Microsoft. Windows
Device Development Kit

development tools for providing Microsofte Windows device support

Device Driver Adaptation Guide

VERSION 3.0

for the MS-D0OS« Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and record-
ing, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1989. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, GW-BASIC, QuickC, CodeView, and XENIX are registered
trademarks of Microsoft Corporation.

Paintbrush is a registered trademark of Zsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
-Tandy is a registered trademark of Tandy Corporation.

Aldus is aregistered trademark of Aldus Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.

Document No. xxxx
Part No. yyyy
10 9 8765 4321

April 1, 1990 Microsoft Confidential ’

Beta Release

Table of Contents
Device Driver Adaptation Guide

Introduction to Device Driversc.cceeeeeeveeececenesss. XVil

‘What Should You Know or Have Before Starting? xvii
DDK Documentation Setvvuvieeeeereererearennnnaenenns Xviii
Microsoft Windows Device Driver Adaptation Guide xviii
Microsoft Windows Virtual Device Adaptation Guide xx
Notational CONVENLONSovvvenneereeeneeeneenennneesannans XX

PART 1 Writing Windows Device Drivers

Chapter 1 Overview of Windowsc...... R B |
1.1 What are Device Drivers and Virtual Devices? 1-1
12 Programs vs.Librariescceiiiiiiinnencnceeennnn 1-2
' 13 How the Windows Pieces Fit Together 1-2
14 How Long Will it Take to Write a Device Driver or Virtual
Device? .. e i e e 13
1.5 Core Windows Modules That Interface With Your Driver 14
1.6 Other Modules in the Windows Environment 14
1.7 Compiling and Linking the Driver Modules 1-5
1.8 Windows Calling Conventionscccveeeeeeennn. 1-6
19 HowtoUsetheINCLUDEFilesccovvieueennn... 1-8
191 CMACROSINCviiiiiiiinneeenennncecanns 1-8
192 GDIDEFSINCccotiiiienennennnceccnnn 1-13
193 WINDEFSINCivtiiiinnnennnnnancnnnnns 1-13
Chapter 2 Display Drivers.................... ceceiseessarssene 2-1
2.1 Filling Out the GDIINFOData Structure 2-1
21.1 ScreenMetrics . ..vvviviiinriieinriiiaenaaanan. 2-3
2.1.2 BitPlanesand BitsPerPixel 2-7
2.1.3 Supported Capabilities and the Output Function 2-8
22 The Enable and Disable Functions 2-13
2.2.1 Initializing Your Graphics-Board Hardware 2-14
April 1, 1990

Beta Release Microsoft Confidential

Iv Contents

222 Initializing Your Other Hardware 2-14
223 Copying Your PDEVICE Data Structure 2-18
224 Comments on the Disable Function 2-19
23 TheRealizeObjectFunctionc.ccovvvieenennan. 2-19
23.1 Background Information...............cccue..n.. 2-19
232 General Aributesc.cvvinieieierenianannn 2-21
233 ThePenObjectcccvvvininnnnennnneannnn. 2-21
234 TheBrushObjectcovvvviiiinnenennnn. 2-22
2.3.5 Using the RealizeObject Parameters 2-23
24 TheColorInfoFunctioncccvveiieeieenncanenannnas 2-24
25 TheBitBEFUNCHOMvveennnnnnnernnneneeneeneannann 2-25
2.5.1 Background Information...............cc00nn. 2-25
252 TheBitBtParameterscceveeveeenvnn. 2-26
2.6 The StrBIt/ExtTextOut FunConscceeevveneenn 2-32
26.1 TheExtTextOutFunctionc.... 2-33
2.6.2 TheExtTextOutParameterscco00evunn. 2-33
27 StubFUNCHONScovtveeeeennennneecrneeennnennns 2-37
2.8 The Move and Check Cursor Functions 2-37
28.1 ExcludingCursorscccoveveiincncnnnn. 2-38
2.8.2 ° TheCheckCursorFunction...........cce0vvnen.. 2-39
29 TheControl FUNCHOMvvvernunnnrereceennananannns 2-39
210 Additional Functionsc.evvevueerennenancecenns 2-39
2.11 How to Build Display Driver Resources 240
2.11.1 Creating the FONTS.ASMFile 2-41
2.112 Creating the CONFIG.ASMFile 2-41
2.11.3 Creating the COLORTAB.ASMFile 2-44
2.114 Creating Icons, Cursors, and Bitmaps 2-45

2.11.5 Assembling and Linking FONTS.ASM,
CONFIG.ASM, and COLORTAB.ASM 2-48
2.116 UsingRCtoCreatethe RESFile 249
2.12 Display Drivers Checklistc.cceiuvnenea.... 2-49
Chapter 3 Display Drivers: New Features
' 3.1 ColorPalette Managementveveeeeneenncanennns 3-1
3.1.1 TheHardwarePaletteCallsccovun.n. 3-1
3.12 TheColor Translate Tablecccvvuunn. 32
3.1.3 ThePalette Translate Tablecoviviviennnn 3-3
3.14 DIBs with Color Palette Management 3-3

April 1, 1990

Microsoft Confidential

Beta Release

Contents v

32
33
34

3.5

3.1.5 The UpdateColors Functionccccvue... 34
316 ChangestoGDIINFOcovvvienennannnn 3-5
3.1.7 Ordinal Reference Numbers 3-5
Protected-Mode SUpportccovtiitniiiiieeereaaaaan 35
Greater Than (>) 64K Font Supportcovevieennnn. 3-7
Device-Independent Bitmapscccevivennenannns 37
341 SetDIBitsand GetDIBitSccvvvnnveeennnn. 3-8
342 SetDIBitsToDeviceccvvvveennnneroannns 3-23
34.3 Changes in the GDIINFO Block and .DEF File 3-25
Checklist For Updating 2.x Display Drivers To 3.0........... 3-26

Chapter 4 Display Driver Grabberscccvvvene.4-1

41 Naming Conventionsceeeeeeenmeccroncosanccans 42
42 GrabberEntryPointsccoveviiiiiiiionaiiacnonaan 42
42.1 Standard Function Dispatch Table 4-2
422 Extended Function Dispatch Table 4.3
43 DataStucCturescoovevevereeereeocennnncocnnonns 4-3
43.1 Grabber Information Structureccu... 4-3
432 Grabber Request Packet Structure 44
433 GrabBufferStructurecceeeeeieeenenn. 4-5
434 Information Context Structure 4-5
435 DeviceContextStructurecceeeveecnenss 4-6
44 Coordinate SYSIEIMccvvevueenencocacasaccncacasnns 4-7
45 BufferSizeCalculationscoeviinenienercenncanns 4-7
45.1 MAX_GBTEXTSIZE and MAX_GBGRPHSIZE 4-8
452 MAX CDSIZEcciiiiiiiiiiniiinaananannns 4-8
453 MAX VISTEXT and MAX _VISGRPH 4-8
454 MAX _TOTTEXT and MAX_TOTGRPH 49
45.5 GrabTextSize and GrabGrphSize 4-10
456 SaveTextSize and SaveGrphSize 4-10
46 FunctionReference...........ccveiiviiiiiinnnnennnnns. 4-10
Chapter 5 Printer Drivers veeeenes Ceeeeeens R |
5.1 BasicInformationcoiiiiiininrinnrienananann 5-1
5.1.1 TheGDIInterfacec.cvveviinnenannnnnn. 52
5.1.2 Additional Printer Driver Responsibilities 52
5.1.3 Printer-Driver Developer Responsibilities 53

Beta Release

Microsoft Confidential

April 1, 1990

vi Contents

April 1, 1990

52

53

54

5.5

5.6

5.7

5.8
59

Printer Driver Initializationcccviiieeenneen.. 5-3
5.2.1 The Enable() Function and Its Parameters 5-3
522 TheGDIINFODataStructurecceeueeeenn 54
The Printer Driver Environmentccc00unnn. 5-11
53.1 TheDEVMODEDataStructure 5-11
5.3.2 The GetEnvironment() Function 5-12
5.3.3 The SetEnvironment(Q) Function 5-12
5.3.4 TheDeviceModeQ Functionc.o0... °5-13
5.3.5 The ExtDeviceMode() and DeviceCapabilities()

Functionscooveiieiinenennnennennnnn. 5-13
Print Manager SUpportcieeieeniiiennccnnnns 5-14
54.1 TheOpenJobQFunction.............ccveivunnn. 5-14
54.2 The StartSpoolPage() and EndSpoolPage() Functions 5-14
543 The WriteSpool() and WriteDialog() Functions 5-15
54.4 The CloseJob() and DeleteJob() Functions 5-15
The ControlQ Functionccciiieiieeeenneennnns 5-16
5.5.1 The QUERYESCSUPPORT Escape 5-17
552 The SETABORTPROCEscape e 5-17
553 TheSTARTDOCESCAPE ...cvvvvvvrrnennnannnnn 5-17
554 Rastervs.VectorDevicesccvveeeennnn.. 5-18
5.55 UsingBandingDriverscceeevieneeennn. 5-18
5.5.6 The ENDDOC and ABORTDOC Escapes 5-20
5.5.7 FinalNotesOnESCapescoveveneeaennenenns 5-21
GDIGraphicS ObJectSvvveerreirananeeceennnananns 5-21
5.6.1 Logical and Physical Objects 5-21
562 DeviceObJECtSvvvereerenreereenaneaanannn 5-22
5.6.3 The GDI Information Functions 5-22
5.64 The GDI Information Brute Functions 5-23
Performing Outputcoviinnnnnnennnnncocacecaannn 5-24
5.7.1 The GDI Output Brute Functions 5-24
572 TheGDIColorLibraryccovvveinnn... 5-25
5.73 The GDI dmTranspose() Function 5-25
5.74 The GDI Priority Queue Functions 5-26
5.7.5 Interpreting GDICoordinates 5-27
5.7.6 Output Functions Summaryco0vunnn. 5-27
SbFUNCHONSvviitriieetenneeneneeennonnnnennns 5-28
Updating 2.x Printer Driverst03.0ccoevenan.. 5-28
59.1 MemoryManagement..........cc00iiiiaiennnnn 5-28

Microsoft Confidential

Beta Release

Contents vil

Chapter 6 Network Supportccoovivieieieinnnnnnnn.

5.9.2 Device Initialization Conventions 5-31
5.9.3 Driver Interface Functions 5-31
5.10 Checklist for Printer DIiversccoiievineennernnnennns 5-31

6.1

6.2

6.3

6.4

7.1
7.2
7.3
14
7.5
1.6
1.7

NewFeaturescciiiiiniiiiiiiiiiiiinieenennnnnes 6-1
6.1.1 Alleviating the Memory Crunch 6-1
6.1.2 Adding and Deleting Network Connections 6-2
6.1.3 NetworkPrintingcccvueiieennnnnnnnnn 6-2
6.14 Network Error Messagescceveeneecennenn. 6-3
6.1.5 Network-Specific Dialog Functions 6-3
6.1.6 Running Windows From a Network Drive 64
6.1.7 Supporting Large Numbers of Outstanding NCBs 64
Attaining Compatibilitycoiiiiiiinnenieienannn. 64

6.2.1 Windows User Interface: The Windows Network Driver 6-5
6.2.2 Enhanced Windows 3.0: Virtual Device Architecture .. 6-5
6.2.3 Standard Windows3.0: The DOS Extender’s Domain .. 6-6

6.24 Testing Compatibilityco0vvveieennnn. 6-7
Compatibility Issues and Solutionsccccevveeenn.. 6-7
6.3.1 TheProblemofSpacecvvvivnenenrennnnns 6-7
6.3.2 TheProblemofGlobalEMS...................... 6-7
6.3.3 The Problem of AsynchronousEvents 69
6.3.4 The Problem of Protected-mode API 6-13
6.3.5 The Problem of Virtualizing Connections 6-17
Supportand Distributionc.ccoiiiiiiiiiiiie., 6-18
Chapter 7 Network Driverscccvvviiiieininnnnan.
Initializing, Enabling, and Disabling 7-1
Passing Bufferscooviiiiniiiniiiiieninnenenennns 7-2
Determining Network Capabilitiescoovvveeennn.. 72
Displaying the Driver-Specific DialogBox 74
Displaying the Browse Dialog BOXcccieveiienn.n 7-5
Getting the Current USernamecccovevvenenennns 7-6
Device Redirecting Functionsccoveeeneeennnn. 7-6
7.7.1 Adding Network Connectionsooveeennnn. 7-6
7.72 Removing Network Connections 7-7
7.1.3 Listing Network Connectionsccceun... 7-8

Beta Release

Microsoft Confidential

S |

April 1, 1990

viii Contents

7.8 Net Printing Functions ettt e, 79
7.8.1 Watching a Network PrintQueve 79
7.8.2 Stop Watching a Network Print Queue 7-10
7.83 Locking NetworkQueueData 7-10
7.84 Unlocking Network QueueData 7-12
7.8.5 Notification of Queue Status Changes 7-13
7.8.6 Opening a Network PrintJob 7-14
78.7 ClosingaNetwork PrintJob..................... 7-14
7.8.8 PuttingaPrintJobonHold...................... 7-15
789 ReleasingaHeldPrintJob 7-16
7.8.10 CancellingaPrintJob.........ccevverninennnnn. 7-16
7.8.11 Changing the Number of Copies 7-17
7.8.12 AbortingaPrintJobiiiiiiiiiiiiiinaana 7-17
7.9 Extended Error FunCtonScoevvvveinneneracnnns 7-18
79.1 Getting the Current Network Error................. 7-18
79.2 Getting Extended Error Information 7-19
7.0 Return Valuescovevveeeeeeeionneorsannnsaesannnes 7-19
7.11 Function SUMMArYccovvveeercecsnsncecensoansonans 7-20

Chapter 8 Keyboard Driversccccveveviinennene.. .81

April 1, 1990

8.1 InitializationCodecoviiieiiiiiiiineriiiananans 8-1
82 Keyboard Entries: Exported Functionsccvuveue.n 8-2
83 Internal FUnCHONSvvvvinunnrnneieeeenriecnsonnonanas 8-2
84 The Keyboard Interrupt Handler and Event Procedure Call 8-3
84.1 ParameterDetailsccciiiiiiiiiiiiniianan 8-3
842 ExtendedKeyboards.............covviiiiniinnn.. 8-3
843 The OS/2 Compatibility BOXccvvvvennnnnn.. 84
8.5 Keyboard Driver Internal Tablescoovveiiiinnnn... 34
8.5.1 Keyboard State Vectorcevevvenueeeeiannan 84
852 Keyboard Information (KBINFO) Data Structure 8-5
853 KeyTranslatonTablesccovvvveninninnnnn 8-5
86 KeyboardDLLcoiiiiiiiineeeeeenaroeeeannncannns 8-7
8.7 SYSTEM.INI Keyboard Information -ccvevuunn.nn 8-7
88 Windows VirtualKeyCodescovvvvieneinennnnnnns 8-8
8.9 A Checklist for Modifying a 3.0 Keyboard Driver 8-13
8.10 FunctionsReference..........coovvevveennnnnnnnnnnnnnns 8-15

Microsoft Confidential

Beta Release

Contents ix

Chapter 9 Miscellaneous Drivers
9.1 Updating 2.x Driverst03.0coiiieiiiinnneennnnnnnn 9-1
9.2 Communications and Sound Driversc.civeennn. 9-1
9.2.1 DCB - Device Control Block Structure 9-2
9.3 Mouse DriverSoittit ittt ie e eeeeaeeaacaeaaans 94
9.3.1 Mouse Functionscccveveeeeenneeennnenns 9-5
932 AdditiontoMOUSEDEF...........cccvvevennnn.. 9-5
9.3.3 MOUSEINFO - Mouse Hardware Characteristics
] g1 (v AR 9-6

9.34 CURSORINFO - Cursor Information Data Structure . . . 9-7

PART 2 General Reference for Device Drivers

Chapter 10 Common Functions 10-1

Chapter 11 Device Driver Escapes Ceeereacianes R | B |
11.1 Introductionto Driver ESCapesccceeeeneecennnnnnns 11-1
112 Generalized ErrorReturn Codes vveeievnnneenennnnn 11-3
11.3 Driver Escape Descriptionsc..covvveeecnveceaces 11-3
Chapter 12 Data Structures and File Formats 12-1
12.1 Information Data StruCturesccevvveeeneneneeenn 12-1
12.1.1 The GDIINFO STUCHUTEvvvvvnneeeennencnns 122
12.12 The GDIINFO Field Descriptionscccvtn... 12-3
12.1.3 GDIINFO — dpText Field Precision Levels 12-10
12.14 CURSORINFO — Cursor Information Data Structure 12-13
122 Parameter Data STUCtUrescccevvevennnennnn. 12-14
122.1 POINT — Point Data Structure 12-14
1222 RECT — Rectangle Data Structure 12-14
1223 RGB — Logical Color Specification 12-15
1224 DRAWMODE — Drawing Mode Specification 12-16
122.5 RASTEROP — Raster Operations 12-18
122.6 CURSORSHAPE — Cursor Data Structure 12-19
1227 LOGEPEN - Logical Pen Attribute Information 12-20
12.2.8 LOGBRUSH — Logical Brush Attribute Information 12-21
12.3 Physical Data SIrUCIUIeSvovvernveeennneeannneeeenns 12-22
Beta Release Microsoft Confidential April 1, 1990

x Contents
L]

123.1 BITMAP — Physical Bitmap Data Structure 12-22
1232 PDEVICE — Private Device Data Structure 12-26
1233 PCOLOR - Physical Color Definition 12-26
1234 PPEN - Physical Pen Data Structure 12-27
123.5 PBRUSH — Physical Brush Data Structure 12-27
124 Rasterand VectorFontFile Formatsccoveevencoccns. 12-27
124.1 FONTINFO — The Physical Font Descriptor 12-28
1242 LOGFONT - The Logical Font Descriptor 12-35

Chapter 13 The Font File Format..............cocvvveeenee.. 13-1

13.1 TEXTMETRIC - Basic Font Metricsccevuvienen 13-1
132 TEXTXFORM - Actual Text Appearance Information 134
133 FONTINFO - The Physical Fontccooiiuiinenn 13-6

Chapter 14 Raster Operation Codes and Definitions eerenn. 141

141 TheOperation Codescvvveereoceccearcaacscaceacaoos 14-2
142 TheOperationCodeListcccveieieeeeneeneanacacnn 14-3

Chapter 15 Miscellaneous Character Set Tables 15-1
Virtual Device Adaptation Guide

Introduction to Virtual Devicescccceeeieeerrceecaccnnssss X

'What You Should Know Before YouStart ... coovveeeerenneneneanennn ix
Organizationof ThisDocumentccuceveecnceccccnoncanans ix
Notational CoNVEntionSccceevetoeseecescceccscccansasannnn xi

PART 3 Writing Virtual Devices

Chapter 16 Overview of Windows in 386 Enhanced Mode 16-1

16.1 The Operating Environmentc...ccceu.. teseseanas 16-1
162 VirtualMachinesceeiiiiiieeeeiinnneannnnns 16-3
16.2.1 ThePrivilege RingsofaVM 163
1622 VMHandIesccovveiinneraneneacannnnans 16-6
16.23 The ClientRegister Structureéccocvunn.. 16-6

April 1, 1990 Microsoft Confidential Beta Release

16.3
164

16.5

The Virtual Machine Managerceceeeeeeeecccncees 16-7
Virtual DeviCes ...vvveeeeneaneenoneccoascsacasacanans 16-7
164.1 VXDCOMPONENtScoveveeecasccsccccnasase 16-8
1642 The Device Control Procedureccvvveeenn. 16-8
1643 The Device DescriptorBlock 16-8
How VXDSWOIKcvcviecnneieneccacoanaccscanans 16-10
16.5.1 Enhanced Windows Execution Scheduling 16-10,
1652 MemoryModelsciiiiiiiniinnineannn. 16-14
1653 SeIvViCes ...cvvvvieeecicccoccccnnnsncsncaannns 16-15
1654 CallbackProceduresc.cceeeveecanaceacns 16-16
1655 I/OPOrtTraps ...ccevvierncncencocncscacnnnns 16-17
1656 LoadingSequenceccciveeeiviicnacens 16-17
1657 VxDExampleS.......cccveieeencnnecsonananas 16-20

