i . Vo One
:, ; of the f lume
i = Microsoft | C++ 5.0
Windows NT®
Windows 95 Program nce Set

Complete documentation for
Microsoft Visual C++ version 5.0

soft’

iIsual C++
MFC Library Reference,

Part 1

IC

soft’
iIsual C++
MFC Library Reference,

Part 1

|IC

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ MFC Library Reference / Microsoft Corporation.
p. cm.
Includes index.
ISBN 1-57231-518-0
1. C++ (Computer program language) 2. Microsoft Visual C++.
3. Microsoft foundation class library. 1. Microsoft Corporation.
QA76.73.C153M535 1997
005.26'8--dc21 97-2421
CIP

Printed and bound in the United States of America.
123456789 WCWC 210987

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc. FoxPro, Microsoft,
Microsoft Press, MS, MS-DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. Other product and company names mentioned herein
may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Contents

Part 1

Introduction xi

Class Library Overview 1

About the Microsoft Foundation Classes 1
Root Class: CObject 4

MFC Application Architecture Classes 5
Window, Dialog, and Control Classes 10
Drawing and Printing Classes 17

Simple Data Type Classes 19

Array, List, and Map Classes 20

File and Database Classes 22

Internet and Networking Classes 25
OLE Classes 27

Debugging and Exception Classes 32

Alphabetical Reference to the Microsoft Foundation Class Library 35
CAnimateCtr] 35

CArchive 40
CArchiveException 59
CArray 61
CAsyncMonikerFile 71
CAsyncSocket 80

CBitmap 113

CBitmapButton 123

CBrush 127

CButton 136

CByteArray 145
CCachedDataPathProperty 147
CCheckListBox 149
CClientDC 156

CCmdTarget 158

Contents

CCmdUI 168
CColorDialog 172
CComboBox 177
CCommandLineInfo 202
CCommonDialog 208
CConnectionPoint 210
CControlBar 214
CCreateContext 222
CCriticalSection 224
CCtrlView 227
CDaoDatabase 229
CDaoException 251
CDaoFieldExchange 256
CDaoQueryDef 260
CDaoRecordset 280
CDaoRecordView 348
CDaoTableDef 354
CDaoWorkspace 378
CDatabase 402
CDataExchange 419
CDataPathProperty 423
CDBException 427
CDBVariant 431

CDC 436

CDialog 563
CDialogBar 575
CDocltem 577
CDockState 579
CDocObjectServer 582
CDocObjectServerltem 586
CDocTemplate 589
CDocument 601
CDragListBox 620
CDumpContext 624
CDWordArray 629
CEdit 631

CEditView 653
CEvent 663
CException 667

CFieldExchange 672
CFile 676

CFileDialog 694
CFileException 704
CFileFind 709
CFindReplaceDialog 721
CFont 728
CFontDialog 737
CFontHolder 743
CFormView 747
CFrameWnd 751
CFtpConnection 770
CFtpFileFind 780
CGdiObject 783
CGopherConnection 790
CGopherFile 794
CGopherFileFind 796
CGopherLocator 800
CHeaderCtrl 803
CHotKeyCtrl 810
CHtmiStream 814
CHttpConnection 822
CHttpFile 825
CHttpFilter 833
CHutpFilterContext 844
CHittpServer 850
CHttpServerContext 860
CImageList 868
ClnternetConnection 881
ClnternetException 884
ClnternetFile 886
ClnternetSession 893
CList 909

CListBox 920
CListCtrl 945
CListView 976
CLongBinary 978
CMap 980
CMapPuToPtr 986

Contents

Contents

vi

CMapPtrToWord 988
CMapStringToOb 990
CMapStringToPtr 998
CMapStringToString 1000
CMapWordToOb 1002
CMapWordToPtr 1004
CMDIChildWnd 1006
CMDIFrameWnd 1011
CMemFile 1019
CMemoryException 1025
CMemoryState 1026
CMenu 1030
CMetaFileDC 1053
CMiniFrameWnd 1058
CMonikerFile 1060
CMultiDocTemplate 1064
CMultiLock 1067
CMutex 1071
CNotSupportedException 1073
CObArray 1074

CObject 1091

CObList 1099
COleBusyDialog 1116
COleChangelconDialog 1120
COleChangeSourceDialog 1124
COleClientltem 1129
COleCmdUI 1173
COleControl 1176
COleControlModule 1256
COleConvertDialog 1257
COleCurrency 1263
COleDataObject 1275
COleDataSource 1282
COleDateTime 1293

Index

Contents

Part 2

COleDateTimeSpan 1317
COleDialog 1332
COleDispatchDriver 1334
COleDispatchException 1341
COleDocument 1344
COleDropSource 1356
COleDropTarget 1359
COleException 1366
COlelnsertDialog 1368
COlelPFrameWnd 1374
COleLinkingDoc 1377
COleLinksDialog 1381
COleMessageFilter 1384
COleObjectFactory 1391
COlePasteSpecialDialog 1398
COlePropertiesDialog 1405
COlePropertyPage 1410
COleResizeBar 1417
COleSafeArray 1419
COleServerDoc 1431
COleServerltem 1450
COleStreamFile 1470
COleTemplateServer 1474
COleUpdateDialog 1477
COleVariant 1479
CPageSetupDialog 1487
CPaintDC 1495

CPalette 1497

CPen 1503
CPictureHolder 1510
CPoint 1515
CPrintDialog 1521
CPrintInfo 1530
CProgressCtrl 1538
CPropertyPage 1542
CPropertySheet 1551

vii

Contents

viii

CPropExchange 1563
CPtrArray 1568
CPtrList 1570
CRecentFileList 1572
CRecordset 1576
CRecordView 1633
CRect 1639
CRectTracker 1657
CResourceException 1666
CRgn 1667
CRichEditCntrItem 1681
CRichEditCtrl 1683
CRichEditDoc 1711
CRichEditView 1714
CRuntimeClass 1735
CScrollBar 1737
CScrollView 1744
CSemaphore 1752
CSharedFile 1754
CSingleDocTemplate 1757
CSingleLock 1760
CSize 1763
CSliderCtrl 1767
CSocket 1779
CSocketFile 1785
CSpinButtonCtrl 1787
CSplitterWnd 1794
CStatic 1812
CStatusBar 1818
CStatusBarCtrl 1825
CStdioFile 1833
CString 1837
CStringArray 1863
CStringList 1865
CSyncObject 1867
CTabCtrl 1870
CTime 1882
CTimeSpan 1894
CToolBar 1901

CToolBarCtrl 1913
CToolTipCtrl 1940
CTreeCtrl 1948
CTreeView 1974
CTypedPtrArray 1976
CTypedPtrList 1981
CTypedPtrMap 1989
CUlIntArray 1993
CUserException 1995
CView 1997
CWaitCursor 2017
CWinApp 2021
CWindowDC 2064
CWinThread 2066
CWnd 2078
CWordArray 2277

MFC Macros and Globals 2279

Data Types 2281

Type Casting of MFC Class Objects 2282

Run-Time Object Model Services 2282

Diagnostic Services 2283

Exception Processing 2285

CString Formatting and Message-Box Display 2287
Application Information and Management 2287
Standard Command and Window IDs 2288

Collection Class Helpers 2289

Record Field Exchange Functions 2290

Dialog Data Exchange Functions for CRecordView and CDaoRecordView 2292
Dialog Data Exchange Functions for OLE Controls 2293

Database Macros 2294

DAO Database Engine Initialization and Termination 2295

OLE Initialization 2295

Application Control 2295

Dispatch Maps 2296

Variant Parameter Type Constants 2296
Type Library Access 2297

Property Pages 2298
Event Maps 2299

Contents

Contents

Event Sink Maps 2300

Connection Maps 2300

Registering OLE Controls 2301

Class Factories and Licensing 2302

Persistence of OLE Controls 2303

Internet Server API (ISAPI) Parse Maps 2303
Internet Server API (ISAPI) Diagnostic Macros 2304
Macros, Global Functions, and Global Variables 2304
ClassWizard Comment Delimiters 2483

Structures, Styles, and Callback Functions 2489
Structures Used by MFC 2489

Styles Used by MFC 2564

Callback Functions Used by MFC 2575

Index

Introduction

The Class Library Reference covers the classes, global functions, global variables,
and macros that make up the Microsofte Foundation Class Library, version 4.21.
The Class Hierarchy Chart online details the class relationships in the class library.

The Class Library Overview lists the classes in helpful categories. Use these lists to
help locate a class that contains the functionality you are interested in. Visual C++
Programmer’s Guide online explains how to use the class library to program for
Microsoft Windows NTe, Microsoft Windowse 95, and other Win32e platforms.
Practical examples and techniques are supplied in the tutorials in Visual C++
Tutorials online.

The remainder of the Class Library Reference consists of an alphabetical listing of the
classes and an MFC Macros and Globals section that explains the global functions,
global variables, and macros used with the class library.

The individual hierarchy charts included with each class are useful for locating base
classes. The Class Library Reference usually does not describe inherited member
functions, inherited operators, and overridden virtual member functions. For
information on these functions, refer to the base classes depicted in the hierarchy
diagrams.

In the alphabetical listing section, each class description includes a member summary
by category, followed by alphabetical listings of member functions, overloaded
operators, and data members.

Public and protected class members are documented only when they are normally
used in application programs or derived classes. Occasionally, private members are
listed because they override a public or protected member in the base class. See the
class header files for a complete listing of class members.

Some C-language structures defined by Windows are so widely applicable that their
descriptions have been reproduced completely in a section following the alphabetical
reference.

Please note that the “See Also” sections refer to Win32 API functions by prefacing
them with the scope resolution operator (::), for example, ::EqualRect. More
information on these functions can be found in the Win32 SDK documentation.

Xi

Class Library Overview

Class Library Overview

This overview categorizes and describes the classes in the Microsoft Foundation
Class Library (MFC) version 4.21. The classes in MFC, taken together, constitute
an “application framework”—the framework of an application written for the
Windows API. Your programming task is to fill in the code that is specific to your
application.

About the Microsoft Foundation Classes

The library’s classes are presented here in the following categories:

o Root Class: CObject
o MFC Application Architecture Classes
e Application and Thread Support Classes
e Command Routing Classes
e Document Classes
e View Classes (Architecture)
e Frame Window Classes (Architecture)
e Document-Template Classes
e Window, Dialog, and Control Classes
e Frame Window Classes (Windows)
e View Classes (Windows)
¢ Dialog Box Classes
o Control Classes
o Control Bar Classes
e Drawing and Printing Classes
e Output (Device Context) Classes
¢ Drawing Tool Classes
e Simple Data Type Classes
e Array, List, and Map Classes
o Template Classes for Arrays, Lists, and Maps
e Ready-to-Use Array Classes
e Ready-to-Use List Classes
e Ready-to-Use Map Classes

Class Library Overview

¢ File and Database Classes
e File I/O Classes
e DAO Classes
o ODBC Classes
e Internet and Networking Classes
o ISAPI Classes
o Windows Sockets Classes
e Win32 Internet Classes
e OLE Classes
e OLE Container Classes
e OLE Server Classes
e OLE Drag-and-Drop and Data Transfer Classes
e OLE Common Dialog Classes
e OLE Automation Classes
e OLE Control Classes
e Active Document Classes
e OLE-Related Classes
¢ Debugging and Exception Classes
e Debugging Support Classes
e Exception Classes

The section “General Class Design Philosophy” explains how the Microsoft
Foundation Class Library was designed.

The framework is explained in detail in the Visual C++ Programmer’s Guide online.

(See “Using the Classes to Write Applications for Windows,” for an overview.) Some
of the classes listed above are general-purpose classes that can be used outside of the

framework.and provide useful abstractions such as collections, exceptions, files, and

strings.

To see the inheritance of a class, use the Class Hierarchy Chart online.

In addition to the classes listed in this overview, the Microsoft Foundation Class
Library contains a number of global functions, global variables, and macros. There is
an overview and detailed listing of these in the section “MFC Macros and Globals,”
which follows the alphabetical reference to the MFC classes.

Class Library Overview

General Class Design Philosophy

Microsoft Windows was designed long before the C++ language became popular.
Because thousands of applications use the C-language Windows application
programming interface (API), that interface will be maintained for the foresecable
future. Any C++ Windows interface must therefore be built on top of the procedural
C-language API. This guarantees that C++ applications will be able to coexist with
C applications.

The Microsoft Foundation Class Library is an object-oriented interface to Windows
that meets the following design goals:

¢ Significant reduction in the effort to write an application for Windows.
e Execution speed comparable to that of the C-language API.

e Minimum code size overhead.

e Ability to call any Windows C function directly.

e Easier conversion of existing C applications to C-++.

e Ability to leverage from the existing base of C-language Windows programming
experience.

e FEasier use of the Windows API with C++ than with C.

o Easier-to-use yet powerful abstractions of complicated features such as ActiveX,
database support, printing, toolbars, and status bars.

o True Windows API for C++ that effectively uses C++ language features.

The Application Framework

The core of the Microsoft Foundation Class Library is an encapsulation of a large
portion of the Windows API in C++ form. Library classes represent windows, dialog
boxes, device contexts, common GDI objects such as brushes and pens, controls,

and other standard Windows items. These classes provide a convenient C++ member
function interface to the structures in Windows that they encapsulate. For more about
using these classes, see “Window Object Topics” in the Visual C++ Programmer’s
Guide online.

But the Microsoft Foundation Class Library also supplies a layer of additional
application functionality built on the C++ encapsulation of the Windows API. This
layer is a working application framework for Windows that provides most of the
common user interface expected of programs for Windows, including toolbars, status
bars, printing, print preview, database support, and ActiveX support. “Using the
Classes to Write Applications for Windows” in Visual C++ Programmer’s Guide
online explains the framework in detail, and Visual C++Tutorials online provides
the Scribble tutorial, which teaches application-framework programming.

Class Library Overview

Relationship to the C-Language API

The single characteristic that sets the Microsoft Foundation Class Library apart from
other class libraries for Windows is the very close mapping to the Windows API
written in the C language. Further, you can generally mix calls to the class library
freely with direct calls to the Windows API. This direct access does not, however,
imply that the classes are a complete replacement for that API. Developers must

still occasionally make direct calls to some Windows functions—SetCursor and
GetSystemMetrics, for example. A Windows function is wrapped by a class
member function only when there is a clear advantage to doing so.

Because you sometimes need to make native Windows function calls, you should
have access to the C-language Windows API documentation. This documentation
is included with Microsoft Visual C++. Two useful books are Advanced Windows,
by Jeffrey Richter, and Programming Windows 95, by Charles Petzold. Both are
published by Microsoft Presse. Many of those books’ examples can be easily
converted to the Microsoft Foundation classes. For examples and additional
information about programming with the Microsoft Foundation Class Library, see
Inside Visual C++ by David J. Kruglinski, also published by Microsoft Press.

Note For an overview of how the Microsoft Foundation Class Library framework operates,
see “Using the Classes to Write Applications for Windows” in Visual C++ Programmer’s Guide
online. The overview material is no longer located in the Class Library Reference.

Class Summary by Category

The following is a brief summary of the classes in the Microsoft Foundation Class
Library, divided by category to help you locate what you need. In some cases, a class
is listed in more than one category. To see the inheritance of a class, use the Class
Hierarchy Chart online.

Root Class: CObject

Most of the classes in the Microsoft Foundation Class Library are derived from a
single base class at the root of the class hierarchy. CObject provides a number of
useful capabilities to all classes derived from it, with very low overhead. For more
information about CObject and its capabilities, see “CObject Class Topics” in
Visual C++ Programmer’s Guide online.

CObject The ultimate base class of most MFC classes. Supports serializing data and
obtaining run-time information about a class.

CRuntimeClass Structure used to determine the exact class of an object at run time.

Class Library Overview

MEFC Application Architecture Classes

Classes in this category contribute to the architecture of a framework application.
They supply functionality common to most applications. You fill in the framework to
add application-specific functionality. Typically, you do so by deriving new classes
from the architecture classes, then adding new members and/or overriding existing
member functions.

AppWizard generates several types of applications, all of which use the application
framework in differing ways. SDI (single document interface) and MDI (multiple
document interface) applications make full use of a part of the framework called
document/view architecture. Other types of applications, such as dialog-based
applications, form-based applications, and DLLs, use only some of document/view
architecture features.

Document/view applications contain one or more sets of documents, views, and
frame windows. A document-template object associates the classes for each
document/view/frame set.

Although you do not have to use document/view architecture in your MFC
application, there are a number of advantages to doing so. MFC’s OLE container
and server support is based on document/view architecture, as is support for printing
and print preview.

All MFC applications have at least two objects: an application object derived
from CWinApp, and some sort of main window object, derived (often indirectly)
from CWnd. (Most often, the main window is derived from CFrameWnd,
CMDIFrameWnd, or CDialog, all of which are derived from CWnd.)

Applications that use document/view architecture contain additional objects. The
principal objects are as follows:

e An application object derived from class CWinApp, as mentioned before.

¢ One or more document class objects derived from class CDocument. Document
class objects are responsible for the internal representation of the data manipulated
in the view. They may be associated with a data file.

¢ One or more view objects derived from class CView. Each view is a window that
is attached to a document and associated with a frame window. Views display and
manipulate the data contained in a document class object.

Document/view applications also contain frame windows (derived from
CFrameWnd) and document templates (derived from CDocTemplate).

Class Library Overview

Application and Thread Support Classes

Each application has one and only one application object; this object coordinates other
objects in the running program and is derived from CWinApp.

The Microsoft Foundation Class Library supports multiple threads of execution within
an application. All applications must have at least one thread; the thread used by your
CWinApp object is this “primary” thread.

CWinThread encapsulates a portion of the operating system’s threading capabilities.
To make using multiple threads easier, MFC also provides synchronization object
classes to provide a C++ interface to Win32 synchronization objects.

Application and Thread Classes
CWinApp Encapsulates the code to initialize, run, and terminate the application.
You will derive your application object from this class.
CWinThread The base class for all threads. Use directly, or derive a class from

CWinThread if your thread performs user-interface functions. CWinApp is
derived from CWinThread.

ISAPI Application Classes
CHttpFilter Filters selected HTTP requests sent to an ISAPI server.
CHttpServer Extends the functionality of an ISAPI server by processing client
requests.
Synchronization Object Classes
CSyncObject Base class of the synchronization object classes.

CCeriticalSection A synchronization class that allows only one thread within a
single process to access an object.

CSemaphore A synchronization class that allows between one and a specified
maximum number of simultaneous accesses to an object.

CMutex A synchronization class that allows only one thread within any number
of processes to access an object.

CEvent A synchronization class that notifies an application when an event has
occurred.

CSingleLock Used in member functions of thread-safe classes to lock on one
synchronization object.

CMultiLock Used in member functions of thread-safe classes to lock on one or
more synchronization objects from an array of synchronization objects.

Related Classes
CCommandLineInfo Parses the command line with which your program was
started.

CWaitCursor Puts a wait cursor on the screen. Used during lengthy operations.

Class Library Overview

CDockState Handles persistent storage of docking state data for control bars.
CRecentFileList Maintains the most recently used (MRU) file list.

Command Routing Classes

As the user interacts with the application by choosing menus or control-bar buttons
with the mouse, the application sends messages from the affected user-interface object
to an appropriate command-target object. Command-target classes derived from
CCmdTarget include CWinApp, CWnd, CDocTemplate, CDocument, CView, and
the classes derived from them. The framework supports automatic command routing
so that commands can be handled by the most appropriate object currently active in
the application.

An object of class CCmdUI is passed to your command targets’ update command Ul
(ON_UPDATE_COMMAND_UI) handlers to allow you to update the state of the
user interface for a particular command (for instance, to check or remove the check
from menu items). You call member functions of the CCmdUI object to update the
state of the UI object. This process is the same whether the U object associated with a
particular command is a menu item or a button or both.

CCmdTarget Serves as the base class for all classes of objects that can receive and
respond to messages.

CCmdUI Provides a programmatic interface for updating user-interface objects such
as menu items or control-bar buttons. The command target object enables, disables,
checks, and/or clears the user-interface object via this object.

Document Classes

Document class objects, created by document-template objects, manage the
application’s data. You will derive a class for your documents from one of these
classes.

Document class objects interact with view objects. View objects represent the client
area of a window, display a document’s data, and allow users to interact with it.
Documents and views are created by a document-template object.

CDocument The base class for application-specific documents. Derive your
document class(es) from CDocument.

COleDocument Used for compound document implementation, as well as basic
container support. Serves as a container for classes derived from CDocItem. This
class can be used as the base class for container documents and is the base class
for COleServerDoc.

COleLinkingDoc A class derived from COleDocument that provides the
infrastructure for linking. You should derive the document classes for your

Class Library Overview

container applications from this class instead of from COleDocument if you
want them to support links to embedded objects.

CRichEditDoc Maintains the list of OLE client items that are in the rich edit
control. Used with CRichEditView and CRichEditCntrItem.

COleServerDoc Used as the base class for server-application document classes.
COleServerDoc objects provide the bulk of server support through interactions
with COleServerItem objects. Visual editing capability is provided using the
class library’s document/view architecture.

Related Classes
Document class objects can be persistent¥in other words, they can write their state
to a storage medium and read it back. MFC provides the CArchive class to facilitate
transferring the document’s data to a storage medium.

CArchive Cooperates with a CFile object to implement persistent storage for objects
through serialization (see CObject::Serialize).

Documents can also contain OLE objects. CDocItem is the base class of the server
and client items.

CDocltem Abstract base class of COleClientItem and COleServerItem. Objects of
classes derived from CDocltem represent parts of documents.

View Classes (Architecture)

CView and its derived classes are child windows that represent the client area of a
frame window. Views show data and accept input for a document.

A view class is associated with a document class and a frame window class using a
document-template object.

CView The base class for application-specific views of a document’s data. Views
display data and accept user input to edit or select the data. Derive your view
class(es) from CView.

CScrollView The base class for views with scrolling capabilities. Derive your view
class from CScrollView for automatic scrolling.

Form and Record Views
Form views are also scrolling views. They are based on a dialog box template.

Record views are derived from form views. In addition to the dialog box template,
they also have a connection to a database.

CFormView A scroll view whose layout is defined in a dialog box template. Derive
a class from CFormView to implement a user interface based on a dialog box
template.

Class Library Overview

CDaoRecordView Provides a form view directly connected to a Data Access Object
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a
dialog box template.

CRecordView Provides a form view directly connected to an Open Database
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is
based on a dialog box template.

Control Views
Control views display a control as their view.

CCtrlView The base class for all views associated with Windows controls. The
views based on controls are described below.

CEditView A view that contains a Windows standard edit control (see CEdit). Edit
controls support text-editing, searching, replacing, and scrolling capabilities.

CRichEditView A view that contains a Windows rich edit control (see
CRichEditCtrl). In addition to the capabilities of an edit control, rich edit controls
support fonts, colors, paragraph formatting, and embedded OLE objects.

CListView A view that contains a Windows list control (see CListCtrl). A list
control displays icons and strings in a manner similar to the right-hand pane of the
Windows 95 Explorer.

CTreeView A view that contains a Windows tree control (see CTreeCtrl). A tree
control displays icons and strings arranged in a hierarchy in a manner similar to the
left-hand pane of the Windows 95 Explorer.

Frame Window Classes (Architecture)

In document/view architecture, frame windows are windows that contain a view
window. They also support having control bars attached to them.

In multiple document interface (MDI) applications, the main window is derived from
CMDIFrameWnd. It indirectly contains the documents’ frames, which are
CMDIChildWnd objects. The CMDIChildWnd objects, in turn, contain the
documents’ views.

In single document interface (SDI) applications, the main window, derived from
CFrameWnd, contains the view of the current document.

CFrameWnd The base class for an SDI application’s main frame window. Also the
base class for all other frame window classes.
CMDIFrameWnd The base class for an MDI application’s main frame window.

CMDIChildWnd The base class for an MDI application’s document frame
windows.

COlelPFrameWnd Provides the frame window for a view when a server document
is being edited in place.

Class Library Overview

Document-Template Classes

Document-template objects coordinate the creation of document, view, and frame
window objects when a new document and/or view is created.

CDocTemplate The base class for document templates. You will never use this class
directly; instead, you’ll use one of the other document-template classes derived
from this class.

CMultiDocTemplate A template for documents in the multiple document interface
(MDI). MDI applications can have multiple documents open at a time.

CSingleDocTemplate A template for documents in the single document interface
(SDI). SDI applications have only one document open at a time.

Related Class
CCreateContext A structure passed by a document template to window-creation
functions to coordinate the creation of document, view, and frame-window objects.

Window, Dialog, and Control Classes

Class CWnd and its derived classes encapsulate an HWND, a handle to a Windows
window. CWnd can be used by itself or as a base for deriving new classes. The
derived classes supplied by the class library represent various kinds of windows.

CWnd The base class for all windows. You can use one of the classes derived from
CWnd or derive your own classes directly from it.

Frame Window Classes (Windows)

Frame windows are windows that frame an application or a part of an application.
Frame windows usually contain other windows, such as views, tool bars, and status
bars. In the case of CMDIFrameWnd, they may contain CMDIChildWnd objects
indirectly.

CFrameWnd The base class for an SDI application’s main frame window. Also the
base class for all other frame window classes.
CMDIFrameWnd The base class for an MDI application’s main frame window.

CMDIChildWnd The base class for an MDI application’s document frame
windows.

CMiniFrameWnd A half-height frame window typically seen around floating
toolbars.

COleIPFrameWnd Provides the frame window for a view when a server document
is being edited in place.

10

Class Library Overview

Related Class
Class CMenu provides an interface through which to access your application’s
menus. It is useful for manipulating menus dynamically at run time; for example,
when adding or deleting menu items according to context. Although menus are most
often used with frame windows, they can also be used with dialog boxes and other
nonchild windows.

CMenu Encapsulates an HMENU handle to the application’s menu bar and pop-up
menus.

View Classes (Windows)

CView and its derived classes are child windows that represent the client area of a
frame window. Views show data and accept input for a document.

A view class is associated with a document class and a frame window class using a
document-template object.

CView The base class for application-specific views of a document’s data. Views
display data and accept user input to edit or select the data. Derive your view
class(es) from CView.

CScrollView The base class for views with scrolling capabilities. Derive your view
class from CScrollView for automatic scrolling.

Form and Record Views
Form views are also scrolling views. They are based on a dialog box template.

“Record views are derived from form views. In addition to the dialog box template,
they also have a connection to a database.

CFormView A scroll view whose layout is defined in a dialog box template. Derive
a class from CFormView to implement a user interface based on a dialog box
template.

CDaoRecordView Provides a form view directly connected to a Data Access Object
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a
dialog box template.

CRecordView Provides a form view directly connected to an Open Database
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is
based on a dialog box template.

Control Views
Control views display a control as their view.

CCtrlView The base class for all views associated with Windows controls. The
views based on controls are described below.

1

Class Library Overview

CEditView A view that contains a Windows standard edit control (see CEdit). Edit
controls support text-editing, searching, replacing, and scrolling capabilities.

CRichEditView A view that contains a Windows rich edit control (see
CRichEditCtrl). In addition to the capabilities of an edit control, rich edit controls
support fonts, colors, paragraph formatting, and embedded OLE objects.

CListView A view that contains a Windows list control (see CListCtrl). A list
control displays a collection of items, each consisting of an icon and a label, in a
manner similar to the right-hand pane of the Windows 95 Explorer.

CTreeView A view that contains a Windows tree control (see CTreeCtrl). A tree
control displays a hierarchical list of icons and labels arranged in a manner similar
to the left-hand pane of the Windows 95 Explorer.

Related Classes
CSplitterWnd allows you to have multiple views within a single frame window.
CPrintDialog and CPrintInfo support the print and print preview ability of views.
CRichEditDoc and CRichEditCntrItem are used with CRichEditView to
implement OLE container capabilities.

CSplitterWnd A window that the user can split into multiple panes. These panes
can be resizable by the user or fixed size.

CPrintDialog Provides a standard dialog box for printing a file.

CPrintInfo A structure containing information about a print or print preview job.
Used by CView’s printing architecture.

CRichEditDoc Maintains the list of OLE client items that are in a CRichEditView.

CRichEditCntrItem Provides client-side access to an OLE item stored in a
CRichEditView.

Dialog Box Classes

Class CDialog and its derived classes encapsulate dialog-box functionality. Since a
dialog box is a special kind of window, CDialog is derived from CWnd. Derive your
dialog classes from CDialog or use one of the common dialog classes for standard
dialog boxes, such as opening or saving a file, printing, selecting a font or color,
initiating a search-and-replace operation, or performing various OLE-related
operations.

CDialog The base class for all dialog boxes—both modal and modeless.
CDataExchange Supplies data exchange and validation information for dialog
boxes.

Common Dialogs
These dialog box classes encapsulate the Windows common dialog boxes. They
provide easy-to-use implementations of complicated dialog boxes.

12

Class Library Overview

CCommonDialog This is the base class for all common dialog boxes.
CFileDialog Provides a standard dialog box for opening or saving a file.
CColorDialog Provides a standard dialog box for selecting a color.
CFontDialog Provides a standard dialog box for selecting a font.

CFindReplaceDialog Provides a standard dialog box for a search-and-replace
operation.

CPrintDialog Provides a standard dialog box for printing a file.

CPageSetupDialog Encapsulates the services provided by the Windows common
Page Setup dialog box with additional support for setting and modifying print
margins.

OLE Common Dialogs
OLE adds several common dialog boxes to Windows. These classes encapsulate the
OLE common dialog boxes.

COleDialog Used by the framework to contain common implementations for all
OLE dialog boxes. All dialog box classes in the user-interface category are derived
from this base class. COleDialog cannot be used directly.

COlelnsertDialog Displays the Insert Object dialog box, the standard user interface
for inserting new OLE linked or embedded items.

COlePasteSpecialDialog Displays the Paste Special dialog box, the standard user
interface for implementing the Edit Paste Special command.

COleLinksDialog Displays the Edit Links dialog box, the standard user interface for
modifying information about linked items.

COleChangelconDialog Displays the Change Icon dialog box, the standard user
interface for changing the icon associated with an OLE embedded or linked item.

COleConvertDialog Displays the Convert dialog box, the standard user interface for
converting OLE items from one type to another.

COlePropertiesDialog Encapsulates the Windows common OLE Properties dialog
box. Common OLE Properties dialog boxes provide an easy way to display and
modify the properties of an OLE document item in a manner consistent with
Windows standards.

COleUpdateDialog Displays the Update dialog box, the standard user interface for
updating all links in a document. The dialog box contains a progress indicator to
indicate how close the update procedure is to completion.

COleChangeSourceDialog Displays the Change Source dialog box, the standard
user interface for changing the destination or source of a link.

COleBusyDialog Displays the Server Busy and Server Not Responding dialog
boxes, the standard user interface for handling calls to busy applications. Usually
displayed automatically by the COleMessageFilter implementation.

13

Class Library Overview

Property Sheet Classes
The property sheet classes allow your applications to use property sheets, also known
as “tabbed dialogs.” Property sheets are an efficient way to organize a large number of
controls in a single dialog box.

CPropertyPage Provides the individual pages within a property sheet. Derive a
class from CPropertyPage for each page to be added to your property sheet.

CPropertySheet Provides the frame for multiple property pages. Derive your
property sheet class from CPropertySheet to implement your property sheets
quickly.

COlePropertyPage Displays the properties of an OLE control in a graphical
interface, similar to a dialog box.

Related Classes
These classes are not dialog boxes per se, but they use dialog box templates and have
much of the behavior of dialog boxes.

CDialogBar A control bar that is based on a dialog box template.

CFormView A scroll view whose layout is defined in a dialog box template. Derive
a class from CFormView to implement a user interface based on a dialog box
template.

CDaoRecordView Provides a form view directly connected to a Data Access Object
(DAO) recordset object. Like all form views, a CDaoRecordView is based on a
dialog box template.

CRecordView Provides a form view directly connected to an Open Database
Connectivity (ODBC) recordset object. Like all form views, a CRecordView is
based on a dialog box template.

CPrintInfo A structure containing information about a print or print preview job.
Used by the printing architecture of CView.

Control Classes

Control classes encapsulate a wide variety of standard Windows controls ranging
from static text controls to tree controls. In addition, MFC provides some new
controls, including buttons with bitmaps and control bars.

The controls whose class names end in “Ctrl” are new in Windows 95 and
Windows NT version 3.51.

Static Display Controls
' CStatic A static-display window. Static controls are used to label, box, or separate
other controls in a dialog box or window. They may also display graphical images
rather than text or a box.

14

Class Library Overview

Text Controls

CEdit An editable-text control window. Edit controls are used to accept textual input
from the user.

CRichEditCtrl A control in which the user can enter and edit text. Unlike the
control encapsulated in CEdit, a rich edit control supports character and paragraph
formatting and OLE objects.

Controls Which Represent Numbers

Buttons

Lists

CSliderCtrl A control containing a slider, which the user moves to select a value
or set of values.

CSpinButtonCtrl A pair of arrow buttons the user can click to increment or
decrement a value.

CProgressCtrl Displays a rectangle that is gradually filled from left to right to
indicate the progress of an operation.

CScrollBar A scroll-bar control window. The class provides the functionality of a
scroll bar, for use as a control in a dialog box or window, through which the user
can specify a position within a range.

CButton A button control window. The class provides a programmatic interface for
a pushbutton, check box, or radio button in a dialog box or window.

CBitmapButton A button with a bitmap rather than a text caption.

CListBox A list-box control window. A list box displays a list of items that the user
can view and select.

CDragListBox Provides the functionality of a Windows list box; allows the user to
move list box items, such as filenames and string literals, within the list box. List
boxes with this capability are useful for an item list in an order other than
alphabetical, such as include pathnames or files in a project.

CComboBox A combo-box control window. A combo box consists of an edit
control plus a list box.

CCheckListBox Displays a list of items with check boxes, which the user can check
or clear, next to each item.

CListCtrl Displays a collection of items, each consisting of an icon and a label, in a
manner similar to the right-hand pane of the Windows 95 Explorer.

CTreeCtrl Displays a hierarchical list of icons and labels arranged in a manner
similar to the left-hand pane of the Windows 95 Explorer.

15

Class Library Overview

Toolbars and Status Bars
CToolBarCtrl Provides the functionality of the Windows toolbar common control.
Most MFC programs use CToolBar instead of this class.

CStatusBarCtrl A horizontal window, usually divided into panes, in which an
application can display status information. Most MFC programs use CStatusBar
instead of this class.

Miscellaneous Controls
CAnimateCtrl Displays a simple video clip.

CToolTipCtrl A small pop-up window that displays a single line of text describing
the purpose of a tool in an application.

CHeaderCtrl Displays titles or labels for columns.

CTabCltrl A control with tabs on which the user can click, analogous to the dividers
in a notebook.

CHotKeyCtrl Enables the user to create a “hot key” combination, which the user
can press to perform an action quickly.

Related Classes
CImageList Provides the functionality of the Windows image list. Image lists are
used with list controls and tree controls. They can also be used to store and archive
a set of same-sized bitmaps.

CCtrlView The base class for all views associated with Windows controls. The
views based on controls are described below.

CEditView A view that contains a Windows standard edit control.
CRichEditView A view that contains a Windows rich edit control.
CListView A view that contains a Windows list control.

CTreeView A view that contains a Windows tree control.

Control Bar Classes

Control bars are attached to a frame window. They contain buttons, status panes, or a
dialog template. Free-floating control bars, also called tool palettes, are implemented
by attaching them to a CMiniFrameWnd object.

Framework Control Bars
These control bars are an integral part of the MFC framework. They are easier to use
and more powerful than the Windows control bars because they’re integrated with the
framework. Most MFC applications use these control bars rather than the Windows
control bars.

CControlBar The base class for MFC control bars listed in this section. A control
bar is a window aligned to the edge of a frame window. The control bar contains

16

Class Library Overview

either HWND-based child controls or controls not based on an HWND, such as
toolbar buttons.

CToolBar Toolbar control windows that contain bitmap command buttons not based
on an HWND. Most MFC applications use this class rather than CToolBarCtrl.

CStatusBar The base class for status-bar control windows. Most MFC applications
use this class rather than CStatusBarCtrl.

CDialogBar A control bar that is based on a dialog box template.

Windows Control Bars
These control bars are thin wrappers for the corresponding Windows controls. Since
they’re not integrated with the framework, they’re harder to use than the control bars
listed above. Most MFC applications use the control bars listed above.

CStatusBarCtrl A horizontal window, usually divided into panes, in which an
application can display status information.

CToolBarCtrl Provides the functionality of the Windows toolbar common control.
Related Classes

CToolTipCtrl A small pop-up window that displays a single line of text describing
the purpose of a tool in an application.

CDockState Handles persistent storage of docking state data for control bars.

Drawing and Printing Classes

In Windows, all graphical output is drawn on a virtual drawing area called a device
context (or DC). MFC provides classes to encapsulate the various types of DCs, as
well as encapsulations for Windows drawing tools such as bitmaps, brushes, palettes,
and pens.

Output (Device Context) Classes

These classes encapsulate the different types of device contexts available in Windows.

Most of the following classes encapsulate a handle to a Windows device context.

A device context is a Windows object that contains information about the drawing
attributes of a device such as a display or a printer. All drawing calls are made through
a device-context object. Additional classes derived from CDC encapsulate specialized
device-context functionality, including support for Windows metafiles.

CDC The base class for device contexts. Used directly for accessing the whole
display and for accessing nondisplay contexts such as printers.

CPaintDC A display context used in OnPaint member functions of windows.
Automatically calls BeginPaint on construction and EndPaint on destruction.

17

Class Library Overview

CClientDC A display context for client areas of windows. Used, for example, to
draw in an immediate response to mouse events.

CWindowDC A display context for entire windows, including both the client and
nonclient areas.

CMetaFileDC A device context for Windows metafiles. A Windows metafile
contains a sequence of graphics device interface (GDI) commands that can be
replayed to create an image. Calls made to the member functions of a
CMetaFileDC are recorded in a metafile.

Related Classes

CPoint Holds coordinate (x, y) pairs.
CSize Holds distance, relative positions, or paired values.
CRect Holds coordinates of rectangular areas.

CRgn Encapsulates a GDI region for manipulating an elliptical, polygonal, or
irregular area within a window. Used in conjunction with the clipping member
functions in class CDC.

CRectTracker Displays and handles the user interface for resizing and moving
rectangular objects.

CColorDialog Provides a standard dialog box for selecting a color.
CFontDialog Provides a standard dialog box for selecting a font.

CPrintDialog Provides a standard dialog box for printing a file.

Drawing Tool Classes

18

These classes encapsulate drawing tools that are used to draw on a device context.

CGdiObject The base class for GDI drawing tools.

CBrush Encapsulates a GDI brush that can be selected as the current brush in a
device context. Brushes are used for filling interiors of objects being drawn.

CPen Encapsulates a GDI pen that can be selected as the current pen in a device
context. Pens are used for drawing the border lines of objects.

CFont Encapsulates a GDI font that can be selected as the current font in a device
context.

CBitmap Encapsulates a GDI bitmap, providing an interface for manipulating
bitmaps.

CPalette Encapsulates a GDI color palette for use as an interface between the
application and a color output device such as a display.

CRectTracker Displays and handles the user interface for resizing and moving
rectangular objects.

Class Library Overview

Simple Data Type Classes

The following classes encapsulate drawing coordinates, character strings, and
time and date information, allowing convenient use of C++ syntax. These objects
are used widely as parameters to the member functions of Windows classes in the
class library. Because CPoint, CSize, and CRect correspond to the POINT, SIZE,
and RECT structures, respectively, in the Win32 SDK, you can use objects of
these C++ classes wherever you can use these C-language structures. The classes
provide useful interfaces through their member functions. CString provides very
flexible dynamic character strings. CTime, COleDateTime, CTimeSpan, and
COleTimeSpan represent time and date values. For more information about
these classes, see the article “Date and Time” in Visual C++ Programmer’s
Guide online.

The classes that begin with “COle” are encapsulations of data types provided by
OLE. These data types can be used in Windows programs regardless of whether
other OLE features are used.

CString Holds character strings.
CTime Holds absolute time and date values.

COleDateTime Wrapper for the OLE automation type DATE. Represents date
and time values.

CTimeSpan Holds relative time and date values.

COleDateTimeSpan Holds relative COleDateTime values, such as the difference
between two COleDateTime values.

CPoint Holds coordinate (x, y) pairs.
CSize Holds distance, relative positions, or paired values.
CRect Holds coordinates of rectangular areas.

CImageList Provides the functionality of the Windows image list. Image lists
are used with list controls and tree controls. They can also be used to store and
archive a set of same-sized bitmaps.

COleVariant Wrapper for the OLE automation type VARIANT. Data in
VARIANT:S can be stored in many formats.

COleCurrency Wrapper for the OLE automation type CURRENCY, a
fixed-point arithmetic type, with 15 digits before the decimal point and
4 digits after.

19

Class Library Overview

Array, List, and Map Classes

For handling aggregates of data, the class library provides a group of collection
classes—arrays, lists, and “maps”—that can hold a variety of object and predefined
types. The collections are dynamically sized. These classes can be used in any
program, whether written for Windows or not. However, they are most useful for
implementing the data structures that define your document classes in the application
framework. You can readily derive specialized collection classes from these, or you
can create them based on the template classes. For more information about these
approaches, see the article “Collections” in Visual C++ Programmer’s Guide online
and “Template Classes for Arrays, Lists, and Maps” in this overview for a list of the
template collection classes.

Arrays are one-dimensional data structures that are stored contiguously in memory.
They support very fast random access since the memory address of any given element
can be calculated by multiplying the index of the element by the size of an element
and adding the result to the base address of the array. But arrays are very expensive

if you have to insert elements into the array, since the entire array past the element
inserted has to be moved to make room for the element to be inserted. Arrays can
grow and shrink as necessary.

Lists are similar to arrays but are stored very differently. Each element in a list also
includes a pointer to the previous and next elements, making it a doubly-linked list.
It’s very fast to add or delete items because doing so only involves changing a few

pointers. However, searching a list can be expensive since all searches need to start
at one of the list’s ends.

Maps relate a key value to a data value. For instance, the key of a map could be a
string and the data a pointer into a list. You would ask the map to give you the pointer
associated with a particular string. Map lookups are fast because maps use hash tables
for key lookups. Adding and deleting items is also fast. Maps are often used with other
data structures as auxiliary indices. MFC uses a special kind of map called a “message
map” to map Windows messages to a pointer to the handler function for that message.

Template Classes for Arrays, Lists, and Maps

20

These collection classes are templates whose parameters determine the types of the
objects stored in the aggregates. The CArray, CMap, and CList classes use global
helper functions that must usually be customized. For more information about these
helper functions, see Collection Class Helpers in the “Macros and Globals” section.
The typed pointer classes are “wrappers” for other classes in the class library. By
using these wrappers, you enlist the compiler’s type-checking to help you avoid
errors. For more information on using these classes, see the article “Collections”

in Visual C++ Programmer’s Guide online.

Class Library Overview
These classes provide templates you can use to create arrays, lists, and maps using
any type you like.
CArray Template class for making arrays of arbitrary types.
CList Template class for making lists of arbitrary types.
CMap Template class for making maps with arbitrary key and value types.
CTypedPtrArray Template class for type-safe arrays of pointers.
CTypedPtrList Template class for type-safe lists of pointers.
CTypedPtrMap Template class for type-safe maps with pointers.

Ready-to-Use Array Classes

CByteArray Stores elements of type BYTE in an array.
CDWordArray Stores elements of type DWORD in an array.

CObArray Stores pointers to objects of class CObject or to objects of classes
derived from CObject in an array.

CPtrArray Stores pointers to veid (generic pointers) in an array.
CUIntArray Stores elements of type UINT in an array.
CWordArray Stores elements of type WORD in an array.
CStringArray Stores CString objects in an array.

Ready-to-Use List Classes
CODbList Stores pointers to objects of class CObject or to objects of classes
derived from CObject in a linked list.
CPtrList Stores pointers to void (generic pointers) in a linked list.

CStringList Stores CString objects in a linked list.

Ready-to-Use Map Classes

CMapPtrToPtr Uses void pointers as keys for finding other void pointers.
CMapPtrToWord Uses void pointers as keys for finding data of type WORD.
CMapStringToOb Uses CString objects as keys for finding CObject pointers.
CMapStringToPtr Uses CString objects as keys for finding veid pointers.

CMapStringToString Uses CString objects as keys for finding other CString
objects.

21

Class Library Overview

CMapWordToOb Uses data of type WORD to find CObject pointers.
CMapWordToPtr Uses data of type WORD to find void pointers.

File and Database Classes

These classes allow you to store information to a database or a disk file. There are two
sets of database classes—DAO and ODBC—which provide similar functionality. The
DAO group is implemented using the Data Access Object, while the ODBC group is
implemented using Open Database Connectivity. There are also a set of classes for
manipulating standard files, ActiveX streams, and HTML streams.

The following categories of classes support data persistence.
e File I/O Classes

¢ DAO Classes

e ODBC Classes

File I/0 Classes

22

These classes provide an interface to traditional disk files, in-memory files, ActiveX
streams, and Windows sockets. All of the classes derived from CFile can be used with
a CArchive object to perform serialization.

Use the following classes, particularly CArchive and CFile, if you write your own
input/output processing. Normally you don’t need to derive from these classes. If you
use the application framework, the default implementations of the Open and Save
commands on the File menu will handle file I/O (using class CArchive), as long

as you override your document’s Serialize function to supply details about how a
document “serializes” its contents. For more information about the file classes and
serialization, see the article “Files in MFC” and the article “Serialization (Object
Persistence)” in Visual C++ Programmer’s Guide online.

CFile Provides a file interface to binary disk files.

CStdioFile Provides a CFile interface to buffered stream disk files, usually in text
mode.

CMemFile Provides a CFile interface to in-memory files.
CSharedFile Provides a CFile interface to shared in-memory files.

COleStreamFile Uses the COM IStream interface to provide CFile access to
compound files.

CSocketFile Provides a CFile interface to a Windows Socket.

Class Library Overview

Related Classes
CArchive Cooperates with a CFile object to implement persistent storage for objects
through serialization (see CObject::Serialize).

CArchiveException An archive exception.

CFileException A file-oriented exception.

CFileDialog Provides a standard dialog box for opening or saving a file.
CHtmlStream Handles caching HTML output. Functionally similar to CMemFile.
CRecentFileList Maintains the most recently used (MRU) file list.

DAO Classes

These classes work with the other application framework classes to give easy access
to DAO (Data Access Object) databases, which use the same database engine as
Microsoft Visual Basice and Microsoft Access. The DAO classes can also access

a wide variety of databases for which Open Database Connectivity (ODBC) drivers
are available.

Programs that use DAO databases will have at least a CDaoDatabase object and a
CDaoRecordset object.

CDaoWorkspace Manages a named, password-protected database session from
login to logoff. Most programs use the default workspace.

CDaoDatabase A connection to a database through which you can operate on the
data.

CDaoRecordset Represents a set of records selected from a data source.

CDaoRecordView A view that displays database records in controls.

CDaoQueryDef Represents a query definition, usually one saved in a database.

CDaoTableDef Represents the stored definition of a base table or an attached table.

CDaoException Represents an exception condition arising from the DAO classes.

CDaoFieldExchange Supports the DAO record field exchange (DFX) routines used
by the DAO database classes. You will normally not directly use this class.

Related Classes
CLongBinary Encapsulates a handle to storage for a binary large object (or BLOB),
such as a bitmap. CLongBinary objects are used to manage large data objects
stored in database tables.

COleCurrency Wrapper for the OLE automation type CURRENCY, a fixed-point
arithmetic type, with 15 digits before the decimal point and 4 digits after.

23

Class Library Overview

COleDateTime Wrapper for the OLE automation type DATE. Represents date and
time values.

COleVariant Wrapper for the OLE automation type VARIANT. Data in
VARIANTS can be stored in many formats.

ODBC Classes

These classes work with the other application framework classes to give easy access
to a wide variety of databases for which Open Database Connectivity (ODBC) drivers
are available.

Programs that use ODBC databases will have at least a CDatabase object and a
CRecordset object.

CDatabase Encapsulates a connection to a data source, through which you can
operate on the data source.

CRecordset Encapsulates a set of records selected from a data source. Recordsets
enable scrolling from record to record, updating records (adding, editing, and
deleting records), qualifying the selection with a filter, sorting the selection, and
parameterizing the selection with information obtained or calculated at run time.

CRecordView Provides a form view directly connected to a recordset object. The
dialog data exchange (DDX) mechanism exchanges data between the recordset and
the controls of the record view. Like all form views, a record view is based on a
dialog template resource. Record views also support moving from record to record
in the recordset, updating records, and closing the associated recordset when the
record view closes.

CDBException An exception resulting from failures in data access processing. This
class serves the same purpose as other exception classes in the exception-handling
mechanism of the class library.

CFieldExchange Supplies context information to support record field exchange
(RFX), which exchanges data between the field data members and parameter data
members of a recordset object and the corresponding table columns on the data
source. Analogous to class CDataExchange, which is used similarly for dialog
data exchange (DDX).

Related Classes
CLongBinary Encapsulates a handle to storage for a binary large object (or BLOB),
such as a bitmap. CLongBinary objects are used to manage large data objects
stored in database tables.

CDBVariant Allows you to store a value without worrying about the value’s data
type. CDBVariant tracks the data type of the current value, which is stored in a
union.

24

Class Library Overview

Internet and Networking Classes

These classes allow you to exchange information with another computer using ISAPI
or a Windows Socket. There are also a set of classes for creating ISAPI extension
DLLs and a set of classes for manipulating Windows Sockets.

The following categories of classes support connectivity.

o [SAPI Classes
¢ Windows Sockets Classes

e Win32 Internet Classes

ISAPI Classes

ISAPI describes an interface for Internet servers. An example of an ISAPI server is
Windows NT Server running Microsoft Internet Information Server (IIS).

HTTP filters handle server requests. They can be used to handle the following types
of applications:

e Custom authentication schemes
e Data compression
e Encryption
o Logging
Filter Classes
CHttpFilter Filters selected HTTP requests sent to an ISAPI server.
CHttpFilterContext Manages the context for an HTTP filter. This is a helper class
to handle multiple, concurrent requests of a CHttpFilter object.

Server Classes
ISAPI server extensions process server requests, including Common Gateway
Interface (CGI).

CHttpServer Extends the functionality of an ISAPI server by processing client
requests.

CHttpServerContext Manages the context for an ISAPI server extension. This is a
helper class to handle multiple, concurrent requests of a CHttpServer object.

Related Classes
CHtmlStream Handles caching HTML output. Functionally similar to CMemFile.

25

Class Library Overview

Windows Sockets Classes

Windows Sockets provide a network protocol-independent way to communicate
between two computers. These sockets can be synchronous (your program waits
until the communication is done) or asynchronous (your program continues running
while the communication is going on).

CAsyncSocket Encapsulates the Windows Sockets API in a thin wrapper.

CSocket Higher-level abstraction derived from CAsyncSocket. It operates
synchronously.

CSocketFile Provides a CFile interface to a Windows Socket.

Win32 Internet Classes

MFC wraps the Win32 Internet (Winlnet) and ActiveX technology to make
Internet programming easier.

ClInternetSession Creates and initializes one Internet session or several
simultaneous Internet sessions and, if necessary, describes the connection to
a proxy server.

CInternetConnection Manages your connection to an Internet server.

ClInternetFile This class and its derived classes allow access to files on remote
systems that use Internet protocols.

CHttpConnection Manages your connection to an HTTP server.
CHttpFile Provides the functionality to find and read files on an HTTP server.

CGopherFile Provides the functionality to find and read files on a gopher
server.

CFtpConnection Manages your connection to an FTP server.
CGopherConnection Manages your connection to a gopher server.
CFileFind Performs local and Internet file searches.

CFtpFileFind Aids in Internet file searches of FTP servers.
CGopherFileFind Aids in Internet file searches of gopher servers.

CGopherLocator Gets a gopher “locator” from a gopher server, determines
the locator’s type, and makes the locator available to CGopherFileFind.

CInternetException Represents an exception condition related to an Internet
operation.

26

Class Library Overview

OLE Classes

The OLE classes work with the other application framework classes to provide
easy access to the ActiveX API, giving your programs an easy way to provide the
power of ActiveX to your users. Using ActiveX, you can:

e Create compound documents, which allow users to create and edit documents
containing data created by multiple applications, including text, graphics,
spreadsheets, sound, or other types of data.

e Create OLE objects that can be embedded in compound documents.

e Use OLE drag and drop to copy data between applications.

e Use Automation to control one program with another.

o Create ActiveX controls and ActiveX control containers (formerly called

OLE controls and OLE control containers, respectively).

The following categories of classes support ActiveX:
e OLE Container Classes

» OLE Server Classes

e OLE Drag-and-Drop and Data Transfer Classes

e OLE Common Dialog Classes

e OLE Automation Classes

o OLE Control Classes

e Active Document Classes

e OLE-Related Classes

To see the inheritance of a class, use the Class Hierarchy Chart online.

OLE Container Classes

These classes are used by container applications. Both COleLinkingDoc and
COleDocument manage collections of COleClientItem objects. Rather than deriving
your document class from CDocument, you’ll derive it from COleLinkingDoc or
COleDocument, depending on whether or not you want support for links to objects
embedded in your document.

Use a COleClientItem object to represent each OLE item in your document that is
embedded from another document or is a link to another document.

27

Class Library Overview

COleDocument Used for compound document implementation, as well as basic
container support. Serves as a container for classes derived from CDocltem. This
class can be used as the base class for container documents and is the base class for
COleServerDoc.

COleLinkingDoc A class derived from COleDocument that provides the
infrastructure for linking. You should derive the document classes for your
container applications from this class instead of from COleDocument if you want
them to support links to embedded objects.

CRichEditDoc Maintains the list of OLE client items that are in the rich edit control.
Used with CRichEditView and CRichEditCntrItem.

CDocltem Abstract base class of COleClientItem and COleServerItem. Objects of
classes derived from CDoclItem represent parts of documents.

COleClientItem A client item class that represents the client’s side of the connection
to an embedded or linked OLE item. Derive your client items from this class.

CRichEditCntrItem Provides client-side access to an OLE item stored in a rich edit
control when used with CRichEditView and CRichEditDoc.

COleException An exception resulting from a failure in OLE processing. This class
is used by both containers and servers.

OLE Server Classes

28

These classes are used by server applications. Server documents are derived from
COleServerDoc rather than CDocument. Note that since COleServerDoc is derived
from COleLinkingDoc, server documents can also be containers that support linking.

The COleServerItem class represents a document or portion of a document that can
be embedded in another document or linked to.

COleIPFrameWnd and COleResizeBar support in-place editing while the object is
in a container, and COleTemplateServer supports creation of document/view pairs so
OLE objects from other applications can be edited.

COleServerDoc Used as the base class for server-application document classes.
COleServerDoc objects provide the bulk of server support through interactions
with COleServerItem objects. Visual editing capability is provided using the class
library’s document/view architecture.

CDocltem Abstract base class of COleClientItem and COleServerItem. Objects of
classes derived from CDocltem represent parts of documents.

COleServerItem Used to represent the OLE interface to COleServerDoc items.
There is usually one COleServerDoc object, which represents the embedded part
of a document. In servers that support links to parts of documents, there can be
many COleServerItem objects, each of which represents a link to a portion of the
document.

Class Library Overview

COlelPFrameWnd Provides the frame window for a view when a server document
is being edited in place.

COleResizeBar Provides the standard user interface for in-place resizing. Objects of
this class are always used in conjunction with COleIPFrameWnd objects.

COleTemplateServer Used to create documents using the framework’s
document/view architecture. A COleTemplateServer object delegates most of its
work to an associated CDocTemplate object.

COleException An exception resulting from a failure in OLE processing. This class
is used by both containers and servers.

OLE Drag-and-Drop and Data Transfer Classes

These classes are used in OLE data transfers. They allow data to be transferred
between applications by using the Clipboard or through drag and drop.

COleDropSource Controls the drag-and-drop operation from start to finish. This
class determines when the drag operation starts and when it ends. It also displays
cursor feedback during the drag-and-drop operation.

COleDataSource Used when an application provides data for a data transfer.
COleDataSource could be viewed as an object-oriented Clipboard object.

COleDropTarget Represents the target of a drag-and-drop operation. A
COleDropTarget object corresponds to a window on screen. It determines whether
to accept any data dropped onto it and implements the actual drop operation.

COleDataObject Used as the receiver side to COleDataSource. COleDataObject
objects provide access to the data stored by a COleDataSource object.

OLE Common Dialog Classes

These classes handle common OLE tasks by implementing a number of standard OLE
dialog boxes. They also provide a consistent user interface for OLE functionality.

COleDialog Used by the framework to contain common implementations for all
OLE dialog boxes. All dialog box classes in the user-interface category are derived
from this base class. COleDialog cannot be used directly.

COlelnsertDialog Displays the Insert Object dialog box, the standard user interface
for inserting new OLE linked or embedded items.

COlePasteSpecialDialog Displays the Paste Special dialog box, the standard user
interface for implementing the Edit Paste Special command.

COleLinksDialog Displays the Edit Links dialog box, the standard user interface for
modifying information about linked items.

29

Class Library Overview

COleChangelconDialog Displays the Change Icon dialog box, the standard user
interface for changing the icon associated with an OLE embedded or linked item.

COleConvertDialog Displays the Convert dialog box, the standard user interface for
converting OLE items from one type to another.

COlePropertiesDialog Encapsulates the Windows common OLE Properties dialog
box. Common OLE Properties dialog boxes provide an easy way to display and
modify the properties of an OLE document item in a manner consistent with
Windows standards.

COleUpdateDialog Displays the Update dialog box, the standard user interface for
updating all links in a document. The dialog box contains a progress indicator to
indicate how close the update procedure is to completion.

COleChangeSourceDialog Displays the Change Source dialog box, the standard
user interface for changing the destination or source of a link.

COleBusyDialog Displays the Server Busy and Server Not Responding dialog
boxes, the standard user interface for handling calls to busy applications. Usually
displayed automatically by the COleMessageFilter implementation.

OLE Automation Classes

These classes support automation clients (applications that control other applications).
Automation servers (applications that can be controlled by other applications) are
supported through dispatch maps.

COleDispatchDriver Used to call automation servers from your automation client.
ClassWizard uses this class to create type-safe classes for automation servers that
provide a type library.

COleDispatchException An exception resulting from an error during OLE
automation. Automation exceptions are thrown by automation servers and caught
by automation clients.

OLE Control Classes

30

These are the primary classes you’ll use when writing OLE controls. The
COleControlModule class in an OLE control module is like the CWinApp class

in an application. Each module implements one or more OLE controls; these controls
are represented by COleControl objects. These controls communicate with their
containers using CConnectionPoint objects.

The CPictureHolder and CFontHolder classes encapsulate COM interfaces for
pictures and fonts, while the COlePropertyPage and CPropExchange classes help
you implement property pages and property persistence for your control.

Class Library Overview

COleControlModule Replaces the CWinApp class for your OLE control module.
Derive from the COleControlModule class to develop an OLE control module
object. It provides member functions for initializing your OLE control’s module.

COleControl Derive from the COleControl class to develop an OLE control.
Derived from CWnd, this class inherits all the functionality of a Windows
window object plus additional OLE-specific functionality, such as event firing
and the ability to support methods and properties.

CConnectionPoint The CConnectionPoint class defines a special type of
interface used to communicate with other OLE objects, called a “connection
point.” A connection point implements an outgoing interface that is able
to initiate actions on other objects, such as firing events and change
notifications.

CPictureHolder Encapsulates the functionality of a Windows picture object and
the IPicture COM interface; used to implement the custom Picture property
of an OLE control.

CFontHolder Encapsulates the functionality of a Windows font object and the
IFont COM interface; used to implement the stock Font property of an OLE
control.

COlePropertyPage Displays the properties of an OLE control in a graphical
interface, similar to a dialog box.

CPropExchange Supports the implementation of property persistence for your
OLE controls. Analogous to CDataExchange for dialog boxes.

CMonikerFile Takes a moniker, or a string representation that it can make into
a moniker, and binds it synchronously to the stream for which the moniker is
a name.

CAsyncMonikerFile Works similarly to CMonikerFile; however, it binds the
moniker asynchronously to the stream for which the moniker is a name.

CDataPathProperty Implements an OLE control property that can be loaded
asynchronously.

CCachedDataPathProperty Implements an OLE control property transferred
asynchronously and cached in a memory file.

COleCmdUI Allows an ActiveX document to receive commands that originate
in its container’s user interface (such as FileNew, Open, Print, and so on), and
allows a container to receive commands that originate in the ActiveX document’s
user interface.

COleSafeArray Works with arrays of arbitrary type and dimension.

31

Class Library Overview

Active Document Classes

Active documents can be displayed either in the entire client window of a Web
browser, such as Internet Explorer 3.0, or in an ActiveX container—such as the
Microsoft Office Binder—that supports ActiveX documents.

CDocObjectServer Maps the ActiveX document interfaces, and initializes and
activates an ActiveX document object.

CDocObjectServerItem Implements OLE server verbs specifically for ActiveX
document servers.

OLE-Related Classes

These classes provide a number of different services, ranging from exceptions to file
input and output.

COleObjectFactory Used to create items when requested from other containers.
This class serves as the base class for more specific types of factories, including
COleTemplateServer.

COleMessageFilter Used to manage concurrency with OLE Lightweight Remote
Procedure Calls (LRPC).

COleStreamFile Uses the COM IStream interface to provide CFile access to
compound files. This class (derived from CFile) enables MFC serialization to use
OLE structured storage.

CRectTracker Used to allow moving, resizing, and reorientation of in-place items.

Debugging and Exception Classes

These classes provide support for debugging dynamic memory allocation and for
passing exception information from the function where the exception is thrown to the
function where it’s caught.

Use classes CDumpContext and CMemoryState during development to assist with
debugging, as described in “MFC Debugging Support.” Use CRuntimeClass to
determine the class of any object at run time, as described in the article “CObject
Class: Accessing Run-Time Class Information.” Both articles are in Visual C++
Programmer’s Guide online. The framework uses CRuntimeClass to create objects
of a particular class dynamically.

32

Class Library Overview

Debugging Support Classes

MFC provides the following classes to help you debug dynamic memory allocation
problems.

CDumpContext Provides a destination for diagnostic dumps.

CMemoryState Structure that provides snapshots of memory use. Also used to
compare earlier and later memory snapshots,

Exception Classes

The class library provides an exception-handling mechanism based on class
CException. The application framework uses exceptions in its code; you can also
use them in yours. For more information, see the article “Exceptions” in Visual C++
Programmer’s Guide online. You can derive your own exception types from
CException.

MEFC provides an exception class from which you can derive your own exception as
well as exception classes for all of the exceptions it supports.

CException The base class for exceptions.

CArchiveException An archive exception.

CDaoException An exception resulting from a failure in a DAO database operation.
CDBException An exception resulting from a failure in ODBC database processing.
CFileException A file-oriented exception.

CMemoryException An out-of-memory exception.

CNotSupportedException An exception resulting from using an unsupported
feature.

COleException An exception resulting from a failure in OLE processing. This class
is used by both containers and servers.

COleDispatchException An exception resulting from an error during automation.
Automation exceptions are thrown by automation servers and caught by
automation clients.

CResourceException An exception resulting from a failure to load a Windows
resource.

CUserException An exception used to stop a user-initiated operation. Typically the
user has been notified of the problem before this exception is thrown.

33

CAnimateCtrl

CAnimateCtrl

CObject l
CCmdTarget]]
{cwnd h

H{CAnimateCtr lj

The CAnimateCtrl class provides the functionality of the Windows common
animation control. This control (and therefore the CAnimateCtrl class) is available
only to programs running under Windows 95 and Windows NT version 3.51 and later.

