a‘ | MICROSOFT® PROGRAMMING SERIES Mic n! o
E—Bookil cluded

CD-ROM

.
1 o+

Inside

lcrosoft

Indows 2000
Third Edition

David A. Solomon
Mark E. Russinovich

The Definitive Guide
to the Architecture
and Internals of
Microsoft’s Premier
Operating System

Foreword by Jim Alichin
Historical perspective by David N. Cutler

Microsoft

Inside

ICrOSoft
"Windows 2000
Third Edition

David A. Solomon
Mark E. Russinovich

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2000 by David A. Solomon and Mark E. Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Solomon, David A.
Inside Microsoft Windows 2000 / David A. Solomon, Mark Russinovich.
p- cm.
ISBN 0-7356-1021-5
1. Microsoft Windows (Computer file) 2. Operating systems (Computers) I
Russinovich, Mark. II. Title.

QA76.76.063 S6285 2000
005.4'4769--dc21 00-031888

Portions previously published in Windows NT Magazine and Windows 2000 Magazine. Copyright ©
1997, 1998, 1999, 2000 by Windows 2000 Magazine. Reprinted and modified with permission.

Printed and bound in the United States of America.

123456789 WCWC 543210

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com. Send
comments to mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of Intel
Corporation. Active Directory, ActiveX, DirectX, Microsoft, Microsoft Press, MSDN, MS-DOS,
Visual Basic, Visual C++, Visual Studio, Win32, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted
herein are fictitious. No association with any real company, organization, product, person, or event is
intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Sally Stickney
Technical Editor: Jean Ross

To my wife, Shelly, my partner in life. Tl always love you.
—D.S.

For Susan, my soul mate.
—M.R.

CONTENTS

HISLOrICAl PEOISPECHIVEveeveseeee e XV
FFOTOWOIT ...ttt XVii
ACKNOWIEUAGIMENTS ...ttt Xix
INEFOQUCTION oot e ae e XXV

CHAPTER ONE
Concepts and Tools 1

Foundation Concepts and Terms........cceceriussmmssmsssmmsnssssnsssssnssnssssssansssas 1
WINB2 APl ..o e e 2
Services, Functions, and ROULINESccooeiiiiiiiiiii s 3
Processes, Threads, and JODS 4
Virtual MEMOTY ..o s 7
Kernel Mode vs. USEr MOAEcvvviiiiiiiiiiiic i 9
Objects and HaNAIESveeviiviie e 14
SEBCUITY ittt ettt s st e et e et e et e e e 15
REGISIIY i 16
UNICOE ... e e 17

Digging into Windows 2000 Internalsccccceciiiiemsimssseesnsenssisseennnes 17
Tools on the Companion CDccceiiiiiiiie e 19
Performance Tool ..., ey 20
Windows 2000 SUPPOIt TOOIScivereiriiiiiiiiiiis i 20
Windows 2000 Resource KitS.........ooviviiieiieiiiiieeie s 21
Kernel Debugging TOOISovueieiririiai e 21
Platform Software Development Kit (SDK)....ccccooiveiiiiiiiieneeee, 24
Device Driver Kit (DDK)coovivieiiiiiie e RIS FUNE R 24
Systems Internals TOOISc.coccoviiiiiiicieiii, i e 25

CHAPTER TWO
System Architecture 27

Requirements and Design Goals..........ccucuveriemmsmsnsmmisissssssssssssmssse 27
Operating System Modelcccuecmrnrcinsmmmissmnsmsmsssssmsssesssssssssmssesases 30

POrtabilityoooviiiii e 32

INSIDE MICROSOFT WINDOWS 2000

Symmetric MUIIPrOCESSING ..ovvivveiiiieie i 33
SCAIADINLY ..ot 35
Architecture OVErVIEWcccuceeimicmmicmmcsmsnsessssans s snsssssmssssnsnes 35
Windows 2000 Product Packaging-ccuseess. reerersnrismeneane——— 38
Checked BUIldcvoiiieiie e 41
Multiprocessor-Specific System Files ... 42
Key System Components S, 46
Environment Subsystems and Subsystem DLLS i 47
NEAILAI e e 60
EXECULIVE .ttt 60
ST 1 T PSR 63
Hardware Abstraction Layer.........ccccccviiiiiiiiiei i 66
DEVICE DIVEIS ...t 67
Peering into Undocumented Interfacesccocveevviiieciviiecen. 71
SYSIEIM PrOCESSES ...cciivviiieiiiiii ettt 74

CHAPTER THREE
System Mechanisms 89

Trap DispatChingccccccviemmmniemrmnsemsinsssneemsssnnnsnssnnssnnas ... 89
Interrupt DISPatChiNgooieeiee e 91
Exception DispatChingcccvviiiiiiii 113
System Service DispatChingccocveiieiiiiiiiiiieee e 121

Object Managerccccuvcemsmrassmnssmmssnssssessssssssssssssmssessssssnssssnsessenssnanss 125
EXECULIVE ODJBCESviiiiiiiiiec e 128
ODBJECT SITUCIUIE ... enee e 130

SYNCRroNIZatioNncccccierrmirmrsmnsnmrnmss s s s neas 153
Kernel Synchronlzatlon .. 154
Executive Synchronization............ccoceiive i 158

System Worker Threadsccceeeues R 165

Windows 2000 Global FIagscccuoeurmmimmsssmssssssssmsssssmsssessnesssnsasssssns 168

Local Procedure Calls (LPCS)cccurermnmmesssmmsemsmmsmsmsssmsssessessassssasnas 171

CHAPTER FOUR
Startup and Shutdown 177

Boot Processcorveneee S S S 177
PrebDOOL .o 177
The Boot Sector and NHACvveviieeee et 180

Vi

Contents

Initializing the Kernel and Executive Subsystemsc......... 190
Smss, Csrss, and WINlOgoNoccviiiiiiiiiiieiecee e 194
Safe MOdeccceciiiinrimsrss s e ..196
Driver Loading in Safe MOde.........ccoooviiiiiiiiieeeee e 197
Safe-Mode-Aware User Programsccoccooevarienineiiecieenieninan 199
Boot Logging in Safe MOdEceeeiviviiiiiiiie e 200
Recovery Consolecccuvmmssemrsines 201
£ 0 110 [11T . .204
System Crashesccccciiieiisssmmssssssnssssmsss s s sssm s snssesess nsssenes 206
Why Does Windows 2000 Crash?cccocevieviieiiineieciee e 206
The BlIUE SCrEEN ..o 207
Crash DUMP FilEScouiiieieiiiiie e 210

CHAPTER FIVE
Management Mechanisms 215

LI 1T 2 (=T £ 215
Reqistry Data TYPEScoovviieriiiiee et 216
Registry Logical StruCturecceevvieiiieeiiie e 217
Registry INTErNalsccoiiiiiiii e 224

S@IVICES .uueiircsserirismrissssenssssssrssssnsnrsssssassssssesssassssssnsenssnssanssnssnnnsssannnanensas 236
Service APPLICALIONSooviiiei i 237
SEIVICE ACCOUNES ...iiiiiiiie ettt ee s 244
The Service Control Managerccccooceviiiiniiiiniie e 247
SEIVICE STATUD ..iiiiviiii i 251
SEAMUD EMTOIS o.oviiiiiie ettt 255
Accepting the Boot and Last Known Goodcccvveevreeeinnnnen. 256
SErVICE FaIlUrES . .oiviiiiicciicic e 258
SErviCe SNULAOWNooiiiieiii s 259
Shared Service PrOCESSESccoiuvviiiiiiiieiiiiiie e 260
Service Control Programsc..covveiiiieiiie e 264

Windows Management Instrumentationc.ccccinnnamisssmnnnsissssssnnees 265
WMI AIFChItECIUIE ..vvviiiii e 266
PIOVIAEIS ©ooiiiiiiee et 268
The Common Information Model and the Managed Object

Format LanQuUagevvveiiviieiiiiiie it 269
The WMI NameSPaACEc.vvevvieeiiiiiiii e 272
Class ASSOCIALION ...iiiuiiieiiiiii ettt 273

vii

INSIDE MICROSOFT WINDOWS 2000

viii

WML Implementation ..., 275
WMI SECUNILY .o 275

CHAPTER SIX
Processes, Threads, and Jobs 277

Process Internalscccccrrereerrnneceen. iavsssssssrresssssssssmreEssssssmsssssene 277
Data StrUCIUIES ... 277
Kernel Variablescc.ccoiviiiiiii e, 293
Performance COUNEIScoovvviiiiiiie e 293
Relevant FUNCLIONS ..., 294
Relevant TOOISiiiiiiiiiiie e 295

FIOW Of CreateProcCess.................oeeeeceieecciieeiieecnree e e 304
Stage 1: Opening the Image to Be Executed...........cc..ccccoeeennnn. 306

Stage 2: Creating the Windows 2000 Executive Process Object 309
Stage 3: Creating the Initial Thread and lts Stack and Context .. 314
Stage 4: Notifying the Win32 Subsystem About the

NEW PrOCESS ...t 314
Stage 5: Starting Execution of the Initial Threadc............ 316
Stage 6: Performing Process Initialization in the
Context of the New ProCeSScccceeivviiiie i 316
Thread Internals.....cc.ccocevvncen. . temmeeesssressssseressssseeessssssseess 317
Data SITUCTUMES ..., 317
Kernel Variablescuvviviiiiiiii e 329
Performance COUNErScoovviiiiiiiie e 329
Relevant FUNCHIONSuvviiiiiiiiicceeee e 330
Relevant TOOISociiiiiie i 331
Flow of CreateThread 333
Thread Schedulingcccccuciereceerrsccrsicrrsssrsseesssssesssmesssmssssmmsessnssanes 337
Overview of Windows 2000 Schedulingccccovvviieniciiiinicennne. 337
Priority LEVEISvvvviiiicc e 341
Win32 Scheduling APIS ..ot 343
Relevant TOOISuviiiiiiii e 344
Real-Time Prioriti€Scoii i 346
Interrupt Levels vs. Priority Levelsccccccviiiiiiicice, 347
Thread StateS .uvviiiiiiiiiiiiieee e 348
QUANTUM ..ttt 349
Scheduling Data StrUCIUIEScoviiivieiiiiieeeet e 353

Contents

Scheduling SCENAMIOSoeeiiiiiie e 355
Context SWItCHINGovviiiiieeee e 359
118 TRMEAM ..vvieeeeiee e 359
Priority BOOSES .uvviiiiiiiiiiie e 360
JOD ODJECES ...coriemmrsmrisnnissnnssssnsmssssanssssnssssmssssmssssansssnssnsnsmsnssssnesssnnessnns 374

CHAPTER SEVEN
Memory Management 379

Memory Manager COMPONENtScccuucesmmmssssmsscssmmssnssssmssssssssmsssssnssnss 380
Configuring the Memory Managercccceevvevieeiieeee i 382
Examining Memory USAQJEoviiiviiiiieiiiiiieecieccei e385

Services the Memory Manager Providesccccccemmesssmsissnnnssnnns 389
Reserving and Committing Pagesccccoovviveniiiiiiciiiec 390
LOCKING MEIMOIY ...t 392
Allocation GranUIarityc..ooooieeiieii e 392
Shared Memory and Mapped FileS........ccooviiiiniince 393
Protecting MemOryoc i 395
COPY-ON-WIIEEoiiiiiciicce ettt nea e 398
Heap FUNCHONS ... 400
Address Windowing EXtENSIONSccooivivviciiiiiiiiec e 401

System Memory POOISccouccmcicmmnsnmnisissssssssssssasssssassssssssssssssnssanes 403
LOOK-ASIAE LSS ..uviiiiiiieciiiie e 411
DHVEr VEITIEI ..o 413

Address Space Layoutcccccuremrsremmsssnmsssnssssmssssesmssnssssssssssssssssssasssanes 417
User Address Space Layoutcoocveeiiiieriiiiiicciieiee e 420
System Address Space Layoutccccooviiiieiiiiiiiiiniic e 424

Address Translation.........cucrernmerrinmmsrmnsn s s sanse 429
Translating a Virtual ADAress..........cooivvviiiiiiiiieciic e 431
Page DiIr€CIOMNES ...viviiiiieeiiiee et e 433
Process and System Page Tablesccccvvoiiiiiiiiiiiciiiee e 435
Page Table ENMMesccovvveiiiiiec e 436
Byte Within Page ..ot 438
Translation Look-Aside Buffercccciiiiiiiiiiicci e 439
Physical Address EXtENSIONooveiiiiiiiiiiiiiceee i 442

Page Fault Handlingc..ccccvcimmmemmmmnnssmminsemimeesmnssmanssmmsnssmme. 443
INVAlIA PTES ..oiiiiiiice e 445
Prototype PTES ..ot 446

INSIDE MICROSOFT WINDOWS 2000

IN-Paging 1/O ... 448
Collided Page FaultScccooieiiiiiiiiieee e 449
Page FileS ..o 450
Virtual Address DeSCriptOrsccueuimmrssmrssssssmssessssssmssssss s sasssansans 452
Lo 4T ST 455
Paging POlCIESoooieieiiecie e 455
Working Set Managementcccooiiiiiiiiiie e 457
Balance Set Manager and SWaPPercccccovveevieeeiiieeeeieeeeieene 462
System WOrking Setcoeeeiiiiiiiiccieeeeee e 463
Page Frame Number Databasecocceerrirsmsssssmmssnssssssssssssnssansas 465
Page List DYNamICScccooiiiiiiiiieie e 469
Modified Page WIILETcciiiiiie e 472
PFN Data StrUCTUIESeiiieiiieiieiee et 474
Section ODJECESccuiiimrsamcssmrsanrisesssmensnsssnssssssnsssmsemsssasssanssmessnsesnsesnss 478