Contents xi

Chapter 17 Virtual Device Programming Topics 17-1

Beta Release

17.1

172

17.3

174

17.5

WHENG VXDS .. .iivirniiieieeeccaccsnoncocccaacnanns 17-1
17.1.1 Understanding the Ring 0 Memory Model 172
17.12 VxD Segmentationccceveeeeencenocenss 17-3
17.13 VxDDeclarationccoeeeeecnencrccsocones 17-3
1714 VXD ServiCeScviviieirnnnnsccncsanancanns 17-5
1715 VXD APIS......cciiviiiiinieaennnncnanancnes 17-7 -
Addinga VxDtoWindowS covvievnennnrinnaaencennn. 178
1721 MASMS ..ot iiiiiiiiieiretcecenassscccnanses 179
1722 LINK386ccocviiiiiiecienscsocecenannans 179
1723 ADDHDRccciiieirancencesacensnnnnes 17-11
1724 MAPSYM32 iiiiiiiiiiiennnnnciacnonans 17-11
Initializing a VXDiiituiiiienenoseeccsocaenncanns 17-11
17.3.1 Real-Mode Initializationccoveueuen 17-11
17.32 Protected-Mode Initializationc00vn.. 17-14
Tracking The VM STAIES veeverrnneennneranneennnans 17-15
174.1 VM Creation and Initialization 17-15
1742 VMStateChangescveeeeeeeeeraacaenanan 17-15
1743 VMTerminationccveveinneenneneanae 17-17
EXiting WIndOwS « .« o covereennnresnanerosenoracsaonnns 17-18

Microsoft Confidential

April 1, 1990

xil Contents :
L. |

Chapter 18 The VDD and Grabber DLL 18-1

18.1 Introduction to VDDS ...cvvieerieeonverannncsonsscnnces 18-1
18.1.1 VDD Messagesceceveuunen cererernananes 18-2
18.12 VDD J/O Trapping and Hooked Pages 182
18.1.3 VDDESfiCIenCy ...ccoovveevenercrsnccccscaans 18-2
18.14 VDD DevelopmentSequence........cccceeeeeaceen 18-3
182 Converting Your2XVDDcciciieiienecnncconaaans 183
182.1 INCLUDEFIES ...covvvevennecnnncensscacanns 18-3
1822 Changes to the System, Grabber DLL, and Shell
INterfaces ...oouevieeeroneercnsoacnassccanas 184
18.3 The VDD Device Control Procedurec.ccevvevvnane. 184
18.3.1 Initializationcccviieiiieiiiiirriinana 184
1832 VM Creation, Initialization, Destruction, and State
Changes............... eeeeeteretaeiaacnaens 18-5
184 VDD SEIVICES....cevevrreeneeerenescsenssesoccncnnsss 18-6
184.1 GrabberAPIccvveiiniiiennnnnracaccaas 18-6
185 TheGrabber DLLc00ccvcececeseiecrscnaccanancas 18-8
18.5.1 On-Screen Selection Interfacescccv0venns 18-8
1852 Selection Interface Procedurescce0eeuens 18-10
18.5.3 Non-Windows Application Painting Interfaces 18-13
1854 Miscellaneous Interfacesccecvveiecanas 18-15

PART 4 Virtual Device Services

Chapter 19 Memory Management Services 19-1

19.1 System Data Object Managementcoveeeeniennces 19-2
192 Device V86 Page Managementcccoeeeceeccanns 19-8
193 GDT/LDTManagementcceeeuueeecenenncesecanns 19-11
194 SystemHeap AlOCator.......ccvvevuceeeniancrsnananns 19-16
195 SystemPage ALlocatorcvvvvivenreiannneceencnnns 19-19
19.6 Looking At Physical Device Memory in Protected Mode 19-37
19.7 Data ACCESS SEIVICES . .vvevrverrennnresasnsasaaccanss 19-38
19.8 Special Services For Protected Mode APIs 19-39
199 InstanceDataManagementccooviiieieniniennnn. 19-47
19.10 Looking At V86 Address Spaceoovevvviennreanonans 19-51

April 1, 1990 Microsoft Confidential Beta Release

Contents xili
5

Chapter 20 I/O Services and MacroS........ccoceeeeeneennn.. 20-1

20.1 Handling Different YO TYPES « «evuveneernenennneneenennn. 20-1

202 TOMECIOS .evvennneenneenannnneaneaneansenennenns 203

203 HOSEIVICES ..o neenunrennsanenneneaneaneeneennennenns 204
Chapter 21 VM Interrupt and Call Services 21-1
Chapter 22 Nested Execution Servicescccceveene... 22-1
Chapter 23 Break Point and Callback Services............... 23-1
Chapter 24 Primary Scheduler Services 24-1
Chapter 25 Time-Slice Scheduler Services 25-1
Chapter 26 Event Services e eecerane 26-1
Chapter 27 Timing Services SRTTPRPPPRRRRRY S 27-1
Chapter 28 Processor Fault and Interrupt Services........... 28-1
Chapter 29 Information Servicesccceevieeieenanannn. 29-1
Chapter 30 Initialization Information Services 30-1
Chapter 31 Linked List Services 31-1
Chapter 32 Error Condition Servicesccccvuen... 32-1
Chapter 33 Miscellaneous Servicesccccvveenenen.. 33-1
Chapter 34 Shell Services eeresesctenstccnenaane 34-1
Chapter 35 Virtual Display Device (VYDD) Display Services ... 35-1

35.1 Displaying a VM’s Video Memory ina Window 35-1

352 Miscellaneous VDD SErviCesvvvuvvunrrvnrnnnnnns 35-3

Beta Release Microsoft Confidential April 1, 1990

Xxiv Contents
L.~~~]

Chapter 36 Virtual Keyboard Device (VKD) Services 36-1
Chapter 37 Virtual PIC Device (VPICD) Services 37-1

37.1 Default Interrupt Handlingeooveeennnnenenannnnnn. 37-1

372 Virmalizing anIRQc.eeeueeenreennneionneennns 372

373 Virmalized IRQ Callback Procedurese.... 372

374 VPICD SEIVICES «euuvvenrreaneeaneennneanneseaneeannns 375
Chapter 38 Virtual Sound Device (VSD) Services 38-1
Chapter 39 Virtual Timer Device (VITD) Services 39-1
Chapter 40 V86 Mode Memory Manager Device Services 40-1

40.1 Initialization SEIVICESvveereeenreenneeeansennnnann 402

402 API Translation and Mappingcoeeveeeneennnnnns 404

402.1 BasicAPITranslationceveieevicenen. 404

4022 Complex APITranslationcccvcieeeaenaannn 404

4023 HookingTheInterruptc.eceeveveececnens 40-5

4024 Mapping vs.Copyingccvvieeereennaaaanaans 40-6

4025 Writing Your Own Translation Procedures 40-6

402.6 Sample APITranslationcccvveeieeaananns 40-7
Chapter 41 Virtual DMA Device (VDMAD) Services 41-1

Appendixes

A Termsand ACTONYMSccoevvereencccscosscsscsscnnss A-1
B Understanding Modesccovviiiiiiecncenncecancanns B-1

Bl WInAOWSMOGES . . uveenrereeenneanneaannaeennneenns. B-1

B2 Microprocessor MOdeS . .. cvvevveeeeeernrnnennencennannns B-1
C Creating Distribution Disks for Drivers................... C-1

April 1, 1990 Microsoft Confidential Beta Release

Contents xv

D Enhanced Windows INT2FHAPIc.ccvvvveee...D-1

Beta Release

D1

D2

D3

D.1.1 Enhanced Windows Installation Check (AX=1600H) . .D-1
D.12 Releasing Current Virtual Machine’s Time-Slice

(AX=1680h)cocevveviecivenararonnnannces D-2
D.13 Begin Critical Section (AX=1681h) D-3
D.14 End Critical Section (AX=1682h) D-3.
D.1.5 Get Current Virtual Machine ID (AX=1683h)........ D-3
D.1.6 GetDevice API Entry Point (AX=1684h) D-3
D.1.7 Switch VMs and CallBack (AX=1685h) D4
D.1.8 Detect Presence of INT 31H Services (AX=1686h)D-5
CallOutINterfacesceeeeeeererecennccnnceenncenens D-5
D2.1 Enhanced Windows and 286 DOS Extender

Initialization (AX=1605h)cccvvueiinannn D-5
D22 Enhanced Windows and 286 DOS Extender Exit

(AX=1606h)ccccveveeecsnneecasanennnaans D-8
D23 Device Call Out API(AX=1607h)couvnvnns D8
D24 Enhanced Windows Initialization Complete

(AX=1608h)coccvvvnerrererancrosonnannan D-8
D25 Enhanced Windows Begin Exit (AX=1609H) D9
Windows/386 Version 2.xx API Compatibility R D9
D3.1 Installation Check eeeerececteesans D9

. D32 Determining the Current Virtual Machine (Get VM ID) D-9

D.3.3 Critical Section Handlingccco0vveennnnn. D-10

Microsoft Confidential

April 1, 1990

xvi Gonfents
N

April 1, 1990 Microsoft Confidential Beta Release

Introduction to Device Drivers

This document is intended for device driver writers working as consultants and for Inde-
pendent Hardware Vendors (IHVs) and computer manufacturers. The information con-
tained herein is proprietary to Microsoft Corporation. Therefore, only those members of
your organization directly involved in the development of Microsoft W‘mdows device
drivers should have access to this document.

This introduction provides some background information that you should review before
using the documentation provided with the Microsoft Windows Device Development Kit
(DDK). Included here are sections on the following:

= What you need to know or have before you start

8 Description of the manuals provided with the DDK

m Notational conventions used throughout the DDK documentation

What Should You Know or Have Before Starting?

Beta Release

You will need to know Windows, MS-DOS ®, MASM, and, if writing a printer driver, the
C programming language. Definitions of key terms used-in describing device drivers and
virtual devices are provided in Appendix A, “Terms and Acronyms,” which is located in
the Microsoft Windows Virtual Device Adaptation Guide.

The Microsoft Windows Installation and Update Guide for the DDK provides detailed
infarmation on-the requirements for setting up your development environment and the con-
tents of the source disks included with the DDK.

You will need to purchase the Microsoft Windows Software Development Kit (SDK) and
the retail Windows package for testing. You will also need to purchase access to the
Microsoft OnLine software support system to get technical support while developing your
driver.

The Microsoft Windows Software Development Kit contains reference material, a special
linker, the Windows Resource Compiler (RC), special versions of the SYMDEB and
CodeView debuggers, header files, and several utilities that aid development and testing.

1t also provides several INCLUDE and header (.H) files that contain declarations of all the
‘Windows functions, definitions of many macro identifiers that you can use in
programming, and structure definitions. Import libraries included in the kit allow LINK to
resolve calls to Windows functions and to prepare the program’s .EXE file for dynamic
linking.

Microsoft OnLine can provide you with the accurate, interactive support you need to re-
main as productive as possible. Use it to retrieve information (on virtually all of
Microsoft’s products) from our technical product KnowledgeBase, to search through our

Microsoft Confidential April 1, 1990

xvill Device Driver Adaptation Guide

Software Library for sample drivers and source code, or to submit Service Requests
(specific questions on writing device drivers) directly to one of our highly qualified cus-
tomer support engineers. Watch the Exchange Bulletin Board for announcements on the
availability of new sample sources for special devices. For more information about
Microsoft OnLine, call Microsoft Product Support Services Telemarketing at (800) 443-
4672. (Is the number still correct?)

DDK Dacumentatmn Set -

The 3.0 version of the Microsoft Windows Device Development Kit has been completely
reorganized. It now consists of the following four manuals:

® Microsoft Windows Device Driver Adaptation Guide, which covers how to write or
modify device drivers for Windows 3.0 when running in either real or standard mode.

» Microsoft Windows Virtual Device Adaptation Guide, which covers how to write
virtual devices for Windows 3.0 when running in 386 enhanced mode.

8 Microsoft Windows Installation and Update Guide, which provides information on
the DDK source code, test scripts, utilities, and building tools provided with, and the
development environments required for, Windows 3.0 when running in either real,
standard, or 386 enhanced mode.

8 Microsoft Windows Printers and Fonts Kit, which includes information on the Printer
Font Metrics (PFM) file formats and the new PFM Editor, along with technical notes
on the PCL/HP LaserJet and PostScript printer drivers,

‘We recommend that both novice and advanced device driver and virtual device writers
read the Microsoft Windows Installation and Update Guide, this introduction, and Chapter
1, “Overview of Windows.” After that, you can skip to the appropriate chapter(s) for the
particular driver with which you work.

The following sections summarize the contents of each part and chapter in the two main
DDK documents.

Microsoft Windows Device Driver Adaptation Guide

April 1, 1990

Part 1, “Writing Windows Device Drivers,” consists of nine chapters that provide infor-
mation on writing or modifying specific Windows 3.0 device drivers.

Chapter 1, “Overview of Windows,” provides information common to both device driver
and virtual device writers, such as definitions, time requirements, calling conventions, and
INCLUDE file descriptions. ‘

Chapter 2, “Display Drivers,” contains information specific to writing or modifying
‘Windows 3.0 display drivers. The major functions are described briefly and examples are
given.

Microsoft Confidential Beta Release

Beta Release

Introduction to Device Drivers xix

Chapter 3, “Display Drivers: New Features,” discusses from a device driver standpoint the
Windows 3.0 changes to color palette management, protected-mode support, greater than
64K fonts, and device-independent bitmaps (DIBs). More detailed information on each of
these new features is provided in the Microsoft Windows Software Development Kit.

Chapter 4, “Display Driver Grabbers,” contains descriptions of the functions and data
structures used by the grabbers that work with Windows 3.0 when running in real and
standard mode. Virtual device grabbers are discussed in the Microsoft Windows Virtual
Device Adaptation Guide. .

Chapter S, “Printer Drivers,” contains information specific to writing or modifying
Windows 3.0 printer drivers. The major functions and escapes are described briefly and ex-
amples are given. The relationship between GDI and printer drivers is also discussed in
detail.

Chapter 6, “Network Support,” contains déscriptions of the new benefits provided to net-

wark users, incompatibility problems and solutions, and how to make your network
software work well with Windows 3.0.

Chapter 7, “Network Drivers,” contains information specific to writing or modifying
Windows 3.0 network drivers. The major functions are described briefly and examples are
given.

Chapter 8, “Keyboard Drivers,” contains information specific to writing or modifying
‘Windows 3.0 keyboard drivers. The major functions are described briefly and examples
are given.,

Chapter 9, “Miscellaneous Drivers,” contains brief descriptions of the communications,
sound, and mouse drivers.

Part 2, “General Reference for Device Drivers,” consists of six chapters that provide
general reference-type information for use in writing or modifying Windows 3.0 device
drivers.

Chapter 10, “Common Functions,” provides an alphabetical listing with detailed dwcrip—
tions of the main functions used by most device drivers.

Chapter 11, “Device Driver Escapes,” provides an alphabetical listing with detailed
descriptions of the escapes used mainly by printer drivers.

Chapter 12, “Data Structures and File Formats,” contains detailed descriptions of the
major data structures and file formats used by most device drivers.

Chapter 13, “The Font File Format,” provides descriptions of the three main data struc-
tures used with fonts: TEXTMETRIC, TEXTXFORM, and FONTINFO.

Chapter 14, “Raster Operation Codes and Definitions,” provides a table of raster operation
codes and their definitions, along with a brief description of reverse Polish notation.

Chapter 15, “Miscellaneous Character Set Tables,” contains a brief description of character
sets and provides examples of the main ones used by Windows 3.0: ANSI, OEM, and
SYMBOL.

Microsoft Confidential April 1, 1990

xx Device Driver Adapiation Guide

‘Microsoft Windows Virtual Device Adaptation Guide

Part 3, “Writing Virtual Devices,” consists of three chapters that provide information on
writing Windows 3.0 virtual devices. A more detailed description of each chapter is pro-
vided in the introduction to that document.

Part 4, “Virtual Device Services,” consists of 23 chapters that provide information on each
of the major categories of services used with virtual devices. A more detailed description
of each chapter is provided in the introduction to that document. .

Part 5, “Appendixes,” consists of the following four appendixes that contain information
common to both device drivers and virtual devices. The first two provide useful infor-
mation that can be reviewed quickly before you read the specific device-related chapters.
The remaining appendixes deal with topics that may be more useful after reading the
specific device-related chapters.

® Appendix A, “Terms and Acronyms”

= Appendix B, “Understanding Modes”

= Appendix C, “Creating Distribution Disks for Drivers”

& Appendix D, “Enhanced Windows INT 2FH API”

Notiational Conventions

The following notational conventions are used throughout the DDK documentation set.

Convention Meaning
bold Bold is used for keywords, such as function, register, macro, and

data structure field names. These names are spelled exactly as they
should appear in source programs. Notice the bold in the following
example:

Disable ([pDestDev)
Here, Disable is bold to indicate that it is the name of a function.

italics Italics are used to indicate a placeholder that should be replaced by
an actual argument. In the preceding example, lpDestDey is italic
to indicate that it should be replaced by an argument.

(Parentheses) Parentheses enclose the parameter or parameters that are to be
passed to a function. In the preceding example, ipDestDev is the
parameter. .

Monospace Monospace type is used for program code fragments and to il-

lustrate the syntax of data structures.

April 1, 1990 Microsoft Confidential Beta Release

Part | Writing Windows
Device Drivers

This first part of the Microsoft Windows Device Driver Adaptation Guide pro-
vides information on how to write or modify Windows device drivers; make
them compatible and work efficiently with Microsoft Windows 3.0 when run-
ning in both real and standard modes; and make them bimodal, i.e., capable of
running under either real or protected mode.

Separate chapters are provided for descriptions of each of the major device
drivers. Some information that is common to many of the drivers is provided in
Chapter 1, “Overview of Windows.” However, most of the common reference-
type information is provided in Part 2, “General Reference for Device Drivers.”

Beta Release Microsoft Confidential April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

T —— S ——————————

CHAPTERS

Overview of Windows
Display Drivers

Display Drivers: New Features
Display Driver Grabbers
Printer Drivers

Network Support

Network Drivers

Keyboard Drivers
Miscellaneous Drivers

©GONSSOKWN=-

Beta Release Microsoft Confidential ' ~ April 1, 1990

April 1, 1990 Microsoft Confidential Beta Release

Chapter

1

Overview of Windows

This chapter contains information that is common to or used by most of the different
‘Windows 3.0 device drivers. Since these drivers are the basic building blocks for enhanced
‘Windows virtual devices (VxDs), references are also made, where appropriate, to
‘Windows VxDs. The following information is provided here:

8 Definitions of device drivers, virtual devices, programs, and libraries

s Description of how Windows device drivers and virtual devices work together

= Estimates on the time required to write a device driver

® Descriptions of the Windows modules and those needed to build a device driver

m Explanation of the Windows calling conventions

® Description of the Windows INCLUDE files

Subsequent chapters will detail how to write specific device drivers. Notice, however, that

for some drivers, such as the Mouse and Keyboard drivers, you should be able to use the
supplied source code and not need to write a new driver.

1.1 What are Device Drivers and Virtual Devices?

Beta Release

A device driver is often called a Windows dynamic-link library or DLL (to distinguish it
from a program). It forms the interface between Windows and a particular piece of periph-
eral hardware (e.g., a printer or a display screen). This DLL contains the Windows

Graphics Device Interface (GDI) functions needed to access or drive a specified device or
family of devices. It also contains information naming the types of devices it supports.

