Guide to Programming

=
=

SOFTWARE DEVELOPMENT KIT

Microsoft. Windows™

Version 3.1

Guide to Programming

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree-
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright © 1991 International Typeface
Corporation. All rights reserved.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino,
Times, and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright © 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and CodeView are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of
AGFA Compugraphic Division of Agfa Corporation.

Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.

PANOSE is a trademark of ElseWare Corporation.

Epson and FX are registered trademarks of Epson America, Inc.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface
Corporation.

Helvetica, Palatino, Times, and Times Roman are registered trademarks of Linotype AG and/or its
subsidiaries.

Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.

Okidata is a registered trademark of Oki America, Inc.

Document No. PC28919-0492

Contents

INBPOTUCHION ...t Xix
Software Development Kit Documentation Set...........ccceeveeererverierierernreesenenens Xix
BefOre YOU STAIT ..oooviiiiceiieeiceecececeeeceee ettt v et e eatesae e s e saesrseeseesneeens XX
ADOUL ThiS GUIAE ..vviireieiiiieieecre ettt ettt e et e ene e esreeaaeeaeeenne XX
SUZZESLEA TOOLS......ceeeuiiirieiecieieieret ettt ettt ettt et st s s XXii
C0de SAMPIEScevenieiiieriirie ettt sttt ettt st s s n e es xXiii
Document CONVENLIONSeevveeeeeeerieeitreeirieeereeesieeeeeeeesseeeseeessesesseeesseesnsnsenes xXxiii

Part1 Programming in the Windows Environment

Chapter 1

Overview of the Windows Environment 3
1.1 Windows and MS-DOS Compared.........c.ceeveremerieneesinennrieieeneeneeesseseens 5
1.1.1 USEr INTETTACE.eveuieeiieieiitettee ettt s rens 5
1.1.2 QuUEUed INPUL.....c.coiiiirieireeeretee ettt sttt n st annes 6
1.1.3 Device-Independent Graphicscoceeeerveerercercieneneneneseereeeeeenes 7
1.1.4 Multitasking Capabilities.........coceeueerereererrereneeeieerieeerenieneeesenaenes 7
1.2 Elements of a Windows AppLICAtiON........cccecerreerrererierenieirenierenieseeeenenaens 8
1.21 WANAOWS ..ottt ettt ettt et e st seesa e 8
1.2.2 MEIUS. ... cvviiieiiiiieretret ettt sbe e st st b et a s sae e s e b eee 9
1.2.3 Dialog BOXES...couiruiriiiiiiieieteieerte ettt sttt e 10
1.2.4 MeESSAZE LLOOPS ..ttt sttt 10
1.3 WINdOWS LIDIAriescccecirevirrireeinenieeeini ettt er s seenesvene 12
1.4 Software Development TOOIS.......cccoeeerrirereienenere et s 13
1.4.1 Microsoft C Optimizing Compilerc.coceeereuevrerieenneniecnenienen. 13
1.4.2 Microsoft Segmented Executable Linker.........cooceevverievininennennene. 13
1.4.3 ResoUrce BAItOrs......coevvruerieeeerieneeierinieieteterie vt iee e eees 14
1.44 Microsoft Windows Resource Compiler..........cooceeveeveneneriinvennenne. 15
1.4.5 Debugging and Optimizing TOOIScccoeeviriereerreneniereerneereennenee 15
1.4.6 Microsoft Program Maintenance Utilitycccoceveecvreervenreerennrnene 16
1.5 Building a Windows AppliCation........ccccevtruerierienrerireesinienreesestseeeseeeenes 17

1.6 Related TOPICS ...coveueiieieiinieieieieiesiestetesiesresae st ee s bese st e e st e e e e sta s esnesasenes 19

iv Microsoft Windows Guide to Programming

Chapter2 Generic Windows Application 21
2.1 A Standard Windows Application: GENeric........c..c.coevererererureeecrereereenenne 23
2.2 WinMain FUnction.........ccoceevirieniiininenninenieenceseeeee e seesenaenes 24

221 Data Types and STrUCTUIEScc.ecveevererrrerieneenieneneeteseeseeseesaassenaenns 25
222 HAaNAIES.......ccoooieiiiiiiiceeeeeeee ettt 26
223 TRSEATICES oottt ettt et 26
224 Registering a Window Class........cocceevereererenenieneneeeneenneneeeseenenes 27
2.2.5 Creating @ WINAOWcoceerveririnieineninieeertee ettt st sasaesaeeas 30
226 Showing and Updating @ Window.........c.ccceeeveevenerenenecnneerercnnnnens 32
2.2.7 Creating a Message LOODocevveeerienieniiniinieieieseseeeeiete e 33
2.2.8 Yielding Control........ccoveieeririeiineieeeeeieientee et saaseesaneas 34
229 Terminating an APpliCationcoeveeveeverierenieenienienereeeneere e 34
2.2.10 Initialization FUNCLONScocecerevirireniiieineee e 35
2.2.11 Application Command-Line Parameter...........ccccceceveveeerenreneenenne. 37
2.3 WIndow Procedurec.cceiveerieneeenereeinienenieeeteresieieseeeesessesesiesesaenes 37
24 Creating an About Dialog BOX.....cccoeceviriiiiiniininieneieeeseeeeeeeeeeeeeene 39
24.1 Creating a Dialog Box Template............coceceevereneenenienenicnencnenne. 40
242 Creating a Header Filec.cocooevvenieeeniniienieicnnceenceeeneceienene 41
2423 Creating a Dialog Box Procedure..........cccccceevereneenienenenicnienenenne. 42
244 Defining a Menu with an About Commandccccceveeeevcrverrennenne. 43
245 Processing a WM_COMMAND Messagecoccovereveeeneererienennenss 44
2.5 Creating a Module-Definition File.........ccccocererirverinineniennenenieeneeene 45
2.6 Creating GeNETICccetetruirieiererieietesieeetestestetese et ebestesseseeaeebesaesessenseaeaes 48
2.6.1 Creating the C-Language Source Filecocooeveieienienenncnecnne. 48
2.6.2 Creating the Header File.........ccocovivviiieninnieninicieeneeceeeeee 54
2.6.3 Creating the Resource-Definition File.........cccccoccovvnenniinenininnennne., 54
2.6.4 Creating the Module-Definition Fileccccoevevieinenennrennenenens 55
2.6.5 Creating the MaKefilecccocevevrenenienninencereeneneeeeeeeeeene 56
2.6.6 Running Microsoft Program Maintenance Utility.........c..ccceoevrennene 57
2.7 Using Generic as a Template.........coccoveieeriererninenenienneneneseneeesieeseneens 57

2.8 Related TOPICS .eevvievieieiirieiteeeietetetesiesiesre et esteeveseeetessaeraessesressseseesaessasenns 59

Contents v

Chapter 3

Chapter 4

Part2 Programming Windows Applications

Output to a Window 63
3.1 Using @ Device CONEXL.....cc.courirrinieririeieinieteenreterenreeeresreetesiesesnesaesnas 65
3.1.1 Using the GetDC Functionccoecevienieienienienieneeieese e 66
3.1.2 Processing a WM_PAINT MeSSage......ccccevireeeierienierienienieneeseeennens 66
313 Invalidating the Client AT€acoeverierenenerereneenieneniesienee e 67
314 Preparing a Device CONteXL.........cvevieiviereniirieinienieinenenreneeiesiennens 68
3.1.5 Co0rdinate SYSIEIM.....coueruruirrirrerieirtisienieieeeeestetere et e steseessenaeseas 68
3.2 Creating, Selecting, and Deleting Drawing ToolSc.ccccoceveiveniecenennennn. 69
3.3 Drawing and WITNZ......ccceeiiiiiiiieiieieie ettt et 70
34 Sample Application: OULPUL.........c.eevecierereriieireneeeeeeeeeseesreresaesaeeeeeneas 72
341 Adding New Variablesc.cooereirineiineninineeeeeenenieiecnie e 73
342 Adding a WM_CREATE Case......cccccecerirenieineniennienenienieesie e 73
343 Adding a WM_PAINT CaS€c.cecveieriereienreiieieneeerereeieesesseseneeeas 74
344 Modifying the WM_DESTROY Caseccceovvvereerieeriririeeeerenenns 78
345 Compiling and LinKing........ccccoceevinininininieiereeieeeeieseeeenee e 78
3.5 Related TOPICS ooverviriesiieeieie ettt sttt ettt et veete et er e ve e e 79
Keyboard and Mouse Input 81
4.1 Windows INput MesSages.........ccceveuerierieniriinieiniinieenenieeeie e siesteeeiesae e 83
4.1.1 Message FOIMALSc.eeeevirierieieieiirientcesie et 84
4.1.2 Keyboard INPULcocveviiriiiiiiiieieiceeccctees e 84
4.13 Character INPULcc.oovviiiiiieiieerceeeeeeer e 85
4.14 MOUSE INPUL ...ttt 85
4.1.5 TIMEL INPUL ..ottt 86
4.1.6 Scroll Bar INPUL.......co.evuirieieiiiienctnecee e 87
4.1.7 MeEnU INPUL....c..ooiiiiiiiiic ettt 88
4.2 Sample Application: INPULcccoveeiririirieieereerreestece e 88
4.2.1 How the Input Application Displays Output.........cccecceverveerenennenne. 89
422 Adding New Variablescoceceevirirninerneneeniceieeeee e 90
423 Setting the Window-Class Style........cccovevirrinirrceiniseeceens 90
424 Modifying the CreateWindow Function.........cccceeeeeeveverenccecnnnnee. 91
4.2.5 Setting the Text Rectanglescocevevierieniinineniecieneneeciecieseeiens 91
4.2.6 Adding a WM_CREATE Case......cccceevtriiieieieieeiereeseereeeeve s 92

vi

Microsoft Windows Guide to Programming

Chapter 5

Chapter 6

4.2.7 Moditying the WM_DESTROY Case.......ccoceoerruereneerenreserenesienenens 92
4.2.8 Adding WM_KEYUP and WM_KEYDOWN Cases.......ccccccrueuenn. 92
4.2.9 Adding a WM_CHAR Ca8€cceveerurreirrieenineneneseseeceseeseencecenes 93
4.2.10 Adding a WM_MOUSEMOVE CaSec.ccsceeuruemereererereeienenenenne 93
4.2.11 Adding WM_LBUTTONUP and
WM_LBUTTONDOWN Casescccereeueieerimneerrrernsenecienennnernne. 93
4.2.12 Addinga WM_LBUTTONDBLCLK Case
4213 Adding a WM_TIMER Case.........cccecvererirrerenenereninreresreneneenereenereenes
4.2.14 Adding WM_HSCROLL and WM_VSCROLL Cases..........c.c..... 94
4.2.15 Adding a WM_PAINT Case......ccccoeverirurerineeenireeienerieneseeesaeneeseene 94
4.2.16 Compiling and LinKingc..ccceceevereeneereneneerereneneneneeseeneneeessesnenees 95
4.3 Related TOPICS ..evvvvuireireeeiienienieeienieeteteeeres et ee et seesseeseesae st esesmesnas 96
lcons 97
5.1 WhatIs an ICon7....coocoriivrieerieiineeneeccteecneeneeseeie et eenes 99
5.2 Using Built-In ICONScoueiuiriiieiiininieeniee ettt 100
5.3 Using Your OWN ICOMNS....c.eveereeirereeenienieinenieseseeteiesieseeeeneenesessessenes 101
5.3.1 Creating an Icon File......c.cocvirrvnininiiincniiiniceieeecneeee e 101
5.3.2 Defining an Icon RESOUICEcccccvrevieenenvrcnierenenieenieieeeceenns 101
5.3.3 Loading an Icon ReSOUICEcccccevvevirierieiriniiiresiereeseeieeniesieeens 101
54 Specifying a Class ICOMeviverieririeririeieinierirenreeeesteee et esaese s 102
5.5 Displaying Your OWn ICONS........cccvveririeririnienieeeeteeriereeesesesiessessenens 102
5.6 Displaying an Icon in a Dialog BOXccceceeenirverinsieineenieeeeseseesesenens 104
5.7 Sample Application: ICON..........cceevrererrerieenenieereteeste e e esessesaeseeseens 105
5.7.1 Adding an ICON Statement...........ccccervieirueciiinicniininiiisenesensene 105
5.7.2 Adding an ICON Control Statementoccccevvveeeruerervercenennrvenenns 105
573 Setting the Class ICONcovuevirieivererinneirncerree e ceeeaeneae 105
574 Adding a MYICON.ICO Line to the Makefilecccccceeeruencne. 106
5.7.5 Compiling and LinkKingcoceeveeeeerierienenriereenienesieneseeneseeseesannes 106
5.8 Related TOPICS .oveuiereririereniiriereteieertetetsteteaese et asse e e eseenaesesseseaseen 106
Cursors 107
6.1 Controlling the Shape of the CUISOr........cccoeivuerereeriereeienreeresienieneennens 109
6.1.1 Using Built-In Cursor Shapes.......ccccoceeveevieveeveenenenenreeneneesenenne. 109
6.1.2 Using Your Own Cursor SHapescccceeueveererrererrenseenierneeseeneens 110
6.2 DiSplaying @ CUISOTccueeueeeierrieiesieerieaesieereseeseeseesessassessessesssessesssesssaseen 111
6.2.1 Specifying a Class CUTSOT......co.eeeevereererrereereeieteseenreessesseeseessennes 111
6.2.2 Explicitly Setting a Cursor Shape..........cccecereverenereereerenenenennenees 111

6.2.3 Example: Displaying the Hourglass During
aLengthy OPerationceccveceierreeenieenieniesenieneereneseesreseeseenesenes 112

Contents vii

Chapter 7

6.3 Using the Cursor with the MOUSE........cceoeerreririreerieeierieeereeeerennsessens 113
6.3.1 Starting a Graphics SeleCtioncccceveriereererienireneneneeseeese s 114
6.3.2 Extending a Graphics Selection..........ccoeeveererereersireieneneenieniennenns 115
6.3.3 Showing a Graphics Selection..........c.cccveverererienreeieseneeieieeeene 116
6.3.4 Ending a Graphics SeleCtion.........cc.uecvueeirerrereneneerenerenieneeenennens 117

6.4 Using the Cursor with the Keyboard..........cccoeeeireneeirncinieceeeeceeeseee 118
6.4.1 MoVINg the CUTSOTvicuiecieeiieceecieeeteeee et er e e e saeeeresraeseneens 118
6.4.2 Using the Cursor When No Mouse Is Available...........cccoevveurenne 121

6.5 Sample Application: CUISOTcecevuerereriireerierenierereeeeersessessessesessesesaas 122
6.5.1 Adding a CURSOR Statementccoeveeererereeenreneeeneseneeeenenne 123
6.5.2 Adding New Variablesc.ccccveenineinerninerneneeeeeseeseeseeeeenne 123
6.5.3 Setting the Class CUSOTceverueeerierieniereerienenrerce et see e 124
6.5.4 Preparing the Hourglass Cursor........cccveveeierierenirieeieseenieniencenens 124
6.5.5 Adding a Lengthy Operationcccccevcevvererveneenieneneseenieseeneenns 124
6.5.6 Adding WM_LBUTTONDOWN, WM_MOUSEMOVE, and

WM_LBUTTONUP Cases.....c..crvervreneenrereeneeeeerneenseneeseessessesseenne 125
6.5.7 Adding WM_KEYDOWN and WM_KEYUP Cases............c...... 127
6.5.8 Adding a WM_PAINT CaS€ccovererenierenieiriieneeenesesiereeeenenaas 129
6.5.9 Adding a BULLSEYE.CUR Line to the Makefile...........ccocceennene 130
6.5.10 Compiling and Linking.........ccccceveeeiniiriiieneceseeeere e 130

6.6 Related TOPICS ...ceviveriiirerieierteeseste ettt sr e eba sttt ese e sene 131

Menus 133

7.1 Menus and Menu ItemSc..coeerirreneneenieinerneneeeeeneeeere e 135

7.2 Defining @ MENU.....ccoiviiiirririerieieieeeieieietee sttt eve sttt ees 136
7.2.1 Menu Identifiers.cceuevieiriereirerereteee ettt 137

7.3 Including a Menu in Your AppliCationceeceeereeirenrenuenereeenieneanenne 137
7.3.1 Specifying the Menu for a Window Class.........c.ccceververvirrreeennenn 137
7.3.2 Specifying a Menu for a Specific Windowccccoceververveeneennenne. 138

7.4 Processing Input from a MenUccceerenerieicenincrnineneneeeeteseseseseeeanen 138

7.5 Working with Menus from Your Applicationccceceeeeverieverceneeneenene 139
7.5.1 Enabling and Disabling Menu Itemsc.ccccecevevvevernincniennenene. 140
7.5.2 Checking and Clearing Menu [tems.........ccceeveveereriereenenieenenienne 141
7.5.3 Adding Menu Iemsccoeeeerinienieiniriirneneeeeenecneeeeeneeeeaeees 142
7.5.4 Changing EXiSting MENUSccceeereerveninrieeneeeneneeeeresseeenaenaenens 143
7.5.5 Deleting Menu IteImSc.ceceeveeerieriererernenieniereseeneeeeessesee oo enes 144
7.5.6 Using Bitmaps as Menu Items........cccoceirieiinieiieeienienieseseseenens 144
7.5.7 Replacing MEenuscoccoceveveneninnineniinerirecncreeeiveseeeseeeenenes 145
7.5.8 Creating New MENUScceeverreriereninenierenterecneerestsseseeseseesesaenens 146

7.5.9 Initializing MENUScoveeiririeiriesieirenieeeresaeeseese e seesesse e eeesas 147

viii Microsoft Windows Guide to Programming

Chapter 8

7.6 Using Special Menu Features........cc.coceevverenininineniniene e 148
7.6.1 Providing Accelerator Keys for Menus and Menu Items............... 148
7.6.2 Using Cascading Menuscccueeeverierercrnenenneeneeneneeneseenennens 151
7.6.3 Using Floating Pop-up Menus........ccccoceveeeeieeenreneenieeeneeeeeenene 153
7.6.4 Designing Your Own Check Marksc.cccoveveeereniinencencncnenene. 155
7.6.5 Using Owner-Drawn Meniu IS «.ooovevevevininenieneeeneeiceenen 156

7.7 Sample Application: EitMenu..........ccccccoeeiiiniinininineininencicae 158
7.7.1 Adding New Menus to the Resource-Definition File..................... 158
7.7.2 Adding Definitions to the Header Filec.ccccooeviniiicninicnenne. 159
7.7.3 Adding an Accelerator Table to the Resource-Definition File 160
7.7.4 Adding a New Variablecccoceveninenienienneneeneeieeeneeeee e 160
7.7.5 Loading the Accelerator Tablecococverevneneennenenieeccnene 160
7.7.6 Modifying the Message Loop......cocueerieieienienieneneeneeseeevesieeeeeen 161
7.1.7 Modifying the WM_COMMAND Case........ccccrveeureerenenennenenennes 161
7.7.8 Compiling and LinkKingcccecevvevevenennineneeneneecneseseeeienaen 162

7.8 Related TOPICS c.veovevvirererienieniieieeterienieeitentest ettt ettt ste e sie st e st sate st seaeaeen 162

Controls 163

8.1 WhatIs @ COntrol?ccocuvuivieiierinienieiereiceneeecsr et 165

8.2 Creating a CONtIOlcoceeviiviireriiiiniieieecicnenere e 165
8.2.1 Specifying a Control CIassccceeerereerenieeneneeeereneneneneeneenes 166
822 Choosing a Control Style.......c..coeveverineieeiniereneneieeneeeseneneenne 167
8.2.3 Setting the Parent Windowcccecvevvenieeiniininieereenenceseseeenen 167
824 Choosing a Control Identifierccoceveveeivienvierenieniesceeenne. 168

8.3 USING CONLIOISccuieuieiiierieiieienieettet ettt ettt et eee st sreee 168
8.3.1 Receiving USer INPULcc.ovverieriereniieiienienesese et 168
8.3.2 Sending Control MESSAZESc..eeeeverierinenierineniiniesteseeseeneesvennes 169
8.33 Disabling and Enabling Input to a Control............cccceeceveenenennenne. 169
834 Moving and Sizing @ CONtrol........ccceverieverriererierieneerienie et 169
8.3.5 Destroying @ Control........c..cocevereenineneninieneneneeee e 170

8.4 Creating and Using Some Common COontrols.........cccceceeeverververervenennn. 170
8.4.1 BULONS ..ttt 170
8.4.2 Static CONLIOLS......euveuieeireienietirteiestee ettt tee et ebe b sbenes 175
84.3 LASE BOXES ..eveuieiieiiirieeiieienieeeetetest ettt 175
8.4.4 COMbBO BOXES.....eiiiriiriiiiiiirieneete ettt st 181
8.4.5 Edit CONLIOLS ..ottt et e sbenees 182
8.4.6 SCIOIL BArs.....coiieieiiieeeee ettt e 183

8.5 Sample Application: EAitCntlcccovevirienienininininieieieeeeeeveieeeen 184
8.5.1 Adding a Constant to the Header Filec.cococevivviinennenicnncenee 185

8.5.2 Adding New Variablesccccevveevieririnenininieienieeeeeeseeneenie s 185

Contents ix

Chapter 9

Chapter 10

8.5.3 Adding a CreateWindow Function..........ccccecevererveecenenenncenecnenne 186
8.5.4 Modifying the WM_COMMAND Casec..ccccvererveneenererneennenne 187
8.5.5 Adding a WM_SETFOCUS Casec..ccceuereenruencneerercnrenenerereenens 187
8.5.6 Adding a WM_SIZE Case....c.coceveueveriiieienieeeseseeceteseeenesieeene 187
8.5.7 Compiling and Linking.......cccoeeververenninenneieeeeeeseseeeeeerieee 188
8.6 Related TOPICS c..eveeveieririeiriiieteeete sttt ettt st 188
Dialog Boxes 189
9.1 What Is @ Dialog BOX7 ...cocuiiiieiiiiieiieiee ettt 191
9.1.1 Modal Dialog BOXESccvvuiiiiiiiiiiiiiiieiiciseseeas 192
9.1.2 Modeless Dialog BOXEScccoccveviiiiiiiiiiiiiiccniiccccc 192
9.2 Using a DIalog BOX c..ccueeireriiieniiienieeterieriee ettt st 193
9.2.1 Creating a Dialog Box Procedure..........ccoceevevvereeienencnnencnsecnenne. 194
9.2.2 Using Controls in Dialog BOXeS......ccccevvirerenirenncenieneneceencnnenne 195
9.3 Related TOPICS .eveeeererierieiie ettt sttt ettt st sae s s s 195
File Input and Output 197
JO.1 OVEIVIEW ittt sttt sttt et ae e st enenee 199
10.2 Rules for Handling Files in Windows.........ccccccecevevninenerencneneeenennenss 200
10.3 Creating a File Heteteetist et s s s bt bbb ba b e s besa b e sabs sabe SR b e e bR e e Rt aes 202
10.4 Opening an EXisting File..........ccooovviriinininiiniinieneneeeeecree e 203
10.5 Reading From and Writing To a Filecccccovinininnniincniiniecenenee 203
10.6 Reopening a File........cocoviviririeniniinicieeteeceseeene et 204
10.7 Prompting for a FIleccoiiririiiiieieeeeeeeeeceeecete e 204
10.8 Checking the Status of an Open File........cccccccoiiiviiiniiininnniin, 204
10.9 Sample Application: EQUFIlecccoeoivueeenuiinneinieecrce e 205
10.9.1 Adding a Definition to the Header Fileccccccevnevveinnncnnennene. 205
10.9.2 Adding a SaveAs Dialog BoX.......cccvuiveiiiniiininiiiiiiiiiiicicns 205
10.9.3 Adding Include Statements.........cccveeveereereenieneneniereeneenieneeseennenne 205
10.9.4 Adding New Variablesccccceevveeveererererenenieenieneneeeeeeneene 206
10.9.5 Replacing the WM_COMMAND Casecccecererueerreneeneeerenenees 206
10.9.6 Adding WM_QUERYENDSESSION and WM_CLOSE Cases... 210
10.9.7 Modifying the OpenDlg Dialog Box Procedurecccccevueruennne 210
10.9.8 Adding a SaveAsDlg Dialog Box Procedure..........c.ccccceveruenenncnne 211
10.9.9 Adding Helper FUNCHONS........cccevinriinieniiiienieneceeceeveneeieeene 213
10.9.10 Exporting the SaveAsDlg Dialog Box Procedure..........cccceceuenneee. 216
10.9.11 Adding Space to the Heapccceeeveveieiriinininieicieeeecsieeceeenenn 216
10.9.12 Compiling and Linking.......c..cccceviriiiiiinnennininininines 217
10.10 Related TOPICS ..cuveveerieririerirtertenieneeierieeee sttt teeestesresee et seesesaeenreene 217

X

Microsoft Windows Guide to Programming

Chapter 11

Chapter 12

Bitmaps 219
11.1 WhatIs @ Bitmap? ...cc.coceceeireneneeninentetnenieceretsesiessesesessesseseesessessens 221
11.2 Creating a Bitmapcoceereruerieeeeneiececeeeeceeesreseeseeseseseesseseesessessens 221
11.2.1 Creating and Loading a Bitmap File.........ccccccecevuerrrvrenenrecrerennns 222
11.2.2 Creating and Filling a Blank Bitmap..........ccccecveeerceverevrecrnenrennene 223
11.2.3 Creating a Bitmap with Hard-Coded Bits .ooveveevnccneencnccnnenn, 224
11.24 Drawing a Color Bitmap.......ccccccceeerenuiencntreneniercresentreeneesesesnenens 227
11.3 Displaying a Bitmapc.ccccevevieveeierinennincieereetnenieeereseesee e sresaenne 229
11.3.1 Using the BitBlt Function to Display a Memory Bitmap............... 229
11.3.2 Stretching a Bitmapcccoecceeuevnirennecnneeeneecnteecnreeeeeenenienens 231
11.3.3 Using a Bitmap in a Pattern Brushcccococccveennenncnnncvncnene. 232
11.3.4 Displaying a Device-Independent Bitmap........cc.cccevevvercveeerernennne. 234
11.4 Adding Color to a Monochrome Bitmapccoceeeverresierrerinenenreseeennenns 235
11.5 Deleting a Bitmapcc.coceueereererienineninneinnecneseeiee sttt veseseesesnen 236
11.6 Sample Application: Bitmapc.c.cccceeeverrienenineninincteeeseseseeeeseeeeen 236
11.6.1 Modifying the Header File.........cccccvvnireniivenenieinenenieneereeneennenns 237
11.6.2 Adding Bitmap ReSOUICEScccevrreirereninrienecreniecneeeneeeeeneenes 238
11.6.3 Adding Bitmap, Pattern, and Mode Menus.........cc.ccceevevermerenuencnne. 238
11.6.4 Adding Global and Local Variablescc.coeueueruerrerrerresresrannn. 239
11.6.5 Adding a WM_CREATE Case.......cccccovuiinimernerncnnreeereieneeennes 240
11.6.6 Modifying the WM_DESTROY Case......ccccoeveererrreerercrcrereeeenence 243
11.6.7 Adding WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_LBUTTONDOWN Casesccccvuruemrermeneeeeeemceeerenssuenereenes 244
11.6.8 Adding a WM_RBUTTONUP Casecccceceueeuirerirrerererenerrerenenencs 245
11.6.9 Adding a WM_ERASEBKGND Casecccecertrrrerinenenvenerenanns 245
11.6.10 Modifying the WM_COMMAND Case........ceourerrenererrurceresvennens 245
11.6.11 Modifying the Makefilec.cceeererrereriirrerinrineeeeeseneeresieseesenenas 248
11.6.12 Compiling and LinKingc.coceceeeuiereeerrenmerereeesrerensereseneesenenens 248
11.7 Related TOPICS .ovvverrireeririieientenieteinteresreeee et ereseesesseseeseasteses e esesseseeaenes 248
Printing 249
12.1 Printing with WINAOWS.....c.ccerireresioninienteinententneniereee s seeseesesessesaesaens 251
12.1.1 Functions and Printer ESCApesccocevverrireticieniinieererreneeceessesneenns 252
12.2 Retrieving Information About the Current Printer............coceeevveeevevercnnne 252
12.3 Printing a Line of TEXE ...cccevvveirerereeeiierenrereecieereesee e enesesessenes 254
12,4 Printing a BItIAPc.cccoueviieenireriirereeenenenieeeectcesereses e seseeseeseeesesessenes 256

12.5 Processing Errors During Printingceccccveververenieencnneneneeneceeeenenne 257

Contents Xi

Chapter 13

12.6 Canceling a Print Operationcccceeeeeeienienienienseeneneneneeeeeeneeniesnenns 259
12.6.1 Defining a Dialog Box That Cancels a Print Operation................. 260
12.6.2 Defining a Dialog Box Procedure for the Abort Dialog Box 260
12.6.3 Defining a Function That Cancels a Print Operation..................... 261
12.6.4 Performing a Cancelable Print Operationc.ccceoveevvevueceecinncns 263
12.6.5 Canceling a Print Operation with the AbortDoc Function............. 263

127 Using Banding to Print IMagescoccocveveneniiinininineciiicenencneeee 263

12.8 Sample Application: ProtFile......c.cccooeviiiiniiiiiiiniiiiiiiiicces 266
12.8.1 Adding an AbortDIg Dialog BOXcccoeievieiiniiiiiiiieseneccnceeees 266
12.8.2 Adding Variables for Printingccccceeveieneninicnnninincneneenee 267
12.8.3 Adding an IDM_PRINT Caseccccuevverieienienenirieneneeecnieeenne 267
12.8.4 Creating the AbortDIlg Dialog Box Procedure and

ADbOTtProc FUNCHONoviiiiiriicicicicneccecrcstce e 270
12.8.5 Adding a GetPrinterDC Function..........cccoccoiiviiiiniininninininnens 271
12.8.6 Exporting the AbortDlg Dialog Box Procedure and

ADBOTtPTOC FUNCHON ...ttt 272
12.8.7 Compiling and Linking..........cecceveeveerienenienieenineneeeeieiesenieenenes 273

129 Related TOPICS ..vveuvivieririieiieieieteie sttt ettt sb ettt sb s e s e e seeaes 273

Clipboard 275

13.1 Using the CIHPbOArd..........ccoceeererrienereeiireneneeneeseseeee e e eneennes 277
13.1.1 Copying Text to the Clipboard........cc.ccccveeeeninecrnrnninencncnncne 279
13.1.2 Pasting Text from the Clipboardcccccooiiiiiiiniiiiniiins 281
13.1.3 Pasting Bitmaps from the Clipboardccccoceevieieiininnnnenene 283
13.1.4 Windows Clipboard Application............ccceevieiiieiiiieiiiiinieiene, 284

13.2 Using Special Clipboard Features............c.ccceviiiniiiniiiininiiiiienene 284
13.2.1 Rendering Data on Request ..o 285
13.2.2 Rendering Formats Before Termination...........ccccccevenveeeereecennnns 285
13.2.3 Registering a Private Formatcccocociiiiniiinieeneeencene 285
13.2.4 Controlling Data Display in the Clipboard..........cccceceeerveerenrinncene 286

13.3 Sample Application: CHPTEXt......ccccoverviirirerniiinie et 289
13.3.1 Adding New Variablesccooerieiereriiieie e 289
13.3.2 Modifying the Instance Initialization Code............cccocvrrrerreriennen. 289
13.3.3 Adding a WM_INITMENU CaSec.cccecerermereirenneriencneneenenenes 290
13.3.4 Modifying the WM_COMMAND Casecccecereerirererenrennences 291
13.3.5 Adding a WM_PAINT Casecccccererrerieninererienieinenrenenenieneeneenes 293
13.3.6 Adding an OutOfMemory Function...........ccccocvivicininininiiincnncns 294
13.3.7 Compiling and LinKing.........ccceceeveverienieninieieneneeeeieseeneseneene 294

134 Related TOPICS ..veeueeretieririieiieieeiteie st et esie st sae st te bbbt seenees 295

Xii Microsoft Windows Guide to Programming

Part3 Advanced Programming Topics

Chapter 14 C and Assembly Language 299
14.1 Choosing a Memory MOdel..........cccoveririreneeienneneeeinieieeeeneeneeeenene 301
14.2 Using the NULL CONStANt.......c.coceeirirreieienrenrtrieseesieeseseesseseesessessenses 302
143 Using Command-Line Arguments and the MS-DOS Environment........ 303
14.4 Writing Exported FUNCHONScocieiiiiieieieiiiineeneeeeeeeceee e 304

14.4.1 Creating a Callback FUNCHONcc.eecervereriiieiiiieieieneeceeeeeenne 304
14.4.2 Creating the WinMain Functioncccceccevenenenenneencnvenicnncenene 305
14.5 Using C Run-Time FUnCtions..........ccocevereriininsienenentneeseneeeeeeesvensennes 306
14.5.1 Using Windows C Librariesc..ceceeceeveerereereerenenenseeneereneneene 306
1452 Allocating MEmMOTYcc.cvuviimvmriiieiiiiniieiecisisiseisee i 307
14.5.3 Handling StriNgSscccoeeeieererirerierenenieteteiesieeeseeresreseesessessensenens 307
14.5.4 Using File Input and OULPULcccoeerereneieinenereneneneeeenienees 309
14.5.5 Using Console Input and OULPULc.ccecervereieinenierreneseeneenienens 309
14.5.6 Using Graphics FUNCHONS.c..cocevvereertrreirinierieneneeeee e 310
14.5.7 Using Floating-Point Arithmeticcccceverererienenenerreereenenienns 310
14.5.8 Executing Other AppliCations........c.ccveeireererierienenensienenenenenne 311
14.5.9 Using BIOS and MS-DOS Interface Functionsc.ccceceveereennne 311
14.5.10 Eliminating C Run-Time Startup Codeccccceceiviinininnnnnne. 311
14.6 Writing Assembly-Language Code..........c.cccoevereenneenecnerineieneeens 313
14.6.1 Modifying the Interrupt FIagcccoeevricnnnecnrcncnneenns 314
14.6.2 Writing Exported Functions in Assembly Language 316
14.6.3 Using the ES RE@IStErccoivirereniiieieiereeteieresieeiesee st 317
1477 Related TOPICS ..ccvevveruieierierieeierieniene sttt ste et ste bt sae et et es 318

Chapter 15 Memory Management 319

151 USING MEMOTY .cveuriutiiiiiirieieeeiieiinreseetesteteieneeteseesesreseeseeseesesresseseseenesaene 321
15.1.1 Using the Global Heap........c.cccccceuvveennueinercnenennictreeeneeneereenenens 322
15.1.2 Using the Local HEapccooeeeruerievirenienieieeeieiesieeeeteese e 323
15.1.3 Working with Discardable Memorycccoeveeerveereccrereeenenenens 325

15.2 USING SEZMENLSeevireiienieiieierieieiesientereeteteetetestesteseesessessesaeseesesseseneans 326
15.2.1 Using Code SEZMENLS.......cecvererrererereerieeereertensesreeeensessesseesseneens 327
1522 The DATA SEZMENLtcoociriieiinieieenieieeeinenie et e 328

15.3 Sample Application: MEMOTYcoceeeererierenirienierenseriesreneeseeeseneseeeens 329
15.3.1 Splitting the C-Language Source Fileccccocevenenieenenenennnnene. 329

15.3.2 Modifying the Header File........ccccocevirieniniiinininieieneeeseeeeee 330

Contents xiii
15.3.3 Adding New Segment Definitionsccocceeeeveiveevecvencnenenennnee 330
15.3.4 Modifying the Makefile.........cocooereneneniienincneeieneceneeeeene 331
153.5 Compiling and Linking.........cccceeeeeenencniineneniinencieeceeeienns 332
154 Related TOPICS .uuiuiiiiieiieiieteetee ettt ettt 332
Chapter16 More Memory Management 333
16.1 Memory Configurationsceccveeeeeereneneesteneneneeerese e 335
16.1.1 Standard Mode..........coceeeeimeiriiniiiicriniiiiieeee e 336
16.1.2 386 Enhanced Modecccccorvrivireciiininiinicniiinenicccecne 340
16.2 StOring Data.....cc.cceruirieieieieteieteteeee ettt 342
16.2.1 Managing Automatic Data Segments..........ccccevvererereeveenrecenennn. 343
16.2.2 Managing Local Dynamic-Data Objects.........cccceceveeiccninnccnninnns 345
16.2.3 Managing Global Memory Objects.........cccccoveerineniiiiiiccniinenncne. 349
16.2.4 Using Extra Bytes in Window and Class Data Structures 356
16.2.5 Managing RESOUICES........ccceveruiiiiniiiiiiiiiinic s 357
16.3 Using Memory MOdEIS........ccceeveeviirierniiiiinieiieniecieciicireicercseeneenee 360
16.4 Using HUge Datacc.evviviiviiniineniinietctcieeecereeeie e 361
16.5 Traps to Avoid When Managing Program Datacccccceeviiiinnn. 362
16.6 Managing Memory for Program Code..........ccoceecerervenenineeciencnicnenene 364
16.6.1 Using Code-Segment Attributes.........coovvveiniiiiiicniniiciiiene, 364
16.6.2 Using Multiple Code Segments..........cceeeverrereerenerrennecreineccenennens 365
16.6.3 Balancing Code Segments.........cceeerrerieieniinieciinieninieeeeeeeenes 365
16.7 Related TOPICS .c..eveeiiieireirieieieneeeenie ettt 366
Chapter 17 Print Settings 367
17.1 OVEIVIBW ..ecuiiiiiiieiiieieientettreceerete ettt 369
17.2 How Windows Manages Print Settingsccovveriiiiininiininnicnnennn. 370
17.2.1 Print Settings and the DEVMODE Structure...........ccoceeceeerceneen 370
17.2.2 Print Settings and the Printer Environment.............ccccooevverernenneene. 372
17.3 Using Device-Driver FUNCHonNScccecevenevieneeriniiccieceniieccceeeees 372
174 Determining the Capabilities of the Printer Driver............ccoociiiinn, 374
17.5 Working with Print Settings.........ccccocevevrerenenievninenenenenecreecneeeene 374
17.5.1 Specitying ExtDeviceMode Input and Output...........cccccovvrviinnns 375
17.5.2 Retrieving a Copy of the Print Settings..........ccccoeeveireenninnnnns 376
17.5.3 Changing the Print SEttingscccceverrerrenenrnreneneneneeeeeeeenne 376
17.5.4 Tailoring Print Settings for Use with the CreateDC Function....... 377
17.5.5 Changing the Print Settings Without Affecting
Other APPLICAIONS......ccveieverrerieieinieeneeeet et 379
17.5.6 Prompting the User for Changes to the Print Settings 380