CHAPTER EIGHT
Security 487

Security RaliNgS ...cccocveerrmrrmnssrssssisssssssm s s 487
Security System COMPONENLScovussmemssercssemmssenmssssissssmsssssnsssansssses 490
Protecting ODJECtScccourrerrmsiminsrcsnsnnss s s s s enansaeas 494
ACCESS ChECKSviiiiiiiiiiee e 494
Security 1dentifierscooiiiiiiie e, 497
TOKENS <.t 499
1] o7=1¢=To] o= Vi o] o KU SRR 504
Restricted TOKENS ..o..oiiiiiiiiieec e 506
Security Descriptors and Access Control...........ccceceeeeeevveinnene 507
Security AUditingcccurerssmmsssnmmsscnmssnssssssssssssssrssassssssssssssssanessansasnns 515
Logon SemEasemessEseENSEEsssassssesisSReENassiesmmssisssssEEEEessssesssssiesesssess 521
Winlogon Initialization ... 522
USEr LOGON STEPS ..vviiiiiiiiiic ettt 523

CHAPTER NINE
I/O System 527

Design Goals essssminamnussissassiiniasansasSnsnsibntivnnsenssnsRnnsanniennn 527
I/0 System Components..... S S S 528
The 1/O MaNAGETc.veeiieiie et 531
DeViCe DIIVEIS ..o 532

Contents

The Plug and Play (PnP) Managercccccovvvevevecieiieciie e 541
The POWEr MaNAJEScuviiiiriiiieie ettt 546
/O Data STruCtUresScccecmvemrrcersnrsersncrssesssmss s ssmssesssessnssassssssssansns 553
File ODJECES ..vviiiiiiiice e 554
Driver Objects and Device Objectscccevvviiiiiieiiiicieeeie, 556
I/O Request PaCKELSccueeiuiieeci e 562
I/O Completion POSc..ooiiviiiiiiie e 570
Driver Loading, Initialization, and Installationccccrcrnueeeeeeens 573
The Start Valuecooviiiii e 574
Device ENuMEration...........cocvvieiiiiieic e 575
DEevNOAESoovviiieiiieece e PR 579
Devnode Driver Loadingccccoovvvieiiiiiiic e 581
Driver Installationcccocveiiieiiie e 583
1/O ProCESSING .ecvsersersersmssamsnssnsssnssmssssssmssssssssssssnssssassssnssnsnssnssssssssssassnsas 586
TYPES OF 11O i 587
I/O Request to a Single-Layered Driverc.coocecveieicecninene.. 590
I/O Requests to Layered Driversc.ccoccveivveeeiiieecciecec e 597
1/O Completion Port Operationccccvevieiieiriciiiie e, 602
SYNCHArONIZAtIONcoiiiieecec e 604

CHAPTER TEN
Storage Management 607

The Evolution of Windows 2000 StOrageccccueusrssmicessasssnssssassssans 607
Partitioningccccccsmmiimmnimmnnissnne s s sas s s sssnsssssanessas 609
Basic Partitioningc..occcviieiiiiiie e 610
Dynamic Partitioningcccveiiiiiii e 611
StOrage DIVErSccvcerssommmsmsssssnsssmssssmssssssssasssssnsssassssnssnsssnnesssansnssnnns 617
DISK DIIVEIS ..eeeciiietie ettt 618
DeViCe NAMING ...ovieiiiieiiee et e et nea e 619
Basic Disk Management.............ccccoviiiniiiniin v 620
Dynamic Disk Managementccocevvviniiiiiiie e 621
Disk Performance MONItOringcccoveevereiies e iieerne e s 624
Multipartition Volume Management.........cccccccnnsmmnemmssimssssmsssssinssssseas 624
SPaANNEd VOIUMEScovviiiiiiiie e 625
Stped VOIUMESviviiiiiiiiiciie e 626
Mirrored VOIUMEScoieiieiiiieieeiee e 627
RAID-5 VOIUMESooiiiiiiiiiiie et 630
Volume 1/O OpErationscccvevveeiiiiie s se e 632

Xi

INSIDE MICROSOFT WINDOWS 2000

The Volume Namespace............. L 634
The MouNt ManAGETccoiiiiiiiiieie et 634
MOUNE POINS .o 636
Volume MOUNEING ..o 639

CHAPTER ELEVEN
Cache Manager 645

Key Features of the Windows 2000 Cache Managerc..cerrusacasses 645
Single, Centralized System Cacheccccccocvvviviiiiiei e 646
The Memory Managercoociveiiieiie et 646
Cache CONEBIENCYocuveiiieiciie e 647
Virtual Block Cachingcc.coovviiiiiiiiiciece e 649
Stream-Based Cachingccceveiiieiii it 650
Recoverable File System Support.......ccccovveiiiiiiieiiieee, 650
Cache SIrUCTUreccccmiviemriisem s s s s sa s s sman s mmsananans 651
Cache Sizecccciiicmrnciinne s s s ssenssmeas ..654
Cache Virtual SiZe.......cccccovviiiiiciice e 654
Cache PhySiCal SIZEcoviiveiiiiicic e 655
Cache Data Structuresccumressmsisnmssnmmmsssessssnmssss s ssssssssaseas 659
Systemwide Cache Data Structurescococeveevivieiciiiiie e, 660
Per-File Cache Data StruCturescoovvveieeviinceeieiic e 661
Cache Operationc..ccccccvvccrcmserssnrssssssssnrssssesscsssmesssssssssssssnssesmnsessns 665
Write-Back Caching and Lazy Writingccoooeiiiviiienii e 665
Intelligent Read-Aheadccoeeiiiiiiiiiiiic e 669
SYSIEM THIEAAS ...ivvevieie et 671
FaSt 1O oo 672
Cache Support Routinesccseerisennans R 675
Copying to and from the Cachecccooeiiviiiiii e, 675
Caching with the Mapping and Pinning Interfaces 677
Caching with the Direct Memory Access Interfaces.................... 679
Write Throttingooeeeii s 680

CHAPTER TWELVE
File Systems 683

Windows 2000 File System Formatsccccccemncmmnsmmnsssnsmssnsmsnnnes 684
CDFS e e e 685
UDF e 685

Xii

Contents

FAT12, FAT16, and FAT32ooiiiiiiiiiieee e 685
N S T OSSR TTPPT 689
File System Driver Architecture.........coccuimnmsmmrrissssnmsmmsnssssssssesssssssnnes 690
LOCAI FSDS .. ettt 690
REMOLE FSDS ..ottt 692
File System Operationccccoviiiiieiii e 694
NTFS Design Goals and Featurescccocvmemimmemieesmisemsanmcnens 700
High-End File System Requirementsccccceevviiiieiiicninicnncn 700
Advanced Features of NTFS ... 702
NTFS File System DIiVerc.cccemiimmmssesnissmsmismssssnssssssessssasssssssssssasses 713
NTFS On-Disk Structure R TP 717
VOIUMIES ettt 717
(O] U] 1] £ T S SR RSP RRURRSTR 717
Master File Table......... O R P SY AT S TR 718
File Reference NUMDEISciiiiiiiiiiii e 725
File RECOIAS ..ot 726
FIBNAMES ..o e 729
Resident and Nonresident Attributesc.iivieenini s 732
INAEXING 1ottt 735
Data Compression and Sparse Filesccccccvviiiiiiiiciiicnie 737
REPArse POINS .. iuuiiiiii ettt 743
The Change Journal File ..o i 743
ODBJECE IDS ittt 745
QUOLA TraCKING ...cccvveie et 745
Consolidated Securityccovevveennne. [T A S SE RIS 745
NTFS Recovery Support .. “ emmmiieesaseiandmesesebasseessann 746
Evolution of File System Designcccocevvviiiiieiiiiiiee e 746
LOGOING 1ttt 749
RECOVEIY .ot e a e 756
NTFS Bad-Cluster RECOVEIYcoccuvmmmissmsmsmssserssmsmsanssmsnssssasssssssnsnnans 761
Encrypting File System Securityccccccimiisimmmiissmmmmmmmsssssmmmnmeen 766
Registering Callbackscocviiiieeiiie it 769
Encrypting a File for the First Timeccoooiiiiiiiie 769
The DeCryption PrOCESSc.viiiiiiiiiiiiiiie e esies e 775
Backing Up Encrypted Filescccoiiiiiiiiiiie s 777

Xiii

INSIDE MICROSOFT WINDOWS 2000

Xiv

CHAPTER THIRTEEN
Networking 779

The OSI Reference Model 780
OSI LAYETS ...ttt 781
Windows 2000 Networking Componentscccccveeirviieennnenne 782

Networking APISccccinmmiimmiemiminsmssmenesss s 784
Named Pipes and MailSIOtScccovviiiieiiin e 785
WINAOWS SOCKELSoeiiiiiiiiii i 793
Remote Procedure Call.......cccocvvviieiiiiiis e 798
Common Internet File System (CIFS)ccccooevivievieciecirecice, 803
NEIBIOS o 807
Other Networking APISocviiiiee e 811

Network-Resource Name Resolution814
Multiple Provider ROULENccceiiiiiiiiiin et 814
Multiple UNC Providercoovvviiiiiieiiie e 817
Domain Name SyStemccoccciiiviiei i 819

ProtoCol DIVErScccuicumssenmssmsmssmsmsssessssmssssssssnsssssssssnsessaness .819

NDIS Drivers : 823
Variations on the NDIS Miniportc.cccoccvveiviiiiee e, 828
Connection-Oriented NDISccooviiiiiiie e 829

Binding. . 832

Layered Network Servicescccmmiismmmniemsissssssmssssssmssssnsnnsns ...834
REMOE ACCESS . .vviie ittt saa e 834
ACHVE DIFECIONY oviiiiiiiiiic e 835
Network Load BalanCingcccccociiiiiiiiii e 837
File Replication SEIVICEcccovieiciiiiic s 838
Distributed File SYStemMcooviiiiiieiei e 839
TCP/IP EXIENSIONS ..vicvveevieiiieiesiee st ste s resvae e sie e nrae e 840

GIOSSAIY ... 845
INABX . e s 873

HISTORICAL PERSPECTIVE

It is a pleasure to be able to write a few words about such a significant work as
this book, and I thank the authors for providing me the opportunity to do so.

I first met David Solomon when I was working at Digital Equipment
Corporation on the VMS operating system for VAX and he was only 16. Since
that time he has been involved with operating system development and teach-
ing operating system internals. I met Mark Russinovich relatively recently but
have been aware of his expertise in the area of operating systems for some time.
He has done some amazing work, such as his NTES file system running on
Microsoft Windows 98 and his “live” Microsoft Windows 2000 kernel debugger
that can be used to peer into the Windows 2000 system while it is running.

The beginnings of Microsoft Windows NT started in October 1988 with
a set of goals to produce a portable system that addressed OS /2 compatibility,
security, POSIX, multiprocessing, integrated networking, and reliability. With
the advent and huge success of Windows 3.0, the system goals were soon
changed to natively address Windows compatibility directly and move OS /2
compatibility to a subsystem.

We originally thought we could produce the first Windows NT system in
a little over two years. It actually ended up taking us four and a halfyears to the
first release in the summer of 1993, and that release supported the Intel 1386,
the Intel 1486, and the MIPS R4000 processors. Six weeks later we also intro-
duced support for the Digital Alpha processors.

The first release of Windows NT was larger and slower than expected, so
the next major push was a project called Daytona, named after the speedway in
Florida. The main goals for this release were reducing the size of the system,
increasing the speed of the system, and of course trying to make it more reli-
able. Six months after the release of Windows NT 3.5 in the fall of 1994, we
released Windows NT 3.51, which was an updated version containing support
for the IBM PowerPC processor.

The push for the next version of Windows NT was to update the user
interface to be compatible with Windows 95 and to incorporate the Cairo
technologies that had been under development at Microsoft for a couple of years.
This system took two more years to develop and was introduced in the sum-
mer of 1996 as Windows NT 4.0.

XV

INSIDE MICROSOFT WINDOWS 2000

Xvi

(Left to right) David Solomon, David Cutler, and Mark Russinovich

That brings us to the Windows 2000 system and what this book is about.
Windows 2000 is built on the same Windows NT technology as the previous
versions and introduces significant new features such as Active Directory.
Windows 2000 took three and a half years to produce and is the most tested
and tuned version of Windows NT technology produced to date. Windows 2000
is the culmination of over eleven years of development spanning implementa-
tions on four architectures. The Windows 2000 code base is currently being
ported to the new Intel IA-64 architecture. Windows 2000 is by far the best
version of Windows NT technology we have produced to date, but there’s more
to come and we are busy working on the next release.

This book is the only definitive work on the internal structure and work-
ings of Windows 2000. The authors have done a remarkable job of assimilat-
ing the details of the Windows NT code base and producing examples and tools
that help the reader understand how things work. Every serious operating sys-
tem developer should have a copy of this book on his or her desk.