In other words, a device driver is the software that provides the hardware-dependent, low-
level interface between the Windows functions and the output device.

A separate driver must be written for each peripheral in the system. However, to avoid
using up too much memory, the driver is only loaded when it is installed into the system.
(This sentence sounds funny/strange. Is “installed into the system” the correct phrase
here?)

An enhanced Windows virtual device (VxD) is a separately compiled program (is pro-
gram the right word considering the definition of program given in the next section?)
that is loaded and linked with the Virtual Machine Manager (VMM) when enhanced
Windows is first started. Each VxD is responsible for handling a specific piece of hard-

Microsoft Confidential April 1, 1990

1-2 Device Driver Adaptation Guide

ware or for providing services used by the Virtual Machine’s (VM’s) application program.
‘See the Microsoft Windows Virtual Device Adaptation Guide for detailed informationon -
VxDs.

In enhanced Windows, the VxD sits between the Windows driver (in the System VM) and
the actual hardware. These two pieces of code can communicate via established I/O ports,
or they can establish a new interface (e.g., an output string instead of an output character
for a parallel port VxD). In addition to this interaction, the VxD must also serialize access
to the hardware ports by other VMSs running simultaneously with Windows. .

1.2 Programs vs. Libraries

From the user’s perspective, a Windows program and a Windows library (or device driver,
which is a type of library) are very different. The user cannot run a Windows library
directly. Windows loads a part of a library into memory only when a program needs to use
a function that the library provides. The user can, of course, run any Windows program.

In fact, the user can run multiple instances of the same Windows program. Windows uses
the same code segments for the different instances but creates a unique data segment for
each. Windows never runs multiple instances of a Windows library.

From the programmer’s perspective, a Windows program is a task that usually creates and
manages windows on the display. Libraries are modules that assist the task. A programmer
can write additional library modules that one or more programs can use. For the
programmer, one important distinction between programs and libraries is that a Windows
library does not have its own stack; instead, the library uses the stack of the program that
calls the function in the library.

‘When Windows loads a program or a library into memory, it must resolve all the calls the
module makes to functions in other modules. Windows does this by inserting the addresses
of the functions into the code—a process called dynamic linking.

1.3 How the Windows Pieces Fit Together

April 1, 1990

‘Windows requires device drivers for the hardware on which it runs, regardless of whether
you are running Windows in real, standard, or 386 enhanced mode and in real or protected
mode. However, when you are running enhanced Windows, it may also require a virtual
device.

The purpose of a Windows device driver (used with the real, standard, and 386 enhanced
mode versions) and that of an enhanced Windows virtual device (used only with Windows
when running in 386 enhanced mode) is different. A Windows device driver exists to per-
form actions on its device, such as printing a circle or getting the mouse location. It maps
an idealized device API onto limited real devices. An enhanced Windows virtual device ex-
ists to virtualize the hardware; it does not, at least not in a visible manner, provide an API
and services. Instead of mapping a general API onto specific devices, it simply traps and
virtualizes all access to that device.

Microsoft Confidential Beta Release

Overview of Windows 1-3

Explanations of the three versions of Windows and how to write or modify the appropriate
driver or virtual device for your hardware are provided in Part 1, “Writing Windows
Device Drivers,” in this guide and in Part 3, “Writing Virtual Devices,” in the Microsoft
Windows Virtual Device Adaptation Guide.

1.4 How Long Will it Take to Write a Device Driver or
Virtual Device? :

The development cycle depends on a number of factors, including whether or not you are
modifying an existing driver and the complexity of the interface to the hardware. If you
are developing an enhanced Windows virtual device, you must also factor in at least two to
three weeks to learn all about the enhanced Windows architecture and environment.

If you have already written a Windows device driver and simply want to make it com-
patible with Windows 3.0 when running in protected mode, modifying and/or writing the

code should take only a week or two. If your device driver is simple and only
does I/O and Windows function calls, any changes will be minor and can be done in a
week.

If the device is complex and not similar to one of the Mcrosoft-supphed device drivers,
the effort could take several months or longer.

You will need to do additional work to develop an enhanced Windows virtual device
(VxD) if the hardware can be accessed from non-Windows programs as well as from
Windows. Displays, serial communications, pointing devices, and parallel printer ports all
fall into this category. The VxD serializes access to the hardware so that program output
from the various programs that are running does not get mixed together. Additionally, a
VxD can handle asynchronous data transfer more efficiently than a Windows device
driver. Therefore, for running under enhanced Windows, you may want to move that
functionality out of the device driver and into the VxD. However, the driver still needs the
functionality to run under Windows in real or standard mode.

Writing a VxD for serializing access to a piece of hardware will take a week or two. Build-
ing additional functionality into-a VxD for asynchronous data transfer will take a couple of
weeks longer than the time it takes to implement the code for doing the actual data transfer.

If you are writing an enhanced Windows virtual device for a piece of hardware that is only
slightly different from one of the standard supplied device drivers, it should only take a
few weeks. However, drivers for completely different video adapters or displays may take
up to several months to write.

1.5 Core Windows Modules That Interface With Your Driver

‘Windows has several machine-independert modules that take control of your computer’s
resources and maintain the user interface for application programs. Microsoft develops
these Windows modules, and they are ready for use with your computer.

Beta Release Microsoft Confidential April 1, 1990

1-4 Device Driver Adaptation Guide

The following modules form the heart of Windows:

Module Description

GDLEXE The Graphics Device Interface (GDI). It generates the graphics
operations needed to create images on the system display and
other display devices.

KERNEL.EXE Controls and allocates all the machine resources for use with

‘Windows. It works with your computer’s operating system to
manage memory, load the applications, and schedule the execu-
tion of programs and other tasks.

USER.EXE Creates and maintains windows on the display screen. It carries
out all user requests to create, move, size, or destroy a window;
controls the screen’s icons and cursors; and directs mouse, key-
board, and other input to the appropriate application.

You call GDI or KERNEL from your driver to request that they carry out certain functions.
USER may call your driver to perform some operations.

1.6 Other Modules in the Windows Environment

In addition to the core Windows modules (i.e., GDI, KERNEL, and USER), there are other
modaules including device drivers that are necessary to complete the Windows environ-
ment. Each module is designed to support a unique function within the system.

The following are brief descriptions of each of these modules and device drivers: (Lisa,
are these names still correct and is the list complete? What about GRABBER.EXE

and NETWORK.DRV?)

Module Description

COMM.DRV Supports serial device communications.

DISPLAY.DRV Supports the system display and pointing device cursor.

FONTS.FON Contains system font resources.

KEYBOARD.DRV Supports keyboard input.

MOUSE.DRV Supports mouse or other pointing device input.

OEMFONTS.FON Contains terminal font resources for running non-Windows
applications.

SOUND.DRV Supports the sound generation and system speaker.

SYSTEM.DRV Supports the system timer, information about system disks,

and access to OEM-defined system hooks.

April 1, 1990 Microsoft Confidential Beta Release

Overview of Windows 1-5

Module Description

WINOLDAP.GRB Supports data exchange between non-Windows applications
and Windows.

WINOLDAPMOD Supports the loading and execution of non-Windows appli-
cations.

The above generic filenames are reserved. Therefore, do not name your display driver DIS-
PLAYDRV. Instead, use a unique descriptive name with the .DRV extension. For example,
the high resolution EGA display driver provided with Windows is called

EGAHIRES.DRY. Or you can identify the vendor and device with a name such as
V7VGA.DRY for the Video7 VGA driver.

| 1.7 Compiling and Linking the Driver Modules

(Lisa, I pulled this section out of the old DDK files and just cleaned up some of the ter-
minology. We hadn’t discussed this anywhere else. But it needs a good technical re-
view to make sure it’s still accurate. Thanks.)

The following files are required to build the device driver module:

Type Description

Resource file Defines the dialog box for the DeviceMode function.

Source files Contain the device driver code, including the required func-
tons.

INCLUDE files Contain the definitions used by the device driver. The files

PRINTER.H (C preprocessor definitions) and
GDIDEFS.INC (assembly language definitions) should al-
ways be included, along with any additional INCLUDE files
the device driver supplies and uses.

Libraries Contain the supporting functions. As a minimum, device
drivers must link with the C Windows library (SWIN-
LIBC.LIB), USER.LIB, and GDLLIB.

1.8 Windows Calling Conventions

Beta Release

You can write Windows device drivers in assembly language or in a Microsoft high-level
language. Windows requires specific segment name and calling conventions that ail
Microsoft high-level languages and MASM provide. However, assembly language
programmers should use the CMACROS assembly language macro package since it will
provide them with these conventions automatically. They can also use MASM 5.1 and

Microsoft Confidential April 1, 1990

1-6 Device Driver Adaptation Guide

April 1, 1990

later versions, which also provide some built-in high level language features. (See Section
1.9, “How to Use the INCLUDE Files,” for details on using the CMACROS INCLUDE
file. See also the Microsoft Windows Software Development Kit Programmer’s Reference
for further details.)

Windows uses the following convention to call and return a device driver function:

The CS register points to the called driver’s code segment, which must not be larger
than 64 kilobytes. Drivers can depend on the code segment to remain in any fixed posi-
tion in physical memory if it is declared as fixed in the .DEF file. = _

Whenever you write code that calls a device driver exported function, your code must
execute the standard Windows prolog shown in the sample code that follows this
description. The cProc/cBegin macro pair does this automatically for you. The stand-
ard Windows prolog sets the DS (data segment) register to point to the called function’s
DGROUP (which must not be larger than 64K).

If declared as fixed in the .DEF file, the data segment is not moved and can be de-
pended on to remain in place. A device driver can save data in its data segment in one
function with full confidence that it will not be lost or modified by other parts of
Windows.

However, while it is fixed from the point of view of the owning code, it may not be so
in the view of code outside of Windows. That is, it might be swapped out to disk or
banked in EMS. Therefore, special measures must be taken by code that will be called
by memary-resident software.

However, the data segment can also be written to be moveable to allow for more flex-
ible allocation of memory space. Drivers need to be as small as possible to ensure suffi-
cient memory space for applications.

(RonG, pis review per your email on Fonts in High EMS) When mapping screen
fonts into high EMS, the fonts are locked into memory only when they are actually
being used. With large-frame EMS, they are mapped into high EMS, causing the map-
ping out of any discardable code currently occupying the space. Once the font is locked
down, the integrity of any discardable code cannot be guaranteed, and the global heap
is invalidated, making it impossible to load any new discardable code. Therefore, for
display drivers, all the font/text operations in the ExtTextOut, StrBIt, GetChar-
Widths, and (perhaps?) Control functions need to be in the fixed segment.

The SS register points to the caller’s (i.e., application’s) stack segment, which will be
different from the driver’s data segment. Dynamic Link Libraries (DLLs), such as
device drivers, do not have their own stack segment. They use whatever stack is availa-
ble (i.e., the application’s stack).

The called function must save and restore any of the following registers that it uses: SS,
SP, BP, SI, DI, and DS. However, if you use CMACROS.INC, the BP and DS
registers are automatically saved and restored.

The direction flag must be cleared when exiting any function that sets or modifies it.
The DS, SI, and DI registers must also be preserved.

Microsoft Confidential Beta Release

Overview of Windows 1-7

= A function call’s code must place returned values in AX if they are 16-bit, and in
DX:AX if they are 32-bit.

® Use FAR calls in your code to reach all the exported entries into a function. Each ex-
ported entry must execute a FAR retumn.

u The cEnd macro generates the proper epilog code (if necessary) and the return instruc-
tion.

= At the time of the call, all parameters for the entry are present on the stacks, with the
last parameter closest to the stackframe pointer, and the others at offsets deeper in the
stack. Thus, CALL OEMFUNC (arg1, arg2, arg3) is implemented:

push argl
push arg2
push arg3
call far OEMFUNC
The entry and exit code in the OEMFUNC function is as follows:
OEMFUNC PROC far
mov ax, ds ;Windows prolog support
nop
inc bp
push bp
mov bp, sp
push ds
mov ds, ax
sub sp, <i# bytes of local stack space>
push si
push di

Now let's get the parameters off of the stack:

e we wo

mov ax, [bp+A] snow AX contains argl
mov bx, [bp+81 ;similarly, BX contains arg2

mov cx, [bp+6] ;puts arg3 into CX

;s Body of routine here. ;

pop di

pop si

sub bp, 2

mov sp, bp

pop ds

pop bp

dec bp ;Windows epilog support

ret # bytes of parameter space, in this case 6
OEMFUNC ENDP

= All pointer arguments are passed as 32-bit quantities, occupying two WORD:s on the
stack. The segment portion is pushed first, then the offset portion. This allows you to
use the LDS or LES instructions tq retrieve pointers from the stack.

Beta Release Microsoft Confidential April 1, 1990

1-8 Device Driver Adaptation Guide

1.9 How to Use the INCLUDE Files

When writing assembly language drivers, you will need to incorporate at least the follow-
ing INCLUDE (.INC) files, which can be found in either the SDK or DDK. See the
Microsoft Windows Installation and Update Guide for the DDK for a list of the files pro-
vided with this kit.

s CMACROS.INC

s GDIDEFS.INC

s WINDEFS.INC

Some of these contain both C and ASM definitions and, therefore, can also be used in
drivers written in C. Some of the other include files provided with the DDK are

WINDOWS.H and SPOOL.H, which is used by printer drivers. (Lisa, is SPOOL.H the
correct name now?)

1.9.1 CMACROS.ING

April 1, 1990

‘The most important INCLUDE file is CMACROS.INC, which contains a set of assembly-
language macros that were written to be compatible with the Microsoft Macro Assembler
(MASM) v5.1. CMACROS.INC provides a simplified interface to the function and seg-
ment conventions of high-level languages, such as C and Pascal. (Lisa, has it been up-
dated to work with any newer MASM version that might have come out since this
was written last year?)

You must include this file at the beginning of the assembly-language source file by using
the INCLUDE directive. You must also give the full pathname if the macro file is not in
the current directory or in a directory specified on the command line. ‘

The Cmacros are divided into the following groups:

Group Description
Segment macros Give access to the code and data segments that an

application can use without any special definition.
Medium-, large-, and huge-model applications can
define additional segments by using the createSeg
macro. These segments have the names, attributes,
classes, and groups required by Windows.

Storage-allocation macros Allocate static memory (either private or public), de-
clare externally defined memory and procedures, and
allow the definition of public labels.

Function macros Define the names, attributes, parameters, and local
variables of functions.

Microsoft Confidential Beta Release

Overview of Windows 1-9

Beta Release

Group Description
Call macros Can be used to call cProc functions and high-level-

language functions. These macros pass arguments
according to the calling convention defined by the
?PLM option, which is defined in the file with the

Cmacros.

Special-definition macros Inform the Cmacros about user-defined variables,
function-register use, and register pointers.

Error macros ‘ Allow assertions to be coded into an assembly-lan-

guage source program. This lets you code optimum
instruction sequences for some operations based on
the variable allocation or bit position of a flagin a
WORD, and assert that the assumptions made are
true. They also generate an error message to the con-
sole and an error message in the listing. Both the text
that caused the error and the result of its evaluation
are displayed in the generated error message.

In other words, the Cmacros take care of many of the housekeeping tasks necessary for set-
ting up stack frames, calling between modules written in C and those written in assembly
language, and defining local and global variables.

Since the CMACROS.INC file has no comments in it, this section will include explana-
tions of some of the functions that you will use in a Windows device driver. For infor-
mation on the other functions, detailed descriptions of syntax, and individual examples,
refer to the chapter on Assembly-Language Macros in the Microsoft Windows Software
Development Kit Tools manual. (Is the reference correct?)

Setting Up Stack Frames

How to set up stack frames is the first concept to be discussed. The device driver is always
called from the device-independent Windows Graphics Device Interface (GDI). GDI
passes the parameters for each drawing command to the device driver on the stack. (All
calls from GDI are FAR calls.) When the driver is called, the parameters for the call have
been pushed onto the stack at offset ss:[bp+6]. By using the Cmacros, you can automati-
cally retrieve these parameters in a clear and easily documented way. Otherwise, you must
refer to these parameters by offsets from ss:[bp+6], which can quickly become confusing.
For more information on calling conventions, refer to the Mixed Language Programming
Guide included with the MASM documentation.

The following is a skeleton of the Bit Block Transfer (BitBIt) assembly language file show-
ing how CMACROS.INC is used typically in a device driver.

title BitBlt Skeleton

’

.xlist

Microsoft Confidential April 1, 1990

1-10 Device Driver Adaptation Guide
.]

April 1, 1990

memS ;use small model (the default)

2PLM=1 ;use Pascal calling (the default)

WIN=1 ;generate prolog-epilog code (the default)
?2CHKSTK=1 ;call CHKSTK for all procs in this file

include CMACROS.INC
dist

;Begin Data

Befine a public data item called MyData:
;]obalB MyData,0,2

6efine a private data item called BitBitData:

staticW BitBltData,0,1
sktnd Data

page

sBegin Code
assumes cs,Code
assumes ds,Data

éProc BitB1t,<FAR,PUBLIC,WIN,PASCAL>,<si,di>

parmD 1pDestDev
parmW DestxOrg
parmW DestyOrg
parmD 1pSrcDev
parmW Srcx0Org
parmi SrcyOrg
parmW xExt
parmW yExt
parmD Rop

parmD 1pPBrush
parmD 1pDrawMode

lTocalB LocalData

localW LocalWordData

localV Local2@BytesofData,20
cBegin

| Your code goes here.

I
cEnd

sEnd Code
end

If you have questions on any of the terms used' in the skeleton example, refer to the chapter
on Assembly-Language Macros in the Microsoft Windows Software Development Kit Tools

Microsoft Confidential

Beta Release

Overview of Windows 1-11

Beta Release

manual, Several Cmacros features will also be discussed here in more depth. (Is the
reference correct?)

Keywords

WIN and PASCAL, as used on the cProc line, allow you to overrule the 7PLM and
?WIN flags. In the skeleton example, they are redundant. However, the sample drivers in-
cluded in the DDK sometimes use them, and they are certainly harmless.

You can also use NODATA as a keyword in the cProc line. Normally, the prolog and
epilog code set the DS register to point to the default data segment whenever the process
type is FAR. However, this is sometimes wasteful and can result in an unwanted destruc-
tion of the AX register since AX is used to set up DS. Therefore, you can use the
NODATA keyword to prevent the prolog and epilog code from modifying DS. For ex-
ample:

cProc EnableCursor,(FAli.PUBLIC.HIN.PASCAL.NODATA).<es>

Case Sensitivity

If you are assembling your program using MASM’s case sensitivity switch (-Ml), some of
the names documented in the Assembly-Language Macros chapter of the Microsoft
Windows Software Development Kit Tools manual will not work. Make sure that you use
the following syntax for the default segment names:

Code Data Stack
and:
CodeOFFSET DataOFFSET StackOFFSET

Also notice that the arg command should be in lower case.

