl class 1187 

AmbientUserMode member function, 
COle Control class 1188 

Index 

AND_CATCH global function/macro 2351 
AND_CATCH_ALL global function/macro 2352 
AngleArc member function, CDC class 446 
AnimatePalette member function, CPalette class 1498 
Animation control 35 
AnsiToOem member function, CString class 1840 
Append member function 

CArray class 63 
CDaoQueryDef class 263 
CDaoTableDef class 357 
CDaoWorkspace class 382 

Append query 261 
Appendability, determining recordset 1581 
Appending 

querydefs 263 
workspaces 382 

AppendMenu member function, CMenu class 1032 
Application architecture classes, listed 5 
Application control functions, OLE 2295 
Application framework, 

Microsoft Foundation Class Library 3 
Application information, management 2287 
Applications, management information 2287 
ApplyPrintDevice member function, 

COleDocument class 1346 
Arc member function, CDC class 447 
Archive operators 

COleCurrency 1273 
COleDateTime 1314 
COleDateTimeSpan 1329 
COle Variant 1486 

ArcTo member function, CDC class 448 
argv, MFC encapsulation 202 
Arrange member function, CListCtrl class 949 



Index 

ArrangeIconic Windows member function, 
CWnd class 2093 

Arrays, collection classes 
CArray 61 
CByteArray 145 
CDWordArray 629 
CObArray 1074 
CTypedPtrArray 1976 

ASSERT global function/macro 2353 
ASSERT_VALID global function/macro 2354 
AssertValid member function, CObject class 1092 
Assignment operator, COle Variant 1484 
Asynchronous 

access canceling 1582 
operations, canceling 405 

AsyncSelect member function, CAsyncSocket class 83 
Attach member function 

CAsyncSocket class 84 
CDC class 449 
CGdiObject class 784 
CHtmlStream class 816 
CImageList class 870 
CMemFile class 1021 
CMenu class 1034 
COleDataObject class 1276 
COleSafeArray class 1421 
COleStreamFile class 1471 
CSocket class 1780 
CWnd class 2093 

AttachClipboard member function, 
COleDataObject class 1276 

AttachDataObject member function, 
COleClientItem class 1135 

AttachDispatch member function, 
COleDispatchDriver class 1335 

Attaching data objects to Clipboard 1276 
AutoLoad member function, CBitmapButton class 125 
AutoSize member function, CToolBarCtrl class 1924 

B 
BASED_CODE global function/macro 2354 
BEGIN_CONNECTION_MAP 

global function/macro 2355 
BEGIN_CONNECTION_PART 

global function/macro 2355 
BEGIN_DIS PATCH_MAP 

global function/macro 2356 
BEGIN_EVENT _MAP global function/macro 2356 

BEGIN_EVENTSINK_MAP 
global function/macro 2357 

BEGIN_MESSAGE_MAP global function/macro 2357 
BEGIN_OLEFACTORY global function/macro 2358 
BEGIN_PROPPAGEIDS global function/macro 2359 
BeginBusyState member function, 

COleMessageFilter class 1385 
BeginDrag member function 

CDragListBox class 621 
CImageList class 870 

BeginEnumForrnats member function, 
COleDataObject class 1277 

BeginModalState member function, 
CFrameWnd class 755 

BeginPaint member function, CWnd class 2094 
BeginPath member function, CDC class 450 
BeginTrans member function 

CDaoWorkspace class 382 
CDatabase class 404 

Begin WaitCursor member function, 
CCmdTarget class 159 

Binary Large Object, CLongBinary class 978 
Bind member function, CAsyncSocket class 84 
BindDefaultProperty member function, 

CWnd class 2095, 2096 
BindField, Record field exchange (DFX) 258 
BindParam, Record field exchange (DFX) 258 
BitBlt member function, CDC class 451 
BITMAP structure 2492 
BITMAP TOOLTIPTEXT 1916 
BITMAPINFO structure 2493 
Bitmaps as data, CLongBinary class 978 
BLOB, CLongBinary class 978 
BOOL, DDX field exchange 2384 
Boolean 

DFX field exchange 2405 
RFX field exchange 2461 

BottomRight member function, CRect class 1641 
Bound fields, Recordset 1629 
BoundPropertyChanged member function, 

COleControl class 1188 
BoundPropertyRequestEdit member function, 

COleControl class 1188 
BringWindowToTop member function, 

CWnd class 2094 
Bulk query 261 
Button styles 2564 



BYTE 
DDX field exchange 2384 
DFX field exchange 2406 
Float field exchange 2384 
RFX field exchange 2463 

Byte array 

c 

DFX field exchange 2404 
RFX field exchange 2460 

C language API, relationship of Microsoft Foundation 
Class Library to 4 

CacheData member function 
COleDataSource class 1283 

CacheGlobalData member function, 
COleDataSource class 1284 

Ca1cDynamicLayout member function, 
CControlBar class 215 

Ca1cFixedLayout member function, 
CControlBar class 216 

Ca1cWindowRect member function, CWnd class 2096 
Callback functions for MFC member functions 

CDC 2575, 2576 
described 2575 

CallFunction member function 
CHttpServer class 852 

CanActivate member function, 
COleClientltem class 1135 

CanActivateNext member function, 
CSplitterWnd class 1797 

CanAppend member function 
CDaoRecordset class 287 
CRecordset class 1581 

CanBookmark member function, 
CDaoRecordset class 288 

Cancel member function 
CDatabase class 405 
CRecordset class 1582 

CancelBlockingCall member function, 
CSocket class 1781 

CancelDrag member function, CDragListBox class 621 
Canceling asynchronous access 1582 
CancelToClose member function, 

CPropertyPage class 1543 
CancelToolTips member function, CWnd class 2097 
CancelUpdate member function, 

CDaoRecordseat class 288 

CanCloseFrame member function, 
CDocument class 605 

CanCreateFromData member function, 
COleClientltem class 1135 

CanCreateLinkFromData member function, 
COleClientltem class 1136 

CAnimateCtrl class 
described 35 
member functions 

CAnimateCtrl 36 
Close 36 
Create 37 
Open 38 
Play 38 
Seek 39 
Stop 39 

CAnimateCtrl constructor 36 
CAnimateCtrl member function, 

CAnimateCtrl class 36 
CanPaste member function 

COleClientltem class 1136 
CRichEditCtrl class 1686 
CRichEditView class 1717 

CanPasteLink member function, 
COleClientltem class 1137 

CanRestart member function 
CDaoRecordset class 289 
CRecordset class 1583 

CanS croll member function 
CDaoRecordset class 289 
CRecordset class 1583 

CanTransact member function 
CDaoDatabase class 232 
CDaoRecordset class 290 
CDatabase class 405 
CRecordset class 1583 

CanUndo member function 
CEdit class 634 
CRichEditCtrl class 1686 

CanUpdate member function 
CDaoDatabase class 232 
CDaoQueryDef class 263 
CDaoRecordset class 290 
CDaoTableDef class 357 
CDatabase class 405 
CRecordset class 1584 

CArchive class 
data members, m_pDocument 58 
described 40 

Index 



Index 

CArchive class (continued) 
member functions 

CArchive 42 
Close 43 
Flush 44 
GetFile 44 
GetObjectSchema 44 
IsBufferEmpty 45 
IsLoading 46 
IsStoring 46 
MapObject 47 
operator« 56 
operator» 57 
Read 49 
ReadClass 49 
ReadObject 50 
ReadString 51 
SerializeClass 51 
SetLoadParams 52 
SetObjectSchema 53 
SetStoreParams 53 
Write 54 
WriteClass 55 
WriteObject 55 
WriteString 56 

CArchive member function, CArchive class 42 
CArchiveException class 

data members, m_cause 60 
described 59 
member functions, CArchiveException 59 

CArchiveException constructor 59 
CArchiveException member function, 

CArchiveException class 59 
CArray class 

described 61 
member functions 

Add 63 
Append 63 
CArray 64 
Copy 64 
ElementAt 64 
FreeExtra 65 
GetAt 65 
GetData 65 
GetSize 66 
GetUpperBound 66 
InsertAt 66 
operator [] 69 
RemoveAll 67 

CArray class (continued) 
member functions (continued) 

RemoveAt 67 
SetAt 68 
SetAtGrow 68 
SetSize 69 

CArray member function, CArray class 64 
Cascades, database relation 237 
CAsyncMoniker class 

described 71 
member functions 

Close 72 
CreateBindStatusCallback 72 
GetBindInfo 73 
GetBinding 74 
GetFormatEtc 74 
GetPriority 74 
OnDataAvailable 75 
OnLowResource 76 
OnProgress 76 
OnStartBinding 77 
OnStopBinding 77 
Open 78 

CAsyncMonikerFile class 
described 71 
member functions, CAsyncMonikerFile 72 

CAsyncSocket class 
data members 

described 112 
m_hSocket 112 

described 80 
member functions 82 

Accept 82 
AsyncSelect 83 
Attach 84 
Bind 84 
CAsyncSocket 85 
Close 86 
Connect 86 
Create 88 
Detach 89 
FromHandle 89 
GetLastError 90 
GetPeerName 90 
GetSockName 91 
GetSockOpt 92 
IOCtl 94 
Listen 95 
OnAccept 96 



CAsyncSocket class (continued) 
member functions 82 (continued) 

OnClose 97 
OnConnect 97 
OnOutOfBandData 98 
OnReceive 99 
OnSend 99 
Receive 100 
ReceiveFrom 102 
Send 104 
SendTo 105 
SetSockOpt 108 
ShutDown III 

members 80 
CAsyncSocket member function, 

CAsyncSocket class 82, 85 
CATCH global function/macro 2359 
CATCH macro, use in DAO 251 
CATCH_ALL global function/macro 2360 
Categories, macros and globals 2279 
CBitmap class 

described 113 
member functions 

CBitmap 114 
CreateBitmap 114 
CreateBitmaplndirect 115 
CreateCompatibleBitmap 116 
CreateDiscardableBitmap 116 
FromHandle 117 
GetBitmap 117 
GetBitmapBits 118 
GetBitmapDimension 118 
LoadBitmap 119 
LoadMappedBitmap 119 
LoadOEMBitmap 120 
operator HBITMAP 121 
SetBitmapBits 121 
SetBitmapDimension 122 

CBitmap member function, CBitmap class 114 
CBitmapButton class 

described 123 
member functions 

AutoLoad 125 
CBitmapButton 125 
LoadBitmaps 125 
SizeToContent 126 

CBitmapButton member function, 
CBitmapButton class 125 

CBrush class 
described 127 
member functions 

CBrush 128 
CreateBrushIndirect 129 
CreateDIBPatternBrush 129 
CreateHatchBrush 131 
CreatePatternBrush 132 
CreateSolidBrush 132 
CreateSysColorBrush 133 
FromHandle 134 
GetLogBrush 134, 135 

CBrush member function, CBrush class 128 
CButton class 

described 136 
member functions 

CButton 138 
Create 138 
Drawltem 139 
GetBitmap 139 
GetButtonStyle 139 
GetCheck 140 
GetCursor 140 
GetIcon 140 
GetState 141 
SetBitmap 141 
SetButtonStyle 142 
SetCheck 142 
SetCursor 143 
SetIcon 143 
SetState 144 

CButton member function, CButton class 138 
CByteArray class 145 
CCachedDataPathProperty class 

described 147 
data members, m_Cache 148 

CCheckListBox class 
described 149 
member functions 

CCheckListBox 150 
Create 151 
Enable 152 
GetCheck 152 
GetCheckStyle 153 
IsEnabled 153 
OnGetCheckPosition 154 
SetCheck 155 
SetCheckStyle 155 

CCheckListBox constructor 150 

Index 



Index 

CCheckListBox member function, 
CCheckListBox class 150 

CClientDC class 
data members, m_hWnd 157 
described 156 
member functions, CClientDC 156 

CClientDC member function, CClientDC class 156 
CCmdTarget class 

described 158 
member functions 

BeginWaitCursor 159 
EnableAutomation 161 
EndWaitCursor 161 
FromIDispatch 162 
GetIDispatch 163 
IsResultExpected 163 
OnCmdMsg 164 
OnFinalRelease 165 
Restore WaitCursor 165 

CCmdUI class 
described 168 
member functions 

ContinueRouting 169 
Enable 169 
SetCheck 170 
SetRadio 170 
SetText 170 

CColorDialog class 
data members, m3C 176 
described 172 
member functions 

CColorDialog 173 
DoModal 174 
GetColor 174 
GetSavedCustomColors 175 
OnColorOK 175 
SetCurrentColor 176 

CColorDialog member function, 
CColorDialog class 173 

CComboBox class 
described 177 
member functions 

AddString 181 
CComboBox 182 
Clear 182 
CompareItem 182 
Copy 183 
Create 183 
Cut 184 

CComboBox class (continued) 
member functions (continued) 

DeleteItem 184 
DeleteString 185 
Dir 185 
DrawItem 186 
FindString 186 
FindStringExact 187 
GetCount 188 
GetCurSel 188 
GetDroppedControlRect 188 
GetDroppedState 188 
GetDroppedWidth 189 
GetEditSel 189 
GetExtendedUI 189 
GetHorizontalExtent 190 
GetItemData 190 
GetItemDataPtr 191 
GetItemHeight 191 
GetLBText 191 
GetLBTextLen 192 
GetLocale 192 
GetToplndex 193 
InitStorage 193 
InsertString 194 
LimitText 194 
MeasureItem 195 
Paste 195 
ResetContent 195 
SelectString 196 
SetCurSel 196 
SetDroppedWidth 197 
SetEditSel 197 
SetExtendedUI 198 
SetHorizontalExtent 198 
SetItemData 199 
SetItemDataPtr 199 
SetItemHeight 200 
SetLocale 200 
SetTopIndex 201 
ShowDropDown 201 

CComboBox member function, CComboBox class 182 
CCommandLinelnfo class 

data members 
described 204 
m_bRunAutomated 204 
m_bRunEmbedded 205 
m_bShowSplash 205 
m_nShellCommand 205 



CCommandLinelnfo class (continued) 
data members (colltinued) 

m_strDriverName 207 
m_strFileName 206 
m_strPortName 207 
m_strPrinterName 207 

member functions 
CCommandLinelnfo 203 
described 203 
ParseParam 203 

CCommandLineInfo constructor 203 
CCommandLineInfo member function, 

CCommandLinelnfo class 203 
CCommonDialog class 

described 208 
member functions, CCommonDialog 209 

CCommonDialog constructor 209 
CCommonDialog member function, 

CCommonDialog class 209 
CConnectionPoint class 

described 210 
member functions 

GetConnection 212 
GetContainer 212 
GetIID 213 
GetMaxConnections 213 
OnAdvise 213 

CControlBar class 
data members, m_bAutoDelete 221 
described 214 
member functions 

Ca1cDynamicLayout 215 
Ca1cFixedLayout 216 
EnableDocking 217 
GetBarStyle 218 
GetCount 218 
GetDockingFrame 218 
Is Floating 219 
OnUpdateCmdUI 219 
SetBarStyle 220 

CCreateContext structure, described 222 
CCriticalSection class 

described 224 
member functions 

CCriticalSection 225 
Lock 225 
Unlock 226 

CCriticalSection constructor 225 

CCriticalSection member function, 
CCriticalSection class 225 

CCtrlView class 
data members 

m_dwDefaultStyle 228 
m_strClass 228 

described 227 
member functions, CCtrlView 227 

CCtrlView constructor 227 

Index 

CCtrlView member function, CCtrlView class 227 
CDaoDatabase class 

data members 
m_pDAODatabase 250 
m_pVVorkspace 250 

described 229 
member functions 

CanTransact 232 
CanUpdate 232 
CDaoDatabase 232 
Close 233 
Create 234 
CreateRelation 235 
DeleteQueryDef 237 
DeleteRelation 237 
DeleteTableDef 238 
Execute 238 
GetConnect 240 
GetName 240 
GetQueryDefCount 241 
GetQueryDefinfo 242 
GetQueryTimeout 243 
GetRecordsAffected 243 
GetRelationCount 244 
GetRelationInfo 244 
GetTableDefCount 245 
GetTableDefinfo 246 
GetVersion 247 
IsOpen 247 
Open 247 
SetQueryTimeout 249 

CDaoDatabase constructor 232 
CDaoDatabase member function, 

CDaoDatabase class 232 
CDaoDatabaseInfo structure 388,2495 
CDaoErrorInfo structure 

overview of structure members 255 
use of 255,2497 



Index 

CDaoException class 
data members 

m_nAfxDaoError 254 
m_pErrorInfo 255 
m_scode 255 

member functions 
CDaoException 252 
GetErrorCount 253 
GetErrorInfo 253 

CDaoException constructor 252 
CDaoException member function, 

CDaoException class 252 
CDaoFieldExchange 

FieldType values 
outputColumn 256 
param 256 

operations 256 
purpose of 256 

CDaoFieldExchange class 
data members 

m_nOperation 258 
m_prs 259 

described 256 
member functions 

Is Valid Operation 257 
SetFieldType 258 

CDaoFieldInfo structure 2498 
CDaoIndexFieldInfo structure 2505 
CDaoIndexInfo structure 2502 
CDaoParameterInfo structure 2506 
CDaoQueryDef class 

data members 
m_pDAOQueryDef 279 
m_pDatabase 279 

described 260 
member functions 

Append 263 
CanUpdate 263 
CDaoQuery Def 264 
Close 265 
Create 265 
Execute 266 
GetConnect 267 
GetDateCreated 268 
GetDateLastUpdated 268 
GetFieldCount 268 
GetFieldInfo 269 
GetName 270 
GetODBCTimeout 270 

CDaoQueryDef class (continued) 
member functions (continued) 

GetParameterCount 270 
GetParameterInfo 271 
GetParam Value 272 
GetRecordsAffected 272 
GetRetumsRecords 273 
GetSQL 273 
GetType 274 
IsOpen 274 
Open 275 
SetConnect 275 
SetName 276 
SetODBCTimeout 276 
SetParam Value 277 
SetRetumsRecords 278 
SetSQL 278 

CDaoQueryDef constructor 264 
CDaoQueryDef member function, 

CDaoQueryDef class 264 
CDaoQueryDefinfo structure 242,2507 
CDaoRecordset 

deriving classes 281 
described 280 
member functions 

AddNew 286 
CanAppend 287 

using CDaoRecordset without deriving 281 
CDaoRecordset class 

data members 
described 345 
m_bCheckCacheForDirtyFields 345 
m_nParams 346 
m_pDAORecordset 346 
m_pDatabase 346 
m_strFilter 347 
m_strSort 347 

member functions 
CanBookmark 288 
CancelUpdate 288 
CanRestart 289 
CanS croll 289 
CanTransact 290 
CanUpdate 290 
CDaoRecordset 291 
Close 291 
Delete 292 
DoFieldExchange 293 
Edit 294 



CDaoRecordset class (co1ltinued) 
member functions (continued) 

FillCache 295 
Find 296 
FindFirst 297 
FindLast 299 
FindNext 300 
FindPrev 301 
GetAbsolutePosition 303 
GetBookmark 303 
GetCacheSize 304 
GetCacheStart 305 
GetCurrentIndex 305 
GetDateCreated 306 
GetDateLastUpdated 306 
GetDefaultDBName 307 
GetDefaultSQL 307 
GetEditMode 308 
GetFieldCount 308 
GetFieldlnfo 309 
GetFieldValue 310 
GetIndexCount 311 
GetIndexlnfo 311 
GetLastModifiedBookmark 312 
GetLockingMode 313 
GetName 313 
GetParam Value 314 
GetPercentPosition 314 
GetRecordCount 315 
GetSQL 316 
GetType 316 
GetValidationRule 317 
GetValidationText 317 
IsBOF 318 
IsDeleted 319 
IsEOF 320 
IsFieldDirty 321 
IsFieldNull 322 
IsFieldNullable 323 
IsOpen 323 
Move 323 
MoveFirst 324 
MoveLast 325 
MoveNext 326 
MovePrev 327 
Open 328 
Requery 331 
Seek 332 
SetAbsolutePosition 334 

CDaoRecordset class (continued) 
member functions (continued) 

SetBookmark 335 
SetCacheSize 335, 336 
SetCurrentIndex 337 
SetFieldDirty 338 
SetFieldNull 339 
SetFieldValue 340 
SetFieldValueNull 341 
SetLockingMode 341 
SetParam Value 342 
SetParamValueNull 343 
SetPercentPosition 343 
Update 344 

CDaoRecordset member function, 
CDaoRecordset class 286, 291 

CDaoRecordView 
described 348 
member functions, CDaoRecordView 350 

CDaoRecordView class, member functions 
IsOnFirstRecord 351 
IsOnLastRecord 351 
OnGetRecordset 352 
OnMove 352 

CDaoRecordView member function, 
CDaoRecordView class 350 

CDaoRelationFieldlnfo structure 2511 
CDaoRelationlnfo structure 244, 2510 
CDaoTableDef 

described 354 
member functions, Append 357 

CDaoTableDef class 
data members 

described 377 
m_DAOTableDef 377 
m_pDatabase 377 

member functions 
CanUpdate 357 
CDaoTableDef 358 
Close 358 
Create 358 
CreateField 359 
Createlndex 361 
DeleteField 362 
Deletelndex 362 
GetAttibutes 363 
GetConnect 364 
GetDateCreated 365 
GetDateLastUpdated 365 

Index 



Index 

CDaoTableDef class (continued) 
member functions (continued) 

GetFieldCount 366 
GetFieldInfo 366 
GetIndexCount 367 
GetIndexInfo 368 
GetName 369 
GetRecordCount 369 
GetSourceTableName 370 
GetValidationRule 370 
GetValidationText 371 
IsOpen 371 
Open 371 
RefreshLink 372 
SetAttributes 372 
SetConnect 373 
SetName 375 
SetSourceTableName 375 
SetValidationRule 376 
SetValidationText 376 

CDaoTableDef member functions 
Append 357 
CDaoTableDef class 358 

CDaoTableDefInfo structure 246,2512 
CDao Workspace class 

See also Workspace 
data members, m_pDAOWorkspace 401 
described 378 
member functions 

Append 382 
BcginTrans 382 
CDaoWorkspace 383 
Close 383 
CommitTrans 384 
Create 385 
GetDatabaseCount 388 
GctDatabaseInfo 388 
GetIniPath 389 
GetIsolateODBCTrans 390 
GetLoginTimeout 390 
GetName 391 
GetUserName 391 
GetVersion 392 
GetWorkspaceCount 392 
GetWorkspaceInfo 393 
Idle 393 
IsOpen 394 
Open 395 
Rollback 395 

CDao Workspace class (continued) 
member functions (continued) 

SetDefaultPassword 397 
SetDefaultUser 397 
SetIniPath 398 
SetIsolateODBCTrans 399 
SetLoginTimeout 400 

CDaoWorkspace constructor 383 
CDao Workspace member function, 

CDaoWorkspace class 383 
CDaoWorkspaceInfo structure 393,2515 
CDatabase class 

data members, m_hdbc 418 
described 402 
member functions 

BeginTrans 404 
Cancel 405 
CanTransact 405 
CanUpdate 405 
CDatabase 406 
Close 406 
CommitTrans 407 
ExecuteSQL 408 
GetConnect 408 
GetDatabaseName 410 
IsOpen 411 
OnSetOptions 412 
Open 412 
Rollback 414 
SetLoginTimeout 417 
SetQueryTimeout 417 

CDatabase constructor 406 
CDatabase member function, CDatabase class 406 
CDatabase object 

closing 406 
creating 406 

CDataExchange class 
described 419 
Dialog data exchange CDDX) 419 
member functions 

described 422 
Fail 420 
m_bSaveAndValidate 421 
PrepareCtrl 420 
PrepareEditCtrl 421 

members 419 



CDataPathProperty class 
described 423 
member functions 

CDataPathProperty 424 
GetControl 424 
GetPath 424 
Open 425 
ResetData 426 
SetControi 426 
SetPath 426 

CDataPathProperty data member, 
CDataPathProperty class 424 

CDBException class 
data members 

m_nRetCode 428 
m_strError 430 

. m_strStateNativeOrigin 430 
described 427 

CDBVariant 431 
CDBVariant class 

data members 
m_boolVal 432 
ill_chVal 433 
m_dbiVal 433 
m_dwType 433 
m_fltVai 434 
m_iVal 434 
m_IVaI434 
m_pbinary 434 
m_pdate 435 
mj)string 435 

member functions 432 
CDBVariant 432 
Clear 432 

CDBVariant member function, CDBVariant class 432 
CDC class 

data members 
m_hAttribDC 562 
m_hDC 562 

described 436 
member functions 

AbortDoc 445 
AbortPath 446 
AddMetaFileComment 446 
AngleArc 446 
Arc 447 
ArcTo 448 
Attach 449 
BeginPath 450 

CDC class (contillued) 
member functions (contillued) 

BitBlt 451 
CDC 453 
Chord 453 
CioseFigure 454 
CreateCompatibleDC 455 
CreateDC 455 
CreateIC 456 
DeleteDC 457 
DeleteTempMap 457 
Detach 458 
DPtoHIMETRIC 458 
DPtoLP 458 
Draw3dRect 459 
DrawDragRect 459 
DrawEdge 460 
DrawEscape 462 
DrawFocusRect 462 
Draw Frame Control 463 
DrawIcon 464 
DrawState 465 
DrawText 467 
Ellipse 469 
EndDoc 469 
EndPage 470 
EndPath 471 
EnumObjects 471 
Escape 472 
ExcludeClipRect 473 
ExcludeUpdateRgn 474 
ExtFloodFill 474 
ExtTextOut 475 
FillPath 477 
FillRect 477 
FillRgn 478 
FillSolidRect 478 
FiattenPath 479 
FloodFill 479 
FrameRect 480 
FrameRgn 480 
FromHandle 481 
GetArcDirection 481 
GetAspectRatioFilter 481 
GetBkColor 482 
GetBkMode 482 
GetBoundsRect 482 
GetBrushOrg 483 
GetCharABCWidths 483 

Index 



Index 

CDC class (continued) 
member functions (continued) 

GetCharWidth 484 
GetClipBox 485 
GetColorAdjustment 486 
GetCurrentBitmap 486 
GetCurrentBrush 486 
GetCurrentFont 487 
GetCurrentPalette 487 
GetCurrentPen 487 
GetCurrentPosition 487 
GetDeviceCaps 488 
GetFontData 492 
GetGlyphOutline 493 
GetHalftoneBrush 494 
GetKemingPairs 495 
GetMapMode 495 
GetMiterLimit 496 
GetNearestColor 496 
GetOutlineTextMetrics 496 
GetOutputCharWidth 497 
GetOutputTabbedTextExtent 498 
GetOutputTextExtent 499 
GetOutputTextMetrics 499 
GetPath 500 
GetPixel 501 
GetPolyFillMode 501 
GetROP2 502 
GetSafeHdc 502 
GetStretchBltMode 502 
GetTabbedTextExtent 503 
GetTextAlign 504 
GetTextCharacterExtra 505 
GetTextColor 505 
GetTextExtent 505 
GetTextFace 506 
GetTextMetrics 506 
GetViewportExt 507 
GetViewportOrg 507 
GetWindow 507 
GetWindowExt 508 
GetWindowOrg 508 
GrayString 508 
HIMETRICtoDP 510 
HIMETRICtoLP 510 
IntersectClipRect 510 
InvertRect 511 
InvertRgn 511 
IsPrinting 512 

CDC class (continued) 
member functions (continued) 

LineTo 512 
LPtoDP 512 
LPtoHIMETRIC 513 
MaskBlt 513 
MoveTo 515 
OffsetClipRgn 515 
OffsetViewportOrg 516 
OffsetWindowOrg 516 
PaintRgn 517 
PatBlt 517 
Pie 518 
PlayMetaFile 519 
PIgBlt 520 
PolyBezier 521 
PolyBezierTo 522 
PolyDraw 523 
Polygon 524 
Polyline 524 
PolylineTo 525 
PolyPolygon 525 
PolyPolyline 526 
PtVisible 526 
Query Abort 527 
RealizePalette 527 
Rectangle 528 
RectVisible 528 
ReleaseAttribDC 529 
ReleaseOutputDC 529 
ResetDC 529 
RestoreDC 530 
RoundRect 530 
SaveDC 531 
Scale ViewportExt 531 
ScaleWindowExt 532 
ScrollDC 532 
SelectClipPath 533 
SelectClipRgn 534 
SelectObject 535 
SelectPalette 536 
SelectStockObject 537 
SetAbortProc 538 
SetArcDirection 539 
SetAttribDC 540 
SetBkColor 540 
SetBkMode 541 
SetBoundsRect 541 
SetBrushOrg 542 



CDC class (continued) 

member functions (continued) 

SetColorAdjustment 543 
SetMapMode 543 
SetMapperFlags 545 
SetMiterLimit 545 
SetOutputDC 545 
SetPixel 545 
SetPixelV 546 
SetPolyFillMode 547 
SetROP2 547 
SetStretchBltMode 548 
SetTextAlign 550 
SetTextCharacterExtra 551 
SetTextColor 551 
SetTextJustification 552 
SetViewportExt 553 
SetViewportOrg 553 
SetWindowExt 554 
SetWindowOrg 555 
StartDoc 555 
StartPage 556 
StretchBlt 556 
StrokeAndFillPath 559 
StrokePath 559 
TabbedTextOut 559 
TextOut 560 
UpdateColors 561 
WidenPath 561 

CDC class, callback functions for See Callback 
functions for MFC member functions 

CDC member function, CDC class 453 
CDialog class 

described 563 
member functions 

CDialog 566 
Create 566 
CreateIndirect 567 
DoModal 568 
EndDialog 569 
GetDefiD 569 
GotoDlgCtrl 570 
InitModalIndirect 570 
MapDialogRect 571 
NextDIgCtrl 571 
OnCancel 571 
OnInitDialog 572 
OnOK 572 
OnSetFont 573 

CDialog class (cOlltilllled) 

member functions (cOlltill11ed) 

PrevDIgCtrl 573 
SetDefiD 573 
SetHeipID 574 

CDialog member function, CDialog class 566 
CDialogBar class 

described 575 
member functions 

CDialogBar 575 
Create 576 

Index 

CDialogBar member function, CDialogBar class 575 
CDocltem class 

described 577 
member functions 

GetDocument 578 
IsBlank 577 

CDockState class 
data members, 

m_arrBarInfo 581 
described 579 
member functions 

CDockState 580 
Clear 580 
GetVersion 580 
LoadState 581 
SaveState 581 

CDockState member function, CDockState class 580 
CDocObjectServer class 

described 582 
member functions 

ActivateDocObject 583 
CDocObjectServer 583 
OnActivateView 584 
OnApplyViewState 584 
OnSaveViewState 584 

CDocObjectServer member function, 
CDocObjectServer class 583 

CDocObjectServerltem class 
described 586 
member functions 

CDocObjectServerltem 587 
OnHide 587 
OnOpen 587 
OnShow 588 

CDocObjectServerItem member function, 
CDocObjectServerItem class 587 



Index 

CDocTemplate class 
described 589 
member functions 

AddDocument 591 
CDocTemplate 591 
CloseAllDocuments 592 
CreateNewDocument 593 
CreateNewFrame 593 
CreateOleFrame 593 
GetDocString 594 
GetFirstDocPosition 595 
GetNextDoc 596 
InitialUpdateFrame 596 
LoadTemplate 597 
MatchDocType 597 
OpenDocumentFile 598 
RemoveDocument 598 
SaveAllModified 599 
SetContainerInfo 599 
SetDefaultTitle 600 
SetServerInfo 600 

CDocTemplate member function, 
CDocTemplate class 591 

CDocument class 
described 601 
member functions 

AddView 603 
CanCloseFrame 605 
CDocument 606 
DeleteContents 606 
GetDocTemplate 607 
GetFile 607 
GetFirstViewPosition 608 
GetNextView 608 
GetPathName 609 
GetTitle 609 
IsModified 610 
OnChangedViewList 610 
OnCloseDocument 610 
OnFileSendMail 611 
OnNewDocument 611 
OnOpenDocument 613 
OnSaveDocument 614 
On U pdateFileSendMail 615 
PreCloseFrame 615 
ReleaseFile 615 
Remove View 616 
ReportSaveLoadException 616 
SaveModified 617 

CDocument class (continued) 
member functions (continued) 

SetModifiedFlag 617 
SetPathName 618 
SetTitle 618 
UpdateAllViews 618 

CDocument member function, CDocument class 606 
CDragListBox class 

described 620 
member functions 

BeginDrag 621 
CancelDrag 621 
CDragListBox 622 
Dragging 622 
DrawInsert 622 
Dropped 623 
ItemFromPt 623 

CDragListBox member function, 
CDragListBox class 622 

CDumpContext class 
described 624 
member functions 

CDumpContext 625 
Flush 626 
GetDepth 626 
HexDump 626 
operator« 627 
SetDepth 627 

CDumpContext member function, 
CDumpContext class 625 

CDWordArray class 629 
CEdit class 

member functions 
CanUndo 634 
CEdit 635 
CharFromPos 635 
Clear 635 
Copy 636 
Create 636 
Cut 637 
EmptyUndoBuffer 637 
FmtLines 637 
GetFirstVisibleLine 638 
GetHandle 638 
GetLimitText 639 
GetLine 639 
GetLineCount 640 
GetMargins 640 
GetModify 640 



CEdit class (continued) 
member functions (continued) 

GetPasswordChar 641 
GetRect 641 
GetSe1 642 
LimitText 642 
LineFromChar 643 
Linelndex 643 
LineLength 644 
LineScroll 644 
Paste 645 
PosFromChar 645 
ReplaceSel 645 
SetHandle 646 
SetLimitText 647 
SetMargins 647 
SetModify 648 
SetPasswordChar 648 
SetReadOnly 648 
SetRect 649 
SetRectNP 650 
SetSel 650 
SetTabStops 651 
Undo 652 

overview 631 
CEdit member function, CEdit class 635 
CEditView class 

described 653 
member functions 

CEditView 655 
dwStyleDefault 662 
FindText 655 
GetBufferLength 656 
GetEditCtrl 656 
GetPrinterFont 656 
GetSelectedText 657 
LockBuffer 657 
OnFindNext 657 
OnReplaceAll 658 
OnReplaceSel 659 
OnTextNotFound 659 
PrintInsideRect 660 
SerializeRaw 660 
SetPrinterFont 661 
SetTabStops 661 
UnlockBuffer 661 

CEditView member function, CEditView class 655 
CenterWindow member function, CWnd class 2097 

CEvent class 
described 663 
member functions 

CEvent 664 
PulseEvent 665 
ResetEvent 665 
SetEvent 665 
Unlock 666 

CEvent constructor 664 
CEvent member function, CEvent class 664 
CException class 

described 667 
member functions, GetErrorMessage 668 

CFieldExchange class 
described 672 
member functions 

IsFieldType 673 
SetFieldType 673 

CFile class 
data members 

m_hFile 693 
described 676 
member functions 

Abort 677 
CFile 678 
Close 680 
Duplicate 680 
Flush 681 
GetFileN arne 681 
GetFilePath 681 
GetFileTitle 682 
GetLength 682 
GetPosition 682 
GetStatus 683 
LockRange 684 
Open 685 
Read 686 
ReadHuge 686 
Remove 687 
Rename 687 
Seek 688 
SeekToBegin 689 
SeekToEnd 689 
SetFilePath 689 
SetLength 690 
SetStatus 690 
UnlockRange 691 
Write 692 
WriteHuge 692 

Index 



Index 

CFile member function, CFile class 678 
CFileDialog class 

data members, m_ofn 703 
described 694 
member functions 

CFileDialog 696 
DoModal 697 
GetFileExt 698 
GetFileName 698 
GetFileTitle 698 
GetNextPathName 699 
GetPathN arne 699 
GetReadOnlyPref 700 
GetStartPosition 700 
OnFileNameOK 701 
OnLBSelChangedNotify 702 
OnShare Violation 702 

CFileDialog member function, CFileDialog class 696 
CFileException class 

data members 
m_cause 707 
m_IOsError 708 

described 704 
member functions 

CFileException 705 
ErrnoToException 705 
OsErrorToException 706 
ThrowErrno 706 
ThrowOsError 706 

CFileException member function, 
CFileException class 705 

CFileFind class 
described 709 
member functions 

CFileFind 710 
Close 711 
FindFile 711 
FindNextFile 712 
GetCreationTime 712 
GetFileN arne 713 
GetFilePath 713 
GetFileTitle 714 
GetFileURL 714 
GetLastAccessTime 715 
GetLastWriteTime 715 
GetLength 716 
GetRoot 716 
IsArchived 717 
IsCompressed 717 

CFileFind class (continued) 
member functions (continued) 

Is Directory 717 
IsDots 718 
IsHidden 718 
IsNorrnal 718 
IsReadOnly 719 
IsSystem 719 
IsTemporary 719 
MatchesMask 720 

CFileFind member function, CFileFind class 710 
CFindReplaceDialog class 

data members, m_fr 727 
described 721 
member functions 

CFindReplaceDialog 723 
Create 723 
FindNext 724 
GetFindString 724 
GetNotifier 725 
GetReplaceString 725 
IsTerminating 725 
MatchCase 726 
Match Whole Word 726 
ReplaceAll 726 
ReplaceCurrent 726 
SearchDown 727 

CFindReplaceDialog member function, 
CFindReplaceDialog class 723 

CFont class 
described 728 
member functions 

CFont 729 
CreateFont 729 
CreateFontlndirect 733 
CreatePointFont 734 
FromHandle 735 
GetLogFont 735 
operator HFONT 736 

CFont member function, CFont class 729 
CFontDialog class 

data members, m_cf 742 
described 737 
member functions 

CFontDialog 738 
DoModal 739 
GetColor 739 
GetCurrentFont 740 
GetFaceName 740 



CFontDialog class (continued) 
member functions (collfilllled) 

GetSize 740 
GetStyleName 741 
GetWeight 741 
IsBold 741 
IsItalic 741 
IsStrikeOut 742 
IsUnderline 742 

CFontDialog member function, CFontDialog class 738 
CFontHolder class 

data members, m_pFont 746 
described 743 
member functions 

CFontHolder 743 
GetDisplayString 744 
GetFontDispatch 744 
GetFontHandle 744 
InitializeFont 745 
ReleaseFont 745 
Select 746 
SetFont 746 

CFontHolder member function, CFontHolder class 743 
CForm View class 

described 747 
member functions, CFormView 750 

CFormView member function, CFormView class 750 
CFrameWnd class 

data members, m_bAutoMenuEnable 769 
described 751 
member functions 

ActivateFrame 754 
BeginModalState 755 
CFrameWnd 755 
Create 755 
Create View 756 
DockControlBar 757 
EnableDocking 758 
EndModalState 758 
FloatControlBar 758 
GetActiveDocument 759 
GetActiveFrame 759 
GetActiveView 760 
GetControlBar 760 
GetDockState 761 
GetMessageBar 761 
GetMessageString 761 
InitialUpdateFrame 762 
InModalState 762 

CFrameWnd class (continued) 
member functions (continued) 

IsTracking 762 
LoadAccelTable 763 
LoadBarState 763 
LoadFrame 764 
NegotiateBorderSpace 764 
OnContextHelp 765 
OnCreateClient 765 
OnSetPreviewMode 766 
Reca1cLayout 766 
rectDefault 769 
SaveBarState 767 
SetActiveView 767 
SetDockState 767 
SetMessageText 768 
ShowControlBar 768 
ShowOwnedWindows 768 

Index 

CFrameWnd member function, CFrameWnd class 755 
CFtpConnection class 

described 770 
member functions 

CFtpConnection 771 
Close 771 
CreateDirectory 771 
GetCurrentDirectory 772 
GetCurrentDirectory As URL 772 
GetFile 773 
OpenFile 775 
PutFile 776 
Remove 777 
RemoveDirectory 778 
Rename 778 
SetCurrentDirectory 779 

CFtpConnection member function, 
CFtpConnection class 771 

CFtpFileFind class 
described 780 
member functions 

CTfpFileFind 781,782 
CFtpFileFind member function, 

CFtpFileFind class 781, 782 
CGdiObject class 

data members, m_hObject 789 
described 783 
member functions 

Attach 784 
CGdiObject 784 
CreateStockObject 784 



Index 

CGdi Object class (continued) 
member functions (continued) 

DeleteObject 785 
DeleteTempMap 786 
Detach 786 
FromHandle 786 
GetObject 787 
GetObjectType 788 
GetSafeHandle 788 
UnrealizeObject 789 

CGdiObject member function, CGdiObject class 784 
CGopherConnection class 

described 790 
member functions 

CGopherConnection 791 
CreateLocator 791 
getAttribute 792 
OpenFile 792 

CGopherConnection member function, 
CGopherConnection class 791 

CGopherFile class 
described 794 
member functions 

CGopherFile 795 
Close 795 

CGopherFile member function, CGophcrFile class 795 
CGopherFileFind class 

described 796 
member functions 

CGopherFileFind 797 
FileFind 797 
FindNextFile 798 
GetLength 798 
GetLocator 799 
GetScreenName 799 