Xiv

Microsoft Windows Guide to Programming

Chapter 18

17.6 Copying Print Settings Between DIIVersc.ccccovevnenrnennenineeenenes 381

17.7 Maintaining Your Own Print Settings.........cccocevverererervernrierernnennenenenes 382
17.8 Working with Older Printer DIivers..........cccocovvrerienneneneeeeeneeeseeeens 382
17.9 Related TOPICS c..eoveuveuieeeriirieirierieieienteeeieieeeie sttt svesbeaes e besaesesaenens 383
Fonts erre 38D
18.1 Font Fundamentalsccccecevueirienirenenieesienieteceesiesieeeiesiesaeesieesaens 387
18.1.1 Font Organizationcccevveeveerreeseesiesieeseeseeeseseesseesesssessenees 387
18.1.2 Measuring CharaCterscovevrerverreereeriereneeiesieseeeeneessessesseesennes 388
18.1.3 Measuring Line and Intercharacter Spacing..........cccceceevevveerenennene 389
18.1.4 Character SELScccevevreinrireeiriereeirieeeeereseeseeseesesteseeeesesnesseseenens 390
18.2 Fonts in WINAOWS.......ccceveruiriirieierinieiesieteiesiente et sae st stevesbestenaebesseneenens 393
18.2.1 Raster, Vector, and TrueType Fonts.........cccoeeevenienenerenenenenienens 393
18.2.2 Font Resource Filescccoeoivivieinenieieeniirienienisesieneeserenieeenens 394
18.2.3 Basics of TrueType FOnts........ccceeceirereirienininieniereeeneieieesienens 395
18.2.4 Text and Character AHIIDULES........ccceerveverenerirenieeneneesieneeenienens 398
18.2.5 FONEMAPPET..c.ccuiieiriirieieiinieteetetrtes ettt sttt eeens 402
18.2.6 Standard Font Dialog BOXcccecereeveininenienienieeneneseseneeenenees 403
18.3 TrueType Font Technologycoceeevereirienieiernienieneeieieeenreneeeevenenene 404
18.3.1 What You See Is What You Get: WYSIWYG ..o, 405
18.3.2 Embedded FONLSc.cccvueuevenieiirinieieinreeniereteicenieenees et 405
18.3.3 Printer POrtabilitycccooeveviruercninieiirieiniece e 408
18.3.4 Document POrtabilityccccecveirieveererienieieieesrerieceeee e 410
18.3.5 Disk Space, Memory Usage, and Speed........ccccoceeevverereurvenencnnens 410
18.3.6 Font Design and Scalifngceoueviveerieieenienienieniresiesiesieeeseneenens 411
18.3.7 Designing Portable FONts..........ccccceevevvenieiveerieniieeeieieseeeeeeeevenns 411
18.4 Using Fonts in APPLICAtIONSeoveerrireererierreieirienienierteseeresseseeneesessesesnes 413
18.4.1 Using StOCK FONLSc.evveiiiirieiriecieineeieesteeresieten s enens 413
18.4.2 Enumerating FONLSccccoievereriirerrinieeeinierieteteeeeseeseeeeseereeeseenes 415
18.4.3 Checking a Device’s Text Capabilitiesccccccoeeeveiruereccnercnnes 417
18.4.4 Creating a Logical FONtcccoeceuirieverininienieieieenesiesecenenneenes 418
18.4.5 Retrieving Information About the Selected Fontccccoeuvenene. 420
18.4.6 Retrieving Information About a Logical Font...........cccecuvverrvenuennene 421
18.4.77 Drawing TEXLccveeririerieririereeereieeetesteteeeesie s seeseeseeeeresreseene s 421
18.4.8 TrueType Font Functions and Structuresc.cccceeeeeverveerneenes 426
18.4.9 Creating Customized FONtS.........ccccevevverevierenerenenieieeeeseeerennenes 431

18.5 Related TOPICS ...vcuveueeurerireeieiniieieteeriet ettt ettt 436

Contents XV

Chapter 19 Color Palettes 437
19.1 What a Color Palette DOESc.cccoveuririinriiieinirieeneeeneneeeeeereseeenaens 439
19.2 How a Color Palette WOTIKS.......c.cccereriinenininirieienieeeeeee e e 440
19.3 Creating and Using a Logical Palette..........ccccoeevirineniennninineninneeenne. 442
19.3.1 Creating a LOGPALETTE Structurecccceevvevererenvennerenrenennes 442
19.3.2 Creating a Logical Palette............ccccoeverineniennienennieneeneeeeeennes 445
19.3.3 Selecting the Palette into a Device Contextccceeveevvecrerrrerennen. 445
19.3.4 Realizing the Palettec.coceeirininieieieeeeeeeeseeeeeeeeeeen 446
19.4 Drawing with Palette COIOTScceceirieirerieerenierieiesereesieeeeesaeeeesseenas 446
19.4.1 Directly Specifying Palette Colors.........cceceverercirrieniererieneeneenns 446
19.4.2 Indirectly Specifying Palette Colors........cccceeurerererieninreerieereenne 447
19.43 Using a Palette When Drawing Bitmaps........ccccocoeenennenicencnnnne 449
19.5 Changing a Logical Palette............coceceeevieineniiiinenieencreseniese st 450
19.6 Responding to Changes in the System Palette...........ccccocervevrrverrrennennn. 452
19.6.1 Responding to the WM_QUERYNEWPALETTE Message......... 453
19.6.2 Responding to the WM_PALETTECHANGED Message 453
19.7 Related TOPICS ...ouvevirriieieririeiirteiriesiesistesteresteseeesre st senseseesassesseesessesesas 455
Chapter 20 Dynamic-Link Libraries 457
20.1 WhatIs a Dynamic-Link Library?cccocceeeieieniniinenieeeeeneeenen 459
20.1.1 Import and Dynamic-Link Librariescccccocererienverrrenrereesenennns 460
20.1.2 Application and Dynamic-Link Modules..........c.cccovverurververennnnnnn. 461
20.1.3 Dynamic-Link Libraries and Taskscccoceeverrerenernrencerienennn, 462
20.1.4 Dynamic-Link Libraries and Stacks..........cccoeeeeecerirenieceerireeeennn 462
20.1.5 How Windows Locates Dynamic-Link Librariesc.cccoueeu.... 463
20.2 When to Use a Custom Dynamic-Link Library.........cc.cccceveveeeerrennenennn. 464
20.2.1 Sharing Objects Between Applications...........coeceeeeveeereerreecrennenes 464
20.2.2 Customizing an Application for Different Marketsc........ 466
20.2.3 WiIndows HOOKS.........ccoeeirmeninieieirininciniecseectei e 467
20.2.4 DEVICE DITVEISeovrveuirieiirieienieieenerieicntsee st sess e seebe s 467
20.2.5 Custom CONLIOLSc.eoveverirueininieieenieieeeee ettt st 468
20.2.6 Project Managementc.coeueuererieuerenieuentsuenenieseneeseneseeseseeneeseenes 473
20.3 Creating a Dynamic-Link Library........cc.cocceevenincnneninenennenineenenenes 474
20.3.1 Creating the C-Language Source Filec.cccevvevinennenenennnnnne. 474
20.3.2 Creating the Module-Definition File...........ccocooiverinniininenninnne 481
20.3.3 Creating the Makefileccccveririneieninienenreneneieencsee e 482
20.4 Application Access to Dynamic-Link Codecccoceeeiriieeinieirnienrinnne. 485
20.4.1 Creating a Prototype for the Library Function..........c.cccceevrveunenene. 485
20.4.2 Importing the Library FUNCtioNcccvevveeeecerisiesiesieeeisieievenns 486

Xvi Microsoft Windows Guide to Programming

Chapter 21

Chapter 22

20.5 Rules for Windows Object OWNErshipc.ccceveereruecreeremnnrreineererenenes
20.6 Sample Dynamic-Link Library: Selectcccovcevterirverenerenenereseserenene
20.6.1 Creating the FUNCHONSc.coeveermrerericerreenieeeecieeeeeene e
20.6.2 Creating the Initialization FUNCHONcoccecterervernerennierercrereeenes
20.6.3 Creating the EXit ROULINEccocevverriereinieneriereenereneneeneenie e
20.6.4 Creating the Module-Definition Filecccooovvivvnenevernnrennns
20.6.5 Creating the Header File.......cccoevevievvinennninncnineencenineecnnenens
20.6.6 Compiling and LinKing........ccccceevrvveeiiinineniinininicniieineninnens
20.7 Related TOPICS «c.veueevueirreiecereienrtereeeienceneest et se s seseenesaaene

Multiple Document Interface

21.1 Elements of a Multiple Document Interface Application.........c..cc.c........
21.2 Initializing a Multiple Document Interface Application...........ccccecuene.e.

21.2.1
21.2.2

Registering the Window Classesco.ceceeverereenennienenieneeneennennnes
Creating the WINdOWScccererierieneerreenieneneenieeeneenseseessesseneenns

21.3 Writing the Main Message Loop......c.ccoevvereeveeneereenerenrenenneeeeeeeenennes
21.4 Writing the Frame Window Procedurec.ccocevvevveneneeenenieenieneenenne.
21.5 Writing the Child Window Procedure........c..eceeeeuieennveeenienenenneneecenns
21.6 Associating Data with Child Windowscccccceivveniiininiinncnnnniecne.

21.6.1
21.6.2

Storing Data in the Window Structureccooeevieinisinicninnnns
Using Window Properties.........cooueeeereerenerreeneneneneeseereeneenseseennes

21.7 Controlling Child WINAOWScccceevurirriererieirienenreenienesesesesieseeseenes

21.7.1
21.7.2
21.7.3
21.7.4

Creating a Child Windowcccceevvieveninnienienenienieeenienreneeniennees
Destroying a Child Windowccccecevenerreeneneneneenieneeneeeeneennes
Activating and Deactivating a Child Window..........cccccceeuvuecennncne
Arranging Child Windows on the Screen.........o.ceceveeveeveevveneenneneen.

21.8 Related TOPICS .c.cevreveriereeriireereieeriereniereeereesreereeesseeseseeaeseeeseneennens

Dynamic Data Exchange

22.1 Data Exchange in WindOWScc.ceceeuevererrenrinenienneeeinenneenreeeneneeesnennes
22.1.1 Clipboard TIANSTELSooeveeverceeeeereseeeeesesseesseessees e seesseessaenes
22.1.2 Dynamic-Link Librariesc.cccceeeveerererenrenenenieneneeseneeseeresnenenns
22.1.3 Dynamic Data EXChangecccoceverveneneenienenienineeienieeeeeeens
22.14 Uses for Windows Dynamic Data Exchangec..cccccoevevveruennen.
22.1.5 Dynamic Data Exchange from the User’s Point of View

Contents Xvii

22.2 Dynamic-Data-Exchange Conceptsccceovevvrereverereereninreneeseerenennens 516
22.2.1 Client, Server, and COnVErSaAtION..........covevuveeeeeerrerrreeeeeeereesrernsenees 516
22.2.2 Application, Topic, and Item Names.........ccccoeeerererrncrereereeennenn 517
22.2.3 Permanent Data Linkscccoceeveveniniiiencnenenenceeeeeneeeeeneee 518
22.2.4 Atoms and Shared Memory ObjJectscc.coceveeverereeerenieneereeennenne 518

22.3 Dynamic-Data-Exchange Messagescocccevverienininniincnicniincicnieniens 519

22.4 Dynamic-Data-Exchange Message Flow...........ccoccciiviiiininiiicncnnne 520
22.4.1 Initiating @ CONVETSALIONcc.eeuverterereerierierieniesenseetessesseseessessennes 521
22.4.2 Transferring a Single Item........cccevevierenieninieneneeeeieeeee e 523
22.4.3 Establishing a Permanent Data Linkc..coccocevenvnnienenvnnencnnenne. 528
2244 Carrying Out Commands in a Remote Applicationcc.c....... 534
2245 Terminating a CONVEISAtioNccccevevuiniiiiiiniiinrinieieenesrenecneenenns 534

22.5 The System TOPIC......cccviviiiriiiiiiiiictcire e 536

22,6 Related TOPICSoueuererreuiieieieieeeirteeteeeeee st tsae et e eae s 536

Introduction

This introduction provides some background information that you should review
before using this guide, including the following topics:

® The manuals that come with the Microsoft® Windows™ 3.1 Software Develop-
ment Kit (SDK)

= What you should know before you start

® The purpose and contents of this guide

= The tools you need to create applications for the Windows operating system
® The code samples described in this guide

® The document conventions used throughout this guide

Software Development Kit Documentation Set

Throughout this documentation set, “SDK” refers specifically to the Microsoft
Windows 3.1 Software Development Kit and its contents. The SDK includes the
following manuals:

Microsoft Windows 3.1 Software Development Kit Getting Started provides an
orientation to the SDK, explains how to install the SDK software, and highlights
the changes for Windows 3.1.

The Microsoft Windows Guide to Programming (this manual) explains how to
write Windows applications and provides code samples that you can use as tem-
plates for writing your own applications. This manual also addresses some ad-
vanced Windows programming topics.

Microsoft Windows Programming Tools explains how to use the tools you will
need to develop Windows applications. These tools include debuggers and special-
ized SDK editors.

The Microsoft Windows Programmer’ s Reference is a comprehensive guide to all
the details of the Microsoft Windows application programming interface (API).
The four volumes of this reference list in alphabetic order all the current functions,
macros, messages, data types, and structures of the API, and provide extensive
overviews on how to use the APL

- XX

Microsoft Windows Guide to Programming

Before You Start

To start using this guide, you need the following:

m Experience using Windows and an understanding of the Windows user inter-
face.

Beiore starting any Windows appiication development, you should install
Windows version 3.1 on your computer and learn how to use it. Be sure to learn
the names, purposes, and operation of the various parts of a Windows applica-
tion (such as windows, dialog boxes, menus, controls, and scroll bars). Because
your Windows applications will incorporate these features, it is important for
you to understand them so that you can implement them properly.

= An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all
applications. This ultimately helps your application’s user by reducing the ef-
fort required to learn the user interface of a Windows application; it helps you,
the programmer, by clarifying the choices you have to make when designing an
interface.

= Experience writing C-language applications and using the standard C run-time
functions.

The C programming language is the preferred development language for
Windows applications. (Although you can develop Windows applications in
Pascal and assembly language, these languages present additional challenges
that you typically bypass when writing applications in the C language.)

About This Guide

This guide is intended to help the experienced C programmer make the transition
to writing applications that use the Windows version 3.1 APL. It explains how to
use Windows functions, messages, and structures to carry out useful tasks com-
mon to all Windows applications and illustrates these explanations with code
samples that you can compile and run with Windows version 3.1.

This guide consists of three parts, each containing several chapters.

Part 1, “Programming in the Windows Environment,” presents an overview of the
Windows operating system and programming environment and provides an in-
depth look at a sample Windows application. Part 1 contains the following chap-
ters:

® Chapter 1, “Overview of the Windows Environment,” compares Windows to
the Microsoft® MS-DOS® programming environment, provides a brief over-
view of Windows, describes the elements of a Windows application, and out-
lines the Windows application-development process.

Introduction xxi

= Chapter 2, “Generic Windows Application,” shows how to create a simple
Windows application called Generic. This application is the basis for sub-
sequent examples in this guide.

Part 2, “Programming Windows Applications,” explains basic Windows program-
ming tasks, such as creating menus, printing, and using the clipboard. Each chap-
ter covers a specific topic and provides code samples that illustrate that topic. Part
2 contains the following chapters:

= Chapter 3, “Output to a Window,” introduces the graphics device interface
(GDI) and shows how to use GDI tools to create your own output.

m Chapter 4, “Keyboard and Mouse Input,” shows how to process input from the
mouse and keyboard.

= Chapter 5, “Icons,” shows how to create and display icons.
= Chapter 6, “Cursors,” shows how to create and display cursors.

= Chapter 7, “Menus,” shows how to create menus for your applications and how
to process input from menus.

= Chapter 8, “Controls,” explains how to create and use controls, such as push
buttons and list boxes.

= Chapter 9, “Dialog Boxes,” explains how to create and use dialog boxes and
how to fill them with controls.

= Chapter 10, “File Input and Output,” explains how to use the OpenFile func-
tion and provides rules about reading from and writing to disk files.

® Chapter 11, “Bitmaps,” shows how to create and display bitmaps.
® Chapter 12, “Printing,” explains how to use a printer with Windows.
= Chapter 13, “Clipboard,” explains the clipboard and shows how to use it.

Part 3, “Advanced Programming Topics,” introduces and explains some advanced
topics, such as memory management and dynamic data exchange (DDE). Each
chapter covers a specific topic. Part 3 contains the following chapters:

= Chapter 14, “C and Assembly Language,” presents some guidelines for writing
C-language and assembly-language Windows applications.

= Chapter 15, “Memory Management,” shows how to allocate global and local
memory.

= Chapter 16, “More Memory Management,” provides a more in-depth look at
how your application can efficiently manage memory. This chapter also ex-
plains how Windows manages memory under different memory configurations.

= Chapter 17, “Print Settings,” explains how to tailor printer settings (such as
page size and orientation).

= Chapter 18, “Fonts,” shows how to create and load fonts and how to use them
in the TextOut function.

xxii

Microsoft Windows Guide to Programming

m Chapter 19, “Color Palettes,” shows how to use Windows color palettes to
make the most effective use of color.

= Chapter 20, “Dynamic-Link Libraries,” explains how to create and use
Windows dynamic-link libraries (DLLs).

® Chapter 21, “Multiple Document Interface,” explains how to create an applica-
tion that uses the Windows multiple document interface (MDI) 50 that users

>y UG S AiUa

can work with more than one document at a time.

® Chapter 22, “Dynamic Data Exchange,” explains how to pass data from one ap-
plication to another by using the message-based DDE protocol.

Suggested Tools

To build most Windows version 3.1 applications, you need the following tools:
= Microsoft® C Optimizing Compiler (CL)

= Microsoft Segmented Executable Linker (LINK)

= Microsoft Windows Resource Compiler (RC)

® Microsoft Image Editor IMAGEDIT.EXE)

® Microsoft Dialog Editor (DLGEDIT.EXE)

To build Windows libraries and font resource files, you need the following addi-
tional tools:

® Microsoft® Macro Assembler (ML)
= Microsoft Windows Font Editor (FONTEDIT.EXE)

The following tools may also be useful in building and debugging Windows appli-
cations:

= Microsoft Program Maintenance Utility (NMAKE)

= Microsoft® CodeView® for Windows™ (CVW)

= Microsoft Windows Profiler

® Microsoft Windows Heap Walker (HEAPWALK.EXE)
®m Microsoft Windows Spy (SPY.EXE)

The SDK includes all of these tools except for CL, LINK, ML, and NMAKE. All
are described more fully in Microsoft Windows Programming Tools.

For alist of Windows 3.1 software and hardware requirements, see Microsoft
Windows 3.1 Software Development Kit Getting Started.

Introduction

xxiii

Code Samples

The code samples in this guide are written in the C language and conform to the
user-interface style recommended by Microsoft for Windows applications.

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention

Meaning

Bold text

Italic text

[
|

BEGIN

END

Denotes a term or character to be typed literally, such as a resource-
definition statement or function name (MENU or CreateWindow),
a command, or a command-line option (/nod). You must type these
terms exactly as shown.

Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X,Y) requires you
to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.
Represents an omitted portion of a code sample.

In addition, certain text conventions are used to help you understand this material:

Convention

Meaning

SMALL CAPITALS

FULL CAPITALS

monospace

Indicate the names of keys, key sequences, and key combina-
tions—for example, ALT+SPACEBAR.

Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

Programming in the Windows Environment

Part 1

Overview of the Windows

Environment

1.1

1.2

1.3
14

1.5
1.6

Chapter 1

Windows and MS-DOS Comparedcccceveverersienenrenrenenneereenenenenne 5
1.1.1 USer INTETTACE.......oviveeiiiieiciiicrcteerct et 5
1.1.2 QUEUEd INPUL.....ceiiiieeirectee ettt 6
1.1.3 Device-Independent GraphicCsccoceevireenierveneenenneereeneniennennn 7
1.1.4 Multitasking Capabilities..........cccovueviiiiiiiniiiiniiiciens 7
Elements of a Windows AppliCationccceeeeerereerrrereneecneeccnceeeeninnnas 8
1.2.1 WINAOWS ..ttt ettt et e se e seeas 8
1.2.2 MENUS....cviiiiitiieiiiitet ettt 9
1.2.3 Dialog BOXES....cocuieieeieiieieeiteiteteiccee et e 10
1.2.4 MeESSAZE LLOOPS .oveeurenreerenieieeieeiente st ette ettt s 10
WiINdows LIDIATIEsccveuerieieirieirenreiiinisreneeesiinee et ceseeneeseneeeeresnens 12
Software Development TOOIScccocieeminiienniiicceiiecieisesceeieaes 13
1.4.1 Microsoft C Optimizing Compilercococeniiniciincnininnen. 13
1.4.2 Microsoft Segmented Executable Linkercccocviiiiniennes 13
1.4.3 Resource EdItors.......c.occoveviiiiiiniiiiiciicniicrncicecnieecnee 14
1.4.4 Microsoft Windows Resource Compiler..........ecevevvevecrennenen. 15
1.4.5 Debugging and Optimizing TOOIScccceeuereerrievenscniennenaeen. 15
1.4.6 Microsoft Program Maintenance Utilityccccecceveeveeverieneennen. 16
Building a Windows AppliCationcceceeeevierienieriienenieneseeeeeeeesveenes 17

Related TOPICS. c.ceveriirieieieiesienert sttt ettt sr et e 19

Chapter 1 Overview of the Windows Environment 5

This chapter provides an overview of programming in the Microsoft Windows 3.1
operating system and covers the following topics:

= A comparison of Windows applications and standard MS-DOS applications

= Elements of a Windows application

‘Windows libraries

= Processes and tools you use to develop and build Windows applications

1.1 Windows and MS-DOS Compared

Windows has many features that the standard MS-DOS environment does not. For
this reason, Windows applications may, at first, seem more complex than standard
MS-DOS applications. This is understandable when you consider some of the addi-
tional features that Windows offers:

= A graphical user interface featuring windows, menus, dialog boxes, and con-
trols for applications

= Queued input

= Device-independent graphics

® Multitasking capabilities

= Data interchange between applications

When writing applications for the MS-DOS environment, most C programmers
use the standard C run-time libraries to carry out an application’s input, output,
memory management, and other activities. The C run-time libraries are for the pro-
grammer who is working in a standard operating environment consisting of a char-
acter-based terminal for user input and output, and exclusive access to system
memory as well as to the input and output devices of the computer.

In Windows, these characteristics are no longer valid. Windows applications share
the computer’s resources, including the CPU, with other applications. Windows
applications interact with the user through a graphics-based screen, a keyboard,
and a mouse.

1.1.1 User Interface

In a multitasking operating system, it is important to give all applications some
portion of the screen so that the user can interact with all applications. Some sys-
tems do this by giving one program full use of the screen while other programs
wait in the background. With Windows, every application has access to some part
of the screen at all times by means of a window for user interaction. A window is

Microsoft Windows Guide to Programming

arectangle that provides a combination of useful visual devices, such as menus,
controls, and scroll bars, with which the user controls an application.

In the standard MS-DOS environment, the system automatically prepares the
screen for an application—typically, by passing a file handle to the application.
The application can then use that file handle to send output to the screen by using

conventional C run-time functions or MS-DOS function calls. In Windows. an an

SURAVOAInVIAGE v 2 T il v uiUias Ul VS Tao S tuav AL VY AUV WO, alL ap-

plication must create its own window before performing any output or receiving
any input. Once the application creates a window, Windows provides the applica-
tion with a great deal of information about what the user is doing with the win-
dow. Windows automatically performs many of the tasks the user requests, such
as moving and sizing the window.

Another advantage to developing applications in Windows is that, in contrast to a
standard C application, which has access to a single screen “surface,” a Windows
application can create and use any number of overlapping windows to display in-
formation in any number of ways. Windows manages the screen, controls the
placement and display of windows, and ensures that no two applications attempt to
access the same part of the screen at the same time.

1.1.2 Queued Input

One of the biggest differences between Windows applications and standard C ap-
plications is the way in which they receive user input.

Input to an MS-DOS application is typically in the form of 8-bit characters read
from the keyboard. The application reads these characters by calling the standard-
input functions getchar and fscanf, which return ASCII or other codes correspond-
ing to the keys pressed. The application can also intercept interrupts from input
devices such as the mouse and timer to use information from those devices as
input.

In a Windows application, all input from the keyboard, mouse, and timer is inter-
cepted by Windows, which places the input in the appropriate application’s mes-
sage queue. When the application is ready to retrieve input, it simply reads the
next input message from its message queue.

A Windows input message contains far more input information than is available
in the standard MS-DOS environment. Such a message specifies the system time,
the position of the mouse, the state of the keyboard, the scan code of the key (if a
key was pressed), the mouse button pressed, as well as the device generating

the message. For example, two keyboard messages, WM_KEYDOWN and
WM_KEYUP, correspond to the pressing and releasing of a specific key. For each
keyboard message, Windows provides a device-independent virtual-key code that
identifies the key, the device-dependent scan code generated by the keyboard, and

Chapter 1 Overview of the Windows Environment 7

the status of other keys on the keyboard, such as SHIFT, CTRL, and NUMLOCK. Key-
board, mouse, and timer messages all have the same format and are all processed
in the same manner.

1.1.3 Device-Independent Graphics

A Windows application has access to a large and varied set of device-independent
graphics operations. This means your application can easily draw lines, rectangles,
circles, and complex regions. Because Windows provides device independence, ap-
plications can use the same functions to draw a circle on either a dot-matrix printer
or a high-resolution graphics screen.

Windows requires device drivers to convert graphics-output requests to output for
a printer, plotter, screen, or other output device. A device driver is a special execu-
table library that an application can load and connect to a specific output device
and port. A device context represents the device driver, the output device, and per-
haps the communications port. Your application carries out graphics operations
within the context of a specific device.

1.1.4 Multitasking Capabilities

Windows is a multitasking operating system—that is, it can run more than one ap-
plication at a time. The standard MS-DOS operating system has no particular mul-
titasking capabilities. An MS-DOS application typically operates as though it has
exclusive control of all resources in the computer, including the input and output
devices, memory, the screen, and even the CPU itself. A Windows application,
however, must share these resources with all other applications that are currently
running. For this reason, Windows carefully controls these resources and requires
Windows applications to use a program interface that guarantees that Windows
maintains control of those resources.

For example, an MS-DOS application has access to all memory that has not been
taken up by the system, by the application itself, or by terminate-and-stay-resident
programs (often called TSRs). This means that applications are free to use all avail-
able memory for any purpose and may access it by any method.

In Windows, memory is a shared resource. Since more than one application can be
running at the same time, each application must cooperatively share memory to

- avoid exhausting the resource. Applications may allocate what they need from sys-
tem memory. Windows provides two sources of memory: global memory, for
large allocations; and local memory, for small allocations. To make the most effi-
cient use of memory, Windows often moves or even discards memory objects.
This means an application cannot “assume” that objects to which it has assigned a
memory location remain where it put them. If several applications are running,
Windows may move and discard memory objects often.

8 Microsoft Windows Guide to Programming

Another example of a shared resource is the screen. The system typically grants an
MS-DOS application exclusive use of the screen, allowing the application to per-
form many operations, from changing the color of text and background to chang-
ing the video mode from text to graphics. A Windows application, however, must
share the screen with other applications and must not take control of the screen.

1.2 Elements of a Windows Application

Most Windows applications use the following elements to interact with the user:

= Windows
= Menus
= Dialog boxes

= Message loops

This section describes these elements in detail.

1.2.1 Windows

A window is the primary input and output device of any Windows application. It
is an application’s only access to the screen. A window consists of a title bar, a
menu bar, scroll bars, borders, and other features that occupy a rectangle on the
screen. When creating a window, an application specifies the window features
and then draws the window. The following figure shows the main features of a
window:

Chapter 1 Overview of the Windows Environment 9

1.2.2 Menus

Minimize button
Maximize button

- File menu Title bar

System-menu box

Menu bar

i i 5 [Um;tied] .

Scroll box

Save As...
Print

Page Setup...
Print Setup...

Exit

- Window border Scroll bar

Although an application creates a window, the application and Windows col-
laborate to manage the window. Windows maintains the position and appearance
of the window; manages standard window features such as the border, scroll bars,
and title bar; and carries out many tasks initiated by the user that directly affect the
window. The application maintains everything else about the window. In particu-
lar, it maintains and controls the appearance of the client area of the window (the
portion within the window borders).

To manage this collaboration, Windows notifies each window of changes that
might affect it. Each window must have a corresponding window procedure,
which is a procedure that receives the window-management messages and then re-
sponds appropriately. These messages either specify actions for the procedure to
carry out or are requests for information from the procedure.

Menus are the principal means of user input in a Windows application. A menu is
a list of items that you supply. To the user, these items are commands that can be
viewed or chosen. When creating an application, you create the names of its
menus and menu items. Windows then displays and manages the menus, and
sends a message to the window procedure when the user makes a choice. The mes-
sage is the application’s signal to carry out the command associated with the menu
item.

10

Microsoft Windows Guide to Programming

1.2.3 Dialog Boxes

A dialog box is a temporary window the application displays so that the user can
supply more information for a command. A dialog box contains one or more con-
trols. A control is a small window that has a very simple input or output function.
For example, an edit control is a simple window in which the user can type and
cdit text. The controls in a dialog box help the user supply filenaimes, choose op-
tions, and otherwise direct the action of the command.

1.2.4 Message Loops

Since an application receives input through its application queue, the chief feature
of any Windows application is its message loop. The message loop retrieves input
messages from the application queue and dispatches them to the appropriate win-

dows.

The following figure shows how Windows and applications collaborate to process
keyboard-input messages. Windows receives keyboard input when the user
presses and releases a key. Windows then copies the keyboard-input messages
from the system queue to the appropriate application queue. The message loop re-
trieves the keyboard-input messages, translates them into the Windows character
message WM_CHAR, and dispatches the WM_CHAR message, as well as the
keyboard-input messages, to the appropriate window procedure. The window pro-
cedure then uses the TextOut function to display the character in the client area of
the window.

Windows

Hardware ‘
input g System queue

Application A

WinMain function

Application queue A ¢ | Message loop

Application B

WinMain function

Application queue B ¢

Chapter 1 Overview of the Windows Environment 1

Windows can receive and distribute input messages for several applications at the
same time. As shown in the following figure, Windows collects input messages in
its system queue and then copies each message to the appropriate application
queue. Again, the message loop in each application retrieves messages and dis-
patches them, through Windows, to each application’s appropriate window proce-
dure.

Windows

—> | Systemqueve | |

User presses
the (Z) key

Application

. |WinMain function '

| Window |
| procedure |

Application
window

Keyboard-input messages must be retrieved by an application from its message
queue. In contrast, window-management messages are sent directly by Windows
to the appropriate window procedure. The following figure illustrates this
process. After Windows carries out a request to destroy a window, it sends a
WM_DESTROY message directly to the window procedure, bypassing the appli-
cation queue. The window procedure must then signal the main function that the
window is destroyed and that the application should terminate. It does this by
copying a WM_QUIT message into the application queue by using the PostQuit-
Message function.

12 Microsoft Windows Guide to Programming

Windows
Application
User selects | window
"Exit" from ~
application
menu

Application

WM_QuIT

WinMain function

Application queue Message loop

Message loop and
WinMain function
terminate on receiving
WM_QUIT message

When the message loop retrieves the WM_QUIT message, the loop terminates and
the main function exits.

1.3 Windows Libraries

Windows functions, like C run-time functions, are defined in libraries. The
Windows libraries, unlike the C run-time libraries, are special dynamic-link librar-
ies (DLLs) that the system links with your application when it loads your applica-
tion. Dynamic-link libraries are an important feature of Windows because they
minimize the amount of code each application requires.

Windows consists of the following three main libraries:

Library Description

User Provides window management. This library manages the overall
Windows graphical environment, as well as an application’s windows.

Kernel Provides system services, such as multitasking, memory management,
and resource management.

GDI Provides the graphics device interface (GDI).

Chapter 1 Overview of the Windows Environment 13

1.4 Software Development Tools

To create a Windows application, you use many new development tools, as well as
some familiar tools with new options. This section briefly describes the tools you
will use.

1.4.1 Microsoft C Optimizing Compiler

To compile Windows applications, you use Microsoft C Optimizing Compiler
(CL), just as you do for standard C applications. You can use many of the same
CL command-line options you use for standard C applications. However,
Windows also requires two special options: /Gw and /Zp. The /Gw option adds
the Windows prolog and epilog code to each function; this code is required for the
application to run with Windows. The /Zp option packs structures, ensuring that
the structures used in your application are the same size as the corresponding struc-
tures used by Windows. Following is a typical CL command for compiling a
small-model Windows application:

cl /c /AS /Gsw /0s /Zdp test.c

The /c option instructs the compiler to perform only the C compilation, but not the
linking. The /¢ option is necessary if you want to compile multiple C source files
separately.

1.4.2 Microsoft Segmented Executable Linker

To produce Windows-format executable files, you use Microsoft Segmented Ex-
ecutable Linker (LINK), which is supplied with CL. Unlike normal C applications,
Windows applications require a module-definition (.DEF) file for linking. This file
must do the following:

= Define a name for the application.
s Mark the application as a Windows application.

m Specify certain attributes of the application, such as whether a data segment is
movable in memory.

= List and name any callback functions in the application.
Following is an example of a module-definition file:

NAME Generic ;application's module name
DESCRIPTION 'Sample Microsoft Windows Application’

EXETYPE WINDOWS ;required for all Windows applications

14

Microsoft Windows Guide to Programming

STUB 'WINSTUB.EXE' ;The "stub" displays an error message if
;the application is run without Windows.

CODE PRELOAD MOVEABLE ;code can be moved in memory

;DATA must be MULTIPLE if the program can be invoked more than once.

ATA MOVEABLE MULILPLE

HEAPSIZE 1024
STACKSIZE 5120 ;recommended minimum for Windows applications

;A11 functions that will be called by any Windows function
;MUST be exported.

EXPORTS
MainWndProc @1 ;name of window-processing procedure
AboutD1gProc @2 ;name of About processing procedure

To link a Windows application, you specify the name of each object file created
by the compiler, the name of the Windows import library, the name of the module-
definition file, and other options and files. Following is a typical LINK command:

link /nod generic, , , slibcew libw, generic.def

For more information about LINK and the module-definition file, see Microsoft
Windows Programming Tools.

1.4.3 Resource Editors

You use the Windows resource editors to create application resources such as cur-
sors, icons, font files, and bitmaps. You must then list these resources in the appli-
cation’s resource-definition file. The resource editors are included in the Microsoft
Windows 3.1 Software Development Kit (SDK) and are as follows:

= Microsoft Image Editor IMAGEDIT.EXE), which creates icons, cursors, and
bitmaps.

® Microsoft Windows Font Editor (FONTEDIT.EXE), which creates font files.

Because these editors are Windows applications, you must run them with

Windows. For more information about the Windows resource editors, see
Microsoft Windows Programming Tools.

Chapter 1 Overview of the Windows Environment 15

1.4.4 Microsoft Windows Resource Compiler

Most Windows applications use a variety of resources, each defined in a file called
a resource-definition (.RC) file. After creating the resource-definition file, you use
Windows Resource Compiler (RC) to compile it and add the compiled resources
to the application’s executable file. When the application runs, it can load and use
the resources from the executable file.

Following is an example of a resource-definition file that defines two resources, a
cursor and an icon:

Bullseye CURSOR bullseye.cur
Generic ICON generic.ico

The first statement defines a cursor resource by naming it (Bullseye), declaring its
type (CURSOR), and specifying the file that contains the cursor image
(BULLSEYE.CUR). The second statement does the same for an icon resource.

To compile a resource-definition file and add the compiled resources to an execu-
table file, use the RC command. Following is a typical RC command:

rc generic.rc

For a description of how to use RC, see Microsoft Windows Programming Tools.
For a description of the resource statements that make up a resource-definition
file, see the Microsoft Windows Programmer’s Reference, Volume 4.

1.4.5 Debugging and Optimizing Tools

The SDK includes several tools you can use to debug your Windows application
and to optimize its performance:

= Microsoft CodeView for Windows (CVW) helps you debug Windows applica-
tions while your system is running them with Windows in standard mode or
386 enhanced mode. With CVW, you can set breakpoints, view source-level
code, and display symbolic information while you are debugging a Windows
applications.

= Microsoft Windows Spy (SPY.EXE), monitors the messages that Windows
sends to an application. Monitoring can be particularly useful when you are de-
bugging.

= Microsoft Windows Profiler reports the relative times it takes your applica-
tion’s code segments to execute, helping you fine-tune your application’s per-
formance.

16

Microsoft Windows Guide to Programming

= Microsoft Windows Heap Walker (HEAPWALK.EXE) examines the contents
of the local or global memory heap.

For more information about these tools, see Microsoft Windows Programming
Tools.

1.4.6 Microsoft Program Maintenance Utility

The Microsoft Program Maintenance Utility (NMAKE) updates applications by
keeping track of the dates of their source files. NMAKE is included with CL ver-
sion 6.0.

Although NMAKE comes with CL, and not with the SDK, it is especially impor-
tant for Windows applications because of the number of files required to create a
Windows application. This utility uses a text file, called a makefile, that contains a
list of the commands and files needed to build a Windows application. The make-
file commands compile and link the various files. NMAKE executes the com-
mands only if the files named in those commands have changed. This saves time
if, for example, you have made only a minor change to a single file.

The following example shows the content of a typical makefile for a Windows ap-
plication:

The following Tine allows NMAKE to use this file as well.
all: generic.exe

Update the resources if necessary.

generic.res: generic.rc generic.h
rc /r generic.rc

Update the object file if necessary.

generic.obj: generic.c generic.h
cl /AS /c /DLINT_ARGS /Gsw /Oat /W2 /Zped generic.c

Update the executable file if necessary.
(If it is necessary, add the resources to it.)

generic.exe: generic.obj generic.def
Tink /nod generic, , , slibcew 1libw, generic.def
mapsym generic
rc generic.res

Chapter 1 Overview of the Windows Environment 17

If the .RES file is new and the .EXE file is not,

compile only the resources. Note that you can update
the .RC file without having to either recompile or
relink the file.

generic.exe: generic.res
rc generic.res

Typically, a makefile has the same name as the application it builds, although any
name is allowed. Following is an NMAKE command that uses the commands in
the file GENERIC:

nmake generic

For more information about NMAKE, see the CL. documentation.

1.5 Building a Windows Application

To build a Windows application, follow these steps:

1. Create C-language or assembly-language source files that contain the Win-
Main function, window procedures, and other application code.

2. Use the resource editors (Image Editor and Font Editor) to create any cursor,
icon, bitmap, and font resources the application will require.

3. Create a resource-definition (.RC) file that defines the application’s resources.
This file lists and names the resources you created in the preceding step. It also
defines menus, dialog boxes, and other resources.

4. Create the module-definition (.DEF) file, which defines the attributes of the ap-
plication modules, such as segment attributes, stack size, and heap size.

5. Compile and link all C-language source files; assemble all assembly-language
source files.

6. Use RC to compile the resource-definition file and add it to the executable file.

Some programming practices that work well for C-language or assembly-language
applications will not work at all in the Windows environment. For detailed infor-
mation about using C and assembly language to write Windows applications, see
Chapter 14, “C and Assembly Language.”