Defining Multiple Modules

There are some easier ways to define multiple modules using the same stack frame. For ex-
ample, take the case in which a BitBIt process, like the one shown in the skeleton ex-
ample, should really be logically divided into two modules. One would contain
hardware-independent code and the other would contain hardware-dependent code.
However, both of them still need to share the same variables that are passed on the stack
and defined as variable names by Cmacros. In such cases, some programmers would use
the following calling sequence in module one:

arg 1pDestDev
arg Destx0Org
arg DestyOrg

etc . . .
cCall BitBl1tModuleTwo

and the following receiving sequence in module two:

Microsoft Confidential April 1, 1990

1-12 Device Driver Adaptation Guide
L]

April 1, 1990

cProc BitBltModuleTwo<FAR,PUBLIC,WIN,PASCAL>
: parmD 1pDestDev
parmW DestxOrg
parmW DestyOrg
etc .
cBegin

However, this inter-module calling sequence is extremely wasteful in terms of setting up
the stack frame in both the caller and the FAR call. Instead, Cmacros allows you to create
a dummy cProc header in all the modules that will share the same stack frame (except, of
course, the calling module). Then, use the <nogen> qualifier on the cBegin line. Cmacros
will create the equates for the stack frame but will not generate any code in the dummy
process. After that, you can make NEAR calls to any subprocesses without any wasteful-
ness, as shown in the following example:

In File 1:

externNP Module2

cProc Modulel,<FAR,PUBLIC,WIN,PASCAL>,<si,di>
parmD Paraml
parmW Param2
parmB Param3

| some code.

cCall Module2

cEnd

In File 2:

cProc ModuleFamilyDummy,<FAR,PUBLIC,WIN,PASCAL>
parmD Paraml
parmW Param2
parmB Param3
cBegin <nogen> ;don‘t generate any code—just equate stack
;offsets for the parameters to symbolic names
cEnd <nogen> ;don't generate any code—just end the process

cProc Module2,<NEAR,PUBLICY
éBegin
;Now Module2 will be able to use the same stack frame variable as

;:Modulel. The far call has been avoided as well as the pushing of the
;stack frame in Modulel.

Microsoft Confidential Beta Release

Overview of Windows 1-13
w

éEnd

1.9.2 GDIDEFS.INC

GDIDEFS.INC allows you to refer to symbolic constants and structures by their Windows
standard names, which is good practice. To shorten the assembly time and cross-reference
lists, you can selectively include parts of GDIDEFS.INC by defining equates that tell the
assembler which parts to include. These equates are listed as follows:

Equate Definition

incLogical equ 1 Includes logical pen, brush, and font definitions
incDevice equ 1 Includes the symbolic names for GDIINFO definitions
incFont equ 1 Includes the FONTINFO and TEXTXFORM definitions
incDrawMode equ 1 Includes the DRAWMODE data structure definitions
incOutput equ 1 Includes the output style constants

incControl equ 1 Includes the escape number definitions

1.9.3 WINDEFS.ING

WINDEFS.INC contains two very useful macros that are used to turn off hardware inter-
rupts such as those from the floppy and hard disk controllers, math coprocessor, timer, key-
board, and mouse. Use the EnterCrit and LeaveCrit macros whenever you do not want
an asynchronous interrupt to reenter an area of code that Windows is executing.

Using the mouse interrupt as an example, it is possible for the mouse to generate interrupts
faster than your mouse-handling code can process them. Therefore, it is likely that
Windows could be updating a mouse coordinate when another mouse coordinate came
along wanting to be serviced. Due to this succession of interrupts, special care must be
taken to prevent any loss of mouse actions.

To manage this situation, when you are about to update your mouse coordinates, use the
EnterCrit macro. This will stop the mouse interrupts from occurring. After you get the
new mouse coordinates, then you can use the LeaveCrit macro to reallow interrupts. Do
not use simple CLI and STI instructions to accomplish this since they will not correctly re-
store the states of the flags and interrupts.

Beta Release Microsoft Confidential April 1, 1990

1-14 Device Driver Adaptation Guide

April 1, 1990 Microsoft Confidential Beta Release

Chapter

2 Display Drivers

(Lisa, do you want to provide me with a marketing-oriented spiel similar'to the one
you did for printer drivers? I already incorporated your last two printer paragraphs
since they seemed rather generic.)
This chapter describes the support you need to provide in your Microsoft Windows display
driver. Of course, the extent of the support you provide depends on the type of hardware
However, we strongly encourage you to implement all the structures and func-
tions defined in this chapter, if applicable to your device. By doing so, Windows appli-
cations will be able to take full advantage of your hardware device.

The DDK includes sample code for display driver sources. These provide you with ex-
amples of how the following functions are used by Windows to display output to the
screen:

=2 Qutput

= Enable and Disable

= RealizeObject

= ColorInfo

= BitBlt

u StrBlt/ExtTextOut

a Control

The functions are listed here and described in the following sections in the order in which
we recommend you implement them. A few additional functions that you also need to im-
plement are also briefly described here. These can be done in any order after StrBlit.

Detailed descriptions of all these functions are provided in Chapter 10, “Common Func-
tions.”

2.1 Filling Out the GDIINFO DataA Structure

The first step toward producing a successful Windows display driver is to fill out properly
the GDIINFO data structure. (You can find the file for this data structure in your model
driver.) The GDIINFO data structure teils Windows about the capabilities of your device.
It also tells Windows applications how to expand and contract their bitmaps to achieve a

Beta Release Microsoft Confidential April 1, 1990

2-2 Device Driver Adaptation Guide
L]

WYSIWYG appearance on your display. To ensure yourself of a consistent-looking dlS-
play, you must follow exactly the calculations in this section.

The GDIINFO data structure is organized as shown in the following table. All the entries
are WORDs (2 bytes). Most of the items will be discussed in greater detail in subsequent

Value Offset Contents .

dpVersion 0 Version number (always use the number 0300H)

dpTechnology 2 Device type (Plotter=0, Display=1, Printer=2,
other types are found in GDIDEFS.INC)

dpHorzSize Width of display in mm

dpVertSize Height of display in mm

dpHorzRes 8 X-resolution in pixels

dpVertRes 10 Y-resolution in scanlines

dpBitsPixel 12 Bits per pixel

dpPlanes 14 Number of planes

dpNumBrushes 16 Number of brushes

dpNumPens 18 Number of pens

20 Reserved (Must be 0)

dpNumPFonts 22 Number of fonts that the device has

dpNumColors 24 Number of true, non-dithered colors on device
(or number of reserved colors for palette-
capable devices)

dpDEVICEsize g;lemb“ of bytes required for PDEVICE struc-

dpCurves Curves capabilities

dpLines 30 Polyline drawing capabilities

dpPolygonals 32 Polygonal capabilities

dpText 34 Text drawing capabilities

dpClip 36 Clipping ability for shape drawing only

dpRaster 38 Miscellaneous capabilities (BitBIt)

April 1, 1990 Microsoft Confidential Beta Release

sections. For additional information on GDIINFO from a printer driver’s viewpoint, see
Chapter 5, “Printer Drivers.” ,

Display Drivers 2-3

Value Offset Contents
dpAspectX 40 X aspect
dpAspectY 42 Y aspect
dpAspectXY 44 Hypotenuse of X and Y aspect
dpStyleLen 46 Length of patterned line segments
dpMLoWin 48 Metric Lo-Res Window '
dpMLoVpt 52 Metric Lo-Res Viewport
dpMHiWin 56 Metric Hi-Res Window
dpMHiVpt 60 Metric Hi-Res Viewport
dpELoWin 64 English Lo-Res Window
dpELoVpt 68 English Lo-Res Viewport
dpEHiWin 72 English Hi-Res Window
dpEHiVpt 76 English Hi-Res Viewport
dpTwpWin 80 TWIP Window
dpTwpVpt 84 TWIP Viewport
dpLogPixelsX 88 Pixels per inch in X
dpLogPixelsY 90 Pixels perinchin Y
dpDCManage 92 DC Management (always 4 for displays)
94 5 WORD:s that are reserved (must be 0)
dpPalColors 104 Number of simultaneous colors
(for palette-capable devices)
dpPalReserved 106 Number of reserved system colors
(for palette-capable devices)
dpPalResolut 108 Palette resolution, which equals the

number of bits going into video DACS

2.1.1 Screen Metrics

The screen metrics entries include such items as width and height in mm. These values are
closely related to the screen resolution, aspect, and fonts that you want to use. (Lisa,
please check the following!)

Beta Release Microsoft Confidential April 1, 1990

2-4 Device Driver Adapiation Guide
.-~ |

‘Windows provides the following raster fonts:

Courier - a fixed-width font
Helv - a proportional font without serifs
Tms Rmn - a proportional font with serifs

Symbol - a representation of the AGFA Compugraphics POSTSCRIPT ® math symbols
and the Adobe ™POSTSCRIPT ® symbol sets

System - a proportional font without serifs

Fixed System - the Windows 2.0 fixed-width system font
Terminal

OEM

'Windows also currently provides six versions of these screen and system fonts:

COURA, HELVA, TMSRA, SYMBOLA, CGASYS, CGAFIX: for a 2 to 1, low-resolu-
tion device such as the CGA display. (Actual pixels per inch =96 in X and 48 in Y.)

COURB, HELVB, TMSRB, SYMBOLB, EGASYS, EGAFIX: for a 1.33 to 1 device
such as the EGA. (Actual pixels per inch = 96 in X and 72 in Y.)

COURC, HELVC, TMSRC, SYMBOLC: for a 1 to 1.2 device. (Generally used for
printing devices.) (Actual pixels per inch = 60 in X and 72 in Y.)

COURD, HELVD, TMSRD, SYMBOLD: for a 1.66 to 1 device. (Generally used for
printing devices.) (Actual pixels per inch = 120 in X and 72 in Y))

COURE, HELVE, TMSRE, SYMBOLE, VGASYS, VGAFIX: fora 1 to 1 device such
as the VGA display. (Actual pixels per inch =96 in X and 96 in Y.)

COURF, HELVF, TMSRF, SYMBOLF, 8514SYS, 8514FIX: for a 1 to 1 device such as
the 8514/A display. (Actual pixels per inch = 120 in X and 120 in Y.)

Pixels Per Inch

Far the Windows font mapper to match one of these default fonts to your display, you have
to “fix” the numbers used in the various screen metrics entries. First, you must decide on
what numbers to use in the two entries, “Pixels per inch in X” and “Pixels per inch in Y,”
which are offsets 88 and 90 in the structure. You should fill in the two entries with the “ac-
tual pixels per inch” numbers given in the above-mentioned list of fonts to ensure your
device can display these fonts. For example, if the target display card has square pixels,

use the closest entry for the “E” fonts or “F” fonts and put a 96 or 120 in offset 88 and a 96
or 120 in offset 90 of the data structure.

April 1, 1990

. Microsoft Confidential Beta Release

Display Drivers 2-5

Beta Release

Width and Height in mm

Once you have determined the “logical” pixels per inch, you can easily calculate the width
and height of the screen in mm. The equation for calculating the width in mm is as follows:

X-resolution in pixels (offset 8)

Pixels per inch in X (offset 88) © 2> "M per inch

You can similarly calculate the height in mm as follows:

Y—resolution in scanlines (offset 10)
Pixels perinch in Y (offset 90)

* 25.4 mm per inch

Feel free to round off these values to even numbers.

The Metric, English, and TWIP Windows and Viewports

Some Windows application programs rely on these numbers to produce printer output with
spacing that is proportional to the screen. By using these numbers, an application could
show a border or graphic picture that will be proportionately the same size on the printer as
it is on the screen.

You must keep all these ratios the same because it might be preferable for an application to
use the metric system rather than the inches/feet (English) system for its calculations. For

example, Windows Write allows the user to choose whether to express the border widths in
mm or inches. Therefore, it is up to the device driver to provide the correct numbers.

The Metric Lo-Res Window and Viewport consist of four WORD-length entries:

offset 48 Width in mm * 10

offset 50 Height in mm * 10

offset 52 X-resolution in pixels
offset 54 - (Y-resolution in scanlines)

The Metric Hi-Res Window and Viewport consist of four WORD-length entries:

offset 56 Width in mm * 100

offset 58 Height in mm * 100

offset 60 X-resolution in pixels
offset 62 - (Y-resolution in scanlines)

The English Lo-Res Window and Viewport consist of four WORD-length entries:

Microsoft Confidential April 1, 1990

2-6 Device Driver Adaptation Guide

April 1, 1990

offset 64 Width in mm * 1,000

offset 66 Height in mm * 1,000

offset 68 X-resolution in pixels * 254
offset 70 - (Y-resolution in scanlines * 254)

The English Hi-Res Window and Viewport consist of four WORD-length entries: _

offset 72 Width in mm * 10,000
offset 74 Height in mm * 10,000

offset 76 X-resolution in pixels * 254
offset 78 - (Y-resolution in scanlines * 254)

The TWIP (a pnnter 's point = 1/72 of an inch) Window and Viewport consist of four
WORD-length entries:

offset 80 Width in mm * 14,400
offset 82 Heightinmm * 14,400

- offset 84 X-resolution in pixels * 254
offet86 - (Y-resolution in scanlines * 254)

Notice that Windows performs a WORD-length, signed calculation on these windows and
viewports. Therefore, you cannot calculate numbers bigger than 32K (32,768). However, if
your screen is larger than just a few inches wide, you will exceed this limit when you start
calculating the English windows and viewports and may even exceed it on the Metric
windows and viewports. Fortunately, you can simply scale down the calculated values by
dividing them by some fixed amount. You must use the same amount to divide the “width
in mm and X-resolution” and the “height in mm and Y-resolution.”

For example, assume the following results to your TWIP calculation:

Width in mm = 280
Height in mm = 210
X-resolution = 1024
Y-resolution = 768

280 * 14,400 = 4,032,000 = Width in mm
210 * 14,400 = 3,024,000 = Height in mm
1024 * 254 = 260,096 = X-resolution

- (768 * 254) = - 195,072 = Y-resolution

A divisor that gives you a number < 32K for the width/X-resolution pair is 512.
A divisor that gives you a number < 32K for the height/Y-resolution pair is 384.

Microsoft Confidential Beta Release

Display Drivers 2-7

Therefore, the numbers that you should put in your GDIINFO data structure are as follows:

4,032,000 / 512 = 7875 = Width in mm
3,024,000 / 384 = 7875 = Height in mm
260,096 / 512 = 508 = X-resolution

- (195,072) / 384) = -508 = Y-resolution

The X and Y Aspect Ratios

These metric calculations are based on the aspect ratios'that you must know for your dis-
play cards. That is, you must know whether your display card has a 1:1 aspect ratio (square
pixels), a 1.33:1 aspect ratio (such as the EGA), or some other aspect ratio. You figured
this out when you chose which font metric to use. Now you must find whole numbers that
are less than 100 and that produce a whole number hypotenuse when put through the Py-
thagorean theorem equation. The equation is as follows:

a?+b2=c?

Where c? is the hypotenuse.

For example, if you use 10 for both a and b when you have a square pixel display, then you
will get the following:

10% + 10% = 200

The square root of 200 rounded to a whole number is 14. Therefore, for this example, you
would put the following:

X aspect (offset 40) = 10

Y aspect (offset 42) = 10

Hypotenuse of X and Y aspect (offset 44) = 14

The following is an example for a 1.33:1 display. If you choose 48 for the X-aspect and 38
for the Y-aspect, then the calculation will give a hypotenuse (rounded to a whole number)
of 61.

The Length of Patterned Line Segments

The final metric calculation is for the length of patterned (also known as styled) line
segments. This is simply calculated as follows:

2 * Hypotenuse

'Windows uses this number to make the patterned lines that it draws into bitmaps and onto
displays appear correct and consistent on different displays and printers.

2.1.2 Bit Planes and Bits Per Pixel

Beta Release

The EGA and VGA drivers included in this kit are planar in nature. Therefore, put the
number 4 in the “Number of Planes” (offset 14) entry. This means that they have 4 planes
and are capable of 16 true, non-dithered colors (two colors per plane to the fourth power =
16). It also has the number 1 in the “Bits Per Pixel” (offset 12) entry.

Microsoft Confidential April 1, 1990

2-8 Device Driver Adaptation Guide

Many of today’s more sophisticated displays allow you to draw onto them using pixel
color values, i.e., to write all of their planes in one pass. These devices are called packed
pixel devices and include the 8514/A and TI 34010-based devices.

The “Number of Planes” entry for an 8-bit per pixel driver is 1. However, the “Bits Per
Pixel” entry in the structure has the number 8, which indicates that it takes 8 bits (one
byte) to represent each pixel on the display. Therefore, such a device is capable of display-
ing 282256 colors on the screen.

The number of planes and bits-per-pixel also define the bitmap format that the device
driver must understand. See Chapter 12, “Data Structures and File Formats,” for more
information on the BITMAP data structure.

Some display devices allow addressing of the board in either planar or packed pixel mode.
However, it is more efficient for both you and Windows to use the packed pixel mode
whenever possible. For more information on the packed pixel sources included in the
DDK, see the Installation and Update Notes.

2.1.3 Supported Capabilities and the Output Function

April 1, 1990

Now you must decide what capabilities you want your driver to support. You will need to
decide on which shapes you will choose to draw using your device’s hardware. Windows’
only requirement is that you be able to draw solid or patterned single-pixel-wide horizontal
lines (scanlines) and solid single-pixel-wide lines in any direction (polylines).

However, it may be faster for you and produce better results if you use your display’s
advanced hardware to draw such shapes as circles, ellipses, and alternate-fill polygons.
The Curves, Polylines, and filled figure (Polygonal) capabilities allow you to tell Windows
that you want it to call your Qutput function to give you a chance to draw the figure with
your hardware.

Windows 2.0 and later versions give you further flexibility in supporting Output shapes.
Assume that you can draw a polygon with 256 vertices but not with 257. Or, that you can
draw ellipses to your screen but do not wish to duplicate the algorithm for ellipse drawing
into main memory bitmaps (Windows, however, requires that any figure you claim you
can draw onto the screen must also be able to be drawn to a main memory bitmap).

You then say that you have the ability to draw polygons and ellipses. When your driver’s
Output function is called, you can have it retum a failure return code and have Windows
synthesize the figure for you with the basic building blocks (scanlines, solid polylines, and
pixels).

The following is a list of the Output function’s capabilities and their corresponding offset
numbers. These will be discussed in greater detail in the following subsections.

® Curves (offset 28)
u Polyline Drawing (offset 30)
= Polygonal Drawing (offset 32)

Microsoft Confidential Beta Release

Display Drivers 2-9
. -]
s Text Drawing (offset 34)
m Clipping (offset 36)
= Miscellaneous Raster/BitBlt (offset 38)

Curves (Offset 28)

The following table shows what you can draw when you set each bit:

Value Bit Capability

CC_CIRCLES 0 Circles

CC_PIE 1 Pie wedges

CC_CHORD 2 Chord arcs

CC_ELLIPSES 3 Ellipses

CC_WIDE 4 Wide, solid-curved borders around curve

figures

CC_STYLED 5 Patterned lines surrounding curves

CC_WIDESTYLED 6 Wide, patterned-curved borders around curve
‘ figures

CC_INTERIORS 7 Can fill the interiors of curves

NOTE Al other bits in the WORD should be set to zero. If the driver doesn’t support curves, all bits
should be set to zero.

Windows can use an ellipse to draw a circle if circles are not supported by the driver. If
your device can fill the ellipse, then you should set the interiors bit. Windows can also use
an alternate-fill polygon to draw wide borders (both solid and patterned) just as efficiently
as if the driver supported them correctly.

Polyline Drawing (Offset 30)

The following table shows what you can draw when you set each bit:

Value Bit Capability

LC_POLYLINE 1 Polylines (all display drivers must set this bit)
LC_MARKER 2 Reserved

LC_POLYMARKER 3 Reserved

Beta Release Microsoft Confidential _ ' April 1, 1990

2-10 Device Driver Adaptation Guide
L.

April 1, 1990

Value Bit Capability

LC_WIDE 4 Wide lines

LC_STYLED 5 Patterned lines
LC_WIDESTYLED 6 Wide patterned lines
LC_INTERIORS 7 Can fill the interiors of wide lines

NOTE All other bits in the WORD should b set to zero. If the driver doesn’t support any line capabili-
ties, all bits should be set to zero.

If your device supports alternate-fill polygons, then Windows can efficiently use the poly-
gons to create wide lines. However, if your device supports wide lines, you might want to
support them, since you cannot “fail” on drawing wide lines into a main memory bitmap.