CGopherFileFind member function, 
CGopherFileFind class 797 

CGopherLocator class 
described 800 
member functions 

CGopherLocator 801 
GetLocatorType 801 
operator LPCTSTR 802 

CGopherLocator member function, 
CGopherLocator class 801 

Change notifications, in-place editing 1439 
ChangeClipboardChain member function, CWnd 

class 2097 
Change Type member function, Cole Variant class 1482 

CharFromPos member function, CEdit class 635 
CharToItem member function, CListBox class 924 
CHeaderCtrl class 

described 803 
member functions 

CHeaderCtrl 804 
Create 804 
DeleteItem 806 
DrawItem 806 
GetItem 806 
GetItemCount 808 
InsertItem 808 
Layout 808 
SetItem 809 

CHeaderCtrl constructor 804 
CHeaderCtrl member function, CHeaderCtrl class 804 
CheckButton member function, 

CToolBarCtrl class 1924 
CheckDIgButton member function, CWnd class 2098 
CheckMenuItem member function, CMenu class 1034 
CheckMenuRadioItem member function, 

CMenu class 1035 
Checkpoint member function, 

CMemoryState class 1027 
CheckRadioButton member function, CWnd class 2098 
ChildWindowFromPoint member function, 

CWnd class 2099 
Chord member function, CDC class 453 
CHotKeyCtrl class 

described 810 
member functions 

CHotKeyCtrl 811 
Create 811 
GetHotKey 812 
SetHotKey 812 
SetRules 813 

CHotKeyCtrl constructor 811 
CHotKeyCtrl member function, CHotKeyCtrl class 811 
CHtmlStream class 

data members, m_nStreamSize 821 
described 814 
member functions 

Abort 815 
Alloc 815 
Attach 816 
CHtmlStream 816 
Close 817 



CHtmlStream class (continued) 
member functions (continued) 

Detach 817 
Free 818 
GetStreamSize 818 
GrowStrearn 818 
InitStream 819 
Memcpy 819 
operator« 820 
Realloc 819 
Reset 820 
Write 820 

CHtmlStream member function, 
CHtmlStream class 816 

CHttpConnection class 
described 822 
member functions 

CHttpConnection 822 
OpenRequest 823 

CHttpConnection member function, 
CHttpConnection class 822 

CHttpFile class 
described 825 
member functions 

AddRequestHeaders 826 
CHttpFile 827 
Close 828 
GetFileURL 828 
GetObject 828 
GetVerb 828 
QueryInfo 829 
Query InfoStatusCode 831 
SendRequest 832 

CHttpFile member function, CHttpFile class 827 
CHttpFilter class 

described 833 
member functions 

CHttpFilter 834 
GetFilterVersion 835 
HttpFilterProc 836 
On Authentication 837 
OnEndOtNetSession 838 
OnLog 839 
OnPreprocHeaders 840 
OnReadRawData 841 
OnSendRawData 842 
OnUrlMap 842 

CHttpFilter member function, CHttpFilter class 834 

CHttpFilterContext class 
data members, m_pFC 849 
described 844 
member functions 

AddResponseHeaders 845 
AllocMen 845 
CHttpFilterContext 846 
GetServerVariable 846 
ServerSupportFunction 848 
WriteClient 849 

CHttpFilterContext member function, 
CHttpFilterContext class 846 

CHttpServer class 
described 850 
member functions 

AddHeader 852 
CallFunction 852 
CHttpServer 854 
ConstructStream 855 
EndContent 855 
GetExtension Version 855 
GetTile 856 
HttpExtensionProc 856 
InitInstance 857 
OnParseError 857 
StartContent 858 
WriteTitie 859 

Index 

CHttpServer member function, CHttpServer class 854 
CHttpServerContext class 

data members 
m_pECB 866 
m_pStream 867 

described 860 
member functions 

CHttpServerContext 861 
GetServerVariable 861 
operator« 866 
ReadClient 863 
ServerSupportFunction 864 
WriteClient 865 

CHttpServerContext member function, 
CHttpServerContext class 861 

CImageList class 
data members, m_hImageList 880 
described 868 
member functions 

Add 869 
Attach 870 
BeginDrag 870 



Index 

CImageList class (continued) 
member functions (continued) 

CImageList 871 
Create 871 
DeleteObject 872 
Detach 872 
DragEnter 873 
DragLeave 873 
DragMove 874 
DragShowNolock 874 
Draw 874 
EndDrag 875 
Extractlcon 875 
GetBkColor 876 
GetDragImage 876 
GetImageCount 876 
GetImageInfo 877 
GetSafeHandle 877 
Read 878 
Remove 878 
Replace 878 
SetBkColor 879 
SetDragCursorImage 879 
SetOverlayImage 880 
Write 880 

CImageList constructor 871 
CImageList member function, CImageList class 871 
CInternetConnection class 

described 881 
member functions 

CInternetConnection 881 
GetContext 882 
GetServerName 883 
GetSession 883 
operator HINTERNET 883 

CInternetConnection member function, 
CInternetConnection class 881 

CInternetException class 
data members 

m_dwContext 885 
m_dwError 885 

described 884 
member functions, CInternetException 884 

CInternetException member function, 
CInternetException class 884 

CInternetFile class 
data members, m_hFile 892 
described 886 

CInternetFile class (continued) 
member functions 

Abort 887 
CInternetFile 887 
Close 888 
Flush 888 
operator HINTERNET 892 
Read 888 
ReadString 889 
Seek 889 
SetReadBufferSize 890 
SetWriteBufferSize 891 
Write 891 
Write String 891 

CInternetFile member function, CInternetFile class 887 
CInternetSession class 

described 893 
member functions 

CInternetSession 895 
Close 896 
EnableStatusCallback 896 
GetContext 897 
GetFtpConnection 898 
GetGopherConnection 899 
GetHttpConnection 900 
OnStatusCallback 900 
OpenURL 902 
operator HINTERNET 908 
QueryOption 904 
ServiceTypeFromHandle 906 
SetOption 907 

CInternetSession member function, 
CInternetSession class 895 

class CLongBinary 
Binary Large Object 978 
BLOB 978 
data handle 979 
data length 979 
Large data objects 978 

class CRecordView 
associated recordset, getting with ClassWizard 1637 
dialog template resource 1635 
forms, database 1633 
moving through records 1637 
navigating 1637 
record views 1633 
scrolling 1637 



class CRecordView (contillued) 
whether on first record 1636 
whether on last record 1636 

Class design philosophy 3 
Class factories and licensing 2302 
Class Overview class 1 
Classes 

See also specific class 
document/view, listed 7 

ClassWizard comment 
AFX_DATA 2484 
AFX_DATA_INIT 2484 
AFX_DA TA_MAP 2484 
AFX_DISP 2485 
AFX_DISP _MAP 2485 
AFX_EVENT 2485 
AFX_EVENT _MAP 2486 
AFX_FIELD 2486 
AFX_FIELD _INIT 2486 
AFX_FIELD _MAP 2487 
AFX_MSG 2487 
AFX_MSG_MAP 2487 
AFX_ VIRTUAL 2488 

ClassWizard comment delimiters 2483 
Clear member function 

CComboBox class 182 
CDBVariant class 432 
CDockState class 580 
CEdit class 635 
COleSafeArray class 1421 
COleVariant 1482 
CRichEditCtrl class 1686 

ClearSel member function, CSliderCtrl class 1768 
ClearTics member function, CSliderCtrl class 1769 
ClientToScreen member function, CWnd class 2099 
Clipboard 

determining owner 1289 
emptying 1288 
formats 1452 
providing data 1292 

CList class 
described 909 
member functions 

AddHead 911 
AddTail 911 
CList 912 
Find 912 
FindIndex 912 
GetAt 913 

CList class (continued) 
member functions (comillued) 

GetCount 913 
GetHead 913 
GetHeadPosition 914 
GetNext 914 
GetPrev 915 
GetTail 916 
GetTailPosition 916 
InsertAfter 916 
InsertBefore 917 
IsEmpty 917 
RemoveAll 917 
RemoveAt 918 
RemoveHead 918 
RemoveTail 918 
SetAt 919 

CList member function, CList class 912 
CListBox class 

described 920 
member functions 

AddString 923 
CharToItem 924 
CListBox 925 
Compareltem 925 
Create 925 
DeleteItem 926 
DeleteString 927 
Dir 927 
Drawltem 928 
FindString 928 
FindStringExact 929 
GetAnchorIndex 929 
GetCaretlndex 930 
GetCount 930 
GetCurSel 930 
GetHorizontalExtent 931 
GetltemData 931 
GetltemDataPtr 931 
GetltemHeight 932 
GetltemRect 932 
GetLocale 932 
GetSel 933 
GetSelCount 933 
GetSelItems 933 
GetText 934 
GetTextLen 934 
GetTopIndex 935 
InitStorage 935 

Index 



Index 

CListBox class (continued) 
member functions (continued) 

InsertString 936 
ItemFromPoint 936 
MeasureItem 936 
ResetContent 937 
SelectString 937 
SelItemRange 938 
SetAnchorIndex 938 
SetCaretIndex 939 
SetColumn Width 939 
SetCurSel 939 
SetHorizontalExtent 940 
SetItemData 940 
SetltemDataPtr 941 
SetItemHeight 941 
SetLocale 942 
SetSel 942 
SetTabStops 942 
SetToplndex 943 
VKeyToItem 944 

CListBox member function, CListBox class 925 
CListCtrl class 

described 945 
member functions 

Arrange 949 
CListCtrl 950 
Create 950 
CreateDraglmage 951 
DeleteAllItems 952 
DeleteColumn 952 
Deleteltem 952 
Drawltem 953 
EditLabel 953 
Ensure Visible 954 
Findltem 954 
GetBkColor 955 
GetCallbackMask 955 
GetColumn 956 
GetColumn Width 957 
GetCountPerPage 957 
GetEditControl 957 
GetImageList 958 
GetItem 958 
GetItemCount 960 
GetItemData 960 
GetItemPosition 960 
GetItemRect 961 
GetltemState 961 

CListCtrl class (continued) 
member functions (continued) 

GetItemText 962 
GetNextltem 962 
GetOrigin 963 
GetSelectedCount 963 
GetStringWidth 963 
GetTextBkColor 964 
GetTextColor 964 
GetTopIndex 964 
GetViewRect 965 
HitTest 965 
InsertColumn 966 
InsertItem 967 
RedrawItems 968 
Scroll 968 
SetBkColor 969 
SetCallbackMask 969 
SetColumn 969 
SetColumn Width 970 
SetImageList 970 
SetItem 971 
SetItemCount 972 
SetItemData 972 
SetItemPosition 972 
SetItemState 973 
SetItemText 973 
SetTextBkColor 974 
SetTextColor 974 
SortItems 974 
Update 975 

CListCtrl constructor 950 
CListCtrl member function, CListCtrl class 950 
CListView class 

described 976 
member functions 

CListView 976 
GetListCtrl 977 

CListView constructor 976 
CListView member function, CListView class 976 
CLongBinary 

DFX field exchange 2411 
RFX field exchange 2471 

CLongBinary class 
data members 

m_dwDataLength 979 
m_hData 979 

described 978 
member functions, CLongBinary 979 



CLongBinary constructor 979 
CLongBinary member function, 

CLongBinary class 979 
Close member function 

CAnimateCtrl class 36 
CArchive class 43 
CAsyncMonikerFile class 72 
CAsyncSocket class 86 
CDaoDatabase class 233 
CDaoQueryDef class 265 
CDaoRecordset class 291 
CDaoTableDef class 358 
CDaoWorkspace class 383 
CDatabase class 406 
CFile class 680 
CFileFind class 711 
CFtpConnection class 771 
CHtmlStream class 817 
CHttpFile class 828 
CInternetFile class 888 
CInternetSession class 896 
CMetaFileDC class 1054 
CMonikerFile class 1061 
COleClientltem class 1137 
CRecordset class 1586 

Close member function, CGopherFile class 795 
CloseAllDocuments member function 

CDocTemplate class 592 
CWinApp class 2026 

CloseEnhanced member function, 
CMetaFileDC class 1054 

CloseFigure member function, CDC class 454 
Closing 

CDatabase objects 406 
database objects 233 
Recordset 1586 
workspaces, DAO 383 

CMap class 
described 980 
member functions 

CMap 981 
GetCount 981 
GetHashTableSize 982 
GetNextAssoc 982 
GetStartPosition 983 
InitHashTable 983 
IsEmpty 983 
Lookup 984 
operator [] 985 

CMap class (colltillued) 
member functions (colltillued) 

RemoveAll 984 
RemoveKey 984 
SetAt 985 

CMap member function, CMap class 981 
CMapPtrToPtr class 986 
CMapPtrToWord class 988 
CMapStringToOb class 

described 990 
member functions 

CMapStringToOb 991 
GetCount 991 
GetNextAssoc 992 
GetStartPosition 993 
IsEmpty 993 
Lookup 994 
operator [] 997 
RemoveAll 994 
RemoveKey 995 
SetAt 996 

CMapStringToOb member function, 
CMapStringToOb class 991 

CMapStringToPtr class 998 
CMapStringToString class 1000 
CMap WordToOb class 1002 
CMapWordToPtr class 1004 
CMDIChildWnd class 

described 1006 
member functions 

CMDIChildWnd 1008 
Create 1008 
GetMDIFrame 1009 
MDIActivate 1009 
MDIDestroy 1010 
MDIMaximize 1010 
MDIRestore 1010 

CMDIChildWnd member function, 
CMDIChildWnd class 1008 

CMDIFrameWnd class 
described 10 11 
member functions 

CMDIFrameWnd 1013 
CreateClient 1013 
GetWindowMenuPopup 1014 
MDIActivate 1014 
MDICascade 1015 
MDIGetActive 1015 
MDIIconArrange 1016 

Index 



Index 

CMDIFrameWnd class (continued) 
member functions (continued) 

MDIMaximize 1016 
MDINext 1016 
MDIRestore 1017 
MDISetMenu 1017 
MDITile 1018 

CMDIFrameWnd member function, 
CMDIFrameWnd class 1013 

CMemFile class 
described 1019 
member functions 

Alloc 1020 
Attach 1021 
CMemFile 1021 
Detach 1022 
Free 1022 
GrowFile 1023 
Memcpy 1023 
Realloc 1023 

CMemFile member function, CMemFile class 1021 
CMemoryException class 

described 1025 
member functions, CMemoryException 1025 

CMemoryException member function, 
CMemoryException class 1025 

CMemoryState class 
described 1026, 1027 
member functions 

Checkpoint 1027 
CMemoryState 1027 
Difference 1028 
DumpAllObjectsSince 1028 
DumpStatistics 1029 

CMemoryState member function, 
CMemoryState class 1027 

CMenu class 
data members, m_hMenu 1052 
described 1030 
member functions 

AppendMenu 1032 
Attach 1034 
CheckMenultem 1034 
CheckMenuRadioltem 1035 
CMenu 1036 
CreateMenu 1036 
CreatePopupMenu 1037 
DeleteMenu 1037 
DeleteTempMap 1038 

CMenu class (continued) 
member functions (continued) 

DestroyMenu 1038 
Detach 1039 
Drawltem 1039 
EnableMenultem 1039 
FromHandle 1040 
GetMenuContextHelpId 1041 
GetMenultemCount 1041 
GetMenultemID 1041 
GetMenuState 1042 
GetMenuString 1043 
GetSafeHmenu 1044 
GetSubMenu 1044 
InsertMenu 1044 
LoadMenu 1046 
LoadMenuIndirect 1046 
Measureltem 1047 
ModifyMenu 1047 
RemoveMenu 1049 
SetMenuContextHelpId 1049 
SetMenultemBitmaps 1050 
TrackPopupMenu 1051 

CMenu member function, CMenu class 1036 
CMetaFileDC class 

described 1053 
member functions 

Close 1054 
CloseEnhanced 1054 
CMetaFileDC 1055 
Create 1055 
CreateEnhanced 1056 

CMetaFileDC member function, 
CMetaFileDC class 1055 

CMiniFrameWnd class 
described 1058 
member functions 

CMiniFrameWnd 1058 
Create 1059 

CMiniFrameWnd constructor 1058 
CMiniFrameWnd member function, 

CMiniFrameWnd class 1058 
CMonikerFile class 

described 1060 
member functions 

Close 1061 
CMonikerFile 1061 
CreateBindContext 1061 
Detach 1062 



CMonikerFile class (continued) 

member functions (co1ltinued) 

GetMoniker 1062 
Open 1062 

CMonikerFile member function 
CMonikerFile class 1061 

CMultiDocTemplate class 
described 1064 
member functions, CMultiDocTemplate 1065 

CMultiDocTemplate member function, 
CMultiDocTemplate class 1065 

CMultiLock class 
described 1067 
member functions 

CMultiLock 1068 
IsLocked 1068 
Lock 1068 
Unlock 1070 

CMultiLock constructor 1068 
CMultiLock member function, CMultiLock class 1068 
CMutex class 

described 1071 
member functions, CMutex 1072 

CMutex constructor 1072 
CMutex member function, CMutex class 1072 
CNotSupportedException class 

described 1073 
member functions 1073 

CNotSupportedException member function, 
CNotSupportedException class 1073 

CObArray class 
described 1074 
member functions 

Add 1076 
CObArray 1078 
ElementAt 1079 
FreeExtra 1079 
GetAt 1080 
GetSize 1081 
GetUpperBound 1082 
InsertAt 1082 
operator [] 1090 
RemoveAll 1084 
RemoveAt 1085 
SetAt 1086 
SetAtGrow 1087 
SetSize 1089 

CObArray member function, CObArray class 1078 

CObject class 
described 1091 
member functions 

AssertValid 1092 
CObject 1093 
Dump 1093 
GetRuntimeClass 1094 
IsKindOf 1095 
IsSerializable 1095 
operator = 1097 
operator delete 1097 
operator new 1097 
Serialize 1096 

CObject member function, CObject class 1093 
CObList class 

described 1099 
member functions 

AddHead 1101 
AddTail 1101 
CObList 1102 
Find 1103 
FindIndex 1104 
GetAt 1104 
GetCount 1105 
GetHead 1105 
GetHeadPosition 1106 
GetNext 1107 
GetPrev 1108 
GetTail 1109 
GetTailPosition 1109 
InsertAfter 1110 
InsertBefore 1110 
IsEmpty 1111 
RemoveAll 1111 
RemoveAt 1112 
RemoveHead 1113 
RemoveTail 1113 
SetAt 1114 

CObList member function, CObList class 1102 
COleBusyDialog class 

data members, m_bz 1119 
described 1116, 1117 
member functions 

COleBusyDialog 1117 
DoModal 1117 
GetSelectionType 1118 

COleBusyDialog constructor 1117 
COleBusyDialog member function, 

COleBusyDialog class 1117 

Index 



Index 

COleChangeIconDialog class 
data members, m_ci 1123 
described 1120 
member functions 

COleChangeIconDialog 1121 
DoChangeIcon 1121 
DoModal 1122 
GetIconicMetafile 1122 

COleChangeIconDialog constructor 1121 
COleChangeIconDialog member function, 

COleChangeIconDialog class 1121 
COleChangeSourceDialog class 

data members 
described 1128 
m_cs 1128 

described 1124 
member functions 

COleChangeSourceDialog 1125 
described 1125 
DoModal 1125 
GetDisplayName 1126 
GetFileN arne 1126 
GetFromPrefix 1127 
GetItemName 1127 
GetToPrefix 1127 
Is V alidSource 1128 

COleChangeSourceDialog constructor 1125 
COleChangeSourceDialog member function, 

COleChangeSourceDialog class 1125 
COleClientltem class 1431 

described 1129 
member functions 

Activate 1133 
ActivateAs 1134 
AttachDataObject 1135 
CanActivate 1135 
CanCreateFromData 1135 
CanCreateLinkFromData 1136 
CanPaste 1136 
CanPasteLink 1137 
Close 1137 
COleClientItem 1138 
ConvertTo 1138 
CopyToClipboard 1139 
CreateCloneFrom 1139 
CreateFromClipboard 1139 
CreateFromData 1140 
CreateFromFile 1141 
CreateLinkFromClipboard 1142 

COleClientItem class 1431 (continued) 
member functions (continued) 

CreateLinkFromData 1142 
CreateLinkFromFile 1143 
CreateNewItem 1144 
CreateStaticFromClipboard 1145 
CreateStaticFromData 1145 
Deactivate 1146 
DeactivateUI 1147 
Delete 1147 
DoDragDrop 1147 
DoVerb 1148 
Draw 1149 
GetActiveView 1150 
GetCachedExtent 1150 
GetClassID 1151 
GetClipboardData 1151 
GetDocument 1152 
GetDrawAspect 1152 
GetExtent 1152 
GetIconicMetafile 1153 
GetInPlaceWindow 1153 
GetItemState 1154 
GetLastStatus 1154 
GetLinkUpdateOptions 1154 
GetType 1155 
GetUserType 1155 
IsInPlaceActive 1156 
IsLinkUpToDate 1156 
IsModified 1157 
IsOpen 1157 
IsRunning 1157 
OnActivate 1158 
OnActivateUI 1158 
OnChange 1158 
OnChangeItemPosition 1159 
OnDeactivate 1160 
OnDeactivateAndUndo 1160 
OnDeactivateUI 1161 
OnDiscardUndoState 1161 
OnGetClipboardData 1161 
OnGetClipRect 1162 
OnGetItemPosition 1162 
OnGetWindowContext 1163 
OnlnsertMenus 1163 
OnRemoveMenus 1164 
OnScrollBy 1165 
OnSetMenu 1165 
OnShowControlBars 1166 



COleClientltem class 1431 (continued) 
member functions (collfinued) 

OnShowltcm 1166 
OnUpdateFrameTitle 1167 
ReactivateAndUndo 1167 
Release 1167 
Reload 1168 
Run 1168 
SetDrawAspcct 1168 
SetExtent 1169 
SetHostNames 1169 
SetIconicMetafile 1170 
SetItemRccts 1170 
SetLinkUpdateOptions 1171 
SetPrintDevice 1172 
UpdateLink 1172 

COleClientltem constructor 1138 
COleClientltem member function, 

COleClicntltem class 1138 
COleCmdUI class 

described 1173 
member functions 

COleCmdUI 1174 
Enable 1174 
SetCheck 1174 
SetText 1175 

COleCmdUI member function, COleCmdUI class 1174 
COleControl class 

described 1176 
member functions 

AmbientBackColor 1184 
AmbientDisplayName 1185 
AmbientFont 1185 
AmbientForeColor 1185 
AmbientLocaleID 1186 
AmbientScaleUnits 1186 
AmbientShowGrabHandles 1186 
AmbientShowHatching 1187 
AmbientTextAlign 1187 
AmbientUIDead 1187 
AmbientUserMode 1188 
BoundPropertyChanged 1188 
BoundPropertyRequestEdit 1188 
COleControl 1190 
ControlInfoChanged 1190 
DisplayError 1190 
DoClick 1191 
DoPropExchange 1191 

COleControl class (continued) 
member functions (continued) 

DoSuperClassPaint 1192 
DrawContent 1192 
Draw MetaFile 1192 
EnableSimplcFramc 1193 
ExchangeExtent 1193 
ExchangeStockProps 1193 
Exchange Version 1194 
FireClick 1194 
FireDblClick 1195 
FireError 1195 
FireEvent 1196 
FireKeyDown 1197 
FireKeyPress 1197 
FireKeyUp 1198 
FireMouseDown 1198 
FireMouseMove 1199 
FireMouseUp 1200 
GetAmbientProperty 1203 
GetBackColor 1204 
GetBorderStyle 1204 
GetClassID 1205 
GetControlSize 1207 
GetEnabled 1209 
GetExtendedControl 1209 
GetFont 1210 
GetFontTextMetrics 1210 
GetForeColor 1210 
GetHwnd 1211 
GetMessageString 1211 
GetNotSupported 1211 
GetRectInContainer 1212 
GetStockTextMetrics 1213 
GetText 1213 
InitializeIIDs 1214 
InternalGetFont 1214 
InternalGetText 1214 
InvalidateControl 1215 
IsConvertingVBX 1216 
IsModified 1217 
IsSubclassedControl 1218 
LocklnPlaceActive 1218 
OnAmbientPropertyChange 1219 
OnBackColorChanged 1219 
OnBorderStyleChanged 1219 
OnClick 1220 
OnDraw 1221 
OnDrawMetafile 1222 

Index 



Index 

COleControl class (continued) 
member functions (continued) 

OnEdit 1222 
OnEnabledChanged 1222 
OnEnumVerbs 1223 
OnEventAdvise 1223 
OnFontChanged 1223 
OnForeColorChanged 1224 
OnFreezeEvents 1224 
OnGetColorSet 1224 
OnGetControlInfo 1225 
OnGetDisplayString 1225 
OnGetlnPlaceMenu 1226 
OnGetPredefinedStrings 1227 
OnGetPredefinedValue 1228 
OnHideToolbars 1230 
OnKeyDownEvent 1232 
OnKeyPressEvent 1232 
OnKeyUpEvent 1232 
OnMapPropertyToPage 1233 
OnMnemonic 1233 
OnProperties 1234 
OnRenderData 1235 
OnRenderFileData 1236 
OnRenderGlobalData 1237 
OnResetState 1238 
OnSetClientSite 1238 
OnSetData 1238 
OnSetExtent 1239 
OnSetObjectRects 1239 
OnShowToolbars 1240 
OnTextChanged 1240 
PostModalDialog 1243 
PreModalDialog 1242 
RecreateControlWindow 1242 
Refresh 1243 
SelectFontObject 1245 
SelectStockFont 1246 
SetBackColor 1248 
SetBorderStyle 1248 
SetControlSize 1249 
SetEnabled 1249 
SetFont 1250 
SetForeColor 1250 
SetInitialDataFormats 1251 
SetInitialSize 1251 
SetModifiedFlag 1251 
SetNotPermitted 1252 
SetNotSupported 1252 

COleControl class (continued) 
member functions (continued) 

SetRectInContainer 1252 
SetText 1252 
ThrowError 1253 
TransformCoords 1253 
TranslateColor 1254 
WillAmbientsBe ValidDuringLoad 1254 

COleControl member function, 
COleControl class 1190 

COleControlModule class described 1256 
COleConvertDialog class 

data members, m_cv 1262 
described 1257 
member functions 

COleConvertDialog 1258 
DoConvert 1259 
DoModal 1259 
GetClassID 1260 
GetDrawAspect 1260 
GetIconicMetafile 1261 
GetSelectionType 1261 

COleConvertDialog constructor 1258 
COleConvertDialog member function, 

COleConvertDialog class 1258 
COleCurrency 

data members 
described 1273 
m_cur 1273 
m_status 1273 

member functions 
COleCurrency 1264 
Constructor 1264 
described 1264 
Format 1265 
GetStatus 1266 
operator - 1270 
operator + 1270 
ParseCurrency 1267 
SetCurrency 1268 
SetStatus 1268 

operators 
Archive 1273 
described 1269 
Dump 1273 
operator!= 1272 
operator * 1271 
operator *= 1271 
operator / 1271 



COleCurrency (continued) 
operators (contillued) 

operator /= 1271 
operator += 1270 
operator < 1272 
operator« 1273 
operator <= 1272 
operator -= 1270 
operator = 1269 
operator == 1272 
operator> 1272 
operator >= 1272 
operator» 1273 
operator CURRENCY 1272 
Relational 1272 

COleCurrency class 1263 
COleCurrency data, DFX field exchange 2407 
COleCurrency member function, 

COleCurrency class 1264 
COleDataObject class 

described 1275 
member functions 

Attach 1276 
AttachClipboard 1276 
BeginEnumFormats 1277 
COleDataObject 1277 
Detach 1277 
GetData 1278 
GetFileData 1278 
GetGlobalData 1279 
GetNextFormat 1280 
IsDataA vailable 1280 
Release 1281 

COleDataObject constructor 1277 
COleDataObject member function, 

COleDataobject class 1277 
COleDataSource class 

described 1282, 1452 
member functions 

CacheData 1283 
CacheGlobalData 1284 
COleDataSource 1285 
DelayRenderData 1285 
DelayRenderFileData 1286 
DelaySetData 1287 
DoDragDrop 1287 
Empty 1288 
FlushClipboard 1288 
GetClipboardOwner 1289 

COleDataSource class (continued) 
member functions (colltillued) 

OnRenderData 1289 
OnRenderFileData 1290 
OnRenderGlobalData 1291 
OnSetData 1292 
SetClipboard 1292 

COleDataSource constructor 1285 
COleDataSource member function, 

COleDataSource class 1285 
COleDateTime 

data members 
described 1314 
m_dt 1314 
m_status 1315 

member functions 
COleDateTime 1295 
Constructor 1295 
described 1295 
Format 1297 
GetCurrentTime 1298 
GetDay 1298 
GetDayOfW eek 1299 
GetDayOfY ear 1300 
GetHour 1300 
GetMinute 1301 
GetMonth 1302 
GetSecond 1302 
GetStatus 1303 
GetYear 1304 
ParseDateTime 1305 
SetDate 1306 
SetDateTime 1307 
SetStatus 1309 
SetTime 1310 

operators 
Archive 1314 
described 1311 
Dump 1314 
operator - 1312 
operator!= 1313 
operator + 1312 
operator += 1313 
operator < 1313 
operator« 1314 
operator <= 1313 
operator -= 1313 
operator = 1311 
operator == 1313 

Index 



Index 

COleDateTime (continued) 
operators (continued) 

operator> 1313 
operator >= 1313 
operator» 1314 
operator DATE 1313 
relational 1313 

COleDateTime data, DFX field exchange 2408 
COleDateTime member function, 

COleDateTime class 1295 
COleDateTimeSpan 

data members 
described 1330 
m_span 1330 
m_status 1330 

member functions 
COleDateTimeSpan 1318 
Constructor 1318 
described 1318 
Format 1319 
GetDays 1320 
GetHours 1321 
GetMinutes 1321 
GetSeconds 1322 
GetStatus 1322 
GetTotalDays 1323 
GetTotalHours 1324 
GetTotalMinutes 1325 
GetTotalSeconds 1325 
SetDateTimeSpan 1326 
SetStatus 1326 

operators 
Archive 1329 
described 1327 
Dump 1329 
operator - 1328 
operator!= 1329 
operator + 1328 
operator += 1328 
operator < 1329 
operator« 1329 
operator <= 1329 
operator -= 1328 
operator = 1327 
operator == 1329 
operator> 1329 
operator >= 1329 
operator» 1329 

COleDateTimeSpan (continued) 
operators (continued) 

operator double 1328 
relational 1329 

COleDateTimeSpan class 1317 
COleDateTimeSpan member function, 

COleDateTimeSpan class 1318 
COleDialog class 

described 1332 
member functions, GetLastError 1333 

COleDispatchDriver class 
data members 

m_bAutoRelease 1339 
m_IpDispatch 1340 

described 1334 
member functions 

AttachDispatch 1335 
COleDispatchDriver 1335 
CreateDispatch 1336 
DetachDispatch 1336 
GetProperty 1337 
InvokeHelper 1337 
RelcaseDispatch 1339 
SetProperty 1339 

COleDispatchDriver constructor 1335 
COleDispatchDriver member function, 

COleDispatchDriver class 1335 
COleDispatchException class 

data members 
m_dwHelpContext 1342 
m_strDescription 1342 
m_strHelpFile 1342 
m_strSource 1342 
m_ wCode 1343 

described 1341 
COleDocument class 

described 1344 
member functions 

AddItem 1346 
ApplyPrintDevice 1346 
COleDocument 1347 
EnableCompoundFile 1347 
GetInPlaceActi veItem 1348 
GetNextClientItem 1348 
GetNextItem 1349 
GetNextServerItem 1349 
GetPrimarySelectedItem 1350 
GetStartPosition 1350 
HasBlankItems 1351 



COleDocument class (continued) 
member functions (continued) 

OnFileSendMail 1352 
OnShowViews 1352 
RemoveItem 1355 
UpdateModifiedFlag 1355 

COleDocument constructor 1347 
COleDocument member function, 

COleDocument class 1347 
COleDropSource class 

described 1356 
member functions 

COle Drop Source 1357 
GiveFeedback 1357 
OnBeginDrag 1358 
QueryContinueDrag 1358 

COleDropSource constructor 1357 
COleDropSource member function, 

COleDropSource class 1357 
COleDropTarget class 

described 1359 
member functions 

COleDropTarget 1360 
OnDragEnter 1360 
OnDragLeave 1361 
OnDragOver 1361 
OnDragScroll 1362 
OnDrop 1363 
OnDropEx 1364 
Register 1365 
Revoke 1365 

COleDropTarget constructor 1360 
COleDropTarget member function, 

COleDropTarget class 1360 
COleException class 

data members, m_sc 1367 
described 1366 
member functions, process 1366 

COlelnsertDialog class 
data members, m_io 1373 
described 1368 
member functions 

COlelnsertDialog 1369 
CreateItem 1370 
DoModal 1370 
GetClassID 1371 
GetDrawAspect 1371 
GetIconicMetafile 1372 

COlelnsertDialog class (continued) 
member functions (continued) 

GetPathName 1372 
GetSelectionType 1372 

COlelnsertDialog constructor 1369 
COlelnsertDialog member function, 

COlelnsertDialog class 1369 
COleIPFrameWnd class 

described 1374 
member functions 

COleIPFrameWnd 1374 
OnCreateControlBars 1375 
RepositionFrame 1375 

COleIPFrameWnd constructor 1374 
COleIPFrameWnd member function, 

COleIPFrameWnd class 1374 
COleLinkingDoc class 

described 1377 
member functions 

COleLinkingDoc 1379 
OnFindEmbeddedltem 1379 
OnGetLinkedltem 1379 
Register 1380 
Revoke 1380 

COleLinkingDoc constructor 1379 
COleLinkingDoc member function, 

COleLinkingDoc class 1379 
COleLinksDialog class 

data members, m_el 1383 
described 1381 
member functions 

COleLinksDialog 1382 
DoModal 1382 

COleLinksDialog constructor 1382 
COleLinksDialog member function, 

COleLinksDialog class 1382 
COleMessageFilter class 

described 1384 
member functions 

BeginBusyState 1385 
COleMessageFilter 1386 
EnableBusyDialog 1386 
EnableNotRespondingDialog 1386 
EndBusyState 1387 
OnMessagePending 1387 
Register 1388 
Revoke 1388 
SetBusyReply 1388 

Index 



Index 

COleMessageFilter class (continued) 
member functions (continued) 

SetMessagePendingDelay 1389 
SetRetryReply 1389 

COleMessageFiIter constructor 1386 
COleMessageFiIter member function, 

COleMessageFiIter class 1386 
COleObjectFactory class 

described 1391 
member functions 

COleObjectFactory 1392 
GetClassID 1393 
IsRegistered 1394 
OnCreateObject 1394 
Register 1394 
RegisterAll 1394 
Revoke 1395 
RevokeAll 1395 
UpdateRegistry 1395 
UpdateRegistry All 1396 
VerifyUserLicense 1397 

COleObjectFactory constructor 1392 
COleObjectFactory member function, 

ColeObjectFactory class 1392 
COleObjectFactoryEx class 

member functions 
GetLicenseKey 1393 
VerifyLicenseKey 1396 

COlePasteSpecialDialog class 
data members, m_ps 1404 
described 1398 
member functions 

AddFormat 1399 
AddStandardFormats 1400 
COlePasteSpecialDialog 1401 
CreateItem 1401 
DoModal 1402 
GetDraw Aspect 1402 
GetIconicMetafile 1403 
GetPastelndex 1403 
GetSelectionType 1404 

COlePasteSpecialDialog constructor 1401 
COlePasteSpecialDialog member function, 

COlePasteSpecialDialog class 1401 
COlePropertiesDialog class 

data members 
m~p 1408 
m_Ip 1408 
m_op 1409 

COlePropertiesDialog class (continued) 
data members (continued) 

m_psh 1409 
m_vp 1409 

described 1405 
member functions 

COlePropertiesDialog 1406 
DoModal 1407 
OnApplyScale 1407 

COlePropertiesDialog member function, 
COlePropertiesDialog class 1406 

COlePropertyPage class 
described 1410 
member functions 

COlePropertyPage 1411 
GetControlStatus 1411 
GetObjectArray 1412 
GetPageSite 1412 
IgnoreApply 1413 
IsModified 1413 
OnEditProperty 1413 
OnHelp 1414 
OnlnitDialog 1414 
OnObjectsChanged 1414 
OnSetPageSite 1415 
SetControlStatus 1415 
SetDialogResource 1415 
SetHelplnfo 1416 
SetModifiedFIag 1416 
SetPageName 1416 

COlePropertyPage member function, COlePropertyPage 
class 1411 

COleResizeBar class 
described 1417 
member functions 

COleResizeBar 1418 
Create 1417 

COleResizeBar constructor 1418 
COleResizeBar member function, 

COleResizeBar class 1418 
COleSafeArray class 

described 1419 
member functions 

AccessData 1420 
AllocData 1421 
AllocDescriptor 1421 
Attach 1421 
Clear 1421 
COleSafeArray 1422 



COleSafeArray class (continued) 
member functions (continued) 

Copy 1422 
Create 1423 
CreateOneDim 1423 
Destroy 1424 
DestroyData 1424 
DestroyDescriptor 1424 
Detach 1425 
GetDim 1425 
GetElement 1425 
GetElemSize 1426 
GetLBound 1426 
GetOneDimSize 1426 
GetUBound 1426 
Lock 1427 
operator LPCV ARIANT 1430 
operator LPV ARIANT 1430 
operator= 1429 
operator== 1430 
PtrOflndex 1427 
PutElement 1427 
Redim 1428 
ResizeOneDim 1428 
UnaccessData 1429 
Unlock 1429 

COleSafeArray member function, 
COleSafeArray class 1422 

COleServerDoc class 
described 1431 
member functions 

ActivateInPlace 1433 
COleServerDoc 1434 
CreateInPlaceFrame 1435 
DeactivateAndUndo 1434 
Destroy InPlaceFrame 1435 
DiscardUndoState 1435 
GetEmbeddedItem 1436 
GetItemClipRect 1437 
GetItemPosition 1437 
GetZoomFactor 1437 
IsEmbedded 1438 
IsInPlaceActive 1438 
NotifyChanged 1439 
NotifyClosed 1439 
NotifyRename 1439 
NotifySaved 1440 
OnClose 1440 
OnDeactivate 1441 

COleServerDoc class (continued) 
member functions (cOlltillued) 

OnDeactivateUI 1441 
OnDocWindowActivate 1441 
OnFrameWindowActivate 1443 
OnGetEmbeddedItem 1444 
OnReacti vateAndU ndo 1444 
OnResizeBorder 1445 
OnSetHostNames 1445 
OnSetItemRects 1446 
OnShowControlBars 1446 
OnShowDocument 1447 
OnUpdateDocument 1447 
RequestPositionChange 1447 
SaveEmbedding 1448 
ScrollContainerBy 1448 
UpdateAllItems 1448 

COleServerDoc constructor 1434 
COleServerDoc member function, 

COleServerDoc class 1434 
COleServerItem class 1431 

data members, m_sizeExtent 1469 
described 1450 
member functions 

AddOtherClipboardData 1452 
COleServerItem 1452 
CopyToClipboard 1453 
DoDragDrop 1453 
GetClipboardData 1454 
GetDataSource 1455 
GetDocument 1455 
GetEmbedSourceData 1456 
GetItemName 1456 
GetLinkSourceData 1456 
GetObjectDescriptorData 1457 
IsConnected 1457 
IsLinkedItem 1458 
NotifyChanged 1458 
OnDoVerb 1459 
OnDraw 1460 
OnDrawEx 1460 
OnGetClipboardData 1461 
OnGetExtent 1461 
OnHide 1462 
OnInitFromData 1462 
OnOpen 1463 
OnQueryUpdateItems 1463 
OnRenderData 1464 
OnRenderFileData 1464 

Index 



Index 

COleServerItem class 1431 (continued) 
member functions (continued) 

OnRenderGlobalData 1465 
OnSetColorScheme 1466 
OnSetData 1466 
OnSetExtent 1467 
OnShow 1468 
OnUpdate 1468 
OnUpdateItems 1469 
SetItemN arne 1469 

COleServerItem constructor 1452 
COleServerItem member function, 

COleServerItem class 1452 
COleStreamFile class 

described 1470 
member functions 

Attach 1471 
COleStreamFile 1471 
CreateMemoryStream 1471 
CreateStream 1472 
Detach 1472 
OpenStream 1473 

COleStreamFile constructor 1471 
COleStreamFile member function, 

COleStreamFile class 1471 
COleTemplateServer class 

described 1474 
member functions 

COleTemplateServer 1475 
ConnectTemplate 1475 
UpdateRegistry 1475 

COleTemplateServer constructor 1475 
COleTemplateServer member function, 

COleTemplateServer class 1475 
COleUpdateDialog class 

member functions 
COleUpdateDialog 1477 
DoModal 1478 

COleUpdateDialog constructor 1477 
COleUpdateDialog member function, 

COleUpdateDialog class 1477 
COle Variant class 

described 1479 
member functions 

ChangeType 1482 
Clear 1482 
COle Variant 1480 
Constructor 1480 

COleVariant class (continued) 
member functions (continued) 

described 1480 
Detach 1483 

operators 
Archive 1486 
Assignment 1484 
described 1484 
Dump 1486 
operator« 1486 
operator = 1484 
operator == 1485 
operator» 1486 
operator LPCV ARIA NT 1485 
operator LPV ARIANT 1485 

