
• •

'

•

•

Microsoft® Windows™
Version 3.1

Guide to Programming

For the Microsoft Windows Operating System

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software, which includes information contained in any
databases, described in this document is furnished under a license agreement or nondisclosure agree­
ment and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the license or nondisclosure agreement. No
part of this manual may be reproduced in any form or by any means, electronic or mechanical, includ­
ing photocopying and recording, for any purpose without the express written permission of Microsoft
Corporation.

© 1987-1992 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright© 1991 International Typeface
Corporation. All rights reserved.

Copyright © 1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino,
Times, and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright© 1991 Monotype Corporation PLC. All rights
reserved.

Microsoft, MS, MS-DOS, QuickC, and Code View are registered trademarks, and Windows and
QuickBasic are trademarks of Microsoft Corporation.

U.S. Patent No. 4974159

Adobe and PostScript are registered trademarks of Adobe Systems, Inc.
The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of

AGFA Compugraphic Division of Agfa Corporation.
Apple, Macintosh, and TrueType are registered trademarks of Apple Computer, Inc.
P ANOSE is a trademark of Else Ware Corporation.
Epson and FX are registered trademarks of Epson America, Inc.
Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.
IBM is a registered trademark of International Business Machines Corporation.
ITC Zapf Chancery and ITC Zapf Dingbats are registered trademarks of the International Typeface

Corporation.
Helvetica, Palatino, Times, and Times Roman are registered trademarks of Linotype AG and/or its

subsidiaries.
Arial and Times New Roman are registered trademarks of the Monotype Corporation PLC.
Okidata is a registered trademark of Oki America, Inc.

Document No. PC28919-0492

Contents

Introduction.. xix

Software Development Kit Documentation Set... xix
Before You Start ... xx
About This Guide ... xx
Suggested Tools... xxii
Code Samples xxiii
Document Conventions xxiii

Part 1 Programming in the Windows Environment
Chapter 1 Overview of the Windows Environment... 3

1.1 Windows and MS-DOS Compared .. 5
1.1.1 User Interface .. 5
1.1.2 Queued Input... 6
1.1.3 Device-Independent Graphics 7
1.1.4 Multitasking Capabilities.. 7

1.2 Elements of a Windows Application.. 8
1.2.1 Windows... 8
1.2.2 Menus .. 9
1.2.3 Dialog Boxes ... 10
1.2.4 Message Loops ... 10

1.3 Windows Libraries ... 12
1.4 Software Development Tools ... 13

1.4.1 Microsoft C Optimizing Compiler 13
1.4.2 Microsoft Segmented Executable Linker... 13
1.4.3 Resource Editors ... 14
1.4.4 Microsoft Windows Resource Compiler.. 15
1.4.5 Debugging and Optimizing Tools.. 15
1.4.6 Microsoft Program Maintenance Utility.. 16

1.5 Building a Windows Application... 17
1.6 Related Topics .. 19

iv Microsoft Windows Guide to Programming

Chapter 2 Generic Windows Application ... 21
2.1 A Standard Windows Application: Generic ... 23
2.2 WinMain Function.. 24

2.2.1 Data Types and Structures 25
2.2.2 Handles.. 26
2.2.3 Instances .. 26
2.2.4 Registering a Window Class... 27
2.2.5 Creating a Window 30
2.2.6 Showing and Updating a Window.. 32
2.2.7 Creating a Message Loop ... 33
2.2.8 Yielding Control... 34
2.2.9 Terminating an Application.. 34
2.2.10 Initialization Functions ... 35
2.2.11 Application Command-Line Parameter.. 37

2.3 Window Procedure... 37
2.4 Creating an About Dialog Box... 39

2.4.1 Creating a Dialog Box Template.. 40
2.4.2 Creating a Header File .. 41
2.4.3 Creating a Dialog Box Procedure... 42
2.4.4 Defining a Menu with an About Command 43
2.4.5 Processing a WM_ COMMAND Message....................................... 44

2.5 Creating a Module-Definition File... 45
2.6 Creating Generic ... 48

2.6.1 Creating the C-Language Source File .. 48
2.6.2 Creating the Header File... 54
2.6.3 Creating the Resource-Definition File .. 54
2.6.4 Creating the Module-Definition File .. 55
2.6.5 Creating the Makefile 56
2.6.6 Running Microsoft Program Maintenance Utility............................ 57

2.7 Using Generic as a Template .. 57
2.8 Related Topics.. 59

Contents v

Part 2 Programming Windows Applications

Chapter 3 Output to a Window.. 63
3.1 Using a Device Context.. 65

3 .1.1 Using the GetDC Function 66
3.1.2 Processing a WM_PAINTMessage ... 66
3.1.3 Invalidating the Client Area... 67
3.1.4 Preparing a Device Context.. 68
3.1.5 Coordinate System .. 68

3.2 Creating, Selecting, and Deleting Drawing Tools 69
3.3 Drawing and Writing .. 70
3.4 Sample Application: Output... .. 72

3.4.1 Adding New Variables ... 73
3.4.2 Adding a WM_ CREATE Case ... 73
3.4.3 Adding a WM_PAINT Case .. 74
3.4.4 Modifying the WM_DESTROY Case ... 78
3.4.5 Compiling and Linking... 78

3.5 Related Topics.. 79

Chapter 4 Keyboard and Mouse Input.. 81
4.1 Windows Input Messages... 83

4.1.1 Message Formats 84
4.1.2 Keyboard Input... 84
4.1.3 Character Input ... 85
4.1.4 Mouse Input.. 85
4.1.5 Timer Input 86
4.1.6 Scroll Bar Input... 87
4.1.7 Menu Input. ... 88

4.2 Sample Application: Input ... 88
4.2.1 How the Input Application Displays Output.................................... 89
4.2.2 Adding New Variables ... 90
4.2.3 Setting the Window-Class Style... 90
4.2.4 Modifying the Create Window Function ... 91
4.2.5 Setting the Text Rectangles.. 91
4.2.6 Adding a WM_CREATE Case ... 92

vi Microsoft Windows Guide to Programming

4.2.7 Modifying the WM_DESTROY Case.. 92
4.2.8 Adding WM_KEYUP and WM_KEYDOWN Cases...................... 92
4.2.9 Adding a WM_ CHAR Case... 93
4.2.10 Adding a WM_MOUSEMOVE Case .. 93
4.2.11 Adding WM_LBUTTONUP and

WM_LBUTTONDOWN Cases ,,....................... 93
4.2.12 Adding a WM_LBUTTONDBLCLK Case 93
4.2.13 Adding a WM_TIMER Case .. 94
4.2.14 Adding WM_HSCROLL and WM_ VSCROLL Cases 94
4.2.15 Adding a WM_PAINT Case ... 94
4.2.16 Compiling and Linking... 95

4.3 Related Topics 96

Chapter 5 Icons... 97
5.1 What Is an Icon? ... 99
5.2 Using Built-In Icons... 100
5.3 Using Your Own Icons ... 101

5.3.1 Creating an Icon File... 101
5.3.2 Defining an Icon Resource ... 101
5.3.3 Loading an Icon Resource.. 101

5.4 Specifying a Class Icon.. 102
5 .5 Displaying Your Own Icons... 102
5.6 Displaying an Icon in a Dialog Box... 104
5.7 Sample Application: Icon ... 105

5.7.1 Adding an ICON Statement... ... 105
5.7.2 Adding an ICON Control Statement .. 105
5.7.3 Setting the Class Icon... 105
5.7.4 Adding a MYICON.ICO Line to the Makefile.............................. 106
5.7.5 Compiling and Linking ... 106

5.8 Related Topics .. 106

Chapter 6 Cursors... 107
6.1 Controlling the Shape of the Cursor... 109

6.1.1 Using Built-In Cursor Shapes ... 109
6.1.2 Using Your Own Cursor Shapes .. 110

6.2 Displaying a Cursor.. 111
6.2.1 Specifying a Class Cursor... 111
6.2.2 Explicitly Setting a Cursor Shape... 111
6.2.3 Example: Displaying the Hourglass During

a Lengthy Operation... 112

Contents vii

6.3 Using the Cursor with the Mouse... 113
6.3 .1 Starting a Graphics Selection 114
6.3.2 Extending a Graphics Selection.. 115
6.3.3 Showing a Graphics Selection.. 116
6.3.4 Ending a Graphics Selection... 117

6.4 Using the Cursor with the Keyboard.. 118
6.4.1 Moving the Cursor.. 118
6.4.2 Using the Cursor When No Mouse Is Available............................ 121

6.5 Sample Application: Cursor... 122
6.5.1 Adding a CURSOR Statement... 123
6.5.2 Adding New Variables... 123
6.5.3 Setting the Class Cursor... 124
6.5.4 Preparing the Hourglass Cursor.. 124
6.5.5 Adding a Lengthy Operation.. 124
6.5.6 Adding WM_LBUTTONDOWN, WM_MOUSEMOVE, and

WM_LBUTTONUP Cases... 125
6.5.7 Adding WM_KEYDOWN and WM_KEYUP Cases.................... 127
6.5.8 Adding a WM_PAINT Case .. 129
6.5.9 Adding a BULLSEYE.CUR Line to the Makefile......................... 130
6.5.10 Compiling and Linking... 130

6.6 Related Topics.. 131

Chapter 7 Menus .. 133
7 .1 Menus and Menu Items.. 135
7.2 Defining a Menu... 136

7 .2.1 Menu Identifiers.. 137
7 .3 Including a Menu in Your Application.. 137

7.3.1 Specifying the Menu for a Window Class...................................... 137
7.3.2 Specifying a Menu for a Specific Window.................................... 138

7.4 Processing Input from a Menu... 138
7 .5 Working with Menus from Your Application 139

7 .5 .1 Enabling and Disabling Menu Items 140
7 .5 .2 Checking and Clearing Menu Items... 141
7.5.3 Adding Menu Items.. 142
7.5.4 Changing Existing Menus .. 143
7 .5 .5 Deleting Menu Items 144
7.5.6 Using Bitmaps as Menu Items.. 144
7.5.7 Replacing Menus.. 145
7.5.8 Creating New Menus.. 146
7.5.9 InitializingMenus ... 147

viii Microsoft Windows Guide to Programming

7 .6 Using Special Menu Features... 148
7.6.1 Providing Accelerator Keys for Menus and Menu Items 148
7.6.2 Using Cascading Menus ... 151
7.6.3 Using Floating Pop-up Menus.. 153
7.6.4 Designing Your Own Check Marks ... 155
7.6.5 Using Ov,'ner-Drawn Menu Items.. 156

7.7 Sample Application: EditMenu .. 158
7.7.1 Adding New Menus to the Resource-Definition File 158
7 .7.2 Adding Definitions to the Header File ... 159
7.7.3 Adding an Accelerator Table to the Resource-Definition File 160
7.7.4 Adding a New Variable .. 160
7. 7 .5 Loading the Accelerator Table 160
7.7.6 Modifying the Message Loop ... 161
7.7.7 Modifying the WM_ COMMAND Case ... 161
7. 7 .8 Compiling and Linking... 162

7 .8 Related Topics 162

Chapter 8 Controls ... 163
8.1 What Is a Control? .. 165
8.2 Creating a Control .. 165

8.2.1 Specifying a Control Class ... 166
8.2.2 Choosing a Control Style.. 167
8.2.3 Setting the Parent Window... 167
8.2.4 Choosing a Control Identifier... 168

8.3 Using Controls.. 168
8.3.1 Receiving User Input.. 168
8.3.2 Sending Control Messages... 169
8.3.3 Disabling and Enabling Input to a Control..................................... 169
8.3.4 Moving and Sizing a Control... ... 169
8.3.5 Destroying a Control... 170

8.4 Creating and Using Some Common Controls.. 170
8.4.1 Buttons.. 170
8.4.2 Static Controls... 175
8.4.3 List Boxes... 175
8.4.4 Combo Boxes .. 181
8.4.5 Edit Controls... 182
8.4.6 Scroll Bars... 183

8.5 Sample Application: EditCntl .. 184
8.5.1 Adding a Constant to the Header File .. 185
8.5.2 Adding New Variables ... 185

Contents ix

8.5.3 Adding a Create Window Function... 186
8.5.4 Modifying the WM_ COMMAND Case .. 187
8.5.5 Adding a WM_SETFOCUS Case.. 187
8.5.6 Adding a WM_SIZE Case .. 187
8.5.7 Compiling and Linking... 188

8.6 Related Topics.. 188

Chapter 9 Dialog Boxes ... 189
9.1 WhatisaDialogBox? ... 191

9 .1.1 Modal Dialog Boxes... 192
9 .1.2 Modeless Dialog Boxes 192

9.2 Using a Dialog Box.. 193
9 .2.1 Creating a Dialog Box Procedure... 194
9.2.2 Using Controls in Dialog Boxes... 195

9.3 Related Topics.. 195

Chapter 10 File Input and Output. ... 197
10.1 Overview.. 199
10.2 Rules for Handling Files in Windows.. 200
10.3 Creating a File.. 202
10.4 Opening an Existing File.. 203
10.5 Reading From and Writing To a File... 203
10.6 Reopening a File... 204
10.7 Prompting for a File... 204
10.8 Checking the Status of an Open File.. 204
10.9 Sample Application: EditFile ... 205

10.9.1 Adding a Definition to the Header File.. 205
10.9.2 Adding a SaveAs Dialog Box ... 205
10.9.3 Adding Include Statements ... 205
10.9.4 Adding New Variables ... 206
10.9.5 Replacing the WM_ COMMAND Case ... 206
10.9.6 Adding WM_QUERYENDSESSION and WM_ CLOSE Cases ... 210
10.9.7 Modifying the OpenDlg Dialog Box Procedure............................ 210
10.9.8 Adding a SaveAsDlg Dialog Box Procedure................................. 211
10.9.9 Adding Helper Functions .. 213
10.9.10 Exporting the SaveAsDlg Dialog Box Procedure 216
10.9 .11 Adding Space to the Heap 216
10.9.12 CompilingandLinking ... 217

10.10 Related Topics.. 217

x Microsoft Windows Guide to Programming

Chapter 11 Bitmaps.. 219
11.1 WhatlsaBitmap? .. 221
11.2 Creating a Bitmap... 221

11.2.1 Creating and Loading a Bitmap File ... 222
11.2.2 Creating and Filling a Blank Bitmap.. 223
11.2.3 Creating a Bitmap with Hard-Coded Bits 224
11.2.4 Drawing a Color Bitmap ... 227

11.3 Displaying a Bitmap... 229
11.3.1 Using the BitBlt Function to Display a Memory Bitmap 229
11.3.2 Stretching a Bitmap .. 231
11.3.3 Using a Bitmap in a Pattern Brush... 232
11.3.4 Displaying a Device-Independent Bitmap...................................... 234

11.4 Adding Color to a Monochrome Bitmap ... 235
11.5 Deleting a Bitmap... 236
11.6 Sample Application: Bitmap.. 236

11.6.1 Modifying the Header File.. 237
11.6.2 Adding Bitmap Resources.. 238
11.6.3 Adding Bitmap, Pattern, and Mode Menus.................................... 238
11.6.4 Adding Global and Local Variables... 239
11.6.5 AddingaWM_CREATECase ... 240
11.6.6 Modifying the WM_DESTROY Case.. 243
11.6.7 Adding WM_LBUTTONUP, WM_MOUSEMOVE, and

WM_LBUTTONDOWN Cases... 244
11.6.8 Adding a WM_RBUTTONUP Case.. 245
11.6.9 Adding a WM_ERASEBKGND Case ... 245
11.6.10 Modifying the WM_ COMMAND Case... 245
11.6.11 Modifying the Makefile.. 248
11.6.12 Compiling and Linking ... 248