An animation control is a rectangular window that displays a clip in AVI (Audio
Video Interleaved) format— the standard Windows video/audio format. An AVI clip
is a series of bitmap frames, like a movie.

Animation controls can play only simple AVI clips. Specifically, the clips to be played
by an animation control must meet the following requirements:

e There must be exactly one video stream and it must have at least one frame.

e There can be at most two streams in the file (typically the other stream, if present,
is an audio stream, although the animation control ignores audio information).

e The clip must either be uncompressed or compressed with RLE8 compression.

e No palette changes are allowed in the video stream.

You can add the AVI clip to your application as an AVI resource, or it can accompany
your application as a separate AVI file.

Since your thread continues executing while the AVI clip is displayed, one common
use for an animation control is to indicate system activity during a lengthy operation.
For example, the Find dialog box of the Windows 95 Explorer displays a moving
magnifying glass as the system searches for a file.

If you create a CAnimateCtrl object within a dialog box or from a dialog resource
using the dialog editor, it will be automatically destroyed when the user closes the
dialog box.

If you create a CAnimateCtrl object within a window, you may need to destroy it. If
you create the CAnimateCtrl object on the stack, it is destroyed automatically. If you
create the CAnimateCtrl object on the heap by using the new function, you must call
delete on the object to destroy it. If you derive a new class from CAnimateCtrl and
allocate any memory in that class, override the CAnimateCtrl destructor to dispose
of the allocations.

For more information on using CAnimateCtrl, see Technical Note 60 online.

35

CAnimateCtrl::CAnimateCtrl

#include <afxcmn.h>

See Also: Animation Control Styles in CAnimateCtrl::Create, ON_CONTROL

CAnimateCtrl Class Members

Construction

CAnimateCtrl Constructs a CAnimateCtrl object.

Initialization

Create Creates an animation control and attaches it to a CAnimateCtrl object.
Operations

Open Opens an AVI clip from a file or resource and displays the first frame.
Play Plays the AVI clip without sound.

Seek Displays a selected single frame of the AVI clip.

Stop Stops playing the AVI clip.

Close Closes the AVI clip that was previously opened.

Member Functions
CAnimateCtrl::CAnimateCtrl

CAnimateCtrl();

Remarks
Constructs a CAnimateCtrl object. You must call the Create member function before
you can perform any other operations on the object you create.

See Also: CAnimateCtrl::Create

CAnimateCtrl::Close

BOOL Close();

Return Value
Nonzero if successful; otherwise zero.

Remarks
Use the Close member function to close the AVI clip that was previously opened in
the animation control (if any) and remove it from memory.

See Also: CAnimateCtrl::Open

36

CAnimateCtrl::Create

CAnimateCtrl::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
« UINT niID);

Return Value

Nonzero if successful; otherwise zero.

Parameters

Remarks

dwStyle Specifies the animation control’s style. Apply any combination of the
window and animation control styles described under Remarks to the control.

rect Specifies the animation control’s position and size. It can be either a CRect
object or a RECT structure.

pParentWnd Specifies the animation control’s parent window, usually a CDialog.
It must not be NULL.

nID Specifies the animation control’s ID.

You construct a CAnimateCtrl in two steps. First call the constructor, then call
Create, which creates the animation control and attaches it to the CAnimateCtrl
object.

Apply the following window styles to an animation control.
e WS_CHILD Always

e WS_VISIBLE Usually

o WS_DISABLED Rarely

In addition to the window styles listed above, you may want to apply one or more of
the following animation control styles to an animation control:

e ACS_CENTER Centers the AVI clip in the animation control’s window and
leaves the animation control’s size and position unchanged when the AVI clip is
opened. If this style is not specified, the control will be resized when the AVI clip
is opened to the size of the images in the AVI clip.

o ACS_TRANSPARENT Causes the AVI clip to be drawn using a transparent
background rather than the background color specified in the AVI clip.

e ACS_AUTOPLAY Causes the AVI clip to start playing as soon as it is opened.
When the clip is done playing, it will automatically be repeated.

See Also: CAnimateCtrl::CAnimateCtrl, CAnimateCtrl::Open,
CAnimateCtrl::Play, CAnimateCtrl::Seek

37

CAnimateCtrl::Open

CAnimateCtrl::Open

BOOL Open(LPCTSTR IpszFileName);
BOOL Open(UINT nID);

Return Value
Nonzero if successful; otherwise zero.

Parameters
IpszFileName A CString object or a pointer to a null-terminated string that contains
either the name of the AVI file or the name of an AVI resource. If this parameter is
NULL, the system closes the AVI clip that was previously opened for the
animation control, if any.

nID The AVI resource identifier. If this parameter is NULL, the system closes the
AVI clip that was previously opened for the animation control, if any.

Remarks
Call this function to open an AVI clip and display its first frame.

If the animation control has the ACS_AUTOPLAY style, the animation control will
automatically start playing the clip immediately after it opens it. It will continue to
play the clip in the background while your thread continues executing. When the clip
is done playing, it will automatically be repeated.

If the animation control has the ACS_CENTER style, the AVI clip will be centered in
the control and the size of the control will not change. If the animation control does
not have the ACS_CENTER style, the control will be resized when the AVI clip is
opened to the size of the images in the AVI clip. The position of the top left corner of
the control will not change, only the size of the control.

If the animation control has the ACS_TRANSPARENT style, the first frame will be
drawn using a transparent background rather than the background color specified in
the animation clip.

See Also: CAnimateCtrl::Close, CAnimateCtrl::Create

CAnimateCtrl::Play

BOOL Play(UINT nFrom, UINT nTo, UINT nRep);

Return Value
Nonzero if successful; otherwise zero.

Parameters
nFrom Zero-based index of the frame where playing begins. Value must be less than
65,536. A value of 0 means begin with the first frame in the AVI clip.

38

nTo Zero-based index of the frame where playing ends. Value must be less than
65,536. A value of —1 means end with the last frame in the AVI clip.

nRep Number of times to replay the AVI clip. A value of —1 means replay the file
indefinitely.

Remarks
Call this function to play an AVI clip in an animation control. The animation control
will play the clip in the background while your thread continues executing. If the
animation control has ACS_TRANSPARENT style, the AVI clip will be played using
a transparent background rather than the background color specified in the animation
clip.

See Also: CAnimateCtrl::Open, CAnimateCtrl::Stop, CAnimateCtrl::Seek,
CAnimateCtrl::Create

CAnimateCtrl::Stop

CAnimateCtrl::Seek

BOOL Seek(UINT nTo);

Return Value
Nonzero if successful; otherwise zero.

Parameters
nTo Zero-based index of the frame to display. Value must be less than 65,536. A
value of 0 means display the first frame in the AVI clip. A value of —1 means
display the last frame in the AVI clip.

Remarks
Call this function to statically display a single frame of your AVI clip. If the
animation control has ACS_TRANSPARENT style, the AVI clip will be drawn using
a transparent background rather than the background color specified in the animation
clip.

See Also: CAnimateCtrl::Open, CAnimateCtrl::Play, CAnimateCtrl::Create

CAnimateCtrl::Stop

BOOL Stop();

Return Value
Nonzero if successful; otherwise zero.

Remarks
Call this function to stop playing an AVI clip in an animation control.

See Also: CAnimateCtrl::Play

39

CArchive

CArchive

40

CArchive does not have a base class.

The CArchive class allows you to save a complex network of objects in a permanent
binary form (usually disk storage) that persists after those objects are deleted. Later
you can load the objects from persistent storage, reconstituting them in memory. This
process of making data persistent is called “serialization.”

You can think of an archive object as a kind of binary stream. Like an input/output
stream, an archive is associated with a file and permits the buffered writing and
reading of data to and from storage. An input/output stream processes sequences
of ASCII characters, but an archive processes binary object data in an efficient,
nonredundant format.

You must create a CFile object before you can create a CArchive object. In addition,
you must ensure that the archive’s load/store status is compatible with the file’s open
mode. You are limited to one active archive per file.

When you construct a CArchive object, you attach it to an object of class CFile

(or a derived class) that represents an open file. You also specify whether the archive
will be used for loading or storing. A CArchive object can process not only primitive
types but also objects of CObject-derived classes designed for serialization. A
serializable class usually has a Serialize member function, and it usually uses the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as described under
class CObject.

The overloaded extraction (>>) and insertion (<<) operators are convenient archive
programming interfaces that support both primitive types and CObject-derived
classes.

CArchive also supports programming with the MFC Windows Sockets classes
CSocket and CSocketFile. The IsBufferEmpty member function supports that
usage.

For more information on CArchive, see the articles “Serialization (Object
Persistence)” and “Windows Sockets: Using Sockets with Archives” in Visual C++
Programmer’s Guide online.

#include <afx.h>

See Also: CFile, CObject, CSocket, CSocketFile

Data Members

CArchive

CArchive Class Members

m_pDocument

Construction

Points to the CDocument object being serialized.

CArchive
Abort
Close

Basic Input/Output

Creates a CArchive object.
Closes an archive without throwing an exception.

Flushes unwritten data and disconnects from the CFile.

Flush
operator >>

operator <<

Flushes unwritten data from the archive buffer.
Loads objects and primitive types from the archive.

Stores objects and primitive types to the archive.

Read Reads raw bytes.

Write Writes raw bytes.

WriteString Writes a single line of text.

ReadString Reads a single line of text.

Status

GetFile Gets the CFile object pointer for this archive.

GetObjectSchema Called from the Serialize function to determine the version of the
object that is being deserialized.

SetObjectSchema Sets the object schema stored in the archive object.

IsLoading Determines whether the archive is loading.

IsStoring Determines whether the archive is storing.

IsBufferEmpty Determines whether the buffer has been emptied during a Windows

Object Input/Output

Sockets receive process.

ReadObject
WriteObject
MapObject

SetStoreParams

SetLoadParams

ReadClass
WriteClass
SerializeClass

Calls an object’s Serialize function for loading.
Calls an object’s Serialize function for storing.

Places objects in the map that are not serialized to the file, but that are
available for subobjects to reference.

Sets the hash table size and the block size of the map used to identify
unique objects during the serialization process.

Sets the size to which the load array grows. Must be called before any
object is loaded or before MapObject or ReadObject is called.

Reads a class reference previously stored with WriteClass.
Writes a reference to the CRuntimeClass to the CArchive.

Reads or writes the class reference to the CArchive object depending
on the direction of the CArchive.

4

CArchive::Abort

Member Functions
CArchive::Abort

Remarks

void Abort ();

Call this function to close the archive without throwing an exception. The CArchive
destructor will normally call Close, which will flush any data that has not been saved
to the associated CFile object. This can cause exceptions.

When catching these exceptions, it is a good idea to use Abort, so that destructing
the CArchive object doesn’t cause further exceptions. When handling exceptions,
CArchive::Abort will not throw an exception on failures because, unlike
CArchive::Close, Abort ignores failures.

If you used new to allocate the CArchive object on the heap, then you must delete it
after closing the file.

See Also: CArchive::Close, CFile::Close

CArchive::CArchive

CArchive(CFile* pFile, UINT nMode, int nBufSize = 4096, void* [pBuf = NULL);
throw(CMemoryException, CArchiveException, CFileException);

Parameters

42

pFile A pointer to the CFile object that is the ultimate source or destination of the
persistent data.

nMode A flag that specifies whether objects will be loaded from or stored to the
archive. The nMode parameter must have one of the following values:

o CArchive::load Loads data from the archive. Requires only CFile read
permission.

o CArchive::store Saves data to the archive. Requires CFile write permission.

o CArchive::bNoFlushOnDelete Prevents the archive from automatically
calling Flush when the archive destructor is called. If you set this flag, you are
responsible for explicitly calling Close before the destructor is called. If you do
not, your data will be corrupted.

nBufSize An integer that specifies the size of the internal file buffer, in bytes. Note
that the default buffer size is 4096 bytes. If you routinely archive large objects, you
will improve performance if you use a larger buffer size that is a multiple of the file
buffer size.

Remarks

Example

IpBuf An optional pointer to a user-supplied buffer of size nBufSize. If you do not
specify this parameter, the archive allocates a buffer from the local heap and frees
it when the object is destroyed. The archive does not free a user-supplied buffer.

Constructs a CArchive object and specifies whether it will be used for loading or
storing objects. You cannot change this specification after you have created the
archive.

You may not use CFile operations to alter the state of the file until you have closed
the archive. Any such operation will damage the integrity of the archive. You may
access the position of the file pointer at any time during serialization by obtaining
the archive’s file object from the GetFile member function and then using the
CFile::GetPosition function. You should call CArchive::Flush before obtaining
the position of the file pointer.

extern char* pFileName;
CFile f;
char buf[512];
if(If.Open(pFileName, CFile::modeCreate | CFile::modeWrite)) {
ftifdef _DEBUG
afxDump << "Unable to open file" << "\n";
exit(1);
frendif
}
CArchive ar(&f, CArchive::store, 512, buf);

See Also: CArchive::Close, CArchive::Flush, CFile::Close

CArchive::Close

CArchive::Close

Remarks

void Close();
throw(CArchiveException, CFileException);

Flushes any data remaining in the buffer, closes the archive, and disconnects the
archive from the file. No further operations on the archive are permitted. After you
close an archive, you can create another archive for the same file or you can close
the file.

The member function Close ensures that all data is transferred from the archive to the
file, and it makes the archive unavailable. To complete the transfer from the file to the
storage medium, you must first use CFile::Close and then destroy the CFile object.

See Also: CArchive::Flush, CArchive::Abort

43

CArchive::Flush

CArchive::Flush

void Flush();
throw(CFileException);

Remarks
Forces any data remaining in the archive buffer to be written to the file.

The member function Flush ensures that all data is transferred from the archive to the
file. You must call CFile::Close to complete the transfer from the file to the storage
medium.

See Also: CArchive::Close, CFile::Flush, CFile::Close

CArchive::GetFile

CFile* GetFile() const;

Return Value
A constant pointer to the CFile object in use.

Remarks
Gets the CFile object pointer for this archive. You must flush the archive before
using GetFile.

Example
extern CArchive ar;
const CFile* fp = ar.GetFile();

See Also: CArchive::Flush

CArchive::GetObjectSchema

UINT GetObjectSchema();

Return Value
During deserialization, the version of the object being read.

Remarks
Call this function from the Serialize function to determine the version of the object
that is currently being deserialized. Calling this function is only valid when the
CArchive object is being loaded (CArchive::IsLoading returns nonzero). It should
be the first call in the Serialize function and called only once. A return value of
(UINT)-1 indicates that the version number is unknown).

A CObject-derived class may use VERSIONABLE_SCHEMA combined (using
bitwise OR) with the schema version itself (in the IMPLEMENT_SERIAL macro)
to create a “versionable object,” that is, an object whose Serialize member function

44

CArchive::IsBufferEmpty

can read multiple versions. The default framework functionality (without
VERSIONABLE_SCHEMA) is to throw an exception when the version is
mismatched.

Example
IMPLEMENT_SERIAL(CMyObject, CObject, VERSIONABLE_SCHEMA|1)

void CMyObject::Serialize(CArchive& ar)
{
if (ar.IsLoading())
{
int nVersion = ar.GetObjectSchema();

switch(nVersion)
(
case 0:
// read in previous version of
// this object
break;
case 1:
// read in current version of
// this object
break;
default:
// report unknown version of
// this object
break;
}
}
else
{
// Normal storing code goes here
}
}

See Also: CObject::Serialize, CObject::IsSerializable, IMPLEMENT_SERIAL,
DECLARE_SERIAL, CArchive::IsLoading

CArchive::IsBufferEmpty

BOOL IsBufferEmpty() const;

Return Value
Nonzero if the archive’s buffer is empty; otherwise 0.

Remarks
Call this member function to determine whether the archive object’s internal buffer is
empty. This function is supplied to support programming with the MFC Windows
Sockets class CSocketFile. You do not need to use it for an archive associated with a
CFile object.

45

CArchive::IsLoading

The reason for using IsBufferEmpty with an archive associated with a CSocketFile
object is that the archive’s buffer might contain more than one message or record.
After receiving one message, you should use IsBufferEmpty to control a loop that
continues receiving data until the buffer is empty. For more information, see the
Receive member function of class CAsyncSocket and the MFC Advanced Concepts
sample CHATSRVR, which shows how to use IsBufferEmpty.

For more information, see the article “Windows Sockets: Using Sockets with
Archives” in Visual C++ Programmer’s Guide online.

See Also: CSocketFile, CAsyncSocket::Receive

CArchive::IsLoading

BOOL IsLoading() const;

Return Value
Nonzero if the archive is currently being used for loading; otherwise 0.

Remarks
Determines whether the archive is loading data. This member function is called by the
Serialize functions of the archived classes.

Example
int i;
extern CArchive ar;
if(ar.IsLoading())
ar >> i;
else
ar << i;

See Also: CArchive::IsStoring

CArchive::IsStoring

BOOL IsStoring() const;

Return Value
Nonzero if the archive is currently being used for storing; otherwise 0.

Remarks
Determines whether the archive is storing data. This member function is called by the
Serialize functions of the archived classes.

If the IsStoring status of an archive is nonzero, then its IsLoading status is 0, and
vice versa.

46

Example

int i;
extern CArchive ar;
if(ar.IsStoring())
ar << i;
else
ar >> i;

See Also: CArchive::IsLoading

CArchive::MapObject

CArchive::MapObject

void MapObject(const CObject* pOb);

Parameters

Remarks

Example

pOb A constant pointer to the object being stored.

Call this member function to place objects in the map that are not really serialized to
the file, but that are available for subobjects to reference. For example, you might not
serialize a document, but you would serialize the items that are part of the document.
By calling MapObject, you allow those items, or subobjects, to reference the
document. Also, serialized subitems can serialize their m_pDocument back pointer.

You can call MapObject when you store to and load from the CArchive object.
MapObject adds the specified object to the internal data structures maintained by the
CArchive object during serialization and deserialization, but unlike ReadObject and
WriteObject, it does not call serialize on the object.

// MyDoc.h
// Document should have DECLARE_SERIAL and IMPLEMENT_SERIAL
class CMyDocument : public CDocument
{
CObList m_1istOfSubltems;

DECLARE_SERIAL(CMyDocument)
}s

// MyDoc.cpp
IMPLEMENT_SERIAL(CMyDocument, CObject, 1)

void CMyDocument::Serialize(CArchive& ar)
{

47

CArchive::MapObject

if (ar.IsStoring())

{

// TODO: add storing code here
}
else

{
// TODO: add loading code here

}

ar.MapObject(this);

//serialize the subitems in the document;
//they will be able to serialize their m_pDoc
//back pointer
m_listOfSubltems.Serialize(ar);

//SubItem.h
class CSubItem : public CObject

{
public:

CSubItem(CMyDocument * pDoc)

{ m_pDoc = pDoc; }

// back pointer to owning document

CMyDocument* m_pDoc;

WORD m_i; // other item data

virtual void Serialize(CArchive& ar);
};

//SubItem.cpp
void CSubItem::Serialize(CArchive& ar)

{
if (ar.IsStoring())
{
// will serialize a reference
//to the "mapped" document pointer
ar << m_pDoc;
ar << m_i;
}
else
{
// will load a reference to
//the "mapped" document pointer
ar >> m_pDoc;
ar >> m_i;
}
}

See Also: CArchive::ReadObject, CArchive::WriteObject

48

CArchive::ReadClass

CArchive::Read

UINT Read(void* IpBuf, UINT nMax);
throw(CFileException);

Return Value
An unsigned integer containing the number of bytes actually read. If the return value
is less than the number requested, the end of file has been reached. No exception is
thrown on the end-of-file condition.

Parameters
IpBuf A pointer to a user-supplied buffer that is to receive the data read from the
archive.

nMax An unsigned integer specifying the number of bytes to be read from the
archive.

Remarks
Reads a specified number of bytes from the archive. The archive does not interpret the
bytes.

You can use the Read member function within your Serialize function for reading
ordinary structures that are contained in your objects.

Example
extern CArchive ar;
char pb[100];
UINT nr = ar.Read(pb, 100);

CArchive::ReadClass

CRuntimeClass* ReadClass(const CRuntimeClass* pClassRefRequested = NULL,
« UINT#* pSchema = NULL, DWORD#* obTag = NULL);
throw CArchiveException;
throw CNotSupportedException;

Return Value
A pointer to the CRuntimeClass structure.

Parameters
pClassRefRequested A pointer to the CRuntimeClass structure that corresponds
to the class reference requested. Can be NULL.

pSchema A pointer to a schema of the run-time class previously stored.

obTag A number that refers to an object’s unique tag. Used internally by the
implementation of ReadObject. Exposed for advanced programming only;
obTag normally should be NULL.

49

CArchive::ReadObject

Remarks

Call this member function to read a reference to a class previously stored with
WriteClass.

If pClassRefRequested is not NULL, ReadClass verifies that the archived class
information is compatible with your runtime class. If it is not compatible, ReadClass
will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL;
otherwise, ReadClass will throw a CNotSupportedException.

If pSchema is NULL, the schema of the stored class can be retrieved by calling
CArchive::GetObjectSchema; otherwise, *pSchema will contain the schema of the
run-time class that was previously stored.

You can use SerializeClass instead of ReadClass, which handles both reading and
writing of the class reference.

See Also: CArchive::WriteClass, CArchive::GetObjectSchema,
CArchive::SetObjectSchema, CArchiveException, CNotSupportedException,
CArchive::SerializeClass

CArchive::ReadObject

CObject* ReadObject(const CRuntimeClass* pClass);
throw(CFileException, CArchiveException, CMemoryException);

Return Value

A CObject pointer that must be safely cast to the correct derived class by using
CObject::IsKindOf.

Parameters

Remarks

50

pClass A constant pointer to the CRuntimeClass structure that corresponds to the
object you expect to read.

Reads object data from the archive and constructs an object of the appropriate type.

This function is normally called by the CArchive extraction (>>) operator overloaded
for a CObject pointer. ReadObject, in turn, calls the Serialize function of the
archived class.

If you supply a nonzero pClass parameter, which is obtained by the
RUNTIME_CLASS macro, then the function verifies the run-time class of the
archived object. This assumes you have used the IMPLEMENT_SERIAL macro in
the implementation of the class.

See Also: CArchive::WriteObject, CObject::IsKindOf

CArchive::SerializeClass

CArchive::ReadString

Bool ReadString(CString& rString);
LPTSTR ReadString(LPTSTR Ipsz, UINT nMax);
throw(CArchiveException);

Return Value
In the version that returns Bool, TRUE if successful; FALSE otherwise.

In the version that returns an LPTSTR, a pointer to the buffer containing the text
data; NULL if end-of-file was reached.

Parameters
rString A reference to a CString that will contain the resultant string after it is read
from the file associated with the CArchive object.

Ipsz Specifies a pointer to a user-supplied buffer that will receive a null-terminated
text string.

nMax Specifies the maximum number of characters to read. Should be one less than
the size of the Ipsz buffer.

Remarks
Call this member function to read text data into a buffer from the file associated with
the CArchive object. In the version of the member function with the nMax parameter,
the buffer will hold up to a limit of nMax- 1 characters. Reading is stopped by a
carriage return-linefeed pair. Trailing newline characters are always removed. A null
character (\0") is appended in either case.

CArchive::Read is also available for text-mode input, but it does not terminate on a
carriage return-linefeed pair.

See Also: CArchive::Read, CArchive::Write, CArchive::WriteString,
CArchiveException

CArchive::SerializeClass

void SerializeClass(const CRuntimeClass* pRuntimeClass);

Parameters
pRuntimeClass A pointer to a run-time class object for the base class.

Remarks
Call this member function when you want to store and load the version information of
a base class. SerializeClass reads or writes the reference to a class to the CArchive
object, depending on the direction of the CArchive. Use SerializeClass in place of
ReadClass and WriteClass as a convenient way to serialize base-class objects;
SerializeClass requires less code and fewer parameters.

51

CArchive:

Example

:SetLoadParams

Like ReadClass, SerializeClass verifies that the archived class information is
compatible with your runtime class. If it is not compatible, SerializeClass will throw
a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL;
otherwise, SerializeClass will throw a CNotSupportedException.

Use the RUNTIME_CLASS macro to retrieve the value for the pRuntimeClass
parameter. The base class must have used the IMPLEMENT_SERIAL macro.

class CBaseClass : public CObject { ... };
class CDerivedClass : public CBaseClass { ... };
void CDerivedClass::Serialize(CArchived ar)
{
if (ar.IsStoring())
{
//normal code for storing contents
//of this object
}
else
{
//normal code for reading contents
//of this object
}

//allow the base class to serialize along
//with its version information
ar.SerializeClass(RUNTIME_CLASS(CBaseClass));
CBaseClass::Serialize(ar);

}

See Also: CArchive::ReadClass, CArchive::WriteClass,
CArchive::GetObjectSchema, CArchive::SetOhjectSchema, CArchiveException,
CNotSupportedException

CArchive::SetlLoadParams

void SetLoadParams(UINT nGrowBy = 1024);

Parameters

Remarks

52

nGrowBy The minimum number of element slots to allocate if a size increase is
necessary.

Call SetLoadParams when you are going to read a large number of CObject-derived
objects from an archive. CArchive uses a load array to resolve references to objects
stored in the archive. SetLoadParams allows you to set the size to which the load
array grows.

You must not call SetL.oadParams after any object is loaded, or after MapObject or
ReadObject is called.

CArchive::SetStoreParams

Example
class CMyLargeDocument : public CDocument { ... };
void CMyLargeDocument::Serialize(CArchive& ar)
{

if (ar.IsStoring())

ar.SetStoreParams(); // use large defaults
else

ar.SetlLoadParams();

if (ar.IsStoring())

{

// code for storing CMyLargeDocument
}
else
{

// code for loading CMylLargeDocument
}

}
See Also: CArchive::SetStoreParams

CArchive::SetObjectSchema

void SetObjectSchema(UINT nSchema);

Parameters
nSchema Specifies the object’s schema.

Remarks
Call this member function to set the object schema stored in the archive object to
nSchema. The next call to GetObjectSchema will return the value stored in nSchema.

Use SetObjectSchema for advanced versioning; for example, when you want to force
a particular version to be read in a Serialize function of a derived class.

See Also: CArchive::GetObjectSchema

CArchive::SetStoreParams
void SetStoreParams(UINT nHashSize = 2053, UINT nBlockSize = 128);

Parameters
nHashSize The size of the hash table for interface pointer maps. Should be a prime
number.

nBlockSize Specifies the memory-allocation granularity for extending the
parameters. Should be a power of 2 for the best performance.

Remarks
Use SetStoreParams when storing a large number of CObject-derived objects in an
archive.

53

CArchive:

Example

‘Write

SetStoreParams allows you to set the hash table size and the block size of the map
used to identify unique objects during the serialization process.

You must not call SetStoreParams after any objects are stored, or after MapObject
or WriteObject is called.

class CMyLargeDocument : public CDocument { ... };
void CMylLargeDocument::Serialize(CArchive& ar)
{
if (ar.IsStoring())
ar.SetStoreParams(); // use large defaults
else
ar.SetLoadParams();
if (ar.IsStoring())
{
// code for storing CMyLargeDocument
}
else
{
// code for loading CMyLargeDocument
}
}

See Also: CArchive::SetLoadParams

CArchive::Write

void Write(const void* [pBuf, UINT nMax);
throw(CFileException);

Parameters

Remarks

Example

54

IpBuf A pointer to a user-supplied buffer that contains the data to be written to the
archive.

nMax An integer that specifies the number of bytes to be written to the archive.

Writes a specified number of bytes to the archive. The archive does not format the
bytes.

You can use the Write member function within your Serialize function to write
ordinary structures that are contained in your objects.

extern CArchive ar;
char pb[l00];
ar.Write(pb, 100);

See Also: CArchive::Read

CArchive::WriteObject

CArchive::WriteClass

void WriteClass(const CRuntimeClass* pClassRef);

Parameters

Remarks

pClassRef A pointer to the CRuntimeClass structure that corresponds to the class
reference requested.

Use WriteClass to store the version and class information of a base class during
serialization of the derived class. WriteClass writes a reference to the
CRuntimeClass for the base class to the CArchive. Use CArchive::ReadClass to
retrieve the reference.

WriteClass verifies that the archived class information is compatible with your
runtime class. If it is not compatible, WriteClass will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_ SERIAL;
otherwise, WriteClass will throw a CNotSupportedException.

You can use SerializeClass instead of WriteClass, which handles both reading and
writing of the class reference.

See Also: CArchive::ReadClass, CArchive::GetObjectSchema,
CArchive::SetObjectSchema, CArchive::SerializeClass, CArchiveException,
CNotSupportedException.

CArchive::WriteObject

void WriteObject(const CObject® pOb);
throw(CFileException, CArchiveException);

Parameters

Remarks

pOb A constant pointer to the object being stored.

Stores the specified CObject to the archive.

This function is normally called by the CArchive insertion (<<) operator overloaded
for CObject. WriteObject, in turn, calls the Serialize function of the archived class.

You must use the IMPLEMENT_SERIAL macro to enable archiving. WriteObject
writes the ASCII class name to the archive. This class name is validated later during
the load process. A special encoding scheme prevents unnecessary duplication of the
class name for multiple objects of the class. This scheme also prevents redundant
storage of objects that are targets of more than one pointer.

55

CArchive:

:WriteString

The exact object encoding method (including the presence of the ASCII class name)
is an implementation detail and could change in future versions of the library.

Note . Finish creating, deleting, and updating all your objects before you begin to archive them.
Your archive will be corrupted if you mix archiving with object modification.

See Also: CArchive::ReadObject

CArchive:: WriteString

void WriteString(LPCTSTR Ipsz);
throw(CFileException);

Parameters

Remarks

Ipsz Specifies a pointer to a buffer containing a null-terminated text string.

Use this member function to write data from a buffer to the file associated with the
CArchive object. The terminating null character (\0') is not written to the file; nor is a
newline automatically written.

WriteString throws an exception in response to several conditions, including the
disk-full condition.

Write is also available, but rather than terminating on a null character, it writes the
requested number of bytes to the file.

See Also: CArchive::Write, CArchive::Read, CArchive::ReadString,
CFileException

Operators
CArchive::operator <<

56

friend CArchive& operator <<(CArchive& ar, const CObject* pOb);
throw(CArchiveException, CFileException);
CArchive& operator <<(BYTE by);
throw(CArchiveException, CFileException);
CArchive& operator <<(WORD w);
throw(CArchiveException, CFileException);
CArchive& operator <<(int i);
throw(CArchiveException, CFileException);
CArchive& operator <<(LONG [);
throw(CArchiveException, CFileException);

CArchive::operator >>

CArchive& operator <<(DWORD dw);

throw(CArchiveException, CFileException);
CArchive& operator <<(float f);

throw(CArchiveException, CFileException);
CArchive& operator <<(double d);

throw(CArchiveException, CFileException);

Return Value

Remarks

Example

A CArchive reference that enables multiple extraction operators on a single line.

Stores the indicated object or primitive type to the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation, then
the insertion operator overloaded for CObject calls the protected WriteObject. This
function, in turn, calls the Serialize function of the class.

long 1;

int 1;

extern CArchive ar;

if(ar.IsStoring())
ar << 1 << i3

See Also: CArchive::WriteObject, CObject::Serialize

CArchive::operator >>

friend CArchive& operator >>(CArchive& ar, CObject *& pOb);
throw(CArchiveException, CFileException, CMemoryException);
friend CArchive& operator >>(CArchive& ar, const CObject *& pOb);
throw(CArchiveException, CFileException, CMemoryException);
CArchive& operator >>(BYTE& by);
throw(CArchiveException, CFileException);
CArchive& operator >>(WORD& w);
throw(CArchiveException, CFileException);
CArchive& operator >>(int& i);
throw(CArchiveException, CFileException);
CArchive& operator >>(LONG& [);
throw(CArchiveException, CFileException);
CArchive& operator >>(DWORD& dw);
throw(CArchiveException, CFileException);
CArchive& operator >>(float& f);
throw(CArchiveException, CFileException);
CArchive& operator >>(double& d);
throw(CArchiveException, CFileException);

57

CArchive:

:m_pDocument

Return Value

Remarks

Example

A CArchive reference that enables multiple insertion operators on a single line.

Loads the indicated object or primitive type from the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation, then
the extraction operators overloaded for CObject call the protected ReadObject
function (with a nonzero run-time class pointer). This function, in turn, calls the
Serialize function of the class.

int i;

extern CArchive ar;

if(ar.Isloading())
ar >> i;

See Also: CArchive::ReadObject, CObject::Serialize

Data Members

CArchive::m_pDocument

Remarks

58

Set to NULL by default, this pointer to a CDocument can be set to anything the

user of the CArchive instance wants. A common usage of this pointer is to convey
additional information about the serialization process to all objects being serialized.
This is achieved by initializing the pointer with the document (a CDocument-derived
class) that is being serialized, in such a way that objects within the document can
access the document if necessary. This pointer is also used by COleClientItem
objects during serialization.

The framework sets m_pDocument to the document being serialized when a
user issues a File Open or Save command. If you serialize an Object Linking and
Embedding (OLE) container document for reasons other than File Open or Save,
you must explicitly set m_pDocument. For example, you would do this when
serializing a container document to the Clipboard.

See Also: CDocument, COleClientItem

CArchiveException

CArchiveException
L?iject h
I—{ S)Exception h
|—|E£4l\rchiveException h

A CArchiveException object represents a serialization exception condition. The
CArchiveException class includes a public data member that indicates the cause of
the exception.

CArchiveException objects are constructed and thrown inside CArchive member
functions. You can access these objects within the scope of a CATCH expression.
The cause code is independent of the operating system. For more information about
exception processing, see the article “Exceptions” in Visual C++ Programmer’s
Guide online.

#include <afx.h>

See Also: CArchive, AfxThrowArchiveException, Exception Processing

CArchiveException Class Members

Data Members

m_cause Indicates the exception cause.
Construction

CArchiveException Constructs a CArchiveException object.

Member Functions
CArchiveException::CArchiveException

CArchiveException(int cause = CArchiveException::none);

Parameters
cause An enumerated type variable that indicates the reason for the exception.
For a list of the enumerators, see the m_cause data member.

59

CArchiveException::m_cause

Remarks

Constructs a CArchiveException object, storing the value of cause in the object.
You can create a CArchiveException object on the heap and throw it yourself or
let the global function AfxThrowArchiveException handle it for you.

Do not use this constructor directly; instead, call the global function
AfxThrowArchiveException.

Data Members

CArchiveException::m_cause

Remarks

Specifies the cause of the exception. This data member is a public variable of type int.
Its values are defined by a CArchiveException enumerated type. The enumerators
and their meanings are as follows:

CArchiveException::none No error occurred.
CArchiveException::generic Unspecified error.

CArchiveException::readOnly Tried to write into an archive opened for
loading.

CArchiveException::endOfFile Reached end of file while reading an object.

CArchiveException::writeOnly Tried to read from an archive opened for
storing.

CArchiveException::badIndex Invalid file format.

CArchiveException::badClass Tried to read an object into an object of the
wrong type.

CArchiveException::badSchema Tried to read an object with a different version
of the class.

Note These CArchiveException cause enumerators are distinct from the CFileException
cause enumerators.

60

CArray

CArray

T W
CAmay T

template< class TYPE, class ARG_TYPE > class CArray : public CObject

Parameters

Remarks

TYPE Template parameter specifying the type of objects stored in the array. TYPE
is a parameter that is returned by CArray.

ARG_TYPE Template parameter specifying the argument type used to access objects
stored in the array. Often a reference to TYPE. ARG_TYPE is a parameter that is
passed to CArray.

The CArray class supports arrays that are similar to C arrays, but can dynamically
shrink and grow as necessary.

Array indexes always start at position 0. You can decide whether to fix the upper
bound or allow the array to expand when you add elements past the current bound.
Memory is allocated contiguously to the upper bound, even if some elements

are null.

As with a C array, the access time for a CArray indexed element is constant and is
independent of the array size.

Tip Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need a dump of individual elements in an array, you must set the depth of the
CDumpContext object to 1 or greater.

Certain member functions of this class call global helper functions that must be
customized for most uses of the CArray class. See the topic “Collection Class
Helpers” in the MFC Macros and Globals section.

When elements are removed from a CArray object, the helper function
DestructElements is called. When elements are added, the helper function
ConstructElements is called.

Array class derivation is similar to list derivation.

61

CArray

For more information on using CArray, see the article “Collections” in Visual C++
Programmer’s Guide online.

#include <afxtempl.h>

See Also: CObArray, DestructElements, ConstructElements, “Collection Class

Helpers”

CArray Class Members

62

Construction

CArray Constructs an empty array.

Attributes

GetSize Gets the number of elements in this array.

GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this array.

Operations

FreeExtra Frees all unused memory above the current upper bound.

RemoveAll Removes all the elements from this array.

Element Access

GetAt Returns the value at a given index.

SetAt Sets the value for a given index; array not allowed to grow.

ElementAt Returns a temporary reference to the element pointer within the array.

GetData Allows access to elements in the array. Can be NULL.

Growing the Array

SetAtGrow Sets the value for a given index; grows the array if necessary.

Add Adds an element to the end of the array; grows the array if necessary.

Append Appends another array to the array; grows the array if necessary

Copy Copies another array to the array; grows the array if necessary.

Insertion/Removal

InsertAt Inserts an element (or all the elements in another array) at a specified
index.

RemoveAt Removes an element at a specific index.

Operators

operator []

Sets or gets the element at the specified index.

Member Functions
CArray::Add

int Add(ARG_TYPE newElement);
throw(CMemoryException);

Return Value

The index of the added element.

Parameters

Remarks

Example

ARG_TYPE Template parameter specifying the type of arguments referencing
elements in this array.

newElement The element to be added to this array.

Adds a new element to the end of an array, growing the array by 1. If SetSize has been
used with an nGrowBy value greater than 1, then extra memory may be allocated.
However, the upper bound will increase by only 1.

// example for CArray::Add
CArray<CPoint,CPoint> ptArray;

CPoint pt(10,20);
ptArray.Add(pt); // Element 9
ptArray.Add(CPoint(30,40)); // Element 1

See Also: CArray::SetAt, CArray::SetAtGrow, CArray::InsertAt,
CArray::operator []

CArray::Append

CArray::Append

int Append(const CArray& src);

Return Value

The index of the first appended element.

Parameters

Remarks

src Source of the elements to be appended to an array.

Call this member function to add the contents of one array to the end of another.
The arrays must be of the same type.

If necessary, Append may allocate extra memory to accommodate the elements
appended to the array.

See Also: CArray::Copy

63

CArray::CArray

CArray::CArray

CArray();

Remarks
Constructs an empty array. The array grows one element at a time.

See Also: CObArray::CObArray

CArray::Copy
void Copy(const CArray& src);

Parameters
src Source of the elements to be copied to an array.

Remarks
Use this member function to copy the elements of one array to another.

Call this member function to overwrite the elements of one array with the elements of
another array.

Copy does not free memory; however, if necessary, Copy may allocate extra memory
to accommodate the elements copied to the array.

See Also: CArray::Append

CArray::ElementAt

TYPE& ElementAt(int nindex);

Return Value
A reference to an array element.

Parameters
TYPE Template parameter specifying the type of elements in the array.

nindex An integer index that is greater than or equal to 0 and less than or equal to the
value returned by GetUpperBound.

Remarks
Returns a temporary reference to the specified element within the array. It is used to
implement the left-side assignment operator for arrays.

See Also: CArray::operator []

64

CArray::FreeExtra

void FreeExtra();

Remarks
Frees any extra memory that was allocated while the array was grown. This function
has no effect on the size or upper bound of the array.

CArray::GetData

CArray::GetAt

TYPE GetAt(int nindex) const;

Return Value
The array element currently at this index.

Parameters
TYPE Template parameter specifying the type of the array elements.

nlndex An integer index that is greater than or equal to 0 and less than or equal to the
value returned by GetUpperBound.

Remarks
Returns the array element at the specified index.

Note Passing a negative value or a value greater than the value returned by GetUpperBound
will result in a failed assertion.

See Also: CArray::SetAt, CArray::operator [], ConstructElements

CArray::GetData

const TYPE* GetData() const;
TYPE* GetData();

Return Value
A pointer to an array element.

Parameters
TYPE Template parameter specifying the type of the array elements.

Remarks
Use this member function to gain direct access to the elements in an array. If no
elements are available, GetData returns a null value.

While direct access to the elements of an array can help you work more quickly, use
caution when calling GetData; any errors you make directly affect the elements of
your array.

See Also: CArray::GetAt, CArray::SetAt, CArray::ElementAt

65

CArray::GetSize

CArray::GetSize

int GetSize() const;

Remarks

Retumns the size of the array. Since indexes are zero-based, the size is 1 greater than
the largest index.

See Also: CArray::GetUpperBound, CArray::SetSize

CArray::GetUpperBound

int GetUpperBound() const;

Remarks
Returns the current upper bound of this array. Because array indexes are zero-based,
this function returns a value 1 less than GetSize.

The condition GetUpperBound() = -1 indicates that the array contains no elements.
See Also: CArray::GetSize, CArray::SetSize

CArray::InsertAt

void InsertAt(int nlndex, ARG_TYPE newElement, int nCount =1);
throw(CMemoryException);

void InsertAt(int nStartIndex, CArray* pNewArray);
throw(CMemoryException);

Parameters

nindex An integer index that inay be greater than the value returned by
GetUpperBound.

ARG_TYPE Template parameter specifying the type of elements in this array.
newElement The element to be placed in this array.
nCount The number of times this element should be inserted (defaults to 1).

nStartlndex An integer index that may be greater than the value returned by
GetUpperBound.

pNewArray Another array that contains elements to be added to this array.
Remarks
The first version of InsertAt inserts one element (or multiple copies of an element)

at a specified index in an array. In the process, it shifts up (by incrementing the index)
the existing element at this index, and it shifts up all the elements above it.

The second version inserts all the elements from another CArray collection, starting
at the nStartIndex position.

66

The SetAt function, in contrast, replaces one specified array element and does not
shift any elements.

Example
// example for CArray::InsertAt

CArray<CPoint,CPoint> ptArray;

ptArray.Add(CPoint(10,20));// Element 0
ptArray.Add(CPoint(30,40));// Element 1 (will become element 2)
ptArray.InsertAt(l, CPoint(50,60)); // New element 1

See Also: GetUpperBound, CArray::SetAt, CArray::RemoveAt

CArray::RemoveAt

CArray::RemoveAll

void RemoveAll();

Remarks
Removes all the elements from this array. If the array is already empty, the function
still works.

CArray::RemoveAt

void RemoveAt(int nlndex, int nCount =1);

Parameters
nindex An integer index that is greater than or equal to 0 and less than or equal to the
value returned by GetUpperBound.

nCount The number of elements to remove.
Remarks
Removes one or more elements starting at a specified index in an array. In the process,

it shifts down all the elements above the removed element(s). It decrements the upper
bound of the array but does not free memory.

If you try to remove more elements than are contained in the array above the removal
point, then the Debug version of the library asserts.

See Also: CArray::SetAt, CArray::SetAtGrow, CArray::InsertAt

67

CArray::SetAt

CArray::SetAt

void SetAt(int nindex, ARG_TYPE newElement);

Parameters
nindex An integer index that is greater than or equal to 0 and less than or equal to
the value returned by GetUpperBound.

ARG_TYPE Template parameter specifying the type of arguments used for
referencing array elements.

newElement The new element value to be stored at the specified position.

Remarks

Sets the array element at the specified index. SetAt will not cause the array to grow.
Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If it is
out of bounds, then the Debug version of the library asserts.

See Also: CArray::GetAt, CArray::SetAtGrow, CArray::ElementAt,
CArray::operator []

CArray::SetAtGrow

void SetAtGrow(int nindex, ARG_TYPE newElement);
throw(CMemoryException);

Parameters
nindex An integer index that is greater than or equal to 0.

ARG _TYPE Template parameter specifying the type of elements in the array.
newElement The element to be added to this array. A NULL value is allowed.

Remarks
Sets the array element at the specified index. The array grows automatically if
necessary (that is, the upper bound is adjusted to accommodate the new element).

Example
// example for CArray::SetAtGrow
CArray<CPoint,CPoint> ptArray;

ptArray.Add(CPoint(10,20));// Element @
ptArray.Add(CPoint(30,40));// Element 1

// Element 2 deliberately skipped
ptArray.SetAtGrow(3, CPoint(50,60)); // Element 3

See Also: CArray::GetAt, CArray::SetAt, CArray::ElementAt,
CArray::operator []

68

CArray::SetSize

void SetSize(int nNewSize, int nGrowBy = -1);
throw(CMemoryException);

Parameters
nNewSize The new array size (number of elements). Must be greater than or
equal to 0.

nGrowBy The minimum number of element slots to allocate if a size increase is
necessary.

Remarks
Establishes the size of an empty or existing array; allocates memory if necessary.

If the new size is smaller than the old size, then the array is truncated and all unused
memory is released.

Use this function to set the size of your array before you begin using the array.

If you do not use SetSize, adding elements to your array causes it to be frequently
reallocated and copied. Frequent reallocation and copying are inefficient and can
fragment memory.

The nGrowBy parameter affects internal memory allocation while the array is
growing. Its use never affects the array size as reported by GetSize and
GetUpperBound. If the default value is used, MFC allocates memory in a way
calculated to avoid memory fragmentation and optimize efficiency for most cases.

See Also: CArray::GetUpperBound, CArray::GetSize

CArray::operator []

Operators
CArray::operator []

TYPE& operator [](int nlndex);
TYPE operator [](int nlndex) const;

Parameters
TYPE Template parameter specifying the type of elements in this array.

nindex Index of the element to be accessed.
Remarks

These subscript operators are a convenient substitute for the SetAt and GetAt
functions.

69

CArray::operator []

70

The first operator, called for arrays that are not const, may be used on either the right
(r-value) or the left (I-value) of an assignment statement. The second, called for const
arrays, may be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right side
of an assignment statement) is out of bounds.

See Also: CArray::GetAt, CArray::SetAt, CArray::ElementAt

CAsyncMonikerFile

CAsyncMonikerFile
h

LI COleStreamFile] h
L{CMonikerFile l]
'—1 CAsyncMonikerFile !‘l

CAsyncMonikerFile provides functionality for the use of asynchronous monikers

in ActiveX controls (formerly OLE controls). Derived from CMonikerFile, which

in turn is derived from COleStreamFile, CAsyncMonikerFile uses the IMoniker
interface to access any data stream asynchronously, including loading files
asynchronously from a URL. The files can be datapath properties of ActiveX controls.

Asynchronous monikers are used primarily in Internet-enabled applications and
ActiveX controls to provide a responsive user-interface during file transfers. A prime
example of this is the use of CDataPathProperty to provide asynchronous properties
for ActiveX controls. The CDataPathProperty object will repeatedly get a callback
to indicate availability of new data during a lengthy property exchange process.

For more information about how to use asynchronous monikers and ActiveX controls
in Internet applications, see the following articles in Visual C++ Programmer’s Guide
online:

o Internet First Steps: Asynchronous Monikers
e Internet First Steps: ActiveX Controls
#include <afxole.h>

See Also: CMonikerFile, CDataPathProperty, Asynchronous Versus Synchronous
Monikers in the OLE Programmer’s Reference in the Win32 SDK

CAsyncMonikerFile Class Members

Construction

CAsyncMonikerFile Constructs a CAsyncMonikerFile object.

Operations

GetBinding Retrieves a pointer to the asynchronous transfer binding.

GetFormatEtc Retrieves the format of the data in the stream.

n

CAsyncMonikerFile::CAsyncMonikerFile

Overridables

Close
CreateBindStatusCallback
GetBindInfo

GetPriority
OnDataAvailable

OnLowResource
OnProgress
OnStartBinding
OnStopBinding
Open

Closes and releases all resources.
Creates a COM object that implements IBindStatusCallback.

Called by the OLE system library to request information on the
type of bind to be created.

Called by the OLE system library to get the priority of the binding.

Called to provide data as it becomes available to the client during
asynchronous bind operations.

Called when resources are low.

Called to indicate progress on the data downloading process.
Called when binding is starting up.

Called when asynchronous transfer is stopped.

Opens a file asynchronously.

Member Functions
CAsyncMonikerFile::CAsyncMonikerFile

Remarks

CAsyncMonikerFile();

Constructs a CAsyncMonikerFile object. It does not create the IBindHost interface.
IBindHost is used only if you provide it in the Open member function.

For a description of the IBindHost interface, see the ActiveX SDK.
See Also: CDataPathProperty, CAsyncMonikerFile::Open

CAsyncMonikerFile::Close

Remarks

virtual void Close();

Call this function to close and release all resources. Can be called on unopened or

already closed files.

See Also: CAsyncMonikerFile::Open

CAsyncMonikerFile::CreateBindStatusCallback

virtual IUnknown* CreateBindStatusCallback(IUnknown* pUnkControlling);

Return Value
If pUnkControlling is not NULL, the function returns a pointer to the inner
IUnknown on a new COM object supporting IBindStatusCallback. If

72

CAsyncMonikerFile::GetBindInfo

pUnkControlling is NULL, the function returns a pointer to an IUnknown on a
new COM object supporting IBindStatusCallback.

Parameters

Remarks

pUnkControlling A pointer to the controlling unknown (the outer IUnknown)
or NULL if aggregation is not being used.

CAsyncMonikerFile requires a COM object that implements IBindStatusCallback.
MFC implements such an object, and it is aggregatable. You can override
CreateBindStatusCallback to return your own COM object. Your COM object

can aggregate MFC’s implementation by calling
CAsyncMonikerFile::CreateBindStatusCallback with the controlling unknown

of your COM object.

Alternately, your COM object can delegate to MFC’s implementation by calling
CAsyncMonikerFile::CreateBindStatusCallback(NULL).

CAsyncMonikerFile::Open calls CreateBindStatusCallback(NULL).

For details about the asynchronous binding, see “How Asynchronous Binding and
Storage Work” in the OLE Programmer’s Reference in the Win32 SDK . For a
discussion of aggregation, see “Aggregation” in the OLE Programmer’s Reference
in the Win32 SDK.

CAsyncMonikerFile::GetBindInfo

virtual DWORD GetBindInfo() const;

Return Value

Remarks

Retrieves the settings for IBindStatusCallBack. For a description of the
IBindStatusCallback interface, see the ActiveX SDK.

Called from the client of an asynchronous moniker to tell the asynchronous moniker
how it wants to bind. The default implementation sets the binding to be asynchronous,
to use a storage medium (a stream), and to use the data-push model. Override this
function if you want to change the behavior of the binding.

One reason for doing this would be to bind using the data-pull model instead of the
data-push model. In a data-pull model, the client drives the bind operation, and the
moniker only provides data to the client when it is read. In a data-push model, the
moniker drives the asynchronous bind operation and continuously notifies the
client whenever new data is available.

73

CAsyncMonikerFile::GetBinding

CAsyncMonikerFile::GetBinding

IBinding* GetBinding() const;

Return Value
A pointer to the IBinding interface provided when asynchronous transfer begins.
Returns NULL if for any reason the transfer cannot be made asynchronously.

Remarks
Call this function to retrieve a pointer to the asynchronous transfer binding. This
allows you to control the data transfer process through the IBinding interface, for
example, with IBinding::Abort, IBinding::Pause, and IBinding::Resume.

For a description of the IBinding interface, see the ActiveX SDK.

CAsyncMonikerFile::GetFormatEtc

FORMATETC* GetFormatEtc() const;

Return Value
A pointer to the Windows structure FORMATETC for the currently opened stream.
Returns NULL if the moniker has not been bound, if it is not asynchronous, or if the
asynchronous operation has not begun.

Remarks
Call this function to retrieve the format of the data in the stream.

CAsyncMonikerFile::GetPriority

virtual long GetPriority() const;

Return Value
The priority at which the asynchronous transfer will take place. One of the standard
thread priority flags: THREAD_PRIORITY_ABOVE_NORMAL,
THREAD_PRIORITY_BELOW_NORMAL,
THREAD_PRIORITY_HIGHEST, THREAD_PRIORITY_IDLE,
THREAD_PRIORITY_LOWEST, THREAD_PRIORITY_NORMAL, and
THREAD_PRIORITY_TIME_CRITICAL. See the Windows function
SetThreadPriority for a description of these values.

Remarks
Called from the client of an asynchronous moniker as the binding process starts to
receive the priority given to the thread for the binding operation. GetPriority should
not be called directly. THREAD_PRIORITY_NORMAL is returned by the default
implementation.

74

CAsyncMonikerFile::OnDataAvailable

CAsyncMonikerFile::OnDataAvailable

virtual void OnDataAvailable(DWORD dwsize, DWORD bscfFlag);

Parameters
dwsize The cumulative amount (in bytes) of data available since the beginning of
the binding. Can be zero, indicating that the amount of data is not relevant to the
operation, or that no specific amount became available.

bscfFlag A BSCF enumeration value. Can be one or more of the following values:

e BSCF_FIRSTDATANOTIFICATION Identifies the first call to
OnDataAvailable for a given bind operation.

o BSCF_INTERMEDIATEDATANOTIFICATION Identifies an intermediary
call to OnDataAvailable for a bind operation.

¢ BSCF_LASTDATANOTIFICATION Identifies the last call to
OnDataAvailable for a bind operation.

Remarks
An asynchronous moniker calls OnDataAvailable to provide data to the client as it
becomes available, during asynchronous bind operations. The default implementation
of this function does nothing. See the following example for a sample implementation.

Example
// refer to CDataPathProperty.
void CAsyncMyTextProperty::0OnDataAvailable(CFile* pfile,
-+ DWORD dwSize, DWORD grfBSCF)

{
if ((grfBSCF & BSCF_FIRSTDATANOTIFICATION) != 0)
{
m_dwReadBefore = 0;
m_strText.Empty();
1

DWORD dwArriving = dwSize - m_dwReadBefore;

if (dwArriving > 0)

{
int nLen = m_strText.GetlLength();
ASSERT(nLen == m_dwReadBefore);
LPTSTR psz = m_strText.GetBuffer(nLen + dwArriving);
pFile->Read(psz + nlLen, dwArriving);
m_strText.ReleaseBuffer(nlLen + dwArriving);
m_dwReadBefore = dwSize;
GetControl()->Invalidate();

}
See Also: CDataPathProperty

75

CAsyncMonikerFile::OnLowResource

CAsyncMonikerFile::OnLowResource

Remarks

virtual void OnLowResource();

Called by the moniker when resources are low. The default implementation calls
GetBinding()-> Abort().

CAsyncMonikerFile::OnProgress

virtual void OnProgress(ULONG ulProgress, ULONG ulProgressMax,
< ULONG ulStatusCode, LPCTSTR szStatusText);

Parameters

Remarks

76

ulProgress Indicates the current progress of the bind operation relative to the
expected maximum indicated in ulProgressMax.

ulProgressMax Indicates the expected maximum value of ulProgress for the duration
of calls to OnProgress for this operation.

ulStatusCode Provides additional information regarding the progress of the bind
operation. Valid values are taken from the BINDSTATUS enumeration. See
Remarks for possible values.

szStatusText Information about the current progress, depending on the value of
ulStatusCode. See Remarks for possible values.

Called by the moniker repeatedly to indicate the current progress of this bind
operation, typically at reasonable intervals during a lengthy operation.

Possible values for ulStatusCode (and the szStatusText for each value) are:

BINDSTATUS_FINDINGRESOURCE The bind operation is finding the resource
that holds the object or storage being bound to. The szStatusText provides the
display name of the resource being searched for (for example,
“www.microsoft.com”).

BINDSTATUS_CONNECTING The bind operation is connecting to the resource
that holds the object or storage being bound to. The szStatusText provides the
display name of the resource being connected to (for example, an IP address).

BINDSTATUS_SENDINGREQUEST The bind operation is requesting the object
or storage being bound to. The szStatusText provides the display name of the object
(for example, a file name).

BINDSTATUS_REDIRECTING The bind operation has been redirected to a
different data location. The szStatusText provides the display name of the new data
location.

CAsyncMonikerFile::OnStopBinding

BINDSTATUS_USINGCACHEDCOPY The bind operation is retrieving the
requested object or storage from a cached copy. The szStatusText is NULL.

BINDSTATUS_BEGINDOWNLOADDATA The bind operation has begun
receiving the object or storage being bound to. The szStarusText provides the
display name of the data location.

BINDSTATUS_DOWNLOADINGDATA The bind operation continues to receive
the object or storage being bound to. The szStatusText provides the display name of
the data location.

BINDSTATUS_ENDDOWNLOADDATA The bind operation has finished
receiving the object or storage being bound to. The szStatusText provides the
display name of the data location.

BINDSTATUS_CLASSIDAVAILABLE An instance of the object being bound to
is just about to be created. The szStatusText provides the CLSID of the new object
in string format, allowing the client an opportunity to cancel the bind operation, if
desired.

CAsyncMonikerFile::OnStartBinding

Remarks

virtual void OnStartBinding();

Opverride this function in your derived classes to perform actions when binding is
starting up. This function is called back by the moniker. The default implementation
does nothing.

See Also: CAsyncMonikerFile::OnStopBinding

CAsyncMonikerFile::OnStopBinding

virtual void OnStopBinding(HRESULT #hresult, LPCTSTR szError);

Parameters

Remarks

hresult An HRESULT that is the error or warning value.

szErrort A character string describing the error.

Called by the moniker at the end of the bind operation. Override this function to
perform actions when the transfer is stopped. By default, the function releases
IBinding.

For a description of the IBinding interface, sce the ActiveX SDK.
See Also: CAsyncMonikerFile::OnStartBinding

7

CAsyncMonikerFile::Open

CAsyncMonikerFile::Open

virtual BOOL Open(LPCTSTR IpszURL, CFileException* pError = NULL);
virtual BOOL Open(IMoniker* pMoniker, CFileException* pError = NULL);
virtual BOOL Open(LPCTSTR /pszURL, IBindHost* pBindHost,
« CFileException* pError = NULL);
virtual BOOL Open(IMoniker* pMoniker, IBindHost* pBindHost,
« CFileException* pError = NULL);
virtual BOOL Open(LPCTSTR IpszURL, IServiceProvider* pServiceProvider,
w CFileException* pError = NULL);
virtual BOOL Open(IMoniker* pMoniker, IServiceProvider* pServiceProvider,
w» CFileException* pError = NULL);
virtual BOOL Open(LPCTSTR IpszURL, IUnknown* pUnknown,
= CFileException* pError = NULL);
virtual BOOL Open(IMoniker* pMoniker, IUnknown* pUnknown,
= CFileException* pError = NULL);

Return Value

Nongzero if the file is opened successfully; otherwise 0.

Parameters

78

IpszURL A pointer to file to be opened asynchronously. The file can be any valid
URL or filename.

pError A pointer to the file exceptions. In the event of an error, it will be set to the
cause.

pMoniker A pointer to the asynchronous moniker interface IMoniker, a precise
moniker that is the combination of the document’s own moniker, which you can
retrieve with IQleClientSite::GetMoniker(OLEWHICHMK_CONTAINER), and
a moniker created from the path name. The control can use this moniker to bind,
but this is not the moniker the control should save.

pBindHost A pointer to the IBindHost interface that will be used to create the
moniker from a potentially relative pathname. If the bind host is invalid or does not
provide a moniker, the call defaults to Open(IpszFileName, pError). For a
description of the IBindHost interface, see the ActiveX SDK.

pServiceProvider A pointer to the IServiceProvider interface. If the service provider
is invalid or fails to provide the service for IBindHost, the call defaults to
Open(IpszFileName, pError).

pUnknown A pointer to the IUnknown interface. If IServiceProvider is found, the
function queries for IBindHost. If the service provider is invalid or fails to provide
the service for IBindHost, the call defaults to Open(IpszFileName, pError).

Remarks

Call this member function to open a file asynchronously. This call initiates the
binding process.

You can use a URL or a filename for the IpszURL parameter. For example:

CMyAsyncMonFile mamf;
mamf.0pen(_T("http://www.microsoft.com"));

CMyAsyncMonFile mamf;
mamf.O0pen(_T("file:c:\mydata.dat™));

See Also: CAsyncMonikerFile::CAsyncMonikerFile

CAsyncMonikerFile::Open

7

CAsyncSocket

CAsyncSocket

Ob

A CAsyncSocket object represents a Windows Socket—an endpoint of network
communication. Class CAsyncSocket encapsulates the Windows Sockets API,
providing an object-oriented abstraction for programmers who want to use
Windows Sockets in conjunction with MFC.

This class is based on the assumption that you understand network communications.
You are responsible for handling blocking, byte-order differences, and conversions
between Unicode and multibyte character set (MBCS) strings. If you want a more
convenient interface that manages these issues for you, see class CSocket.

To use a CAsyncSocket object, call its constructor, then call the Create function to
create the underlying socket handle (type SOCKET), except on accepted sockets.
For a server socket call the Listen member function, and for a client socket call the
Connect member function. The server socket should call the Accept function upon
receiving a connection request. Use the remaining CAsyncSocket functions to carry
out communications between sockets. Upon completion, destroy the CAsyncSocket
object if it was created on the heap; the destructor automatically calls the Close
function. The SOCKET data type is described in the article “Windows Sockets:
Background” in Visual C++ Programmer’s Guide online.

For more information, see “Windows Sockets: Using Class CAsyncSocket” and
related articles in Visual C++ Programmer’s Guide online, as well as “Overview of
Windows Sockets 2” and “Windows Sockets Programming Considerations” in the
Win32 SDK documentation.

#include <afxsock.h>

See Also: CSocket, CSocketFile

CAsyncSocket Class Members

Construction
CAsyncSocket Constructs a CAsyncSocket object.
Create Creates a socket.

80

CAsyncSocket

Attributes

Attach Attaches a socket handle to a CAsyncSocket object.

Detach Detaches a socket handle from a CAsyncSocket object.

FromHandle Returns a pointer to a CAsyncSocket object, given a socket
handle.

GetLastError Gets the error status for the last operation that failed.

GetPeerName Gets the address of the peer socket to which the socket is
connected.

GetSockName Gets the local name for a socket.

GetSockOpt Retrieves a socket option.

SetSockOpt Sets a socket option.

Operations

Accept Accepts a connection on the socket.

AsyncSelect Requests event notification for the socket.

Bind Associates a local address with the socket.

Close Closes the socket.

Connect Establishes a connection to a peer socket.

I0Ctl Controls the mode of the socket.

Listen Establishes a socket to listen for incoming connection requests.

Receive Receives data from the socket.

ReceiveFrom Receives a datagram and stores the source address.

Send Sends data to a connected socket.

SendTo Sends data to a specific destination.

ShutDown Disables Send and/or Receive calls on the socket.

Overridable Notification Functions

OnAccept Notifies a listening socket that it can accept pending connection
requests by calling Accept.

OnClose Notifies a socket that the socket connected to it has closed.

OnConnect Notifies a connecting socket that the connection attempt is
complete, whether successfully or in error.

OnOutOfBandData Notifies a receiving socket that there is out-of-band data to be
read on the socket, usually an urgent message.

OnReceive Notifies a listening socket that there is data to be retrieved by
calling Receive.

OnSend Notifies a socket that it can send data by calling Send.

Data Members

m_hSocket Indicates the SOCKET handle attached to this CAsyncSocket

object.