COle Variant member function, COle Variant 1480 
Collate member function, CString class 1841 
Collating order, specifying 234 
Collection class helpers 2289 
Collection classes 

arrays 
CByteArray 145 
CDWordArray 629 
CObArray 1074 

CMap 980 
CMapPtrToPtr 986 
CMapPtrTo Word 988 
CMapStringToOb 990 
CMapStringToPtr 998 
CMapStringToString 1000 
CMapWordToOb 1002 
CMapWordToPtr 1004 
listed 20 
maps 

CCMapStringToPtr 998 
CMapPtrToPtr 986 
CMapPtrTo W ord 988 
CMapStringToOb 990 
CMapStringToString 1000 
CMapWordToOb 1002 
CMapWordToPtr 1004 

storing aggregate data 145,629,986,988,990,998, 
1000, 1002, 1004, 1074 

template-based 
CArray 61 
CList 909 
CTypedPtrArray 1976 
CTypedPtrList 1981 
CTypedPtrMap 1989 



Collections (DAO) 
QueryDefs 230 
Recordsets 230 
Relations 230 
TableDefs 230 
where stored in MFC 230 

COLORADJUSTMENT structure 2516 
CombineRgn member function, CRgn class 1668 
Combo box DDX field exchange 2361,2376,2378 
Combo-Box styles 2565 
Command IDs 2288 
Command-related classes, listed 7 
CommandToIndex member function 

CStatusBar class 1819 
CToolBar class 1904 
CToolBarCtrl class 1924 

Committing 
database transactions 407 
transactions (DAO) 384 

CommitTrans member function 
CDaoWorkspace class 384 
CDatabase class 407 

Common controls, Windows 
CAnimateCtrl 35 
CHeaderCtrl 803 
CHotKeyCtrl 810 
CImageList 868 
CListCtrl 945 
CProgressCtrl 1538 
CSliderCtrl 1767 
CSpinButtonCtrl 1787 
CStatusBarCtrl 1825 
CTabCtrl 1870 
CToolBarCtrl 1913 
CToolTipCtrl 1940 
CTreeCtrl 1948 

Compacting databases 385 
Compare member function, CString class 1841 
CompareElements global function/macro 2361 
Compareltem member function 

CComboBox class 182 
CListBox class 925 

COMPAREITEMSTRUCT structure 2519 
CompareNoCase member function, CString class 1842 
Comparison operators member function 

CString class 1861 
CTime class 1892 
CTimeSpan class 1899 

Completing add, Recordsets 1628 

Completing edit, Recordsets 1628 
Concurrency, supprt for cursor 1614 

Index 

Connect member function, CAsyncSocket class 86 
Connect strings 

defined 240 
for ISAM databases 240 
for ODBC databases 240 
not used for Jet databases 240 
queryDef 267 

Connecting to databases 412 
Connection handle 418 
Connection maps 2300 
Connection strings 

database 
described 412 
getting 408 

default 
getting 1595 
Recordset 1595 

CONNECTION_lID global function/macro 2362 
CONNECTION_PART global function/macro 2363 
ConnectTemplate member function, 

COleTemplateServer class 1475 
Consistent updates, defined 238 
Construct member function 

CPropertyPage class 1544 
CPropertySheet class 1553 

ConstructElements global function/macro 2362 
Constructing 

CDaoDatabase objects 232 
Data Objects 1277 
Recordsets 1587 

Constructors 
CAnimateCtrl 36 
CArchiveException 59 
CCheckListBox 150 
CCommandLineInfo 203 
CCommonDialog 209 
CCriticalSection 225 
CCtrlView 227 
CDaoDatabase 232 
CDaoException 252 
CDaoQueryDef 264 
CDaoWorkspace 383 
CDatabase 406 
CEvent 664 
CHeaderCtrl 804 
CHotKeyCtrl 811 
CImageList 871 



Index 

Constructors (continued) 
CListCtrl 950 
CListView 976 
CLongBinary 979 
CMiniFrameWnd 1058 
CMultiLock 1068 
CMutex 1072 
COleBusyDialog 1117 
COleChangeIconDialog 1121 
COleChangeSourceDialog 1125 
COleClientItem 1138 
COleConvertDialog 1258 
COleDataObject 1277 
COleDataSource 1285 
COleDispatchDriver 1335 
COleDocument 1347 
COleDropSource 1357 
COleDropTarget 1360 
COleInsertDialog 1369 
COleIPFrameWnd 1374 
COleLinkingDoc 1379 
COleLinksDialog 1382 
COleMessageFilter 1386 
COleObjectFactory 1392 
COlePasteSpecialDialog 1401 
COleResizeBar 1418 
COleServerDoc 1434 
COleServerItem 1452 
COleStreamFile 1471 
COleTemplateServer 1475 
COleUpdateDialog 1477 
CProgressCtrl 1539 
CPropertyPage 1544 
CPropertySheet 1553 
CRecordset 1587 
CRecordView 1635 
CRectTracker 1659 
CRichEditCntrItem 1682 
CRichEditCtrl 1688 
CRichEditView 1717 
CSemaphore 1753 
CSingleLock 1761 
CSliderCtrl 1770 
CSpinButtonCtrl 1789 
CStatusBarCtrl 1827 
CSyncObject 1867 
CTabCtrl 1873 
CToolBarCtrl 1926 
CToolTipCtrl 1943 

Constructors (continued) 
CTreeCtrl 1952 
CTreeView 1974 
CWinThread 2068 

ConstructStream member function, 
CHttpServer class 855 

ContinueModal member function, Cwnd class 2100 
ContinueRouting member function, CCmdUI class 169 
Control classes, listed 14 
ControlInfoChanged member function, 

COleControl class 1190 
Controls 

Edit 631 
multi-line edit 631 

ConvertTo member function, 
COleClientItem class 1138 

Copy member function 
CArray class 64 
CComboBox class 183 
CEdit class 636 
COleSafeArray class 1422 
CRichEditCtrl class 1687 

CopyRect member function, CRect class 1642 
CopyRgn member function, CRgn class 1669 
CopyToClipboard member function 

COleClientItem class 1139 
COleServerItem class 1453 

Counting errors in DAO Errors collection 253 
Counting fields in a querydef 268 
Counting querydefs 241 
Counting relations 244 
Counting tabledefs 245 
Counting workspaces 392 
CPageSetupDialog class 

data members, m_psd 1494 
described 1487 
member functions 

CPageSetupDialog 1488 
CreatePrinterDC 1490 
DoModal 1490 
GetDeviceName 1491 
GetDevMode 1491 
GetDriverMode 1491 
GetMargins 1491 
GetPaperSize 1492 
GetPortName 1492 
OnDrawPage 1492 
PreDrawPage 1493 



CPageSetupDialog member function, 
CPageSetupdialog class 1488 

CPaintDC class 
data members 

m_hWnd 1496 
m_ps 1496 

described 1495 
member functions, CPaintDC 1495 

CPaintDC member function, CPaintDC class 1495 
CPalette class 

described 1497 
member functions 

AnimatePalette 1498 
CPalette 1499 
CreateHalftonePalette 1499 
CreatePalette 1499 
FromHandle 1500 
GetEntryCount 1500 
GetNearestPalettelndex 1500 
GetPaletteEntries 1501 
operator HP ALETTE 1501 
ResizePalette 1502 
SetPaletteEntries 1502 

CPalette member function, CPalette class 1499 
CPen class 

described 1503 
member functions 

CPen 1504 
CreatePen 1506 
CreatePenlndirect 1507 
FromHandle 1508 
GetExtLogPen 1508 
GetLogPen 1509 
operator HPEN 1509 

CPen member function, CPen class 1504 
CPictureHolder class 

data members, m_pPict 1514 
described 1510 
member functions 

CPictureHolder 1511 
CreateEmpty 1511 
CreateFromBitmap 1511 
CreateFromIcon 1512 
CreateFromMetafile 1512 
GetDisplayString 1513 
GetPictureDispatch 1513 
GetType 1513 
Render 1514 
SetPictureDispatch 1514 

CPictureHolder member function, 
CPictureHolder class 1511 

CPoint class 
described 1515 
member functions 

CPoint 1516 
Offset 1516 
operator - 1519 
operator 1= 1517 
operator + 1518 
operator += 1517 
operator -= 1518 
operator == 1517 

CPoint member function, CPoint class 1516 
CPrintDialog class 

data members, m_pd 1529 
described 1521 
member functions 

CPrintDialog 1523 
CreatePrinterDC 1524 
DoModal 1524 
GetCopies 1525 
GetDefaults 1525 
GetDeviceName 1525 
GetDevMode 1526 
GetDriverName 1526 
GetFromPage 1526 
GetPortName 1527 
GetPrinterDC 1527 
GetToPage 1527 
PrintAll 1527 
PrintCollate 1528 
PrintRange 1528 
PrintS election 1528 

CPrintDialog member function, 
CPrintDialog class 1523 

CPrintlnfo class 
data members 

m_bContinuePrinting 1534 
m_bDirect 1534 
m_bPreview 1535 
m_IpUserData 1535 
m_nCurPage 1535 
m_nNumPreviewPages 1536 
m_pPD 1536 
m_rectDraw 1536 
m_strPageDesc 1537 

described 1530 

Index 



Index 

CPrintlnfo class (continued) 
member functions 

GetFromPage 1531 
GetMaxPage 1532 
GetMinPage 1532 
GetToPage 1533 
SetMaxPage 1533 
SetMinPage 1533 

CProgressCtrl class 
described 1538 
member functions 

CProgressCtrl 1539 
Create 1539 
OffsetPos 1540 
SetPos 1540 
SetRange 1540 
SetStep 1541 
StepIt 1541 

CProgressCtrl constructor 1539 
CProgressCtrl member function, 

CProgressCtrl class 1539 
CPropertyPage class 

data members, m_psp 1550 
described 1542 
member functions 

CancelToClose 1543 
CProperty Page 1544 
OnApply 1545 
OnCancel 1546 
OnKillActive 1546 
OnOK 1546 
OnQueryCancel 1547 
OnReset 1547 
OnSetActive 1547 
OnWizardBack 1548 
OnWizardFinish 1548 
OnWizardNext 1549 
QuerySiblings 1549 
SetModified 1549 

CPropertyPage constructor 1544 
CPropertyPage member function, 

CpropertyPage class 1544 
CPropertySheet class 

data meember, m_psh 1561 
described 1551 
member functions 

AddPage 1552 
Construct 1553 
CPropertySheet 1554 

CPropertySheet class (continued) 
member functions (continued) 

Create 1554 
DoModal 1555 
EndDialog 1556 
GetActiveIndex 1556 
GetActivePage 1557 
GetPage 1557 
GetPageCount 1558 
GetPageIndex 1557 
GetTabControl 1558 
PressButton 1558 
RemovePage 1559 
SetActivePage 1559 
SetFinishText 1560 
SetTitle 1560 
SetWizardButtons 1560 
SetWizardMode 1561 

CPropertySheet constructor 1553 
CPropertySheet member function, 

CPropertySheet class 1554 
CPropExchange class 

described 1563 
member functions 

ExchangeBlobProp 1564 
ExchangeFontProp 1564 
ExchangePersistentProp 1565 
ExchangeProp 1566 
ExchangeVersion 1567 
GetVersion 1567 
IsLoading 1567 

CPtrArray class 
described 1568 
members 1569 

CPtrList class described 1570 
Create member function 

CAnimateCtrl class 37 
CAsyncSocket 88 
CButton class 138 
CCheckListBox class 151 
CComboBox class 183 
CDaoDatabase class 234 
CDaoQueryDef class 265 
CDaoTableDef class 358 
CDaoWorkspace class 385 
CDialog class 566 
CDialogBar class 576 
CEdit class 636 
CFindReplaceDialog class 723 



Create member function (continued) 
CFrameWnd class 755 
CHeaderCtrl class 804 
CHotKeyCtrl class 811 
ClmageList class 871 
CListBox class 925 
CListCtrl class 950 
CMDIChildWnd class 1008 
CMetaFileDC class 1055 
CMiniFrameWnd class 1059 
COleResizeBar class 1417 
COleSafeArray class 1423 
CProgressCtrl class 1539 
CPropertySheet class 1554 
CRichEditCtrl class 1687 
CScrollBar class 1738 
CSliderCtrl class 1769 
CSocket class 1781 
CSpinButtonCtrl class 1788 
CSplitterWnd class 1798 
CStatic class 1813 
CStatusBar class 1820 
CStatusBarCtrl class 1826 
CTabCtrl class 1872 
CToolBar class 1904 
CToolBarCtrl class 1925 
CToolTipCtrl class 1942 
CTreeCtrl class 1950 
CWnd class 2100 

CreateBindContext member function, 
CMonikerFile class 1061 

CreateBindStatusCallback member function, 
CAsyncMonikerFile class 72 

CreateBitmap member function, CBitmap class 114 
CreateBitmaplndirect member function, 

CBitmap class 115 
CreateBrushIndirect member function, 

CBrush class 129 
CreateCaret member function, CWnd class 2101 
CreateClient member function, 

CMDIFrameWnd class 1013 
CreateClientltem member function, 

CRichEditDoc class 1712 
CreateCloneFrom member function, 

COleClientltem class 1139 
CreateCompatibleBitmap member function, 

CBitmap class 116 
CreateCompatibleDC member function, CDC class 455 

CreateControl member function, Cwnd class 2101 
CreateDC member function, CDC class 455 
CreateDIBPattemBrush member function, 

CBrush class 129 
CreateDirectory member function 

CFtpConnection class 771 
CreateDiscardableBitmap member function, 

CBitmap class 116 
CreateDispatch member function, 

COleDispatchDriver class 1336 
CreateDragImage member function 

CListCtrl class 951 
CTreeCtrl class 1951 

Index 

CreateEllipticRgn member function, CRgn class 1670 
CreateElli pticRgnIndirect member function, 

CRgn class 1670 
CreateEmpty member function, 

CPictureHolder class 1511 
CreateEnhanced member function, 

CMetaFileDC class 1056 
CreateEx member function, CWnd class 2103 
CreateField member function, CDaoTableDef class 359 
CreateFont member function, CFont class 729 
CreateFontlndirect member function, CFont class 733 
CreateFromBitmap member function, 

CPictureHolder class 1511 
CreateFromClipboard member function, 

COleClientltem class 1139 
CreateFromData member function, 

COleClientltem class 1140 
CreateFromData member function, CRgn class 1671 
CreateFromFile member function, 

COleClientItem class 1141 
CreateFromIcon member function, 

CPictureHolder class 1512 
CreateFromMetafile member function, 

CPictureHolder class 1512 
CreateFromPath member function, CRgn class 1671 
CreateGrayCaret member function, CWnd class 2105 
CreateHalftonePalette member function, 

CPalette class 1499 
CreateHatchBrush member function, CBrush class 131 
CreateIC member function, CDC class 456 
Create Index member function, 

CDaoTableDef class 361 
CreateIndirect member function, CDialog class 567 
CreateInPlaceFrame member function, 

COleServerDoc class 1435 



Index 

CreateItem member function 
COleInsertDialog class 1370 
COlePasteSpecialDialog class 1401 

CreateLinkFromClipboard member function, 
COleClientItem class 1142 

CreateLinkFromData member function, 
COleClientItem class 1142 

CreateLinkFromFile member function, 
COleClientItem class 1143 

CreateLocator member function 
CGopherConnection class 791 

CreateMemoryStream member function, 
COleStreamFile class 1471 

CreateMenu member function, CMenu class 1036 
CreateNewDocument member function, 

CDocTemplate class 593 
CreateNewFrame member function, 

CDocTemplate class 593 
CreateNewItem member function, 

COleClientItem class 1144 
CreateOleFrame member function, 

CDocTemplate class 593 
CreateOneDim member function, 

COleSafeArray class 1423 
CreatePalette member function, CPalette class 1499 
CreatePatternBrush member function, 

CBrush class 132 
CreatePen member function, CPen class 1506 
CreatePenIndirect member function, CPen class 1507 
CreatePointFont member function, CFont class 734 
CreatePolygonRgn member function, CRgn class 1672 
CreatePolyPolygonRgn member function, 

CRgn class 1673 
CreatePopupMenu member function, 

CMenu class 1037 
CreatePrinterDC member function 

CPageSetupDialog class 1490 
CPrintDialog class 1524 
CWinApp class 2026 

CreateRectRgn member function, CRgn class 1674 
CreateRectRgnIndirect member function, 

CRgn class 1675 
CreateRelation member function, 

CDaoDatabase class 235 
CreateRoundRectRgn member function, 

CRgn class 1675 
CreateScrollBarCtrl member function, 

CSplitterWnd class 1799 
CreateSolidBrush member function, CBrush class 132 

CreateSolidCaret member function, Cwnd class 2105 
CreateStatic member function, 

CSplitterWnd class 1799 
CreateStaticFromClipboard member function, 

COleClientItem class 1145 
CreateStaticFromData member function, 

COleClientItem class 1145 
CreateStockObject member function, 

CGdiObject class 784 
CreateStream member function, 

COleStreamFile class 1472 
CREATESTRUCT structure 2520 
CreateSysColorBrush member function, 

CBrush class 133 
CreateThread member function, 

CWinThread class 2068 
Create View member function 

CFrameWnd class 756 
CSplitterWnd class 1800 

Creating 
CDatabase object 406 
CStreamFile objects 1472 
database objects 234 
Recordset 1587 
relations between tables 235 
workspaces 387 

CRecentFileList class 
described 1572 
member functions 

Add 1572 
CRecentFileList 1573 
GetDisplayName 1573 
GetSize 1574 
operator [] 1575 
ReadList 1574 
Remove 1574 
UpdateMenu 1575 
WriteList 1575 

CRecentFileList member function, 
CRecentFileList class 1573 

CRecordset class 
data members 

m_hstmt 1629 
m_nFields 1629 
m_nParams 1630 
m_pDatabase 1630 
m_strFilter 1631 
m_strSort 1631 

described 1576 



CRecordset class (continued) 
member functions 

AddNew 1580 
CanAppend 1581 
Cancel 1582 
CanRestart 1583 
CanS croll 1583 
CanTransact 1583 
CanUpdate 1584 
Close 1586 
CRecordset 1587 
Delete 1587 
DoFieldExchange 1590 
Edit 1591 
GetDefaultConnect 1595 
GetDefaultSQL 1595 
GetRecordCount 1600 
GetSQL 1603 
GetStatus 1602 
GetTableName 1604 
IsBOF 1604 
IsDeleted 1605 
IsEOF 1606 
IsFieldDirty 1606 
IsFieldNull 1607 
IsFieldNullable 1608 
IsOpen 1608 
Move 1609 
MoveFirst 1611 
MoveLast 1612 
MoveNext 1613 
MovePrev 1614 
OnSetOptions 1614 
Open 1615 
Requery 1621 
SetFieldDirty 1623 
SetFieldNull 1624 
SetLockingMode 1625 
Update 1628 

CRecordset constructor 1587 
CRecordset member function, CRecordset class 1587 
CRecordView class 

described 1633 
member functions 

CRecordView 1635 
IsOnFirstRecord 1636 
IsOnLastRecord 1636 
OnGetRecordset 1637 
OnMove 1637 

CRecordView constructor 1635 
CRecordView member function, 

CRecordView class 1635 
CRect class 

described 1639 
member functions 

BottomRight 1641 
CopyRect 1642 
CRect 1642 
EqualRect 1644 
Height 1644 
InflateRect 1644 
IntersectRect 1645 
IsRectEmpty 1646 
IsRectNull 1646 
NormalizeRect 1646 
OffsetRect 1647 
operator - 1655 
operator!= 1652 
operator &- 1655 
operator &= 1653 
operator 1 1656 
operator 1= 1654 
operator + 1654 
operator += 1652 
operator -= 1653 
operator = 1651 
operator == 1651 
operator LPCRECT 1651 
operator LPRECT 1651 
PtInRect 1647 
SetRect 1648 
SetRectEmpty 1648 
Size 1648 
SubtractRect 1649 
Top Left 1649 
UnionRect 1650 
Width 1650 

CRect member function, CRect class 1642 
CRectTracker class 

data members 
m_nHandleSize 1665 
m_nStyle 1665 
m_rect 1665 
m_sizeMin 1665 

described 1657 
member functions 

AdjustRect 1658 
CRectTracker 1659 

Index 



Index 

CRectTracker class (continued) 
member functions (continued) 

Draw 1659 
DrawTrackerRect 1660 
GetHandleMask 1660 
GetTrueRect 1661 
HitTest 1661 
NormalizeHit 1662 
OnChangedRect 1663 
SetCursor 1663 
Track 1663 
TrackRubberBand 1664 

usage 1657 
CRectTracker constructor 1659 
CRectTracker member function, 

CRectTracker class 1659 
CResourceException class 

described 1666 
member functions, CResourceException 1666 

CResourceException member function, 
CResourceException class 1666 

CRgn class 
described 1667 
member functions 

CombineRgn 1668 
CopyRgn 1669 
CreateEllipticRgn 1670 
CreateEllipticRgnIndirect 1670 
CreateFromData 1671 
CreateFromPath 1671 
CreatePolygonRgn 1672 
CreatePolyPolygonRgn 1673 
CreateRectRgn 1674 
CreateRectRgnIndirect 1675 
CreateRoundRectRgn 1675 
CRgn 1676 
EqualRgn 1676 
FromHandle 1676 
GetRegionData 1677 
GetRgnBox 1677 
OffsetRgn 1678 
operator HRGN 1680 
PtInRegion 1679 
RectInRegion 1679 
SetRectRgn 1680 

CRgn member function, CRgn class 1676 

CRichEditCntrItem class 
described 1681 
member functions 

CRichEditCntrItem 1682 
described 1682 
SyncToRichEditObject 1682 

CRichEditCntrItem constructor 1682 
CRichEditCntrItem member function, 

CRichEditCntrlItem class 1682 
CRichEditCtrl class 

member functions 1686 
CanPaste 1686 
CanUndo 1686 
Clear 1686 
Copy 1687 
Create 1687 
CRichEditCtrl 1688 
Cut 1688 
DisplayBand 1689 
EmptyUndoBuffer 1689 
FindText 1689 
GetCharPos 1690 
GetDefaultCharFormat 1691 
GetEventMask 1691 
GetFirstVisibleLine 1692 
GetIRichEditOle 1692 
GetLimitText 1692 
GetLine 1693 
GetLineCount 1693 
GetModify 1693 
GetParaFormat 1694 
GetRect 1694 
GetSel 1695 
GetSelectionCharFormat 1695 
GetSelectionType 1696 
GetSelText 1696 
GetTextLength 1697 
HideSelection 1697 
LimitText 1698 
LineFromChar 1698 
LineIndex 1699 
LineLength 1699 
LineScroll 1700 
Paste 1700 
PasteSpecial 1701 
ReplaceSel 1701 
RequestResize 1702 
SetBackgroundColor 1702 
SetDefaultCharFormat 1702 



CRichEditCtrl class (continued) 
member functions 1686 (continued) 

SetEventMask 1703 
SetModify 1703 
SetOLECallback 1704 
SetOptions 1704 
SetParaFormat 1705 
SetReadOnly 1706 
SetRect 1706 
SetSel 1706 
SetSelectionCharFormat 1707 
SetTargetDevice 1708 
SetWordCharFormat 1708 
Streamln 1709 
StreamOut 1709 
Undo 1710 

CRichEditCtrl constructor 1688 
CRichEditCtrl member function, 

CRichEditCtrl class 1688 
CRichEditDoc class 

data members 
described 1713 
m_bRTF 1713 

described 1711 
member functions 1712 

CreateClientItem 1712 
GetStreamFormat 1712 
GetView 1713 

CRichEditView class 
data members 

described 1734 
m_nBulletIndent 1734 
m_nWordWrap 1734 

member functions 
AdjustDialogPosition 1716 
CanPaste 1717 
CRichEdit View 1717 
described 1716 
DoPaste 1717 
FindText 1718 
FindTextSimple 1718 
GetCharFormatSelection 1718 
GetClipboardData 1719 
GetContextMenu 1720 
GetDocument 1721 
GetInPlaceActiveItem 1721 
GetMargins 1721 
GetPageRect 1722 
GetPaperSize 1722 

CRichEditView class (continued) 
member functions (continued) 

GetParaFormatSelection 1722 
GetPrintRect 1723 
GetPrintWidth 1723 
GetRichEditCtrl 1723 
GetSelectedItem 1724 
GetTextLength 1724 
InsertFileAsObject 1724 
InsertItem 1724 
IsRichEditFormat 1725 
IsSelected 1725 
OnCharEffect 1726 
OnFindNext 1726 
OnInitialUpdate 1726 
OnParaAlign 1727 
OnPasteNativeObject 1727 
OnPrinterChanged 1728 
OnReplaceAll 1728 
OnReplaceSel 1728 
OnTextNotFound 1729 
OnUpdateCharEffect 1729 
OnUpdateParaAlign 1730 
PrintInsideRect 1730 
PrintPage 1731 
Query AcceptData 1731 
SetCharFormat 1732 
SetMargins 1732 
SetPaperSize 1733 
SetParaFormat 1733 
WrapChanged 1734 

CRichEditView constructor 1717 
CRichEditView member function, 

CRichEditView class 1717 
Cross-tab query 261 
CRuntimeClass class, described 1735 
CScrollBar class 

described 1737 
member functions 

Create 1738 
CScrollBar 1739 
EnableScrollBar 1739 
GetScrollInfo 1739 
GetScrollLimit 1740 
GetScrollPos 1740 
GetScrollRange 1741 
SetScrollInfo 1741 
SetScrollPos 1742 

Index 



Index 

CScrollBar class (continued) 
member functions (continued) 

SetScrollRange 1742 
ShowScrollBar 1743 

CScrollBar member function, CScrollBar class 1739 
CScrollView class 

member functions 
CScrollView 1746 
FillOutsideRect 1746 
GetDeviceScrollPosition 1747 
GetDeviceScrollSizes 1747 
GetScrollPosition 1748 
GetTotalSize 1748 
ResizeParentToFit 1749 
ScrollToPosition 1749 
SetScaleToFitSize 1750 
SetScrollSizes 1750 

CScrollView member function, 
CScroll View class 1746 

CSemaphore class member functions, 
CSemaphore 1753 

CSemaphore constructor 1753 
CSemaphore member function, 

CSemaphore class 1753 
CSharedFile class 

described 1754 
member functions 

CSharedFile 1755 
Detach 1755 
SetHandle 1755 

CSharedFile member function, 
CSharedFile class 1755 

CSingleDocTemplate class 
described 1757 
member functions, CSingleDocTemplate 1758 

CSingleDocTemplate member function, 
CSingleDocTemplate class 1758 

CSingleLock class 
described 1760 
member functions 

CSingleLock 1761 
IsLocked 1761 
Lock 1761 
Unlock 1762 

CSingleLock constructor 1761 
CSingleLock member function, 

CSingleLock class 1761 

CSize class 
described 1763 
member functions 

CSize 1763 
operator - 1765 
operator!= 1764 
operator + 1765 
operator += 1764 
operator -= 1765 
operator == 1764 

CSize member function, CSize class 1763 
CSliderCtrl class 

described 1767 
member functions 

ClearSel 1768 
ClearTics 1769 
Create 1769 
CSliderCtrl 1770 
GetChannelRect 1771 
GetLineSize 1771 
GetNumTics 1771 
GetPageSize 1772 
GetPos 1772 
GetRange 1772 
GetRangeMax 1773 
GetRangeMin 1773 
GetSelection 1773 
GetThumbRect 1774 
GetTic 1774 
GetTicArray 1774 
GetTicPos 1775 
SetLineSize 1775 
SetPageSize 1775 
SetPos 1776 
SetRange 1776 
SetRangeMax 1776 
SetRangeMin 1777 
SetSelection 1777 
SetTic 1777 
SetTicFreq 1778 
VerifyPos 1778 

CSliderCtrl constructor 1770 
CSliderCtrl member function, CSliderCtrl class 1770 
CSocket class 

described 1779 
member functions 

Attach 1780 
CancelBlockingCall 1781 
Create 1781 



CSocket class (continued) 
member functions (continued) 

CSocket 1782 
FromHandle 1782 
IsBlocking 1783 
OnMessagePending 1783 

members 1779 
CSocket member function, CSocket class 1780, 1782 
CSocketFile class 

described 1785 
member functions 

CSocketFile 1786 
described 1786 

members 1785 
CSocketFile member function, CSocketFile class 1786 
CSpinButtonCtrl class 

described 1787 
member functions 

Create 1788 
CSpinButtonCtrl 1789 
GetAccel 1789 
GetBase 1790 
GetBuddy 1790 
GetPos 1790 
GetRange 1791 
SetAccel 1791 
SetBase 1792 
SetBuddy 1792 
SetPos 1792 
SetRange 1793 

CSpinButtonCtrl constructor 1789 
CSpinButtonCtrl member function, 

CSpinButtonCtrl class 1789 
CSplitterWnd class 

described 1794 
member functions 

ActivateNext 1797 
CanActivateNext 1797 
Create 1798 
CreateScrollBarCtrl 1799 
CreateStatic 1799 
Create View 1800 
CSplitterWnd 1801 
De1eteCo1umn 1801 
De1eteRow 1801 
Delete View 1802 
DoKeyboardSplit 1802 
DoScroll 1803 
DoScrollBy 1803 

CSplitterWnd class (continued) 
member functions (continued) 

GetActivePane 1804 
GetColumnCount 1804 
GetColumnInfo 1805 
GetPane 1805 
GetRowCount 1805 
GetRowInfo 1805 
GetScrollStyle 1806 
IdFromRowCol 1806 
IsChildPane 1807 
OnDrawSplitter 1807 
OnInvertTracker 1808 
Reca1cLayout 1808 
SetActivePane 1809 
SetColumnInfo 1809 
SetRowInfo 1809 
SetScrollStyle 1810 
SpiitCo1umn 1810 
SplitRow 1811 

CSplitterWnd member function, 
CSplitterWnd class 1801 

CStatic class 
described 1812 
member functions 

Create 1813 
CStatic 1814 
GetBitmap 1814 
GetCursor 1814 
GetEnhMetaFile 1815 
GetIcon 1815 
SetBitmap 1815 
SetCursor 1816 
SetEnhMetaFile 1816 
SetIcon 1817 

CStatic member function, CStatic class 1814 
CStatusBar class 

described 1818 
member functions 

CommandToIndex 1819 
Create 1820 
CStatusBar 1820 
GetItemID 1821 
GetItemRect 1821 
GetPaneInfo 1821 
GetPaneStyle 1822 
GetPaneText 1822 
GetStatusBarCtrl 1822 
ReportError 670 

Index 



Index 

CStatusBar class (continued) 
member functions (continued) 

Setlndicators 1823 
SetPaneInfo 1823 
SetPaneStyle 1824 
SetPaneText 1824 

CStatusBar member function, CStatusBar class 1820 
CStatusBarCtrl class 

described 1825 
member functions 

Create 1826 
CStatusBarCtrl 1827 
DrawItem 1827 
GetBorders 1828 
GetParts 1828 
GetRect 1829 
GetText 1829 
GetTextLength 1830 
SetMinHeight 1830 
SetParts 1831 
SetSimple 1831 
SetText 1832 

CStatusBarCtrl constructor 1827 
CStatusBarCtrl member function, 

CStatusBarCtrl class 1827 
CStdioFile class 

data members, m_pStream 1836 
described 1833 
member functions 

CStdioFile 1834 
ReadString 1835 
WriteString 1836 

CStdioFile member function, CStdioFile class 1834 
CStreamFile objects 

attaching to LPSTREAM objects 1471 
creating 1472 
detaching from LPSTREAM objects 1472 
memory, opening 1471 
opening 1473 

CString 
DDX field exchange 2384 
DFX field exchange 2414 
RFX field exchange 2473 

CString class 
described 1837 
member functions 

AllocSysString 1840 
AnsiToOem 1840 
Collate 1841 

CString class (continued) 
member functions (continued) 

Compare 1841 
CompareNoCase 1842 
comparions operators 1861 
CString 1842 
Empty 1843 
Find 1844 
FindOneOf 1844 
Format 1845 
FormatMessage 1845 
FreeExtra 1846 
GetAt 1846 
GetBuffer 1847 
GetB ufferSetLength 1848 
GetLength 1849 
IsEmpty 1849 
Left 1849 
LoadString 1850 
LockBuffer 1851 
MakeLower 1851 
MakeReverse 1852 
MakeUpper 1852 
Mid 1852 
OemToAnsi 1853 
operator [] 1862 
operator + 1860 
operator += 1861 
operator «,» 1859 
operator = 1858 
operator LPCTSTR () 1859 
ReleaseBuffer 1853 
ReverseFind 1854 
Right 1854 
SetAt 1855 
SetSysString 1855 
SpanExcluding 1856 
SpanIncluding 1857 
TrimLeft 1857 
TrimRight 1858 
UnlockBuffer 1858 
usage 1837 

CString member function, CString class 1842 
CString objects, formatting message-box display 2287 
CStringArray class, described 1863 
CStringList class, described 1865 



CSyncObject class 
described 1867 
member functions 

CSyncObject 1867 
Lock 1868 
Unlock 1868 

CSyncObject constructor 1867 
CSyncObject member function, 

CSyncObject class 1867 
CTabCtrl class 

described 1870 
member functions 

Adj ustRect 1871 
Create 1872 
CTabCtrl 1873 
De1eteAllItems 1874 
De1eteItem 1874 
DrawItem 1874 
GetCurFocus 1875 
GetCurSel 1875 
GetImageList 1875 
GetItem 1875 
GetItemCount 1877 
GetItemRect 1877 
GetRowCount 1877 
GetTooltips 1878 
HitTest 1878 
InsertItem 1879 
RemoveImage 1879 
SetCurSel 1879 
SetlmageList 1880 
SetItem 1880 
SetItemSize 1880 
SetPadding 1881 
SetTooltips 1881 

CTabCtrl constructor 1873 
CTabCtrl member function, CTabCtrl class 1873 
CTime class 

described 1882 
member functions 

comparison operators 1892 
CTime 1884 
Format 1886 
FormatGmt 1886 
GetCurrentTime 1887 
GetDay 1887 
GetDayOtWeek 1887 
GetGmtTm 1888 
GetHour 1889 

CTime class (continued) 
member functions (colltillued) 

GetLocalTm 1889 
GetMinute 1890 
GetMonth 1890 
GetSecond 1890 
GetTime 1890 
GetYear 1891 
operator +, - 1891 
operator +=, -= 1892 
operator = 1891 
operators «,» 1893 

CTime member function, CTime class 1884 
CTime, RFX field exchange 2464 
CTimeSpan class 

described 1894 
member functions 

comparison operators 1899 
CTimeSpan 1895 
Format 1896 
GetDays 1897 
GetHours 1897 
GetMinutes 1897 
GetSeconds 1897 
GetTotalHours 1898 
GetTotalMinutes 1898 
GetTotalSeconds 1898 
operator +, - 1899 
operator +=, -= 1899 
operator = 1898 
operators «,» 1900 

Index 

CTimeSpan member function, CTimeSpan class 1895 
CToolBar class 

described 1901 
member functions 

CommandToIndex 1904 
Create 1904 
CToolBar 1905 
GetButtonInfo 1905 
GetButtonStyle 1906 
GetButtonText 1906 
GetItemID 1906 
GetItemRect 1907 
GetToolBarCtrl 1907 
LoadBitmap 1908 
LoadToolBar 1908 
SetBitmap 1909 
SetButtonInfo 1909 
SetButtons 1910 



Index 

CToolBar class (continued) 
member functions (continued) 

SetButtonStyle 1910 
SetButtonText 1911 
SetHeight 1911 
SetSizes 1912 

CToolBar member function, CToolBar class 1905 
CToolBarCtrl class 

described 1913 
member functions 

AddBitmap 1920 
AddButtons 1921 
AddString 1923 
AddStrings 1923 
AutoSize 1924 
CheckButton 1924 
CommandTolndex 1924 
Create 1925 
CToolBarCtrl 1926 
Customize 1927 
DeleteButton 1927 
EnableButton 1927 
GetBitmapFlags 1928 
GetButton 1928 
GetButtonCount 1929 
GetItemRect 1929 
GetRows 1929 
GetState 1930 
GetToolTips 1930 
HideButton 1931 
Indeterminate 1931 
InsertButton 1932 
IsButtonChecked 1932 
IsButtonEnabled 1933 
IsButtonHidden 1933 
IsButtonlndeterminate 1933 
IsButtonPressed 1934 
PressButton 1934 
RestoreState 1935 
SaveState 1935 
SetBitmapSize 1936 
SetButtonSize 1936 
SetButtonStructSize 1937 
SetCmdID 1937 
SetOwner 1937 
SetRows 1938 
SetState 1939 
SetToolTips 1939 

CToolBarCtrl constructor 1926 

CToolBarCtrl member function, 
CToolBarCtrl class 1926 

CToolTipCtrl class 
described 1940 
member functions 

Activate 1941 
AddTool 1941 
Create 1942 
CToolTipCtrl 1943 
DelTool 1943 
GetText 1943 
GetToolCount 1944 
GetToolInfo 1944 
HitTest 1945 
RelayEvent 1946 
SetDelayTime 1946 
SetToolInfo 1947 
SetToolRect 1947 
UpdateTipText 1947 

CToolTipCtrl constructor 1943 
CToolTipCtrl member function, 

CToolTipCtrl class 1943 
CTreeCtrl class 

described 1948 
member functions 

Create 1950 
CreateDraglmage 1951 
CTreeCtrl 1952 
DeleteAllItems 1952 
DeleteItem 1952 
EditLabel 1952 
Ensure Visible 1953 
Expand 1953 
GetChildItem 1954 
GetCount 1954 
GetDropHilightItem 1954 
GetEditControl 1954 
GetFirstVisibleItem 1955 
GetImageList 1955 
GetIndent 1956 
GetItem 1956 
GetItemData 1958 
GetItemlmage 1958 
GetltemRect 1959 
GetItemState 1959 
GetItemText 1960 
GetNextItem 1960 
GetN extSiblingItem 1961 
GetNextVisibleItem 1961 



CTreeCtrl class (continued) 
member functions (colltillued) 

GetParentItem 1962 
GetPrevSiblingItem 1962 
GetPrevVisiblcItcm 1962 
GetRootItem 1963 
GetSelectedItem 1963 
GetVisibleCount 1963 
HitTest 1964 
InsertItem 1965 
ItemHasChildren 1966 
Select 1966 
SelectDropTarget 1967 
SelectItem 1967 
SetImageList 1968 
Setlndent 1969 
Setltem 1969 
SetltemData 1970 
SetltemImage 1970 
SetltemState 1971 
SetltemText 1971 
SortChildren 1972 
SortChildrenCB 1972 

CTreeCtrl constructor 1952 
CTreeCtrl member function, CTreeCtrl class 1952 
CTree View class 

described 1974 
member functions 

CTreeView 1974 
GetTreeCtrl 1975 

CTree View constructor 1974 
CTreeView member function, CTreeView class 1974 
CTypedPtrArray class 

described 1976 
member functions 

ElementAt 1977 
GetAt 1978 
operator [] 1980 

CTypedPtrList class 
described 1981 
member functions 

GetAt 1982 
GetHead 1984 
GetNext 1985 
GetPrev 1985 
GetTail 1986 
RemoveHead 1987 
RemoveTail 1987 

CTypedPtrMap class 
described 1989 
member functions 

GetNextAssoc 1990 
Lookup 1990 
operator [] 1991 

CUIntArray class, described 1993 
Currency 

DDX field exchange 2384 
DFX field exchange 2407 

Cursor concurrency, Recordset 1614 
Cursor, support for scroll able 1614 
CU serException class, described 1995 

Index 

Custom DDX routines, CDataExchange 420,421 
Customize member function, CToolBarCtrl class 1927 
Customizing SQL, Recordset 1615 
Cut member function 

CComboBox class 184 
CEdit class 637 
CRichEditCtrl class 1688 

CView class 
described 1997 
member functions 

CView 2000 
DoPreparePrinting 2000 
GetDocument 2001 
IsSelected 2001 
OnActivateFrame 2002 
OnActivate View 2002 
OnBeginPrinting 2003 
OnDragEnter 2004 
OnDragLeave 2005 
OnDragOver 2005 
OnDragScroll 2006 
OnDraw 2007 
OnDrop 2007 
OnDropEx 2008 
OnEndPrinting 2009 
OnEndPrintPreview 2010 
OnInitialUpdate 2010 
OnPrepareDC 2011 
OnPreparePrinting 2012 
OnPrint 2013 
OnScroll 2014 
OnScrollBy 2015 
OnUpdate 2015 

CView member function, CView class 2000 



Index 

CWaitCursor class 
described 2017 
member functions 

CWaitCursor 2018 
Restore 2019 

CWaitCursor member function, 
CWaitCursor class 2018 

CWinApp class 
data members 

m_bHelpMode 2058 
m_hInstance 2058 
m_hPrevInstance 2059 
m_lpCmdLine 2059 
m_nCmdShow 2060 
m_pActiveWnd 2060 
m_pszAppName 2060 
m_pszExeN arne 2061 
m_pszHelpFilePath 2062 
m_pszProfileName 2062 
m_pszRegistry Key 2063 

described 2021 
member functions 

AddDocTemplate 2025 
AddToRecentFileList 2025 
CloseAllDocuments 2026 
CreatePrinterDC 2026 
CWinApp 2026 
DoMessageBox 2027 
DoWaitCursor 2027 
Enable3dControis 2028 
Enable3dControisStatic 2028 
EnableShellOpen 2029 
ExitInstance 2030 
GetFirstDocTemplatePosition 2030 
GetNextDocTemplate 2031 
GetPrinterDeviceDefaults 2031 
GetProfileInt 2032 
GetProfileString 2032 
HideApplication 2033 
Initlnstance 2033 
LoadCursor 2035 
LoadIcon 2035 
LoadOEMCursor 2036 
LoadOEMIcon 2037 
LoadStandardCursor 2037 
LoadStandardIcon 2038 
LoadStdProfileSettings 2039 
OnContextHelp 2039 
OnDDECommand 2039 