David N. Cutler
Senior Distinguished Engineer
Microsoft Corporation

FOREWORD

VVe began in earnest on Microsoft Windows 2000 in August 1996. About three
and a half'years later, on December 15, 1999, we released Windows 2000 Pro-
fessional, Windows 2000 Server, and Windows 2000 Advanced Server to manu-
facturing. With more than 5000 people contributing in one way or another,
Windows 2000 represents the single largest operating system effort ever within
Microsoft and probably within the entire industry. It also presents the most reli-
able and comprehensive system we have ever produced. It was quite a journey.

Today, Windows 2000 runs some of the largest Internet Web sites and
enterprises in the world and is quickly becoming the standard client operating
system for businesses and even some homes. Windows 2000 includes an amazing
amount of technology. It can be used for desktop or laptop systems, and an as-
tonishing array of servers, including file, print, Web, database, transactioning,
dial-in, routing, streaming media, line-of-business applications, and many others.
Understanding all these pieces is a daunting task. But if you start at the core
concepts of the system and work out, the puzzle fits together a lot easier.

If you’re like me, you like to figure out how things really work. Reading
“how to use” books or standard Help information has never been sufficient for
me. If you understand how something works internally, you know how to bet-
ter use it, maximize performance and security, diagnose failures, and frankly have
more fun. That’s what this book is about.

David and Mark have done an outstanding job detailing the real “inside”
technical story of Windows 2000. And the tools that are highlighted (or in-
cluded) are a great resource for direct hands-on training and diagnostics work.
After you read this book, you’ll have a much greater understanding of how the
system fits together, the improvements done as part of this release, and how to
get the most out of the system.

I know Windows 2000 pretty well, but reading this book taught me a few
things about the system that I didn’t know. So open the book and open the hood
on one of the most impressive operating systems ever created.

Jim Allchin

Group Vice President, Platforms
Microsoft Corporation

XVii

ACKNOWLEDGMENTS

This book wouldn’t contain the depth of technical detail or the level of accur-
acy it has without the review, input, and support of key members of the
Microsoft Windows 2000 development team. Therefore, we would like to jointly
thank the following people from Microsoft for both their technical review as well
as the time they spent with us explaining the rationale for the myriad details that
comprise this world-renowned operating system:

First and foremost, Dave Cutler, Senior Distinguished Engineer and
the original architect of Microsoft Windows NT. Dave originally
approved David Solomon’s source code access and has been support-
ive of his work to explain the internals of Windows NT through his
training business as well as during the writing of Inside Windows NT,
second edition. Besides reviewing the chapter on processes and
threads, Dave answered many questions on the kernel architecture
of the system and wrote a historical perspective for this edition.

Jim Allchin, for writing the Foreword to this book and for prodding
us to add a chapter on networking. ‘

B Lou Perazzoli, Distinguished Engineer (previously director of the
Windows 2000 Base Team and author of the original memory
manager for Windows NT). Lou was the primary champion for
Inside Windows NT, second edition (he wrote the Foreword) and
continued this role during the initial phases of the development
of Windows 2000.

B Rob Short, vice president of the Windows 2000 Base Team, who
made sure we had the resources we needed as well as access to the

relevant people. Rob also provided direction on the overall content
of the book.

B Landy Wang, lead developer for the memory manager, for making us
feel welcome on the numerous times we stopped by and interrupted
him to ask questions. Landy was always willing to take time to review
chapter drafts as well as provide the rationale for the intricacies of
this very complicated part of the system, even when others were
waiting in line in the hallway to see him!

XiX

INSIDE MICROSOFT WINDOWS 2000

XX

Mark Lucovsky, Distinguished Engineer and architect in the
Windows 2000 Base Team, for answering technical questions about
many areas of the system.

Richard Ward, for reviewing multiple drafts of the security chapter as
well as the section on services. Richard also met with us more than
once to provide technical review input.

John Vert, who reviewed the sections on interrupt handling, the
HAL, and the registry. John was also a key source for the rationale
behind early Windows NT design decisions.

Neil Clift, whose intimate knowledge of the Windows 2000 kernel
components helped us iron out several details about the object
manager and other areas.

Dan Lovinger, for reviewing the cache manager, storage management,
and file systems chapters.

Adrian Oney and Nar Ganapathy, for reviewing the I/0O chapter and
helping to make the presentation of Plug and Play more lucid. Adrian
was especially generous with his time and clarified some of the trickier
aspects of the I/0 system.

Tom Fout, who guided the content of the networking chapter and
coordinated the chapter’s review by the key developers.

Dragos Sambotin, for reviewing the registry section.

Praerit Garg and Robert Reichel, for reviewing the security chapter.
Michael Maston and Alan Warwick, for reviewing the WMI section.
Keith Kaplan, for reviewing the storage and file systems chapters.
Catharine van Ingen for reviewing the storage chapter.

David Golds, Brian Andrews, and Mark Zbikowski, for reviewing the
file systems chapter.

Tim Moore, Ryszard Kott, Mario Goertzel, Yun Lin, Steven Nelson,
Ilan Caron, Gurdeep Singh Pall, David Orbits, and the other net-
working developers, who improved the accuracy and organization of
the networking chapter. : '

Andre Vachon, for helping us with facets of the kernel debuggers
(and for building a new set!).

Acknowledgments

Jon Schwartz, who reviewed the most chapters of any single Microsoft
employee—thanks for your excellent comments!

E Joseph Joy, for reviewing the first two chapters from the reader’s
point of view.

We also want to thank the following people from Microsoft Press (two of
whom have since left) for their contribution to this book:

E Eric Stroo, previously acquisitions manager (but now enjoying the
spoils of life after Microsoft), who, as with the previous edition, main-
tained a stern but supportive stance in regard to the book schedule.

Ben Ryan, previously acquisitions editor (but now with another pub-
lisher), who took the reins from Eric but was gentler in his prodding
for chapter deliveries.

Sally Stickney, project editor, whose art and skill with the English
language combined with her dogged attention to detail yet again
amazed us throughout the whole process. Sally: you were kinder
this time.

Jean Ross, technical editor, who strove to catch each and every
technical inconsistency. Jean continually amazed both of us with her
tenacious verification of technical details.

We also want to thank Mark Smith, Karen Forster, Dianne Russell, and the
rest of the staff of Windows 2000 Magazine (www.win2000mayg.com) for grant-
ing us permission to draw content from Mark’s “Internals” columns for the book.

Finally, the following external reviewers also merit special thanks:

Jamie Hanrahan, of Azius Developer Training (www.azius.com), who
coauthored the Windows NT /Windows 2000 Internal Architecture
class from which this book was based. Jamie, who has a real knack
for explaining complicated concepts in a simple and practical fashion,
developed several of the explanations and a number of the diagrams
and figures.

® Brian Catlin, also of Azius Developer Training, for reviewing
Chapters 2, 3, and 9 and for providing both technical input as well
as excellent suggestions that improved the clarity of presentation.

XXi

INSIDE MICROSOFT WINDOWS 2000

& Jeffrey Richter, of Wintellect (www.wintellect.com), who, as with the
previous edition, reviewed several chapters and cajoled the authors
throughout the entire process. All those dinners in Bellevue with Jeff
at the end of long hard days of writing kept us going.

Rich Neves, of ReefEdge Inc. (www.reefedge.com), for reviewing the
I1/0 and networking chapters. :

Andrew Tanenbaum, of the University of Amsterdam, who provided
us with a slew of suggestions for improving the file systems chapter’s
organization and presentation.

John Tracey, of IBM Research, for reviewing the networking chapter.
B Keith Moore, previously of Microsoft, for reviewing the networking
chapter.

There were others who answered questions in the hallway or cafeteria and
provided technical material—if we missed you, please forgive us!
The next two sections contain the authors’ individual acknowledgments.

Acknowledgments from David Solomon

XXii

When Mark Russinovich first approached me about collaborating on this third
edition, I was both excited and nervous. Would Microsoft accept such a notori-
ous hacker of Windows NT to work on the official book about the internal archi-
tecture of their premier operating system? Would I be able to meet the technical
challenge of working with such a Windows NT expert?

Fortunately, the answer to both questions was yes, and Mark and I had a
ball working together on this project. Although Mark didn’t look at the source
code (only I did), I was constantly amazed at how quickly he could solve tech-
nical questions using his disassembled binary of Ntoskrnl.exe in combination
with SoftICE. I know my knowledge of Windows 2000 has deepened. (We even
kept track of “dumb things learned” for the times we would say to each other
“I can’t believe you didn’t know that!”)

I have to thank Mark for much of the new content in this third edition:
Chapters 4, 5, 10, and 13 were completely new chapters based on his original
content. Mark also made significant contributions to the detail in Chapters 3,
8,9, and 12.

Acknowledgments

I also want to thank Mark’s wife, Susan, for putting up with me on the long
work days at Mark’s house and for providing such yummy lunches and dinners
(and the strong coffee!).

I thank Frank Artale for originally asking me to write Inside Windows NT,
second edition, and for all the support from Windows NT Development (espe-
cially from Lou Perazzoli and Dave Cutler) while it was being written back in
1997 and 1998.

I want to thank my Mom and Dad for bringing me up and for giving me
the support, guidance, and opportunities that molded me into who I am today.

Last but not least, I want to thank wife, Shelly, and our three children,
Daniel, Rebecca, and Sarah, for going through the pain of another book pro-
ject. This time, I got less sympathy for being late on deadlines—and rightly so.
Thanks for bearing up.

Acknowledgments from Mark Russinovich

When I picked up a copy of Inside Windows NT, second edition, I was suitably
impressed. Dave had done a fantastic job of detailing the operation of Windows
NT, while at the same time making the description accessible through interesting
experiments and lucid writing. I was working on my own Windows NT internals
book but was quickly realizing the enormous effort required to pull off some-
thing like Dave had. On the off chance that he would agree, I e-mailed Dave
with the suggestion that we work together on the third edition. I was thrilled
when he brought me on board, and I thank him for the opportunity.

As Dave has said already, we learned a tremendous amount from each other
and had a great time. There are as many “dumb things Mark learned from Dave”
as “dumb things Dave learned from Mark” (well, not quite as many), which just
highlights how our different perspectives made the book better. Often, neither
of us would know the answer to a complex question about Windows NT behav-
ior one of us had pondered for years, triggering furious multihour research efforts
in which only our combined resources met the challenge. I look forward to
working with him on future editions.

I also have to thank Bryce Cogswell and Edwin Brasch of Winternals Soft-
ware for their patience and support while I devoted several months to the book.

I owe Rich Neves thanks for being a good friend and for enabling my effort
on the book to be part of my official responsibilities while I worked at IBM
Research.

XXiii

INSIDE MICROSOFT WINDOWS 2000

XXiv

My parents, Nicholas and Vera Russinovich, provided unlimited support
and encouragement through my educational years, instilling in me the desire
to learn as much as I can. My father, who passed away while I was writing this
book, would have been especially proud of this achievement.

Finally, I want to thank my wife, Susan, who is the most important person
in my life. She not only sacrificed the many nights and weekends that I devoted
to this book by keeping me company, but she also encouraged me through
the whole process. Her tolerance of my omnipresent computers without a
doubt merits a medal.

INTRODUCTION

The third edition of Inside Microsoft Windows 2000 is intended for advanced
computer professionals (both developers and system administrators) who want
to understand how the core components of the Microsoft Windows 2000 oper-
ating system work internally. With this knowledge, developers can better com-
prehend the rationale behind design choices when building applications specific
to the Windows 2000 platform. Such knowledge can also help developers debug
complex problems. System administrators can benefit from this information as
well because understanding how the operating system works under the covers
facilitates understanding the performance behavior of the system and makes it
easier to troubleshoot system problems when things go wrong. After reading
this book, you should have a better understanding of how Windows 2000 works
and why it behaves as it does.

Structure of the Book

The first two chapters (Concepts and Tools, and System Architecture) lay the
foundation with terms and concepts used throughout the rest of the book. The
next three chapters—System Mechanisms, Startup and Shutdown, and Manage-
ment Mechanisms—describe key underlying mechanisms in the system. The
remaining chapters—Processes, Threads, and Jobs; Memory Management;
Security; I/O System; Storage Management; Cache Manager; File Systems;
and Networking—explain the core components of the Windows 2000 oper-
ating system.

Differences in the Third Edition

This new edition of Inside Microsoft Windows 2000 covers many topics that
weren’t in the second edition of Inside Windows NT, such as startup and shut-
down, service internals, registry internals, file system drivers, and networking.
It also covers the kernel-related changes and enhancements in Windows 2000,
such as the Windows Driver Model (WDM), Plug and Play, power management,
Windows Management Instrumentation (WMI), encryption, the job object, and
Terminal Services.

XXV

INSIDE MICROSOFT WINDOWS 2000

For the first time, the book includes a companion CD with useful tools
for exploring Windows 2000 system internals. Also included on the CD is a
searchable electronic version of the book. Also, many new hands-on experiments
have been added to the book that show how to use tools such as the kernel
debugger to examine internal Windows 2000 system state.

Hands-on Experiments

When a tool can be used to expose or demonstrate some aspect of Windows 2000
internal behavior, the steps necessary to try the tool yourself are listed in “Experi-
ment” boxes. These appear throughout the book, and we encourage you to try
these as you’re reading—seeing visible proof of how Windows 2000 works in-
ternally will make much more of an impression on you than just reading about
it. Many of the experiments use the kernel debugger. The live kernel debugger
tool (LiveKd) included on the book’s companion CD makes these experiments
easy and safe to try.