In general, when writing Windows applications, remember the following rules:

= Do not take exclusive control of the CPU—it is a shared resource. Although
Windows is a multitasking system, it is nonpreemptive. This means it cannot
take control back from an application until the application releases control. A
cooperative application carefully manages access to the CPU and gives other ap-
plications ample opportunity to run.

18

Microsoft Windows Guide to Programming

= Do not attempt to directly access memory or hardware devices such as the key-

board, mouse, timer, screen, and serial and parallel ports. Windows requires ab-
solute control of these resources to ensure equal, uninterrupted access for all
applications that are running.

Within the application, all functions that Windows can call must be defined
with the PASCAL keyword; this ensures that the function accesses arguments
correctiy. Functions that Windows can call are the WinMain function, callback
functions, and window procedures.

Every application must have a WinMain function. This function is the entry
point, or starting point, for the application. It contains statements and functions
that create windows and that read and dispatch input intended for the applica-
tion. The function definition has the following form:

int PASCAL WinMain(hinstCurrent, hinstPrevious, IpszCmdLine,

nCmdShow)
HINSTANCE hinstCurrent; /% handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance =/
LPSTR 1pszCmdLine; /* address of command line */
int nCmdShow; /* show-window type (open/icon) */
{
}

The WinMain function must be declared with the PASCAL keyword. Al-
though Windows calls the function directly, WinMain must not be defined
with the FAR keyword, since it is called from linked-in startup code.

When using Windows functions, be sure to check the return values. Do not ig-
nore these return values, because unusual conditions sometimes occur when a
function fails.

Do not use C run-time functions for console input and output. These functions
include getchar, putchar, scanf, and printf.

Do not use C run-time file-input-and-output functions to access serial and paral-
lel ports. Instead, use the communications functions, which are described in
detail in the Microsoft Windows Programmer’s Reference, Volume 2.

You can use the C run-time file-input-and-output functions to access disk files.
In particular, use the Windows OpenFile function and the low-level, C run-
time input-and-output functions. Although you can use the C run-time stream-
input-and-output functions, you do not get the advantages that OpenFile
provides.

Chapter 1 Overview of the Windows Environment 19

® You can use the C run-time memory-management functions malloc, calloc,
realloc, and free, but be aware that Windows translates these functions to its
own local-heap functions, LocalAlloc, LocalReAlloc, and LocalFree. Since
local-heap functions do not always operate exactly as do C run-time memory-
management functions, you may get unexpected results.

1.6 Related Topics

For information about specific Windows functions and messages, see the
Microsoft Windows Programmer’s Reference, Volumes 2 and 3.

For more information about software development tools, see Microsoft Windows
Programming Tools.

Generic Windows Application

2.1
22

23
24

2.5
2.6

Chapter 2

A Standard Windows Application: GEnericccocceeveeveeneenvenenseenneenne 23
WiInMain FUnCtOncoueeieeiririeieieieniceetcitceeete st 24
221 Data Types and StrucCtures.......coveveeveeesvenienieeieniecienecnecneen 25
222 HANAIES ..o 26
2.2.3 TNSEANCES. .ttt 26
224 Registering a Window Class........cccceverviniiineenenniecniniienennee. 27

2241 Filling a WNDCLASS Structurecc..coceeevenenne 28

2.2.4.2 Using the RegisterClass Function............ccc.ccccuee. 30
2.2.5 Creating a WINdowcccccoevirinieeninniccn e 30
22.6 Showing and Updating a Window..........cccceeeveveeceeneneicnennn. 32
227 Creating a Message Loop ..., 33
2.2.8 Yielding Controlc..ceeeeevienirieierienerineeeeee e 34
2.2.9 Terminating an ApplICALION........cc.eeieierricrereeieienreeeereeeeneennes 34
2.2.10 Initialization FUNCHONScccceeviirieniiiniiiin e 35

2.2.10.1 Main Initialization Function............ccocoevcenincnnncns 36

2.2.10.2 Instance Initialization Function.........c..cccccceeinuenne 36
2.2.11 Application Command-Line Parameter............c.ccccevevevenennees 37
WiIndow ProCedure............cceverieeieieniinieneeienene et 37
Creating an About Dialog BOXcccceceeverininiiniiiiineceecicncccneiee 39
24.1 Creating a Dialog Box Template.........cccooeivievenininineinnnene. 40
242 Creating a Header Filec.ccccoviiirieninincnincccccee 41
243 Creating a Dialog Box Procedure............cccocoveciiiiiniiciinnns 42
244 Defining a Menu with an About Command............cccccvennene 43
2.4.5 Processing a WM_COMMAND Messageccceeeviieennenes 44
Creating a Module-Definition Filec..coccociviiiniiininiiiie, 45
Creating GENETIC ..ouvveueeuieieieierterieeieeeterte ettt re et esesa e eene e siees 48

2.6.1 Creating the C-Language Source Filec.cccceeevivinincnnnee. 48

22

Microsoft Windows Guide to Programming

2.6.2 Creating the Header Fileccccccocvinininninicniicicceennee 54
263 Creating the Resource-Definition File.........ccccocoveeereniienueennee 54
2.6.4 Creating the Module-Definition Fileccccoceveeverenencnennnn. 55
2.6.5 Creating the MaKefilecocoevirininenennineneeneeeeeen 56
2.6.6 Running Microsoft Program Maintenance Utility.................... 57
Usiiig Generic as a TEmMPIALEccvverieirierienierinenesesieeeicstesieeseeseeeseenans 57

Related TOPICS .cueevirterieieiirieieieeietree ettt e e ebens 59

Chapter 2 Generic Windows Application 23

This chapter explains how to create a simple application for the Microsoft
Windows 3.1 operating system. Generic demonstrates the concepts explained in
Chapter 1, “Overview of the Windows Environment.”

This chapter covers the following topics:

= Essential parts of a Windows application
® [nitializing a Windows application

= Writing the message loop

= Terminating an application

= Basic steps needed to build a Windows application

The Generic application is used as basic code for all the code samples in Part 2 of
this guide.

2.1 A Standard Windows Application: Generic

A standard Windows application is any application that is specifically written to
run with Windows, and that uses the Windows application programming interface
(API) to carry out its tasks. Every Windows application also has a main function
(called WinMain) and a window procedure.

Generic is a standard Windows application. It has a WinMain function and a win-
dow procedure, and it features a main window, a border, an application menu, and
Maximize and Minimize buttons. The application menu includes a Help menu
with an About command, which, when chosen by the user, displays an About
dialog box describing Generic. The following shows the completed Generic appli-
cation, with an About dialog box:

/ Help menu

/ Generic Sample Application
Help”

About Generie

Microsoft Windows
Generic Application

Yersion 3.1

AN

AN

\— About dialog box

24 Microsoft Windows Guide to Programming

Building an application from the Generic template helps you understand how
Windows applications are put together and how they work.

2.2 WinMain Function

Much like the main function in standard C-language applications, the WinMain
function is the entry point for a Windows application. Every Windows application
must have a WinMain function (it is always named WinMain); no Windows ap-
plication can run without it. In most Windows applications, the WinMain function
does the following:

» Calls initialization functions that register window classes, create windows, and
perform any other necessary initializing

= Enters a message loop to process messages from the application queue

= Terminates the application when the message loop retrieves a WM_QUIT mes-
sage

The WinMain function has the following form:

int PASCAL WinMain(hinstCurrent, hinstPrevious, TpszCmdLine, nCmdShow)

HINSTANCE hinstCurrent; /* handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance =/
LPSTR TpszCmdLine; /% address of command line */
int nCmdShow; /* show-window type (open/icon) */
{
}

The WinMain function requires the PASCAL calling convention.

When the user starts an application, Windows passes the following four parame-
ters to the application’s WinMain function:

Parameter Value passed to application

hinstCurrent The instance handle of the application.

hinstPrevious The handle of another instance of the application, if one is running.
If no other instances of this application are running, Windows sets
this parameter to NULL.

IpszCmdLine A long pointer to a null-terminated command line.

Chapter 2 Generic Windows Application 25

Parameter Value passed to application

nCmdShow An integer that specifies whether to display the application’s window
as a window or as an icon. The application passes this value to the
ShowWindow function when calling that function to display the ap-
plication’s main window.

For more information about handles, see Section 2.2.2, “Handles.” For more
information about the [pszCmdLine parameter, see Section 2.2.11, “Application
Command-Line Parameter.”

2.2.1 Data Types and Structures

The WinMain function uses several special data types to define its parameters.
For example, it uses the HANDLE data type to define the hinstCurrent and hinst-
Previous parameters, and the LPSTR data type to define the IpszCmdLine parame-
ter. In general, Windows applications use many more data types than are found in
a typical C-language application. Although the Windows data types are often
equivalent to familiar C-language data types, they are intended to be more descrip-
tive and should help you better understand the purpose of a variable or parameter
used in an application.

The Windows data types are defined in the WINDOWS.H header file. This file is
an ordinary C-language source file that contains definitions for all the Windows
special constants, variables, structures, and functions. To use these definitions, you
must include the WINDOWS.H file in each source file. Place the following line at
the beginning of your source file:

#include <windows.h> /# required for all Windows applications =/

Following are some commonly used Windows data types:

Type Meaning

WORD Specifies a 16-bit, unsigned integer.

LONG Specifies a 32-bit, signed integer.

HANDLE Identifies a 16-bit, unsigned integer to be used as a handle.

HWND Identifies a 16-bit, unsigned integer to be used as a handle of a win-
dow.

LPSTR Specifies a 32-bit address of a character string (of type char)

FARPROC Specifies a 32-bit address of a function.

26 Microsoft Windows Guide to Programming

2.2.2 Handles

2.2.3 Instances

Following are some commonly used structures:

Structure Description

MSG Contains information about an input message from the Windows
application queue.

WNDCLASS Defines a window class.

PAINTSTRUCT Defines a structure used to paint the client area of a window.

RECT Defines a rectangle.

For a complete listing and description of Windows data types and structures, see
the Microsoft Windows Programmer’s Reference, Volume 3.

Two of the WinMain function parameters (hinstPrevious and hinstCurrent) are
called handles. A handle is a unique integer that Windows uses to identify an ob-
ject created or used by an application. Windows uses a wide variety of handles,
identifying objects such as application instances, windows, menus, controls, allo-
cated memory, output devices, files, and graphics device interface (GDI) pens and
brushes.

Most handles are indices into internal tables. Windows uses handle indices to
access information stored in these tables. Typically, an application has access only
to the handle and not to the information. When the application must examine or
change the information, it supplies the handle, and Windows does the rest. This is
one way that Windows protects information with its multitasking capabilities.

Not only can you run more than one application at a time with Windows, you can
also run more than one copy, or instance, of the same application at a time. To dis-
tinguish one instance from another, Windows supplies a unique instance handle (a
unique integer identifying the instance) each time it calls the WinMain function to
start the application.

With some multitasking systems, to run multiple instances of the same application
at the same time the system loads a fresh copy of the application’s code and data
into memory and runs that copy. With Windows, when a new instance of the appli-
cation is started only the data for the application is loaded. Windows uses the same
code for all instances of the application. This saves as much space as possible for
other applications and for data. However, this method requires that the code seg-
ments of the application remain unchanged while the application is running. This
means that you must not store data in a code segment or change the code while the
application is running.

Chapter 2 Generic Windows Application 27

For most Windows applications, the first instance has a special role. Many of the
resources an application creates, such as window classes, are generally available to
all applications. Consequently, only the first instance of an application creates
these resources. All subsequent instances may use the resources without having to
create them. To determine which is the first instance, Windows sets the hinst-
Previous parameter of WinMain to NULL if there are no previous instances. The
following example shows how to check that a previous instance does not exist:

int PASCAL WinMain(ChinstCurrent, hinstPrevious, 1pszCmdLine, nCmdShow)

HINSTANCE hinstCurrent; /* handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance */
LPSTR 1pszCmdLine; /* address of command line */
int nCmdShow; /* show-window type (open/icon) #*/
{

if (hinstPrevious == NULL)

}

To keep the user from starting more than one instance of your application, the ap-
plication should check the hinstPrevious parameter upon starting and should re-
turn to Windows if the parameter is not NULL. The following example shows
how to do this:

if (hinstPrevious)
return NULL;

2.2.4 Registering a Window Class

Before you can create any window, you must have a window class. A window
class is a template that defines the attributes of a window, such as the shape of the
window’s cursor and the name of the window’s menu. The window class also
specifies the window procedure that processes messages for all windows in the
class. Although Windows provides some predefined window classes, most applica-
tions define their own window classes in order to completely control how their
windows operate.

You must register a window class before you can create a window that belongs to
that class. You do this by filling a WNDCLASS structure with information about
the class and passing it as a parameter to the RegisterClass function.

28 Microsoft Windows Guide to Programming

2.2.4.1 Filling a WNDCLASS Structure

The WNDCLASS structure provides information to Windows about the name, at-
tributes, resources, and window procedure for a window class. The WNDCLASS

structure contains the following members:

Member Description

IpszClassName Points to the name of the window class. A window class name
must be unique; that is, different applications must use different
class names.

hlnstance Identifies the application instance that is registering the class.

IpfnWndProc Points to the window procedure used to carry out work on the win-
dow.

style Specifies the class styles, such as automatic redrawing of the win-
dow whenever it is moved or sized.

hbrBackground Identifies the brush used to paint the window background.

hCursor Identifies the cursor used in the window.

hlcon Identifies the icon used to represent a minimized window.

IpszMenuName Points to the resource name of a menu.

cbClsExtra Specifies the number of extra bytes to allocate for this class struc-
ture. The extra bytes are initialized to zero.

c]WndExtra Specifies the number of extra bytes to allocate for all the window

structures created with this class. The extra bytes are initialized to
Zero.

For more information about these members, see the Microsoft Windows Program-
mer’s Reference, Volume 3.

Some members, such as IpszClassName, hInstance, and IpfnWndProc, must be
assigned values. Other members can be set to NULL. When these members are set
to NULL, Windows uses a default attribute for windows created using the class.
The following example shows how to fill a window structure:

BOOL InitApplication(hinstCurrent)
HINSTANCE hinstCurrent; /#* current instance */
{

WNDCLASS wc;

VE
#* Fill in window-class structure with parameters that
* describe the main window.

*/
wc.style = NULL; /% class style(s) */
wc.1pfnWndProc = MainWndProc; /* window procedure */

/* for windows of this class */

Chapter 2 Generic Windows Application 29

wc.cbClsExtra = 0; /* no per-class extra data */
wc.cbWndExtra = 0; /* no per-window extra data #/
wc.hInstance = hinstCurrent; /* application that owns class */

wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = GetStockObject(WHITE_BRUSH);

wc.lpszMenuName = "GenericMenu"; /* menu name in .RC file */
wc.lpszClassName = "GenericWClass"; /% name in CreateWindow */

/* Register the window class and return success/failure code. */

return (RegisterClass(&wc));
}

This example first declares a WNDCLASS structure named wc.
The style member is set to NULL.

The IpfaWndProc member contains a pointer to the window procedure named
MainWndProc. This means that the application’s MainWndProc procedure will re-
ceive any messages that Windows sends to that window and will be the procedure
that carries out tasks for that window. To assign the address of MainWndProc to
the IpfaWndProc member, you must declare the procedure somewhere before the
assignment statement. Windows applications should use prototypes for declaring
procedures in order to take advantage of the automatic type-checking and casting
provided by CL. The following is the correct prototype for a window procedure
with the name MainWndProc:

LRESULT FAR PASCAL MainWndProc(HWND, UINT, WPARAM, LPARAM);

Note that the MainWndProc procedure must be exported in the module-definition
file.

The cbClsExtra and cbWndExtra members are set to zero, so there is no addi-
tional storage space associated with either the window class or each individual
window. (You can set these members to allocate additional storage space, which
you can then use to store information on a per-window basis. For information
about using this extra space, see Chapter 16, “More Memory Management.”

The hInstance member is set to hinstCurrent, the instance handle that Windows
passed to the WinMain function when the application was started.

The hIcon member receives a handle to a built-in icon. The LoadIcon function
can return a handle to either a built-in icon or an application-defined icon. In this
case, the NULL and IDI_APPLICATION arguments specify the built-in applica-
tion icon. (Most applications use their own icons instead of the built-in application
icon. Chapter 5, “Icons,” explains how to create and use your own icons.)

30

Microsoft Windows Guide to Programming

The hCursor member receives a handle to the standard arrow-shaped cursor. The
LoadCursor function can return a handle to either a built-in cursor or an applica-
tion-defined cursor. In this case, the NULL and IDC_ARROW arguments specify
a built-in arrow cursor. (Some applications use their own cursors instead of built-
in cursors. Chapter 6, “Cursors,” explains how to create and use your own cur-
SOrs.)

The hbrBackground member determines the color of the brush that Windows is
to use to paint the window’s background. In this case, the application uses the Get-
StockObject function to retrieve the handle of the standard white background
brush.

The IpszMenuName member specifies the name of the menu for this window
class, GenericMenu. This menu then appears for all windows in this class. If the
window class has no menu, this member is set to NULL.

The IpszClassName member specifies GenericWClass as the class name for this
window class.

2.2.4.2 Using the RegisterClass Function

After you assign values to the WNDCLASS structure members, you register the
class by using the RegisterClass function. If registration is successful, the func-
tion returns a nonzero value; otherwise, it returns zero. Make sure you check the
return value, because you cannot create your windows without first registering the
window class.

Although the RegisterClass function requires a 32-bit pointer to a WNDCLASS
structure, in the previous example, the address operator (&) generates only a 16-
bit address. This is an example of an implicit cast carried out by CL. The
Windows header file contains prototypes for all Windows functions. These proto-
types specify the correct types for each function parameter, and the compiler casts
to these types automatically.

2.2.5 Creating a Window

You can create a window by using the CreateWindow function. This function
tells Windows to create a window that has the specified style and belongs to the
specified class. CreateWindow takes several parameters:

= Name of the window class
= Window title

® Window style

= Window position

= Parent-window handle

Chapter 2 Generic Windows Application 31

= Menu handle
= Instance handle
= 32 bits of additional data

The following example creates a window belonging to the GenericWClass win-
dow class (created in the sample code shown in Section 2.2.4.1, “Filling a
WNDCLASS Structure”):

/% Create a main window for this application instance. */

hWnd = CreateWindow(

"GenericWClass", /* see RegisterClass call */
"Generic Sample Application", /* text for title bar ®/
WS_OVERLAPPEDWINDOW, /* window style */
CW_USEDEFAULT, /* default horz position =/
CW_USEDEFAULT, /* default vert position */
CW_USEDEFAULT, /* default width ®/
CW_USEDEFAULT, /% default height */
NULL, /* overlapped windows have no parent =/
NULL, /% use window class menu ®/
hinstCurrent, /* this instance owns this window */
NULL /* pointer not needed */

);

This example creates an overlapped window that has the style
WS_OVERLAPPEDWINDOW and that belongs to the window class created by
the code in the preceding example.

The first parameter of the CreateWindow function specifies the name of the win-
dow class Windows should use when creating the window. In this example, the
window class name is GenericWClass. The second parameter of CreateWindow
specifies the window caption as "Generic Sample Application".

The WS_OVERLAPPEDWINDOW style specifies that the window is a normal
“overlapped” window, and the next four CreateWindow parameters specify the
position and dimensions of the window. Since the CW_USEDEFAULT value is
specified for the position, width, and height parameters, Windows places the win-
dow at a default position and gives it a default width and height. The default posi-
tion and dimensions depend on the system and on how many other applications
have been started. (Note that Windows does not display the window until the appli-
cation calls the ShowWindow function.)

When you create a window, you can specify its parent window (used with control
windows and child windows) in the hwndParent parameter. Because an over-
lapped window does not have a parent window, this parameter is set to NULL. If
you specify a menu in the himenu parameter when you create a window, the menu
overrides the class menu (if any) for the window. Because this window is to use
the class menu, this parameter is also set to NULL.

32

Microsoft Windows Guide to Programming

You must specify the instance of the application that is creating the window.
Windows uses this instance to make sure that the window procedure supporting
the window uses the data for this instance.

The last parameter, [pvParam, is for additional data to be used by the window pro-
cedure when the window is created. In this case, the window takes no additional
data, so the parameter is set to NULL.

When CreateWindow successfully creates the window, it returns a handle of the
new window. You can then use the handle to carry out tasks, such as showing the
window or updating its client area.

If CreateWindow cannot create the window, it returns NULL. Whenever your ap-
plication creates a window, it should check for a NULL handle and respond appro-
priately. For example, in the WinMain function, if the application’s main window
cannot be created, the application should be terminated—that is, WinMain should
return control to Windows.

2.2.6 Showing and Updating a Window

Although CreateWindow creates a window, it does not automatically display the
window. Instead, your application must display the window by using the Show-
Window function and must update the window’s client area by using the
UpdateWindow function.

The ShowWindow function tells Windows to display the new window. For the ap-
plication’s main window, WinMain should call ShowWindow soon after creating
the window and should pass the nCmdShow parameter to it. The nCmdShow
parameter tells the application whether to display the window as an open window
or as an icon. After calling ShowWindow, WinMain should call the Update-
Window function. The following example illustrates how to show and update a
window:

ShowWindow(hWnd, nCmdShow); /* shows the window */
UpdateWindow(hWnd); /% sends a WM_PAINT message */

Note Normally, the nCmdShow parameter of the ShowWindow function can be
set to any of the constants beginning with SW_ that are defined in the
WINDOWS H header file. The one exception is when the application calls Show-
Window to display its main window; then, it uses the nCmdShow parameter from
the WinMain function. For a complete list of these constants, see the Microsoft
Windows Programmer’s Reference, Volume 2.

Chapter 2 Generic Windows Application 33

2.2.7 Creating a Message Loop

Once your application has created and displayed a window, the WinMain func-
tion can begin its primary duty: to read messages from the application queue and
dispatch them to the appropriate window. WinMain does this by using a message
loop. A message loop is a program loop, typically created by using a while state-
ment, in which WinMain retrieves messages and dispatches them.

Windows does not send input directly to an application. Instead, it places all
mouse and keyboard input into an application queue (along with messages posted
by Windows and other applications). The application must read the application
queue, retrieve the messages, and dispatch them so that the appropriate window
procedure can process them.

The simplest possible message loop consists of the GetMessage and Dispatch-
Message functions. This loop has the following form:

MSG msg;

while (GetMessage(&msg, NULL, NULL, NULL)) {
DispatchMessage(&msg);
}

In this example, the GetMessage function retrieves a message from the applica-
tion queue and copies it to the message structure named msg. The NULL argu-
ments indicate that all messages should be processed. The DispatchMessage
function directs Windows to send each mmessage to the appropriate window proce-
dure. Every message an application receives, except the WM_QUIT message,
belongs to one of the windows created by the application. Since an application
must not call a window procedure directly, it uses the DispatchMessage function
instead to pass each message to the appropriate procedure.

Depending on what your application does, it may require a more complicated mes-
sage loop. In particular, to process character input from the keyboard, it must trans-
late each message it receives by using the TranslateMessage function. The
message loop should then look like this:

while (GetMessage(&msg, /* message structure */
NULL, /* handle of window receiving the message */
NULL, /* lowest message to examine */
NULL)) /* highest message to examine */
{

TranslateMessage(&msg); /* translates virtual key codes */
DispatchMessage(&msg); /#* dispatches message to window */

34

Microsoft Windows Guide to Programming

The TranslateMessage function looks for matching WM_KEYDOWN and
WM_KEYUP messages and generates a corresponding WM_CHAR message for
the window that contains the Windows character code for the given key. This mes-
sage loop could also contain functions that process menu accelerator keys and
keystrokes within dialog boxes. Again, this would depend on what your applica-
tion does.

Windows places input messages in an application queue when the user moves the
cursor in the window, presses or releases a mouse button when the cursor is in the
window, or presses or releases a key when the window has the input focus. The
window manager first collects all keyboard and mouse input in a system queue
and then copies the corresponding messages to the appropriate application queue.

The message loop continues until GetMessage returns NULL, which it does only
if it retrieves the WM_QUIT message. This message is a signal to terminate the ap-
plication and is usually posted (placed in the application queue) by the window
procedure of the application’s main window.

2.2.8 Yielding Control

Windows is a nonpreemptive multitasking system. This means that it cannot take
control from an application. Instead, the application must yield control before
Windows can reassign control to another application.

To make sure that all applications have equal access to the CPU, the GetMessage
function automatically yields control when there are no messages in an application
queue. This means that if there is no work for the application to do, Windows can
give control to another application. Since all applications have a message loop,
this implicit yielding of control guarantees that control is shared.

In general, you should rely on the GetMessage function to yield for your applica-
tion. Although a function (Yield) is available that explicitly yields control, you
should avoid using it. Since there might be times when your application must keep
control for a long time, such as when writing a large buffer to a file, you should try
to minimize the work and provide a visual clue to the user that a lengthy operation
is under way.

2.2.9 Terminating an Application

Your application terminates when the WinMain function returns control to
Windows. WinMain can return control at any time before starting the message
loop. Typically, an application checks each step leading up to the message loop to
make sure each window class is registered and each window is created. If there is
an error, the application can display a message before terminating.

Chapter 2 Generic Windows Application 35

Once the WinMain function enters the message loop, however, the only way to
terminate the loop is to post a WM_QUIT message in the application queue by
using the PostQuitMessage function. When the GetMessage function retrieves

a WM_QUIT message, it returns NULL, which terminates the message loop.
Typically, the window procedure for the application’s main window posts a
WM_QUIT message when the main window is being destroyed (that is, when the
window procedure has received a WM_DESTROY message).

Although WinMain specifies a data type for its return value, Windows does not
currently use the return value. For debugging an application, however, a return
value can be helpful. In general, the easiest return-code conventions are those used
by standard C-language applications: zero for successful execution, nonzero for
error. The PostQuitMessage function lets the window procedure specify the re-
turn value. This value is then copied to the wParam parameter of the WM_QUIT
message. To return this value after terminating the message loop, use the follow-
ing statement:

return (msg.wParam); /* returns value from PostQuitMessage */

Although standard C-language applications typically free any allocated resources
just prior to terminating, Windows applications should free resources as each win-
dow is destroyed. This process is called “cleaning up.” Failing to clean up can
cause an application to lose some data. For example, when Windows itself termi-
nates, it destroys each window but does not return control to the application’s mes-
sage loop. This means that the loop never retrieves the WM_QUIT message and
the statements after the loop are not executed. (Windows does send each applica-
tion a WM_QUERYENDSESSION message before terminating, so an application
does have an opportunity to carry out tasks before terminating. For more informa-
tion about the WM_QUERYENDSESSION message, see Chapter 10, “File Input
and Output.”

2.2.10 Initialization Functions
Most applications use two locally defined initialization functions:

® The main initialization function carries out work that must be done only once
for all instances of the application (for example, registering window classes).

® The instance initialization function performs tasks that must be done for every
instance of the application.

Using initialization functions keeps the WinMain function simple and readable; it
also organizes initialization tasks so that they can be placed in a separate code seg-
ment and discarded after use. The Generic application does not discard its initiali-

zation functions.

36

Microsoft Windows Guide to Programming

2.2.10.1 Main Initialization Function

The Generic application’s main initialization function looks like the following:

BOOL In
HINSTAN
{

WND

/%
*
*

*/

wC.
wC.

wC.
wC.

wC.
wC.
wcC.
wC.
wcC.
wC.

itApplication(hinstCurrent)
CE hinstCurrent;

CLASS wc;

Fill in window-class structure
describe the main window.

style = NULL; /%
TpfnWndProc = MainWndProc; /%
VES
cbClsExtra = 0; /*
cbWndExtra = 0; /%
hIinstance = hinstCurrent; /%
hIcon = LoadIcon(NULL,
hCursor = LoadCursor(NULL,

/* current instance */

with parameters that

class style(s) */
window procedure ®/
for windows of this class */

no per-class extra data */
no per-window extra data ®/

application that owns class =/

IDI_APPLICATION);
IDC_ARROW) ;

hbrBackground = GetStockObject(WHITE_BRUSH);

1pszMenuName = "GenericMenu";

/#* menu name in .RC file */

1pszClassName = "GenericWClass"; /# name in CreateWindow */

/* Register the window class and return success/failure code. */

ret

urn (RegisterClass(&wc));

2.2.10.2 Instance Initialization Function

Generic’s instance initialization function looks like the following:

BOOL InitInstance(hinstCurrent, nCmdShow)

HINSTANCE hinstCurrent; /* handle of current instance */
int nCmdShow; /% param for first ShowWindow call */
{
HWND hWnd; /* handle of main window */
VES

*
*
*
#*/

Save the instance handle in a static variable, which will
be used in subsequent calls from this application to

Windows.

Chapter 2 Generic Windows Application 37

hinst = hinstCurrent;
/% Create a main window for this application instance. */

hWnd = CreateWindow(

"GenericWClass", /* see RegisterClass call %/
"Generic Sample Application”, /* text for title bar */
WS_OVERLAPPEDWINDOW, /* window style */
CW_USEDEFAULT, /* default horz position =*/
CW_USEDEFAULT, /% default vert position =*/
CW_USEDEFAULT, /* default width */
CW_USEDEFAULT, /% default height */
NULL, /* overlapped windows have no parent =/
NULL, /* use window class menu */
hinstCurrent, /* this instance owns this window */
NULL /* pointer not needed */

)

/+ If the window could not be created, return "failure." */

if (hWnd == NULL)
return FALSE;

/%
* Make the window visible, update its client area, and
* return "success."

*/
ShowWindow(hWnd, nCmdShow); /% shows window */
UpdateWindow(hWnd); /* sends WM_PAINT message #/

return TRUE;

2.2.11 Application Command-Line Parameter

You can examine the command line that starts your application by using the
IpszCmdLine parameter. The IpszCmdLine parameter points to the start of a charac-
ter array that contains the command exactly as it was typed by the user. To extract
filenames or options from the command line, you need to parse the command line
into individual values. Alternatively, you can use the __ argc and __ argv varia-
bles. For more information, see Chapter 14, “C and Assembly Language.”

2.3 Window Procedure

A window procedure responds to input and window-management messages re-

ceived from Windows. The procedure can be short, processing only a message or
two, or it can be complex, processing many types of messages for a variety of ap-
plication windows. In either case, every window must have a window procedure.

38

Microsoft Windows Guide to Programming

A window procedure has the following form:

LRESULT FAR PASCAL MainWndProc(hWnd, message, wParam, 1Param)

HWND hWnd; /% window handle */
UINT message; /* type of message */
WPARAM wParam; /* additional information */
LPARAM 1Param; /* additional information */

it

switch (message) {

default: /=* passes it on if unprocessed */
return (DefWindowProc(hWnd, message, wParam, 1Param));
}
return NULL;

}

The window procedure uses the PASCAL calling convention. Since Windows
calls this procedure directly and always uses this convention, PASCAL is re-
quired. The window procedure also uses the FAR keyword in its definition, since
Windows uses a 32-bit address whenever it calls a procedure or function. Also,
you must name the window procedure in an EXPORTS statement in the applica-
tion’s module-definition file. For more information about module-definition files,
see Section 2.5, “Creating a Module-Definition File.”

The window procedure receives messages from Windows. These may be input
messages that have been dispatched by the WinMain function, or they may be
window-management messages that come directly from Windows. The window
procedure must examine each message; it then either carries out some specific ac-
tion based on the message or passes the message back to Windows for default pro-
cessing by the DefWindowProc function.

The message parameter defines the message type. You use this parameter in a
switch statement to direct processing to the correct case. The [Param and wParam
parameters contain additional message-dependent information. The window proce-
dure typically uses these parameters to carry out the requested action. If a window
procedure does not process a message, it must pass it to DefWindowProc. Passing
the message to DefWindowProc ensures that any special actions that affect the
window, the application, or Windows itself can be carried out.

Most window procedures process the WM_DESTROY message. Windows sends
this message to the window procedure immediately after destroying the window.

The message gives the procedure the opportunity to finish its processing and, if it
is the window procedure for the application’s main window, to post a WM_QUIT

Chapter 2 Generic Windows Application 39

message in the application queue. The following example shows how the main
window procedure should process this message:

case WM_DESTROY:
PostQuitMessage(0);
break;

The PostQuitMessage function places a WM_QUIT message in the application’s
queue. When the GetMessage function retrieves this message, it terminates the
message loop and the application.

A window procedure receives messages from two sources: Input messages come
from the message loop, and window-management messages come from Windows.
Input messages correspond to mouse input, keyboard input, and sometimes timer
input. Typical input messages are WM_KEYDOWN, WM_MOUSEMOVE,
WM_KEYUP, and WM_TIMER, all of which correspond directly to hardware
input.

Windows sends window-management messages directly to a window procedure
without going through the application queue or message loop. These window mes-
sages are typically requests for the window procedure to carry out some action,
such as painting the client area of its window or supplying information about the
window. The messages may also inform the window procedure of changes that
Windows has made to the window. Some typical window-management messages
are WM_CREATE, WM_DESTROY, and WM_PAINT.

The window procedure should return a 32-bit message-dependent value. For most
messages, the return value is arbitrary; cases in which the return value is signifi-
cant are described in the Microsoft Windows Programmer’s Reference, Volume 1.
If the window procedure does not process a message, it should return the Def-
WindowProc function’s return value.

2.4 Creating an About Dialog Box

You should include an About dialog box with every application. A dialog box is a
temporary window that displays information or prompts the user for input. The
About dialog box displays such information as the application’s name and copy-
right information. The user tells the application to display the About dialog box by
choosing the About command from a menu.

You create and display a dialog box by using the DialogBox function. This func-
tion takes a dialog box template, a procedure-instance address, and a handle of a
parent window, and creates a dialog box through which your application can dis-
play output and prompt the user for input.

40 Microsoft Windows Guide to Programming

To display and use an About dialog box, follow these steps:

1. Create a dialog box template and add it to your resource-definition file.
2. Add a dialog box procedure to your C-language source file.
3. Export the dialog box procedure in your module-definition file.

4. Add a menu to your application’s r

esource-definition file,
5. Process the WM_COMMAND message in your application code.
Once you have completed these steps, your application will be able to display the

dialog box when the user chooses the About command from the application’s
menu.

2.4.1 Creating a Dialog Box Template

A dialog box template is a description of a dialog box’s style, contents, shape, and
size. You can create your own custom template or use Microsoft Dialog Editor
(DLGEDIT.EXE). In this example, the template is created manually. For informa-
tion about how to use Dialog Editor to create a dialog box, see Microsoft Windows
Programming Tools.

You create a dialog box template by creating a resource-definition file. This file
contains definitions of resources to be used by the application, such as icons, cur-
sors, and dialog box templates. To create an About dialog box template, you use a
DIALOG statement and fill it with control statements, as in the following ex-
ample:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"

BEGIN
CTEXT "Microsoft Windows" -1, @, 5, 144, 8

CTEXT "Generic Application” -1, 0, 14, 144, 8

CTEXT "Version 3.1" -1, 0, 34, 144, 8
DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

The DIALOG statement starts the dialog box template. The name AboutBox iden-
tifies the template when the DialogBox function is used to create the dialog box.
The box’s upper-left corner is placed at the coordinates (22,17) in the parent win-
dow’s client area. The box is 144 units wide by 75 units high. The horizontal units
are 4 of the dialog box’s base-width unit; the vertical units are 1/8 of the dialog
box’s base-height unit. The current base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function returns the
dialog box’s base units in pixels.

Chapter 2 Generic Windows Application 11

The STYLE statement defines the dialog box style. This particular style is a win-
dow with a framed border, a title bar, and a System menu, which is the typical
style used for modal dialog boxes.

The BEGIN and END statements mark the beginning and end of the control defi-
nitions. The dialog box contains text and a default push button. The push button
lets the user send input to the dialog box procedure to terminate the dialog box.
The statements, strings, and integers contained between the BEGIN and END
statements describe the contents of the dialog box. (Because you would normally
create such a description by using Dialog Editor, this guide does not describe the
numbers and statements that make up the description. For a complete description
of how to use Dialog Editor, see Microsoft Windows Programming Tools.)

The CTEXT statement creates a rectangle with the quoted text centered in a rect-
angle. This statement appears several times, once for each of the various texts that
appear in the dialog box.

DEFPUSHBUTTON creates a push button that allows the user to give a default
response—in this case, choosing the OK button causes the dialog box to disap-
pear.

The DS_MODALFRAME, WS_CAPTION, WM_SYSMENU, IDOK, and
WS_GROUP constants used in the dialog box template are defined in the
Windows header file. You should include this file in the resource-definition file by
using the #include directive at the beginning of the definition file.

The statements in this file were created with a text editor and were based on a
dialog box used in another application. You can create many such resources by
copying them from other applications and modifying them by using a text editor.
You can also create new dialog boxes by using Dialog Editor. (The files created
by Dialog Editor contain statements that are somewhat different from the state-
ments shown here, and such files usually are edited only by using Dialog Editor.)

2.4.2 Creating a Header File

It is often useful to create a header file in which to define constants and function
prototypes for your application. Most applications consist of at least two source
files that share common constants: the C-language source file and the resource-
definition file. Since Microsoft Windows Resource Compiler (RC) carries out the
same preprocessing as CL, it is useful and convenient to place constant definitions
in a single header file and then include that file in both the C-language source file
and the resource-definition file.

For example, for the Generic application, you can place the prototypes for Win-
Main, MainWndProc, About, InitApplication, and InitInstance, and the definition

42 Microsoft Windows Guide to Programming

of the menu identifier for the About command, in the GENERIC.H header file.
The file should look like this:

fidefine IDM_ABOUT 100

int PASCAL WinMain(HINSTANCE, HINSTANCE, LPSTR, int);
BOOL InitApplication(HINSTANCE);
BOOL InitInstance(HINSTANCE, int);

LRESULT FAR PASCAL MainWndProc(HWND, UINT, WPARAM, LPARAM);
BOOL FAR PASCAL About (HWND, WORD, WPARAM, LPARAM);

Since GENERIC.H refers to Windows data types, you must include it after
WINDOWS.H, which defines those data types. The beginning of your source files

should look like this:
#include <windows.h> /* required for all Windows applications */
#include "generic.h" /* specific to this program */

2.4.3 Creating a Dialog Box Procedure

A dialog box is a special kind of window whose window procedure is built into
Windows. For every dialog box an application has, the application must have a
corresponding dialog box procedure. The Windows built-in window procedure
calls a dialog box procedure to handle input messages that can be interpreted only
by the application.

The procedure that processes input for Generic’s About dialog box is called
About. This procedure, like other dialog box procedures, uses the same parameters
as a window procedure but processes only messages that are not handled by
Windows default processing. (The dialog box procedure returns TRUE if it
processes a message and FALSE if it does not.) The dialog box procedure, like the
window procedure, requires the PASCAL calling convention and the FAR key-
word in its definition. You must name the dialog box procedure in an EXPORTS
statement in the application’s module-definition file. As with a window procedure,
a dialog box procedure must not be called directly from your application.