81

CAsyncSocket::Accept

Member Functions
CAsyncSocket::Accept

virtual BOOL Accept(CAsyncSocket& rConnectedSocket,
» SOCKADDR* IpSockAddr = NULL, int* IpSockAddrLen = NULL);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEFAULT The [pSockAddrLen argument is too small (less than the size of
a SOCKADDR structure).

o WSAEINPROGRESS A blocking Windows Sockets call is in progress.
e WSAEINVAL Listen was not invoked prior to accept.

e WSAEMFILE The queue is empty upon entry to accept and there are no
descriptors available.

o WSAENOBUFS No buffer space is available.
o WSAENOTSOCK The descriptor is not a socket.

e WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

e WSAEWOULDBLOCK The socket is marked as nonblocking and no
connections are present to be accepted.

Parameters
rConnectedSocket A reference identifying a new socket that is available for
connection,

IpSockAddr A pointer to a SOCKADDR structure that receives the address of the
connecting socket, as known on the network. The exact format of the IpSockAddr
argument is determined by the address family established when the socket was
created. If IpSockAddr and/or IpSockAddrLen are equal to NULL, then no
information about the remote address of the accepted socket is returned.

IpSockAddrLen A pointer to the length of the address in IpSockAddr in bytes. The
IpSockAddrLen is a value-result parameter: it should initially contain the amount
of space pointed to by IpSockAddr; on return it will contain the actual length (in
bytes) of the address returned.

82

Remarks

CAsyncSocket::AsyncSelect

Call this member function to accept a connection on a socket. This routine extracts
the first connection in the queue of pending connections, creates a new socket with
the same properties as this socket, and attaches it to rConnectedSocket. If no pending
connections are present on the queue, Accept returns zero and GetLastError returns
an error. The accepted socket (rConnectedSocket) cannot be used to accept more
connections. The original socket remains open and listening.

The argument IpSockAddr is a result parameter that is filled in with the address of the
connecting socket, as known to the communications layer. Accept is used with
connection-based socket types such as SOCK_STREAM.

See Also: CAsyncSocket::Bind, CAsyncSocket::Connect, CAsyncSocket::Listen,
CAsyncSocket::Create, ::WSAAsyncSelect

CAsyncSocket:: AsyncSelect

BOOL AsyncSelect(long [Event = FD_READ | FD_WRITE | FD_OOB |
» FD_ACCEPT | FD_CONNECT | FD_CLOSE);

Return Value

Nongzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEINVAL Indicates that one of the specified parameters was invalid.
o WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

Parameters

[Event A bitmask which specifies a combination of network events in which the
application is interested.

o FD_READ Want to receive notification of readiness for reading.

e FD_WRITE Want to receive notification when data is available to be read.
e FD_OOB Want to receive notification of the arrival of out-of-band data.

e FD_ACCEPT Want to receive notification of incoming connections.

e FD_CONNECT Want to receive notification of connection results.

o FD_CLOSE Want to receive notification when a socket has been closed by
a peer.

83

CAsyncSocket:: Attach

Remarks
Call this member function to request event notification for a socket. This function is
used to specify which MFC callback notification functions will be called for the
socket. AsyncSelect automatically sets this socket to nonblocking mode. For more
information, see the article “Windows Sockets: Socket Notifications” in Visual C++
Programmer’s Guide online and “Overview of Windows Sockets 2” and “Windows
Sockets Programming Considerations” in the Win32 SDK documentation.

See Also: CAsyncSocket::GetLastError, ::WSAAsyncSelect

CAsyncSocket::Attach

BOOL Attach(SOCKET hSocket, long [Event = FD_READ | FD_WRITE |
« FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE);

Return Value
Nonzero if the function is successful.

Parameters
hSocket Contains a handle to a socket.

IEvent A bitmask which specifies a combination of network events in which the
application is interested.

e FD_READ Want to receive notification of readiness for reading.

e FD_WRITE Want to receive notification when data is available to be read.
¢ FD_OOB Want to receive notification of the arrival of out-of-band data.

o FD_ACCEPT Want to receive notification of incoming connections.

e FD_CONNECT Want to receive notification of connection results.

e FD_CLOSE Want to receive notification when a socket has been closed by
a peer.

Remarks
Call this member function to attach the hSocket handle to an CAsyncSocket object.
The SOCKET handle is stored in the object’s m_hSocket data member.

See Also: CAsyncSocket::Detach

CAsyncSocket::Bind

BOOL Bind(UINT nSocketPort, LPCTSTR IpszSocketAddress = NULL);
BOOL Bind (const SOCKADDR?* IpSockAddr, int nSockAddrLen);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member function:

84

CAsyncSocket::CAsyncSocket
o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEADDRINUSE The specified address is already in use. (See the
SO_REUSEADDR socket option under SetSockOpt.)

e WSAEFAULT The nSockAddrLen argument is too small (less than the size of a
SOCKADDR structure).

o WSAEINPROGRESS A blocking Windows Sockets call is in progress.

o WSAEAFNOSUPPORT The specified address family is not supported by this
port.

e WSAEINVAL The socket is already bound to an address.
e WSAENOBUFS Not enough buffers available, too many connections.
¢ WSAENOTSOCK The descriptor is not a socket.

Parameters

Remarks

nSocketPort The port identifying the socket application.
IpszSocketAddress The network address, a dotted number such as “128.56.22.8”.

IpSockAddr A pointer to a SOCKADDR structure that contains the address to assign
to this socket.

nSockAddrLen The length of the address in I[pSockAddr in bytes.

Call this member function to associate a local address with the socket. This routine is
used on an unconnected datagram or stream socket, before subsequent Connect or
Listen calls. Before it can accept connection requests, a listening server socket must
select a port number and make it known to Windows Sockets by calling Bind. Bind
establishes the local association (host address/port number) of the socket by assigning
a local name to an unnamed socket.

See Also: CAsyncSocket::Connect, CAsyncSocket::Listen,
CAsyncSocket::GetSockName, CAsyncSocket::SetSockOpt,
CAsyncSocket::Create

CAsyncSocket::CAsyncSocket

Remarks

CAsyncSocket();

Constructs a blank socket object. After constructing the object, you must call its
Create member function to create the SOCKET data structure and bind its address.

85

CAsyncSocket::Close

(On the server side of a Windows Sockets communication, when the listening socket
creates a socket to use in the Accept call, you do not call Create for that socket.)

See Also: CAsyncSocket::Create

CAsyncSocket::Close

Remarks

virtual void Close();

This function closes the socket. More precisely, it releases the socket descriptor, so
that further references to it will fail with the error WSAENOTSOCK. If this is the
last reference to the underlying socket, the associated naming information and queued
data are discarded. The socket object’s destructor calls Close for you.

For CAsyncSocket, but not for CSocket, the semantics of Close are affected by the
socket options SO_LINGER and SO_DONTLINGER. For further information, see
member function GetSockOpt and “Overview of Windows Sockets 2 and “Windows
Sockets Programming Considerations” in the Win32 SDK documentation.

See Also: CAsyncSocket::Accept, CAsyncSocket::CAsyncSocket,
CAsyncSocket::I0Ctl, CAsyncSocket::GetSockOpt, CAsyncSocket::SetSockOpt,
CAsyncSocket::AsyncSelect

CAsyncSocket::Connect

BOOL Connect(LPCTSTR IpszHostAddress, UINT nHostPort);
BOOL Connect(const SOCKADDR?* IpSockAddr, int nSockAddrLen);

Return Value

86

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. If this indicates an error code of
WSAEWOULDBLOCK, and your application is using the overridable callbacks,
your application will receive an OnConnect message when the connect operation is
complete. The following errors apply to this member function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL.

e WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEADDRINUSE The specified address is already in use.
e WSAEINPROGRESS A blocking Windows Sockets call is in progress.

o WSAEADDRNOTAVAIL The specified address is not available from the
local machine.

CAsyncSocket::Connect

o WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

e WSAECONNREFUSED The attempt to connect was rejected.
e WSAEDESTADDRREQ A destination address is required.

e WSAEFAULT The nSockAddrLen argument is incorrect.

o WSAEINVAL The socket is not already bound to an address.
o WSAEISCONN The socket is already connected.

e WSAEMFILE No more file descriptors are available.

o WSAENETUNREACH The network cannot be reached from this host at this
time.

o WSAENOBUFS No buffer space is available. The socket cannot be connected.
e WSAENOTSOCK The descriptor is not a socket.

e WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

e WSAEWOULDBLOCK The socket is marked as nonblocking and the
connection cannot be completed immediately.

Parameters

Remarks

IpszHostAddress The network address of the socket to which this object is
connected: a machine name such as “ftp.microsoft.com”, or a dotted number such
as “128.56.22.8”.

nHostPort The port identifying the socket application.

IpSockAddr A pointer to a SOCKADDR structure that contains the address of the
connected socket.

nSockAddrLen The length of the address in [pSockAddr in bytes.

Call this member function to establish a connection to an unconnected stream or
datagram socket. If the socket is unbound, unique values are assigned to the local
association by the system, and the socket is marked as bound. Note that if the address
field of the name structure is all zeroes, Connect will return zero. To get extended
error information, call the GetLastError member function.

For stream sockets (type SOCK_STREAM), an active connection is initiated to the
foreign host. When the socket call completes successfully, the socket is ready to
send/receive data.

For a datagram socket (type SOCK_DGRAM), a default destination is set, which
will be used on subsequent Send and Receive calls.

See Also: CAsyncSocket::Accept, CAsyncSocket::Bind,
CAsyncSocket::GetSockName, CAsyncSocket::Create,
CAsyncSocket::AsyncSelect

87

CAsyncSocket::Create

CAsyncSocket::Create

BOOL Create(UINT nSocketPort = 0, int nSocketType = SOCK_STREAM,
o long [Event = FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT |
» FD_CONNECT | FD_CLOSE, LPCTSTR IpszSocketAddress = NULL);

Return Value
| Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

e WSAEAFNOSUPPORT The specified address family is not supported.

o WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

o WSAEMFILE No more file descriptors are available.

e WSAENOBUFS No buffer space is available. The socket cannot be created.

o WSAEPROTONOSUPPORT The specified port is not supported.

o WSAEPROTOTYPE The specified port is the wrong type for this socket.

¢+ WSAESOCKTNOSUPPORT The specified socket type is not supported in
this address family.

Parameters
nSocketPort A well-known port to be used with the socket, or O if you want
Windows Sockets to select a port.

nSocketType SOCK_STREAM or SOCK_DGRAM.

IEvent A bitmask which specifies a combination of network events in which the
application is interested.

o FD_READ Want to receive notification of readiness for reading.

e FD_WRITE Want to receive notification of readiness for writing.

o FD_OOB Want to receive notification of the arrival of out-of-band data.
o FD_ACCEPT Want to receive notification of incoming connections.

e FD_CONNECT Want to receive notification of completed connection.
e FD CLOSE Want to receive notification of socket closure.

IpszSockAddress A pointer to a string containing the network address of the
connected socket, a dotted number such as “128.56.22.8”.

88

CAsyncSocket::FromHandle

Remarks
Call the Create member function after constructing a socket object to create the
Windows socket and attach it. Create then calls Bind to bind the socket to the
specified address. The following socket types are supported:

e SOCK_STREAM Provides sequenced, reliable, full-duplex, connection-based
byte streams. Uses the Transmission Control Protocol (TCP) for the Internet
address family.

o SOCK_DGRAM Supports datagrams, which are connectionless, unreliable
packets of a fixed (typically small) maximum length. Uses the User Datagram
Protocol (UDP) for the Internet address family.

Note The Accept member function takes a reference to a new, empty CSocket object as
its parameter. You must construct this object before you call Accept. Keep in mind that if
this socket object goes out of scope, the connection closes. Do not call Create for this new
socket object.

For more information about stream and datagram sockets, see the articles “Windows
Sockets: Background” and “Windows Sockets: Ports and Socket Addresses” in
Visual C++ Programmer’s Guide online and “Overview of Windows Sockets 2” and
“Windows Sockets Programming Considerations” in the Win32 SDK documentation.

See Also: CAsyncSocket::Accept, CAsyncSocket::Bind,
CAsyncSocket::Connect, CAsyncSocket::GetSockName,CAsyncSocket::10Ctl,
CAsyncSocket::Listen, CAsyncSocket::Receive, CAsyncSocket::Send,
CAsyncSocket::ShutDown

CAsyncSocket::Detach

SOCKET Detach();

Remarks
Call this member function to detach the SOCKET handle in the m_hSocket data
member from the CAsyncSocket object and set m_hSocket to NULL.

See Also: CAsyncSocket::Attach

CAsyncSocket::FromHandle

static CAsyncSocket* PASCAL FromHandle(SOCKET hSocket);

Return Value
A pointer to an CAsyncSocket object, or NULL if there is no CAsyncSocket object
attached to hSocket.

Parameters
hSocket Contains a handle to a socket.

89

CAsyncSocket::GetLastError

Remarks

Returns a pointer to a CAsyncSocket object. When given a SOCKET handle, if a
CAsyncSocket object is not attached to the handle, the member function returns NULL.

See Also: CSocket::FromHandle, CAsyncSocket::Attach,
CAsyncSocket::Detach

CAsyncSocket::GetLastError

static int GetLastError();

Return Value

Remarks

The return value indicates the error code for the last Windows Sockets API routine
performed by this thread.

Call this member function to get the error status for the last operation that failed.
When a particular member function indicates that an error has occurred,
GetLastError should be called to retrieve the appropriate error code. See the
individual member function descriptions for a list of applicable error codes.

For more information about the error codes, see “Overview of Windows Sockets 2”
and “Windows Sockets Programming Considerations” in the Win32 SDK
documentation.

See Also: ::WSASetLastError

CAsyncSocket::GetPeerName

BOOL GetPeerName(CString& rPeerAddress, UINT& rPeerPort);
BOOL GetPeerName(SOCKADDR* IpSockAddr, int* IpSockAddrLen);

Return Value

90

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

e WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEFAULT The IpSockAddrLen argument is not large enough.

e WSAEINPROGRESS A blocking Windows Sockets call is in progress.
e WSAENOTCONN The socket is not connected.

e WSAENOTSOCK The descriptor is not a socket.

CAsyncSocket::GetSockName

Parameters
rPeerAddress Reference to a CString object that receives a dotted number IP
address.

rPeerPort Reference to a UINT that stores a port.

IpSockAddr A pointer to the SOCKADDR structure that receives the name of the
peer socket.

IpSockAddrLen A pointer to the length of the address in [pSockAddr in bytes. On
return, the IpSockAddrLen argument contains the actual size of IpSockAddr
returned in bytes.

Remarks
Call this member function to get the address of the peer socket to which this socket is
connected.

See Also: CAsyncSocket::Bind, CAsyncSocket::Connect,
CAsyncSocket::Create, CAsyncSocket::GetSockName

CAsyncSocket::GetSockName

BOOL GetSockName(CString& rSocketAddress, UINT& rSocketPort);
BOOL GetSockName(SOCKADDR¥* IpSockAddr, int* IpSockAddrLen);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member -
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

e WSAEFAULT The IpSockAddrLen argument is not large enough.

o WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

o WSAENOTSOCK The descriptor is not a socket.

e WSAEINVAL The socket has not been bound to an address with Bind.
Parameters

rSocketAddress Reference to a CString object that receives a dotted number IP
address.

rSocketPort Reference to a UINT that stores a port.

IpSockAddr A pointer to a SOCKADDR structure that receives the address of the
socket.

IpSockAddrLen A pointer to the length of the address in IpSockAddr in bytes.

91

CAsyncSocket::GetSockOpt

Remarks

Call this member function to get the local name for a socket. This call is especially
useful when a Connect call has been made without doing a Bind first; this call
provides the only means by which you can determine the local association which has
been set by the system. For more information, see “Overview of Windows Sockets 2”
and “Windows Sockets Programming Considerations” in the Win32 SDK
documentation.

See Also: CAsyncSocket::Bind, CAsyncSocket::Create,
CAsyncSocket::GetPeerName

CAsyncSocket::GetSockOpt

BOOL GetSockOpt(int nOptionName, void* IpOptionValue, int* IpOptionLen,
< int nLevel = SOL_SOCKET);

Return Value

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. If an option was never set with SetSockOpt, then
GetSockOpt returns the default value for the option. The following errors apply to
this member function:

e WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

e WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

e WSAEFAULT The IpOptionLen argument was invalid.
» WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

e WSAENOPROTOOPT The option is unknown or unsupported. In particular,
SO_BROADCAST is not supported on sockets of type SOCK_STREAM, while
SO_ACCEPTCONN, SO_DONTLINGER, SO_KEEPALIVE, SO_LINGER,
and SO_OOBINLINE are not supported on sockets of type SOCK_DGRAM.

e WSAENOTSOCK The descriptor is not a socket.

Parameters

92

nOptionName The socket option for which the value is to be retrieved.

IpOptionValue A pointer to the buffer in which the value for the requested option
is to be returned. The value associated with the selected option is returned in the
buffer IpOptionValue. The integer pointed to by [pOptionLen should originally
contain the size of this buffer in bytes; and on return, it will be set to the size of the
value returned. For SO_LINGER, this will be the size of a LINGER structure; for
all other options it will be the size of a BOOL or an int, depending on the option.
See the list of options and their sizes in the Remarks section.

IpOptionLen A pointer to the size of the [pOptionValue buffer in bytes.

Remarks

CAsyncSocket::GetSockOpt

nLevel The level at which the option is defined; the only supported levels are

SOL_SOCKET and IPPROTO_TCP.

Call this member function to retrieve a socket option. GetSockOpt retrieves the
current value for a socket option associated with a socket of any type, in any state,
and stores the result in [pOptionValue. Options affect socket operations, such as the
routing of packets, out-of-band data transfer, and so on.

The following options are supported for GetSockOpt. The Type identifies the type
of data addressed by IpOptionValue. The TCP_NODELAY option uses level
IPPROTO_TCP; all other options use level SOL_SOCKET.

Value Type Meaning

SO_ACCEPTCONN BOOL Socket is listening.

SO_BROADCAST BOOL Socket is configured for the transmission of
broadcast messages.

SO_DEBUG BOOL Debugging is enabled.

SO_DONTLINGER BOOL If true, the SO_LINGER option is disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_ERROR int Retrieve error status and clear.

SO_KEEPALIVE BOOL Keep-alives are being sent.

SO_LINGER struct LINGER Returns the current linger options.

SO_OOBINLINE BOOL Out-of-band data is being received in the normal
data stream.

SO_RCVBUF int Buffer size for receives.

SO_REUSEADDR BOOL The socket can be bound to an address which is
already in use.

SO_SNDBUF int Buffer size for sends.

SO_TYPE int The type of the socket (for example,
SOCK_STREAM).

TCP_NODELAY BOOL Disables the Nagle algorithm for send

coalescing.

Berkeley Software Distribution (BSD) options not supported for GetSockOpt are:

Value Type Meaning

SO_RCVLOWAT int Receive low water mark.
SO_RCVTIMEO int Receive timeout.
SO_SNDLOWAT int Send low water mark.
SO_SNDTIMEO int Send timeout.

IP_OPTIONS Get options in IP header.
TCP_MAXSEG int Get TCP maximum segment size.

93

CAsyncSocket::IOCtl

Calling GetSockOpt with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from GetLastError.

See Also: CAsyncSocket::SetSockOpt

CAsyncSocket::10Ctl

BOOL IOCtl(long [Command, DWORD* IpArgument);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

e WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

e WSAEINVAL [Command is not a valid command, or [pArgument is not an
acceptable parameter for [Command, or the command is not applicable to the type
of socket supplied.

o WSAEINPROGRESS A blocking Windows Sockets operation is in progress.
o WSAENOTSOCK The descriptor is not a socket.

Parameters
[Command The command to perform on the socket.

IpArgument A pointer to a parameter for [Command.

Remarks
Call this member function to control the mode of a socket. This routine can be used
on any socket in any state. It is used to get or retrieve operating parameters associated
with the socket, independent of the protocol and communications subsystem. The
following commands are supported:

e FIONBIO Enable or disable nonblocking mode on the socket. The IpArgument
parameter points at a DWORD, which is nonzero if nonblocking mode is to be
enabled and zero if it is to be disabled. If AsyncSelect has been issued on a socket,
then any attempt to use IOCTtI to set the socket back to blocking mode will fail
with WSAEINVAL. To set the socket back to blocking mode and prevent the
WSAEINVAL error, an application must first disable AsyncSelect by calling
AsyncSelect with the [Event parameter equal to 0, then call IOCtl.

e FIONREAD Determine the maximum number of bytes that can be read with
one Receive call from this socket. The [pArgument parameter points at a DWORD
in which IOCHt] stores the result. If this socket is of type SOCK_STREAM,
FIONREAD returns the total amount of data which can be read in a single

94

CAsyncSocket::Listen

Receive; this is normally the same as the total amount of data queued on the
socket. If this socket is of type SOCK_DGRAM, FIONREAD returns the size of
the first datagram queued on the socket.

SIOCATMARK Determine whether all out-of-band data has been read. This
applies only to a socket of type SOCK_STREAM which has been configured for
in-line reception of any out-of-band data (SO_OOBINLINE). If no out-of-band
data is waiting to be read, the operation returns nonzero. Otherwise it returns 0, and
the next Receive or ReceiveFrom performed on the socket will retrieve some or all
of the data preceding the “mark”; the application should use the SIOCATMARK
operation to determine whether any data remains. If there is any normal data
preceding the “urgent” (out-of-band) data, it will be received in order. (Note that

a Receive or ReceiveFrom will never mix out-of-band and normal data in the
same call.) The [pArgument parameter points at a DWORD in which IOCtl stores
the result.

This function is a subset of ioctl() as used in Berkeley sockets. In particular, there is
no command which is equivalent to FIOASYNC, while SIOCATMARK is the only
socket-level command which is supported.

See Also: CAsyncSocket::AsyncSelect, CAsyncSocket::Create,
CAsyncSocket::GetSockOpt, CAsyncSocket::SetSockOpt

CAsyncSocket::Listen

BOOL Listen(int nConnectionBacklog =5);

Return Value

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APIL

WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

WSAEADDRINUSE An attempt has been made to listen on an address in use.
WSAEINPROGRESS A blocking Windows Sockets operation is in progress.
WSAEINVAL The socket has not been bound with Bind or is already connected.
WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUEFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of a type that supports the
Listen operation.

95

CAsyncSocket::OnAccept

Parameters

Remarks

nConnectionBacklog The maximum length to which the queue of pending
connections can grow. Valid range is from 1 to 5.

Call this member function to listen for incoming connection requests. To accept
connections, the socket is first created with Create, a backlog for incoming
connections is specified with Listen, and then the connections are accepted with
Accept. Listen applies only to sockets that support connections, that is, those of type
SOCK_STREAM. This socket is put into “passive” mode where incoming
connections are acknowledged and queued pending acceptance by the process.

This function is typically used by servers (or any application that wants to accept
connections) that could have more than one connection request at a time: if a
connection request arrives with the queue full, the client will receive an error with an
indication of WSAECONNREFUSED.

Listen attempts to continue to function rationally when there are no available ports

(descriptors). It will accept connections until the queue is emptied. If ports become

available, a later call to Listen or Accept will refill the queue to the current or most
recent “backlog,” if possible, and resume listening for incoming connections.

See Also: CAsyncSocket::Accept, CAsyncSocket::Connect,
CAsyncSocket::Create

CAsyncSocket::OnAccept

virtual void OnAccept(int nErrorCode);

Parameters

Remarks

96

nErrorCode The most recent error on a socket. The following error codes applies to
the OnAccept member function:

¢ (0 The function executed successfully.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Called by the framework to notify a listening socket that it can accept pending

connection requests by calling the Accept member function. For more information,
see the article “Windows Sockets: Socket Notifications” in Visual C++ Programmer’s
Guide online.

See Also: CAsyncSocket::Accept, CAsyncSocket::GetLastError,
CAsyncSocket::OnClose, CAsyncSocket::OnConnect,
CAsyncSocket::OnOutOfBandData, CAsyncSocket::OnReceive,
CAsyncSocket::OnSend

CAsyncSocket::OnConnect

CAsyncSocket::OnClose

virtual void OnClose(int nErrorCode);

Parameters
nErrorCode The most recent error on a socket. The following error codes apply to
the OnClose member function:

o 0 The function executed successfully.

e WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAECONNRESET The connection was reset by the remote side.

o WSAECONNABORTED The connection was aborted due to timeout or other
failure.

Remarks
Called by the framework to notify this socket that the connected socket is closed by
its process. For more information, see the article “Windows Sockets: Socket
Notifications” in Visual C++ Programmer’s Guide online.

See Also: CAsyncSocket::Close, CAsyncSocket::GetLastError,
CAsyncSocket::OnAccept, CAsyncSocket::OnConnect,
CAsyncSocket::OnOutOfBandData, CAsyncSocket::OnReceive,
CAsyncSocket::OnSend

CAsyncSocket::OnConnect

virtual void OnConnect(int nErrorCode);

Parameters
nErrorCode The most recent error on a socket. The following error codes apply to
the OnConnect member function:

e 0 The function executed successfully.
o WSAEADDRINUSE The specified address is already in use.

¢ WSAEADDRNOTAVAIL The specified address is not available from the
local machine.

o WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

o WSAECONNREFUSED The attempt to connect was forcefully rejected.
e WSAEDESTADDRREQ A destination address is required.

o WSAEFAULT The IpSockAddrLen argument is incorrect.

e WSAEINVAL The socket is already bound to an address.

97

CAsyncSocket::OnOutOfBandData

e WSAEISCONN The socket is already connected.
e WSAEMFILE No more file descriptors are available.

e WSAENETUNREACH The network cannot be reached from this host at
this time.

¢ WSAENOBUFS No buffer space is available. The socket cannot be
connected.

¢ WSAENOTCONN The socket is not connected.
o WSAENOTSOCK The descriptor is a file, not a socket.

e WSAETIMEDOUT The attempt to connect timed out without establishing
a connection.

Remarks
Called by the framework to notify this connecting socket that its connection attempt is
completed, whether successfully or in error.

Important In CSocket, the OnSend and OnConnect notification functions are never called.

To send data, you simply call Send, which won't return until all the data has been sent. The
use of the notification to complete this task is an MFC implementation detail for CSocket. For
connections, you simply call Connect, which will return when the connection is completed
(either successfully or in error). How connection notifications are handled is also an MFC
implementation detail.

For more information, see the article “Windows Sockets: Socket Notifications” in
Visual C++ Programmer’s Guide online.

See Also: CAsyncSocket::Connect, CAsyncSocket::GetLastError,
CAsyncSocket::OnAccept, CAsyncSocket::OnClose,
CAsyncSocket::OnOutOfBandData, CAsyncSocket::OnReceive,
CAsyncSocket::OnSend

CAsyncSocket::OnOutOfBandData

virtual void OnOutOfBandData(int nErrorCode);

Parameters
nErrorCode The most recent error on a socket. The following error codes apply to
the OnOutOfBandData member function:

e 0 The function executed successfully.
o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Remarks
Called by the framework to notify the receiving socket that the sending socket has
out-of-band data to send. Out-of-band data is a logically independent channel that

98

CAsyncSocket::OnSend

is associated with each pair of connected sockets of type SOCK_STREAM. The
channel is generally used to send urgent data.

MFC supports out-of-band data, but users of class CAsyncSocket are discouraged
from using it. The easier way is to create a second socket for passing such data. For
more information about out-of-band data, see the article “Windows Sockets: Socket
Notifications” in Visual C++ Programmer’s Guide online and “Overview of Windows
Sockets 2” and “Windows Sockets Programming Considerations” in the Win32 SDK
documentation.

See Also: CAsyncSocket::GetLastError, CAsyncSocket::OnAccept,
CAsyncSocket::OnClose, CAsyncSocket::OnConnect,
CAsyncSocket::OnReceive, CAsyncSocket::OnSend

CAsyncSocket::OnReceive

virtual void OnReceive(int nErrorCode);

Parameters
nErrorCode The most recent error on a socket. The following error codes apply to
the OnReceive member function:

e 0 The function executed successfully.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

Remarks
Called by the framework to notify this socket that there is data in the buffer that can be
retrieved by calling the Receive member function. For more information, see the article
“Windows Sockets: Socket Notifications” in Visual C++ Programmer’s Guide online.

See Also: CAsyncSocket::GetLastError, CAsyncSocket::OnAccept,
CAsyncSocket::OnClose, CAsyncSocket::OnConnect,
CAsyncSocket::OnOutOfBandData, CAsyncSocket::OnSend,
CAsyncSocket::Receive

CAsyncSocket::OnSend

virtual void OnSend(int nErrorCode);

Parameters
nErrorCode The most recent error on a socket. The following error codes apply to
the OnSend member function:

e 0 The function executed successfully.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

99

CAsyncSocket::Receive

Remarks

Called by the framework to notify the socket that it can now send data by calling the
Send member function.

important In CSocket, the OnSend and OnConnect notification functions are never called.

To send data, you simply call Send, which won't return until all the data has been sent. The
use of the notification to complete this task is an MFC implementation detail for CSocket. For
connections, you simply call Connect, which will return when the connection is completed
(either successfully or in error). How connection notifications are handled is also an MFC
implementation detail.

For more information, see the article “Windows Sockets: Socket Notifications”
in Visual C++ Programmer’s Guide online.

See Also: CAsyncSocket::GetLastError, CAsyncSocket::OnAccept,
CAsyncSocket::OnClose, CAsyncSocket::OnConnect,
CAsyncSocket::OnOutOfBandData, CAsyncSocket::OnReceive,
CAsyncSocket::Send

CAsyncSocket::Receive

virtual int Receive(void* IpBuf, int nBufLen, int nFlags =0);

Return Value

100

If no error occurs, Receive returns the number of bytes received. If the connection has
been closed, it returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code can be retrieved by calling GetLastError. The following errors
apply to this member function:

e WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

e WSAENOTCONN The socket is not connected.
e WSAEINPROGRESS A blocking Windows Sockets operation is in progress.
e WSAENOTSOCK The descriptor is not a socket.

e WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

e WSAESHUTDOWN The socket has been shut down; it is not possible to call
Receive on a socket after ShutDown has been invoked with nHow set to O or 2.

e WSAEWOULDBLOCK The socket is marked as nonblocking and the Receive
operation would block.

CAsyncSocket::Receive

o WSAEMSGSIZE The datagram was too large to fit into the specified buffer and
was truncated.

e WSAEINVAL The socket has not been bound with Bind.

o WSAECONNABORTED The virtual circuit was aborted due to timeout or other
failure.

e WSAECONNRESET The virtual circuit was reset by the remote side.

Parameters
IpBuf A buffer for the incoming data.

nBufLen The length of IpBufin bytes.

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

e MSG_PEEK Peck at the incoming data. The data is copied into the buffer but
is not removed from the input queue.

e MSG_OOB Process out-of-band data (see “Windows Sockets Programming
Considerations” in the Win32 SDK documentation for a discussion of this
topic).

Remarks
Call this member function to receive data from a socket. This function is used for
connected stream or datagram sockets and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information as is currently available
up to the size of the buffer supplied is returned. If the socket has been configured for
in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is unread, only out-of-band data will be returned. The application
can use the IQCtl SIOCATMARK option or OnOutOfBandData to determine
whether any more out-of-band data remains to be read.

For datagram sockets, data is extracted from the first enqueued datagram, up to the
size of the buffer supplied. If the datagram is larger than the buffer supplied, the
buffer is filled with the first part of the datagram, the excess data is lost, and Receive
returns a value of SOCKET_ERROR with the error code set to WSAEMSGSIZE. If
no incoming data is available at the socket, a value of SOCKET_ERROR is returned
with the error code set to WSAEWOULDBLOCK. The OnReceive callback
function can be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, a Receive will complete immediately with 0 bytes received. If
the connection has been reset, a Receive will fail with the error
WSAECONNRESET.

See Also: CAsyncSocket::AsyncSelect, CAsyncSocket::Create,
CAsyncSocket::ReceiveFrom, CAsyncSocket::Send

101

CAsyncSocket::ReceiveFrom

CAsyncSocket::ReceiveFrom

int ReceiveFrom(void* [pBuf, int nBufLen, CString& rSocketAddress,

Return Value

o« UINT& rSocketPort, int nFlags =0);

int ReceiveFrom(void* IpBuf, int nBufLen, SOCKADDR* IpSockAddr,

o int* IpSockAddrLen, int nFlags = 0);

If no error occurs, ReceiveFrom returns the number of bytes received. If the
connection has been closed, it returns 0. Otherwise, a value of SOCKET_ERROR
is returned, and a specific error code can be retrieved by calling GetLastError. The
following errors apply to this member function:

Parameters
IpBuf A buffer for the incoming data.

nBufLen The length of IpBuf in bytes.

rSocketAddress Reference to a CString object that receives a dotted number IP

102

WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

WSAEFAULT The IlpSockAddrLen argument was invalid: the IpSockAddr buffer
was too small to accommodate the peer address.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.
WSAEINVAL The socket has not been bound with Bind.
WSAENOTCONN The socket is not connected (SOCK_STREAM only).
WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call
ReceiveFrom on a socket after ShutDown has been invoked with nHow set to
Oor?2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the
ReceiveFrom operation would block.

WSAEMSGSIZE The datagram was too large to fit into the specified buffer and
was truncated.

WSAECONNABORTED The virtual circuit was aborted due to timeout or other
failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

address.

rSocketPort Reference to a UINT that stores a port.

CAsyncSocket::ReceiveFrom

IpSockAddr A pointer to a SOCKADDR structure that holds the source address
upon return,

IpSockAddrLen A pointer to the length of the source address in IpSockAddr in bytes.

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

e MSG_PEEK Peek at the incoming data. The data is copied into the buffer but
is not removed from the input queue.

e MSG_OOB Process out-of-band data (see “Windows Sockets Programming
Considerations” in the Win32 SDK documentation for a discussion of this topic).

Remarks
Call this member function to receive a datagram and store the source address in the
SOCKADDR structure or in rSocketAddress. This function is used to read incoming
data on a (possibly connected) socket and capture the address from which the data
was sent.

For sockets of type SOCK_STREAM, as much information as is currently available
up to the size of the buffer supplied is returned. If the socket has been configured

for in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is unread, only out-of-band data will be returned. The application
can use the IOCtl SIOCATMARK option or OnQutOfBandData to determine
whether any more out-of-band data remains to be read. The [pSockAddr and
IpSockAddrLen parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to the
size of the buffer supplied. If the datagram is larger than the buffer supplied, the
buffer is filled with the first part of the message, the excess data is lost, and
ReceiveFrom returns a value of SOCKET_ERROR with the error code set to
WSAEMSGSIZE.

If IpSockAddr is nonzero, and the socket is of type SOCK_DGRAM, the network
address of the socket which sent the data is copied to the corresponding SOCKADDR
structure. The value pointed to by IpSockAddrLen is initialized to the size of this
structure, and is modified on return to indicate the actual size of the address stored
there. If no incoming data is available at the socket, the ReceiveFrom call waits

for data to arrive unless the socket is nonblocking. In this case, a value of
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK.
The OnReceive callback can be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the
connection gracefully, a ReceiveFrom will complete immediately with 0 bytes
received.

See Also: CAsyncSocket::AsyncSelect, CAsyncSocket::Create,
CAsyncSocket::Receive, CAsyncSocket::Send

103

CAsyncSocket::Send

CAsyncSocket::Send

virtual int Send(const void* [pBuf, int nBufLen, int nFlags =0);

Return Value

104

If no error occurs, Send returns the total number of characters sent. (Note that this can
be less than the number indicated by nBufLen.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEACCES The requested address is a broadcast address, but the appropriate
flag was not set.

o WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

o WSAEFAULT The IpBuf argument is not in a valid part of the user address
space.

e WSAENETRESET The connection must be reset because the Windows Sockets
implementation dropped it.

e WSAENOBUFS The Windows Sockets implementation reports a buffer
deadlock.

o WSAENOTCONN The socket is not connected.
e WSAENOTSOCK The descriptor is not a socket.

e WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

e WSAESHUTDOWN The socket has been shut down; it is not possible to call
Send on a socket after ShutDown has been invoked with nHow setto 1 or 2.

o WSAEWOULDBLOCK The socket is marked as nonblocking and the requested
operation would block.

o WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is
larger than the maximum supported by the Windows Sockets implementation.

e WSAEINVAL The socket has not been bound with Bind.

¢ WSAECONNABORTED The virtual circuit was aborted due to timeout or other
failure.

e WSAECONNRESET The virtual circuit was reset by the remote side.

CAsyncSocket::SendTo

Parameters
IpBuf A buffer containing the data to be transmitted.

nBufLen The length of the data in IpBufin bytes.

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

e MSG_DONTROUTE Specifies that the data should not be subject to routing.
A Windows Sockets supplier can choose to ignore this flag; see also the
discussion of the SO_DONTROUTE option in “Windows Sockets
Programming Considerations” in the Win32 SDK documentation.

e MSG_OOB Send out-of-band data (SOCK_STREAM only).

Remarks
Call this member function to send data on a connected socket. Send is used to write
outgoing data on connected stream or datagram sockets. For datagram sockets, care
must be taken not to exceed the maximum IP packet size of the underlying subnets,
which is given by the iMaxUdpDg element in the WSADATA structure returned
by AfxSocketInit. If the data is too long to pass atomically through the underlying
protocol, the error WSAEMSGSIZE is returned via GetLastError, and no data is
transmitted.

Note that for a datagram socket the successful completion of a Send does not indicate
that the data was successfully delivered.

On CAsyncSocket objects of type SOCK_STREAM, the number of bytes written
can be between 1 and the requested length, depending on buffer availability on both
the local and foreign hosts.

See Also: CAsyncSocket::Create, CAsyncSocket::Receive,
CAsyncSocket::ReceiveFrom, CAsyncSocket::SendTo

CAsyncSocket::SendTo

int SendTo(const void* IpBuf, int nBufLen, UINT nHostPort,
» LPCTSTR IpszHostAddress = NULL, int nFlags = 0);

int SendTo(const void* IpBuf, int nBufLen, const SOCKADDR?* IpSockAddr,
« int nSockAddrLen, int nFlags = 0);

Return Value
If no error occurs, SendTo returns the total number of characters sent. (Note that
this can be less than the number indicated by nBufLen.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code can be retrieved by
calling GetLastError. The following errors apply to this member function:

105

CAsyncSocket::SendTo

Parameters

106

WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL

WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

WSAEACCES The requested address is a broadcast address, but the appropriate
flag was not set.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEFAULT The IpBuf or IpSockAddr parameters are not part of the user
address space, or the IpSockAddr argument is too small (less than the size of a
SOCKADDR structure).

WSAENETRESET The connection must be reset because the Windows Sockets
implementation dropped it.

WSAENOBUFS The Windows Sockets implementation reports a buffer
deadlock.

WSAENOTCONN The socket is not connected (SOCK_STREAM only).
WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type
SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call
SendTo on a socket after ShutDown has been invoked with nHow setto 1 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested
operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is
larger than the maximum supported by the Windows Sockets implementation.

WSAECONNABORTED The virtual circuit was aborted due to timeout or other
failure.

WSAECONNRESET The virtual circuit was reset by the remote side.
WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from this host at this
time.

IpBuf A buffer containing the data to be transmitted.
nBufLen The length of the data in [pBuf in bytes.

CAsyncSocket::SendTo

nHostPort The port identifying the socket application.

IpszHostAddress The network address of the socket to which this object is
connected: a machine name such as “ftp.microsoft.com,” or a dotted number such
as ““128.56.22.8”.

nFlags Specifies the way in which the call is made. The semantics of this function
are determined by the socket options and the nFlags parameter. The latter is
constructed by combining any of the following values with the C++ OR operator:

o MSG_DONTROUTE Specifies that the data should not be subject to routing.
A Windows Sockets supplier can choose to ignore this flag; see also the
discussion of the SO_DONTROUTE option in “Windows Sockets
Programming Considerations” in the Win32 SDK documentation.

¢ MSG_OOB Send out-of-band data (SOCK_STREAM only).

IpSockAddr A pointer to a SOCKADDR structure that contains the address of the
target socket.

nSockAddrLen The length of the address in [pSockAddr in bytes.

Remarks
Call this member function to send data to a specific destination. SendTo is used on
datagram or stream sockets and is used to write outgoing data on a socket. For
datagram sockets, care must be taken not to exceed the maximum IP packet size of the
underlying subnets, which is given by the iMaxUdpDg element in the WSADATA
structure filled out by AfxSocketInit. If the data is too long to pass atomically
through the underlying protocol, the error WSAEMSGSIZE is returned, and no
data is transmitted.

Note that the successful completion of a SendTo does not indicate that the data was
successfully delivered.

SendTo is only used on a SOCK_DGRAM socket to send a datagram to a specific
socket identified by the IpSockAddr parameter.

To send a broadcast (on a SOCK_DGRAM only), the address in the IpSockAddr
parameter should be constructed using the special IP address
INADDR_BROADCAST (defined in the Windows Sockets header file
WINSOCK.H) together with the intended port number. Or, if the IpszHostAddress
parameter is NULL, the socket is configured for broadcast. It is generally inadvisable
for a broadcast datagram to exceed the size at which fragmentation can occur, which
implies that the data portion of the datagram (excluding headers) should not exceed
512 bytes.

See Also: CAsyncSocket::Create, CAsyncSocket::Receive,
CAsyncSocket::ReceiveFrom, CAsyncSocket::Send

107

CAsyncSocket::SetSockOpt

CAsyncSocket::SetSockOpt

BOOL SetSockOpt(int nOptionName, const void* [pOptionValue, int nOptionLen,

Return Value

Parameters

Remarks

108

- int nLevel = SOL_SOCKET);

Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using
this APL.

WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

WSAEFAULT [pOptionValue is not in a valid part of the process address space.
WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEINVAL nLevel is not valid, or the information in IlpOptionValue is not
valid.

WSAENETRESET Connection has timed out when SO_KEEPALIVE is set.

WSAENOPROTOOPT The option is unknown or unsupported. In particular,
SO_BROADCAST is not supported on sockets of type SOCK_STREAM, while
SO_DONTLINGER, SO_KEEPALIVE, SO_LINGER, and SO_OOBINLINE
are not supported on sockets of type SOCK_DGRAM.

WSAENOTCONN Connection has been reset when SO_KEEPALIVE is set.
WSAENOTSOCK The descriptor is not a socket.

nOptionName The socket option for which the value is to be set.

IpOptionValue A pointer to the buffer in which the value for the requested option is

supplied.

nOptionLen The size of the [pOptionValue buffer in bytes.

nLevel The level at which the option is defined; the only supported levels are

SOL_SOCKET and IPPROTO_TCP.

Call this member function to set a socket option. SetSockOpt sets the current value
for a socket option associated with a socket of any type, in any state. Although options
can exist at multiple protocol levels, this specification only defines options that exist
at the uppermost “socket” level. Options affect socket operations, such as whether
expedited data is received in the normal data stream, whether broadcast messages can
be sent on the socket, and so on.

CAsyncSocket::SetSockOpt

There are two types of socket options: Boolean options that enable or disable a
feature or behavior, and options which require an integer value or structure. To enable
a Boolean option, IpOptionValue points to a nonzero integer. To disable the option
IpOptionValue points to an integer equal to zero. nOptionLen should be equal to
sizeof(BOOL) for Boolean options. For other options, IpOptionValue points to the
integer or structure that contains the desired value for the option, and nOptionLen is
the length of the integer or structure.

SO_LINGER controls the action taken when unsent data is queued on a socket and
the Close function is called to close the socket. For more information, see “Windows
Sockets Programming Considerations” in the Win32 SDK documentation.

By default, a socket cannot be bound (see Bind) to a local address which is already
in use. On occasion, however, it may be desirable to “reuse” an address in this way.
Since every connection is uniquely identified by the combination of local and remote
addresses, there is no problem with having two sockets bound to the same local
address as long as the remote addresses are different.

To inform the Windows Sockets implementation that a Bind call on a socket should
not be disallowed because the desired address is already in use by another socket, the
application should set the SO_REUSEADDR socket option for the socket before
issuing the Bind call. Note that the option is interpreted only at the time of the Bind
call: it is therefore unnecessary (but harmless) to set the option on a socket which is
not to be bound to an existing address, and setting or resetting the option after the
Bind call has no effect on this or any other socket.

An application can request that the Windows Sockets implementation enable the use
of “keep-alive” packets on Transmission Control Protocol (TCP) connections by
turning on the SO_KEEPALIVE socket option. (For information about “keep-alive”
packets, see “Windows Sockets Programming Considerations” in the Win32 SDK
documentation.) A Windows Sockets implementation need not support the use of
keep-alives: if it does, the precise semantics are implementation-specific but should
conform to section 4.2.3.6 of RFC 1122: “Requirements for Internet Hosts—
Communication Layers.” If a connection is dropped as the result of “keep-alives” the
error code WSAENETRESET is returned to any calls in progress on the socket, and
any subsequent calls will fail with WSAENOTCONN.

The TCP_NODELAY option disables the Nagle algorithm. The Nagle algorithm

is used to reduce the number of small packets sent by a host by buffering
unacknowledged send data until a full-size packet can be sent. However, for some
applications this algorithm can impede performance, and TCP_NODELAY can be
used to turn it off. Application writers should not set TCP_NODELAY unless the
impact of doing so is well-understood and desired, since setting TCP_NODELAY
can have a significant negative impact on network performance. TCP_NODELAY is
the only supported socket option which uses level IPPROTO_TCP; all other options
use level SOL_SOCKET.

109

CAsyncSocket::SetSockOpt

110

Some implementations of Windows Sockets supply output debug information if
the SO_DEBUG option is set by an application.

The following options are supported for SetSockOpt. The Type identifies the
type of data addressed by IpOptionValue.

Value Type Meaning

SO_BROADCAST BOOL Allow transmission of broadcast
messages on the socket.

SO_DEBUG BOOL Record debugging information.

SO_DONTLINGER BOOL Don’t block Close waiting for unsent
data to be sent. Setting this option is
equivalent to setting SO_LINGER
with 1_onoff set to zero.

SO_DONTROUTE BOOL Don’t route: send directly to interface.

SO_KEEPALIVE BOOL Send keep-alives.

SO_LINGER struct LINGER Linger on Close if unsent data is
present.

SO_OOBINLINE BOOL Receive out-of-band data in the normal
data stream.

SO_RCVBUF int Specify buffer size for receives.

SO_REUSEADDR BOOL Allow the socket to be bound to an
address which is already in use.
(See Bind.)

SO_SNDBUF int Specify buffer size for sends.

TCP_NODELAY BOOL Disables the Nagle algorithm for send

coalescing.

Berkeley Software Distribution (BSD) options not supported for

SetSockOpt are:

Value Type Meaning
SO_ACCEPTCONN BOOL Socket is listening
SO_ERROR int Get error status and clear.
SO_RCVLOWAT int Receive low water mark.
SO_RCVTIMEO int Receive timeout
SO_SNDLOWAT int Send low water mark.
SO_SNDTIMEO int Send timeout.

SO_TYPE int Type of the socket.
IP_OPTIONS Set options field in IP header.

See Also: CAsyncSocket::AsyncSelect, CAsyncSocket::Bind,
CAsyncSocket::Create, CAsyncSocket::GetSockOpt, CAsyncSocket:: 10Ct]

CAsyncSocket::ShutDown

CAsyncSocket::ShutDown

BOOL ShutDown(int nHow = sends);

Return Value
Nonzero if the function is successful; otherwise 0, and a specific error code can be
retrieved by calling GetLastError. The following errors apply to this member
function:

o WSANOTINITIALISED A successful AfxSocketInit must occur before using
this API.

o WSAENETDOWN The Windows Sockets implementation detected that the
network subsystem failed.

o WSAEINVAL nHow is not valid.

o WSAEINPROGRESS A blocking Windows Sockets operation is in progress.
o WSAENOTCONN The socket is not connected (SOCK_STREAM only).

e WSAENOTSOCK The descriptor is not a socket.

Parameters
nHow A flag that describes what types of operation will no longer be allowed, using
the following enumerated values:

e receives=0
e sends=1

e both=2

Remarks
Call this member function to disable sends and/or receives on the socket. ShutDown
is used on all types of sockets to disable reception, transmission, or both. If nHow is 0,
subsequent receives on the socket will be disallowed. This has no effect on the lower
protocol layers.

For Transmission Control Protocol (TCP), the TCP window is not changed and
incoming data will be accepted (but not acknowledged) until the window is exhausted.
For User Datagram Protocol (UDP), incoming datagrams are accepted and queued. In
no case will an ICMP error packet be generated. If nHow is 1, subsequent sends are
disallowed. For TCP sockets, a FIN will be sent. Setting nHow to 2 disables both
sends and receives as described above.

Note that ShutDown does not close the socket, and resources attached to the socket
will not be freed until Close is called. An application should not rely on being able
to reuse a socket after it has been shut down. In particular, a Windows Sockets
implementation is not required to support the use of Connect on such a socket.

See Also: CAsyncSocket::Connect, CAsyncSocket::Create

11

CAsyncSocket::m_hSocket

Data Members
CAsyncSocket::m_hSocket

Remarks
Contains the SOCKET handle for the socket encapsulated by this CAsyncSocket
object.

112

CBitmap

The CBitmap class encapsulates a Windows graphics device interface (GDI) bitmap
and provides member functions to manipulate the bitmap. To use a CBitmap object,
construct the object, attach a bitmap handle to it with one of the initialization member
functions, and then call the object’s member functions.

For more information on using graphic objects like CBitmap, see “Graphic Objects”
in Visual C++ Programmer’s Guide online.

#include <afxwin.h>

CBitmap Class Members

Construction

CBitmap Constructs a CBitmap object.

Initialization

LoadBitmap Initializes the object by loading a named bitmap resource from
the application’s executable file and attaching the bitmap to
the object.

LoadOEMBitmap Initializes the object by loading a predefined Windows bitmap
and attaching the bitmap to the object.

LoadMappedBitmap Loads a bitmap and maps colors to current system colors.

CreateBitmap Initializes the object with a device-dependent memory bitmap
that has a specified width, height, and bit pattern.

CreateBitmapIndirect Initializes the object with a bitmap with the width, height, and
bit pattern (if one is specified) given in a BITMAP structure.

CreateCompatibleBitmap Initializes the object with a bitmap so that it is compatible with

a specified device.

CreateDiscardableBitmap Initializes the object with a discardable bitmap that is
compatible with a specified device.

Attributes
GetBitmap Fills a BITMAP structure with information about the bitmap.
operator HBITMAP Returns the Windows handle attached to the CBitmap object.

113

CBitmap::CBitmap

Operations

FromHandle Returns a pointer to a CBitmap object when given a handle to
a Windows HBITMAP bitmap.

SetBitmapBits Sets the bits of a bitmap to the specified bit values.

GetBitmapBits Copies the bits of the specified bitmap into the specified buffer.

SetBitmapDimension Assigns a width and height to a bitmap in 0.1-millimeter units.

GetBitmapDimension Returns the width and height of the bitmap. The height and

width are assumed to have been set previously by the
SetBitmapDimension member function.

Member Functions
CBitmap::CBitmap

CBitmap();

Remarks
Constructs a CBitmap object. The resulting object must be initialized with one of the
initialization member functions.

See Also: CBitmap::LoadBitmap, CBitmap::LoadOEMBitmap,
CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::CreateCompatibleBitmap, CBitmap::CreateDiscardableBitmap

CBitmap::CreateBitmap
BOOL CreateBitmap(int nWidth, int nHeight, UINT nPlanes, UINT nBitcount,
- const void* IpBits);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nWidth Specifies the width (in pixels) of the bitmap.

nHeight Specifies the height (in pixels) of the bitmap.
nPlanes Specifies the number of color planes in the bitmap.
nBitcount Specifies the number of color bits per display pixel.

IpBits Points to a short-integer array that contains the initial bitmap bit values.
If it is NULL, the new bitmap is left uninitialized.

Remarks
Initializes a device-dependent memory bitmap that has the specified width, height,
and bit pattern.

114

CBitmap::CreateBitmapIndirect

For a color bitmap, either the nPlanes or nBitcount parameter should be set to 1. If
both of these parameters are set to 1, CreateBitmap creates a monochrome bitmap.

Although a bitmap cannot be directly selected for a display device, it can be selected
as the current bitmap for a “memory device context” by using CDC::SelectObject
and copied to any compatible device context by using the CDC::BitBlt function.

When you finish with the CBitmap object created by the CreateBitmap function,
first select the bitmap out of the device context, then delete the CBitmap object.

For more information, see the description of the bmBits ficld in the BITMAP
structure. The BITMAP structure is described under the
CBitmap::CreateBitmapIndirect member function.

See Also: CDC::SelectObject, CGdiObject::DeleteObject, CDC::BitBIt,
::CreateBitmap

CBitmap::CreateBitmapIndirect

BOOL CreateBitmapIndirect(LPBITMAP /pBitmap);

Return Value

Nonzero if successful; otherwise 0.

Parameters

Remarks

IpBitmap Points to a BITMAP structure that contains information about the bitmap.

Initializes a bitmap that has the width, height, and bit pattern (if one is specified)
given in the structure pointed to by IpBitmap. Although a bitmap cannot be directly
selected for a display device, it can be selected as the current bitmap for a memory
device context by using CDC::SelectObject and copied to any compatible device
context by using the CDC::BitBlt or CDC::StretchBlt function. (The CDC::PatBIt
function can copy the bitmap for the current brush directly to the display device
context.)

If the BITMAP structure pointed to by the IpBitmap parameter has been filled in by
using the GetObject function, the bits of the bitmap are not specified and the bitmap
is uninitialized. To initialize the bitmap, an application can use a function such as
CDC::BitBlt or ::SetDIBits to copy the bits from the bitmap identified by the first
parameter of CGdiObject::GetObject to the bitmap created by
CreateBitmapIndirect.

When you finish with the CBitmap object created with CreateBitmaplIndirect
function, first select the bitmap out of the device context, then delete the CBitmap
object.

See Also: CDC::SelectObject, CDC::BitBlIt, CGdiObject::DeleteObject,
CGdiObject::GetObject, ::CreateBitmapIndirect

115

CBitmap::CreateCompatibleBitmap

CBitmap::CreateCompatibleBitmap

BOOL CreateCompatibleBitmap(CDC* pDC, int nWidth, int nHeight);

Return Value

Nonzero if successful; otherwise 0.

Parameters

Remarks

pDC Specifies the device context.
nWidth Specifies the width (in pixels) of the bitmap.
nHeight Specifies the height (in pixels) of the bitmap.

Initializes a bitmap that is compatible with the device specified by pDC. The bitmap
has the same number of color planes or the same bits-per-pixel format as the specified
device context. It can be selected as the current bitmap for any memory device that is
compatible with the one specified by pDC.

If pDC is a memory device context, the bitmap returned has the same format as the
currently selected bitmap in that device context. A “memory device context” is a
block of memory that represents a display surface. It can be used to prepare images in
memory before copying them to the actual display surface of the compatible device.

When a memory device context is created, GDI automatically selects a monochrome
stock bitmap for it.

Since a color memory device context can have either color or monochrome bitmaps
selected, the format of the bitmap returned by the CreateCompatibleBitmap function
is not always the same; however, the format of a compatible bitmap for a nonmemory
device context is always in the format of the device.

When you finish with the CBitmap object created with the
CreateCompatibleBitmap function, first select the bitmap out of the device context,
then delete the CBitmap object.

See Also: ::CreateCompatibleBitmap, CGdiObject::DeleteObject

CBitmap::CreateDiscardableBitmap

BOOL CreateDiscardableBitmap(CDC* pDC, int nWidth, int nHeight);

Return Value

Nonzero if successful; otherwise 0.

Parameters

116

pDC Specifies a device context.
nWidth Specifies the width (in bits) of the bitmap.

CBitmap::GetBitmap
nHeight Specifies the height (in bits) of the bitmap.

Remarks
Initializes a discardable bitmap that is compatible with the device context identified
by pDC. The bitmap has the same number of color planes or the same bits-per-pixel
format as the specified device context. An application can select this bitmap as the
current bitmap for a memory device that is compatible with the one specified by pDC.

Windows can discard a bitmap created by this function only if an application has
not selected it into a display context. If Windows discards the bitmap when it is not
selected and the application later attempts to select it, the CDC::SelectObject
function will return NULL.

When you finish with the CBitmap object created with the CreateDiscardableBitmap
function, first select the bitmap out of the device context, then delete the CBitmap
object.

See Also: ::CreateDiscardableBitmap, CGdiObject::DeleteObject

CBitmap::FromHandle

static CBitmap* PASCAL FromHandle(HBITMAP hBitmap);

Return Value
A pointer to a CBitmap object if successful; otherwise NULL.

Parameters
hBitmap Specifies a Windows GDI bitmap.

Remarks
Returns a pointer to a CBitmap object when given a handle to a Windows GDI
bitmap. If a CBitmap object is not already attached to the handle, a temporary
CBitmap object is created and attached. This temporary CBitmap object is valid
only until the next time the application has idle time in its event loop, at which time
all temporary graphic objects are deleted. Another way of saying this is that the
temporary object is only valid during the processing of one window message.

CBitmap::GetBitmap
int GetBitmap(BITMAP* pBitMap);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pBitMap Pointer to a BITMAP structure. Must not be NULL.

117

CBitmap::GetBitmapBits

Remarks
Call this member function to retrieve information about a CBitmap object. This
information is returned in the BITMAP structure referred to by pBitmap.

See Also: BITMAP

CBitmap::GetBitmapBits
DWORD GetBitmapBits(DWORD dwCount, LPVOID I[pBits) const;

Return Value
The actual number of bytes in the bitmap, or O if there is an error.

Parameters
dwCount Specifies the number of bytes to be copied.

IpBits Points to the buffer that is to receive the bitmap. The bitmap is an array
of bytes. The bitmap byte array conforms to a structure where horizontal scan
lines are multiples of 16 bits.

Remarks
Copies the bit pattern of the CBitmap object into the buffer that is pointed to by
IpBits. The dwCount parameter specifies the number of bytes to be copied to the
buffer. Use CGdiObject::GetObject to determine the correct dwCount value for
the given bitmap.

See Also: CGdiObject::GetObject, ::GetBitmapBits

CBitmap::GetBitmapDimension
CSize GetBitmapDimension() const;

Return Value
The width and height of the bitmap, measured in 0.1-millimeter units. The height
is in the cy member of the CSize object, and the width is in the ¢x member. If the
bitmap width and height have not been set by using SetBitmapDimension, the
return value is 0.

Remarks
Returns the width and height of the bitmap. The height and width are assumed to
have been set previously by using the SetBitmapDimension member function.

See Also: CBitmap::SetBitmapDimension

118

CBitmap::LoadMappedBitmap

CBitmap::LoadBitmap

BOOL LoadBitmap(LPCTSTR IpszResourceName);
BOOL LoadBitmap(UINT nIDResource);

Return Value

Nonzero if successful; otherwise 0.

Parameters

Remarks

IpszResourceName Points to a null-terminated string that contains the name of
the bitmap resource.

nIDResource Specifies the resource ID number of the bitmap resource.

Loads the bitmap resource named by /pszResourceName or identified by the ID
number in nIDResource from the application’s executable file. The loaded bitmap is
attached to the CBitmap object.

If the bitmap identified by IpszResourceName does not exist or if there is insufficient
memory to load the bitmap, the function returns 0.

An application must call the CGdiObject::DeleteObject function to delete any
bitmap loaded by the LoadBitmap function.

The following bitmaps were added to Windows versions 3.1 and later:

OBM_UPARRROWI
OBM_DNARROWI
OBM_RGARROWI
OBM_LFARROWI

These bitmaps are not found in device drivers for Windows versions 3.0 and earlier.
For a complete list of bitmaps and a display of their appearance, see the Win32
Programmer’s Reference.

See Also: CBitmap::LoadOEMBitmap, ::LoadBitmap,
CGdiObject::DeleteObject

CBitmap::LoadMappedBitmap

BOOL LoadMappedBitmap(UINT rnIDBitmap, UINT nFlags = 0,
« LPCOLORMAP ipColorMap = NULL, int nMapSize = 0);

Return Value

Nonzero if successful; otherwise 0.

Parameters

nIDBitmap The ID of the bitmap resource.
nFlags A flag for a bitmap. Can be zero or CMB_MASKED.

119

CBitmap::LoadOEMBitmap

IpColorMap A pointer to a COLORMAP structure that contains the color
information needed to map the bitmaps. If this parameter is NULL, the function
uses the default color map.

nMapSize The number of color maps pointed to by IpColorMap.

Remarks
Call this member function to load a bitmap and map the colors to the current system
colors. By default, LoadMappedBitmap will map colors commonly used in button

glyphs.

For information about creating a mapped bitmap, see the Windows function
::CreateMappedBitmap and the COLORMAP structure in the Win32
Programmer’s Reference.

See Also: ::LoadBitmap, ::CreateMappedBitmap

CBitmap::LoadOEMBitmap

BOOL LoadOEMBitmap(UINT nIDBitmap);

Return Value
Nongzero if successful; otherwise 0.

Parameters
nIDBitmap 1D number of the predefined Windows bitmap. The possible values are
listed below from WINDOWS H:

OBM_BTNCORNERS OBM_OLD_RESTORE

OBM_BTSIZE OBM_OLD_RGARROW
OBM_CHECK OBM_OLD_UPARROW
OBM_CHECKBOXES OBM_OLD_ZOOM
OBM_CLOSE OBM_REDUCE
OBM_COMBO OBM_REDUCED
OBM_DNARROW OBM_RESTORE
OBM_DNARROWD OBM_RESTORED
OBM_DNARROWI OBM_RGARROW
OBM_LFARROW OBM_RGARROWD
OBM_LFARROWD OBM_RGARROWI
OBM_LFARROWI OBM_SIZE
OBM_MNARROW OBM_UPARROW
OBM_OLD_CLOSE OBM_UPARROWD

OBM_OLD_DNARROW OBM_UPARROW
OBM_OLD_LFARROW OBM_ZOOM
OBM_OLD_REDUCE OBM_ZOOMD

120

CBitmap::SetBitmapBits

Remarks
" Loads a predefined bitmap used by Windows.

Bitmap names that begin with OBM_OLD represent bitmaps used by Windows
versions prior to 3.0.

Note that the constant OEMRESOQURCE must be defined before including
WINDOWS.H in order to use any of the OBM_ constants.

See Also: CBitmap::LoadBitmap, ::LoadBitmap

CBitmap::operator HBITMAP

operator HBITMAP() const;

Return Value
If successful, a handle to the Windows GDI object represented by the CBitmap
object; otherwise NULL.

Remarks
Use this operator to get the attached Windows GDI handle of the CBitmap object.
This operator is a casting operator, which supports direct use of an HBITMAP
object.

For more information about using graphic objects, see “Graphic Objects” in the
Win32 Programmer’s Reference.

CBitmap::SetBitmapBits
DWORD SetBitmapBits(DWORD dwCount, const void* IpBits);

Return Value
The number of bytes used in setting the bitmap bits; 0 if the function fails.

Parameters
dwCount Specifies the number of bytes pointed to by IpBits.

IpBits Points to the BYTE array that contains the bit values to be copied to the
CBitmap object. :

Remarks
Sets the bits of a bitmap to the bit values given by IpBits.

See Also: ::SetBitmapBits

121

CBitmap::SetBitmapDimension

CBitmap::SetBitmapDimension
CSize SetBitmapDimension(int nWidth, int nHeight);

Return Value
The previous bitmap dimensions. Height is in the cy member variable of the
CSize object, and width is in the cx member variable.

Parameters ‘
nWidth Specifies the width of the bitmap (in 0.1-millimeter units).

nHeight Specifies the height of the bitmap (in 0.1-millimeter units).

Remarks
Assigns a width and height to a bitmap in 0.1-millimeter units. The GDI does
not use these values except to return them when an application calls the
GetBitmapDimension member function.