If you support styled lines, make sure that the lengths of the line segments that your hard-
ware draws are the same as those at offset 46 (dpStyleLen) of GDIINFO. Also, if you sup-
port wide or styled polylines, you must support them to both main memory bitmaps and to
your screen.

NOTE | you decide to support styled lines, you must support them to both main memory bitmaps
and screen bitmaps. This is because Windows will not let you return a failure from Output for any of
the line styles.

If your hardware supports styled and wide lines, it is probably worth the effort to imple-
ment them, even though they are used rather infrequently. However, Windows also does a
fine job of synthesizing them by using pixel draws, which are slow but work. (In the
sample drivers, wide lines are not supported, but styled lines are.)

Polygonal Drawing (Offset 32)
The following table shows what you can draw when you set each bit:

Value Bit Capability
PC_POLYGON 0 Altemate-fill polygons
PC_RECTANGLE 1 Rectangles
PC-TRAPEZOID 2 Winding number fill polygons
PC_SCANLINE 3 Scanlines (all display drivers must set this bit)
PC_WIDE 4 Wide borders around polygonal figures
Microsoft Confidential Beta Release

Display Drivers 2-11

Beta Release

Value Bit Capability

PC_STYLED 5 Patterned borders around polygonal figures

PC_WIDESTYLED 6 . 'Wide patterned borders around polygonal
figures

PC_INTERIORS 7 Can fill the interiors of polygonal figures

NOTE All other bits in the WORD should be set to zero. If the driver doesn’t support polygons, all bits
should be set to zero.

Again, we do not recommend supporting wide borders since Windows will use alternate-
fill polygons (i.e., the kind that most hardware supports) to produce these borders.

There are no drivers currently written that support the winding number fill polygons. Most
hardware is incapable of doing winding number fill polygons because it is a fairly complex
algorithm.

However, we do recommend patterned border support if the hardware supports it. Great
speed increases are possible with polygonal patterned borders.

Text Drawing (Offset 34)

The following table shows what you can draw when you set each bit. The bits marked with
an asterisk (*) are the ones you should set (if your device has the capability).

Value Bit Capability

TC_OP_CHARACTER 0* Can draw text with pixel justification (re-
quired)

TC_OP_STROKE 1* Can do everything that bit 0 set can, and
also rotate text

TC_CP_STROKE 2* Canclip to a pixel boundary(required for
displays)

TC_CR_90 3 Can rotate text 90 degrees (does not
work)

TC_CR_ANY 4 Can rotate text to any angle (does not
work)

TC_SF_X_YINDEP 5 Can scale a font in X and Y directions in-
dependently

TC_SA_DOUBLE 6 Can double the size of the font

Microsoft Confidential April 1, 1990

2-12 Device Driver Adaptation Guide
L~ -~

Value Bit Capability

TC_SA_INTEGER 7 Can scale the font by any mteger size
(3X,4X...) :

TC_SA_CONTIN 8 Can scale the font by any amount

TC_EA_DOUBLE 9% Can bold the font

TC_IA_ABLE 10* Can italicize the font

TC_UA_ABLE 11+ Can underline the font

TC_SO_ABLE 12% Can do a “strikeout” on the font

TC_RA_ABLE 13* Can draw with raster fonts (reqmred for
displays)

TC_VA_ABLE 14* Can draw with vector fonts (not on dis-
plays; only for plotters.)

TC_RESERVED 15 Reserved

Clipping (Offset 36)

If your hardware device can “scissor clip” to a rectangular region, then you should puta 1
here and support clipping in your driver’s Qutput function.

This capability is used only by Windows to determine whether or not you can clip Qutput
shapes. Text must be clipped to a pixel boundary by the driver no matter what is placed in
this field.

Output, StrBit (ExtTextOut), BitBIt, SetDIBitsToDevice, and UpdateColors (for
palatte-capable devices) are the only functions that require any clipping.

Miscellaneous Raster/BitBIt (Offset 38)

Many of these capabilities are required, and not optional, for displays. For example,
Microsoft has evaluated some Windows 2.x drivers that do not support huge (>64K) bit-
maps. Many applications, such as Windows Paint, depend on this support and will not
work correctly if the display driver does not handle them. Also, if you expect to support
most of the major applications, your display driver must support ExtTextOut.

Since FastBorder shares a bit with the ExtTextQut capability, you must set the bit.
However, you can return a failure code from FastBorder for which Windows will compen-
sate. The 8514/A driver does this.

The following table shows what you can draw when you set each bit. The ones marked
with an asterisk (*) are required for display drivers.

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers 2-13
[~ - eRRRERREEEEE————— e o o -

Value Bit Capability

RC_BITBLT 0* Can do BitBIt

RC_BANDING 1 Requires GDI banding support (printers
only)

RC_SCALING 2 Requires GDI scaling support (printers
only) '

RC_BITMAPG64 3* Supports huge, >64K (multi-segment) bit-
maps

RC_GDI20_OUTPUT 4* Supports ExtTextOut, FastBorder, and
GetCharWidth

RC_GDI20_STATE 5 State block support (printers only)

RC_SAVEBITMAP 6 SaveScreenBitmap capability (strongly
recommended for displays)

RC_DI_BITMAP 7 Can do Get and Set DIBs and RLE to

and from memory in all the DIB resolu-
tions (1,4,8, and 24 bits-per-pixel).
However, if the flag is not set, GDI will

simulate in monochrome.
RC_PALETTE 8 Can do color palette management
RC_DIBTODEV 9 Can do SetDIBitsToDevice
RC_BIGFONTS 10 Can do >64K fonts (set only in protected

mode) in the new version 3.0 format.
However, if the flag is not set, all the
fonts will be in the old version 2.0 format.

RC_STRETCHBLT 11 Can do StretchBIt
RC_FLOODFILL 12 Can do FloodFill

2.2 The Enable and Disable Functions

The following are the call parameters for Enable and Disable:

cProc Enable,<FAR,PUBLIC,WIN,PASCAL>,<si,di>
parmD 1pDestDev
parmW Style
parmD 1pDestDevType
parmD 1pOutputFile
parmD 1pData

Beta Release Microsoft Confidential April 1, 1990

2-14 Device Driver Adaptation Guide
s

cProc Disable,<FAR,PUBLIC,WIN,PASCAL>,<si,di>
parmD 1pDestDev

GDI calls the Enable function twice for display drivers. The first time, the passed variable
is Style = 1. This means that GDI wants you to move your GDIINFO data structure into the
area pointed to by [pDestDev. You must return, in the AX register, the size in bytes (=
sizeGDIINFO) of your GDIINFO data structure.

The second time (with Style = 0), three things miust occur. These are discussed in the fol-
lowing sections.

2.2.1 Initializing Your Graphics-Board Hardware

(Peterbe, does this section just refer to 2.x drivers now? Has this been fixed?)

First, you must initialize your graphics-board hardware to be ready to run Windows.
However, there is a special caveat here. For Windows to properly initialize its keyboard,
you must set the byte at 40H:49H into an IBM® ROM BIOS-compatible graphics mode.
For many high-resolution devices that do not use the ROM BIOS to set up their modes,
this may seem unnecessary. However, the Windows keyboard will be locked out unless
this is done.

There are two possible ways to do this. Either move a 6 (CGA graphics mode) into the
byte at 40H:49H, or use the ROM BIOS call to set mode 6. Be sure to save the original
byte at 40H:49H so you can restore it at Disable time.

The following is an example of how to do this using the ROM BIOS:

mov ax,0fodh ;save the current display mode

int 10h

mov DisplayModeSave,al ;make sure this is in your default
;Data segment

mov ax,6 ;set to IBM display mode 6

int 18h

2.2.2 Initializing Your Other Hardware

April 1, 1990

Next, you should perform any initialization of your other hardware. You do not need to
clear the screen at this time (however, some prefer to do so). Windows will call BitBIt to
do that for you.

‘While initializing, you must call a special function (INT 2FH) to make your Windows
driver work in the OS/2 Compatibility Box. Because Windows is so graphic in nature and
because the cursor operates asynchronously from the rest of Windows, you must be sure to
leave and reenter Windows in an orderly fashion when switching in and out of the Com-
patibility Box.

Your hardware could get extremely confused if OS/2 switched away from you while you
were in the middle of setting up for a draw! If OS/2 calls into the Compatibility Box using

Microsoft Confidential Beta Release

Beta Release

Display Drivers 2-15

INT 2FH when you are in a state from which you cannot switch in an orderly fashion, you
can return a failure code to OS/2. OS/2 will keep trying to call you until it receives a
successful code. Then, you should save any states that you need to restore upon reentry
and allow the switch to occur.

‘When you switch back into the Compatibility Box, you reinitialize your hardware and call
Windows to repaint the screen. OS/2 uses the INT 2FH functions 4001H (Notify Back-
ground Switch), to switch from the Compatibility Box to OS/2, and 4002H (Notify Fore-
ground Switch), to switch back into the Compatibility Box. (See the following
subsections for descriptions of these functions.)

0S/2 also uses the following functions:

Number Name

4000H Enable VM-Assisted Save/Restore
4003H Enter Critical Section

4004H Exit Critical Section

4005H Save Video Register State

4006H Restore Video Register State
4007H Disable VM-Assisted Save/Restore

Therefore, the Enable function must hook INT 2FH and check each call to that interrupt to
see if it is one of the above-mentioned functions. You hook the interrupt by using the fol-
lowing MS-DOS functions: 35H to get the old vector and 25H to set the new vector. Be
sure to save the address of the old interrupt.

You should look at the SSWITCH.ASM file in one of the sample drivers to see how INT
2FH is hooked. Notice that you must hook INT 2FH, even when running under versions
3.x or 4.x of MS-DOS, because many network systems (including MS-NET) that are run-
ning under a “real mode” MS-DOS will want to use the same functionality that OS/2 uses.
See the following subsections and Volume 2, Chapter 42, “INT 2FH APIL,” for more
detailed information.

However, before you hook INT 2FH, you must get the address of a special function in the
Windows USER module that forces a repaint of the entire screen. This is because when
you switch back from OS/2 to Windows, which is running in the Compatibility Box, you
must restore the screen to the state in which it was when you exited. Fortunately, the
USER module’s function can do this automatically for you.

To get the address for this special function, first call the Windows function GetModule-
Handle. This returns a special identifier to the USER module called a handle.

Once you have the handle to the module, you call the Windows function GetProcAddress,
giving the special process identifier for the repaint function (this identifier is always the

Microsoft Confidential April 1, 1990

2-16 Device Driver Adaptation Guide

April 1, 1990

number 275 decimal). GetProcAddress returns to you a long pointer to the repaint func-
tion, which you then save and call when appropriate.

(MarcW, please review carefully my edited text here.)

INT 2FH/AX=4000H - Enable VM-Assisted Save/Restore

A Virtual Machine (VM) application (such as Windows) can issue this call when it is in-
itializing to determine what level of virtualization the Virtual Display Device (VDD) sup-
ports and to disable I/O trapping of unreadable registers whenever this VM is in the
foreground. The VDD instead relies on the VM's INT 2FH support to save and restore the
VM'’s register state (see functions 4005H and 4006H). If this capability is enabled, the
VDD returns in AL a non-zero value, which may be one of the following:

001H - No modes virtualized in background

002H - Only text modes virtualized in background

003H - Only text and single-plane graphics modes virtualized
OFFH - All supported video modes virtualized

The state of the video adapter at the time this call is made will be the state restored prior to
Notify Foreground Switch (function 4002H) and requests by Restore Video Register
State (function 4006H). Also, video memory is no longer saved across screen switches; it
is the application’s responsibility to completely reinitialize video memory after a Notify
Foreground Switch request.

INT 2FH/AX=4001H - Notify Background Switch

The VDD issues this call to a VM that is being unconditionally switched to the back-
ground. Once this call is complete, the VM can continue to run. However, if it accesses
video memory while in an unvirtualized video mode, it will be frozen until brought to the
foreground again. The VM must return from this call within 1000ms; otherwise, the screen
switch will proceed anyway.

It is expected, though not required, that an application that has enabled VM-Assisted
Save/Restore (function 4000H) will not access video memory or registers after this notifi-
cation, to avoid being frozen in a video mode that cannot be virtualized. However, any
application that does so can still be detected and frozen if the operation cannot be virtual-
ized. When VM-Assisted Save/Restore is not enabled, the VM’s registers and memory
are completely saved after this call has retumed (or timed-out).

INT 2FH/AX=4002H - Notify Foreground Switch

The VDD issues this call to a VM that is being unconditionally switched to the foreground.
The VM can assume that it once again has complete access to the physical display hard-
ware. No time-out is enforced on this call.

If the VM has enabled VM-Assisted Save/Restore, it is ndw expected to reinitialize
completely the video memory. The state of the adapter will already be restored to the state
that existed when function 4000H was issued. If VM-Assisted Save/Restore is not

Microsoft Confidential Beta Release

Display Drivers 2-17

Beta Release

enabled, the full state of the adapter (memory and registers) will already be restored, and
this call need not be acted upon.

Under certain error conditions, this notification may be issued without a corresponding
Notify Background Switch (function 4001H); an example is the critical section time-out,
discussed in the following two subsections.

INT 2FH/AX=4003H - Enter Critical Section

A VM application (such as Windows) issues this call whenever it is in a critical section and
consequently cannot respond to a Save Video Register State request (function 4005H).
When a Save is required (e.g., to reprogram temporarily the video hardware to perform a
Clipboard copy operation) and the VM is in a critical section, the required operation is
postponed for up to 1000ms or until the Exit Critical Section call (function 4004H) is
made, whichever comes first. If time-out occurs, then the VDD reprograms the hardware
anyway and, when its operation is complete, initiates the Notify Foreground Switch re-
quest (described earlier in this section), in an attempt to reinitialize the application properly.

A count of Enter Critical Section requests is kept, so that nested calls can be made. If the
count will overflow, the Enter request is ignored.

INT 2FH/AX=4004H - Exit Critical Section

A VM application (such as Windows) issues this call when it has completed its critical sec-
tion processing. If there is a pending Save Video Register State request, then it is per-
formed immediately afterward.

The count of Enter Critical Section requests is decremented. If the count will underflow,
the Exit Critical Section request is ignored.

INT 2FH/AX=4005H - Save Video Register State

The VDD issues this call when it requires access to the video hardware registers (e.g., fora
full-screen Clipboard copy operation). The VM receiving this call must save any data nec-
essary to restore effectively its video state when a Restore Video Register State request
(function 4006H) is issued later. The VM must return this call within 1000ms; otherwise,
the required operation will proceed anyway.

This call is issued only if the VM has enabled VM-Assisted Save/Restore (see function
4000H). It is not issued prior to Notify Background Switch calls (function 4001H); it is
issued only at times when the hardware must be reprogrammed for what are essentially
brief and non-visible operations.

INT 2FH/AX=4006H - Restore Video Register State

The VDD issues this call when it relinquishes to a VM the access to the video registers.
The VM receiving this call should restore any register states necessary to continue uninter-
rupted foreground operation. No time-out is enforced on this call.

Microsoft Confidential April 1, 1990

2-18 Device Driver Adaptation Guide

This call is issued only if the VM has enabled VM-Assisted Save/Restore (see function
4000H). Whatever registers the VDD modified are restored to the state saved at the time of
function 4000H. In other words, before this call is issued, every register is guaranteed to be
either unchanged or reset to the state at the time of function 4000H; precisely which
registers may be reset is undefined, but the set is restricted to those Sequencer and
Graphics Controller registers that do not affect the display.

INT 2FH/AX=4007H - Disable VM-Assisted Save/Restore

A VM application (such as Windows) issues this call when it is terminating to re-enable
I/O trapping of unreadable registers whenever this VM is in the foreground. The INT 2FH
functions that save and restore the VM’s register state (4005H and 4006H, defined earlier
in this section) are no longer issued for this VM, and the enter/exit critical section services
(4003H and 4004H, also defined earlier) are ignored.

2.2.3 Copying Your PDEVICE Data Structure

April 1, 1990

The last thing to do while in your Enable function is to copy the PDEVICE structure you
want to the area pointed to by lpDestDev. This call to Enable should return a 1 in AX if all
was successful. Otherwise, it will return a 0.

The PDEVICE data structure defines so-called physical objects used solely by the device
driver to identify to itself such things as bitmaps, pens, and brushes. Therefore, the con-
tents of this data structure are normally determined by the device driver writer.

The PDEVICE structure has only one WORD-length field that is required by Windows.
That field is the first WORD in the structure. For displays, it must hold the number 2000H.
This number will be put into the first WORD of any BITMAP data structure (always
pointed to by the IpDestDev parameter passed in the call) that Windows asks the device
driver to draw onto the device.

If the bitmap is to be drawn into a “main memory” bitmap, the first WORD of the BIT-
MAP data structure will always be 0. In this way, the device driver can tell where to draw
the bitmap.

All the other fields in the PDEVICE structure may or may not be used by the driver in
whatever way it wants to.

The “bitmapped” displays (such as the CGA and VGA) duplicate a BITMAP data structure
into the PDEVICE structure. This is because, in most cases, their drawing functions work
exactly the same for drawing onto the device as they do for main memory draws.

In the case of high-resolution (non-bitmapped) devices, you probably only need to use the
required first WORD of the PDEVICE structure. Since PDEVICE is passed to you on al-
most every call, you may just want to store some appropriate states in it. This is totally up
to you.

Microsoft Confidential Beta Release

Display Drivers 2-19

2.2.4 Comments on the Disable Function

This is a simple function. When the Disable function is called, first return your device to
the state in which it was when you started Windows, and then restore the byte at 40H:49H
to its original state and unhook yourself from INT 2FH.

In protected mode, the device should now ask enhanced Windows to start I/O trapping
again.

The Disable function is called whenever the Windows graphics mode is about to termi-
nate. That is, whenever the user wishes to leave Windows or switch to a “badly behaved”
non-Windows application (one that cannot run in a window since it relies on being able to
call the screen hardware directly).

It is not called when switching in and out of the OS/2 Compatibility Box (OS/2 takes care
of hardware reinitialization). When returning from a non-Windows application, the Enable
function (with Style = 0) is called.

Over a non-Windows application call and during the “switch-out” from the Compatibility
Box to OS/2, your driver’s Data segment will be saved intact. Other segments will be
thrown out. Therefore, your driver should treat accordingly any data that it needs to have
saved. Also, your Enable process should reinitialize any flags relating to screen states
since these will probably be destroyed by the exit to the non-Windows application.

2.3 The RealizeObject Function

The following are the call parameters and return values for the RealizeObject function:

cProc RealizeObject,<FAR,PUBLIC>

parmD 1pDestDev

parmW Style

parmD 1pLogicalObj

parmD 1pPhysicalObj

parmD 1pTextXForm (or WindowOrigin)
Returns:

If IpPhysicalObj = 0, it returns the size required for a physical object in AX.
If IpPhysicalObj <> 0, it returns 1 if successful and zero if unsuccessful.

2.3.1 Background Information

Beta Release

The Windows Graphics Device Interface (GDI) is a device-independent graphics drawing
engine. It communicates with a Windows application through the Windows Application
Programming Interface (API), which is documented in the Microsoft Windows Software
Development Kit. The GDI then calls your device driver to translate its device-independent
graphics order into a real picture on a screen or printer page.

Microsoft Confidential April 1, 1990

2-20 Device Driver Adaptation Guide

April 1, 1990

‘Windows recognizes three types of objects at the device driver level:

& Pen

= Brush

= Font

The pen is used to draw polylines and borders around objects drawn by the Output func-

tion. It has three attributes:

u Color

= Style (or pattern, such as dotted lines)

u Width

The second object is called a brush (or pattern). This object is used to fill figures drawn by

Output, and to fill (with some logical operation) rectangular areas drawn by BitBIt.