CWinApp class (continued) 
member functions (continued) 

OnFileNew 2040 
OnFileOpen 2041 
OnFilePrintSetup 2042 
OnHelp 2043 
OnHelpFinder 2044 
OnHelpIndex 2044 
OnHelpUsing 2044 
OnIdle 2045 
OpenDocumentFile 2047 
ParseCommandLine 2048 
PreTranslateMessage 2049 
ProcessMessageFilter 2049 
ProcessShellCommand 2050 
Process WndProcException 2051 
RegisterShellFileTypes 2051 
Run 2052 
RunAutomated 2052 
RunEmbedded 2053 
SaveAllModified 2053 
SelectPrinter 2053 
SetDialogBkColor 2054 
SetRegistryKey 2054 
WinHelp 2055 
WriteProfileInt 2056 
WriteProfileString 2057 

CWinApp member function, CWinApp class 2026 
CWindowDC class 

data members, m_h Wnd 2065 
described 2064 
member functions, CWindowDC 2064 

CWindowDC member function, 
CWindowDC class 2064 

CWinThread class 
data members 

m_bAutoDelete 2076 
m_hThread 2076 
m_nThreadID 2076 
m_pActiveWnd 2076 
m_pMainWnd 2077 

described 2066 
member functions 

CreateThread 2068 
CWinThread 2068 
ExitInstance 2069 
GetMain Wnd 2069 
GetThreadPriority 2070 
InitInstance 2070 



CWinThread class (continued) 
member functions (contillued) 

lsldleMessage 2071 
Onldle 2071 
PreTranslateMessage 2072 
ProcessMessageFilter 2073 
ProcessWndProcException 2073 
ResumeThread 2074 
Run 2074 
SetThreadPriority 2075 
SuspendThread 2075 

CWinThread constructor 2068 
CWinThread member function, 

CWinThread class 2068 
CWnd class 

data members, m_hWnd 2276 
described 2078 
member functions 

ArrangeIconicWindows 2093 
Attach 2093 
BeginPaint 2094 
BindDefaultProperty 2095, 2096 
BringWindowToTop 2094 
CalcWindowRect 2096 
CancelToolTips 2097 
CenterWindow 2097 
ChangeClipboardChain 2097 
CheckDIgButton 2098 
CheckRadioButton 2098 
ChildWindowFromPoint 2099 
ClientToScreen 2099 
ContinueModal 2100 
Create 2100 
CreateCaret 2101 
CreateControl 210 1 
Create Ex 2103 
CreateGrayCaret 2105 
CreateSolidCaret 2105 
CWnd 2106 
Default 2106 
DefWindowProc 2107 
DeleteTempMap 2107 
DestroyWindow 2107 
Detach 2108 
DIgDirList 2108 
DlgDirListComboBox 2110 
DIgDirSelect 2111 
DIgDirSelectComboBox 2112 
DoDataExchange 2112 

CWnd class (continued) 
member functions (continued) 

DragAcceptFiles 2114 
DrawMenuBar 2114 
EnableScrollBar 2114 
EnableScrollBarCtrl 2115 
EnableToolTips 2115 
Enable Window 2116 
EndModalLoop 2117 
EndPaint 2117 
ExecuteDIglnit 2118 
FilterToolTipMessage 2118 
FindWindow 2119 
Flash Window 2119 
FromHandle 2120 
FromHandlePermanent 2120 
GetActive Window 2121 
GetCapture 2121 
GetCaretPos 2121 
GetCheckedRadioButton 2122 
GetClientRect 2122 
GetClipboardOwner 2122 
GetClipboardViewer 2123 
GetControlUnknown 2123 
GetCurrentMessage 2123 
GetDC 2124 
GetDCEx 2124 
GetDescendant Window 2126 
GetDesktop Window 2126 
GetDIgCtrlID 2126 
GetDlgItem 2127 
GetDlgItemlnt 2127 
GetDlgItemText 2128 
GetDSCCursor 2129 
GetExStyle 2128 
GetFocus 2130 
GetFont 2130 
GetForegroundWindow 2130 
GetIcon 2131 
GetLastActivePopup 2131 
GetMenu 2131 
GetNextDlgGroupItem 2132 
GetNextDlgTabItem 2132 
GetNextWindow 2133 
GetOpenClipboardWindow 2133 
GetOwner 2134 
GetParent 2134 
GetParentFrame 2134 
GetParentOwner 2135 

Index 



Index 

CWnd class (continued) 
member functions (continued) 

GetProperty 2135 
GetSafeHwnd 2136 
GetSafeOwner 2136 
GetScrollBarCtrl 2137 
GetScrollInfo 2137 
GetScrollLimit 2138 
GetScrollPos 2138 
GetScrollRange 2139 
GetStyle 2139 
GetSuperWndProcAddr 2164 
GetS ystemMenu 2140 
GetTopLevelFrame 2140 
GetTopLevelOwner 2141 
GetTopLevelParent 2141 
GetTopWindow 2141 
GetUpdateRect 2142 
GetUpdateRgn 2143 
GetWindow 2143 
Get WindowContextHelpId 2144 
GetWindowDC 2144 
GetWindowPlacement 2145 
GetWindowRect 2145 
GetWindowText 2146 
GetWindowTextLength 2147 
HideCaret 2147 
HiliteMenultem 2148 
Invalidate 2148 
InvalidateRect 2149 
InvalidateRgn 2150 
InvokeHelper 2150 
IsChild 2151 
IsDialogMessage 2152 
IsDIgButtonChecked 2152 
IsIconic 2153 
IsWindowEnabled 2153 
IsWindowVisible 2153 
IsZoomed 2154 
KillTimer 2154 
LockWindowUpdate 2154 
MapWindowPoints 2155 
MessageBox 2156 
ModifyStyle 2156 
ModifyStyleEx 2157 
MoveWindow 2158 
OnActivate 2158 
OnActivateApp 2159 
OnAmbientProperty 2160 

CWnd class (continued) 
member functions (continued) 

OnAskCbFormatName 2160 
OnCancelMode 2161 
OnCaptureChanged 2161 
OnChangeCbChain 2162 
OnChar 2162 
OnCharToltem 2163 
OnChildActivate 2164 
OnChildNotify 2164 
OnClose 2165 
OnCommand 2165 
OnCompacting 2166 
OnCompareltem 2166 
OnContextMenu 2167 
OnCreate 2168 
OnCtlColor 2169 
OnDeadChar 2170 
OnDeleteltem 2171 
OnDestroy 2172 
OnDestroyClipboard 2172 
OnDeviceChange 2172 
OnDevModeChange 2173 
OnDrawClipboard 2174 
OnDraw Item 2174 
OnDropFiles 2175 
OnDSCNotify 2177 
OnEnable 2176 
OnEndSession 2178 
OnEnterIdle 2178 
OnEnterMenuLoop 2179 
OnEraseBkgnd 2179 
OnExitMenuLoop 2180 
OnFontChange 2181 
OnGetDIgCode 2181 
OnGetMinMaxlnfo 2182 
OnHelplnfo 2182 
OnHScroll 2183 
OnHScrollClipboard 2184 
OnIconEraseBkgnd 2185 
OnlnitMenu 2185 
OnlnitMenuPopup 2186 
OnKeyDown 2186 
OnKeyUp 2187 
OnKillFocus 2188 
OnLButtonDblClk 2189 
OnLButtonDown 2190 
OnLButtonUp 2190 
OnMButtonDblClk 2191 



CWnd class (continued) 
member functions (continued) 

OnMButtonDown 2192 
OnMButtonUp 2193 
OnMDIActivate 2193 
OnMeasureltem 2194 
OnMenuChar 2195 
OnMenuSelect 2196 
OnMouseActivate 2197 
OnMouscMove 2198 
OnMove 2200 
OnMoving 2200 
OnNcActivate 2201 
OnNcCalcSize 2201 
OnN cCreate 2202 
OnNcDestroy 2203 
OnNcHitTest 2203 
OnNcLButtonDblClk 2204 
OnNcLButtonDown 2205 
OnNcLButtonUp 2205 
OnNcMButtonDblClk 2206 
OnNcMButtonDown 2207 
OnNcMButtonUp 2207 
OnNcMouseMove 2208 
OnNcPaint 2208 
OnNcRButtonDblClk 2209 
OnNcRButtonDown 2209 
OnNcRButtonUp 2210 
OnPaint 2211 
OnPaintClipboard 2212 
OnPaletteChanged 2214 
OnPaletteIsChanging 2213 
OnParentNotify 2214 
OnQueryDraglcon 2215 
OnQueryEndSession 2215 
OnQueryNewPalette 2216 
OnQueryOpen 2216 
OnRButtonDblClk 2216 
OnRButtonDown 2217 
OnRButtonUp 2218 
OnRenderAllFormats 2219 
OnRenderFormat 2219 
OnSetCursor 2220 
OnSetFocus 2221 
OnShowWindow 2221 
OnSize 2222 
OnSizeClipboard 2223 
OnSizing 2223 
OnSpoolerStatus 2224 

CWnd class (continued) 
member functions (continued) 

OnStyleChanged 2224 
OnStyleChanging 2225 
OnSysChar 2225 
OnSysColorChange 2227 
OnSysCommand 2227 
OnSysDeadChar 2229 
OnSysKeyDown 2229 
OnSysKeyUp 2231 
OnTCard 2232 
OnTimeChange 2233 
OnTimer 2233 
OnToolHitTest 2234 
On VKeyToltem 2234 
On VScroll 2235 
On VScrollClipboard 2236 
OnWindowPosChanged 2237 
OnWindowPosChanging 2238 
On WinlniChange 2238 
OnWndMsg 2239 
OpenClipboard 2240 
PostMessage 2240 
PostN cDestroy 2241 
PreCreate Window 2241 
PreSubclassWindow 2242 
PreTranslateMessage 2242 
Print 2242 
PrintClient 2243 
RedrawWindow 2244 
ReflectChildNotify 2245 
ReflectLastMsg 2246 
ReleaseDC 2247 
RepositionBars 2247 
RunModalLoop 2248 
ScreenToClient 2248 
ScrollWindow 2249 
ScrollWindowEx 2250 
SendChildNotifyLastMsg 2251 
SendDIgltemMessage 2252 
SendMessage 2252 
SendMessageToDescendants 2253 
SendNotifyMessage 2254 
SetActiveWindow 2254 
SetCapture 2255 
SetCaretPos 2255 
SetClipboardViewer 2255 
SetDIgCtrlID 2256 
SetDIgltemlnt 2256 

Index 



Index 

CWnd class (continued) 
member functions (continued) 

SetDlgItemText 2257 
SetFocus 2258 
SetFont 2258 
SetForegroundWindow 2257 
SetIcon 2258 
SetMenu 2259 
SetOwner 2259 
SetParent 2260 
SetProperty 2260 
SetRedraw 2261 
SetScrollInfo 2261 
SetScrollPos 2262 
SetScrollRange 2263 
SetTimer 2263 
SetWindowContextHelpId 2264 
SetWindowPlacement 2265 
SetWindowPos 2265 
SetWindowText 2268 
ShowCaret 2269 
ShowOwnedPopups 2269 
ShowScrollBar 2269 
ShowWindow 2270 
SubclassDlgItem 2271 
SubclassWindow 2271 
UnsubclassWindow 2272 
UpdateData 2273 
UpdateDialogControls 2273 
UpdateWindow 2274 
ValidateRect 2274 
ValidateRgn 2274 
WindowFromPoint 2275 
WindowProc 2275 

CWnd member function, CWnd class 2106 
CWordArray class, described 2277 

D 
DAO 

accessing database's workspace 250 
accessing underlying DAO object workspace 401 
appending a querydef 263 
CDaoFieldExchange 

Is ValidOperation function 257 
purpose of 256 

closing database objects, effect on updates 233 
compacting databases 385 
constructing CDaoDatabase objects 232 

DAO (continued) 
counting errors in DAO Errors collection 253 
counting open databases 388 
counting parameters in a querydef 270 
counting querydef fields 268 
counting querydefs 241 
counting relations in a database 244 
counting tabledefs 245 
counting works paces 392 
creating database objects 234 
creating relations between tables 235 
DAO Errors collection, and ODBC 251 
database formats supported 241 
database objects 229 
Databases collection 229 
dbFreeLocks option 393 
DDX_Field functions 2292 
deleting querydefs 237 
deleting relations 237 
deleting tabledefs 238 
determining causes of exceptions 251 
determining if DFX operations are valid 257 
determining whether databases open 247 
determining whether transactions allowed 232 
determining whether updates allowed 232 
DFX and RFX compared 256 
DFX field types, setting 258 
Dialog data exchange (DDX) 2292 
direct access to DAO database object 250 
error codes 

described 251 
MFC error codes 254 

error handling 251 
exception handling 

CATCH expression 251 
CDaoErrorInfo structure 255 
DAO Errors collection 251 
DAO OLE error codes 255 
DAOERRH file 251 
described 251 
explicit CDaoException construction 252 
m_pErrorInfo data member 255 
MFC error codes 254 
number of errors in Errors collection 253 
SCODE values 255 
used for all errors 251 

Execute member function, records affected by 243 



DAO (continued) 
executing 

action queries 238 
SQL pass-through queries 238 
SQL statements 238 

getting 
connect string 240 
database engine version 247 
querydef parameters 272 

isolating ODBC transactions 390, 399 
Login timeout property 

described 390 
setting 400 

name, user-defined 
database 240 
workspace 391 

obtaining information about 
DAO errors 253 
open databases 388 
parameters in a querydef 271 
querydef fields 269 
querydefs 242 
relations 244 
tabledefs 246 
workspaces 393 

open status, obtaining workspace 394 
opening 

databases 247 
default workspace 395 
workspaces 395 

query timeout 243 
querydefs See Querydefs 
read locks 393 
Record field exchange (DFX) 

class CDaoFieldExchange 256 
described 2290 
DFX vs. RFX 256 
Is Valid Operation function 257 

registry key settings 398 
repairing a database 395 
rolling back transactions 396 
See Database engine 379 
setting 

a default password 397 
default user name 397 
query timeout 249 
querydef parameters 277 
SQL statement of querydef 278 
workspace password 387 

DAO (continued) 
transactions 

described 379 
role of database objects 230 

user name, getting 391 
using database objects 229 
version, getting database engine 392 
workspaces 

appending to collection 382 
beginning a transaction 382 
closing a workspace 383 
constructing C++ object 383 
creating 387 

DAO classes 
DDL support 378 
exceptions, throwing 2344 
vs. ODBC classes 378 

DAO database 
Login timeout property 390 
security support 378 
workspace 378 

DAO Errors collection 251 
DAO vs. ODBC 

described 229,251,256,260 
role of DAO database objects 230 

DAOERR.H file 251 
Data definition (DDL) query 261 
Data members 

CArchive class 58 
CArchiveException class 60 
CAsyncSocket class 112 
CCachedDataPathProperty class 148 
CClientDC class 157 
CColorDialog class 176 
CCommandLineInfo class 204 
CControlBar class 221 
CCtrlView class 228 
CDaoDatabase class 250 
CDaoException class 254 
CDaoFieldExchange class 258 
CDaoQueryDef class 279 
CDao Workspace class 401 
CDatabase class 418 
CDBException class 428 
CDC class 562 
CFile class 693 
CFileDialog class 703 
CFileException class 707 
CFindReplaceDialog class 727 

Index 



Index 

Data members (continued) 
CFontDialog class 742 
CFontHolder class 746 
CFrameWnd class 769 
CGdiObject class 789 
CHtmlStream class 821 
CHttpFilterContext class 849 
CHttpServerContext class 866, 867 
CImageList class 880 
CInternetException class 885 
CLongBinary class 979 
CMenu class 1052 
COleBusyDialog class 1119 
COleChangeIconDialog class 1123 
COleChangeSourceDialog class 1128 
COleConvertDialog class 1262 
COleCurrency 1273 
COleDateTime 1314 
COleDateTimeSpan 1330 
COleDispatchDriver class 1339, 1340 
COleDispatchException class 1342 
COleException class 1367 
COleInsertDialog class 1373 
COleLinksDialog class 1383 
COlePasteSpecialDialog class 1404 
COlePropertiesDialog class 1408 
COleServerItem class 1469 
CPageSetupDialog class 1494 
CPaintDC class 1496 
CPictureHolder class 1514 
CPrintDialog class 1529 
CPrintlnfo class 1534 
CPropertyPage class 1550 
CRecordset class 1629 
CRectTracker class 1665 
CRichEditDoc class 1713 
CRichEditView class 1734 
CStdioFile class 1836 
CWinApp class 2058 
CWindowDC class 2065 
CWinThread class 2076 
CWnd class 2276 

Data Objects 
attaching to Clipboard 1276 
attaching to OLE DataObjects 1276 
constructing 1277 
determining available formats 1277, 1280 
determining whether data available 1280 
ehumerating available formats 1280 

Data Objects (continued) 
releasing 1277, 1281 
retrieving data 1278-1279 

Data source 
determining if connected 411 
determining if open 411 
emptying 1288 
modifying data 1287 
modifying data when needed 1292 
providing data when needed 

file 1290 
memory 1291 
undetermined format 1289 

providing data, delayed 
file 1286 
undetermined format 1285 

providing data, immediate 
memory 1284 
undetermined format 1283 

Data source connection 
opening 412 
setting options 412 

Data structures 
arrays 

CByteArray 145 
CDWordArray 629 
CObArray 1074 

maps 
CMapPtrToPtr 986 
CMapPtrToWord 988 
CMapStringToOb 990 
CMapStringToPtr 998 
CMapStringToString 1000 
CMapWordToOb 1002 
CMap WordToPtr 1004 

Data transfer, OLE 1275, 1282 
Data Transfer, providing data 1282 
Data types 2281 
Data, deleting 1587 
Database See DAO 

accessing database's workspace 250 
CDaoDatabase class 229 
CDaoFieldExchange, purpose of 256 
closing database objects 233 
collections in DAO databases 230 
connecting to 412 
constructing CDaoDatabase objects 232 
copying database files 385 
counting querydefs 241 



Database (continued) 
counting relations in databases 244 
counting tabledefs 245 
creating database objects 234 
creating relations between tables 235 
decryption 385 
deleting 

a relation 237 
a tabledef 238 

determining 
if DFX operation is valid 257 
whether open 247 
whether updates allowed 232 

DFX and RFX compared 256 
DFX field types, setting 258 
Dialog data exchange (DDX) 2292 
direct access to DAO object 250 
encryption 385 
exception handling 251 
Execute member function, records affected by 243 
executing 

action queries 238 
SQL pass-through queries 238 
SQL statements 238 

formats 241 
Getting connect string 240 
getting database engine version 247 
HDBC handle 418 
implicit construction of database object 233 
isolating ODBC transactions 399 
Login timeout property 390 
name, user-defined 240 
obtaining information about 

open 388 
querydefs 242 
relations 244 
tabledefs 246 

opening 247,412 
query timeout 243 
Record field exchange (RFX and DFX) 

class CDaoFieldExchangc 256 
described 2290 
DFX vs. RFX 256 

record field exchange (RFX), 
Is V alidOperation function 257 

repairing 395 

Database (continued) 
setting 

default password 397 
default user name 397 
query timeout 249 

specifying 
database format 234 
encryption 234 

storing database object in document 233 
transactions, overview 230 
usage tips 229 

Database classes 
BOOL, exchanging data (DDX) 2384 
Boolean 

exchanging field data (DFX) 2405 
exchanging field data (RFX) 2461 

Byt~ 
exchanging data (DDX) 2384 
exchanging field data (DFX) 2406 
exchanging field data (RFX) 2463 

Byte array 
exchanging field data (DFX) 2404 
exchanging field data (RFX) 2460 

calling ODBC functions 2341-2342 
CLongBinary 

exchanging field data (DFX) 2411 
exchanging field data (RFX) 2471 

COleCurrency data, 
exchanging field data (DFX) 2407 

COleDateTime data, 
exchanging field data (DFX) 2408 

Combo box, 
exchanging data (DDX) 2361,2376,2378 

CString 
exchanging field data (DDX) 2384 
exchanging field data (DFX) 2414 
exchanging field data (RFX) 2473 

CTime, exchanging field data (RFX) 2464 
Currency 

exchanging data (DDX) 2384 
exchanging field data (DFX) 2407 

data exchange 
with BOOL 2384 
with BYTE 2384 
with Combo box 2361,2376,2378 
with CString 2384 
with Currency 2384 
with date/time 2384 
with DWORD 2384 

Index 



Index 

Database classes (continued) 
data exchange (continued) 

with Float 2384 
with Integer 2384 
with List box 2379,2380,2381 
with Long integer 2384 
with Radio button 2382 
with scroll-bar conrol 2383 
with UINT 2384 

Date/time 
exchanging field data (DDX) 2384 
exchanging field data (DFX) 2408 

Double 
exchanging field data (DFX) 2409 
exchanging field data (RFX) 2466 

DWORD, exchanging field data (DDX) 2384 
exceptions, throwing 2344 
field data exchange 

for COleCurrency data 2407 
for COleDateTime data 2408 
for currency data 2407 
for date/time data 2408 
with Boolean 2405,2461 
with Byte 2406,2463 
with Byte array 2404,2460 
with CLongBinary 2411,2471 
with CString 2414,2473 
with CTime 2464 
with Double 2409,2466 
with Long integer 2410, 2469 
with Short integer 2412,2468 
with Single precision float 2413,2472 

Float, exchanging data (DDX) 2384 
Integer, exchanging field data (DDX) 2384 
List box, exchanging data (DDX) 2379-2381 
listed 24 
Long integer 

exchanging data (DDX) 2384 
exchanging field data (DFX) 2410 
exchanging field data (RFX) 2469 

Radio button, exchanging data (DDX) 2382 
Scroll-bar control, exchanging data (DDX) 2383 
Short integer 

exchanging field data (DFX) 2412 
exchanging field data (RFX) 2468 

Single precision float 
exchanging field data (DFX) 2413 
exchanging field data (RFX) 2472 

UINT, exchanging data (DDX) 2384 

Database engine 
and MFC DLL 379 
initialization settings 389 
initializing 379 
registry key settings 389 
uninitializing 379 
version, getting 247,392 

Database format, specifying 234 
Database forms, class CRecordView 1633 
Database macros 2294 
Database names, getting 410 
Database object (DAO) 

defined 229 
obtaining information about 2495 

Databases collection 
DAO 229 
workspace 378 

DataMembers, CPropertySheet class 1561 
Date/time 

DDX field exchange 2384 
DFX field exchange 2408 

DDP _CBIndex global function/macro 2363 
DDP _CBString global function/macro 2364 
DDP _CBStringExact global function/macro 2364 
DDP _Check global function/macro 2365 
DDP _LBIndex global function/macro 2365 
DDP _LBString global function/macro 2366 
DDP _LBStringExact global function/macro 2366 
DDP _PostProcessing global function/macro 2367 
DDP _Radio global function/macro 2368 
DDP _Text global function/macro 2368 
DDV, dialog data validation 420 
DDV _MaxChars global function/macro 2369 
DDV _MinMaxByte global function/macro 2369 
DDV _MinMaxDouble global function/macro 2370 
DDV _MinMaxDWord global function/macro 2370 
DDV _MinMaxFloat global function/macro 2371 
DDV _MinMaxInt global function/macro 2371 
DDV _MinMaxLong global function/macro 2372 
DDV _MinMaxUnsigned global function/macro 2372 
DDX 

See also Dialog data exchange 
direction of exchange, CDataExchange 421 

DDX field exchange 
BOOL 2384 
Combo box 2361,2376,2378 
CString 2384 
Currency 2384 
Date/time 2384 



DDX field exchange (continued) 
DWORD 2384 
Float 2384 
Integer 2384 
List box 2379-2381 
Long integer 2384 
Radio button 2382 
Scroll-bar control 2383 
UINT 2384 

DDX, dialog data exchange 420 
DDX_CBIndex global function/macro 2373 
DDX_CBString global function/macro 2373 
DDX_CBStringExact global function/macro 2374 
DDX_Check global function/macro 2375 
DDX_Field functions, DAO and ODBC 2292 
DDX_FieldCBIndex global function/macro 2376 
DDX_FieldCBString global function/macro 2377 
DDX_FieldCBStringExact global function/macro 2378 
DDX_FieldCheck global function/macro 2379 
DDX_FieldLBIndex global function/macro 2379 
DDX_FieldLBString global function/macro 2380 
DDX_FieldLBStringExact global function/macro 2381 
DDX_FieldRadio global function/macro 2382 
DDX_FieldScroll global function/macro 2383 
DDX_FieldText global function/macro 2384 
DDX_LBIndex global function/macro 2386 
DDX_LBString global function/macro 2387 
DDX_LBStringExact global function/macro 2387 
DDX_Radio global function/macro 2388 
DDX_Scroll global function/macro 2395 
DDX_Text global function/macro 2396 
Deactivate member function, 

COleClientItem class 1146 
DeactivateAndUndo member function, 

COleServerDoc class 1434 
DeactivateUI member function, 

COleClientItem class 1147 
DEBUG_NEW 

global function/macro 2397 
macro, memory leaks 1026 

DECLARE_CONNECTION_MAP 
global function/macro 2397 

DECLARE_DISPATCH_MAP 
global function/macro 2398 

DECLARE_DYNAMIC 
global function/macro 2398 

DECLARE_DYNCREATE 
global function/macro 2399 

DECLARE_EVENT_MAP 
global function/macro 2399 

DECLARE_EVENTSINK_MAP 
global function/macro 2400 

DECLARE_MESSAGE_MAP 
global function/macro 2400 

DECLARE_OLECREATE 
global function/macro 240 I 

DECLARE_OLECREATE_EX 
global function/macro 2401 

DECLARE_OLETYPELIB 
global function/macro 2402 

DECLARE_PROPPAGEIDS 
global function/macro 2402 

DECLARE_SERIAL 
global function/macro 2402 

Default member function, CWnd class 2106 
Default password (DAO), setting 397 
Default workspace, using implicitly 379 

Index 

DeflateRect member function, CRect class 1643 
DefWindowProc member function, CWnd class 2107 
DelayRenderData member function, 

COleDataSource class 1285 
DelayRenderFileData member function, 

COleDataSource class 1286 
DelaySetData member function, 

COleDataSource class 1287 
Delete member function 

CDaoRecordset class 292 
COleClientltem class 1147 
CRecordset class 1587 

Delete operator, memory leaks 1026 
Delete query 261 
DeleteAllItems member function 

CListCtrl class 952 
CTabCtrl class 1874 
CTreeCtrl class 1952 

DeleteButton member function, 
CToolBarCtrl class 1927 

DeleteColumn member function 
CListCtrl class 952 
CSplitterWnd class 1801 

DeleteContents member function, 
CDocument class 606 

Deleted, determining whether record sets 1605 
DeleteDC member function, CDC class 457 
DeleteField member function, CDaoTableDef class 362 



Index 

DeleteIndex member function, 
CDaoTableDef class 362 

Deleteltem member function 
CComboBox class 184 
CHeaderCtrl class 806 
CListBox class 926 
CListCtrl class 952 
CTabCtrl class 1874 
CTreeCtrl class 1952 

DELETEITEMSTRUCT structure 2521 
DeleteMenu member function, CMenu class 1037 
DeleteObject member function 

CGdiObject class 785 
ClmageList class 872 

DeleteQueryDef member function, 
CDaoDatabase class 237 

DeleteRelation member function, 
CDaoDatabase class 237 

DeleteRow member function, CSplitterWnd class 1801 
DeleteString member function 

CComboBox class 185 
CListBox class 927 

DeleteTableDef member function, 
CDaoDatabase class 238 

DeleteTempMap member function 
CDC class 457 
CGdiObject class 786 
CMenu class 1038 
CWnd class 2107 

Delete View member function, 
CSplitterWnd class 1802 

Deleting 
data 1587 
querydefs 237 
records 1587 
Recordset records 1587 
relations, database 237 
tabledefs 238 

DelTool member function, CToolTipCtrl class 1943 
Destroy member function, COleSafeArray class 1424 
DestroyData member function, 

COleSafeArray class 1424 
DestroyDescriptor member function, 

COleSafeArray class 1424 
DestroylnPlaceFrame member function, 

COleServerDoc class 1435 
DestroyMenu member function, CMenu class 1038 
DestroyWindow member function, CWnd class 2107 

DestructElements global function/macro 2403 
Detach member function 

CAsyncSocket 89 
CDC class 458 
CGdiObject class 786 
CHtmlStream class 817 
ClmageList class 872 
CMemFile class 1022 
CMenu class 1039 
CMonikerFile class 1062 
COleDataObject class 1277 
COleSafeArray class 1425 
COleStreamFile class 1472 
COle Variant 1483 
CSharedFile class 1755 
CW nd class 2108 

DetachDispatch member function, 
COleDispatchDriver class 1336 

Determining 
abillity to scroll Recordsets 1583 
appendability of Recordsets 1581 
availability of Data Objects data 1280 
availability of transactions, database 1583 
availability of updates, database 1584 
available formats, Data Objects 1277, 1280 
causes of excemptions (DAO) 251 
Clipboard owner 1289 
if data sources connected 411 
if data sources open 411 
if DFX operations are valid 257 
whether 

database open 247 
Recordset deleted 1605 
Recordset fields can be set to Null 1608 
Recordset fields dirty 1606 
Recordset fields Null 1607 
Recordset open 1608 
transactions allowed 232 
updates allowed 232 

Device context classes, listed 17 
DEVMODE structure 2521 
DEVNAMES structure 2526 
DFX 

See also Record Field Exchange 
field types, setting 258 
operations, validity of 257 

DFX field exchange 
Boolean 2405 
Byte 2406 



DFX field exchange (continued) 
Byte array 2404 
CLongBinary 2411 
COleCurrency data 2407 
COleDateTime data 2408 
CString 2414 
Currency data 2407 
Date/time data 2408 
Double 2409 
Long integer 2410 
Short integer 2412 
Single precision float 2413 

DFX vs. RFX 256 
DFX_Binary global function/macro 2404 
DFX_Bool global function/macro 2405 
DFX_Byte global function/macro 2406 
DFX_Currency global function/macro 2407 
DFX_DateTime global function/macro 2408 
DFX_Double global function/macro 2409 
DFX_Long global function/macro 2410 
DFX_LongBinary global function/macro 2411 
DFX_Short global function/macro 2412 
DFX_Single global function/macro 2413 
DFX_Text global function/macro 2414 
Diagnostic classes, listed 33 
Diagnostic services 2283 
Dialog box, OLE Change Source 1124 
Dialog classes, listed 12 
Dialog data exchange (DDX) 

CDataExchange 421 
CDataExchange class 419 
Custom DDX routines 

CDataExchange class 419 
preparing controls 420 
preparing edit controls 421 

Data exchange object 
getting dialog object 422 
m_pDlgWnd member 422 

functions 2292 
Dialog data validation (DDV) 

custom DDV routines 
CDataExchange 420 
CDataExchange class 419 
preparing edit controls 421 

dialog data exchange (DDX) 419 
validation failure 420 

Dialog template resource, class CRecordView 1635 
Difference member function, 

CMemoryState class 1028 

Dir member function 
CComboBox class 185 
CListBox class 927 

Direct access to DAO database object 250 
Directly executing SQL statements 408 
DiscardUndoState member function, 

COleServerDoc class 1435 

Index 

DISP _DEFVALUE global function/macro 2415 
DISP _FUNCTION global function/macro 2416 
DISP _PROPERTY global function/macro 2417 
DISP _PROPERTY _EX global function/macro 2418 
Dispatch maps 2296 
DisplayBand member function, 

RichEditCtrl class 1689 
DisplayError member function, 

COleControl class 1190 
DlgDirList member function, CWnd class 2108 
DlgDirListComboBox member function, 

CWnd class 2110 
DlgDirSelect member function, CWnd class 2111 
DlgDirSelectComboBox member function, 

CWnd class 2112 
DoChangeIcon member function, 

COleChangeIconDialog class 1121 
DOCINFO structure 2527 
DockControlBar member function, 

CFrameWnd class 757 
DoClick member function, COleControl class 1191 
DoConvert member function, 

COleConvertDialog class 1259 
DocumentlView, Rich edit 1711 
Documents, mailing See MAPI 
Documents, storing database objects in 233 
DoDataExchange member function, Cwnd class 2112 
DoDragDrop member function 

COleClientItem class 1147 
COleDataSource class 1287 
COleServerItem class 1453 

DoFieldExchange function, and 
SetFieldType function 673 

DoFieldExchange member function 
CDaoRecordset class 293 
CRecordset class 1590 

DoKeyboardSplit member function, 
CSplitterWnd class 1802 

DoMessageBox member function, 
CWinApp class 2027 



Index 

DoModal member function 
CColorDialog class 174 
CDialog class 568 
CFileDialog class 697 
CFontDialog class 739 
COleBusyDialog class 1117 
COleChangeIconDialog class 1122 
COleChangeSourceDialog class 1125 
COleConvertDialog class 1259 
COleInsertDialog class 1370 
COleLinksDialog class 1382 
COlePasteSpecialDialog class 1402 
COlePropertiesDialog class 1407 
COleUpdateDialog class 1478 
CPageSetupDialog class 1490 
CPrintDialog class 1524 
CPropertySheet class 1555 

DoPaste member function, 
CRichEditView class 1717 

DoPreparePrinting member function, 
CView class 2000 

DoPropExchange member function, 
COleControl class 1191 

DoScroll member function, CSplitterWnd class 1803 
DoScrollBy member function, 

CSplitterWnd class 1803 
DoSuperClassPaint member function, 

COleControl class 1192 
Double 

DFX field exchange 2409 
RFX field exchange 2466 

DoVerb member function, COleClientltem class 1148 
DoWaitCursor member function, CWinApp class 2027 
DPtoHIMETRIC member function, CDC class 458 
DPtoLP member function, CDC class 458 
Drag and Drop 

crossing target window 1361 
determining when to start 1358 
determining whether to continue 1358 
dropping 1363, 1364 
entering target window 1360 
initiating 1287 
leaving target window 1361 
modifying cursors 1357 
registering target windows 1365 
revoking target windows 1365 
scrolling target window 1362 
User Interface Issues 1357 

DragAcceptFiles member function, CWnd class 2114 

DragEnter member function, CImageList class 873 
Dragging member function, CDragListBox class 622 
DragLeave member function, CImageList class 873 
DragMove member function, CImageList class 874 
DragShowNolock member function, 

CImageList class 874 
Draw member function 

CImageList class 874 
COleClientltem class 1149 
CRectTracker class 1659 

Draw3dRect member function, CDC class 459 
DrawContent member function, 

COleControl class 1192 
DrawDragRect member function, CDC class 459 
DrawEdge member function, CDC class 460 
DrawEscape member function, CDC class 462 
DrawFocusRect member function, CDC class 462 
DrawFrameControl member function, CDC class 463 
Draw Icon member function, CDC class 464 
Drawing object classes, listed 18 
DrawInsert member function, CDragListBox class 622 
Drawltem member function 

CButton class 139 
CComboBox class 186 
CHeaderCtrl class 806 
CListBox class 928 
CListCtrl class 953 
CMenu class 1039 
CStatusBarCtrl class 1827 
CTabCtrl class 1874 

DRA WITEMSTRUCT structure 2527 
DrawMenuBar member function, CWnd class 2114 
DrawMetaFile member function, 

COleControl class 1192 
DrawState member function, CDC class 465 
DrawText member function, CDC class 467 
DrawTrackerRect member function, 

CRectTracker class 1660 
Dropped member function, CDragListBox class 623 
Dump member function, CObject class 1093 
Dump operator 

COleCurrency 1273 
COleDateTime 1314 
COleDateTimeSpan 1329 
COleVariant 1486 

DumpAllObjectsSince member function, 
CMemoryState class 1028 

DumpField, Record field exchange (DFX) 258 



DumpStatistics member function, 
CMemoryState class 1029 

Duplicate member function, CFile class 680 
DWORD, DDX field exchange 2384 
dwstyle parameter, styles specified with 2564 
dwStyleDefault member function, 

CEditView class 662 

E 
Edit Control 631 
Edit member function 

CDaoRecordset class 294 
CRecordset class 1591 

Edit styles 2566 
Editing 

records 1591 
records in Recordsets 1591 

EditLabel member function 
CListCtrl class 953 
CTreeCtrl class 1952 

ElementAt member function 
CArray class 64 
COb Array class 1079 
CTypedPtrArray class 1977 

Ellipse member function, CDC class 469 
Empty member function 

COleDataSource class 1288 
CString class 1843 

Emptying 
Clipboard 1288 
Data Source 1288 

EmptyUndoBuffer member function 
CEdit class 637 
CRichEditCtrl class 1689 

EnabbeScrolIBar member function 
CScrollBar class 1739 

Enable member function 
CCheckListBox class 152 
CCmdUI class 169 
COleCmdUI class 1174 

Enable3dControis member function, 
CWinApp class 2028 

Enable3dControisStatic member function, 
CWinApp class 2028 

EnableAutomation member function, 
CCmdTarget class 161 

EnableBusyDialog member function, 
COleMEssageFilter class 1386 

EnableButton member function, 
CToolBarCtrol class 1927 

EnableCompoundFile member function, 
COleDocument class 1347 

EnableDocking member function 
CControlBar class 217 
CFrameWnd class 758 

Index 

EnableMenuItem member function, CMenu class 1039 
EnableN otRespondingDialog member function, 

COleMessageFilter class 1386 
EnableScrollBar member function 

CScrollBar class 1739 
CWnd class 2114 

EnableScrollBarCtrl member function, 
CWnd class 2115 

EnableShellOpen member function, 
CWinApp class 2029 

EnableSimpleFrame member function, 
COleControl class 1193 

EnableStatusCalIback member function, 
CInternetSession class 896 

EnableToolTips member function, CWnd class 2115 
EnableWindow member function, CWnd class 2116 
Encryption 

database 385 
specifying 234 

END_CATCH global function/macro 2422 
END_CATCH_ALL, global function/macro 2422 
END_CONNECTION_MAP, 

global function/macro 2422 
END _CONNECTION_PART, 

global function/macro 2423 
END_DIS PATCH_MAP, global function/macro 2423 
END_EVENT_MAP, global function/macro 2423 
END _EVENTS INK_MAP, 

global function/macro 2423 
END_MESSAGE_MAP, global function/macro 2424 
END_OLEFACTORY, global function/macro 2424 
END_PROPPAGEIDS, global function/macro 2425 
EndBusyState member function, 

COleMessageFilter class 1387 
EndContent member function, CHttpServer class 855 
EndDialog member function 

CDialog class 569 
CPropertySheet class 1556 

EndDoc member function, CDC class 469 
EndDrag member function, CImageList class 875 
EndModalLoop member function, CWnd class 2117 



Index 

EndModalState member function, 
CFrameWnd class 758 

EndPage member function, CDC class 470 
EndPaint member function, CWnd class 2117 
EndPath member function, CDC class 471 
EndWaitCursor member function, 

CCmdTarget class 161 
Engine, database See Database engine 
Ensure Visible member function 

CListCtrl class 954 
CTreeCtrl class 1953 

Enumerating available formats, Data objects 1280 
EnumObjects member function, CDC class 471 
EnumObjects, callback function for See Callback 

functions for MFC member functions 
EqualRect member function, CRect class 1644 
EqualRgn member function, CRgn class 1676 
ErrnoToException member function, 

CFileException class 705 
Error codes 

DAO 251 
human readable 430 
ODBC 

described 428 
values 428 

text message 430 
Error object (DAO), obtaining information about 2497 
Error strings 

human readable 430 
native 

ODBC 430 
SQLError function 430 
SQLSTATE 430 

ODBC 430 
Errors collection, DAO 251 
Escape member function, CDC class 472 
Event Maps 2299 
Event sink maps, described 2300 
EVENT_CUSTOM global function/macro 2425 
EVENT_CUSTOM_ID global function/macro 2426 
Exception classes, listed 33 
Exception handling, DAO 

DAOERR.H file 251 
described 251 
obtaining information about 2497 

Exception processing 2285 
Exceptions, throwing 

DAO classes 2344 
Database classes 2344 

ExchangeBlobProp member function, 
CPropExchange class 1564 

ExchangeExtent member function, 
COleControl class 1193 

ExchangeFontProp member function, 
CPropExchange class 1564 

ExchangePersistentProp member function, 
CPropExchange class 1565 

ExchangeProp member function, 
CPropExchange class 1566 

ExchangeStockProps member function, 
COleControl class 1193 

Exchange Version member function 
COleControl class 1194 
CPropExchange class 1567 

Exchanging data 
with data source, Recordset 1590 
with recordset fields in DAO classes 256 

ExcludeClipRect member function, CDC class 473 
ExcludeUpdateRgn member function, CDC class 474 
Execute member function 