See Also: CBitmap::GetBitmapDimension

122

CBitmapButton

CBitmapButton
Cobjest ______1]

CCmdTarget _

CBitmautton]] .‘

Use the CBitmapButton class to create pushbutton controls labeled with bitmapped
images instead of text. CBitmapButton objects contain up to four bitmaps, which
contain images for the different states a button can assume: up (or normal), down
(or selected), focused, and disabled. Only the first bitmap is required; the others

are optional.

Bitmap-button images include the border around the image as well as the image itself.
The border typically plays a part in showing the state of the button. For example, the
bitmap for the focused state usually is like the one for the up state but with a dashed
rectangle inset from the border or a thick solid line at the border. The bitmap for the
disabled state usually resembles the one for the up state but has lower contrast (like a
dimmed or grayed menu selection).

These bitmaps can be of any size, but all are treated as if they were the same size as
the bitmap for the up state.

Various applications demand different combinations of bitmap images:

Up Down Focused Disabled Application

X Bitmap

X X Button without WS_TABSTOP style

X X Dialog button with all states

X X X Dialog button with WS_TABSTOP style

When creating a bitmap-button control, set the BS_OWNERDRAW style to

specify that the button is owner-drawn. This causes Windows to send the
WM_MEASUREITEM and WM_DRAWITEM messages for the button; the
framework handles these messages and manages the appearance of the button for you.

To create a bitmap-button control in a window’s client area, follow these steps:

1. Create one to four bitmap images for the button.

2. Construct the CBitmapButton object.

3. Call the Create function to create the Windows button control and attach it to the
CBitmapButton object.

123

CBitmapButton

4. Call the LoadBitmaps member function to load the bitmap resources after the
bitmap button is constructed.

To include a bitmap-button control in a dialog box, follow these steps:

1. Create one to four bitmap images for the button.

2. Create a dialog template with an owner-draw button positioned where you want the
bitmap button. The size of the button in the template does not matter.

3. Set the button’s caption to a value such as “MYIMAGE” and define a symbol for
the button such as IDC_MYIMAGE.

4. In your application’s resource script, give each of the images created for the button
an ID constructed by appending one of the letters “U,” “D,” “F,” or “X” (for up,
down, focused, and disabled) to the string used for the button caption in step 3. For
the button caption “MYIMAGE,” for example, the IDs would be “MYIMAGEU,”
“MYIMAGED,” “MYIMAGEFE,” and “MYIMAGEX.” You must specify the ID
of your bitmaps within double quotes. Otherwise the resource editor will assign
an integer to the resource and MFC will fail when loading the image.

5. In your application’s dialog class (derived from CDialog), add a CBitmapButton
member object.

6. In the CDialog object’s OnInitDialog routine, call the CBitmapButton object’s
AutoLoad function, using as parameters the button’s control ID and the CDialog
object’s this pointer.

If you want to handle Windows notification messages, such as BN_CLICKED, sent
by a bitmap-button control to its parent (usually a class derived from CDialog), add
to the CDialog-derived object a message-map entry and message-handler member
function for each message. The notifications sent by a CBitmapButton object are the
same as those sent by a CButton object.

The class CToolBar takes a different approach to bitmap buttons.

For more information on CBitmapButton, see “Control Topics” in Visual C++
Programmer’s Guide online.

#include <afxext.h>

CBitmapButton Class Members

124

Construction

CBitmapButton Constructs a CBitmapButton object.

LoadBitmaps Initializes the object by loading one or more named bitmap resources from
the application’s resource file and attaching the bitmaps to the object.

AutoLoad Associates a button in a dialog box with an object of the CBitmapButton
class, loads the bitmap(s) by name, and sizes the button to fit the bitmap.

CBitmapButton::LoadBitmaps

Operations

SizeToContent Sizes the button to accommodate the bitmap.

Member Functions
CBitmapButton::AutoLoad

BOOL AutoLoad(UINT nID, CWnd* pParent);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nID The button’s control ID.

pParent Pointer to the object that owns the button.
Remarks

Associates a button in a dialog box with an object of the CBitmapButton class,
loads the bitmap(s) by name, and sizes the button to fit the bitmap.

Use the AutoLoad function to initialize an owner-draw button in a dialog box
as a bitmap button. Instructions for using this function are in the remarks for the
CBitmapButton class.

See Also: CBitmapButton::LoadBitmaps, CBitmapButton::SizeToContent

CBitmapButton::CBitmapButton

CBitmapButton();

Remarks
Creates a CBitmapButton object.

After creating the C++ CBitmapButton object, call CButton::Create to create the
Windows button control and attach it to the CBitmapButton object.

See Also: CBitmapButton::LoadBitmaps, CBitmapButton::AutoLoad,
CBitmapButton::SizeToContent, CButton::Create

CBitmapButton::L.oadBitmaps

BOOL LoadBitmaps(LPCTSTR /pszBitmapResource, LPCTSTR
w IpszBitmapResourceSel = NULL, LPCTSTR IpszBitmapResourceFocus = NULL,
» LPCTSTR IpszBitmapResourceDisabled = NULL);

125

CBitmapButton::SizeToContent

BOOL LoadBitmaps(UINT nIDBitmapResource, UINT nIDBitmapResourceSel = 0,
« UINT niDBitmapResourceFocus = 0, UINT nIDBitmapResourceDisabled = 0);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpszBitmapResource Points to the null-terminated string that contains the name of the
bitmap for a bitmap button’s normal or “up” state. Required.

IpszBitmapResourceSel Points to the null-terminated string that contains the name of
the bitmap for a bitmap button’s selected or “down” state. May be NULL.

IpszBitmapResourceFocus Points to the null-terminated string that contains the name
of the bitmap for a bitmap button’s focused state. May be NULL.

IpszBitmapResourceDisabled Points to the null-terminated string that contains the
name of the bitmap for a bitmap button’s disabled state. May be NULL.

nIDBitmapResource Specifies the resource ID number of the bitmap resource for a
bitmap button’s normal or “up” state. Required.

nIDBitmapResourceSel Specifies the resource ID number of the bitmap resource for
a bitmap button’s selected or “down” state. May be 0.

nIDBitmapResourceFocus Specifies the resource ID number of the bitmap resource
for a bitmap button’s focused state. May be 0.

nIDBitmapResourceDisabled Specifies the resource ID number of the bitmap
resource for a bitmap button’s disabled state. May be 0.

Remarks
Use this function when you want to load bitmap images identified by their resource
names or ID numbers, or when you cannot use the AutoLoad function because, for
example, you are creating a bitmap button that is not part of a dialog box.

See Also: CBitmapButton::AutoLoad, CBitmapButton::SizeToContent,
CButton::Create, CBitmap::LoadBitmap

CBitmapButton::SizeToContent

void SizeToContent();

Remarks
Call this function to resize a bitmap button to the size of the bitmap.

See Also: CBitmapButton::LoadBitmaps, CBitmapButton::AutoLoad

126

CBrush

CBrush

CGdiObject

CBrush

The CBrush class encapsulates a Windows graphics device interface (GDI) brush.
To use a CBrush object, construct a CBrush object and pass it to any CDC member
function that requires a brush.

Brushes can be solid, hatched, or patterned.

For more information on CBrush, see “Graphic Objects” in Visual C++
Programmer’s Guide online.

#include <afxwin.h>

See Also: CBitmap, CDC

CBrush Class Members

Construction

CBrush Constructs a CBrush object.

Initialization

CreateSolidBrush Initializes a brush with the specified solid color.

CreateHatchBrush Initializes a brush with the specified hatched pattern and color.

CreateBrushIndirect Initializes a brush with the style, color, and pattern specified in
a LOGBRUSH structure.

CreatePatternBrush Initializes a brush with a pattern specified by a bitmap.

CreateDIBPatternBrush

Initializes a brush with a pattern specified by a
device-independent bitmap (DIB).

CreateSysColorBrush Creates a brush that is the default system color.

Operations

FromHandle Returns a pointer to a CBrush object when given a handle to a
Windows HBRUSH object.

Attributes

GetLogBrush Gets a LOGBRUSH structure.

operator HBRUSH Returns the Windows handle attached to the CBrush object.

127

CBrush::CBrush

Member Functions
CBrush::CBrush

CBrush();

CBrush(COLORREF crColor);
throw(CResourceException);

CBrush(int nindex, COLORREF crColor);
throw(CResourceException);

CBrush(CBitmap* pBitmap);
throw(CResourceException);

Parameters

Remarks

128

crColor Specifies the foreground color of the brush as an RGB color. If the brush is
hatched, this parameter specifies the color of the hatching.

nlndex Specifies the hatch style of the brush. It can be any one of the following
values:

e HS_BDIAGONAL Downward hatch (left to right) at 45 degrees
e HS_CROSS Horizontal and vertical crosshatch

o HS_DIAGCROSS Crosshatch at 45 degrees

e HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

e HS_HORIZONTAL Horizontal hatch

e HS_VERTICAL Vertical hatch

pBitmap Points to a CBitmap object that specifies a bitmap with which the brush
paints.

Has four overloaded constructors. The constructor with no arguments constructs an
uninitialized CBrush object that must be initialized before it can be used.

If you use the constructor with no arguments, you must initialize the resulting CBrush
object with CreateSolidBrush, CreateHatchBrush, CreateBrushIndirect,
CreatePatternBrush, or CreateDIBPatternBrush. If you use one of the constructors
that takes arguments, then no further initialization is necessary. The constructors with
arguments can throw an exception if errors are encountered, while the constructor
with no arguments will always succeed.

The constructor with a single COLORREF parameter constructs a solid brush with
the specified color. The color specifies an RGB value and can be constructed with the
RGB macro in WINDOWS.H.

CBrush::CreateDIBPatternBrush

The constructor with two parameters constructs a hatch brush. The n/ndex parameter
specifies the index of a hatched pattern. The crColor parameter specifies the color.

The constructor with a CBitmap parameter constructs a patterned brush. The
parameter identifies a bitmap. The bitmap is assumed to have been created by
using CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap. The minimum
size for a bitmap to be used in a fill pattern is 8 pixels by 8 pixels.

See Also: CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CBrush::CreateBrushIndirect, CBrush::CreatePatternBrush,
CBrush::CreateDIBPatternBrush, CGdiObject::CreateStockObject

CBrush::CreateBrushIlndirect

BOOL CreateBrushIndirect(const LOGBRUSH?* IpLogBrush);

Return Value

Nonzero if the function is successful; otherwise 0.

Parameters

Remarks

IpLogBrush Points to a LOGBRUSH structure that contains information about the
brush.

Initializes a brush with a style, color, and pattern specified in a LOGBRUSH
structure. The brush can subsequently be selected as the current brush for any
device context.

A brush created using a monochrome (1 plane, 1 bit per pixel) bitmap is drawn using
the current text and background colors. Pixels represented by a bit set to O will be
drawn with the current text color. Pixels represented by a bit set to 1 will be drawn
with the current background color.

See Also: CBrush::CreateDIBPatternBrush, CBrush::CreatePatternBrush,
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CGdiObject::CreateStockObject, CGdiObject::DeleteObject,
::CreateBrushIndirect

CBrush::CreateDIBPatternBrush

BOOL CreateDIBPatternBrush(HGLOBAL hPackedDIB, UINT nUsage);
BOOL CreateDIBPatternBrush(const void* IpPackedDIB, UINT nUsage);

Return Value

Nonzero if successful; otherwise 0.

129

CBrush::CreateDIBPatternBrush

Parameters

Remarks

130

hPackedDIB Identifies a global-memory object containing a packed
device-independent bitmap (DIB).

nUsage Specifies whether the bmiColors[] fields of the BITMAPINFOQ data
structure (a part of the “packed DIB”) contain explicit RGB values or indices into
the currently realized logical palette. The parameter must be one of the following
values:

o DIB_PAL_COLORS The color table consists of an array of 16-bit indexes.
e DIB_RGB_COLORS The color table contains literal RGB values.

The following value is available only in the second version of this member
function:

e DIB_PAL_INDICES No color table is provided. The bitmap itself contains
indices into the logical palette of the device context into which the brush is to be
selected.

IpPackedDIB Points to a packed DIB consisting of a BITMAPINFO structure
immediately followed by an array of bytes defining the pixels of the bitmap.

Initializes a brush with the pattern specified by a device-independent bitmap (DIB).
The brush can subsequently be selected for any device context that supports raster
operations.

The two versions differ in the way you handle the DIB:

¢ In the first version, to obtain a handle to the DIB you call the Windows
::GlobalAlloc function to allocate a block of global memory and then fill the
memory with the packed DIB.

o In the second version, it is not necessary to call ::GlobalAlloc to allocate memory
for the packed DIB.

A packed DIB consists of a BITMAPINFO data structure immediately followed by
the array of bytes that defines the pixels of the bitmap. Bitmaps used as fill patterns
should be 8 pixels by 8 pixels. If the bitmap is larger, Windows creates a fill pattern
using only the bits corresponding to the first 8 rows and 8 columns of pixels in the
upper-left corner of the bitmap.

‘When an application selects a two-color DIB pattern brush into a monochrome
device context, Windows ignores the colors specified in the DIB and instead displays
the pattern brush using the current text and background colors of the device context.
Pixels mapped to the first color (at offset O in the DIB color table) of the DIB are
displayed using the text color. Pixels mapped to the second color (at offset 1 in the
color table) are displayed using the background color.

CBrush::CreateHatchBrush

For information about using the following Windows functions, see the Win32 SDK
Programmer’s Reference:

¢ ::CreateDIBPatternBrush (This function is provided only for compatibility
with applications written for versions of Windows earlier than 3.0; use the
::CreateDIBPatternBrushPt function.)

¢ ::CreateDIBPatternBrushPt (This function should be used for Win32-based
applications.)

o ::GlobalAlloc

See Also: CBrush::CreatePatternBrush, CBrush::CreateBrushIndirect,
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CGdiObject::CreateStockObject, CDC::SelectObject,
CGdiObject::DeleteObject, CDC::GetBrushOrg, CDC::SetBrushOrg

CBrush::CreateHatchBrush

BOOL CreateHatchBrush(int nlndex, COLORREF crColor);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nindex Specifies the hatch style of the brush. It can be any one of the following
values:

e HS_BDIAGONAL Downward hatch (left to right) at 45 degrees
e HS_CROSS Horizontal and vertical crosshatch

e HS_DIAGCROSS Crosshatch at 45 degrees

o HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

e HS_HORIZONTAL Horizontal hatch

o HS_VERTICAL Vertical hatch

crColor Specifies the foreground color of the brush as an RGB color (the color of
the hatches). See COLORREF in the Win32 SDK documentation for more
information.

Remarks
Initializes a brush with the specified hatched pattern and color. The brush can
subsequently be selected as the current brush for any device context.

See Also: CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush::CreatePatternBrush, CBrush::CreateSolidBrush,
CGdiObject::CreateStockObject, ::CreateHatchBrush

131

CBrush::CreatePatternBrush

CBrush::CreatePatternBrush

BOOL CreatePatternBrush(CBitmap* pBitmap);

Return Value
Nonzero if successful; otherwise 0.

Parameters
pBitmap Identifies a bitmap.

Remarks
Initializes a brush with a pattern specified by a bitmap. The brush can subsequently be
selected for any device context that supports raster operations. The bitmap identified
by pBitmap is typically initialized by using the CBitmap::CreateBitmap,
CBitmap::CreateBitmapIndirect, CBitmap::LoadBitmap, or
CBitmap::CreateCompatibleBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
Windows will only use the bits corresponding to the first 8 rows and columns of
pixels in the upper-left corner of the bitmap.

A pattern brush can be deleted without affecting the associated bitmap. This means the
bitmap can be used to create any number of pattern brushes.

A brush created using a monochrome bitmap (1 color plane, 1 bit per pixel) is drawn
using the current text and background colors. Pixels represented by a bit set to O are
drawn with the current text color. Pixels represented by a bit set to 1 are drawn with
the current background color.

For information about using ::CreatePatternBrush, a Windows function, see the
Win32 SDK Programmer’s Reference.

See Also: CBitmap, CBrush::CreateBrushIndirect,
CBrush::CreateDIBPatternBrush, CBrush::CreateHatchBrush,
CBrush::CreateSolidBrush, CGdiObject::CreateStockObject

CBrush::CreateSolidBrush

BOOL CreateSolidBrush(COLORREF crColor);

Return Value
Nonzero if successful; otherwise 0.

Parameters
crColor A COLORRETF structure that specifies the color of the brush. The color
specifies an RGB value and can be constructed with the RGB macro in
WINDOWS.H.

132

CBrush::CreateSysColorBrush

Remarks '
Initializes a brush with a specified solid color. The brush can subsequently be selected
as the current brush for any device context.

When an application has finished using the brush created by CreateSolidBrush, it
should select the brush out of the device context.

See Also: CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreatePatternBrush, ::CreateSolidBrush,
CGdiObject::DeleteObject

CBrush::CreateSysColorBrush

BOOL CreateSysColorBrush(int nindex);

Return Value
Nonzero if successful; otherwise 0.

Parameters
nlndex Specifies the hatch style of the brush. It can be any one of the following
values:

o HS_BDIAGONAL Downward hatch (left to right) at 45 degrees
¢ HS_CROSS Horizontal and vertical crosshatch

e HS_DIAGCROSS Crosshatch at 45 degrees

o HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

e HS_HORIZONTAL Horizontal hatch

e HS VERTICAL Vertical hatch

Remarks
Initializes a brush color. The brush can subsequently be selected as the current brush
for any device context.

When an application has finished using the brush created by CreateSysColorBrush,
it should select the brush out of the device context.

See Also: CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreatePatternBrush,
::CreateSolidBrush, CBrush::CreateSolidBrush, ::GetSysColorBrush,
CGdiObject::DeleteObject

133

CBrush::FromHandle

CBrush::FromHandle

static CBrush* PASCAL FromHandle(HBRUSH %iBrush);

Return Value
A pointer to a CBrush object if successful; otherwise NULL.

Parameters
hBrush HANDLE to a Windows GDI brush.

Remarks
Returns a pointer to a CBrush object when given a handle to a Windows HBRUSH
object. If a CBrush object is not already attached to the handle, a temporary CBrush
object is created and attached. This temporary CBrush object is valid only until the
next time the application has idle time in its event loop. At this time, all temporary
graphic objects are deleted. In other words, the temporary object is valid only during
the processing of one window message.

For more information about using graphic objects, see “Graphic Objects” in the
Win32 SDK Programmer’s Reference.

CBrush::GetLogBrush

int GetLogBrush(LOGBRUSH* pLogBrush);

Return Value
If the function succeeds, and pLogBrush is a valid pointer, the return value is the
number of bytes stored into the buffer.

If the function succeeds, and pLogBrush is NULL, the return value is the number
of bytes required to hold the information the function would store into the buffer.

If the function fails, the return value is O.

Parameters

pLogBrush Points to a LOGBRUSH structure that contains information about the
brush.

Remarks
Call this member function to retrieve the LOGBRUSH structure. The LOGBRUSH
structure defines the style, color, and pattern of a brush.

For example, call GetLogBrush to match the particular color or pattern of a bitmap.

Example
LOGBRUSH Tlogbrush;
brushExisting.GetLogBrush(&logbrush);
CBrush brushOther(logbrush.1bColor);

See Also: LOGBRUSH, ::GetObject

134

CBrush::operator HBRUSH

CBrush::operator HBRUSH

operator HBRUSH() const;

Return Value

If successful, a handle to the Windows GDI object represented by the CBrush object;
otherwise NULL.

Remarks
Use this operator to get the attached Windows GDI handle of the CBrush object. This
operator is a casting operator, which supports direct use of an HBRUSH object.

For more information about using graphic objects, see “Graphic Objects” in the
Win32 SDK Programmer’s Reference.

135

CButton

CButton

136

The CButton class provides the functionality of Windows button controls. A button
control is a small, rectangular child window that can be clicked on and off. Buttons
can be used alone or in groups and can either be labeled or appear without text. A
button typically changes appearance when the user clicks it.

Typical buttons are the check box, radio button, and pushbutton. A CButton object
can become any of these, according to the button style specified at its initialization by
the Create member function.

In addition, the CBitmapButton class derived from CButton supports creation of
button controls labeled with bitmap images instead of text. A CBitmapButton can
have separate bitmaps for a button’s up, down, focused, and disabled states.

You can create a button control either from a dialog template or directly in your code.
In both cases, first call the constructor CButton to construct the CButton object; then
call the Create member function to create the Windows button control and attach it to
the CButton object.

Construction can be a one-step process in a class derived from CButton. Write a
constructor for the derived class and call Create from within the constructor.

If you want to handle Windows notification messages sent by a button control to
its parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:
ON_Notification(id, memberFxn)

where id specifies the child window ID of the control sending the notification and
memberFxn is the name of the parent member function you have written to handle
the notification.

The parent’s function prototype is as follows:
afx_msg void memberFxn();

Potential message-map entries are as follows:

CButton

Map entry Sent to parent when...

ON_BN_CLICKED
ON_BN_DOUBLECLICKED

The user clicks a button.
The user double-clicks a button.

If you create a CButton object from a dialog resource, the CButton object is
automatically destroyed when the user closes the dialog box.

If you create a CButton object within a window, you may need to destroy it. If you
create the CButton object on the heap by using the new function, you must call delete
on the object to destroy it when the user closes the Windows button control. If you
create the CButton object on the stack, or it is embedded in the parent dialog object,

it is destroyed automatically.

#include <afxwin.h>

See Also: CWnd, CComboBox, CEdit, CListBox, CScrollBar, CStatic,
CBitmapButton, CDialog

CButton Class Members

Construction

CButton Constructs a CButton object.

Initialization

Create Creates the Windows button control and attaches it to the CButton object.

Operations

GetState Retrieves the check state, highlight state, and focus state of a button
control.

SetState Sets the highlighting state of a button control.

GetCheck Retrieves the check state of a button control.

SetCheck Sets the check state of a button control.

GetButtonStyle Retrieves information about the button control style.

SetButtonStyle Changes the style of a button.

Getlcon Retrieves the handle of the icon previously set with SetIcon.

SetIcon Specifies an icon to be displayed on the button.

GetBitmap Retrieves the handle of the bitmap previously set with SetBitmap.

SetBitmap Specifies a bitmap to be displayed on the button.

GetCursor Retrieves the handle of the cursor image previously set with SetCursor.

SetCursor Specifies a cursor image to be displayed on the button.

Overridables

Drawltem Override to draw an owner-drawn CButton object.

137

CButton::CButton

Member Functions
CButton::CButton

CButton();

Remarks
Constructs a CButton object.

See Also: CButton::Create

CButton::Create

BOOL Create(LPCTSTR /pszCaption, DWORD dwStyle,
< const RECT& rect, CWnd* pParentWnd, UINT nID);

Return Value
Nonzero if successful; otherwise 0.

Parameters
IpszCaption Specifies the button control’s text.

dwStyle Specifies the button control’s style. Apply any combination of button styles
to the button.

rect Specifies the button control’s size and position. It can be either a CRect object
or a RECT structure.

pParentWnd Specifies the button control’s parent window, usually a CDialog.
It must not be NULL.

nID Specifies the button control’s ID.
Remarks
You construct a CButton object in two steps. First call the constructor, then call

Create, which creates the Windows button control and attaches it to the CButton
object.

If the WS_VISIBLE style is given, Windows sends the button control all the
messages required to activate and show the button.

Apply the following window styles to a button control:

o WS_CHILD Always
e WS_VISIBLE Usually
o WS_DISABLED Rarely

138

CButton::GetButtonStyle

e WS_GROUP To group controls
e WS_TABSTOP To include the button in the tabbing order

See Also: CButton::CButton

CButton::Drawltem

virtual void Drawltem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters
IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure. The
structure contains information about the item to be drawn and the type of drawing
required.

Remarks
Called by the framework when a visual aspect of an owner-drawn button has changed.
An owner-drawn button has the BS_OWNERDRAW style set. Override this member
function to implement drawing for an owner-drawn CButton object. The application
should restore all graphics device interface (GDI) objects selected for the display
context supplied in [pDrawltemStruct before the member function terminates.

Also see the BS_ style values.
See Also: CButton::SetButtonStyle, WM_DRAWITEM

CButton::GetBitmap

HBITMAP GetBitmap() const;

Return Value
A handle to a bitmap. NULL if no bitmap is previously specified.

Remarks
Call this member function to get the handle of a bitmap, previously set with
SetBitmap, that is associated with a button.

See Also: CButton::SetBitmap, CBitmapButton::LoadBitmaps, “Bitmaps” online

CButton::GetButtonStyle

UINT GetButtonStyle() const;

Return Value
Returns the button styles for this CButton object.

Remarks
This function returns only the BS_ style values, not any of the other window styles.

139

CButton::GetCheck

CButton::GetCheck

int GetCheck() const;

Return Value
The return value from a button control created with the BS_ AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUTO3STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style is one of the following values:

Value Meaning

0 Button state is unchecked.

1 Button state is checked.

2 Button state is indeterminate (applies only if the button has the BS_3STATE

or BS_AUTO3STATE style).
If the button has any other style, the return value is O.

Remarks
Retrieves the check state of a radio button or check box.

See Also: CButton::GetState, CButton::SetState, CButton::SetCheck,
BM_GETCHECK

CButton::GetCursor

HCURSOR GetCursor();

Return Value
A handle to a cursor image. NULL if no cursor is previously specified.

Remarks
Call this member function to get the handle of a cursor, previously set with
SetCursor, that is associated with a button.

See Also: CButton::SetCursor, CBitmapButton::LoadBitmaps, “Bitmaps” online

CButton::Getlcon

HICON Getlcon() const;

Return Value
A handle to an icon. NULL if no icon is previously specified.

Remarks
Call this member function to get the handle of an icon, previously set with SetIcon,
that is associated with a button.

See Also: CButton::SetIcon, CBitmapButton::LoadBitmaps, “Bitmaps” online

140

CButton::GetState

UINT GetState() const;

Return Value
Specifies the current state of the button control. You can use the following masks
against the return value to extract information about the state:

Mask Meaning

0x0003 Specifies the check state (radio buttons and check boxes only). A 0 indicates the
button is unchecked. A 1 indicates the button is checked. A radio button is
checked when it contains a bullet (o). A check box is checked when it contains
an X. A 2 indicates the check state is indeterminate (three-state check boxes
only). The state of a three-state check box is indeterminate when it contains a
halftone pattern.

0x0004 Specifies the highlight state. A nonzero value indicates that the button is
highlighted. A button is highlighted when the user clicks and holds the left
mouse button. The highlighting is removed when the user releases the mouse
button.

0x0008 Specifies the focus state. A nonzero value indicates that the button has the focus.

Remarks
Retrieves the state of a radio button or check box.

See Also: CButton::GetCheck, CButton::SetCheck, CButton::SetState,
BM_GETSTATE

CButton::SetBitmap

CButton::SetBitmap

HBITMAP SetBitmap(HBITMAP hBitmap);

Return Value
The handle of a bitmap previously associated with the button.

Parameters _
hBitmap The handle of a bitmap.

Remarks
Call this member function to associate a new bitmap with the button.

The bitmap will be automatically placed on the face of the button, centered by default.

If the bitmap is too large for the button, it will be clipped on either side. You can
choose other alignment options, including the following:

e BS_TOP
e BS_LEFT
e BS_RIGHT

i

CButton::SetButtonStyle

e BS_CENTER

¢ BS_BOTTOM

e BS_VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetBitmap uses only

one bitmap per the button. When the button is pressed, the bitmap appears to shift
down and to the right.

See Also: CButton::GetBitmap, CBitmapButton,
CBitmapButton::LoadBitmaps, “Bitmaps” online

CButton::SetButtonStyle

void SetButtonStyle(UINT nStyle, BOOL bRedraw = TRUE);

Parameters
nStyle Specifies the button style.

bRedraw Specifies whether the button is to be redrawn. A nonzero value redraws the
button. A 0 value does not redraw the button. The button is redrawn by default.

Remarks
Changes the style of a button.

Use the GetButtonStyle member function to retrieve the button style. The low-order
word of the complete button style is the button-specific style.

CButton::SetCheck

void SetCheck(int nCheck);

Parameters
nCheck Specifies the check state. This parameter can be one of the following:
Value Meaning
0 Set the button state to unchecked.
1 Set the button state to checked.
2 Set the button state to indeterminate. This value can be used only if the button

has the BS_3STATE or BS_AUTO3STATE style.

Remarks
Sets or resets the check state of a radio button or check box. This member function
has no effect on a pushbutton.

See Also: CButton::GetCheck, CButton::GetState, CButton::SetState,
BM_SETCHECK

142

CButton::Setlcon

CButton::SetCursor

HCURSOR SetCursor(HCURSOR iCursor);

Return Value
The handle of a cursor previously associated with the button.

Parameters
hCursor The handle of a cursor.

Remarks
Call this member function to associate a new cursor with the button.

The cursor will be automatically placed on the face of the button, centered by
default. If the cursor is too large for the button, it will be clipped on either side.
You can choose other alignment options, including the following:

e BS_TOP

e BS_LEFT

e BS_RIGHT

e BS_CENTER

e BS_BOTTOM

e BS_VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetCursor uses only

one cursor per the button. When the button is pressed, the cursor appears to shift
down and to the right.

See Also: CButton::GetCursor, CBitmapButton::LoadBitmaps, “Bitmaps”
online

CButton::Setlcon

HICON SetIcon(HICON #lcon);

Return Value
The handle of an icon previously associated with the button.

Parameters
hlcon The handle of an icon.

Remarks
Call this member function to associate a new icon with the button.

143

CButton::SetState

The icon will be automatically placed on the face of the button, centered by default.
If the icon is too large for the button, it will be clipped on either side. You can choose
other alignment options, including the following:

¢ BS_TOP

e BS_LEFT

e BS_RIGHT

e BS_CENTER

¢ BS_BOTTOM

e BS_VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, Setlcon uses only one

icon per the button. When the button is pressed, the icon appears to shift down and to
the right.

See Also: CButton::Getlcon, CBitmapButton::LoadBitmaps, “Bitmaps” online

CButton::SetState

void SetState(BOOL bHighlight);

Parameters
bHighlight Specifies whether the button is to be highlighted. A nonzero value
highlights the button; a 0 value removes any highlighting.

Remarks
Sets the highlighting state of a button control.

Highlighting affects the exterior of a button control. It has no effect on the check state
of a radio button or check box.

A button control is automatically highlighted when the user clicks and holds the left
mouse button. The highlighting is removed when the user releases the mouse button.

See Also: CButton::GetState, CButton::SetCheck, CButton::GetCheck,
BM_SETSTATE

144

CByteArray

CByteArray

CObiject]

CByteArray]

The CByteArray class supports dynamic arrays of bytes.

The member functions of CByteArray are similar to the member functions of

class CObArray. Because of this similarity, you can use the CObArray reference
documentation for member function specifics. Wherever you see a CObject pointer
as a function parameter or return value, substitute a BYTE.

CObject* CObArray::GetAt(int <nIndex>) const;
for example, translates to
BYTE CByteArray::GetAt(int <nIndex>) const;

CByteArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of bytes is stored to an archive,
either with the overloaded insertion (<<) operator or with the Serialize member
function, each element is, in turn, serialized.

Note Before using an array, use SetSize to establish its size and allocate memory for it. If you
do not use SetSize, adding elements to your array causes it to be frequently reallocated and
copied. Frequent reallocation and copying are inefficient and can fragment memory.

If you need debug output from individual elements in the array, you must set the depth
of the CDumpContext object to 1 or greater.

For more information on using CByteArray, see the article “Collections” in
Visual C++ Programmer’s Guide online.

#include <afxcoll.h>

See Also: CObArray

CByteArray Class Members

Construction

CByteArray Constructs an empty array for bytes.

Bounds

GetSize Gets the number of elements in this array.
GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this array.

145

CByteArray

146

Operations

FreeExtra Frees all unused memory above the current upper bound.

RemoveAll Removes all the elements from this array.

Element Access

GetAt Returns the value at a given index.

SetAt Sets the value for a given index; array not allowed to grow.

ElementAt Returns a temporary reference to the byte within the array.

GetData Allows access to elements in the array. Can be NULL.

Growing the Array

SetAtGrow Sets the value for a given index; grows the array if necessary.

Add Adds an element to the end of the array; grows the array if necessary.

Append Appends another array to the array; grows the array if necessary.

Copy Copies another array to the array; grows the array if necessary.

Insertion/Removal

InsertAt Inserts an element (or all the elements in another array) at a specified
index.

RemoveAt Removes an element at a specific index.

Operators

operator []

Sets or gets the element at the specified index.

CCachedDataPathProperty

CCachedDataPathProperty

{CObject t]

LlCFlle h
|—LOle Stream File h
’—LCMomker File H

l—} CAsyncMonikerFile H
|—{ CDataPathProperty h
|—| CCachedDataPathProperty h

Class CCachedDataPathProperty implements an OLE control property transferred
asynchronously and cached in a memory file. A memory file is stored in RAM rather
than on disk and is useful for fast temporary transfers.

Along with CAysncMonikerFile and CDataPathProperty,
CCachedDataPathProperty provides functionality for the use of asynchronous
monikers in OLE controls. With CCachedDataPathProperty objects, you to transfer
data asynchronously from a URL or file source and store it in a memory file via the
m_Cache public variable. All the data is stored in the memory file, and there is no
need to override OnDataAvailable unless you want to watch for notifications and
respond. For example, if you are transferring a large .GIF file and want to notify

your control that more data has arrived and it should redraw itself, override
OnDataAvailable to make the notification.

The class CCachedDataPathProperty is derived from CDataPathProperty.

For more information about how to use asynchronous monikers and ActiveX controls
in Internet applications, see the following topics in Visual C++ Programmer’s Guide
online:

o Internet First Steps: ActiveX Controls

¢ Internet First Steps: Asynchronous Monikers

#include <afxctl.h>

See Also: CDataPathProperty

147

CCachedDataPathProperty::m_Cache

CCachedDataPathProperty Class Members

Data Members

m_Cache CMemPFile object in which to cache data.

Data Members
CCachedDataPathProperty::m_Cache

CMemFile m_Cache;

Remarks
Contains the class name of the memory file into which data is cached. A memory file
is stored in RAM rather than on disk.

See Also: CDataPathProperty

148

CCheckListBox

CCheckListBox

[CObject I]
4 CCmdTarget l]
4 CWnd h
HcListBox h
'—(S:CheckListBox h

The CCheckListBox class provides the functionality of a Windows checklist box.
A “checklist box” displays a list of items, such as filenames. Each item in the list has
a check box next to it that the user can check or clear.

CCheckListBox is only for owner-drawn controls because the list contains more

than text strings. At its simplest, a checklist box contains text strings and check boxes,
but you do not need to have text at all. For example, you could have a list of small
bitmaps with a check box next to each item.

To create your own checklist box, you must derive your own class from
CCheckListBox. To derive your own class, write a constructor for the derived class,
then call Create.

If your checklist box is a default checklist box (a list of strings with the default-sized
checkboxes to the left of each), you can use the default CCheckListBox::Drawltem
to draw the checklist box. Otherwise, you must override the
CListBox::Compareltem function and the CCheckListBox::DrawlItem and
CCheckListBox::Measureltem functions.

You can create a checklist box either from a dialog template or directly in your code.
#include <afxwin.h>

See Also: CListBox

CCheckListBox Class Members

Construction
CCheckListBox Constructs a CCheckListBox object.
Create Creates the Windows checklist box and attaches it to the

CCheckListBox object.

149

CCheckListBox::CCheckListBox

Attributes

SetCheckStyle Sets the style of the control’s check boxes.
GetCheckStyle Gets the style of the control’s check boxes.
SetCheck Sets the state of an item’s check box.
GetCheck Gets the state of an item’s check box.
Enable Enables or disables a checklist box item.
IsEnabled Determines whether an item is enabled.

OnGetCheckPosition Called by the framework to get the position
of an item’s check box.

Overridables

Drawltem Called by the framework when a visual aspect
of an owner-draw list box changes.

Measureltem Called by the framework when a list box with
an owner-draw style is created.

Member Functions
CCheckListBox::CCheckListBox

Remarks

150

CCheckListBox();

Constructs a CCheckListBox object.

You construct a CCheckListBox object in two steps. First define a class derived
from CCheckListBox, then call Create, which initializes the Windows checklist
box and attaches it to the CCheckListBox object. For example:

class CMyCheckListBox : public CCheckListBox
{
DECLARE_DYNAMIC(CMyCheckListBox)

// Constructors

public:
CMyCheckListBox();
BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
= UINT nID);

See Also: CCheckListBox::Create

CCheckListBox::Create

CCheckListBox::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

Return Value

Nonzero if successful; otherwise 0.

Parameters

Remarks

dwStyle Specifies the style of the checklist box. The style must be either
LBS_OWNERDRAWFIXED (all items in the list are the same height) or
LBS_OWNERDRAWVARIABLE (items in the list are of varying heights).
This style can be combined with other list-box styles.

rect Specifies the checklist-box size and position. Can be either a CRect object or
a RECT structure.

pParentWnd Specifies the checklist box’s parent window (usually a CDialog object).
It must not be NULL.

nID Specifies the checklist box’s control ID.

You construct a CCheckListBox object in two steps. First define a class derived from
CCheckListBox, then call Create, which initializes the Windows checklist box and
attaches it to the CCheckListBox. See CCheckListBox::CCheckListBox for a
sample.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE,
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the
checklist-box control.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base class.
To extend the default message handling, add a message map to the your derived class
and override the preceding message-handler member functions. Override OnCreate,
for example, to perform needed initialization for a new class.

Apply the following window styles to a checklist-box control:

e WS_CHILD Always

e WS_VISIBLE Usually

o WS_DISABLED Rarely

e WS_VSCROLL To add a vertical scroll bar

o WS_HSCROLL To add a horizontal scroll bar
e WS_GROUP To group controls

e WS_TABSTOP To allow tabbing to this control

See Also: CCheckListBox::CCheckListBox

151

CCheckListBox::Drawltem

CCheckListBox::Drawltem

virtual void DrawItem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters
IpDrawltemStruct A long pointer to a DRAWITEMSTRUCT structure that contains
information about the type of drawing required.

Remarks
Called by the framework when a visual aspect of an owner-drawn checklist box
changes. The itemAction and itemState members of the DRAWITEMSTRUCT
structure define the drawing action that is to be performed.

By default, this function draws a default checkbox list, consisting of a list of strings
each with a default-sized checkbox to the left. The checkbox list size is the one
specified in Create.

Override this member function to implement drawing of owner-draw checklist boxes
that are not the default, such as checklist boxes with lists that aren’t strings, with
variable-height items, or with checkboxes that aren’t on the left. The application
should restore all graphics device interface (GDI) objects selected for the display
context supplied in [pDrawltemStruct before the termination of this member function.

If checklist box items are not all the same height, the checklist box style (specified in
Create) must be LBS_OWNERVARIABLE, and you must override the
Measureltem function.

See Also: CCheckListBox::Create, CCheckListBox::Measureltem

CCheckListBox::Enable

void Enable(int nindex, BOOL bEnabled = TRUE);

Parameters
nindex Index of the checklist box item to be enabled.
bEnabled Specifies whether the item is enabled or disabled.

Remarks
Call this function to enable or disable a checklist box item.

See Also: CCheckListBox::IsEnabled

CCheckListBox::GetCheck

int GetCheck(int nindex);

Return Value
Zero if the item is not checked, 1 if it is checked, and 2 if it is indeterminate.

152

CCheckListBox::Measureltem

Parameters
nIndex Index of the item whose check status is to be retrieved.

Remarks
Call this function to determine the check state of an item.

See Also: CCheckListBox::OnGetCheckPosition, CCheckListBox::SetCheck,
CCheckListBox::SetCheckStyle, CCheckListBox::GetCheckStyle

CCheckListBox::GetCheckStyle

UINT GetCheckStyle();

Return Value
The style of the control’s check boxes.

Remarks
Call this function to get the checklist box’s style. For information on possible styles,
see SetCheckStyle.

See Also: CCheckListBox::OnGetCheckPosition, CCheckListBox::SetCheck,
CCheckListBox::SetCheckStyle, CCheckListBox::GetCheck

CCheckListBox::IsEnabled

BOOL IsEnabled(int nindex);

Return Value
Nonzero if the item is enabled; otherwise O.

Parameters
nlndex Index of the item.

Remarks
Call this function to determine whether an item is enabled.

See Also: CCheckListBox::Enable

CCheckListBox::Measureltem

virtual void Measureltem(LPMEASUREITEMSTRUCT IpMeasureltemStruct);

Parameters
IpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure.

Remarks
Called by the framework when a checklist box with anon-default style is created.

153

CCheckListBox::OnGetCheckPosition

By default, this member function does nothing. Override this member function
and fill in the MEASUREITEMSTRUCT structure to inform Windows of
the dimensions of checklist-box items. If the checklist box is created with the
LBS_OWNERDRAWVARIABLE style, the framework calls this member
function for each item in the list box. Otherwise, this member is called only
once.

See Also: CCheckListBox::Create, CCheckListBox::Drawltem

CCheckListBox::OnGetCheckPosition

virtual CRect OnGetCheckPosition(CRect rectltem, CRect rectCheckBox);

Return Value

The position and size of an item’s check box.

Parameters

Remarks

154

rectltem The position and size of the list item.

rectCheckBox The default position and size of an item’s check box.

The framework calls this function to get the position and size of the check box in
an item.

The default implementation only returns the default position and size of the check
box (rectCheckBox). By default, a check box is aligned in the upper-left corner of
an item and is the standard check box size. There may be cases where you want the
check boxes on the right, or want a larger or smaller check box. In these cases,
override OnGetCheckPosition to change the check box position and size within
the item.

For example, the following function overrides the default and puts the check box
on the right of the item, makes it the same height as the item (minus a pixel offset
at the top and bottom), and makes it the standard check box width:

CRect CMyCheckListBox::0nGetCheckPosition(CRect rectltem,

» CRect rectCheckBox)

{
CRect rectMyCheckBox;
rectMyCheckBox.top = rectItem.top -1;
rectMyCheckBox.bottom = rectItem.bottom -1;
rectMyCheckBox.right = rectItem.right -1;
rectMyCheckBox.left = rectItem.right -1 - rectCheckBox.Width();
return rectMyCheckBox;

}

See Also: CCheckListBox::SetCheck, CCheckListBox::SetCheckStyle,
CCheckListBox::GetCheck, CCheckListBox::GetCheckStyle

CCheckListBox::SetCheckStyle

CCheckListBox::SetCheck

void SetCheck(int nlndex, int nCheck);

Parameters
nindex Index of the item whose check box is to be set.

nCheck State of the check box: 0 for clear, 1 for checked, and 2 for indeterminate.

Remarks
Call this function to set the check box of the item specified by nindex.

See Also: CCheckListBox::SetCheckStyle, CCheckListBox::GetCheck,
CCheckListBox::GetCheckStyle

CCheckListBox::SetCheckStyle

void SetCheckStyle(UINT nStyle);

Parameters
nStyle Determines the style of check boxes in the checklist box.

Remarks
Call this function to set the style of check boxes in the checklist box. Valid styles are:

e BS_CHECKBOX

e BS_AUTOCHECKBOX
o BS_AUTO3STATE

e BS_3STATE

For information on these styles, see “Button Styles.”

See Also: CCheckListBox::SetCheck, CCheckListBox::GetCheck,
CCheckListBox::GetCheckStyle

185

CClientDC

CClientDC

The CClientDC class is derived from CDC and takes care of calling the Windows
functions GetDC at construction time and ReleaseDC at destruction time. This means
that the device context associated with a CClientDC object is the client area of a
window.

For more information on CClientDC, see “Device Contexts” in Visual C++
Programmer’s Guide online.

#include <afxwin.h>

See Also: CDC

CClientDC Class Members

Construction

CClientDC Constructs a CClientDC object connected to the CWnd.

Data Members

m_hWnd The HWND of the window for which this CClientDC is valid.

Member Functions
CClientDC::CClientDC

CClientDC(CWnd* pWnd);
throw(CResourceException);

Parameters
pWnd The window whose client area the device context object will access.

Remarks
Constructs a CClientDC object that accesses the client area of the CWnd pointed to
by pWnd. The constructor calls the Windows function GetDC.

156

CClientDC::m_hWnd

An exception (of type CResourceException) is thrown if the Windows GetDC call
fails. A device context may not be available if Windows has already allocated all of its
available device contexts. Your application competes for the five common display
contexts available at any given time under Windows.

Data Members
CClientDC::m_hWnd

Remarks

The HWND of the CWnd pointer used to construct the CClientDC object. m_hWnd
is a protected variable.

157

CCmdTarget

CCmdTarget

CCmdTarg

CCmdTarget is the base class for the Microsoft Foundation Class Library
message-map architecture. A message map routes commands or messages to the
member functions you write to handle them. (A command is a message from a menu
item, command button, or accelerator key.)

Key framework classes derived from CCmdTarget include CView, CWinApp,
CDocument, CWnd, and CFrameWnd. If you intend for a new class to handle
messages, derive the class from one of these CCmdTarget-derived classes. You
will rarely derive a class from CCmdTarget directly.

For an overview of command targets and OnCmdMsg routing, see “Command
Targets,” “Command Routing,” and “Mapping Messages” in Visual C++
Programmer’s Guide online.

CCmdTarget includes member functions that handle the display of an hourglass
cursor. Display the hourglass cursor when you expect a command to take a noticeable
time interval to execute.

Dispatch maps, similar to message maps, are used to expose OLE automation
IDispatch functionality. By exposing this interface, other applications (such as
Visual Basic) can call into your application. For more information on the IDispatch
interfaces, see “Creating the IDispatch Interface” and “Dispatch Interface and API
Functions” in the Win32 SDK OLE Programmer’s Reference.

#include <afxwin.h>

See Also: CCmdUI, CDocument, CDocTemplate, CWinApp, CWnd, CView,
CFrameWnd, COleDispatchDriver

CCmdTarget Class Members

158

Attributes

FromIDispatch Returns a pointer to the CCmdTarget object associated with the
IDispatch pointer.

GetIDispatch Returns a pointer to the IDispatch object associated with the
CCmdTarget object.

IsResultExpected Returns nonzero if an automation function should return a value.

CCmdTarget::BeginWaitCursor

Operations

BeginWaitCursor Displays the cursor as an hourglass cursor.
EnableAutomation Allows OLE automation for the CCmdTarget object.
EndWaitCursor Returns to the previous cursor.

RestoreWaitCursor Restores the hourglass cursor.

Overridables

OnCmdMsg Routes and dispatches command messages.
OnFinalRelease Cleans up after the last OLE reference is released.

Member Functions
CCmdTarget::BeginWaitCursor

Remarks

Example

void BeginWaitCursor();

Call this function to display the cursor as an hourglass when you expect a command
to take a noticeable time interval to execute. The framework calls this function to
show the user that it is busy, such as when a CDocument object loads or saves itself
to a file.

The actions of BeginWaitCursor are not always effective outside of a single message
handler as other actions, such as OnSetCursor handling, could change the cursor.

Call EndWaitCursor to restore the previous cursor.

// The following example illustrates the most common case
// of displaying the hourglass cursor during some lengthy
// processing of a command handler implemented in some

// CCmdTarget-derived class, such as a document or view.

void CMyView::OnSomeCommand()

{
BeginWaitCursor(); // display the hourglass cursor
// do some lengthy processing
EndWaitCursor(); // remove the hourglass cursor

}

// The next example illustrates RestoreWaitCursor.
void CMyView::0nSomeCommand()
{

159

CCmdTarget::BeginWaitCursor

160

BeginWaitCursor(); // display the hourglass cursor
// do some lengthy processing

// The dialog box will normally change the cursor to
// the standard arrow cursor, and leave the cursor in
// as the standard arrow cursor when the dialog box is
// closed.

CMyDialog dig;

dlg.DoModal();

// 1t is necessary to call RestoreWaitCursor here in order
// to change the cursor back to the hourglass cursor.
RestoreWaitCursor();

// do some more lengthy processing

EndWaitCursor(); // remove the hourglass cursor
}

// In the above example, the dialog was clearly invoked between

// the pair of calls to BeginWaitCursor and EndWaitCursor.

// Sometimes it may not be clear whether the dialog is invoked

// in between a pair of calls to BeginWaitCursor and EndWaitCursor.
// 1t is permissable to call RestoreWaitCursor, even if

// BeginWaitCursor was not previously called. This case is

// illustrated below, where CMyView::AnotherFunction does not

// need to know whether it was called in the context of an

// hourglass cursor.

void CMyView::AnotherFunction()

{
// some processing ...
CMyDialog dlg;
dl1g.DoModal();
RestoreWaitCursor();
// some more processing ..
}

// If the dialog is invoked from a member function of

// some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
// with a @ parameter value to restore the hourglass cursor.
void CMyObject::AnotherFunction()

{

CMyDialog dig;

d1g.DoModal();

AfxGetApp()->DoWaitCursor(@); // same as CCmdTarget::RestoreWaitCursor
}

See Also: CWaitCursor, CCmdTarget::EndWaitCursor,
CCmdTarget::RestoreWaitCursor, CWinApp::DoWaitCursor

CCmdTarget::EndWaitCursor

CCmdTarget::Enable Automation

Remarks

void EnableAutomation();

Call this function to enable OLE automation for an object. This function is typically
called from the constructor of your object and should only be called if a dispatch map
has been declared for the class. For more information on automation see the articles
“Automation Clients” and “Automation Servers” in Visual C++ Programmer’s Guide
online.

See Also: DECLARE_DISPATCH_MAP, DECLARE_OLECREATE

CCmdTarget::EndWaitCursor

Remarks

Example

void EndWaitCursor();

Call this function after you have called the BeginWaitCursor member function to
return from the hourglass cursor to the previous cursor. The framework also calls this
member function after it has called the hourglass cursor.

// The following example illustrates the most common case
// of displaying the hourglass cursor during some lengthy
// processing of a command handler implemented in some

// CCmdTarget-derived class, such as a document or view.

void CMyView::0nSomeCommand()
{
BeginWaitCursor(); // display the hourglass cursor

// do some lengthy processing

EndWaitCursor(); // remove the hourglass cursor
}

// The next example illustrates RestoreWaitCursor.
void CMyView::0nSomeCommand()
{

BeginWaitCursor(); // display the hourglass cursor

// do some lengthy processing

// The dialog box will normally change the cursor to
// the standard arrow cursor, and leave the cursor in
// as the standard arrow cursor when the dialog box is
// closed.

CMyDialog dig;

d1g.DoModal();

161

CCmdTarget::FromIDispatch

// It is necessary to call RestoreWaitCursor here in order
// to change the cursor back to the hourglass cursor.
RestoreWaitCursor();

// do some more lengthy processing

EndWaitCursor(); // remove the hourglass cursor

// In the above example, the dialog was clearly invoked between

// the pair of calls to BeginWaitCursor and EndWaitCursor.

// Sometimes it may not be clear whether the dialog is invoked

// in between a pair of calls to BeginWaitCursor and EndWaitCursor.
// It is permissable to call RestoreWaitCursor, even if

// BeginWaitCursor was not previously called. This case is

// illustrated below, where CMyView::AnotherFunction does not

// need to know whether it was called in the context of an

// hourglass cursor.

void CMyView::AnotherFunction()

{
// some processing .
CMyDialog dlg;
d1g.DoModal();
RestoreWaitCursor();
// some more processing ...
}

// If the dialog is invoked from a member function of

// some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
// with a @ parameter value to restore the hourglass cursor.
void CMyObject::AnotherFunction()

{

CMyDialog dlg;

d1g.DoModal();

AfxGetApp()->DoWaitCursor(@); // same as CCmdTarget::RestoreWaitCursor
}

See Also: CWaitCursor, CCmdTarget::BeginWaitCursor,
CCmdTarget::RestoreWaitCursor, CWinApp::DoWaitCursor

CCmdTarget::FromIDispatch

static CCmdTarget* FromIDispatch(LPDISPATCH IpDispatch);

Return Value
A pointer to the CCmdTarget object associated with IpDispatch. This function
returns NULL if the IDispatch object is not recognized as a Microsoft Foundation
Class IDispatch object.

Parameters
IpDispatch A pointer to an IDispatch object.

162

CCmdTarget::IsResultExpected

Remarks
Call this function to map an IDispatch pointer, received from automation member
functions of a class, into the CCmdTarget object that implements the interfaces of
the IDispatch object.

The result of this function is the inverse of a call to the member function
GetlIDispatch.

See Also: CCmdTarget::GetIDispatch, COleDispatchDriver

CCmdTarget::GetIDispatch

LPDISPATCH GetIDispatch(BOOL bAddRef);

Return Value
The IDispatch pointer associated with the object.

Parameters
bAddRef Specifies whether to increment the reference count for the object.

Remarks
Call this member function to retrieve the IDispatch pointer from an automation
method that either returns an IDispatch pointer or takes an IDispatch pointer
by reference.

For objects that call EnableAutomation in their constructors, making them
automation enabled, this function returns a pointer to the Foundation Class
implementation of IDispatch that is used by clients who communicate via the
IDispatch interface. Calling this function automatically adds a reference to the
pointer, so it is not necessary to make a call to IUnknown::AddRef.

See Also: CCmdTarget::EnableAutomation, COleDispatchDriver,
IUnknown::Release

CCmdTarget::IsResultExpected

BOOL IsResultExpected();

Return Value
Nonzero if an automation function should return a value; otherwise 0.

Remarks
Use IsResultExpected to ascertain whether a client expects a return value from
its call to an automation function. The OLE interface supplies information to MFC
about whether the client is using or ignoring the result of a function call, and MFC
in turn uses this information to determine the result of a call to IsResultExpected.
If production of a return value is time- or resource-intensive, you can increase
efficiency by calling this function before computing the return value.

163

CCmdTarget::OnCmdMsg

This function returns 0 only once so that you will get valid return values from other
automation functions if you call them from the automation function that the client
has called.

IsResultExpected returns a nonzero value if called when an automation function
call is not in progress.

See Also: CCmdTarget::GetIDispatch, CCmdTarget::EnableAutomation

CCmdTarget::OnCmdMsg

virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra,
< AFX_CMDHANDLERINFO* pHandlerInfo);

Return Value

Nonzero if the message is handled; otherwise 0.

Parameters

Remarks

Example

164

nID Contains the command ID.
nCode ldentifies the command notification code.
pExtra Used according to the value of nCode.

pHandlerInfo If not NULL, OnCmdMsg fills in the pTarget and pmf members of
the pHandlerlInfo structure instead of dispatching the command. Typically, this
parameter should be NULL.

Called by the framework to route and dispatch command messages and to handle the
update of command user-interface objects. This is the main implementation routine
of the framework command architecture.

At run time, OnCmdMsg dispatches a command to other objects or handles the
command itself by calling the root class CCmdTarget::OnCmdMsg, which does
the actual message-map lookup. For a complete description of the default command
routing, see “Message Handling and Mapping Topics” in Visual C++ Programmer’s
Guide online.

On rare occasions, you may want to override this member function to extend the
framework’s standard command routing. Refer to Technical Note 21 online for
advanced details of the command-routing architecture.

// This example illustrates extending the framework's standard command
// route from the view to objects managed by the view. This example
// is from an object-oriented drawing application, similar to the

// DRAWCLI sample application, which draws and edits "shapes".

BOOL CMyView::0nCmdMsg(UINT nID, int nCode, void* pExtra,
AFX_CMDHANDLERINFO* pHandlerInfo)
{

CCmdTarget::RestoreWaitCursor

// Extend the framework's command route from the view to
// the application-specific CMyShape that is currently selected
// in the view. m_pActiveShape is NULL if no shape object
// is currently selected in the view.
if ((m_pActiveShape != NULL)
&& m_pActiveShape->0OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
return TRUE;

// If the object(s) in the extended command route don't handle
// the command, then let the base class OnCmdMsg handle it.
return CView::0nCmdMsg(nID, nCode, pExtra, pHandlerInfo);

The command handler for ID_SHAPE_COLOR (menu command to change
the color of the currently selected shape) was added to
the message map of CMyShape (note, not CMyView) using ClassWizard.

The menu item will be automatically enabled or disabled, depending
on whether a CMyShape is currently selected in the view, that is,
depending on whether CMyView::m_pActiveView is NULL. It is not
necessary to implement an ON_UPDATE_COMMAND_UI handler to enable
or disable the menu item.

BEGIN_MESSAGE_MAP(CMyShape, CCmdTarget)

/1 {{AFX_MSG_MAP(CMyShape)
ON_COMMAND(ID_SHAPE_COLOR, OnShapeColor)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()
See Also: CCmdUI

CCmdTarget::OnFinalRelease

virtual void OnFinalRelease();

Remarks

Called by the framework when the last OLE reference to or from the object is
released. Override this function to provide special handling for this situation. The
default implementation deletes the object.

See Also: COleServerItem

CCmdTarget::Restore WaitCursor

void RestoreWaitCursor();

Remarks

Call this function to restore the appropriate hourglass cursor after the system cursor
has changed (for example, after a message box has opened and then closed while in
the middle of a lengthy operation).

165

CCmdTarget::RestoreWaitCursor

Example

166

// The following example illustrates the most common case
// of displaying the hourglass cursor during some lengthy
// processing of a command handler implemented in some

// CCmdTarget-derived class, such as a document or view.

void CMyView::0nSomeCommand()

{
BeginWaitCursor(); // display the hourglass cursor
// do some lengthy processing
EndWaitCursor(); // remove the hourglass cursor

}

// The next example illustrates RestoreWaitCursor.
void CMyView::0nSomeCommand()
{

BeginWaitCursor(); // display the hourglass cursor

// do some lengthy processing

// The dialog box will normally change the cursor to
// the standard arrow cursor, and leave the cursor in
// as the standard arrow cursor when the dialog box is
// closed.

CMyDialog dlg;

d1g.DoModal();

// It is necessary to call RestoreWaitCursor here in order
// to change the cursor back to the hourglass cursor.
RestoreWaitCursor();

// do some more lengthy processing

EndWaitCursor(); // remove the hourgiass cursor

// In the above example, the dialog was clearly invoked between
// the pair of calls to BeginWaitCursor and EndWaitCursor.

// Sometimes it may not be clear whether the dialog is invoked
// in between a pair of calls to BeginWaitCursor and EndWaitCursor.
// It is permissable to call RestoreWaitCursor, even if

// BeginWaitCursor was not previously called. This case is

// illustrated below, where CMyView::AnotherFunction does not
// need to know whether it was called in the context of an

// hourglass cursor.

void CMyView::AnotherFunction()

{

// some processing ...

CCmdTarget::RestoreWaitCursor

CMyDialog dlg;
d1g.DoModal();
RestoreWaitCursor();

// some more processing ...
}

// 1If the dialog is invoked from a member function of

// some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
// with a @ parameter value to restore the hourglass cursor.
void CMyObject::AnotherFunction()

{

CMyDialog dig;

dlg.DoModal():

AfxGetApp()->DoWaitCursor(@); // same as CCmdTarget::RestoreWaitCursor
}

See Also: CWiaitCursor, CCmdTarget::EndWaitCursor,
CCmdTarget::BeginWaitCursor, CWinApp::DoWaitCursor

167

CCmdUI

CCmdUI

168

CCmdUI does not have a base class.

The CCmdUI class is used only within an ON_UPDATE_COMMAND_UI handler
in a CCmdTarget-derived class.

‘When a user of your application pulls down a menu, each menu item needs to know
whether it should be displayed as enabled or disabled. The target of a menu command
provides this information by implementing an ON_UPDATE_COMMAND_UI
handler. Use ClassWizard to browse the command user-interface objects in your
application and create a message-map entry and function prototype for each handler.

When the menu is pulled down, the framework searches for and calls each
ON_UPDATE_COMMAND_UI handler, each handler calls CCmdUI member
functions such as Enable and Check, and the framework then appropriately displays
each menu item.

A menu item can be replaced with a control-bar button or other command
user-interface object without changing the code within the
ON_UPDATE_COMMAND_UI handler.

The following table summarizes the effect CCmdUI’s member functions have on
various command user-interface items.

User-Interface ltem Enable SetCheck SetRadio SetText

Menu item Enables or Checks (X) or Checks using Sets item text
disables unchecks dot (e)

Toolbar button Enables or Selects, unselects, Same as (Not applicable)
disables or indeterminate SetCheck

Status-bar pane Makes text Sets pop-out or Same as Sets pane text
visible or normal border SetCheck
invisible

Normal button in Enables or Checks or Same as Sets button text

CDialogBar disables unchecks check SetCheck

box

Normal control in Enables or (Not applicable) (Not applicable) Sets window text
CDialogBar disables

For more on the use of this class, see “Constructing the User Interface” in Visual C++
Tutorials online and “How to Update User-Interface Objects” in Visual C++
Programmer’s Guide online.

#include <afxwin.h>

See Also: CCmdTarget

CCmdUI Class Members

Data Members

m_nID The ID of the user-interface object.

m_nIndex The index of the user-interface object.

m_pMenu Points to the menu represented by the CCmdUI object.
m_pSubMenu Points to the contained sub-menu represented by the CCmdUI object.
m_pOther Points to the window object that sent the notification.

Operations

Enable Enables or disables the user-interface item for this command.
SetCheck Sets the check state of the user-interface item for this command.
SetRadio Like the SetCheck member function, but operates on radio groups.
SetText Sets the text for the user-interface item for this command.
ContinueRouting Tells the command-routing mechanism to continue routing the current

message down the chain of handlers.

CCmdUI::Enable

Member Functions
CCmdUI::ContinueRouting

void ContinueRouting();

Remarks

Call this member function to tell the command-routing mechanism to continue routing
the current message down the chain of handlers.

This is an advanced member function that should be used in conjunction with an
ON_COMMAND_EX handler that returns FALSE. For more information, see
Technical Note 21 online.

CCmdUI::Enable

virtual void Enable(BOOL »On = TRUE);

Parameters
bOn TRUE to enable the item, FALSE to disable it.

Remarks

Call this member function to enable or disable the user-interface item for this

command.

See Also: CCmdUI::SetCheck

169

CCmdUI::SetCheck

CCmdUI::SetCheck

virtual void SetCheck(int nCheck =1);

Parameters
nCheck Specifies the check state to set. If 0, unchecks; if 1, checks; and if 2, sets
indeterminate.

Remarks
Call this member function to set the user-interface item for this command to the
appropriate check state. This member function works for menu items and toolbar
buttons. The indeterminate state applies only to toolbar buttons.

See Also: CCmdUI::SetRadio

CCmdUI::SetRadio

virtual void SetRadio(BOOL »On = TRUE);

Parameters
bOn TRUE to enable the item; otherwise FALSE.

Remarks
Call this member function to set the user-interface item for this command to the
appropriate check state. This member function operates like SetCheck, except that it
operates on user-interface items acting as part of a radio group. Unchecking the other
items in the group is not automatic unless the items themselves maintain the
radio-group behavior.

See Also: CCmdUI::SetCheck

CCmdUI::SetText

virtual void SetText(LPCTSTR IpszText);

Parameters
IpszText A pointer to a text string.

Remarks
Call this member function to set the text of the user-interface item for this command.

See Also: CCmdUI::Enable

170

Data Members
CCmdUI::m_nID

Remarks
The ID of the menu item, toolbar button, or other user-interface object represented by
the CCmdUI object.

CCmdUI::m_pOther

CCmdUI::m_nIndex

Remarks
The index of the menu item, toolbar button, or other user-interface object represented
by the CCmdUI object.

CCmdUI::m_pMenu

Remarks
Pointer (of CMenu type) to the menu represented by the CCmdUI object. NULL if
the item is not a menu.