For example, the rectangular areas that make up a Windows screen are all drawn by BitBIt

using a brush. The brush has the following attributes:

u Pattern (an 8-pixel by 8-pixel repeating block pattern)

n Color(s)

= Hatch (predefined patterns that use an explicit foreground and background color that is
assigned to them) :

The last object is the font that is used to draw text by the StrBlt and ExtTextOut func-
tions. Display drivers generally do not realize fonts and should fail with an error return
code of zero if asked to do so.

Hardware rarely uses the exact same representation of a Windows object that Windows
does. For example, it is inconvenient for the IBM 8514 display adapter to deal in terms of
RGB 24-bit colors. It prefers to look at colors as 8-bit quantities. However, the most
device-independent way for an application to pass down its desired color is by using the
RGB representation.

The RealizeObject function is where the translation between device-independent (or logi-
cal) and device-optimal (or physical) objects takes place.

But why not simply use GDI’s logical objects and translate them into device-optimal ob-
jects at the actual time of drawing? The answer is that GDI tries to be economical. It stores
many pretranslated objects and might use this same object in hundreds of different draws.
The translation is done only once for many draws.

Microsoft Confidential Beta Release

Display Drivers 2-21
. s e |

2.3.2 General Attributes

The following is a brief discussion of the general attributes of the RealizeObject function
and how best to use it for display drivers.

First, we must reiterate the most important concept of the Windows display driver inter-
face:

Whatever you do on the screen, you must also be able to do into a main (host) memory bit-
map.

However, some displays support many of the complex drawing functions that Windows al-
lows the driver to support. For example, assume there is a certain display device that sup-
ports all sorts of patterned line drawing with any width of line.

Normally, the device driver writer would register all of these capabilities into his
GDIINFO data structure and, then, write a polyline routine with a physical pen that sup-
ports wide and styled lines. Everything seems to work well. The writer then runs some of
the toy applications included in this kit and everything works really fast.

Unfortunately, Windows requires the same abilities (the ability to write wide and styled
polylines) for drawing into an arbitrary main memory bitmap. The device driver writer
would have to duplicate all of his board’s wide and styled line drawing capability into an
8086 routine running on the PC. Not only is this quite often a huge task in terms of the al-
gorithm, but it also makes the device driver unnecessarily large. Therefore, the device
driver writer should often allow GDI to support the more complex pen styles and widths,
even though there is a sacrifice of some speed when drawing with these pens.

2.3.3 The Pen Object

The logical pen has the following structure:

Value Offset Description
lopnStyle 0 Pen style
lopnWidth 2 Width of pen in pixels
4 Height of pen in scanlines
lopnColor 6 RGB pen color (doubleword: high byte is 0)
The following are the possible styles that can be passed in offset 0 of the logical pen struc-
ture:
Value Style code Description
LS_SOLID 0 Solid line
LS_DASHED 1 Dashed line

Beta Release Microsoft Confidential April 1, 1990

2-22 Device Driver Adaptation Guide
S S

" Value Style code Description
LS_DOTTED 2 Dotted line
LS_DOTDASHED 3 Dot-dashed line
LS_DASHDOTDOT 4 Dash-dot-dotted line
LS_NOLINE 5 NULL. Draw no line.

Be sure to support the NULL style in your drawing code. If you get a pen with this style,
you should draw no line and return a success code.

You might want to not support wide and/or styled lines. If you do support them, you must
make sure that you support the same styling algorithms when drawing to the screen and
main memory. However, GDI is able to synthesize correctly both wide and styled lines
quite efficiently. Therefore, you may not want to support them in your first pass and add
their support later only if necessary. To do so, just set the correct bits in your GDIINFO
data structure to tell Windows that you do not support wide and/or styled lines.

Under certain conditions, GDI may pass you a logical pen with a wide or styled line, even
if you have told GDI that you do not support them. In that case, realize the pen into a physi-
cal object with a solid, one-pixel wide (nominal) pen. GDI will be smart enough to still do
the styling and wide-line activities itself.

The physical pen structure may be anything that you like. You may want to put special
case flags into the physical pen to communicate special case drawing enhancements to the
actual drawing routines.

2.3.4 The Brush Object

April 1, 1990

The logical brush has the following structure:

Value Offset Description

IbStyle 0 Brush style (0=Solid, 1=Hollow, 2=Hatched, 3=Pat-
terned)

IbColor 2 'For solid brushes: RGB color (high byte = 0) For

palette-capable devices, if the high byte is not zero,
then the low WORD is an index and not an RGB.

For hatched brushes: RGB foreground color (high
byte = 0)

For patterned brushes: pointer to pattem BITMAP
structure

IbHatch 6 Hatch style (not used for other brush styles)

Microsoft Confidential Beta Release

Display Drivers 2-23

Value Offset Description

IbBkColor 8 . Physical color for hatch background (not RGB. See
Section 2.4, “The ColorInfo Function,” for a descrip-
tion.)

You should realize hollow brushes. If they are passed to a drawing routine, no fill should
be done at all. However, if the raster operation that is passed to BitBlt is NOT Destination,
you should logically NOT the entire rectangular area passed, even if the passed brush is
hollow.

Solid brushes can be dithered. If your Style is solid and does not match exactly the color
that you have in your palette, then you probably want to dither it. For an example of how
to dither, refer to the sample code included with the DDK.

The following are the possible hatch styles that can be passed in offset 6 of the logical
brush structure:

Value Style code Description
HS_HORIZONTAL 0 Horizontal (—)
HS_VERTICAL 1 Vertical (lll)
HS_FDIAGONAL 2 Forward diagonal (/)
HS_BDIAGONAL 3 Backward diagonal (W)
HS_CROSS 4 Cross (++++)
HS_DIAGCROSS 5 Diagonal crosshatch (XXXX)

2.3.5 Using the RealizeObject Parameters

Beta Release

It is important to understand how to use the RealizeObject parameters. When your display
is called, you must first determine whether the caller (GDI) actually wants you to realize

. an object, or if it is asking for how much space to allocate for the realized (physical) ob-

ject.
If GDI is asking for the size of the physical object, the parameter /pPhysicalObj will be

zero. You then return in AX the size (in bytes) of your physical pen, brush, or font. If you
do not support the realization of fonts, simply return a zero.

If GDI is asking you to realize a logical object into a physical one, [pPhysicalObj will be
pointing to the memory location where you must put your completed physical object, and
IpLogicalObj will be pointing to the logical object that GDI wants you to translate.

The Style parameter tells you whether or not you are to realize a pen (=1), brush (=2), or
font (=3). You would then do the translation and return AX=1 as a success code or AX=0

Microsoft Confidential April 1, 1990

2-24 Device Driver Adaptation Guide :
L~~~ -~~~]

as a failure code. For example, if you do not support the realization of fonts, you would re-
turn AX=0.

The last parameter is “dual-purpose.” If you are asked to realize a font, it is a pointer to the
TEXTXFORM data structure. (See Chapter 13, “The Font File Format,” for more infor-
mation.)

If you are asked to realize a brush or patterned pen, this parameter is not a pointer. It is ac-
tually two WORDs — the starting coordinates in X and Y of the window in which the
application (the one that called GDI) is running.

Therefore, it is essential to establish a pattern reference point. Most displays use a pattern
reference point starting at the same location as the starting point of the draw. In other
words, for an 8-bit repeating pattern, the first bit of the pattem is at the X-origin of the
draw. Then, at the X-coordinate (X-origin+8), the pattern begins to repeat itself.

During BitBIt, the pattern reference point must be at the beginning of the window in
which the application is running. Therefore, you must rotate any patterns so that they begin
their repetition relative to the application’s window. If you do not rotate them, you run the
danger of the patterns not “meshing” if the user decides to move the window containing
the application to a different place on the screen.

2.4 The Colorinfo Function

April 1, 1990

The following are the call parameters and return values for the ColorInfo function:

cProc ColorInfo,<FAR,PUBLIC>,<si,di>
parmD 1pDestDev
parmD Colorin
parmD 1pPhysicalColor
Returns:

If IpPhysicalColor is NULL, DL:AX will contain the RGB color corresponding to the
physical color passed in Colorin. DH must be zero.

If IpPhysicalColor is not NULL, DL:AX contains the RGB value of the device’s color
that most closely matches the color passed in Colorin. DH must be zero.

The next step in writing your device driver is the ColorInfo function. This function is
closely related to RealizeObject since it deals with translations between logical colors,
which are passed as doubleword RGB values (with the high byte of the doubleword = 0),
and physical colors, which are those recognized and used most readily by your device.
However, for palette-capable devices only, if the high byte is not zero, then an index
(WORD) is passed and not an RGB color.

Since the RealizeObject function also requires the translation from logical to physical
colors when creating physical pens and brushes, you may have already written most of this
function when you wrote the RealizeObject function. Simply follow the instructions

Microsoft Confidential Beta Release

Display Drivers 2-25

found above and in the description for the ColorInfo function given in Chapter 10, “Com-
mon Functions.”

NOTE The high byte of any doubleword RGB color returned by your device driver must be zero.

2.5 The BitBIt Function

The following are the call parameters for the BitBIt function:

cProc BitB1t,<FAR,PUBLIC>,<si,di>
parmD 1pDestDev
parmW DestxOrg
parmh DestyOrg
parmD 1pSrcDev
parmW Srcx0Org
parmW Srcylrg
parmW xExt
parmW yExt
parmD Rop3
parmD 1pPBrush
parmD 1pDrawMode

2.5.1 Background Information

Beta Release

BitBIt is perhaps the most important function used in Windows. You might want to imple-
ment it first so that you can go into the debugger and watch Windows take shape on your
screen. It is BitBIt that actually draws on the screen the rectangles that comprise the
Windows desktop. It also draws the icons and other bitmaps, but not the cursor.

‘When Windows first starts up, the following occurs:

1. Enable ns called twice.
2. ColorlInfo is called a number of times.

3. RealizeObject is called to create the default Windows pens and brushes (black solid
pen, white solid pen, black brush, white brush, etc.).

(Ask Chip how to change this paragraph.)

Then the Windows MS-DOS Executive begins execution and calls ColorInfo and Real-
izeObject to create the brushes for its screen. Notice that no pens are used for the MS-
DOS Executive screen, and that no Polylines or Scanlines are drawn. BitBIt and StrBIt do
all the drawing on this screen. Therefore, these are the only two drawing functions that you
need to implement to see your driver running the MS-DOS Executive. You can write stub
functions for all the rest.

Microsoft Confidential April 1, 1990

2-26 Device Driver Adaptation Guide

The first thing that BitBIt draws is the colored screen background. To do this, it uses the
BrushCopy raster operation to draw a rectangle. Depending on how you treated this brush
in your RealizeObject function, it will be either a solid or dithered brush.

Next, BitBIt draws a number of borders and rectangles, also using various brushes that you
already realized.

NOTE When debugging your driver for the first time, it is a good idea to set SYMDEB or WDEB386
breakpoints at Colorinfo, RealizeObject, and BitBIt so that you can see how brushes are realized and
used in Windows.

Lastly, BitBlt puts up the comer icons. These are monochrome bitmaps that are first drawn
to a main memory bitmap that is maintained by USER. This composite bitmap is created
using BitBlt during the early part of Windows initialization. (This one bitmap contains all
the bitmaps that are part of the driver’s resources.) These monochrome bitmaps are then
transferred to the screen.

2.5.2 The BitBIt Paramelters

This section discusses in detail how to use each of the passed parameters for BitBIt. Addi-
tional information on the function and its parameters is provided in Chapter 10, “Common
Functions.”

IpDestDev

This is a long pointer to a PDEVICE data structure. If it is a main memory bitmap (i.e.,
WORD 0 of the structure = 0), it will be a BITMAP data structure. (See Chapter 12, “Data
Structures and File Formats,” for the documentation on these structures.)

If the destination is the device (i.e., screen, printer, etc., and WORD 0 of the structure =
2000H), then the structure is whatever you defined the PDEVICE data structure to be at
Enable time. You should determine the characteristics of the destination bitmap from this
structure. Such things as its color format, width, and height can be extracted from the struc-
ture.

Remember that the destination can be either a bitmap in main PC memory or the device.
There is always an [pDestDev passed to BitBIt.

DestxOrg and DestyOrg

These are the starting X and Y coordinates for the draw on the destination bitmap (or
device).

There are a number of calculations that you need to do if you are drawing into a bitmap.
Because the bitmap is arranged as a series of addresses (called linear addresses), you must
convert the X and Y coordinates into these linear addresses. The following is an example
of how to do this for a monochrome (1 bit-per-pixel) bitmap. Notice that by varying this
macro somewhat, you can do the calculation for any color format.

April 1, 1990 Microsoft Confidential Beta Release

Dispiay Drivers 2-27

include CMACROS.INC
include GDIDEFS.INC

ConvertXYToLinear macro
local GetStartinglineAddress
mov ax,Destx0rg ;:9et starting X
mov dx,ax ;:copy this for bit offset calc

; :Get the byte containing the starting X-coordinate into AX:
shr ax,3 ;;divide by 8 (8 bits per byte)

::The remainder of the divide by 8 is the bit offset into the byte of
;;the starting X-coordinate.

and d1,87h ;;this is the way we get a remainder

:;Now AX & DL contain the linear byte and bit offset of the starting
; ;X-coordinate on each line. Save them for use in the BLT loop:

mov DestxOrgByteOffset,ax
mov DestxOrgBitOffset,dl

;Now it's time to obtain the linear address of the starting-Y. Since we
:may have a huge bitmap, we need to get the line offset into the proper
;S

s ;segment:
mov ax,DestyOrg ;:get starting Y
xor bx,bx s;initialize huge bitmap segment adder
xor dx,dx ;;initialize nbr of lines per segment
1ds si,1pDestDev s:get pointer to BITMAP structure
;sinto DS:SI
mov cx,[si].bmSegmentIndex ;;get the huge bitmap flag

;;The huge bitmap flag will be @ if the bitmap is a small one.
s :Skip huge bitmap processing if bitmap is small (CX = @):

jexz GetStartinglineAddress

;;We have a huge bitmap. Given the DestyOrg in AX, we can find which
;;segment the bitmap is in and the line's offset within that segment.

mov bx,[si].bmScanSegment s;get nbr of scanlines per segment
;sfrom BITMAP
div bx

s ;After the divide, AX will have the segment offset of the DestyOrg, and
:;0X will have the starting line within that segment. By multiplying
;:the result in AX by 100@H (64K), we will get the number of segments to
;:add on to our starting segment to get to the segment containing the
;istarting Y-coordinate.

mov di,dx ;;save line offset from multiply
mul cX ssmultiply by 64K (remember, CX has huge
;sincrement; value depends on mode of processor)

Beta Release Microsoft Confidential April 1, 1990

2-28 Device Driver Adaptation Guide
-~ -]

mov bx,ax ;;save this result in BX
mov ax,di ;irestore saved line offset to AX

GetStartinglineAddress:

:The following code applies to both small and huge bitmaps.

At this point:
H AX contains the line offset into the segment of the starting line.
BX contains the amount to be added to the segment address to get
to the starting Y-coordinate's segment.

mov cx,[si].bmWidthBytes ;:get number of bytes per line from
; sBITMAP
mul cx

::Now AX contains the linear address within the segment of DestyOrg.
::It's now time to add everything together to get to the starting byte
;;0f the BLT.

lds si,[si].bmBits ;snow DS:SI points to the bitmap's start
mov dx,ds ;:9et to correct segment in the bitmap
add dx,bx

mov ds,dx ;snow DS points at the correct segment
add si,ax ;snow DS:SI points at starting line

add si,Destx0OrgByteOffset

ow DS:SI points to the byte containing the starting (X,Y) coordinate
in the bitmap.

-e we
— =

endm

IpSrcDev

This pointer may point to the source PDEVICE data structure or it may be NULL. To deter-
mine whether or not this parameter means anything, you must interpret the Rop3 parame-
ter to see if a source is involved in the block transfer (see the next subsection).

If the Rop3 parameter does not include a source, then this pointer points to NULL. If there
is a source, this is the PDEVICE of that source.

Srcx0rg and SrcyOrg

Again, if the Rop3 parameter indicates that there is a source operand in the block transfer,
then these two parameters will contain the starting X and Y coordinates of the source of
the block transfer. If there is no source involved in the block transfer, these two parameters
will be ignored.

The BitBlt function can be difficult in that SrcxOrg and SrcyOrg may be negative (due to
scahng done by GDI). Therefore, we recommend you include the following code fragmeut
in your BitBIt function:

ClipBitBltSource macro
local CheckYClip

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers 2-29
e -]

local DoneClipping

mov ax,SrcxOrg ;:g9et starting X
or ax,ax ;31s 1t negative?
jns CheckYClip ;:no, continue

;;If the starting X-coordinate is negative, we must adjust the SrcxOrg
;:to @, bump down the xExt by the amount that we clipped, and advance
;;the DestxOrg by the amount that we clipped.

neg ax s:get amount clipped in X
sub xExt,ax ;;adjust the xExt
add DestxOrg,ax
mov Srcx0rg,0
CheckYClip:

;:Now, check the Y-clipping in a similar manner:

mov ax,SrcyOrg s;g9et starting Y
or ax,ax ;;is it negative?
Jns DoneClipping ;:no, continue

::If the starting Y-coordinate is negative, we must adjust the SrcyOrg
s:to @, bump down the yExt by the amount that we clipped, and advance
;:the DestyOrg by the amount that we clipped.

neg ax ;;get amount clipped in Y
sub yExt,ax ;;adjust the yExt
add DestyOrg,ax
mov SrcyOrg,0
DoneClipping:
endm
XExt and yExt

These are the width and height of the block transferring area. By adding them to the X and
Y origins and subtracting 1, you can get the ending X-coordinate of a line. Notice that
these apply both to the source and the destination.

Rop3

This parameter is crucial to your understanding of BitBIt. (See Chapter 14, “Raster Opera-
tion Codes and Definitions,” for a list of the codes as well as a detailed description of how
to read Rop3 codes and reverse Polish notation.)

The Rop3 parameter (known in the Windows 2.0 Adaptation Guide as Rop) is a ternary
(three operand) raster operand. That is because there can be three operands (i.e., source,
destination, and pattern) involved in the block transfer. The Rop3 parameter describes
which of the three operands is involved in the block transfer and what you must do with
each operand. In contrast, the Output and Pixel functions use a binary raster operation
(Rop2), which involves only the brush (or pen) and the destination. No source is involved.

Beta Release Microsoft Confidential April 1, 1990

2-30 Device Driver Adaptation Guide
.]}

The first thing that you should do in your BitBIt function is to “decode” the Rop3 parame-
ter. What you must learn from the Rop3 code is the number of operations to do in the block
transfer, the operands involved, and the actual operation script. For memory-mapped
boards (those similar in architecture to the CGA, EGA, VGA, and Hercules), you can use
the prototype functions included in the sample drivers. For hardware such as the 8514/A or
TI-34010-based boards, you should probably construct a table of the 256 possible Rop3
parse strings, the number of operations involved in the block transfer, and the operands in-
volved. Such a table is given here as an example:

OperationSource equ 1
OperationPattern equ 2
OperationDest equ 3
OperationUnaryNOT equ 4
LogOpBLACK equ @ SHL 4
LogOpWHITE equ 10h
LogOpReplace equ 20h
LogOpAND equ 36h
LogOpOR equ 40h
LogOpXOR equ 50h

;An example parse string for Rop3 number @BH (PSDnaon)
;would then be

RopB db OperationUnaryNOT
db OperationSource + LogOpAND
db OperationPattern + LogOpOR
db OperationUnaryNOT
RopBLength
equ
$-RopB

In addition to the table of parse strings, you must also create a lookup table so you can lo-
cate the given parse string for decoding the Rop3. This lookup table can have the following

efficient format:

Location Description

WORD 0 Offset of the parse string

Byte 2 Number of operations in the Rop3 (in the case of RopB, it would be 4)
Byte 3 Operands-present flag (bit 0 = source present,

bit 1 = brush present,
bit 2 = destination must be saved) -

Then, at the beginning of the block transfer, you can do the lookup based on the passed

Rop3:

mov bx,DataOFFSET RasterOplLookupTable

mov di,seg_Rop3

shl di,2 ;each entry has 4 bytes

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers 2-31

_

mov ax,[bx+di] ;get address of parse string

mov ParseStringAddress,ax ;save it

mov ax,[bx+di+2] ;get nbr of operations in Rop3
;in AL, operands present flags
;in AH

mov ParselLoopCounter,al ;save it

mov OperandsPresentFlags,ah 3

Beta Release

You will then have taken all the information necessary for doing the block transfer from
the Rop3 parameter. By testing bits in the operands-present flag, you can make determina-
tions such as whether or not there is a source or a brush involved, and whether or not the
destination must be saved.