Unlike a window procedure, a dialog box procedure usually processes only user-
input messages, such as WM_COMMAND, and must not send unprocessed mes-
sages to the DefWindowProc function. Generic’s dialog box procedure, About,

looks like this:

BOOL FAR PASCAL About(hD1lg, message, wParam, 1Param)

HWND hD1g; /* handle of dialog box window */
WORD message; /* type of message */
WPARAM wParam; /* message-specific information */

LPARAM 1Param;

Chapter 2 Generic Windows Application 43

{
switch (message) {
case WM_INITDIALOG: /* message: initialize dialog box */
return TRUE;
case WM_COMMAND: /* received a command */
if (wParam == IDOK /* 0K box selected? */
|| wParam == IDCANCEL) { /* Close command? */
EndDialog(hD1g, TRUE); /* exits dialog box */
return TRUE;
}
break;
}
return FALSE; /* did not process a message */
}

The About dialog box procedure processes two messages: WM_INITDIALOG
and WM_COMMAND. Windows sends the WM_INITDIALOG message to a
dialog box procedure to let the procedure initialize its controls before displaying
the dialog box. In this case, WM_INITDIALOG returns TRUE so that the focus is
passed to the first control in the dialog box that has the WS_TABSTOP bit set
(this control will be the default push button). If WM_INITDIALOG had returned
FALSE, Windows would not have set the focus to any control.

In contrast to WM_INITDIALOG messages, WM_COMMAND messages are a
result of user input. The About procedure responds to input to the OK button or
the System menu Close command by calling the EndDialog function, which
directs Windows to remove the dialog box and continue running the application.
The EndDialog function is used to terminate dialog boxes.

2.4.4 Defining a Menu with an About Command

Once you have created an About dialog box for your application, you must pro-
vide a way for the user to display the dialog box. In most applications, the About
command would appear as the last command on the application’s Help menu. If
the application does not have a Help menu, it usually appears in the first menu,
most often the File menu. In Generic, About is the only command, so it appears as
the only item on the Help menu.

The most common way to create a menu is to define it in a resource-definition file.
Put the following statements in GENERIC.RC:

GenericMenu MENU

BEGIN
POPUP "&Help"
BEGIN
MENUITEM "About Generic...", IDM_ABOUT
END

END

44

Microsoft Windows Guide to Programming

These statements create a menu named GenericMenu with a single item on it,
Help. When chosen, the command associated with the item displays a pop-up
menu with the single menu item About Generic....

Notice the ampersand (&) in the "&Help" string. This character immediately
precedes the command mnemonic a unique character with which the user can

vt ~AF W A~vxra Aivennt am~nco
access a menu or command. Mnemonics are part of Windows’ direct-access

method. If a user presses the key for the mnemonic together with the ALT key,
Windows selects the menu or chooses the command. In the case of &Help,
Windows removes the ampersand and places an underscore under the letter H
when displaying the menu.

The user sees the About command when the Help menu is displayed. If the

user chooses the About command, Windows sends the window procedure a
WM_COMMAND message containing the About command’s menu identifier—in
this case, IDM_ABOUT.

2.4.5 Processing a WM_COMMAND Message

Now that you have added a menu item to Generic’s menu, you will want the appli-
cation to be able to respond when the user chooses it as a command. To respond,
the application must process a WM_COMMAND message. Windows sends this
message to the window procedure when the user chooses a command from the
window’s menu. Windows passes the menu identifier of the command in the
wParam parameter, so you can check which command was chosen. (In this case,
you can use if and else statements to direct the flow of control, depending on the
value of wParam. As your application’s message processing becomes more com-
plex, you may want to use a switch statement instead.) The goal is to have the ap-
plication display the dialog box if the parameter is equal to IDM_ABOUT, the
About command’s menu identifier. For any other value, the application must pass
the message on to the DefWindowProc function. If it does not, all other com-
mands on the menu are effectively disabled.

The WM_COMMAND case should look like this:

FARPROC TpProcAbout; /* pointer to the "About"™ function */

case WM_COMMAND: /* message: command from a menu */
if (wParam == IDM_ABOUT) {
1pProcAbout = MakeProcInstance((FARPROC) About, hInst);

Chapter 2 Generic Windows Application 45

DialogBox(hlInst, /* current instance #/
"AboutBox", /* resource to use */
hWnd, /* parent handle #/

(DLGPROC) TpProcAbout); /* About instance address =/

FreeProcInstance(1pProcAbout);
break;
}

else /% let Windows process it =/
return (DefWindowProc(hWnd, message, wParam, 1Param));

Before it can display the dialog box, your application must have the procedure-
instance address of the dialog box procedure. You create this address by using the
MakeProclInstance function, which binds the data segment of the current applica-
tion instance to a pointer. This guarantees that when Windows calls the dialog box
procedure, the procedure uses the data in the current instance and not some other
instance of the application. MakeProcInstance returns the address of the proce-
dure instance. This value should be assigned to a pointer variable that has the
FARPROC type.

The DialogBox function creates and displays the dialog box. It requires the in-
stance handle of the current application and the name of the dialog box template.
It uses this information to load the dialog box template from the executable file.
DialogBox also requires the handle of the parent window (the window to which
the dialog box belongs) and the procedure-instance address of the dialog box pro-
cedure. DialogBox does not return control until the user has closed the dialog box.
Typically, the dialog box contains at least a push button to permit the user to close
the box.

When the DialogBox function returns, the procedure-instance address of the
dialog box procedure is no longer needed, so the FreeProcInstance function frees
the address. This invalidates the content of the pointer variable; an error results if
the application attempts to use the value again.

2.5 Creating a Module-Definition File

Every Windows application must have a module-definition file. This file defines
the name, code and data segments, memory requirements, and exported functions
of the application. For a simple application, like Generic, you need at least the
NAME, STACKSIZE, HEAPSIZE, EXETYPE, and EXPORTS statements.
However, most applications include a complete definition of the module, as shown
in the following example:

46

Microsoft Windows Guide to Programming

;module-definition file for Generic -- used by LINK.EXE

NAME Generic ; application's module name
DESCRIPTION 'Sample Microsoft Windows 3.1 Application’

EXETYPE WINDOWS ; required for all Windows apps

STUB "WINSTUB.EXE' ; generates error message if app
; 1s run without Windows

CODE MOVEABLE DISCARDABLE ; code can be moved in memory and
; discarded/reloaded

; DATA must be MULTIPLE if program can be invoked more than once.
DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows function
; MUST be exported.

EXPORTS
MainWndProc @1 ; name of window-processing procedure
About @2 ; name of About processing procedure

The semicolon is the delimiter for comments in the module-definition file.

The NAME statement, which is required, defines the name of the application.
Windows uses this name (in the example, Generic) to identify the application.

The DESCRIPTION statement is optional. In the example, it places the message
“Sample Microsoft Windows 3.1 Application” in the application’s executable file.
This statement is useful for adding version control or copyright information to the
file.

The EXETYPE statement is used to mark the executable file as a Windows execu-
table file. For a Windows application, the module-definition file must contain the
statement EXETYPE WINDOWS.

The STUB statement specifies another optional file that defines the executable
“stub” to be placed at the beginning of the file. When a user tries to run the appli-
cation without Windows, the stub is run instead. Most Windows applications use
the WINSTUB.EXE executable file supplied with the SDK. WINSTUB.EXE dis-
plays a warning message and terminates the application if the user attempts to run
the application without Windows. You can also supply your own executable stub.

The CODE statement defines the memory attributes of the application’s code
segment. In this example, the code segment contains the executable code that is

Chapter 2 Generic Windows Application 47

generated when the GENERIC.C file is compiled. Generic is a small-model
application with only one code segment, which is defined as MOVEABLE
DISCARDABLE. If the application is not running and Windows requires addi-
tional space in memory, Windows can move the code segment to make room for
other segments and can, if necessary, discard the segment. A discarded code seg-
ment is automatically reloaded on demand by Windows.

The DATA statement defines the memory requirements of the application’s data
segment. In this example, the data segment contains storage space for all the static
variables declared in the GENERIC.C file. It also contains space for the program
stack and local heap. The data segment, like the code segment, is defined as
MOVEABLE. In addition, the MULTIPLE keyword directs Windows to create a
new data segment for the application each time the user starts a new instance of
the application. Although all instances share the same code segment, each has its
own data segment. An application must have the MULTIPLE keyword if the user
can run more than one copy of it at a time.

The HEAPSIZE statement defines the size, in bytes, of the application’s local
heap. Generic uses its heap to allocate a temporary structure used to register the
window class, so it specifies 1024 bytes of storage. Applications that frequently
use the local heap should specify larger amounts of memory.

The STACKSIZE statement defines the size, in bytes, of the application’s stack.
The stack is used for temporary storage of function arguments. Any application
that calls its own local function must have a stack. Generic specifies 5120 bytes of
stack storage, the recommended minimum for a Windows application.

The EXPORTS statement defines the names and ordinal values of the functions to
be exported by the application. Generic exports its window procedure, MainWnd-
Proc, which has an ordinal value of 1 (this is an identifier; it could be any integer,
but usually such values are assigned sequentially as the exports are listed). You
must export all functions that Windows is to call (except WinMain). These func-
tions, referred to as callback functions, include the following:

= All window procedures
= All dialog box procedures

® Special callback functions, such as enumeration functions, that certain
Windows API functions require

= Any other function that is to be called from outside your application

For more information about callback functions, see Chapter 14, “C and Assembly
Language.”

For more information about module-definition statements, see the Microsoft
Windows Programmer’s Reference, Volume 4.

48 Microsoft Windows Guide to Programming

2.6 Creating Generic

Now you are ready to create the sample application Generic.

Follow these steps:

1. Create the C-language source (.C) file.

. Create the header (.H) file.

. Create the resource-definition (.RC) file.
. Create the module-definition (.DEF) file.

. Create the makefile.

(=) WY, B~ S I]

and link the application.

2.6.1 Creating the C-Language Source File

The C-language source file contains the WinMain function, the MainWndProc

window procedure, the About dialog box procedure, and the InitApplication and

InitInstance initialization functions. Name the file GENERIC.C.

The contents of the GENERIC.C file look like this:

[st sk s st s s st sk st sk s ke sk sk sk sk sk kst stk sk skt sk sk sk sk sk sk skt sk s st sk sk skt stestok stk stk skt skotoskskokoskoskok skokskokskokokokok

PROGRAM: GENERIC.C

PURPOSE: Generic template for Windows applications

FUNCTIONS:

WinMain - calls InitApplication, processes message loop
InitApplication - initializes window data, registers window
InitInstance - saves instance handle, creates main window
MainWndProc - processes messages

About - processes messages for About dialog box

COMMENTS:

Windows can have several copies of your application running
at the same time. The variable hinstCurrent keeps track of

which instance this application is so that processing will

be to the correct window.

sk ke s sk st st sk sk ke sk st st sk st sk ke sk sk ke sk st st st sk s sk sk sk st st sk st s ke st sk st sk sk sk st st st ok sk sk sk sk st stk skok skoksk ok skesiokoskok ok /

. Run Microsoft Program Maintenance Utility (NMAKE) on the file to compile

Chapter 2 Generic Windows Application 49

J#define STRICT

#include <windows.h> /* required for all Windows applications */
#include "generic.h" /* specific to this program */

HINSTANCE hInst; /* handle current instance */
/**
FUNCTION: WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
PURPOSE: Calls initialization function, processes message 1oop
COMMENTS:

Windows recognizes this function by name as the initial
entry point for the program. This function calls the
application initialization function, if no other instance
of the program is running, and always calls the instance
initialization function. It then executes a message
retrieval and dispatch loop that is the top-level control
structure for the remainder of execution. The loop is
terminated when a WM_QUIT message is received, at which
time this function exits the application instance by
returning the value passed by PostQuitMessage.

If this function must terminate before entering the message
loop, it returns the conventional value NULL.

sk s ok ok sk st ok sk ok sk ok sk sk g ok sk st sk sk st sk sk ok sk sk sk ke sk sk sk st stk kst sk stk sk sk stk stk skt skokok skokokoskokokoskoskokokoskotokoksk /

int PASCAL WinMain(hinstCurrent, hinstPrevious, T1pszCmdLine, nCmdShow)

HINSTANCE hinstCurrent; /* handle of current instance */

HINSTANCE hinstPrevious; /* handle of previous instance ®/

LPSTR 1pszCmdLine; /* address of command Tine */

int nCmdShow; /* show-window type (open/icon) */
{

MSG msg; /* message */

if (thinstPrevious) /* other instances of app running? */

if (!InitApplication(hinstCurrent)) /* initialize shared =%/

return FALSE; /% exits if unable to initialize =/

/* Perform initializations that apply to a specific instance. =/

if (!InitInstance(hinstCurrent, nCmdShow))
return FALSE;

VE]

* Acquire and dispatch messages until a WM_QUIT message
* i1s received.

*/

50 Microsoft Windows Guide to Programming

while (GetMessage(&msg, /* message structure
NULL, /* handle of window receiving the message
NULL, /* lowest message to examine
NULL)) /* highest message to examine
{
TranslateMessage(&msg); /% translates virtual key codes
DispatchMessage(&msg); /# dispatches message to window
}
return (msg.wParam); /* value from PostQuitMessage

*/
#/
*/
*/

*/
*/

/] skt s st sk st s st s st s st s st sk st sk st s st sk sk sk sk st stk st sk sk sk sk sk skosk sk skosk sk sk sk ok sk skok sk ok ok ok skt sk ok skokok ok K

FUNCTION: InitApplication(HINSTANCE)
PURPOSE: Initializes window data and registers window class
COMMENTS:

This function is called at initialization time only if
no other instances of the application are running. This
function performs initialization tasks that can be done
once for any number of running instances.

In this case, initialize a window class by filling out a
structure of type WNDCLASS and calling the RegisterClass
function. Since all instances of this application use
the same window class, you need to do this only when the
first instance is initialized.

s ke ke ok ok sk sk sk ok sk ok sk ofe sk sk sk sk sk sk st st sk sk sk st st sk sk skt sk sk sk st st sk sk sk sk sk skt sksfe st sk sk sk sk stk skok stk stk ok kol skok sk /

BOOL InitApplication(hinstCurrent)
HINSTANCE hinstCurrent; /% handle of current instance
{

WNDCLASS wc;

/%

* Fi11 in window-class structure with parameters that
describe the main window.

*/

wc.style = NULL; /* class style(s)
wc.lpfnWndProc = MainWndProc; /* window procedure

/% for windows of this class
wc.cbClsExtra = 0; /% no per-class extra data
wc.cbWndExtra = 0; /* no per-window extra data

*/

*/
*/
*/

*/
*/

Chapter 2 Generic Windows Application 51

}

wC.
wC.
wC.
wC.
wC.
wC.

/%

hInstance = hinstCurrent; /* application that owns class =/
hIcon = LoadIcon(NULL, IDI_APPLICATION);

hCursor = LoadCursor(NULL, IDC_ARROW);

hbrBackground = GetStockObject(WHITE_BRUSH);

1pszMenuName = "GenericMenu"; /* menu name in .RC file =/
1pszClassName = "GenericWClass"; /+* name in CreateWindow */

Register the window class and return success/failure code. */

return (RegisterClass(&wc));

/st s sttt st sk s ol ot stk s ot st ol ol st sl sk sttt s s ofe st sl s st kst stk st s skt ke skttt kol ok
FUNCTION: InitInstance(HINSTANCE, int)

PURPOSE: Saves the instance handle and creates a main window

COMMENTS:

This function is called at initialization time for every
instance of this application. This function performs
initialization tasks that cannot be shared by multiple
instances.

In this case, save the instance handle in a static variable
and create and display the main window.

s sk st s st st st sk sk s sk e sk st st sk sk sk st st st sk sk sk kst st sk st sk sk sk s stk sk sk sk sk s sk sk sk stk s ste sk stk sk skskskskokoskoskoskok skokskokokskok /

BOOL InitInstance(hinstCurrent, nCmdShow)

HINSTANCE hinstCurrent; /* handle of current instance */
int nCmdShow; /* param for first ShowWindow call */
{
HWND hWnd; /* handle of main window */
/%

* Save the instance handle in a static variable, which will be
used in subsequent calls from this application to Windows.

*/

hInst = hinstCurrent;

/* Create a main window for this application instance. ®/

52 Microsoft Windows Guide to Programming

hWnd = CreateWindow(

"GenericWClass", /* see RegisterClass call */
"Generic Sample Application", /* text for title bar */
WS_OVERLAPPEDWINDOW, /* window style */
CW_USEDEFAULT, /* default horz position =/
CW_USEDEFAULT, /* default vert position =*/
CW_USEDEFAULT, /* default width #/
CW _USEDEFAULT, /% defauit height #*/
NULL, /% overlapped windows have no parent */
NULL, /* use window class menu */
hinstCurrent, /* this instance owns this window */
NULL /* pointer not needed */

);

/* If the window could not be created, return "failure."” */

if (hWnd == NULL)
return FALSE;

/%
* Make the window visible, update its client area, and
% return "success."

*/
ShowWindow(hWnd, nCmdShow); /#* shows window */
UpdateWindow(hWnd); /* sends WM_PAINT message */

return TRUE;
}

/s st s st s st ke st sk s s st sk st sk sk sk sk sk st sk st sk st sk sk sk sk sk skl sk sk ke sk sk sk sk sk sk sk sk stk ok stk sk sk sk sk sk ok ok ok stk ok ok

FUNCTION: MainWndProc(HWND, UINT, WPARAM, LPARAM)

PURPOSE: Processes messages

MESSAGES:
WM_COMMAND - application menu (About dialog box)
WM_DESTROY - destroy window

COMMENTS:

To process the IDM_ABOUT message, call MakeProcInstance

to get the current instance address of the About procedure.
Then call DialogBox, which will create the dialog box
according to the information in your GENERIC.RC file and
turn control over to the About procedure. When it returns,
free the instance address.

sk ke s sfe sk sk sk sk sk sk ok sk sk ok st sk sk sk sk sk sk sk st sk sk sk sk sk stk sk sk sk stk sk st st sk sk skl stk st steosiesk sk stk stk skl slesteskeskokokokok /

Chapter 2 Generic Windows Application 53

LRESULT FAR PASCAL MainWndProc(hWnd, message, wParam, 1Param)

HWND hWnd; /* window handle */
UINT message; /* type of message */
WPARAM wParam; /% additional information */
LPARAM 1Param; /* additional information */
{
FARPROC T1pProcAbout; /* pointer to the "About" function */
switch (message) {
case WM_COMMAND: /* message: command from a menu */
if (wParam == IDM_ABOUT) {
1pProcAbout =
MakeProcInstance((FARPROC) About, hlnst);
DialogBox(hInst, /#* handle of current instance */
"AboutBox"™, /* resource to use */
hWnd, /* parent handle */

(DLGPROC) 1pProcAbout); /* instance address */

FreeProcInstance(1pProcAbout);
break;

}

else /* Tet Windows process it */
return (DefWindowProc(hWnd, message, wParam, 1Param));

case WM_DESTROY: /* message: window being destroyed */
PostQuitMessage(d);
break;

default: /* passes it on if unprocessed */
return (DefWindowProc(hWnd, message, wParam, 1Param));
}
return NULL;

}

[st s s ot stk ot s s ot st s otk s ok sl R sk R R sk ol sl s ot ok skt ot gl ok st st ok sk sk skl stk kol ok sk
FUNCTION: About(HWND, WORD, WPARAM, LPARAM)

PURPOSE: Processes messages for About dialog box

MESSAGES:
WM_INITDIALOG - initialize dialog box
WM_COMMAND - Input received
COMMENTS::

No initialization is needed for this particular dialog
box, but TRUE must be returned to Windows.

Wait for user to click OK; then close the dialog box.

54 Microsoft Windows Guide to Programming

BOOL FAR PASCAL About(hDlg, message, wParam, 1Param)

HWND hD1g; /* handle of dialog box window #/
WORD message; /% type of message */
WPARAM wParam; /* message-specific information */
LPARAM 1Param;

{

switch (message) {
case WM_INITDIALOG: /% message: initialize dialog box */

return TRUE;

case WM_COMMAND: /* received a command */
if (wParam == IDOK /% 0K box selected? */
|| wParam == IDCANCEL) { /* Close command? */
EndDialog(hD1g, TRUE); /* exits dialog box */
return TRUE;
}
break;
}
return FALSE; /% did not process a message */

2.6.2 Creating the Header File

The header file contains definitions and declarations required by the C-language
source file that are incorporated into the source code by an #include directive.
Name the file GENERIC.H. It should look like this:

ffdefine IDM_ABOUT 100

int PASCAL WinMain(HINSTANCE, HINSTANCE, LPSTR, int);
BOOL InitApplication(HINSTANCE);
BOOL InitInstance(HINSTANCE, int);

LRESULT FAR PASCAL MainWndProc(HWND, UINT, WPARAM, LPARAM);
BOOL FAR PASCAL About (HWND, WORD, WPARAM, LPARAM);

2.6.3 Creating the Resource-Definition File

The resource-definition file must contain the Help menu and the dialog box tem-
plate for the About dialog box. Name the file GENERIC.RC. It should look like
this:

f#Hinclude <windows.h>
#include "generic.h"

Chapter 2 Generic Windows Application 55

GenericMenu MENU

BEGIN
POPUP "&Help"
BEGIN
MENUITEM "About Generic...", IDM_ABOUT
END
END

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"

BEGIN
CTEXT "Microsoft Windows" -1, 0, 5, 144, 8
CTEXT "Generic Application” -1, 0, 14, 144, 8
CTEXT "Version 3.1" -1, 0, 34, 144, 8
DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

2.6.4 Creating the Module-Definition File

The module-definition file must contain the module definitions for Generic. Name
the file GENERIC.DEF. It should look like this:

;module-definition file for Generic -- used by LINK.EXE

NAME Generic ; application's module name

DESCRIPTION 'Sample Microsoft Windows 3.1 Application’
EXETYPE WINDOWS ; required for all Windows applications

STUB 'WINSTUB.EXE' ; generates error message if application
; is run without Windows

CODE MOVEABLE DISCARDABLE; code can be moved, discarded/reloaded
;DATA must be MULTIPLE if program can be invoked more than once.
DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows function
; must be exported.

EXPORTS
MainWndProc @1 ; name of window-processing procedure
About @2 ; name of About processing procedure

56

Microsoft Windows Guide to Programming

2.6.5 Creating the Makefile

Once you have the source files, you can create Generic’s makefile and then com-
pile and link the application by using NMAKE. To compile and link Generic, the
makefile must carry out these steps:

® Use CL to compile the GENERIC.C file.

® Use Microsoft Segmented Executable Linker (LINK) to link the
GENERIC.OBJ object file with the Windows library and the module-definition
file, GENERIC.DEF.

= Use RC to create a binary resource file and add it to the executable file of the
Windows application.

The following will properly compile and link the files created for Generic:

Standard Windows makefile. NMAKE compares the creation date of
the file to the left of the colon with the file(s) to the right
of the colon. If the file(s) on the right are newer than the

file on the left, NMAKE will execute all of the command lines

following this line that are indented by at least one tab or

space. Any valid MS-DOS command line may be used.

Update the resource if necessary.

generic.res: generic.rc generic.h
rc /r generic.rc

Update the object file if necessary.

generic.obj: generic.c generic.h
cl /c /Gsw /Oas /Zpe generic.c

Update the executable file if necessary. (If it is necessary,
add the resource back in.)

generic.exe: generic.obj generic.def
Tink /nod generic, , , slibcew libw, generic.def
rc generic.res

If the .RES file is new and the .EXE file is not, update the
resource. Note that the .RC file can be updated without having
to either compile or link the file.

generic.exe: generic.res
rc generic.res

Chapter 2 Generic Windows Application 57

The first two lines in this makefile direct NMAKE to create a compiled resource
file, GENERIC.RES, if either the resource-definition file GENERIC.RC or the
new header file GENERIC.H has been updated. The /r option of the rc command
creates a compiled resource file without attempting to add it to an executable file,
since this must be done as the last step in the process.

The next two lines direct NMAKE to create the GENERIC.OBIJ file if
GENERIC.C or GENERIC.H has a more recent access date than the current
GENERIC.OBJ file. The ¢l command takes several options that prepare the appli-
cation for execution under Windows. The minimum required options are /c, /Gw,
and /Zp. In this case, CL treats Generic as a small-model application. Generic and
all other applications in this guide are small-model applications.

NMAKE then creates the new GENERIC.EXE file if the GENERIC.OBJ or
GENERIC.DEF file has a more recent access date than the current
GENERIC.EXE file. Small Windows applications, like Generic, must be linked
with the Windows SLIBW.LIB library and the Windows version of the C run-time
library, SLIBCEW.LIB. The object file GENERIC.OBJ and the module-definition
file GENERIC.DEF are used as arguments in the LINK command line.

The last rc command automatically appends the compiled resources in the file
GENERIC.RES to the executable file GENERIC.EXE.

2.6.6 Running Microsoft Program Maintenance Utility

Once you have created the makefile, you can compile and link your application by
running NMAKE. The following example runs NMAKE using the commands in
the file GENERIC:

nmake generic

2.7 Using Generic as a Template

Generic provides essentials that make it an appropriate starting point for your ap-
plications. It contains all the files an application can have: .DEF, .H, .RC, and .C
files, and a makefile. The About dialog box, an application standard, is included,
as is the About Generic... command on the Help menu.

You can use Generic as a template to build your own applications. To do this,
copy and rename the sources of an existing application, such as Generic; then
change relevant function names, and insert new code.

58

Microsoft Windows Guide to Programming

The following steps explain how to use Generic as a template and adapt its source
files to your application:

1.
2.

Choose your application’s filename.

Copy the following Generic source files, renaming them to match your applica-
tion’s filename: GENERIC.C, GENERIC.H, GENERIC.DEF, GENERIC.RC,
and GENERIC.

. Use a text editor to change each occurrence of Generic in your application’s C-

language source file to your application’s name. This includes changing the fol-
lowing:

® (lass name: GenericWClass

= (lass menu: GenericMenu

= Window title: Generic Sample Application
= Header filename: GENERIC.H

. Use a text editor to change each occurrence of Generic in your application’s.

module-definition file to your application’s name. This includes changing the
application name Generic.

. Use a text editor to change each occurrence of Generic in your application’s

resource-definition file to your application’s name. This includes changing the
following:

= Header filename: GENERIC.H
= Application title: Generic Application

= Menu name: GenericMenu

. Use a text editor to change each occurrence of Generic in your application’s

makefile to your application’s name. This includes changing the following:
= (C-language source filename: GENERIC.C

= Object filename: GENERIC.OBJ

= Executable filename: GENERIC.EXE

= Module-definition filename: GENERIC.DEF

As you add new resources and header files to your applications, be sure to use
your application’s filename to ensure that these names are unique.

Chapter 2 Generic Windows Application 59

2.8 Related Topics

For more information about the elements of a Windows application, see Chapter 1,
“Overview of the Windows Environment.”

For information about using C run-time functions and assembly language in your
Windows applications, see Chapter 14, “C and Assembly Language.”

For more information about Windows functions, messages, data types, and struc-
tures, see the Microsoft Windows Programmer’s Reference, Volumes 2 and 3.

For more information about using the software development tools mentioned in
this chapter, see Microsoft Windows Programming Tools.

Programming Windows Applications

Part 2

Output to a Window

Chapter 3
3.1 Using a Device CONEXLcovueeuierienieniieniententeeiteete e cateieesbeenieesareeeeenns 65
3.1.1 Using the GetDC FUnCtionccoceeveeeieiesenieieieseeeeeee 66
3.1.2 Processing a WM_PAINT MesSsage.......cccceeueeienienieicieeniienacen. 66
3.1.3 Invalidating the Client Ar€accccoevveeeieciecinieieieeeeeeene 67
3.1.4 Preparing a Device CONteXt........cccevuerieriiiinniienenieenneeenecneeans 68
3.15 Coordinate SYSIEIML......ecveruireeirierieriirieriteiteeteresiesreeteee e eenaeniee 68
3.2 Creating, Selecting, and Deleting Drawing ToolS..........ccccoccevevecienininnene. 69
3.3 Drawing and WIIINEcccocvrviviiriiiieiinieniieineiececene e 70
3.4 Sample Application: OULPULcccueeririierienientereteeeie ettt sie e 72
34.1 Adding New Variablesccccoocevevierinenininieieeseseesie e 73
342 Adding a WM_CREATE Case........ccocovevieieieieineeeeseeeene 73
343 Adding a WM_PAINT Casecccoevvrerieieieieeneeeeee e 74
344 Modifying the WM_DESTROY Casecccccevveeneeceinneennneenen. 78
345 Compiling and LinkKing.........cccoccevereninininineeeseeeese e 78
3.5 Related TOPICS. c.civieriereieierierterteteeteet ettt sttt st sbe et 79

Chapter 3 OQutput to a Window 65

In the Microsoft Windows 3.1 operating system, all output to a window is per-
formed by the graphics device interface (GDI).

This chapter covers the following topics:

®= How the painting and drawing process works in Windows
® The purpose of the device context and the WM_PAINT message
® Using GDI functions to draw within the client area of a window

® Drawing lines and figures, writing text, and creating pens and brushes

This chapter also explains how to build a sample application, Output, that il-
lustrates some of these concepts.

3.1 Using a Device Context

Some device contexts are especially prepared for output to the client area of a win-
dow. This type of device context defines the device, drawing tools, colors, and
other drawing information only for a window’s client area, instead of for a
complete device. GDI uses this drawing information to generate output. All GDI
output functions require a device-context handle. No output can be performed
without one.

To draw within a window, you need the window’s handle, which you can then use
to retrieve a handle of the device context for the window’s client area. The method
you use to retrieve the device-context handle depends on where and when you
want your application to perform output operations. Although an application can
draw and write from anywhere, including from within the WinMain function,
most applications do so only within the window procedure. Typically, an applica-
tion draws and writes in response to a WM_PAINT message. Windows sends this
message to a window procedure when changes to the window may have altered
the content of the client area. Since only the application can determine this con-
text, Windows sends the WM_PAINT message to the window procedure so that
the procedure can restore the client area.

To process the WM_PAINT message, you typically use the BeginPaint function.
If you want your application to draw within the client area at any time other than
in response to a WM_PAINT message, you must use the GetDC function to re-
trieve the device-context handle.

Whenever an application retrieves a device context for a window (by retrieving its
handle), that context is only on “temporary loan” from Windows. A device context
is a shared resource: as long as one application has it, no other application can re-
trieve it. Therefore, your application must release the device context as soon as

66

Microsoft Windows Guide to Programming

possible after using it to draw within the window. If the application retrieves the
device-context handle by using the GetDC function, it must use the ReleaseDC
function to release the handle. Similarly, for each BeginPaint function, the appli-
cation must use a corresponding EndPaint function.

Typically, an application uses the GetDC function to provide an instant response
to some action by the user, such as drawing a line as the user moves the cursor
(pointer) through the window. The function returns a device-context handle that
the application can use in any GDI output function.

The following example shows how to use the GetDC function to retrieve a
device-context handle and write the string “Hello Windows!” in the client area:

hDC = GetDC(hWnd);
TextOut(hDC, 10, 10, "Hello, Windows!", 15);
ReleaseDC(hWnd, hDC);

In this example, the GetDC function returns the device-context handle for the win-
dow identified by the A”Wnd parameter, and the TextOut function writes the string
at the coordinates (10,10) in the window’s client area. The ReleaseDC function re-
leases the device context.

Because Windows sends a WM_ERASEBKGND message to the window proce-
dure while processing a WM_PAINT message, anything your application draws in
the client area will be erased the next time the window procedure receives a
WM_PAINT message that affects that part of the client area. If the application
passes WM_ERASEBKGND on to the DefWindowProc function, that function
fills the affected area by using the class background brush, erasing any output pre-
viously drawn there.

3.1.2 Processing a WM_PAINT Message

Windows posts a WM_PAINT message when the user has changed the window—
for example, by closing a window that covered part of another window. Because a
window shares the screen with other windows, anything the user does in one win-

dow can affect the content and appearance of another window. However, an appli-
cation can do nothing about the change until it receives the WM_PAINT message.

Windows posts a WM_PAINT message by making it the last message in the appli-
cation queue. This means any input is processed before the WM_PAINT message.
In fact, the GetMessage function also retrieves any input generated after the
WM_PAINT message is posted. That is, GetMessage retrieves the WM_PAINT
message from the queue only when there are no other messages. This enables the
application to carry out any operations that might affect the appearance of the

Chapter 3 Output to a Window 67

window. In general, to avoid flicker and other distracting effects, your application
should perform output operations as infrequently as possible. Windows helps en-
sure this by holding the WM_PAINT message until it is the last message in the
queue.

The following example shows how to process a WM_PAINT message:

PAINTSTRUCT ps;

case WM_PAINT:
hDC = BeginPaint(hWnd, &ps);

/* Qutput operations */

EndPaint(hWnd, &ps);
break;

The BeginPaint and EndPaint functions are required. The BeginPaint function
fills the PAINTSTRUCT structure, ps, with information about the paint request,
such as the part of the client area that needs redrawing. The function then returns a
handle to the device context. Your application can use this handle in any GDI out-
put functions. The EndPaint function ends the paint request and releases the
device context.

You should not use the GetDC and ReleaseDC functions in place of the
BeginPaint and EndPaint functions. BeginPaint and EndPaint perform special
tasks, such as validating the client area and sending the WM_ERASEBKGND
message, that ensure the paint request is processed properly. If you use GetDC
and ReleaseDC, you must follow the call to ReleaseDC with a call to the
ValidateRect function. If you do not call ValidateRect, the WM_PAINT
message is not removed from the message queue and your application will
receive it again.

3.1.3 Invalidating the Client Area

Windows is not the only source of WM_PAINT messages. The InvalidateRect or
InvalidateRgn function can also generate WM_PAINT messages for your win-
dows. These functions mark all or part of a client area as invalid (in need of re-
drawing). For example, the following statement invalidates the entire client area of
the window identified by the hWnd variable:

InvalidateRect(hWnd, NULL, TRUE);

In this example, the NULL argument, used in place of a rectangle structure, speci-
fies the entire client area; the TRUE argument causes the background to be erased.

68

Microsoft Windows Guide to Programming

When the client area is marked as invalid, Windows posts a WM_PAINT mes-
sage. But if other parts of the client area are marked as invalid, Windows does not
post another WM_PAINT message. Instead, it adds the invalidated areas to the pre-
vious area, so that all areas are processed by the same WM_PAINT message.

If you do not want your application to redraw the client area, use the ValidateRect
and ValidateRen functions to invalidatc only parts of the client area. These func-
tions remove any previous invalidation and will remove the WM_PAINT message
if no other invalidated area remains.

If you do not want the application to wait for the WM_PAINT message to be re-
trieved from the application queue, use the UpdateWindow function to force an
immediate WM_PAINT message. If there is any invalid part of the client area,
UpdateWindow pulls the WM_PAINT message for the given window from the
queue and sends it directly to the window procedure.

3.1.4 Preparing a Device Context

To prepare a device context, Windows adjusts the device origin so that it aligns
with the upper-left corner of the client area instead of with the upper-left corner of
the screen. It also sets a rectangular clipping region so that output to a device con-
text is clipped to the client area. This means any output that would otherwise ap-
pear outside the client area is not sent to the screen.

3.1.5 Coordinate System

The default coordinate system for a device context is simple. The upper-left corner
of the client area is the origin, or the coordinates (0,0). Each pixel to the right rep-
resents one unit along the positive x-axis. Each pixel down represents one unit
along the positive y-axis.

You can modify this coordinate system by changing the mapping mode and dis-
play origins. The mapping mode defines the coordinate-system units. The default
mode is MM_TEXT, or one pixel per unit. You can also specify mapping modes
that use inches or millimeters as units. The SetMapMaode function changes the
mapping mode for a device. You can move the origin of the coordinate system to
any point by calling the SetViewportOrg function.

For simplicity, the examples in this chapter and throughout this guide use the de-
fault coordinate system.

Chapter 3 OQutput to a Window 69

3.2 Creating, Selecting, and Deleting Drawing Tools

GDI lets you use a variety of drawing tools to draw within a window. GDI pro-
vides pens for drawing lines, brushes for filling interiors, and fonts for writing
text. To create these tools, use functions such as CreatePen and CreateSolid-
Brush. Then select them into the device context by using the SelectObject func-
tion. When you are done using a drawing tool, delete it by using the DeleteObject
function.

Use the CreatePen function to create a pen for drawing lines and borders. This
function returns a handle of a pen that has the specified style, width, and color.
(Always check the return value of CreatePen to ensure that it is a valid handle.)

The following example creates a dashed, black pen, one pixel wide:

HPEN hDashPen;

hDashPen = CreatePen(PS_DASH, 1, RGB(@, 0, 0));
if (hDashPen != NULL) /* makes sure handle is valid */

The RGB macro creates a 32-bit color value representing a mix of red, green, and
blue intensities. The three arguments specify the intensity of the colors red, green,
and blue, respectively. In this example, all colors have zero intensity, so the
specified color is black.

You can create solid brushes for drawing and filling by using the CreateSolid-
Brush function. This function returns a handle of a brush that contains the
specified solid color. (Always check the return value of CreateSolidBrush to
ensure that it is a valid handle.)

The following example creates a red brush:

HBRUSH hRedBrush

hRedBrush = CreateSolidBrush(RGB(255, @, 0));
if (hRedBrush != NULL) /* makes sure handle is valid */

70

Microsoft Windows Guide to Programming

Once you have created a drawing tool, you can select it into a device context by
using the SelectObject function. The following example selects the red brush for
drawing:

HBRUSH h01dBrush;

hO01dBrush = SelectObject(hDC, hRedBrush);

In this example, SelectObject returns a handle to the previous brush. In general,
you should save the handle of the previous drawing tool so that you can restore it
later.

You do not have to create or select a drawing tool before using a device context.
Windows provides default drawing tools with each device context; for example, a
black pen, a white brush, and the system font.

You can delete drawing objects you no longer need by using the DeleteObject
function. The following example deletes the brush identified by the handle
hRedBrush:

DeleteObject(hRedBrush);

You must not delete a selected drawing tool. Instead, use the SelectObject func-
tion to restore a previous drawing tool and remove the tool to be deleted from the
selection, as in the following example:

SelectObject(hDC, hO1dBrush);
DeleteObject(hRedBrush);

Although you can create and select fonts for writing text, working with fonts is a
fairly complex process and is not described in this chapter. For more information
about creating and selecting fonts, see Chapter 18, “Fonts.”

3.3 Drawing and Writing

GDI provides a wide variety of output operations, from drawing lines to writing
text. Specifically, you can use the LineTo, Rectangle, Ellipse, Arc, Pie, Text-
Out, and DrawText functions to draw lines, rectangles, circles, arcs, pie wedges,
and text, respectively. All these functions use the selected pen and brush to draw
borders and fill interiors, and the selected font to write text.