11. 7 Related Topics 248

Chapter 12 Printing.. 249
12.1 Printing with Windows ; .. 251

12.1.1 Functions and Printer Escapes .. 252
12.2 Retrieving Information About the Current Printer................................... 252
12.3 Printing aLine of Text ... 254
12.4 Printing a Bitmap .. 256
12.5 Processing Errors During Printing ... 257

Contents xi

12.6 Canceling a Print Operation... 259
12.6.1 Defining a Dialog Box That Cancels a Print Operation................. 260
12.6.2 Defining a Dialog Box Procedure for the Abort Dialog Box 260
12.6.3 Defining a Function That Cancels a Print Operation..................... 261
12.6.4 Performing a Cancelable Print Operation...................................... 263
12.6.5 Canceling a Print Operation with the AbortDoc Function............. 263

12.7 Using Banding to Print Images.. 263
12.8 Sample Application: PmtFile ... 266

12.8.1 Adding an AbortDlg Dialog Box... 266
12.8.2 Adding Variables for Printing .. 267
12.8.3 Adding an IDM_PRINT Case.. 267
12.8.4 Creating the AbortDlg Dialog Box Procedure and

AbortProc Function 270
12.8.5 Adding a GetPrinterDC Function... 271
12.8.6 Exporting the AbortDlg Dialog Box Procedure and

AbortProc Function 272
12.8.7 Compiling and Linking ... 273

12.9 Related Topics.. 273

Chapter 13 Clipboard ... 275
13.1 Using the Clipboard .. 277

13 .1.1 Copying Text to the Clipboard... 279
13.1.2 Pasting Text from the Clipboard.. 281
13.1.3 Pasting Bitmaps from the Clipboard .. 283
13.1.4 Windows Clipboard Application.. 284

13 .2 Using Special Clipboard Features.. 284
13.2.1 Rendering Data on Request.. 285
13.2.2 Rendering Formats Before Termination ... 285
13.2.3 Registering a Private Format.. 285
13.2.4 Controlling Data Display in the Clipboard..................................... 286

13.3 Sample Application: ClipText .. 289
13.3.1 Adding New Variables ... 289
13.3.2 Modifying the Instance Initialization Code.................................... 289
13.3.3 Adding a WM_INITMENU Case.. 290
13.3.4 Modifying the WM_ COMMAND Case .. 291
13.3.5 Adding a WM_PAINT Case .. 293
13.3.6 Adding an OutOfMemory Function ... 294
13.3.7 Compiling and Linking... 294

13.4 Related Topics .. 295

xii Microsoft Windows Guide to Programming

Part 3 Advanced Programming Topics

Chapter 14 C and Assembly Language .. 299
14.1 Choosing a Memory Model.. 301
14.2 Using the NULL Constant.. .. 302
14.3 Using Command-Line Arguments and the MS-DOS Environment.. 303
14.4 Writing Exported Functions ... 304

14.4.1 Creating a Callback Function 304
14.4.2 Creating the WinMain Function... 305

14.5 Using C Run-Time Functions... 306
14.5.1 Using Windows C Libraries ... 306
14.5 .2 Allocating Mem?ry 307
14.5.3 Handling Strings ... 307
14.5.4 Using File Input and Output ... 309
14.5.5 Using Console Input and Output .. 309
14.5.6 Using Graphics Functions ... 310
14.5.7 UsingFloating-PointArithmetic .. 310
14.5.8 Executing Other Applications ... 311
14.5.9 Using BIOS and MS-DOS Interface Functions 311
14.5 .10 Eliminating C Run-Time Startup Code 311

14.6 Writing Assembly-Language Code .. 313
14.6.1 Modifying the Interrupt Flag .. 314
14.6.2 Writing Exported Functions in Assembly Language 316
14.6.3 Using the ES Register... 317

14. 7 Related Topics 318

Chapter 15 Memory Management.. 319
15.1 UsingMemory .. 321

15.1.1 Using the Global Heap .. 322
15.1.2 Using the Local Heap ... 323
15.1.3 Working with Discardable Memory ... 325

15.2 Using Segments .. 326
15.2.1 Using Code Segments ... 327
15.2.2 The DATA Segment ... 328

15.3 Sample Application: Memory.. 329
15.3.1 Splitting the C-Language Source File .. 329
15.3.2 Modifying the Header File.. 330

Contents xiii

15.3.3 Adding New Segment Definitions ... 330
15.3.4 Modifying the Makefile .. 331
15.3.5 Compiling and Linking... 332

15.4 Related Topics.. 332

Chapter 16 More Memory Management.. 333
16.1 Memory Configurations 335

16.1.1 Standard Mode.. 336
16.1.2 386 Enhanced Mode ... 340

16.2 Storing Data.. 342
16.2.1 Managing Automatic Data Segments ... 343
16.2.2 Managing Local Dynamic-Data Objects.. 345
16.2.3 Managing Global Memory Objects.. 349
16.2.4 Using Extra Bytes in Window and Class Data Structures 356
16.2.5 Managing Resources... 357

16.3 Using Memory Models ... 360
16.4 Using Huge Data .. 361
16.5 Traps to A void When Managing Program Data 362
16.6 Managing Memory for Program Code... 364

16.6.1 Using Code-Segment Attributes... 364
16.6.2 Using Multiple Code Segments .. 365
16.6.3 Balancing Code Segments.. 365

16.7 Related Topics .. 366

Chapter 17 Print Settings .. 367
17 .1 Overview 369
17 .2 How Windows Manages Print Settings 370

17 .2.1 Print Settings and the DEVMODE Structure................................. 370
17 .2.2 Print Settings and the Printer Environment.................................... 372

17 .3 Using Device-Driver Functions 372
17.4 Determining the Capabilities of the Printer Driver.................................. 37 4
17.5 Working with Print Settings ... 374

17 .5 .1 Specifying ExtDeviceMode Input and Output............................... 37 5
17 .5 .2 Retrieving a Copy of the Print Settings.. 37 6
17 .5 .3 Changing the Print Settings 37 6
17 .5 .4 Tailoring Print Settings for Use with the CreateDC Function....... 377
17.5.5 Changing the Print Settings Without Affecting

Other Applications.. 379
17.5.6 Prompting the User for Changes to the Print Settings 380

xiv Microsoft Windows Guide to Programming

17 .6 Copying Print Settings Between Drivers ... 381
17.7 Maintaining Your Own Print Settings .. 382
17 .8 Working with Older Printer Drivers... 382
17.9 Related Topics .. 383

Chapter 18 Fonts .. 385
18.1 Font Fundamentals ... 387

18.1.1 Font Organization ... 387
18.1.2 Measuring Characters ... 388
18.1.3 Measuring Line and Intercharacter Spacing 389
18.1.4 CharacterSets ... 390

18.2 Fonts in Windows ... 393
18.2.1 Raster, Vector, and TrueType Fonts .. 393
18.2.2 Font Resource Files .. 394
18.2.3 Basics of TrueType Fonts... 395
18.2.4 Text and Character Attributes ... 398
18.2.5 Font Mapper .. 402
18.2.6 Standard Font Dialog Box .. 403

18.3 TrueType Font Technology .. 404
18.3.1 What You See Is What You Get: WYSIWYG 405
18.3.2 Embedded Fonts ... 405
18.3.3 Printer Portability.. 408
18.3.4 Document Portability .. 410
18.3.5 Disk Space, Memory Usage, and Speed ... 410
18.3.6 Font Design and Scaling ... 411
18.3.7 Designing Portable Fonts .. 411

18.4 Using Fonts in Applications ... 413
18.4.1 Using Stock Fonts ... 413
18.4.2 EnumeratingFonts .. 415
18 .4.3 Checking a Device's Text Capabilities 417
18.4.4 Creating a Logical Font .. 418
18.4.5 Retrieving Information About the Selected Font 420
18.4.6 Retrieving Information About a Logical Font. 421
18.4.7 Drawing Text.. 421
18.4.8 TrueType Font Functions and Structures....................................... 426
18.4.9 Creating Customized Fonts ... 431

18.5 Related Topics .. 436

Contents xv

Chapter 19 Color Palettes... 437
19.1 What a Color Palette Does ... 439
19.2 How a Color Palette Works .. 440
19.3 Creating and Using a Logical Palette ... 442

19.3.1 Creating a LOGPALETTE Structure ... 442
19.3.2 Creating a Logical Palette... 445
19.3.3 Selecting the Palette into a Device Context................................... 445
19.3.4 Realizing the Palette... 446

19.4 Drawing with Palette Colors .. 446
19.4.1 Directly Specifying Palette Colors ... 446
19.4.2 Indirectly Specifying Palette Colors... 447
19 .4.3 Using a Palette When Drawing Bitmaps.. 449

19 .5 Changing a Logical Palette... 450
19.6 Responding to Changes in the System Palette ... 452

19.6.1 Responding to the WM_QUERYNEWPALETTE Message 453
19.6.2 Responding to the WM_PALETTECHANGED Message............ 453

19.7 Related Topics .. 455

Chapter 20 Dynamic-Link Libraries... 457
20.1 What Is a Dynamic-Link Library?... 459

20.1.1 Import and Dynamic-Link Libraries .. 460
20.1.2 Application and Dynamic-Link Modules....................................... 461
20.1.3 Dynamic-Link Libraries and Tasks.. 462
20.1.4 Dynamic-Link Libraries and Stacks ... 462
20.1.5 How Windows Locates Dynamic-Link Libraries 463

20.2 When to Use a Custom Dynamic-Link Library....................................... 464
20.2.1 Sharing Objects Between Applications.. 464
20.2.2 Customizing an Application for Different Markets 466
20.2.3 Windows Hooks.. 467
20.2.4 Device Drivers.. 467
20.2.5 Custom Controls... 468
20.2.6 Project Management... 473

20.3 Creating a Dynamic-Link Library.. 47 4
20.3.1 Creating the C-Language Source File .. 474
20.3.2 Creating the Module-Definition File .. 481
20.3.3 Creating the Makefile... 482

20.4 Application Access to Dynamic-Link Code.. 485
20.4.1 Creating a Prototype for the Library Function............................... 485
20.4.2 Importing the Library Function.. 486

xvi Microsoft Windows Guide to Programming

20.5 Rules for Windows Object Ownership 488
20.6 Sample Dynamic-Link Library: Select .. 489

20.6.1 Creating the Functions.. 490
20.6.2 Creating the Initialization Function.. 495
20.6.3 Creating the Exit Routine ... 495
20.6.4 Creating the Module-Definition File".. 496
20.6.5 Creating the Header File... 496
20.6.6 Compiling and Linking ... 496

20.7 Related Topics .. 497

Chapter 21 Multiple Document Interface ... 499
21.1 Elements of a Multiple Document Interface Application........................ 501
21.2 Initializing a Multiple Document Interface Application.......................... 502

21.2.1 Registering the Window Classes.. 502
21.2.2 Creating the Windows .. 503

21.3 Writing the Main Message Loop .. 504
21.4 Writing the Frame Window Procedure .. 505
21.5 Writing the Child Window Procedure .. 506
21.6 Associating Data with Child Windows.. 506

21.6.1 Storing Data in the Window Structure ... 506
21.6.2 Using Window Properties ... 507

21.7 Controlling Child Windows ... 507
21.7.1 Creating a Child Window ... 508
21.7.2 Destroying a Child Window ... 509
21.7.3 Activating and Deactivating a Child Window 509
21.7.4 Arranging Child Windows on the Screen 510

21.8 Related Topics .. 510

Chapter 22 Dynamic Data Exchange.. 511
22.1 Data Exchange in Windows 514

22.1.1 Clipboard Transfers .. 514
22.1.2 Dynamic-Link: Libraries ... 514
22.1.3 Dynamic Data Exchange .. 514
22.1.4 Uses for Windows Dynamic Data Exchange 515
22.1.5 Dynamic Data Exchange from.the User's Point of View 515

Contents xvii

22.2 Dynamic-Data-Exchange Concepts... 516
22.2.1 Client, Server, and Conversation .. 516
22.2.2 Application, Topic, and Item Names.. 517
22.2.3 Permanent Data Links .. 518
22.2.4 Atoms and Shared Memory Objects .. 518

22.3 Dynamic-Data-Exchange Messages .. 519
22.4 Dynamic-Data-Exchange Message Flow... 520

22.4.1 Initiating a Conversation.. 521
22.4.2 Transferring a Single Item.. 523
22.4.3 Establishing a Permanent Data Link 528
22.4.4 Carrying Out Commands in a Remote Application....................... 534
22.4.5 Terminating a Conversation ... 534

22.5 The System Topic... 536
22.6 Related Topics.. 536

Index ... 537

Introduction

This introduction provides some background information that you should review
before using this guide, including the following topics:

• The manuals that come with the Microsoft® Windows TM 3 .1 Software Develop-
ment Kit (SDK)

• What you should know before you start

• The purpose and contents of this guide

• The tools you need to create applications for the Windows operating system

• The code samples described in this guide

• The document conventions used throughout this guide

Software Development Kit Documentation Set
Throughout this documentation set, "SDK" refers specifically to the Microsoft
Windows 3.1 Software Development Kit and its contents. The SDK includes the
following manuals:

Microsoft Windows 3 .1 Software Development Kit Getting Started provides an
orientation to the SDK, explains how to install the SDK software, and highlights
the changes for Windows 3.1.

The Microsoft Windows Guide to Programming (this manual) explains how to
write Windows applications and provides code samples that you can use as tem­
plates for writing your own applications. This manual also addresses some ad­
vanced Windows programming topics.

Microsoft Windows Programming Tools explains how to use the tools you will
need to develop Windows applications. These tools include debuggers and special­
ized SDK editors.

The Microsoft Windows Programmer's Reference is a comprehensive guide to all
the details of the Microsoft Windows application programming interface (API).
The four volumes of this reference list in alphabetic order all the current functions,
macros, messages, data types, and structures of the API, and provide extensive
overviews on how to use the APL

.. xx Micros&ft Windows Guide to Programming

Before You Start
To start using this guide, you need the following:

• Experience using Windows and an understanding of the Windows user inter­
face.

Before siarting any Windows application development, you should install
Windows version 3.1 on your computer and learn how to use it. Be sure to learn
the names, purposes, and operation of the various parts of a Windows applica­
tion (such as windows, dialog boxes, menus, controls, and scroll bars). Because
your Windows applications will incorporate these features, it is important for
you to understand them so that you can implement them properly.

• An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all
applications. This ultimately helps your application's user by reducing the ef­
fort required to learn the user interface of a Windows application; it helps you,
the programmer, by clarifying the choices you have to make when designing an
interface.

• Experience writing C-language applications and using the standard C run-time
functions.

The C programming language is the preferred development language for
Windows applications. (Although you can develop Windows applications in
Pascal and assembly language, these languages present additional challenges
that you typically bypass when writing applications in the C language.)

About This Guide
This guide is intended to help the experienced C programmer make the transition
to writing applications that use the Windows version 3.1 APL It explains how to
use Windows functions, messages, and structures to carry out useful tasks com­
mon to all Windows applications and illustrates these explanations with code
samples that you can compile and run with Windows version 3.1.

This guide consists of three parts, each containing several chapters.

Part 1, "Programming in the Windows Environment," presents an overview of the
Windows operating system and programming environment and provides an in­
depth look at a sample Windows application. Part 1 contains the following chap­
ters:

• Chapter 1, "Overview of the Windows Environment," compares Windows to
the Microsoft® MS-DOS® programming environment, provides a brief over­
view of Windows, describes the elements of a Windows application, and out­
lines the Windows application-development process.

Introduction xxi

• Chapter 2, "Generic Windows Application," shows how to create a simple
Windows application called Generic. This application is the basis for sub­
sequent examples in this guide.