The concept of saving the destination is an important one. Assume you are told to execute
Rop3 code 8BH. Its reverse Polish string is DSPDxoxn. Its parse string would be repre-
sented as follows:

Rop8B8 db OperationPattern+LogOpXOR ;this destroys the destination
db OperationSource+LogOpOR
db OperationDestination+LogOpX0R;the destination has
;already been destroyed
db OperationUnaryNOT :

As you can see, this Rop3 could not be done unless the destination was saved from being
destroyed by the first operation! Therefore, in the operands-present flag, you should re-
serve a bit that tells you that you must pre-save the destination from destruction before you
begin performing the block transfer.

The last Rop3 concept is actually a shortcut. As you can imagine, typing in parse strings
for all 256 Rop3s is quite tedious, not to mention the huge memory requirement for all 256
parse strings and lookup table entries! However, the Rop codes 128 through 255 are
simply the Rop codes 0 through 127 with a NOT added on to the back. Therefore, you only
need 128 parse strings. If the Rop3 code is >=128, you can add on a NOT to the end of the
Rop3 operation. Also, if the original Rop3 parse string ends with a NOT operation, you can
cancel the two NOTs and save two operations.

For example:

Rop code @FH is a NOT Pattern
Rop code F@H is a Pattern copy

Since Rop FOH is normally >128, you would take its inverse (OFH) and add on a NOT to
the end. However, since Rop OFH has a NOT as its last operation, the two NOTs cancel
and FOH becomes a simple Pattern copy.

IpPBrush

If the Rop3 code indicates that a pattern is involved in the block transfer, this points to a
PBRUSH structure that was realized in RealizeObject.

If there is a brush operand, it can be put onto the screen by simply drawing a solid or pat-
temed rectangle bounded by DestxOrg, DestyOrg, xExt, and yExt.

Microsoft 'Confidentia/ April 1, 1990

2-32 Device Driver Adaptation Guide

If a hollow brush is passed to BitBlt, the brush portion of the operation should not be
done. However, all the other operations (such as Source and NOT operations) must still be
done.

IpDrawMode

The IipDrawMode parameter is used only for mono-to-color and color-to-mono conver-
sions. If your device is color, then Windows can ask you to convert a monochome (1 plane,
1 bit-per-pixel) bitmap into a bitmap matching your board’s and driver’s color format. The
colors contained in the IpDrawMode parameter (background color at byte offset 4 and fore-
ground color at byte offset 8 in the structure) allow you to do this conversion. The follow-
ing holds true:

1. Mono-to-color conversion:
m Bits that are 1 in the monochrome bitmap become background color.
m Bits that are 0 in the monochrome bitmap become foreground color.

2. Color-to-mono conversion:

m Color bytes that match the background color become background color, which is 1
(for white). :

® Anything that does not match the background color is foreground color, which is 0
(for black).

NOTE Every color device must support the transferring of monochrome (Black/White) bitmaps to the
screen as well as color bitmaps.

Even though the ipDrawMode parameter has other fields such as OpaqueFlag (at byte off-
set 2) and Rop2 (at byte offset 0), these are totally disregarded by BitBIt. All block trans-
fers are opaque no matter what the [pDrawMode parameter says, and Rop3 is used instead
of Rop2.

2.6 The StrBIl/ExtTextOut Functions

April 1, 1990

StringBlt (StiBlf) is the old Windows 1.x name for ExtTextOut. The two names are now
often used synonymously since StrBIt is used as an entry point to the Extended Text Out
(ExtTextOut) function. It is documented in more detail in Chapter 10, “Common Func-
tions.”

The function is still needed for compatibility with the earlier version. However, only a few
old applications still call StrBIt, while most new ones do not. They are simply mapped by
GDI to ExtTextOut. You will need to put in only one piece of code (shown in Chapter 10,
“Common Functions™) and then jump into ExtTextOut.

The following are the call parameters for the StrBIt function. They are the same as the first
nine parameters of the ExtTextOut function.

Microsoft Confidential Beta Release

Display Drivers 2-33

cProc StrB1t,<FAR,PUBLIC>, <si, di>
parmD 1pDestDev
parmW DestxOrg
parmW DestyOrg
parmD 1pClipRect
parmD 1pString
parmW Count
parmD 1pFontinfo
parmD 1pDrawMode
parmD 1pTextXForm

2.6.1 The ExtTextOut Function

ExtTextOut is one of the text drawing functions. It works in conjunction with BitBIt to do
the drawing on the screen. To see your driver running on the screen, all you need to imple-
ment are these two functions.

This function replaces the StrBIt function for Windows version 2.0 and later. The follow-
ing are the call parameters for the ExtTextOut function:

cProc ExtTextOut,<FAR,PUBLIC,WIN,PASCAL>,<si, di>
parmD 1pDestDev
parmW DestxOrg
parmW DestyOrg
parmD 1pClipRect
parmD 1pString
parmW Count
parmD 1pFontlnfo
parmD 1pDrawMode
parmD 1pTextXForm
parmD 1pCharWidths
parmD 1pOpaqueRect
parmW Options

2.6.2 The ExtTextOut Parameters

Beta Release

This section provides supplemental information on how to use each of the passed parame-
ters for ExtTextOut. For more details, refer to the description for this function given in
Chapter 10, “Common Functions.”

IpDestDey

The IpDestDev parameter tells you what you are drawing onto. For displays, this is the dis-
play device or bitmap.

DestxOrg and DestyOrg

The DestxOrg and DestyOrg parameters give the origins of the top-left corner of the string.

Microsoft Confidential April 1, 1990

2-34 Device Driver Adaptation Guide

April 1, 1990

IpClipRect
The IpClipRect parameter is a long pointer to the clipping rectangle.

Clipping is the hardest part of ExtTextOut. If you did not have to clip, then the ExtTex-
tOut function would be small and easy to implement. You would simply take each
character’s bitmap from the Font bitmap, transfer it to the screen, and then expand it for
the number of bits per pixel and planes you have.

However, you must clip, and there are some rules to remember. One of them is that for all
clip rectangle or rectangle (RECT) data structures or scanlines, the ending coordinates are
always one greater than the actual pixel number at which you are to stop drawing. There-
fore, if the clip rectangle has the coordinates 0, 0, 10, 10 (where the Os are the starting X
and Y, and the 10s are the ending X and Y), you only draw pixels O to 9 and do not draw
through the 10th pixel.

The RECT data structure contains the following two points:

typedef struct {
short left, top;
short right, bottom;
}RECT;

‘Where:
Left, top are the coordinates that specify the upper-left comer of the rectangle.
Right, bottom are the coordinates that specify the lower-right comer of the rectangle.

IpString

The IpString parameter is a long pointer to the string itself. Each character in the string isa
byte length.

Count

Count can have one of three meanings.

First, if Count is positive (i.e., greater than zero), then it is the number of characters to dis-
play from the string.

Second, if Count is negative (i.e., less than zero), then you just return the length of the
string as if there were no clipping rectangle. You run the string blt with no characters and
return the height in DX and the X-length in AX. Then run the text justification and
character spacing algorithm described in the DRAWMODE data structure.

Third, if Count is zero, then check the Options flag. If the 2s bit is set in the Options flag,
then it infers that you have to draw an opaque rectangle.

If ipOpaqueRect is zero (even if the Options flag is 2), do nothing and return success.
If IpOpaqueRect is not zero, then you do the following:

Microsoft Confidential Beta Release

Display Drivers 2-35

Beta Release

1. Get the opaquing rectangle (described by ipOpaqueRect).
2. Intersect it with the clipping rectangle.

3. Intersect the rectangle with the bitmap.

4. Check to make sure that the rectangle is valid.

S. Draw the opaquing rectangle.

Logically, this is rather difficult due to the lack of sufficient variables. Therefore, you need
to do lots of checks to make sure that the clipping and opaquing rectangles are valid.

In summary, if Count is zero, then it can infer one of two tliings:

There is nothing to do, so you can get out. Or, you should only draw the opaquing
rectangle pointed to by lpOpaqueRect.

IpFontinfo

This is a long pointer to the FONTINFO data structure and represents the physical font in
use. (See the FONTINFO data structure fields in Chapter 12, “Data Structures and File For-
mats.”) Notice that you can be presented with characters that are not in the character set or
do not fall within the range of dfFirstChar to dfLastChar. In such a case, you should use
the dfDefaultChar field.

IpDrawMode

This is a long pointer to the DRAWMODE data structure that includes the current text
color, background mode, background color, text justification, and character spacing. (See
the DRAWMODE data structure in Chapter 12, “Data Structures and File Formats.”)

If the background mode (or Transparent/Opaque flag) is 1, then you draw the string
transparently. If it is 2, then you draw the string opaquely.

If the string is to be drawn opaquely (e.g., if the foreground color is red and the back-
ground color is green), first draw the green and, then, draw the red character on top of it. If
it is to be drawn transparently, just draw the red foreground and forget the background.
However, you must get the toral length of the string first.

If there is a break character, use the text justification and character spacing algorithm de-
scribed below. As you are running the string (either making the count or putting the string
on the page), you should get the TBreakExtra flag from the DRAWMODE data structure.
If it is zero, then it is not a justified string and you can disregard the information given
here. However, you must always add the CharacterExtra in the DRAWMODE data struc-
ture to the width of the character.

If no justification is required, TBreakExtra will be set to zero. To enable justification, an
application must set TBreakExtra and BreakCount to the desired values. The other justi-
fication fields are evaluated using these values and BreakErr is set to BreakCount/2+1.

Microsoft Confidential April 1, 1990

2-36 Device Driver Adaptation Guide
.-~ " -]

April 1, 1990

It is expected that StrBIt will be implemented as described below, but any implementation
that spreads the excess pixels across the character breaks satisfies the requirements of text
justification.
width = width of char
if TBreakExtra <> @ and char = BreakChar then
width = width + BreakExtra
BreakErr = BreakErr - BreakRem
if BreakErr <= @ then
width = width + 1
BreakErr = BreakErr + BreakCount
endif
endif .
width = width + CharacterExtra move over by width

IpTextXForm

The TEXTXFORM data structure is used by devices that have hardware font capability.
(See Chapter 13, “The Font File Format,” for a description of the TEXTXFORM data
structure.) If the hardware can italicize, then [pTextXForm tells you that this is an italic
font and you look up your font in there. However, we are not currently aware of any dis-
play devices with smart font capabilities that use this structure.

IpCharWidths

If not NULL, then [pCharWidths is a long pointer to an array of words. Each word speci-
fies the width from the start of the current character origin to the next character origin.

For example, assume the first character is an A, the next one is a B, and the normal width
of A is 4 pixels. However, if [pCharWidths is S, then you would move the B over by one
pixel. If [pCharWidths is only 3, then the B would be almost on top of the A. Notice,
though, that you cannot have a negative character width. It would always be changed to
zero since you cannot go backwards.

IpOpaqueRect
The IpOpaqueRect parameter, if not NULL, is a long pointer to the opaquing rectangle.

See the earlier discussion on the Options flag, under the Count parameter, for further infor-
mation on the actions required by this parameter.

Options

The Options parameter is an integer with bits set to indicate ExtTextOut options. See the
earlier discussion under the Count parameter for additional information on this parameter.

Notice also that whenever the clipping or opaquing rectangles intersect, those rectangles
also need to be intersected with the bitmap to make sure the boundaries of the clipping
rectangle are within the confines of the bitmap. You should look at the height and width of
the bitmap (which are in the BITMAP data structure at offsets 2 and 4) to make sure that
the clipping rectangle passed is intersected with those. That way, you will get the smallest

Microsoft Confidential Beta Release

Display Drivers 2-37

possible rectangle composed of the three items: the bitmap, the clipping rectangle, and (if
specified) the opaquing rectangle.

2.7 Stub Functions

The following are two stub functions to which you need to set up calls. They are not cur-
rently supported in GDI and should always return a failure code. However, they may be
supported in the future. Simply copy verbatim the code reproduced here to your driver and
you will be finished with their support.

cProc SetAttribute, <FAR, PUBLIC>
parmD 1pDestDev
parmW StateNum
parmW Index
parmW Attribute
cBegin
xor ax,ax ;always return AX = 0@
cEnd
cProc DeviceBitmap, <FAR, PUBLIC>
parmD 1pDestDev
parmh Command
parmD 1pBitmap
parmD 1pBits
cBegin
xor ax,ax ;always return AX = 0
cEnd

You must also add a termination function called WEP(bSystemExit), or Windows Exit Pro-
cedure, to accommodate the support of dynamic-link libraries (DLLs). This function indi-
cates whether all of Windows is shutting down or just the single DLL. More detailed
descriptions are provided in Chapter 10, “Common Functions,” and in the SDK Guide 10
Programming.

2.8 The Move and Gheck Gursor Functions

Beta Release

The MoveCursor function moves the cursor to the given screen coordinates. However,
that can be rather difficult if you do not have a hardware cursor and have to move your
own cursor on the screen when it is saved in memory or cached on the board.

The following is a sample procedure showing how to move the cursor:
1. Clear the interrupt flags using the EnterCrit macro. Stopping them will stop the cursor
from moving.

2. Obtain the X and Y coordinates for the position at which they want you to place the
cursor. These are passed to you by USER.

Microsoft Confidential April 1, 1990

2-38 Device Driver Adaptation Guide

3. Put them into a variable called UndoneXandY. Save this in case you are unable to draw
the cursor because something else is happening.

4. Get the old X and Y coordinates.

5. Set a DrawBusy flag saying that you are busy drawing and the driver should not try to
draw another cursor at this time.

6. Use the LeaveCrit macro to allow interrupts again.
If the DrawBusy flag is on, then you have the undone coordinates saved in UndoneXandY.

When you are able to draw again, you can then go ahead and do it. Otherwise, you disable
the old cursor and put the new cursor on.

A more complete description of this function is available in Chapter 10, “Common Func-
tions.”

2.8.1 Excluding Gursors

Sometimes you may want to exclude or get rid of the cursor from the screen before doing
something like a BitBIt, StrBIt, or drawing function. Or you may not want to read the
cursor back when reading from the screen because it is difficult and time consuming,

How do you tell where your cursor was or from what area to exclude it? Do a check to see
V\(here theXandY coordinates are and exclude them if they lie within your exclude re-
gion.

= For BitBlt, just disable the cursor within the rectangle that you are transferring.

= For Output for Scanlines, exclude the whole scanline.

n For Polylines, exclude the clip rectangle.

a For Polygons, exclude the clip rectangle.

» For Ellipse, Circle, Rectangle, and other drawing functions, exclude it from the bound-
ing rectangle.

m For StrBlt, exclude it from the bounding rectangle and/or the opaquing rectangle.

To make the cursor run smoothly for these excludes, just before you start dealing with the
board hardware, do the following:

1. Set the DrawBusy flag, which disallows cursor movement. MoveCursor, however, is
still registering these movements.

2. Check out your exclude region.

If the cursor falls within that exclude region, you exclude or turn off the cursor. That re-
moves the cursor from the screen and restores whatever was there before.

April 1, 1990 Microsoft Confidential Beta Release

Dispiay Drivers 2-39

3. Do your draw.
4. After you are finished with the draw, call UnexcludeCursor.
5. See if the cursor was excluded.

If it was not, just get out and you are finished.

If it was, take UndoneX and UndoneY, which are the movements that were registered
while you were in the process of drawing, and enable the cursor at those coordinates.

2.8.2 The CheckGursor Function

This function is called on every timer interrupt. It allows the cursor to be displayed if it is
no longer excluded. A description of this function is available in Chapter 10, “Common
Functions.”

However, you can also call the UnexcludeCursor routine described above since it does
the same thing.

2.9 The CGontrol Function

The Control function is required for display drivers. However, they need to support only
the following two escapes:

8 QUERYESCSUPPORT
8 GETCOLORTABLE

‘Windows 2.x drivers also needed to support SETCOLORTABLE. However, for Windows
3.0, that escape is no longer required due to color palette management considerations. See
Chapter 3, “Display Drivers: New Features,” for more information on color palette man-
agement. :

You will use QUERYESCSUPPORT to tell a calling application that you support a subset
or none of the Control subfunctions. For more detailed information on escapes in general
and complete descriptions of these escapes, see Chapter 11, “Device Driver Escapes.”

2.10 Additional Functions

Beta Release

Display drivers also need to include the following additional functions:

(Gunter please add missing values.)

Function Ordinal value

EnumDFonts @6

Microsoft Confidential April 1, 1990

2-40 Device Driver Adaptation Guide
.- _______________________________________]

Function Ordinal value
Pixel @9

ScanLR @12
DeviceMode @ 13
Inquire @
FastBorder @

EnumObj @
GetCharWidth @15
StretchBlt (optional) @ 27
SetCursor @ 102

To determine when your driver needs these and for more detailed information on each of
them, refer to their descriptions in Chapter 10, “Common Functions.”

2.11 How to Build Display Driver Resources

Display drivers contain most of the cursors, icons, and bitmaps that are used by Windows.
They are supplied by the display driver to take advantage of all the capabilities of the
driver (e.g., color icons). Also, the definitions of certain system parameters (e.g., default
colors and border widths) are supplied by the display driver. All of this information is sup-
plied as resources added to the driver by the resource compiler (RC.EXE).

Windows 3.0 has changed a number of these resources, most notably the bitmaps required
to implement the 3-D effect. We recommend that you use the set of bitmaps supplied in the
DDK that best matches the resolution/capabilities of your display. Since many existing
'Windows applications expect the old images to still exist, the driver must supply these as
well. See the DDK’s Installation and Update Notes for a detailed list of the required re-
sources and for more information.

The resource file ((RES) is built from the following pieces:

1. AFONTS.ASM file that contains information about font stock objects.

2. A CONFIG.ASM file that contains information about default system colors, line
widths, cursor/icon sizes, etc.

3. ACOLORTAB.ASM file that contains the color table for Control Panel’s Color Tuner
dialog.

4. Aset of icons, cursors, and bitmzfps.
S. A RC file that is used by the resource compiler to build the binary resource file (RES).

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers 2-41

2.11.1 Creating the FONTS.ASM File

The FONTS.ASM file tells Windows the characteristics of certain fonts that Windows uses
as stock objects.

This file also defines these same characteristics for the two fonts minimally required to run
such programs as Windows Write. These are the ANSI fixed-pitch (Courier) and variable-
pitch (Helvetica ®) fonts. Normally, you will not have to create these fonts; you may use
the ones supplied with Windows at the aspect ratio closest to that of your display or other
device.