Chapter 3 Qutput to a Window Al

Drawing a Line You draw a line by using the LineTo function, although you
usually combine the MoveTo and LineTo functions to draw a line. The following
example draws a line from the coordinates (10,90) to the coordinates (360,90):

MoveTo(hDC, 10, 90);
LineTo(hDC, 360, 90);

Drawing a Rectangle You draw a rectangle by using the Rectangle function.
This function uses the selected pen to draw the border, and the selected brush to
fill the interior. The following example draws a rectangle that has its upper-left
and lower-right corners at the coordinates (10,30) and (60,80), respectively:

Rectangle(hDC, 10, 30, 60, 80);

Drawing an Ellipse or Circle You draw an ellipse or a circle by using the
Ellipse function. This function uses the selected pen to draw the border, and the

selected brush to fill the interior. The following example draws an ellipse within
the rectangle defined by the coordinates (160,30) and (210,80):

E11ipse(hDC, 160, 30, 210, 80);

Drawing an Arc You draw an arc by using the Arc function. With this function,
you define a bounding rectangle for the circle containing the arc, and then specify
the points at which the arc starts and ends. The following example draws an arc
within the rectangle defined by the coordinates (10,90) and (360,120); it draws the
arc from the coordinates (10,90) to the coordinates (360,90):

Arc(hDC, 10, 90, 360, 120, 10, 90, 360, 90);

Drawing a Pie Wedge You draw a pie wedge by using the Pie function. A pie
wedge consists of an arc and two radii extending from the focus of the arc to its
endpoints. The Pie function uses the selected pen to draw the border, and the
selected brush to fill the interior. The following example draws a pie wedge within
the rectangle defined by the coordinates (310,30) and (360,80) and that starts and
ends at the coordinates (360,30) and (360,80), respectively:

Pie(hDC, 310, 30, 360, 80, 360, 30, 360, 80);

Displaying Text You display text by using the TextOut function. This function
displays a string starting at the specified point. The following example displays the
string “A Sample String” at the coordinates (1,1):

TextOut(hDC, 1, 1, "A Sample String”, 15);

72

Microsoft Windows Guide to Programming

You can also use the DrawText function to display text. This function is similar to
TextOut, except that it lets you write text on multiple lines. The following ex-
ample displays the string “This long string illustrates the DrawText function” on
multiple lines in the specified rectangle:

SetRect(&rcTextBox, 1, 10, 160, 40);
DrawText(hDC, 1pText, Istrlen(1pText), &rcTextBox, DT_LEFT);

This example displays the string pointed to by the lpText variable as one or more
left-aligned lines in the rectangle defined by the coordinates (1,10) and (160,40).

Although you can also create and display bitmaps in a window, the process is not
described in this chapter. For more information, see Chapter 11, “Bitmaps.”

3.4 Sample Application: Output

The sample application Output illustrates how to use the WM_PAINT message to
draw within the client area, as well as how to create and use drawing tools. The
Output application is a simple extension of the Generic application described in
the previous chapter. To create the Output application, make the following modifi-
cations to the Generic application:

1. Add new variables.

2. Modify the WM_CREATE case.
3. Add a WM_PAINT case.

4. Modify the WM_DESTROY case.
5. Compile and link the application.

This sample assumes that you have a color display. If you do not, GDI will simu-
late some of the color output by dithering. Dithering is a method of simulating a
color by creating a unique pattern with two or more available colors. For a color
screen that cannot display orange, for example, Windows simulates orange by
using a pattern of red and yellow pixels. For a monochrome screen, Windows rep-
resents colors with black, white, and shades of gray, instead of colors.

Chapter 3 Output to a Window

73

3.4.1 Adding New Variables

The Output application requires several new global variables. Add the following
variables at the beginning of your C-language source file:

HPEN hDashPen;

HPEN hDotPen;
HBRUSH h01dBrush;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;

/%
/%
/%
/*
/*
/%

"---" pen handle

pen handle

old brush handle
red brush handle
green brush handle
blue brush handle

*/
*/
*/
*/
*/
*/

Output also requires new local variables in the window procedure. Declare the fol-

lowing variables at the beginning of MainWndProc:

HDC hDC; /%
PAINTSTRUCT ps; /*
RECT rcTextBox; /%
HPEN hO1dPen; /%

handle of device context
paint structure
rectangle around the text */
old pen handle

3.4.2 Adding a WM_CREATE Case

To enable Output to draw in its client area, you must create the drawing tools.
Since you need only create these tools once, a convenient place to do so is in the
WM_CREATE message. Add the following statements to MainWndProc:

case WM_CREATE:

/* Create the brush objects. */

hRedBrush = CreateSolidBrush(RGB(255,

hGreenBrush = CreateSolidBrush(RGB(

hBlueBrush = CreateSolidBrush(RGB(@

/* Create the "---" pen. */
hDashPen = CreatePen(PS_DASH, /x*
1, /*
RGB(@, @, 0)); /%
/* Create the "..." pen. =*/
hDotPen = CreatePen(2, /*
1, /%
RGB(0, @, 0)); /%

break;

style
width
color

style
width
color

#/
*/
*/

*/
*/
*/

*/
*/

®/

o,
0, 255,
0, 255));

74

Microsoft Windows Guide to Programming

The CreateSolidBrush functions create the solid brushes to be used for filling the
rectangle, the ellipse, and the circle that Output draws on the screen in response to
the WM_PAINT message. The CreatePen functions create the dotted and dashed
lines used to draw borders.

ing a WM_ PAINT Case

The WM_PAINT message informs your application when it should redraw all or
part of its client area. To handle this message, add the following statement to the
window procedure:

case WM_PAINT:
{
TEXTMETRIC tm;
int nDrawX;
int nDrawY;
char szText[300];

/* Set up a device context to begin painting. =/

hDC = BeginPaint(hWnd, &ps);

/%

* Get the size characteristics of the current font.
* This information will be used for determining the
vertical spacing of text on the screen.

*/

GetTextMetrics(hDC, &tm);

/%

*

Initialize drawing position to 1/4 inch from the top

* and from the left of the upper-left corner of the client
* area of the main windows.

®/

nDrawX GetDeviceCaps(hDC, LOGPIXELSX) / 4; /* 1/4 dinch =/
nDrawY = GetDeviceCaps(hDC, LOGPIXELSY) / 4; /* 1/4 dinch =/

/%

Send characters to the screen. After displaying each
line of text, advance the vertical position for the next
Tine of text. The pixel distance between the top of

each 1ine of text is equal to the standard height of the
font characters (tmHeight), plus the standard amount of
spacing (tmExternallLeading) between adjacent Tines.

¥ K K ¥ ¥ X x

Chapter 3 OQutput to a Window

75

1strcpy(szText, "These characters are being painted using ");
TextOut(hDC, nDrawX, nDrawY, szText, l1strlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

Istrcpy(szText, "the TextOut() function, which is fast and ");
TextOut(hDC, nDrawX, nDrawY, szText, lstrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

1strcpy(szText, "allows programmer control of placement and ");
TextOut(hDC, nDrawX, nDrawY, szText, l1strlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

Istrcpy(szText, "formatting details. However, TextOut() ");
TextOut(hDC, nDrawX, nDrawY, szText, 1strlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

Istrcpy(szText, "does not provide any automatic formatting.");
TextOut(hDC, nDrawX, nDrawY, szText, Istrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

/%
* Put text in a 5-inch by 1l-inch rectangle and display it.
* First define the size of the rectangle around the text.
*/

nDrawY += GetDeviceCaps(hDC, LOGPIXELSY) / 4; /* 1/4 inch */
SetRect(&rcTextBox,

nDrawX,

nDrawy,

nDrawX + (5 * GetDeviceCaps(hDC, LOGPIXELSX)), /% B" x/

nDrawY + (1 * GetDeviceCaps(hDC, LOGPIXELSY)) /x 1" o/
);

/* Draw the text within the bounds of the above rectangle. =/

I1strcpy(szText, "This text is being displayed with a single "
"call to DrawText(). DrawText() isn't as fast "
"as TextOut(), and it is somewhat more "
"constrained, but it provides numerous optional
"formatting features, such as the centering and "
"line breaking used in this example.");
DrawText (hDC,
szText,
Istrien(szText),
&rcTextBox,
DT_CENTER | DT_EXTERNALLEADING | DT_NOCLIP
| DT_NOPREFIX | DT_WORDBREAK);

/%
* Paint the next object immediately below the bottom
* of the above rectangle in which the text was drawn.
*/

76 Microsoft Windows Guide to Programming

nDrawY = rcTextBox.bottom;

V£

The (x,y) pixel coordinates of the objects about to
* be drawn are below, and to the right of, the current
* coordinate (nDrawX,nDrawY).

*/

/* Draw a red rectangle. */

h01dBrush = SelectObject(hDC, hRedBrush);
Rectangle(hDC,

nDrawX,

nDrawY,

nDrawX + 50,

nDrawY + 30);

/* Draw a green ellipse. */

SelectObject(hDC, hGreenBrush);
E11ipse(hDC,

nDrawX + 150,

nDrawY,

nDrawX + 150 + 50,

nDrawY + 30);

/* Draw a blue pie shape. */

SelectObject(hDC, hBlueBrush);
Pie(hDC,

nDrawX + 300,

nDrawY,

nDrawX + 300 + 50,

nDrawY + 50,

nDrawX + 300 + 50,

nDrawY,

nDrawX + 300 + 50,

nDrawY + 50);

nDrawY += 50;
/% Restore the old brush. =/

SelectObject(hDC, hO1dBrush);

Chapter 3 Qutput to a Window 71

/% Select a "---" pen, and save the old value. */

nDrawY += GetDeviceCaps(hDC, LOGPIXELSY) / 4; /* 1/4 inch */
hOldPen = SelectObject(hDC, hDashPen);

/* Move to a specified point. */

MoveTo(hDC, nDrawX, nDrawY);
/* Draw a line. %/

LineTo(hDC, nDrawX + 350, nDrawY);

/% Select a "..." pen. */
SelectObject(hDC, hDotPen);

/* Draw an arc connecting the line. %/

Arc(hDC,
nDrawX,
nDrawY - 20,
nDrawX + 350,
nDrawY + 20,
nDrawX,
nDrawy,
nDrawX + 350,
nDrawY);

/* Restore the old pen. */
SelectObject(hDC, hOT1dPen);
/% Tell Windows you are done painting. */

EndPaint(hWnd, &ps);
}
break;

Note If you “hard-code” strings by using functions such as Istrcpy, it may be diffi-
cult to translate your application into other languages. If you plan to distribute
your application in more than one language, use string tables instead of hard-
coded strings. For more information about string tables, see the Microsoft
Windows Programmer’ s Reference, Volume 4.

78 Microsoft Windows Guide to Programming

3.4.4 Modifying the WM_DESTROY Case

Before terminating, the Output application should delete the drawing tools created
for its window; this frees the memory that each drawing tool uses. To make the ap-
plication do this, use the DeleteObject function to delete the various pens and
brushes in the WM_DESTROY case. Modity the WM_DESTROY case so that it
looks like this:

case WM_DESTROY:

DeleteObject (hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);
DeleteObject(hDashPen);
DeleteObject(hDotPen);
PostQuitMessage(0);

break;

You must call the DeleteObject function once for each object you want to delete.

3.4.5 Compiling and Linking

Compile and link the Output application and then start Windows and the applica-
tion. The application should look like this:

o Oumm Samp ' e hpp l;catm n e

p

These characters are being painted using
the TextOut]) function, which is fast and

1} progr control of plac t and
formatting details. However, TextOut{)
does not provide any automatic formatting.

This text is being displayed with a single call to DrawText(]. DrawText()
isn't as fast as TextOut(), and it is somewhat more constrained, but it
provides numerous optional formatting features, such as the centering
and line breaking used in this example.

You can use the WM_PAINT case of this application to experiment with a variety
of GDI functions. For information about other GDI output functions, see the
Microsoft Windows Programmer’ s Reference, Volume 2.

Chapter 3 Output to a Window 79

3.5 Related Topics

For more information about working with bitmaps, see Chapter 11, “Bitmaps.’;
For more information about working with fonts, see Chapter 18, “Fonts.”

For more information about window procedures, class and private device contexts,
painting functions, messages, data types, and structures, see Microsoft Windows
Programmer’s Reference, Volumes 2 and 3.

Keyboard and Mouse Input

Chapter 4
4.1 WIndows INput MESSAZEScocerueerieiereririeniiiiieeeeesie et 83
4.1.1 Message FOrmatscocceeieriininiiinnieneeneenienieeee e 84
412 Keyboard Input ..o 84
4.1.3 Character Inputccccooiviiiiiiiiiii, 85
4.14 MOUSE INPUL....eeieiiiiiiieiinieiie et 85
4.1.5 TIMEr INPUL ..o 86
4.1.6 Scroll Bar INPut.......cc.ooveveiierininininieieeeereeeeeeeresieeeeees 87
4.1.7 Menu INPUL.....cooiiiiieiineeececteeee e 88
4.2 Sample Application: INPUL.......ccceveriiriiiriiniieeeeceeee e 88
4.2.1 How the Input Application Displays Output...........ccccceovvueuenene 89
4.2.2 Adding New Variablesccccocevererieneneneenieneneceenreenene 90
4.2.3 Setting the Window-Class Style..........cocevevereeneneneeeenennennes 90
424 Modifying the CreateWindow Function..........ccoceevviiiiniinnnn. 91
4.2.5 Setting the Text Rectangles ..., 91
42.6 Adding a WM_CREATE Case......cc.cccoerurerineneireniinceeenes 92
427 Modifying the WM_DESTROY Caseccccceoeevveviininirneennn 92
4.2.8 Adding WM_KEYUP and WM_KEYDOWN Cases............... 92
4.2.9 Adding a WM_CHAR Casec..cccerervenenieerenieniieeneneeeeeenns 93
4.2.10 Adding a WM_MOUSEMOVE Casecccccooueeeinrinrcennnnn. 93
42.11 Adding WM_LBUTTONUP and
WM_LBUTTONDOWN Casesccceueeriruenerrenereereneeiereneeneneas 93
4.2.12 Adding a WM_LBUTTONDBLCLK Casec.cccccoeevruruennnes 93
4.2.13 Adding a WM_TIMER Case........ccceceeverinueviinmeinicnicieineienens 94
4.2.14 Adding WM_HSCROLL and WM_VSCROLL Cases 94
4.2.15 Adding a WM_PAINT Casec.cceueuirieuennuencnieirniineeiccneeneas 94
4216 Compiling and LinKing..........cccoceveveneenenenenniencneneneeneennenne. 95
4.3 Related TOPICS. .ueeeireirrieieriieieteriesteste sttt sttt et se et see e ene e 96

Chapter 4 Keyboard and Mouse Input 83

Most applications require input from the user—typically, by means of the key-
board or the mouse. With the Microsoft Windows operating system, applications
receive keyboard and mouse input in the form of input messages.

This chapter covers the following topics:
= Input messages that Windows sends your application

= Responding to Windows input messages

This chapter also explains how to build a sample Windows 3.1 application, Input,
that responds to various types of input messages.

4.1 Windows Input Messages

Whenever the user presses a key, moves the mouse, or clicks a mouse button,
Windows responds by sending input messages to the appropriate application.
Windows also sends input messages in response to timer input.

Windows provides several types of input messages:

Message type Description

Keyboard User input through the keyboard

Character Keyboard input translated into character codes

Mouse User input through the mouse

Timer Input from the system timer

Scroll bar User input through a window’s scroll bars and the mouse
Menu User input through a window’s menus and the mouse

Input messages from the keyboard, mouse, and timer correspond directly to hard-
ware input. Windows passes these messages to your application through the appli-
cation queue.

Character, menu, and scroll bar messages are created in response to mouse and
keyboard actions in the nonclient area of a window, or are the result of translated
keyboard messages. Typically, Windows sends these messages directly to the ap-
propriate window procedure.

84 Microsoft Windows Guide to Programming

4.1.1 Message Formats

Input messages come in two formats, depending on how your application receives
them:

® Messages that Windows places in the application queue take the form of an
MSG structure. This structure contains members that identify and contain infor-
mation about the message. Your application’s message loop retrieves this struc-
ture from the application queue and dispatches it to the appropriate window
procedure.

= Messages that Windows sends directly to a window procedure take the form of
four arguments. The arguments correspond to the four window-procedure pa-
rameters: hWnd, message, wParam, and [Param.

The only difference between these two message forms is that the MSG structure
contains two additional pieces of information: the current location of the cursor
and the current system time. Windows does not pass this information to the win-
dow procedure.

4.1.2 Keyhoard Input

Much of an application’s user input comes from the keyboard. Windows sends
keyboard input to an application when the user presses or releases a key. Windows
generates keyboard-input messages in response to the following keyboard events:

Message Event

WM_KEYDOWN User presses a key.
WM_KEYUP User releases a key.
WM_SYSKEYDOWN User presses a system key.
WM_SYSKEYUP User releases a system key.

The wParam parameter of a keyboard-input message specifies the virtual-key

code of the key the user pressed. A virtual-key code is a device-independent value
for a specific keyboard key. Windows uses virtual-key codes so that it can provide
consistent keyboard input no matter what computer your application is running on.

The [Param parameter contains the keyboard’s scan code for the key, as well as
additional information about the keyboard, such as the state of the SHIFT key and
whether the current key was previously up or down. '

Windows generates two system-key messages, WM_SYSKEYUP and
WM_SYSKEYDOWN. System keys are special keys, such as the ALT and F10
keys, that belong to the Windows user interface and cannot be used by an applica-
tion in any other way.

Chapter 4 Keyhoard and Mouse Input 85

An application receives keyboard-input messages only when it has the input focus.
The input focus is what your application receives when it becomes the active appli-
cation—that is, when the user has selected the application’s window. You can also
use the SetFocus function to explicitly set the input focus for a given window, and
the GetFocus function to determine which window has the focus.

4.1.3 Character Input

Applications that read character input from the keyboard must use the
TranslateMessage function in their message loops. TranslateMessage translates
a keyboard-input message into a corresponding Windows-character message,
WM_CHAR or WM_SYSCHAR. The wParam parameter in these messages con-
tains the Windows character codes for the given key. The /Param parameter is
identical to [Param in the keyboard-input message.

4.1.4 Mouse Input

User input can also come from the mouse. Windows sends mouse-input messages
to the application when the user moves the cursor into and through a window or
presses or releases a mouse button while the cursor is in the window. Windows
generates mouse-input messages in response to the following events:

Message Event

WM_MOUSEMOVE User moves the cursor into or through the window.
WM_LBUTTONDOWN User presses the left button.

WM_LBUTTONUP User releases the left button.

WM_LBUTTONDBLCLK User presses, releases, and presses again the left but-
ton within the system’s defined double-click time.

WM_MBUTTONDOWN User presses the middle button.

WM_MBUTTONUP User releases the middle button.

WM_MBUTTONDBLCLK User presses, releases, and presses again the middle
button within the system’s defined double-click time.

WM_RBUTTONDOWN User presses the right button.

WM_RBUTTONUP User releases the right button.

WM_RBUTTONDBLCLK User presses, releases, and presses again the right but-
ton within the system’s defined double-click time.

The wParam parameter corresponding to each button pressed or released includes
a bitmask specifying the current state of the keyboard and mouse buttons, such as
whether the mouse buttons, SHIFT key, and CTRL key are down. The [Param pa-
rameter contains the x- and y-coordinates of the cursor.

86 Microsoft Windows Guide to Programming

Windows sends mouse-input messages to a window only if the cursor is in the win-
dow or if your application has captured mouse input by using the SetCapture
function. This function directs Windows to send all mouse input, regardless of
where the cursor is, to the specified window. Applications typically use this func-
tion to take control of the mouse when carrying out some critical operation with
the mouse, such as selecting something in the client area. Capturing mouse input
prevenis oiher appiicaiions from taking control of the mouse before the operation
is completed.

Since the mouse is a shared resource, it is important for an application to release
the captured mouse as soon as it has finished the operation. The application can re-
lease the mouse by using the ReleaseCapture function; it can also determine
which window, if any, has captured the mouse, by using the GetCapture function.

Windows sends double-click messages to a window procedure only if the corre-
sponding window class has the CS_DBLCLKS style. Your application must set
this style when registering the window class. A double-click message is always the
third message in a four-message series. The first two messages are the first button
press and release. The second button press is replaced with the double-click mes-
sage. The last message is the second release. Remember that a double-click mes-
sage occurs only if the first press and the second press occur within the system’s
defined double-click time. The application can retrieve the current double-click
time by using the GetDoubleClickTime function, and it can set it by using the
SetDoubleClickTime function (this sets the double-click time for all applications,
not just your own).

4.1.5 Timer Input

Windows sends timer input to your application when a specified interval elapses
for a particular timer. To receive timer input, your application must set a timer by
using the SetTimer function. The application receives the timer input in two
ways:

® Windows places a WM_TIMER message in your application’s queue.
= Windows calls a callback function defined in your application. You specify the
callback function when you call the SetTimer function.

The following example shows how to set a timer so that it generates input at
5-second (5000-millisecond) intervals:

idTimer = SetTimer(hWnd, 1, 500@, (TIMERPROC) NULL);

The second argument to SetTimer is any nonzero value that your application uses
to identify the particular timer. The last argument specifies the callback function

that will receive timer input. Setting this argument to NULL tells Windows to pro-
vide timer input as a WM_TIMER message. Because there is no callback function

Chapter 4 Keyboard and Mouse Input 87

specified for timer input, Windows sends the timer input through the application
queue.

The SetTimer function returns a timer identifier—an integer that identifies the
timer. You can use this timer identifier to turn the timer off by using it in the Kill-
Timer function.

4.1.6 Scroll Bar Input

Windows sends a scroll bar message, either WM_HSCROLL or WM_VSCROLL,
to a window procedure each time the user clicks when the cursor is in a scroll bar.
Applications use the scroll bar messages to direct scrolling within the window. Ap-
plications that display text or other data that does not all fit in the client area usu-
ally provide some form of scrolling. Scroll bars are an easy way to let the user
direct scrolling actions.

To retrieve scroll bar input in your application, add scroll bars to a window. You
can do this by specifying the WS_HSCROLL and WS_VSCROLL styles when
you create the window. These styles direct the CreateWindow function to create
horizontal and vertical scroll bars for the window. The following example creates
scroll bars for the given window:

hWnd = CreateWindow("InputWClass", /% window class */
"Input Sample Application”, /* window name */
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, /* x position */
CW_USEDEFAULT, /% y position */
CW_USEDEFAULT, /% width ®/
CW_USEDEFAULT, /* height */
NULL, /* handle of parent window */
NULL, /* handle of menu or child window */
hinst, /#* instance handle */
NULL); /#+ additional info */

Windows displays the scroll bars when it displays the window. It automatically
maintains the scroll bars and sends scroll bar messages to the window procedure
when the user moves the scroll box in the scroll bar.

When Windows sends a scroll bar message, it sets the wParam parameter of the
message to indicate the type of scrolling request made. For example, if the user
clicks the up arrow of a vertical scroll bar, Windows sets the wParam parameter to
the value SB_LINEUP. Depending on the event, Windows sets the wParam pa-
rameter to one of the following values:

Value Event

SB_LINEUP User clicks the up arrow or left arrow of a scroll bar.
SB_LINEDOWN User clicks the down arrow or right arrow of a scroll bar.

88 Microsoft Windows Guide to Programming

Value Event

SB_PAGEUP User clicks between the scroll box and the up arrow or left
arrow of a scroll bar.

SB_PAGEDOWN User clicks between the scroll box and the down arrow or

right arrow of a scroll bar.
SB_THUMBPOSITION User releases the mouse button when the cursor is in the

scroll box (thumb)—typically, after dragging the box.
SB_THUMBTRACK User drags the scroll box with the mouse.

4.1.7 Menu Input

Whenever the user chooses a command from a menu, Windows sends a menu-
input message to the window procedure for that window. There are two types of
menu-input messages:

= WM_SYSCOMMAND, which indicates that the user has chosen a command
from the System menu.

= WM_COMMAND, which indicates that the user has chosen a command from
the application’s menu.

Since menu input is often the primary source of input for an application, its pro-
cessing can be complex. For more information about menus and menu input, see
Chapter 7, “Menus.”

4.2 Sample Application: Input

This sample application, Input, illustrates how to process input messages from the
keyboard, mouse, timer, and scroll bars. The Input application displays the current
or most recent state of each of these input mechanisms. To create the Input applica-
tion, make the following modifications to the Generic application:

Add new variables.

Set the window-class style.

Modify the CreateWindow function.
Set the text rectangles.

Add a WM_CREATE case.

Modify the WM_DESTROY case.

A

Chapter 4 Keyboard and Mouse Input 89

7. Add WM_KEYUP and WM_KEYDOWN cases.
8. Add a WM_CHAR case.
9. Add a WM_MOUSEMOVE case.
10. Add WM_LBUTTONUP and WM_RBUTTONUP cases.
11. Add a WM_LBUTTONDBLCLK case.
12. Add a WM_TIMER case.
13. Add WM_HSCROLL and WM_VSCROLL cases.
14. Add a WM_PAINT case.
15. Compile and link the Input application.
Although Windows does not require a pointing device, this sample is written as if

you have a mouse or other pointing device. If you do not have a mouse, the appli-
cation will not receive mouse-input messages.

4.2.1 How the Input Application Displays Output

The Input application responds to input messages by displaying text that indicates
the type of input message. It uses some simple functions to format and display the
output.

To create a formatted string, use the wsprintf function, the Windows version of
the C run-time function sprintf. The wsprintf function copies a formatted string
to a buffer; you can then pass the buffer address as an argument to the TextOut

function. The following example shows how to create a formatted string:

char MouseText[48];

wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d", wParam,
LOWORD(1Param), HIWORD(1Param));

This example copies the formatted string to the MouseText array.

90 Microsoft Windows Guide to Programming

4.2.2 Adding New Variables

Since you will need several new global variables, declare them at the beginning of
the C-language source file:

char MouseText[48]; /* mouse state */
char ButtonText[48]; /* mouse-button state =*/
char KeyboardText[48]; /#* keyboard state */
char CharacterText[48]; /# latest character */
char ScrollText[48]; /* scroll status */
char TimerText[48]; /* timer state */

RECT rectMouse;

RECT rectButton;

RECT rectKeyboard;

RECT rectCharacter;

RECT rectScroll;

RECT rectTimer;

int idTimer; /* timer identifier */
int nTimerCount = 0; /#* current timer count =/

The character arrays hold strings that describe the current state of the keyboard,
mouse, and timer. The rectangles keep track of where the strings appear on the
screen, and make possible the invalidation technique explained in Section 4.2.15,
“Adding a WM_PAINT Case.”

Since you will also need some local variables for the window procedure, declare
them at the beginning of MainWndProc, as follows:

HDC hDC; /* handle of device context */
PAINTSTRUCT ps; /* paint structure */
char Scroll1TypeText[20];

RECT rect;

Add the following variables to the InitInstance function:

HDC hDC;
TEXTMETRIC textmetric;
RECT rect;
int nLineHeight;

4.2.3 Setting the Window-Class Style

To enable double-click processing, set the window-class style to CS_DBLCLKS.
In the initialization function, find this statement:

wc.style = NULL;

Chapter 4 Keyboard and Mouse Input 91

Change it to the following:

wc.style = CS_DBLCLKS;

This enables double-click processing for windows that belong to this class.

4.2.4 Modifying the CreateWindow Function

To create a window that has vertical and horizontal scroll bars, modify the call to
the CreateWindow function so that it looks like this:

hWnd = CreateWindow("InputWClass",
"Input Sample Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hinst,
NULL);

4.2.5 Setting the Text Rectangles

To establish the client-area rectangles in which different messages are displayed,
add the following statements to the InitInstance function:

hDC = GetDC(hWnd);

GetTextMetrics(hDC, &tm);

ReleaseDC(hWnd, hDC);

nLineHeight = tm.tmExternallLeading + tm.tmHeight;

rect.left = GetDeviceCaps(hDC, LOGPIXELSX) / 4; /% 1/4 inch %/
rect.right = GetDeviceCaps(hDC, HORZRES);

rect.top = GetDeviceCaps(hDC, LOGPIXELSY) / 4; /% 1/4 dinch */
rect.bottom = rect.top + nLineHeight;

rectMouse = rect;

rect.top += nlLineHeight;
rect.bottom += nLineHeight;
rectButton = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectKeyboard = rect;

92 Microsoft Windows Guide to Programming

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectCharacter = rect;

rect.top += nLineHeight;
rect.bottom += nlLineHeight;
rectScroll = rect;

rect.top += nLineHeight;
rect.bottom += nlLineHeight;
rectTimer = rect;

4.2.6 Adding a WM_CREATE Case

To set a timer, use the SetTimer function. You can do this by adding a
WM_CREATE case to your application, as follows:

case WM_CREATE:
/% Set the timer for five-second intervals. */ o

idTimer = SetTimer(hWnd, NULL, 5000, (TIMERPROC) NULL);
break;

4.2.7 Modifying the WM_DESTROY Case

Your application must also stop the timer before terminating. You can do this by
adding a WM_DESTROY case to the application, as follows:

Kil1Timer(hWnd, idTimer);

4.2.8 Adding WM_KEYUP and WM_KEYDOWN Cases

To make your application process key presses, add WM_KEYUP and
WM_KEYDOWN cases to the window procedure, as follows:

case WM_KEYDOWN:
wsprintf(KeyboardText, "WM_KEYDOWN: %x, %x, %x",
wParam, LOWORD(T1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

case WM_KEYUP:
wsprintf(KeyboardText, "WM_KEYUP: %x, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

Chapter 4 Keyboard and Mouse Input 93

4.2.9 Adding a WM_CHAR Case

To make your application process character input, add a WM_CHAR case to the
window procedure, as follows:

case WM_CHAR:
wsprintf(CharacterText, "WM_CHAR: %c, %x, %x",
wParam, LOWORD(1Param), HIWORD(TParam));
InvalidateRect(hWnd, &rectCharacter, TRUE);
break;

4.2.10 Adding a WM_MOUSEMOVE Case

To make your application process mouse-motion messages, add a
WM_MOUSEMOVE case to the window procedure, as follows:

case WM_MOUSEMOVE:
wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectMouse, TRUE);
break;

4.2.11 Adding WM_LBUTTONUP and WM_LBUTTONDOWN Cases

To make your application process mouse-button input messages, add
WM_LBUTTONUP and WM_LBUTTONDOWN cases to the window proce-
dure, as follows:

case WM_LBUTTONDOWN:
wsprintf(ButtonText, "WM_LBUTTONDOWN: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

case WM_LBUTTONUP:
wsprintf(ButtonText, "WM_LBUTTONUP: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.12 Adding a WM_LBUTTONDBLCLK Case

To make your application process input messages resulting from double-clicking
the left mouse button, add a WM_LBUTTONDBLCLK case to the window proce-
dure, as follows:

94 Microsoft Windows Guide to Programming

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: %x, %d, %d",
wParam, LOWORD(TParam), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.13 Adding a WM_TIMER Case
To make your application process timer messages, add a WM_TIMER case to the
window procedure, as follows:

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.14 Adding WM_HSCROLL and WM_VSCROLL Cases

To make your application process scroll bar messages, add WM_HSCROLL and
WM_VSCROLL cases to the window procedure, as follows:

case WM_HSCROLL:
case WM_VSCROLL:
wsprintf(ScrollText, "%s: %s, %x, %x",
(LPSTR) ((message == WM_HSCROLL) ? "WM_HSCROLL" :
"WM_VSCROLL"),
(LPSTR) ((wParam == SB_LINEUP) ? "SB_LINEUP" :

(wParam == SB_LINEDOWN) ? "SB_LINEDOWN" :
(wParam == SB_PAGEUP) ? "SB_PAGEUP" :
(wParam == SB_PAGEDOWN) ? "SB_PAGEDOWN" :
(wParam == SB_THUMBPOSITION) ? "SB_THUMBPOSITION" :
(wParam == SB_THUMBTRACK) ? "SB_THUMBTRACK" :
(wParam == SB_ENDSCROLL) ? "SB_ENDSCROLL"™ : "unknown"),
Scrol1TypeText,
LOWORD(1Param),
HIWORD(1Param));
InvalidateRect(hWnd, &rectScroll, TRUE);

break;

4.2.15 Adding a WM_PAINT Case

To make your application display the current state of the mouse, keyboard, and
timer, use a WM_PAINT message to display the states. Your application repaints
only the parts of its client area that require repainting.

Chapter 4 Keyboard and Mouse Input 95

Add the following statements to the window procedure:

case WM_PAINT:
hDC = BeginPaint(hWnd, &ps);

if (IntersectRect(&rect, &rectMouse, &ps.rcPaint))
TextOut(hDC, rectMouse.left, rectMouse.top,
MouseText, lstrlen(MouseText));
if (IntersectRect(&rect, &rectButton, &ps.rcPaint))
TextOut(hDC, rectButton.left, rectButton.top,
ButtonText, Tstrlen(ButtonText));
if (IntersectRect(&rect, &rectKeyboard, &ps.rcPaint))
TextOut(hDC, rectKeyboard.left, rectKeyboard.top,
KeyboardText, Tstrlen(KeyboardText));
if (IntersectRect(&rect, &rectCharacter, &ps.rcPaint))
TextOut(hDC, rectCharacter.left, rectCharacter.top,
CharacterText, 1strlen(CharacterText));
if (IntersectRect(&rect, &rectTimer, &ps.rcPaint))
TextOut(hDC, rectTimer.left, rectTimer.top,
TimerText, 1strlen(TimerText));
if (IntersectRect(&rect, &rectScroll, &ps.rcPaint))
TextOut(hDC, rectScroll.left, rectScroll.top,
ScrollText, Tstrlen(ScrollText));

EndPaint(hWnd, &ps);
break;

4.2.16 Compiling and Linking

Compile and link the Input application. Then start Windows and the Input applica-
tion. To test the application, press keys on the keyboard, click the mouse button,
move the mouse, and use the scroll bars. The application should look like this:

- Input displays text when it receives
mouse, keyboard, or timer messages

_Input Sample Application |

Help

WM_MOUSEMOVE: 0, 198, 174
WM_LBUTTONUP: 0, 45, 185
WM_KEYUP: 47, 1, c022

WM_CHAR: g, 1, 22

WHM_VSCROLL: SB_ENDSCROLL, 20c8, 0
WM_TIMER: 100 seconds

96 Microsoft Windows Guide to Programming

4.3 Related Topics

For more information about the Windows message-based programming model,
see Chapter 1, “Overview of the Windows Environment.”

For more information about using the cursor for mouse and keyboard input, see
Chapter 6, “Cursors.”

For more information about menus and menu input, and scroll bar controls, see
Chapter 7, “Menus,” and Chapter 8, “Controls.”

For more information about input functions and messages, see the Microsoft
Windows Programmer’s Reference, Volumes 2 and 3.

Icons

5.1
5.2
53

54
55
5.6
5.7

5.8

Chapter 5

What Is an Icon?ooviiiiiiniiecc s 99
Using Built-In ICONS.......coceriiiiiiiiiniiieeceec et 100
Using Your OWn [ICONSoveeieeiiiieiienieeiteitetentete et 101
5.3.1 Creating an Icon Filec..coccoviviniiiininniiiiies 101
5.3.2 Defining an Icon Resourceccccoceeceeceeninveceenicnininiinnenne. 101
5.33 Loading an Icon ReSOUICEcoceevieviirinccencninenenieccienns 101
Specifying a Class ICOM....ccevirereriirierienecteenenececceeeeeeee e 102
Displaying Your OWn ICONSccceveririereninecicienieeceeneee e 102
Displaying an Icon in a Dialog BOX.....c.ccccceeiviiiiiiiniiininiiiiiiiie, 104
Sample Application: ICON ...c..cocceerireereniinieiiiiiicc 105
5.7.1 Adding an ICON Statement........cccceeeereerceernieesienieniieneeneene 105
5.7.2 Adding an ICON Control Statementco.cceeevvevueeeenuenenns 105
573 Setting the Class IConcc.coeeieviinirienininecceeeeceeeene 105
574 Adding a MYICON.ICO Line to the Makefile 106
5.7.5 Compiling and Linking..........cccccccoviviniinniiniiiinnins 106

Related TOPICS. . cveeieiertiriieierienierie ettt ettt ettt sne s 106

Chapter 5 Icons 99

A typical application for the Microsoft Windows operating system uses an icon to
represent itself when its main window is minimized.

This chapter covers the following topics:

= What an icon is

® Creating and using your own predefined icons

= Specifying an icon for your application’s window class
= Changing your application’s icon “on the fly”

= Displaying an icon in a dialog box

This chapter also explains how to create a sample Windows 3.1 application, Icon,
that illustrates many of these concepts.

5.1 What Is an lcon?

To the user, an icon is a small graphical image that represents an application when
that application’s main window is minimized. For example, Microsoft Paintbrush
uses an icon that looks like a painter’s palette to represent its minimized window.
Icons are also used in message and dialog boxes.

To the application, an icon is a type of resource. Before resources are compiled,
each icon is a separate file that contains a set of bitmap images. The images may
be similar in appearance, but each is targeted for a different screen device. When
you want the application to use an icon, have the application request the icon re-
source by name. Windows then determines which of that icon’s images is most ap-
propriate for the current screen. Because Windows handles this operation, the
application need not check the screen type or determine which icon image is best
suited for the current screen. The following figure illustrates what happens when
an application requests an icon resource.

100 Microsoft Windows Guide to Programming

The application requests the —
icon resource by its name, “Mylcon”.

Mylcon

I—;.—_l

Windows looks at the Mylcon Mylcon resource
resource and finds that it provides
four differentimages for four
different display devices.

Windows displays the icon image

that best fits the user’s
display type.

A"-"‘ A"‘(¥ “1
EGA VGA Monochrome Custom
display display display display

9.2 Using Built-In Icons

Windows provides several built-in icons, which you can use in your applications,
and which Windows uses in message boxes to indicate notes, cautions, warnings,
and errors.

To use a built-in icon, you must first load it, using the LoadIcon function to re-
trieve the icon handle. The first argument to the function must be NULL, indicat-
ing that you are requesting a built-in icon. The second argument identifies the icon
you want. For example, the following statement loads the built-in exclamation
mark icon:

hHandIcon = LoadIcon(NULL, IDI_EXCLAMATION);

Once it has loaded a built-in icon, your application can use the icon—for example,
by specifying it as the class icon for a particular window class, or by including the
icon in a message box. For more information, see Section 5.4, “Specifying a Class
Icon,” and Section 5.5, “Displaying Your Own Icons.”

Chapter 5 Icons 101

9.3 Using Your Own Icons

Using an icon requires three steps:

1. Create the icon file by using Microsoft Image Editor IMAGEDIT.EXE).

2. Define the icon resource by using an ICON statement in your application’s
resource-definition file.

3. Load the icon resource, when it is needed, by using the LoadIcon function in
your application code.

5.3.1 Creating an Icon File

An icon file contains one or more icon images. You use Image Editor to paint the
images and save them in an icon file. The recommended tilename extension for an
icon file is .ICO. For more information about creating and saving an icon, see
Microsoft Windows Programming Tools.