Part 2, "Programming Windows Applications," explains basic Windows program­
ming tasks, such as creating menus, printing, and using the clipboard. Each chap­
ter covers a specific topic and provides code samples that illustrate that topic. Part
2 contains the following chapters:

• Chapter 3, "Output to a Window," introduces the graphics device interface
(GDI) and shows how to use GDI tools to create your own output.

• Chapter 4, "Keyboard and Mouse Input," shows how to process input from the
mouse and keyboard.

• Chapter 5, "Icons," shows how to create and display icons.

• Chapter 6, "Cursors," shows how to create and display cursors.

• Chapter 7, "Menus," shows how to create menus for your applications and how
to process input from menus.

• Chapter 8, "Controls," explains how to create and use controls, such as push
buttons and list boxes.

• Chapter 9, "Dialog Boxes," explains how to create and use dialog boxes and
how to fill them with controls.

• Chapter 10, "File Input and Output," explains how to use the OpenFile func-
tion and provides rules about reading from and writing to disk files.

• Chapter 11, "Bitmaps," shows how to create and display bitmaps.

• Chapter 12, "Printing," explains how to use a printer with Windows.

• Chapter 13, "Clipboard," explains the clipboard and shows how to use it.

Part 3, "Advanced Programming Topics," introduces and explains some advanced
topics, such as memory management and dynamic data exchange (DDE). Each
chapter covers a specific topic. Part 3 contains the following chapters:

• Chapter 14, "C and Assembly Language," presents some guidelines for writing
C-language and assembly-language Windows applications.

• Chapter 15, "Memory Management," shows how to allocate global and local
memory.

• Chapter 16, "More Memory Management," provides a more in-depth look at
how your application can efficiently manage memory. This chapter also ex­
plains how Windows manages memory under different memory configurations.

• Chapter 17, "Print Settings," explains how to tailor printer settings (such as
page size and orientation).

• Chapter 18, "Fonts," shows how to create and load fonts and how to use them
in the TextOut function.

xxii Microsoft Windows Guide to Programming

• Chapter 19, "Color Palettes," shows how to use Windows color palettes to
make the most effective use of color.

• Chapter 20, "Dynamic-Link Libraries," explains how to create and use
Windows dynamic-link libraries (DLLs).

• Chapter 21, "Multiple Document Interface," explains how to create an applica­
tion that uses the Windo\vs multiple document interface (~.1DI) so that users
can work with more than one document at a time.

• Chapter 22, "Dynamic Data Exchange," explains how to pass data from one ap­
plication to another by using the message-based DDE protocol.

Suggested Tools
To build most Windows version 3.1 applications, you need the following tools:

• Microsoft® C Optimizing Compiler (CL)

• Microsoft Segmented Executable Linker (LINK)

• Microsoft Windows Resource Compiler (RC)

• Microsoft Image Editor (IMAGEDIT.EXE)

• Microsoft Dialog Editor (DLGEDIT.EXE)

To build Windows libraries and font resource files, you need the following addi­
tional tools:

• Microsoft® Macro Assembler (ML)

• Microsoft Windows Font Editor (FONTEDIT.EXE)

The following tools may also be useful in building and debugging Windows appli­
cations:

• Microsoft Program Maintenance Utility (NMAKE)

• Microsoft® Code View® for Windows™ (CVW)

• Microsoft Windows Profiler

• Microsoft Windows Heap Walker (HEAPW ALK.EXE)

• Microsoft Windows Spy (SPY.EXE)

The SDK includes all of these tools except for CL, LINK, ML, and NMAKE. All
are described more fully in Microsoft Windows Programming Tools.

For a list of Windows 3.1 software and hardware requirements, see Microsoft
Windows 3 .1 Software Development Kit Getting Started.

Introduction xxiii

Code Samples
The code samples in this guide are written in the C language and conform to the
user-interface style recommended by Microsoft for Windows applications.

Document Conventions
The following conventions are used throughout this manual to define syntax:

Convention

Bold text

Italic text

[]

BEGIN

END

Meaning

Denotes a term or character to be typed literally, such as a resource­
definition statement or function name (MENU or Create Window),
a command, or a command-line option (/nod). You must type these
terms exactly as shown.

Denotes a placeholder or variable: You must provide the actual
value. For example, the statement SetCursorPos(X,Y) requires you
to substitute values for the X and Y parameters.

Enclose optional parameters.

Separates an either/or choice.

Specifies that the preceding item may be repeated.

Represents an omitted portion of a code sample.

In addition, certain text conventions are used to help you understand this material:

Convention

SMALL CAPITALS

FULL CAPITALS

monos pace

Meaning

Indicate the names of keys, key sequences, and key combina­
tions-for example, ALT+SPACEBAR.

Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

Sets off code examples and shows syntax spacing.

Programming in the Windows Environment

Overview of the Windows
Environment

Chapter 1

1.1 Windows and MS-DOS Compared ... 5
1.1.1 User Interface ... 5
1.1.2 Queued Input.. 6
1.1. 3 Device-Independent Graphics 7
1.1.4 Multitasking Capabilities... 7

1.2 Elements of a Windows Application 8
1.2.1 Windows 8
1.2.2 Menus... 9
1.2.3 Dialog Boxes.. 10
1.2.4 Message Loops .. 10

1.3 Windows Libraries... 12
1.4 Software Development Tools 13

1.4.1 Microsoft C Optimizing Compiler 13
1.4.2 Microsoft Segmented Executable Linker.................................. 13
1.4.3 ResourceEditors .. 14
1.4.4 Microsoft Windows Resource Compiler................................... 15
1.4.5 Debugging and Optimizing Tools ... 15
1.4.6 Microsoft Program Maintenance Utility................................... 16

1.5 Building a Windows Application .. 17
1.6 Related Topics.. 19

Chapter 1 Overview of the Windows Environment 5

This chapter provides an overview of programming in the Microsoft Windows 3 .1
operating system and covers the following topics:

• A comparison of Windows applications and standard MS-DOS applications

• Elements of a Windows application

• Windows libraries

• Processes and tools you use to develop and build Windows applications

1 .1 Windows and MS-DOS Compared
Windows has many features that the standard MS-DOS environment does not. For
this reason, Windows applications may, at first, seem more complex than standard
MS-DOS applications. This is understandable when you consider some of the addi­
tional features that Windows offers:

• A graphical user interface featuring windows, menus, dialog boxes, and con-
trols for applications

• Queued input

• Device-independent graphics

• Multitasking capabilities

• Data interchange between applications

When writing applications for the MS-DOS environment, most C programmers
use the standard C run-time libraries to carry out an application's input, output,
memory management, and other activities. The C run-time libraries are for the pro­
grammer who is working in a standard operating environment consisting of a char­
acter-based terminal for user input and output, and exclusive access to system
memory as well as to the input and output devices of the computer.

In Windows, these characteristics are no longer valid. Windows applications share
the computer's resources, including the CPU, with other applications. Windows
applications interact with the user through a graphics-based screen, a keyboard,
and a mouse.

1.1.1 User Interface
In a multitasking operating system, it is important to give all applications some
portion of the screen so that the user can interact with all applications. Some sys­
tems do this by giving one program full use of the screen while other programs
wait in the background. With Windows, every application has access to some part
of the screen at all times by means of a window for user interaction. A window is

6 Microsoft Windows Guide to Programming

a rectangle that provides a combination of useful visual devices, such as menus,
controls, and scroll bars, with which the user controls an application.

In the standard MS-DOS environment, the system automatically prepares the
screen for an application-typically, by passing a file handle to the application.
The application can then use that file handle to send output to the screen by using
conventional C rrm-time functions or ~/IS-DOS function calls. In \l/indo\vs, an ap­
plication must create its own window before performing any output or receiving
any input. Once the application creates a window, Windows provides the applica­
tion with a great deal of information about what the user is doing with the win­
dow. Windows automatically performs many of the tasks the user requests, such
as moving and sizing the window.

Another advantage to developing applications in Windows is that, in contrast to a
standard C application, which has access to a single screen "surface," a Windows
application can create and use any number of overlapping windows to display in­
formation in any number of ways. Windows manages the screen, controls the
placement and display of windows, and ensures that no two applications attempt to
access the same part of the screen at the same time.

1.1.2 Queued Input
One of the biggest differences between Windows applications and standard C ap­
plications is the way in which they receive user input.

Input to an MS-DOS application is typically in the form of 8-bit characters read
from the keyboard. The application reads these characters by calling the standard­
input functions getchar and fscanf, which return ASCII or other codes correspond­
ing to the keys pressed. The application can also intercept interrupts from input
devices such as the mouse and timer to use information from those devices as
input.

In a Windows application, all input from the keyboard, mouse, and timer is inter­
cepted by Windows, which places the input in the appropriate application's mes­
sage queue. When the application is ready to retrieve input, it simply reads the
next input message from its message queue.

A Windows input message contains far more input information than is available
in the standard MS-DOS environment. Such a message specifies the system time,
the position of the mouse, the state of the keyboard, the scan code of the key (if a
key was pressed), the mouse button pressed, as well as the device generating
the message. For example, two keyboard messages, WM_KEYDOWN and
WM_KEYUP, correspond to the pressing and releasing of a specific key. For each
keyboard message, Windows provides a device-independent virtual-key code that ·
identifies the key, the device-dependent scan code generated by the keyboard, and

Chapter 1 Overview of the Windows Environment 7

the status of other keys on the keyboard, such as SHIFT, CTRL, and NUMLOCK. Key­
board, mouse, and timer messages all have the same format and are all processed
in the same manner.

1.1.3 Device-Independent Graphics
A Windows application has access to a large and varied set of device-independent
graphics operations. This means your application can easily draw lines, rectangles,
circles, and complex regions. Because Windows provides device independence, ap­
plications can use the same functions to draw a circle on either a dot-matrix printer
or a high-resolution graphics screen.

Windows requires device drivers to convert graphics-output requests to output for
a printer, plotter, screen, or other output device. A device driver is a special execu­
table library that an application can load and connect to a specific output device
and port. A device context represents the device driver, the output device, and per­
haps the communications port. Your application carries out graphics operations
within the context of a specific device.

1.1.4 Multitasking Capabilities
Windows is a multitasking operating system-that is, it can run more than one ap­
plication at a time. The standard MS-DOS operating system has no particular mul­
titasking capabilities. An MS-DOS application typically operates as though it has
exclusive control of all resources in the computer, including the input and output
devices, memory, the screen, and even the CPU itself. A Windows application,
however, must share these resources with all other applications that are currently
running. For this reason, Windows carefully controls these resources and requires
Windows applications to use a program interface that guarantees that Windows
maintains control of those resources.

For example, an MS-DOS application has access to all memory that has not been
taken up by the system, by the application itself, or by terminate-and-stay-resident
programs (often called TSRs). This means that applications are free to use all avail­
able memory for any purpose and may access it by any method.

In Windows, memory is a shared resource. Since more than one application can be
running at the same time, each application must cooperatively share memory to
avoid exhausting the resource. Applications may allocate what they need from sys­
tem memory. Windows provides two sources of memory: global memory, for
large allocations; and local memory, for small allocations. To make the most effi­
cient use of memory, Windows often moves or even discards memory objects.
This means an application cannot "assume" that objects to which it has assigned a
memory location remain where it put them. If several applications are running,
Windows may move and discard memory objects often.

8 Microsoft Windows Guide to Programming

Another example of a shared resource is the screen. The system typically grants an
MS-DOS application exclusive use of the screen, allowing the application to per­
form many operations, from changing the color of text and background to chang­
ing the video mode from text to graphics. A Windows application, however, must
share the screen with other applications and must not take control of the screen.

1.2 Elements of a Windows Application

1.2.1 Windows

Most Windows applications use the following elements to interact with the user:

• Windows

• Menus

• Dialog boxes

• Message loops

This section describes these elements in detail.

A window is the primary input and output device of any Windows application. It
is an application's only access to the screen. A window consists of a title bar, a
menu bar, scroll bars, borders, and other features that occupy a rectangle on the
screen. When creating a window, an application specifies the window features
and then draws the window. The following figure shows the main features of a
window:

1.2.2 Menus

File menu
System-menu box

Erint
Page Se!up .. .
Print Setup .. .

E;s:it

Window border

Chapter 1 Overview of the Windows Environment 9

Scroll bar

Minimize button
Maximize button

Scroll box

Although an application creates a window, the application and Windows col­
laborate to manage the window. Windows maintains the position and appearance
of the window; manages standard window features such as the border, scroll bars,
and title bar; and carries out many tasks initiated by the user that directly affect the
window. The application maintains everything else about the window. In particu­
lar, it maintains and controls the appearance of the client area of the window (the
portion within the window borders).

To manage this collaboration, Windows notifies each window of changes that
might affect it. Each window must have a corresponding window procedure,
which is a procedure that receives the window-management messages and then re­
sponds appropriately. These messages either specify actions for the procedure to
carry out or are requests for information from the procedure.

Menus are the principal means of user input in a Windows application. A menu is
a list of items that you supply. To the user, these items are commands that can be
viewed or chosen. When creating an application, you create the names of its
menus and menu items. Windows then displays and manages the menus, and
sends a message to the window procedure when the user makes a choice. The mes­
sage is the application's signal to carry out the command associated with the menu
item.

10 Microsoft Windows Guide to Programming

1.2.3 Dialog Boxes
A dialog box is a temporary window the application displays so that the user can
supply more information for a command. A dialog box contains one or more con­
trols. A control is a small window that has a very simple input or output function.
For example, an edit control is a simple window in which the user can type and
edit text. The controls in a dialog box help the user supply filenames, choose op­
tions, and otherwise direct the action of the command.

1.2 .4 Message Loops
Since an application receives input through its application queue, the chief feature
of any Windows application is its message loop. The message loop retrieves input
messages from the application queue and dispatches them to the appropriate win­
dows.

The following figure shows how Windows and applications collaborate to process
keyboard-input messages. Windows receives keyboard input when the user
presses and releases a key. Windows then copies the keyboard-input messages
from the system queue to the appropriate application queue. The message loop re­
trieves the keyboard-input messages, translates them into the Windows character
message WM_ CHAR, and dispatches the WM_ CHAR message, as well as the
keyboard-input messages, to the appropriate window procedure. The window pro­
cedure then uses the TextOut function to display the character in the client area of
the window.

Hardware
input

Windows

Application A

WinMain function

Application B

WinMain function

Chapter 1 Overview of the Windows Environment 11

Windows can receive and distribute input messages for several applications at the
same time. As shown in the following figure, Windows collects input messages in
its system queue and then copies each message to the appropriate application
queue. Again, the message loop in each application retrieves messages and dis­
patches them, through Windows, to each application's appropriate window proce­
dure.

User presses
the rn key

Windows

Application

Keyboard-input messages must be retrieved by an application from its message
queue. In contrast, window-management messages are sent directly by Windows
to the appropriate window procedure. The following figure illustrates this
process. After Windows carries out a request to destroy a window, it sends a
WM_DESTROY message directly to the window procedure, bypassing the appli­
cation queue. The window procedure must then signal the main function that the
window is destroyed and that the application should terminate. It does this by
copying a WM_ QUIT message into the application queue by using the PostQuit­
Message function.

12 Microsoft Windows Guide to Programming

User selects
"Exit" from
application
menu

Windows

Message loop and
WinMain function
terminate on receiving
WM_QUIT message

When the message loop retrieves the WM_ QUIT message, the loop terminates and
the main function exits.

1.3 Windows Libraries
Windows functions, like C run-time functions, are defined in libraries. The
Windows libraries, unlike the C run-time libraries, are special dynamic-link librar­
ies (DLLs) that the system links with your application when it loads your applica­
tion. Dynamic-link libraries are an important feature of Windows because they
minimize the amount of code each application requires.

Windows consists of the following three main libraries:

Library

User

Kernel

GDI

Description

Provides window management. This library manages the overall
Windows graphical environment, as well as an application's windows.