Topics Not Covered

Windows 2000 is a large and complex operating system. This book doesn’t cover
everything relevant to Windows 2000 internals but instead focuses on the base
system components. For example, this book doesn’t describe COM+, the foun-
dation of the Windows distributed object-oriented programming infrastructure.

Because this is an internals book and not a user, programming, or system
administration book, it doesn’t describe how to use, program, or configure
Windows 2000.

A Warning and Caveat

XXVi

Because this book describes the internal architecture and operation of Windows
2000, much of the information is subject to change between releases (although
external interfaces, such as the Win32 API, are not subject to incompatible
changes). For example, we refer to internal Windows 2000 system routines, data
structures, and kernel variables as well as to algorithms and values used inter-
nally to make resource-sizing and performance-related decisions. These details,
by definition, can change between releases.

By “subject to change,” we don’t necessarily mean that details described
in this book will change between releases—but you can’t count on them not
changing. Any software that uses these undocumented interfaces might not work

Introduction

on future releases of Windows 2000. Even worse, software that runs in kernel
mode (such as device drivers) that uses these undocumented interfaces might
result in a system crash when upgrading to a newer release of Windows 2000.

Using the Companion CD

The CD included with this book contains the complete contents of the Sysinternals
Web site (www.sysinternals.com)—the Web site maintained by Mark Russinovich
(this book’s coauthor) and Bryce Cogswell—as well as other helpful tools.
The CD also includes a fully searchable electronic version of the book as well
as debugging tools and symbols. (See the Readme.txt file on the CD for infor-
mation on using the debugging tools and the symbols.)

To view the contents of the CD, insert the CD into your CD-ROM drive.
If you have the autorun feature in Windows enabled, a splash screen will auto-
matically appear on your screen that will provide you with viewing options. To
start this screen manually, run StartCD from the root directory of the CD.

Sysinternals

Tools

The contents of the Web site www.sysinternals.com have been included on this
CD for your convenience. You can find the tools from this Web site that are used
in the experiments in this book in the \Sysint folder. You can run these tools from
the CD, or you can install them onto your hard drive by selecting Run Setup
from the autorun splash screen and following the instructions in Setup.

You can also browse the CD version of the entire Web site by selecting
Browse CD Sysinternals from the autorun splash screen or by opening
Ntinternals.htm from the \Sysinternals-WebSite folder. You can copy the entire
Web site to your hard disk by selecting Run Setup from the splash screen and
following the Setup instructions.

For the most up-to-date versions of the Sysinternals Web site and tools,
visit www.sysinternals.com (which you can do from the splash screen by select-
ing Browse Online Sysinternals).

Additional tools have been provided on this CD and are located in the \Tools
folder. Among the tools is a performance monitor DLL extension (KVarPerf) that
allows you to monitor internal Windows 2000 kernel variables from the Perfor-
mance tool. Another tool is LiveKd, a special tool that allows use of the standard
Microsoft kernel debugger tools (such as Kd.exe, Windbg.exe, I386kd.exe, and
so on) on a live system with no special debugging options enabled.

XXVii

INSIDE MICROSOFT WINDOWS 2000

To install the tools, select the Run Setup option from the autorun splash
screen (or run Setup.exe in the \Setup folder) and follow the Setup instructions.
You can also run these tools directly from the CD, although LiveKd must be
run from the \Debuggers directory on the CD rather than the \Tools directory.
See the Readme.txt file in the root of the companion CD for more informa-
tion on running LiveKd from the CD and on setting up your system for kernel
debugging.

System Requirements

The following is a list of system requirements necessary to use the contents
of the companion CD:

Any supported Microsoft Windows 2000 Professional, Server,
Advanced Server, or Datacenter Server configuration.

To install the tools needed for the experiments from the Tools and
Sysint folders, approximately 5 MB of disk space is required. If you
choose to install the copy of the www.sysinternals.com site, approxi-
mately 30 MB of disk space is required. Installing the contents of the
Debuggers folder requires approximately 20 MB of disk space, and
the full contents of Symbols requires 20 MB.

Some of the experiments in this book require the use of tools from
the Windows 2000 Support Tools, debugging tools, and resource kit
(Professional or Server edition). These tools and their locations are
listed in Chapter 1.

E-book

This CD contains an electronic version of the book. This e-book allows you to
view the book text on screen and to search the contents. For information on
installing and using the e-book, see the Readme.txt file in the \Ebook folder.

Support

Every effort has been made to ensure the accuracy of this book and the contents
of the companion CD. Should you run into any problems or issues, please refer
to the following sources.

XXViii

Introduction

From the Authors

This book isn’t perfect. No doubt it contains some inaccuracies; or possibly,
we’ve omitted some topics we should have covered. If you find anything you
think is incorrect or if you believe we should have included material that isn’t
here, please feel free to send e-mail to insidew2k@sysinternals.com. Updates and
corrections will be posted on the page www.sysinternals.com/insidew2k.

From Microsoft Press

Microsoft also provides corrections for books through the World Wide Web at
the following address:

bttp://mspress.microsoft.com/supporvt/

In addition to sending feedback directly to the authors, if you have com-
ments, questions, or ideas regarding the presentation or use of this book or the -
companion CD, you can send them to Microsoft using either of the following
methods:

Postal Mail:

Microsoft Press

Attn: Inside Microsoft Window 2000 Editor
One Microsoft Way

Redmond, WA 98052-6399

E-mail:
mspinput@microsoft.com

Please note that product support isn’t offered through the above mail
addresses. For support information regarding Microsoft Windows 2000, go to
www.microsoft.com/windows2000. You can also call Standard Support at (425)

~ 635-7011 weekdays between 6 a.m. and 6 p.m. Pacific time, or you can search
Microsoft’s Support Online at support.microsoft.com/support.

XXiX

CHAPTEHR O N E

Concepts and Tools

I n this chapter, we’ll introduce the key Microsoft Windows 2000 concepts and
terms we’ll be using throughout this book, such as the Microsoft Win32 API,
processes, threads, virtual memory, kernel mode and user mode, objects, handles,
security, and the registry. We’ll also introduce the tools that you can use to
explore Windows 2000 internals, such as the Performance tool, the kernel
debugger, the special tools on the companion CD, and the various add-on tool
packages such as the Windows 2000 Support Tools, Windows 2000 debugging
tools, Windows 2000 resource kits, and the Platform Software Development Kit
(SDK). In addition, we’ll explain how you can use the Windows 2000 Device
Driver Kit (DDK) as a resource for finding further information on Windows
2000 internals.

Be sure that you understand everything in this chapter—the remainder of
the book is written assuming that you do.

Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures and concepts
that might be unfamiliar to some readers. In this section, we’ll define the terms
we’ll be using throughout. You should become familiar with them before pro-
ceeding to subsequent chapters.

INSIDE MICROSOFT WINDOWS 2000

Win32 API

The Win32 application programming interface (API) is the primary program-
ming interface to the Microsoft Windows operating system family, including
Windows 2000, Windows 95, Windows 98, Windows Millennium Edition, and
Windows CE. Although we don’t describe the Win32 API in this book, we do
explain the internal behavior and implementation of key Win32 API functions.
For a comprehensive guide to programming the Win32 API see Jeffrey Richter’s
book Programming Applications for Microsoft Windows (fourth edition,
Microsoft Press, 1999).

Each operating system implements a different subset of Win32. For the
most part, Windows 2000 is a superset of all Win32 implementations. The spe-
cifics of which services are implemented on which platforms are included in the
reference documentation for the Win32 API. This documentation is available
for free viewing on line at msdn.microsoft.com and is on the MSDN Library
CD-ROMs. The information in this documentation is also detailed in the file
\Program Files\Microsoft Platform SDK\Lib\Win32api.csv (a comma-delimited
text file) installed as part of the Platform SDK, which comes with MSDN Pro-
fessional or can be downloaded for free from msdn.microsoft.com. (See the sec-
tion “Platform Software Development Kit (SDK)” later in this chapter.)

NOTE MSDN stands for Microsoft Developer Network, Microsoft’s
support program for developers. MSDN offers three CD-ROM sub-
scription programs: MSDN Library, Professional, and Universal. The
content of MSDN Library is also available for free on line at the MSDN
Web site. For more information, see msdn.microsoft.com.

For the purposes of this book, the Win32 API refers to the base set of
functions that cover areas such as processes, threads, memory management,
security, I /O, windowing, and graphics. The Win32 API is included as part of
the Platform SDK. The internals of the other major categories in the Platform
SDK, such as transactions, databases, messaging, multimedia, and networking
services, are not covered in this book.

Although Windows 2000 was designed to support multiple programming
interfaces, Win32 is the primary, or preferred, interface to the operating sys-
tem. Win32 has this position because, of the three environment subsystems
(Win32, POSIX, and OS/2), it provides the greatest access to the underlying
Windows 2000 system services. As we’ll explain in Chapter 2, application programs
on Windows 2000 don’t call native Windows 2000 system services directly—
rather, they must use one of the APIs provided by an environment subsystem.

ONE: Concepts and Tools

Services, Functions, and Routines

Several terms in the Windows 2000 user and programming documentation have
different meanings in different contexts. For example, the word service can refer
to a callable routine in the operating system, a device driver, or a server process.
The following list describes what certain terms mean in this book:

Win32 API functions Documented, callable subroutines in the Win32
API. Examples include CreateProcess, CreateFile, and GetMessage.

B System services (or executive system services) Native functions
in the Windows 2000 operating system that are callable from user
mode. (For a definition of native functions, see the section “System
Service Dispatching” in Chapter 3.) For example, NtCreateProcess is
the internal system service the Win32 CreateProcess function calls to
create a NEw process.

INSIDE MICROSOFT WINDOWS 2000

® Kernel support functions (or routines) Subroutines inside the
kernel-mode (defined later in this chapter) part of the Windows 2000
operating system. For example, ExAllocatePool is the routine that device
drivers call to allocate memory from the Windows 2000 system heaps.

i Win32 services Processes started by the Windows 2000 service
control manager. (Although the registry defines Windows 2000
device drivers as “services,” we don’t refer to them as such in this
book.) For example, the Task Scheduler service is a user-mode pro-
cess that supports the 2z command (which is similar to the UNIX
commands a¢ or cron).

B DLL (dynamic-link library) A set of callable subroutines linked
together as a binary file that can be dynamically loaded by applica-
tions that use the subroutines. Examples include Msvcrt.dll (the C
run-time library) and Kernel32.dll (one of the Win32 API subsystem
libraries). Windows 2000 user-mode components and applications
use DLLs extensively. The advantage DLLs provide over static libraries
is that applications can share DLLs, and Windows 2000 ensures that
there is only one in-memory copy of a DLL’s code among the appli-
cations that are referencing it.

Processes, Threads, and Jobs

Although programs and processes appear similar on the surface, they are fun-
damentally different. A program is a static sequence of instructions, whereas a
process is a container for a set of resources used by the threads that execute the
instance of the program. At the highest level of abstraction, a Windows 2000
process comprises the following:

B A private virtual address space, which is a set of virtual memory
addresses that the process can use

B An executable program, which defines initial code and data and is
mapped into the process’s virtual address space

B A list of open handles to various system resources, such as sema-
phores, communication ports, and files, that are accessible to all
threads in the process

ONE: Concepts and Tools

® A security context called an access token that identifies the user,
security groups, and privileges associated with the process

B A unique identifier called a process ID (internally called a client ID)

B At least one thread of execution

A thread is the entity within a process that Windows 2000 schedules for
execution. Without it, the process’s program can’t run. A thread includes the
following essential components:

The contents of a set of CPU registers representing the state of the
processor

Two stacks, one for the thread to use while executing in kernel mode
and one for executing in user mode

B A private storage area called thread-local storage (TLS) for use by
subsystems, run-time libraries, and DLLs

B A unique identifier called a thread ID (also internally called a
client ID—process IDs and thread IDs are generated out of the same
namespace, so they never overlap)

® Threads sometimes have their own security context that is often used
by multithreaded server applications that impersonate the security
context of the clients that they serve

The volatile registers, the stacks, and the private storage area are called the
thread’s context. Because this information is different for each machine architec-
ture that Windows 2000 runs on, this structure, by necessity, is architecture-
specific. In fact, the CONTEXT structure returned by the Win32 GetThreadContext
function is the only public data structure in the Win32 API that is machine-
dependent.

Although threads have their own execution context, every thread within
a process shares the process’s virtual address space (in addition to the rest of
the resources belonging to the process), meaning that all the threads in a

“process can write to and read from each other’s memory. Threads can’t refer-
ence the address space of another process, however, unless the other process

INSIDE MICROSOFT WINDOWS 2000

makes available part of its private address space as a shared memory section (called
a file mapping object in the Win32 API) or unless one process opens another
process and uses the ReadProcessMemory and WriteProcessMemory functions.

In addition to a private address space and one or more threads, each pro-
cess has a security identification and a list of open handles to objects such as files,
shared memory sections, or one of the synchronization objects such as mutexes,
events, or semaphores, as illustrated in Figure 1-1.

o e][]

Virtual address descriptors (VADs)

Process
object

Handle table

3| Thread >

Figure 1-1
A process and its resources

Every process has a security context that is stored in an object called an
access token. The process access token contains the security identification and
credentials for the process. By default, threads don’t have their own access token,
but they can obtain one, thus allowing individual threads to impersonate the
security context of another process—including processes running on a remote
Windows 2000 system—without affecting other threads in the process. (See
Chapter 8 for more details on process and thread security.)