5.3.2 Defining an Icon Resource

Once you have an icon file, you must define that icon in your application’s
resource-definition (.RC) file by adding an ICON statement. The ICON statement
defines a name for the icon and specifies the name of the icon tile that contains the
icon. For example, the following resource statement adds the icon named Mylcon
to your application’s resources:

MyIcon ICON myicon.ico

The filename MYICON.ICO specifies the file that contains the images for the icon
named Mylcon. When you compile the resource-definition file, the icon images
will be copied from the file MYICON.ICO into your application’s resources.

5.3.3 Loading an Icon Resource

Once you have created an icon file and defined the icon resource in the .RC file,
your application can load the icon from its resources by using the LoadIlcon func-
tion. This function takes the application’s instance handle and the icon’s name and
returns a handle to the icon. The following example loads Mylcon and stores its
handle in the variable hMylcon.

hMyIcon = LoadIcon(hinst, "MyIcon");

After loading the icon, the application can display it.

102

Microsoft Windows Guide to Pragramming

5.4 Specifying a Class Icon

A class icon is an icon that represents a particular window class whenever a win-
dow in that class is minimized. You specify a class icon by supplying an icon
handle in the hlcon field of the window class structure before registering the class.
Once the class icon is set, Windows automatically displays that icon when any
window you create using that window class is minimized.

The following example shows a definition of the window class wc before the class
has been registered. In this definition, the hIcon member is set to the handle re-
turned by LoadIcon.

wc.style = NULL;

wc.1pfnWndProc = MainWndProc;

wc.cbClsExtra 0;

wc.cbWndExtra 0;

wc.hInstance = hinst;

wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = COLOR_WINDOW + 1;
wc.lpszMenuName = NULL;

wc.lpszClassName = "Generic";

The LoadIcon function returns a handle to the built-in application icon identified
by the IDI_APPLICATION constant. If you minimize a window that has this
class, you will see a white rectangle with a black border. This is the built-in appli-
cation icon.

5.5 Displaying Your Own Icons

Windows displays a class icon when the application is minimized and removes it
when the application is maximized. All the application does is specify it as the
class icon. This meets the requirements of most applications, since most applica-
tions typically do not display additional information to the user when the applica-
tion is minimized.

However, sometimes you may want your application to display its icon itself, in-
stead of letting Windows display a prespecified class icon. This is particularly use-
ful when you want your application’s icon to be dynamic, like the icon in the
Microsoft Windows Clock application. (The Clock application continues to show
the time even when it has been minimized.) Windows lets applications paint
within the client area of a minimized window, so that they can paint their own
icons.

If you want your application to display its own icon, follow these steps:

Chapter 5 Icons 103

1. In the window class structure wc, set the class icon to NULL before registering
the window class. Use the following statement:

wc.hlcon = NULL;

This step is required because it signals Windows to continue sending
WM_PAINT messages, as necessary, to the window procedure even though the
window has been minimized.

2. Add a WM_PAINT case to your window procedure that draws within the
icon’s client area if the window is to receive a WM_PAINT message when the
window is minimized. Use the following statements:

PAINTSTRUCT ps;
HDC hDC;

case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);
if (IsIconic(hWnd)) {

/% Qutput functions for minimized state */
}
else {

/* Qutput functions for nonminimized state */
}

EndPaint(hWnd, &ps);
break;

An application must determine whether the window is minimized, since what it
paints in the icon may be different from what it paints in the open window. The
IsIconic function returns a nonzero value if the window is minimized.

The BeginPaint function returns a handle of the display context of the icon’s
client area. BeginPaint takes the window handle, hWnd, and a long pointer to the
paint structure, ps. BeginPaint fills the paint structure with information about the
area to be painted. As with any painting operation, each call to BeginPaint re-
quires a corresponding call to the EndPaint function. EndPaint releases any re-
sources that BeginPaint retrieved and signals the end of the application’s
repainting of the client area.

104 Microsoft Windows Guide to Programming

You can retrieve the size of the icon’s client area by calling the GetClientRect
function. For example, to draw an ellipse that fills the icon, you can use the follow-
ing statement:

GetClientRect(hWnd, &rc);
E11ipse(hDC, rc.left, rc.top, rc.right, rc.bottom);

You can use any GDI output functions to draw the icon, including the TextOut
function. The only limitation is the size of the icon, which varies from screen to
screen, so make sure that your painting does not depend on a specific icon size.

5.6 Displaying an Icon in a Dialog Box

You can place icons in dialog boxes by using the ICON control statement in the
DIALOG statement. You have already seen an example of a DIALOG statement
in the About dialog box described with the Generic application. The DIALOG
statement for that box looks like this:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Icon"

BEGIN
CTEXT "Microsoft Windows" -1, 37, 5, 68, 8
CTEXT "Generic Application” -1, 0, 14, 144, 8
CTEXT "Version 3.1" -1, 38, 34, 64, 8
DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

You can add an icon to the dialog box by inserting the following ICON statement
immediately after the DEFPUSHBUTTON statement:

ICON "MyIcon", -1, 25, 14, 16, 21

When an icon is added to a dialog box, it is treated as is any other control. It must
have a control identifier, a position for its upper-left corner, a width, and a height.
In this example, 1 is the control identifier, 25 and 14 specify the location of the
icon in the dialog box, and 16 and 21 specify the height and width of the icon, re-
spectively. Windows ignores the height and width, however, and sizes the icon
automatically.

The name MyIcon identifies the icon you want to use. The icon must be defined in
an ICON statement elsewhere within the resource-definition file. For example, the
following statement defines the icon Mylcon.

MyIcon ICON MYICON.ICO

Chapter 5 lcons 105

9.7 Sample Application: Icon

This sample application shows how to incorporate an icon into your application—
in particular, how to do the following:

= Use a custom icon as the class icon.

= Use an icon in the About dialog box.

To create the Icon application, make the following modifications to the Generic ap-
plication:

1. Add an ICON statement to the resource-definition file.

2. Add an ICON control statement to the DIALOG statement in the resource-
definition file.

3. Load the custom icon and use it to set the class icon in the initialization func-
tion.

4. Modify the makefile to cause Microsoft Windows Resource Compiler (RC) to
add the icon to the application’s executable file.

5. Compile and link the application.

This sample assumes that you have created an icon by using Image Editor and
have saved the icon in a file named MYICON.ICO.

5.7.1 Adding an ICON Statement

To add an ICON statement to your resource-definition file, insert the following
line at the beginning of the file, immediately after the #include directives:

MyIcon ICON myicon.ico

5.7.2 Adding an ICON Control Statement

To add an ICON control statement to the DIALOG statement, insert the follow-
ing line immediately after the DEFPUSHBUTTON statement:

ICON "MyIcon", -1, 25, 14, 16, 21

5.7.3 Setting the Class Icon

To set the class icon, add the following statement to the initialization function in
the C-language source file:

wc.hIcon = LoadIcon(hinst, "MyIcon");

106 Microsoft Windows Guide to Programming

5.7.4 Adding a MYICON.ICO Line to the Makefile

In the makefile, add the MYICON.ICO file to the list of files on which ICON.RES
is dependent. The relevant lines in the makefile should look like this:

icon.res: icon.rc icon.h myicon.ico
rc /r dicon.rc

This change ensures that, if the MYICON.ICO file changes, ICON.RC will be re-
compiled to form a new ICON.RES file.

No other changes are required.

5.7.5 Compiling and Linking

Compile and link the Icon application, and then start Windows and the Icon appli-
cation. Now, if you choose the About command, Icon displays the About dialog
box, which now contains an icon.

5.8 Related Topics

For more information about functions used with icons, see the Microsoft Windows
Programmer’s Reference, Volume 2.

For more information about resource-definition statements, see the Microsoft
Windows Programmer’ s Reference, Volume 4.

For more information about using Image Editor, see Microsoft Windows Program-
ming Tools.

Cursors

6.1

6.2

6.3

6.4

6.5

Chapter 6

Controlling the Shape of the CUrsorcccceverieeiiiieeneeniee e 109
6.1.1 Using Built-In Cursor Shapes........cccoovevveevieneniniereneneeinene 109
6.1.2 Using Your Own Cursor Shapesccccoevveveecienieneneeeanenns 110
6.1.2.1 Creating a Cursor Shapecc.cccceevevvenerveereennennenn 110
6.1.2.2 Adding a Cursor to Your Application
RESOUICES ..ot 110
6.1.2.3 Loading a Cursor.........coceeceeveerenensienenenenieenieeens 110
DisSplaying @ CUTSOTceueeuieuierierieieienieeteree ettt e 111
6.2.1 Specifying a Class CUISOT......coccevuerrieenierreeeieeieeieseeeieesee e 111
6.2.2 Explicitly Setting a Cursor Shape.........cceccevevirienieerenennnnenn, 111
6.2.3 Example: Displaying the Hourglass During
aLengthy Operationccccoceveniniinnenicnenenneceeeeeeae 112
Using the Cursor with the MOUSEc.eoveeviriieierienieneeieese e 113
6.3.1 Starting a Graphics Selectioncocceecevverreerienenennnieeneeenn 114
6.3.2 Extending a Graphics Selection...........ccccceevevecenenneieinnennen 115
6.3.3 Showing a Graphics Selection..........c.ceverereerienenennenicenennenns 116
6.3.4 Ending a Graphics Selection..........cccvvveenieenieenienieeseeeeeinenns 117
Using the Cursor with the Keyboardccccovevininiiininiineeneeeee 118
6.4.1 MoOViINgG the CUISOTcovireirrieierieiieniete ettt e et s 118
6.4.2 Using the Cursor When No Mouse Is Available..................... 121
Sample Application: CUISOT.......ccvecvieiierieereerreeesreesresireeresaesseesseeseenns 122
6.5.1 Adding a CURSOR Statementccccceevverveeneneneereneeniennens 123
6.5.2 Adding New Variablesccccocevvereevenenienneneneneceeecieneens 123
6.5.3 Setting the Class CUTISOTcccevvevereerieneneerieneneneeeeeenieniens 124
6.5.4 Preparing the Hourglass Cursor.........cocceveeveevenenenneenencnennens 124
6.5.5 Adding a Lengthy Operationcceceeerveerierieneneereereenennens 124

6.5.6 Adding WM_LBUTTONDOWN, WM_MOUSEMOVE, and
WM_LBUTTONUP Cases.......cccooeiniiiniiciiiiiiiiiiiiiinccenns 125

108

Microsoft Windows Guide to Programming

6.6

6.5.7
6.5.8
6.5.9
6.5.10

Adding WM_KEYDOWN and WM_KEYUP Cases............. 127
Adding a WM_PAINT Case.......cccocveviervenerienrieeriesiesanseens 129
Adding a BULLSEYE.CUR Line to the Makefile.................. 130
Compiling and LinkKingccccceeevevieneneenienienieneeesesesesenes 130

Related TOPICSeoueiriiiiiirreieereiereeeretere et ebe s e beees 131

Chapter 6 Cursors 109

The cursor is a special bitmap that shows the user where actions initiated by the
mouse will take place. With most applications for the Microsoft Windows operat-
ing system, the user makes selections, chooses commands, and directs other ac-
tions by using either the mouse or the keyboard.

This chapter covers the following topics:

= Controlling the shape of the cursor

® Displaying the cursor

= [etting the user select information by using the mouse
®] etting the user move the cursor by using the keyboard

This chapter also explains how to create a sample Windows 3.1 application, Cur-
sor, that illustrates some of these concepts.

6.1 Controlling the Shape of the Cursor

Since no one cursor shape can meet the requirements of all applications, Windows
makes it easy for your application to change the shape of the cursor to suit its own
requirements. In order to use a particular cursor shape, your application must first
retrieve a handle of it by using the LoadCursor function. Once the application has
loaded the cursor, it can use that cursor shape whenever necessary.

An application can control the shape of the cursor by using either of two methods:

® Using the built-in cursor shapes that Windows provides.
= Using its own customized cursor shapes.

6.1.1 Using Built-In Cursor Shapes

Windows provides several built-in cursor shapes. These include the arrow, hour-
glass, I-beam, and cross-hair cursors. Most of the built-in cursor shapes have
specialized uses. For example, the I-beam cursor is typically used when the user is
editing text, and the hourglass cursor is used to indicate that a lengthy operation is
in progress, such as reading a disk file.

To use a built-in cursor, use the LoadCursor function to retrieve a handle of the
built-in cursor. The first argument to LoadCursor must be NULL (indicating that
a built-in cursor is requested); the second argument must specify the cursor to
load. The following example loads the I-beam cursor, IDC_IBEAM, and assigns
the resulting cursor handle to the variable hCursor.

hCursor = LoadCursor(NULL, IDC_IBEAM);

110 Microsoft Windows Guide to Programming

Once an application has loaded a cursor, it can use the cursor; for example, it
could display the I-beam cursor when the user is currently editing text. For infor-
mation about how to display the cursor, see Section 6.2, “Displaying a Cursor.”

6.1.2 Using Your Own Cursor Shapes
To create and use your own cursor shapes, follow these steps:

1. Create the cursor shape by using Microsoft Image Editor IMAGEDIT.EXE).

2. Define the cursor in your resource-definition file by using the CURSOR state-
ment.

3. Load the cursor by using the LoadCursor function.

6.1.2.1 Creating a Cursor Shape

The first step is to create the cursor shape, by using Image Editor, with which you
can see an actual-size version of the cursor shape while you are editing it. Once
you have created the cursor, save it in a cursor file. The recommended extension
for cursor files is .CUR.

For information about using Image Editor, see the online Help available with
Image Editor.

6.1.2.2 Adding a Cursor to Your Application Resources

Next, add a CURSOR statement to your resource-definition file. The CURSOR
statement specifies the file that contains the cursor, and defines a name for the cur-
sor. The application will use this cursor name when loading the cursor. Following
is an example of a CURSOR statement:

Bullseye CURSOR BULLSEYE.CUR

In this example, the name of the cursor is Bullseye, and the cursor is in the file
BULLSEYE.CUR.

6.1.2.3 Loading a Cursor

In your application code, retrieve a handle to the cursor by using the LoadCursor
function. For example, the following statement loads the cursor named Bullseye
and assigns its handle to the variable hCursor:

hCursor = LoadCursor(hinst, "Bullseye");

Chapter 6 Cursors 111

In this example, the LoadCursor function loads the cursor from the application’s
resources. The instance handle hinst identifies the application’s resources and is re-
quired. The name Bullseye identifies the cursor. It is the same name given in the
resource-definition file.

6.2 Displaying a Cursor

Once an application has loaded a cursor shape, it can display the cursor by using
one of two methods:

= Specifying it as the class cursor for all windows in a window class

® Explicitly setting the cursor shape when the cursor moves within the client area
of a particular window

6.2.1 Specifying a Class Cursor

The class cursor defines the shape the cursor will take when it enters the client
area of a window that belongs to that window class. You must specify the class
cursor before registering the window class. To do this, load the cursor you want
your application to use and assign the cursor’s handle to the hCursor member of
the window-class structure. For example, to use the built-in arrow cursor,
IDC_ARROW, in your window, add the following statement to your initialization
function:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

For each window created using this class, the built-in arrow cursor will appear
automatically when the user moves the cursor into the window.

6.2.2 Explicitly Setting a Cursor Shape

Your application does not have to specify a class cursor. Instead, you can set the
hCursor field to NULL to indicate that the window class has no class cursor. If a
window has no class cursor, Windows will not automatically change the shape of
the cursor when it moves into the client area of the window. This means that your
application will need to display the cursor itself.

To use any cursor, whether built-in or custom, your application must load it first.
For example, to load the custom cursor MyCursor (defined in your application’s

resource-definition file) add the following statements to your initialization func-

tion:

static HCURSOR hMyCursor; /#* static variable */
hMyCursor = LoadCursor(hinst, "MyCursor");

112 Microsoft Windows Guide to Programming

6.2.3 Example:

Then, to change the cursor shape, use the SetCursor function to set the shape each
time the cursor moves into the client area. Since Windows sends a
WM_MOUSEMOVE message to the window for each cursor movement, you can
manage the cursor by adding the following statements to the window procedure:

case WM_MOUSEMOVE:
SetCursor(hMyCursor);
break;

Note If you want your application to display the cursor itself, you must set the
class-cursor member to NULL. Otherwise, Windows will attempt to set the cursor
shape for each WM_MOUSEMOVE message, even though your application is
also setting the cursor shape. This will result in a noticeable flicker as the cursor is
moved through the window.

Displaying the Hourglass During a Lengthy Operation

Whenever your application begins a lengthy operation, such as reading or writing
a large block of data to a disk file, it should change the shape of the cursor to an
hourglass. This lets users know that a lengthy operation is in progress and that
they should wait before attempting to continue their work. After the operation is
complete, your application should restore the cursor to its previous shape.

To change the cursor to an hourglass, use the following statements:

HCURSOR hSaveCursor;
HCURSOR hHourGlass;

hHourGlass = LoadCursor(NULL, IDC_WAIT);

SetCapture(hWnd);
hSaveCursor = SetCursor(hHourGlass);

/* Lengthy operation */

SetCursor(hSaveCursor);
ReleaseCapture();

In this example, the application defines the variables that will be used to store the
cursor handles. Both variables are type HCURSOR. After defining variables, the

Chapter 6 Cursors 113

application first captures the mouse input, using the SetCapture function. This
keeps the user from attempting to use the mouse to carry out work in another appli-
cation while the lengthy operation is in progress. Once the application has cap-
tured the mouse input, Windows directs all mouse input messages to the specified
window, regardless of whether the mouse is in that window. The application can
then process the messages as appropriate.

After capturing the mouse input, the application then changes the cursor shape by
using the SetCursor function. SetCursor returns a handle to the previous cursor
shape, so that the shape can be restored later. The application saves this handle in
the variable hSaveCursor. After the lengthy operation is complete, the application
restores the previous cursor shape.

Finally, the ReleaseCapture function releases the mouse input.

6.3 Using the Cursor with the Mouse

With a typical Windows application, the user performs many types of tasks by
using a mouse—for example, choosing commands from a menu, selecting text or
graphics, or directing scrolling operations. For most of these tasks, Windows auto-
matically handles the mouse input; for example, when the user chooses a menu
command, Windows automatically sends the application a message that contains
the command identifier.

The application, however, handles one common task itself: the user’s selecting in-
formation within the client area. So that the user can select this information (by
using the mouse), the application must perform the following tasks:

= Start processing the selection.

When the user presses the mouse button to start selecting information, the appli-
cation must note the location of the cursor and temporarily capture all mouse
input to ensure that other applications do not interfere with the selection process.

= Provide visual feedback during the selection.

As the user drags the mouse across the screen, the application should show the
user what information is currently being selected. For example, some applica-
tions highlight selected information; others draw a dotted rectangle around it.

= Complete the selection.

When the user releases the mouse button, the application must note the final lo-
cation of the cursor and signal the end of the selection process.

When the selection process is complete, the user can then choose an action to per-
form on the selected information. For example, when using a word-processing ap-
plication, the user might select several words, then choose a command that
changes the selected text to a different font. The following sections discuss each

114

Microsoft Windows Guide to Programming

step in more detail and explain how to let the user select graphics in a window’s
client area.

Note The mouse is just one of many possible pointing devices. Other pointing
devices such as graphics tablets, joysticks, and light pens may operate differently
but still provide input identical to that of a mouse. The following examples can
also be used with these devices. Reimeinber ihai when a pointing device is present,
Windows automatically controls the position and shape of the cursor as the user
moves the pointing device.

6.3.1 Starting a Graphics Selection

Because graphics can be virtually any shape, they are potentially more difficult to
select than simple text. The simplest approach to selecting graphics is to let the
user “stretch” a selection rectangle so that it encloses the desired information.

This section explains how to use the “rubber rectangle”” method of selecting
graphics. You can use the WM_LBUTTONDOWN, WM_LBUTTONUP, and
WM_MOUSEMOVE messages to create the rectangle. This lets the user create
the selection by choosing a point, pressing the left mouse button, and dragging to
another point before releasing. As the user drags the mouse, your application can
provide instant feedback by inverting the border of the rectangle described by the
starting and current points.

For this method, the application starts the selection upon receiving the
WM_LBUTTONDOWN message. The application must then do three things:
capture the mouse input, save the starting (original) point, and save the current
point, as follows:

BOOL fTrack = FALSE; /% global variables */
int OrgX = 0, OrgY = 0;

int PrevX = @, PrevY 0;

case WM_LBUTTONDOWN:
fTrack = TRUE;

PrevX = LOWORD(1Param);
PrevY = HIWORD(1Param);
OrgX LOWORD(1Param);

OrgY = HIWORD(1Param);
InvalidateRect(hWnd, NULL, TRUE);
UpdateWindow(hWnd);

/% Capture all input even if mouse goes outside window. */

SetCapture(hWnd);
break;

Chapter 6 Cursors 115

When the application receives the WM_LBUTTONDOWN message, the fTrack
variable is set to TRUE to indicate that a selection is in progress. As with any
mouse message, the [Param parameter contains the current x- and y-coordinates of
the mouse in the low and high-order words, respectively. These are saved as the
origin X and y values, OrgX and OrgY, as well as the previous values, PrevX and
PrevY. The PrevX and PrevY variables will be updated immediately when the
next WM_MOUSEMOVE message is received. The OrgX and OrgY variables re-
main unchanged and will be used to determine a corner of the bitmap to be copied.
(The variables fTrack, OrgX, OrgY, PrevX, and PrevY must be global variables.)

To provide immediate visual feedback in response to the WM_LBUTTONDOWN
message, the application invalidates the screen and notifies the window procedure
that it must repaint the screen. The application does this by calling the functions
InvalidateRect and UpdateWindow.

The SetCapture function directs all subsequent mouse input to the window even
if the cursor moves outside of the window. This ensures that the selection process
will continue uninterrupted.

Your application should respond to the WM_PAINT message by redrawing the in-
validated portions of the screen, as in the following example:

case WM_PAINT:
{
PAINTSTRUCT ps;
HDC hDC;

hDC = BeginPaint(hWnd, &ps);
if (OrgX != PrevX || OrgY l= PrevY) {
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);
}
EndPaint(hWnd, &ps);
}
break;

6.3.2 Extending a Graphics Selection

You may want some of your applications to be able to extend an existing selec-
tion. One way to do this is to have the user hold the SHIFT key when making a
selection. Since the wParam parameter contains a flag that specifies whether the
SHIFT key is being pressed, it is easy to check for this and to extend the selection,
as necessary. In this case, extending a selection means preserving its previous
OrgX and OrgY values when you start it. To do this, change the
WM_LBUTTONDOWN case so it looks like this:

116 Microsoft Windows Guide to Programming

case WM_LBUTTONDOWN:
fTrack = TRUE;
PrevX = LOWORD(1Param);
Prevy HIWORD(1Param);

if (!(wParam & MK_SHIFT)) { /* If shift key %/

OrgX = LOWORD(TParam); /% is not pressed */
OrgY = HIWORD(1Param);
}
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);
/*

* Capture all input even if the mouse goes outside
* the window.
®/

SetCapture(hwnd);
break;

6.3.3 Showing a Graphics Selection

As the user makes the selection, your application must provide feedback about his
or her progress. For the application to do this, you can draw a border around the
selection rectangle by using the LineTo function upon receiving each new
WM_MOUSEMOVE message. To prevent the application from losing informa-
tion already on the screen, draw a line that inverts the screen rather than drawing
over it. You can do this by using the SetROP2 function to set the binary raster
mode to R2_NOT, as in the following example:

case WM_MOUSEMOVE:

{
RECT rectClient;
int NextX;
int NextY;

if (fTrack) {
NextX LOWORD(1Param);
NextY HIWORD(1Param);

/* Do not draw outside the window's client area. */
GetClientRect(hwnd, &rectClient);

if (NextX < rectClient.left)
NextX = rectClient.left;
else
if (NextX >= rectClient.right)
NextX = rectClient.right - 1;

Chapter 6 Cursors 117

if (NextY < rectClient.top)
NextY = rectClient.top;
else
if (NextY >= rectClient.bottom)
NextY = rectCiient.bottom - 1;

/%

* If the mouse position has changed, then clear the
* previous rectangle and draw the new one.

*/

if (NextX != PrevX || NextY != PrevY) {
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOT); /* erases previous box */
MoveTo(hdc, OrgX, OrgY);
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);

/* Get the current mouse position. */

PrevX = NextX;

PrevY = NextY;

MoveTo(hdc, OrgX, OrgY); /* draws new box */
LineTo(hdc, OrgX, PrevY);

LineTo(hdc, PrevX, PrevY);

LineTo(hdc, PrevX, OrgY);

LineTo(hdc, OrgX, OrgY);

ReleaseDC(hwnd, hdc);

}
}
break;

The application processes the WM_MOUSEMOVE message only if the fTrack
variable is TRUE (that is, if a selection is in progress). The purpose of the
WM_MOUSEMOVE processing is to remove the border around the previous rect-
angle and draw a new border around the rectangle described by the current and
original positions. Since the border is the inverse of what was originally on the
screen, inverting again restores it completely. The first four LineTo functions re-
move the previous border; the next four draw a new border. Before drawing the
new border, the application updates the PrevX and PrevY values by assigning
them the current values contained in the /Param parameter.

6.3.4 Ending a Graphics Selection

Finally, when the user releases the left button, your application should save the
final point and signal the end of the selection process. The following statements
complete the selection:

118 Microsoft Windows Guide to Programming

case WM_LBUTTONUP:

fTrack = FALSE; /* no longer carrying out selection */
ReleaseCapture(); /* releases hold on mouse input */
X = LOWORD(1Param); /# saves current value */
Y = HIWORD(1Param);

break;

When the application receives a WM_LBUTTONUP message, it immediately sets
fTrack to FALSE to indicate that selection processing has been completed. It also
releases the mouse capture by using the ReleaseCapture function. It then saves
the current mouse position in the variables X and Y. This, together with the
selection-origin information saved on receiving the WM_LBUTTONDOWN mes-
sage, records the selection the user has made. The application can now manipulate
the selection and can redraw the selection rectangle, as necessary.

For some of your applications, you might want to check the final cursor position to
ensure that it represents a point to the lower right of the original point. This is the
way most rectangles are described—Dby their upper-left and lower-right corners.

Note that the ReleaseCapture function is required, since a corresponding Set-
Capture function was called. In general, the application should release the mouse
immediately after the mouse capture is no longer needed.

6.4 Using the Cursor with the Keyboard

Because Windows does not require a pointing device, applications should provide
the user with a way to duplicate mouse actions with the keyboard. To allow the
user to move the cursor by using the keyboard, use the SetCursorPos, SetCursor,
GetCursorPos, ClipCursor, and ShowCursor functions to display and move the
cursor.

6.4.1 Moving the Cursor

To move the cursor directly from your application, use the SetCursorPos func-
tion. This function is useful for letting the user move the cursor by using the key-
board.

To move the cursor, 11se the WM_KEYDOWN message and filter for the virtual-
key values of the arrow keys: VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN.
For each keystroke, the application should update the position of the cursor. The
following example shows how to retrieve the cursor position and convert the
coordinates to client coordinates:

Chapter 6 Cursors 119

case WM_KEYDOWN:
if (wParam != VK_LEFT && wParam != VK_RIGHT
&& wParam != VK_UP && wParam != VK_DOWN)
break;

GetCursorPos(&ptCursor);

/* Convert screen coordinates to client coordinates. =/
ScreenToClient(hwnd, &ptCursor);

switch (wParam) {

VES

Adjust the cursor position according to which key
* was pressed. Accelerate the movement by adding the
repeat variable to the cursor position.

*/

case VK_LEFT:
ptCursor.x -= repeat;
break;

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK _UP:
ptCursor.y -= repeat;
break;

case VK_DOWN:
ptCursor.y += repeat;

break;
default:
return NULL;
}
repeat++; /* increases repeat rate */

/* Ensure that the cursor doesn't go outside client area. */
GetClientRect(hwnd, &Rect);

if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;
else
if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

120

Microsoft Windows Guide to Programming

else
if (ptCursor.y < Rect.top)
ptCursor.y = Rect.top;

/* Convert the coordinates to screen coordinates. */

ClientToScreen(hwnd, &ptCursor);
SetlursorpPos(ptCursor.x, ptCursor.y);
break;

case WM_KEYUP:
repeat = 1; /% clears repeat count */
break;

In this example, the first if statement filters for the virtual-key values of the arrow
keys: VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN. After this filtering
operation, the GetCursorPos function retrieves the current cursor position. If the
mouse is available, the user could potentially move the cursor with the mouse at
any time; therefore, there is no guarantee that the position values saved on the pre-
vious keystroke are correct.

After retrieving the current cursor position, the application calls the ScreenTo-
Client function to convert the cursor position to client coordinates. The applica-
tion does this for two reasons: Mouse messages give the mouse position in client
coordinates, and client coordinates do not need to be updated if the window
moves. In other words, it is convenient to use client coordinates, because the sys-
tem uses them and because it usually means less work for the application.

In the example, the repeat variable provides accelerated cursor motion. Advancing
the cursor one unit for each keystroke can be frustrating for users if they need to
move to the other side of the screen. You can accelerate the cursor motion by in-
creasing the number of units the cursor advances when the user holds down a key.
When the user holds down a key, Windows sends multiple WM_KEYDOWN mes-
sages without matching WM_KEYUP messages. To accelerate the cursor, you
simply increase the number of units to advance each time a WM_KEYDOWN
message is received.

After accelerating cursor motion, the application calls the GetClientRect function
to retrieve the current size of the client area and store it in the Rect structure. This

information is useful for ensuring that the cursor motion remains within the client

area.

Following the call to GetClientRect, the if statements check the current cursor
position to ensure that it is within the client area. The application then adjusts the
cursor position, if necessary.

In preparation for the SetCursorPos function, the ClientToScreen function
converts the values in the ptCursor structure from client coordinates to screen

Chapter 6 Cursors 121

coordinates. Because SetCursorPos requires screen coordinates rather than client
coordinates, you must convert the coordinates before calling SetCursorPos.

The SetCursorPos function moves the cursor to the desired location.

Within the WM_KEYUP case, the application restores the initial value of the re-
peat variable when the user releases the key.

6.4.2 Using the Cursor When No Mouse Is Available

When no mouse is available, the application must display and move the cursor in
response to keyboard actions. To determine whether a mouse is present, use the
GetSystemMetrics function and specify the SM_MOUSEPRESENT constant, as
follows:

GetSystemMetrics (SM_MOUSEPRESENT);
This function returns a nonzero value if the mouse is present.

You will need to display the cursor and update its position when the application is
activated; when the application is deactivated, you will need to hide the cursor.
The following statements carry out both activation functions:

case WM_ACTIVATE:
if (!GetSystemMetrics(SM_MOUSEPRESENT)) {
if ('HIWORD(TParam)) {
if (wParam) {
SetCursor(hMyCursor);
ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
}
ShowCursor(wParam);
}
}

break;

In this example, the cursor functions are called only if no mouse is available; that
is, if the GetSystemMetrics function returns FALSE. Since Windows positions
and updates the cursor automatically if a mouse is present, the cursor functions, if
carried out, would disrupt this processing.

The next step is to determine whether the window is minimized (an icon).
The cursor must not be displayed or updated if the window is an icon. In a
WM_ACTIVATE message, the high-order word is nonzero if the window is
minimized, so the cursor functions are called only if this value is zero.

The final step is to check the wParam parameter to determine whether the window
is being activated or deactivated. This parameter is nonzero if the window is being
activated. When a window is activated, the SetCursor function sets the cursor

122

Microsoft Windows Guide to Programming

shape and the SetCursorPos function positions the cursor. The ClientToScreen
function converts the cursor position to screen coordinates, as required by Set-
CursorPos. Finally, the ShowCursor function shows or hides the cursor, depend-
ing on the value of wParam.

When the system has no mouse installed, applications must be careful when using

tha P T 3 2 Y=
the cursor, In general, applications must hide the cursor when the window is

closed, destroyed, or relinquishes control. If an application fails to hide the cursor,
it prevents subsequent windows from using the cursor. For example, if an applica-
tion sets the cursor to the hourglass, displays the cursor, then relinquishes control
to a dialog box, the cursor remains on the screen (possibly in a new shape) but can-
not be used by the dialog box.

6.5 Sample Application: Cursor

This sample application, Cursor, illustrates how to incorporate cursors and how to
use the mouse and keyboard in your applications. It illustrates the following:

» Using a custom cursor as the class cursor
» Showing the hourglass cursor during a lengthy operation

= Using the mouse to select a portion of the client area

Using the keyboard to move the cursor

To create the Cursor application, make the following modifications to the Generic
application:

1. Add a CURSOR statement to your resource-definition file.

2. Add new variables.

3. Load the custom cursor and use it to set the class cursor in the initialization
function.

4. Prepare the hourglass cursor.

5. Add a lengthy operation to the window procedure (for simplicity, use the ENTER
key to “trigger” the operation).

6. Add WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
cases to the window procedure to support selection.

7. Add a WM_KEYDOWN case to the window procedure to support keyboard-
controlled cursor movement.

8. Add a WM_PAINT case to the window procedure to redraw the client area
after it has been invalidated.

9. Add a BULLSEYE.CUR line to the makefile.
10. Compile and link the application.

Chapter 6 Cursors 123

This sample assumes that your system has a mouse; if your system does not have a
mouse, the application might not operate as described. However, it is fairly easy to
adjust the sample to work with both the mouse and the keyboard or with only the
keyboard.

6.5.1 Adding a CURSOR Statement

To use a custom cursor, you must first create a cursor file by using Image Editor.
Then specify the name of the file in a CURSOR statement in the resource-
definition file, as follows.

Bullseye CURSOR BULLSEYE.CUR

Make sure that the file BULLSEYE.CUR contains a cursor.

6.5.2 Adding New Variables

Since your application will require several new variables, add the following state-
ments to the beginning of your C-language source file:

char szStr[255]1; /% general-purpose string buffer =/
HCURSOR hSaveCursor; /* handle of current cursor */
HCURSOR hHourGlass; /* handle of hourglass cursor */
BOOL fTrack = FALSE; /% TRUE if left button clicked */
int OrgX = @0, OrgY = 0; /* original cursor position */
int PrevX = @, PrevY = 0; /* current cursor position */
int X =0, Y = 0; /% last cursor position */
RECT Rect; /* selection rectangle */
POINT ptCursor; /% x and y coordinates of cursor */
int repeat = 1; /* repeat count of keystroke */

In this example, the hSaveCursor and hHourGlass variables hold the cursor han-
dles to be used for the lengthy operation. The fTrack variable holds a Boolean flag
indicating whether a selection is in progress. The variables OrgX, OrgY, PrevX,
and PrevY hold the original and current cursor positions as a selection is being
made. OrgX and OrgY, along with the variables X and Y, hold the original and
final coordinates of the selection when the selection is complete. The ptCursor
structure holds the current position of the cursor in the client area. (This position is
updated when the user presses an arrow key.) The Rect structure holds the current
dimensions of the client area and is used to ensure that the cursor stays within the
client area. The repeat variable holds the current repeat count for each keyboard
motion.

124 Microsoft Windows Guide to Programming

6.5.3 Setting the Class Cursor

To set the class cursor, modify a statement in the initialization function. Specifi-
cally, assign the cursor handle to the hCursor member of the window-class struc-
ture. Make the following change in the C-language source file. Find this line:

Change it to the following:

wc.hCursor = LoadCursor(hinst, "Bullseye");

6.5.4 Preparing the Hourglass Cursor

Since you will be using the hourglass cursor during a lengthy operation, you need
to load it. The most convenient place to load it is from within the initialization
tasks handled by the InitInstance function. Add the following statement to Init-
Instance:

hHourGlass = LoadCursor(NULL, IDC_WAIT);

This makes the hourglass cursor available whenever it is needed.

6.5.5 Adding a Lengthy Operation

A lengthy operation can take many forms. This sample is a function named sieve
that computes several hundred prime numbers. The operation begins when the
user presses the ENTER key. Add the following statements to the window proce-
dure:

case WM_CHAR:
if (wParam == VK_RETURN) {
SetCapture(hwnd);

/% Set the cursor to an hourglass. */

hSaveCursor = SetCursor(hHourGlass);

Istrcpy(szStr, "Calculating prime numbers...");
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

sprintf(szStr, "Calculated %d primes. ", sieve());

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

Chapter 6 Cursors 125

SetCursor(hSaveCursor); /* restores previous cursor */
ReleaseCapture();

}

break;

When the user presses ENTER, Windows generates a WM_CHAR message whose
wParam parameter contains a value representing a carriage return. Upon receiving
the WM_CHAR message, the window procedure checks for this value and carries
out the sample lengthy operation, sieve. This function, called Eratosthenes Sieve
Prime-Number Program, is from Byte, January 1983. It is defined as follows:

J#define NITER 20 /* number of iterations */
ffdefine BUFF_SIZE 8190

BYTE abFlags[BUFF_SIZE + 11 = { @ };

int PASCAL sieve(void)

{
int i, k;
int iter, count;
for (iter = 1; iter <= NITER; iter++) { /% sieve NITER times =/
count = 0;
for (i = @; i <= BUFF_SIZE; i++) /#* sets all flags TRUE =/
abFlags[i] = TRUE;
for (i = 2; i <= BUFF_SIZE; i++)
if (abFlags[i]) { /* found a prime? */
for (k = i + i; k <= BUFF_SIZE; k += i)
abFlags[k] = FALSE; /% cancels its multiples */
count++;
}
}
return count;
}

6.5.6 Adding WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
Cases

To carry out a selection, use the statements described in Section 6.3, “Using the
Cursor with the Mouse.” Add the following statements to your window procedure:

case WM_LBUTTONDOWN:
fTrack = TRUE;
szStr[0] = '\0"';
PrevX = LOWORD(TParam);
PrevY = HIWORD(1Param);

126 Microsoft Windows Guide to Programming

if (!(wParam & MK_SHIFT)) { /* If shift key */
OrgX = LOWORD(TParam); /% is not pressed */
OrgY = HIWORD(1Param);

}

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

/*

* Capture all input even if the mouse goes outside
* the window.

*/

SetCapture(hwnd);
break;
case WM_MOUSEMOVE:
{
RECT rectClient;
int NextX;
int NextY;

if (fTrack) {
NextX = LOWORD(TParam);
NextY HIWORD(1Param);

]

/* Do not draw outside the window's client area. */
GetClientRect(hwnd, &rectClient);

if (NextX < rectClient.left)
NextX = rectClient.left;
else
if (NextX >= rectClient.right)
NextX = rectClient.right - 1;

if (NextY < rectClient.top)
NextY = rectClient.top;
else
if (NextY >= rectClient.bottom)
NextY = rectClient.bottom - 1;

VES

* If the mouse position has changed, then clear the
previous rectangle and draw the new one.