CDaoDatabase class 238 
CDaoQueryDef class 266 
records affected by 243 

ExecuteDlgInit member function, CWnd class 2118 
ExecuteSQL member function, CDatabase class 408 
ExitInstance member function 

CWinApp class 2030 
CWinThread class 2069 

Expand member function, CTreeCtrl class 1953 
Extended window styles 2573 
EXTENSION_CONTROL_BLOCK structure 2530 
ExtFloodFill member function, CDC class 474 
ExtractIcon member function, CImageList class 875 
ExtTextOut member function, CDC class 475 

F 
Fail member function, CDataExchange class 420 
Failure, validation 420 
Field exchange, records in DAO classes 256 
Field object (DAO) 

in indexes, obtaining information about 2505 
in relations, obtaining information about 2511 
obtaining information about 2498 

Fields,recordset 
determining whether dirty 1606 
determining whether Null 1607 
number of bound 1629 



Fields, recordset (colltillued) 
setting dirty 1623 
setting null 1624 

FieldType enum 
described 672 
values 672 

FieldType values, CDaoFieldExchange 
outputColumn 256 
param 256 

FileFind member function, 
CGopherFileFind class 797 

FILETIME structure 2535 
FillCache member function, CDaoRecordset class 295 
FillOutsideRect member function, 

CScrollView class 1746 
FillPath member function, CDC class 477 
FillRect member function, CDC class 477 
FillRgn member function, CDC class 478 
FillSolidRect member function, CDC class 478 
Filter strings, Recordset 1631 
FilterToolTipMessage member function, 

CWnd class 2118 
Find member function 

CDaoRecordset class 296 
CList class 912 
CObList class 1103 
CString class 1844 

FindFile member function 
CFileFind class 711 

FindFirst member function, CDaoRecordset class 297 
FindIndex member function 

CList class 912 
CObList class 1104 

FindItem member function, CListCtrl class 954 
FindLast member function, CDaoRecordset class 299 
FindNext member function 

CDaoRecordset class 300 
CFindReplaceDialog class 724 

FindNextFile member function, 
CGopherFileFind class 798 

FindNextFile member function, CFileFind class 712 
FindOneOf member function, CString class 1844 
FindPrev member function, CDaoRecordset class 301 
FindString member function 

CComboBox class 186 
CListBox class 928 

FindStringExact member function 
CComboBox class 187 
CListBox class 929 

FindText member function 
CEditView class 655 
CRichEditCtrl class 1689 
CRichEditView class 1718 

FindTextSimple member function, 
CRichEditView class 1718 

Index 

FindWindow member function, Cwnd class 2119 
FireClick member function, COleControl class 1194 
FireDblClick member function, 

COleControl class 1195 
FireError member function, COleControl class 1195 
FireEvent member function, COleControl class 1196 
FireKeyDown member function, 

COleControl class 1197 
FireKeyPressmember function, COleControl class 1197 
FireKeyUp member function, COleControl class 1198 
FireMouseDown member function, 

COleControl class 1198 
FireMouseMove member function, 

COleControl class 1199 
FireMouseUp member function, 

COlecontrol class 1200 
Fixup, Record field exchange (DFX) 258 
FlashWindow member function, CWnd class 2119 
FlattenPath member function, CDC class 479 
Float, DDX field exchange 2384 
FloatControlBar member function, 

CFrameWnd class 758 
FloodFill member function, CDC class 479 
Flush member function 

CArchive class 44 
CDumpContext class 626 
CFile class 681 
CInternetFile class 888 

FlushClipboard member function, 
COleDataSource class 1288 

FmtLines member function, CEdit class 637 
Format member function 

COleCurrency 1265 
COleDateTime 1297 
COleDateTimeSpan 1319 
CString class 1845 
CTime class 1886 
CTimeSpan class 1896 

FormatGmt member function, CTime class 1886 
FormatMessage member function, CString class 1845 



Index 

Formats, database 
supported by DAO 

Btrieve 241 
. dBASE 241 
Microsoft Excel 241 
Microsoft FoxPro 241 
Microsoft Jet (Access) 241 
ODBC 241 
Oracle (ODBC) 241 
Paradox 241 
SQL Server (ODBC) 241 
Text format 241 

Forms, class CRecordView database 1633 
Foundation Class Library See Microsoft Foundation 

Class Library 
FrameRect member function, CDC class 480 
FrameRgn member function, CDC class 480 
Free member function, CHtmlStream class 818 
Free member function, CMemFile class 1022 
FreeCache, Record field exchange (DFX) 258 
FreeExtra member function 

CArray class 65 
CObArray class 1079 
CString class 1846 

FromHandle member function 
CAsyncSocket class 89 
CBitmap class 117 
CBrush class 134 
CDC class 481 
CFont class 735 
CGdiObject class 786 
CMenu class 1040 
CPalette class 1500 
CPen class 1508 
CRgn class 1676 
CSocket class 1782 
CWnd class 2120 

FromHandlePermanent member function, 
CWnd class 2120 

FromIDispatch member function, 
CCmdTarget class 162 

Functions, callback See Callback functions for 
MFC member functions 

G 
GDI classes (list) 18 
GetAbsolutePosition member function, 

CDaoRecordset class 303 

GetAccel member function, 
CSpinButtonCtrl class 1789 

GetActiveDocument member function, 
CFrameWnd class 759 

GetActiveFrame member function, 
CFrameWnd class 759 

GetActivelndex member function, 
CPropertySheet class 1556 

GetActivePage member function, 
CPropertySheet class 1557 

GetActivePane member function, 
CSplitterWnd class 1804 

GetActiveView member function 
CFrameWnd class 760 
COleClientltem class 1150 

GetActiveWindow member function, CWnd class 2121 
GetAmbientProperty member function, 

COleControl class 1203 
GetAnchorIndex member function, CListBox class 929 
GetArcDirection member function, CDC class 481 
GetAspectRatioFilter member function, CDC class 481 
GetAt member function 

CArray class 65 
CList class 913 
CObArray class 1080 
CObList class 1104 
CString class 1846 
CTypedPtrArray class 1978 

GetAttribute member function, 
CGopherConnection class 792 

GetAttributes member function, 
CDaoTableDef class 363 

GetBackColor member function, 
COleControl class 1204 

GetBarStyle member function, CControlBar class 218 
GetBase member function, CSpinButtonCtrl class 1790 
GetBindlnfo member function, 

CAsyncMonikerFile class 73 
GetBinding member function, 

CAsyncMonikerFile class 74 
GetBitmap member function 

CBitmap class 117 
CButton class 139 
CStatic class 1814 

GetBitmapBits member function, CBitmap class 118 
GetBitmapDimension member function, 

CBitmap class 118 



GetBitmapFlags member function, 
CToolBarCtrl class 1928 

GetBkColor member function 
CDC class 482 
ClmageList class 876 
CListCtrl class 955 

GetBkMode member function, CDC class 482 
GetBookmark member function, 

CDaoRecordset class 303 
GetBorders member function, 

CStatusBarCtrl class 1828 
GetBorderStyle member function, 

COleControl class 1204 
GetBoundsRect member function, CDC class 482 
GetBrushOrg member function, CDC class 483 
GetBuddy member function, 

CSpinButtonCtrl class 1790 
GetBuffer member function, CString class 1847 
GetBufferLength member function, 

CEditView class 656 
GetBufferSetLength member function, 

CString class 1848 
GetButton member function, CToolBarCtrl class 1928 
GetButtonCount member function, 

CToolBarCtrl class 1929 
GetButtonlnfo member function, CToolBar class 1905 
GetButtonStyle member function 

CButton class 139 
CToolBar class 1906 

GetButtonText member function, CToolBar class 1906 
GetCachedExtent member function, 

COleClientItem class 1150 
GetCacheSize member function, 

CDaoRecordset class 304, 305 
GetCallbackMask member function, 

CListCtrl class 955 
GetCapture member function, CWnd class 2121 
GetCaretIndex member function, CListBox class 930 
GetCaretPos member function, CWnd class 2121 
GetChannelRect member function, 

CSliderCtrl class 1771 
GetCharABCWidths member function, CDC class 483 
GetCharFormatSelection member function, 

CRichEditView class 1718 
GetCharPos member function, 

CRichEditCtrl class 1690 
GetCharWidth member function, CDC class 484 

GetCheck member function 
CButton class 140 
CCheckListBox class 152 

GetCheckedRadioButton member function, 
CWnd class 2122 

GetCheckStyle member function, 
CCheckListBox class 153 

Index 

GetChildltem member function, CTreeCtrl class 1954 
GetClassID member function 

COleClientltem class 1151 
COleControl class 1205 
COleConvertDialog class 1260 
COlelnsertDialog class 1371 
COleObjectFactory class 1393 

GetClientRect member function, 
CWnd class 2122 

GetClipboardData member function 
COleClientItem class 1151 
COleServerItem class 1454 
CRichEdi t View class 1719 

GetClipboardOwner member function 
COleDataSource class 1289 
CWnd class 2122 

GetClipboardViewer member function, 
Cwnd class 2123 

GetClipBox member function, CDC class 485 
GetColor member function 

CColorDialog class 174 
CFontDialog class 739 

GetColorAdjustment member function, CDC class 486 
GetColumn member function, CListCtrl class 956 
GetColumnCount member function, 

CSplitterWnd class 1804 
GetColumnlnfo member function, 

CSplitterWnd class 1805 
GetColumn Width member function, 

CListCtrl class 957 
GetConnect member function 

CDaoDatabase class 240 
CDaoQueryDef class 267 
CDaoTableDef class 364 
CDatabase class 408 

GetConnection member function, 
CConnectionPoint class 212 

GetContainer member function, 
CConnectionPoint class 212 

GetContext member function 
ClntemetConnection class 882 
CIntemetSession class 897 



Index 

GetContextMenu member function, 
CRichEditView class 1720 

GetControl data member, CDataPathProperty class 424 
GetControlBar member function, 

CFrameWnd class 760 
GetControlSize member function, 

COleControl class 1207 
GetControlStatus member function, 

COlePropertyPage class 1411 
GetControlUnknown member function, 

CWnd class 2123 
GetCopies member function, CPrintDialog class 1525 
GetCount member function 

CComboBox class 188 
CControlBar class 218 
CList class 913 
CListBox class 930 
CMap class 981 
CM~pStringToOb class 991 
CObList class 1105 
CTreeCtrl class 1954 

GetCountPerPage member function, 
CListCtrl class 957 

GetCreationTime member function, 
CFileFind class 712 

GetCurFocus member function, CTabCtrl class 1875 
GetCurrentBitmap member function, CDC class 486 
GetCurrentBrush member function, CDC class 486 
GetCurrentDirectory member function, 

CFtpConnection class 772 
GetCurrentDirectory As URL member function, 

CFtpConnection class 772 
GetCurrentFont member function 

CDC class 487 
CFontDialog class 740 

GetCurrentIndex member function, 
CDaoRecordset class 305 

GetCurrentMessage member function, 
CWnd class 2123 

GetCurrentPalette member function, CDC class 487 
GetCurrentPen member function, CDC class 487 
GetCurrentPosition member function, CDC class 487 
GetCurrentTime member function 

COleDateTime 1298 
CTime class 1887 

GetCurSel member function 
CComboBox class 188 
CListBox class 930 
CTabCtrl class 1875 

GetCursor member function, CButton class 140 
GetCursor member function, CStatic class 1814 
GetData member function 

CArray class 65 
COleDataObject class 1278 

GetDatabaseCount member function, 
CDaoWorkspace class 388 

GetDatabaseInfo member function, 
CDaoWorkspace class 388 

GetDatabaseN arne member function, 
CDatabase class 410 

GetDataSource member function, 
COleServerltem class 1455 

GetDateCreated member function 
CDaoQueryDef class 268 
CDaoRecordset class 306 
CDaoTableDef class 365 

GetDateLastUpdated member function 
CDaoQueryDef class 268 
CDaoRecordset class 306 
CDaoTableDef class 365 

GetDay member function 
COleDateTime class 1298 
CTime class 1887 

GetDayOfW eek member function 
COleDateTime 1299 
CTime class 1887 

GetDayOfY ear member function, 
COleDateTime class 1300 

GetDays member function 
COleDateTimeSpan class 1320 
CTimeSpan class 1897 

GetDC member function, CWnd class 2124 
GetDCEx member function, Cwnd class 2124 
GetDefaultCharFormat member function, 

CRichEditCtrl class 1691 
GetDefaultConnect member function, 

CRecordset class 1595 
GetDefaultDBName member function, 

CDaoRecordset class 307 
GetDefaults member function, CPrintDialog class 1525 
GetDefaultSQL member function 

CDaoRecordset class 307 
CRecordset class 1595 



GetDefID member function, CDialog class 569 
GetDepth member function, CDumpContext class 626 
GetDescendantWindow member function, 

Cwnd class 2126 
GetDesktopWindow member function, 

CWnd class 2126 
GetDeviceCaps member function, CDC class 488 
GetDeviceName member function 

CPageSetupDialog class 1491 
CPrintDialog class 1525 

GetDeviceScrollPosition member function, 
CScrollView class 1747 

GetDeviceScrollSizes member function, 
CScrollView class 1747 

GetDevMode member function 
CPageSetupDialog class 1491 
CPrintDialog class 1526 

GetDim member function 
COleSafeArray class 1425 

GetDisplayName member function 
CRecentFileList class 1573 

GetDisplayName member function, 
COleChangeSourceDialog class 1126 

GetDisplayString member function 
CFontHolder class 744 
CPictureHolder class 1513 

GetDIgCtrlID member function, CWnd class 2126 
GetDlgItem member function, CWnd class 2127 
GetDlgItemInt member function, CWnd class 2127 
GetDlgItemText member function, CWnd class 2128 
GetDockingFrame member function, 

CControlBar class 218 
GetDockState member function, CFrameWnd class 761 
GetDocString member function, 

CDocTemplate class 594 
GetDocTemplate member function, 

CDocument class 607 
GetDocument member function 

CDocItem class 578 
COleClientItem class 1152 
COleServerItem class 1455 
CRichEditView class 1721 
CView class 2001 

G~tDragImage member function, CImageList class 876 
GetDraw Aspect member function 

COleClientItem class 1152 
COleConvertDialog class 1260 

GetDraw Aspect member function (contillued) 
COleInsertDialog class 1371 
COlePasteSpecialDialog class 1402 

GetDriverMode member function, 
CPageSetupDialog class 1491 

GetDriverName member function, 
CPrintDialog class 1526 

GetDropHilightItem member function, 
CTreeCtrl class 1954 

GetDroppedControlRect member function, 
CComboBox class 188 

GetDroppedState member function, 
CComboBox class 188 

GetDroppedWidth member function, 
CComboBox class 189 

Index 

GetDSCCursor member function, CWnd class 2129 
GetEditControl member function 

CListCtrl class 957 
CTreeCtrl class 1954 

GetEditCtrl member function, CEditView class 656 
GetEditMode member function, 

CDaoRecordset class 308 
GetEditSel member function, 

CComboBox class 189 
GetElement member function, 

COleSafeArray class 1425 
GetElemSize member function, 

COleSafeArray class 1426 
GetEmbeddedItem member function, 

COleServerDoc class 1436 
GetEmbedSourceData member function, 

COleServerItem class 1456 
GetEnabled member function, COleControl class 1209 
GetEnhMetaFile member function, CStatic class 1815 
GetEntryCount member function, CPalette class 1500 
GetErrorCount member function, 

CDaoException class 253 
GetErrorInfo member function, 

CDaoException class 253 
GetErrorMessage member function, 

CException class 668 
GetEventMask member function, 

CRichEditCtrol class 1691 
GetExStyle member function, CWnd class 2128 
GetExtendedControl member function, 

COleControl class 1209 
GetExtendedUI member function, 

CComboBox class 189 



Index 

GetExtension Version member function, 
CHttpServer class 855 

GetExtent member function, 
COleClientItem class 1152 

GetExtLogPen member function, CPen Class 1508 
GetFaceName member function, 

CFontDialog class 740 
GetFieldCount member function 

CDaoQueryDef class 268 
CDaoRecordset class 308 
CDaoTableDef class 366 

GetFieldIndex, Record field exchange (DFX) 258 
GetFieldInfo member function 

CDaoQueryDef class 269 
CDaoRecordset class 309 
CDaoTableDef class 366 

GetFieldValue member function, 
CDaoRecordset class 310 

GetFile member function 
CArchive class 44 
CDocument class 607 
CFtpConnection class 773 

GetFileData member function, 
COleDataObject class 1278 

GetFileExt member function, CFileDialog class 698 
GetFileName member function 

CFile class 681 
CFileDialog class 698 
CFileFind class 713 
COleChangeSourceDialog class 1126 

GetFilePath member function 
CFile class 681 
CFileFind class 713 

GetFileTitle member function 
CFile class 682 
CFileDialog class 698 
CFileFind class 714 

GetFileURL member function 
CFileFind class 714 
CHttpFile class 828 

GetFilterVersion member function, 
CHttpFilter class 835 

GetFindString member function, 
CFindReplaceDialog class 724 

GetFirstDocPosition member function, 
CDocTemplate class 595 

GetFirstDocTemplatePosition member function, 
CWinApp class 2030 

GetFirstViewPosition member function, 
CDocument class 608 

GetFirstVisibleItem member function, 
CTreeCtrl class 1955 

GetFirstVisibleLine member function, 
CEdit class 638 
CRichEditCtrl class 1692 

GetFocus member function, Cwnd class 2130 
GetFont member function 

COleControl class 1210 
CWnd class 2130 

GetFontData member function, CDC class 492 
GetFontDispatch member function, 

CFontHolder class 744 
GetFontHandle member function, 

CFontHolder class 744 
GetFontTextMetrics member function 
GetForeColor member function, 

COleControl class 1210 
GetForegroundWindow member function, 

CWnd class 2130 
GetFormatEtc member function, 

CAsyncMonikerFile class 74 
GetFromPage member function 

CPrintDialog class 1526 
CPrintInfo class 1531 

GetFromPrefix member function, 
COleChangeSourceDialog class 1127 

GetFtpConnection member function, 
CIntemetSession class 898 

GetGlobalData member function, 
COleDataObject class 1279 

GetGlyphOutline member function, CDC class 493 
GetGmtTm member function, CTime class 1888 
GetGopherConnection member function, 

CIntemetSession class 899 
GetHalftoneBrush member function, CDC class 494 
GetHandle member function, CEdit class 638 
GetHandleMask member function, 

CRectTracker class 1660 
GetHashTableSize member function, CMap class 982 
GetHead member function 

CList class 913 
CObList class 1105 
CTypedPtrList class 1984 

GetHeadPosition member function 
CList class 914 
CObList class 1106 



GetHorizontalExtent member function, 
CComboBox class 190 

GetHorizontalExtent member function, 
CListBox class 931 

GetHotKey member function, CHotKeyCtrl class 812 
GetHour member function 

COleDateTime 1300 
CTime class 1889 

GetHours member function 
COleDateTimeSpan 1321 
CTimeSpan class 1897 

GetHttpConnection member function, 
CInternetSession class 900 

GetHwnd member function, COleControl class 1211 
GetIcon member function 

CButton class 140 
CStaticclass 1815 
CWnd class 2131 

GetIconicMetafile member function 
COleChangeIconDialog class 1122 
COleClientItem class 1153 
COleConvertDialog class 1261 
COleInsertDialog class 1372 
COlePasteSpecialDialog class 1403 

GetlDispatch member function, CCmdTarget class 163 
GetlID member function, CConnectionPoint class 213 
GetlmageCount member function, 

CImageList class 876 
Getlmagelnfo member function, ClmageList class 877 
GetlmageList member function 

CListCtrl class 958 
CTabCtrl class 1875 
CTreeCtrl class 1955 

Getlndent member function, CTreeCtrl class 1956 
GetlndexCount member function 

CDaoRecordset class 311 
CDaoTableDef class 367 

Getlndexlnfo member function 
CDaoRecordset class 311 
CDaoTableDef class 368 

GetlniPath member function, 
CDaoWorkspace class 389 

GetlnPlaceActiveItem member function 
COleDocument class 1348 
CRichEditView class 1721 

GetlnPlace Window member function, 
COleClientItem class 1153 

GetlRichEditOle member function, 
CRichEditCtrl class 1692 

GetlsolateODBCTrans member function, 
CDao Workspace class 390 

GetItem member function 
CHeaderCtrl class 806 
CListCtrl class 958 
CTabCtrl class 1875 
CTreeCtrl class 1956 

GetltemClipRect member function, 
COleServerDoc class 1437 

GetItemCount member function 
CHeaderCtrl class 808 
CListCtrl class 960 
CTabCtrl class 1877 

GetItemData member function 
CComboBox class 190 
CListBox class 931 
CListCtrl class 960 
CTreeCtrl class 1958 

GetItemDataPtr member function 
CComboBox class 191 
CListBox class 931 

GetItemHeight member function 
CComboBox class 191 
CListBox class 932 

GetItemID member function 
CStatusBar class 1821 
CToolBar class 1906 

GetItemlmage member function 
CTreeCtrl class 1958 

GetItemName member function 
COleChangeSourceDialog class 1127 
COleServerItem class 1456 

GetItemPosition member function 
CListCtrl class 960 
COleServerDoc class 1437 

GetItemRect member function 
CListBox class 932 
CListCtrl class 961 
CStatusBar class 1821 
CTabCtrl class 1877 
CToolBar class 1907 
CToolBarCtrl class 1929 
CTreeCtrl class 1959 

GetItemState member function 
CListCtrl class 961 
COleClientItem class 1154 
CTreeCtrl class 1959 

Index 



Index 

GetItemText member function 
CListCtrl class 962 
CTreeCtrl class 1960 

GetKemingPairs member function, CDC class 495 
GetLastAccessTime member function, 

CFileFind class 715 
GetLastActivePopup member function, 

Cwnd class 2131 
GetLastError member function 

CAsyncSocket class 90 
COleDialog class 1333 

GetLastModifiedBookmark member function, 
CDaoRecordset class 312 

GetLastStatus member function, 
COleClientItem class 1154 

GetLastWriteTime member function, 
CFileFind class 715 

GetLBound member function, 
COleSafeArray class 1426 

GetLBText member function, CComboBox class 191 
GetLBTextLen member function, 

CComboBox class 192 
GetLength member function 

CFile class 682 
CFileFind class 716 
CGopherFileFind class 798 
CString class 1849 

GetLicenseKey member function, 
COleObjectFactoryEx class 1393 

GetLimitText member function 
CEdit class 639 
CRichEditCtrl class 1692 

GetLine member function 
CEdit class 639 
CRichEditCtrl class 1693 

GetLineCount member function 
CEdit class 640 
CRichEditCtrl class 1693 

GetLineSize member function, CSliderCtrl class 1771 
GetLinkSourceData member function, 

COleServerItem class 1456 
GetLinkUpdateOptions member function, 

COleClientItem class 1154 
GetListCtrl member function, CListView class 977 
GetLocale member function 

CComboBox class 192 
CListBox class 932 

GetLocalTm member function, CTime class 1889 

GetLocator member function, 
CGopherFileFind class 799 

GetLocatorType member function, 
CGopherLocator class 801 

GetLockingMode member function, 
CDaoRecordset class 313 

GetLogBrush member function, CBrush class 134-135 
GetLogFont member function, CFont class 735 
GetLoginTimeout member function, 

CDaoWorkspace class 390 
GetLogPen member function, CPen class 1509 
GetMain Wnd member function, 

CWinThread class 2069 
GetMapMode member function, CDC class 495 
GetMargins member function 

CEdit class 640 
CPageSetupDialog class 1491 
CRichEditView class 1721 

GetMaxConnections member function, 
CConnectionPoint class 213 

GetMaxPage member function, CPrintInfo class 1532 
GetMDIFrame member function, 

CMDIChildWnd class 1009 
GetMenu member function, CWnd class 2131 
GetMenuContextHelpld member function, 

CMenu class 1041 
GetMenuItemCount member function, 

CMenu class 1041 
GetMenuItemID member function, CMenu class 1041 
GetMenuState member function, CMenu class 1042 
GetMenuString member function, CMenu class 1043 
GetMessageBar member function, 

CFrameWnd class 761 
GetMessageString member function 

CFrameWnd class 761 
COleControl class 1211 

GetMinPage member function, CPrintInfo class 1532 
GetMinute member function 

COleDateTime 1301 
CTime class 1890 

GetMinutes member function 
COleDateTimeSpan 1321 
CTimeSpan class 1897 

GetMiterLimit member function, CDC class 496 
GetModify member function 

CEdit class 640 
CRichEditCtrl class 1693 



GetMoniker member function, 
CMonikerFile class 1062 

GetMonth member function 
COleDateTime 1302 
CTime class 1890 

GetName member function 
CDaoDatabase class 240 
CDaoQueryDef class 270 
CDaoRecordset class 313 
CDaoTableDef class 369 
CDao Workspace class 391 

GetNearestColor member function, CDC class 496 
GetNearestPalettelndex member function, 

CPalette class 1500 
GetNext member function 

CList class 914 
CObList class 1107 
CTypedPtrList class 1985 

GetNextAssoc member function 
CMap class 982 
CMapStringToOb class 992 
CTypedPtrMap class 1990 

GetNextClientItem member function, 
COleDocument class 1348 

GetNextDlgGroupltem member function, 
CWnd class 2132 

GetNextDlgTabItem member function, 
CWnd class 2132 

GetN extDoc member function, 
CDocTemplate class 596 

GetNextDocTemplate member function, 
CWinApp class 2031 

GetNextFormat member function, 
COleDataObject class 1280 

GetNextItem member function 
CListCtrl class 962 
COleDocument class 1349 
CTreeCtrl class 1960 

GetNextPathName member function, 
CFileDialog class 699 

GetNextServerItem member function, 
COleDocument class 1349 

GetNextSiblingItem member function, 
CTreeCtrl class 1961 

GetNextView member function, CDocument class 608 
GetNextVisibleltem member function, 

CTreeCtrl class 1961 
GetNextWindow member function, Cwnd class 2133 

GetNotifier member function, 
CFindReplaceDialog class 725 

GetNotSupported member function, 
COleControl class 1211 

Index 

GetNumTics member function, CSliderCtrl class 1771 
GetObject member function, CHttpFile class 828 
GetObject member function, CGdiObject class 787 
GetObjectArray member function, 

COlePropertyPage class 1412 
GetObjectDescriptorData member function, 

COleServerItem class 1457 
GetObjectSchema member function, CArchive class 44 
GetObjectType member function, 

CGdiObject class 788 
GetODBCTimeout member function, 

CDaoQueryDef class 270 
GetOneDimSize member function 

COleSafeArray class 1426 
GetOpenClipboardWindow member function, 

CWnd class 2133 
GetOrigin member function, CListCtrl class 963 
GetOutlineTextMetrics member function, 

CDC class 496 
GetOutputCharWidth member function, CDC class 497 
GetOutputTabbedTextExtent member function, 

CDC class 498 
GetOutputTextExtent member function, CDC class 499 
GetOutputTextMetrics member function, 

CDC class 499 
GetOwner member function, CWnd class 2134 
GetPage member function, CPropertySheet class 1557 
GetPageCount member function, 

CPropertySheet class 1558 
GetPagelndex member function, 

CPropertySheet class 1557 
GetPageRect member function, 

CRichEditView class 1722 
GetPageSite member function, 

COlePropertyPage class 1412 
GetPageSize member function, CSliderCtrl class 1772 
GetPaletteEntries member function, 

CPalette class 1501 
GetPane member function, CSplitterWnd class 1805 
GetPanelnfo member function, CStatusBar class 1821 
GetPaneStyle member function, CStatusBar class 1822 
GetPaneText member function, CStatusBar class 1822 



Index 

GetPaperSize member function 
CPageSetupDialog class 1492 
CRichEditView class 1722 

GetParaFormat member function, 
CRichEditCtrl class 1694 

GetParaFormatSelection member function, 
CRichEditView class 1722 

GetParameterCount member function, 
CDaoQueryDef class 270 

GetParameterInfo member function, 
CDaoQueryDef class 271 

GetParam Value member function 
CDaoQueryDef class 272 
CDaoRecordset class 314 

GetParent member function, CWnd class 2134 
GetParentFrame member function, CWnd class 2134 
GetParentltem member function, CTreeCtrl class 1962 
GetParentOwner member function, CWnd class 2135 
GetParts member function, CStatusBarCtrl class 1828 
GetPasswordChar member function, CEdit class 641 
GetPastelndex member function, 

COlePasteSpecialDialog class 1403 
GetPath data member, CDataPathProperty class 424 
GetPath member function, CDC class 500 
GetPathName member function 

CDocument class 609 
CFileDialog class 699 
COlelnsertDialog class 1372 

GetPeerName member function, 
CAsyncSocket class 90 

GetPercentPosition member function, 
CDaoRecordset class 314 

GetPictureDispatch member function, 
CPictureHolder class 1513 

GetPixel member function, CDC class 501 
GetPolyFillMode member function, CDC class 501 
GetPortName member function 

CPageSetupDialog class 1492 
CPrintDialog class 1527 

GetPos member function 
CS1iderCtrl class 1772 
CSpinButtonCtrl class 1790 

GetPosition member function, CFile class 682 
GetPrev member function 

CList class 915 
CObList class 1108 
CTypedPtrList class 1985 

GetPrevSiblingltem member function, 
CTreeCtrl class 1962 

GetPrevVisibleltem member function, 
CTreeCtrl class 1962 

GetPrimarySelectedltem member function, 
COleDocument class 1350 

GetPrinterDC member function, 
CPrintDialog class 1527 

GetPrinterDeviceDefaults member function, 
CWinApp class 2031 

GetPrinterFont member function, CEditView class 656 
GetPrintRect member function, 

CRichEditView class 1723 
GetPrintWidth member function, 

CRichEditView class 1723 
GetPriority member function 

CAsyncMonikerFile class 74 
GetProfilelnt member function, CWinApp class 2032 
GetProfileString member function, 

CWinApp class 2032 
GetProperty member function 

COleDispatchDriver class 1337 
CWnd class 2135 

GetQueryDefCount member function, 
CDaoDatabase class 241 

GetQueryDefInfo member function, 
CDaoDatabase class 242 

GetQueryTimeout member function, 
CDaoDatabase class 243 

GetRange member function 
CSliderCtrl class 1772 
CSpinButtonCtrl class 1791 

GetRangeMax member function, 
CSliderCtrl class 1773 

GetRangeMin member function, CSliderCtrl class 1773 
GetReadOnlyPref member function, 

CFileDialog class 700 
GetRecordCount member function 

CDaoRecordset class 315 
CDaoTableDef class 369 
CRecordset class 1600 

GetRecordsAffected member function 
CDaoDatabase class 243 
CDaoQueryDef class 272 

GetRect member function 
CEdit class 641 
CRichEditCtrl class 1694 
CStatusBarCtrl class 1829 

GetRectInContainer member function, 
COleControl class 1212 



GetRegionData member function, CRgn class 1677 
GetRelationCount member function, 

CDaoDatabase class 244 
GetRelationInfo member function, 

CDaoDatabase class 244 
GetReplaceString member function, 

CFindReplaceDialog class 725 
GetReturnsRecords member function, 

CDaoQueryDef class 273 
GetRgnBox member function, CRgn class 1677 
GetRichEditCtrl member function, 

CRichEditView class 1723 
GetRoot member function, CFileFind class 716 
GetRootItem member function, CTreeCtrl class 1963 
GetROP2 member function, CDC class 502 
GetRowCount member function 

CSplitterWnd class 1805 
CTabCtrl class 1877 

GetRowInfo member function, 
CSplitterWnd class 1805 

GetRows member function, CToolBarCtrl class 1929 
GetRuntimeClass member function, 

CObject class 1094 
GetSafeHandle member function 

CGdiObject class 788 
CImageList class 877 

GetSafeHdc member function, CDC class 502 
GetSafeHmenu member function, CMenu class 1044 
GetSafeHwnd member function, CWnd class 2136 
GetSafeOwner member function, CWnd class 2136 
GetSavedCustomColors member function, 

CColorDialog class 175 
GetScreenName member function, 

CGopherFileFind class 799 
GetScrollBarCtrl member function, CWnd class 2137 
GetScrollInfo member function 

CScrollBar class 1739 
CW nd class 213 7 

GetScrollLimit member function 
CScrollBar class 1740 
CWnd class 2138 

GetScrollPos member function 
CScrollBar class 1740 
CWnd class 2138 

GetScrollPosition member function, 
CScrollView class 1748 

GetScrollRange member function, 
CScrollBar class 1741 

GetScrollRange member function, CWnd class 2139 

GetScrollStyle member function, 
CSplitterWnd class 1806 

GetSecond member function 
COleDateTime 1302 
CTime class 1890 

GetSeconds member function 
COleDateTimeSpan 1322 
CTimeSpan class 1897 

GetSel member function 
CEdit class 642 
CListBox class 933 
CRichEditCtrl class 1695 

Index 

GetSelCount member function, CListBox class 933 
GetSelectedCount member function, 

CListCtrl class 963 
GetSelectedltem member function 

CRichEditView class 1724 
CTreeCtrl class 1963 

GetSelectedText member function, 
CEditView class 657 

GetSelection member function, CSliderCtrl class 1773 
GetSelectionCharFormat member function, 

CRichEditCtrl class 1695 
GetSelectionType member function 

COleBusyDialog class 1118 
COleConvertDialog class 1261 
COleInsertDialog class l372 
COlePasteSpecialDialog class 1404 
CRichEditCtrl class 1696 

GetSelItems member function, CListBox class 933 
GetSelText member function, 

CRichEditCtrl class 1696 
GetServerName member function, 

ClnternetConnection class 883 
GetServerVariable member function 

CHttpFilterContext class 846 
CHttpServerContext class 861 

GetSession member function, 
ClnternetConnection class 883 

GetSize member function 
CArray class 66 
CFontDialog class 740 
CObArray class 1081 
CRecentFileList class 1574 

GetSockName member function, 
CAsyncSocket class 91 

GetSockOpt member function, CAsyncSocket class 92 
GetSourceTableName member function, 

CDaoTableDef class 370 



Index 

GetSQL member function 
CDaoQueryDef class 273 
CDaoRecordset class 316 
CRecordset class 1603 

GetStartPosition member function 
CFileDialog class 700 
CMap class 983 
CMapStringToOb class 993 
COleDocument class 1350 

GetState member function 
CButton class 141 
CToolBarCtrl class 1930 

GetStatus member function 
CFile class 683 
COleCurrency 1266 
COleDateTime 1303 
COleDateTimeSpan 1322 
CRecordset class 1602 

GetStatusBarCtrl member function, 
CStatusBar class 1822 

GetStockTextMetrics member function, 
COleControl class 1213 

GetStreamFormat member function, 
CRichEditDoc class 1712 

GetStreamSize member function, 
CHtmlStream class 818 

GetStretchBltMode member function, CDC class 502 
GetStringWidth member function, CListCtrl class 963 
GetStyle member function, CWnd class 2139 
GetStyleName member function, 

CFontDialog class 741 
GetSubMenu member function, CMenu class 1044 
GetSuperWndProcAddr member function, 

CWnd class 2164 
GetSystemMenu member function, CWnd class 2140 
GetTabbedTextExtent member function, 

CDC class 503 
GetTabControl member function, 

CPropertySheet class 1558 
GetTableDefCount member function, 

CDaoDatabase class 245 
GetTableDeflnfo member function, 

CDaoDatabase class 246 
GetTableName member function, 

CRecordset class 1604 
GetTail member function 

CList class 916 
CObList class 1109 
CTypedPtrList class 1986 

GetTailPosition member function 
CList class 916 
CObList class 1109 

GetText member function 
CListBox class 934 
COleControl class 1213 
CStatusBarCtrl class 1829 
CToolTipCtrl class 1943 

GetTextAlign member function, CDC class 504 
GetTextBkColor member function, CListCtrl class 964 
GetTextCharacterExtra member function, 

CDC class 505 
GetTextColor member function 

CDC class 505 
CListCtrl class 964 

GetTextExtent member function, CDC class 505 
GetTextFace member function, CDC class 506 
GetTextLen member function, CListBox class 934 
GetTextLength member function 

CRichEditCtrl class 1697 
CRichEditView class 1724 
CStatusBarCtrl class 1830 

GetTextMetrics member function, CDC class 506 
GetThreadPriority member function, 

CWinThread class 2070 
GetThumbRect member function, 

CSliderCtrl class 1774 
GetTic member function, CSliderCtrl class 1774 
GetTicArray member function, CSliderCtrl class 1774 
GetTicPos member function, CSliderCtrl class 1775 
GetTile member function, CHttpServer class· 856 
GetTime member function, CTime class 1890 
Getting connect strings 240 
GetTitle member function, CDocument class 609 
GetToolBarCtrl member function, 

CToolBar class 1907 
GetToolCount member function, 

CToolTipCtrl class 1944 
GetToolInfo member function, 

CToolTipCtrl class 1944 
GetTooltips member function, CTabCtrl class 1878 
GetToolTips member function, 

CToolBarCtrl class 1930 
GetToPage member function 

CPrintDialog class 1527 
CPrintInfo class 1533 



GetTopIndex member function 
CComboBox class 193 
CListBox class 935 
CListCtrl class 964 

GetTopLevelFrame member function, 
CWnd class 2140 

GetTopLevelOwner member function, 
CWnd class 2141 

GetTopLevelParent member function, 
CWnd class 2141 

GetToPrefix member function, 
COleChangeSourceDialog class 1127 

GetTopWindow member function, CWnd class 2141 
GetTotalDays member function, 

COleDateTimeSpan class 1323 
GetTotalHours member function, 

COleDateTimeSpan class 1324 
GetTotalHours member function, 

CTimeSpan class 1898 
GetTotalMinutes member function 

COleDateTimeSpan 1325 
CTimeSpan class 1898 

GetTotalSeconds member function 
COleDateTimeSpan 1325 
CTimeSpan class 1898 

GetTotalSize member function, 
CScrollView class 1748 

GetTreeCtrl member function, CTreeView class 1975 
GetTrueRect member function, 

CRectTracker class 1661 
GetType member function 

CDaoQueryDef class 274 
CDaoRecordset class 316 
COleClientItem class 1155 
CPictureHolder class 1513 

GetUBound member function, 
COleSafeArray class 1426 

GetUpdateRect member function, CWnd class 2142 
GetUpdateRgn member function, CWnd class 2143 
GetUpperBound member function. 