Provides system services, such as multitasking, memory management,
and resource management.

Provides the graphics device interface (GDI).

Chapter 1 Overview of the Windows Environment 13

1.4 Software Development Tools
To create a Windows application, you use many new development tools, as well as
some familiar tools with new options. This section briefly describes the tools you
will use.

1.4.1 Microsoft C Optimizing Compiler
To compile Windows applications, you use Microsoft C Optimizing Compiler
(CL), just as you do for standard C applications. You can use many of the same
CL command-line options you use for standard C applications. However,
Windows also requires two special options: /Gw and /Zp. The /Gw option adds
the Windows prolog and epilog code to each function; this code is required for the
application to run with Windows. The /Zp option packs structures, ensuring that
the structures used in your application are the same size as the corresponding struc­
tures used by Windows. Following is a typical CL command for compiling a
small-model Windows application:

cl /c /AS /Gsw /Os /Zdp test.c

The /c option instructs the compiler to perform only the C compilation, but not the
linking. The /c option is necessary if you want to compile multiple C source files
separately.

1.4.2 Microsoft Segmented Executable Linker
To produce Windows-format executable files, you use Microsoft Segmented Ex­
ecutable Linker (LINK), which is supplied with CL. Unlike normal C applications,
Windows applications require a module-definition (.DEF) file for linking. This file
must do the following:

• Define a name for the application.

• Mark the application as a Windows application.

• Specify certain attributes of the application, such as whether a data segment is
movable in memory.

• List and name any callback functions in the application.

Following is an example of a module-definition file:

NAME Generic ;application's module name

DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS ;required for all Windows applications

14 Microsoft Windows Guide to Programming

STUB 'WINSTUB.EXE' ;The "stub" displays an error message if
;the application is run without Windows.

CODE PRELOAD MOVEABLE ;code can be moved in memory

;DATA must be MULTIPLE if the program can be invoked more than once.

DATA MOVEABLE MULllPLc

HEAPSIZE 1024
STACKSIZE 5120 ;recommended minimum for Windows applications

;All functions that will be called by any Windows function
;MUST be exported.

EXPORTS
MainWndProc
AboutDlgProc

@1 ;name of window-processing procedure
@2 ;name of About processing procedure

To link a Windows application, you specify the name of each object file created
by the compiler, the name of the Windows import library, the name of the module­
definition file, and other options and files. Following is a typical LINK command:

link /nod generic, , , slibcew libw, generic.def

For more information about LINK and the module-definition file, see Microsoft
Windows Programming Tools.

1.4.3 Resource Editors
You use the Windows resource editors to create application resources such as cur­
sors, icons, font files, and bitmaps. You must then list these resources in the appli­
cation's resource-definition file. The resource editors are included in the Microsoft
Windows 3.1 Software Development Kit (SDK) and are as follows:

• Microsoft Image Editor (IMAGEDIT.EXE), which creates icons, cursors, and
bitmaps.

• Microsoft Windows Font Editor (FONTEDIT.EXE), which creates font files.

Because these editors are Windows applications, you must run them with
Windows. For more information about the Windows resource editors, see
Microsoft Windows Programming Tools.

Chapter 1 Overview of the Windows Environment 15

1.4.4 Microsoft Windows Resource Compiler
Most Windows applications use a variety of resources, each defined in a file called
a resource-definition (.RC) file. After creating the resource-definition file, you use
Windows Resource Compiler (RC) to compile it and add the compiled resources
to the application's executable file. When the application runs, it can load and use
the resources from the executable file.

Following is an example of a resource-definition file that defines two resources, a
cursor and an icon:

Bullseye CURSOR bullseye.cur
Generic ICON generic.ico

The first statement defines a cursor resource by naming it (Bullseye), declaring its
type (CURSOR), and specifying the file that contains the cursor image
(BULLSEYE.CUR). The second statement does the same for an icon resource.

To compile a resource-definition file and add the compiled resources to an execu­
table file, use the RC command. Following is a typical RC command:

re generic.re

For a description of how to use RC, see Microsoft Windows Programming Tools.
For a description of the resource statements that make up a resource-definition
file, see the Microsoft Windows Programmer's Reference, Volume 4.

1.4.5 Debugging and Optimizing Tools
The SDK includes several tools you can use to debug your Windows application
and to optimize its performance:

• Microsoft Code View for Windows (CVW) helps you debug Windows applica­
tions while your system is running them with Windows in standard mode or
386 enhanced mode. With CVW, you can set breakpoints, view source-level
code, and display symbolic information while you are debugging a Windows
applications.

• Microsoft Windows Spy (SPY.EXE), monitors the messages that Windows
sends to an application. Monitoring can be particularly useful when you are de­
bugging.

• Microsoft Windows Profiler reports the relative times it takes your applica­
tion's code segments to execute, helping you fine-tune your application's per­
formance.

16 Microsoft Windows Guide to Programming

• Microsoft Windows Heap Walker (HEAPW ALK.EXE) examines the contents
of the local or global memory heap.

For more information about these tools, see Microsoft Windows Programming
Tools.

1.4.6 Microsoft Program Maintenance Utility
The Microsoft Program Maintenance Utility (NMAKE) updates applications by
keeping track of the dates of their source files. NMAKE is included with CL ver­
sion 6.0.

Although NMAKE comes with CL, and not with the SDK, it is especially impor­
tant for Windows applications because of the number of files required to create a
Windows application. This utility uses a text file, called a makefile, that contains a
list of the commands and files needed to build a Windows application. The make­
file commands compile and link the various files. NMAKE executes the com­
mands only if the files named in those commands have changed. This saves time
if, for example, you have made only a minor change to a single file.

The following example shows the content of a typical makefile for a Windows ap­
plication:

#The following line allows NMAKE to use this file as well.
all: generic.exe

Update the resources if necessary.

generic.res: generic.re generic.h
re /r generic.re

Update the object file if necessary.

generic.obj: generic.c generic.h
cl /AS le /DLINT_ARGS /Gsw /Oat /W2 /Zped generic.c

#Update the executable file if necessary.
#(If it is necessary, add the resources to it.)

generic.exe: generic.obj generic.def
link /nod generic, , , slibcew libw, generic.def
mapsym generic
re generic.res

Chapter 1 Overview of the Windows Environment 17

If the .RES file is new and the .EXE file is not,
compile only the resources. Note that you can update
#the .RC file without having to either recompile or
#relink the file.

generic.exe: generic.res
re generic.res

Typically, a makefile has the same name as the application it builds, although any
name is allowed. Following is an NMAKE command that uses the commands in
the file GENERIC:

nmake generic

For more information about NMAKE, see the CL documentation.

1.5 Building a Windows Application
To build a Windows application, follow these steps:

1. Create C-language or assembly-language source files that contain the Win­
Main function, window procedures, and other application code.

2. Use the resource editors (Image Editor and Font Editor) to create any cursor,
icon, bitmap, and font resources the application will require.

3. Create a resource-definition (.RC) file that defines the application's resources.
This file lists and names the resources you created in the preceding step. It also
defines menus, dialog boxes, and other resources.

4. Create the module-definition (.DEF) file, which defines the attributes of the ap­
plication modules, such as segment attributes, stack size, and heap size.

5. Compile and link all C-language source files; assemble all assembly-language
source files.

6. Use RC to compile the resource-definition file and add it to the executable file.

Some programming practices that work well for C-language or assembly-language
applications will not work at all in the Windows environment. For detailed infor­
mation about using C and assembly language to write Windows applications, see
Chapter 14, "C and Assembly Language."

In general, when writing Windows applications, remember the following rules:

• Do not take exclusive control of the CPU-it is a shared resource. Although
Windows is a multitasking system, it is nonpreemptive. This means it cannot
take control back from an application until the application releases control. A
cooperative application carefully manages access to the CPU and gives other ap­
plications ample opportunity to run.

18 Microsoft Windows Guide to Programming

• Do not attempt to directly access memory or hardware devices such as the key­
board, mouse, timer, screen, and serial and parallel ports. Windows requires ab­
solute control of these resources to ensure equal, uninterrupted access for all
applications that are running.

• Within the application, all functions that Windows can call must be defined
with the PASCAL keyword; this ensures that the function accesses arguments
correctiy. Functions that Windows can call are the WinMain function, callback
functions, and window procedures.

• Every application must have a WinMain function. This function is the entry
point, or starting point, for the application. It contains statements and functions
that create windows and that read and dispatch input intended for the applica­
tion. The function definition has the following form:

int PASCAL WinMain(hinstCurrent, hinstPrevious, lpszCmdline,
nCmdShow)

HINSTANCE hinstCurrent;
HINSTANCE hinstPrevious;
LPSTR lpszCmdline;
int nCmdShow;
{

}

I* handle of current instance
I* handle of previous instance
/* address of command line
/* show-window type (open/icon) */

The WinMain function must be declared with the PASCAL keyword. Al­
though Windows calls the function directly, WinMain must not be defined
with the FAR keyword, since it is called from linked-in startup code.

• When using Windows functions, be sure to check the return values. Do not ig­
nore these return values, because unusual conditions sometimes occur when a
function fails.

• Do not use C run-time functions for console input and output. These functions
include getchar, putchar, scanf, and printf.

• Do not use C run-time file-input-and-output functions to access serial and paral­
lel ports. Instead, use the communications functions, which are described in
detail in the Microsoft Windows Programmer's Reference, Volume 2.

• You can use the C run-time file-input-and-output functions to access disk files.
In particular, use the Windows OpenFile function and the low-level, C run­
time input-and-output functions. Although you can use the C run-time stream­
input-and-output functions, you do not get the advantages that OpenFile
provides.

Chapter 1 Overview of the Windows Environment 19

• You can use the C run-time memory-management functions malloc, calloc,
realloc, and free, but be aware that Windows translates these functions to its
own local-heap functions, LocalAlloc, LocalReAlloc, and LocalFree. Since
local-heap functions do not always operate exactly as do C run-time memory­
management functions, you may get unexpected results.

1.6 Related Topics
For information about specific Windows functions and messages, see the
Microsoft Windows Programmer's Reference, Volumes 2 and 3.

For more information about software development tools, see Microsoft Windows
Programming Tools.

Generic Windows Application

Chapter 2

2.1 A Standard Windows Application: Generic 23
2.2 WinMain Function... 24

2.2.1 Data Types and Structures... 25
2.2.2 Handles 26
2.2.3
2.2.4

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

2.2.11

Instances... 26
Registering a Window Class.. 27
2.2.4.1 Filling a WNDCLASS Structure 28
2.2.4.2 Using the RegisterClass Function........................... 30
Creating a Window 30
Showing and Updating a Window ... 32
Creating a Message Loop .. 33
Yielding Control 34
Terminating an Application... 34
Initialization Functions.. 35
2.2.10.1 Main Initialization Function.................................... 36
2.2.10.2 Instance Initialization Function............................... 36
Application Command-Line Parameter..................................... 37

2.3 Window Procedure... 37
2.4 Creating an About Dialog Box 39

2.4.1 Creating a Dialog Box Template... 40
2.4.2 Creating a Header File... 41
2.4.3 Creating a Dialog Box Procedure.. 42
2.4.4 Defining a Menu with an About Command.............................. 43
2.4.5 Processing a WM_ COMMAND Message 44

2.5 Creating a Module-Definition File.. 45
2.6 Creating Generic 48

2.6.1 Creating the C-Language Source File....................................... 48

22 Microsoft Windows Guide to Programming

2.6.2 Creating the Header File.. 54
2.6.3 Creating the Resource-Definition File....................................... 54
2.6.4 Creating the Module-Definition File... 55
2.6.5 Creating the Makefile .. 56
2.6.6 Running Microsoft Program Maintenance Utility..................... 57

2.7 Using Generic as a Template ... 57
2.8 Related Topics.. 59

Chapter 2 Generic Windows Application 23

This chapter explains how to create a simple application for the Microsoft
Windows 3.1 operating system. Generic demonstrates the concepts explained in
Chapter 1, "Overview of the Windows Environment."

This chapter covers the following topics:

• Essential parts of a Windows application

• Initializing a Windows application

• Writing the message loop

• Terminating an application

• Basic steps needed to build a Windows application

The Generic application is used as basic code for all the code samples in Part 2 of
this guide.

2 .1 A Standard Windows Application: Generic
A standard Windows application is any application that is specifically written to
run with Windows, and that uses the Windows application programming interface
(API) to carry out its tasks. Every Windows application also has a main function
(called WinMain) and a window procedure.

Generic is a standard Windows application. It has a WinMain function and a win­
dow procedure, and it features a main window, a border, an application menu, and
Maximize and Minimize buttons. The application menu includes a Help menu
with an About command, which, when chosen by the user, displays an About
dialog box describing Generic. The following shows the completed Generic appli­
cation, with an About dialog box:

Help menu

Generic Sample Application

,~~ Abe>ul Generic

Microsoft Windows
Generic Application

Version 3.1

About dialog box

24 Microsoft Windows Guide to Programming

Building an application from the Generic template helps you understand how
Windows applications are put together and how they work.

2.2 WinMain Function
Much like the main function in standard C-language applications, the WinMain
function is the entry point for a Windows application. Every Windows application
must have a WinMain function (it is always named WinMain); no Windows ap­
plication can run without it. In most Windows applications, the WinMain function
does the following:

• Calls initialization functions that register window classes, create windows, and
perform any other necessary initializing

• Enters a message loop to process messages from the application queue

• Terminates the application when the message loop retrieves a WM_ QUIT mes­
sage

The WinMain function has the following form:

int PASCAL WinMain(hinstCurrent, hinstPrevious, lpszCmdline, nCmdShowl
HINSTANCE hinstCurrent; /* handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance */
LPSTR lpszCmdline; /* address of command line */
int nCmdShow; /* show-window type (open/icon) */
{

}

The WinMain function requires the PAS CAL calling convention.

When the user starts an application, Windows passes the following four parame­
ters to the application's WinMain function:

Parameter

hinstCurrent

hinstPrevious

lpszCmdLine

Value passed to application

The instance handle of the application.

The handle of another instance of the application, if one is running.
If no other instances of this application are running, Windows sets
this parameter to NULL.

A long pointer to a null-terminated command line.

Parameter

nCmdShow

Chapter 2 Generic Windows Application 25

Value passed to application

An integer that specifies whether to display the application's window
as a window or as an icon. The application passes this value to the
ShowWindow function when calling that function to display the ap­
plication's main window.

For more information about handles, see Section 2.2.2, "Handles." For more
information about the lpszCmdLine parameter, see Section 2.2.11, "Application
Command-Line Parameter."

2.2.1 Data Types and Structures
The WinMain function uses several special data types to define its parameters.
For example, it uses the HANDLE data type to define the hinstCurrent and hinst­
Previous parameters, and the LPSTR data type to define the lpszCmdLine parame­
ter. In general, Windows applications use many more data types than are found in
a typical C-language application. Although the Windows data types are often
equivalent to familiar C-language data types, they are intended to be more descrip­
tive and should help you better understand the purpose of a variable or parameter
used in an application.

The Windows data types are defined in the WINDOWS.H header file. This file is
an ordinary C-language source file that contains definitions for all the Windows
special constants, variables, structures, and functions. To use these definitions, you
must include the WINDOWS.H file in each source file. Place the following line at
the beginning of your source file:

#include <windows.h> /* required for all Windows applications */

Following are some commonly used Windows data types:

Type

WORD
LONG
HANDLE

HWND

LPSTR

FARPROC

Meaning

Specifies a 16-bit, unsigned integer.

Specifies a 32-bit, signed integer.

Identifies a 16-bit, unsigned integer to be used as a handle.

Identifies a 16-bit, unsigned integer to be used as a handle of a win­
dow.