The virtual address descriptors (VADs) are data structures that the memory
manager uses to keep track of the virtual addresses the process is using. These data
structures are described in more depth in Chapter 7.

ONE: Concepts and Tools

Windows 2000 introduces an extension to the process model called a job.
A job object’s main function is to allow groups of processes to be managed
and manipulated as a unit. A job object allows control of certain attributes and
provides limits for the process or processes associated with the job. It also
records basic accounting information for all processes associated with the job
and for all processes that were associated with the job but have since termi-
nated. In some ways, the job object compensates for the lack of a structured
process tree in Windows 2000—yet in many ways is more powerful than a
UNIX-style process tree.

You’ll find out much more about the internal structure of jobs, processes
and threads, the mechanics of process and thread creation, and the thread-
scheduling algorithms in Chapter 6.

Virtual Memory

Windows 2000 implements a virtual memory system based on a flat (linear)
32-bit address space. Thirty-two bits of address space translates into 4 GB
of virtual memory. On most systems, Windows 2000 allocates half this address
space (the lower half of the 4-GB virtual address space, from x00000000
through x7FFFFFFF) to processes for their unique private storage and uses
the other half (the upper half, addresses x80000000 through xFFFFFFFF)
for its own protected operating system memory utilization. The mappings
of the lower half change to reflect the virtual address space of the currently
executing process, but the mappings of the upper half always consist of the oper-
ating system’s virtual memory. Windows 2000 Advanced Server and Datacenter
Server support a boot-time option (the /3GB qualifier in Boot.ini) that gives
processes running specially marked programs (the large address space aware flag
must be set in the header of the executable image) a 3-GB private address space
(leaving 1 GB for the operating system). This option allows applications such
as database servers to keep larger portions of a database in the process address
space, thus reducing the need to map subset views of the database. Figure 1-2
shows the two virtual address space layouts supported by Windows 2000.

INSIDE MICROSOFT WINDOWS 2000

Windows 2000 Advanced Server
Default address space layout (booted with /3GB)

1 00000000 :Lk
00000000
Unique per 2-GB user
process P;gggzs 3-GB user
process Unique per
space
7FFFFFFF 1o i procese
L
L -
80000000 BFFFFFFF 1
2-GB system space '———‘_LI
Kernel/executive/HAL Coo00000
| Boot drivers
Systemwide System cache 1-GB
Paged pool system i
Nomeaath ool space Systemwide
FFFFFFFF FFFFFFFF T
Figure 1-2

Address space layouts supported by Windows 2000

Although 3 GB is better than 2 GB, it’s still not enough virtual address space
to map very large (multigigabyte) databases. To address this need, Windows 2000
has a new mechanism called Address Windowing Extensions (AWE), which allows
a 32-bit application to allocate up to 64 GB of physical memory and then map
views, or windows, into its 2-GB virtual address space. Although using AWE
puts the burden of managing mappings of virtual to physical memory on the
programmer, it does solve the immediate need of being able to directly access
more physical memory than can be mapped at any one time in a 32-bit process
address space. The long-term solution to this address space limitation is 64-bit
Windows.

Recall that a process’s virtual address space is the set of addresses available
for the process’s threads to use. Virtual memory provides a logical view of memory
that might not correspond to its physical layout. At run time the memory man-
ager, with assistance from hardware, translates, or maps, the virtual addresses
into physical addresses, where the data is actually stored. By controlling the
protection and mapping, the operating system can ensure that individual processes
don’t bump into one another or overwrite operating system data. Figure 1-3
illustrates three virtually contiguous pages mapped to three discontiguous pages
in physical memory.

ONE: Concepts and Tools

Virtual memory

Physical memory

Figure 1-3
Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total vir-
tual memory in use by the running processes (2 GB or 3 GB for each process),
the memory manager transfers, or pages, some of the memory contents to disk.
Paging data to disk frees physical memory so that it can be used for other pro-
cesses or for the operating system itself. When a thread accesses a virtual address
that has been paged to disk, the virtual memory manager loads the information
back into memory from disk. Applications don’t have to be altered in any way
to take advantage of paging because hardware support enables the memory
manager to page without the knowledge or assistance of processes or threads.

Details of the implementation of the memory manager, including how
address translation works and how Windows 2000 manages physical memory,
are described in detail in Chapter 7.

Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operat-
ing system data, Windows 2000 uses two processor access modes (even if the pro-
cessor on which Windows 2000 is running supports more than two): user mode
and kernel mode. User application code runs in user mode, whereas operating
system code (such as system services and device drivers) runs in kernel mode.
Kernel mode refers to a mode of execution in a processor that grants access to
all system memory and all CPU instructions. By providing the operating sys-
tem software with a higher privilege level than the application software has, the

INSIDE MICROSOFT WINDOWS 2000

10

processor provides a necessary foundation for operating system designers to
ensure that a misbehaving application can’t disrupt the stability of the system
as a whole.

NOTE The architecture of the Intel x86 processor defines four
privilege levels, or 7ings, to protect system code and data from being
overwritten either inadvertently or maliciously by code of lesser
privilege. Windows 2000 uses privilege level 0 (or ring 0) for ker-
nel mode and privilege level 3 (or ring 3) for user mode. The rea-
son Windows 2000 uses only two levels is that some of the hardware
architectures that were supported in the past (such as Compaq Alpha
and Silicon Graphics MIPS) implemented only two privilege levels.

Although each Win32 process has its own private memory space, kernel-
mode operating system and device driver code share a single virtual address space.
Each page in virtual memory is tagged as to what access mode the processor must
be in to read and/or write the page. Pages in system space can be accessed only
from kernel mode, whereas all pages in the user address space are accessible from
user mode. Read-only pages (such as those that contain executable code) are
not writable from any mode.

Windows 2000 doesn’t provide any protection to private read /write system
memory being used by components running in kernel mode. In other words, once
in kernel mode, operating system and device driver code has complete access to
system space memory and can bypass Windows 2000 security to access objects.
Because the bulk of the Windows 2000 operating system code runs in kernel
mode, it is vital that components that run in kernel mode be carefully designed
and tested to ensure that they don’t violate system security.

This lack of protection also emphasizes the need to take care when loading
a third-party device driver, because once in kernel mode the software has com-
plete access to all operating system data. This vulnerability was one of the rea-
sons behind the driver-signing mechanism introduced in Windows 2000, which
warns the user if an attempt is made to add an unauthorized (unsigned) driver.
(See Chapter 9 for more information on driver signing.) Also, a mechanism
called Driver Verifier helps device driver writers to find bugs (such as memory
leaks). Driver Verifier is explained in Chapter 7.

As you’ll see in Chapter 2, user applications switch from user mode to
kernel mode when they make a system service call. For example, a Win32
ReadFile function eventually needs to call the internal Windows 2000 routine
that actually handles reading data from a file. That routine, because it accesses
internal system data structures, must run in kernel mode. The transition from

ONE: Concepts and Tools

user mode to kernel mode is accomplished by the use of a special processor
instruction that causes the processor to switch to kernel mode. The operating
system traps this instruction, notices that a system service is being requested,
validates the arguments the thread passed to the system function, and then
executes the internal function. Before returning control to the user thread, the
processor mode is switched back to user mode. In this way, the operating sys-
tem protects itself and its data from perusal and modification by user processes.

NOTE A transition from user mode to kernel mode (and back) does
not affect thread scheduling per se—a mode transition is #of a con-
text switch. Further details on system service dispatching are included
in Chapter 3.

Thus, it’s normal for a user thread to spend part of its time executing in
user mode and part in kernel mode. In fact, because the bulk of the graphics
and windowing system also runs in kernel mode, graphics-intensive applications
spend more of their time in kernel mode than in user mode. An easy way to test
this is to run a graphics-intensive application such as Microsoft Paint or Microsoft
Pinball and watch the time split between user mode and kernel mode using one
of the performance counters listed in Table 1-1.

Table 1-1 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU
(or all CPUs) has run in kernel mode during
a specified interval

Processor: % User Time Percentage of time that an individual CPU
(or all CPUs) has run in user mode during a
specified interval

Process: % Privileged Time Percentage of time that the threads in a
process have run in kernel mode during a
specified interval

Process: % User Time Percentage of time that the threads in a
process have run in user mode during a
specified interval

Thread: % Privileged Time Percentage of time that a thread has run in
kernel mode during a specified interval
Thread: % User Time Percentage of time that a thread has run in

user mode during a specified interval

11

INSIDE MICROSOFT WINDOWS 2000

-
.

e

ONE: Concepts and Tools

= s
.
.

CS

=

.
.

13

INSIDE MICROSOFT WINDOWS 2000

Objects and Handles

In the Windows 2000 operating system, an oject is a single, run-time instance
of a statically defined object type. An object type comprises a system-defined data
type, functions that operate on instances of the data type, and a set of object
attributes. If you write Win32 applications, you might encounter process, thread,
file, and event objects, to name just a few examples. These objects are based on
lower-level objects that Windows 2000 creates and manages. In Windows 2000,
a process is an instance of the process object type, a file is an instance of the file
object type, and so on.

An object attribute is a field of data in an object that partially defines the
object’s state. An object of type process, for example, would have attributes that
include the process ID, a base scheduling priority, and a pointer to an access
token object. Object methods, the means for manipulating objects, usually read or
change the object attributes. For example, the open method for a process would
accept a process identifier as input and return a pointer to the object as output.

NOTE Although there is a parameter named ObjectAttributes that
a caller supplies when creating an object using either the Win32 API
or native object services, that parameter shouldn’t be confused with
the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data
structure is that the internal structure of an object is hidden. You must call an object
service to get data out of an object or to put data into it. You can’t directly read
or change data inside an object. This difference separates the underlying imple-
mentation of the object from code that merely uses it, a technique that allows
object implementations to be changed easily over time.

Objects provide a convenient means for accomplishing the following four
important operating system tasks:

Providing human-readable names for system resources

Sharing resources and data among processes

B Protecting resources from unauthorized access

B Reference tracking, which allows the system to know when an object

is no longer in use so that it can be automatically deallocated

Not all data structures in the Windows 2000 operating system are objects.
Only data that needs to be shared, protected, named, or made visible to user-
mode programs (via system services) is placed in objects. Structures used by only

14

ONE: Concepts and Tools

one component of the operating system to implement internal functions are not
objects. Objects and handles (references to an instance of an object) are discussed
in more detail in Chapter 3.

Security

Windows 2000 supports C2-level security as defined by the U.S. Department
of Defense Trusted Computer System Evaluation Criteria (DoD 5200.28-STD,
December 1985). This standard includes discretionary (need-to-know) protec-
tion for all shareable system objects (such as files, directories, processes, threads,
and so forth), security auditing (for accountability of subjects, or users, and the
actions they initiate), password authentication at logon, and the prevention of
one user from accessing uninitialized resources (such as free memory or disk
space) that another user has deallocated.

Windows NT 4 was formally evaluated at the C2 level and is on the U.S.
government Evaluated Products List. (Windows 2000 is still in the evaluation
process.) Also, Windows NT 4 has met the European organization ITSEC (IT
Security Evaluation Criteria) at the FC2 /E3 (functional level C2 and assurance
level E3, something normally associated only with B-level systems) security level.
Achieving a government-approved security rating allows an operating system to
compete in that arena. Of course, many of these required capabilities are advan-
tageous features for any multiuser system.

Windows 2000 has two forms of access control over objects. The first
form—discretionary access control—is the protection mechanism that most
people think of when they think of protection under Windows 2000. It’s the
method by which owners of objects (such as files or printers) grant or deny access
to others. When users log in, they are given a set of security credentials, or a
security context. When they attempt to access objects, their security context is
compared to the access control list on the object they are trying to access to
determine whether they have permission to perform the requested operation.

Privileged access control is necessary for those times when discretionary
access control isn’t enough. It’s a method of ensuring that someone can get to
protected objects if the owner isn’t available. For example, if an employee leaves
a company, the administrator needs a way to gain access to files that might have
been accessible only to that employee. In that case, under Windows 2000, the
administrator can take ownership of the file so that you can manage its rights
as necessary.

15

INSIDE MICROSOFT WINDOWS 2000

Security pervades the interface of the Win32 API. The Win32 subsystem
implements object-based security in the same way the operating system does;
the Win32 subsystem protects shared Windows objects from unauthorized access
by placing Windows 2000 security descriptors on them. The first time an appli-
cation tries to access a shared object, the Win32 subsystem verifies the application’s
right to do so. If the security check succeeds, the Win32 subsystem allows the
application to proceed.

The Win32 subsystem implements object security on a number of shared
objects, some of which were built on top of native Windows 2000 objects. The
Win32 objects include desktop objects, window objects, menu objects, files,
processes, threads, and several synchronization objects.

For a comprehensive description of Windows 2000 security, see Chapter 8.

Registry

16

If you’ve worked at all with Windows operating systems, you’ve probably heard
about or looked at the registry. You can’t talk much about Windows 2000 internals
without referring to the registry because it’s the system database that contains
the information required to boot and configure the system, systemwide soft-
ware settings that control the operation of Windows 2000, the security data-
base, and per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such
as the current hardware state of the system (what device drivers are loaded, the
resources they are using, and so on) as well as the Windows 2000 performance
counters. The performance counters, which aren’t actually “in” the registry, are
accessed through the registry functions. See Chapter 5 for more on how per-
formance counter information is accessed from the registry.