See Also: CMenu

CCmdUI::m_pSubMenu

Remarks
Pointer (of CMenu type) to the contained sub-menu represented by the CCmdUI
object. NULL if the item is not a menu. If the sub menu is a pop-up, m_nID
contains the ID of the first item in the pop-up menu. For more information, see
Technical Note 21 online.

See Also: CMenu

CCmdUI::m_pOther

Remarks
Pointer (of type CWnd) to the window object, such as a tool or status bar, that sent
the notification. NULL if the item is a menu or a non-CWnd object.

See Also: CWnd

171

CColorDialog

CColorDialog

172

The CColorDialog class allows you to incorporate a color-selection dialog box into
your application. A CColorDialog object is a dialog box with a list of colors that are
defined for the display system. The user can select or create a particular color from the
list, which is then reported back to the application when the dialog box exits.

To construct a CColorDialog object, use the provided constructor or derive a new
class and use your own custom constructor.

Once the dialog box has been constructed, you can set or modify any values in the
m_cc structure to initialize the values of the dialog box’s controls. The m_cc structure
is of type CHOOSECOLOR.

After initializing the dialog box’s controls, call the DoModal member function to
display the dialog box and allow the user to select a color. DoModal returns the user’s
selection of either the dialog box’s OK (IDOK) or Cancel (IDCANCEL) button.

If DoModal returns IDOK, you can use one of CColorDialog’s member functions to
retrieve the information input by the user.

You can use the Windows CommbDIgExtendedError function to determine whether
an error occurred during initialization of the dialog box and to learn more about the
erTor.

CColorDialog relies on the COMMDLG.DLL file that ships with Windows versions
3.1 and later.

To customize the dialog box, derive a class from CColorDialog, provide a custom
dialog template, and add a message map to process the notification messages from the
extended controls. Any unprocessed messages should be passed to the base class.

Customizing the hook function is not required.

Note On some installations the CColorDialog object will not display with a gray background if
you have used the framework to make other CDialog objects gray.

CColorDialog::CColorDialog

For more information on using CColorDialog, see “Common Dialog Classes”
in Visual C++ Programmer’s Guide online.

#include <afxdlgs.h>

CColorDialog Class Members

Data Members

m_cc A structure used to customize the settings of the
dialog box.

Construction

CColorDialog Constructs a CColorDialog object.

Operations

DoModal Displays a color dialog box and allows the user to
make a selection.

GetColor Returns a COLORRETF structure containing the values
of the selected color.

GetSavedCustomColors Retrieves custom colors created by the user.

SetCurrentColor Forces the current color selection to the specified color.

Overridables

OnColorOK Override to validate the color entered into the

dialog box.

Member Functions
CColorDialog::CColorDialog

CColorDialog(COLORREF clrlnit = 0, DWORD dwFlags = 0,
» CWnd* pParentWnd = NULL);

Parameters
clrInit The default color selection. If no value is specified, the default is RGB(0,0,0)
(black).

dwFlags A set of flags that customize the function and appearance of the dialog box.

For more information, see the CHOOSECOLOR structure in the Win32 SDK
documentation.

pParentWnd A pointer to the dialog box’s parent or owner window.

173

CColorDialog::DoModal

Remarks
Constructs a CColorDialog object.

See Also: CDialog::DoModal

CColorDialog::DoModal

virtual int DoModal();

Return Value
IDOK or IDCANCEL if the function is successful; otherwise 0. IDOK and
IDCANCEL are constants that indicate whether the user selected the OK or Cancel
button.

If IDCANCEL is returned, you can call the Windows CommDIgExtendedError
function to determine whether an error occurred.

Remarks
Call this function to display the Windows common color dialog box and allow the
user to select a color.

If you want to initialize the various color dialog-box options by setting members of
the m_cc structure, you should do this before calling DoModal but after the
dialog-box object is constructed.

After calling DoModal, you can call other member functions to retrieve the settings
or information input by the user into the dialog box.

See Also: CDialog::DoModal, CColorDialog::CColorDialog

CColorDialog::GetColor |

COLORREF GetColor() const;

Return Value
A COLORRETF value that contains the RGB information for the color selected in the
color dialog box.

Remarks
Call this function after calling DoModal to retrieve the information about the color
the user selected.

See Also: CColorDialog::SetCurrentColor

174

CColorDialog::OnColorOK

CColorDialog::GetSavedCustomColors

static COLORREF * GetSavedCustomColors();

Return Value
A pointer to an array of 16 RGB color values that stores custom colors created by
the user.

Remarks
CColorDialog objects permit the user, in addition to choosing colors, to define up
to 16 custom colors. The GetSavedCustomColors member function provides access
to these colors. These colors can be retrieved after DoMedal returns IDOK.

Each of the 16 RGB values in the returned array is initialized to RGB(255,255,255)
(white). The custom colors chosen by the user are saved only between dialog box
invocations within the application. If you wish to save these colors between
invocations of the application, you must save them in some other manner, such

as in an initialization (.INI) file.

See Also: CColorDialog::GetColor

CColorDialog::OnColorOK

virtual BOOL OnColorOK();

Return Value
. Nonzero if the dialog box should not be dismissed; otherwise 0 to accept the color
that was entered.

Remarks
Override this function only if you want to provide custom validation of the color
entered into the dialog box. This function allows you to reject a color entered by a
user into a common color dialog box for any application-specific reason. Normally,
you do not need to use this function because the framework provides default
validation of colors and displays a message box if an invalid color is entered.

Use the GetColor member function to get the RGB value of the color.

If 0 is returned, the dialog box will remain displayed in order for the user to enter
another filename.

175

CColorDialog::SetCurrentColor

CColorDialog::SetCurrentColor

void SetCurrentColor(COLORREF clir);

Parameters
clr An RGB color value.

Remarks
Call this function after calling DoModal to force the current color selection to the
color value specified in clr. This function is called from within a message handler or
OnColorOK. The dialog box will automatically update the user’s selection based on
the value of the clr parameter.

See Also: CColorDialog::GetColor, CColorDialog::OnColorOK

Data Members

CColorDialog::m_cc

CHOOSECOLOR m_cc;

Remarks
A structure of type CHOOSECOLOR, whose members store the characteristics and
values of the dialog box. After constructing a CColorDialog object, you can use
m_cc to set various aspects of the dialog box before calling the DoModal member
function.

176

CComboBox

CComboBox
biec}m]

Cmdfargel |
HoWnd]

CComboBox h
r— S LA "

The CComboBox class provides the functionality of a Windows combo box.

A combo box consists of a list box combined with either a static control or edit
control. The list-box portion of the control may be displayed at all times or may
only drop down when the user selects the drop-down arrow next to the control.

The currently selected item (if any) in the list box is displayed in the static or edit
control. In addition, if the combo box has the drop-down list style, the user can
type the initial character of one of the items in the list, and the list box, if visible,
will highlight the next item with that initial character.

The following table compares the three combo-box styles.

Style When is list box visible? Static or edit control?
Simple Always Edit

Drop-down When dropped down Edit

Drop-down list When dropped down Static

You can create a CComboBox object from either a dialog template or directly in
your code. In both cases, first call the constructor CComboBox to construct the

CComboBox object; then call the Create member function to create the control
and attach it to the CComboBox object.

If you want to handle Windows notification messages sent by a combo box to its
parent (usually a class derived from CDialog), add a message-map entry and
message-handler member function to the parent class for each message.

Each message-map entry takes the following form:
ON_Notification(id, memberFxn)

where id specifies the child-window ID of the combo-box control sending the
notification and memberFxn is the name of the parent member function you have
written to handle the notification.

The parent’s function prototype is as follows:

afx_msg void memberFxn();

177

CComboBox

The order in which certain notifications will be sent cannot be predicted. In particular,
a CBN_SELCHANGE notification may occur either before or after a
CBN_CLOSEUP notification.

Potential message-map entries are the following:

¢ ON_CBN_CLOSEUP (Windows 3.1 and later.) The list box of a combo box
has closed. This notification message is not sent for a combo box that has the
CBS_SIMPLE style.

e ON_CBN_DBLCLK The user double-clicks a string in the list box of a
combo box. This notification message is only sent for a combo box with the
CBS_SIMPLE style. For a combo box with the CBS_DROPDOWN or
CBS_DROPDOWNLIST style, a double-click cannot occur because a
single click hides the list box.

o ON_CBN_DROPDOWN The list box of a combo box is about to drop down
(be made visible). This notification message can occur only for a combo box
with the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

e ON_CBN_EDITCHANGE The user has taken an action that may have
altered the text in the edit-control portion of a combo box. Unlike the
CBN_EDITUPDATE message, this message is sent after Windows updates the
screen. It is not sent if the combo box has the CBS_DROPDOWNLIST style.

¢ ON_CBN_EDITUPDATE The edit-control portion of a combo box is about to
display altered text. This notification message is sent after the control has formatted
the text but before it displays the text. It is not sent if the combo box has the
CBS_DROPDOWNLIST style.

¢ ON_CBN_ERRSPACE The combo box cannot allocate enough memory to meet
a specific request.

¢ ON_CBN_SELENDCANCEL (Windows 3.1 and later.) Indicates the user’s
selection should be canceled. The user clicks an item and then clicks another
window or control to hide the list box of a combo box. This notification message
is sent before the CBN_CLOSEUP notification message to indicate that the
user’s selection should be ignored. The CBN_SELENDCANCEL or
CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP
notification message is not sent (as in the case of a combo box with the
CBS_SIMPLE style).

e ON_CBN_SELENDOK The user selects an item and then either presses the
ENTER key or clicks the DOWN ARROW key to hide the list box of a combo box.
This notification message is sent before the CBN_CLOSEUP message to indicate
that the user’s selection should be considered valid. The CBN_SELENDCANCEL
or CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP
notification message is not sent (as in the case of a combo box with the
CBS_SIMPLE style).

e ON_CBN_KILLFOCUS The combo box is losing the input focus.

178

CComboBox

¢ ON_CBN_SELCHANGE The selection in the list box of a combo box is about
to be changed as a result of the user either clicking in the list box or changing the
selection by using the arrow keys. When processing this message, the text in the
edit control of the combo box can only be retrieved via GetLBText or another
similar function. GetWindowText cannot be used.

o ON_CBN_SETFOCUS The combo box receives the input focus.

If you create a CComboBox object within a dialog box (through a dialog resource),
the CComboBox object is automatically destroyed when the user closes the

dialog box.

If you embed a CComboBox object within another window object, you do not need
to destroy it. If you create the CComboBox object on the stack, it is destroyed
automatically. If you create the CComboBox object on the heap by using the new
function, you must call delete on the object to destroy it when the Windows combo

box is destroyed.

#include <afxwin.h>

See Also: CWnd, CButton, CEdit, CListBox, CScrollBar, CStatic, CDialog

CComboBox Class Members

Construction

CComboBox Constructs a CComboBox object.

Initialization

Create Creates the combo box and attaches it to the CComboBox
object.

InitStorage Preallocates blocks of memory for items and strings in the

General Operations

list-box portion of the combo box.

GetCount
GetCurSel

SetCurSel
GetEditSel

SetEditSel
SetItemData

SetItemDataPtr

Retrieves the number of items in the list box of a combo box.

Retrieves the index of the currently selected item, if any, in the
list box of a combo box.

Selects a string in the list box of a combo box.

Gets the starting and ending character positions of the current
selection in the edit control of a combo box.

Selects characters in the edit control of a combo box.

Sets the 32-bit value associated with the specified item in a
combo box.
Sets the 32-bit value associated with the specified item in a
combo box to the specified pointer (void*).

(continued)

179

CComboBox

180

General Operations (continued)

GetItemData
GetltemDataPtr
GetTopIndex
SetTopIndex
SetHorizontalExtent
GetHorizontalExtent
SetDroppedWidth
GetDroppedWidth

Clear
Copy

Cut

Paste

LimitText
SetItemHeight

GetItemHeight
GetLBText
GetLBTextLen
ShowDropDown

GetDroppedControlRect
GetDroppedState

SetExtendedUI

GetExtendedUI

Retrieves the application-supplied 32-bit value associated with
the specified combo-box item.

Retrieves the application-supplied 32-bit value associated with
the specified combo-box item as a pointer (void*).

Returns the index of the first visible item in the list-box portion
of the combo box.

Tells the list-box portion of the combo box to display the item
with the specified index at the top.

Sets the width in pixels that the list-box portion of the combo
box can be scrolled horizontally.

Returns the width in pixels that the list-box portion of the combo
box can be scrolled horizontally.

Sets the minimum allowable width for the drop-down list-box
portion of a combo box.

Retrieves the minimum allowable width for the drop-down
list-box portion of a combo box.

Deletes (clears) the current selection (if any) in the edit control.

Copies the current selection (if any) onto the Clipboard in
CF_TEXT format. |

Deletes (cuts) the current selection, if any, in the edit control and
copies the deleted text onto the Clipboard in CF_TEXT format.

Inserts the data from the Clipboard into the edit control at the
current cursor position. Data is inserted only if the Clipboard
contains data in CF_TEXT format.

Limits the length of the text that the user can enter into the edit
control of a combo box.

Sets the height of list items in a combo box or the height of the
edit-control (or static-text) portion of a combo box.

Retrieves the height of list items in a combo box.
Gets a string from the list box of a combo box.
Gets the length of a string in the list box of a combo box.

Shows or hides the list box of a combo box that has the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Retrieves the screen coordinates of the visible (dropped-down)
list box of a drop-down combo box.

Determines whether the list box of a drop-down combo box is
visible (dropped down).

Selects either the default user interface or the extended user
interface for a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

Determines whether a combo box has the default user interface
or the extended user interface.

CComboBox::AddString

General Operations (continued)

GetLocale Retrieves the locale identifier for a combo box.

SetLocale Sets the locale identifier for a combo box.

String Operations

AddString Adds a string to the end of the list in the list box of a combo box
or at the sorted position for list boxes with the CBS_SORT style.

DeleteString Deletes a string from the list box of a combo box.

InsertString Inserts a string into the list box of a combo box.

ResetContent Removes all items from the list box and edit control of a
combo box.

Dir Adds a list of filenames to the list box of a combo box.

FindString Finds the first string that contains the specified prefix in the list
box of a combo box.

FindStringExact Finds the first list-box string (in a combo box) that matches the
specified string.

SelectString Searches for a string in the list box of a combo box and, if the

Overridables

string is found, selects the string in the list box and copies the
string to the edit control.

Drawltem Called by the framework when a visual aspect of an owner-draw
combo box changes.

Measureltem Called by the framework to determine combo box dimensions
when an owner-draw combo box is created.

Compareltem Called by the framework to determine the relative position of a
new list item in a sorted owner-draw combo box.

Deleteltem Called by the framework when a list item is deleted from an

owner-draw combo box,

Member Functions
CComboBox::AddString

int AddString(LPCTSTR IpszString);

Return Value
If the return value is greater than or equal to 0, it is the zero-based index to the string
in the list box. The return value is CB_ERR if an error occurs; the return value is
CB_ERRSPACE if insufficient space is available to store the new string.

Parameters
IpszString Points to the null-terminated string that is to be added.

181

CComboBox::CComboBox

Remarks
Adds a string to the list box of a combo box. If the list box was not created with the
CBS_SORT style, the string is added to the end of the list. Otherwise, the string is
inserted into the list, and the list is sorted.

To insert a string into a specific location within the list, use the InsertString member
function.

See Also: CComboBox::InsertString, CComboBox::DeleteString,
CB_ADDSTRING

CComboBox::CComboBox

CComboBox();

Remarks
Constructs a CComboBox object.

See Also: CComboBox::Create

CComboBox::Clear

void Clear();

Remarks
Deletes (clears) the current selection, if any, in the edit control of the combo box.

To delete the current selection and place the deleted contents onto the Clipboard, use
the Cut member function.

See Also: CComboBox::Copy, CComboBox::Cut, CComboBox::Paste,
WM_CLEAR

CComboBox::Compareltem

virtual int Compareltem(LPCOMPAREITEMSTRUCT IpCompareltemStruct);

Return Value
Indicates the relative position of the two items described in the
COMPAREITEMSTRUCT structure. It can be any of the following values:

Value Meaning
-1 Item 1 sorts before item 2.
0 Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

See CWnd::OnCompareltem for a description of COMPAREITEMSTRUCT.

182

CComboBox::Create

Parameters
IpCompareltemStruct A long pointer to a COMPAREITEMSTRUCT structure.

Remarks
Called by the framework to determine the relative position of a new item in the
list-box portion of a sorted owner-draw combo box. By default, this member function
does nothing. If you create an owner-draw combo box with the LBS_SORT style, you
must override this member function to assist the framework in sorting new items
added to the list box.

See Also: WM_COMPAREITEM, CComboBox::Drawltem,
CComboBox::Measureltem, CComboBox::Deleteltem

CComboBox::Copy

void Copy();

Remarks
Copies the current selection, if any, in the edit control of the combo box onto the
Clipboard in CF_TEXT format.

See Also: CComboBox::Clear, CComboBox::Cut, CComboBox::Paste,
WM_COPY

CComboBox::Create

BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT niID);

Return Value
Nonzero if successful; otherwise 0.

Parameters
dwStyle Specifies the style of the combo box. Apply any combination of combo-box
styles to the box.

rect Points to the position and size of the combo box. Can be a RECT structure or a
CRect object.

pParentWnd Specifies the combo box’s parent window (usually a CDialog). It must
not be NULL.

nID Specifies the combo box’s control ID.
Remarks
You construct a CComboBox object in two steps. First call the constructor, then call

Create, which creates the Windows combo box and attaches it to the CComboBox
object.

183

CComboBox::Cut

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE,
WM_NCCALCSIZE, and WM_GETMINMAXINFO messages to the combo box.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base class.
To extend the default message handling, derive a class from CComboBox, add a
message map to the new class, and override the preceding message-handler member
functions. Override OnCreate, for example, to perform needed initialization for a
new class.

Apply the following window styles to a combo-box control. :

e WS_CHILD Always

¢ WS_VISIBLE Usually

e WS_DISABLED Rarely

o WS_VSCROLL To add vertical scrolling for the list box in the combo box

¢ WS_HSCROLL To add horizontal scrolling for the list box in the combo box
¢ WS_GROUP To group controls

e WS_TABSTOP To include the combo box in the tabbing order

See Also: CComboBox::CComboBox, “Combo-Box Styles”

CComboBox::Cut

void Cut();

Remarks
Deletes (cuts) the current selection, if any, in the combo-box edit control and copies
the deleted text onto the Clipboard in CF_TEXT format.

To delete the current selection without placing the deleted text onto the Clipboard, call
the Clear member function.

See Also: CComboBox::Clear, CComboBox::Copy, CComboBox::Paste,
WM_CUT

CComboBox::Deleteltem

virtual void DeleteIltem(LPDELETEITEMSTRUCT IpDeleteltemStruct);

Parameters
IpDeleteltemStruct A long pointer to a Windows DELETEITEMSTRUCT structure
that contains information about the deleted item. See CWnd::OnDeleteItem for a
description of this structure.

184

Remarks
Called by the framework when the user deletes an item from an owner-draw
CComboBox object or destroys the combo box. The default implementation of this
function does nothing. Override this function to redraw the combo box as needed.

See Also: CComboBox::Compareltem, CComboBox::Drawltem,
CComboBox::Measureltem, WM_DELETEITEM

CComboBox::Dir

CComboBox::DeleteString

int DeleteString(UINT nindex);

Return Value
If the return value is greater than or equal to 0, then it is a count of the strings
remaining in the list. The return value is CB_ERR if nlndex specifies an index
greater then the number of items in the list.

Parameters
nindex Specifies the index to the string that is to be deleted.

Remarks
Deletes a string in the list box of a combo box.

See Also: CComboBox::InsertString, CComboBox::AddString,
CB_DELETESTRING

CComboBox::Dir

int Dir(UINT attr, LPCTSTR IpszWildCard);

Return Value
If the return value is greater than or equal to O, it is the zero-based index of the last
filename added to the list. The return value is CB_ERR if an error occurs; the return
value is CB_ERRSPACE if insufficient space is available to store the new strings.

Parameters
attr Can be any combination of the enum values described in CFile::GetStatus or
any combination of the following values:

o DDL_READWRITE File can be read from or written to.

e DDL_READONLY File can be read from but not written to.

o DDL_HIDDEN File is hidden and does not appear in a directory listing.
e DDL_SYSTEM File is a system file.

e DDL_DIRECTORY The name specified by IpszWildCard specifies a
directory.

185

CComboBox::Drawltem

e DDL_ARCHIVE File has been archived.

e DDL_DRIVES Include all drives that match the name specified by
IpszWildCard.

» DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files of
the specified type are listed. Otherwise, files of the specified type are listed in
addition to “normal” files.

IpszWildCard Points to a file-specification string. The string can contain wildcards
(for example, *.%).

Remarks
Adds a list of filenames and/or drives to the list box of a combo box.

See Also: CWnd::DlgDirList, CB_DIR, CFile::GetStatus

CComboBox::Drawltem
virtual void Drawltem(LPDRAWITEMSTRUCT IpDrawltemStruct);

Parameters ‘
IpDrawltemStruct A pointer to a DRAWITEMSTRUCT structure that contains
information about the type of drawing required.

Remarks
Called by the framework when a visual aspect of an owner-draw combo box changes.
The itemA ction member of the DRAWITEMSTRUCT structure defines the drawing
action that is to be performed. See CWnd::OnDrawltem for a description of this
structure.

By default, this member function does nothing. Override this member function to
implement drawing for an owner-draw CComboBox object. Before this member
function terminates, the application should restore all graphics device interface (GDI)
objects selected for the display context supplied in [pDrawltemStruct.

See Also: CComboBox::Compareltem, WM_DRAWITEM,
CComboBox::Measureltem, CComboBox::Deleteltem

CComboBox::FindString

int FindString(int nStartAfter, LPCTSTR IpszString) const;

Return Value
If the return value is greater than or equal to 0, it is the zero-based index of the
matching item. It is CB_ERR if the search was unsuccessful.

186

CComboBox::FindStringExact

Parameters
nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStartAfter. If -1, the entire list box
is searched from the beginning.

IpszString Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string can contain any combination of
uppercase and lowercase letters.

Remarks
Finds, but doesn’t select, the first string that contains the specified prefix in the list
box of a combo box.

See Also: CComboBox::SelectString, CComboBox::SetCurSel,
CB_FINDSTRING

CComboBox::FindStringExact

int FindStringExact(int nindexStart, LPCTSTR IpszFind) const;

Return Value
The zero-based index of the matching item, or CB_ERR if the search was
unsuccessful.

Parameters
nindexStart Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nindexStart. If nindexStart is -1,
the entire list box is searched from the beginning.

IpszFind Points to the null-terminated string to search for. This string can contain a
complete filename, including the extension. The search is not case sensitive, so this
string can contain any combination of uppercase and lowercase letters.

Remarks
Call the FindStringExact member function to find the first list-box string (in a
combo box) that matches the string specified in IpszFind.

If the combo box was created with an owner-draw style but without the
CBS_HASSTRINGS style, FindStringExact attempts to match the doubleword
value against the value of IpszFind.

See Also: CComboBox::FindString, CB_FINDSTRINGEXACT

187

CComboBox::GetCount

CComboBox::GetCount

int GetCount() const;

Return Value
The number of items. The returned count is one greater than the index value of the last
item (the index is zero-based). It is CB_ERR if an error occurs.

Remarks
Call this member function to retrieve the number of items in the list-box portion of a
combo box.

See Also: CB_GETCOUNT

CComboBox::GetCurSel

int GetCurSel() const;

Return Value
The zero-based index of the currently selected item in the list box of a combo box,
or CB_ERR if no item is selected.

Remarks
Call this member function to determine which item in the combo box is selected.
GetCurSel returns an index into the list.

See Also: CComboBox::SetCurSel, CB_GETCURSEL

CComboBox::GetDroppedControlRect

void GetDroppedControlRect(LPRECT Iprect) const;

Parameters
Iprect Points to the RECT structure that is to receive the coordinates.

Remarks
Call the GetDroppedControlRect member function to retrieve the screen coordinates
of the visible (dropped-down) list box of a drop-down combo box.

See Also: CB_GETDROPPEDCONTROLRECT

CComboBox::GetDroppedState

BOOL GetDroppedState() const;

Return Value
Nonzero if the list box is visible; otherwise 0.

188

CComboBox::GetExtendedUI

Remarks
Call the GetDroppedState member function to determine whether the list box of a
drop-down combo box is visible (dropped down).

See Also: CB_SHOWDROPDOWN, CB_GETDROPPEDSTATE

CComboBox::GetDroppedWidth

int GetDroppedWidth() const;

Return Value
If successful, the minimum allowable width, in pixels; otherwise, CB_ERR.

Remarks
Call this function to retrieve the minimum allowable width, in pixels, of the list
box of a combo box. This function only applies to combo boxes with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

By default, the minimum allowable width of the drop-down list box is 0. The
minimum allowable width can be set by calling SetDroppedWidth. When the 1
ist-box portion of the combo box is displayed, its width is the larger of the
minimum allowable width or the combo box width.

See Also: CComboBox::SetDroppedWidth, CB_GETDROPPEDWIDTH

CComboBox::GetEditSel

DWORD GetEditSel() const;

Return Value
A 32-bit value that contains the starting position in the low-order word and the
position of the first nonselected character after the end of the selection in the
high-order word. If this function is used on a combo box without an edit control,
CB_ERR is returned.

Remarks
Gets the starting and ending character positions of the current selection in the edit
control of a combo box.

See Also: CComboBox::SetEditSel, CB_GETEDITSEL

CComboBox::GetExtendedUI

BOOL GetExtendedUI() const;

Return Value
Nonzero if the combo box has the extended user interface; otherwise 0.

189

CComboBox::GetHorizontalExtent

Remarks
Call the GetExtendedUI member function to determine whether a combo box has the
default user interface or the extended user interface. The extended user interface can
be identified in the following ways:

o Clicking the static control displays the list box only for combo boxes with the
CBS_DROPDOWNLIST style.

o Pressing the DOWN ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (arrow keys
are disabled).

See Also: CComboBox::SetExtendedUI, CB_GETEXTENDEDUI

CComboBox::GetHorizontal Extent

UINT GetHorizontalExtent() const;

Return Value
The scrollable width of the list-box portion of the combo box, in pixels.

Remarks
Retrieves from the combo box the width in pixels by which the list-box portion of the
combo box can be scrolled horizontally. This is applicable only if the list-box portion
of the combo box has a horizontal scroll bar.

See Also: CListBox::SetHorizontalExtent, CB_GETHORIZONTALEXTENT

CComboBox::GetltemData

DWORD GetItemData(int n/ndex) const;

Return Value
The 32-bit value associated with the item, or CB_ERR if an error occurs.

Parameters
nIndex Contains the zero-based index of an item in the combo box’s list box.

Remarks
Retrieves the application-supplied 32-bit value associated with the specified
combo-box item. The 32-bit value can be set with the dwltemData parameter of a
SetItemData member function call. Use the GetItemDataPtr member function if
the 32-bit value to be retrieved is a pointer (void*).

See Also: CComboBox::SetltemData, CComboBox::GetItemDataPtr,
CComboBox::SetltemDataPtr, CB_GETITEMDATA

190

CComboBox::GetLBText

CComboBox::GetltemDataPtr

void* GetltemDataPtr(int n/ndex) const;

Return Value
Retrieves a pointer, or —1 if an error occurs.

Parameters
nlndex Contains the zero-based index of an item in the combo box’s list box.

Remarks
Retrieves the application-supplied 32-bit value associated with the specified
combo-box item as a pointer (void*).

See Also; CComboBox::SetltemDataPtr, CComboBox::GetItemData,
CComboBox::SetltemData, CB_GETITEMDATA

CComboBox::GetltemHeight

int GetltemHeight(int nindex) const;

Return Value
The height, in pixels, of the specified item in a combo box. The return value is
CB_ERR if an error occurs.

Parameters
nindex Specifies the component of the combo box whose height is to be retrieved.
If the nindex parameter is —1, the height of the edit-control (or static-text)
portion of the combo box is retrieved. If the combo box has the
CBS_OWNERDRAWYVARIABLE style, nindex specifies the zero-based index of
the list item whose height is to be retrieved. Otherwise, nindex should be set to 0.

Remarks
Call the GetItemHeight member function to retrieve the height of list items in a
combo box.

See Also: CComboBox::SetItemHeight, WM_MEASUREITEM,
CB_GETITEMHEIGHT

CComboBox::GetLLBText

int GetLBText(int nlndex, LPTSTR IpszText) const;
void GetLBText(int nindex, CString& rString) const;

Return Value
The length (in bytes) of the string, excluding the terminating null character. If nindex
does not specify a valid index, the return value is CB_ERR.

191

CComboBox::GetLBTextLen
Parameters
nlndex Contains the zero-based index of the list-box string to be copied.

IpszText Points to a buffer that is to receive the string. The buffer must have
sufficient space for the string and a terminating null character.

rString A reference to a CString.
Remarks

Gets a string from the list box of a combo box. The second form of this member
function fills a CString object with the item’s text.

See Also: CComboBox::GetLBTextLen, CB_GETLBTEXT

CComboBox::GetLBTextlLen

int GetLBTextLen(int nlndex) const;

Return Value
The length of the string in bytes, excluding the terminating null character. If nindex
does not specify a valid index, the return value is CB_ERR.

Parameters
nindex Contains the zero-based index of the list-box string.

Remarks
Gets the length of a string in the list box of a combo box.

See Also: CComboBox::GetLBText, CB_GETLBTEXTLEN

CComboBox::GetlLocale

LCID GetLocale() const;

Return Value
The locale identifier (LCID) value for the strings in the combo box.

Remarks
Retrieves the locale used by the combo box. The locale is used, for example, to
determine the sort order of the strings in a sorted combo box.

See Also: CComboBox::SetLocale, ::GetStringTypeW,
::GetSystemDefaultLCID, ::GetUserDefaultLCID

192

CComboBox::InitStorage

CComboBox::GetTopIndex

int GetTopIndex() const;

Return Value
The zero-based index of the first visible item in the list-box portion of the combo box
if successful, CB_ERR otherwise.

Remarks
Retrieves the zero-based index of the first visible item in the list-box portion of the
combo box. Initially, item O is at the top of the list box, but if the list box is scrolled,
another item may be at the top.

See Also: CComboBox::SetTopIndex, CB_GETTOPINDEX

CComboBox::InitStorage

int InitStorage(int nltems, UINT nBytes);

Return Value
If successful, the maximum number of items that the list-box portion of the combo
box can store before a memory reallocation is needed, otherwise CB_ERR, meaning
not enough memory is available.

Parameters
nltems Specifies the number of items to add.

nBytes Specifies the amount of memory, in bytes, to allocate for item strings.

Remarks
Allocates memory for storing list box items in the list-box portion of the combo box.
Call this function before adding a large number of items to the list-box portion of the
CComboBox.

Windows 95 only: The wParam parameter is limited to 16-bit values. This means
list boxes cannot contain more than 32,767 items. Although the number of items is
restricted, the total size of the items in a list box is limited only by available memory.

This function helps speed up the initialization of list boxes that have a large number
of items (more than 100). It preallocates the specified amount of memory so that
subsequent AddString, InsertString, and Dir functions take the shortest possible
time. You can use estimates for the parameters. If you overestimate, some extra
memory is allocated; if you underestimate, the normal allocation is used for items
that exceed the preallocated amount.

See Also: CComboBox::CComboBox, CComboBox::Create,
CComboBox::ResetContent, CB_INITSTORAGE

193

CComboBox::InsertString

CComboBox::InsertString

int InsertString(int n/ndex, LPCTSTR IpszString);

Return Value
The zero-based index of the position at which the string was inserted. The return value
is CB_ERR if an error occurs. The return value is CB_ERRSPACE if insufficient
space is available to store the new string.

Parameters
nlndex Contains the zero-based index to the position in the list box that will receive
the string. If this parameter is —1, the string is added to the end of the list.

IpszString Points to the null-terminated string that is to be inserted.

Remarks
Inserts a string into the list box of a combo box. Unlike the AddString member
function, the InsertString member function does not cause a list with the
CBS_SORT style to be sorted.

See Also: CComboBox::AddString, CComboBox::DeleteString,
CComboBox::ResetContent, CB_INSERTSTRING

CComboBox::LimitText

BOOL LimitText(int nMaxChars);

Return Value

Nonzero if successful. If called for a combo box with the style
CBS_DROPDOWNLIST or for a combo box without an edit control, the
return value is CB_ERR.

Parameters
nMaxChars Specifies the length (in bytes) of the text that the user can enter. If this
parameter is 0, the text length is set to 65,535 bytes.

Remarks

Limits the length in bytes of the text that the user can enter into the edit control of a
combo box.

If the combo box does not have the style CBS_AUTOHSCROLL, setting the text
limit to be larger than the size of the edit control will have no effect.

LimitText only limits the text the user can enter. It has no effect on any text already
in the edit control when the message is sent, nor does it affect the length of the text
copied to the edit control when a string in the list box is selected.

See Also: CB_LIMITTEXT

194

CComboBox::ResetContent

CComboBox::Measureltem

virtual void Measureltem(LPMEASUREITEMSTRUCT IpMeasureltemStruct);

Parameters

Remarks

IpMeasureltemStruct A long pointer to a MEASUREITEMSTRUCT structure.

Called by the framework when a combo box with an owner-draw style is created.

By default, this member function does nothing. Override this member function
and fill in the MEASUREITEMSTRUCT structure to inform Windows of the
dimensions of the list box in the combo box. If the combo box is created with the

CBS_OWNERDRAWYVARIABLE style, the framework calls this member function .

for each item in the list box. Otherwise, this member is called only once.

Using the CBS_OWNERDRAWFIXED style in an owner-draw combo box created
with the SubclassDlgItem member function of CWnd involves further programming
considerations. See the discussion in Technical Note 14 online.

See CWnd::OnMeasureltem for a description of the MEASUREITEMSTRUCT
structure.

See Also: CComboBox::Compareltem, CComboBox::DrawItem,
WM_MEASUREITEM, CComboBox::Deleteltem

CComboBox::Paste

Remarks

void Paste();

Inserts the data from the Clipboard into the edit control of the combo box at the
current cursor position. Data is inserted only if the Clipboard contains data in
CF_TEXT format.

See Also: CComboBox::Clear, CComboBox::Copy, CComboBox::Cut,
WM_PASTE

CComboBox::ResetContent

Remarks

void ResetContent();

Removes all items from the list box and edit control of a combo box.

See Also: CB_RESETCONTENT

195

CComboBox::SelectString

CComboBox::SelectString

int SelectString(int nStartAfter, LPCTSTR IpszString);

Return Value
The zero-based index of the selected item if the string was found. If the search was
unsuccessful, the return value is CB_ERR and the current selection is not changed.

Parameters
nStartAfter Contains the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the
top of the list box back to the item specified by nStrartAfter. If —1, the entire list box
is searched from the beginning.

IpszString Points to the null-terminated string that contains the prefix to search for.
The search is case independent, so this string can contain any combination of
uppercase and lowercase letters.

Remarks
Searches for a string in the list box of a combo box, and if the string is found, selects
the string in the list box and copies it to the edit control.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

Note that the SelectString and FindString member functions both find a string, but
the SelectString member function also selects the string.

See Also: CComboBox::FindString, CB_SELECTSTRING

CComboBox::SetCurSel

int SetCurSel(int nSelect);

Return Value
The zero-based index of the item selected if the message is successful. The return
value is CB_ERR if nSelect is greater than the number of items in the list or if nSelect
is set to —1, which clears the selection.

Parameters
nSelect Specifies the zero-based index of the string to select. If —1, any current
selection in the list box is removed and the edit control is cleared.

Remarks
Selects a string in the list box of a combo box. If necessary, the list box scrolls the
string into view (if the list box is visible). The text in the edit control of the combo
box is changed to reflect the new selection. Any previous selection in the list box
is removed.

196

CComboBox::SetEditSel

See Also: CComboBox::GetCurSel, CB_SETCURSEL

CComboBox::SetDroppedWidth

int SetDroppedWidth(UINT nWidth);

Return Value
If successful, the new width of the list box, otherwise CB_ERR.

Parameters
nWidth The minimum allowable width of the list-box portion of the combo box,
in pixels.

Remarks
Call this function to set the minimum allowable width, in pixels, of the list box of a
combo box. This function only applies to combo boxes with the CBS_DROPDOWN
or CBS_DROPDOWNLIST style.

By default, the minimum allowable width of the drop-down list box is 0. When the
list-box portion of the combo box is displayed, its width is the larger of the minimum
allowable width or the combo box width.

See Also: CComboBox::GetDroppedWidth, CB_SETDROPPEDWIDTH

CComboBox::SetEditSel

BOOL SetEditSel(int nStartChar, int nEndChar);

Return Value
Nonzero if the member function is successful; otherwise 0. It is CB_ERR if
CComboBox has the CBS_DROPDOWNLIST style or does not have a list box.

Parameters .
nStartChar Specifies the starting position. If the starting position is set to —1, then
any existing selection is removed.

nEndChar Specifies the ending position. If the ending position is set to —1, then all
text from the starting position to the last character in the edit control is selected.

Remarks
Selects characters in the edit control of a combo box.

The positions are zero-based. To select the first character of the edit control, you
specify a starting position of 0. The ending position is for the character just after the
last character to select. For example, to select the first four characters of the edit
control, you would use a starting position of 0 and an ending position of 4.

See Also: CComboBox::GetEditSel, CB_SETEDITSEL

197

CComboBox::SetExtendedUI

CComboBox::SetExtendedUI

int SetExtendedUI(BOOL bExtended = TRUE);

Return Value
CB_OKAY if the operation is successful, or CB_ERR if an error occurs.

Parameters
bExtended Specifies whether the combo box should use the extended user interface
or the default user interface. A value of TRUE selects the extended user interface;
a value of FALSE selects the standard user interface.

Remarks
Call the SetExtendedUI member function to select either the default user interface
or the extended user interface for a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

The extended user interface can be identified in the following ways:

o Clicking the static control displays the list box only for combo boxes with the
CBS_DROPDOWNLIST style.

e Pressing the DOWN ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (the arrow
keys are disabled).

See Also: CComboBox::GetExtendedUI, CB_SETEXTENDEDUI

CComboBox::SetHorizontalExtent

void SetHorizontalExtent(UINT nExtent);

Parameters
nExtent Specifies the number of pixels by which the list-box portion of the combo
box can be scrolled horizontally.

Remarks
Sets the width, in pixels, by which the list-box portion of the combo box can be
scrolled horizontally. If the width of the list box is smaller than this value, the
horizontal scroll bar will horizontally scroll items in the list box. If the width of
the list box is equal to or greater than this value, the horizontal scroll bar is hidden
or, if the combo box has the CBS_DISABLENOSCROLL style, disabled.

See Also: CComboBox::GetHorizontalExtent,
CB_SETHORIZONTALEXTENT

198

CComboBox::SetltemDataPtr

CComboBox::SetltemData

int SetItemData(int nlndex, DWORD dwlitemData);

Return Value
CB_ERR if an error occurs.

Parameters
nlndex Contains a zero-based index to the item to set.

dwltemData Contains the new value to associate with the item.

Remarks
Sets the 32-bit value associated with the specified item in a combo box. Use the
SetItemDataPtr member function if the 32-bit item is to be a pointer.

See Also: CComboBox::GetItemData, CComboBox::GetltemDataPtr,
CComboBox::SetltemDataPtr, CB_SETITEMDATA, CComboBox::AddString,
CComboBox::InsertString

CComboBox::SetltemDataPtr

int SetItemDataPtr(int nlndex, void* pData);

Return Value
CB_ERR if an error occurs.

Parameters
nIndex Contains a zero-based index to the item.

pData Contains the pointer to associate with the item.

Remarks
Sets the 32-bit value associated with the specified item in a combo box to be the
specified pointer (void*). This pointer remains valid for the life of the combo box,
even though the item’s relative position within the combo box might change as items
are added or removed. Hence, the item’s index within the box can change, but the *
pointer remains reliable.

See Also: CComboBox::GetItemData, CComboBox::GetItemDataPtr,
CComboBox::SetItemData, CB_SETITEMDATA, CComboBox::AddString,
CComboBox::InsertString

199

CComboBox::SetltemHeight

CComboBox::SetltemHeight

int SetItemHeight(int nindex, UINT cyltemHeight);

Return Value
CB_ERR (if the index or height is invalid; otherwise 0.

Parameters
nindex Specifies whether the height of list items or the height of the edit-control
(or static-text) portion of the combo box is set.

If the combo box has the CBS_OWNERDRAWVARIABLE style, nlndex
specifies the zero-based index of the list item whose height is to be set; otherwise,
nlndex must be 0 and the height of all list items will be set.

If nindex is —1, the height of the edit-control or static-text portion of the combo box
is to be set.

cyltemHeight Specifies the height, in pixels, of the combo-box component identified
by nindex.

Remarks
Call the SetItemHeight member function to set the height of list items in a combo
box or the height of the edit-control (or static-text) portion of a combo box.

The height of the edit-control (or static-text) portion of the combo box is set
independently of the height of the list items. An application must ensure that the
height of the edit-control (or static-text) portion is not smaller than the height of
a particular list-box item.

See Also: CComboBox::GetIltemHeight, WM_MEASUREITEM,
CB_SETITEMHEIGHT

CComboBox::SetlLocale

LCID SetLocale(LCID nNewLocale);

Return Value
The previous locale identifier (LCID) value for this combo box.

Parameters
nNewLocale The new locale identifier (LCID) value to set for the combo box.

Remarks
Sets the locale identifier for this combo box. If SetLocale is not called, the default
locale is obtained from the system. This system default locale can be modified by
using Control Panel’s Regional (or International) application.

See Also: CComboBox::GetLocale

200

CComboBox::ShowDropDown

CComboBox::SetTopIndex

int SetTopIndex(int nlndex);

Return Value
Zero if successful, or LB_ERR if an error occurs.

Parameters
nlndex Specifies the zero-based index of the list-box item.

Remarks
Ensures that a particular item is visible in the list-box portion of the combo box.

The system scrolls the list box until either the item specified by nlndex appears at the
top of the list box or the maximum scroll range has been reached.

See Also: CComboBox::GetTopIndex, CB_SETTOPINDEX

CComboBox::ShowDropDown

void ShowDropDown(BOOL bShowlt = TRUE);

Parameters
bShowlt Specifies whether the drop-down list box is to be shown or hidden. A value
of TRUE shows the list box. A value of FALSE hides the list box.

Remarks
Shows or hides the list box of a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style. By default, a combo box of this style will show the
list box.

This member function has no effect on a combo box created with the CBS_SIMPLE
style.

See Also: CB_SHOWDROPDOWN

201

CCommandLinelnfo

CCommandLinelnfo

CCommandLineInfo does not have a base class.

The CCommandLineInfo class aids in parsing the command line at application
startup.

An MFC application will typically create a local instance of this class in the
InitInstance function of its application object. This object is then passed to
CWinApp::ParseCommandLine, which repeatedly calls ParseParam to fill the
CCommandLinelnfo object. The CCommandLineInfo object is then passed to
CWinA pp::ProcessShell Command to handle the command-line arguments

and flags.

You can use this object to encapsulate the following command-line options and
parameters:

Command-line argument Command executed

app New file.

app filename Open file.

app /p filename Print file to default printer.

app [pt filename printer driver port Print file to the specified printer.

app /dde Start up and await DDE command.

app /Automation Start up as an OLE automation server.
app /[Embedding Start up to edit an embedded OLE item.

Derive a new class from CCommandLinelnfo to handle other flags and parameter
values. Override ParseParam to handle the new flags.

#include <afxwin.h>

See Also: CWinApp::ParseCommandLine, CWinApp::ProcessShellCommand

CCommandLinelnfo Class Members

Construction

CommandLineInfo Constructs a default CCommandLineInfo
object.

Operations

ParseParam Opverride this callback to parse individual
parameters.

202

CCommandLinelnfo::ParseParam

Data Members

m_bShowSplash Indicates if a splash screen should be shown.
m_bRunEmbedded Indicates the command-line /Embedding option was found.
m_bRunAutomated Indicates the command-line /Automation option was found.
m_nShellCommand Indicates the shell command to be processed.

m_strFileName Indicates the filename to be opened or printed; empty if the shell

command is New or DDE.

m_strPrinterName Indicates the printer name if the shell command is Print To;
otherwise empty.

m_strDriverName Indicates the driver name if the shell command is Print To;
otherwise empty.

m_strPortName Indicates the port name if the shell command is Print To;
otherwise empty.

Member Functions

CCommandLinelInfo::CCommandLinelnfo

CCommandLinelnfo();

Remarks
This constructor creates a CCommandLinelInfo object with default values. The
default is to show the splash screen (m_bShowSplash = TRUE) and to execute
the New command on the File menu (m_nShellCommand = NewFile).

The application framework calls ParseParam to fill data members of this object.

See Also: CCommandLineInfo::ParseParam

CCommandLinelnfo::ParseParam
virtual void ParseParam(LPCTSTR IpszParam, BOOL bFlag, BOOL bLast);

Parameters
IpszParam The parameter or flag.

bFlag Indicates whether IpszParam is a parameter or a flag.
bLast Indicates if this is the last parameter or flag on the command line.
Remarks

The framework calls this function to parse/interpret individual parameters from the
command line. CWinApp::ParseCommandLine calls ParseParam once for each

203

CCommandLinelnfo::m_bRunAutomated

parameter or flag on the command line, passing the argument to IpszParam. If the
first character of the parameter is a ‘-’ or a ‘/’, then it is removed and bFlag is set to
TRUE. When parsing the final parameter, bLast is set to TRUE.

The default implementation of this function recognizes the following flags: /p, /pt,
/dde, /Automation, and /Embedding, as shown in the following table:

Command-line argument Command executed

app New file.

app filename Open file.

app /p filename Print file to default printer.

app /pt filename printer driver port Print file to the specified printer.

app /dde Start up and await DDE command.

app /Automation Start up as an OLE automation server.
app /Embedding Start up to edit an embedded OLE item.

This information is stored in m_bRunAutomated, m_bRunEmbedded, and
m_nShellCommand. Flags are marked by either a forward-slash ‘/’ or hyphen ‘-’

The default implementation puts the first non-flag parameter into m_strFileName.
In the case of the /pt flag, the default implementation puts the second, third, and
fourth non-flag parameters into m_strPrinterName, m_strDriverName, and
m_strPortName, respectively.

The default implementation also sets m_bShowSplash to TRUE only in the case of a
new file. In the case of a new file, the user has taken action involving the application
itself. In any other case, including opening existing files using the shell, the user
action involves the file directly. In a document-centric standpoint, the splash screen
does not need to announce the application starting up.

Override this function in your derived class to handle other flag and parameter values.

See Also: CWinApp::ParseCommandLine

Data Members

CCommandLinelnfo::m_bRunAutomated

Remarks

204

Indicates that the /Automation flag was found on the command line. If TRUE, this
means start up as an OLE automation server.

See Also: CCommandLinelInfo::ParseParam,
CWinApp::ProcessShell Command

CCommandLinelInfo::m_nShellCommand

CCommandLinelnfo::m_bRunEmbedded

Remarks
Indicates that the /Embedding flag was found on the command line. If TRUE, this
means start up for editing an embedded OLE item.

See Also: CCommandLinelnfo::m_bShowSplash,
CWinApp::ProcessShellCommand

CCommandLinelnfo::m_bShowSplash

Remarks
Indicates that the splash screen should be displayed. If TRUE, this means the
splash screen for this application should be displayed during startup. The
default implementation of ParseParam sets this data member to TRUE if
m_nShellCommand is equal to CCommandLinelInfo::FileNew.

See Also: CCommandLineInfo::m_bRunAutomated,
CCommandLineInfo::m_bRunEmbedded,
CCommandLineInfo::m_nShellCommand, CCommandLineInfo::ParseParam,
CWinApp::ProcessShellCommand

CCommandLinelnfo::m_nShellCommand

Remarks
Indicates the shell command for this instance of the application.

The type for this data member is the following enumerated type, which is defined
within the CCommandLinelnfo class.

enum{
FileNew,
FileOpen,
FilePrint,
FilePrintTo,
FileDDE,
FileNothing = -1

};

For a brief description of these values, see the following list.

e CCommandLinelnfo::FileNew Indicates that no filename was found on the
command line.

¢ CCommandLineInfo::FileOpen Indicates that a filename was found on the
command line and that none of the following flags were found on the command
line: /p, /pt, /dde.

205

CCommandLinelnfo::m_strFileName

Example

¢ CCommandLineInfo::FilePrint Indicates that the /p flag was found on the
command line.

¢ CCommandLinelnfo::FilePrintTo Indicates that the /pt flag was found on the
command line.

o CCommandLineInfo::FileDDE Indicates that the /dde flag was found on the
command line.

¢ CCommandLinelInfo::FileNothing Turns off the display of a new MDI child
window on startup. By design, AppWizard generated MDI applications display
a new child window on startup. To turn off this feature, an application can
use CCommandLineInfo::FileNothing as the shell command when calling
ProcessShell Command. ProcessShellCommand is called by the InitInstance()
of all CWinApp derived classes.

BOOL CMyWinApp::InitInstance()
{

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);
// DON'T display a new MDI child window during startup!!!
cmdInfo.m_nShellCommand = CCommandLineInfo::FileNothing;
// Dispatch commands specified on the command 1ine
if (!ProcessShellCommand(cmdInfo))
return FALSE;

b
See Also: CCommandLineInfo::m_strFileName,
CCommandLinelInfo::m_strPrinterName,

CCommandLineInfo::m_strDriverName,
CCommandLinelnfo::m_strPortName, CWinApp::ProcessShell Command

CCommandLinelnfo::m_strFileName

Remarks

206

Stores the value of the first non-flag parameter on the command line. This parameter
is typically the name of the file to open.

See Also: CCommandLineInfo::m_strPrinterName,
CCommandLineInfo::m_strDriverName,
CCommandLineInfo::m_strPortName, CWinApp::ProcessShell Command

CCommandLinelInfo::m_strPrinterName

CCommandLinelnfo::m_strDriverName

Remarks

Stores the value of the third non-flag parameter on the command line. This parameter
is typically the name of the printer driver for a Print To shell command. The default
implementation of ParseParam sets this data member only if the /pt flag was found
on the command line.

See Also: CCommandLinelInfo::m_strFileName,
CCommandLinelnfo::m_strPrinterName,
CCommandLinelInfo::m_strPortName, CWinApp::ProcessShellCommand

CCommandLinelnfo::m_strPortName

Remarks

Stores the value of the fourth non-flag parameter on the command line. This
parameter is typically the name of the printer port for a Print To shell command.
The default implementation of ParseParam sets this data member only if the
/pt flag was found on the command line.

See Also: CCommandLinelInfo::m_strFileName,
CCommandLinelInfo::m_strPrinterName,
CCommandLineInfo::m_strDriverName, CWinApp::ProcessShellCommand

CCommandLinelnfo::m_strPrinterName

Remarks

Stores the value of the second non-flag parameter on the command line. This
parameter is typically the name of the printer for a Print To shell command. The
default implementation of ParseParam sets this data member only if the /pt flag
was found on the command line.

See Also: CCommandLineInfo::m_strFileName,
CCommandLinelInfo::m_strDriverName,
CCommandLinelInfo::m_strPortName, CWinApp::ProcessShellCommand

207

CCommonDialog

CCommonDialog

CCommonDialog is the base class for classes that encapsulate functionality of the
Windows common dialogs:

CFileDialog
CFontDialog
CColorDialog
CPageSetupDialog
CPrintDialog
CFindReplaceDialog
COleDialog

#include <afxdlgs.h>

See Also: CFileDialog, CFontDialog, CColorDialog, CPageSetupDialog,
CPrintDialog, CFindReplaceDialog, COleDialog

CCommonDialog Class Members

Construction

208

CCommonDialog Constructs a CCommonDialog object.

CCommonDialog::CCommonDialog

Member Functions

CCommonDialog::CCommonDialog

CCommonDialog(CWnd* pParentWnd);

Parameters

pParentWnd Points to the parent or owner window object (of type CWnd) to which
the dialog object belongs. If it is NULL, the dialog object’s parent window is set to
the main application window.

Remarks

Constructs a CCommonDialog object. See CDialog::CDialog for complete
information.

See Also: CDialog::CDialog

209

CConnectionPoint

CConnectionPoint

The CConnectionPoint class defines a special type of interface used to communicate
with other OLE objects, called a “connection point.” Unlike normal OLE interfaces,
which are used to implement and expose the functionality of an OLE control, a
connection point implements an outgoing interface that is able to initiate actions on
other objects, such as firing events and change notifications.

A connection consists of two parts: the object calling the interface, called the
“source,” and the object implementing the interface, called the “sink.” By exposing
a connection point, a source allows sinks to establish connections to itself. Through
the connection point mechanism, a source object obtains a pointer to the sink’s
implementation of a set of member functions. For example, to fire an event
implemented by the sink, the source can call the appropriate method of the sink’s
implementation.

By default, a COleControl-derived class implements two connection points: one
for events and one for property change notifications. These connections are used,
respectively, for event firing and for notifying a sink (for example, the control’s
container) when a property value has changed. Support is also provided for OLE
controls to implement additional connection points. For each additional connection
point implemented in your control class, you must declare a “connection part” that
implements the connection point. If you implement one or more connection points,
you also need to declare a single “connection map” in your control class.

The following example demonstrates a simple connection map and one connection
point for the Samp1e OLE control, consisting of two fragments of code: the first
portion declares the connection map and point; the second implements this map and
point. The first fragment is inserted into the declaration of the control class, under the
protected section:

// Connection point for ISample interface

BEGIN_CONNECTION_PART(CSampleCtrl, SampleConnPt)
CONNECTION_IID(IID_ISampleSink)

END_CONNECTION_PART(SampleConnPt)

DECLARE_CONNECTION_MAP()

210

CConnectionPoint

The BEGIN_CONNECTION_PART and END_CONNECTION_PART macros
declare an embedded class, XSampleConnPt (derived from CConnectionPoint) that
implements this particular connection point. If you want to override any
CConnectionPoint member functions, or add member functions of your own, declare
them between these two macros. For example, the CONNECTION_IID macro
overrides the CConnectionPoint::GetIID member function when placed between
these two macros.

The second code fragment is inserted into the implementation file (.CPP) of your
control class. This code implements the connection map, which includes the additional
connection point, SampleConnPt:

BEGIN_CONNECTION_MAP(CSampleCtrl, COleControl)
CONNECTION_PART(CSampleCtrl, IID_ISampleSink, SampleConnPt)
END_CONNECTION_MAP()

Once these code fragments have been inserted, the Sample OLE control exposes a
connection point for the ISampleSink interface.

Typically, connection points support “multicasting”; the ability to broadcast to
multiple sinks connected to the same interface. The following code fragment
demonstrates how to accomplish multicasting by iterating through each sink on a
connection point:

void CSampleCtri::CallSinkFunc()

{
const CPtrArray* pConnections = m_xSampleConnPt.GetConnections();
ASSERT(pConnections != NULL);
int cConnections = pConnections->GetSize();
ISampleSink* pSamplieSink;
for (int i = 0; i < cConnections; i++)
{
pSampleSink = (ISampleSink*)(pConnections->GetAt(i));
ASSERT(pSampleSink != NULL);
pSampleSink->SinkFunc();
}
}

This example retrieves the current set of connections on the SampleConnPt connection
point with a call to CConnectionPoint::GetConnections. It then iterates through the
connections and calls ISampleSink::SinkFunc on every active connection.

For more information on using CConnectionPoint, see the article “Connection
Points” in Visual C++ Programmer’s Guide online.

#include <afxctl.h>

211

CConnectionPoint::GetConnections

CConnectionPoint Class Members

Operations

GetConnections Retrieves all connection points in a connection map.

Overridables

GetContainer Retrieves the container of the control that owns the
' connection map.
GetIID Retrieves the interface ID of a connection point.
GetMaxConnections Retrieves the maximum number of connection points
supported by a control.
OnAdpvise Called by the framework when establishing or breaking
‘connections.

Member Functions
CConnectionPoint::GetConnections

const CPtrArray* GetConnections();

Return Value
A pointer to an array of active connections (sinks). Each pointer in this array
can be safely converted to a pointer to the sink interface using a cast operator.

Remarks
Call this function to retrieve all active connections for a connection point.

See Also: CConnectionPoint::GetMaxConnections

CConnectionPoint::GetContainer

virtual LPCONNECTIONPOINTCONTAINER GetContainer() = 0;

Return Value
If successful, a pointer to the container; otherwise NULL.

Remarks
Called by the framework to retrieve the IConnectionPointContainer for
the connection point. This function is typically implemented by the
BEGIN_CONNECTION_PART macro.

See Also: BEGIN_CONNECTION_PART

212

CConnectionPoint::OnAdvise

CConnectionPoint::GetIID

virtual REFIID GetIID() = 0;

Return Value
A reference to the connection point’s interface ID.

Remarks
Called by the framework to retrieve the interface ID of a connection point.

Override this function to return the interface ID for this connection point.

See Also: CONNECTION_IID

CConnectionPoint::GetMaxConnections

virtual int GetMaxConnections();

Return Value
The maximum number of connections supported by the control, or —1 if
no limit.

Remarks
Called by the framework to retrieve the maximum number of connections
supported by the connection point. The default implementation returns —1,
indicating no limit.
Override this function if you want to limit the number of sinks that can connect
to your control.

See Also: CConnectionPoint::GetConnections

CConnectionPoint::OnAdvise
virtual void OnAdvise(BOOL bAdvise);

Parameters
bAdvise TRUE, if a connection is being established; otherwise FALSE.

Remarks
Called by the framework when a connection is being established or broken.
The default implementation does nothing.

Override this function if you want notification when sinks connect to or
disconnect from your connection point.

213

CControlBar

CControlBar

CControlBar is the base class for the control-bar classes CStatusBar, CToolBar,
CDialogBar, and COleResizeBar. A control bar is a window that is usually aligned
to the left or right of a frame window. It may contain child items that are either
HWND-based controls, which are Windows windows that generate and respond to
Windows messages, or non-HWND-based items, which are not windows and are
managed by application code or framework code. List boxes and edit controls are
examples of HWND-based controls; status-bar panes and bitmap buttons are
examples of non-HWND-based controls.

Control-bar windows are usually child windows of a parent frame window and

are usually siblings to the client view or MDI client of the frame window. A
CControlBar object uses information about the parent window’s client rectangle
to position itself. It then informs the parent window as to how much space remains
unallocated in the parent window’s client area.

For more information on CControlBar, see the article “Control Bar Topics”
in Visual C++ Programmer’s Guide online and Technical Note 31 online,
“Control Bars.”

#include <afxext.h>

See Also: CToolBar, CDialogBar, CStatusBar

CControlBar Class Members

Data Members

m_bAutoDelete If nonzero, the CControlBar object is deleted when the Windows
control bar is destroyed.

Attributes

GetBarStyle Retrieves the control bar style settings.

SetBarStyle Modifies the control bar style settings.

GetCount Returns the number of non-HWND elements in the control bar.

GetDockingFrame Returns a pointer to the frame to which a control bar is docked.

214

CControlBar::CalcDynamicLayout

Attributes (continued)

GetDockingFrame Returns a pointer to the frame to which a control bar is docked.

IsFloating Returns a nonzero value if the control bar in question is a floating
control bar.)

CalcFixedLayout Returns the size of the control bar as a CSize object.

CalcDynamicLayout Returns the size of a dynamic control bar as a CSize object.

Overridables

OnUpdateCmdUI Calls the Command UT handlers.
Operations
EnableDocking Allows a control bar to be docked or floating.

Member Functions
CControlBar::CalcDynamicLayout

virtual CSize CalcDynamicLayout(int nLength, DWORD dwMode);

Return Value
The control bar size, in pixels, of a CSize object.

Parameters
nLength The requested dimension of the control bar, either horizontal or vertical,
depending on dwMode.

dwMode The following predefined flags are used to determine the height and width
of the dynamc control bar. Use the bitwise-OR (I) operator to combine the flags.

Layout mode flags What it means

LM_STRETCH Indicates whether the control bar should be stretched to the size
of the frame. Set if the bar is not a docking bar (not available for
docking). Not set when the bar is docked or floating (available
for docking). If set, LM_STRETCH ignores nLength and returns
dimensions based on the LM_HORZ state. LM_STRETCH works
similarly to the the bStretch parameter used in CalcFixedLayout;
see that member function for more information about the
relationship between stretching and orientation.

LM_HORZ Indicates that the bar is horizontally or vertically oriented. Set if the
bar is horizontally oriented, and if it is vertically oriented, it is not
set. LM_HORZ works similarly to the the bHorz parameter used in
CalcFixedLayout; see that member function for more information
about the relationship between stretching and orientation.

(continued)

215

CControlBar::CalcFixedLayout

Remarks

(continued)

Layout mode flags What it means

LM_MRUWIDTH Most Recently Used Dynamic Width. Ignores nLength parameter
and uses the remembered most recently used width.

LM_HORZDOCK Horizontal Docked Dimensions. Ignores nLength parameter and
returns the dynamic size with the largest width.

LM_VERTDOCK Vertical Docked Dimensions. Ignores nLength parameter and
returns the dynamic size with the largest height.

LM_LENGTHY Set if nLength indicates height (Y-direction) instead of width.

LM_COMMIT Resets LM_MRUWIDTH to current width of floating control bar.

The framework calls this member function to calculate the dimensions of a dynamic
toolbar.

Override this member function to provide your own dynamic layout in classes you
derive from CControlBar. MFC classes derived from CControlBar, such as
CToolbar, override this member function and provide their own implementation.

See Also: CControlBar::CalcFixedLayout, CToolbar

CControlBar::CalcFixedLayout

virtual CSize CalcFixedLayout(BOOL bStretch, BOOL bHorz);

Return Value

The control bar size, in pixels, of a CSize object.

Parameters

Remarks

216

bStretch Indicates whether the bar should be stretched to the size of the frame. The
bStretch parameter is nonzero when the bar is not a docking bar (not available for
docking) and is 0 when it is docked or floating (available for docking).

bHorz Indicates that the bar is horizontally or vertically oriented. The bHorz
parameter is nonzero if the bar is horizontally oriented and is 0 if it is vertically
oriented.

Call this member function to calculate the horizontal size of a control bar.

Control bars such as toolbars can stretch horizontally or vertically to accommodate
the buttons contained in the control bar.

If bStretch is TRUE, stretch the dimension along the orientation provided by bHorz.
In other words, if bHorz is FALSE, the control bar is stretched vertically. If bStretch
is FALSE, no stretch occurs. The following table shows the possible permutations,
and resulting control-bar styles, of bStretch and bHorz.

CControlBar::EnableDocking

Docking/Not
bStretch bHorz Stretching Orientation docking
TRUE TRUE Horizontal Horizontally Not docking
stretching oriented

TRUE FALSE Vertical Vertically Not docking
stretching oriented

FALSE TRUE No stretching Horizontally Docking
available oriented

FALSE FALSE No stretching Vertically Docking
available oriented

See Also: CControlBar::CalcDynamicLayout

CControlBar::EnableDocking

Remarks

void EnableDocking(DWORD dwStyle);

Parameters

awStyle Specifies whether the control bar supports docking and the sides of its parent
window to which the control bar can be docked, if supported. Can be one or more
of the following:

e CBRS_ALIGN_TOP Allows docking at the top of the client area.

o CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area.

e CBRS_ALIGN_LEFT Allows docking on the left side of the client area.

o CBRS_ALIGN_RIGHT Allows docking on the right side of the client area.

o CBRS_ALIGN_ANY Allows docking on any side of the client area.

e CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a single

mini-frame window.

If O (that is, indicating no flags), the control bar will not dock.