The FONTS.ASM file consists of three data structures that describe these same characteris-
tics plus one for the Terminal font. Each data structure is of type LOGFONT (see Chapter
12, “Data Structures and File Formats,” for more information on that structure). The order
of the three LOGFONT structures in the FONTS.ASM file must be as follows:

1. OEM font (of facename “Terminal™)
2. ANSI fixed-pitch font (usually Courier)
3. ANSI variable-pitch font (usually Helvetica)

2.11.2 Creating the CONFIG.ASM File

The CONFIG.ASM file tells Windows about many of the default characteristics of the
screen, such as:

u Colors
m Line widths, both horizontal and vertical
u Scroll bar “thumb” sizes

m Cursor and icon compression ratios

The following is a prototype CONFIG.ASM file:
OEM segment public

;Machine dependent parameters

dw ? ;Height of vertical thumb (in pixels)

dw ? ;Width of horizontal thumb (in pixels)

dw ? ;Icon horiz compression factor (can be 1 or 2)

dw ? ;Icon vert compression factor (can be 1 or 2)

dw ? ;Cursor horz compression factor (can be 1 or 2)

dw ? ;Cursor vert compression factor (can be 1 or 2)

dw ? ;Reserved

dw ? ;cxBorder (thickness of vert lines) (usually 1 pixel)
dw ? ;cyBorder (thickness of horiz lines) (usually 1 pixel)

Beta Release Microsoft Confidential April 1, 1990

2-42 Device Driver Adaptation Guide

April 1, 1990

RGB macro

db
endm

sDefault system

RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RBG

OEM ends

R, G, B
R.G,B,2

color values

130,130,130
192,192,192
000,064,128
255,255,255
255,255,255
255,255,255
000,000,000
000,000,000
000,000,000
255,255,255
128,128,128
255,255,255
255,255,255
000,000,000
255,255,255
192,192,192
128,128,128
192,192,192
000,000,000

scirScrollbar
scirDesktop
;clrActiveCaption
sclrlnactiveCaption
;clrMenu
;clrWindow
;clrWindowFrame
;clrMenuText
sclrWindowText
;clrCaptionText
sclrActiveBorder
sclrinactiveBorder
;clrAppWorkspace
;clrHiliteBk
;clrHiliteText
;clrBtnFace
;clrBtnShadow
;clrGrayText
sclrBtnText

NOTE The values shown in the example above are the default colors shipped with the VGA color dis-
play. These are the recommended values.

The following are detailed descriptions of each field:

Field

cnVertThumHeight

cnHorizThumWidth

cnlconXRatio

cnlconYRatio

cnCurXRatio

Microsoft Confidential

Description

A 2-byte value specifying the height in pixels of the
vertical scroll bar thumb.

A 2-byte value specifying the width in pixels of the
horizontal scroll bar thumb.

A 2-byte value specifying the ratio by which the icon
width is to be reduced before displaying.

A 2-byte value specifying the ratio by which the icon
height is to be reduced before displaying.

A 2-byte value specifying the ratio by which the
cursor width is to be reduced before displaying.

Beta Release

Beta Release

Field
cnCurYRatio

Reserved

cnXBorder
cnYBorder
cnScroliBarColor
cnDesktopColor
cnActiveCapColor
cnInactiveCapColor
cnMenuBackgndColor
cnWindowBackgndColor
cnCaptionColor
cnMenuTextColor
cnWindowTextColor
cnCaptionTextColor

cnActiveBorderTextColor

cnlInactiveBorderTextColor

cnWorkSpaceTextColor

Microsoft Confidential

Display Drivers 2-43

Description

A 2-byte value specifying the ratio by which the
cursor height is to be reduced before displaying.
A 2-byte reserved field that should be set to zero.

A 2-byte value specifying the thickness in pixels of
vertical lines.

A 2-byte value specifying the thickness in pixels of
horizontal lines.

A 4-byte RGB value specifying the default color of
the scroll bar.

A 4-byte RGB value specifying the default color of
the Windows background.

A4-byte RGB value specifying the default color of
the caption in the active window.

A 4-byte RGB value specifying the default color of
the caption in an inactive window.

A 4-byte RGB value specifying the default color of
the menu background.

A 4-byte RGB value specifying the default color of a
window’s background.

A 4-byte RGB value specifying the default color of
the caption.

A 4-byte RGB value specifying the default color of
the text in a menu.

A 4-byte RGB value specifying the default color of
the text in a window.

A 4-byte RGB value specifying the default color of
the text in a caption.

A 4-byte RGB value specifying the default color of
the text in an active border.

A 4-byte RGB value specifying the default color of
the text in an inactive border.

A 4-byte RGB value specifying the default color of
the application workspace (MDI background).

April 1, 1990

2-44 Device Driver Adaptation Guide

Field Description

cnHilightBk An RGB value specifying the highlight color used in
menus, edit controls, listboxes, etc.

cnHilightText An RGB value specifying the text color for
highlighted text.

cnBtnFace An RGB value specifying the color of the
3-D button face shading.

cnBtnShadow An RGB value specifying the color of the
3-D button edge shadow.

cnGrayText An RGB value specifying the color of Solid Gray to
be used for drawing disabled items. (Must be zeros if
no solid gray is available.)

cnBtnText An RGB value specifying the text color in Windows

3.0 pushbuttons.

2.11.3 Creating the COLORTAB.ASM File

The COLORTAB.ASM file contains a list of the colors that are to appear in the Control
Panel’s Color Tuner dialog. This table should contain all the solid colors that are repre-

April 1, 1990

sentable as RGB values as well as all the good looking dithers. The table may contain up
to 48 RGB values.

The following is a prototype of a COLORTAB.ASM file that contains the suggested RGB
values for 4-plane EGA or VGA drivers.

RGB macro R, G, B
db B,G,R,0
endm

COLORTABLE segment public

dw 48

RGB 806h,80h,0FFh

RGB 80h,0FFh,8FFh
RGB 80h,0FFh,80h

RGB 80h,0FFh,00h

RGB OFFh,0FFh,80@h
RGB @FFh,80h,00h

RGB 9CPh,80h ,0FFh
RGB @FFh,806h,0FFh
RGB 20h,00h,0FFh

RGB @@h,0FFh,0FFh
RGB P0h,0FFh,80h

RGB 40h,0FFh,00h

RGB OFFh,BFFh,20h

; # colors in table

Microsoft Confidential Beta Release

2.11.4 Creating Icons, Cursors, and Bitmaps

Beta Release

RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB

COLORTABLE

2C0h,80h,00h
9CBh,80h,80h
@FFh,00h,0FFh
40h ,40h,80h
40h,80h,8FFh
00h ,0FFh,00h
80h,806h,00h
80h,40h,00h
OFFh,80h,80h
40h,00h,80h
80h,00h,0FFh
20h,00h,80h
@0h,80h,8FFh
00h,806h,00h
40h,80h,00h
OFFh,@0h,00h
0AGh,00h,00h
80h,20h,80h
OFFh,00h,80h
00h,00h,40h
@0h,40h,80h
00h,40h,00h
40h,48h,006h
80h,00h,00h
40h,00h,00h
4ph,006h,40h
80h,00h,40h
@06h,00h,00h
@06h,80h,80h
40¢h,80h,80h
80h,80h,80h
80h,86h,40h

@Coh,BC0OK,BCON

40h,00h,40h

@FFh,BFFh,OFFh

ends

Display Drivers 2-45

ICBs acceptable for use by many display resolutions and aspect ratios are provided in
various subdirectories of the resource file directories on the disks provided with the DDK.
See the DDK’s Installation and Update Guide for detailed lists of the subdirectories.

- If you want to create your own ICBs, you can do so by using the SDK Paint application. In

creating ICBs, you should meet the criteria given in the following table on Cursor, Icon,

and Bitmap files.

NOTE The maximum allowable cursor and icon sizes are 64x64 pixels.

Microsoft Confidential

April 1, 1990

2-46 Device Driver Adaptation Guide

April 1, 1990

Resource Name

Type

Filename

Purpose

CURSORS
OCR_NORMAL

OCR_IBEAM

OCR_WAIT

OCR_SIZENWSE

OCR_SIZENESW

OCR_SIZEWE

OCR_SIZENS

cursor

cursor

cursor

cursor

cursor

cursor

NORMAL.CUR

IBEAM.CUR

WAIT.CUR

SIZENWSE.CUR

SIZENESW.CUR

SIZEWE.CUR

SIZENS.CUR

An upward diagonal
arrow used as the de-
fault mouse cursor.

An I-beam shaped
cursor used in edit con-
trol windows.

An hourglass that is
used while carrying out
lengthy operations.

A two-headed arrow
used when sizing
windows. Arrows point
NW and SE.

A two-headed arrow
used when sizing
windows. Arrows point
NE and SW.

A two-headed arrow
used when sizing
windows. Arrows point
W and E.

A two-headed arrow
used when sizing

windows. Arrows point
Nand S.

NOTE The following cursors are no longer used by Windows, but must be provided for compatibility with ex-
isting Windows applications that may expect them to be available.

OCR_CROSS

OCR_UP
OCR_SIZE

OCR_ICON

ICONS
OIC_HAND

cursor CROSS.CUR
cursor UP.CUR
. cursor SIZE.CUR
cursor ICON.CUR
icon HAND.ICO
Microsoit Confidential

An upright cross used
as a selection marker.

An upward arrow.

A box shape formerly
used when sizing tiled
windows.

An empty box formerly
used when the mouse
was in the icon area.

A stop sign used to indi-
cate an error condition
that halts operation.

Beta Release

Beta Release

Display Drivers 2-47

Resource Name

Type

Filename

Purpose

OIC_QUES

OIC_BANG

OIC_NOTE

OIC_SAMPLE

BITMAPS

icon

icon

icon

icon

QUES.ICO

BANGICO

NOTEICO

SAMPLEICO

A question mark used
when querying for a
reply.

An exclamation mark

‘used to emphasize the

consequences of an
operation.

An asterisk used to indi-
cate non-critical
situations.

The default icon used
when no other icon to
an operation can be
found.

The following 7 shapes have two forms: the normal image and the depressed image. These are used

to create the 3-D effect of pushing in a button.

OBM_RESTORE
OBM_RESTORED

OBM_REDUCE
OBM_REDUCED

OBM_ZOOM
OBM_ZOOMD

OBM_RGARROW
OBM_RGARROWD

OBM_LFARROW
OBM_LFARROWD

OBM_UPARROW
OBM_UPARROWD

OBM_DNARROW
OBM_DNARROWD

OBM_CLOSE

OBM_CHECK

OBM_CHECKBOXES

bitmap RESTORE.BMP
RESTORED.BMP
bitmap MIN.BMP
MIND.BMP
bitmap MAX BMP
MAXDBMP
bitmap RIGHTBMP
RIGHTD.BMP
bitmap LEFTBMP
LEFTD.BMP
bitmap UPBMP
UPD.BMP
bitmap DOWNBMP
DOWND.BMP
bitmap SYSMENUBMP
bitmap OCHECK.BMP
bitmap OBUTTON.BMP
Microsoft Confidential

Images used as the re-
store button on the title
bar.

Images used as the min-
imize button on the title
bar.

Images used as the max-
imize button on the title
bar.

A right-pointing arrow
for scroll bars.

A left-pointing arrow
for scroll bars.

An up-pointing arrow
for scroll bars.

A down-pointing arrow
for scroll bars.

A double-wide image
that contains system
menu shapes for both

main windows and MDI
windows.

A check mark used to
check menu items.

A box used for check
boxes in dialogs.

April 1, 1990

2-48 Device Driver Adaptation Guide

Resource Name Type Filename Purpose

OBM_COMBO bitmap COMBO.BMP An arrow used in
combo boxes.

OBM_MNARROW bitmap MNARROWBMP An arrow used in multi-
level menus.

NOTE the following bitmaps are no longer used by Windows, but must be supplied for compatibility with
applications that expect them to be available.

OBM_BTNCORNERS bitmap OBTNCORN.BMP A circle formerly used
to draw round-cornered
pushbuttons.

OBM_SIZE bitmap OSIZE BMP A size box formerly
used on tiled windows.

OBM_BTSIZE bitmap OBTSIZE.BMP A size box used at the
intersection of vertical
and horizontal scroll
bars.

OBM_OLD_RESTORE bitmap ORESTBMP Restores the bitmap
used for Windows 2.x.

OBM_OLD_REDUCE bitmap ORED.BMP Minimizes the bitmap
used for Windows 2.x.

OBM_OLD_ZOOM bitmap OZOOM.BMP Maximizes the bitmap
used for Windows 2.x.

OBM_OLD_RGARROW bitmap ORIGHT.BMP A right-arrow bitmap
used for Windows 2.x.

OBM_OLD_LFARROW . bitmap OLEFTBMP A left-arrow bitmap
used for Windows 2.x.

OBM_OLD_UPARROW bitnap OUP.BMP An up-arrow bitmap
used for Windows 2.x.

OBM_OLD_DNARROW bitmap ODOWN.BMP A down-arrow bitmap
used for Windows 2.x.

OBM_OLD_CLOSE bitmap OCLOSEBMP The system-menu bit-
maps used for Windows
2.x.

2.11.5 Assembling and Linking FONTS.ASM, CONFIG.ASM, and
COLORTAB.ASM

To create FONTS.BIN, CONFIG.BIN, and COLORTAB.BIN, follow this procedure:

April 1, 1990 Microsoft Confidential Beta Release

Display Drivers 2-49

masm fonts;
link fonts;
exezbin fonts;

(Substituting “config” and “colortab” for “fonts” as appropriate.)

2.11.6 Using RC to Create the .RES File

Once you have completed all the preceding steps, you must create a script for the resource
compiler/editor (RC). We recommend that you use a .RC file from one of the resource file
directories.

Issue the following command to compile your resources:

rc -r filename.rc

where “filename” is the name of your RC script. The output from this operation will be
your completed RES file.

2.12 Display Drivers Checklist

The following checklist is a summary of the major points made in this chapter. An addi-
tional checklist for updating 2.x display drivers to the 3.0 requirements is provided in
Chapter 3, “Display Drivers: New Features.”

(1 To display output to the screen, you must first implement at least the following func-
tions:

O Output

O Enable and Disable

O RealizeObject

O ColorInfo

O BitBIt

O StrBIt/ExtTextOut

O Control

O SetDIBits and GetDIBits

O In the GDIINFO data structure, you must support the following capabilities:

Value Offset # Contents Bit Value Bit #
dpLines 30 Polylines LC_POLYLINE
dpPolygonals 32 Scanlines PC_SCANLINE 3

Beta Release Microsoft Confidential April 1, 1990

2-50 Device Driver Adaptation Guide
.|

Value Offset # Contents Bit Value Bit #

dpRaster 38 DIBs RC_DI_BITMAP 7
RC_DIBTODEV 9
RC_BITBLT 0
RC_GDI20_OUTPUT 4

0O Display drivers must support at least the following escapes in the Control function:
O QUERYESCSUPPORT
O GETCOLORTABLE
O SETCOLORTABLE (do not use with palette-capable devices)

QO To build a resource file (RES), you need the following items:
O AFONTS.ASMfile
OO0 A CONFIG.ASM file
O A COLORTAB.ASM file
O A setof icons, cursors, and bitmaps
0 A .RCfile

April 1, 1990 Microsoft Confidential Beta Release

cuapter | Display Drivers: New
3 | Features

This chapter provides information on the new Windows 3.0 features that affect display
drivers and how to work with them. These include the following:

& Color Palette Management

= Protected Mode Support

® > 64K Fonts

m Device Independent Bitmaps

3.1 Color Palette Management

Display devices that are capable of displaying at least (and possibly more than) 256 simul-
taneous colors out of a palette may need to provide a color palette management interface.
(See the Microsoft Windows Software Development Kit for a complete description of color
palette management.)

Color palette management requires the following functionality from the driver:

= An interface to get (read) and to set (write) the hardware palette
® An interface to get/set the driver-maintained color translate table

Depending on the capabilities of your hardware, there will be some additional require-
ments as explained in the following subsections.

3.1.1 The Hardware Palette Calls

For the get/set hardware palette calls, the following parameters are passed to the driver in
this order:
cProc SetPalette, <FAR, PUBLIC, WIN, PASCAL>

parmW nStartlndex

parmW nNumEntries
parmD 1pPalette

The parameters passed have the following meaning:

Beta Release Microsoft Confidential April 1, 1990

3-2 Device Driver Adaptation Guide

Parameter Description

nStartindex The zero-based (color) index into the palette Look Up Table (LUT)
specifying where to put the first RGB triplet. Subsequent RGB trip-
lets are placed in subsequent palette LUT entries (in increasing

order).
nNumEntries The total number of entries to set in the device’s hardware palette.
IpPalette A far pointer to the RGB colors to be set into the palette. They are

stored as Red, Green, Blue, and Flags, occupying one doubleword.
The flags have no meaning for the driver and should be ignored.

For a GetPalette call, the same parameters are passed but the driver fills the RGB array
pointed to by IpPalette. A zero should be written in the Flags field.

3.1.2 The Color Translate Table

April 1, 1990

The driver has to maintain a color translate table to translate the logical color indices,
passed to it by GDI, into the actual physical color indices. The color translation has to
occur before any raster operation (ROP) is performed (i.e., ROPs are always applied to
physical colors).

The following data structures contain logical colors that may need to be translated to physi-
cal colors before they can be used:

1pDrawMode ;translate foreground (text) and background colors
1pPen ;translate pen color
1pPBrush ;(structure is device specific) translate all the

;color indices
memory bitmaps ;translate all the bitmap bits

Notice that the application has to perform color translation only when the physical device
is involved. In other words, if a line is drawn into a memory bitmap or a bitmap is trans-
ferred (blt’ed) into another memory device, no color translation is required. On the other
hand, if a bitmap is blt’ed to or from the screen into a memory bitmap or a line is drawn
directly onto the screen, color translation is required. In the case of a block transfer from
the screen to the screen (where the physical device is both the source and destination of the
block transfer), color translation is not needed since all the color indices are already trans-
lated into physical indices.

Color specifications are passed to the palette-managing display drivers in two forms:

s OxFFO0Qiiii, where iiii is the index to use

& 0xO0RRGGBB, which gives the explicit RGB color to use. Match this color as closely
as possible among the 20 reserved colors. In the case of a brush, the color may be
dithered with the 16 VGA colors.

Microsoft Confidential Beta Release

Display Drivers: New Features 3-3

Since the reserved colors will always have fixed indices, their logical and physical indices
will be identical.

Color translation hooks have to be placed in the following functions:

= Qutput (translates pen, brush, and draw mode)
= Pixel (translates pen)

m ExtTextOut and StrBIt (translate draw mode)
s BitBIt (translates brush and draw mode)

3.1.3 The Palette Translate Table

For the get/set palette translate table calls, a far pointer to an array of indices (i.e.,
WORDS) of a size specified in dpPalColors is passed to the driver for the logical-to-
physical color index mapping (for more information on dpPalColors, see Section 3.1.6,
“Changes to GDIINFO™). In the case of GetPalTrans, the driver copies its translate table
into the array that GDI passed to it.

The functionality for the SetPalTrans call is a little more complicated. If the pointer to the
color table is not NULL, the driver has to copy the translate table into its own data seg-
ment and also has to construct an inverse of the table it was passed. The inverse table is
needed for block transfers from the screen to a memory bitmap.

In constructing the inverse table, the driver may come across ambiguities because different
logical colors can map to the same physical color. It is up to the driver to decide how to re-
solve these cases since the net result will look the same no matter how such ambiguities
have been resolved.

If the pointer to the color table is NULL, the driver needs to construct identity translate ta-
bles. It can also set accelerator bits to bypass the various translations outlined above. For
BitBIt, bypassing color translation results in substantial performance improvements.

3.1.4 DIBs with Color Palette Management

Beta Release

The color table for a device-independent bitmap (DIB) consists of WORD indices to be
used as the “colors” for the bitmap. For SetDIBitsToDevice, they are physical indices; for
SetDIBits, they are logical indices.

(RonG, please review this carefully to be sure I haven’t misinterpreted you! Thanks.)

In the GetDIBits, SetDIBits, and SetDIBitsToDevice functions, the final parameter,
IpConversionInfo, provides informati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>