Although many Windows 2000 users and administrators will never need
to look directly into the registry (since you can view or change most of the
configuration settings with standard administrative utilities), it is still a useful
source of Windows 2000 internals information because it contains many set-
tings that affect system performance and behavior. (If you decide to directly
change registry settings, you must exercise extreme caution; any changes might
adversely affect system performance or, worse, cause the system to fail to boot
successfully.) You’ll find references to individual registry keys throughout this
book as they pertain to the component being described. Most registry keys
referred to in this book are under HKEY_LOCAL_MACHINE, which we’ll
abbreviate throughout as HKLM.

For further information on the registry and its internal structure, see
Chapter 5.

ONE: Concepts and Tools

Unicode

Windows 2000 differs from most other operating systems in that most inter-
nal text strings are stored and processed as 16-bit-wide Unicode characters.
Unicode is an international character set standard that defines unique 16-bit
values for most of the world’s known character sets. (For more information about
Unicode, see www.unicode.ory as well as the programming documentation in
the MSDN Library.)

Because many applications deal with 8-bit (single-byte) ANSI character
strings, Win32 functions that accept string parameters have two entry points: a
Unicode (wide, 16-bit) and an ANSI (narrow, 8-bit) version. The Windows 95,
Windows 98, and Windows Millennium Edition implementations of Win32 don’t
implement all the Unicode interfaces to all the Win32 functions, so applications
designed to run on one of these operating systems as well as Windows 2000 typi-
cally use the narrow versions. If you call the narrow version of a Win32 func-
tion, input string parameters are converted to Unicode before being processed
by the system and output parameters are converted from Unicode to ANSI
before being returned to the application. Thus, if you have an older service or
piece of code that you need to run on Windows 2000 but this code is written
using ANSI character text strings, Windows 2000 will convert the ANSI char-
acters into Unicode for its own use. However, Windows 2000 never converts
the data inside files—it’s up to the application to decide whether to store data
as Unicode or as ANSI.

In previous editions of Windows NT, Asian and Middle East editions were
a superset of the core U.S. and European editions and contained additional
Win32 functions to handle more complex text input and layout requirements
(such as right to left text input). In Windows 2000, all language editions con-
tain the same Win32 functions. Instead of having separate language versions,
Windows 2000 has a single worldwide binary so that a single installation can
support multiple languages (by adding various language packs). Applications
can also take advantage of Win32 functions that allow single worldwide appli-
cation binaries that can support multiple languages.

Digging into Windows 2000 Internals

Although much of the information in this book is based on the Windows 2000
source code, you don’t have to take everything on faith. Many details about the
internals of Windows 2000 can be exposed and demonstrated by using a variety

17

INSIDE MICROSOFT WINDOWS 2000

ofavailable tools, such as those that come with Windows 2000, the Windows 2000
Support Tools, the Windows 2000 resource kits, and the Windows 2000 de-
bugging tools. These tool packages are briefly described later in this section.
To encourage your exploration of Windows 2000 internals, we’ve included
“Experiment” sidebars throughout the book that describe steps you can take
to examine a particular aspect of Windows 2000 internal behavior. (You already
saw one of these sections earlier in this chapter.) We encourage you to try these
experiments so that you can see in action many of the internals topics described

in this book.

In addition, this book comes with a CD-ROM that contains the latest
version of the tools from www.sysinternals.com (a popular site for 32-bit Windows
internals-related tools and information), as well as tools that are available only

with this book.

Table 1-2 shows a list of the tools used in this book and where they come
from. Although the capabilities of many of these tools overlap quite a bit in terms
of the information that they can display, each of them shows at least one unique
piece of information not available in any other utility.

Table 1-2 Tools for Viewing Windows 2000 Internals

Tool Image Name Origin

Dependency DEPENDS Support Tools, Platform SDK

Walker

Dump Check DUMPCHK Support Tools, debugging tools,
Platform SDK, Windows 2000
DDK

EFS Information EESDUMP www.sysinternals.com™

Dumper

File Monitor FILEMON www.sysinternals.com

Get SID tool GETSID Resource kits

Global Flags GFLAGS Support Tools, Platform SDK,
Windows 2000 DDK

Handle/DLL HANDLEEX, www.sysinternals.com

Viewer NTHANDLE

Junction tool JUNCTION www.sysinternals.com/misc.litm

Kernel 1386KD, Debugging tools, Platform SDK,

debuggers WINDBG, KD Windows 2000 DDK

Object Viewer WINOBJ Platform SDK, www.sysinternals.com

Open Handles OH Resource kits

Page Fault PEMON Resource kits, Platform SDK

Monitor

18

ONE: Concepts and Tools
Tool Image Name Origin
Performance PERFMON Windows 2000
tool
PipeList tool PIPELIST www.sysinternals.com/tips.itm
Pool Monitor POOLMON Support Tools, Windows 2000
DDK
Process Explode PVIEW www.reskit.com
Process Statistics PSTAT Platform SDK, www.reskit.com
Process Viewer PVIEWER (in Support Tools, Platform SDK
the Support
Tools) or
PVIEW (in
the Platform
SDK)
Quantum QUANTUM companion CD
Quick Slice QSLICE Resource kits
Registry Monitor REGMON www.sysinternals.com
Service Control SC Resource kits
tool
Task (Process) List ~ TLIST Support Tools
Task Manager TASKMAN Windows 2000
TDImon TDIMON www.sysinternals.com

* All tools from www.sysinternals.com are also included on the companion CD.

Tools on the Companion CD
The companion CD contains the following unique tools that will assist you in

exploring the internals of Windows 2000:

® LiveKd This tool allows you to use the standard Microsoft kernel
debuggers, 1386kd.exe and Windbg.exe (as well as the new Kd.exe,
which replaces both of these tools in newer versions of the debugging
tools), to display internal information from the currently running
system, without requiring a second computer to act as the host (via a
null modem cable). This tool is explained in the section “Kernel
Debugging Tools” later in this chapter.

Kernel variable performance counter extension DLL This exten-
sion to the Windows 2000 Performance tool allows you to examine
the value of any exported kernel variable from the core kernel image,

Ntoskrnl.exe.

19

INSIDE MICROSOFT WINDOWS 2000

Many of the experiments throughout this book use the kernel debugger
because it can easily display many internal Windows 2000 data structures and
other details not available from any user-mode utility. Therefore, LiveKd will
make trying these experiments much easier because it allows the kernel debugger
to be used on a live system without requiring a second computer.

Whereas LiveKd displays internal kernel variables, the kernel variable per-
formance counter extension DLL monitors the values of these variables over
time. For example, these variables can contain numeric values of interest that might
not be accessible through any of the Windows 2000 performance counters.

For more information about these tools, see the documentation provided
on the CD as part of the tools installation. As a reminder, only people who buy
this book can install and use these tools. They can’t be further distributed. (See
the license agreement in the back of this book for details.)

Performance Tool

We’ll refer to the Performance tool found in the Administrative Tools folder on
the Start menu (or via Control Panel) throughout this book. The Performance
tool has three functions: system monitoring, viewing performance counter logs,
and setting alerts. For simplicity, when we refer to the Performance tool, we are
referring to the System Monitor function within the tool.

The Performance tool can provide more information about how your sys-
tem is operating than any other single utility. It includes hundreds of counters
for various objects. For each major topic described in this book, a table of the
relevant Windows 2000 performance counters is included.

The Performance tool contains a brief description for each counter. To see
the descriptions, select a counter in the Add Counter window and click the
Explain button. Or open the Performance Counter Reference help file in the
resource kit. For information on how to interpret these counters to detect
bottlenecks or plan capacity, see the section “Performance Monitoring” in the
Windows 2000 Server Operations Guide, which is part of the Windows 2000
Server Resource Kit. These chapters provide an excellent description to anyone
seriously interested in understanding Windows 2000 performance.

Note that all the Windows 2000 performance counters are accessible pro-
grammatically. The section “HKEY_PERFORMANCE_DATA” in Chapter 5
has a brief description of the components involved in retrieving performance
counters through the Win32 API.

Windows 2000 Support Tools

The Windows 2000 Support Tools consist of about 40 tools useful in admin-
istering and troubleshooting Windows 2000 systems. Many of these tools were
formerly part of the Windows NT 4 resource kits.

20

ONE: Concepts and Tools

You can install the Support Tools by running Setup.exe in the \Support\
Tools folder on any Windows 2000 product distribution CD. (That is, the Sup-
port Tools are the same on Windows 2000 Professional, Server, and Advanced
Server.)

Windows 2000 Resource Kits

The Windows 2000 resource kits supplement the Support Tools, adding some
200 additional tools. Besides including many tools useful for displaying internal
system state, they contain useful internals documentation, such as the Registry
Reference and Performance Counters help files.

There are two editions of the resource kits: the Windows 2000 Professmnal
Resource Kit and the Windows 2000 Server Resource Kit. Although the latter
kit is a superset of the former and can be installed on Windows 2000 Profes-
sional systems, none of the experiments in this book use the tools that are included
only with the Windows 2000 Server Resource Kit. Be sure you visit www.reskit.com
for updates to tools as well as for new tools.

Kernel Debugging Tools

Kernel debuggers are tools that device driver developers use to debug their
drivers and support personnel use to troubleshoot hung systems and examine
crash dumps (a copy of system memory saved in a file that can be analyzed to
try and determine the cause of the system crash). Although a kernel debugger
is used mainly for analyzing crash dumps or debugging device drivers, it is also
a useful tool for investigating Windows 2000 internals because it can display
internal Windows 2000 system information not visible through any standard
utility. For example, it can dump internal data structures such as thread blocks,
process blocks, page tables, I /O, and pool structures. Throughout this book,
the relevant kernel debugger commands and output are included as they apply
to each topic being discussed.

Microsoft Kernel Debuggers

There are two versions of the Microsoft kernel debuggers: a command-line ver-
sion (I386kd.exe for x86 systems™) and a graphical user interface (GUI) version
(Windbg.exe). There is also a new version, Kd.exe, that replaces both of these.
These tools are part of the debugger tools package, which is shipped in three places:

B Windows 2000 Customer Support Diagnostics (downloadable from
www.microsoft.com)

* Even though Windows 2000 doesn’t run on the Intel 80386 processor (early versions of
Windows NT did), for historical reasons, the x86 directories on the Windows 2000 distribution
media are still called i386. Thus, the x86 kernel debugger is called I1386kd.exe.

21

INSIDE MICROSOFT WINDOWS 2000

22

E Platform SDK (part of MSDN Professional and Universal,
and downloadable from msdn.microsoft.com)

Windows 2000 DDK (Device Driver Kit—also part of MSDN and
freely downloadable from www.microsoft.com/bwdev)

NOTE New versions of the debugging tools package are released
independently of new versions of Windows 2000. Hence, you should
occasionally check the Download section of Microsoft’s Web site for
the latest versions of these three packages. The debugging tools include
a package called the OEM Support Tools, which is updated indepen-
dently of the debugging tools and therefore might have newer versions
of debugging-related tools (such as Kdex2x86.dll, a kernel debugger
extension DLL with additional debugging commands).

The debugging tools help file, provided with each of the three packages
just mentioned, explains how to set up and use the kernel debuggers (as well
as other debugging and support tools that are part of the package). Additional
details on using the kernel debuggers that are aimed primarily at device driver
writers can be found in the Windows 2000 DDK documentation. There are also
several useful Knowledge Base articles on the kernel debugger. Search for
“debugref” in the Windows 2000 Knowledge Base (an online database of tech-
nical articles) on support.microsoft.com.

The kernel debugger has two modes of operation:

® Open a crash dump file created as a result of a Windows 2000 or
Windows NT 4 system crash. (See the section “System Crashes” in
Chapter 4 for more information on crash dumps.)

B Connect to a live, running system and examine the system state (or set
breakpoints, if you’re debugging device driver code). This operation
requires two computers—a target and a host. The target is the system
being debugged, and the host is the system running the debugger.
The target system can be either local (connected to the host via a null
modem cable) or remote (connecting to the host via a modem). The
target system must be booted with the /DEBUG qualifier (either by
pressing F8 during the boot process and selecting Debug Mode or
by adding a boot selection entry in C:\Boot.ini).

ONE: Concepts and Tools

Detailed setup instructions can be found in the debugging tools documen-
tation referred to previously.

LiveKd Tool

The companion CD contains a tool called LiveKd that allows the use of the
standard Microsoft kernel debugger on a live system, without needing two com-
puters. LiveKd can be used for most of the experiments in the book and thus
will be a helpful tool in exploring Windows 2000 internals.

You run LiveKd just as you would 1386kd, Windbg, or Kd. LiveKd passes
any command-line options you specify through to the debugger you select. By
default, LiveKd runs the new command-line kernel debugger (Kd). If Kd is not
found in the current directory, LiveKd tries I386kd. To run the GUI debugger
(Windbg), specify the -w switch. To see the help on the switches for LiveKd,
specify the —? switch.

LiveKd presents a simulated crash dump file to the debugger, so you can
perform any operations in LiveKd that are supported on a crash dump. Because
LiveKd is relying on physical memory to back the simulated dump, the kernel
debugger might run into situations in which data structures are in the middle
of being changed by the system and are inconsistent. Each time the debugger
is launched, it gets a snapshot of system state, so if you want to refresh the
snapshot, quit the debugger (with the “q” command) and LiveKd will ask you
whether you want to start it again. If the debugger gets in a loop in printing
output, press Ctrl+C to interrupt the output, quit, and rerun it. Ifit hangs, press
Ctrl+Break, which will terminate the debugger process and ask you whether you
want to run the debugger again.