Call this function to enable a control bar to be docked. The sides specified must match
one of the sides enabled for docking in the destination frame window, or the control
bar cannot be docked to that frame window.

See Also: CFrameWnd::EnableDocking, CFrameWnd::DockControlBar,
CFrameWnd::FloatControlBar, CControlBar::SetBarStyle

217

CControlBar::GetBarStyle

CControlBar::GetBarStyle

DWORD GetBarStyle();

Return Value
The current CBRS_ (control bar styles) settings for the control bar. See
CControlBar::SetBarStyle for the complete list of available styles.

Remarks
Call this function to determine which CBRS__ (control bar styles) settings
are currently set for the control bar. Does not handle WS_ (window style)
styles.

See Also: CControlBar::SetBarStyle

CControlBar::GetCount

int GetCount() const;

Return Value
The number of non-HWND items on the CControlBar object. This function
returns O for a CDialogBar object.

Remarks
Returns the number of non-HWND items on the CControlBar object. The type of
the item depends on the derived object: panes for CStatusBar objects, and buttons
and separators for CToolBar objects.

See Also: CToolBar::SetButtons, CStatusBar::SetIndicators, CStatusBar,
CToolBar, CDialogBar

CControlBar::GetDockingFrame

CFrameWnd* GetDockingFrame() const;

Return Value
A pointer to a frame window if successful; otherwise NULL.

Remarks
Call this member function to obtain a pointer to the current frame window to which
your control bar is docked.

For more information about dockable control bars, see
CControlBar::EnableDocking and CFrameWnd::DockControlBar.

See Also: CControlBar::EnableDocking, CFrameWnd::DockControlBar

218

CControlBar::OnUpdateCmdUI

CControlBar::IsFloating

BOOL IsFloating() const;

Return Value
Nonzero if the control bar is floating; otherwise 0.

Remarks

Call this member function to determine whether the control bar is floating or
docked.

To change the state of a control bar from docked to floating, call
CFrameWnd::FloatControlBar.

See Also: CFrameWnd::FloatControlBar

CControlBar::OnUpdateCmdUI

virtual void OnUpdateCmdUI(CFrameWnd* pTarget,
» BOOL bDisablelfNoHndler) = 03

Parameters
pTarget Points to the main frame window of the application. This pointer is used
for routing update messages.

bDisablelfNoHndler Flag that indicates whether a control that has no update
handler should be automatically displayed as disabled.

Remarks
This member function is called by the framework to update the status of the toolbar
or status bar.

To update an individual button or pane, use the ON_UPDATE_COMMAND_UI
macro in your message map to set an update handler appropriately. See
ON_UPDATE_COMMAND_UI for more information about using this macro.

OnUpdateCmdUI is called by the framework when the application is idle. The
frame window to be updated must be a child window, at least indirectly, of a visible
frame window. OnUpdateCmdUI is an advanced overridable.

See Also: ON_UPDATE_COMMAND_UI, Technical Note 31 online:
“Control Bars”

219

CControlBar::SetBarStyle

CControlBar::SetBarStyle

void SetBarStyle(DWORD dwStyle);

Parameters

dwStyle The desired styles for the control bar. Can be one or more of the following:

Remarks

CBRS_ALIGN_TOP Allows the control bar to be docked to the top of the
client area of a frame window.

CBRS_ALIGN_BOTTOM Allows the control bar to be docked to the bottom
of the client area of a frame window.

CBRS_ALIGN_LEFT Allows the control bar to be docked to the left side of
the client area of a frame window.

CBRS_ALIGN_RIGHT Allows the control bar to be docked to the right side
of the client area of a frame window.

CBRS_ALIGN_ANY Allows the control bar to be docked to any side of the
client area of a frame window.

CBRS_BORDER_TOP Causes a border to be drawn on the top edge of the
control bar when it would be visible.

CBRS_BORDER_BOTTOM Causes a border to be drawn on the bottom
edge of the control bar when it would be visible.

CBRS_BORDER_LEFT Causes a border to be drawn on the left edge of the
control bar when it would be visible.

CBRS_BORDER_RIGHT Causes a border to be drawn on the right edge of
the control bar when it would be visible.

CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a single
mini-frame window.

CBRS_TOOLTIPS Causes tool tips to be displayed for the control bar.

CBRS_FLYBY Causes message text to be updated at the same time as
tool tips.

Call this function to set the desired CBRS_ styles for the control bar. Does not affect
the WS_ (window style) settings.

See Also: CControlBar::GetBarStyle

220

CControlBar::m_bAutoDelete

Data Members
CControlBar::m_bAutoDelete

Remarks

m_bAutoDelete is a public variable of type BOOL. If it is nonzero when the
Windows control-bar object is destroyed, the CControlBar object is deleted.

A control-bar object is usually embedded in a frame-window object. In this case,
m_bAutoDelete is 0 because the embedded control-bar object is destroyed when
the frame window is destroyed.

Set this variable to a nonzero value if you allocate a CControlBar object on the
heap and you do not plan to call delete.

See Also: CWnd::DestroyWindow

221

CCreateContext

CCreateContext

222

CCreateContext does not have a base class.

The framework uses the CCreateContext structure when it creates the frame
windows and views associated with a document. When creating a window, the values
in this structure provide information used to connect the components that make up a
document and the view of its data. You will only need to use CCreateContext if you
are overriding parts of the creation process.

A CCreateContext structure contains pointers to the document, the frame window,
the view, and the document template. It also contains a pointer to a CRuntimeClass
that identifies the type of view to create. The run-time class information and the
current document pointer are used to create a new view dynamically. The following
table suggests how and when each CCreateContext member might be used:

Member What it is for

m_pNewViewClass CRuntimeClass of the new view to create.
m_pCurrentDoc The existing document to be associated with the new view.
m_pNewDocTemplate The document template associated with the creation of a new

MDI frame window.

m_pLastView The original view upon which additional views are modeled,
as in the creation of a splitter window’s views or the creation
of a second view on a document.

m_pCurrentFrame The frame window upon which additional frame windows are
modeled, as in the creation of a second frame window on a
document.

When a document template creates a document and its associated components, it
validates the information stored in the CCreateContext structure. For example, a
view should not be created for a nonexistent document.

Note All of the pointers in CCreateContext are optional and can be NULL if unspecified or
unknown.

CCreateContext is used by the member functions listed under “See Also.”
Consult the descriptions of these functions for specific information if you plan
to override them.

Here are a few general guidelines:

e When passed as an argument for window creation, as in CWnd::Create,
CFrameWnd::Create, and CFrameWnd::LoadFrame, the create context
specifies what the new window should be connected to. For most windows,
the entire structure is optional and a NULL pointer can be passed.

CCreateContext

e For overridable member functions, such as CFrameWnd::OnCreateClient,
the CCreateContext argument is optional.

¢ For member functions involved in view creation, you must provide enough
information to create the view. For example, for the first view in a splitter
window, you must supply the view class information and the current document.

In general, if you use the framework defaults, you can ignore CCreateContext. If
you attempt more advanced modifications, the Microsoft Foundation Class Library
source code or the sample programs, such as VIEWEX, will guide you. If you do
forget a required parameter, a framework assertion will tell you what you forgot.

For more information on CCreateContext, see the MFC sample VIEWEX.
#include <afxext.h>

See Also: CFrameWnd::Create, CFrameWnd::LoadFrame,
CFrameWnd::OnCreateClient, CSplitterWnd::Create,
CSplitterWnd::CreateView, CWnd::Create

223

CCeriticalSection

CCriticalSection

224

An object of class CCriticalSection represents a “critical section” —

a synchronization object that allows one thread at a time to access a resource or
section of code. Critical sections are useful when only one thread at a time can be
allowed to modify data or some other controlled resource. For example, adding
nodes to a linked list is a process that should only be allowed by one thread at a
time. By using a CCriticalSection object to control the linked list, only one
thread at a time can gain access to the list.

Critical sections are used instead of mutexes when speed is critical and the resource
will not be used across process boundaries. For more information on using mutexes
in MFC, see CMutex.

To use a CCriticalSection object, construct the CCriticalSection object when it is
needed. You can then access the critical section when the constructor returns. Call
Unlock when you are done accessing the critical section.

To access a resource controlled by a CCriticalSection object in this manner, first
create a variable of either type CSingleLock or type CMultiLock in your resource’s
access member function. Then call the lock object’s Lock member function (for
example, CSingleLock::Lock). At this point, your thread will either gain access to
the resource, wait for the resource to be released and gain access, or wait for the
resource to be released and time out, failing to gain access to the resource. In any case,
your resource has been accessed in a thread-safe manner. To release the resource, use
the lock object’s Unlock member function (for example, CSingleLock::Unlock), or
allow the lock object to fall out of scope.

Alternatively, you can create a CCriticalSection object stand-alone, and access it
explicitly before attempting to access the controlled resource. This method, while
clearer to someone reading your source code, is more prone to error as you must
remember to lock and unlock the critical section before and after access.

For more information on using CCriticalSection objects, see the article
“Multithreading: How to Use the Synchronization Classes” in Visual C++
Programmer’s Guide online.

#include <afxmt.h>

See Also: CMutex

CCriticalSection::Lock

CCriticalSection Class Members

Construction

CCriticalSection Constructs a CCriticalSection object.

Methods

Unlock Releases the CCriticalSection object.

Lock Use to gain access to the CCriticalSection object.

Member Functions
CCriticalSection::CCriticalSection

CCriticalSection();

Remarks
Constructs a CCriticalSection object. To access or release a CCriticalSection object,
create a CMultiLock or CSingleLock object and call its Lock and Unlock member
functions. If the CCriticalSection object is being used stand-alone, call its Unlock
member function to release it.

CCriticalSection::Lock

BOOL Lock();
BOOL Lock(DWORD dwTimeout);

Return Value
Nonzero if the function was successful; otherwise 0.

Parameters
dwTimeout Lock ignores this parameter value.

Remarks
Call this member function to gain access to the critical section object. Lock is
a blocking call that will not return until the critical section object is signaled
(becomes available).

If timed waits are necessary, you can use a CMutex object instead of a
CCriticalSection object.

See Also: CSingleLock::Lock, CMultiLock::Lock

225

CCriticalSection::Unlock

CCeriticalSection::Unlock

virtual BOOL Unlock();

Return Value

Nonzero if the CCriticalSection object was owned by the thread and the release was
successful; otherwise 0.

Remarks
Releases the CCriticalSection object for use by another thread. If the
CCriticalSection is being used stand-alone, Unlock must be called immediately after
completing use of the resource controlled by the critical section. If a CSingleLock or
CMultiLock object is being used, CCriticalSection::Unlock will be called by the
lock object’s Unlock member function.

226

CCtrlView

CCitrlView

Lg;omect]]
L-LS)Cdearget h
{CWnd iy
I—CCView I]
|—LﬁCCteriew)’]

The class CCtrlView and its derivatives, CEditView, CListView, CTreeView, and
CRichEditView, adapt the document-view architecture to the new common controls
supported by Windows 95 and Windows NT versions 3.51 and later. For more
information on the document-view architecture, see “Document/View Architecture
Topics” in Visual C++ Programmer’s Guide online.

#include <afxwin.h>

See Also: CTreeView, CListView, CRichEditView

CCitrlView Class Members

Construction

CCtrlView Constructs a CCtrlView object.

Data Members

m_strClass Contains the Windows class name for the view class.
m_dwDefaultStyle Contains the default style for the view class.

Member Functions
CCitrlView::CCtrlView

CCtrlView(LPCTSTR IpszClass, DWORD dwStyle);

Parameters
IpszClass ‘Windows class name of the view class.

dwStyle Style of the view class.

227

CCtrlView::m_dwDefaultStyle

Remarks
Constructs a CCtrlView object. The framework calls the constructor when a new
frame window is created or a window is split. Override CView::OnlInitialUpdate
to initialize the view after the document is attached. Call CWnd::Create or
CWhnd::CreateEx to create the Windows object.

See Also: CWnd::PreCreateWindow

Data Members
CCitrlView::m_dwDefaultStyle

DWORD m_dwDefaultStyle;

Remarks
Contains the default style for the view class. This style is applied when a window
is created.

See Also: CCtrlView::m_strClass

CCtrlView::m_strClass

CString m_strClass;

Remarks
Contains the Windows class name for the view class.

See Also: CCtrlView::m_dwDefaultStyle

228

CDaoDatabase

CDaoDatabase

Usage

Lgom'ect]]
LLCDaoDatabase h

A CDaoDatabase object represents a connection to a database through which you
can operate on the data. For information about the database formats supported, see
the GetName member function. You can have one or more CDaoDatabase objects
active at a time in a given “workspace,” represented by a CDaoWorkspace object.
The workspace maintains a collection of open database objects, called the Databases
collection.

Note The MFC DAO database classes are distinct from the MFC database classes based

on ODBC. All DAQO database class names have the “CDao” prefix. Class CDaoDatabase
supplies an interface similar to that of the ODBC class CDatabase. The main difference is that
CDatabase accesses the DBMS through Open Database Connectivity (ODBC) and an ODBC
driver for that DBMS. CDaoDatabase accesses data through a Data Access Object (DAO)
based on the Microsoft Jet database engine. In general, the MFC classes based on DAO are
more capable than the MFC classes based on ODBC; the DAO-based classes can access data,
including through ODBC drivers, via their own database engine. The DAO-based classes also
support Data Definition Language (DDL) operations, such as adding tables via the classes,
without having to call DAQ directly.

You can create database objects implicitly, when you create recordset objects. But you
can also create database objects explicitly. To use an existing database explicitly with
CDaoDatabase, do either of the following:

o Construct a CDaoDatabase object, passing a pointer to an open CDaoWorkspace
object.

¢ Or construct a CDaoDatabase object without specifying the workspace (MFC
creates a temporary workspace object).

To create a new Microsoft Jet (MDB) database, construct a CDaoDatabase object
and call its Create member function. Do not call Open after Create.

To open an existing database, construct a CDaoDatabase object and call its Open
member function.

Any of these techniques appends the DAO database object to the workspace’s
Databases collection and opens a connection to the data. When you then construct
CDaoRecordset, CDaoTableDef, or CDaoQueryDef objects for operating on
the connected database, pass the constructors for these objects a pointer to your
CDaoDatabase object. When you finish using the connection, call the Close

229

CDaoDatabase

member function and destroy the CDaoDatabase object. Close closes any recordsets
you have not closed previously.

Transactions
Database transaction processing is supplied at the workspace level —see the
BeginTrans, CommitTrans, and Rollback member functions of class
CDaoWorkspace. For more information, see the article “DAO Workspace:
Managing Transactions” in Visual C++ Programmer’s Guide online.

ODBC Connections
The recommended way to work with ODBC data sources is to attach external tables
to a Microsoft Jet (MDB) database. For more information, see the article “DAQO
External: Working with External Data Sources” in Visual C++ Programmer’s
Guide online.

Collections
Each database maintains its own collections of tabledef, querydef, recordset, and
relation objects. Class CDaoDatabase supplies member functions for manipulating
these objects. '

Note The objects are stored in DAO, not in the MFC database object. MFC supplies classes
for tabledef, querydef, and recordset objects but not for relation objects.

For more information about CDaoDatabase, see the article “DAO Database” in
Visual C++ Programmer’s Guide online.

#include <afxdao.h>

See Also: CDaoWorkspace, CDaoRecordset, CDaoTableDef, CDaoQueryDef,
CDatabase, CDaoException

CDaoDatabase Class Members

Data Members

m_pWorkspace A pointer to the CDaoWorkspace object that contains the
database and defines its transaction space.

m_pDAOQODatabase A pointer to the underlying DAO database object.

Construction

CDaoDatabase Constructs a CDaoDatabase object. Call Open to connect the
object to a database.

Attributes

CanTransact Returns nonzero if the database supports transactions.

CanUpdate Returns nonzero if the CDaoDatabase object is updatable

(not read-only).

230

Attributes (continued)

CDaoDatabase

GetConnect Returns the connect string used to connect the CDaoDatabase object
to a database. Used for ODBC.

GetName Returns the name of the database currently in use.

GetQueryTimeout Returns the number of seconds after which database query operations
will time out. Affects all subsequent open, add new, update, and edit
operations and other operations on ODBC data sources (only) such as
Execute calls.

GetRecordsAffected Returns the number of records affected by the last update, edit, or add
operation or by a call to Execute.

GetVersion Returns the version of the database engine associated with the
database.

IsOpen Returns nonzero if the CDaoDatabase object is currently connected
to a database.

SetQueryTimeout Sets the number of seconds after which database query operations
(on ODBC data sources only) will time out. Affects all subsequent
open, add new, update, and delete operations.

Operations

Close Closes the database connection.

Create Creates the underlying DAO database object and initializes the
CDaoDatabase object.

CreateRelation Defines a new relation among the tables in the database.

DeleteQueryDef Deletes a querydef object saved in the database’s QueryDefs
collection.

DeleteRelation Deletes an existing relation between tables in the database.

DeleteTableDef Deletes the definition of a table in the database. This deletes the actual
table and all of its data.

Execute Executes an action query. Calling Execute for a query that returns
results throws an exception.

GetQueryDefCount Returns the number of queries defined for the database.

GetQueryDefInfo Returns information about a specified query defined in the database.

GetRelationCount Returns the number of relations defined between tables in the
database.

GetRelationInfo Returns information about a specified relation defined between tables
in the database.

GetTableDefCount Returns the number of tables defined in the database.

GetTableDefInfo Returns information about a specified table in the database.

Open Establishes a connection to a database.

231

CDaoDatabase::CanTransact

Member Functions

CDaoDatabase::CanTransact

BOOL CanTransact();
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the database supports transactions; otherwise 0.

Remarks
Call this member function to determine whether the database allows transactions.
Transactions are managed in the database’s workspace. For information about
transactions, see the article “DAO Workspace: Managing Transactions” in
Visual C++ Programmer’s Guide online.

See Also: CDaoWorkspace::BeginTrans, CDaoWorkspace::CommitTrans,
CDaoWorkspace::Rollback

CDaoDatabase::CanUpdate

BOOL CanUpdate();
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the CDaoDatabase object allows updates; otherwise 0, indicating either
that you passed TRUE in bReadOnly when you opened the CDaoDatabase object
or that the database itself is read-only. See the Open member function.

Remarks
Call this member function to determine whether the CDaoDatabase object allows
updates. For information about database updatability, see the article “DAO Recordset:
Recordset Operations” in Visual C++ Programmer’s Guide online and see the topic
“Updatable Property” in DAO Help.

CDaoDatabase::CDaoDatabase

CDaoDatabase(CDaoWorkspace* pWorkspace = NULL);

Parameters
pWorkspace A pointer to the CDaoWorkspace object that will contain the new
database object. If you accept the default value of NULL, the constructor creates
a temporary CDaoWorkspace object that uses the default DAO workspace. You
can get a pointer to the workspace object via the m_pWorkspace data member.

232

Remarks

CDaoDatabase::Close

Constructs a CDaoDatabase object. After constructing the object, if you are creating a
new Microsoft Jet (MDB) database, call the object’s Create member function. If you
are, instead, opening an existing database, call the object’s Open member function.

When you finish with the object, you should call its Close member function and then
destroy the CDaoDatabase object.

You might find it convenient to embed the CDaoDatabase object in your document
class.

Note A CDaoDatabase object is also created implicitly if you open a CDaoRecordset object
without passing a pointer to an existing CDaoDatabase object. This database object is closed
when you close the recordset object.

For information about workspaces, see the article “DAO Workspace.” For information
about using CDaoDatabase objects, see the article “DAO Database.” These articles
are in Visual C++ Programmer’s Guide online.

CDaoDatabase::Close

Remarks

virtual void Close();

Call this member function to disconnect from a database and close any open
recordsets, tabledefs, and querydefs associated with the database. It is good practice
to close these objects yourself before you call this member function. Closing a
CDaoDatabase object removes it from the Databases collection in the associated
workspace. Because Close does not destroy the CDaoDatabase object, you can
reuse the object by opening the same database or a different database.

Caution Call the Update member function (if there are pending edits) and the Close member
function on all open recordset objects before you close a database. If you exit a function that
declares CDaoRecordset or CDaoDatabase objects on the stack, the database is closed, any
unsaved changes are lost, all pending transactions are rolled back, and any pending edits to
your data are lost.

Caution If you try to close a database object while any recordset objects are open, or if you try
to close a workspace object while any database objects belonging to that specific workspace
are open, those recordset objects will be closed and any pending updates or edits will be rolled
back. If you try to close a workspace object while any database objects belonging to it are open,
the operation closes all database objects belonging to that specific workspace object, which
may result in unclosed recordset objects being closed. If you do not close your database object,
MFC reports an assertion failure in debug builds.

233

CDaoDatabase::Create

If the database object is defined outside the scope of a function, and you exit the
function without closing it, the database object will remain open until explicitly closed
or the module in which it is defined is out of scope.

For more information about CDaoDatabase objects, see the article “DAQO Database”
in Visual C++ Programmer’s Guide online. For related information, see the topic
“Close Method” in DAO Help.

See Also: CDaoDatabase::Open, CDaoRecordset::Close,
CDaoWorkspace::Close, CDaoQueryDef::Close, CDaoTableDef::Close

CDaoDatabase::Create

virtual void Create(LPCTSTR IpszName, LPCTSTR IpszLocale = dbLangGeneral,
w int dwOptions =0);
throw(CDaoException, CMemoryException);

Parameters

234

IpszName A string expression that is the name of the database file that you are creating.
It can be the full path and filename, such as “C:\MYDB.MDB”. You must supply a
name. If you do not supply a filename extension, .MDB is appended. If your network
supports the uniform naming convention (UNC), you can also specify a network
path, such as “\WMYSERVERWMYSHARE\MYDIR\WMYDB”. Only Microsoft
Jet (MDB) database files can be created using this member function. (Double
backslashes are required in string literals because “\” is the C++ escape character.)

IpszLocale A string expression used to specify collating order for creating the
database. The default value is dbLangGeneral. Possible values are:

¢ dbLangGeneral English, German, French, Portuguese, Italian, and Modern
Spanish

o dbLangArabic Arabic

e dbLangCyrillic Russian

e dbLangCzech Czech

e dbLangDutch Dutch

e dbLangGreek Greek

o dbLangHebrew Hebrew

e dbLangHungarian Hungarian
e dbLanglcelandic Icelandic

e dbLangNordic Nordic languages (Microsoft Jet database engine
version 1.0 only)

¢ dbLangNorwdan Norwegian and Danish

CDaoDatabase::CreateRelation

dbLangPolish Polish
dbLangSpanish Traditional Spanish
dbLangSwedfin Swedish and Finnish
dbLangTurkish Turkish

dwOptions An integer that indicates one or more options. Possible values are:

If you omit the encryption constant, an unencrypted database is created. You can
specify only one version constant. If you omit a version constant, a database that

dbEncrypt Create an encrypted database.

dbVersionl0 Create a database with Microsoft Jet database version 1.0.
dbVersionll Create a database with Microsoft Jet database version 1.1.
dbVersion20 Create a database with Microsoft Jet database version 2.0.

dbVersion3() Create a database with Microsoft Jet database version 3.0.

uses the Microsoft Jet database version 3.0 is created.

Caution |f a database is not encrypted, it is possible, even if you implement user/password

security, to directly read the binary disk file that constitutes the database.

Remarks

To create a new Microsoft Jet (MDB) database, call this member function after you
construct a CDaoDatabase object. Create creates the database file and the underlying
DAO database object and initializes the C++ object. The object is appended to the
associated workspace’s Databases collection. The database object is in an open state;

do not call Open after Create.

Note With Create, you can create only Microsoft Jet (.MDB) databases. You cannot create

ISAM databases or ODBC databases.

For information about databases, see the article “DAQ Database” in Visual C++
Programmer’s Guide online. For related information, see the topic “CreateDatabase

Method” in DAO Help.
See Also: CDaoDatabase::CDaoDatabase

CDaoDatabase::CreateRelation

void CreateRelation(LPCTSTR IpszName, LPCTSTR IpszTable,
«+ LPCTSTR IpszForeignTable, long lAttributes, LPCTSTR IpszField,
« LPCTSTR IpszForeignField); '
throw(CDaoException, CMemoryException);
void CreateRelation(CDaoRelationInfo& relinfo);
throw(CDaoException, CMemoryException);

235

CDaoDatabase::CreateRelation

Parameters

Remarks

236

IpszName The unique name of the relation object. The name must start with a letter
and can contain a maximum of 40 characters. It can include numbers and
underscore characters but cannot include punctuation or spaces.

IpszTable The name of the primary table in the relation. If the table does not exist,
MFC throws an exception of type CDaoException.

IpszForeignTable The name of the foreign table in the relation. If the table does not
exist, MFC throws an exception of type CDaoException.

IAttributes A long value that contains information about the relationship type. You
can use this value to enforce referential integrity, among other things. You can use
the bitwise-OR operator (I) to combine any of the following values (as long as the
combination makes sense):

e dbRelationUnique Relationship is one-to-one.

¢ dbRelationDontEnforce Relationship is not enforced (no referential
integrity).

¢ dbRelationInherited Relationship exists in a noncurrent database that
contains the two attached tables.

e dbRelationUpdateCascade Updates will cascade (for more on cascades, see
Remarks).

o dbRelationDeleteCascade Deletions will cascade.

IpszField A pointer to a null-terminated string containing the name of a field in the
primary table (named by IpszTable).

IpszForeignField A pointer to a null-terminated string containing the name of a field
in the foreign table (named by IpszForeignTable).

relinfo A reference to a CDaoRelationInfo object that contains information about
the relation you want to create.

Call this member function to establish a relation between one or more fields in a
primary table in the database and one or more fields in a foreign table (another table in
the database). The relationship cannot involve a query or an attached table from an
external database.

Use the first version of the function when the relation involves one field in each of the
two tables. Use the second version when the relation involves multiple fields. The
maximum number of fields in a relation is 14.

This action creates an underlying DAO relation object, but this is an MFC
implementation detail since MFC’s encapsulation of relation objects is contained
within class CDaoDatabase. MFC does not supply a class for relations.

CDaoDatabase::DeleteRelation

If you set the relation object’s attributes to activate cascade operations, the database
engine automatically updates or deletes records in one or more other tables when
changes are made to related primary key tables.

For example, suppose you establish a cascade delete relationship between a Customers
table and an Orders table. When you delete records from the Customers table, records
in the Orders table related to that customer are also deleted. In addition, if you
establish cascade delete relationships between the Orders table and other tables,
records from those tables are automatically deleted when you delete records from the
Customers table.

For related information, see the topic “CreateRelation Method” in DAQO Help.
See Also: CDaoDatabase::DeleteRelation

CDaoDatabase::DeleteQueryDef

void DeleteQueryDef(LPCTSTR IpszName);
throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszName The name of the saved query to delete.

Call this member function to delete the specified querydef saved query3from the
CDaoDatabase object’s QueryDefs collection. Afterwards, that query is no longer
defined in the database.

For information about creating querydef objects, see class CDaoQueryDef. A
querydef object becomes associated with a particular CDaoDatabase object when
you construct the CDaoQueryDef object, passing it a pointer to the database object.

For information about querydefs, see the article “DAO QueryDef” in Visual C++
Programmer’s Guide online. For related information, see the topic “Delete Method”
in DAO Help.

See Also: CDaoQueryDef::Create, CDaoDatabase::CreateRelation,
CDaoTableDef::Create

CDaoDatabase::DeleteRelation

void DeleteRelation(LPCTSTR IpszName);
throw(CDaoException, CMemoryException);

Parameters

IpszName The name of the relation to delete.

237

CDaoDatabase::DeleteTableDef

Remarks
Call this member function to delete an existing relation from the database object’s
Relations collection. Afterwards, the relation no longer exists.

For related information, see the topic “Delete Method” in DAO Help.

See Also: CDaoDatabase::CreateRelation, CDaoTableDef::Create,
CDaoQueryDef::Create

CDaoDatabase::DeleteTableDef

void DeleteTableDef(LPCTSTR IpszName);
throw(CDaoException, CMemoryException);

Parameters
IpszName The name of the tabledef to delete.

Remarks
Call this member function to delete the specified table and all of its data from the
CDaoDatabase object’s TableDefs collection. Afterwards, that table is no longer
defined in the database.

Warning Be very careful not to delete system tables.

For information about creating tabledef objects, see class CDaoTableDef. A tabledef
object becomes associated with a particular CDaoDatabase object when you
construct the CDaoTableDef object, passing it a pointer to the database object.

For information about tabledefs, see the article “DAQ TableDef” in Visual C++
Programmer’s Guide online. For related information, see the topic “Delete Method”
in DAO Help.

See Also: CDaoTableDef::Create, CDaoQueryDef::Create,
CDaoDatabase::CreateRelation

CDaoDatabase::Execute

void Execute(LPCTSTR IpszSQL, int nOptions = 0);
throw(CDaoException, CMemoryException);

Parameters
IpszSQL Pointer to a null-terminated string containing a valid SQL command to
execute.

nOptions An integer that specifies options relating to the integrity of the query. You
can use the bitwise-OR operator (I) to combine any of the following constants

238

Remarks

CDaoDatabase::Execute

(provided the combination makes sense—for example, you would not combine
dbInconsistent with dbConsistent):

e dbDenyWrite Deny write permission to other users.
e dblInconsistent (Default) Inconsistent updates.
¢ dbConsistent Consistent updates.

¢ dbSQLPassThrough SQL pass-through. Causes the SQL statement to be
passed to an ODBC data source for processing.

e dbFailOnError Roll back updates if an error occurs.

o dbSeeChanges Generate a run-time error if another user is changing data you
are editing.

Note If both dbinconsistent and dbConsistent are included or if neither is included, the
result is the default. For an explanation of these constants, see the topic “Execute Method”
in DAO Help.

Call this member function to run an action query or execute an SQL statement on the
database. Execute works only for action queries or SQL pass-through queries that do
not return results. It does not work for select queries, which return records.

For a definition and information about action queries, see the topics “Action Query”
and “Execute Method” in DAO Help.

Tip Given a syntactically correct SQL statement and proper permissions, the Execute member
function will not fail even if not a single row can be modified or deleted. Therefore, always use
the dbFailOnError option when using the Execute member function to run an update or delete
query. This option causes MFC to throw an exception of type CDaoException and rolls back all
successful changes if any of the records affected are locked and cannot be updated or deleted.
Note that you can always call GetRecordsAffected to see how many records were affected.

Call the GetRecordsAffected member function of the database object to determine
the number of records affected by the most recent Execute call. For example,
GetRecordsAffected returns information about the number of records deleted,
updated, or inserted when executing an action query. The count returned will not
reflect changes in related tables when cascade updates or deletes are in effect.

Execute does not return a recordset. Using Execute on a query that selects records
causes MFC to throw an exception of type CDaoException. (There is no
ExecuteSQL member function analogous to CDatabase::ExecuteSQL.)

For more information about using the Execute member function, see the article
“DAO Querydef: Using Querydefs” in Visual C++ Programmer’s Guide online.

239

CDaoDatabase::GetConnect

CDaoDatabase::GetConnect

CString GetConnect();
throw(CDaoException, CMemoryException);

Return Value

Remarks

The connect string if Open has been called successfully on an ODBC data source;
otherwise, an empty string. For a Microsoft Jet (MDB) database, the string is always
empty unless you set it for use with the dbSQLPassThrough option used with the
Execute member function or used in opening a recordset.

Call this member function to retrieve the connect string used to connect the
CDaoDatabase object to an ODBC or ISAM database. The string provides
information about the source of an open database or a database used in a pass-through
query. The connect string is composed of a database type specifier and zero or more
parameters separated by semicolons. For additional information about connect strings
in DAQO, see the topic “Connect Property” in DAO Help.

Important Using the MFC DAO classes to connect to a data source via ODBC is less efficient
than connecting via an attached table. For more information, see the article “DAQ External:
Working with External Data Sources” in Visual C++ Programmer’s Guide online.

Note The connect string is used to pass additional information to ODBC and certain ISAM
drivers as needed. It is not used for .MDB databases. For Microsoft Jet database base tables,
the connect string is an empty string ("'} except when you use it for an SQL pass-through query
as described under Return Value above.

See the Open member function for a description of how the connect string is created.
Once the connect string has been set in the Open call, you can later use it to check the
setting to determine the type, path, user ID, Password, or ODBC data source of the
database.

For connect string syntax, see the topic “Connect Property” in DAO Help.

CDaoDatabase::GetName

CString GetName();
throw(CDaoException, CMemoryException);

Return Value

Remarks

240

The full path and filename for the database if successful; otherwise, an empty
CString.

Call this member function to retrieve the name of the currently open database, which
is the name of an existing database file or registered ODBC data source name. If your

CDaoDatabase::GetQueryDefCount

network supports the uniform naming convention (UNC), you can also specify a
network path, such as “\\MYSERVER\WMYSHARE\WMYDIRWMYDB.MDB”.

(Double backslashes are required in string literals because “\” is the C++ escape
character.)

You might, for example, want to display this name in a heading. If an error occurs
while retrieving the name, MFC throws an exception of type CDaoException.

Important For better performance when accessing external databases, it is recommended
that you attach external database tables to a Microsoft Jet engine database (.MDB) rather than
connecting directly to the data source.

The database type is indicated by the file or directory that the path points to, as
follows:

Pathname points to.. Database type

.MDB file Microsoft Jet database (Microsoft Access)
.DDF file Btrieve® database

Directory containing .DBF file(s) dBASE® database

Directory containing .XLS file Microsoft Excel database

Directory containing .DBF files(s) Microsoft FoxPro® database

Directory containing .PDX file(s) Paradox® database

Directory containing appropriately Text format database

formatted text database files

For ODBC databases, such as Microsoft SQL Server and Oracle®, the database’s
connect string identifies a data source name (DSN) registered by ODBC.

For more about attaching external tables, see the article “DAO External: Attaching
External Tables” in Visual C++ Programmer’s Guide online.

See Also: CDatabase::Open, CDatabase::GetConnect

CDaoDatabase::GetQueryDefCount

short GetQueryDefCount();
throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of queries defined in the database.

Call this member function to retrieve the number of queries defined in the database’s
QueryDefs collection. GetQueryDefCount is useful if you need to loop through all
querydefs in the QueryDefs collection. To obtain information about a given query in
the collection, see GetQueryDefInfo.

41

CDaoDatabase::GetQueryDefInfo

For information about queries and querydef objects, see the articles “DAO Queries”
and “DAO QueryDef.” Both articles are in Visual C++ Programmer’s Guide online.

CDaoDatabase::GetQueryDefInfo

void GetQueryDefInfo(int nlndex, CDaoQueryDefInfo& querydefinfo,
» DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);
void GetQueryDefInfo(LPCTSTR IpszName, CDaoQueryDefInfo& querydefinfo,
» DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nindex The index of the predefined query in the database’s QueryDefs collection,
for lookup by index.

querydefinfo A reference to a CDaoQueryDefInfo object that returns the
information requested.

dwinfoOptions Options that specify which information about the recordset to
retrieve. The available options are listed here along with what they cause the
function to return about the recordset:

e AFX DAO_PRIMARY_INFO (Default) Name, Type

¢ AFX DAO_SECONDARY_INFO Primary information plus: Date Created,
Date of Last Update, Returns Records, Updatable

e AFX_DAO_ALL_INFO Primary and secondary information plus: SQL,
Connect, ODBCTimeout

IpszName A string containing the name of a query defined in the database, for
lookup by name.

Remarks
Call this member function to obtain various kinds of information about a query
defined in the database. Two versions of the function are supplied so you can select
a query either by index in the database’s QueryDefs collection or by the name of
the query.

For a description of the information returned in querydefinfo, see the
CDaoQueryDefInfo structure. This structure has members that correspond to the
items of information listed above in the description of dwlnfoOptions. If you request
one level of information, you get any prior levels of information as well.

For information about queries and querydef objects, see the articles “DAO Queries”
and “DAO QueryDef.” Both articles are in Visual C++ Programmer’s Guide online.

See Also: CDaoDatabase::GetQueryDefCount

242

CDaoDatabase::GetRecordsAffected

CDaoDatabase::GetQueryTimeout

short GetQueryTimeout();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A short integer containing the timeout value in seconds.

Call this member function to retrieve the current number of seconds to allow before
subsequent operations on the connected database are timed out. An operation might
time out due to network access problems, excessive query processing time, and so on.
While the setting is in effect, it affects all open, add new, update, and delete operations
on any recordsets associated with this CDaoDatabase object. You can change the
current timeout setting by calling SetQueryTimeout. Changing the query timeout
value for a recordset after opening does not change the value for the recordset. For
example, subsequent Move operations do not use the new value. The default value

is initially set when the database engine is initialized.

The default value for query timeouts is taken from the Windows registry. If there is
no registry setting, the default is 60 seconds. Not all databases support the ability to
set a query timeout value. If you set a query timeout value of 0, no timeout occurs;
and communication with the database may hang. This behavior may be useful during
development. If the call fails, MFC throws an exception of type CDaoException.

For more information about database objects, see the article “DAO Database” in
Visual C++ Programmer’s Guide online. For related information, see the topic
“QueryTimeout Property” in DAO Help.

See Also: CDaoWorkspace::SetLoginTimeout

CDaoDatabase::GetRecordsAffected

long GetRecordsAffected();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A long integer containing the number of records affected.

Call this member function to determine the number of records affected by the most
recent call of the Execute member function. The value returned includes the number
of records deleted, updated, or inserted by an action query run with Execute. The
count returned will not reflect changes in related tables when cascade updates or
deletes are in effect.

243

CDaoDatabase::GetRelationCount

For more information about database objects, see the article “DAO Database” in
Visual C++ Programmer’s Guide online. For related information, see the topic
“RecordsAffected Property” in DAO Help.

CDaoDatabase::GetRelationCount

short GetRelationCount();
throw(CDaoException, CMemoryException);

Return Value
The number of relations defined between tables in the database.

Remarks
Call this member function to obtain the number of relations defined between tables in
the database. GetRelationCount is useful if you need to loop through all defined
relations in the database’s Relations collection. To obtain information about a given
relation in the collection, see GetRelationInfo.

To illustrate the concept of a relation, consider a Suppliers table and a Products table,
which might have a one-to-many relationship. In this relationship, one supplier can
supply more than one product. Other relations are one-to-one and many-to-many.

For more information about database objects, see the article “DAO Database” in
Visual C++ Programmer’s Guide online.

CDaoDatabase::GetRelationInfo

void GetRelationInfo(int n/ndex, CDaoRelationInfo& relinfo,
«+ DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);
void GetRelationInfo(LPCTSTR /pszName, CDaoRelationInfo& relinfo,
< DWORD dwlinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nlndex The index of the relation object in the database’s Relations collection, for
lookup by index.

relinfo A reference to a CDaoRelationInfo object that returns the information
requested.

dwinfoOptions Options that specify which information about the relation to retrieve.
The available options are listed here along with what they cause the function to
return about the relation:

e AFX_DAO_PRIMARY_INFO (Default) Name, Table, Foreign Table
¢ AFX DAO_SECONDARY_INFO Attributes, Field Information

244

Remarks

CDaoDatabase::GetTableDefCount

The Field Information is a CDaoRelationFieldInfo object containing the fields
from the primary table involved in the relation.

IpszName A string containing the name of the relation object, for lookup by name.

Call this member function to obtain information about a specified relation in the
database’s Relations collection. Two versions of this function provide access either
by index or by name. For a description of the information returned in relinfo, see the
CDaoRelationInfo structure. This structure has members that correspond to the
items of information listed above in the description of dwinfoOptions. If you request
information at one level, you also get information at any prior levels as well.

Note If you set the relation object’s attributes to activate cascade operations
(dbRelationUpdateCascades or dbRelationDeleteCascades), the Microsoft Jet database
engine automatically updates or deletes records in one or more other tables when changes
are made to related primary key tables. For example, suppose you establish a cascade delete
relationship between a Customers table and an Orders table. When you delete records from
the Customers table, records in the Orders table related to that customer are also deleted. In
addition, if you establish cascade delete relationships between the Orders table and other
tables, records from those tables are automatically deleted when you delete records from the
Customers table.

For more information about database objects, see the article “DAO Database” in
Visual C++ Programmer’s Guide online.

See Also: CDaoDatabase::GetRelationCount

CDaoDatabase::GetTableDefCount

short GetTableDefCount();
throw(CDaoException, CMemoryException);

Return Value

Remarks

The number of tabledefs defined in the database.

Call this member function to retrieve the number of tables defined in the database.
GetTableDefCount is useful if you need to loop through all tabledefs in the
database’s TableDefs collection. To obtain information about a given table in the
collection, see GetTableDefInfo.

For more information about tables and tabledef objects, see the article “DAO
TableDef” in Visual C++ Programmer’s Guide online.

245

CDaoDatabase::GetTableDefInfo

CDaoDatabase::GetTableDefInfo

void GetTableDefInfo(int nlndex, CDaoTableDefInfo& rabledefinfo,
«+ DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);
void GetTableDefInfo(LPCTSTR IpszName, CDaoTableDefInfo& rabledefinfo,
« DWORD dwlinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nlndex The index of the tabledef object in the database’s TableDefs collection, for
lookup by index.

tabledefinfo A reference to a CDaoTableDefInfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the table to retrieve.
The available options are listed here along with what they cause the function to
return about the relation:

o AFX DAO_PRIMARY_INFO (Default) Name, Updatable, Attributes

o AFX_DAO_SECONDARY_INFO Primary information plus: Date Created,
Date Last Updated, Source Table Name, Connect

e AFX_DAO_ALL_INFO Primary and secondary information plus: Validation
Rule, Validation Text, Record Count

IpszName The name of the tabledef object, for lookup by name.

Remarks
Call this member function to obtain various kinds of information about a table defined
in the database. Two versions of the function are supplied so you can select a table
either by index in the database’s TableDefs collection or by the name of the table.

For a description of the information returned in tabledefinfo, see the
CDaoTableDefInfo structure. This structure has members that correspond to the
items of information listed above in the description of dwlnfoOptions. If you request
information at one level, you get information for any prior levels as well.

Warning The AFX_DAO_ALL_INFO option provides information that can be slow to obtain.
In this case, counting the records in the table could be very time consuming if there are many
records.

For more information about tables and tabledef objects, see the article “DAO
TableDef” in Visual C++ Programmer’s Guide online.

See Also: CDaoDatabase::GetTableDefCount

246

CDaoDatabase::Open

CDaoDatabase::GetVersion

CString GetVersion();
throw(CDaoException, CMemoryException);

Return Value
A CString that indicates the version of the database file associated with the object.

Remarks
Call this member function to determine the version of the Microsoft Jet database file.
The value returned represents the version number in the form “major.minor”; for
example, “3.0”. The product version number (for example, 3.0) consists of the version
number (3), a period, and the release number (0). The versions to date are 1.0, 1.1,
2.0, and 3.0.

For more information about database objects, see the article “DAQO Database” in
Visual C++ Programmer’s Guide online. For related information, see the topic
“Version Property” in DAO Help.

CDaoDatabase::IsOpen

BOOL IsOpen() const;

Return Value
Nonzero if the CDaoDatabase object is currently open; otherwise 0.

Remarks
Call this member function to determine whether the CDaoDatabase object is
currently open on a database.

For more information about database objects, see the article “DAO Database” in
Visual C++ Programmer’s Guide online.

See Also: CDatabase::Open

CDaoDatabase::Open

virtual void Open(LPCTSTR IpszName, BOOL bExclusive = FALSE,
«+ BOOL bReadOnly = FALSE, LPCTSTR IpszConnect = _T("'"));
throw(CDaoException, CMemoryException);

Parameters
IpszName A string expression that is the name of an existing Microsoft Jet (MDB)
database file. If the filename has an extension, it is required. If your network
supports the uniform naming convention (UNC), you can also specify a network
path, such as “\\MYSERVER\WMY SHARE\MYDIRWMYDB.MDB”. (Double
backslashes are required in string literals because “\” is the C++ escape character.)

247

CDaoDatabase::Open

Remarks

248

Some considerations apply when using IpszName. If it:

e Refers to a database that is already open for exclusive access by another user,
'MFC throws an exception of type CDaoException. Trap that exception to let
your user know that the database is unavailable.

e Is an empty string ("") and IpszConnect is “ODBC;”, a dialog box listing all
registered ODBC data source names is displayed so the user can select a
database. You should avoid direct connections to ODBC data sources; use an
attached table instead. For information, see the article “DAQO External: Working
with External Data Sources” in Visual C++ Programmer’s Guide online.

o Otherwise does not refer to an existing database or valid ODBC data source
name, MFC throws an exception of type CDaoException.

Note For details about DAO error codes, see the DAOERR.H file. For related information,
see the topic “Trappable Data Access Errors” in DAO Help.

bExclusive A Boolean value that is TRUE if the database is to be opened for
exclusive (nonshared) access and FALSE if the database is to be opened for shared
access. If you omit this argument, the database is opened for shared access.

bReadOnly A Boolean value that is TRUE if the database is to be opened for
read-only access and FALSE if the database is to be opened for read/write access.
If you omit this argument, the database is opened for read/write access. All
dependent recordsets inherit this attribute.

IpszConnect A string expression used for opening the database. This string
constitutes the ODBC connect arguments. You must supply the exclusive and
read-only arguments to supply a source string. For syntax, see the topic “Connect
Property” in DAO Help. If the database is a Microsoft Jet database (MDB), this
string is empty (""). The syntax for the default value —_T("") — provides
portability for Unicode as well as ANSI builds of your application.

You must call this member function to initialize a newly constructed CDaoDatabase
object that represents an existing database. Open associates the database with the
underlying DAO object. You cannot use the database object to construct recordset,

to the associated workspace’s Databases collection.
Use the parameters as follows:

o If you are opening a Microsoft Jet (MDB) database, use the [pszName parameter
and pass an empty string for the IpszConnect parameter or pass a password string
of the form “;PWD=password” if the database is password-protected (MDB
databases only).

e If you are opening an ODBC data source, pass a valid ODBC connect string in
IpszConnect and an empty string in IpszName.

CDaoDatabase::SetQueryTimeout

For related information, see the topic “OpenDatabase Method” in DAO Help.

Important For better performance when accessing external databases, including ISAM
databases and ODBC data sources, it is recommended that you attach external database
tables to a Microsoft Jet engine database (.MDB) rather than connecting directly to the
data source.

It is possible for a connection attempt to time out if, for example, the DBMS host
is unavailable. If the connection attempt fails, Open throws an exception of type
CDaoException.

The remaining remarks apply only to ODBC databases:

If the database is an ODBC database and the parameters in your Open call do not
contain enough information to make the connection, the ODBC driver opens a dialog
box to obtain the necessary information from the user. When you call Open, your
connect string, [pszConnect, is stored privately and is available by calling the
GetConnect member function.

If you wish, you can open your own dialog box before you call Open to get
information from the user, such as a password, then add that information to the
connect string you pass to Open. Or you might want to save the connect string
you pass (perhaps in the Windows registry) so you can reuse it the next time your
application calls Open on a CDaoDatabase object.

You can also use the connect string for multiple levels of login authorization (each for
a different CDaoDatabase object) or to convey other database-specific information.

For related information about connect strings, see the topic “Connect Property” in
DAO Help.

See Also: CDatabase::CDatabase, CDatabase::Close

CDaoDatabase::SetQueryTimeout

void SetQueryTimeout(short nSeconds);
throw(CDaoException, CMemoryException);

Parameters

Remarks

nSeconds The number of seconds to allow before a query attempt times out.

Call this member function to override the default number of seconds to allow before
subsequent operations on the connected database time out. An operation might time
out due to network access problems, excessive query processing time, and so on. Call
SetQueryTimeout prior to opening your recordset or prior to calling the recordset’s
AddNew, Update, or Delete member functions if you want to change the query
timeout value. The setting affects all subsequent Open, AddNew, Update, and Delete

249

CDaoDatabase::m_pDAQODatabase

calls to any recordsets associated with this CDaoDatabase object. Changing the
query timeout value for a recordset after opening does not change the value for the
recordset. For example, subsequent Move operations do not use the new value.

The default value for query timeouts is 60 seconds. Not all databases support the
ability to set a query timeout value. If you set a query timeout value of 0, no timeout
occurs; the communication with the database may hang. This behavior may be useful
during development.

For related information, see the topic “QueryTimeout Property” in DAO Help.
See Also: CDaoWorkspace::SetLoginTimeout

Data Members
CDaoDatabase::m_pDAQODatabase

Remarks

Contains a pointer to the OLE interface for the DAO database object underlying the
CDaoDatabase object. Use this pointer if you need to access the DAO interface
directly.

For more information about DAO databases, see the article “DAQO Database” in
Visual C++ Programmer’s Guide online. For information about calling DAO
directly, see Technical Note 54 online.

CDaoDatabase::m_pWorkspace

Remarks

250

Contains a pointer to the CDaoWorkspace object that contains the database object.
Use this pointer if you need to access the workspace directly—for example, to
obtain pointers to other database objects in the workspace’s Databases collection.

For more information about workspaces, see the article “DAO Workspace” in
Visual C++ Programmer’s Guide online.

CDaoException

| CObject l}
|—LCException h
L CDaoException h

A CDaoException objectrepresents an exception condition arising from the MFC
database classes based on data access objects (DAO). The class includes public data
members you can use to determine the cause of the exception. CDaoException

objects are constructed and thrown by member functions of the DAO database classes.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAQO database class names have the “CDao” prefix. You
can still access ODBC data sources with the DAO classes. In general, the MFC classes based
on DAO are more capable than the MFC classes based on ODBC; the DAQO-based classes can
access data, including through ODBC drivers, via their own database engine. The DAO-based
classes also support Data Definition Language (DDL) operations, such as adding tables via the
classes, without having to call DAQ directly. For information on exceptions thrown by the ODBC
classes, see CDBException.

You can access exception objects within the scope of a CATCH expression. You can
also throw CDaoException objects from your own code with the
AfxThrowDaoException global function.

In MFC, all DAO errors are expressed as exceptions, of type CDaoException. When
you catch an exception of this type, you can use CDaoException member functions
to retrieve information from any DAO error objects stored in the database engine’s
Errors collection. As each error occurs, one or more error objects are placed in the
Errors collection. (Normally the collection contains only one error object; if you are
using an ODBC data source, you are more likely to get multiple error objects.) When
another DAO operation generates an error, the Errors collection is cleared, and the
new error object is placed in the Errors collection. DAO operations that do not
generate an error have no effect on the Errors collection.

For DAO error codes, see the file DAOERR.H. For related information, see the topic
“Trappable Data Access Errors” in DAO Help.

For more information about exception handling in general, or about CDaoException
objects, see the articles “Exceptions” and “Exceptions: Database Exceptions” in
Visual C++ Programmer’s Guide online. The second article contains example code
that illustrates exception handling in DAO.

#include <afxdao.h>

See Also: CException

CDaoException

251

CDaoException::CDaoException

CDaoException Class Members

Data Members

m_scode The SCODE value associated with the error.
m_nAfxDaoError Contains an extended error code for any error in the MFC DAO classes.

m_pErrorInfo A pointer to a CDaoErrorInfo object that contains information about
one DAO error object.

Construction

CDaoException Constructs a CDaoException object.

Operations

GetErrorCount Returns the number of errors in the database engine’s Errors collection.

GetErrorInfo Returns error information about a particular error object in the Errors
collection.

Member Functions
CDaoException::CDaoException

CDaoException();

Remarks
Constructs a CDaoException object. Ordinarily, the framework creates exception
objects when its code throws an exception. You seldom need to construct an exception
object explicitly. If you want to throw a CDaoException from your own code, call the
global function AfxThrowDaoException.

However, you might want to explicitly create an exception object if you are making

direct calls to DAO via the DAO interface pointers that MFC classes encapsulate. In
that case, you might need to retrieve error information from DAQO. Suppose an error
occurs in DAO when you call a DAO method via, say, the DAODatabases interface

to a workspace’s Databases collection. To retrieve the DAO error information:

1. Construct a CDaoException object.

2. Call the exception object’s GetErrorCount member function to determine how
many error objects are in the database engine’s Errors collection. (Normally only
one, unless you are using an ODBC data source.)

3. Call the exception object’s GetErrorInfo member function to retrieve one specific
error object at a time, by index in the collection, via the exception object. Think of
the exception object as a proxy for one DAO error object.

252

CDdoException::GetErrorInfo
4. Examine the current CDaoErrorInfo structure that GetErrorInfo returns in the
m_pErrorInfo data member. Its members provide information on the DAO error.

5. In the case of an ODBC data source, repeat steps 3 and 4 as needed, for more error
objects.

6. If you constructed the exception object on the heap, delete it with the delete
operator when you finish.

For more information about handling errors in the MFC DAO classes, see the article
“Exceptions: Database Exceptions” in Visual C++ Programmer’s Guide online.

CDaoException::GetErrorCount

short GetErrorCount();

Return Value
The number of DAO error objects in the database engine’s Errors collection.

Remarks
Call this member function to retrieve the number of DAO error objects in the database
engine’s Errors collection. This information is useful for looping through the Errors
collection to retrieve each of the one or more DAO error objects in the collection. To
retrieve an error object by index or by DAO error number, call the GetErrorInfo
member function.

Note Normally there is only one error object in the Errors collection. If you are working with an
ODBC data source, however, there could be more than one.

CDaoException::GetErrorInfo

void GetErrorInfo(int nlndex);

Parameters
nlndex The index of the error information in the database engine’s Errors collection,
for lookup by index.

Remarks
Call this member function to obtain the following kinds of information about the
exception:
e Error Code
¢ Source
¢ Description
e Help File
¢ Help Context

253

CDaoException::m_nAfxDaoError

GetErrorInfo stores the information in the exception object’s m_pErrorInfo data
member. For a brief description of the information returned, see m_pErrorInfo. If
you catch an exception of type CDaoException thrown by MFC, the m_pErrorInfo
member will already be filled in. If you choose to call DAO directly, you must call the
exception object’s GetErrorInfo member function yourself to fill m_pErrorInfo.
For a more detailed description, see the CDaoErrorInfo structure.

For information about DAO exceptions, and example code, see the article
“Exceptions: Database Exceptions.” For more about getting information from DAO
object collections, see the article “DAO Collections: Obtaining Information About
DAO Objects. Both articles are in Visual C++ Programmer’s Guide online.

See Also: CDaoException::GetErrorCount

Data Members

CDaoException::m_nAfxDaoError

Remarks
Contains an MFC extended error code. This code is supplied in cases where a specific
component of the MFC DAO classes has erred.

Possible values are:

e NO_AFX_DAO_ERROR The most recent operation did not result in an MFC
extended error. However, the operation could have produced other errors from
DAO or OLE, so you should check m_pErrorInfo and possibly m_scode.

¢ AFX_DAO_ERROR_ENGINE_INITIALIZATION MFC could not
initialize the Microsoft Jet database engine. OLE might have failed to initialize,
or it might have been impossible to create an instance of the DAO database
engine object. These problems usually suggest a bad installation of either DAO
or OLE.

e AFX_DAO_ERROR_DFX_BIND An address used in a DAO record field
exchange (DFX) function call does not exist or is invalid (the address was not
used to bind data). You might have passed a bad address in a DFX call, or the
address might have become invalid between DFX operations.

e AFX_DAO_ERROR_OBJECT_NOT_OPEN You attempted to open a
recordset based on a querydef or a tabledef object that was not in an open state.

For more information about DFX, see the article “DAO Record Field Exchange
(DFX)” in Visual C++ Programmer’s Guide online.

See Also: CDaoException::GetErrorCount, CDaoException::GetErrorInfo

254

CDaoException::m_scode

CDaoException::m_pErrorInfo

Remarks

Contains a pointer to a CDaoErrorInfo structure that provides information on the
DAO error object that you last retrieved by calling GetErrorInfo. This object
contains the following information:

CDaoErrorinfo member Information Meaning

m_lErrorCode Error Code The DAO error code

m_strSource Source The name of the object or application that
originally generated the error

m_strDescription Description A descriptive string associated with the error

m_strHelpFile Help File A path to a Windows Help file in which the user
can get information about the problem

m_IHelpContext Help Context The context ID for a topic in the DAO Help file

For full details about the information contained in the CDaoErrorInfo object, see the
CDaoErrorlnfo structure.

See Also: CDaoException::m_scode, CDaoException::m_nAfxDaoError

CDaoException::m_scode

Remarks

Contains a value of type SCODE that describes the error. This is an OLE code. You
will seldom need to use this value because, in almost all cases, more specific MFC or
DAO error information is available in the other CDaoException data members.

For information about SCODE, see the topic “Structure of OLE Error Codes” in the
Win32 SDK, OLE Programmer’s Reference, Volume 1. The SCODE data type maps
to the HRESULT data type.

See Also: CDaoException::m_pErrorInfo, CDaoException::m_nAfxDaoError

255

CDaoFieldExchange

CDaoFieldExchange

256

CDaoFieldExchange does not have a base class.

The CDaoFieldExchange class supports the DAO record field exchange (DFX)
routines used by the DAO database classes. Use this class if you are writing data
exchange routines for custom data types; otherwise, you will not directly use this
class. DFX exchanges data between the field data members of your CDaoRecordset
object and the corresponding fields of the current record on the data source. DFX
manages the exchange in both directions, from the data source and to the data source.
See Technical Note 53 online for information about writing custom DFX routines.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAO database class names have the “CDao” prefix. You
can still access ODBC data sources with the DAQO classes. In general, the MFC classes based
on DAO are more capable than the MFC classes based on ODBC. The DAO-based classes can
access data, including through ODBC drivers, via their own database engine. They also support
Data Definition Language (DDL) operations, such as adding tables via the classes instead of
having to call DAO yourself.

Note DAO record field exchange (DFX) is very similar to record field exchange (RFX) in the
ODBC-based MFC database classes (CDatabase, CRecordset). If you understand RFX, you
will find it easy to use DFX.

A CDaoFieldExchange object provides the context information needed for DAO
record field exchange to take place. CDaoFieldExchange objects support a number
of operations, including binding parameters and field data members and setting
various flags on the fields of the current record. DFX operations are performed on
recordset-class data members of types defined by the enum FieldType in
CDaoFieldExchange. Possible FieldType values are:

e CDaoFieldExchange::outputColumn for field data members.

e CDaoFieldExchange::param for parameter data members.

The IsValidOperation member function is provided for writing your own custom
DFX routines. You will use SetFieldType frequently in your
CDaoRecordset::DoFieldExchange functions. For details about the DFX global

functions, see “Record Field Exchange Functions.” For information about writing
custom DFX routines for your own data types, see Technical Note 53 online.

For information about DFX, see the article “DAO Record Field Exchange (DFX)”
in Visual C++ Programmer’s Guide online.

#include <afxdao.h>

See Also: CDaoRecordset

CDaoFieldExchange::IsValidOperation

CDaoFieldExchange Class Members

Data Members

m_nOperation The DFX operation being performed by the
current call to the recordset’s DoFieldExchange
member function.

m_prs A pointer to the recordset on which DFX operations
are being performed.

Member Functions

IsValidOperation Returns nonzero if the current operation is appropriate
for the type of field being updated.

SetFieldType Specifies the type of recordset data member —
column or parameter—represented by all
subsequent calls to DFX functions until the next
call to SetFieldType.

Member Functions
CDaoFieldExchange::IsValidOperation

BOOL IsValidOperation();

Return Value
Nonzero if the current operation is appropriate for the type of field being
updated.

Remarks
If you write your own DFX function, call IsValidOperation at the beginning
of your function to determine whether the current operation can be performed
on a particular field data member type (a CDaoFieldExchange::outputColumn
or a CDaoFieldExchange::param). Some of the operations performed by the
DFX mechanism apply only to one of the possible field types. Follow the model
of the existing DFX functions.

For more information about DFX, see the article “DAO Record Field Exchange
(DEX)” in Visual C++ Programmer’s Guide online. For additional information
on writing custom DFX routines, see Technical Note 53 online.

See Also: CDaoFieldExchange::SetFieldType

257

CDaoFieldExchange::SetFieldType

CDaoFieldExchange::SetFieldType

void SetFieldType(UINT nFieldType);

Parameters
" nFieldType A value of the enum FieldType, declared in CDaoFieldExchange,
which can be either of the following:

e CDaoFieldExchange::outputColumn
e (CDaoFieldExchange::param

Remarks
Call SetFieldType in your CDaoRecordset class’s DoFieldExchange override.
Normally, ClassWizard writes this call for you. If you write your own function and
are using the wizard to write your DoFieldExchange function, add calls to your own
function outside the field map. If you do not use the wizard, there will not be a field
map. The call precedes calls to DFX functions, one for each field data member of your
class, and identifies the field type as CDaoFieldExchange::outputColumn.

If you parameterize your recordset class, you should add DFX calls for all parameter
data members (outside the field map) and precede these calls with a call to
SetFieldType. Pass the value CDaoFieldExchange::param. (You can, instead, use
a CDaoQueryDef and set its parameter values.)

In general, each group of DFX function calls associated with field data members
or parameter data members must be preceded by a call to SetFieldType. The
nFieldType parameter of each SetFieldType call identifies the type of the data
members represented by the DFX function calls that follow the SetField Type call.

For more information about DFX, see the article “DAO Record Field Exchange
(DFX)” in Visual C++ Programmer’s Guide online.

See Also: CDaoFieldExchange::IsValidOperation,
CDaoRecordset::DoFieldExchange

Data Members
CDaoFieldExchange::m_nOperation

Remarks
Identifies the operation to be performed on the CDaoRecordset object associated
with the field exchange object. The CDaoFieldExchange object supplies the context
for a number of different DFX operations on the recordset.

258

CDaoFieldExchange::m_prs

Note The PSEUDO NULL value described under the MarkForAddNew and SetFieldNull
operations below is a value used to mark fields Null. The DAO record field exchange
mechanism (DFX) uses this value to determine which fields have been explicitly marked Null.
PSEUDO NULL is not required for COleDateTime and COleCurrency fields.

For more information about DFX and these operations, see the article “DAO Record
Field Exchange (DFX)” in Visual C++ Programmer’s Guide online.

Possible values of m_nQOperation are:

Operation Description

AddToParameterList Builds the PARAMETERS clause of the SQL statement.
AddToSelectList Builds the SELECT clause of the SQL statement.

BindField Binds a field in the database to a memory location in your application.
BindParam Sets parameter values for the recordset’s query.

Fixup Sets the Null status for a field.

AllocCache Allocates the cache used to check for “dirty” fields in the recordset.
StoreField Saves the current record to the cache.

LoadField Restores the cached data member variables in the recordset.
FreeCache Frees the cache used to check for “dirty” fields in the recordset.
SetFieldNull Sets a field’s status to Null and value to PSEUDO NULL.
MarkForAddNew Marks fields “dirty” if not PSEUDO NULL.

MarkForEdit Marks fields “dirty” if they do not match the cache.

SetDirtyField Sets field values marked as “dirty.”

DumpField Dumps a field’s contents (debug only).

MaxDFXOperation Used for input checking.

See Also: CDaoFieldExchange::IsValidOperation, CDaoFieldExchange::m_prs,
CDaoRecordset::DoFieldExchange

CDaoFieldExchange::m_prs

Remarks

Contains a pointer to the CDaoRecordset object associated with the
CDaoFieldExchange object.

For more information about DFX, see the article “DAO Record Field Exchange
(DFX)” in Visual C++ Programmer’s Guide online.

See Also: CDaoFieldExchange::m_nOperation, CDaoRecordset

259

CDaoQueryDef

CDaoQueryDef

Usage

260

A CDaoQueryDef object represents a query definition, or “querydef,” usually
one saved in a database. A querydef is a data access object that contains the SQL
statement that describes a query, and its properties, such as “Date Created” and
“ODBC Timeout.” You can also create temporary querydef objects without saving
them, but it is convenient—and much more efficient—to save commonly reused
queries in a database. A CDaoDatabase object maintains a collection, called the
QueryDefs collection, that contains its saved querydefs.