CArray class 66 
CObArray class 1082 

GetUserName member function, 
CDao Workspace class 391 

GetU serType member function, 
COleClientItem class 1155 

GetValidationRule member function, 
CDaoRecordset class 317 
CDaoTableDef class 370 

GetValidationText member function 
CDaoRecordset class 317 
CDaoTableDef class 371 

GetVerb member function, CHttpFile class 828 
GetVersion member function 

CDaoDatabase class 247 
CDaoWorkspace class 392 
CDockState class 580 
CPropExchange class 1567 

Index 

GetView member function, CRichEditDoc class 1713 
GetViewportExt member function, CDC class 507 
GetViewportOrg member function, CDC class 507 
GetViewRect member function, CListCtrl class 965 
GetVisibleCount member function, 

CTreeCtrl class 1963 
GetWeight member function, CFontDialog class 741 
GetWindow member function 

CDC class 507 
CWnd class 2143 

GetWindowContextHelpId member function, 
CWnd class 2144 

GetWindowDC member function, CWnd class 2144 
GetWindowExt member function, CDC class 508 
GetWindowMenuPopup member function, 

CMDIFrameWnd class 1014 
GetWindowOrg member function, CDC class 508 
GetWindowPlacement member function, 

CWnd class 2145 
GetWindowRect member function, CWnd class 2145 
GetWindowText member function, CWnd class 2146 
GetWindowTextLength member function, 

CWnd class 2147 
GetWorkspaceCount member function, 

CDaoWorkspace class 392 
GetWorkspaceInfo member function, 

CDaoWorkspace class 393 
GetYear member function 

COleDateTime 1304 
CTime class 1891 

GetZoomFactor member function, 
COleServerDoc class 1437 

GiveFeedback member function, 
COleDropSource class 1357 

Global function/macro 
AFX_MANAGE_STATE 2322 
AFX_SQL_ASYNC 2341 
AFX_SQL_SYNC 2342 
AfxAbort 2304 
AfxBeginThread 2305 



Index 

Global function/macro (continued) 
AfxCheckMemory 2306 
AfxConnectionAdvise 2307 
AfxConnection U nadvise 2308 
AfxDoForAllClasses 2308 
AfxDoForAllObjects 2310 
afxDump 2310, 2311 
AfxEnableControlContainer 2311 
AfxEnableMemoryTracking 2312 
AfxEndThread 2312 
AfxFormatStringl 2312 
AfxFormatString2 2313 
AfxGetApp 2315 
AfxGetAppName 2315 
AfxGetInstanceHandle 2315 
AfxGetMainWnd 2316 
AfxGetResourceHandle 2317 
AfxGetThread 2318 
AfxIsMemoryBlock 2319 
AfxIs ValidAddress 2320 
AfxIsValidString 2320 
afxMemDF 2323 
AfxMessageBox 2324 
AfxOleCanExitApp 2324 
AfxOleGetMessageFilter 2326 
AfxOleGetUserCtrl 2327 
AfxOleInit 2327 
AfxOleLockApp 2327 
AfxOleRegisterControlClass 2329 
AfxOleRegisterPropertyPageClass 2331 
AfxOleRegisterServerClass 2332 
AfxOleRegisterTypeLib 2333 
AfxOleSetEditMenu 2334 
AfxOleSetUserCtrl 2335 
AfxOleTypeMatchGuid 2335, 2337 
AfxOleUnlockApp 2336 
AfxOleUnregisterTypeLib 2337 
AfxRegisterClass 2337 
AfxRegisterWndClass 2339 
AfxSetAllocHook 2340 
AfxSetResourceHandle 2341 
AfxSocketInit 2341 
AfxThrow ArchiveException 2343 
AfxThrowDaoException 2344 
AfxThrowDBException 2344 
AfxThrowFileException 2345 
AfxThrow Memory Exception 2345 
AfxThrowNotSupportedException 2346 
AfxThrowOleDispatchException 2346 

Global function/macro (continued) 
AfxThrowOleException 2347 
AfxThrowResourceException 2347 
AfxThrowUserException 2347 
afxTraceEnabled 2348 
afxTraceFlags 2348 
AfxVerifyLicFile 2349 
AND_CATCH 2351 
AND_CATCH_ALL 2352 
ASSERT 2353 
ASSERT_VALID 2354 
BASED_CODE 2354 
BEGIN_CONNECTION_MAP 2355 
BEGIN_CONNECTION_PART 2355 
BEGIN_DISPATCH_MAP 2356 
BEGIN_EVENT_MAP 2356 
BEGIN_EVENTS INK_MAP 2357 
BEGIN_MESS AGE_MAP 2357 
BEGIN_OLEFACTORY 2358 
BEGIN_PROPPAGEIDS 2359 
CATCH 2359 
CATCH_ALL 2360 
CompareElements 2361 
CONNECTION_IID 2362 
CONNECTION_PART 2363 
ConstructElements 2362 
DDP _CBIndex 2363 
DDP _CBString 2364 
DDP _CBStringExact 2364 
DDP _Check 2365 
DDP _LBIndex 2365 
DDP _LBString 2366 
DDP _LBStringExact 2366 
DDP _PostProcessing 2367 
DDP _Radio 2368 
DDP _Text 2368 
DDV _MaxChars 2369 
DDV _MinMaxByte 2369 
DDV _MinMaxDouble 2370 
DDV _MinMaxDWord 2370 
DDV _MinMaxFloat 2371 
DDV _MinMaxInt 2371 
DDV _MinMaxLong 2372 
DDV _MinMaxUnsigned 2372 
DDX_CBIndex 2373 
DDX_CBString 2373 
DDX_CBStringExact 2374 
DDX_Check 2375 
DDX_FieldCBIndex 2376 



Global function/macro (continued) 
DDX_FieldCBString 2377 
DDX_FieldCBStringExact 2378 
DDX_FieldCheck 2379 
DDX_FieldLBIndex 2379 
DDX_FieldLBString 2380 
DDX_FieldLBStringExact 2381 
DDX_FieldRadio 2382 
DDX_FieldScroll 2383 
DDX_FieldText 2384 
DDX_LBIndex 2386 
DDX_LBString 2387 
DDX_LBStringExact 2387 
DDX_Radio 2388 
DDX_Scroll 2395 
DDX_Text 2396 
DEBUG_NEW 2397 
DECLARE_CONNECTION_MAP 2397 
DECLARE_DISPATCH_MAP 2398 
DECLARE_DYNAMIC 2398 
DECLARE_DYNCREATE 2399 
DECLARE_EVENT_MAP 2399 
DECLARE_EVENTS INK_MAP 2400 
DECLARE_MESSAGE_MAP 2400 
DECLARE_OLECREATE 2401 
DECLARE_OLECREATE_EX 2401 
DECLARE_OLETYPELIB 2402 
DECLARE_PROPPAGEIDS 2402 
DECLARE_SERIAL 2402 
DestructElements 2403 
DFX_Binary 2404 
DFX_Bool 2405 
DFX_Byte 2406 
DFX_Currency 2407 
DFX_DateTime 2408 
DFX_Double 2409 
DFX_Long 2410 
DFX_LongBinary 2411 
DFX_Short 2412 
DFX_Single 2413 
DFX_Text 2414 
DISP _DEFVALUE 2415 
DISP _FUNCTION 2416 
DISP _PROPERTY 2417 
DISP_PROPERTY_EX 2418 
END_CATCH 2422 
END_CATCH_ALL 2422 
END_CONNECTION_MAP 2422 
END_CONNECTION_PART 2423 

Global function/macro (continued) 
END_DISPATCH_MAP 2423 
END_EVENT_MAP 2423 
END _EVENTS INK_MAP 2423 
END_MESSAGE_MAP 2424 
END_OLEFACTORY 2424 
END_PROPPAGEIDS 2425 
EVENT_CUSTOM 2425 
EVENT_CUSTOM_ID 2426 
HashKey 2427 
IMPLEMENT_DYNAMIC 2427 
IMPLEMENT_DYNCREATE 2428 
IMPLEMENT_ OLECREATE 2428 
IMPLEMENT_OLECREATE_EX 2429 
IMPLEMENT _OLETYPELIB 2430 
IMPLEMENT_SERIAL 2430 
ISAPIASSERT 2431 
ISAPITRACE 2431 
ISAPITRACEO 2432 
ISAPIVERIFY 2434 
ISAPTRACEI 2432 
ISAPTRACE2 2433 
ISAPTRACE3 2433 
ON_COMMAND 2435 
ON_COMMAND_RANGE 2436 
ON_CONTROL 2436 
ON_CONTROL_RANGE 2437 
ON_EVENT 2437 
ON_EVENT_RANGE 2438 
ON_MESSAGE 2439 
ON_OLEVERB 2442 
ON_PROPNOTIFY 2444 

Index 

ON_PROPNOTIFY _RANGE 2445 
ON_REGISTERED_MESSAGE 2446 
ON_STDOLEVERB 2447 
ON_UPDATE_COMMAND_UI 2448 
ON_UPDATE_COMMAND_UCRANGE 2449 
PROPPAGEID 2449 
PX_Blob 2450 
PX_Bool 2451 
PX_Color 2451 
PX_Currency 2452 
PX_Double 2453 
PX_Float 2454 
PX_Font 2454 
PX_IUnknown 2455 
PX_Long 2456 
PX_Picture 2456 
PX_Short 2457 



Index 

Global function/macro (continued) 
PX_String 2457 
PX_ULong 2458 
PX_UShort 2459 
PX_ VBXFontConvert 2459 
RFX_Binary 2460 
RFX_Bool 2461 
RFX_B yte 2463 
RFX_Date 2464 
RFX_Double 2466 
RFX_Int 2468 
RFX_Long 2469 
RFX_LongBinary 2471 
RFX_Single 2472 
RFX_Text 2473 
RUNTIME_CLASS 2475 
SerializeElements 2477 
THIS_FILE 2478 
THROW 2478 
THROW_LAST 2479 
TRACE 2479 
TRACEO 2480 
TRACEI 2481 
TRACE2 2481 
TRACE3 2481 
TRY 2482 
VERIFY 2482 

GlobalAlloc, memory leaks 1026 
GlobalFree, memory leaks 1026 
Globals, categories listed 2279 
GotoDlgCtri member function, CDialog class 570 
GrayString member function, CDC class 508 
GrayString, callback function for See Callback 

functions for MFC member functions 
GrowFile member function, CMemFile class 1023 
GrowStream member function, 

CHtmlStream class 818 

H 
HasBlankItems member function, 

COleDocument class 1351 
HashKey global function/macro 2427 
HD _ITEM structure 806 
HD_LAYOUT structure 808 
HDBC handle 

Database 418 
ODBC 418 

Header control 803 

Height member function, CRect class 1644 
HexDump member function, COumpContext class 626 
HideApplication member function, 

CWinApp class 2033 
HideButton member function, CToolBarCtri class 1931 
HideCaret member function, CWnd class 2147 
HideSelection member function, 

CRichEditCtri class 1697 
HiliteMenultem member function, CWnd class 2148 
HIMETRICtoDP member function, CDC class 510 
HIMETRICtoLP member function, CDC class 510 
HitTest member function 

CListCtrl class 965 
CRectTracker class 1661 
CTabCtri class 1878 
CToolTipCtri class 1945 
CTreeCtri class 1964 

Hot key control 810 
HSTMT handle 

OOBC 1629 
Recordset 1629 

HTTP_FILTER_AUTHENT structure 2535 
HTTP_FILTER_CONTEXT structure 2536 
HTTP_FILTER_LOG structure 2540 
HTTP_FILTER_PREPROC_HEADERS 

structure 2541 
HTTP_FILTER_RAW_DATA structure 2542 
HTTP_FILTER_URL_MAP structure 2543 
HTTP_FILTER_VERSION structure 2543 
HttpExtensionProc member function, 

CHttpServer class 856 
HttpFiIterProc member function, CHttpFilter class 836 

ID, standard command and window 2288 
IDataObject, MFC encapsulation 1275, 1282 
IdFromRowCol member function, 

CSplitterWnd class 1806 
Idle member function, CDaoWorkspace class 393 
Idle processing, DAO 393 
IgnoreApply member function, 

COlePropertyPage class 1413 
Image Lists 868 
IMAGEINFO structure 877 
IMPLEMENT_DYNAMIC 

global function/macro 2427 



IMPLEMENT_DYNCREATE 
global function/macro 2428 

IMPLEMENT_OLECREATE 
global function/macro 2428 

IMPLEMENT _OLECREATE_EX 
global function/macro 2429 

IMPLEMENT _OLETYPELIB 
global function/macro 2430 

IMPLEMENT_SERIAL global function/macro 2430 
Implicit construction of database object 233 
Inconsistent updates, defined 238 
Indeterminate member function, 

CToolBarCtrl class 1931 
Index field object (DAO), 

obtaining information about 2505 
Index object (DAO), obtaining information about 2502 
InflateRect member function, CRect class 1644 
InitHashTable member function, CMap class 983 
Initialization settings 

database engine 389 
workspace 398 

Initialization, OLE system DLLs 2295 
InitializeFont member function, CFontHolder class 745 
InitializeIIDs member function, 

COleControl class 1214 
InitialUpdateFrame member function 

CDocTemplate class 596 
CFrameWnd class 762 

Initiating drag and drop 1287 
InitInstance member function 

CHttpServer class 857 
CWinApp class 2033 
CWinThread class 2070 

InitModalIndirect member function, CDialog class 570 
InitStorage member function 

CComboBox class 193 
CListBox class 935 

InitStream member function, CHtmlStream class 819 
InModalState member function, CFrameWnd class 762 
In-place editing 

activation status 1438 
change notifications 1439 
clipping rectangle 1437 
COleServerDoc class 1435 
embedded status 1438 
item coordinates 1437 
item zoom factor 1437 

InsertAfter member function 
CList class 916 
CObList class 1110 

InsertAt member function 
CArray class 66 
CObArray class 1082 

InsertBefore member function 
CList class 917 
CObList class 1110 

InsertButton member function, 
CToolBarCtrl class 1932 

Index 

InsertColumn member function, CListCtrl class 966 
InsertFi1eAsObject member function, 

CRichEditView class 1724 
InsertItem member function 

CHeaderCtrl class 808 
CListCtrl class 967 
CRichEditView class 1724 
CTabCtrl class 1879 
CTreeCtrl class 1965 

InsertMenu member function, CMenu class 1044 
InsertString member function 

CComboBox class 194 
CListBox class 936 

Integer, DDX field exchange 2384 
IntemalGetFont member function, 

COleControl class 1214 
IntemalGetText member function, 

COleControl class 1214 
IntersectClipRect member function, CDC class 510 
IntersectRect member function, CRect class 1645 
Invalidate member function, CWnd class 2148 
InvalidateControl member function, 

COleControl class 1215 
InvalidateRect member function, CWnd class 2149 
InvalidateRgn member function, CWnd class 2150 
InvertRect member function, CDC class 511 
InvertRgn member function, CDC class 511 
InvokeHelper member function 

COleDispatchDriver class 1337 
CWnd class 2150 

IOCtl member function, CAsyncSocket class 94 
ISAPIASSERT global function/macro 2431 
ISAPITRACE global function/macro 2431 
ISAPITRACEO global function/macro 2432 
ISAPIVERIFY global function/macro 2434 
ISAPTRACE1 global function/macro 2432 
ISAPTRACE2 global function/macro 2433 
ISAPTRACE3 global function/macro 2433 



Index 

IsArchived member function, CFileFind class 717 
Is Blank member function, CDocltem class 577 
IsBlocking member function, CSocket class 1783 
IsBOF member function 

CDaoRecordset class 318 
CRecordset class 1604 

IsBold member function, CFontDialog class 741 
IsBufferEmpty member function, CArchive class 45 
IsButtonChecked member function, 

CToolBarCtrl class 1932 
IsButtonEnabled member function, 

CToolBarCtrl class 1933 
IsButtonHidden member function, 

CToolBarCtrl class 1933 
IsButtonIndeterminate member function, 

CToolBarCtrl class 1933 
IsButtonPressed member function, 

CToolBarCtrl class 1934 
IsChild member function, CWnd class 2151 
IsChiIdPane member function, 

CSplitterWnd class 1807 
IsCompressed member function, CFileFind class 717 
IsConnected member function, 

COleServerItem class 1457 
IsConverting VBX member function, 

COleControl class 1216 
IsDataA vailable member function, 

COleDataObject class 1280 
IsDeleted member function 

CDaoRecordset class 319 
CRecordset class 1605 

IsDialogMessage member function 
CWnd class 2152 

IsDirectory member function, CFileFind class 717 
IsDlgButtonChecked member function, 

CWnd class 2152 
IsDots member function, CFileFind class 718 
IsEmbedded member function, 

COleServerDoc class 1438 
IsEmpty member function 

CList class 917 
CMap class 983 
CMapStringToOb class 993 
CObList class 1111 
CString class 1849 

IsEnabled member function, 
CCheckListBox class 153 

IsEOF member function 
CDaoRecordset class 320 
CRecordset class 1606 

IsFieldDirty member function 
CDaoRecordset class 321 
CRecordset class 1606 

IsFieldNull member function 
CDaoRecordset class 322 
CRecordset class 1607 

IsFieldNullable member function 
CDaoRecordset class 323 
CRecordset class 1608 

IsFieldType member function, 
CFieldExchange class 673 

IsFloating member function, CControlBar class 219 
IsHidden member function, CFileFind class 718 
IsIconic member function, CWnd class 2153 
IsIdleMessage member function, 

CWinThread class 2071 
IsInPlaceActive member function 

COleClientItem class 1156 
COleServerDoc class 1438 

Isltalic member function, CFontDialog class 741 
IsKindOf member function, CObject class 1095 
IsLinkedltem member function, 

COleServerItem class 1458 
IsLinkUpToDate member function, 

COleClientltem class 1156 
IsLoading member function 

CArchive class 46 
CPropExchange class 1567 

IsLocked member function 
CMultiLock class 1068 
CSingleLock class 1761 

IsModified member function 
CDocument class 610 
COleClientltem class 1157 
COleControl class 1217 
COlePropertyPage class 1413 

IsNormal member function, CFileFind class 718 
Isolating ODBC transactions 399 
IsOnFirstRecord member function 

CDaoRecordView class 351 
CRecordView class 1636 

IsOnLastRecord member function 
CDaoRecordView class 351 
CRecordView class 1636 



IsOpen member function 
CDaoDatabase class 247 
CDaoQueryDef class 274 
CDaoRecordset class 323 
CDaoTableDef class 371 
CDao Workspace class 394 
CDatabase class 411 
COleClientltem class 1157 
CRecordset class 1608 

IsPrinting member function, CDC class 512 
IsReadOnly member function, CFileFind class 719 
IsRectEmpty member function, CRect class 1646 
IsRectNull member function, CRect class 1646 
IsRegistered member function, 

COleObjectFactory class 1394 
IsResultExpected member function, 

CCmdTarget class 163 
IsRichEditFormat member function, 

CRichEditView class 1725 
IsRunning member function, 

COleClientltem class 1157 
IsSelected member function 

CRichEditView class 1725 
CView class 2001 

IsSerializable member function, CObject class 1095 
IsStoring member function, CArchive class 46 
IsStrikeOut member function, CFontDialog class 742 
IsSubclassedControl member function, 

COleControl class 1218 
IsSystem member function, CFileFind class 719 
IsTemporary member function, CFileFind class 719 
IsTerminating member function, 

CFindReplaceDialog class 725 
IsTracking member function, CFrameWnd 762 
IsUnderline member function, CFontDialog class 742 
Is V alidOperation member function, 

CDaoFieldExchange class 257 
Is V alidSource member function, 

COleChangeSourceDialog class 1128 
IsWindowEnabled member function, CWnd class 2153 
IsWindowVisible member function, CWnd class 2153 
IsZoomed member function, CWnd class 2154 
ItemFromPoint member function, CListBox class 936 
ItemHasChildren member function, 

CTreeCtrl class 1966 

J 
Jet database engine See Database engine 

K 
KillTimer member function, CWnd class 2154 

L 
Large data objects, CLongBinary class 978 
Layout member function, CHeaderCtrl class 808 
Left member function, CString class 1849 
LimitText member function 

CComboBox class 194 
CEdit class 642 
CRichEditCtrl class 1698 

LineFromChar member function 
CEdit class 643 
CRichEditCtrl class 1698 

LineIndex member function 
CEdit class 643 
CRichEditCtrl class 1699 

LineLength member function 
CEdit class 644 
CRichEditCtrl class 1699 

LineScroll member function 
CEdit class 644 
CRichEditCtrl class 1700 

LineTo member function, CDC class 512 
LINGER structure 2544 
Linked items (OLE) 1431 
List box, DDX field exchange 2379-2381 
List view control 945 
List-Box styles 2567 
Listen member function, CAsyncSocket class 95 
Lists, collection classes 

CList 909 
CTypedPtrList 1981 

LoadAccelTable member function, 
CFrameWnd class 763 

Index 

LoadBarState member function, CFrameWnd class 763 
LoadBitmap member function 

CBitmap class 119 
CToolBar class 1908 

LoadBitmaps member function, 
CBitmapButton class 125 

LoadCursor member function, CWinApp class 2035 
LoadField, Record field exchange (DFX) 258 
LoadFrame member function, CFrameWnd class 764 
LoadIcon member function, CWinApp class 2035 
LoadMappedBitmap member function, 

CBitmap class 119 



Index 

LoadMenu member function, CMenu class 1046 
LoadMenuIndirect member function, 

CMenu class 1046 
LoadOEMBitmap member function, 

CBitmap class 120 
LoadOEMCursor member function, 

CWinApp class 2036 
LoadOEMIcon member function, CWinApp class 2037 
LoadStandardCursor member function, 

CWinApp class 2037 
LoadStandardIcon member function, 

CWinApp class 2038 
LoadState member function, CDockState class 581 
LoadStdProfileSettings member function, 

CWinApp class 2039 
LoadString member function, CString class 1850 
LoadTemplate member function, 

CDocTemplate class 597 
LoadToolBar member function, CToolBar class 1908 
LocalAlloc, memory leaks 1026 
LocalFree, memory leaks 1026 
Lock member function 

CCriticalSection class 225 
CMultiLock class 1068 
COleSafeArray class 1427 
CSingleLock class 1761 
CSyncObject class 1868 

LockBuffer member function 
CEditView class 657 
CString class 1851 

Locking modes, recordset 
described 1625 
setting 1625 

LockInPlaceActive member function, 
COleControl class 1218 

LockRange member function, CFile class 684 
LockWindowUpdate member function, 

CWnd class 2154 
LOGBRUSH structure 2544 
LOGFONT structure 2546 
Login timeout See Workspace 
Login timeout property, setting 400,417 
LOGPEN structure 2549 
Long integer 

DDX field exchange 2384 
DFX field exchange 2410 
RFX field exchange 2469 

Lookup member function 
CMap class 984 
CMapStringToOb class 994 
CTypedPtrMap class 1990 

LPtoDP member function, CDC class 512 
LPtoHIMETRIC member function, CDC class 513 
LV _COLUMN structure 956 
LV _FIND INFO structure 954 
LV _HITTESTINFO structure 965 
LV_ITEM structure 958 

M 
m_arrBarInfo data member, CDockState class 581 
m_bAutoDelete data member 

CControlBar class 221 
CWinThread class 2076 

m_bAutoMenuEnable data member, 
CFrameWnd class 769 

m_bAutoRelease data member, 
COleDisplatchDriver class 1339 

m_bCheckCacheForDirtyFields data member, 
CDaoRecordset class 345 

m_bContinuePrinting data member, 
CPrintInfo class 1534 

m_bDirect data member, CPrintInfo class 1534 
m_bHelpMode data member, CWinApp class 2058 
m_boolVal data member, CDBVariant class 432 
m_bPreview data member, CPrintInfo class 1535 
m_bRTF data member, CRichEditDoc class 1713 
m_bRunAutomated data member, 

CCommandLineInfo class 204 
m_bRunEmbedded data member, 

CCommandLineInfo class 205 
m_bSaveAndValidate member function, 

CDataExchange class 421 
m_bShowSplash data member, 

CCommandLineInfo class 205 
m_bz data member, COleBusyDialog class 1119 
m_Cache data member, 

CCachedDataPathProperty class 148 
m_cause data member 

CArchiveException class 60 
CFileException class 707 

m_cc data member, CColorDialog class 176 
m_cf data member 

CFontDialog class 742 
m_chVal data member, CDBVariant class 433 



m_ci data member, 
COleChangeIconDialog class 1123 

m_cs data member, 
COleChangeSourceDialog class 1128 

m_cur data member, COleCurrency class 1273 
m3V data member, COleConvertDialog class 1262 
m_DAOTableDef data member, 

CDaoTableDef class 377 
m_dbiVal data member, CDBVariant class 433 
m_dt data member, COleDateTime class 1314 
m_dwContext data member, 

CInternetException class 885 
m_dwDataLength data member, 

CLongBinary class 979 
m_dwDefaultStyle data member, CCtrlView class 228 
m_dwError data member, CInternetException class 885 
m_dwHelpContext data member, 

COleDisplatchException class 1342 
m_dwType data member, CDBVariant class 433 
m_el data member, COleLinksDialog class 1383 
m_fltVal data member, COB Variant class 434 
m_fr data member, CFindReplaceDialog class 727 
m_gp data member, COlePropertiesDialog class 1408 
m_hAttribDC data member, CDC class 562 
m_hData data member, CLongBinary class 979 
m_hdbc data member, CDatabase class 418 
m_hDC data member, CDC class 562 
m_hFile data members 

CFile class 693 
CInternetFile class 892 

m_hImageList data member, CImageList class 880 
m_hInstance data member, CWinApp class 2058 
m_hMenu data member, CMenu class 1052 
m_hObject data member, CGdiObject class 789 
m_hPrevInstance data member, CWinApp class 2059 
m_hSocket data member, CAsyncSocket class 112 
m_hstmt data member, CRecordset class 1629 
m_hThread data member, CWinThread class 2076 
m_hWnd data member 

CClientDC class 157 
CPaintDC class 1496 
CWindowDC class 2065 
CWnd class 2276 

m_io data member, COleInsertDialog class 1373 
m_iVal data member, CDBVariant class 434 
m_IOsError data member, CFileException class 708 
m_Ip data member, COlePropertiesDialog class 1408 
m_IpCmdLine data member, CWinApp class 2059 

Index 

m_IpDispatch data member, 
COleDispatchDriver class 1340 

m_IpUserData data member, CPrintinfo class 1535 
m_IVai data member, CDBVariant class 434 
m_nAfxDaoError data member, 

CDaoException class 254 
m_nBulletindent data member, 

CRichEditView class 1734 
m_nCmdShow data member, CWinApp class 2060 
m_nCurPage data member, CPrintInfo class 1535 
m_nFields data member, CRecordset class 1629 
m_nHandleSize data member, 

CRectTracker class 1665 
m_nNumPreviewPages data member, 

CPrintinfo class 1536 
m_nOperation data member, 

CDaoFieldExchange class 258 
m_nParams data member 

CDaoRecordset class 346 
CRecordset class 1630 

m_nRetCode data member, CDBException class 428 
m_nShellCommand data member, 

CCommandLineInfo class 205 
m_nStreamSize data members, CHtmlStream class 821 
m_nStyle data member, CRectTracker class 1665 
m_nThreadID data member, CWinThread class 2076 
m_nWordWrap data member, 

CRichEditView class 1734 
m_ofn data member, CFileDialog class 703 
m_op data member, COlePropertiesDialog class 1409 
m_pActiveWnd data member 

CWinApp class 2060 
CWinThread class 2076 

m_pbinary data member, CDBVariant class 434 
m_pd data member, CPrintDialog class 1529 
m_pDAODatabase data member, 

CDaoDatabase class 250 
m_pDAOQueryDef data member, 

CDaoQueryDef class 279 
m_pDAORecordset data member, 

CDaoRecordset class 346 
m_pDAOWorkspace data member, 

CDao Workspace class 401 
m_pDatabase data member 

CDaoQueryDef class 279 
CDaoRecordset class 346 
CDaoTableDef class 377 
CRecordset class 1630 



Index 

m_pdate data member, CDBVariant class 435 
m_pDIgWnd member function, 

CDataExchange class 422 
m_pDocument data member, CArchive class 58 
m_pECB data member, CHttpServerContext class 866 
m_pErrorInfo data member, CDaoException class 255 
m_pFC data member, CHttpFilterContext class 849 
m_pFont data member, CFontHolder class 746 
m_pMain Wnd data member, CWinThread class 2077 
m_pPD data member, CPrintInfo class 1536 
m_pPict data member, CPictureHolder class 1514 
m_prs data member, CDaoFieldExchange class 259 
m_ps data member 

COlePasteSpecialDialog class 1404 
CPaintDC class 1496 

m_psd data member, CPageSetupDialog class 1494 
m_psh data member 

COlePropertiesDialog class 1409 
CPropertySheet class 1561 

m_psp data member, CPropertyPage class 1550 
m_pStream data member, 

CHttpServerContext class 867 
m_pStream data member, CStdioFile class 1836 
m_pstring data member, CDBVariant class 435 
m_pszAppName data member, CWinApp class 2060 
m_pszExeName data member, CWinApp class 2061 
m_pszHelpFilePath data member, 

CWinApp class 2062 
m_pszProfileName data member, CWinApp class 2062 
m_pszRegistryKey data member, CWinApp class 2063 
m_p Workspace data member, CDaoDatabase class 250 
m_rect data member, CRectTracker class 1665 
m_rectDraw data member, CPrintInfo class 1536 
m_sc data member, COleException class 1367 
m_scode data member, CDaoException class 255 
m_sizeExtent data member, CRectTracker class 1469 
m_sizeMin data member, CRectTracker class 1665 
m_span data member, 

COleDataTimeSpan class 1330 
m_status data member 

COleCurrency class 1273 
COleDateTime class 1315 
COleDateTimeSpan class 1330 

m_strClass data member, CCtrlView class 228 
m_strDescription data member, 

COleDispatchException class 1342 

m_strDriverName data member, 
CCommandLineInfo class 207 

m_strError 
and m_strStateNativeOrigin 430 
example 430 

m_strError data member, CDBException class 430 
m_strFileName data member, 

CCommandLineInfo class 206 
m_strFilter data member 

CDaoRecordset class 347 
CRecordset class 1631 

m_strHelpFile data member, 
COleDispatchException class 1342 

m_strPageDesc data member, CPrintInfo class 1537 
m_strPortName data member, 

CCommandLineInfo class 207 
m_strPrinterName data member, 

CCommandLineInfo class 207 
m_strSort data member 

CDaoRecordset class 347 
CRecordset class 1631 

m_strSource data member, 
COleDispatchException class 1342 

m_strS tateN ati veOrigin 
and m_strError 430 
example 430 

m_strStateNativeOrigin data member, 
CDBException class 430 

m_vp data member, COlePropertiesDialog class 1409 
m_ wCode data member, 

COleDispatchException class 1343 
Macro categories (list) 2279 
Mail API See MAPI 
Mailing documents See MAPI 
MakeLower member function, CString class 1851 
MakeReverse member function, CString class 1852 
Make-table query 261 
MakeUpper member function, CString class 1852 
MapDialogRect member function, 

CDialog class 571 
MAPI 

described 611,615,1352 
MFC support for 611,615, 1352 

MapObject member function, CArchive class 47 
Maps 

CMapPtrToPtr 986 
CMapPtrToWord 988 
CMapStringToOb 990 
CMapStringToPtr 998 



Maps (continlled) 
CMapStringToString 1000 
CMapWordToOb 1002 
CMapWordToPtr 1004 
collection classes, CMap 980 
CTypedPtrMap 1989 

MapWindowPoints member function, 
CWnd class 2155 

MarkForAddNew, Record field exchange (DFX) 258 
MarkForEdit, Record field exchange (DFX) 258 
MaskBlt member function, CDC class 513 
MatchCase member function, 

CFindReplaceDialog class 726 
MatchDocType member function, 

CDocTemplate class 597 
MatchesMask member function, CFileFind class 720 
MatchWholeWord member function, 

CFindReplaceDialog class 726 
MaxDFXOperation, Record field exchange (DFX) 258 
MDIActivate member function 

CMDIChildWnd class 1009 
CMDIFrameWnd class 1014 

MDICascade member function, 
CMDIFrameWnd class 1015 

MDIDestroy member function, 
CMDIChildWnd class 1010 

MDIGetActive member function, 
CMDIFrameWnd class 1015 

MDIIconArrange member function, 
CMDIFrameWnd class 1016 

MDIMaximize member function 
CMDIChildWnd class 10 10 
CMDIFrameWnd class 1016 

MDINext member function, 
CMDIFrameWnd class 1016 

MDIRestore member function 
CMDIChildWnd class 1010 
CMDIFrameWnd class 1017 

MDISetMenu member function, 
CMDIFrameWnd class 1017 

MDITile member function, 
CMDIFrameWnd class 1018 

MeasureItem member function 
CComboBox class 195 
CListBox class 936 
CMenu class 1047 

MEASUREITEMSTRUCT structure 2550 

Member functions 
CAnimateCtrl class 36 
CArchive class 42 
CArchiveException class 59 
CArray class 63 
CAsyncMoniker class 72 
CAsyncSocket class 82 
CBitmap class 114 
CBitmapButton class 125 
CBrush class 128 
CButton class 138 
CCheckListBox class 150 
CClientDC class 156 
CCmdTarget class 159 
CCmdUI class 169 
CColorDialog class 173 
CComboBox class 181 
CCommandLinelnfo class 203 
CCommonDialog class 209 
CConnectionPoint 212 
CControlBar class 215 
CCriticalSection class 225 
CCtrlView class 227 
CDaoDatabase class 232 
CDaoException class 252 
CDaoFieldExchange class 257 
CDaoQueryDef class 263 
CDaoRecordset class 286 
CDaoRecordView class 350 
CDaoTableDef class 357 
CDaoWorkspace class 382 
CDatabase class 404 
CDataExchange class 420 
CDataPathProperty class 424 
CDBVariant class 432 
CDC class 445,446,482,513,545 
CDialog class 566 
CDialogBar class 575 
CDocItem class 577 
CDockState class 580 
CDocObjectServer class 583 
CDocObjectServerItem class 587 
CDocTemplate class 591 
CDocument class 603 
CDragListBox class 621, 622, 623 
CDumpContext class 625 
CEdit class 634 
CEditView class 655 
CEvent class 664 

Index 



Index 

Member functions (continued) 
CException class 668 
CFieldExchange class 673 
CFile class 677 
CFileDialog class 696 
CFileException class 705 
CFileFind class 710 
CFindReplaceDialog class 723 
CFont class 729 
CFontDialog class 738 
CFontHolder class 743 
CFormView class 750 
CFrameWnd class 754, 769 
CFtpConnection class 771 
CFtpFileFind class 781 
CGdiObject class 784 
CGopherConnection class 791 
CGopherFile class 795 
CGopherFileFind class 797 
CGopherLocator class 801 
CHeaderCtrl class 804 
CHotKeyCtrl class 811 
CHtmlStream class 815 
CHttpConnection class 822 
CHttpFile class 826 
CHttpFilter class 834 
CHttpFilterContext class 845 
CHttpServer class 852 
CHttpServerContext class 861 
CImageList class 869 
CInternetConnection class 881 
CInternetException class 884 
CInternetFile class 887 
CInternetSession class 895 
CList class 911 
CListBox class 923 
CListCtrl class 949 
CListView class 976 
CLongBinary class 979 
CMap class 981 
CMapStringToOb class 991 
CMDIChildWnd class 1008 
CMDIFrameWnd class 1013 
CMemFile class 1020 
CMemoryException class 1025 
CMemoryState class 1027 
CMenu class 1032 
CMetaFileDC class 1054 
CMiniFrame W nd class 1058 

Member functions (continued) 
CMonikerFile class 1061 
CMultiDocTemplate class 1065 
CMultiLock class 1068 
CMutex class 1072 
CNotSupportedException class 1073 
CObArray class 1076 
CObject class 1092 
CObList class 1101 
COleBusyDialog class 1117 
COleChangeIconDialog class 1121 
COleChangeSourceDialog class 1125 
COleClientltem class 1133 
COleCmdUI class 1174 
COleControl class 1184 
COleConvertDialog class 1258 
COleCurrency 1264 
COleDataObject class 1276 
COleDataSource class 1283 
COleDateTime 1295 
COleDateTimeSpan 1318 
COleDialog class 1333 
COleDispatchDriver class 1335 
COleDocument class 1346 
COleDropSource class 1357 
COleDropTarget class 1360 
COleInsertDialog class 1369 
COleIPFrameWnd class 1374 
COleLinkingDoc class 1379 
COleLinksDialog class 1382 
COleMessageFilter class 1385 
COleObjectFactory class 1392 
COlePasteSpecialDialog class 1399 
COlePropertiesDialog class 1406 
COlePropertyPage class 1411 
COleResizeBar class 1417 
COleSafeArray class 1420 
COleServerDoc class 1433 
COleServerltem class 1452 
COleStreamFile class 1471 
COleTemplateServer class 1475 
COleUpdateDialog class 1477 
COleVariant 1480 
CPageSetupDialog class 1488 
CPaintDC class 1495 
CPalette class 1498 
CPen class 1504 
CPictureHolder class 1511 
CPoint class 1516 



Member functions (colltillued) 
CPrintDialog class 1523 
CPrintInfo class 1531 
CProgressCtrl class 1539 
CPropertyPage class 1543 
CPropertySheet class 1552 
CPropExchange class 1564 
CRecentFileList class 1572 
CRecordset class 1580 
CRecordView class 1635 
CRect class 1641 
CRectTracker class 1658 
CResourceException class 1666 
CRgn class 1668 
CRichEditCntrItem class 1682 
CRichEditCtrl 1686 
CRichEditDoc class 1712 
CRichEditView class 1716 
CScrollBar class 1738 
CScrollView class 1746 
CSemaphore class 1753 
CSharedFile class 1755 
CSingleDocTemplate class 1758 
CSingleLock class 1761 
CSize class 1763 
CSliderCtrl class 1768 
CSpinButtonCtrl class 1788 
CSplitterWnd class 1797 
CStatic class 1813 
CStatusBar class 1819 
CStatusBarCtrl class 1826 
CStdioFile class 1834 
CString class 1840 
CSyncObject class 1867 
CTabCtrl class 1871 
CTime class 1884 
CTimeSpan class 1895 
CToolBar class 1904 
CToolBarCtrl class 1920 
CToolTipCtrl class 1941 
CTreeCtrl class 1950 
CTreeView class 1974 
CTypedPtrArray class 1977 
CTypedPtrList class 1982 
CTypedPtrMap class 1990 
CView class 2000 
CWaitCursor class 2018 
CWinApp class 2025 
CWindowDC class 2064 

Member functions (contillued) 

CWinThread class 2068 

Index 

CWnd class 2093,2119,2140,2164,2190,2214, 
2240,2274 

Memcpy member function 
CHtmlStream class 819 
CMemFile class 1023 

Memory leaks 
and GlobalAlloc and GlobalFree 1026 
and LocalAlloc and LocalFree 1026 
and malloc and free 1026 
DEBUG_NEW macro 1026 
detecting 1026 
new operator 1026 

Menu classes (list) 11 
Message-box display, CString object formatting 2287 
MessageBox member function, Cwnd class 2156 
Message-box styles 2568 
Messaging API See MAPI 
Microsoft Foundation Class Library 

application framework 3 
overview 1 
relationship to Windows API 3,4 

Microsoft Jet database engine See Database engine 
Mid member function, CString class 1852 
MINMAXINFO structure 2551 
Modifying data source data 1287 
Modifying drag and drop cursors 1357 
ModifyMenu member function, CMenu class 1047 
ModifyStyle member function, Cwnd class 2156 
ModifyStyleEx member function, CWnd class 2157 
Move member function 

CDaoRecordset class 323 
CRecordset class 1609 

MoveFirst member function 
CDaoRecordset class 324 
CRecordset class 1611 

MoveLast member function 
CDaoRecordset class 325 
CRecordset class 1612 

MoveNext member function 
CDaoRecordset class 326 
CRecordset class 1613 

MovePrev member function 
CDaoRecordset class 327 
CRecordset class 1614 

MoveTo member function, CDC class 515 
MoveWindow member function, CWnd class 2158 



Index 

Moving 

N 

through records, CRecordView class 1637 
to first Recordset record 1611 
to last Recordset record 1612 
to new Recordset records 1609 
to next Recordset record 1613 
to previous Recordset record 1614 

Names 
user (default), setting 397 
user-defined workspace 391 

Native ODBC error strings 430 
Navigating 

class CRecordView 1637 
Recordsets 1609, 1611-1614 

NCCALCSIZE_PARAMS structure 2552 
NegotiateBorderSpace member function, 

CFrameWnd class 764 
New operator, memory leaks 1026 
NextDlgCtrl member function, CDialog class 571 
NMHDR structure 1916 
NO_AFX_DAO_ERROR error code 254 
NormalizeHit member function, 

CRectTracker class 1662 
NormalizeRect member function, CRect class 1646 
NotifyChanged member function 

COleServerDoc class 1439 
COleServerItem class 1458 

NotifyClosed member function, 
COleServerDoc class 1439 

NotifyRename member function, 
COleServerDoc class 1439 

NotifySaved member function, 
COleServerDoc class 1440 

Null, determining whether recordset fields 1607 
Nullable, determining whether recordset fields 1608 

o 
Obtaining information 

about DAO errors 253 
about database relations 244 
about tabledefs 246 
about works paces 393 

ODBC 
Dialog data exchange (DDX) 2292 
error codes 428 

ODBC (continued) 
error string 430 
functions, calling database class 2341-2342 
HDBC handle 418 
HSTMT handle 1629 
MFC database macros 2294 
Record field exchange (RFX) 2290 
timeout value, in DAO 270 

ODBC transactions 
isolating 399 
isolating with DAO 390 

ODBC vs. DAO 
described 229,251,260 
role of DAO database objects 230 

ODBC with DAO 
islolating ODBC transactions 390 
isolating ODBC transactions 399 
Login timeout property 400 

OemToAnsi member function, CString class 1853 
Offset member function, CPoint class 1516 
OffsetClipRgn member function, CDC class 515 
OffsetPos member function, CProgressCtrl class 1540 
OffsetRect member function, CRect class 1647 
OffsetRgn member function, CRgn class 1678 
OffsetViewportOrg member function, CDC class 516 
OffsetWindowOrg member function, CDC class 516 
OLE 

Activation 1433 
application control functions 2295 
base classes (list) 27 
client items, COleClientItem class 1129 
compound documents 1129 
Data transfer 1275, 1282 
data transfer classes (list) 29 
dialog box classes (list) 29 
embedded items 1436 
initialization 2295 
In-place editing 

activation 1133-1134, 1441 
deactivation 1441, 1443 
resizing 1445 

linked items 1431 
miscellaneous classes (list) 32 
server documents 

closure notifications 1439 
notifications 1440 

server items 
creation 1444 
described 1450 



OLE (continued) 
Uniform data transfer 1275, 1282 
verbs 1133 
visual editing 

container classes listed 27 
server classes described 28 

OLE Automation 
dispatch maps described 2296 
Event sink maps described 2300 
Parameter Type, MFC encapsulation 1479 

OLE Change Source dialog box 1124 
OLE classes 

described 27 
overview 27 

OLE container 
described 1176 
Rich edit 1711 
Rich edit as 1681 

OLE controls extended features of 1176 
OleUIChangeSource function, 

MFC encapsulation 1124 
OLEUICHANGESOURCE structure, 

MFC encapsulation 1124 
ON_COMMAND global function/macro 2435 
ON_COMMAND_RANGE 

global function/macro 2436 
ON_CONTROL global function/macro 2436 
ON_CONTROL_RANGE global function/macro 2437 
ON_EVENT global function/macro 2437 
ON_EVENT_RANGE global function/macro 2438 
ON_MESSAGE global function/macro 2439 
ON_OLEVERB global function/macro 2442 
ON_PROPNOTIFY global function/macro 2444 
ON_PROPNOTIFY _RANGE 

global function/macro 2445 
ON_REGISTERED_MESSAGE 

global function/macro 2446 
ON_STDOLEVERB global function/macro 2447 
ON_UPDATE_COMMAND_UI 

global function/macro 2448 
ON_UPDATE_COMMAND_UCRANGE 

global function/macro 2449 
OnAccept member functionCAsyncSocket class 96 
OnActivate member function 