SoftICE

Another debugging tool that doesn’t require two machines for live kernel debug-
ging is a third-party kernel debugger called SoftICE, which you can buy from
Compuware NuMega. (See www.numega.com for details.)

Symbols for Kernel Debugging

To use any of the kernel debugging tools listed previously to examine internal
Windows 2000 data structures (such as the process list, thread blocks, loaded
driver list, memory usage information, and so on), you must have the correct
symbol files for at least the kernel image, Ntoskrnl.exe. (The section “Architec-
ture Overview” in Chapter 2 explains more about this file.) The symbols are part
of the Customer Support Diagnostics package (which, as mentioned earlier, is
downloadable from www.microsoft.com). They are installed separately from the
debugging tools and by default reside in the \Winnt\Symbols folder.

23

INSIDE MICROSOFT WINDOWS 2000

Later in the book, you’ll see how you can use these symbol table files to
display the names of internal Windows 2000 system routines and global variables.

NOTE Symbol table files must match the version of the image they
were taken from. For example, if you install a Windows 2000 Service
Pack, you must obtain the matching, updated symbol files for at least
the kernel image; otherwise, you’ll get a checksum error when you
try to load them with the kernel debugger. These updated symbol files
are not typically included or installed when you download and install
a Service Pack from www.microsoft.com—they must be downloaded
separately. (If you receive MSDN Professional or TechNet, they’re
included on the Service Pack CD-ROMs.)

Platform Software Development Kit (SDK)

The Platform SDK is part of the MSDN Professional (and Universal) subscrip-
tion and can also be downloaded for free from msnd.microsoft.com. It contains
the C header files and libraries necessary to compile and link Win32 applications.
(Although Microsoft Visual C++ comes with a copy of these header files, the
versions contained in the Platform SDK always match the latest version of the
Windows operating systems, whereas the version that comes with Visual C++
might be an older version that was current when Visual C++ was released.) From
an internals perspective, items of interest in the Platform SDK include the Win32
API header files (\Program Files\Microsoft Platform SDK\Include) as well as
several utilities (Pfmon.exe, Pstat.exe, Winobj.exe). Some of the tools in the
Platform SDK also come with the resource kits. Finally, a few of these tools are
also shipped as example source code in both the Platform SDK and the MSDN
Library.

Device Driver Kit (DDK)

24

The Windows 2000 DDK is part of the MSDN Professional (and Universal)
subscription, but it is also available for free download at www.microsoft.com/hwdev.
Although the DDK is aimed at device driver developers, the DDK is an abun-
dant source of Windows 2000 internals information. For example, the DDK
documentation contains a comprehensive description of the Windows 2000 I/0
system in both a tutorial and reference form, including the internal system rou-
tines and data structures used by device drivers.

ONE: Concepts and Tools

Besides the documentation, the DDK contains header files that define key
internal data structures and constants as well as interfaces to many internal sys-
tem routines (in particular, Ntddk.h). These files are useful when exploring
Windows 2000 internal data structures with the kernel debugger because although
the general layout and content of these structures are shown in this book, detailed
field-level descriptions (such as size and data types) are not. A number of these
data structures (such as object dispatcher headers, wait blocks, events, mutants,
semaphores, and so on) are, however, fully defined in the DDK. In addition,
the !dso command in the kernel debugger displays the format of many internal
Windows 2000 data structures that are not defined in the DDK header files.

Systems Internals Tools

Many of the experiments in this book use freeware tools that you can download
from www.sysinternals.com. Mark Russinovich, coauthor of this book, wrote most
of these tools. Copies of these tools are in the \Sysint directory on the companion
CD. In addition, a complete copy of the Web site www.sysinternals.com is also
on the CD. (Keep in mind that although the version of www.sysinternals.com
on the companion CD has the latest versions of tools available when this book
was published, it won’t have any new tools or updates that have been added to
the live site later.) Many of these utilities involve the installation and execution
of kernel-mode device drivers and thus require administrator privileges.

Conclusion

In this chapter, you’ve been introduced to the key Windows 2000 technical
concepts and terms that will be used throughout the book. You’ve also glimpsed
at the many useful tools available for digging into Windows 2000 internals. Now
we’re ready to begin our exploration of the internal design of the system, begin-
ning with an overall view of the system architecture and its key components.

25

CHAPTEHR T WO

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be famil-
iar with, we’re ready to start our exploration of the internal design goals and
structure of Microsoft Windows 2000 (originally Windows NT). This chap-
ter explains the overall architecture of the system—the key components, how
they interact with each other, and the context in which they run. To provide
a framework for understanding the internals of Windows 2000, let’s first review
the requirements and goals that shaped the original design and specification
of the system.

Requirements and Design Goals
The following requirements drove the specification of Windows NT back in 1989:
Provide a true 32-bit, preemptive, reentrant, virtual memory
operating system
® Run on multiple hardware architectures and platforms
Run and scale well on symmetric multiprocessing systems

B Be a great distributed computing platform, both as a network client
and as a server

Run most existing 16-bit MS-DOS and Microsoft Windows 3.1
applications

® Meet government requirements for POSIX 1003.1 compliance

B Meet government and industry requirements for operating system
security

Be ecasily adaptable to the global market by supporting Unicode

27

INSIDE MICROSOFT WINDOWS 2000

28

To guide the thousands of decisions that had to be made to create a system
that met these requirements, the Windows NT design team adopted the follow-
ing design goals at the beginning of the project:

Extensibility The code must be written to comfortably grow and
change as market requirements change.

Portability The system must be able to run on multiple hardware
architectures and must be able to move with relative ease to new
ones as market demands dictate.

Reliability and robustness The system should protect itself from
both internal malfunction and external tampering. Applications should
not be able to harm the operating system or other applications.

.Compatibility Although Windows NT should extend existing tech-

nology, its user interface and APIs should be compatible with older
versions of Windows and with MS-DOS. It should also interoperate
well with other systems such as UNIX, OS/2, and NetWare.

Performance Within the constraints of the other design goals, the
system should be as fast and responsive as possible on each hardware
platform.

As we explore the details of the internal structure and operation of Windows
2000, you’ll see how these original design goals and market requirements were
woven successfully into the construction of the system. But before we start
that exploration, let’s examine the overall design model for Windows 2000
and compare it with other modern operating systems.

TWO: System Architecture

-
o
o
o
]

f
i
B

on holds
.

(continued)

29

INSIDE MICROSOFT WINDOWS 2000

Windows 2000 vs. Consumer Windows continued

Operating System Model

30

In most multiuser operating systems, applications are separated from the oper-
ating system itself—the operating system code runs in a privileged processor
mode (referred to as kernel mode in this book), with access to system data and
to the hardware; application code runs in a nonprivileged processor mode (called
user mode), with a limited set of interfaces available, limited access to system data,
and no direct access to hardware. When a user-mode program calls a system
service, the processor traps the call and then switches the calling thread to ker-
nel mode. When the system service completes, the operating system switches
the thread context back to user mode and allows the caller to continue.

Windows 2000 is similar to most UNIX systems in that it’s a monolithic
operating system in the sense that the bulk of the operating system and device
driver code shares the same kernel-mode protected memory space. This means
that any operating system component or device driver can potentially corrupt
data being used by other operating system components.

TWO: System Architecture

All these operating system components are, of course, fully protected from
errant applications because applications don’t have direct access to the code and
data of the privileged part of the operating system (though they can quickly call
other kernel services). This protection is one of the reasons that Windows 2000
has the reputation for being both robust and stable as an application server and
as a workstation platform yet fast and nimble from the perspective of core oper-
ating system services, such as virtual memory management, file I/O, network-
ing, and file and print sharing.

31

INSIDE MICROSOFT WINDOWS 2000

The kernel-mode components of Windows 2000 also embody basic object-
oriented design principles. For example, they don’t reach into one another’s data
structures to access information maintained by individual components. Instead,
they use formal interfaces to pass parameters and access and/or modify data
structures.

Despite its pervasive use of objects to represent shared system resources,
Windows 2000 is not an object-oriented system in the strict sense. Most of the
operating system code is written in C for portability and because C development
tools are widely available. C doesn’t directly support object-oriented constructs,
such as dynamic binding of data types, polymorphic functions, or class inherit-
ance. Therefore, the C-based implementation of objects in Windows 2000 bor-
rows from, but doesn’t depend on, features of particular object-oriented languages.

Portability

32

Windows 2000 was designed to run on a variety of hardware architectures,
including Intel-based CISC systems as well as RISC systems. The initial release
of Windows NT supported the x86 and MIPS architecture. Support for the
Digital Equipment Corporation (DEC) Alpha AXP was added shortly thereaf-
ter. Support for a fourth processor architecture, the Motorola PowerPC, was
added in Windows NT 3.51. Because of changing market demands, however,
support for the MIPS and PowerPC architectures was dropped before devel-
opment began on Windows 2000. Later Compaq withdrew support for the
Alpha AXP architecture, resulting in Windows 2000 being supported only on
the x86 architecture.

NOTE The next architecture to be supported by a future version
of Windows 2000 is the new Intel Itanium processor family, the first
implementation of the 64-bit architecture family being jointly devel-
oped by Intel and Hewlett-Packard, called IA-64 (for Intel Architec-
ture 64). The 64-bit version of Windows will provide a much larger
address space for both user processes and the system. Although this
is a major enhancement that extends the scalability of the system sig-
nificantly, to date, moving Windows 2000 to a 64-bit platform hasn’t
necessitated major changes in the kernel architecture of the system
(other than the support in the memory manager, of course). For infor-
mation on preparing applications now so that they can be ported to 64-
bit Windows more easily later, see the section of the Platform SDK
documentation entitled “Win64 Programming Preview” (also available
online at msdn.microsoft.com). For general information on 64-bit
Windows, search for the keyword “64-bit” on www.microsoft.com/
windows.

TWO: System Architecture

Windows 2000 achieves portability across hardware architectures and plat-
forms in two primary ways:

Windows 2000 has a layered design, with low-level portions of the
system that are processor-architecture-specific or platform-specific
isolated into separate modules so that upper layers of the system can
be shielded from the differences between architectures and among
hardware platforms. The two key components that provide operating
system portability are the kernel (contained in Ntoskrnl.exe) and the
hardware abstraction layer (contained in Hal.dll). (Both these com-
ponents are described in more detail later in this chapter.) Functions
that are architecture-specific (such as thread context switching and
trap dispatching) are implemented in the kernel. Functions that can
differ among systems within the same architecture (for example, dif-
ferent motherboards) are implemented in the HAL.

The vast majority of Windows 2000 is written in C, with some
portions in C++. Assembly language is used only for those parts of
the operating system that need to communicate directly with system
hardware (such as the interrupt trap handler) or that are extremely
performance-sensitive (such as context switching). Assembly language
code exists not only in the kernel and the HAL but also in a few
other places within the core operating system (such as the routines
that implement interlocked instructions as well as one module in
the local procedure call facility), in the kernel-mode part of the
Win32 subsystem, and even in some user-mode libraries, such as
the process startup code in Ntdll.dll (a system library explained
later in this chapter).

Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a single processor
among multiple threads of execution. When a computer has more than one
processor, however, it can execute two threads simultaneously. Thus, whereas
a multitasking operating system only appears to execute multiple threads at the
same time, a multiprocessing operating system actually does it, executing one
thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals
for Windows NT was that it had to run well on multiprocessor computer systems.
Windows 2000 is also a symmetric multiprocessing (SMP) operating system. There
is no master processor—the operating system as well as user threads can be
scheduled to run on any processor. Also, all the processors share just one memory

33

INSIDE MICROSOFT WINDOWS 2000

34

space. This model contrasts with asymmetric multiprocessing (ASMP), in which
the operating system typically selects one processor to execute operating system
code while other processors run only user code. The differences in the two
multiprocessing models are illustrated in Figure 2-1.

Symmetric Asymmetric

Processor A Processor A

Operating
system

Operating
system

User
thread

thread

I/O devices WO devices

Figure 2-1
Symwmetric vs. asymmetvic multiprocessing

Although Windows NT was originally designed to support up to 32 pro-
cessors, nothing inherent in the multiprocessor design limits the number of
processors to 32—that number is simply an obvious and convenient limit be-
cause 32 processors can easily be represented as a bit mask using a native 32-bit
data type.

The actual number of supported processors depends on the edition of
Windows 2000 being used. (The various editions of Windows 2000 are de-
scribed in the next section.) This number is stored in the registry value

TWO: System Architecture

HKLM\SYSTEM\CurrentControlSet\Control\Session\Manager\Licensed-
Processors. Keep in mind that tampering with that data is a violation of the
software license and will likely result in a system crash upon rebooting because
modifying the registry to allow use of more processors involves more than just
changing this value.

Scalability

One of the key issues with multiprocessor systems is scalability. To run correctly
on an SMP system, operating system code must adhere to strict guidelines and
rules. Resource contention and other performance issues are more complicated
in multiprocessing systems than in uniprocessor systems and must be accounted
for in the system’s design. Windows 2000 incorporates several features that are
crucial to its success as a multiprocessor operating system:

B The ability to run operating system code on any available processor
and on multiple processors at the same time

B Multiple threads of execution within a single process, each of which
can execute simultaneously on different processors

B Fine-grained synchronization within the kernel as well as within
device drivers and server processes, which allows more components
to run concurrently on multiple processors

In addition, Windows 2000 provides mechanisms (such as I/O completion
ports—described in Chapter 9) that facilitate the efficient implementation of
multithreaded server processes that can scale well on multiprocessor systems.