Specifies a 32-bit address of a character string (of type char)

Specifies a 32-bit address of a function.

26 Microsoft Windows Guide to Programming

2.2.2 Handles

2.2.3 Instances

Following are some commonly used structures:

Structure

MSG

WNDCLASS

PAINTSTRUCT
RECT

Description

Contains information about an input message from the Windows
application queue.

Defines a window class.

Defines a structure used to paint the client area of a window.

Defines a rectangle.

For a complete listing and description of Windows data types and structures, see
the Microsoft Windows Programmer's Reference, Volume 3.

Two of the WinMain function parameters (hinstPrevious and hinstCurrent) are
called handles. A handle is a unique integer that Windows uses to identify an ob­
ject created or used by an application. Windows uses a wide variety of handles,
identifying objects such as application instances, windows, menus, controls, allo­
cated memory, output devices, files, and graphics device interface (GDI) pens and
brushes.

Most handles are indices into internal tables. Windows uses handle indices to
access information stored in these tables. Typically, an application has access only
to the handle and not to the information. When the application must examine or
change the information, it supplies the handle, and Windows does the rest. This is
one way that Windows protects information with its multitasking capabilities.

Not only can you run more than one application at a time with Windows, you can
also run more than one copy, or instance, of the same application at a time. To dis­
tinguish one instance from another, Windows supplies a unique instance handle (a
unique integer identifying the instance) each time it calls the WinMain function to
start the application.

With some multitasking systems, to run multiple instances of the same application
at the same time the system loads a fresh copy of the application's code and data
into memory and runs that copy. With Windows, when a new instance of the appli­
cation is started only the data for the application is loaded. Windows uses the same
code for all instances of the application. This saves as much space as possible for
other applications and for data. However, this method requires that the code seg­
ments of the application remain unchanged while the application is running. This
means that you must not store data in a code segment or change the code while the
application is running.

Chapter 2 Generic Windows Application 27

For most Windows applications, the first instance has a special role. Many of the
resources an application creates, such as window classes, are generally available to
all applications. Consequently, only the first instance of an application creates
these resources. All subsequent instances may use the resources without having to
create them. To determine which is the first instance, Windows sets the hinst­
Previous parameter of WinMain to NULL if there are no previous instances. The
following example shows how to check that a previous instance does not exist:

int PASCAL WinMain(hinstCurrent, hinstPrevious, lpszCmdLine, nCmdShow)
HINSTANCE hinstCurrent; /* handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance */
LPSTR lpszCmdLine; f* address of command line */
int nCmdShow; f* show-window type (open/icon) */
{

if (hinstPrevious NULL)

}

To keep the user from starting more than one instance of your application, the ap­
plication should check the hinstPrevious parameter upon starting and should re­
turn to Windows if the parameter is not NULL. The following example shows
how to do this:

if (hinstPrevious)
return NULL;

2.2.4 Registering a Window Class
Before you can create any window, you must have a window class. A window
class is a template that defines the attributes of a window, such as the shape of the
window's cursor and the name of the window's menu. The window class also
specifies the window procedure that processes messages for all windows in the
class. Although Windows provides some predefined window classes, most applica­
tions define their own window classes in order to completely control how their
windows operate.

You must register a window class before you can create a window that belongs to
that class. You do this by filling a WNDCLASS structure with information about
the class and passing it as a parameter to the RegisterClass function.

28. Microsoft Windows Guide to Programming

2.2.4.1 Filling a WNDCLASS Structure
The WNDCLASS structure provides information to Windows about the name, at­
tributes, resources, and window procedure for a window class. The WNDCLASS
structure contains the following members:·

Member

lpszCiassName

hlnstance

lpfn WndProc

style

hbrBackground

hCursor

hlcon

lpszMenuName

cbClsExtra

cIWndExtra

Description

Points to the name of the window class. A window class name
must be unique; that is, different applications must use different
class names.

Identifies the application instance that is registering the class.

Points to the window procedure used to carry out work on the win­
dow.

Specifies the class styles, such as automatic redrawing of the win­
dow whenever it is moved or sized.

Identifies the brush used to paint the window background.

Identifies the cursor used in the window.

Identifies the icon used to represent a minimized window.

Points to the resource name of a menu.

Specifies the number of extra bytes to allocate for this class struc­
ture. The extra bytes are initialized to zero.

Specifies the number of extra bytes to allocate for all the window
structures created with this class. The extra bytes are initialized to
zero.

For more information about these members, see the Microsoft Windows Program­
mer's Reference, Volume 3.

Some members, such as lpszClassName, hlnstance, and lpfnWndProc, must be
assigned values. Other members can be set to NULL. When these members are set
to NULL, Windows uses a default attribute for windows created using the class.
The following example shows how to fill a window structure:

BOOL InitApplication(hinstCurrentl
HINSTANCE hinstCurrent; /* current instance
{

WNDCLASS we;

/*
* Fill in window-class structure with parameters that
* describe the main window.
*/

we.style = NULL;
wc.lpfnWndProc = MainWndProc;

/* class style(s)
/* window procedure
/* for windows of this class

wc.cbClsExtra
wc.cbWndExtra

0;
0;

Chapter 2 Generic Windows Application 29

f* no per-class extra data
/* no per-window extra data

wc.hinstance = hinstCurrent; /* application that owns class *f
wc.hlcon = Loadlcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObjectCWHITE_BRUSHl;
wc.lpszMenuName = "GenericMenu"; f* menu name in .RC file */
wc.lpszClassName = "GenericWClass"; f* name in CreateWindow */

f* Register the window class and return success/failure code. *f

return CRegisterClassC&wc));

This example first declares a WNDCLASS structure named wc.

The style member is set to NULL.

The lpfn WndProc member contains a pointer to the window procedure named
MainWndProc. This means that the application's MainWndProc procedure will re­
ceive any messages that Windows sends to that window and will be the procedure
that carries out tasks for that window. To assign the address ofMainWndProc to
the lpfnWndProc member, you must declare the procedure somewhere before the
assignment statement. Windows applications should use prototypes for declaring
procedures in order to take advantage of the automatic type-checking and casting
provided by CL. The following is the correct prototype for a window procedure
with the name MainWndProc:

LRESULT FAR PASCAL MainWndProc(HWND, UINT, WPARAM, LPARAM);

Note that the MainWndProc procedure must be exported in the module-definition
file.

The cbClsExtra and cbWndExtra members are set to zero, so there is no addi­
tional storage space associated with either the window class or each individual
window. (You can set these members to allocate additional storage space, which
you can then use to store information on a per-window basis. For information
about using this extra space, see Chapter 16, "More Memory Management."

The hlnstance member is set to hinstCurrent, the instance handle that Windows
passed to the WinMain function when the application was started.

The hlcon member receives a handle to a built-in icon. The Loadlcon function
can return a handle to either a built-in icon or an application-defined icon. In this
case, the NULL and IDI_APPLICATION arguments specify the built-in applica­
tion icon. (Most applications use their own icons instead of the built-in application
icon. Chapter 5, "Icons," explains how to create and use your own icons.)

30 Microsoft Windows Guide to Programming

The hCursor member receives a handle to the standard arrow-shaped cursor. The
LoadCursor function can return a handle to either a built-in cursor or an applica­
tion-defined cursor. In this case, the NULL and IDC_ARROW arguments specify
a built-in arrow cursor. (Some applications use their own cursors instead of built­
in cursors. Chapter 6, "Cursors," explains how to create and use your own cur­
sors.)

The hbrBackground member determines the color of the brush that Windows is
to use to paint the window's background. In this case, the application uses the Get­
StockObject function to retrieve the handle of the standard white background
brush.

The lpszMenuName member specifies the name of the menu for this window
class, GenericMenu. This menu then appears for all windows in this class. If the
window class has no menu, this member is set to NULL.

The lpszClassName member specifies GenericWClass as the class name for this
window class.

2.2.4.2 Using the RegisterClass Function
After you assign values to the WNDCLASS structure members, you register the
class by using the RegisterClass function. If registration is successful, the func­
tion returns a nonzero value; otherwise, it returns zero. Make sure you check the
return value, because you cannot create your windows without first registering the
window class.

Although the RegisterClass function requires a 32-bit pointer to a WNDCLASS
structure, in the previous example, the address operator(&) generates only a 16-
bit address. This is an example of an implicit cast carried out by CL. The
Windows header file contains prototypes for all Windows functions. These proto­
types specify the correct types for each function parameter, and the compiler casts
to these types automatically.

2.2.5 Creating a Window
You can create a window by using the Create Window function. This function
tells Windows to create a window that has the specified style and belongs to the
specified class. Create Window takes several parameters:

• Name of the window class

• Window title

• Window style

• Window position

• Parent-window handle

Chapter 2 Generic Windows Application 31

• Menu handle

• Instance handle

• 32 bits of additional data

The following example creates a window belonging to the GenericWClass win­
dow class (created in the sample code shown in Section 2.2.4.1, "Filling a
WNDCLASS Structure"):

/* Create a main window for this application instance. */

hWnd = CreateWindow(

) ;

"GenericWClass", /* see RegisterClass call */
"Generic Sample Application",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,

/* text for title bar */
/* window style */
/* default horz position */
/* default vert position */ CW_USEDEFAUL T,

CW_USEDEFAULT,
CW_USEDEFAUL T,
NULL,
NULL,
hinstCurrent,
NULL

/* default width */
/* default height */

I* overlapped windows have no parent */
/* use window class menu */
/* this instance owns this window */
/* pointer not needed */

This example creates an overlapped window that has the style
WS_OVERLAPPEDWINDOW and that belongs to the window class created by
the code in the preceding example.

The first parameter of the Create Window function specifies the name of the win­
dow class Windows should use when creating the window. In this example, the
window class name is GenericWClass. The second parameter of Create Window
specifies the window caption as "Generic Sample Application".

The WS_OVERLAPPEDWINDOW style specifies that the window is a normal
"overlapped" window, and the next four Create Window parameters specify the
position and dimensions of the window. Since the CW _USEDEFAULT value is
specified for the position, width, and height parameters, Windows places the win­
dow at a default position and gives it a default width and height. The default posi­
tion and dimensions depend on the system and on how many other applications
have been started. (Note that Windows does not display the window until the appli­
cation calls the ShowWindow function.)

When you create a window, you can specify its parent window (used with control
windows and child windows) in the hwndParent parameter. Because an over­
lapped window does not have a parent window, this parameter is set to NULL. If
you specify a menu in the hmenu parameter when you create a window, the menu
overrides the class menu (if any) for the window. Because this window is to use
the class menu, this parameter is also set to NULL.

32 Microsoft Windows Guide to Programming

You must specify the instance of the application that is creating the window.
Windows uses this instance to make sure that the window procedure supporting
the window uses the data for this instance.

The last parameter, lpvParam, is for additional data to be used by the window pro­
cedure when the window is created. In this case, the window takes no additional
data; so the parameter is set to NULL.

When Create Window successfully creates the window, it returns a handle of the
new window. You can then use the handle to carry out tasks, such as showing the
window or updating its client area.

If Create Window cannot create the window, it returns NULL. Whenever your ap­
plication creates a window, it should check for a NULL handle and respond appro­
priately. For example, in the WinMain function, if the application's main window
cannot be created, the application should be terminated-that is, WinMain should
return control to Windows.

2.2.6 Showing and Updating a Window
Although Create Window creates a window, it does not automatically display the
window. Instead, your application must display the window by using the Show­
Window function and must update the window's client area by using the
Update Window function.

The ShowWindow function tells Windows to display the new window. For the ap­
plication's main window, WinMain should call ShowWindow soon after creating
the window and should pass the nCmdShow parameter to it. The nCmdShow
parameter tells the application whether to display the window as an open window
or as an icon. After calling ShowWindow, WinMain should call the Update­
Window function. The following example illustrates how to show and update a
window:

ShowWindow(hWnd, nCmdShow); /*shows the window */
UpdateWindow(hWnd); /*sends a WM_PAINT message*/

Note Normally, the nCmdShow parameter of the ShowWindow function can be
set to any of the constants beginning with SW_ that are defined in the
WINDOWS.H header file. The one exception is when the application calls Show­
Window to display its main window; then, it uses the nCmdShow parameter from
the WinMain function. For a complete list of these constants, see the Microsoft
Windows Programmer's Reference, Volume 2.

Chapter 2 Generic Windows Application 33

2.2.7 Creating a Message Loop
Once your application has created and displayed a window, the WinMain func­
tion can begin its primary duty: to read messages from the application queue and
dispatch them to the appropriate window. WinMain does this by using a message
loop. A message loop is a program loop, typically created by using a while state­
ment, in which WinMain retrieves messages and dispatches them.

Windows does not send input directly to an application. Instead, it places all
mouse and keyboard input into an application queue (along with messages posted
by Windows and other applications). The application must read the application
queue, retrieve the messages, and dispatch them so that the appropriate window
procedure can process them.

The simplest possible message loop consists of the GetMessage and Dispatch­
Message functions. This loop has the following form:

MSG msg;

while (GetMessage(&msg, NULL, NULL, NULL)) {
DispatchMessage(&msg);

}

In this example, the GetMessage function retrieves a message from the applica­
tion queue and copies it to the message structure named msg. The NULL argu­
ments indicate that all messages should be processed. The DispatchMessage
function directs Windows to send each 1nessage to the appropriate window proce­
dure. Every message an application receives, except the WM_ QUIT message,
belongs to one of the windows created by the application. Since an application
must not call a window procedure directly, it uses the DispatchMessage function
instead to pass each message to the appropriate procedure.

Depending on what your application does, it may require a more complicated mes­
sage loop. In particular, to process character input from the keyboard, it must trans­
late each message it receives by using the TranslateMessage function. The
message loop should then look like this:

while (GetMessage(&msg, I* message structure */
NULL, /* handle of window receiving the message */
NULL, I* lowest message to examine */
NU LL)) I* highest message to examine */

{
TranslateMessage(&msg); /* translates virtual key codes */
DispatchMessage(&msg); /* dispatches message to window */

34 Microsoft Windows Guide to Programming

The TranslateMessage function looks for matching WM_KEYDOWN and
WM_KEYUP messages and generates a corresponding WM_ CHAR message for
the window that contains the Windows character code for the given key. This mes­
sage loop could also contain functions that process menu accelerator keys and
keystrokes within dialog boxes. Again, this would depend on what your applica­
tion does.

Windows places input messages in an application queue when the user moves the
cursor in the window, presses or releases a mouse button when the cursor is in the
window, or presses or releases a key when the window has the input focus. The
window manager first collects all keyboard and mouse input in a system queue
and then copies the corresponding messages to the appropriate application queue.

The message loop continues until GetMessage returns NULL, which it does only
if it retrieves the WM_ QUIT message. This message is a signal to terminate the ap­
plication and is usually posted (placed in the application queue) by the window
procedure of the application's main window.

2.2.8 Yielding Control
Windows is a nonpreemptive multitasking system. This means that it cannot take
control from an application. Instead, the application must yield control before
Windows can reassign control to another application.

To make sure that all applications have equal access to the CPU, the GetMessage
function automatically yields control when there are no messages in an application
queue. This means that if there is no work for the application to do, Windows can
give control to another application. Since all applications have a message loop,
this implicit yielding of control guarantees that control is shared.

In general, you should rely on the GetMessage function to yield for your applica­
tion. Although a function (Yield) is available that explicitly yields control, you
should avoid using it. Since there might be times when your application must keep
control for a long time, such as when writing a large buffer to a file, you should try
to minimize the work and provide a visual clue to the user that a lengthy operation
is under way.

2.2.9 Terminating an Application
Your application terminates when the WinMain function returns control to
Windows. WinMain can return control at any time before starting the message
loop. Typically, an application checks each step leading up to the message loop to
make sure each window class is registered and each window is created. If there is
an error, the application can display a message before terminating.