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAO database class names have the “CDao” prefix. You
can still access ODBC data sources with the DAO classes. In general, the MFC classes based
on DAO are more capable than the MFC classes based on ODBC; the DAO-based classes can
access data, including through ODBC drivers, via their own database engine. The DAO-based
classes also support Data Definition Language (DDL) operations, such as adding tables via the
classes, without having to call DAO directly.

Use querydef objects either to work with an existing saved query or to create a new
saved query or temporary query:

1. In all cases, first construct a CDaoQueryDef object, supplying a pointer to the
CDaoDatabase object to which the query belongs.

2. Then do the following, depending on what you want:

o To use an existing saved query, call the querydef object’s Open member
function, supplying the name of the saved query.

e To create a new saved query, call the querydef object’s Create member
function, supplying the name of the query. Then call Append to save the query
by appending it to the database’s QueryDefs collection. Create puts the
querydef into an open state, so after calling Create you do not call Open.

e To create a temporary querydef, call Create. Pass an empty string for the query
name. Do not call Append.

When you finish using a querydef object, call its Close member function; then destroy
the querydef object.

Tip The easiest way to create saved queries is to create them and store them in your
database using Microsoft Access. Then you can open and use them in your MFC code.

Purposes
You can use a querydef object for any of the following purposes:

¢ To create a CDaoRecordset object

o To call the object’s Execute member function to directly execute an action query
or an SQL pass-through query

You can use a querydef object for any type of query, including select, action, crosstab,
delete, update, append, make-table, data definition, SQL pass-through, union, and
bulk queries. The query’s type is determined by the content of the SQL statement that
you supply. For information about query types, see the Execute and GetType member
functions. Recordsets are commonly used for row-returning queries, usually those
using the SELECT ... FROM keywords. Execute is most commonly used for bulk
operations. For more information, see Execute and CDaoRecordset.

Querydefs and Recordsets
To use a querydef object to create a CDaoRecordset object, you typically create or
open a querydef as described above. Then construct a recordset object, passing a
pointer to your querydef object when you call CDaoRecordset::Open. The querydef
you pass must be in an open state. For more information, see class CDaoRecordset.

You cannot use a querydef to create a recordset (the most common use for a querydef)
unless it is in an open state. Put the querydef into an open state by calling either Open
or Create.

External Databases
Querydef objects are the preferred way to use the native SQL dialect of an external
database engine. For example, you can create a Transact SQL query (as used on
Microsoft SQL Server) and store it in a querydef object. When you need to use a SQL
query not based on the Microsoft Jet database engine, you must provide a connect
string that points to the external data source. Queries with valid connect strings bypass
the database engine and pass the query directly to the external database server for
processing.

Tip The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB)
database. For more information, see the article “DAQO External: Working with External Data
Sources” in Visual C++ Programmer’s Guide online.

For more information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information, see the topics “QueryDef
Object,” “QueryDefs Collection,” and “Accessing External Databases with DAO” in
DAO Help.

#include <afxdao.h>

See Also: CDaoRecordset, CDaoDatabase, CDaoTableDef, CDaoException

CDaoQueryDef

261

CDaoQueryDef

CDaoQueryDef Class Members

262

Data Members

m_pDatabase

m_pDAOQueryDef

A pointer to the CDaoDatabase object with which the querydef is
associated. The querydef might be saved in the database or not.

A pointer to the OLE interface for the underlying DAO querydef
object.

Construction

CDaoQueryDef Constructs a CDaoQueryDef object. Next call Open or Create,
depending on your needs.

Create Creates the underlying DAO querydef object. Use the querydef as a
temporary query, or call Append to save it in the database.

Append Appends the querydef to the database’s QueryDefs collection as a
saved query.

Open Opens an existing querydef stored in the database’s QueryDefs
collection.

Close Closes the querydef object. Destroy the C-++ object when you finish
with it.

Attributes

CanUpdate Returns nonzero if the query can update the database.

GetConnect Returns the connect string associated with the querydef. The connect
string identifies the data source. (For SQL pass-through queries only;
otherwise an empty string.)

GetDateCreated Returns the date the saved query was created.

GetDateLastUpdated Returns the date the saved query was last updated.

GetName Returns the name of the querydef.

GetODBCTimeout Returns the timeout value used by ODBC (for an ODBC query) when
the querydef is executed. This determines how long to allow for the
query’s action to complete.

GetRecordsAffected Returns the number of records affected by an action query.

GetReturnsRecords Returns nonzero if the query defined by the querydef returns records.

GetSQL Returns the SQL string that specifies the query defined by the
querydef.

GetType Returns the query type: delete, update, append, make-table, and so on.

IsOpen Returns nonzero if the querydef is open and can be executed.

SetConnect Sets the connect string for an SQL pass-through query on an ODBC
data source.

SetName Sets the name of the saved query, replacing the name in use when the

querydef was created.

Attributes (continued)

CDaoQueryDef::CanUpdate

SetODBCTimeout Sets the timeout value used by ODBC (for an ODBC query) when
the querydef is executed.

SetReturnsRecords Specifies whether the querydef returns records. Setting this attribute
to TRUE is only valid for SQL pass-through queries.

SetSQL Sets the SQL string that specifies the query defined by the querydef.

Operations

Execute Executes the query defined by the querydef object.

GetFieldCount Returns the number of fields defined by the querydef.

GetFieldInfo Returns information about a specified field defined in the query.

GetParameter Count Returns the number of parameters defined for the query.

GetParameterInfo Returns information about a specified parameter to the query.

GetParamValue Returns the value of a specified parameter to the query.

SetParamValue Sets the value of a specified parameter to the query.

Member Functions
CDaoQueryDef::Append

virtual void Append();
throw(CDaoException, CMemoryException);

Remarks

Call this member function after you call Create to create a new querydef object.
Append saves the querydef in the database by appending the object to the database’s
QueryDefs collection. You can use the querydef as a temporary object without
appending it, but if you want it to persist, you must call Append.

If you attempt to append a temporary querydef object, MFC throws an exception of
type CDaoException.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

CDaoQueryDef::CanUpdate

BOOL CanUpdate();
throw(CDaoException, CMemoryException);

Return Value
Nonzero if you are permitted to modify the querydef; otherwise 0.

263

CDaoQueryDef::CDaoQueryDef

Remarks

Call this member function to determine whether you can modify the querydef—such
as changing its name or SQL string. You can modify the querydef if:

o It is not based on a database that is open read-only.
* You have update permissions for the database.

This depends on whether you have implemented security features. MFC does not
provide support for security; you must implement it yourself by calling DAO
directly or by using Microsoft Access. See the topic “Permissions Property” in
DAO Help.

For information about querydefs, see fhe article “DAO Querydef” in Visual C++
Programmer’s Guide online.

CDaoQueryDef::CDaoQueryDef

CDaoQueryDef(CDaoDatabase* pDatabase);

Parameters

Remarks

264

pDatabase A pointer to an open CDaoDatabase object.

Constructs a CDaoQueryDef object. The object can represent an existing querydef
stored in the database’s QueryDefs collection, a new query to be stored in the
collection, or a temporary query, not to be stored. Your next step depends on the
type of querydef:

e If the object represents an existing querydef, call the object’s Open member
function to initialize it.

e If the object represents a new querydef to be saved, call the object’s Create
member function. This adds the object to the database’s QueryDefs collection.
Then call CDaoQueryDef member functions to set the object’s attributes. Finally,
call Append. :

o If the object represents a temporary querydef (not to be saved in the database), call
Create, passing an empty string for the query’s name. After calling Create,
initialize the querydef by directly setting its attributes. Do not call Append.

To set the attributes of the querydef, you can use the SetName, SetSQL, SetConnect,
SetODBCTimeout, and SetReturnsRecords member functions.

When you finish with the querydef object, call its Close member function. If you have
a pointer to the querydef, use the delete operator to destroy the C++ object.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

CDaoQueryDef::Create

See Also: CDaoQueryDef::GetConnect, CDaoQueryDef::GetDateCreated,
CDaoQueryDef::GetDateLastUpdated, CDaoQueryDef::GetName,
CDaoQueryDef::GetODBCTimeout, CDaoQueryDef::GetReturnsRecords,
CDaoQueryDef::GetSQL

CDaoQueryDef::Close

virtual void Close();

Remarks
Call this member function when you finish using the querydef object. Closing the
querydef releases the underlying DAO object but does not destroy the saved DAO
querydef object or the C++ CDaoQueryDef object. This is not the same as
CDaoDatabase::DeleteQueryDef, which deletes the querydef from the database’s
QueryDefs collection in DAO (if not a temporary querydef).

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

See Also: CDaoQueryDef::Open, CDaoQueryDef::Create,
CDaoQueryDef::CDaoQueryDef

CDaoQueryDef::Create

virtual void Create(LPCTSTR IpszName = NULL, LPCTSTR IpszSQL = NULL);
throw(CDaoException, CMemoryException);

Parameters
IpszName The unique name of the query saved in the database. For details about the
string, see the topic “CreateQueryDef Method” in DAO Help. If you accept the
default value, an empty string, a temporary querydef is created. Such a query is
not saved in the QueryDefs collection.

IpszSQL The SQL string that defines the query. If you accept the default value of
NULL, you must later call SetSQL to set the string. Until then, the query is
undefined. You can, however, use the undefined query to open a recordset; see
Remarks for details. The SQL statement must be defined before you can append
the querydef to the QueryDefs collection.

Remarks
Call this member function to create a new saved query or a new temporary query. If
you pass a name in IpszName, you can then call Append to save the querydef in the
database’s QueryDefs collection. Otherwise, the object is a temporary querydef and is
not saved. In either case, the querydef is in an open state, and you can either use it to
create a CDaoRecordset object or call the querydef’s Execute member function.

265

CDaoQueryDef::Execute

If you do not supply an SQL statement in [pszSQL, you cannot run the query with
Execute but you can use it to create a recordset. In that case, MFC uses the recordset’s
default SQL statement.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

See Also: CDaoQueryDef::Open, CDaoQueryDef::CDaoQueryDef,
CDaoRecordset::GetSQL

CDaoQueryDef::Execute

virtual void Execute(int nOptions = dbFailOnError);
throw(CDaoException, CMemoryException);

Parameters

Remarks

266

nOptions An integer that determines the characteristics of the query. For related
information, see the topic “Execute Method” in DAO Help. You can use the
bitwise-OR operator (I) to combine the following constants for this argument:

e dbDenyWrite Deny write permission to other users.
o dblInconsistent Inconsistent updates.
¢ dbConsistent Consistent updates.

e dbSQLPassThrough SQL pass-through. Causes the SQL statement to be
passed to an ODBC database for processing.

o dbFailOnError Default value. Roll back updates if an error occurs and report
the error to the user.

o dbSeeChanges Generate a run-time error if another user is changing data you
are editing.

Note For an explanation of the terms “inconsistent” and “consistent,” see the topic “Execute
Method” in DAO Help.

Call this member function to run the query defined by the querydef object. Querydef
objects used for execution in this manner can only represent one of the following

query types:

e Action queries

e SQL pass-through queries

Execute does not work for queries that return records, such as select queries. Execute

is commonly used for bulk operation queries, such as UPDATE, INSERT, or
SELECT INTO, or for data definition language (DDL) operations.

CDaoQueryDef::GetConnect

For an explanation of action queries and SQL pass-through queries, see the article
“DAO Querydef: Action Queries and SQL Pass-Through Queries” in Visual C++
Programmer’s Guide online.

Tip The preferred way to work with ODBC data sources is to attach tables to a Microsoft Jet
(.MDB) database. For more information, see the topic “Accessing External Databases with
DAO” in DAQ Help and the article “DAO External: Working with External Data Sources” in
Visual C++ Programmer’s Guide online.

Call the GetRecordsAffected member function of the querydef object to determine
the number of records affected by the most recent Execute call. For example,
GetRecordsAffected returns information about the number of records deleted,
updated, or inserted when executing an action query. The count returned will not
reflect changes in related tables when cascade updates or deletes are in effect.

If you include both dbInconsistent and dbConsistent or if you include neither, the
result is the default, dbInconsistent.

Execute does not return a recordset. Using Execute on a query that selects records
causes MFC to throw an exception of type CDaoException.

For more information about using the Execute member function for querydef objects,
see the article “DAO Querydef: Using Querydefs” in Visual C++ Programmer’s
Guide online.

CDaoQueryDef::GetConnect

CString GetConnect();
throw(CDaoException, CMemoryException);

Return Value

.Remarks

A CString containing the connect string for the querydef.

Call this member function to get the connect string associated with the querydef’s data.
source. This function is used only with ODBC data sources and certain ISAM drivers.
It is not used with Microsoft Jet (MDB) databases; in this case, GetConnect returns
an empty string. For more information, see SetConnect.

Tip The preferred way to work with ODBC tables is to attach them to an .MDB database. For
more information, see the topic “Accessing External Databases with DAO” in DAO Help and the
article “DAO External: Working with External Data Sources” in Visual C++ Programmer’s Guide
online.

For information about connect strings, see the topic “Connect Property” in DAO Help.
For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

267

CDaoQueryDef::GetDateCreated

CDaoQueryDef::GetDateCreated

COleDateTime GetDateCreated();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A COleDateTime object containing the date and time the querydef was created.

Call this member function to get the date the querydef object was created.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information, see the topic “DateCreated,
LastUpdated Properties” in DAO Help.

See Also: CDaoQueryDef::GetDateLastUpdated

CDaoQueryDef::GetDateLastUpdated

COleDateTime GetDateLastUpdated();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A COleDateTime object containing the date and time the querydef was last updated.

Call this member function to get the date the querydef object was last updated—when
any of its properties were changed, such as its name, its SQL string, or its connect
string.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information, see the topic “DateCreated,
LastUpdated Properties” in DAO Help.

See Also: CDaoQueryDef::GetDateCreated

CDaoQueryDef::GetFieldCount

short GetFieldCount();
throw(CDaoException, CMemoryException);

Return Value

Remarks

268

The number of fields defined in the query.

Call this member function to retrieve the number of fields in the query.
GetFieldCount is useful for looping through all fields in the querydef. For that
purpose, use GetFieldCount in conjunction with GetFieldInfo.

CDaoQueryDef::GetFieldInfo

For information about obtaining information about querydef fields, see the article
“DAO Collections: Obtaining Information About DAO Objects” in Visual C++
Programmer’s Guide online.

CDaoQueryDef::GetFieldInfo

void GetFieldInfo(int n/ndex, CDaoFieldInfo& fieldinfo,
<+ DWORD dwlinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetFieldInfo(LPCTSTR IpszName, CDaoFieldInfo& fieldinfo,
» DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nindex The zero-based index of the desired field in the querydef’s Fields collection,
for lookup by index.

fieldinfo A reference to a CDaoFieldInfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the field to retrieve.
The available options are listed here along with what they cause the function to
return:

e AFX DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes

o AFX DAO_SECONDARY_INFO Primary information plus: Ordinal
Position, Required, Allow Zero Length, Source Field, Foreign Name, Source
Table, Collating Order

e AFX DAOQ_ALL_INFO Primary and secondary information plus: Default
Value, Validation Text, Validation Rule

IpszName A string containing the name of the desired field, for lookup by name.
You can use a CString.

Remarks
Call this member function to obtain various kinds of information about a field defined
in the querydef. For a description of the information returned in fieldinfo, see the
CDagoFieldInfo structure. This structure has members that correspond to the
descriptive information under dwinfoOptions above. If you request one level of
information, you get any prior levels of information as well.

For more information about obtaining field information, see the article “DAO
Collections: Obtaining Information About DAO Objects” in Visual C++
Programmer’s Guide online.

See Also: CDaoQueryDef::GetFieldCount

269

CDaoQueryDef::GetName

CDaoQueryDef::GetName

CString GetName();
throw(CDaoException, CMemoryException);

Return Value
The name of the query.

Remarks
Call this member function to retrieve the name of the query represented by the
querydef. Querydef names are unique user-defined names. For more information
about querydef names, see the topic “Name Property” in DAO Help.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

See Also: CDaoQueryDef::SetName, CDaoQueryDef::GetSQL,
CDaoQueryDef::GetReturnsRecords, CDaoQueryDef::GetODBCTimeout

CDaoQueryDef::GetODBCTimeout

short GetODBCTimeout(};
throw(CDaoException, CMemoryException);

Return Value
The number of seconds before a query times out.

Remarks
Call this member function to retrieve the current time limit before a query to an

ODBC data source times out. For information about this time limit, see the topic
“ODBCTimeout Property” in DAO Help.

Tip The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB)
database. For more information, see the topic “Accessing External Databases with DAQ” in
DAO Help and the article “DAO External: Working with External Data Sources” in Visual C++
Programmer’s Guide online.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

See Also: CDaoQueryDef::SetODBCTimeout, CDaoQueryDef::GetName,
CDaoQueryDef::GetSQL, CDaoQueryDef::GetReturnsRecords

CDaoQueryDef::GetParameterCount

short GetParameterCount();
throw(CDaoException, CMemoryException);

270

CDaoQueryDef::GetParameterInfo

Return Value
The number of parameters defined in the query.

Remarks
Call this member function to retrieve the number of parameters in the saved query.
GetParameterCount is useful for looping through all parameters in the querydef. For
that purpose, use GetParameterCount in conjunction with GetParameterInfo.

For information about parameterizing queries, see the article “DAO Queries: Filtering
and Parameterizing Queries” in Visual C++ Programmer’s Guide online, For related
information, see the topics ‘“Parameter Object,” “Parameters Collection,” and
“PARAMETERS Declaration (SQL)” in DAO Help.

See Also: CDaoQueryDef::GetParamValue, CDaoQueryDef::SetParamValue

CDaoQueryDef::GetParameterInfo

void GetParameterInfo(int nlndex, CDaoParameterInfo& paraminfo,
- DWORD dwlnfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);
void GetParameterInfo(LPCTSTR IpszName, CDaoParameterInfo& paraminfo,
+ DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nindex The zero-based index of the desired parameter in the querydef’s Parameters
collection, for lookup by index.

paraminfo A reference to a CDaoParameterInfo object that returns the information
requested.

dwlnfoOptions Options that specify which information about the parameter to
retrieve. The available option is listed here along with what it causes the function
to return:

e AFX_DAO_PRIMARY_INFO (Default) Name, Type

IpszName A string containing the name of the desired parameter, for lookup by
name. You can use a CString.

Remarks
Call this member function to obtain information about a parameter defined in the
querydef. For a description of the information returned in paraminfo, see the
CDaoParameterInfo structure. This structure has members that correspond to the
descriptive information under dwlnfoOptions above.

For more information about obtaining parameter information, see the article “DAO
Collections: Obtaining Information About DAO Objects.” For more information about
parameterizing queries, see the article “DAO Queries: Filtering and Parameterizing

21

CDaoQueryDef::GetParamValue

Queries.” Both articles are in Visual C++ Programmer’s Guide online. For related
information, see the topic “PARAMETERS Declaration (SQL)” in DAO Help.

See Also: CDaoQueryDef::GetParameterCount

CDaoQueryDef::GetParamValue

COleVariant GetParamValue(LPCTSTR IpszName);
throw(CDaoException, CMemoryException);
COleVariant GetParamValue(int nlndex);
throw(CDaoException, CMemoryException);

Return Value
An object of class COleVariant that contains the parameter’s value.

Parameters
IpszName The name of the parameter whose value you want, for lookup by name.

nindex The zero-based index of the parameter in the querydef’s Parameters
collection, for lookup by index. You can obtain this value with calls to
GetParameterCount and GetParameterInfo.

Remarks
Call this member function to retrieve the current value of the specified parameter
stored in the querydef’s Parameters collection. You can access the parameter either
by name or by its ordinal position in the collection.

For examples and more information about parameterizing queries, see the article
“DAO Queries: Filtering and Parameterizing Queries” in Visual C++ Programmer’s
Guide online. For related information, see the topic “PARAMETERS Declaration
(SQL)” in DAO Help.

See Also: CDaoQueryDef::SetParamValue

CDaoQueryDef::GetRecordsAffected

long GetRecordsAffected();
throw(CDaoException, CMemoryException);

Return Value
The number of records affected.

Remarks
Call this member function to determine how many records were affected by the last
call of Execute. The count returned will not reflect changes in related tables when
cascade updates or deletes are in effect.

272

CDaoQueryDef::GetSQL

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information see the topic “RecordsAffected
Property” in DAO Help.

CDaoQueryDef::GetReturnsRecords

BOOL GetReturnsRecords();
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the querydef is based on a query that returns records; otherwise 0.

Remarks
Call this member function to determine whether the querydef is based on a query that
returns records. This member function is only used for SQL pass-through queries. For
more information about SQL queries, see the Execute member function. For more
information about working with SQL pass-through queries, see the
SetReturnsRecords member function.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information, see the topic “ReturnsRecords
Property” in DAO Help.

See Also: CDaoQueryDef::GetName, CDaoQueryDef::GetSQL,
CDaoQueryDef::GetODBCTimeout

CDaoQueryDef::GetSQL

CString GetSQL();
throw(CDaoException, CMemoryException);

Return Value
The SQL statement that defines the query on which the querydef is based.

Remarks
Call this member function to retrieve the SQL statement that defines the query on
which the querydef is based. You will then probably parse the string for keywords,
table names, and so on.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information, see the topics “SQL Property,”
“Comparison of Microsoft Jet Database Engine SQL and ANSI SQL,” and “Querying
a Database with SQL in Code” in DAO Help.

See Also: CDaoQueryDef::SetSQL, CDaoQueryDef::GetName,
CDaoQueryDef::GetReturnsRecords, CDaoQueryDef::GetODBCTimeout

273

CDaoQueryDef::GetType

CDaoQueryDef::GetType

short GetType();
throw(CDaoException, CMemoryException);

Return Value
The type of the query defined by the querydef. For values, see Remarks.

Remarks
Call this member function to determine the query type of the querydef. The query type
is set by what you specify in the querydef’s SQL string when you create the querydef
or call an existing querydef’s SetSQL member function. The query type returned by
this function can be one of the following values:
o dbQSelect Select
o dbQAction Action
¢ dbQCrosstab Crosstab
o dbQDelete Delete
¢ dbQUpdate Update
¢ dbQAppend Append
o dbQMakeTable Make-table
¢ dbQDDL Data-definition
e dbQSQLPassThrough Pass-through
¢ dbQSetOperation Union
o dbQSPTBulk Used with dbQSQLPassThrough to specify a query that does not
return records.

Note To create an SQL pass-through query, don't set the dbSQLPassThrough constant. This
is set automatically by the Microsoft Jet database engine when you create a querydef object
and set the connect string.

For information about SQL strings, see GetSQL. For information about query types,
see Execute.

CDaoQueryDef::IsOpen

BOOL IsOpen() const;

Return Value
Nonzero if the CDaoQueryDef object is currently open; otherwise 0.

Remarks
Call this member function to determine whether the CDaoQueryDef object is
_currently open. A querydef must be in an open state before you use it to call

274

CDaoQueryDef::SetConnect

Execute or to create a CDaoRecordset object. To put a querydef into an open
state call either Create (for a new querydef) or Open (for an existing querydef).

For information about querydefs, see the article “DAQO Querydef” in Visual C++
Programmer’s Guide online.

CDaoQueryDef::Open

virtual void Open(LPCTSTR IpszName = NULL);
throw(CDaoException, CMemoryException);

Parameters
IpszName A string that contains the name of the saved querydef to open. You can
use a CString.

Remarks
Call this member function to open a querydef previously saved in the database’s
QueryDefs collection. Once the querydef is open, you can call its Execute member
function or use the querydef to create a CDaoRecordset object.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

See Also: CDaoQueryDef::IsOpen, CDaoQueryDef::Close,
CDaoQueryDef::SetName, CDaoQueryDef::Create

CDaoQueryDef::SetConnect

void SetConnect(LPCTSTR IpszConnect);
throw(CDaoException, CMemoryException);

Parameters
IpszConnect A string that contains a connect string for the associated
CDaoDatabase object.

Remarks
Call this member function to set the querydef object’s connect string. The connect
string is used to pass additional information to ODBC and certain ISAM drivers as
needed. It is not used for Microsoft Jet (MDB) databases.

Tip The preferred way to work with ODBC tables is to attach them to an .MDB database. For
more information, see the topic “Accessing External Databases with DAO” in DAO Help and the
article “DAO External: Working with External Data Sources” in Visual C++ Programmer's Guide
online.

275

CDaoQueryDef::SetName

Before executing a querydef that represents an SQL pass-through quéry to an ODBC
data source, set the connect string with SetConnect and call SetReturnsRecords to
specify whether the query returns records.

For more information about the connect string’s structure and examples of connect
string components, see the topic “Connect Property” in DAO Help. For information
about querydefs, see the article “DAO Querydef” in Visual C++ Programmer’s Guide
online.

CDaoQueryDef::SetName

void SetName(LPCTSTR IpszName);
throw(CDaoException, CMemoryException);

Parameters
IpszName A string that contains the new name for a nontemporary query in the
associated CDaoDatabase object.

Remarks
Call this member function if you want to change the name of a querydef that is not
temporary. Querydef names are unique, user-defined names. You can call SetName
before the querydef object is appended to the QueryDefs collection.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For more information about the querydef name, see the
topic “Name Property” in DAO Help.

See Also: CDaoQueryDef::GetName, CDaoQueryDef::SetSQL,
CDaoQueryDef::SetConnect, CDaoQueryDef::SetODBCTimeout,
CDaoQueryDef::SetReturnsRecords

CDaoQueryDef::SetODBCTimeout

void SetODBCTimeout(short nODBCTimeout);
throw(CDaoException, CMemoryException);

Parameters
nODBCTimeout The number of seconds before a query times out.

Remarks
Call this member function to set the time limit before a query to an ODBC data source
times out.

Tip The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (MDB)
database. For more information, see the topic “Accessing External Databases with DAO” in
DAO Help and the article “DAO External: Working with External Data Sources” in Visual C++
Programmer’s Guide online.

276

CDaoQueryDef::SetParamValue

This member function lets you override the default number of seconds before
subsequent operations on the connected data source “time out.” An operation might
time out due to network access problems, excessive query processing time, and so on.
Call SetODBCTimeout prior to executing a query with this querydef if you want to
change the query timeout value. (As ODBC reuses connections, the timeout value is
the same for all clients on the same connection.)

The default value for query timeouts is 60 seconds.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For related information, see the topic “ODBCTimeout
Property” in DAO Help.

See Also: CDaoQueryDef::GetODBCTimeout, CDaoQueryDef::SetName,
CDaoQueryDef::SetSQL, CDaoQueryDef::SetConnect,
CDaoQueryDef::SetReturnsRecords

CDaoQueryDef::SetParamValue

void SetParamValue(LPCTSTR I/pszName, const COleVariant& varValue);
throw(CDaoException, CMemoryException);

void SetParam Value(int nOrdinal, const COleVariant& varValue);
throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszName The name of the parameter whose value you want to set.
varValue The value to set; see Remarks.

nOrdinal The ordinal position of the parameter in the querydef’s Parameters
collection. You can obtain this value with calls to GetParameterCount and
GetParameterInfo.

Call this member function to set the value of a parameter in the querydef at run time.
The parameter must already have been established as part of the querydef’s SQL
string. You can access the parameter either by name or by its ordinal position in the
collection.

Specify the value to set as a COleVariant object. For information about setting the
desired value and type in your COleVariant object, see class COleVariant.

For examples and more information about parameterizing queries, see the article
“DAO Queries: Filtering and Parameterizing Queries” in Visual C++ Programmer’s
Guide online. For related information, see the topic “PARAMETERS Declaration
(SQL)” in DAO Help.

See Also: CDaoQueryDef::GetParamValue

277

CDaoQueryDef::SetReturnsRecords

CDaoQueryDef::SetReturnsRecords

void SetReturnsRecords(BOOL bReturnsRecords);
throw(CDaoException, CMemoryException);

Parameters
bReturnsRecords Pass TRUE if the query on an external database returns records;
otherwise, FALSE.

Remarks
Call this member function as part of the process of setting up an SQL pass-through
query to an external database. In such a case, you must create the querydef and set its
properties using other CDaoQueryDef member functions. For a description of
external databases, see SetConnect.

For information about querydefs, see the article “DAO Querydef.” For information
about external data sources, see the article “DAO External: Working with External
Data Sources.” Both articles are in Visual C++ Programmer’s Guide online. For
related information, see the topic “ReturnsRecords Property” in DAO Help.

See Also: CDaoQueryDef::GetReturnsRecords, CDaoQueryDef::SetName,
CDaoQueryDef::SetSQL, CDaoQueryDef::SetConnect,
CDaoQueryDef::SetODBCTimeout

CDaoQueryDef::SetSQL

void SetSQL(LPCTSTR IpszSQL);
throw(CDaoException, CMemoryException);

Parameters
IpszSQL A string containing a complete SQL statement, suitable for execution.
The syntax of this string depends on the DBMS that your query targets. For a
discussion of syntax used in the Microsoft Jet database engine, see the topic
“Building SQL Statements in Code” in DAO Help.

Remarks
Call this member function to set the SQL statement that the querydef executes. A
typical use of SetSQL is setting up a querydef object for use in an SQL pass-through
query. (For the syntax of SQL pass-through queries on your target DBMS, see the
documentation for your DBMS.)

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online. For more information about SQL, see the topics “SQL
Property,” “Microsoft Jet Database Engine SQL Data Types,” and “Querying a
Database with SQL in Code” in DAO Help.

278

CDaoQueryDef::m_pDAOQueryDef

See Also: CDaoQueryDef::GetSQL, CDaoQueryDef::SetName,
CDaoQueryDef::SetConnect, CDaoQueryDef::SetODBCTimeout,
CDaoQueryDef::SetReturnsRecords

Data Members
CDaoQueryDef::m_pDatabase

Remarks
Contains a pointer to the CDaoDatabase object associated with the querydef object.
Use this pointer if you need to access the database directly—for example, to obtain
pointers to other querydef or recordset objects in the database’s collections.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

CDaoQueryDef::m_pDAOQueryDef

Remarks
Contains a pointer to the OLE interface for the underlying DAO querydef object. This
pointer is provided for completeness and consistency with the other classes. However,
because MFC rather fully encapsulates DAO querydefs, you are unlikely to need it. If
you do use it, do so cautiously—in particular, do not change the value of the pointer
unless you know what you are doing.

For information about querydefs, see the article “DAO Querydef” in Visual C++
Programmer’s Guide online.

279

CDaoRecordset

CDaoRecordset

280

A CDaoRecordset object represents a set of records selected from a data source.
Known as “recordsets,” CDaoRecordset objects are available in the following three
forms:

e Table-type recordsets represent a base table that you can use to examine, add,
change, or delete records from a single database table.

¢ Dynaset-type recordsets are the result of a query that can have updatable records.
These recordsets are a set of records that you can use to examine, add, change, or
delete records from an underlying database table or tables. Dynaset-type recordsets
can contain fields from one or more tables in a database.

e Snapshot-type recordsets are a static copy of a set of records that you can use to
find data or generate reports. These recordsets can contain fields from one or more
tables in a database but cannot be updated.

Each form of recordset represents a set of records fixed at the time the recordset is
opened. When you scroll to a record in a table-type recordset or a dynaset-type
recordset, it reflects changes made to the record after the recordset is opened,
either by other users or by other recordsets in your application. (A snapshot-type
recordset cannot be updated.) You can use CDaoRecordset directly or derive an
application-specific recordset class from CDaoRecordset. You can then:

e Scroll through the records.
e Set an index and quickly look for records using Seek (table-type recordsets only).

o Find records based on a string comparison: "<", "<=", "=", ">=", or ">"
(dynaset-type and snapshot-type recordsets).

e Update the records and specify a locking mode (except snapshot-type recordsets).

e TFilter the recordset to constrain which records it selects from those available on
the data source.

e Sort the recordset.

e Parameterize the recordset to customize its selection with information not known
until run time.

Class CDaoRecordset supplies an interface similar to that of class CRecordset. The
main difference is that class CDaoRecordset accesses data through a Data Access
Object (DAO) based on OLE. Class CRecordset accesses the DBMS through Open
Database Connectivity (ODBC) and an ODBC driver for that DBMS.

CDaoRecordset

Note The DAO database classes are distinct from the MFC database classes based on Open
Database Connectivity (ODBC). All DAQO database class names have the “CDao” prefix. You
can still access ODBC data sources with the DAO classes; the DAQO classes generally offer
superior capabilities because they are specific to the Microsoft Jet database engine.

You can either use CDaoRecordset directly or derive a class from CDaoRecordset.
To use a recordset class in either case, open a database and construct a recordset
object, passing the constructor a pointer to your CDaoDatabase object. You can also
construct a CDaoRecordset object and let MFC create a temporary CDaoDatabase
object for you. Then call the recordset’s Open member function, specifying whether
the object is a table-type recordset, a dynaset-type recordset, or a snapshot-type
recordset. Calling Open selects data from the database and retrieves the first record.

Use the object’s member functions and data members to scroll through the records and
operate on them. The operations available depend on whether the object is a table-type
recordset, a dynaset-type recordset, or a snapshot-type recordset, and whether it is
updatable or read-only—this depends on the capability of the database or Open
Database Connectivity (ODBC) data source. To refresh records that may have been
changed or added since the Open call, call the object’s Requery member function. Call
the object’s Close member function and destroy the object when you finish with it.

CDaoRecordset uses DAO record field exchange (DFX) to support reading and
updating of record fields through type-safe C++ members of your CDaoRecordset or
CDaoRecordset-derived class. You can also implement dynamic binding of columns
in a database without using the DFX mechanism using GetFieldValue and

SetField Value.

For more information about recordsets, see the article “DAO: Recordset Architecture”
in Visual C++ Programmer’s Guide online. For related information, see the topic
“Recordset Object” in DAO Help.

#include <afxdao.h>

See Also: CDaoTableDef, CDaoWorkspace, CDaoDatabase, CDaoQueryDef

CDaoRecordset Class Members

Data Members

m_bCheckCacheForDirtyFields Contains a flag indicating whether fields are automatically
marked as changed.

m_pDAORecordset A pointer to the DAO interface underlying the recordset
object.
m_nFields Contains the number of field data members in the

recordset class and the number of columns selected by the
recordset from the data source.
(continued)

281

CDaoRecordset

282

Data Members (continued)

m_nParams

m_pDatabase

m_strFilter

Contains the number of parameter data members in the
recordset class — the number of parameters passed with
the recordset’s query

Source database for this result set. Contains a pointer to a
CDaoDatabase object.

Contains a string used to construct an SQL WHERE
statement.

m_strSort Contains a string used to construct an SQL ORDER BY
statement.

Construction

CDaoRecordset Constructs a CDaoRecordset object.

Close Closes the recordset.

Open Creates a new recordset from a table, dynaset, or
snapshot.

Attributes

CanAppend Returns nonzero if new records can be added to the
recordset via the AddNew member function.

CanBookmark Returns nonzero if the recordset supports bookmarks.

CanRestart Returns nonzero if Requery can be called to run the
recordset’s query again.

CanScroll Returns nonzero if you can scroll through the records.

CanTransact Returns nonzero if the data source supports transactions.

CanUpdate Returns nonzero if the recordset can be updated (you can
add, update, or delete records).

GetCurrentIndex Returns a CString containing the name of the index most
recently used on an indexed, table-type CDaoRecordset.

GetDateCreated Returns the date and time the base table underlying a
CDaoRecordset object was created

GetDateLastUpdated Returns the date and time of the most recent change made
to the design of a base table underlying a CDaoRecordset
object.

GetEditMode Returns a value that indicates the state of editing for the

GetLastModifiedBookmark

GetName
GetParamValue

current record.

Used to determine the most recently added or updated
record.

Returns a CString containing the name of the recordset.

Retrieves the current value of the specified parameter
stored in the underlying DAOParameter object.

Attributes (continued)

CDaoRecordset

GetRecordCount
GetSQL

GetType
GetValidationRule
GetValidationText
IsBOF

IsDeleted

IsEQF
IsFieldDirty
IsFieldNull
IsFieldNullable

IsOpen
SetCurrentIndex
SetParamValue

SetParamValueNull

Recordset Update Operations

Returns the number of records accessed in a recordset
object.

Gets the SQL string used to select records for the
recordset.

Called to determine the type of a recordset: table-type,
dynaset-type, or snapshot-type.

Returns a CString containing the value that validates data
as it is entered into a field.

Retrieves the text that is displayed when a validation rule
is not satisfied.

Returns nonzero if the recordset has been positioned
before the first record. There is no current record.

Returns nonzero if the recordset is positioned on a deleted
record.

Returns nonzero if the recordset has been positioned after
the last record. There is no current record.

Returns nonzero if the specified field in the current record
has been changed.

Returns nonzero if the specified field in the current record
is Null (having no value).

Returns nonzero if the specified field in the current record
can be set to Null (having no value).

Returns nonzero if Open has been called previously.
Called to set an index on a table-type recordset.

Sets the current value of the specified parameter stored in
the underlying DAOParameter object

Sets the current value of the specified parameter to Null
(having no value).

AddNew
CancelUpdate
Delete

Edit

Update

Prepares for adding a new record. Call Update to
complete the addition.

Cancels any pending updates due to an Edit or AddNew
operation.

Deletes the current record from the recordset. You must
explicitly scroll to another record after the deletion.

Prepares for changes to the current record. Call Update to
complete the edit.

Completes an AddNew or Edit operation by saving the
new or edited data on the data source.

283

CDaoRecordset

284

Recordset Navigation Operations

Find

FindFirst

FindLast

FindNext

FindPrev

GetAbsolutePosition

GetBookmark
GetPercentPosition

Move

MoveFirst

MoveLast

MoveNext

MovePrev

Seek

SetAbsolutePosition

SetBookmark

SetPercentPosition

Locates the first, next, previous, or last location of a
particular string in a dynaset-type recordset that satisfies
the specified criteria and makes that record the current
record.

Locates the first record in a dynaset-type or snapshot-type
recordset that satisfies the specified criteria and makes
that record the current record.

Locates the last record in a dynaset-type or snapshot-type
recordset that satisfies the specified criteria and makes
that record the current record.

Locates the next record in a dynaset-type or snapshot-type
recordset that satisfies the specified criteria and makes
that record the current record.

Locates the previous record in a dynaset-type or
snapshot-type recordset that satisfies the specified criteria
and makes that record the current record.

Returns the record number of a recordset object’s current
record.

Returns a value that represents the bookmark on a record.
Returns the position of the current record as a percentage
of the total number of records.

Positions the recordset to a specified number of records
from the current record in either direction.

Positions the current record on the first record in the
recordset.

Positions the current record on the last record in the
recordset.

Positions the current record on the next record in the
recordset.

Positions the current record on the previous record in the
recordset.

Locates the record in an indexed table-type recordset
object that satisfies the specified criteria for the current
index and makes that record the current record.

Sets the record number of a recordset object’s current
record.

Positions the recordset on a record containing the
specified bookmark.

Sets the position of the current record to a location
corresponding to a percentage of the total number of
records in a recordset.

Other Recordset Operations

CDaoRecordset

FillCache Fills all or a part of a local cache for a recordset object
that contains data from an ODBC data source.

GetCacheSize Returns a value that specifies the number of records in a
dynaset-type recordset containing data to be locally
cached from an ODBC data source.

GetCacheStart Returns a value that specifies the bookmark of the first
record in the recordset to be cached.

GetFieldCount Returns a value that represents the number of fields in a
recordset.

GetFieldInfo Returns specific kinds of information about the fields in
the recordset.

GetFieldValue Returns the value of a field in a recordset.

GetIndexCount Retrieves the number of indexes in a table underlying a
recordset.

GetIndexInfo Returns various kinds of information about an index.
GetLockingMode Returns a value that indicates the type of locking that is in
effect during editing.

Requery Runs the recordset’s query again to refresh the selected
records.

SetCacheSize Sets a value that specifies the number of records in a
dynaset-type recordset containing data to be locally
cached from an ODBC data source.

SetCacheStart Sets a value that specifies the bookmark of the first record
in the recordset to be cached.

SetFieldDirty Marks the specified field in the current record as changed.

SetFieldNull Sets the value of the specified field in the current record
to Null (having no value).

SetFieldValue Sets the value of a field in a recordset.

SetField ValueNull Sets the value of a field in a recordset to Null. (having no
value).

SetLockingMode Sets a value that indicates the type of locking to put into
effect during editing.

Overridables

DoFieldExchange Called to exchange data (in both directions) between the
field data members of the recordset and the corresponding
record on the data source. Implements DAO record field
exchange (DFX).

GetDefaultDBName Returns the name of the default data source.

GetDefaultSQL Called to get the default SQL string to execute.

285

CDaoRecordset:: AddNew

Member Functions
CDaoRecordset::AddNew

Remarks

286

virtual void AddNew();
throw(CDaoException, CMemoryException);

Call this member function to add a new record to a table-type or dynaset-type
recordset. The record’s fields are initially Null. (In database terminology, Null means
“having no value” and is not the same as NULL in C++.) To complete the operation,
you must call the Update member function. Update saves your changes to the data
source.

Caution [f you edit a record and then scroll to another record without calling Update, your
changes are lost without warning.

If you add a record to a dynaset-type recordset by calling AddNew, the record is
visible in the recordset and included in the underlying table where it becomes visible
to any new CDaoRecordset objects.

The position of the new record depends on the type of recordset:

¢ In a dynaset-type recordset, records are inserted at the end of the recordset,
regardless of any sorting or ordering rules that may have been in effect when the
recordset was opened.

¢ In a table-type recordset for which an index has been specified, records are
returned in their proper place in the sort order. If no index has been specified, new
records are returned at the end of the recordset.

The record that was current before you used AddNew remains current. If you
want to make the new record current and the recordset supports bookmarks, call
SetBookmark to the bookmark identified by the LastModified property setting of
the underlying DAO recordset object. Doing so is useful for determining the value
for counter (auto-increment) fields in an added record. For more information, see
GetLastModifiedBookmark.

If the database supports transactions, you can make your AddNew call part of a
transaction. For more information about transactions, see class CDaoWorkspace.
Note that you should call CDaoWorkspace::BeginTrans before calling AddNew.

It is illegal to call AddNew for a recordset whose Open member function has not
been called. A CDaoException is thrown if you call AddNew for a recordset that
cannot be appended. You can determine whether the recordset is updatable by calling
CanAppend.

CDaoRecordset::CanAppend

The framework marks changed field data members to ensure they will be written to
the record on the data source by the DAO record field exchange (DFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member. The DFX mechanism also employs the use of PSEUDO NULL.
For more information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the
field does not automatically set the field as dirty. In this case, it will be necessary to
explicity set the field dirty. The flag contained in m_bCheckCacheForDirtyFields
controls this automatic field checking.

Note If records are double-buffered (that is, automatic field checking is enabled), calling
CancelUpdate will restore the member variables to the values they had before AddNew or
Edit was called.

For more information about updating records, see the article “DAO Recordset:
Recordset Operations” in Visual C++ Programmer’s Guide online. For related
information, see the topics “AddNew Method,” “CancelUpdate Method,”
“LastModified Property,” and “EditMode Property” in DAO Help.

See Also: CDaoRecordset::CanUpdate, CDaoRecordset::CancelUpdate,
CDaoRecordset::Delete, CDaoRecordset::Edit, CDaoRecordset::Update,
CDaoRecordset::CanTransact

CDaoRecordset::CanAppend

BOOL CanAppend() const;

Return Value

Remarks

Nonzero if the recordset allows adding new records; otherwise 0. CanAppend will
return O if you opened the recordset as read-only.

Call this member function to determine whether the previously opened recordset
allows you to add new records by calling the AddNew member function.

For more information about updating records, see the article “DAO Recordset:
Recordset Operations” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Append Method” in DAO Help.

See Also: CDaoRecordset::CanBookmark, CDaoRecordset::CanRestart,
CDaoRecordset::CanScroll, CDaoRecordset::CanTransact,
CDaoRecordset::CanUpdate

287

CDaoRecordset::CanBookmark

CDaoRecordset::CanBookmark

BOOL CanBookmark() const;
throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the recordset supports bookmarks, otherwise 0.

Call this member function to determine whether the previously opened recordset
allows you to individually mark records using bookmarks. If you are using recordsets
based entirely on Microsoft Jet database engine tables, bookmarks can be used except
on snapshot-type recordsets flagged as forward-only scrolling recordsets. Other
database products (external ODBC data sources) may not support bookmarks.

For more information about recordset navigation, see the article “DAQO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Bookmarkable Property” in DAO Help.

See Also: CDaoRecordset::CanAppend, CDaoRecordset::CanRestart,
CDaoRecordset::CanScroll, CDaoRecordset::CanTransact,
CDaoRecordset::CanUpdate

CDaoRecordset::CancelUpdate

Remarks

288

virtual void CancelUpdate();
throw(CDaoException, CMemoryException);

The CancelUpdate member function cancels any pending updates due to an Edit or
AddNew operation. For example, if an application calls the Edit or AddNew member
function and has not called Update, CancelUpdate cancels any changes made after
Edit or AddNew was called.

Note If records are double-buffered (that is, automatic field checking is enabled), calling
CancelUpdate will restore the member variables to the values they had before AddNew or
Edit was called.

If there is no Edit or AddNew operation pending, CancelUpdate causes MFC to
throw an exception. Call the GetEditMode member function to determine if there is a
pending operation that can be canceled.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topic “CancelUpdate Method” in DAO Help.

See Also: CDaoRecordset::AddNew, CDaoRecordset::Delete,
CDaoRecordset::Edit, CDaoRecordset::Update, CDaoRecordset::CanTransact

CDaoRecordset::CanScroll

CDaoRecordset::CanRestart

BOOL CanRestart();
throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if Requery can be called to run the recordset’s query again, otherwise 0.

Call this member function to determine whether the recordset allows restarting its
query (to refresh its records) by calling the Requery member function. Table-type
recordsets do not support Requery.

If Requery is not supported, call Close then Open to refresh the data. You can call
Requery to update a recordset object’s underlying parameter query after the
parameter values have been changed.

For more information about working with DAO objects, see the article “DAO:
Creating, Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide
online. For related information, see the topic “Restartable Property” in DAO Help.

See Also: CDaoRecordset::CanAppend, CDaoRecordset::CanBookmark,
CDaoRecordset::CanScroll, CDaoRecordset::CanTransact,
CDaoRecordset::CanUpdate

CDaoRecordset::CanScroll

BOOL CanScroll() const;

Return Value

Remarks

Nonzero if you can scroll through the records, otherwise 0.

Call this member function to determine whether the recordset allows scrolling. If you
call Open with dbForwardOnly, the recordset can only scroll forward.

For more information about navigating through recordsets, see the article “DAO
Recordset: Recordset Navigation” in Visual C++ Programmer’s Guide online. For
related information, see the topic “Positioning the Current Record Pointer with DAO”
in DAO Help.

See Also: CDaoRecordset::CanAppend, CDaoRecordset::CanBookmark,
CDaoRecordset::CanRestart, CDaoRecordset::CanTransact,
CDaoRecordset::CanUpdate, CDaoRecordset::Open

289

CDaoRecordset::CanTransact

CDaoRecordset::CanTransact

BOOL CanTransact() const;
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the underlying data source supports transactions, otherwise 0.

Remarks
Call this member function to determine whether the recordset allows transactions.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topic “Transactions Property” in DAO Help.

See Also: CDaoRecordset::AddNew, CDaoRecordset::CanAppend,
CDaoRecordset::CancelUpdate, CDaoRecordset::CanScroll,
CDaoRecordset::CanRestart, CDaoRecordset::CanUpdate,
CDaoRecordset::Delete, CDaoRecordset::Edit, CDaoRecordset::Update

CDaoRecordset::CanUpdate

BOOL CanUpdate() const;
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the recordset can be updated (add, update, and delete records), otherwise 0.

Remarks
Call this member function to determine whether the recordset can be updated. A
recordset might be read-only if the underlying data source is read-only or if you
specified dbReadOnly for nOptions when you called Open for the recordset.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topics “AddNew Method,” “Edit Method,” “Delete Method,” “Update Method,”
and “Updatable Property” in DAO Help.

See Also: CDaoRecordset::CanAppend, CDaoRecordset::CanBookmark,
CDaoRecordset::CanScroll, CDaoRecordset::CanRestart,
CDaoRecordset::CanTransact

290

CDaoRecordset::Close

CDaoRecordset::CDaoRecordset

CDaoRecordset(CDaoDatabase* pDatabase = NULL);

Parameters
pDatabase Contains a pointer to a CDaoDatabase object or the value NULL. If
not NULL and the CDaoDatabase object’s Open member function has not been
called to connect it to the data source, the recordset attempts to open it for you
during its own Open call. If you pass NULL, a CDaoDatabase object is
constructed and connected for you using the data source information you
specified if you derived your recordset class from CDaoRecordset.

Remarks
Constructs a CDaoRecordset object. You can either use CDaoRecordset directly or
derive an application-specific class from CDaoRecordset. You can use ClassWizard
to derive your recordset classes.

Note If you derive a CDaoRecordset class, your derived class must supply its own
constructor. In the constructor of your derived class, call the constructor
CDaoRecordset::CDaoRecordset, passing the appropriate parameters along o it.

Pass NULL to your recordset constructor to have a CDaoDatabase object constructed
and connected for you automatically. This is a useful shortcut that does not require
you to construct and connect a CDaoDatabase object prior to constructing your
recordset. If the CDaoDatabase object is not open, a CDaoWorkspace object will
also be created for you that uses the default workspace. For more information, see
CDaoDatabase::CDaoDatabase.

For more information about constructing recordsets, see the article “DAQO: Creating,
Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::GetDefaultDBName,
CDaoRecordset::GetDefaultSQL, CDaoRecordset::GetDateCreated,
CDaoRecordset::GetDateLastUpdated

CDaoRecordset::Close

virtual void Close();
throw(CDaoException);

Remarks
Closing a CDaoRecordset object removes it from the collection of open recordsets in
the associated database. Because Close does not destroy the CDaoRecordset object,
you can reuse the object by calling Open on the same data source or a different data
source.

291

CDaoRecordset::Delete

All pending AddNew or Edit statements are canceled, and all pending transactions
are rolled back. If you want to preserve pending additions or edits, call Update before
you call Close for each recordset.

You can call Open again after calling Close. This lets you reuse the recordset object.
A better alternative is to call Requery, if possible.

For more information about working with recordsets, see the article “DAO: Creating,
Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide online. For
related information, see the topic “Close Method” in DAO Help.

See Also: CDaoRecordset::Open, CDaoRecordset::CDaoRecordset

CDaoRecordset::Delete

Remarks

292

virtual void Delete();
throw(CDaoException, CMemoryException);

Call this member function to delete the current record in an open dynaset-type or
table-type recordset object. After a successful deletion, the recordset’s field data
members are set to a Null value, and you must explicitly call one of the recordset
navigation member functions (Move, Seek, SetBookmark, and so on) in order to
move off the deleted record. When you delete records from a recordset, there must be
a current record in the recordset before you call Delete; otherwise, MFC throws an
exception.

Delete removes the current record and makes it inaccessible. Although you cannot
edit or use the deleted record, it remains current. Once you move to another record,
however, you cannot make the deleted record current again.

Caution The recordset must be updatable and there must be a valid record current in the
recordset when you call Delete. For example, if you delete a record but do not scroll to a new
record before you call Delete again, Delete throws a CDaoException.

You can undelete a record if you use transactions and you call the
CDaoWorkspace::Rollback member function. If the base table is the primary table
in a cascade delete relationship, deleting the current record may also delete one or
more records in a foreign table. For more information, see the definition “cascade
delete” in DAO Help.

Unlike AddNew and Edit, a call to Delete is not followed by a call to Update.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topics “AddNew Method,” “Edit Method,” “Delete Method,” “Update Method,”
and “Updatable Property” in DAO Help.

CDaoRecordset::DoFieldExchange

See Also: CDaoRecordset::AddNew, CDaoRecordset::CancelUpdate,
CDaoRecordset::Edit, CDaoRecordset::Update, CDaoRecordset::CanTransact

CDaoRecordset::DoFieldExchange

virtual void DoFieldExchange(CDaoFieldExchange* pFX);

Parameters

Remarks

pFX Contains a pointer to a CDaoFieldExchange object. The framework will
already have set up this object to specify a context for the field exchange operation.

The framework calls this member function to automatically exchange data between
the field data members of your recordset object and the corresponding columns of the
current record on the data source. It also binds your parameter data members, if any,
to parameter placeholders in the SQL statement string for the recordset’s selection.
The exchange of field data, called DAO record field exchange (DFX), works in both
directions: from the recordset object’s field data members to the fields of the record on
the data source, and from the record on the data source to the recordset object. If you
are binding columns dynamically, you are not required to implement
DoFieldExchange.

The only action you must normally take to implement DoFieldExchange for your
derived recordset class is to create the class with ClassWizard and specify the names
and data types of the field data members. You might also add code to what
ClassWizard writes to specify parameter data members. If all fields are to be bound
dynamically, this function will be inactive unless you specify parameter data
members. For more information, see the article “DAO Recordset: Binding Records
Dynamically” in Visual C++ Programmer’s Guide online.

When you declare your derived recordset class with ClassWizard, the wizard writes an
override of DoFieldExchange for you, which resembles the following example:

void CCustSet::DoFieldExchange(CDaoFieldExchange* pFX)

{
//{{AFX_FIELD_MAP(CCustSet)
pFX->SetFieldType(CDaoFieldExchange::outputColumn);
DFX_Text(pFX, "Name", m_strName);
DFX_Short(pFX, "Age", m_wAge);
//}YAFX_FIELD_MAP

}

For more information about record field exchange, see the article “DAO Record Field
Exchange (DFX)” in Visual C++ Programmer’s Guide online.

See Also: CDaoException

293

CDaoRecordset::Edit

CDaoRecordset::Edit

Remarks

294

virtual void Edit();
throw(CDaoException, CMemoryException);

Call this member function to allow changes to the current record.

Once you call the Edit member function, changes made to the current record’s fields
are copied to the copy buffer. After you make the desired changes to the record, call

Update to save your changes. Edit saves the values of the recordset’s data members.
If you call Edit, make changes, then call Edit again, the record’s values are restored

to what they were before the first Edit call.

Caution If you edit a record and then perform any operation that moves to another record
without first calling Update, your changes are lost without warning. In addition, if you close the
recordset or the parent database, your edited record is discarded without warning.

In some cases, you may want to update a column by making it Null (containing no
data). To do so, call SetFieldNull with a parameter of TRUE to mark the field Null;
this also causes the column to be updated. If you want a field to be written to the data
source even though its value has not changed, call SetFieldDirty with a parameter of
TRUE. This works even if the field had the value Null.

The framework marks changed field data members to ensure they will be written to
the record on the data source by the DAO record field exchange (DFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member. The DFX mechanism also employs the use of PSEUDO NULL.
For more information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the
field does not automatically set the field as dirty. In this case, it will be necessary to
explicity set the field dirty. The flag contained in m_bCheckCacheForDirtyFields
controls this automatic field checking.

When the recordset object is pessimistically locked in a multiuser environment, the
record remains locked from the time Edit is used until the updating is complete. If the
recordset is optimistically locked, the record is locked and compared with the
pre-edited record just before it is updated in the database. If the record has changed
since you called Edit, the Update operation fails and MFC throws an exception. You
can change the locking mode with SetLockingMode.

Note Optimistic locking is always used on external database formats, such as ODBC and
installable ISAM.

CDaoRecordset::FillCache

The current record remains current after you call Edit. To call Edit, there must be a
current record. If there is no current record or if the recordset does not refer to an open
table-type or dynaset-type recordset object, an exception occurs. Calling Edit causes a
CDaoException to be thrown under the following conditions:

o There is no current record.

e The database or recordset is read-only.

e No fields in the record are updatable.

o The database or recordset was opened for exclusive use by another user.

o Another user has locked the page containing your record.

If the data source supports transactions, you can make the Edit call part of a
transaction. Note that you should call CDaoWorkspace::BeginTrans before calling
Edit and after the recordset has been opened. Also note that calling
CDaoWorkspace::CommitTrans is not a substitute for calling Update to complete
the Edit operation. For more information about transactions, see class
CDaoWorkspace.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topics “AddNew Method,” “Edit Method,” “Delete Method,” “Update Method,”
and “Updatable Property” in DAO Help.

See Also: CDaoRecordset::AddNew, CDaoRecordset::CancelUpdate,
CDaoRecordset::CanTransact, CDaoRecordset::Delete, CDaoRecordset::Update

CDaoRecordset::FillCache

void FillCache(long* pSize = NULL, COleVariant* pBookmark = NULL);
throw(CDaoException, CMemoryException);

Parameters
pSize Specifies the number of rows to fill in the cache. If you omit this parameter, the
value is determined by the CacheSize property setting of the underlying DAO
object.

pBookmark A COleVariant specifying a bookmark. The cache is filled starting from
the record indicated by this bookmark. If you omit this parameter, the cache is
filled starting from the record indicated by the CacheStart property of the
underlying DAO object.

Remarks
Call this member function to cache a specified number of records from the recordset.
Caching improves the performance of an application that retrieves, or fetches, data
from a remote server. A cache is space in local memory that holds the data most
recently fetched from the server on the assumption that the data will probably be

295

CDaoRecordset::Find

requested again while the application is running. When data is requested, the
Microsoft Jet database engine checks the cache for the data first rather than fetching
it from the server, which takes more time. Using data caching on non-ODBC data
sources has no effect as the data is not saved in the cache.

Rather than waiting for the cache to be filled with records as they are fetched, you can
explicitly fill the cache at any time by calling the FillCache member function. This is
a faster way to fill the cache because FillCache fetches several records at once instead
of one at a time. For example, while each screenful of records is being displayed, you
can have your application call FillCache to fetch the next screenful of records.

Any ODBC database accessed with recordset objects can have a local cache. To create
the cache, open a recordset object from the remote data source, and then call the
SetCacheSize and SetCacheStart member functions of the recordset. If ISize and
IBookmark create a range that is partly or wholly outside the range specified by
SetCacheSize and SetCacheStart, the portion of the recordset outside this range is
ignored and is not loaded into the cache. If FillCache requests more records than
remain in the remote data source, only the remaining records are fetched, and no
exception is thrown.

Records fetched from the cache do not reflect changes made concurrently to the
source data by other users.

FillCache fetches only records not already cached. To force an update of all the
cached data, call the SetCacheSize member function with an /Size parameter equal to
0, call SetCacheSize again with the [Size parameter equal to the size of the cache you
originally requested, and then call FillCache.

For more information about caching records, see the article “DAO External:
Improving Performance with External Data Sources” in Visual C++ Programmer’s
Guide online. For related information, see the topic “FillCache Method” in DAO
Help.

See Also: CDaoRecordset::GetCacheSize, CDaoRecordset::GetCacheStart,
CDaoRecordset::SetCacheSize, CDaoRecordset::SetCacheStart

CDaoRecordset::Find

virtual BOOL Find(long [FindType, LPCTSTR IpszFilter);
throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found, otherwise 0.

Parameters
[FindType A value indicating the type of Find operation desired. The possible values
are:

e AFX_DAO_NEXT Find the next location of a matching string.

296

Remarks

CDaoRecordset::FindFirst

e AFX_DAO_PREYV Find the previous location of a matching string.
o AFX_DAO_FIRST Find the first location of a matching string.
e AFX_DAO_LAST Find the last location of a matching string.

IpszFilter A string expression (like the WHERE clause in an SQL statement without
the word WHERE) used to locate the record. For example:

Find(AFX_DAO_FIRST, "colRecID = 7")
Find(AFX_DAO_NEXT, "customerName = 'Jones'"™)

Call this member function to locate a particular string in a dynaset- or snapshot-type
recordset using a comparison operator. You can find the first, next, previous, or last
instance of the string. Find is a virtual function, so you can override it and add your
own implementation. The FindFirst, FindLast, FindNext, and FindPrev member
functions call the Find member function, so you can use Find to control the behavior
of all Find operations.

To locate a record in a table-type recordset, call the Seek member function.

Tip The smaller the set of records you have, the more effective Find will be. In general, and
especially with ODBC data, it is better to create a new query that retrieves just the records you
want.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “FindFirst, FindLast, FindNext, FindPrevious Methods”
in DAO Help.

See Also: CDaoRecordset::FindFirst, CDaoRecordset::FindLast,
CDaoRecordset::FindNext, CDaoRecordset::FindPrev

CDaoRecordset::FindFirst

BOOL FindFirst(LPCTSTR IpszFilter);
throw(CDaoException, CMemoryException);

Return Value

Nonzero if matching records are found, otherwise 0.

Parameters

Remarks

IpszFilter A string expression (like the WHERE clause in an SQL statement without
the word WHERE) used to locate the record.

Call this member function to find the first record that matches a specified condition.
The FindFirst member function begins its search from the beginning of the recordset
and searches to the end of the recordset.

297

CDaoRecordset::FindFirst

298

If you want to include all the records in your search (not just those that meet a specific
condition) use one of the Move operations to move from record to record. To locate a
record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and FindFirst returns zero. If the recordset contains more than one
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext
locates the next occurrence, and so on.

Caution If you edit the current record, be sure to save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

The Find member functions search from the location and in the direction specified in
the following table:

Find operations Begin Search direction
FindFirst Beginning of recordset End of recordset
FindLast End of recordset Beginning of recordset
FindNext Current record End of recordset
FindPrevious Current record Beginning of recordset

Important When you call FindLast, the Microsoft Jet database engine fully populates your
recordset before beginning the search, if this has not already been done. The first search may
take longer than subsequent searches.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

e If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

¢ You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

e You should use the U.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

e When working with ODBC databases and large dynasets, you may discover that
using the Find operations is slow, especially when working with large recordsets.
You can improve performance by using SQL queries with customized ORDER BY
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve
specific indexed records.

CDaoRecordset::FindLast

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “FindFirst, FindLast, FindNext, FindPrevious Methods”
in DAO Help.

See Also: CDaoRecordset::Find, CDaoRecordset::FindLast,
CDaoRecordset::FindNext, CDaoRecordset::FindPrev

CDaoRecordset::FindLast

BOOL FindLast(LPCTSTR IpszFilter);
throw(CDaoException, CMemoryException);

Return Value

Nonzero if matching records are found, otherwise 0.

Parameters

Remarks

IpszFilter A string expression (like the WHERE clause in an SQL statement withaut
the word WHERE) used to locate the record.

Call this member function to find the last record that matches a specified condition.
The FindLast member function begins its search at the end of the recordset and
searches backward towards the beginning of the recordset.

If you want to include all the records in your search (not just those that meet a specific
condition) use one of the Move operations to move from record to record. To locate a
record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and FindLast returns zero. If the recordset contains more than one
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext
locates the next occurrence after the first occurrence, and so on.

Caution |If you edit the current record, be sure you save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

e If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

299

CDaoRecordset::FindNext

¢ You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

* You should use the U.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

e When working with ODBC databases and large dynasets, you may discover that
using the Find operations is slow, especially when working with large recordsets.
You can improve performance by using SQL queries with customized ORDER BY
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve
specific indexed records.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “FindFirst, FindLast, FindNext, FindPrevious Methods”
in DAO Help.

See Also: CDaoRecordset::Find, CDaoRecordset::FindFirst,
CDaoRecordset::FindNext, CDaoRecordset::FindPrev

CDaoRecordset::FindNext

BOOL FindNext(LPCTSTR IpszFilter);
throw(CDaoException, CMemoryException);

Return Value

Nonzero if matching records are found, otherwise 0.