Multiprocessor synchronization is described in Chapter 3. Multiprocessor
thread scheduling details are covered in Chapter 6.

Architecture Overview

With this brief overview of the design goals and packaging of Windows 2000,
let’s take a look at the key system components that comprise its architecture. A
simplified version of this architecture is shown in Figure 2-2. Keep in mind that
this diagram is basic—it doesn’t show everything. The various components of
Windows 2000 are covered in detail later in this chapter.

35

INSIDE MICROSOFT WINDOWS 2000

36

System) '
support Service User Environment
processes processes applications subsystems

r Subsystem DLLs [

* * User mode

Kernel mode
Executive Windowing
Kernel | Device drivers and graphics

Hardware abstraction layer (HAL)

Figure 2-2
Simplified Windows 2000 architecture

In Figure 2-2, first notice the line dividing the user-mode and kernel-mode
parts of the Windows 2000 operating system. The boxes above the line rep-
resent user-mode processes, and the components below the line are kernel-mode
operating system services. As mentioned in Chapter 1, user-mode threads exe-
cute in a protected process address space (although while they are executing in
kernel mode, they have access to system space). Thus, system support processes,
service processes, user applications, and environment subsystems each have their
own private process address space.

The four basic types of user-mode processes are described as follows:

Fixed (or hardwired) system support processes, such as the logon process
and the session manager, that are not Windows 2000 services (that
is, not started by the service control manager).

® Service processes that host Win32 services, such as the Task Scheduler
and Spooler services. Many Windows 2000 server applications, such
as Microsoft SQL Server and Microsoft Exchange Server, also include
components that run as services.

B User applications, which can be one of five types: Win32, Windows
3.1, MS-DOS, POSIX, or OS/2 1.2.

® Environment subsystems, which expose the native operating system
services to user applications through a set of callable functions, thus
providing an operating system environment, or personality. Windows
2000 ships with three environment subsystems: Win32, POSIX,
and OS/2.

TWO: System Architecture

In Figure 2-2, notice the “Subsystem DLLs” box below the “Service pro-
cesses” and “User applications” boxes. Under Windows 2000, user applications
don’t call the native Windows 2000 operating system services directly; rather,
they go through one or more subsystem dynamic-link libyaries(DLLs). The role
of the subsystem DLLs is to translate a documented function into the appro-
priate internal (and undocumented) Windows 2000 system service calls. This
translation might or might not involve sending a message to the environment
subsystem process that is serving the user application. ,

The kernel-mode components of Windows 2000 include the following:

The Windows 2000 executive contains the base operating system
services, such as memory management, process and thread manage-
ment, security, I /O, and interprocess communication.

The Windows 2000 kernel consists of low-level operating system
functions, such as thread scheduling, interrupt and exception dis-
patching, and multiprocessor synchronization. It also provides a set
of routines and basic objects that the rest of the executive uses to
implement higher-level constructs.

B Device drivers include both hardware device drivers that translate
user I /O function calls into specific hardware device I /O requests as
well as file system and network drivers.

® The hardware abstraction layer (HAL) is a layer of code that isolates
the kernel, device drivers, and the rest of the Windows 2000 execu-
tive from platform-specific hardware differences (such as differences
between motherboards).

B The windowing and graphics system implements the graphical user
interface (GUI) functions (better known as the Win32 USER and
GDI functions), such as dealing with windows, user interface con-
trols, and drawing.

Table 2-1 lists the filenames of the core Windows 2000 operating system
components. (You’ll need to know these filenames because we’ll be referring
to some system files by name.) Each of these components is covered in greater
detail both later in this chapter and in the chapters that follow.

37

INSIDE MICROSOFT WINDOWS 2000

Table 2-1 Core Windows 2000 System Files

Filename Components
Ntoskrnl.exe Executive and kernel
Ntkrnlpa.exe Executive and kernel with support for Physical Address

Extension (PAE), which allows addressing of up to
64 GB of physical memory

Hal.dll Hardware abstraction layer

Win32k.sys Kernel-mode part of the Win32 subsystem

Ntdll.dll Internal support functions and system service dispatch
stubs to executive functions

Kernel32.dll, Core Win32 subsystem DLLs

Advapi32.dll,

User32.dll,

Gdi32.dll

Before we dig into the details of these system components, though, let’s
examine the differences between Windows 2000 Professional and the various
editions of Windows 2000 Server.

Windows 2000 Product Packaging

There are four editions of Windows 2000: Windows 2000 Professional, Windows
2000 Server, Windows 2000 Advanced Server, and Windows 2000 Datacenter
Server. These editions differ by:

The number of processors supported

The amount of physical memory supported

B The number of concurrent network connections supported

B Layered services that come with Server editions that don’t come

with the Professional edition

These differences are summarized in Table 2-2.

38

TWO: System Architecture

Table 2-2 Differences Between Windows 2000 Professional and
Server Editions

Number of
Number of Physical Concurrent Additional
Processors Memory Client Network Layered
Edition Supported Supported Connections® Services

Windows 2000 2 4 GB 10
Professional

Windows 2000 4 4 GB Unlimited Ability to be a

Server domain controller,
Active Directory
service, software-
based RAID,
Dynamic Host
Configuration
Protocol (DHCP)
server, Domain
Name System
(DNS) server,
Distributed File
System (DES)
server, Certificate
Services, Remote
install, and Termi-
nal Services

Windows 2000 ' 8 8 GB Unlimited Two-node clusters
Advanced Server

Windows 2000 32 64 GB** Unlimited Four-node clusters,
Datacenter Server Process Control
Manager tool'

* The End-User License Agreement for Windows 2000 Professional (contained in \Winnt\System32\
Eula.txt) states, “You may permit a maximum of ten (10) computers or other electronic devices (each a
“Device”) to connect to the Workstation Computer to utilize the services of the Product solely for file
and print services, internet information services, and remote access (including connection sharing and
telephony services).” This limit is enforced for file and print sharing and remote access but not for
Internet Information Services.

** Theoretical limit—the supported limit might be less than this due to availability of commercial

hardware.

T See page 376 in Chapter 6 for more on the Process Control Manager tool.

39

INSIDE MICROSOFT WINDOWS 2000

40

What is not different between the various flavors of Windows 2000 are
the core system files: the kernel image, Ntoskrnl.exe (and the PAE version,
Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system utili-
ties and DLLs. All these files are the same for all editions of Windows 2000. For
example, there are no special server versions of the HAL.

However, a number of these components operate differently depending on
which edition is running. Windows 2000 Server systems are optimized for sys-
tem throughput as high-performance application servers, whereas Windows 2000
Professional, although it has server capabilities, is optimized for response time
for interactive desktop use. For example, based on the product type, several
resource allocation decisions are made differently at system boot time, such as
the size and number of operating system heaps (or pools), the number of inter-
nal system worker threads, and the size of the system data cache. Also, run-time
policy decisions, such as the way the memory manager trades off system and
process memory demands, differ between the Windows 2000 Server editions
and Windows 2000 Professional. Even some thread-scheduling details have
different default behavior in the two edition families. Where there are signifi-
cant operational differences in the two products, these are highlighted in the
pertinent chapters throughout the rest of this book. Unless otherwise noted,
everything in this book applies to both the Windows 2000 Server editions as
well as Windows 2000 Professional.

If the kernel image is the same across the various product editions of
Windows 2000, how does the system know which edition is booted? By que-
rying the registry values ProductType and ProductSuite under the HKLM\
SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType is used
to distinguish whether the system is a Windows 2000 Professional system or a
Windows 2000 Server system (any edition). The valid values are listed in Table
2-3. The result is stored in the system global variable Mm ProductType, which
can be queried from a device driver using the kernel-mode support function

MmIsThisAnNtAsSystem, documented in the Windows 2000 DDK.

Table 2-3 ProductType Registry Values

Edition of Windows 2000 Value of ProductType
Windows 2000 Professional WinNT

Windows 2000 Server (domain controller) LanmanNT

Windows 2000 Server (server only) ServerNT

TWO: System Architecture

A different registry value, ProductSuite, distinguishes Windows 2000 Ser-
ver, Advanced Server, and Datacenter Server as well as whether Terminal Services
have been installed (Server systems only). On Windows 2000 Professional systems,
this value is blank.

If user programs need to determine which edition of Windows 2000 is
running, they can call the Win32 VerifyVersionInfo function, documented in the
Platform SDK. Device drivers can call the kernel-mode function Rt/GetVersion,
documented in the Windows 2000 DDK.

Checked Build

There is a special debug version of Windows 2000 Professional called the
checked build. This version is available only with the MSDN Professional (or
Universal) CD subscription. It is provided to aid device driver developers—
the checked build performs more stringent error checking on kernel-mode
functions called by device drivers or other system code. For example, if a driver
(or some other piece of kernel-mode code) makes an invalid call to a system
function that is checking parameters (such as acquiring a spinlock at the wrong
interrupt level), the system will stop execution when the problem is detected
rather than allow some data structure to be corrupted and the system to pos-
sibly crash at a later time.

The checked build is a recompilation of the Windows 2000 source code with
the compile-time flag DEBUG set to TRUE. Much of the additional code in
the checked-build binaries is a result of using the ASSERT macro, which is
defined in the DDK header file Ntddk.h and documented in the DDK docu-
mentation. This macro tests a condition (such as the validity of a data structure
or parameter), and if the expression evaluates to FALSE, the macro calls the
kernel-mode function R#lAssert, which calls DbgPrint to pass the text of the debug
message to a kernel debugger (if one is attached) to be displayed and then
prompts the user for what to do (breakpoint, ignore, terminate process, or ter-
minate thread). If the system wasn’t booted with the kernel debugger (using
the /DEBUG switch in Boot.ini) and no kernel debugger is currently attached,
failure of an ASSERT test will crash the system.

Although Microsoft doesn’t supply a checked-build version of Windows
2000 Server, Advanced Server, or Datacenter Server, you can manually copy the
checked (debug) version of the kernel image onto a Windows 2000 Server sys-
tem, reboot, and run with a checked kernel. (You could also do this for other

41

INSIDE MICROSOFT WINDOWS 2000

system files, but most developers who use the checked build really only need
the checked version of the kernel image—not the checked versions of every
device driver, utility, and DLL.)

Multiprocessor-Specific System Files

42

Six system files* are different on a multiprocessor system than on a uniprocessor
system. (See Table 2-4.) At installation time, the appropriate file is selected
and copied to the local \Winnt\System32 directory. To determine which files
were copied, see the file \Winnt\Repair\Setup.log, which itemizes all the files
that were copied to the local system disk and where they came from off the
distribution media.

Table 2-4 Multiprocessor-Specific vs. Uniprocessor-Specific

System Files

Name of Name of Name of

File on Uniprocessor Multiprocessor

System Disk Version on CD Version on CD

Ntoskrnl.exe \I386\Ntoskrnl.exe \I386\Ntkrnlmp.exe

Ntkrnlpa.exe Ntkrnlpa.exe in \I386\ Ntkrpamp.exe in
Driver.cab \I386\Driver.cab

Hal.dll Depends on system Depends on system type
type (See the list of (See the list of HALs in
HALs in Table 2-5.) Table 2-5.)

Win32k.sys \I[386\UNIPROC\ Win32k.sys in
Win32k.sys \I386\Driver.cab

Ntdll.dll \I386\UNIPROC\ \[386\Ntdll.dll
Ntdll.dll

Kernel32.dll \I386\UNIPROC\ \I386\Kernel32.dll
Kernel32.dll

oI you look in the \I386\UNIPROC folder on a Windows 2000 CD, you’ll see a file named
Winsrv.dll—although this file exists in a folder named UNIPROC, implying that there is a
uniprocessor version, in fact there is only one version of this image for both multiprocessor
and uniprocessor systems.

TWO: System Architecture

L
. ,3&2 -

43

INSIDE MICROSOFT WINDOWS 2000

44

The reason for having uniprocessor versions of these key system files is
performance—multiprocessor synchronization is inherently more complex and
time consuming than the use of a single processor, so by having special
uniprocessor versions of the key system files, this overhead is avoided on
uniprocessor systems (which constitute the vast majority of systems running
Windows 2000).

Interestingly, although the uniprocessor and multiprocessor versions of
Ntoskrnl are generated using conditionally compiled source code, the uniprocessor
versions of Ntdll.dll and Kernel32.dll are created by patching the x86 LOCK
and UNLOCK instructions, which are used to synchronize multiple threads with
no-operation (NOP) instructions (which do nothing).

The rest of the system files that comprise Windows 2000 (including all
utilities, libraries, and device drivers) have the same version on both uniprocessor
and multiprocessor systems (that is, they handle multiprocessor synchronization
issues correctly). You should use this approach on any software you build, whether
it is a Win32 application or a device driver—keep multiprocessor synchronization
issues in mind when you design your software, and test the software on both
uniprocessor and multiprocessor systems.

On the checked build CD, if you compare Ntoskrnl.exe and Ntkrnlmp.exe
or Ntkrnlpa.exe and Ntkrpamp.exe, you’ll find <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>