Chapter 2 Generic Windows Application 35

Once the WinMain function enters the message loop, however, the only way to
terminate the loop is to post a WM_ QUIT message in the application queue by
using the PostQuitMessage function. When the GetMessage function retrieves
a WM_ QUIT message, it returns NULL, which terminates the message loop.
Typically, the window procedure for the application's main window posts a
WM_ QUIT message when the main window is being destroyed (that is, when the
window procedure has received a WM_DESTROY message).

Although WinMain specifies a data type for its return value, Windows does not
currently use the return value. For debugging an application, however, a return
value can be helpful. In general, the easiest return-code conventions are those used
by standard C-language applications: zero for successful execution, nonzero for
error. The PostQuitMessage function lets the window procedure specify the re­
turn value. This value is then copied to the wParam parameter of the WM_ QUIT
message. To return this value after terminating the message loop, use the follow­
ing statement:

return (msg.wParam); f* returns value from PostQuitMessage */

Although standard C-language applications typically free any allocated resources
just prior to terminating, Windows applications should free resources as each win­
dow is destroyed. This process is called "cleaning up." Failing to clean up can
cause an application to lose some data. For example, when Windows itself termi­
nates, it destroys each window but does not return control to the application's mes­
sage loop. This means that the loop never retrieves the WM_ QUIT message and
the statements after the loop are not executed. (Windows does send each applica­
tion a WM_QUERYENDSESSION message before terminating, so an application
does have an opportunity to carry out tasks before terminating. For more informa­
tion about the WM_QUERYENDSESSION message, see Chapter 10, "File Input
and Output."

2.2.10 Initialization Functions
Most applications use two locally defined initialization functions:

• The main initialization function carries out work that must be done only once
for all instances of the application (for example, registering window classes).

• The instance initialization function performs tasks that must be done for every
instance of the application.

Using initialization functions keeps the WinMain function simple and readable; it
also organizes initialization tasks so that they can be placed in a separate code seg­
ment and discarded after use. The Generic application does not discard its initiali­
zation functions.

36 Microsoft Windows Guide to Programming

2.2.10.1 Main Initialization Function
The Generic application's main initialization function looks like the following:

BOOL InitApplication(hinstCurrent)
HINSTANCE hinstCurrent; /* current instance
{

WNDCLASS we;

f*
* Fill in window-class structure with parameters that
* describe the main window.
*f

we.style = NULL; f* class style(s)
wc.lpfnWndProc MainWndProc; f* window procedure

f* for windows of this class

wc.cbClsExtra 0; f* no per-class extra data
wc.cbWndExtra 0; f* no per-window extra data

*f
*f
*f

*f
*f

wc.hinstance = hinstCurrent; /* application that owns class */
wc.hicon = Loadicon(NULL, IDI_APPLICATION);

}

wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "GenericMenu"; f* menu name in .RC file *f
wc.lpszClassName = "GenericWClass"; f* name in CreateWindow */

f* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

2.2.10.2 Instance Initialization Function
Generic's instance initialization function looks like the following:

BOOL Initinstance(hinstCurrent, nCmdShow)
HINSTANCE hinstCurrent; /* handle of current instance
int nCmdShow; /* param for first ShowWindow call
{

HWND hWnd; f* handle of main window

f*
* Save the instance handle in a static variable, which will
*be used in subsequent calls from this application to
* Windows.
*f

}

Chapter 2 Generic Windows Application 37

hinst = hinstCurrent;

I* Create a main window for this application instance. */

hWnd = CreateWindow(
"GenericWClass", /* see RegisterClass call */
"Generic Sample Application",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,

f* text for title bar */
/* window style */
/* default horz position */
I* default vert position */

) ;

CW_USEDEFAUL T,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hinstCurrent,
NULL

I* default width */
I* default height */

I* overlapped windows have no parent */
/* use window class menu *I
/* this instance owns this window */
/* pointer not needed */

f* If the window could not be created, return "failure." */

if (hWnd == NULL)
return FALSE;

* Make the window visible, update its client area, and
* return "success."
*/

ShowWindow(hWnd, nCmdShowJ;
UpdateWindow(hWnd);
return TRUE;

/* shows window
/* sends WM_PAINT message

2. 2 .11 Application Command-Line Parameter
You can examine the command line that starts your application by using the
lpszCmdLine parameter. The lpszCmdLine parameter points to the start of a charac­
ter array that contains the command exactly as it was typed by the user. To extract
filenames or options from the command line, you need to parse the command line
into individual values. Alternatively, you can use the __ argc and __ argv varia­
bles. For more information, see Chapter 14, "C and Assembly Language."

2.3 Window Procedure
A window procedure responds to input and window-management messages re­
ceived from Windows. The procedure can be short, processing only a message or
two, or it can be complex, processing many types of messages for a variety of ap­
plication windows. In either case, every window must have a window procedure.

38 Microsoft Windows Guide to Programming

A window procedure has the following form:

LRESULT FAR PASCAL MainWndProc(hWnd, message, wParam, lParam)
HWND hWnd; /* window handle */
UINT message; /* type of message *I
WPARAM wParam; /* additional information */
LPARAM lParam; /*additional information */
{

switch (message) {

default: /* passes it on if unprocessed *I
return (DefWindowProc(hWnd, message, wParam, lParam));

}

return NULL;
}

The window procedure uses the PASCAL calling convention. Since Windows
calls this procedure directly and always uses this convention, PASCAL is re­
quired. The window procedure also uses the FAR keyword in its definition, since
Windows uses a 32-bit address whenever it calls a procedure or function. Also,
you must name the window procedure in an EXPORTS statement in the applica­
tion's module-definition file. For more information about module-definition files,
see Section 2.5, "Creating a Module-Definition File."

The window procedure receives messages from Windows. These may be input
messages that have been dispatched by the WinMain function, or they may be
window-management messages that come directly from Windows. The window
procedure must examine each message; it then either carries out some specific ac­
tion based on the message or passes the message back to Windows for default pro­
cessing by the DetWindowProc function.

The message parameter defines the message type. You use this parameter in a
switch statement to direct processing to the correct case. The lParam and wParam
parameters contain additional message-dependent information. The window proce­
dure typically uses these parameters to carry out the requested action. If a window
procedure does not process a message, it must pass it to DetWindowProc. Passing
the message to DetWindowProc ensures that any special actions that affect the
window, the application, or Windows itself can be carried out.

Most window procedures process the WM_DESTROY message. Windows sends
this message to the window procedure immediately after destroying the window.
The message gives the procedure the opportunity to finish its processing and, if it
is the window procedure for the application's main window, to post a WM_ QUIT

Chapter 2 Generic Windows Application 39

message in the application queue. The following example shows how the main
window procedure should process this message:

case WM_DESTROY:
PostQuitMessage(0);
break;

The PostQuitMessage function places a WM_ QUIT message in the application's
queue. When the GetMessage function retrieves this message, it terminates the
message loop and the application.

A window procedure receives messages from two sources: Input messages come
from the message loop, and window-management messages come from Windows.
Input messages correspond to mouse input, keyboard input, and sometimes timer
input. Typical input messages are WM_KEYDOWN, WM_MOUSEMOVE,
WM_KEYUP, and WM_ TIMER, all of which correspond directly to hardware
input.

Windows sends window-management messages directly to a window procedure
without going through the application queue or message loop. These window mes­
sages are typically requests for the window procedure to carry out some action,
such as painting the client area of its window or supplying information about the
window. The messages may also inform the window procedure of changes that
Windows has made to the window. Some typical window-management messages
are WM_CREATE, WM_DESTROY, and WM_PAINT.

The window procedure should return a 32-bit message-dependent value. For most
messages, the return value is arbitrary; cases in which the return value is signifi­
cant are described in the Microsoft Windows Programmer's Reference, Volume 1.
If the window procedure does not process a message, it should return the Def­
WindowProc function's return value.

2 .4 Creating an About Dialog Box
You should include an About dialog box with every application. A dialog box is a
temporary window that displays information or prompts the user for input. The
About dialog box displays such information as the application's name and copy­
right information. The user tells the application to display the About dialog box by
choosing the About command from a menu.

You create and display a dialog box by using the DialogBox function. This func­
tion takes a dialog box template, a procedure-instance address, and a handle of a
parent window, and creates a dialog box through which your application can dis­
play output and prompt the user for input.

40 Microsoft Windows Guide to Programming

To display and use an About dialog box, follow these steps:

1. Create a dialog box template and add it to your resource-definition file.

2. Add a dialog box procedure to your C-language source file.

3. Export the dialog box procedure in your module-definition file.

4. Add a menu to your application's resource-definition file.

5. Process the WM_ COMMAND message in your application code.

Once you have completed these steps, your application will be able to display the
dialog box when the user chooses the About command from the application's
menu.

2.4.1 Creating a Dialog Box Template
A dialog box template is a description of a dialog box's style, contents, shape, and
size. You can create your own custom template or use Microsoft Dialog Editor
(DLGEDIT.EXE). In this example, the template is created manually. For informa­
tion about how to use Dialog Editor to create a dialog box, see Microsoft Windows
Programming Tools.

You create a dialog box template by creating a resource-definition file. This file
contains definitions of resources to be used by the application, such as icons, cur­
sors, and dialog box templates. To create an About dialog box template, you use a
DIALOG statement and fill it with control statements, as in the following ex­
ample:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "About Generic"
BEGIN

CTEXT "Microsoft Windows"
CTEXT "Generic Application"
CTEXT "Version 3.1"

DEFPUSHBUTTON "OK"
END

-1, 0, 5, 144, 8
-1, 0, 14, 144, 8
-1, 0, 34, 144, 8

IDOK, 53, 59, 32, 14, WS_GROUP

The DIALOG statement starts the dialog box template. The name AboutBox iden­
tifies the template when the DialogBox function is used to create the dialog box.
The box's upper-left comer is placed at the coordinates (22,17) in the parent win­
dow's client area. The box is 144 units wide by 75 units high. The horizontal units
are V4 of the dialog box's base-width unit; the vertical units are 1/8 of the dialog
box's base-height unit. The current base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function returns the
dialog box's base units in pixels.

Chapter 2 Generic Windows Application 41

The STYLE statement defines the dialog box style. This particular style is a win­
dow with a framed border, a title bar, and a System menu, which is the typical
style used for modal dialog boxes.

The BEGIN and END statements mark the beginning and end of the control defi­
nitions. The dialog box contains text and a default push button. The push button
lets the user send input to the dialog box procedure to terminate the dialog box.
The statements, strings, and integers contained between the BEGIN and END
statements describe the contents of the dialog box. (Because you would normally
create such a description by using Dialog Editor, this guide does not describe the
numbers and statements that make up the description. For a complete description
of how to use Dialog Editor, see Microsoft Windows Programming Tools.)

The CTEXT statement creates a rectangle with the quoted text centered in a rect­
angle. This statement appears several times, once for each of the various texts that
appear in the dialog box.

DEFPUSHBUTTON creates a push button that allows the user to give a default
response-in this case, choosing the OK button causes the dialog box to disap­
pear.

The DS_MODALFRAME, WS_CAPTION, WM_SYSMENU, IDOK, and
WS_GROUP constants used in the dialog box template are defined in the
Windows header file. You should include this file in the resource-definition file by
using the #include directive at the beginning of the definition file.

The statements in this file were created with a text editor and were based on a
dialog box used in another application. You can create many such resources by
copying them from other applications and modifying them by using a text editor.
You can also create new dialog boxes by using Dialog Editor. (The files created
by Dialog Editor contain statements that are somewhat different from the state­
ments shown here, and such files usually are edited only by using Dialog Editor.)

2.4.2 Creating a Header File
It is often useful to create a header file in which to define constants and function
prototypes for your application. Most applications consist of at least two source
files that share common constants: the C-language source file and the resource­
definition file. Since Microsoft Windows Resource Compiler (RC) carries out the
same preprocessing as CL, it is useful and convenient to place constant definitions
in a single header file and then include that file in both the C-language source file
and the resource-definition file.

For example, for the Generic application, you can place the prototypes for Win­
Main, MainWndProc, About, InitApplication, and Initlnstance, and the definition

42 Microsoft Windows Guide to Programming

of the menu identifier for the About command, in the GENERIC.H header file.
The file should look like this:

#define IDM_ABOUT 100

int PASCAL
BOOL
BOOL
LRESULT FAR PASCAL
BOOL FAR PASCAL

WinMain(HINSTANCE, HINSTANCE, LPSTR, int);
InitApplicationCHINSTANCE);
InitinstanceCHINSTANCE, int);
MainWndProcCHWND, UINT, WPARAM, LPARAM);
AboutCHWND, WORD, WPARAM, LPARAM);

Since GENERIC.H refers to Windows data types, you must include it after
WINDOWS.H, which defines those data types. The beginning of your source files
should look like this:

#include <windows.h>
#include "generic.h"

2.4.3 Creating a Dialog Box Procedure

/* required for all Windows applications */
/* specific to this program */

A dialog box is a special kind of window whose window procedure is built into
Windows. For every dialog box an application has, the application must have a
corresponding dialog box procedure. The Windows built-in window procedure
calls a dialog box procedure to handle input messages that can be interpreted only
by the application.

The procedure that processes input for Generic's About dialog box is called
About. This procedure, like other dialog box procedures, uses the same parameters
as a window procedure but processes only messages that are not handled by
Windows default processing. (The dialog box procedure returns TRUE if it
processes a message and FALSE if it does not.) The dialog box procedure, like the
window procedure, requires the PASCAL calling convention and the FAR key­
word in its definition. You must name the dialog box procedure in an EXPORTS
statement in the application's module-definition file. As with a window procedure,
a dialog box procedure must not be called directly from your application.

Unlike a window procedure, a dialog box procedure usually processes only user­
input messages, such as WM_ COMMAND, and must not send unprocessed mes­
sages to the DetWindowProc function. Generic' s dialog box procedure, About,
looks like this:

BOOL FAR PASCAL AboutChDlg, message, wParam, lParam)
HWND hDlg; /* handle of dialog box window
WORD message; /* type of message
WPARAM wParam; /* message-specific information
LP A RAM 1 Pa ram;

}

Chapter 2 Generic Windows Application 43

switch (message) {

}

case WM_INITDIALOG: /* message: initialize dialog box */
return TRUE;

case WM_COMMAND:
if (wParam == !DOK

11 wParam == IDCANCEL)
EndDialog(hDlg,
return

}

break;

TRUE;
TRUE);

I* received a command */
/* OK box selected? */
/* Close command? */
/* exits dialog box */

return FALSE; I* did not process a message */

The About dialog box procedure processes two messages: WM_INITDIALOG
and WM_ COMMAND. Windows sends the WM_INITDIALOG message to a
dialog box procedure to let the procedure initialize its controls before displaying
the dialog box. In this case, WM_INITDIALOG returns TRUE so that the focus is
passed to the first control in the dialog box that has the WS _TAB STOP bit set
(this control will be the default push button). If WM_INITDIALOG had returned
FALSE, Windows would not have set the focus to any control.

In contrast to WM_INITDIALOG messages, WM_ COMMAND messages are a
result of user input. The About procedure responds to input to the OK button or
the System menu Close command by calling the EndDialog function, which
directs Windows to remove the dialog box and continue running the application.
The EndDialog function is used to terminate dialog boxes.

2.4.4 Defining a Menu with an About Command
Once you have created an About dialog box for your application, you must pro­
vide a way for the user to display the dialog box. In most applications, the About
command would appear as the last command on the application's Help menu. If
the application does not have a Help menu, it usually appears in the first menu,
most often the File menu. In Generic, About is the only command, so it appears as
the only item on the Help menu.