*/

if (NextX != PrevX || NextY != PrevY) {
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOT); /# erases previous box =/

Chapter 6 Cursors 127

MoveTo(hdc, OrgX, OrgY);
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);

/* Get the current mouse position. */

PrevX NextX;

PrevY = NextY;

MoveTo(hdc, OrgX, OrgY); /* draws new box */
LineTo(hdc, OrgX, PrevY);

LineTo(hdc, PrevX, PrevY);

LineTo(hdc, PrevX, 0OrgY);

LineTo(hdc, OrgX, OrgY);

ReleaseDC(hwnd, hdc);

}
}
break;

case WM_LBUTTONUP:

fTrack = FALSE; /#* no longer carrying out selection */
ReleaseCapture(); /* releases hold on mouse input */
X = LOWORD(1Param); /#* saves current value */
Y = HIWORD(1Param);

break;

6.5.7 Adding WM_KEYDOWN and WM_KEYUP Cases

To let the user control the cursor by using the keyboard, add WM_KEYDOWN
and WM_KEYUP cases to your application’s window procedure. The statements
in the WM_KEYDOWN case retrieve the current position of the cursor and up-
date the position when an arrow key is pressed. Add the following statements to
the window procedure:

POINT ptCursor; /* x and y coordinates of cursor */
int repeat = 1; /* repeat count of keystroke */
RECT Rect; /* selection rectangle */

case WM_KEYDOWN:
if (wParam != VK_LEFT && wParam != VK _RIGHT
&& wParam != VK_UP && wParam != VK _DOWN)
break;

128 Microsoft Windows Guide to Programming

GetCursorPos(&ptCursor);

/* Convert screen coordinates to client coordinates. =/
ScreenToC]ient(hwnd; &ptCursor);

switch (wParam) {

/%

Adjust the cursor position according to which key
was pressed. Accelerate the movement by adding the
#* repeat variable to the cursor position.

*/

case VK_LEFT:
ptCursor.x -= repeat;
break;

I

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y -= repeat;
break;

case VK_DOWN:
ptCursor.y += repeat;

break;
default:
return NULL;
}
repeat++; /#* increases repeat rate */

/* Ensure that the cursor doesn't go outside client area. */
GetClientRect(hwnd, &Rect);

if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;
else
if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;
else
if (ptCursor.y < Rect.top)
ptCursor.y = Rect.top;

Chapter 6 Cursors 129

/* Convert the coordinates to screen coordinates. */

ClientToScreen(hwnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
break;

In this example, the GetCursorPos function retrieves the cursor position in screen
coordinates. To check the position of the cursor within the client area, the coordi-
nates are converted to client coordinates by using the ScreenToClient function.
The switch statement then checks for the arrow keys; each time it encounters an
arrow key, the statement adds the current contents of the repeat variable to the ap-
propriate coordinate of the cursor location.

The example then checks the new position to make sure it is still in the client area
(adjusting it if necessary), using the GetClientRect function to retrieve the dimen-
sions of the client area. Finally, the ClientToScreen function converts the position
back to screen coordinates, and the SetCursorPos function sets the new position.

The WM_KEYUP case restores the initial value of the repeat variable when the
user releases the key, as follows:

case WM_KEYUP:
repeat = 1; /% clears repeat count =/
break;

6.5.8 Adding a WM_PAINT Case

To ensure that the text string and selection rectangle are redrawn when necessary
(for example, when another window has temporarily covered the client area), add
the following case to the window procedure:

case WM_PAINT:

{
PAINTSTRUCT ps;
hdc = BeginPaint(hwnd, &ps);
TextOut(hdc, 1, 1, szStr, Istrlen(szStr));
if (OrgX != PrevX || OrgY != PrevY) {
MoveTo(hdc, OrgX, OrgY);
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);
}
EndPaint(hwnd, &ps);
}

break;

130

Microsoft Windows Guide to Programming

6.5.9 Adding a BULLSEYE.CUR Line to the Makefile

In the makefile, add the file BULLSEYE.CUR to the list of files on which
CURSOR.RES is dependent. The relevant lines in the makefile should look like
this:

rc /r cursor.rc

This change ensures that, if the file BULLSEYE.CUR changes, CURSOR.RC will
be recompiled to form a new CURSOR.RES file.

6.5.10 Compiling and Linking

Compile and link the Cursor application. Then start Windows and the Cursor appli-
cation. Now, when you move the cursor into the client area, it changes to the
bull’s-eye shape.

Press and hold down the left mouse button, drag the mouse to a new position, and
release the mouse button. You should see a selection that looks like this:

Starting point

Cursmgammegpphcmmn B T————

&

\

Press the arrow keys to move the cursor. Then press ENTER to see the application
display the hourglass cursor, indicating that a lengthy operation is in progress.

\- Ending point

Chapter 6 Cursors 131

6.6 Related Topics

For more information about keyboard and mouse input, see Chapter 4, “Keyboard
and Mouse Input.”

For more information about cursor functions, window-management messages, and
input messages, see the Microsoft Windows Programmer’s Reference, Volumes 2
and 3.

For more information about resource-definition statements, see the Microsoft
Windows Programmer’s Reference, Volume 4.

For more information about Image Editor, see Microsoft Windows Programming
Tools.

Menus

7.1
7.2

7.3

7.4
7.5

Chapter 7

Menus and Menu Iems.ccovevirineninieiinentetee e 135
Defining @ MENUcccoveiiiiieinicciieicieceeeeece e 136
7.2.1 Menu Identifiers........coeevveeveerenenrerinineseeee e 137
Including a Menu in Your AppliCation..........ccceveveereerienienrenneeneeneeneennenne 137
7.3.1 Specifying the Menu for a Window Class.........ccccoccevevennenenn 137
7.3.2 Specitying a Menu for a Specific Windowc..cocccceevuencnne. 138
Processing Input from a MenU.........ccceceeveenininieneneniieineneecneerenenee 138
Working with Menus from Your Application..........ccccceeveveecvervecieennnene. 139
7.5.1 Enabling and Disabling Menu Itemsccccceevenieneenennenne. 140
7.5.1.1 Setting the Initial State of a Menu Item................ 140
7.5.1.2 Disabling a Menu Item..........cccooceeveninininenniennne 140

7.5.1.3 Disabling a Menu Item and Making It
Unavailable.......c..ccocovininneneniinnineneeeneeeeeenee 141
7.5.1.4 Enabling a Menu Item.......c.ccoceveeinvenninnnnnnnnene 141
752 Checking and Clearing Menu Items.........cc.cccociivennincnenenn. 141
7.5.2.1 Setting an Initial Check Markccccoveiencnncne 141
7522 Checking a Menu Item........cccccoeceveviniinnncinene. 141
7523 Clearing a Menu Itemccccoceevecenenencncncnneene 142
7.5.3 Adding Menu IemSccoecveriererienieninteiene et 142
7.53.1 Appending an Item to an Existing Menu.............. 142
7532 Inserting an Item in an Existing Menu.................. 142
7.5.4 Changing EXisting Menusceccceveeeeenenereeneneeneennenene 143
7.54.1 Performing Several Changes at Once.................... 144
7.5.5 Deleting Menu Itemscc.cocevvvevinenieneninicneeeeecceeenes 144
7.5.6 Using Bitmaps as Menu [tems..........ccceeirieviinieincinieienne. 144
7.5.7 Replacing MEnUScc.ceceeieieriieieienieeeeieeeeee e enenes 145
7.5.8 Creating New MENUScc.occvevierierieierieetereenieereeteeeeeeesseaens 146

7.5.9 INitialiZing MENUS........ccvevieriirieeeierienertereeieee et eeeeenees 147

134

Microsoft Windows Guide to Programming

7.6

7.7

7.8

Using Special Menu Featurescococceviviinieninienienenenieeseeeeeeneens 148
7.6.1 Providing Accelerator Keys for Menus and Menu Items........ 148
7.6.1.1 Adding Accelerator Text to a Menu Item............. 149
7.6.1.2 Creating an Accelerator Tablecoccceivneenene 149
7.6.1.3 Loading an Accelerator Table..........c.ccoceeririnnene 150
7.6.1.4 Changing the Message Loop to Process
Accelerator Keysccoevvveeniniieieieneneeecnenes 150
7.6.2 Using Cascading MENUSc..ccceveeerrenierienieeerensenneenneesereenens 151
7.6.3 Using Floating Pop-up Menusccccecuevenienienienesienenenienns 153
7.6.4 Designing Your Own Check Markscccceeevevienenrenienrennenne. 155
7.6.5 Using Owner-Drawn Menu Itemsccoceeerienenenenenennene. 156
Sample Application: EAitMenU..........ceceeruerieirenienieieieenenieeseeeienenes 158
7.7.1 Adding New Menus to the Resource-Definition File.............. 158
7.7.2 Adding Definitions to the Header Fileccccccoovervininineencns 159
773 Adding an Accelerator Table to the
Resource-Definition File.......c.cceoevinineneneninincnnencncncnes 160
7.7.4 Adding a New Variableccccoovevereninineneeneenennenineneenens 160
7.1.5 Loading the Accelerator Tableccccocveveneneineineeennes 160
7.7.6 Modifying the Message Loop.......cocoveveriereeinenenieeneniniennenes 161
7.7.7 Modifying the WM_COMMAND Case........cccccuverererrecnnnnes 161
7.7.8 Compiling and LinKingccccceevevvierinreneenenierienenieneseseeneen 162

Related TOPICSeoveeuieiirtieiteietesteiert sttt sttt aeaees 162

Chapter 7 Menus 135

Most applications for the Microsoft Windows operating system use menus so that
the user can select and carry out commands or actions.

This chapter covers the following topics:
= What a menu is

= Defining a menu

= Including a menu in your application
® Processing input from a menu

® Modifying an existing menu

= Working with special menu features

This chapter also explains how to create a sample Windows 3.1 application, Edit-
Menu, that uses and processes input from menus.

7.1 Menus and Menu ltems

A menu is a list of items that, to a user, are your application’s commands. Each
menu item can be displayed as text or as a bitmap. By choosing a menu item (with
the mouse or the keyboard), the user tells the application to perform the command
associated with that item. Windows responds to this action by sending the applica-
tion a message that identifies which command the user chose.

To use a menu in your application, follow these general steps:

1. Define the menu in your resource-definition file.

2. Specity the menu in your application code. There are two common ways to do
this:

= When registering the window class, specify a menu (called the class menu)
for that entire window class.

= When creating a window, specify a menu for that window.
3. Initialize the menu, if necessary.
When you have defined and initialized a menu for your application, the user can

choose commands from the menu, and you can have your application add, change,
or replace items, or even the entire menu, as necessary.

136

Microsoft Windows Guide to Programming

1.2 Defining a Menu

The first step in using a menu is to define it in your application’s resource-
definition (.RC) file by using a MENU statement. A MENU statement consists of
the menu name, the MENU keyword, and a pair of BEGIN and END keywords
that enclose one or more of the following menu-definition statements:

= The MENUITEM statement defines a menu item by name, appearance (text or
bitmap), and identifier.

= The POPUP statement defines a pop-up menu, which defines further menu
items by name, appearance, and identifier.

For example, the following MENU statement defines a menu named SampleMenu:

SampleMenu MENU
BEGIN
MENUITEM "Exit!"™, IDM_EXIT
MENUITEM "Recalculate!™, IDM_RECALC
POPUP "Options"
BEGIN
MENUITEM "Scylla™, IDM_SCYLLA
MENUITEM "Charybdis™, IDM_CHARYBDIS
END
END

In this example, the first line indicates the beginning of a menu definition and
names the menu SampleMenu.

The first MENUITEM statement defines the first item on the menu. The text
Exit! will appear as the leftmost item on the menu bar. When the user chooses the
Exit! command, Windows sends the application a WM_COMMAND message
whose wParam parameter specifies the menu identifier IDM_EXIT. The second
MENUITEM statement similarly defines the Recalculate! item.

The POPUP statement defines a pop-up menu named Options that will appear on
the menu bar. When the user selects Options from the menu bar, a menu appears
in which the user can choose between the Scylla and Charybdis commands.

Within the POPUP statement are two definitions for the Scylla and Charybdis
menu items, each with its own text and menu identifier.

When the user chooses the Exit!, Recalculate!, Scylla, or Charybdis command,
Windows notifies the application of the user’s choice by passing it that item’s
menu identifier. Note that Windows does not notify the application when the user
selects the Options pop-up menu; instead, Windows simply displays that menu.

For more information about the MENU, POPUP, and MENUITEM resource
statements, see the Microsoft Windows Programmer’s Reference, Volume 4.

Chapter 7 Menus 137

7.2.1 Menu Identifiers

Each menu item is identified by a unique constant, usually called a menu identi-
fier, which Windows passes to the application when the user chooses the com-
mand associated with the item. You define each menu identifier by using the
#define directive in the resource-definition file or the header file, as in the follow-
ing example:

fidefine IDM_EXIT 111
f#fdefine IDM_RECALC 112
ffdefine IDM_SCYLLA 113

ftdefine IDM_CHARYBDIS 114

You use menu identifiers to direct the flow of control, depending on which com-
mand the user chooses. For more information about handling menu input, see Sec-
tion 7.4, “Processing Input from a Menu.”

1.3 Including a Menu in Your Application

Once you have defined a menu in the resource-definition file, you can include it in
your application code. You do this by associating it with a window. Any over-
lapped or pop-up window can have a menu; a child window cannot (although child
windows can have System menus).

This section explains two common ways to include a menu in your application:

= Specify the menu as the class menu when registering a window class. All win-
dows of that class will then include that menu.

= Specify the menu when creating a window. The window will then include the
menu.

7.3.1 Specifying the Menu for a Window Class

When you register a window class, you are setting the default attributes (including
the default menu) for all windows in that class. The default menu for a window
class is known as the class menu. You can override this default menu by explicitly
supplying a menu handle when you create a window of that class. To specify the
class menu when you register the window class, assign the name of the menu, as
given in the resource-definition file, to the IpszMenuName member of the
window-class structure, as follows:

wc.lpszMenuName = "SampleMenu";

In this example, IpszMenuName is part of a WNDCLASS structure named wc.
The menu name SampleMenu is the name given to the menu in the application’s
resource-definition file.

138 Microsoft Windows Guide to Programming

7.3.2 Specifying a Menu for a Specific Window

A window need not use the class menu, since the class menu is simply a default,
not a requirement. To use a menu other than the class menu, load the menu you
want from your application resources by using the LoadMenu function. This func-
tion returns a menu handle. Then, when you call the CreateWindow function to
create the window, pass the menu handle as the function’s M enu parameter.

The following example loads and specifies a menu by using the LoadMenu and
CreateWindow functions:

HWND hWnd; /* handle of current window */
HMENU hSampleMenu; /* menu handle */

hSampleMenu = LoadMenu(hinst, "SampleMenu");
hWnd = CreateWindow("SamplieWindow",
"SampleWindow",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
(HWND) NULL,
hSampleMenu,
hinst,
(LPSTR) NULL);

In this example, the LoadMenu function loads the menu named SampleMenu.
The hinst variable specifies that the resource is to be loaded from the application’s
resources. LoadMenu then returns a menu handle, which is stored in the hSample-
Menu variable.

The application calls the CreateWindow function to create a new window named
SampleWindow. Finally, the application passes hSampleMenu, the menu handle
that LoadMenu returned, to CreateWindow. This tells Windows to use Sample-
Menu for the window, instead of using the class menu (if any).

7.4 Processing Input from a Menu

When a user chooses a command from a menu, Windows sends the corresponding
window procedure a WM_COMMAND message whose wParam parameter con-
tains the menu identifier of the item. The window procedure must carry out any
tasks associated with the chosen command. For example, if the user chooses the
Open command, the window procedure prompts for the filename, opens the file,
and displays it in the window’s client area.

Chapter 7 Menus 139

The most common way to process menu input is with a switch statement in the
window procedure. Usually, the switch statement directs processing according to
the value of the wParam parameter in the WM_COMMAND message. Each case
processes a different menu identifier, as in the following example:

case WM_COMMAND:
switch (wParam)

{

case IDM_NEW:
/% operations for creating a new file */
break;

case IDM_OPEN:
/* operations for opening a file ®/
break;

case IDM_SAVE:
/* operations for saving this file */
break;

case IDM_SAVEAS:
/* operations for saving this file ®/
break;

case IDM_EXIT:
/% operations for exiting the application */
break;
}
break;

In this example, the wParam parameter contains the menu identifier of the item as-
sociated with the command the user chose. For each command the user chooses,
the application performs the appropriate operations.

1.5 Working with Menus from Your Application

Windows provides functions you can use to change existing menus and create new
menus, while your application runs. This section explains the following:

= Enabling and disabling menu items

® Checking and clearing (removing a check mark from) menu items
® Adding, changing, and deleting menu items

» Using bitmaps as menu items

® Replacing menus

® Creating and initializing menus from your application

140

Microsoft Windows Guide to Programming

When you create a window, it receives a private copy of the class menu. The appli-
cation can alter that window’s copy of the menu without affecting other windows’
menus.

Note Whenever you make changes to menus on the menu bar, you must call the
DrawMenuBar function to display the changes.

7.5.1 Enabling and Disabling Menu ltems

Usually, a menu item is enabled; its text appears normal, and the user can choose
it as a command. A disabled item appears normal but does not respond to mouse
clicks or keyboard selection. An unavailable item has grayed (sometimes called
“dimmed”) text and does not respond to mouse clicks or keyboard selection. Typi-
cally, you disable a menu item, or make it unavailable, when the action it repre-
sents is not appropriate. For example, you might make the Print command in the
File menu unavailable when the system does not have a printer installed.

7.5.1.1 Setting the Initial State of a Menu ltem

In the resource-definition file, you can specify whether a menu item is initially dis-
abled or grayed. To do so, use the INACTIVE or GRAYED options with the
MENUITEM statement. For example, the following statement specifies that the
Print menu item is initially grayed:

MENUITEM "Print"™, IDM_PRINT, GRAYED

The information in the resource-definition file applies only to the initial state of
the menu. You can change the command’s state later, using the EnableMenultem
function in your C-language source file. EnableMenultem enables or disables a
menu item or makes it unavailable.

7.5.1.2 Disabling a Menu ltem

A disabled menu item appears normal but does not respond to mouse clicks or key-
board selection. A disabled item is commonly used as a title for related menu op-
tions. The following example disables a menu item:

EnableMenultem(hMenu, IDM_SAVE, MF_DISABLED);
This example disables a menu item on the menu represented by the menu handle

hMenu. The menu identifier of the item is IDM_SAVE. By specifying the value
MEF_DISABLED, you direct Windows to disable the specified item.

Chapter 7 Menus 141

7.5.1.3 Disabling a Menu Item and Making It Unavailable

So that the user can tell that a command is not currently available, you may want
your application to make it unavailable rather than simply disabling it. Making a
menu item unavailable disables it and redisplays its text in grayed letters. To dis-
able a menu item and make it unavailable, specify the value MF_GRAYED when
you call EnableMenultem, as in the following example:

EnableMenultem(hMenu, IDM_PRINT, MF_GRAYED);

This example disables an item on the menu represented by the menu handle
hMenu. The menu identifier of the item is IDM_PRINT. By specifying the value
MF_GRAYED, you tell Windows to disable the specified item and redisplay its
text in grayed letters.

7.5.1.4 Enabling a Menu ltem

You can enable a disabled menu item by calling EnableMenultem and specifying
the MF_ENABLED value. The following example enables the item identified by
ID_EXIT:

EnableMenultem(hMenu, ID_EXIT, MF_ENABLED);

7.5.2 Checking and Clearing NMenu ltems

You can display a check mark next to a menu item to indicate that the user has
chosen it. Typically, you check an item when it is part of a group of items that are
mutually exclusive. The check mark indicates the user’s latest choice. For ex-
ample, if a group consists of the commands Left, Right, and Center, your applica-
tion might check the Left command to indicate that the user chose that command
most recently.

7.5.2.1 Setting an Initial Check Mark

In the resource-definition file, you can specify whether a menu item is initially
checked. To do so, use the CHECKED option in the MENUITEM statement. For
example, the following MENUITEM statement specifies that the Left menu item
is initially checked:

MENUITEM "Left", IDM_LEFT, CHECKED

7.5.2.2 Checking a Menu ltem

The information in the resource-definition file applies only to the initial state of
the menu. You can check or clear a menu item later, using the CheckMenultem

142 Microsoft Windows Guide to Programming

function in your C-language source file. CheckMenultem checks or clears a
specified menu item.

The following example places a check mark next to the item whose menu identi-
fier is IDM_LEFT:

7.5.2.3 Clearing a Menu ltem

To clear (or “uncheck™) a menu item, you call the CheckMenultem function and
specify the value MF_UNCHECKED. The following example clears the check
mark (if any) from the item whose menu identifier is IDM_RIGHT:

CheckMenuItem(hMenu, IDM_RIGHT, MF_UNCHECKED);

If you change the menus in the menu bar, you must call the DrawMenuBar func-
tion to display the changes.

7.5.3 Adding Menu ltems

You can add new items to the end of existing menus, or insert new items after par-
ticular items.

7.5.3.1 Appending an Item to an Existing Menu

To append an item to the end of an existing menu, you use the AppendMenu func-
tion. With this function, you can add a new item to the end of the specified menu
and specify whether the new item is checked, enabled, grayed, and so on.

The following example appends the menu item Raspberries to the end of the Fruit
menu. The example disables the new item and makes it unavailable if raspberries
are not currently in season.

AppendMenu(hFruitMenu,
RaspberriesInSeason ? MF_ENABLED : MF_GRAYED,
IDM_RASPBERRIES,
"Raspberries");

7.5.3.2 Inserting an item in an Existing Menu

To insert an item in an existing menu, you use the InsertMenu function. This
function inserts the specified menu item at the specified position and moves sub-
sequent items down to accommodate the new item. Like the AppendMenu func-
tion, InsertMenu lets you specify the state of the new menu item when you
insert it.

Chapter 7 Menus 143

The following example inserts the menu item Kumquats before the existing item
Melons. The example disables the new item and makes it unavailable.

InsertMenu(hFruitMenu,
IDM_MELONS,
MF_BYCOMMAND | MF_GRAYED,
IDM_KUMQUATS,
"Kumquats");

You can also insert menu items by numerical position rather than before a specific
item. The following example inserts the item Bananas, making it the third item in
the Fruit menu. (The first item has position 0, the second item 1, and so on.)

InsertMenu(hFruitMenu,
2)
MF_BYPOSITION | MF_GRAYED,
IDM_BANANAS,
"Bananas");

7.5.4 Changing Existing Menus

You can change existing menus and menu items by using the ModifyMenu
function. For example, you might need to change the text of a menu item. With
ModifyMenu, you can enable or disable the item, check or clear it, or make it un-
available.

In the following example, the ModifyMenu function changes the text of the Water
item to Wine. The example also changes the item’s menu identifier.

ModifyMenu(hMenu,
IDM_WATER,
MF_BYCOMMAND,
IDM_WINE,
"Wine");

When you use ModifyMenu, you are essentially telling Windows to replace an
existing menu item with a new one. The third, fourth, and fifth ModifyMenu
parameters specify the attributes of the new item.

For example, the following statement changes the item text from Wine to Caber-
net. Although only the item’s text is changing, the statement still specifies all the
attributes of the item (in this case, just the menu identifier).

ModifyMenu(hMenu,
IDM_WINE,
MF_BYCOMMAND,
IDM_WINE,
"Cabernet");

144 Microsoft Windows Guide to Programming

7.5.4.1 Performing Several Changes at Once

When you use ModifyMenu to change a menu item, you can also check or clear
the item, enable or disable it, or make it unavailable.

The following example not only changes the Water command to Wine, it enables
ihe command (if it is not enabied aiready), checks it, and changes its menu identi-
fier:

ModifyMenu(hMenu,
IDM_WATER,
MF_BYCOMMAND | MF_ENABLED | MF_CHECKED,
IDM_WINE,
"Wine");

7.5.5 Deleting Menu ltems

You can remove menu items and any pop-up menus associated with those items
by using the DeleteMenu function. DeleteMenu permanently removes the
specified item from the specified menu and moves subsequent items up to fill the

gap.

DeleteMenu(hFruitMenu, /#* menu handle */
1, /% deletes second item */
MF_BYPOSITION); /#* specifies item by menu position */

This example deletes the Fruit menu’s second item. Windows moves any sub-
sequent items up to fill the gap.

The following example deletes the same item, but specifies it by its menu identi-
fier rather than by its position on the menu:

DeleteMenu(hFruitMenu, /* menu handle */
IDM_ORANGES, /* deletes Oranges item */
MF_BYCOMMAND) ; /* specifies item by menu identifier */

7.5.6 Using Bitmaps as Menu ltems

You can also use bitmaps as menu items. There are two ways to do this:

= When you insert or append a new item, specify that you want to use a bitmap in-
stead of text for that item.

® Use the ModifyMenu function to change an existing item so that it appears as a
bitmap instead of text.

You cannot specify a bitmap as a menu item in the .RC file.

Chapter 7 Menus 145

The following example loads a bitmap named Apples and then uses the Modify-
Menu function to replace the text of the Apples menu item with this bitmap image
of an apple.

HMENU hMenu;
HBITMAP hBitmap;

hBitmap = LoadBitmap(hinst, "Apples");

hMenu = GetMenu(hWnd);

‘ModifyMenu(hMenu,
IDM_APPLES, /% item to replace */
MF_BYCOMMAND | MF_BITMAP,
IDM_APPLES, /* menu identifier of new item %/

(LPSTR) MAKELONG(hBitmap, @))

In this example, the LoadBitmap function first loads the bitmap from the file and
returns a handle of the bitmap, saved in the hBitmap variable.

The GetMenu function then retrieves the handle of the current window’s menu
and places it in the variable hMenu. This variable is passed as the first parameter
of the ModifyMenu function, which specifies the menu to change. The second pa-
rameter of the ModifyMenu function—in this case, IDM_APPLES—specifies the
item to be modified.

The third parameter specifies how to make the changes. MF_BYCOMMAND indi-
cates to Windows that you are specifying the item to be changed by its menu iden-
tifier rather than by its position. MF_BITMAP indicates that the new item will be

a bitmap rather than text.

The fourth parameter, set to IDM_APPLES, specifies the new menu identifier for
the item being modified. In this example, the menu identifier does not change.

The new bitmap handle must be passed as the low-order word of the fifth parame-
ter of ModifyMenu. The MAKELONG macro combines the 16-bit handle with a
16-bit constant to make the 32-bit argument. Casting the parameter to an LPSTR
data type prevents the compiler from issuing a warning, since the compiler “ex-
pects” this parameter to be a string.

7.5.7 Replacing Menus

You can replace menus by using the SetMenu function. Typically, you replace a
menu when the application changes modes and requires a completely new set of
commands. For example, an application might replace a spreadsheet menu with a
charting menu when the user changes from a spreadsheet to a charting mode.

146 Microsoft Windows Guide to Programming

In the following example, the GetMenu function retrieves the menu handle of the
spreadsheet menu and saves it in order for it to be restored later. The SetMenu
function replaces the spreadsheet menu with a charting menu loaded from the ap-
plication’s resources.

HMENU hMenu, hOldMenu;
HMENU hSpreadsheetMenu;

hO1dMenu = GetMenu(hWnd);
hMenu = LoadMenu(hinst, "ChartMenu");
SetMenu(hWnd, hMenu);

You can also load menus from resources other than those belonging to the applica-
tion (by using the module handle of a library).

7.5.8 Creating New Menus

You can create new menus while your application runs, using the CreateMenu
function. CreateMenu creates a new, empty menu; you can then add items to it by
using the AppendMenu or InsertMenu function. The following example creates

an empty pop-up menu and appends it to the window’s menu. It then appends
three items to the new pop-up menu.

HMENU hWinMenu;
HMENU hVeggieMenu;

hVeggieMenu = CreateMenu();

AppendMenu(hWinMenu,
MF_POPUP | MF_ENABLED,
hVeggieMenu,
"Veggies");

AppendMenu(hVeggieMenu,
MF_ENABLED,
IDM_CELERY,
"Celery");

Chapter 7 Menus 147

AppendMenu(hVeggieMenu,
MF_ENABLED,
IDM_LETTUCE,
"Lettuce");

AppendMenu(hVeggieMenu,
MF_ENABLED,
IDM_PEAS,

"Peas");

7.5.9 Initializing Menus

Your application can, if necessary, initialize a menu before Windows displays the
menu. Although you can specify a menu item’s initial state (disabled, grayed, or
checked) in the resource-definition file, this method does not work if the initializa-
tion differs from time to time. For example, to disable the Print command only if
the user’s system has no printer installed, you could disable the Print item when
you initialize its menu. (Disabling the Print item in the .RC file would not work,
since the application cannot determine whether a printer is available until the appli-
cation is running.)

Just before Windows displays a menu, it sends a WM_INITMENU message to the
window procedure for the window that owns that menu. This enables the window
procedure to check the state of the menu items and, if necessary, modify them
before Windows displays the menu. In the following example, the window func-
tion processes the WM_INITMENU message and sets the state of a menu item,
based on the value of the wChecked variable:

WORD wChecked = IDM_LEFT;

case WM_INITMENU:

if (GetMenu(hWnd) != wParam)

break;
CheckMenultem(wParam, IDM_LEFT,

IDM_LEFT == wChecked ? MF_CHECKED : MF_UNCHECKED);
CheckMenultem(wParam, IDM_CENTER,

IDM_CENTER == wChecked ? MF_CHECKED : MF_UNCHECKED);
CheckMenultem(wParam, IDM_RIGHT,

IDM_RIGHT == wChecked ? MF_CHECKED : MF_UNCHECKED);
break;

In this example, the WM_INITMENU message passes the given menu handle in
the wParam message parameter.

To ensure that Windows is about to display the correct menu, the GetMenu func-
tion retrieves a handle of the current window’s menu and compares that handle

148 Microsoft Windows Guide to Programming

with the value of wParam. If these are not equal, the window’s menu should not
be initialized. Otherwise, the menu is correct and you can use the CheckMenu-
Item function to initialize the items in the menu.

So far, this chapter has discussed “standard” menus, which drop down from a
menu bar that contains items the user selects by using the mouse, the arrow keys,
or mnemonics. In addition to these menu features, Windows provides the follow-
ing special features:

= Accelerator keys, which provide a keyboard shortcut for selecting menu items
® Cascading menus, which you can use to create several levels of pop-up menus

= Floating pop-up menus, which are normal pop-up menus except that they can
appear anywhere on the screen (usually at the current mouse position)

® Customized check marks, for which you use your own bitmaps instead of using
the standard Windows check mark.

7.6.1 Providing Accelerator Keys for Menus and Menu ltems

Accelerator keys are shortcut keys with which the user can choose a command
from a menu by using a single keystroke. For example, a user could select the De-
lete command simply by pressing the DEL key. Accelerator keys are part of the
resource-definition file and are tied into the application through the C-language
source code.

To provide accelerator keys to menus and menu items in your application, follow
these steps:

1. In the resource-definition file, mark the accelerator key for each item in the
MENUITEM statements.

2. In the resource-definition file, create an accelerator table. An accelerator table
lists the accelerator keys and corresponding menu identifiers. You create it
using the ACCELERATORS resource statement.

3. In the C-language source file, load the accelerator table by using the
LoadAccelerators function.

4. Change the message loop so that it processes accelerator-key messages.

Chapter 7 Menus 149

7.6.1.1 Adding Accelerator Text to a Menu ltem

The menu text should indicate each item’s accelerator key so that the user can tell
which key to use for the command. Add the key assignments to the MENUITEM
definitions in the .RC file. For example, suppose your application has the follow-
ing pop-up menu defined in its resource-definition file:

GroceryMenu MENU

POPUP "&Meats"

BEGIN
MENUITEM "&Beef\tF9", IDM_BEEF
MENUITEM "&Chicken\tShift+F9", IDM_CHICKEN
MENUITEM "&Lamb\tCtr1+Fo", IDM_LAMB
MENUITEM "&Pork\tATt+Fo", IDM_PORK

END

END

The pop-up menu Meats has the four items Beef, Chicken, Lamb, and Pork. Each
item has a mnemonic, indicated by the ampersand (&), and an accelerator key sep-
arated from the name with a tab (\t). Whenever a menu item has a corresponding
accelerator key, it should be displayed in this way. The accelerator keys in this
sample are F9, SHIFT+F9, CTRL+F9, and ALT+F9.

7.6.1.2 Creating an Accelerator Table

To use accelerator keys, add an accelerator table to the resource-definition file
by using the ACCELERATORS statement. This statement lists the accelerator
keys and the corresponding menu identifiers of the associated items. In the
ACCELERATORS statement, as with other resource statements, BEGIN starts
the entry and END marks its end. Following is a typical accelerator table:

GroceryMenu ACCELERATORS

BEGIN
VK_F9, IDM_BEEF, VIRTKEY
VK_F9, IDM_CHICKEN, VIRTKEY, SHIFT
VK_F9, IDM_LAMB, VIRTKEY, CONTROL
VK_F9, IDM_PORK, VIRTKEY, ALT

END

This example defines four accelerator keys, one for each menu item. The first ac-
celerator key is simply the F9 key; the other three are key combinations using the
ALT, SHIFT, or CTRL key in combination with the F9 key.

The accelerator keys are defined by using the Windows virtual-key code, as indi-
cated by the VIRTKEY option. Virtual keys are device-independent key values
that Windows translates for each computer. These keys offer a way to guarantee
that the same key is used on all computers without your needing to know what the
actual value of the key is on any computer. You may also use ASCII key codes for
accelerators, in which case, you would use the ASCII option.

150

Microsoft Windows Guide to Programming

The ACCELERATORS statement associates each accelerator key with a menu
identifier. In the preceding example, the IDM_BEEF, IDM_CHICKEN,
IDM_LAMB, and IDM_PORK constants are the menu identifiers of the items on
the Grocery menu. When the user presses an accelerator key, these are the values
that are passed to the window procedure.

7.6.1.3 Loading an Accelerator Table

The accelerator table, like any other resource, must be loaded before your applica-
tion can use it. To load the accelerator table, use the LoadAccelerators function.
This function takes a handle of the current instance of the application and the
name of the accelerator table (as defined in the .RC file); it returns a handle of the
accelerator table for the associated menu. Typically, you load a menu’s accelerator
table when that menu’s window has just been created—that is, within the
WM_CREATE case of the window procedure. The following example shows how
to load an accelerator table:

HINSTANCE hinst; /* handle of current instance =*/
HACCEL hAccTable; /* handle of accelerator table */

case WM_CREATE:

hAccTable = LoadAccelerators(hinst, "GroceryMenu");
break;

In this example, the LoadAccelerators function loads the accelerator table for
GroceryMenu into memory. The function then assigns the handle identifying the
table to the hAccTable variable. The hinst variable identifies the application’s
resource-definition file; GroceryMenu is the name of the accelerator table.

Once the table is loaded, the application can use the TranslateAccelerator func-
tion to translate accelerator keys for that menu.

7.6.1.4 Changing the Message Loop to Process Accelerator Keys

To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. When the message loop receives a keyboard-input message con-
taining an accelerator key, TranslateAccelerator converts the message to a
WM_COMMAND message containing the appropriate menu identifier for that ac-
celerator key, and sends the resulting WM_COMMAND message to the window
procedure.

Chapter 7 Menus 151

The message loop should test each message to determine whether it is an
accelerator-key message; if it is, the loop should translate and dispatch the mes-
sage by using TranslateAccelerator. If the message is not an accelerator-key
message, the loop should process it as usual.

Note TranslateAccelerator also translates accelerator keys for commands the
user chooses from the System menu. In such cases, the function translates the
keyboard-input message into a WM_SYSCOMMAND message.

After you add the TranslateAccelerator function, the message loop should look
like this:

while (GetMessage(&msg, NULL, NULL, NULL)) {

if (!TranslateAccelerator(hWnd, hAccTable, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}

In this example, the TranslateAccelerator function checks each message to deter-
mine whether it is an accelerator-key message. If the message is an accelerator-
key message, the window handle hWnd identifies the window whose messages are
to be translated (if any are found). The window handle must identify the window
that contains the menu with the accelerator keys. The accelerator handle
hAccTable specifies the accelerator table to use when translating the accelerator
keys. If the message was generated by means of an accelerator key, the Translate-
Accelerator function converts the keystroke to a WM_COMMAND message con-
taining the appropriate menu identifier, and sends that WM_COMMAND message
to the window procedure.

If the message is not an accelerator-key message, the application processes it as
usual, by using the TranslateMessage and DispatchMessage functions.

7.6.2 Using Cascading Menus

You can provide more than one level of pop-up menus in your applications. Such
multilevel pop-up menus are called cascading menus. A multilevel menu structure
can help minimize the number of items on a single pop-up menu, without requir-
ing a dialog box in which the user refines his or her choice. The following figure
shows an example of cascading menus:

152 Microsoft Windows Guide to Programming

Menu Example
Sattware
YWord Processing »jpopup menu
Spreadsheet
Languages

States
Down|

File Colors

C cil

Quick Basic
PASCAL

In this example, the user selected the Software menu and then chose the Lan-
guages command from the Software menu. At this point, the Languages pop-up
menu appeared to the right of the cursor. The user then moved the cursor over the
Languages pop-up menu and chose “C.” The C pop-up menu then appeared, from
which the user chose either C version 7.0 or QuickC (Microsoft QuickC®).

Cascading menus are simply nested pop-up menus. The menu definition for the
preceding example in figure looks like this:

MenuMenu MENU
BEGIN

POPUP "&Software"
BEGIN

POPUP "&Word Processing”
BEGIN
MENUITEM "&Word 5.0", IDM_WORD
MENUITEM "W&rite", IDM_WRITE
END

POPUP "&Spreadsheet"
BEGIN
MENUITEM "&Microsoft Excel"™, IDM_EXCEL
MENUITEM "&1+2=4", IDM_124
END

Chapter 7 Menus 153

POPUP "&Languages"
BEGIN
POPUP ™&C"
BEGIN
MENUITEM "C &7.0", IDM_C6@
MENUITEM "&Quick C"™, IDM_QUICKC
END
MENUITEM "Quick &Basic"™, IDM_QUICKBASIC
MENUITEM "&PASCAL™, IDM_PASCAL
END
END

END

Note A cascading pop-up menu has its own menu handle. To control items on a
cascading pop-up menu, you must first retrieve a handle of the menu by calling the
GetSubMenu function.

7.6.3 Using Floating Pop-up Menus

Usually, pop-up menus are attached to another menu—that is, they appear when
the user chooses a command on that menu. With Windows, however, you can also
provide pop-up menus that float, which means they appear at the current cursor
position when the user presses a certain key or clicks a mouse button.

To create a floating pop-up menu, you use the CreatePopupMenu and Track-
PopupMenu functions. If you want the floating pop-up menu to appear when the
user presses a certain key or mouse button, create the floating pop-up menu within
the case statement that handles the input message from that key or button.