COleClientItem class 1158 
CWnd class 2158 

OnActivateApp member function, CWnd class 2159 
OnActivateFrame member function, CView class 2002 

OnActivateUI member function, 
COleClientltem class 1158 

OnActivateVicw member function 
CDocObjectServer class 584 

Index 

OnActivateView member function, CView class 2002 
OnAdvise member function, 

CConnectionPoint class 213 
OnAmbientProperty member function, 

CWnd class 2160 
OnAmbientPropertyChange member function, 

COleControl class 1219 
OnApply member function, CPropertyPage class 1545 
OnApplyScale member function, 

COlePropetiesDialog class 1407 
OnApplyViewState member function, 

CDocObjectServer class 584 
OnAskCbFormatName member function, 

CWnd class 2160 
OnAuthentication member function, 

CHttpFilter class 837 
OnBackColorChanged member function, 

COleControl class 1219 
OnBeginDrag member function, 

COleDropSource class 1358 
OnBeginPrinting member function, CView class 2003 
OnCancel member function 

CDialog class 571 
CPropertyPage class 1546 

OnCancelMode member function, Cwnd class 2161 
OnCaptureChanged member function, 

CWnd class 2161 
OnChange member function, 

COleClientltem class 1158 
OnChangeCbChain member function, 

CWnd class 2162 
OnChangedRect member function, 

CRectTracker class 1663 
OnChangedViewList member function, 

CDocument class 610 
OnChangeItemPosition member function, 

COlcC1ientItem class 1159 
OnChar member function, CWnd class 2162 
OnCharEffect member function, 

CRichEditView class 1726 
OnCharToltem member function, Cwnd class 2163 
OnChildActivate member function, CWnd class 2164 
OnChildNotify member function, CWnd class 2164 
OnC1ick member function, COleControl class 1220 



Index 

OnClose member function 
CAsyncSocket class 97 
COleServerDoc class 1440 
CWnd class 2165 

OnCloseDocument member function, 
CDocument class 610 

OnCmdMsg member function, CCmdTarget class 164 
OnColorOK member function, CColorDialog class 175 
OnCommand member function, CWnd class 2165 
OnCompacting member function, CWnd class 2166 
OnCompareltem member function, CWnd class 2166 
OnConnect member function, CAsyncSocket class 97 
OnContextHelp member function 

CFrameWnd class 765 
CWinApp class 2039 

OnContextMenut member function, CWnd class 2167 
OnCreate member function, CWnd class 2168 
OnCreateClient member function, 

CFrameWnd class 765 
OnCreateControIBars member function, 

COleIPFrameWnd class 1375 
OnCreateObject member function, 

COleObjectFactory class 1394 
OnCtlColor member function, CWnd class 2169 
OnDataA vailable member function 

CAsyncMonikerFile class 75 
OnDDECommand member function, 

CWinApp class 2039 
OnDeactivate member function 

COleClientltem class 1160 
COleServerDoc class 1441 

OnDeactivateAndUndo member function, 
COleClientltem class 1160 

OnDeactivateUI member function 
COleClientltem class 1161 
COleServerDoc class 1441 

OnDeadChar member function, CWnd class 2170 
OnDeleteltem member function, CWnd class 2171 
OnDestroy member function, CWnd class 2172 
OnDestroyClipboard member function, 

CWnd class 2172 
OnDeviceChange member function, CWnd class 2172 
OnDevModeChange member function, 

CWnd class 2173 
OnDiscardUndoState member function, 

COleClientltem class 1161 
OnDocWindowActivate member function, 

COleServerDoc class 1441 

OnDo Verb member function, 
COleServerItem class 1459 

OnDragEnter member function 
COleDropTarget class 1360 
CView class 2004 

OnDragLeave member function 
COleDropTarget class 1361 
CView class 2005 

OnDragOver member function 
COleDropTarget class 1361 
CView class 2005 

OnDragScroll member function 
COleDropTarget class 1362 
CView class 2006 

OnDraw member function 
COleControl class 1221 
COleServerItem class 1460 
CView class 2007 

OnDrawClipboard member function, CWnd class 2174 
OnDrawEx member function, 

COleServerltem class 1460 
OnDrawltem member function, CWnd class 2174 
OnDrawMetafile member function, 

COleControl class 1222 
OnDrawPage member function, 

CPageSetupDialog class 1492 
OnDrawSplitter member function, 

CSplitterWnd class 1807 
OnDrop member function 

COleDropTarget class 1363 
CView class 2007 

OnDropEx member function 
COleDropTarget class 1364 
CView class 2008 

OnDropFiles member function, CWnd class 2175 
OnDSCNotify member function, CWnd class 2177 
OnEdit member function, COleControl class 1222 
OnEditProperty member function, 

COlePropertyPage class 1413 
OnEnable member function, CWnd class 2176 
OnEnabledChanged member function, 

COleControl class 1222 
OnEndOtNetSession member function, 

CHttpFilter class 838 
OnEndPrinting member function, CView class 2009 
OnEndPrintPreview member function, 

CView class 2010 
OnEndSession member function, CWnd class 2178 
OnEnterIdle member function, CWnd class 2178 



OnEnterMenuLoop member function, 
CWnd class 2179 

OnEnum Verbs member function, 
COleControl class 1223 

OnEraseBkgnd member function, CWnd class 2179 
OnEventAdvise member function, 

COleControl class 1223 
OnExitMenuLoop member function, CWnd class 2180 
OnFileNameOK member function, 

CFileDialog class 701 
OnFileNew member function, CWinApp class 2040 
OnFileOpen member function, CWinApp class 2041 
OnFilePrintSetup member function, 

CWinApp class 2042 
OnFileSendMail member function 

CDocument class 611 
COleDocument class 1352 

OnFinalRelease member function, 
CCmdTarget class 165 

OnFindEmbeddedItem member function, 
COleLinkingDoc class 1379 

OnFindNext member function 
CEditView class 657 
CRichEditView class 1726 

OnFontChange member function, CWnd class 2181 
OnFontChanged member function, 

COleControl class 1223 
OnForeColorChanged member function, 

COleControl class 1224 
OnFrameWindowActivate member function, 

COleServerDoc class 1443 
OnFreezeEvents member function, 

COleControl class 1224 
OnGetCheckPosition member function, 

CCheckListBox class 154 
OnGetClipboardData member function 

COleClientItem class 1161 
COleServerItem class 1461 

OnGetClipRect member function, 
COleClientItem class 1162 

OnGetColorSet member function, 
COleControl class 1224 

OnGetControlInfo member function, 
COleControl class 1225 

OnGetDisplayString member function, 
COleControl class 1225 

OnGetDlgCode member function, CWnd class 2181 
OnGetEmbeddedItem member function, 

COleServerDoc class 1444 

OnGetExtent member function, 
COleServerItem class 1461 

OnGetlnPlaceMenu member function, 
COleControl class 1226 

OnGetItemPosition member function, 
COleClientItem class 1162 

OnGetLinkedItem member function, 
COleLinkingDoc class 1379 

OnGetMinMaxlnfo member function, 
CWnd class 2182 

OnGetPredefinedStrings member function, 
COleControl class 1227 

OnGetPredefinedValue member function, 
COleControl class 1228 

OnGetRecordset member function 
CDaoRecordView class 352 
CRecordView class 1637 

OnGetWindowContext member function, 
COleClientItem class 1163 

OnHelp member function 
COlePropertyPage class 1414 
CWinApp class 2043 

Index 

OnHelpFinder member function, CWinApp class 2044 
OnHelpIndex member function, CWinApp class 2044 
OnHelpInfo member function, CWnd class 2182 
OnHelpUsing member function, CWinApp class 2044 
OnHide member function, 

CDocObjectServerltem class 587 
OnHide member function, COleServerItem class 1462 
OnHideToolbars member function, 

COleControl class 1230 
OnHScroll member function, CWnd class 2183 
OnHScrollClipboard member function, 

CWnd class 2184 
OnIconEraseBkgnd member function, 

CW nd class 2185 
Onldle member function 

CWinApp class 2045 
CWinThread class 2071 

OnInitDialog member function 
CDialog class 572 
COlePropertyPage class 1414 

OnlnitFromData member function, 
COleServerItem class 1462 

OnlnitialUpdate member function 
CRichEditView class 1726 
CView class 2010 

OnInitMenu member function, CWnd class 2185 
OnInitMenuPopup member function, CWnd class 2186 



Index 

OnInsertMenus member function, 
COleClientItem class 1163 

OnInvertTracker member function, 
CSplitterWnd class 1808 

OnKeyDown member function, CWnd class 2186 
OnKeyDownEvent member function, 

COleControl class 1232 
OnKeyPressEvent member function, 

COleControl class 1232 
OnKeyUp member function, CWnd class 2187 
OnKeyUpEvent member function, 

COleControl class 1232 
OnKillActive member function, 

CPropertuPage class 1546 
OnKillFocus member function, CWnd class 2188 
OnLBSelChangedNotify member function, 

CFileDialog class 702 
OnLButtonDblClk member function, CWnd class 2189 
OnLButtonDown member function, CWnd class 2190 
OnLButtonUp member function, CWnd class 2190 
OnLog member function, CHttpFilter class 839 
OnLowResource member function, 

CAsyncMonikerFile class 76 
OnMapPropertyToPage member function, 

COleControl class 1233 
OnMButtonDblClk member function, 

CWnd class 2191 
OnMButtonDown member function, CWnd class 2192 
OnMButtonUp member function, CWnd class 2193 
OnMDIActivate member function, CWnd class 2193 
OnMeasureItem member function, CWnd class 2194 
OnMenuChar member function, CWnd class 2195 
OnMenuSelect member function, CWnd class 2196 
OnMessagePending member function 

COleMessageFilter class 1387 
CSocket class 1783 

OnMnemonic member function, 
COleControl class 1233 

OnMouseActivate member function, CWnd class 2197 
OnMouseMove member function, CWnd class 2198 
OnMove member function 

CDaoRecordView class 352 
CRecordView class 1637 
CWnd class 2200 

OnMoving member function, CWnd class 2200 
OnNcActivate member function, CWnd class 2201 
OnNcCalcSize member function, CWnd class 2201 
OnNcCreate member function, CWnd class 2202 
OnNcDestroy member function, CWnd class 2203 

OnNcHitTest member function, CWnd class 2203 
OnNcLButtonDblClk member function, 

CWnd class 2204 
OnNcLButtonDown member function, 

CWnd class 2205 
OnNcLButtonUp member function, CWnd class 2205 
OnNcMButtonDblClk member function, 

CWnd class 2206 
OnNcMButtonDown member function, 

CWnd class 2207 
OnNcMButtonUp member function, CWnd class 2207 
OnNcMouseMove member function, CWnd class 2208 
OnNcPaint member function, CWnd class 2208 
OnNcRButtonDblClk member function, 

CWnd class 2209 
OnNcRButtonDown member function, 

CWnd class 2209 
OnNcRButtonUp member function, CWnd class 2210 
OnNewDocument member function, 

CDocument class 611 
OnObjectsChanged member function, 

COlePropertyPage class 1414 
OnOK member function 

CDialog class 572 
CPropertyPage class 1546 

OnOpen member function 
CDocObjectServerItem class 587 

OnOpen member function, COleServerItem class 1463 
OnOpenDocument member function, 

CDocument class 613 
OnOutOfBandData member function, 

CAsyncSocket class 98 
OnPaint member function, CWnd class 2211 
OnPaintClipboard member function, CWnd class 2212 
OnPaletteChanged member function, CWnd class 2214 
OnPaletteIsChanging member function, 

CWnd class 2213 
OnParaAlign member function, 

CRichEditView class 1727 
OnParentNotify member function, CWnd class 2214 
OnParseError member function, 

CHttpServer class 857 
OnPasteNativeObject member function, 

CRichEditView class 1727 
OnPrepareDC member function, CView class 2011 
OnPreparePrinting member function, 

CView class 2012 



OnPreprocHeaders member function, 
CHttpFilter class 840 

OnPrint member function, CView class 2013 
OnPrinterChanged member function, 

CrichEditView class 1728 
OnProgress member function, 

CAsyncMonikerFile class 76 
OnProperties member function, 

COleControl class 1234 
OnQueryCancel member function, 

CPropertyPage class 1547 
OnQueryDragIcon member function, CWnd class 2215 
OnQueryEndSession member function, 

CWnd class 2215 
OnQueryNewPalette member function, 

CW nd class 2216 
OnQueryOpen member function, CWnd class 2216 
OnQueryUpdateItems member function, 

COleServerItem class 1463 
OnRButtonDblClk member function, CWnd class 2216 
OnRButtonDown member function, CWnd class 2217 
OnRButtonUp member function, CWnd class 2218 
OnReactivateAndUndo member function, 

COleServerDoc class 1444 
OnReadRawData member function, 

CHttpFilter class 841 
OnReceive member function, CAsyncSocket class 99 
OnRemoveMenus member function, 

COleClientItem class 1164 
OnRenderAllFormats member function, 

CWnd class 2219 
OnRenderData member function 

COleControl class 1235 
COleDataSource class 1289 
COleServerItem class 1464 

OnRenderFileData member function 
COleControl class 1236 
COleDataSource class 1290 
COleServerItem class 1464 

OnRenderFormat member function, CWnd class 2219 
OnRenderGlobalData member function 

COleControl class 1237 
COleDataSource class 1291 
COleServerItem class 1465 

OnReplaceAll member function 
CEditView class 658 
CRichEditView class 1728 

OnReplaceSel member function 
CEditView class 659 
CRichEditView class 1728 

Index 

OnReset member function, CPropertyPage class 1547 
OnResetState member function, 

COleControl class 1238 
OnResizeBorder member function, 

COleServerDoc class 1445 
OnSaveDocument member function, 

CDocument class 614 
OnSave ViewS tate member function, 

CDocObjectServer class 584 
OnScroll member function, CView class 2014 
OnScrollBy member function 

COleClientItem class 1165 
CView class 2015 

OnSend member function, CAsyncSocket class 99 
OnSendRawData member function, 

CHttpFilter class 842 
OnSetActive member function, 

CPropertyPage class 1547 
OnSetClientSite member function, 

COleControl class 1238 
OnSetColorScheme member function, 

COleServerItem class 1466 
OnSetCursor member function, CWnd class 2220 
OnSetData member function 

COleControl class 1238 
COleDataSource class 1292 
COleServerItem class 1466 

OnSetExtent member function 
COleServerItem class 1467 

OnSetExtentmember function, COleControl class 1239 
OnSetFocus member function, CWnd class 2221 
OnSetFont member function, CDialog class 573 
OnSetHostNames member function, 

COleServerDoc class 1445 
OnSetItemRects member function, 

COleServerDoc class 1446 
OnSetMenu member function, 

COleClientItem class 1165 
OnSetObjectRects member function, 

COleControl class 1239 
OnSetOptions member function 

CDatabase class 412 
CRecordset class 1614 

OnSetPageSite member function, 
COlePropertyPage class 1415 



Index 

OnSetPreviewMode member function, 
CFrameWnd class 766 

OnShare Violation member function, 
CFileDialog class 702 

On Show member function, 
CDocObjectServerltem class 588 

On Show member function, COleServerItem class 1468 
OnShowControlBars member function 

COleClientltem class 1166 
COleServerDoc class 1446 

OnShowDocument member function, 
COleServerDoc class 1447 

OnShowltem member function, 
COleClientltem class 1166 

OnShowToolbars member function, 
COleControl class 1240 

OnShowViews member function, 
COleDocument class 1352 

OnShowWindow member function, CWnd class 2221 
OnSize member function, CWnd class 2222 
OnSizeClipboard member function, CWnd class 2223 
OnSizing member function, CWnd class 2223 
OnSpoolerStatus member function, CWnd class 2224 
OnStartBinding member function, 

CAsyncMonikerFile class 77 
OnStatusCallback member function, 

CIntemetSession class 900 
OnStopBinding member function, 

CAsyncMonikerFile class 77 
OnStyleChanged member function, CWnd class 2224 
OnStyleChanging member function, CWnd class 2225 
OnSysChar member function, CWnd class 2225 
OnSysColorChange member function, 

CWnd class 2227 
OnSysCommand member function, CWnd class 2227 
OnSysDeadChar member function, CWnd class 2229 
OnSysKeyDown member function, CWnd class 2229 
OnSysKeyUp member function, CWnd class 2231 
OnTCard member function, CWnd class 2232 
OnTextChanged member function, 

COleControl class 1240 
OnTextNotFound member function 

CEditView class 659 
CRichEditView class 1729 

OnTimeChange member function, CWnd class 2233 
OnTimer member function, CWnd class 2233 
OnToolHitTest member function, CWnd class 2234 

OnUpdate member function 
COleServerltem class 1468 
CView class 2015 

OnUpdateCharEffect member function, 
CRichEditView class 1729 

OnUpdateCmdUI member function, 
CControlBar class 219 

OnUpdateDocument member function, 
COleServerDoc class 1447 

OnUpdateFileSendMail member function, 
CDocument class 615 

OnUpdateFrameTitle member function, 
COleClientltem class 1167 

OnUpdateltems member function, 
COleServerltem class 1469 

OnUpdateParaAlign member function, 
CRichEditView class 1730 

OnUrlMap member function, CHttpFilter class 842 
OnVKeyToltem member function, CWnd class 2234 
On VScroll member function, CWnd class 2235 
On VScrollClipboard member function, 

CWnd class 2236 
On WindowPosChanged member function, 

CWnd class 2237 
On WindowPosChanging member function, 

CWnd class 2238 
OnWinIniChange member function, CWnd class 2238 
On WizardBack member function, 

CPropertyPage class 1548 
On WizardFinish member function, 

CPropertyPage class 1548 
OnWizardNext member function, 

CPropertyPage class 1549 
OnWndMsg member function, CWnd class 2239 
Open data member, CDataPathProperty class 425 
Open databases (DAO) 

counting 388 
obtaining information about 388 

Open member function 
CAnimateCtrl class 38 
CAsyncMonikerFile class 78 
CDaoDatabase class 247 
CDaoQueryDef class 275 
CDaoRecordset class 328 
CDaoTableDef class 371 
CDaoWorkspace class 395 
CDatabase class 412 
CFile class 685 



Open member function (continued) 
CMonikerFile class 1062 
CRecordset class 1615 

Open status, obtaining workspace 394 
OpenClipboard member function, CWnd class 2240 
OpenDocumentFile member function 

CDocTemplate class 598 
CWinApp class 2047 

OpenFile member function 
CFtpConnection class 775 
CGopherConnection class 792 

Opening 
CStreamFile objects 1473 
data source connections 412 
databases 

described 247,412 
Jet vs. ODBC 247 

recordsets 1615 
workspaces 395 

OpenRequest member function, 
CHttpConnection class 823 

OpenStream member function, 
COleStreamFile class 1473 

OpenURL member function, 
ClntemetSession class 902 

Operations, validity of DFX 257 
operator - member function 

COleCurrency 1270 
COleDateTime class 1312 
COleDateTimeSpan class 1328 
CPoint class 1519 
CRect class 1655 
CSize class 1765 

operator != member function 
COleCurrency 1272 
COleDateTime 1313 
COleDateTimeSpan 1329 
CPoint class 1517 
CRect class 1652 
CSize class 1764 

operator & member function, CRect class 1655 
operator &= member function, CRect class 1653 
operator *, COleCurrency class 1271 
operator *=, COleCurrency class 1271 
operator I, COleCurrency class 1271 
operator 1=, COleCurrency class 1271 
operator [ ] member function 

CArray class 69 
CMap class 985 

operator [ ] member function (continued) 
CMapStringToOb class 997 
CObArray class 1090 
CRecentFileList class 1575 
CString class 1862 
CTypedPtrArray class 1980 
CTypedPtrMap class 1991 

operator 1 member function, CRect class 1656 
operator 1= member function, CRect class 1654 
operator + member function 

COleCurrency 1270 
COleDateTime 1312 
COleDateTimeSpan 1328 
CRect class 1654 
CPoint class 1518 
CSize class 1765 
CString class 1860 

operator +, - member function 
CTime class 1891 
CTimeSpan class 1899 

operator += member function 
COleCurrency 1270 
COleDateTime 1313 
COleDateTimeSpan 1328 
CPoint class 1517 
CRect class 1652 
CSize class 1764 
CString class 1861 

operator +=, -= member function 
CTime class 1892 
CTimeSpan class 1899 

operator < member function 
COleCurrency class 1272 
COleDateTime class 1313 
COleDateTimeSpan class 1329 

operator « member function 
CArchive class 56 
CDumpContext class 627 
CHtmlStream class 820 
CHttpServerContext class 866 
COleCurrency 1273 
COleDateTime 1314 
COleDateTimeSpan 1329 
COleVariant 1486 

operator «, » member function 
CString class 1859 
CTime class 1893 
CTimeSpan class 1900 

Index 



Index 

operator <= member function 
COleCurrency 1272 
COleDateTime 1313 
COleDateTimeSpan 1329 

operator = member function 
CObject class 1097 
COleCurrency 1269 
COleDateTime 1311 
COleDateTimeSpan 1327 
COleSafeArray class 1429 
COleVariant class 1484 
CRect class 1651 
CString class 1858 
CTime class 1891 
CTimeSpan class 1898 

operator -= member function 
CPoint class 1518 
CRect class 1653 
CSize class 1765 

operator == member function 
COleCurrency 1272 
COleDateTime 1313 
COleDateTimeSpan 1329 
COleSafeArray class 1430 
COleVariant class 1485 
CPoint class 1517 
CRect class 1651 
CSize class 1764 

operator> member function 
COleCurrency 1272 
COleDateTime 1313 
COleDateTimeSpan 1329 

operator >= member function 
COleCurrency 1272 
COleDateTime 1313 
COleDateTimeSpan 1329 

operator » member function 
CArchive class 57 
COleCurrency 1273 
COleDateTime 1314 
COleDateTimeSpan 1329 
COleVariant 1486 

operator CURRENCY, COleCurrency class 1272 
operator DATE, COleDateTime class 1313 
operator delete member function, CObject class 1097 
operator double, COleDateTimeSpan class 1328 
operator HBITMAP member function, 

CBitmap class 121 
operator HFONT member function, CFont class 736 

operator HINTERNET member function 
CInternetConnection class 881 
CInternetFile class 892 
CInternetSession class 908 

operator HP ALETTE member function, 
CPalette class 1501 

operator HPEN member function, CPen class 1509 
operator HRGN member function, CRgn class 1680 
operator LPCRECT member function, 

CRect class 1651 
operator LPCTSTR ( ) member function, 

CString class 1859 
operator LPCTSTR member function, 

CGopherLocator class 802 
operator LPCV ARIANT member function, 

COleSafeArray class 1430 
operator LPCV ARIANTmember function, 

COleVariant class 1485 
operator LPRECT member function, CRect class 1651 
operator LPV ARIANT member function, 

COleSafeArray class 1430 
operator LPV ARIANT member function, 

COle Variant class 1485 
operator new member function, CObject class 1097 
Operators 

COleCurrency 1269 
COleDateTime 1311 
COleDateTimeSpan 1327 
COleVariant class 1484 

Options, setting 
data source connections 412 
recordsets 1614 

OsErrorToException member function, 
CFileException class 706 

OutputColumn, CDaoFieldExchange class 256 

p 
PaintRgn member function, CDC class 517 
PAINTSTRUCT structure 2553 
param, CDaoField Exchange class 256 
Parameter object (DAO), 

obtaining information about 2506 
Parameters, getting querydef 272, 277 
ParseCommandLine member function, 

CWinApp class 2048 
ParseCurrency member function, 

COleCurrency class 1267 



ParseDateTime member function, 
COleDateTime class 1305 

ParseParam member function, 
CCommandLineInfo class 203 

Pass-through queries 
defined 238 
executing 238 
SAL 261 
SQL 261 

Passwords 
setting default 397 
setting for DAO workspace 387 

Paste member function 
CComboBox class 195 
CEdit class 645 
CRichEditCtrl class 1700 

PasteSpecial member function, 
CRichEditCtrl class 1701 

PatBlt member function, CDC class 517 
Persistence of OLE controls 2303 
Pie member function, CDC class 518 
Play member function, CAnimateCtrl class 38 
PlayMetaFile member function, CDC class 519 
PIgBlt member function, CDC class 520 
POINT structure 2554 
PolyBezier member function, CDC class 521 
PolyBezierTo member function, CDC class 522 
PolyDraw member function, CDC class 523 
Polygon member function, CDC class 524 
Polyline member function, CDC class 524 
PolylineTo member function, CDC class 525 
PolyPolygon member function, CDC class 525 
PolyPolyline member function, CDC class 526 
PosFromChar member function, CEdit class 645 
PostMessage member function, CWnd class 2240 
PostModalDia1og member function, 

COleControl class 1243 
PostNcDestroy member function, CWnd class 2241 
PreCloseFrame member function, 

CDocument class 615 
PreCreateWindow member function, CWnd class 2241 
PreDrawPage member function, 

CPageSetupDialog class 1493 
PreModalDialog member function, 

COleControl class 1242 
PrepareCtrl member function, 

CDataExchange class 420 
PrepareEditCtrl member function, 

CDataExchange class 421 

PressButton member function 
CPropertySheet class 1558 
CToolBarCtrl class 1934 

PreSubclassWindow member function, 
CWnd class 2242 

PreTranslateMessage member function 
CWinApp class 2049 
CWinThread class 2072 
CWnd class 2242 

PrevDIgCtrl member function, CDialog class 573 
Print member function, CWnd class 2242 

Index 

PrintAll member function, CPrintDialog class 1527 
PrintClient member function, CWnd class 2243 
PrintCollate member function, CPrintDialog class 1528 
PrintInsideRect member function 

CEditView class 660 
CRichEditView class 1730 

PrintPage member function, CRichEditView class 1731 
PrintRange member function, CPrintDialog class 1528 
PrintSelection member function, 

CPrintDialog class 1528 
Process member function, COleException class 1366 
ProcessMessageFilter member function 

CWinApp class 2049 
CWinThread class 2073 

Process Shell Command member function, 
CWinApp class 2050 

ProcessWndProcException member function 
CWinApp class 2051 
CWinThread class 2073 

Progress bar control 1538 
Property Pages 2298 
Property sheet classes (list) 12 
PROPPAGEID global function/macro 2449 
Providing data 

Clipboard 1292 
data transfer 1282 

PtInRect member function, CRect class 1647 
PtInRegion member function, CRgn class 1679 
PtrOflndex member function, 

COleSafeArray class 1427 
PtVisible member function, CDC class 526 
PulseEvent member function, CEvent class 665 
PutElement member function, 

COleSafeArray class 1427 
PutFile member function, CFtpConnection class 776 
PX_Blob global function/macro 2450 



Index 

PX_Bool global function/macro 2451 
PX_Color global function/macro 2451 
PX_Currency global function/macro 2452 
PX_Double global function/macro 2453 
PX_Float global function/macro 2454 
PX_Font global function/macro 2454 
PX_IUnknown global function/macro 2455 
PX_Long global function/macro 2456 
PX_Picture global function/macro 2456 
PX_Short global function/macro 2457 
PX_String global function/macro 2457 
PX_ULong global function/macro 2458 
PX_UShort global function/macro 2459 
PX_ VBXFontConvert global function/macro 2459 

Q 
Query timeouts 

DAO 243 
setting 249 
values, setting 417 

Query, database See QueryDef. See Recordsets 
Query Abort member function, CDC class 527 
Query AcceptData member function, 

CRichEditView class 1731 
QueryContinueDrag member function, 

COleDropSource class 1358 
Querydef object (DAO), 

obtaining information about 2507 
QueryDefs 

action queries 261 
and recordsets 261 
and SQL 

described 261, 265 
getting SQL statement 273 
setting SQL statement 278 

automatic rollback on error 266 
closing 265 
connect string (ODBC) 267,275 
consistent updates 266 
constructing 264 
counting 241 
counting fields in 268 
counting parameters in 270 
creating 265 
creating with MS Access 260 
creation date 268 
database owned by 279 
date created 268 

QueryDefs (continued) 
date last updated 268 
defined 260 
deleting 237 
Execute member function 266 
executing SQL directly 266 
fields in 268, 269 
for ODBC 261 
Inconsistent updates 266 
m_pDAOQueryDef pointer 279 
m_pDatabase pointer 279 
name of 270, 276 
obtaining information about 242 
ODBC timeout property 270, 276 
on external data sources 261 
open status of 274 
opening 275 
options 

dbConsistent 266 
dbDenyWrite 266 
dbFailOnError 266 
dbInconsistent 266 
dbSeeChanges 266 
dbSQLPassThrough 266 

parameters 
described 270, 271 
getting value 272 
value, setting 277 

pass-through query, SQL 261 
pointer to parent database 279 
pointer to underlying DAO object 279 
purposes 261 
query type 

action 261,274 
append 261,274 
bulk 261,274 
cross-tab 261,274 
data definition (DDL) 261,274 
delete 261, 274 
make-table 261,274 
pass-through, SQL 261,274 
select 261,274 
SQL pass-through 261,274 
union 261,274 
update 261,274 

records affected by Execute 272 
referential integrity 266 
ReturnsRecords property 273, 278 
saved/stored queries 264 



QueryDefs (continued) 
setting attributes of 264 
SQL pass-through query 261, 266 
SQL, executing directly 266 
temporary 260, 264, 265 
timeout, ODBC 270, 276 
type of query 274 
underlying DAO object, pointer to 279 
usage 260 
write permission 266 

Querylnfo member function, CHttpFile class 829 
QuerylnfoStatusCode member function, 

CHttpFile class 831 
QueryOption member function, 

ClnternetSession class 904 
QuerySiblings member function, 

CPropertyPage class 1549 

R 
Radio button, DDX field exchange 2382 
ReactivateAndUndo member function, 

COleClientItem class 1167 
Read locks, DAO 393 
Read member function 

CArchive class 49 
CFile class 686 
ClmageList class 878 
ClnternetFile class 888 

ReadClass member function, CArchive class 49 
ReadClient member function, 

CHttpServerContext class 863 
ReadHuge member function, CFile class 686 
ReadList member function, 

CRecentFileList class 1574 
ReadObject member function, CArchieve class 50 
ReadString member function 

CArchive class 51 
ClnternetFile class 889 
CStdioFile class 1835 

RealizePalette member function, CDC class 527 
Realloc member function, CMemFile class 1023 
Realloc member function, CHtmlStream class 819 
Rebuilding recordsets 1621 
Reca1cLayout member function 

CFrameWnd class 766 
CSplitterWnd class 1808 

Receive member function, CAsyncSocket class 100 

ReceiveFrom member function, 
CAsyncSocket class 102 

Record field exchange (DFX) 
class CDaoFieldExchange 256 
DoFieldExchange mechanism 1590 
field exchange operations listed 258 
field types, setting 258 
functions 2290 
IsFieldType function 673 
m_prs data member 259 
operations, validity of 257 
PSEUDO_NULL values 258 
Recordset 1590 
recordset, pointer to 259 
SetFieldType function 673 

Record views, CRecordView class 1633 
Records 

adding new 1580 
deleting 1587 
editing 1591 
updating 1591 

Records affected by Execute 243 
Recordsets 

ability to transact 1583 
ability to update records 1584 
and querydefs 261 
asynchronous operation, canceling 1582 
beginning of, detecting 1604 
bound fields 1629 
closing 1586 
columns selected, number 1629 
completing add 1628 
completing edit 1628 
constructing 1587 
creating 1587 
cursor concurrency, support for 1614 
customizing SQL 1615 
default connection string 1595 
deleting records 1587 
determining ability to scroll 1583 
determining appendability 1581 
determining whether dirty 1606 
determining whether field can be set Null 1608 
determining whether Null 1607 
determining whether open 1608 
dynaset-type 280 
editing records 1591 
end of, detecting 1606 
exchanging data with data source 1590 

Index 



Index 

Recordsets (continued) 
fields 

setting dirty 1623 
setting null 1624 

filter string 1631 
HSTMT handle 1629 
locking mode, setting 1625 
moving 

to a new record 1609 
to first record 1611 
to last record 1612 
to next record 1613 
to previous record 1614 

navigating 1609, 1611, 1612, 1613, 1614 
opening 1615 
operations 

binding dynamically 281 
differences between recordset types 281 
using DoFieldExchange 281 

options, setting 1614 
rebuilding 1621 
record field exchange 1590 
refreshing 1621 
requerying 1621 
RFX 1590 
scroll able cursors, support for 1614 
setting null 1624 
similarities between ODBC and DAO 280 
snapshot-type 280 
sort string 1631 
SQL statement, getting 1603 
status, getting 1602 
table name, getting 1595, 1604 
table-type 280 
updating 1591, 1628 
whether deleted, determining 1605 

RecreateControlWindow member function, 
COleControl class 1242 

RECT structure 2554 
Rectangle member function, CDC class 528 
RectDefault member function, CFrameWnd class 769 
RectlnRegion member function, CRgn class 1679 
RectVisible member function, CDC class 528 
Redim member function, COleSafeArray class 1428 
RedrawItems member function, CListCtrl class 968 
RedrawWindow member function, CWnd class 2244 
Referential integrity 

described 266 
enforcing database relations 235 

ReflectChildNotify member function, 
CWnd class 2245 

ReflectLastMsg member function, CWnd class 2246 
Refresh member function, COleControl class 1243 
Refreshing recordsets 1621 
RefreshLink member function, 

CDaoTableDef class 372 
Register member function 

COleDropTarget class 1365 
COleLinkingDoc class 1380 
COleMessageFilter class 1388 
COleObjectFactory class 1394 

RegisterAll member function, 
COleObjectFactory class 1394 

Registering OLE controls 2301 
RegisterShellFileTypes member function, 

CWinApp class 2051 
Registry key settings 

database engine 389 
setting 398 

Relation field object (DAO), 
obtaining information about 2511 

Relation object (DAO), 
obtaining information about 2510 

Relational operators 
COleCurrency 1272 
COleDateTime 1313 
COleDateTimeSpan 1329 

Relations (database) 
cascades 237 
counting 244 
creating 235 
deleting 237 
obtaining information about 244 
referential integrity, enforcing 235 

RelayEvent member function, CToolTipCtrl class 1946 
Release member function 

COleClientItem class 1167 
COleDataObject class 1281 

ReleaseAttribDC member function, CDC class 529 
ReleaseBuffer member function, CString class 1853 
ReleaseDC member function, CWnd class 2247 
ReleaseDispatch member function, 

COleDispatchDriver class 1339 
ReleaseFile member function, CDocument class 615 
ReleaseFont member function, CFontHolder class 745 
ReleaseOutputDC member function, CDC class 529 
Releasing data objects 1277, 1281 



Reload member function, COleClientItem class 1168 
Remove member function 

CFile class 687 
CFtpConnection class 777 
CImageList class 878 
CRecentFileList class 1574 

RemoveAll member function 
CArray class 67 
CList class 917 
CMap class 984 
CMapStringToOb class 994 
CObArray class 1084 
CObList class 1111 

RemoveAt member function 
CArray class 67 
CList class 918 
CObArray class 1085 
CObList class 1112 

RemoveDirectory member function, 
CFtpConnection class 778 

RemoveDocument member function, 
CDocTemplate class 598 

RemoveHead member function 
CList class 918 
CObList class 1113 
CTypedPtrList class 1987 

Removelmage member function, CTabCtrl class 1879 
RemoveItem member function, 

COleDocument class 1355 
RemoveKey member function 

CMap class 984 
CMapStringToOb class 995 

RemoveMenu member function, CMenu class 1049 
RemovePage member function, 

CPropertySheet class 1559 
RemoveTail member function 

CList class 918 
CObList class 1113 
CTypedPtrList class 1987 

Remove View member function, CDocument class 616 
Rename member function, CFtpConnection class 778 
Rename member function, CFile class 687 
Render member function, CPictureHolder class 1514 
Repairing databases 395 
Replace member function, CImageList class 878 
ReplaceAll member function, 

CFindReplacedialog class 726 
ReplaceCurrent member function, 

CFindReplaceDialog class 726 

ReplaceSel member function 
CEdit class 645 
CRichEditCtrl class 1701 

Index 

ReportError member function, CException class 670 
ReportSaveLoadException member function, 

CDocument class 616 
RepositionBars member function, CWnd class 2247 
RepositionFrame member function, 

COleIPFrameWnd class 1375 
Requery member function 

CDaoRecordset class 331 
CRecordset class 1621 

Requerying recordsets 1621 
RequestPositionChange member function, 

COleServerDoc class 1447 
RequestResize member function, 

CRichEditCtrl class 1702 
Reset member function, CHtmlStream class 820 
ResetContent member function 

CComboBox class 195 
CListBox class 937 

ResetData data member, DataPathProperty class 426 
ResetDC member function, CDC class 529 
ResetEvent member function, CEvent class 665 
ResizeOneDim member function 

COleSafeArray class 1428 
ResizePalette member function, CPalette class 1502 
ResizeParentToFit member function, 

CScrollView class 1749 
Restore member function, CWaitCursor class 2019 
RestoreDC member function, CDC class 530 
RestoreState member function, 

CToolBarCtrl class 1935 
RestoreWaitCursor member function, 

CCmdTarget clzass 165 
ResumeThread member function, 

CWinThread class 2074 
RETCODE 

defined 428 
values 428 

Retrieving data from data objects 1278, 1279 
Return codes, values for ODBC 428 
ReverseFind member function, CString class 1854 
Revoke member function 

COleDropTarget class 1365 
COleLinkingDoc class 1380 
COleMessageFilter class 1388 
COleObjectFactory class 1395 



Index 

RevokeAll member function, 
COleObjectFactory class 1395 

RFX 
See also Record Field Exchange 
IsFieldType function 673 
Recordset 1590 
SetFieldType function 673 

RFX field exchange 
Boolean 2461 
Byte 2463 
Byte array 2460 
CLongBinary 2471 
CString 2473 
CTime 2464 
Double 2466 
Long integer 2469 
Short integer 2468 
Single precision float 2472 

RFX vs. DFX 256 
RFX_Binary global function/macro 2460 
RFX_Bool global function/macro 2461 
RFX_Byte global function/macro 2463 
RFX_Date global function/macro 2464 
RFX_Double global function/macro 2466 
RFX_Int global function/macro 2468 
RFX_Long global function/macro 2469 
RFX_LongBinary global function/macro 2471 
RFX_Single global function/macro 2472 
RFX_Text global function/macro 2473 
RGNDATA structure 2554 
Rich Edit 

as OLE container 1681, 1711 
DocumentlView version 1711 

Right member function, CString class 1854 
Rollback member function 

CDaoWorkspace class 395 
CDatabase class 414 

Rolling back database transactions 396, 414 
Root classes (list) 4 
RoundRect member function, CDC class 530 
Run member function 

COleClientItem class 1168 
CWinApp class 2052 
CWinThread class 2074 

RunAutomated member function, CWinApp class 2052 
RunEmbedded member function, CWinApp class 2053 
RunModalLoop member function, CWnd class 2248 

Run-time object model services 2282 
RUNTIME_CLASS global function/macro 2475 

s 
SaveAllModified member function 

CDocTemplate class 599 
CWinApp class 2053 

SaveBarState member function, CFrameWnd class 767 
SaveDC member function, CDC class 531 
SaveEmbedding member function, 

COleServerDoc class 1448 
SaveModified member function, CDocument class 617 
SaveState member function, CDockState class 581 
SaveS tate member function, CToolbarCtrl class 1935 
ScaleViewportExt member function, CDC class 531 
ScaleWindowExt member function, CDC class 532 
SCODE, information about 255 
ScreenToClient member function, CWnd class 2248 
Scroll Bar styles 2569 
Scroll member function, CListCtrl class 968 
Scrollable cursors, recordset 1614 
Scroll-bar control, DDX field exchange 2383 
ScrollContainerBy member function, 

COleServerDoc class 1448 
ScrollDC member function, CDC class 532 
Scrolling 

class CRecordView 1637 
determining ability to scroll 1583 

ScrollToPosition member function, 
CScrollView class 1749 

ScrollWindow member function, CWnd class 2249 
ScrollWindowEx member function, CWnd class 2250 
SearchDown member function, 

CFindReplaceDialog class 727 
Security support, DAO database 378 
Seek member function 

CAnimateCtrl class 39 
CDaoRecordset class 332 
CFile class 688 
CInternetFile class 889 

SeekToBegin member function, CFile class 689 
SeekToEnd member function, CFile class 689 
Select member function 

CFontHolder class 746 
CTreeCtrl class 1966 

Select query 261 
SelectClipPath member function, CDC class 533 
SelectClipRgn member function, CDC class 534 



SelectDropTarget member function, 
CTreeCtrl class 1967 

SelectFontObject member function, 
COleControl class 1245 

Selectltem member function, CTreeCtrl class 1967 
SelectObject member function, CDC class 535 
SelectPalette member function, CDC class 536 
SelectPrinter member function, CWinApp class 2053 
SelectStockFont member function, 

COleControl class 1246 
SelectStockObject member function, CDC class 537 
SelectString member function 

CComboBox class 196 
CListBox class 937 

SelItemRange member function, CListBox class 938 
Send member function, CAsyncSocket class 104 
SendChildNotifyLastMsg member function, 

CW nd class 2251 
SendDlgItemMessage member function, 

CWnd class 2252 
SendMessage member function, CWnd class 2252 
SendMessageToDescendants member function, 