The most common way to create a menu is to define it in a resource-definition file.
Put the following statements in GENERIC.RC:

GenericMenu MENU
BEGIN

POPUP "&Help"
BEGIN

MENU ITEM "About Generic ... ", IDM_ABOUT
END

END

44 Microsoft Windows Guide to Programming

These statements create a menu named GenericMenu with a single item on it,
Help. When chosen, the command associated with the item displays a pop-up
menu with the single menu item About Generic

Notice the ampersand(&) in the "&Help" string. This character immediately
precedes the command mnemonic a unique character with which the user can
access a menu or command. l\1nemonics are part of .\-xlindovvs' direct-access
method. If a user presses the key for the mnemonic together with the ALT key,
Windows selects the menu or chooses the command. In the case of &Help,
Windows removes the ampersand and places an underscore under the letter H
when displaying the menu.

The user sees the About command when the Help menu is displayed. If the
user chooses the About command, Windows sends the window procedure a
WM_ COMMAND message containing the About command's menu identifier-in
this case, IDM_ABOUT.

2.4.5 Processing a WM_ COMMAND Message
Now that you have added a menu item to Generic's menu, you will want the appli­
cation to be able to respond when the user chooses it as a command. To respond,
the application must process a WM_ COMMAND message. Windows sends this
message to the window procedure when the user chooses a command from the
window's menu. Windows passes the menu identifier of the command in the
wParam parameter, so you can check which command was chosen. (In this case,
you can use if and else statements to direct the flow of control, depending on the
value ofwParam. As your application's message processing becomes more com­
plex, you may want to use a switch statement instead.) The goal is to have the ap­
plication display the dialog box ifthe parameter is equal to IDM_ABOUT, the
About command's menu identifier. For any other value, the application must pass
the message on to the DefWindowProc function. If it does not, all other com­
mands on the menu are effectively disabled.

The WM_ COMMAND case should look like this:

FARPROC lpProcAbout; I• pointer to the "About" function •/

case WM COMMAND: /• message: command from a menu •I
if (wParam == IDM_ABOUT) {

lpProcAbout = MakeProcinstance((FARPROC) About, hinst);

Chapter 2 Generic Windows Application 45

DialogBox(hinst, /* current instance */
"AboutBox", /* resource to use */
hWnd, /* parent handle */
(DLGPROC) lpProcAbout); /*About instance address*/

FreeProcinstance(lpProcAbout);
break;

else /* let Windows process it */
return (DefWindowProc(hWnd, message, wParam, lParam));

Before it can display the dialog box, your application must have the procedure­
instance address of the dialog box procedure. You create this address by using the
MakeProclnstance function, which binds the data segment of the current applica­
tion instance to a pointer. This guarantees that when Windows calls the dialog box
procedure, the procedure uses the data in the current instance and not some other
instance of the application. MakeProclnstance returns the address of the proce­
dure instance. This value should be assigned to a pointer variable that has the
FARPROC type.

The DialogBox function creates and displays the dialog box. It requires the in­
stance handle of the current application and the name of the dialog box template.
It uses this information to load the dialog box template from the executable file.
DialogBox also requires the handle of the parent window (the window to which
the dialog box belongs) and the procedure-instance address of the dialog box pro­
cedure. DialogBox does not return control until the user has closed the dialog box.
Typically, the dialog box contains at least a push button to permit the user to close
the box.

When the DialogBox function returns, the procedure-instance address of the
dialog box procedure is no longer needed, so the FreeProclnstance function frees
the address. This invalidates the content of the pointer variable; an error results if
the application attempts to use the value again.

2.5 Creating a Module-Definition File
Every Windows application must have a module-definition file. This file defines
the name, code and data segments, memory requirements, and exported functions
of the application. For a simple application, like Generic, you need at least the
NAME, ST ACKSIZE, HEAPSIZE, EXETYPE, and EXPORTS statements.
However, most applications include a complete definition of the module, as shown
in the following example:

46 Microsoft Windows Guide to Programming

;module-definition file for Generic -- used by LINK.EXE

NAME Generic ; application's module name

DESCRIPTION 'Sample Microsoft Windows 3.1 Application'

EXETYPE WINDOWS required for all Windows apps

STUB 'WINSTUB.EXE' generates error message if app
is run without Windows

CODE MOVEABLE DISCARDABLE code can be moved in memory and
discarded/reloaded

; DATA must be MULTIPLE if program can be invoked more than once.

DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

All functions that will be called by any Windows function
MUST be exported.

EXPORTS
MainWndProc
About

@1
@2

name of window-processing procedure
name of About processing procedure

The semicolon is the delimiter for comments in the module-definition file.

The NAME statement, which is required, defines the name of the application.
Windows uses this name (in the example, Generic) to identify the application.

The DESCRIPTION statement is optional. fu the example, it places the message
"Sample Microsoft Windows 3.1 Application" in the application's executable file.
This statement is useful for adding version control or copyright information to the
file.

The EXETYPE statement is used to mark the executable file as a Windows execu­
table file. For a Windows application, the module-definition file must contain the
statement EXETYPE WINDOWS.

The STUB statement specifies another optional file that defines the executable
"stub" to be placed at the beginning of the file. When a user tries to run the appli­
cation without Windows, the stub is run instead. Most Windows applications use
the WINSTUB.EXE executable file supplied with the SDK. WlNSTUB.EXE dis­
plays a warning message and terminates the application if the user attempts to run
the application without Windows. You can also supply your own executable stub.

The CODE statement defines the memory attributes of the application's code
segment. In this example, the code segment contains the executable code that is

Chapter 2 Generic Windows Application 47

generated when the GENERIC.C file is compiled. Generic is a small-model
application with only one code segment, which is defined as MOVEABLE
DISCARD ABLE. If the application is not running and Windows requires addi­
tional space in memory, Windows can move the code segment to make room for
other segments and can, if necessary, discard the segment. A discarded code seg­
ment is automatically reloaded on demand by Windows.

The DATA statement defines the memory requirements of the application's data
segment. In this example, the data segment contains storage space for all the static
variables declared in the GENERIC.C file. It also contains space for the program
stack and local heap. The data segment, like the code segment, is defined as
MOVEABLE. In addition, the MULTIPLE keyword directs Windows to create a
new data segment for the application each time the user starts a new instance of
the application. Although all instances share the same code segment, each has its
own data segment. An application must have the MULTIPLE keyword if the user
can run more than one copy of it at a time.

The HEAPSIZE statement defines the size, in bytes, of the application's local
heap. Generic uses its heap to allocate a temporary structure used to register the
window class, so it specifies 1024 bytes of storage. Applications that frequently
use the local heap should specify larger amounts of memory.

The STACKSIZE statement defines the size, in bytes, of the application's stack.
The stack is used for temporary storage of function arguments. Any application
that calls its own local function must have a stack. Generic specifies 5120 bytes of
stack storage, the recommended minimum for a Windows application.

The EXPORTS statement defines the names and ordinal values of the functions to
be exported by the application. Generic exports its window procedure, MainWnd­
Proc, which has an ordinal value of 1 (this is an identifier; it could be any integer,
but usually such values are assigned sequentially as the exports are listed). You
must export all functions that Windows is to call (except WinMain). These func­
tions, referred to as callback functions, include the following:

• All window procedures

• All dialog box procedures

• Special callback functions, such as enumeration functions, that certain
Windows API functions require

• Any other function that is to be called from outside your application

For more information about callback functions, see Chapter 14, "C and Assembly
Language."

For more information about module-definition statements, see the Microsoft
Windows Programmer's Reference, Volume 4.

48 Microsoft Windows Guide to Programming

2. 6 Creating Generic
Now you are ready to create the sample application Generic.

Follow these steps:

1. Create the C-language source (.C) file.

2. Create the header (.H) file.

3. Create the resource-definition (.RC) file.

4. Create the module-definition (.DEF) file.

5. Create the makefile.

6. Run Microsoft Program Maintenance Utility (NMAKE) on the file to compile
and link the application.

2. 6 .1 Creating the C-Language Source File
The C-language source file contains the WinMain function, the MainWndProc
window procedure, the About dialog box procedure, and the InitApplication and
Initlnstance initialization functions. Name the file GENERIC.C.

The contents of the GENERIC.C file look like this:

/**
PROGRAM: GENERIC.C

PURPOSE: Generic template for Windows applications

FUNCTIONS:

WinMain - calls InitApplication, processes message loop
InitApplication - initializes window data, registers window
Initinstance - saves instance handle, creates main window
MainWndProc - processes messages
About - processes messages for About dialog box

COMMENTS:

Windows can have several copies of your application running
at the same time. The variable hinstCurrent keeps track of
which instance this application is so that processing will
be to the correct window.

**/

Chapter 2 Generic Windows Application 49

#define STRICT

#include <windows.h> /* required for all Windows applications */
#include "generic.h" /* specific to this program */

HINSTANCE hinst; /* handle current instance

/**

FUNCTION: WinMain(HINSTANCE, HINSTANCE, LPSTR, int)

PURPOSE: Calls initialization function, processes message loop

COMMENTS:

Windows recognizes this function by name as the initial
entry point for the program. This function calls the
application initialization function, if no other instance
of the program is running, and always calls the instance
initialization function. It then executes a message
retrieval and dispatch loop that is the top-level control
structure for the remainder of execution. The loop is
terminated when a WM_OUIT message is received, at which
time this function exits the application instance by
returning the value passed by PostQuitMessage.

If this function must terminate before entering the message
loop, it returns the conventional value NULL.

***/

int PASCAL WinMain(hinstCurrent, hinstPrevious, lpszCmdLine, nCmdShow)
HINSTANCE hinstCurrent; /* handle of current instance */
HINSTANCE hinstPrevious; /* handle of previous instance */
LPSTR lpszCmdLine; /* address of command line */
int nCmdShow; /* show-window type (open/icon) *I
{

MSG msg; I* message

if (!hinstPrevious) /*other instances of app running? *I
if (!InitApplication(hinstCurrent)) /*initialize shared */

return FALSE; /* exits if unable to initialize */

/* Perform initializations that apply to a specific instance. *I

if (!Initinstance(hinstCurrent, nCmdShow))
return FALSE;

/*
*Acquire and dispatch messages until a WM_OUIT message
* is received.
*/

50 Microsoft Windows Guide to Programming

while (GetMessage(&msg, /* message structure
NULL, /* handle of window receiving

*I
the message */

NULL, /* lowest message to examine
NULL)) /* highest message to examine

{

*I
*/

TranslateMessage(&msg);
DispatchMessage(&msg);

/* transl ates virtual key codes */
/* dispatches message to window*/

}

return (msg.wParam); /* value from PostQuitMessage
}

/**

FUNCTION: InitApplication(HINSTANCE)

PURPOSE: Initializes window data and registers window class

COMMENTS:

This function is called at initialization time only if
no other instances of the application are running. This
function performs initialization tasks that can be done
once for any number of running instances.

In this case, initialize a window class by filling out a
structure of type WNDCLASS and calling the RegisterClass
function. Since all instances of this application use
the same window class, you need to do this only when the
first instance is initialized.

***/

BOOL InitApplication(hinstCurrent)
HINSTANCE hinstCurrent; /* handle of current instance
{

WNDCLASS we;

/*
* Fill in window-class structure with parameters that
* describe the main window.

we.style = NULL;
wc.lpfnWndProc = MainWndProc;

wc.cbClsExtra
wc.cbWndExtra

0·
'

0;

/* class style(s)
/* window procedure
/* for windows of this class

/* no per-class extra data
/* no per-window extra data

}

Chapter 2 Generic Windows Application 51

wc.hinstance = hinstCurrent; /* application that owns class */
wc.hicon = Loadicon(NULL, IDI_APPLICATIDN);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "GenericMenu"; /* menu name in .RC file */
wc.lpszClassName = "GenericWClass"; /*name in CreateWindow */

f* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

/**
FUNCTION: Initinstance(HINSTANCE, int)

PURPOSE: Saves the instance handle and creates a main window

COMMENTS:

This function is called at initialization time for every
instance of this application. This function performs
initialization tasks that cannot be shared by multiple
instances.

In this case, save the instance handle in a static variable
and create and display the main window.

***/

BOOL Initinstance(hinstCurrent, nCmdShow)
HINSTANCE hinstCurrent; /* handle of current instance
int nCmdShow; /* param for first ShowWindow call
{

HWND hWnd; /* handle of main window

f*
* Save the instance handle in a static variable, which will be
* used in subsequent calls from this application to Windows.
*f

hinst = hinstCurrent;

f* Create a main window for this application instance.

52 Microsoft Windows Guide to Programming

}

hWnd = CreateWindow(
"GenericWClass", /* see RegisterClass call */
"Generic Sample Application",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,

/* text for title bar */
/* window style */
I* default horz position */
I* default vert position */
/* default width */

CW_USEDEFAULT,
CW_USEDEFAULT,
f'l.11 llC'C'nLLAlll T
vn_VVL..UL..I MULi'

NULL, /*
NULL, /*
hinstCurrent, /*
NULL /*

) ;

i* defauit height
overlapped windows have no parent
use window class menu
this instance owns this window
pointer not needed

*/
*/
*/
*/
*/

I* If the window could not be created, return "failure." */

if (hWnd == NULL)
return FALSE;

/*
*Make the window visible, update its client area, and
* return "success."
*/

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
return TRUE;

I* shows window
/* sends WM_PAINT message

*/
*/

/**
FUNCTION: MainWndProc(HWND, UINT, WPARAM, LPARAM)

PURPOSE: Processes messages

MESSAGES:

WM_COMMAND
WM_DESTROY

COMMENTS:

- application menu (About dialog box)
- destroy window

To process the IDM_ABOUT message, call MakeProcinstance
to get the current instance address of the About procedure.
Then call DialogBox, which will create the dialog box
according to the information in your GENERIC.RC file and
turn control over to the About procedure. When it returns,
free the instance address.

***/

Chapter 2 Generic Windows Application 53

LRESULT FAR PASCAL MainWndProc(hWnd, message, wParam, lParam)
HWND hWnd; /* window handle */
UINT message; /* type of message *I
WPARAM wParam; /* additional information */
LPARAM lParam; /*additional information */
{

}

FARPROC lpProcAbout; /* pointer to the "About" function */
switch (message) {

}

case WM_COMMAND: /* message: command from a menu */
if (wParam == IDM_ABOUT) {

}

lpProcAbout =
MakeProcinstance((FARPROC) About, hinst);

DialogBox(hinst, /* handle of current instance */
"AboutBox", I* resource to use *I
hWnd, /* parent handle */
(DLGPROC) lpProcAbout); /*instance address */

FreeProcinstance(lpProcAbout);
break;

else /* let Windows process it */
return (DefWindowProc(hWnd, message, wParam, lParam));

case WM DESTROY: /* message: window being destroyed *I
PostQuitMessage(0);
break;

default: /* passes it on if unprocessed */
return (DefWindowProc(hWnd, message, wParam, lParam));

return NULL;

/**

FUNCTION: About(HWND, WORD, WPARAM, LPARAM)

PURPOSE: Processes messages for About dialog box

MESSAGES:

WM_INITDIALOG - initialize dialog box
WM COMMAND - Input received

COMMENTS:

No initialization is needed for this particular dialog
box, but TRUE must be returned to Windows.

Wait for user to click OK; then close the dialog box.