Parameters

Remarks

300

IpszFilter A string expression (like the WHERE clause in an SQL statement without
the word WHERE) used to locate the record.

Call this member function to find the next record that matches a specified condition.
The FindNext member function begins its search at the current record and searches to
the end of the recordset.

If you want to include all the records in your search (not just those that meet a specific
condition) use one of the Move operations to move from record to record. To locate a
record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and FindNext returns zero. If the recordset contains more than one
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext
locates the next occurrence, and so on.

CDaoRecordset::FindPrev

Caution If you edit the current record, be sure you save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

¢ If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

* You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

* You should use the U.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

e When working with ODBC databases and large dynasets, you may discover that
using the Find operations is slow, especially when working with large recordsets.
You can improve performance by using SQL queries with customized ORDER BY
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve
specific indexed records.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “FindFirst, FindLast, FindNext, FindPrevious Methods”
in DAO Help.

See Also: CDaoRecordset::Find, CDaoRecordset::FindFirst,
CDaoRecordset::FindLast, CDaoRecordset::FindPrev

CDaoRecordset::FindPrev

BOOL FindPrev(LPCTSTR IpszFilter);
throw(CDaoException, CMemoryException);

Return Value
Nonzero if matching records are found, otherwise 0.

Parameters
IpszFilter A string expression (like the WHERE clause in an SQL statement without
the word WHERE) used to locate the record.

301

CDaoRecordset::FindPrev

Remarks

302

Call this member function to find the previous record that matches a specified
condition. The FindPrev member function begins its search at the current record and
searches backward towards the beginning of the recordset.

If you want to include all the records in your search (not just those that meet a specific
condition) use one of the Move operations to move from record to record. To locate a
record in a table-type recordset, call the Seek member function.

If a record matching the criteria is not located, the current record pointer is
undetermined, and FindPrev returns zero. If the recordset contains more than one
record that satisfies the criteria, FindFirst locates the first occurrence, FindNext
locates the next occurrence, and so on.

Caution If you edit the current record, be sure you save the changes by calling the Update
member function before you move to another record. If you move to another record without
updating, your changes are lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext,
however, which simply makes the first or next record current without specifying a
condition. You can follow a Find operation with a Move operation.

Keep the following in mind when using the Find operations:

e If Find returns nonzero, the current record is not defined. In this case, you must
position the current record pointer back to a valid record.

* You cannot use a Find operation with a forward-only scrolling snapshot-type
recordset.

¢ You should use the U.S. date format (month-day-year) when you search for fields
containing dates, even if you are not using the U.S. version of the Microsoft Jet
database engine; otherwise, matching records may not be found.

e When working with ODBC databases and large dynasets, you may discover that
using the Find operations is slow, especially when working with large recordsets.
You can improve performance by using SQL queries with customized ORDER BY
or WHERE clauses, parameter queries, or CDaoQuerydef objects that retrieve
specific indexed records.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “FindFirst, FindLast, FindNext, FindPrevious Methods”
in DAO Help.

See Also: CDaoRecordset::Find, CDaoRecordset::FindFirst,
CDaoRecordset::FindLast, CDaoRecordset::FindNext

CDaoRecordset::GetBookmark

CDaoRecordset::GetAbsolutePosition

long GetAbsolutePosition();
throw(CDaoException, CMemoryException);

Return Value

Remarks

An integer from 0 to the number of records in the recordset. Corresponds to the
ordinal position of the current record in the recordset.

Returns the record number of a recordset object’s current record. The
AbsolutePosition property value of the underlying DAO object is zero-based; a
setting of O refers to the first record in the recordset. You can determine the number
of populated records in the recordset by calling GetRecordCount. Calling
GetRecordCount may take some time because it must access all records to determine
the count.

If there is no current record, as when there are no records in the recordset,—1 is
returned. If the current record is deleted, the AbsolutePosition property value is not
defined, and MFC throws an exception if it is referenced. For dynaset-type recordsets,
new records are added to the end of the sequence.

Note This property is not intended to be used as a surrogate record number. Bookmarks are
still the recommended way of retaining and returning to a given position and are the only way to
position the current record across all types of recordset objects. In particular, the position of a
given record changes when record(s) preceding it are deleted. There is also no assurance that
a given record will have the same absolute position if the recordset is re-created again because
the order of individual records within a recordset is not guaranteed unless it is created with an
SQL statement using an ORDER BY clause.

Note This member function is valid only for dynaset-type and snapshot-type recordsets.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “AbsolutePosition Property” in DAO Help.

See Also: CDaoRecordset::SetAbsolutePosition

CDaoRecordset::GetBookmark

COleVariant GetBookmark();
throw(CDaoException, CMemoryException);

Return Value

Returns a value representing the bookmark on the current record.

303

CDaoRecordset::GetCacheSize

Remarks

Call this member function to obtain the bookmark value in a particular record. When a
recordset object is created or opened, each of its records already has a unique
bookmark if it supports them. Call CanBookmark to determine whether a recordset
supports bookmarks.

You can save the bookmark for the current record by assigning the value of the
bookmark to a COleVariant object. To quickly return to that record at any time after
moving to a different record, call SetBookmark with a parameter corresponding to
the value of that COleVariant object.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Bookmark Property” in DAO Help.

See Also: CDaoRecordset::SetBookmark, CDaoRecordset::CanBookmark

CDaoRecordset::GetCacheSize

long GetCacheSize();
throw(CDaoException, CMemoryException);

Return Value

Remarks

304

A value that specifies the number of records in a dynaset-type recordset containing
data to be locally cached from an ODBC data source.

Call this member function to obtain the number of records cached. Data caching
improves the performance of an application that retrieves data from a remote server
through dynaset-type recordset objects. A cache is a space in local memory that holds
the data most recently retrieved from the server in the event that the data will be
requested again while the application is running. When data is requested, the
Microsoft Jet database engine checks the cache for the requested data first rather than
retrieving it from the server, which takes more time. Data that does not come from an
ODBC data source is not saved in the cache.

Any ODBC data source, such as an attached table, can have a local cache.

For more information about caching records, see the article “DAO External:
Improving Performance with External Data Sources” in Visual C++ Programmer’s
Guide online. For related information, see the topic “CacheSize, CacheStart
Properties” in DAO Help.

See Also: CDaoRecordset::FillCache, CDaoRecordset::GetCacheStart,
CDaoRecordset::SetCacheSize, CDaoRecordset::SetCacheStart

CDaoRecordset::GetCurrentIndex

CDaoRecordset::GetCacheStart

COleVariant GetCacheStart();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A COleVariant that specifies the bookmark of the first record in the recordset to be
cached.

Call this member function to obtain the bookmark value of the first record in the
recordset to be cached. The Microsoft Jet database engine requests records within the
cache range from the cache, and it requests records outside the cache range from the
Server.

Note Records retrieved from the cache do not reflect changes made concurrently to the
source data by other users.

For more information about caching records, see the article “DAO External:
Improving Performance with External Data Sources” in Visual C++ Programmer’s
Guide online. For related information, see the topic “CacheSize, CacheStart
Properties” in DAO Help.

See Also: CDaoRecordset::FillCache, CDaoRecordset::GetCacheSize,
CDaoRecordset::SetCacheSize, CDaoRecordset::SetCacheStart

CDaoRecordset::GetCurrentIndex

CString GetCurrentIndex();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString containing the name of the index currently in use with a table-type
recordset. Returns an empty string if no index has been set.

Call this member function to determine the index currently in use in an indexed
table-type CDaoRecordset object. This index is the basis for ordering records in a
table-type recordset, and is used by the Seek member function to locate records.

A CDaoRecordset object can have more than one index but can use only one index
at a time (although a CDaoTableDef object may have several indexes defined on it).

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Index Object” and the definition “current index” in
DAO Help.

See Also: CDaoRecordset::SetCurrentIndex

305

CDaoRecordset::GetDateCreated

CDaoRecordset::GetDateCreated

COleDateTime GetDateCreated();
throw(CDaoException, CMemoryException);

Return Value
A COleDateTime object containing the date and time the base table was
created.

Remarks
Call this member function to retrieve the date and time a base table was created.
Date and time settings are derived from the computer on which the base table
was created.

For more information about creating recordsets, see the article “DAO: Creating,
Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide online.
For related information, see the topic “DateCreated, LastUpdated Properties” in
DAO Help.

See Also: CDaoRecordset::GetDateLastUpdated

CDaoRecordset::GetDateLastUpdated

COleDateTime GetDateLastUpdated();
throw(CDaoException, CMemoryException);

Return Value
A COleDateTime object containing the date and time the base table structure
(schema) was last updated.

Remarks
Call this member function to retrieve the date and time the schema was last
updated. Date and time settings are derived from the computer on which the base
table structure (schema) was last updated.

For more information about creating recordsets, see the article “DAO: Creating,
Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide online.
For related information, see the topic “DateCreated, LastUpdated Properties” in
DAO Help.

See Also: CDaoRecordset::GetDateCreated

306

CDaoRecordset::GetDefaultSQL

CDaoRecordset::GetDefaultDBName

virtual CString GetDefaultDBName();

Return Value

Remarks

A CString that contains the path and name of the database from which this recordset
is derived.

Call this member function to determine the name of the database for this recordset. If
a recordset is created without a pointer to a CDaoDatabase, then this path is used by
the recordset to open the default database. By default, this function returns an empty
string. When ClassWizard derives a new recordset from CDaoRecordset, it will
create this function for you.

The following example illustrates the use of the double backslash (\\) in the string, as
is required for the string to be interpreted correctly.

CString CMyRecordset::GetDefaultDBName(void)
{

return _T("c:\\mydir\\datasrc.mdb");
}

For more information about connecting to databases, see the article “DAO: Creating,
Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::GetDefaultSQL, CDaoRecordset::GetName,
CDaoRecordset::GetSQL, CDaoRecordset::GetType

CDaoRecordset::GetDefaultSQL

virtual CString GetDefaultSQL();

Return Value

Remarks

A CString that contains the default SQL statement.

The framework calls this member function to get the default SQL statement on which
the recordset is based. This might be a table name or an SQL. SELECT statement.

You indirectly define the default SQL statement by declaring your recordset class with
ClassWizard, and ClassWizard performs this task for you.

If you pass a null SQL string to Open, then this function is called to determine the
table name or SQL for your recordset.

307

CDaoRecordset::GetEditMode

For more information about connecting to databases, see the article “DAQ: Creating,
Opening, and Closing DAO Objects” in Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::GetDefaultDBName, CDaoRecordset::GetName,
CDaoRecordset::GetSQL, CDaoRecordset::GetType

CDaoRecordset::GetEditMode

short GetEditMode();
throw(CDaoException, CMemoryException);

Return Value
Returns a value that indicates the state of editing for the current record.

Remarks
Call this member function to determine the state of editing, which is one of the
following values:

Value Description

dbEditNone No editing operation is in progress.
dbEditInProgress Edit has been called.

dbEditAdd AddNew has been called.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topic “EditMode Property” in DAO Help.

CDaoRecordset::GetFieldCount

short GetFieldCount();
throw(CDaoException, CMemoryException);

Return Value
The number of fields in the recordset.

Remarks
Call this member function to retrieve the number of fields (columns) defined in the
recordset.

For more information about creating recordsets, see the article “DAQO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Count Property” in DAO Help.

See Also: CDaoRecordset::GetFieldInfo, CDaoRecordset::GetField Value,
CDaoRecordset::GetIndexCount, CDaoRecordset::GetIndexInfo

308

CDaoRecordset::GetFieldInfo

CDaoRecordset::GetFieldInfo

void GetFieldInfo(int n/ndex, CDaoFieldInfo& fieldinfo,
«+ DWORD dwinfoOprions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetFieldInfo(LPCTSTR IpszName, CDaoFieldInfo& fieldinfo,
«+ DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters

Remarks

nlndex The zero-based index of the predefined field in the recordset’s Fields
collection, for lookup by index.

fieldinfo A reference to a CDaoFieldInfo structure.

dwlinfoOptions Options that specify which information about the recordset to
retrieve. The available options are listed here along with what they cause the
function to return. For best performance, retrieve only the level of information
you need:

e AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes

o AFX DAO_SECONDARY_INFO Primary information, plus: Ordinal
Position, Required, Allow Zero Length, Collating Order, Foreign Name,
Source Field, Source Table

o AFX_DAO_ALL_INFO Primary and secondary information, plus: Default
Value, Validation Rule, Validation Text

IpszName The name of the field.

Call this member function to obtain information about the fields in a recordset. One
version of the function lets you look up a field by index. The other version lets you
look up a field by name.

For a description of the information returned, see the CDaoFieldInfo structure. This
structure has members that correspond to the items of information listed above in the
description of dwinfoOptions. When you request information at one level, you get
information for any prior levels as well.

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Attributes Property” in DAO Help.

See Also: CDaoRecordset::GetFieldCount, CDaoRecordset::GetField Value,
CDaoRecordset::GetIndexCount, CDaoRecordset::GetIndexInfo

309

CDaoRecordset::GetFieldValue

CDaoRecordset::GetFieldValue

virtual void GetFieldValue(LPCTSTR IpszName, COleVariant& varValue);
throw(CDaoException, CMemoryException);
virtual void GetFieldValue(int n/ndex, COleVariant& varValue);
throw(CDaoException, CMemoryException);
virtual COleVariant GetField Value(LPCTSTR IpszName);
throw(CDaoException, CMemoryException);
virtual COleVariant GetField Value(int nindex);
throw(CDaoException, CMemoryException);

Return Value

The two versions of GetField Value that return a value return a COleVariant object
that contains the value of a field.

Parameters

Remarks

310

IpszName A pointer to a string that contains the name of a field.
varValue A reference to a COleVariant object that will store the value of a field.

nindex A zero-based index of the field in the recordset’s Fields collection, for lookup
by index.

Call this member function to retrieve data in a recordset. You can look up a field by
name or by ordinal position.

Note It is more efficient to call one of the versions of this member function that takes a
COleVariant object reference as a parameter, rather than calling a version that returns a
COleVariant object.

Use GetFieldValue and SetField Value to dynamically bind fields at run time rather
than statically binding columns using the DoFieldExchange mechanism.

GetField Value and the DoFieldExchange mechanism can be combined to improve
performance. For example, use GetFieldValue to retrieve a value that you need only
on demand, and assign that call to a “More Information” button in the interface.

For more information about binding fields dynamically, see the article “DAO
Recordset: Binding Records Dynamically” in Visual C++ Programmer’s Guide
online. For related information, see the topics “Field Object” and “Value Property” in
DAO Help.

See Also: CDaoRecordset::SetField Value

CDaoRecordset::GetIndexInfo

CDaoRecordset::GetIndexCount

short GetIndexCount();
throw(CDaoException, CMemoryException);

Return Value
The number of indexes in the table-type recordset.

Remarks
Call this member function to determine the number of indexes available on the
table-type recordset. GetIndexCount is useful for looping through all indexes in the
recordset. For that purpose, use GetIndexCount in conjunction with GetIndexInfo.
If you call this member function on dynaset-type or snapshot-type recordsets, MFC
throws an exception.

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Attributes Property” in DAO Help.

See Also: CDaoRecordset::GetFieldCount, CDaoRecordset::GetFieldInfo,
CDaoRecordset::GetIndexInfo

CDaoRecordset::GetIndexInfo

void GetIndexInfo(int nlndex, CDaoIndexInfo& indexinfo,
« DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

void GetIndexInfo(LPCTSTR IpszName, CDaoIlndexInfo& indexinfo,
« DWORD dwinfoOptions = AFX_DAO_PRIMARY_INFO);
throw(CDaoException, CMemoryException);

Parameters
nlndex The zero-based index in the table’s Indexes collection, for lookup by
numerical position.

indexinfo A reference to a CDaoIndexInfo structure.

dwlnfoOptions Options that specify which information about the index to retrieve.
The available options are listed here along with what they cause the function to
return. For best performance, retrieve only the level of information you need:

o AFX _DAO_PRIMARY_INFO (Default) Name, Field Info, Fields

o AFX DAO_SECONDARY_INFO Primary information, plus: Primary,
Unique, Clustered, IgnoreNulls, Required, Foreign

e AFX DAO_ALL_INFO Primary and secondary information, plus: Distinct
Count

311

CDaoRecordset::GetLastModifiedBookmark

Remarks

IpszName A pointer to the name of the index object, for lookup by name.

Call this member function to obtain various kinds of information about an index
defined in the base table underlying a recordset. One version of the function lets you
look up a index by its position in the collection. The other version lets you look up an
index by name.

For a description of the information returned, see the CDaoIndexInfo structure. This
structure has members that correspond to the items of information listed above in the
description of dwlnfoOptions. When you request information at one level, you get
information for any prior levels as well.

For more information about creating recordsets, see the article “DAQO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Attributes Property” in DAO Help.

See Also: CDaoRecordset::GetFieldCount, CDaoRecordset::GetFieldInfo,
CDaoRecordset::GetIndexCount, CDaoRecordset::GetLastModifiedBookmark

CDaoRecordset::GetLLastModifiedBookmark

COleVariant GetLastModifiedBookmark();
throw(CDaoException, CMemoryException);

Return Value

Remarks

312

A COleVariant containing a bookmark that indicates the most recently added or
changed record.

Call this member function to retrieve the bookmark of the most recently added or
updated record. When a recordset object is created or opened, each of its records
already has a unique bookmark if it supports them. Call GetBookmark to determine
if the recordset supports bookmarks. If the recordset does not support bookmarks, a
CDaoException is thrown.

When you add a record, it appears at the end of the recordset, and is not the current
record. To make the new record current, call GetLastModifiedBookmark and then
call SetBookmark to return to the newly added record.

For more information about navigating in recordsets, see the article “DAQO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “LastModified Property” in DAO Help.

See Also: CDaoRecordset::GetBookmark, CDaoRecordset::SetBookmark

CDaoRecordset::GetName

CDaoRecordset::GetLockingMode

BOOL GetLockingMode();
throw(CDaoException, CMemoryException);

Return Value

Remarks

Nonzero if the type of locking is pessimistic, otherwise O for optimistic record
locking.

Call this member function to determine the type of locking in effect for the recordset.
When pessimistic locking is in effect, the data page containing the record you are
editing is locked as soon as you call the Edit member function. The page is unlocked
when you call the Update or Close member function or any of the Move or Find
operations.

When optimistic locking is in effect, the data page containing the record is locked
only while the record is being updated with the Update member function.

When working with ODBC data sources, the locking mode is always optimistic.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topics “LockEdits Property” and “Locking Behavior in Multiuser Applications” in
DAO Help.

See Also: CDaoRecordset::SetLockingMode

CDaoRecordset::GetName

CString GetName();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString containing the name of the recordset.

Call this member function to retrieve the name of the recordset. The name of the
recordset must start with a letter and can contain a maximum of 40 characters. It can
include numbers and underscore characters but can’t include punctuation or spaces.

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Name Property” in DAO Help.

See Also: CDaoRecordset::GetDefaultDBName,
CDaoRecordset::GetDefaultSQL, CDaoRecordset::GetSQL,
CDaoRecordset::GetType

313

CDaoRecordset::GetParamValue

CDaoRecordset::GetParamValue

virtual COleVariant GetParamValue(int nindex);
throw(CDaoException, CMemoryException);

virtual COleVariant GetParamValue(LPCTSTR IlpszName);
throw(CDaoException, CMemoryException);

Return Value
An object of class COleVariant that contains the parameter’s value.

Parameters
nlndex The numerical position of the parameter in the underlying DAOParameter
object.

IpszName The name of the parameter whose value you want.

Remarks
Call this member function to retrieve the current value of the specified parameter
stored in the underlying DAOParameter object. You can access the parameter either
by name or by its numerical position in the collection. -

For more information about parameters, see the article “DAO Queries: Filtering and
Parameterizing Queries” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Parameter Object” in DAO Help.

See Also: CDaoRecordset::SetParamValue, CDaoRecordset::m_nParams

CDaoRecordset::GetPercentPosition

float GetPercentPosition();
throw(CDaoException, CMemoryException);

Return Value
A number between 0 and 100 that indicates the approximate location of the current
record in the recordset object based on a percentage of the records in the recordset.

Remarks
When working with a dynaset-type or snapshot-type recordset, if you call
GetPercentPosition before fully populating the recordset, the amount of movement is
relative to the number of records accessed as indicated by calling GetRecordCount.
You can move to the last record by calling MoveLast to complete the population of all
recordsets, but this may take a significant amount of time.

You can call GetPercentPosition on all three types of recordset objects, including
tables without indexes. However, you cannot call GetPercentPosition on
forward-only scrolling snapshots, or on a recordset opened from a pass-through query
against an external database. If there is no current record, or he current record has
been deleted, a CDaoException is thrown.

314

CDaoRecordset::GetRecordCount

For more information about navigating in recordsets, see the article “DAO Recordset:

Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “PercentPosition Property” in DAO Help.

See Also: CDaoRecordset::SetPercentPosition

CDaoRecordset::GetRecordCount

long GetRecordCount();
throw(CDaoException, CMemoryException);

Return Value

Remarks

Returns the number of records in a recordset.

Call this member function to find out how many records in a recordset have been
accessed. GetRecordCount does not indicate how many records are contained in a
dynaset-type or snapshot-type recordset until all records have been accessed. This
member function call may take a significant amount of time to complete.

Once the last record has been accessed, the return value indicates the total number
of undeleted records in the recordset. To force the last record to be accessed, call the
MoveLast or FindLast member function for the recordset. You can also use a SQL
Count to determine the approximate number of records your query will return.

As your application deletes records in a dynaset-type recordset, the return value of
GetRecordCount decreases. However, records deleted by other users are not
reflected by GetRecordCount until the current record is positioned to a deleted
record. If you execute a transaction that affects the record count and subsequently
roll back the transaction, GetRecordCount will not reflect the actual number of
remaining records.

The value of GetRecordCount from a snapshot-type recordset is not affected by
changes in the underlying tables.

The value of GetRecordCount from a table-type recordset reflects the approximate
number of records in the table and is affected immediately as table records are added
and deleted.

A recordset with no records returns a value of 0. When working with attached tables
or ODBC databases, GetRecordCount always returns—1. Calling the Requery
member function on a recordset resets the value of GetRecordCount just as if the
query were re-executed.

For more information about navigating in recordsets, see the article “DAO Recordset:

Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “RecordCount Property” in DAO Help.

315

CDaoRecordset::GetSQL

See Also: CDaoRecordset::GetFieldCount, CDaoRecordset::GetFieldInfo,
CDaoRecordset::GetIndexCount, CDaoRecordset::GetIndexInfo

CDaoRecordset::GetSQL

CString GetSQL() const;

Return Value
A CString that contains the SQL statement.

Remarks
Call this member function to get the SQL statement that was used to select the
recordset’s records when it was opened. This will generally be an SQL SELECT
statement.

The string returned by GetSQL is typically different from any string you may have
passed to the recordset in the IpszSQL parameter to the Open member function. This
is because the recordset constructs a full SQL statement based on what you passed to
Open, what you specified with ClassWizard, and what you may have specified in the
m_strFilter and m_strSort data members.

Important Call this member function only after calling Open.

For more information about creating recordsets, see the article “DAQO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “SQL Property” in DAO Help.

See Also: CDaoRecordset::GetDefaultSQL,
CDaoRecordset::GetDefaultDBName, CDaoRecordset::GetName,
CDaoRecordset::GetType

CDaoRecordset::GetType
short GetType();
throw(CDaoException, CMemoryException);

Return Value
One of the following values that indicates the type of a recordset:

¢ dbOpenTable Table-type recordset
e dbOpenDynaset Dynaset-type recordset
e dbOpenSnapshot Snapshot-type recordset

Remarks
Call this member function after opening the recordset to determine the type of the
recordset object.

316

CDaoRecordset::GetValidationText

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Type Property” in DAO Help.

See Also: CDaoRecordset::GetDefaultDBName,
CDaoRecordset::GetDefaultSQL, CDaoRecordset::GetName,
CDaoRecordset::GetSQL

CDaoRecordset::GetValidationRule

CString GetValidationRule();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString object containing a value that validates the data in a record as it is changed
or added to a table.

Call this member function to determine the rule used to validate data. This rule is
text-based, and is applied each time the underlying table is changed. If the data is not
legal, MFC throws an exception. The returned error message is the text of the
ValidationText property of the underlying field object, if specified, or the text of the
expression specified by the ValidationRule property of the underlying field object.
You can call GetValidationText to obtain the text of the error message.

For example, a field in a record that requires the day of the month might have a
validation rule such as “DAY BETWEEN 1 AND 31.”

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “ValidationRule Property” in DAO Help.

See Also: CDaoRecordset::GetValidationText

CDaoRecordset::GetValidationText

CString GetValidationText();
throw(CDaoException, CMemoryException);

Return Value

Remarks

A CString object containing the text of the message that is displayed if the value of a
field does not satisfy the validation rule of the underlying field object.

Call this member function to retrieve the text of the ValidationText property of the
underlying field object.

317

CDaoRecordset::IsBOF

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online. For related
information, see the topic “ValidationText Property” in DAO Help.

See Also: CDaoRecordset::GetValidationRule

CDaoRecordset::IsBOF

BOOL IsBOF() const;
throw(CDaoException, CMemoryException);

Return Value

Remarks

318

Nonzero if the recordset contains no records or if you have scrolled backward before
the first record; otherwise 0.

Call this member function before you scroll from record to record to learn whether
you have gone before the first record of the recordset. You can also call ISBOF along
with ISEOF to determine whether the recordset contains any records or is empty.
Immediately after you call Open, if the recordset contains no records, ISBOF returns
nonzero. When you open a recordset that has at least one record, the first record is the
current record and IsBOF returns 0.

If the first record is the current record and you call MovePrev, ISBOF will
subsequently return nonzero. If ISBOF returns nonzero and you call MovePrev, an
exception is thrown. If ISBOF returns nonzero, the current record is undefined, and
any action that requires a current record will result in an exception.

Effect of specific methods on IsSBOF and ISEOF settings:

¢ Calling Open internally makes the first record in the recordset the current record
by calling MoveFirst. Therefore, calling Open on an empty set of records causes
IsBOF and ISEOF to return nonzero. (See the following table for the behavior of a
failed MoveFirst or MoveLast call.)

e All Move operations that successfully locate a record cause both IsBOF and
ISEOF to return 0.

¢ An AddNew call followed by an Update call that successfully inserts a new record
will cause IsBOF to return O, but only if ISEOF is already nonzero. The state of
ISEOF will always remain unchanged. As defined by the Microsoft Jet database
engine, the current record pointer of an empty recordset is at the end of a file, so
any new record is inserted after the current record.

* Any Delete call, even if it removes the only remaining record from a recordset, will
not change the value of ISBOF or ISEOF.

This table shows which Move operations are allowed with different combinations of
IsBOF/ISEOF.

CDaoRecordset::IsDeleted

MoveFirst, MovePrev, MoveNext,
MoveLast Move < 0 Move 0 Move > 0
IsBOF=nonzero, Allowed Exception Exception Allowed
IsEOF=0
IsBOF=0, Allowed Allowed Exception Exception
IsEOF=nonzero
Both nonzero Exception Exception Exception Exception
Both 0 Allowed Allowed Allowed Allowed

Allowing a Move operation does not mean that the operation will successfully locate
a record. It merely indicates that an attempt to perform the specified Move operation
is allowed and will not generate an exception. The value of the ISBOF and ISEOF
member functions may change as a result of the attempted move.

The effect of Move operations that do not locate a record on the value of IsBOF and
ISEOF settings is shown in the following table.

IsBOF IsEOF
MoveFirst, MoveLast Nonzero Nonzero
Move 0 No change No change
MovePrev, Move < 0 Nonzero No change
MoveNext, Move > 0 No change Nonzero

For more information about navigating in recordsets, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “BOF, EOF Properties” in DAO Help.

See Also: CDaoRecordset::ISEOF

CDaoRecordset::IsDeleted

BOOL IsDeleted() const;

Return Value

Remarks

Nongzero if the recordset is positioned on a deleted record; otherwise 0.

Call this member function to determine whether the current record has been deleted. If
you scroll to a record and IsDeleted returns TRUE (nonzero), then you must scroll to
another record before you can perform any other recordset operations.

Note You don't need to check the deleted status for records in a snapshot or table-type
recordset. Because records cannot be deleted from a snapshot, there is no need fo call
IsDeleted. For table-type recordsets, deleted records are actually removed from the recordset.
Once a record has been deleted, either by you, another user, or in another recordset, you
cannot scroll back to that record. Therefore, there is no need to call IsDeleted.

319

CDaoRecordset::ISEOF

~ When you delete a record from a dynaset, it is removed from the recordset and you

cannot scroll back to that record. However, if a record in a dynaset is deleted either by
another user or in another recordset based on the same table, IsDeleted will return
TRUE when you later scroll to that record.

For more information about navigating in recordsets, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topics “Delete Method,” “LastModified Property,” and
“EditMode Property” in DAO Help.

See Also: CDaoRecordset::Delete, CDaoRecordset::IsBOF,
CDaoRecordset::ISEOF

CDaoRecordset:: ISEOF

BOOL IsEOF() const;

throw(CDaoException, CMemoryException);

Return Value

Remarks

320

Nonzero if the recordset contains no records or if you have scrolled beyond the last
record; otherwise 0.

Call this member function as you scroll from record to record to learn whether you
have gone beyond the last record of the recordset. You can also call ISEOF to

determine whether the recordset contains any records or is empty. Immediately after
you call Open, if the recordset contains no records, ISEOF returns nonzero. When
you open a recordset that has at least one record, the first record is the current record

and ISEOF returns 0.

If the last record is the current record when you call MoveNext, ISEOF will

subsequently return nonzero. If ISEOF returns nonzero and you call MoveNext, an

exception is thrown. If ISEOF returns nonzero, the current record is undefined, and
any action that requires a current record will result in an exception.

Effect of specific methods on ISBOF and ISEOF settings:

o Calling Open internally makes the first record in the recordset the current record
by calling MoveFirst. Therefore, calling Open on an empty set of records causes
IsBOF and ISEOF to return nonzero. (See the following table for the behavior of
a failed MoveFirst call.)

o All Move operations that successfully locate a record cause both IsSBOF and
ISEOF to return 0.

e An AddNew call followed by an Update call that successfully inserts a new record
will cause IsBOF to return 0, but only if ISEOF is already nonzero. The state of
ISEOF will always remain unchanged. As defined by the Microsoft Jet database
engine, the current record pointer of an empty recordset is at the end of a file, so
any new record is inserted after the current record.

CDaoRecordset::IsFieldDirty

e Any Delete call, even if it removes the only remaining record from a recordset, will
not change the value of IsBOF or ISEOF.

This table shows which Move operations are allowed with different combinations of

IsBOF/ISEOF.
MoveFirst, MovePrev, MoveNext,
MoveLast Move <0 Move 0 Move >0
IsBOF=nonzero, Allowed Exception Exception Allowed
IsEOF=0
IsBOF=0, Allowed Allowed Exception Exception
IsEOF=nonzero
Both nonzero Exception Exception Exception Exception
Both 0 Allowed Allowed Allowed Allowed

Allowing a Move operation does not mean that the operation will successfully locate a
record. It merely indicates that an attempt to perform the specified Move operation is
allowed and will not generate an exception. The value of the IsBOF and ISEOF
member functions may change as a result of the attempted Move.

The effect of Move operations that do not locate a record on the value of IsBOF and
ISEOF settings is shown in the following table.

IsBOF IsEOF
MoveFirst, MoveLast Nonzero Nonzero
Move 0 No change No change
MovePrev, Move < 0 Nonzero No change
MoveNext, Move > 0 No change Nonzero

For more information about navigating in recordsets, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “BOF, EOF Properties” in DAO Help.

See Also: CDaoRecordset::IsBOF

CDaoRecordset::IsFieldDirty

BOOL IsFieldDirty(void* pv) const;
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the specified field data member is flagged as dirty; otherwise 0.

Parameters
pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are dirty.

321

CDaoRecordset::IsFieldNull

Remarks

Call this member function to determine whether the specified field data member of a
dynaset has been flagged as “dirty” (changed). The data in all dirty field data members
will be transferred to the record on the data source when the current record is updated
by a call to the Update member function of CDaoRecordset (following a call to Edit
or AddNew). With this knowledge, you can take further steps, such as unflagging the
field data member to mark the column so it will not be written to the data source. For
more information on the dirty flag, see the article “DAO Recordset: Caching Multiple
Records” in Visual C++ Programmer’s Guide online.

IsFieldDirty is implemented through DoFieldExchange.

For more information about record field exchange, see the article “DAO Record Field
Exchange (DFX)” in Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::IsFieldNull, CDaoRecordset::IsFieldNullable

CDaoRecordset::IsFieldNull

BOOL IsFieldNull(void* pv);
throw(CDaoException, CMemoryException);

Return Value

Nonzero if the specified field data member is flagged as Null; otherwise 0.

Parameters

Remarks

322

pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are Null.

Call this member function to determine whether the specified field data member of a
recordset has been flagged as Null. (In database terminology, Null means “having no
value” and is not the same as NULL in C++.) If a field data member is flagged as
Null, it is interpreted as a column of the current record for which there is no value.

Note In certain situations, using IsFieldNull can be inefficient, as the following code example
ilustrates:

CO0leVariant varValue;

// this code is inefficient because data

// must be retrieved for both IsFieldNull

// and GetFieldValue

if (!Irs.IsFieldNull(nField))
rs.GetFieldValue(nField, varValue);

// this code is more efficient
rs.GetFieldValue(nField, varValue);
if (varValue.vt == VT_NULL)

// do something

See Also: CDaoRecordset::IsFieldDirty, CDaoRecordset::IsFieldNullable

CDaoRecordset::Move

CDaoRecordset::IsFieldNullable

BOOL IsFieldNullable(void* pv);
throw(CDaoException, CMemoryException);

Return Value
Nonzero if the specified field data member can be made Null; otherwise O.

Parameters
pv A pointer to the field data member whose status you want to check, or NULL to
determine if any of the fields are Null.

Remarks
Call this member function to determine whether the specified field data member is
“nullable” (can be set to a Null value; C++ NULL is not the same as Null, which, in
database terminology, means “having no value”).

A field that cannot be Null must have a value. If you attempt to set such a field to Null
when adding or updating a record, the data source rejects the addition or update, and
Update will throw an exception. The exception occurs when you call Update, not
when you call SetFieldNull.

See Also: CDaoRecordset::IsFieldDirty, CDaoRecordset::IsFieldNull

CDaoRecordset::IsOpen
BOOL IsOpen() const;

Return Value
Nonzero if the recordset object’s Open or Requery member function has previously
been called and the recordset has not been closed; otherwise 0.

Remarks
Call this member function to determine if the recordset is open.

For more information about creating recordsets, see the article “DAO Recordset:
Creating Recordsets” in Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::Open, CDaoRecordset::Close

CDaoRecordset::Move

virtual void Move(long [Rows);
throw(CDaoException, CMemoryException);

Parameters
[Rows The number of records to move forward or backward. Positive values move
forward, toward the end of the recordset. Negative values move backward, toward
the beginning.

323

CDaoRecordset::MoveFirst

Remarks

Call this member function to position the recordset [Rows records from the current
record. You can move forward or backward. Move(1) is equivalent to MoveNext,
and Move(- 1) isequivalent to MovePrev.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both ISBOF and ISEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either IsBOF or ISEOF.

If you have scrolled past the beginning or end of the recordset (ISBOF or ISEOF returns
nonzero), a call to Move throws a CDaoException.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

‘When you call Move on a forward-only scrolling snapshot, the /[Rows parameter must
be a positive integer and bookmarks are not allowed, so you can move forward only.

To make the first, last, next, or previous record in a recordset the current record, call
the MoveFirst, MoveLast, MoveNext, or MovePrev member function.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topics “Move Method” and “MoveFirst, MoveLast, MoveNext,
MovePrevious Methods” in DAO Help.

See Also: CDaoRecordset::MoveFirst, CDaoRecordset::MoveLast,
CDaoRecordset::MoveNext, CDaoRecordset::MovePrev

CDaoRecordset::MoveFirst

Remarks

324

void MoveFirst();
throw(CDaoException, CMemoryException);

Call this member function to make the first record in the recordset (if any) the current
record. You do not have to call MoveFirst immediately after you open the recordset.
At that time, the first record (if any) is automatically the current record.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsSBOF and ISEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either ISBOF or ISEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset

CDaoRecordset::MoveLast

object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table’s current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

If you call MoveLast on a recordset object based on an SQL query or querydef, the
query is forced to completion and the recordset object is fully populated.

You cannot call the MoveFirst or MovePrev member function with a forward-only
scrolling snapshot.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation™” in Visual C++ Programmer’s Guide online. For related
information, see the topics “Move Method” and “MoveFirst, MoveLast, MoveNext,
MovePrevious Methods” in DAO Help.

See Also: CDaoRecordset::Move, CDaoRecordset::MoveLast,
CDaoRecordset::MoveNext, CDaoRecordset::MovePrev

CDaoRecordset::MovelLast

Remarks

void MoveLast();
throw(CDaoException, CMemoryException);

Call this member function to make the last record (if any) in the recordset the current
record.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and ISEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either ISBOF or ISEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table’s current
index. You can set the current index by using the Index property of the underlying

325

CDaoRecordset::MoveNext

DAO object. If you do not set the current index, the order of returned records is
undefined.

If you call MoveLast on a recordset object based on an SQL query or querydef, the
query is forced to completion and the recordset object is fully populated.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topics “Move Method” and “MoveFirst, MoveLast, MoveNext,
MovePrevious Methods” in DAO Help.

See Also: CDaoRecordset::Move, CDaoRecordset::MoveFirst,
CDaoRecordset::MoveNext, CDaoRecordset::MovePrev

CDaoRecordset::MoveNext

Remarks

326

void MoveNext();
throw(CDaoException, CMemoryException);

Call this member function to make the next record in the recordset the current record.
It is recommended that you call ISBOF before you attempt to move to the previous
record. A call to MovePrev will throw a CDaoException if ISBOF returns nonzero,
indicating either that you have already scrolled before the first record or that no
records were selected by the recordset.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and ISEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either [SBOF or ISEOF.

If you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table’s current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

CDaoRecordset::MovePrev

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topics “Move Method” and “MoveFirst, MoveLast, MoveNext,
MovePrevious Methods” in DAO Help.

See Also: CDaoRecordset::Move, CDaoRecordset::MoveFirst,
CDaoRecordset::MoveLast, CDaoRecordset::MovePrev

CDaoRecordset::MovePrev

Remarks

void MovePrev();
throw(CDaoException, CMemoryException);

Call this member function to make the previous record in the recordset the current
record.

It is recommended that you call IsBOF before you attempt to move to the previous
record. A call to MovePrev will throw a CDaoException if ISBOF returns nonzero,
indicating either that you have already scrolled before the first record or that no
records were selected by the recordset.

Caution Calling any of the Move functions throws an exception if the recordset has no
records. In general, call both IsBOF and ISEOF before a Move operation to determine whether
the recordset has any records. After you call Open or Requery, call either 1ISBOF or ISEOF.

if you call any of the Move functions while the current record is being updated or added, the
updates are lost without warning.

Use the Move functions to move from record to record without applying a condition.
Use the Find operations to locate records in a dynaset-type or snapshot-type recordset
object that satisfy a certain condition. To locate a record in a table-type recordset
object, call Seek.

If the recordset refers to a table-type recordset, movement follows the table’s current
index. You can set the current index by using the Index property of the underlying
DAO object. If you do not set the current index, the order of returned records is
undefined.

You cannot call the MoveFirst or MovePrev member function with a forward-only

scrolling snapshot.

To move the position of the current record in a recordset object a specific number of
records forward or backward, call Move.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related

327

CDaoRecordset::Open

information, see the topics “Move Method” and “MoveFirst, MoveLast, MoveNext,
MovePrevious Methods” in DAO Help.

See Also: CDaoRecordset::Move, CDaoRecordset::MoveFirst,
CDaoRecordset::MoveLast, CDaoRecordset::MoveNext

CDaoRecordset::Open

virtual void Open(int nOpenType = AFX_DAO_USE_DEFAULT_TYPE,
o LPCTSTR IpszSQL = NULL, int nOptions = 0);
throw(CDaoException, CMemoryException);

virtual void Open(CDaoTableDef* pTableDef, int nOpenType = dbOpenTable,
o int nOptions =0);
throw(CDaoException, CMemoryException);

virtual void Open(CDaoQueryDef* pQueryDef, int nOpenType = dbOpenDynaset,
w int nOptions =0);
throw(CDaoException, CMemoryException);

Parameters
nOpenType One of the following values:

e dbOpenDynaset A dynaset-type recordset with bidirectional scrolling. This is
the default.

e dbOpenTable A table-type recordset with bidirectional scrolling.
¢ dbOpenSnapshot A snapshot-type recordset with bidirectional scrolling.

IpszSQL A string pointer containing one of the following:
¢ A NULL pointer.

¢ The name of one or more tabledefs and/or querydefs (comma-separated).

o An SQL SELECT statement (optionally with an SQL WHERE or ORDER BY
clause).

¢ A pass-through query.

nOptions One or more of the options listed below. The default value is 0. Possible
values are as follows:

¢ dbAppendOnly You can only append new records (dynaset-type recordset
only). This option means literally that records may only be appended. The MFC
ODBC database classes have an append-only option that allows records to be
retrieved and appended.

e dbForwardOnly The recordset is a forward-only scrolling snapshot.

e dbSeeChanges Generate an exception if another user is changing data you are
editing.

328

CDaoRecordset::Open

e dbDenyWrite Other users cannot modify or add records.

e dbDenyRead Other users cannot view records (table-type recordset only).

o dbReadOnly You can only view records; other users can modify them.

¢ dblnconsistent Inconsistent updates are allowed (dynaset-type recordset only).

¢ dbConsistent Only consistent updates are allowed (dynaset-type recordset
only).

Note The constants dbConsistent and dbinconsistent are mutually exclusive. You can
use one or the other, but not both in a given instance of Open.

pTableDef A pointer to a CDaoTableDef object. This version is valid only for
table-type recordsets. When using this option, the CDaoDatabase pointer used to
construct the CDaoRecordset is not used; rather, the database in which the
tabledef resides is used.

pQueryDef A pointer to a CDaoQueryDef object. This version is valid only for
dynaset-type and snapshot-type recordsets. When using this option, the
CDaoDatabase pointer used to construct the CDaoRecordset is not used; rather,
the database in which the querydef resides is used.

Remarks
You must call this member function to retrieve the records for the recordset. Before
calling Open, you must construct the recordset object. There are several ways to do
this:

e When you construct the recordset object, pass a pointer to a CDaoDatabase object
that is already open.

e When you construct the recordset object, pass a pointer to a CDaoDatabase object
that is not open. The recordset opens a CDaoDatabase object, but will not close it
when the recordset object closes.

e When you construct the recordset object, pass a NULL pointer. The recordset
object calls GetDefaultDBName to get the name of the Microsoft Access .MDB
file to open. The recordset then opens a CDaoDatabase object and keeps it open
as long as the recordset is open. When you call Close on the recordset, the
CDaoDatabase object is also closed.

Note When the recordset opens the CDaoDatabase object, it opens the data source with
nonexclusive access.

For the version of Open that uses the [pszSQL parameter, once the recordset is open
you can retrieve records in one of several ways. The first option is to have DFX
functions in your DoFieldExchange. The second option is to use dynamic binding
by calling the GetField Value member function. These options can be implemented
separately or in combination. If they are combined, you will have to pass in the SQL
statement yourself on the call to Open. For more information about dynamic binding,

329

CDaoRecordset::Open

330

see the article “DAO Recordset: Binding Records Dynamically” in Visual C++
Programmer’s Guide online.

When you use the second version of Open where you pass in a CDaoTableDef
object, the resulting columns will be available for you to bind via DoFieldExchange
and the DFX mechanism, and/or bind dynamically via GetField Value.

Note You can only call Open using a CDaoTableDef object for table-type recordsets.
When you use the third version of Open where you pass in a CDaoQueryDef object,
that query will be executed, and the resulting columns will be available for you to

bind via DoFieldExchange and the DFX mechanism, and/or bind dynamically via
GetFieldValue.

Note You can only call Open using a CDaoQueryDef object for dynaset-type and
snapshot-type recordsets.
For the first version of Open that uses the IpszSQL parameter, records are selected

based on criteria shown in the following table.

Value of the IpszSQL parameter ~ Records selected are determined by ~ Example

NULL The string returned by
GetDefaultSQL.

A comma-separated list of All columns represented in the "Customer"

one or more tabledefs and/or DoFieldExchange.

querydef names.

SELECT column-list FROM The specified columns from the "SELECT Custld,

table-list specified tabledef(s) and/or CustName
querydef(s). FROM Customer"

The usual procedure is to pass NULL to Open,; in that case, Open calls
GetDefaultSQL, an overridable member function that ClassWizard generates when
creating a CDaoRecordset-derived class. This value gives the tabledef(s) and/or
querydef name(s) you specified in ClassWizard. You can instead specify other
information in the IpszSQL parameter.

Whatever you pass, Open constructs a final SQL string for the query (the string may
have SQL WHERE and ORDER BY clauses appended to the IpszSQL string you
passed) and then executes the query. You can examine the constructed string by
calling GetSQL after calling Open.

The field data members of your recordset class are bound to the columns of the data
selected. If any records are returned, the first record becomes the current record.

If you want to set options for the recordset, such as a filter or sort, set m_strSort or
m_strFilter after you construct the recordset object but before you call Open. If you
want to refresh the records in the recordset after the recordset is already open, call
Requery.

CDaoRecordset::Requery

If you call Open on a dynaset-type or snapshot-type recordset, or if the data source
refers to an SQL statement or a tabledef that represents an attached table, you cannot
use dbOpenTable for the type argument; if you do, MFC throws an exception. To
determine whether a tabledef object represents an attached table, create a
CDaoTableDef object and call its GetConnect member function.

Use the dbSeeChanges flag if you wish to trap changes made by another user or
another program on your machine when you are editing or deleting the same record.
For example, if two users start editing the same record, the first user to call the
Update member function succeeds. When Update is called by the second user, a
CDaoException is thrown. Similarly, if the second user tries to call Delete to delete
the record, and it has already been changed by the first user, a CDaoException
occurs.

Typically, if the user gets this CDaoException while updating, your code should
refresh the contents of the fields and retrieve the newly modified values. If the
exception occurs in the process of deleting, your code could display the new record
data to the user and a message indicating that the data has recently changed. At this
point, your code can request a confirmation that the user still wants to delete the
record.

Tip Use the forward-only scrolling option (dbForwardOnly) to improve performance when
your application makes a single pass through a recordset opened from an ODBC data source.

For more information about opening recordsets, see the articles “DAO Recordset:
Creating Recordsets” and “DAO: Creating, Opening, and Closing DAQO Objects”
in Visual C++ Programmer’s Guide online. For related information, see the topic
“OpenRecordset Method” in DAO Help.

See Also: CDaoRecordset::Close, CDaoRecordset::CDaoRecordset

CDaoRecordset::Requery

Remarks

virtual void Requery();
throw(CDaoException, CMemoryException);

Call this member function to rebuild (refresh) a recordset. If any records are returned,
the first record becomes the current record.

In order for the recordset to reflect the additions and deletions that you or other users
are making to the data source, you must rebuild the recordset by calling Requery. If
the recordset is a dynaset, it automatically reflects updates that you or other users
make to its existing records (but not additions). If the recordset is a snapshot, you
must call Requery to reflect edits by other users as well as additions and deletions.

331

CDaoRecordset::Seek

For either a dynaset or a snapshot, call Requery any time you want to rebuild the
recordset using parameter values. Set the new filter or sort by setting m_strFilter and
m_strSort before calling Requery. Set new parameters by assigning new values to
parameter data members before calling Requery.

If the attempt to rebuild the recordset fails, the recordset is closed. Before you call
Requery, you can determine whether the recordset can be requeried by calling the
CanRestart member function. CanRestart does not guarantee that Requery will
succeed.

Caution Call Requery only after you have called Open.

You can’t call Requery on a dynaset-type or snapshot-type recordset if calling
CanRestart returns 0, nor can you use it on a table-type recordset.

If both IsBOF and ISEOF return nonzero after you call Requery, the query didn’t
return any records and the recordset will contain no data.

For more information about updating data, see the article “DAO Recordset: Recordset
Operations” in Visual C++ Programmer’s Guide online. For related information, see
the topic “Requery Method” in DAO Help.

See Also: CDaoRecordset::CanRestart

CDaoRecordset::Seek

BOOL Seek(LPCTSTR /pszComparison, COleVariant* pKeyl,
o COleVariant* pKey2 = NULL, COleVariant* pKey3 = NULL);
throw(CDaoException, CMemoryException);

BOOL Seek (LPCTSTR lpszComparison, COleVariant* pKeyArray, WORD nKeys);
throw(CDaoException, CMemoryException);

Return Value

Nonzero if matching records are found, otherwise 0.

Parameters

332

IpszComparison One of the following string expressions: "<", "<=", "=", ">=", or ">".

pKeyl A pointer to a COleVariant whose value corresponds to the first field in the
index. Required.

pKey2 A pointer to a COleVariant whose value corresponds to the second field in
the index, if any. Defaults to NULL.

pKey3 A pointer to a COleVariant whose value corresponds to the third field in the
index, if any. Defaults to NULL.

pKeyArray A pointer to an array of variants. The array size corresponds to the
number of fields in the index. ‘

Remarks

CDaoRecordset::Seek

nKeys An integer corresponding to the size of the array, which is the number of
fields in the index.

Note Do not specify wildcards in the keys. Wildcards will cause Seek to return no matching
records.

Call this member function to locate the record in an indexed table-type recordset
object that satisfies the specified criteria for the current index and make that record the
current record. Use the second (array) version of Seek to handle indexes of four fields
or more.

Seek enables high-performance index searching on table-type recordsets. You must
set the current index by calling SetCurrentIndex before calling Seek. If the index

identifies a nonunique key field or fields, Seek locates the first record that satisfies

the criteria. If you do not set an index, an exception is thrown.

Note that if you are not creating a UNICODE recordset, the COleVariant objects
must be explicitly declared ANSI. This can be done by using the
COleVariant::COleVariant(/[pszSrc, vtSrc) form of constructor with viSrc set to
VT_BSTRT (ANSI) or by using the COleVariant function SetString(IpszSrc,
vtSrc) with vtSrc set to VI_BSTRT.

When you call Seek, you pass one or more key values and a comparison operator
("<", "<=", "=", ">=", or ">"). Seek searches through the specified key fields and
locates the first record that satisfies the criteria specified by IpszComparison and
pKeyl. Once found, Seek returns nonzero, and makes that record current. If Seek fails
to locate a match, Seek returns zero, and the current record is undefined. When using
DAO directly, you must explicitly check the NoMatch property.

If IpszComparison is "=", ">=", or ">", Seek starts at the beginning of the index.
If IpszComparison is "<" or "<=", Seek starts at the end of the index and searches
backward unless there are duplicate index entries at the end. In this case, Seek starts
at an arbitrary entry among the duplicate index entries at the end of the index.

There does not have to be a current record when you use Seek.

To locate a record in a dynaset-type or snapshot-type recordset that satisfies a specific
condition, use the Find operations. To include all records, not just those that satisfy a
specific condition, use the Move operations to move from record to record.

You cannot call Seek on an attached table of any type because attached tables

must be opened as dynaset-type or snapshot-type recordsets. However, if you call
CDaoDatabase::Open to directly open an installable ISAM database, you can call
Seek on tables in that database, although the performance may be slow.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Seek Method” in DAO Help.

333

CDaoRecordset::SetAbsolutePosition

See Also: CDaoRecordset::FindFirst, CDaoRecordset::FindLast,
CDaoRecordset::FindNext, CDaoRecordset::FindPrev, CDaoRecordset::Move,
CDaoRecordset::MoveFirst, CDaoRecordset::MoveLast,
CDaoRecordset::MoveNext, CDaoRecordset::MovePreyv,
COleVariant::COleVariant, COleVariant::SetString

CDaoRecordset::SetAbsolutePosition

void SetAbsolutePosition(long [Position);
throw(CDaoException, CMemoryException);

Parameters

Remarks

334

[Position Corresponds to the ordinal position of the current record in the recordset.

Sets the relative record number of a recordset object’s current record. Calling
SetAbsolutePosition enables you to position the current record pointer to a specific
record based on its ordinal position in a dynaset-type or snapshot-type recordset. You
can also determine the current record number by calling GetAbsolutePosition.

Note This member function is valid only for dynaset-type and snapshot-type recordsets.

The AbsolutePosition property value of the underlying DAO object is zero-based; a
setting of O refers to the first record in the recordset. Setting a value greater than the
number of populated records causes MFC to throw an exception. You can determine
the number of populated records in the recordset by calling the GetRecordCount
member function.

If the current record is deleted, the AbsolutePosition property value is not defined, and
MFC throws an exception if it is referenced. New records are added to the end of the
sequence.

Note This property is not intended to be used as a surrogate record number. Bookmarks are
still the recommended way of retaining and returning to a given position and are the only way

to position the current record across all types of recordset objects that support bookmarks. In
particular, the position of a given record changes when record(s) preceding it are deleted. There
is also no assurance that a given record will have the same absolute position if the recordset is
re-created again because the order of individual records within a recordset is not guaranteed
unless it is created with an SQL statement using an ORDER BY clause.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “AbsolutePosition Property” in DAO Help.

See Also: CDaoRecordset::GetAbsolutePosition

CDaoRecordset::SetCacheSize

CDaoRecordset::SetBookmark

void SetBookmark(COleVariant varBookmark);
throw(CDaoException, CMemoryException);

Parameters

Remarks

varBookmark A COleVariant object containing the bookmark value for a specific
record.

Call this member function to position the recordset on the record containing the
specified bookmark. When a recordset object is created or opened, each of its records
already has a unique bookmark. You can retrieve the bookmark for the current record
by calling GetBookmark and saving the value to a COleVariant object. You can
later return to that record by calling SetBookmark using the saved bookmark value.

Note that if you are not creating a UNICODE recordset, the COleVariant object
must be explicitly declared ANSI. This can be done by using the
COleVariant::COleVariant(lpszSrc, vtSrc) form of constructor with viSrc set
to VI_BSTRT (ANSI) or by using the COleVariant function

SetString(IpszSrc, vtSrc) with vtSrc set to VI_BSTRT.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topics “Bookmark Property” and “Bookmarkable Property”
in DAO Help.

See Also: CDaoRecordset::GetBookmark

CDaoRecordset::SetCacheSize

void SetCacheSize(long [Size);
throw(CDaoException, CMemoryException);

Parameters

Remarks

ISize Specifies the number of records. A typical value is 100. A setting of O turns
off caching. The setting must be between 5 and 1200 records. The cache may use
a considerable amount of memory.

Call this member function to set the number of records to be cached. A cache is a
space in local memory that holds the data most recently retrieved from the server
in the event that the data will be requested again while the application is running.
Data caching improves the performance of an application that retrieves data from a
remote server through dynaset-type recordset objects. When data is requested, the

335

CDaoRecordset::SetCacheStart

Microsoft Jet database engine checks the cache for the requested data first rather than
retrieving it from the server, which takes more time. Data that does not come from an
ODBC data source is not saved in the cache.

Any ODBC data source, such as an attached table, can have a local cache. To create
the cache, open a recordset object from the remote data source, call the SetCacheSize
and SetCacheStart member functions, and then call the FillCache member function
or step through the records by using one of the Move operations. The [Size parameter
of the SetCacheSize member function can be based on the number of records your
application can work with at one time. For example, if you are using a recordset as the
source of the data to be displayed on screen, you could pass the SetCacheSize [Size
parameter as 20 to display 20 records at one time.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “CacheSize, CacheStart Properties” in DAO Help.

See Also: CDaoRecordset::FillCache, CDaoRecordset::GetCacheSize,
CDaoRecordset::GetCacheStart, CDaoRecordset::SetCacheStart

CDaoRecordset::SetCacheStart

void SetCacheStart(COleVariant varBookmark);
throw(CDaoException, CMemoryException);

Parameters

Remarks

336

varBookmark A COleVariant that specifies the bookmark of the first record in the
recordset to be cached.

Call this member function to specify the bookmark of the first record in the recordset
to be cached. You can use the bookmark value of any record for the varBookmark
parameter of the SetCacheStart member function. Make the record you want to

start the cache with the current record, establish a bookmark for that record using
SetBookmark, and pass the bookmark value as the parameter for the SetCacheStart
member function.

The Microsoft Jet database engine requests records within the cache range from the
cache, and it requests records outside the cache range from the server.

Records retrieved from the cache do not reflect changes made concurrently to the
source data by other users.

To force an update of all the cached data, pass the ISize parameter of SetCacheSize
as 0, call SetCacheSize again with the size of the cache you originally requested,
and then call the FillCache member function.

CDaoRecordset::SetCurrentIndex

Note that if you are not creating a UNICODE recordset, the COleVariant object
must be explicitly declared ANSI. This can be done by using the
COleVariant::COleVariant([pszSrc, vtSrc) form of constructor with v£Src set
to VI_BSTRT (ANSI) or by using the COleVariant function

SetString(IpszSrc, viSrc) with vtSre set to VI_BSTRT.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “CacheSize, CacheStart Properties” in DAO Help.

See Also: CDaoRecordset::FillCache, CDaoRecordset::GetCacheSize,
CDaoRecordset::GetCacheStart, CDaoRecordset::SetCacheSize

CDaoRecordset::SetCurrentIndex

void SetCurrentIndex(LPCTSTR Ipszindex);
throw(CDaoException, CMemoryException);

Parameters

Remarks

IpszIndex A pointer containing the name of the index to be set.

Call this member function to set an index on a table-type recordset. Records in base
tables are not stored in any particular order. Setting an index changes the order of
records returned from the database, but it does not affect the order in which the
records are stored. The specified index must already be defined. If you try to use an
index object that does not exist, or if the index is not set when you call Seek, MFC
throws an exception.

You can create a new index for the table by calling CDaoTableDef::CreateIndex and
appending the new index to the Indexes collection of the underlying tabledef by
calling CDaoTableDef::Append, and then reopening the recordset.

Records returned from a table-type recordset can be ordered only by the indexes
defined for the underlying tabledef. To sort records in some other order, you can open
a dynaset-type or snapshot-type recordset using an SQL. ORDER BY clause stored
in CDaoRecordset::m_strSort.

For more information about finding records, see the article “DAO Recordset:
Recordset Navigation” in Visual C++ Programmer’s Guide online. For related
information, see the topic “Index Object” and the definition “current index” in DAO
Help.

See Also: CDaoRecordset::GetCurrentIndex

337

CDaoRecordset::SetFieldDirty

CDaoRecordset::SetFieldDirty

void SetFieldDirty(void* pv, BOOL bDirty = TRUE);
throw(CDaoException, CMemoryException);

Parameters

Remarks

338

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means “having no value.”)

bDirty TRUE if the field data member is to be flagged as “dirty” (changed).
Otherwise FALSE if the field data member is to be flagged as “clean”
(unchanged).

Call this member function to flag a field data member of the recordset as changed or
as unchanged. Marking fields as unchanged ensures the field is not updated.

The framework marks changed field data members to ensure they will be written to
the record on the data source by the DAO record field exchange (DFX) mechanism.
Changing the value of a field generally sets the field dirty automatically, so you will
seldom need to call SetFieldDirty yourself, but you might sometimes want to ensure
that columns will be explicitly updated or inserted regardless of what value is in the
field data member. The DFX mechanism also employs the use of PSEUDO NULL.
For more information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the
field does not automatically set the field as dirty. In this case, it will be necessary to
explicity set the field as dirty. The flag contained in m_bCheckCacheForDirtyFields
controls this automatic field checking.

Important Call this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function to all
outputColumns, not params in CDaoFieldExchange. For instance, the call

SetFieldDirty(NULL);
will set only outputColumns to NULL. The value of param will be unaffected.

To work on a param, you must supply the actual address of the individual param you
want to work on, such as:

SetFieldDirty(&m_strParam);
This means you cannot set all params NULL, as you can with outputColumns.

SetFieldDirty is implemented through DoFieldExchange.

CDaoRecordset::SetFieldNull

For more information about record field exchange, see the articles “DAO Record
Field Exchange (DFX)” and “DAO Recordset: Binding Records Dynamically” in
Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::SetFieldNull, CDaoRecordset::SetField Value

CDaoRecordset::SetFieldNull

void SetFieldNull(void* pv, BOOL bNull = TRUE);
throw(CDaoException, CMemoryException);

Parameters

Remarks

pv Contains the address of a field data member in the recordset or NULL. If NULL,
all field data members in the recordset are flagged. (C++ NULL is not the same as
Null in database terminology, which means “having no value.”)

ONull Nonzero if the field data member is to be flagged as having no value (Null).
Otherwise 0 if the field data member is to be flagged as non-Null.

Call this member function to flag a field data member of the recordset as Null
(specifically having no value) or as non-Null. The first version of SetFieldNull is
used for fields bound in the DoFieldExchange mechanism. If you choose to bind your
fields dynamically, you must use either the second or third version of this member
function. You can mix the calls as necessary.

‘When you add a new record to a recordset, all field data members are initially set to

a Null value and flagged as “dirty” (changed). When you retrieve a record from a data
source, its columns either already have values or are Null. If it is not appropriate to
make a field Null, a CDaoException is thrown.

If you are using the double-buffering mechanism, for example, if you specifically
wish to designate a field of the current record as not having a value, call SetFieldNull
with bNull set to TRUE to flag it as Null. If a field was previously marked Null and
you now want to give it a value, simply set its new value. You do not have to remove
the Null flag with SetFieldNull. To determine whether the field is allowed to be Null,
call IsFieldNullable.

If you are not using the double-buffering mechanism, then changing the value of the
field does not automatically set the field as dirty and non-Null. You must specifically
set the fields dirty and non-Null. The flag contained in
m_bCheckCacheForDirtyFields controls this automatic field checking.

The DFX mechanism employs the use of PSEUDO NULL. For more information, see
CDaoFieldExchange::m_nOperation.

Important Call this member function only after you have called Edit or AddNew.

339

CDaoRecordset::SetFieldValue

Using NULL for the first argument of the function will apply the function only to
outputColumns, not params in CDaoFieldExchange. For instance, the call

SetFieldNuli(NULL);
will set only outputColumns to NULL. The value of param will be unaffected.

For more information about record field exchange, see the articles “DAO Record
Field Exchange (DFX)” and “DAO Recordset: Binding Records Dynamically” in
Visual C++ Programmer’s Guide online.

See Also: CDaoRecordset::SetParamValue

CDaoRecordset::SetField Value

void SetField Value(LPCTSTR IpszName, const COleVariant& varValue);
throw(CDaoException, CMemoryException);

void SetFieldValue(int nOrdinal, const COleVariant& varValue);
throw(CDaoException, CMemoryException);

void SetFieldValue(LPCTSTR IpszName, LPCTSTR IpszValue);

void SetField Value(int nOrdinal, LPCTSTR IpszValue);

Parameters
IpszName A pointer to a string containing the name of a field.

varValue A reference to a COleVariant object containing the value of the field’s
contents.

nOrdinal An integer that represents the ordinal position of the field in the recordset’s
Fields collection (zero-based).

IpszValue A pointer to a string containing the value of the field’s contents.

Remarks
Call this member function to set the value of a field, either by ordinal position or by
changing the value of the string. Use SetField Value and GetFieldValue to
dynamically bind fields at run time rather than statically binding columns using the
DoFieldExchange mechanism.

Note that if you are not creating a UNICODE recordset, you must either use a form
of SetField Value that does not contain a COleVariant parameter (one of the last
two syntax forms), or th