CWnd class 2253 
SendNotifyMessage member function, 

CWnd class 2254 
SendRequest member function, CHttpFile class 832 
SendTo member function, CAsyncSocket class 105 
Serialize member function, CObject class 1096 
SerializeClass member function, CArchive class 51 
SerializeElements global function/macro 2477 
SerializeRaw member function, CEditView class 660 
Server documents, COleServerDoc class 1431 
ServerSupportFunction member function, 

CHttpFilterContext class 848 
ServerSupportFunction member function, 

CHttpServerContext class 864 
ServiceTypeFromHandle member function, 

ClnternetSession class 906 
SetAbortProc member function, CDC class 538 
SetAbortProc, callback function for See Callback 

functions for MFC member functions 
SetAbsolutePosition member function, 

CDaoRecordset class 334 
SetAccel member function, 

CSpinButtonCtrl class 1791 
SetActivePage member function, 

CPropertySheet class 1559 
SetActivePane member function, 

CSplitterwnd class 1809 

Index 

SetActive View member function, 
CFrameWnd class 767 

SetActiveWindow member function, CWnd class 2254 
SetAnchorIndex member function, CListBox class 938 
SetArcDirection member function, CDC class 539 
SetAt member function 

CArray class 68 
CList class 919 
CMap class 985 
CMapStringToOb class 996 
CObArray class 1086 
CObList class 1114 
CString class 1855 

SetAtGrow member function 
CArray class 68 
CObArray class 1087 

SetAttribDC member function, CDC class 540 
SetAttributes member function, 

CDaoTableDef class 372 
SetBackColor member function, 

COleControl class 1248 
SetBackgroundColor member function, 

CRichEditCtrl class 1702 
SetBarStyle member function, CControlBar class 220 
SetBase member function, CSpinButtonCtrl class 1792 
SetBitmap member function 

CButton class 141 
CStatic class 1815 
CToolBar class 1909 

SetBitmapBits member function, CBitmap class 121 
SetBitmapDimension member function, 

CBitmap class 122 
SetBitmapSize member function, 

CToolBarCtrl class 1936 
SetBkColor member function 

CDC class 540 
ClmageList class 879 
CListCtrl class 969 

SetBkMode member function, CDC class 541 
SetBookmark member function, 

CDaoRecordset class 335 
SetBorderStyle member function, 

COleControl class 1248 
SetBoundsRect member function, CDC class 541 
SetBrushOrg member function, CDC class 542 
SetBuddy member function, 

CSpinButtonCtrl class 1792 
SetBusyReply member function, 

COleMessageFilter class 1388 



Index 

SetButtonInfo member function, CToolBar class 1909 
SetButtons member function, CToolBar class 1910 
SetButtonSize member function, 

CToolBarCtrl class 1936 
SetButtonStructSize member function, 

CToolBarCtrl class 1937 
SetButtonStyle member function 

CButton class 142 
CToolBar class 1910 

SetButtonText member function, CToolBar class 1911 
SetCacheSize member function, 

CDaoRecordset class 335-336 
SetCallbackMask member function, 

CListCtrl class 969 
SetCapture member function, CWnd class 2255 
SetCaretIndex member function, CListBox class 939 
SetCaretPos member function, CWnd class 2255 
SetCharFormat member function, 

CRichEditView class 1732 
SetCheck member function 

CButton class 142 
CCheckListBox class 155 
CCmdUI class 170 
COleCmdUI class 1174 

SetCheckStyle member function, 
CCheckListBox class 155 

SetClipboard member function, 
COleDataSource class 1292 

SetClipboardViewer member function, 
CWnd class 2255 

SetCmdID member function, CToolBarCtrl class 1937 
SetColorAdjustment member function, CDC class 543 
SetColumn member function, CListCtrl class 969 
SetColumnInfo member function, 

CSplitterWnd class 1809 
SetColumn Width member function 

CListBox class 939 
CListCtrl class 970 

SetConnect member function 
CDaoQueryDef class 275 
CDaoTableDef class 373 

SetContainerInfo member function, 
CDocTemplate class 599 

SetControl data member, CDataPathProperty class 426 
SetControlSize member function, 

COleControl class 1249 
SetControlStatus member function, 

COlePropertyPage class 1415 
SetCurrency member function, COleCurrency 1268 

SetCurrentColor member function, 
CColorDialog class 176 

SetCurrentDirectory member function, 
CFtpConnection class 779 

SetCurrentIndex member function, 
CDaoRecordset class 337 

SetCurSel member function 
CComboBox class 196 
CListBox class 939 
CTabCtrl class 1879 

SetCursor member function 
CButton class 143 
CRectTracker class 1663 
CStatic class 1816 

SetDate member function, COleDateTime class 1306 
SetDateTime member function, 

COleDateTime class 1307 
SetDateTimeSpan member function, 

COleDateTimeSpan class 1326 
SetDefaultCharFormat member function, 

CRichEditCtrl class 1702 
SetDefaultPassword member function, 

CDao Workspace class 397 
SetDefaultTitle member function, 

CDocTemplate class 600 
SetDefaultUser member function, 

CDao Workspace class 397 
SetDefiD member function, CDialog class 573 
SetDelayTime member function, 

CToolTipCtrl class 1946 
SetDepth member function, CDumpContext class 627 
SetDialogBkColor member function, 

CWinApp class 2054 
SetDialogResource member function, 

COlePropertyPage class 1415 
SetDirtyField, Record field exchange (DFX) 258 
SetDIgCtrlID member function, CWnd class 2256 
SetDIgltemInt member function, CWnd class 2256 
SetDIgltemText member function, CWnd class 2257 
SetDockState member function, CFrameWnd class 767 
SetDragCursorImage member function, 

CImageList class 879 
SetDraw Aspect member function, 

COleClientltem class 1168 
SetDroppedWidth member function, 

CComboBox class 197 
SetEditSel member function, CComboBox class 197 
SetEnabled member function, COleConrol class 1249 



SetEnhMetaFile member function, CStatic class 1816 
SetEvent member function, CEvent class 665 
SetEventMask member function, 

CRichEditCtrl class 1703 
SetExtendedUI member function, 

CComboBox class 198 
SetExtent member function, ColeClientltem class 1169 
SetFieldDirty member function 

CDaoRecordset class 338 
CRecordset class 1623 

SetFieldNull member function 
CDaoRecordset class 339 
CRecordset class 1624 
Record field exchange (DFX) 258 

SetFieldType function 
example 673 
Record Field Exchange 673 

SetFieldType member function 
CDaoFieldExchange class 258 
CFieldExchange class 673 

SetFieldValue member function, 
CDaoRecordset class 340 

SetFieldValueNull member function, 
CDaoRecordset class 341 

SetFilePath member function, CFile class 689 
SetFinishText member function, 

CPropertySheet class 1560 
SetFocus member function, CWnd class 2258 
SetFont member function 

CFontHolder class 746 
COleControl class 1250 
CWnd class 2258 

SetForeColor member function, 
COleControl class 1250 

SetForegroundWindow member function, 
CWnd class 2257 

SetHandle member function 
CEdit class 646 
CSharedFile class 1755 

SetHeight member function, CToolBar class 1911 
SetHelpID member function, CDialog class 574 
SetHelplnfo member function, 

COlePropertyPage class 1416 
SetHorizontalExtent member function, 

CComboBox class 198 
SetHorizontalExtent member function, 

CListBox class 940 

SetHostNames member function, 
COleClientltem class 1169 

SetHotKey member function, 
CHotKeyCtrl class 812 

Setlcon member function 
CButton class 143 
CStatic class 1817 
CWnd class 2258 

SetlconicMetafile member function, 
COleClicntltem class 1170 

SetImageList member function 
CListCtrl class 970 
CTabCtrl class 1880 
CTreeCtrl class 1968 

Index 

Setlndent member function, CTreeCtrl class 1969 
SetIndicators member function, CStatusBar class 1823 
SetIniPath member function, 

CDao Workspace class 398 
SetlnitialDataFormats member function, 

COlecontrol class 1251 
SetInitialSize member function, 

COleControl class 1251 
SetIsolateODBCTrans member function, 

CDao Workspace class 399 
Setltem member function 

CHeaderCtrl class 809 
CListCtrl class 971 
CTabCtrl class 1880 
CTreeCtrl class 1969 

SetltemCount member function, CListCtrl class 972 
SetItemData member function 

CComboBox class 199 
CListBox class 940 
CListCtrl class 972 
CTreeCtrl class 1970 

SetltemDataPtr member function 
CComboBox class 199 
CListBox class 941 

SetltemHeight member function 
CComboBox class 200 
CListBox class 941 

Setltemlmage member function, CTreeCtrl class 1970 
SetltemName member function, 

COleServerItem class 1469 
SetltemPosition member function, CListCtrl class 972 
SetItemRects member function, 

COleClientItem class 1170 
SetltemSize member function, CTabCtrl class 1880 



Index 

SetItemState member function 
CListCtrl class 973 
CTreeCtrl class 1971 

SetItemText member function 
CListCtrl class 973 
CTreeCtrl class 1971 

SetLength member function, CFile class 690 
SetLimitText member function, CEdit class 647 
SetLineSize member function, CSliderCtrl class 1775 
SetLinkUpdateOptions member function, 

COleClientItem class 1171 
SetLoadParams member function, 

CArchive class 52 
SetLocale member function 

CComboBox class 200 
CListBox class 942 

SetLockingMode member function 
CDaoRecordset class 341 
CRecordset class 1625 

SetLoginTimeout member function 
CDao Workspace class 400 
CDatabase class 417 

SetMapMode member function, CDC class 543 
SetMapperFlags member function, CDC class 545 
SetMargins member function 

CEdit class 647 
CRichEditView class 1732 

SetMaxPage member function, CPrintInfo class 1533 
SetMenu member function, CWnd class 2259 
SetMenuContextHelpld member function, 

CMenu class 1049 
SetMenuItemBitmaps member function, 

CMenu class 1050 
SetMessagePendingDelay member function, 

COleMEssageFilter class 1389 
SetMessageText member function, 

CFrameWnd class 768 
SetMinHeight member function, 

CStatusBarCtrl class 1830 
SetMinPage member function, CPrintInfo class 1533 
SetMiterLimit member function, CDC class 545 
SetModified member function, 

CPropertyPage class 1549 
SetModifiedFlag member function 

CDocument class 617 
COleControl class 1251 
COlePropertyPage class 1416 

SetModify member function 
CEdit class 648 
CRichEditCtrl class 1703 

SetName member function 
CDaoQueryDef class 276 
CDaoTableDef class 375 

SetNotPermitted member function, 
COleControl class 1252 

SetNotSupported member function, 
COlecontrol class 1252 

SetObjectSchema member function, CArchive class 53 
SetODBCTimeout member function, 

CDaoQueryDef class 276 
SetOLECallback member function, 

CRichEditCtrl class 1704 
SetOption member function, 

ClntemetSession class 907 
SetOptions member function, CRichEditCtrl class 1704 
SetOutputDC member function, CDC class 545 
SetOverlaylmage member function, 

ClmageList class 880 
SetOwner member function 

CToolBarCtrl class 1937 
CWnd class 2259 

SetPadding member function, CTabCtrl class 1881 
SetPageName member function, 

COlePropertyPage class 1416 
SetPageSize member function, CSliderCtrl class 1775 
SetPaletteEntries member function, CPalette class 1502 
SetPanelnfo member function, CStatusBar class 1823 
SetPaneStyle member function, CStatusBar class 1824 
SetPaneText member function, CStatusBar class 1824 
SetPaperSize member function, 

CRichEditView class 1733 
SetParaFormat member function 

CRichEditCtrl class 1705 
CRichEditView class 1733 

SetParam Value member function 
CDaoQueryDef class 277 
CDaoRecordset class 342 

SetParamValueNull member function, 
CDaoRecordset class 343 

SetParent member function, CWnd class 2260 
SetParts member function, CStatusBarCtrl class 1831 
SetPasswordChar member function, CEdit class 648 
SetPath data member, 

CDataPathProperty class 426 



SetPathName member function, CDocument class 618 
SetPercentPosition member function, 

CDaoRecordset class 343 
SetPictureDispatch member function, 

CPicturcHolder class 1514 
SetPixel member function, CDC class 545 
SetPixelV member function, CDC class 546 
SetPolyFillMode member function, CDC class 547 
SetPos member function 

CProgressCtrl class 1540 
CSliderCtrl class 1776 
CSpinButtonCtrl class 1792 

SetPrintDevice member function, 
COleClientItem class 1172 

SetPrinterFont member function, CEditView class 661 
SetProperty member function 

COleDispatchDriver class 1339 
CWnd class 2260 

SetQueryTimeout member function 
CDaoDatabase class 249 
CDatabase class 417 

SetRadio member function, CCmdUI class 170 
SetRange member function 

CProgressCtrl class 1540 
CSliderCtrl class 1776 
CSpinButtonCtrl class 1793 

SetRangeMax member function, CSliderCtrl class 1776 
SetRangeMin member function, CSliderCtrl class 1777 
SetReadBufferSize member function, 

CIntemetFile class 890 
SetReadOnly member function 

CEdit class 648 
CRichEditCtrl class 1706 

SetRect member function 
CEdit class 649 
CRect class 1648 
CRichEditCtrl class 1706 

SetRectEmpty member function, CRect class 1648 
SetRectlnContainer member function, 

COleControl class 1252 
SetRectNP member function, CEdit class 650 
SetRectRgn member function, 

CRgn class 1680 
SetRedraw member function, 

CWnd class 2261 
SetRegistry Key member function, 

CWinApp class 2054 

SetRetryReply member function, 
COleMessageFilter class 1389 

SetReturnsRecords member function, 
CDaoQueryDef class 278 

SetROP2 member function, CDC class 547 
SetRowInfo member function, 

CSplitterWnd class 1809 

Index 

SetRows member function, CToolBarCtrl class 1938 
SetRules member function, CHotKeyCtrl class 813 
SetScaleToFitSize member function, 

CScrollView class 1750 
SetScrollInfo member function 

CScrollBarclass 1741 
CWnd class 2261 

SetScrollPos member function 
CScrollBar class 1742 
CWnd class 2262 

SetScrollRange member function 
CScrollBar class 1742 
CWnd class 2263 

SetScrollSizes member function, 
CScrollView class 1750 

SetScrollStyle member function, 
CSplitterWnd class 1810 

SetSel member function 
CEdit class 650 
CListBox class 942 
CRichEditCtrl class 1706 

SetSelection member function, CSliderCtrl class 1777 
SetSelectionCharFormat member function, 

CRichEditCtrl class 1707 
SetServerInfo member function, 

CDocTemplate class 600 
SetSimple member function, CStatusBarCtrl class 1831 
SetSize member function 

CArray class 69 
CObArray class 1089 

SetSizes member function, CToolBar class 1912 
SetSockOpt member function, CAsyncSocket class 108 
SetSourceTableName member function, 

CDaoTableDef class 375 
SetSQL member function, CDaoQueryDef class 278 
SetS tate member function 

CButton class 144 
CToolBarCtrl class 1939 

SetStatus member function 
CFile class 690 
COleCurrency 1268 



Index 

SetStatus member function (continued) 
COleDateTime 1309 
COleDateTimeSpan 1326 

SetStep member function, CProgressCtrl class 1541 
SetStoreParams member function, CArchive class 53 
SetStretchBltMode member function, CDC class 548 
SetSysString member function, CString class 1855 
SetTabStops member function 

CEdit class 651 
CEditView class 661 
CListBox class 942 

SetTargetDevice member function, 
CRichEditCtrl class 1708 

SetText member function 
CCmdUI class 170 
COleCmdUI class 1175 
COleControl class 1252 
CStatusBarCtrl class 1832 

SetTextAlign member function, CDC class 550 
SetTextBkColor member function, CListCtrl class 974 
SetTextCharacterExtra member function, 

CDC class 551 
SetTextColor member function 

CDC class 551 
CListCtrl class 974 

SetTextJustification member function, CDC class 552 
SetThreadPriority member function, 

CWinThread class 2075 
SetTic member function, CSliderCtrl class 1777 
SetTicFreq member function, CSliderCtrl class 1778 
SetTime member function, COleDateTime 1310 
SetTimer member function, CWnd class 2263 
Setting 

default passwords (DAO) 397 
default user names 397 
DFX field types 258 
login timeout values 417 
nUll, recordset 1624 
query timeout values 249, 417 
workspace passwords (DAO) 387 
worspace user names (DAO) 387 

SetTitle member function 
CDocument class 618 
CPropertySheet class 1560 

SetToolInfo member function, 
CToolTipCtrl class 1947 

SetToolRect member function, 
CToolTipCtrl class 1947 

SetTooItips member function, CTabCtrl class 1881 

SetToolTips member function, 
CToolBarCtrl class 1939 

SetTopIndex member function 
CComboBox class 201 
CListBox class 943 

SetValidationRule member function, 
CDaoTableDef class 376 

SetViewportExt member function, CDC class 553 
SetViewportOrg member function, CDC class 553 
SetWindowContextHelpId member function, 

CWnd class 2264 
SetWindowExt member function, CDC class 554 
SetWindowOrg member function, CDC class 555 
SetWindowPlacement member function, 

CWnd class 2265 
SetWindowPos member function, CWnd class 2265 
SetWindowText member function, CWnd class 2268 
SetWizardButtons member function, 

CPropertySheet class 1560 
SetWizardMode member function, 

CPropertySheet class 1561 
SetWordCharFormat member function, 

CRichEditCtrl class 1708 
SetWriteBufferSize member function, 

CIntemetFile class 891 
Short integer 

DFX field exchange 2412 
RFX field exchange 2468 

ShowCaret member function, CWnd class 2269 
ShowControlBar member function, 

CFrameWnd class 768 
ShowDropDown member function, 

CComboBox class 201 
ShowOwnedPopups member function, 

CWnd class 2269 
ShowOwnedWindows member function, 

CFrameWnd class 768 
ShowScrollBar member function 

CScrollBar class 1743 
CW nd class 2269 

ShowWindow member function, CWnd class 2270 
ShutDown member function, CAsyncSocket class 111 
Single precision float 

DFX field exchange 2413 
RFX field exchange 2472 

Size member function, CRect class 1648 
SIZE structure 2555 
SizeToContent member function, 

CBitmapButton class 126 



Slider control 1767 
SOCKADDR structure 2555 
SOCKADDR_IN structure 2556 
Sort strings, recordset 1631 
SortChildren member function, CTreeCtrl class 1972 
SortChildrenCB member function, 

CTreeCtrl class 1972 
SortItems member function, CListCtrl class 974 
SpanExcluding member function, CString class 1856 
SpanIncluding member function, CString class 1857 
Spin button control 1787 
SplitColumn member function, 

CSplitterWnd class 1810 
SplitRow member function, CSplitterWnd class 1811 
SQL 

executing SQL statements directly (DAO) 238 
pass-through queries 261 

defined 238 
executing 238 

setting SQL statement of querydef 278 
statements 

customizing 1615 
described 261 
directly executing 408 
getting default 1595 -
getting recordset 1603 
querydef, getting 273 
recordset, getting 1603 

SQL_ERROR codes 428 
SQLError function, native error strings 430 
SQLSTATE, native error strings 430 
Standard cvommand, window IDs 2288 
Standard OLE container 1176 
StartContent member function, CHttpServer class 858 
StartDoc member function, CDC class 555 
StartPage member function, CDC class 556 
Static control styles 2570 
Status bar control 1825 
Status, getting recordset 1602 
StepIt member function, CProgressCtrl class 1541 
Stop member function, CAnimateCtrl class 39 
StoreField, Record field exchange (DFX) 258 
StreamIn member function, CRichEditCtrl class 1709 
StreamOut member function, CRichEditCtrl class 1709 
StretchBlt member function, CDC class 556 
StrokeAndFillPath member function, CDC class 559 
StrokePath member function, CDC class 559 
Structured storage, CFile implementation 1470 

Structures, called from MFC function descriptions 
ABC structure 2489 
ABCFLOAT structure 2489 
BITMAP structure 2492 
BITMAPINFO structure 2493 
CDaoDatabaseInfo structure 2495 
CDaoErrorInfo structure 2497 
CDaoFieldInfo structure 2498 
CDaoIndexFieldInfo structure 2505 
CDaoIndexInfo structure 2502 
CDaoParameterInfo structure 2506 
CDaoQueryDefinfo structure 2507 
CDaoRelationFieldInfo structure 2511 
CDaoRelationInfo structure 2510 
CDaoTableDefinfo structure 2512 
CDao W orkspaceInfo structure 2515 
COLORADJUSTMENT structure 2516 
COMPAREITEMSTRUCT structure 2519 
CREATESTRUCT structure 2520 
DELETEITEMSTRUCT structure 2521 
described 2489 
DEVMODE structure 2521 
DEVNAMES structure 2526 
DOCINFO structure 2527 

Index 

DRA WITEMSTRUCT structure 2527 
EXTENSION_CONTROL_BLOCK structure 2530 
FILETIME structure 2535 
HD _ITEM structure 806 
HD_LAYOUT structure 808 
HTTP_FILTER_AUTHENT structure 2535 
HTTP_FILTER_CONTEXT structure 2536 
HTTP_FILTER_LOG structure 2540 
HTTP_FILTER_PREPROC_HEADERS 

structure 2541 
HTTP_FILTER_RAW_DATA structure 2542 
HTTP_FILTER_URL_MAP structure 2543 
HTTP_FILTER_VERSION structure 2543 
IMAGEINFO structure 877 
LINGER structure 2544 
LOGBRUSH structure 2544 
LOGFONT structure 2546 
LOGPEN structure 2549 
LV_COLUMN structure 956 
LV _FINDINFO structure 954 
LV _HITTESTINFO structure 965 
LV_ITEM structure 958 
MEASUREITEMSTRUCT structure 2550 
MINMAXINFO structure 2551 
NCCALCSIZE_P ARAMS structure 2552 



Index 

Structures, called from MFC function descriptions 
(continued) 

NMHDR structure 1916 
PAINSTSTRUCT structure 2553 
POINT structure 2554 
RECT structure 2554 
RGNDATA structure 2554 
SIZE structure 2555 
SOCKADDR structure 2555 
SOCKADDR_IN structure 2556 
SYSTEMTIME structure 2557 
TBBUTTON structure 1921 
TBNOTIFY structure 1916 
TC_HITTESTINFO structure 1878 
TC_ITEM structure 1875 
TC_ITEMHEADER structure 1875 
TEXTMETRIC structure 2558 
TOOLINFO structure 1944 
TOOL TIPTEXT structure 1916 
TTHITTESTINFO structure 1945 
TV _HITTESTINFO structure 1964 
TV _INSERTSTRUCT structure 1965 
TV_ITEM structure 1956 
TV SORTCB structure 1972 
WINDOWPLACEMENT structure 2558 
WINDOWPOS structure 2560 
WSADATA structure 2561 
XFORM structure 2563 

Styles 
button 2564 
combo-box 2565 
edit 2566 
list-box 2567 
message-box 2568 
scroll-bar 2569 
specified with dwstyle parameter 2564 
static control 2570 
window 

described 2564, 2571 
extended 2573 

SubclassDlgItem member function, CWnd class 2271 
SubclassWindow member function, CWnd class 2271 
SubtractRect member function, CRect class 1649 
Support classes, miscellaneous (list) 19 
SuspendThread member function, 

CWinThread class 2075 
SyncToRichEditObject member function, 

CRichEditCntrlItem class 1682 
SYSTEMTIME structure 2557 

T 
Tab control 1870 
TabbedTextOut member function, CDC class 559 
Table names 

getting 1595 
getting Recordset 1604 

Tabledef object (DAO), 
obtaining information about 2512 

TableDefs 
counting 245 
deleting 238 

TBBUTTON structure 1921 
TBNOTIFY structure 1916 
TC_HITTESTINFO structure 1878 
TC_ITEM structure 1875 
TC_ITEMHEADER structure 1875 
Template collection classes (list) 20 
Templates, collection classes 

CArray 61 
CList 909 
CMap 980 
CTypedPtrArray 1976 
CTypedPtrList 1981 
CTypedPtrMap 1989 

TEXTMETRIC structure 2558 
TextOut member function, CDC class 560 
THIS_FILE global function/macro 2478 
Threading base class, listed 6 
THROW global function/macro 2478 
THROW_LAST global function/macro 2479 
ThrowError member function 

CFileException class 706 
COleControl class 1253 

ThrowOsError member function, 
CFileException class 706 

Timeouts 
ODBC 270 
query 

described 243 
setting 249 

Tool tip control 1940 
Toolbar control 1913 
TOOLINFO structure 1944 
Top Left member function, CRect class 1649 
TRACE global function/macro 2479 
TRACEO global function/macro 2480 
TRACEI global function/macro 2481 
TRACE2 global function/macro 2481 
TRACE3 global function/macro 2481 



Track member function, CRectTracker class 1663 
TrackPopupMenu member function, 

CMenu class 1051 
TrackRubberBand member function, 

CRectTracker class 1664 
Transaction log file 396 
Transactions 

beginning 382 
CanTransact member function (DAO) 232 
committing 384 
DAO support 379 
database 

beginning, described 404 
committing 407 
determining whether allowed 405 
determining whether available 1583 
rolling back 414 

determining whether allowed 232 
isolating ODBC 390, 399 
role of DAO database objects 230 
rolling back 396 
separate 379 

TransformCoords member function, 
COleControl class 1253 

TranslateColor member function, 
COleControl class 1254 

Tree view control 1948 
TrimLeft member function, CString class 1857 
TrimRight member function, CString class 1858 
TRY global function/macro 2482 
TTHITTESTINFO structure 1945 
TV _HITTESTINFO structure 1964 
TV _INSERTSTRUCT structure 1965 
TV_ITEM structure 1956 
TV _SORTCB structure 1972 
Type library access 2297 

u 
UINT, DDX field exchange 2384 
UnaccessData member function, 

COleSafeArray class 1429 
Undo member function 

CEdit class 652 
CRichEditCtrl class 1710 

Undo support, COleServerDoc class 1434 
Uniform data transfer, OLE 1275, 1282 
Union queries 261 
UnionRect member function, CRect class 1650 

Unlock member function 
CCriticalSection class 226 
CEvent class 666 
CMultiLock class 1070 
COleSafeArray class 1429 
CSingleLock class 1762 
CSyncObject class 1868 

UnlockBuffer member function 
CEditView class 661 
CString class 1858 

UnlockRange member function, CFile class 691 
UnrealizeObject member function, 

CGdiObject class 789 
UnsubclassWindow member function, 

CWnd class 2272 
Update member function 

CDaoRecordset class 344 
CListCtrl class 975 
CRecordset class 1628 

Update queries 261 
UpdateAllItems member function, 

COleServerDoc class 1448 
UpdateAllViews member function, 

CDocument class 618 
UpdateColors member function, CDC class 561 
UpdateData member function, CWnd class 2273 
UpdateDialogControls member function, 

CWnd class 2273 
UpdateLink member function, 

COleClientItem class 1172 
UpdateMenu member function, 

CRecentFileList class 1575 
UpdateModifiedFlag member function, 

COleDocument class 1355 
UpdateRegistry member function 

COleObjectFactory class 1395 
·COleTemplateServer class 1475 

UpdateRegistryAll member function, 
COleObjectFactory class 1396 

Updates, database 
determining whether allowed 232, 405 
determining whether available 1584 

UpdateTipText member function, 
CToolTipCtrl class 1947 

UpdateWindow member function, 
CWnd class 2274 

Updating 
records 1591 
Recordsets 1591, 1628 

Index 



Index 

User Interface Issues, Drag and Drop 1357 
User names 

setting default (DAO) 397 
setting for DAO workspace 387 
workspace 391 

U sing database objects 229 

v 
ValidateRect member function, CWnd class 2274 
ValidateRgn member function, CWnd class 2274 
Validation failures, dealing with 420 
Variant parameter type constants 2296 
VARIANT, MFC encapsulation 1479 
VERIFY global function/macro 2482 
Verify LicenseKeymember function, 

COleObjectFactoryEx class 1396 
VerifyPos member function, CSliderCtrl class 1778 
VerifyUserLicense member function, 

COleObjectFactory class 1397 
Version, getting database engine 247, 392 
View classes (list) 11 
VKeyToItem member function 

CListBox class 944 

w 
WidenPath member function, CDC class 561 
Width member function, CRect class 1650 
WillAmbientsBe ValidDuringLoad member function, 

COleControl class 1254 
Window application classes (list) 6 
Window IDs described 2288 
Window styles 

described 2571 
extended 2573 

WindowFromPoint member function, CWnd class 2275 
WINDOWPLACEMENT structure 2558 
WINDOWPOS structure 2560 
WindowProc member function, CWnd class 2275 
Windows Common controls 

CAnimateCtrl 35 
CHeaderCtrl 803 
CHotKeyCtrl 810 
ClmageList 868 
CListCtrl 945 
CProgressCtrl 1538 
CSliderCtrl 1767 

Windows Common controls (continued) 
CSpinButtonCtrl 1787 
CStatusBarCtrl 1825 
CTabCtrl 1870 
CToolBarCtrl 1913 
CToolTipCtrl 1940 
CTreeCtrl 1948 

WinHelp member function, CWinApp class 2055 
Workspace 

accessing database's workspace 250 
accessing underlying DAO object 401 
callable functions before Open 395 
capabilities of 

access to Databases collection 378 
access to default workspace 378 
access to Workspaces collection 378 
database engine properties 378 
transaction management 378 

closing, consequences of 383 
compacting databases 385 

database engine version options 385 
dbLangGeneral option 385 
language options 385 

constructing C++ object 383 
creating 379, 387 
DAO database 378 
database engine properties 395 
database engine version, getting 392 
database sessions 378 
Databases collection 378 
defined 378 
getting number of databases open 388 
initialization settings 398 
isolating ODBC transactions 390, 399 
Login timeout property, setting 400 
multiple, need for 378 
name, user-defined 391 
obtaining information about open databases 388 
obtaining information about workspaces 393 
open databases, counting 388 
open status, obtaining 394 
opening 395 
password, setting 387 
persistence 379, 383 
registry key settings 398 
repairing a database 395 
rolling back transactions 396 



Workspace (continued) 
setting 

default password 397 
default user name 397 
user name 387 

static member functions 395 
transaction log file 396 
transaction manager 378 
transaction space 378 
usage tips 

creating new workspaces 379 
explicitly opening default workspace 379 
opening existing workspaces 379 

user name 391 
Workspaces collection 

appending to 382 
workspaces in 392 

Workspace count, getting 392 
Workspace object (DAO), 

obtaining information about 2515 
Workspace, using default implicitly 379 
WrapChanged member function, 

CRichEditView class 1734 
Write member function 

CArchive class 54 
CFile class 692 
CHtmlStream class 820 
ClmageList class 880 
ClntemetFile class 891 

WriteClass member function, CArchive class 55 
WriteClient member function, 

CHttpFilterContext class 849 
WriteClient member function, 

CHttpServerContext class 865 
WriteHuge member function, CFile class 692 
WriteList member function, 

CRecentFileList class 1575 
WriteObject member function, CArchive class 55 
WriteProfilelnt member function, CWinApp class 2056 
WriteProfileString member function, 

CWinApp class 2057 
WriteString member function 

CArchive class 56 
ClntemetFile class 891 
CStdioFile class 1836 

WriteTitle member function, 
CHttpServer class 859 

WSADATA structure 2561 

Index 

x 
XFORM structure 2563 





Contributors to MFC Reference 

Nancy Avinger, Writer 

Walden Barcus, Writer 

David Adam Edelstein, Art Director 

Roger Haight, Editor 

Lisa Hedley, Writer 

Dan Jinguji, Writer 

Nancy Rager, Writer 

Robert Reynolds, Illustrator 

Arlene Roth, Copy Editor 

Kathleen Thompson, Writer 

Qian Wen, Writer 

Rod Wilkinson, Editor 

WASSERStudios, Production 













Microsoft the 
Visual C++ 

in both hands. 
This four-volume collection is the complete printed product documentation for Microsoft Visual C-++ 

version 5.0, the development system for Win32®. In book form, this information is portable, easy to access 

and browse, and a comprehensive alternative to the substantial online help system in Visual C++. The 
volumes are numbered as a set-but you can buy any or all of the volumes, any time you need them. So 
take hold of all the power. Get the MICROSOFf VISUAL C++ 5.0 PROGRAMMER'S REFERENCE SET. 

Volume 1 ofthe 4-volume 
Visual C++ 5.0 Programmer's 
Reference Set 

Volume 2 afthe 4-volume 
Visual C++ 5.0 Programmer's 
Referente Set l't..., I 

1 
l 

Volume 4 of the 4-volume 
Visual C++ 5.0 Programmer's 
Reference Set 

I 
! 

MJc~sofr C 
VISual ++ 

I
ff

i 

MJc~soft· ... 
VISUal C++ 
Run-lime Ubrary Reference 

MJc~soft· C' " VISual ++ 
Language Reference ! 

Microsoft® Visual C++® MFC 
Library Reference, Part 1 
U.S.A. $39.99 
U.K. £36.99 
Canada $53.99 
ISBN 1-57231-518-0 

MFC Ubrary Reference, ! 
Part 2 ' "-Microsoft® Visual C++® MFC 

Library Reference, Part 2 
U.S.A. $39.99 
U.K. £36.99 
Canada $53.99 
ISBN 1-57231-519-9 

,_,_""-_____ ""_,~iit%h. 
Microsoft® Visual C++ ® 
Run-Time Library Reference 
U.S.A. $39.99 
U.K. £36.99 
Canada $53.99 
ISBN 1-57231-520-2 

____ ~ ______ H_, tLt 3:6pM 

Microsoft® Visual C++® 
Language Reference 
U.S.A. $29.99 
U.K. £27.49 
Canada $39.99 
ISBN 1-57231-521-0 

licrosoft Press® products are available worldwide wherever quality computer books are sold. For more information, contact your book retailer, computer 
~seller, or local Microsoft Sales Office. 

) locate your nearest source for Microsoft Press products, reach us at www,microsoftcom/mspressl, or call 1-800-MSPRESS in the U.S. 
n Canada: 1-800-667-1115 or 416-293-8464). 

) order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464). 

rices and availability dates are subject to change. 



, IKlcrosoff'Press 

U.S.A. $34.99 
U.K. £32.99 [V.AI. included] 
Canada $46.99 
ISBN 1-57231-349-8 

The Component Object Model (COM) isn't just another 
standard. It's the basis of Microsoft's approach to distributed 
computing. It's also the method for customizing Microsoft® 
applications, present and future. And it's the foundation of 
OLE and ActiveXT~ In short, COM is a major key to the future 
of development. And this is the book that unlocks COM. In it, 
you'll discover: 

• A clear and simple, practical guide to building elegant, 
robust, portable COM components 

• An eye-opening presentation of how accessible COM can 
be-especially for those already familiar with C++ 

• An insightful, progressive view of COM design 
• Plenty of illustrations in the form of code samples 

INSIDE COM is for intermediate to advanced C++ program­
mers; beginning to advanced COM, ActiveX, and OLE 
programmers; academics with an interest in component 
design; and even programmers who want to use COM when 
it's ported to UNIX, MVS, and other environments. To put it 
simply, if you work with COM, then INSIDE COM was written for 
you. 

Microsoft Press® products are available worldwide wherever quality computer books are sold. For 
more information, contact your book retailer, computer reseller, or local Microsoft Sales Office. 

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/ 
msoress/, or call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464). 

To order Microsoft Press products, call1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 
or 416-293-8464). 

Prices and availability dates are subject to change. 



Harn 
the power of 

ActiveX'"coi1frols. 

U.S.A. $39.95 
U.K. £37.49 [V.AI. included] 
Canada $54.95 
ISBN 1-57231-350-1 

MictOsoft·Press 

ActiveX controls are an important ingredient in 

Microsoft's emerging "object model" approach to the 

Internet, applications, development tools, and operating 

systems. Written by a former data management consult­

ant and current program manager at Microsoft in the 

Visual Languages group, ACTivE)( CONTROLS INSIDE OUT is 

an in-depth guide for C++ and Microsoft® Visual Basic® 

programmers who want to build powerful custom controls 

and "componentware" using Microsoft's new tools and 

revolutionary COM (Component Object Model) technol­

o@!. A comprehensive update to the successful first 

edition, OLE Controls Inside Out, this book contains the 

latest on MFC, changes to OLE, and Visual Basic and 

Microsoft Internet Explorer support for hosting ActiveX 

controls. It is an indispensable resource for all those 

programming for Windows® and the Internet. 

Microsoft Press® products are available worldwide wherever quality computer 
books are sold. For more information, contact your book retailer, computer reseller, 
or local Microsoft Sales Office. 

To locate your nearest source for Microsoft Press products, reach us at 
www.microsoft.com/mspress/. or call1-800-MSPRESS in the U.S. 
(in Canada: 1-800-667-1115 or 416-293-8464). 

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. 
(in Canada: 1-800-667-1115 or 416-293-8464). 

Prices and availability dates are subject to change. 



81 ueRri nt for 
excellence 

CODE 
COMPLETE 

nPracllcal 

Handbnoltof 

Sollware 

Conslrudion 

This classic from Steve McConnell is a practical guide to the art 

and science of constructing software. Examples are provided in C, 

Pascal, Basic, Fortran, and Ada, but the focus is on successful 

programming techniques. CODE COMPLETE provides a larger per­

spective on the role of construction in the software development 

process that will inform and stimulate your thinking about your owr 

projects-enabling you to take strategic action rather than fight th' 

same battles again and again. 

Get all of the Best Practices books. 

STEVE McCONNELL 

U.S.A. $35.00 
U.K. £29.95 
Canada $44.95 
ISBN 1-55615-484-4 

"The definitive book on software construction. This is a book that belongs on every 
software developer's bookshelf." 

-Warren Keuffel, 
Software Development 

"I cannot adequately express how good this book really is ... a work of brilliance." 
-Jeff Duntemann, 

PC TechnIques 

"If you are or aspire to be a professional programmer, this may be the wisest $35 
investment you'll ever make." 

-IEEE MIcro 

Microsoft Press® products are available worldwide wherever quality computer books are sold. 
For more information, contact your book retailer, computer reseller, or local Microsoft Sales Office. 

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/mspress/. 
or call 1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464). 

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada: 
1-800-667-1115 or 416-293-8464). 

Prices and availability dates are subject to change. 

Rapid Development 
Steve McConnell 
U.S.A. $35.00 ($46.95 Canada; £32.49 U.K.) 
ISBN 1·55615-900-5 

'Very few books I have encountered in the last few years have 
given me as much pleasure to read as this one: 
-Ray Duncan 

Writing Solid Code 
Steve Maguire 
U.S.A. $24.95 ($32.95 Canada; £21.95 U.K.) 
ISBN 1-55615-551-4 

"Every working programmer should own this book." 
-IEEE Spectrum 

Debugging the Development Process 
Steve Maguire 
U.S.A. $24.95 ($32.95 Canada; £21.95 U.K.) 
ISBN 1-55615-650-2 

"A milestone in the game of hitting milestones." 
-ACM Computing Reviews 

Dynamics of Software Development 
Jim McCarthy 
U.S.A. $24.95 ($33.95 Canada; £22.99 U.K.) 
ISBN 1-55615-823-8 

"I recommend it without reservation to every developer." 
-Jesse Berst, editorial director, Windows Watcher Newsletter 



MFC Library Reference, 
Part 1 

This four-volume collection is the complete printed product documentation for Microsoft 
Visual C++ version 5, the development system for Win32~ In. book form, this information 
is portable and easy to access and browse, a comprehensive alternative to the 
substantial online help system in Visual C++. The volumes are numbered as a set, 
but you can buy only the volumes you need, when you need them. 

7 90145 1 5180 3 

Volume 1: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 1 
Volume 2: MICROSOFT VISUAL C++ MFC LIBRARY REFERENCE, PART 2 

This two-volume reference thoroughly documents the Microsoft Foundation Class (MFC) 

Iibrary~ providing a class library overview, an alphabetical listing of MFC classes, and a section 

on the library's macros and globals. In-depth class descriptions summarize members by 
category and list member functions, operators, and data members. Entries for member 

functions include return values, parameters, related classes, important comments, and 

source code examples. 

Volume 3: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE 
Combining the information of three books, this volume contains complete descriptions 

and alphabetical listings of all the functions and parameters in the iostream class library, 

ActiveX'· Template Library (ATL), and run-time library. Entries include helpful source code 

examples. 

Volume 4: MICROSOFT VISUAL C++ LANGUAGE REFERENCE 
Three books in one, the C and C++ references in this volume guide you through the two 

languages: terminology and concepts, programming structures, functions, declarations, and 

expressions. The C++ section also covers Run-Time Type Information (RTII) and Namespaces. 

The final section of this valuable resource discusses the preprocessor and translation phases, 

integral to C and C++ programming, and includes an alphabetical listing of preprocessor 

directives. 

U.S.A. $39.99 Programming/Microsoft Visual C++ 

U.K. £36.99 
Canada $53.99 ISBN 1-57231-518-0 

I 
9 781572 315181 Tr [Recommended] 

Microsoft Press 



Designed for 

'. '. ' . . . '. ' . . . 
Microsoft­
WindowsNr­
Windows·95 

VOLUME 

1 
OF FOUR 

Microsoft ---
_ PRESS 