The following example displays a floating pop-up menu when the user presses the
left mouse button:

case WM_LBUTTONDOWN:
GetClientRect(hWnd, (LPRECT)&rc);
if (PtInRect((LPRECT)&rc, MAKEPOINT(1Param)))
HandlePopupMenu(hWnd, MAKEPOINT(I1Param));
break;

154

Microsoft Windows Guide to Programming

void FAR PASCAL HandlePopupMenu(hwnd, point)
HWND hwnd;
POINT point;

{
HMENU hMenu;
HMENU hMenuTrackPopup;

/* Get the menu for the pop-up menu from the resource file. */

hMenu = LoadMenu(hInst, "PopupMenu");
if (IhMenu)
return;

/%

#* Get the first menu in the pop-up menu to use in the call
* to TrackPopupMenu. This could also have been created by
* using CreatePopupMenu and then added by using InsertMenu
* or AppendMenu.

*/

hMenuTrackPopup = GetSubMenu(hMenu, 9);

/%

* Convert the mouse point to screen coordinates, because that
* is what TrackPopup expects.

*/

ClientToScreen(hwnd, (LPPOINT)&point);
/* Draw and track the "floating" pop-up menu. */
TrackPopupMenu(hMenuTrackPopup, @, point.x, point.y, @, hwnd, NULL);

DestroyMenu(hMenu);
}

In this example, the [Param parameter of the WM_LBUTTONDOWN message
contains the current position of the mouse. The MAKEPOINT macro converts
this long value to a point, which is then stored in the currentpoint structure.

Once the menu is complete, the application displays it at the current cursor posi-
tion by calling TrackPopupMenu. (The x and y members of the currentpoint
structure specify the current position of the cursor.)

After the user has chosen a command from the menu, the application destroys the
menu, freeing the memory the menu used. The application re-creates the menu
each time the user presses the right mouse button.

Chapter 7 Menus 155

7.6.4 Designing Your Own Check Marks

Usually when you check a menu item, Windows displays the standard Windows
check mark next to the item’s text. An item that is not checked has no special
mark next to it at all. Instead of using the standard Windows check mark, how-
ever, you can specify a bitmap that Windows will display when a menu item is
checked. You can also specify a bitmap to display when an item is not checked
(cleared).

Custom check marks can be particularly useful for helping the user distinguish be-
tween commands that perform an action and commands that can be checked but
are not. Some Windows applications use the following menu-item conventions
based on certain types of commands:

Type of command Convention

Commands that perform an action (for Do not display a check mark for such an
example, display another menu or a item.

dialog box)

Commands that are currently checked Display either a normal Windows check
mark or a custom check mark. When the
user chooses a checked item again, the check
mark is cleared.

Commands that can be checked but are Display a custom check mark. When the

not user chooses a cleared item, either a standard
Windows check mark or a different custom
check mark is displayed.

To provide your own check-mark bitmaps, follow these steps:

1. Use Microsoft Image Editor IMAGEDIT.EXE) to create the bitmaps you want
to use as check marks.

Windows requires that your check-mark bitmaps be the same size as the stan-
dard check marks. Although you can, during run time, stretch or shrink your
check-mark bitmaps to the right size, try to start with a bitmap that is close to
the right size. (The size of the standard check marks depends on the current
screen. To determine the current size of the standard check marks, use the Get-
MenuCheckMarkDimensions function.)

You can also create a bitmap by hand—by coding the individual bits. For more
information, see Chapter 11, “Bitmaps.”

2. In your application’s resource-definition file, define each bitmap’s name and
source file by using the BITMAP statement, as in the following example:

BitmapChecked BITMAP check.bmp
BitmapNotChecked BITMAP nocheck.bmp

156

Microsoft Windows Guide to Programming

3. In your application source code, use the LoadBitmap function to load each bit-
map from your application resources.

4. Use the GetMenuCheckMarkDimensions function to determine the size of
the standard check marks on the current screen.

5. If necessary, use the StretchBlt function to stretch or shrink each bitmap to the
right size.

6. Use the SetMenultemBitmaps function to specify the check-mark bitmaps for
each menu item.

7. Before your application terminates, it should destroy the bitmaps to free
memory.

The following example shows how to specify check-mark bitmaps for a menu
item:

SetMenulItemBitmaps(hMenu, /* menu handle */
0, /* position of menu item %/
MF_BYPOSITION,
hbmCheckOff, /* bitmap for cleared item */
hbmCheck0On); /* bitmap for checked item */

7.6.5 Using Owner-Drawn Menu ltems

Your application can take complete control over the appearance of menu items by
using owner-drawn items. An owner-drawn item is one for which your application
has total responsibility for drawing in its normal, selected (highlighted), checked,
and cleared states.

For example, suppose your application provides a menu from which the user can
choose a font. Your application could draw each item by using the font that the
item represents; the item for roman would be drawn with a roman font, the item
for italic would be drawn in italic, and so on.

You cannot define an owner-drawn item in your application’s resource-definition
(.RC) file. Instead, you must create a new item or modify an existing one by using
the MF_OWNERDRAW menu flag. You can use any of the following functions
to specify an owner-drawn menu item:

= AppendMenu
= InsertMenu
= ModifyMenu

When you call any of these functions, you can pass a 32-bit value as the
IpNewltem parameter. This 32-bit value can represent any information that is
meaningful to your application, and will be available to your application when
the item is to be displayed. For example, the value could contain a pointer to a

Chapter 7 Menus 157

structure; the structure, in turn, might contain a string and the handle of a logical
font that your application will use to draw the string.

Before Windows displays an owner-drawn item for the first time, it sends the
WM_MEASUREITEM message to the window that owns the item’s menu. This
message’s [Param parameter points to a MEASUREITEMSTRUCT structure
that identifies the item and contains the optional 32-bit value for the item. When
your application receives the WM_MEASUREITEM message, it must fill in the
itemWidth and itemHeight members of the structure before returning from pro-
cessing the message. Windows uses the information in these members when creat-
ing the bounding rectangle in which your application draws the menu item; it also
uses the information to detect the user’s interaction with the command associated
with the item.

When the item must be drawn (for example, when it is first displayed or when

the user chooses it as a command), Windows sends the WM_DRAWITEM
message to the window that owns the menu. The /Param parameter of the
WM_DRAWITEM message points to a DRAWITEMSTRUCT structure. Like
the MEASUREITEMSTRUCT structure, DRAWITEMSTRUCT contains in-
formation about the item and its optional 32-bit data. In addition, DRAWITEM-
STRUCT contains flags that indicate the state of the item (such as grayed or
checked) as well as a bounding rectangle and a device context with which your ap-
plication will draw the item.

In response to the WM_DRAWITEM message, your application must perform the
following actions before returning from processing the message:

1. Determine the type of drawing that is necessary. To do so, check the item-
Action member of the DRAWITEMSTRUCT structure.

2. Draw the menu item appropriately, using the bounding rectangle and device
context obtained from the DRAWITEMSTRUCT structure. Your application
must draw only within the bounding rectangle. For performance reasons,
Windows does not clip portions of the image that are drawn outside the rect-
angle.

3. Restore all GDI objects selected for the menu item’s device context.

For example, if the menu item is selected, Windows sets the itemA ction mem-
ber of the DRAWITEMSTRUCT structure to ODA_SELECT, and sets the
ODS_SELECTED bit in the itemState member. This is your application’s cue to
redraw the menu item so that the item indicates that it has been selected.

158 Microsoft Windows Guide to Programming

1.7 Sample Application: EditMenu

The EditMenu sample application illustrates the two most common menus, the
Edit menu and the File menu, and shows how to use accelerator keys in an applica-
tion.

Note The accelerator keys shown in this sample are reserved and should be used
only as accelerator keys for the Edit menu.

To create the EditMenu application, make the following modifications to the
Generic application:

1. Add the Edit and File menus to the resource-definition file.
. Add definitions to the header file.

. Add an accelerator table to the resource-definition file.

. Add anew variable.

. Load the accelerator table.

. Modify the message loop in the WinMain function.

. Modify the WM_COMMAND case.

. Compile and link the application.

0 N N kW

EditMenu does not show how to use the clipboard. This task is described in Chap-
ter 13, “Clipboard.”

71.7.1 Adding New Menus to the Resource-Definition File

You must add an Edit and a File menu to the MENU statement in the resource-
definition file. The MENU statement should now look like this:

EditMenuMenu MENU

BEGIN

POPUP "&File"

BEGIN
MENUITEM "&New", IDM_NEW
MENUITEM "&0pen...", IDM_OPEN
MENUITEM "&Save", IDM_SAVE
MENUITEM "Save &As...", IDM_SAVEAS
MENUITEM "&Print", IDM_PRINT
MENUITEM SEPARATOR
MENUITEM "E&xit", IDM_EXIT
MENUITEM SEPARATOR
MENUITEM "&About EditMenu...", IDM_ABOUT

END

Chapter 7 Menus 159

POPUP ™&Edit"

BEGIN
MENUITEM "&Undo\tA1t+BkSp", IDM_UNDO , GRAYED
MENUITEM SEPARATOR
MENUITEM "Cu&t\tShift+Del", IDM_CUT
MENUITEM "&Copy\tCtri+Ins", IDM_COPY
MENUITEM "&Paste\tShift+Ins", IDM_PASTE ,GRAYED
MENUITEM "C&lear\tDel", IDM_CLEAR ,GRAYED

END

END

The File menu contains seven items and two separators. Each item has a mne-
monic, indicated by the ampersand (&).

The Edit menu contains five items and a separator. Each item has a mnemonic and
an accelerator key, which is separated from the name by a tab (\t). Whenever an
item has a corresponding accelerator key, it should be displayed in this way. In the
Edit menu, the five accelerator keys are ALT+BKSP, DEL, CTRL+INS, SHIFT+INS, and
SHIFT+DEL. The separator between the Undo and Cut items places a horizontal bar
between these items in the menu. A separator is recommended between menu
items that otherwise have nothing in common. For example, the Undo command,
when chosen, affects only the application, whereas the remaining commands af-
fect the clipboard.

7.7.2 Adding Definitions to the Header File

You must declare each menu identifier in your application’s header file. These
constants are used both in the C-language source file and in the resource-definition
file.

A menu identifier can be any integer value. The only restriction is that it must be
unique within a menu, because no two items in a menu can have the same identi-
fier.

Add the following lines to the header file:
ftdefine IDM_ABOUT 100

/* File-menu items */

ffdefine IDM_NEW 101
ftdefine IDM_OPEN 102
ftdefine IDM_SAVE 103
ftdefine IDM_SAVEAS 104
fdefine IDM_PRINT 105

Jtdefine IDM_EXIT 106

160 Microsoft Windows Guide to Programming

/% Edit-menu items */

#define IDM_UNDO 200
fdefine IDM_CUT 201
#define IDM_COPY 202
f#define IDM_PASTE 203
ftdefine IDM_CLEAR 204

7.7.3 Adding an Accelerator Table to the Resource-Definition File
Add the following ACCELERATORS statement to the resource-definition file:

EditMenu ACCELERATORS

BEGIN
VK_BACK, IDM_UNDO, VIRTKEY, ALT
VK_DEL, IDM_CUT, VIRTKEY, SHIFT
VK_INS, IDM_COPY, VIRTKEY, CONTROL
VK_INS, IDM_PASTE, VIRTKEY, SHIFT
VK_DEL, IDM_CLEAR, VIRTKEY

END

This statement defines five accelerator keys, one for each menu item. Four acceler-
ators are key combinations using the ALT, SHIFT, or CTRL key.

The ACCELERATORS statement associates each accelerator key with a menu
identifier. The IDM_UNDO, IDM_CUT, IDM_COPY, IDM_PASTE, and
IDM_CLEAR constants identify the Edit-menu items. When the user presses an
accelerator key, these are the values that are passed to the window procedure.

7.7.4 Adding a New Variable

Add the following statement to the beginning of the source file:

HACCEL hAccTable; /% handle of accelerator table */

The hAccTable variable is a handle of the accelerator table. It receives the return
value of the LoadAccelerators function and is used in the TranslateAccelerator
function to identify the accelerator table.

71.7.5 Loading the Accelerator Table

Before using the accelerator table, you must load it from the application’s re-
sources. Add the following statements to the application’s InitInstance function:

hAccTable = LoadAccelerators(hinst, "EditMenu");

Chapter 7 Menus 161

This statement loads the accelerator table into memory and assigns the handle iden-
tifying the table to the hAccTable variable. The hinst variable identifies the appli-
cation’s resource-definition file, and EditMenu is the name of the accelerator

table. After you have loaded the table, you can use it in the TranslateAccelerator
function.

7.7.6 Modifying the Message Loop

To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. After you add the function, the message loop should look like
this:

while (GetMessage(&msg, NULL, NULL, NULL)) {

if (!TranslateAccelerator(hWnd, hAccTable, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

1.7.7 Modifying the WM_COMMAND Case

Your application must be able to process menu commands. In this application, in-
stead of performing tasks, all menu commands activate a “Command not imple-
mented” message box. Replace the WM_COMMAND case with the following
statements:

case WM_COMMAND:
switch (wParam) {
case IDM_ABOUT:
TpProcAbout =
MakeProcInstance((FARPROC) About, hInst);
DialogBox(hInst, "AboutBox", hWnd,
(DLGPROC) 1pProcAbout);
FreeProcInstance(T1pProcAbout);
break;

/* File-menu commands */

case IDM_NEW:
case IDM_OPEN:
case IDM_SAVE:
case IDM_SAVEAS:
case IDM_PRINT:

162 Microsoft Windows Guide to Programming

MessageBox(
GetFocus(),
"Command not implemented”,
"EditMenu Sample Application",
MB_ICONASTERISK | MB_OK);
break;

case IDM_EXIT:
DestroyWindow(hWnd);
break;

/* Edit-menu commands */

case IDM_UNDO:
case IDM_CUT:
case IDM_COPY:
case IDM_PASTE:
case IDM_CLEAR:
MessageBox(
GetFocus(),
"Command not implemented”,
"EditMenu Sample Application™,
MB_ICONASTERISK | MB_OK);
break;
}

break;

7.7.8 Compiling and Linking

Compile and link the EditMenu application. Start Windows and the EditMenu ap-
plication, and, without opening the pop-up menus, press any of the five accelerator
keys. You will notice that the “Command not implemented” message appears
when you choose a command.

1.8 Related Topics

For more information about how to process input messages, see Chapter 4, “Key-
board and Mouse Input.”

For more information about bitmaps, see Chapter 11, “Bitmaps.”

For more information about menu functions and resource-definition statements,
see the Microsoft Windows Programmer’ s Reference, Volumes 2 and 4.

Controls

8.1
8.2

83

8.4

Chapter 8

What Is @ Control?c..ceeveereriineiiiiinieiceciceeeeeeeeeere e 165
Creating @ CONMIOL.......coviririeieieeie sttt s 165
8.2.1 Specifying a Control CIasscccevvvvecieereeerienenieeeeienenene 166
8.2.2 Choosing a Control Style........ccouvierierierererenieeeeeiee e 167
8.2.3 Setting the Parent Windowc..ccceceevieveiincnicniceniencneneenn 167
824 Choosing a Control Identifier ..o, 168
USING CONLIOLS ...ttt sttt st 168
8.3.1 Receiving User INputcoceeveveriinininenenineceecrieneeeeens 168
8.3.2 Sending Control MeSSaAgescecvereriereerienienenenenreeneeseeeeens 169
833 Disabling and Enabling Input to a Control...........cccceceevuenuenee. 169
8.34 Moving and Sizing a COntrol.........cccevveveveenienenienireerienenene 169
8.3.5 Destroying a Control...........cccocuiiviiiiiiiniiiinicccees 170
Creating and Using Some Common Controlsc..cccceeevvevevceenicnncnnnen. 170
8.4.1 BULLONIS 1.ttt 170
8.4.1.1 Push BUttOnsS......cocuevereinieninini e 171
8.4.1.2 Default Push Buttonscccceceeveevvenenenncnnienenne 171
8.4.1.3 Check BOXES.....coouirieienireeeniiicieniecicnecee s 172
8.4.1.4 Radio BUttons........cccoevvevevinecnenenininenececenenee 173
8.4.1.5 Owner-Drawn Buttonscccccevevenieinccncncnnns 174
8.4.1.6 Group BoOXes......ooceveviinieniinireeercieeeee e 175
8.4.2 Static CONLTOLS......cccueiiriireiieiecicienereeeeeee et 175
8.4.3 LISt BOXES ..ecuieiieiiieiiesite ettt e 175
8.4.3.1 Adding a String to a List BOXccccccviiiiiinnne 176
8432 Deleting a String from a List BOX.......cccccoveeenneee. 177
84.3.3 Adding Filenames to a List BOXccccccceevieennenne. 177

8.4.3.4 Using a Multiple-Selection List BOXcc.ceceee... 178

164

Microsoft Windows Guide to Programming

8.5

8.6

8.4.3.5 Using a Multicolumn List BOX..........cccccceviininns 178

8.4.3.6 Using an Owner-Drawn List BOXcccccccoeenenncns 179
844 Combo BOXES....c.oeiiuiriiiiiiiiiiciiiiice 181
8.4.5 Edit CONtIolSccveeeiiriiiiieinieieieinciicict et 182
8.4.6 SCIOIL BAIS.....cveviiiiiiiiiiiiniircccccercee e 183
Sample Application: EditCntlcccooeviviineneneneneiriereneeeseneseenne 184
8.5.1 Adding a Constant to the Header Filec.cccoeiniinnnnnnnne 185
8.5.2 Adding New Variables.........cccccoveiviniinncnnniniiiiicininns 185
853 Adding a CreateWindow Functionc.ceccevcvueveveiiinnnnnenn. 186
8.5.4 Modifying the WM_COMMAND Case.......ccccoverveererveriruennenn 187
8.5.5 Adding a WM_SETFOCUS Casec.cccoeevurreereeenrerccnnuennnes 187
8.5.6 Adding a WM_SIZE CaSe.....c.ccoceevereeveeneeneenenreneeeeeeeeeeennes 187
8.5.7 Compiling and LinkKing........cccecevveeveeveeneenenenienneeneneeeeeenene 188

Related TOPICS .c.eererrerieieeeeriereteieerere ettt 188

Chapter 8 Controls 165

Controls are special windows you can use applications for the Microsoft Windows
operating system to make them easier to use.

This chapter covers the following topics:

= What a control is
= Creating a control

= Using controls in application windows

This chapter also explains how to create a sample Windows 3.1 application,
EditCntl, that illustrates those concepts.

8.1 What Is a Control?

A control is a predefined child window that carries out a specific kind of input or
output. For example, to make your application retrieve a filename from the user,
you can create and display an edit control in which the user types the filename. An
edit control is a window that receives and displays keyboard input.

A control, like any other window, belongs to a window class. The window class
defines both the control’s window procedure and its default attributes. The win-
dow procedure is important because it determines the appearance of the control
and how it will respond to user input. Window procedures for controls are prede-
fined in Windows, so no extra coding is required in your application when you use
a control.

8.2 Creating a Control

In Windows, you can create a control either from within a dialog box or from
within the client area of any other type of window.

This chapter discusses using controls in a standard window. For information about
how to create controls within a dialog box, see Chapter 9, “Dialog Boxes.”

To create a control in a window other than a dialog box, use the CreateWindow
function. When creating the control, specify its window class, style, parent win-
dow, and identifier. If CreateWindow is successful, it returns a control handle
that you can use in subsequent functions to move, size, paint, or destroy a window,
or to direct a window to carry out tasks.

The following example shows how to create a push button control:

166

Microsoft Windows Guide to Programming

hButtonWnd = CreateWindow(

"BUTTON", /% control class */
"0K", /* button Tlabel */
BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE, /=% control styles */
20, /* x-coordinate */
40, /* y-coordinate */
30, /* width in pixels */
12, /* height in pixels %/
hWnd, /* parent window */
IDOK, /* control identifier */
hinst, /* instance handle */
NULL);

This example creates a push button that belongs to the BUTTON window class
and has the BS_PUSHBUTTON style. The push button is a child window and will
be visible when first created. The WS_CHILD style is required, but you need not
specify the WS_VISIBLE style if you plan to use the ShowWindow function to
show the push button. CreateWindow places the button at the coordinates (20,40)
in the parent window’s client area. The width and height are 30 and 12 pixels, re-
spectively. The parent window is identified by the hWnd handle. The constant
IDOK identifies the push button.

8.2.1 Specifying a Control Class

The control’s window class, or control class, defines the control’s window proce-
dure and default attributes. You specify a control class when creating the control,
by including the class name (for example, BUTTON) in the IpClassName parame-
ter of the CreateWindow function.

Windows provides the following built-in control classes:

Class Description

BUTTON Produces a small, labeled window that the user can choose in order
to generate yes or no, on or off types of input.

EDIT Produces a window in which the user can type and edit text (called

an edit control).

LISTBOX Produces a window that contains a list of names from which the user
can select one or more names.

COMBOBOX Produces a combination control consisting of an edit control linked
with a list box. The user can select items from the list box or type in
the edit control or do both.

SCROLLBAR Produces a window that looks and functions like a scroll bar in a
window.

STATIC Produces a small window that contains text or simple graphics.
Static controls are often used to label other controls or to separate a
group of controls.

Chapter 8 Controls 167

8.2.2 Choosing a Control Style

The control styles, which depend on the control class, determine the control’s ap-
pearance and function. You specify a control style when creating the control, by in-
cluding the style (for example, BS_PUSHBUTTON) in the dwStyle parameter of
the CreateWindow function.

Windows provides many predefined control styles. Following are some of the

most common:

Style Description

BS_PUSHBUTTON Specifies a push button, a small window containing a
label that the user can choose in order to notify the parent
window.

BS_DEFPUSHBUTTON Specifies a default push button, which is identical to a
push button except that it has a special border.

BS_CHECKBOX Specifies a check box, which the user can select to turn
the control on or off. When the control is on, the box con-
tains an X.

BS_RADIOBUTTON Specifies a radio button (a circle). The user can select the

circle to turn the control on or off. When the control is
on, the circle contains a solid bullet.

ES_LEFT Specifies a single-line, left-aligned edit control.
ES_MULTILINE Specifies a multiline edit control.

SS_LEFT Specifies a left-aligned, static edit control.

SS_RIGHT Specifies a right-aligned, static edit control.
LBS_STANDARD Specifies a standard list box. A standard list box includes

a scroll bar and notifies its parent window when the user
makes a selection.

CBS_DROPDOWN Specifies a combo box consisting of an edit control and a
list box that is displayed when the user selects a box next
to the selection field. If the user selects an item in the list
box, the edit control displays the selected item.

For a complete list of control styles, see the Microsoft Windows Programmer’s
Reference, Volume 4.

8.2.3 Setting the Parent Window

Because every control is a child window, it requires a parent window. You specify
the parent window when creating the control, by including the handle of the parent
window in the h#WndParent parameter of the CreateWindow function.

As with any child window, a control is affected by changes to its parent window.
For example, if Windows disables the parent window, it also disables the control.

168 Microsoft Windows Guide to Programming

If Windows paints, moves, or destroys the parent window, it also paints, moves, or
destroys the control.

Although a control can be any size and can be moved to any position, it is re-
stricted to the client area of the parent window. Windows clips the control if you
move it outside the parent window’s client area or make it larger than the client
area.

8.2.4 Choosing a Control Identifier

When you create a control, you give it a unique identifier. You do this by includ-
ing it in the AMenu parameter of the CreateWindow function. The control sup-
plies its identifier in any notification message it sends to the window procedure of
the parent window. The control identifier is especially useful if you have several
controls in a window. It is the quickest, easiest way to distinguish one control
from another.

8.3 Using Controls

Once you have created a control, you have several options:

® Receiving user input through the control

» Performing specialized tasks, such as returning a string of text
® Enabling or disabling input to the control

= Moving or sizing the control

® Destroying the control

8.3.1 Receiving User Input

As the user interacts with the control, the control sends information about the inter-
action, in the form of a notification message, to the parent window. A notification
message is a WM_COMMAND message in which the wParam parameter con-
tains the control identifier and the /Param parameter contains the notification code
and the control handle.

For example, when the user clicks a button, the button sends a WM_COMMAND
message to the window procedure of the parent window. The WM_COMMAND
message’s wParam parameter contains the button’s control identifier; the high-
order word of the message’s [Param parameter contains the notification code
BN_CLICKED, which indicates that the user has clicked the button.

Since a notification message has the same basic form as menu input, you process
notification messages much as you would menu input. If you have carefully

Chapter 8 Controls 169

selected control identifiers so that they do not conflict with menu identifiers, you
can process notification messages in the same switch statement you use to process
menu input.

8.3.2 Sending Control Messages

Most controls accept and process a variety of control messages, which are special
messages that direct the control to carry out some task that is unique to the control.
For example, the WM_GETTEXTLENGTH message directs an edit control to re-
turn the length of a selected line of text.

To send a control message to a control, use the SendMessage function. Supply the
message number and any required wParam and [Param parameter values. For ex-
ample, the following statement sends the WM_GETTEXTLENGTH message to
the edit control identified by the handle hEditWnd; it then returns the length of the
selected line in the edit control:

nLength = SendMessage(hEditWnd, WM_GETTEXTLENGTH, @, 0L);

Many controls also process standard window messages, such as WM_HSCROLL
and WM_VSCROLL. To send such messages to controls, use the same method
you use to send control messages.

8.3.3 Disabling and Enabling Input to a Control

To disable or enable input to a control, use the EnableWindow function.

When you disable a control, it does not respond to user input. So that the user
can tell that the control is disabled, it appears dimmed. To disable a control, use
EnableWindow, specifying the value FALSE for the fEnable parameter, as fol-
lows:

EnableWindow(hButton, FALSE);

To restore input to the disabled control, enable it by using the EnableWindow
function with fEnable set to TRUE, as follows:

EnableWindow(hButton, TRUE);

8.3.4 Moving and Sizing a Control

To move or size a control, use the MoveWindow function. This function moves
the control to the specified coordinates in the parent window’s client area and sets
the control to the given width and height. The following example shows how to
use MoveWindow to move and size a control:

170 Microsoft Windows Guide to Programming

MoveWindow(hButtonWnd, 10, 10, 30, 12, TRUE);

This example moves a control to the coordinates (10,10) in the client area and sets
the width and height to 30 and 12 pixels, respectively. The value TRUE specifies
that the control should be repainted after being moved.

A} 72PN - teen] T
vy iliGOWS autuxuau\,au_y iiOVCS a COMitisc1 WiiCii mO‘v'1;15 the yment window. A con-

trol’s position is always relative to the upper-left corner of the parent’s client area,
so when the parent window moves, the control remains fixed in the client area but
moves relative to the screen. Although Windows does not size a control when it
sizes the parent window, it sends a WM_SIZE message to the parent window to in-
dicate the new size of the parent window. You can use this message to specify a
new size for the control.

8.3.5 Destroying a Control

To destroy a control, use the DestroyWindow function. This function deletes any
internal record of the control and removes it from the parent window’s client area.
The following example shows how to destroy a control:

DestroyWindow(hEditWnd);

Windows automatically destroys a control when destroying the parent window. In
general, you will need to destroy a control only if you no longer need it in the
parent window.

8.4 Creating and Using Some Common Controls

8.4.1 Buttons

The rest of this chapter explains more about the following common controls:

= Buttons

= Static controls
= List boxes

= Combo boxes
= Edit controls
® Scroll bars

A button is a small window used for simple yes or no, on or off types of input. Fol-
lowing are some of the most common types of buttons:

Chapter 8 Controls 17

= Push buttons

® Default push buttons
® Check boxes

= Radio buttons

® Owner-drawn buttons

= Group boxes

8.4.1.1 Push Buttons

A push button is a button that the user can select to carry out a specific action. The
button contains text that indicates what that button does. When the user clicks a
push button, the application usually carries out the associated action immediately.
For example, if the user clicks the Cancel button in a dialog box, the application
immediately removes the dialog box and cancels the user’s changes to the dialog
box (if any).

To create a button, specify BUTTON as its window class and specify the button
style(s) in the dwStyle parameter. For example, the following call to the
CreateWindow function creates a push button that has the label Cancel:

HWND hCancelButton;

hCancelButton = CreateWindow(
"BUTTON", "Cancel",
BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE,
20,40, 80,20, hWnd, IDCANCEL, hinst, NULL);

Because this example specifies the WS_VISIBLE style, Windows displays

the push button after creating it. The control identifier of the push button is
IDCANCEL. This constant is defined in the WINDOWS.H header file and is in-
tended to be used with Cancel push buttons.

8.4.1.2 Default Push Buttons

A default push button typically allows the user to signal the completion of some
activity, such as filling in an edit control with a filename. A default push button, as
with other buttons, responds to both mouse and keyboard input. If the user clicks
the button, the button sends a BN_CLICKED notification message to the parent
window. The button need not have the input focus in order to respond to mouse
input. It does require the focus, however, to respond to keyboard input. So that the
user can call the keyboard, call the SetFocus function to give the input focus to the

172

Microsoft Windows Guide to Programming

button. The user can then press ENTER or the SPACEBAR to direct the button to send
a BN_CLICKED notification message to the parent window.

Creating a default push button is similar to creating a push button. Specify
BUTTON as the window class of the button, and specify the button style(s) in the
dwStyle parameter. For example, the following call to the CreateWindow func-
tion creates a defauit push button that has the iabei OK:

HWND hDefButton;

hDefButton = CreateWindow(
"BUTTON", "OK",
BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE,
20,40, 80,20, hWnd, IDOK, hinst, NULL);

Since this example specifies the WS_VISIBLE style, Windows displays the de-
fault push button after creating it. The control identifier is IDOK. This constant is
defined in the WINDOWS.H header file and is intended to be used with default
push buttons, such as this OK button.

8.4.1.3 Check Boxes

A check box typically allows the user to select an option to use in the current task.
By convention, within a group of check boxes, the user can select more than one
option. (To present options that are mutually exclusive, use radio buttons instead
of check boxes.)

For example, you might present a group of check boxes from which the user
selects font properties for the next output operation. The user could select both
bold and italic by checking both the Bold and the Italic check boxes.

To create a check box, use the BS_CHECKBOX style, as in the following ex-
ample:

fidefine IDC_ITALIC 201
HWND hCheckBox;

hCheckBox = CreateWindow("BUTTON", "Italic",
BS_CHECKBOX | WS_CHILD | WS_VISIBLE,
20,40, 80,20, hWnd, IDC_ITALIC, hinst, NULL);

In this example, the check box label is Italic and the control identifier is
IDC_ITALIC.

Chapter 8 Controls 173

A check box responds to mouse and keyboard input much as a push button would.
That is, it sends a notification message to the parent window when the user clicks
the check box or presses the SPACEBAR. However, a check box can display a check
(an X) in its box to show that it is currently selected.

To display a check in a check box, send the control the BM_SETCHECK mes-
sage. You can also determine whether the check box is already checked by send-
ing the BM_GETCHECK message. For example, to place a check in the check
box, use the following function:

SendMessage(hCheckBox, BM_SETCHECK, 1, 0OL);

This means you can select or clear a check box whenever you want; for example,
when the parent window procedure receives a BN_CLICKED notification mes-
sage. Windows also provides a BS_ AUTOCHECKBOX style that automatically
changes its state (selects or clears it) each time the user clicks it.

8.4.1.4 Radio Buttons

Although radio buttons work in much the same way as check boxes, they are usu-
ally used in groups and represent mutually exclusive options. For example, you
might use a group of radio buttons to allow the user to specify text alignment
(right-aligned, left-aligned, or centered). The user could then select only one type
of alignment at a time.

Create a radio button as you would any button. Specify BUTTON as the window
class of the radio button, and specify the button style(s) in the dwStyle parameter.
For example, the following call to the CreateWindow function creates a radio but-
ton that has the label Right:

HWND HRightJdustifyButton
ffdefine IDC_RIGHTJUST

hRightJdustifyButton = CreateWindow("BUTTON", "Right",
BS_RADIOBUTTON | WS_CHILD | WS_VISIBLE,
20, 40, 80, 20, hWnd, IDC_RIGHTJUST, hinst, NULL);

As you do with a check box, you must send a BM_SETCHECK message to the
radio button to display a check (actually, a solid circle) in the radio button when
the user selects that button. Also, since radio buttons represent mutually exclusive
choices, you should also send the BM_SETCHECK message to the previously
selected radio button (if any) to clear it. You can determine which radio button in a
group is selected by sending the BM_GETCHECK message to each button.

174

Microsoft Windows Guide to Programming

You can create radio buttons in a dialog box by using the
BS_AUTORADIOBUTTON style. When all the radio buttons in a group box have
this style, Windows automatically clears the previously selected button when the
user selects a different radio button.

You can also use the CheckRadioButton function to select a radio button and
clear other buttons in a dialog box. When you call CheckRadioButton, you
specify the identifiers of the first and last buttons in a range of radio buttons and
the identifier of the button (within that range) that is to be selected. Windows
clears all the buttons in the specified range and then selects the appropriate radio
button. For example, in a group of radio buttons representing types of text align-
ment, you might call CheckRadioButton to select the Right button, as in the fol-
lowing example:

CheckRadioButton(hD1g, ID_RIGHTLEFTJUST, ID_LEFTJUST,
ID_RIGHTJUST)

In this example, CheckRadioButton would select the radio button identified by
ID_RIGHTJUST and clear all the other buttons whose identifiers fall within the
range specified by ID_RIGHTLEFTJUST and ID_LEFTJUST, regardless of
whether they are radio buttons.

8.4.1.5 Owner-Drawn Buttons

An owner-drawn button is similar to other buttons, except that the application is re-
sponsible for maintaining the button’s appearance, including whether the button
has the input focus, is disabled, or is selected. Windows notifies your application
when the button has been clicked.

To create an owner-drawn button, use the BS_OWNERDRAW style, as in the fol-
lowing example:

hMyOwnButton = CreateWindow("BUTTON", NULL,
BS_OWNERDRAW | WS_CHILD | WS_VISIBLE,
20, 40, 30, 12, hWnd, ID_MYBUTTON,
hinst, NULL);

Whenever the button must be drawn, Windows sends the WM_DRAWITEM
message to the window that owns the button. The [Param parameter of the
WM_DRAWITEM message contains a pointer to a DRAWITEMSTRUCT struc-
ture. This structure contains, among other information, the control identifier, a
value specifying the type of drawing action required, a value indicating the state of
the button, a bounding rectangle for the button, and a device-context handle for the
button.

In response to the WM_DRAWITEM message, your application must perform the
following actions before returning from processing the message:

Chapter 8 Controls 175

1. Determine the type of drawing that is required. To do so, the application ex-
amines the itemAction member of the DRAWITEMSTRUCT structure.

2. Draw the button appropriately, using the bounding rectangle and device context
obtained from DRAWITEMSTRUCT.

3. Restore all graphics device interface (GDI) objects selected for the button’s
device context.

For example, if the button has lost the input focus, Windows sets the itemAction
member of DRAWITEMSTRUCT to ODA_FOCUS but does not set the
ODS_FOCUS bit in the itemState member. This is your application’s cue to
redraw the button so that it no longer appears to have the focus.

8.4.1.6 Group Boxes

Group boxes are rectangles that enclose two or more related buttons or other con-
trols. You can send the WM_SETTEXT message to the group box to place a label
in the upper-left corner of the box. Group boxes do not respond to user input; that
is, they do not generate notification messages.

8.4.2 Static Controls

A static control is a small window that contains text or graphics. You typically use
a static control to label some other control or to create boxes and lines that sepa-
rate one group of controls from another.

The most commonly used static control is the SS_LEFT style—a left-aligned line
of text. That is, the control writes the line’s text starting at the left end of the con-
trol, displaying as much of the label as will fit in the control and clipping the rest.
The control uses the system font for the text, so you can calculate an appropriate
size for the control by retrieving the font metrics for this font. For more informa-
tion about fonts and font metrics, see Chapter 18, “Fonts.”

Like group boxes, static controls do not respond to user input; that is, they do not
generate notification messages. However, you can change the appearance and loca-
tion of a static control at any time. For example, you can change the text as-
sociated with a static control by using the SetWindowText function or the
WM_SETTEXT message.

8.4.3 List Boxes

A list box is a box that contains a list of selectable items, such as filenames. You
typically use a list box to display a list of items from which the user can select one
or more. There are several styles associated with a list box. Following are the most
common styles:

176

Microsoft Windows Guide to Programming

List box style Description

LBS_BORDER Specifies a surrounding border.

LBS_NOTIFY Sends notification messages to the parent window when the user
selects an item.

LBS_SORT Sorts its items alphabetically.

WS_VSCROLL Specifies a vertical scroll bar.

These four styles are included in the LBS_STANDARD style. The following ex-
ample creates a standard list box:

HWND hListBox
jtdefine IDC_LISTBOX 203

hListBox = CreateWindow("Listbox", NULL,
LBS_STANDARD | WS_CHILD | WS_VISIBLE,
20, 40, 120, 56, hWnd, IDC_LISTBOX,
hinst, NULL);

8.4.3.1 Adding a String to a List Box

Use the LB_ADDSTRING message to add a string to a list box. This message
copies the given string to the list box, which displays it in the list. If the list box
has the LBS_SORT style, the string is sorted alphabetically. Otherwise, Windows
simply places the string at the end of the list. The following example shows how
to add a string:

int nIndex;

nIndex = SendMessage(hListBox,
LB_ADDSTRING, NULL,
(LONG) (LPSTR) "Horseradish");

The LB_ADDSTRING message returns an integer that represents the index of the
string in the list. You can use this index in subsequent list box messages to iden-
tify the string, but only as long as you do not add, delete, or insert any other string.
Doing so may change the string’s index.

You can also add a string to a list box by sending the LB_INSERTSTRING mes-
sage to the list box. Unlike the LB_ ADDSTRING message, LB_INSERTSTRING
lets you specify where Windows should place the new string in the list box. When
it receives the LB_INSERTSTRING message, the list box does not sort the list,
even if the list box was created by using the LBS_SORT style.

Chapter 8 Controls 177

8.4.3.2 Deleting a String from a List Box

You can delete a string from the list box by supplying the index of the string in the
LB_DELETESTRING message, as in the following example:

SendMessage(hListBox, LB_DELETESTRING, nIndex, (LPSTR) NULL);

8.4.3.3 Adding Filenames to a List Box

As noted previously, a common use for a list box is to display a list of filenames,
directories, or disk drives, or a combination of these. The LB_DIR message in-
structs the list box to fill itself with such a list. The message’s wParam parameter
contains a value specifying the MS-DOS attributes of the files, and the [Param pa-
rameter points to a string containing a valid filename template, which can include
the question mark (?) or asterisk (*) wildcards.

For example, to fill a list box with the names of all files in the current directory
that have the .TXT extension, plus a list of directories and disk drives, you would
send the LB_DIR message, as in the following example:

ftdefine FILE_LIST 4010;

int nFiles;

nFiles = SendMessage(hlListBox, LB_DIR, FILE_LIST,
(LPSTR) "=.TXT");

The return value of the LB_DIR message indicates how many items the list box
contains.

Note If the list box is in a dialog box, you can call the DIgDirList function to per-
form the same task.

A list box responds to both mouse and keyboard input. If the user clicks a string or
presses the SPACEBAR in the list box, the list box selects the string and indicates the
selection by inverting the string text and canceling the selection from the last item