***/

54 Microsoft Windows Guide lo Programming

BOOL FAR PASCAL About(hDlg, message, wParam, lParam)
HWND hDlg; /* handle of dialog box window
WORD message; /* type of message
WPARAM wParam; /* message-specific information
LPARAM lParam;
{

switch (message) {
I• message: initidlize dialog box*'

}

return TRUE;

case WM_COMMAND:
if (wParam == !DOK

}

11 wParam == IDCANCEL) {
EndDialog(hDlg, TRUE);
return TRUE;

break;

/* received a command *f
/* OK box selected? *f
/* Close command? */
/* exits dialog box *f

return FALSE; /* did not process a message */
}

2.6.2 Creating the Header File
The header file contains definitions and declarations required by the C-language
source file that are incorporated into the source code by an #include directive.
Name the file GENERIC.H. It should look like this:

#define IDM_ABOUT 100

int PASCAL
BOOL
BOOL
LRESULT FAR PASCAL
BOOL FAR PASCAL

WinMain(HINSTANCE, HINSTANCE, LPSTR, int);
InitApplication(HINSTANCE);
Initlnstance(HINSTANCE, int);
MainWndProc(HWND, UINT, WPARAM, LPARAM);
About(HWND, WORD, WPARAM, LPARAM);

2.6.3 Creating the Resource-Definition File
The resource-definition file must contain the Help menu and the dialog box tem­
plate for the About dialog box. Name the file GENERIC.RC. It should look like
this:

#include <windows.h>
#include "generic.h"

Chapter 2 Generic Windows Application 55

GenericMenu MENU
BEGIN

POPUP "&Help"
BEGIN

MENU ITEM "About Generic ... ", IDM_ABOUT
END

END

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME I WS_CAPTION
CAPTION "About Generic"
BEGIN

END

CTEXT "Microsoft Windows"
CTEXT "Generic Application"
CTEXT "Version 3.1"
DEFPUSHBUTTON "OK"

2.6.4 Creating the Module-Definition File

I WS_SYSMENU

-1, 0,
-1, 0'
-1, 0,

!DOK, 53,

5, 144, 8
14, 144, 8
34, 144, 8

59, 32, 14, ws GROUP

The module-definition file must contain the module definitions for Generic. Name
the file GENERIC.DEF. It should look like this:

;module-definition file for Generic -- used by LINK.EXE

NAME Generic application's module name

DESCRIPTION 'Sample Microsoft Windows 3.1 Application'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

required for all Windows applications

generates error message if application
is run without Windows

CODE MOVEABLE DISCARDABLE; code can be moved, discarded/reloaded

;DATA must be MULTIPLE if program can be invoked more than once.

DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

All functions that will be called by any Windows function
must be exported.

EXPORTS
MainWndProc
About

@1
@2

name of window-processing procedure
name of About processing procedure

56 Microsoft Windows Guide to Programming

2.6.5 Creating the Makefile
Once you have the source files, you can create Generic' s makefile and then com­
pile and link the application by using NMAKE. To compile and link Generic, the
makefile must carry out these steps:

• Use CL to compile the GENERIC.C file.

• Use Microsoft Segmented Executable Linker (LINK) to link the
GENERIC.OBJ object file with the Windows library and the module-definition
file, GENERIC.DEF.

• Use RC to create a binary resource file and add it to the executable file of the
Windows application.

The following will properly compile and link the files created for Generic:

#Standard Windows makefile. NMAKE compares the creation date of
#the file to the left of the colon with the file(s) to the right
#of the colon. If the file(s) on the right are newer than the
#file on the left, NMAKE will execute all of the command lines
#following this line that are indented by at least one tab or
#space. Any valid MS-DOS command line may be used.

Update the resource if necessary.

generic.res: generic.re generic.h
re Ir generic.re

#Update the object file if necessary.

generic.obj: generic.c generic.h
cl /c /Gsw /Oas /Zpe generic.c

#Update the executable file if necessary. (If it is necessary,
#add the resource back in.)

generic.exe: generic.obj generic.def
link /nod generic, , , slibcew libw, generic.def
re generic.res

If the .RES file is new and the .EXE file is not, update the
resource. ~ote that the .RC file can be updated without having
#to either compile or link the file.

generic.exe: generic.res
re generic.res

Chapter 2 Generic Windows Application 57

The first two lines in this makefile direct NMAKE to create a compiled resource
file, GENERIC.RES, if either the resource-definition file GENERIC.RC or the
new header file GENERIC.H has been updated. The Ir option of the re command
creates a compiled resource file without attempting to add it to an executable file,
since this must be done as the last step in the process.

The next two lines direct NMAKE to create the GENERIC.OBJ file if
GENERIC.C or GENERIC.H has a more recent access date than the current
GENERIC.OBJ file. The cl command takes several options that prepare the appli­
cation for execution under Windows. The minimum required options are /e, /Gw,
and /Zp. In this case, CL treats Generic as a small-model application. Generic and
all other applications in this guide are small-model applications.

NMAKE then creates the new GENERIC.EXE file if the GENERIC.OBJ or
GENERIC.DEF file has a more recent access date than the current
GENERIC.EXE file. Small Windows applications, like Generic, must be linked
with the Windows SLIBW.LIB library and the Windows version of the C run-time
library, SLIBCEW.LIB. The object file GENERIC.OBJ and the module-definition
file GENERIC.DEF are used as arguments in the LINK command line.

The last re command automatically appends the compiled resources in the file
GENERIC.RES to the executable file GENERIC.EXE.

2.6.6 Running Microsoft Program Maintenance Utility
Once you have created the makefile, you can compile and link your application by
running NMAKE. The following example runs NMAKE using the commands in
the file GENERIC:

nmake generic

2. 7 Using Generic as a Template
Generic provides essentials that make it an appropriate starting point for your ap­
plications. It contains all the files an application can have: .DEF, .H, .RC, and .C
files, and a makefile. The About dialog box, an application standard, is included,
as is the About Generic ... command on the Help menu.

You can use Generic as a template to build your own applications. To do this,
copy and rename the sources of an existing application, such as Generic; then
change relevant function names, and insert new code.

58 Microsoft Windows Guide to Programming

The following steps explain how to use Generic as a template and adapt its source
files to your application:

1. Choose your application's filename.

2. Copy the following Generic source files, renaming them to match your applica­
tion's filename: GENERIC.C, GENERIC.H, GENERIC.DEF, GENERIC.RC,
and GENERIC.

3. Use a text editor to change each occurrence of Generic in your application's C­
language source file to your application's name. This includes changing the fol­
lowing:

• Class name: GenericWClass

• Class menu: GenericMenu

• Window title: Generic Sample Application

• Header filename: GENERIC.H

4. Use a text editor to change each occurrence of Generic in your application' &

module-definition file to your application's name. This includes changing the
application name Generic.

5. Use a text editor to change each occurrence of Generic in your application's
resource-definition file to your application's name. This includes changing the
following:

• Header filename: GENERIC.H

• Application title: Generic Application

• Menu name: GenericMenu

6. Use a text editor to change each occurrence of Generic in your application's
makefile to your application's name. This includes changing the following:

• C-language source filename: GENERIC.C

• Object filename: GENERIC.OBJ

• Executable filename: GENERIC.EXE

• Module-definition filename: GENERIC.DEF

As you add new resources and header files to your applications, be sure to use
your application's filename to ensure that these names are unique.

Chapter 2 Generic Windows Application 59

2.8 Related Topics
For more information about the elements of a Windows application, see Chapter 1,
"Overview of the Windows Environment."

For information about using C run-time functions and assembly language in your
Windows applications, see Chapter 14, "C and Assembly Language."

For more information about Windows functions, messages, data types, and struc­
tures, see the Microsoft Windows Programmer's Reference, Volumes 2 and 3.

For more information about using the software development tools mentioned in
this chapter, see Microsoft Windows Programming Tools.

Programming Windows Applications

Part 2

Output to a Window

Chapter 3

3 .1 Using a Device Context 65
3.1.1 Using the GetDC Function .. 66
3.1.2 Processing a WM_PAINT Message .. 66

3.1.3 Invalidating the Client Area .. 67
3.1.4 Preparing a Device Context... 68
3.1.5 Coordinate System ... 68

3.2 Creating, Selecting, and Deleting Drawing Tools 69
3.3 Drawing and Writing... 70
3.4 Sample Application: Output .. 72

3.4.1 Adding New Variables .. 73
3.4.2 Adding a WM_ CREATE Case .. 73
3.4.3 Adding a WM_PAINT Case ... 74
3.4.4 Modifying the WM_DESTROY Case 78
3.4.5 Compiling and Linking.. 78

3.5 Related Topics.. 79

Chapter 3 Output to a Window 65

In the Microsoft Windows 3.1 operating system, all output to a window is per­
formed by the graphics device interface (GDI).

This chapter covers the following topics:

• How the painting and drawing process works in Windows

• The purpose of the device context and the WM_P AINT message

• Using GDI functions to draw within the client area of a window

• Drawing lines and figures, writing text, and creating pens and brushes

This chapter also explains how to build a sample application, Output, that il­
lustrates some of these concepts.

3.1 Using a Device Context
Some device contexts are especially prepared for output to the client area of a win­
dow. This type of device context defines the device, drawing tools, colors, and
other drawing information only for a window's client area, instead of for a
complete device. GDI uses this drawing information to generate output. All GDI
output functions require a device-context handle. No output can be performed
without one.

To draw within a window, you need the window's handle, which you can then use
to retrieve a handle of the device context for the window's client area. The method
you use to retrieve the device-context handle depends on where and when you
want your application to perform output operations. Although an application can
draw and write from anywhere, including from within the WinMain function,
most applications do so only within the window procedure. Typically, an applica­
tion draws and writes in response to a WM_P AINT message. Windows sends this
message to a window procedure when changes to the window may have altered
the content of the client area. Since only the application can determine this con­
text, Windows sends the WM_P AINT message to the window procedure so that
the procedure can restore the client area.

To process the WM_PAINT message, you typically use the BeginPaint function.
If you want your application to draw within the client area at any time other than
in response to a WM_P AINT message, you must use the GetDC function to re­
trieve the device-context handle.

Whenever an application retrieves a device context for a window (by retrieving its
handle), that context is only on "temporary loan" from Windows. A device context
is a shared resource: as long as one application has it, no other application can re­
trieve it. Therefore, your application must release the device context as soon as

66 Microsoft Windows Guide to Programming

possible after using it to draw within the window. If the application retrieves the
device-context handle by using the GetDC function, it must use the ReleaseDC
function to release the handle. Similarly, for each BeginPaint function, the appli­
cation must use a corresponding EndPaint function.

3.1.1 Using ihe GeiDC Function
Typically, an application uses the GetDC function to provide an instant response
to some action by the user, such as drawing a line as the user moves the cursor
(pointer) through the window. The function returns a device-context handle that
the application can use in any GDI output function.

The following example shows how to use the GetDC function to retrieve a
device-context handle and write the string "Hello Windows!" in the client area:

hDC = GetDC(hWnd);
TextOut(hDC, 10, 10, "Hello, Windows!", 15);
ReleaseDC(hWnd, hDC);

In this example, the GetDC function returns the device-context handle for the win­
dow identified by the hWnd parameter, and the TextOut function writes the string
at the coordinates (10,10) in the window's client area. The ReleaseDC function re­
leases the device context.

Because Windows sends a WM_ERASEBKGND message to the window proce­
dure while processing a WM_P AINT message, anything your application draws in
the client area will be erased the next time the window procedure receives a
WM_P AINT message that affects that part of the client area. If the application
passes WM_ERASEBKGND on to the DefWindowProc function, that function
fills the affected area by using the class background brush, erasing any output pre­
viously drawn there.

3.1.2 Processing a WM_PAINT Message
Windows posts a WM_P AINT message when the user has changed the window­
for example, by closing a window that covered part of another window. Because a
window shares the screen with other windows, anything the user does in one win­
dow can affect the content and appearance of another window. However, an appli­
cation can do nothing about the change until it receives the WM_P AINT message.

Windows posts a WM_P AINT message by making it the last message in the appli­
cation queue. This means any input is processed before the WM_PAINT message.
In fact, the GetMessage function also retrieves any input generated after the
WM_PAINT message is posted. That is, GetMessage retrieves the WM_PAINT
message from the queue only when there are no other messages. This enables the
application to carry out any operations that might affect the appearance of the

Chapter 3 Output to a Window 67

window. In general, to avoid flicker and other distracting effects, your application
should perform output operations as infrequently as possible. Windows helps en­
sure this by holding the WM_P AINT message until it is the last message in the
queue.

The following example shows how to process a WM_PAINT message:

PAINTSTRUCT ps;

case WM_PAINT:
hDC = BeginPaint(hWnd, &ps);

f* Output operations */

EndPaint(hWnd, &ps);
break;

The BeginPaint and EndPaint functions are required. The BeginPaint function
fills the PAINTSTRUCT structure, ps, with information about the paint request,
such as the part of the client area that needs redrawing. The function then returns a
handle to the device context. Your application can use this handle in any GDI out­
put functions. The EndPaint function ends the paint request and releases the
device context.

You should not use the GetDC and ReleaseDC functions in place of the
BeginPaint and EndPaint functions. BeginPaint and EndPaint perform special
tasks, such as validating the client area and sending the WM_ERASEBKGND
message, that ensure the paint request is processed properly. If you use GetDC
and ReleaseDC, you must follow the call to ReleaseDC with a call to the
ValidateRect function. If you do not call ValidateRect, the WM_P AINT
message is not removed from the message queue and your application will
receive it again.

3.1.3 Invalidating the Client Area
Windows is not the only source of WM_P AINT messages. The InvalidateRect or
lnvalidateRgn function can also generate WM_P AINT messages for your win­
dows. These functions mark all or part of a client area as invalid (in need of re­
drawing). For example, the following statement invalidates the entire client area of
the window identified by the hWnd variable:

InvalidateRect(hWnd, NULL, TRUE);

In this example, the NULL argument, used in place of a rectangle structure, speci­
fies the entire client area; the TRUE argument causes the background to be erased.

68 Microsoft Windows Guide to Programming

When the client area is marked as invalid, Windows posts a WM_P AINT mes­
sage. But if other parts of the client area are marked as invalid, Windows does not
post another WM_P AINT message. Instead, it adds the invalidated areas to the pre­
vious area, so that all areas are processed by the same WM_PAINT message.

If you do not want your application to redraw the client area, use the ValidateRect
a..11d Va!idateRgn functions to invalidate only parts of the client area. These funt;­
tions remove any previous invalidation and will remove the WM_PAINT message
if no other invalidated area remains.

If you do not want the application to wait for the WM_P AINT message to be re­
trieved from the application queue, use the Update Window function to force an
immediate WM_PAINT message. If there is any invalid part of the client area,
Update Window pulls the WM_PAINT message for the given window from the
queue and sends it directly to the window procedure.

3.1.4 Preparing a Device Context
To prepare a device context, Windows adjusts the device origin so that it aligns
with the upper-left comer of the client area instead of with the upper-left comer of
the screen. It also sets a rectangular clipping region so that output to a device con­
text is clipped to the client area. This means any output that would otherwise ap­
pear outside the client area is not sent to the screen.

3.1.5 Coordinate System
The default coordinate system for a device context is simple. The upper-left comer
of the client area is the origin, or the coordinates (0,0). Each pixel to the right rep­
resents one unit along the positive x-axis. Each pixel down represents one unit
along the positive y-axis.

You can modify this coordinate system by changing the mapping mode and dis­
play origins. The mapping mode defines the coordinate-system units. The default
mode is MM_ TEXT, or one pixel per unit. You can also specify mapping modes
that use inches or millimeters as units. The SetMapMode function changes the
mapping mode for a device. You can move the origin of the coordinate system to
any point by calling the SetViewportOrgfunction.

For simplicity, the examples in this chapter and throughout this guide use the de­
fault coordinate system.

Chapter 3 Output to a Window 69

3.2 Creating, Selecting, and Deleting Drawing Tools
GDI lets you use a variety of drawing tools to draw within a window. GDI pro­
vides pens for drawing lines, brushes for filling interiors, and fonts for writing
text. To create these tools, use functions such as CreatePen and CreateSolid­
Brush. Then select them into the device context by using the SelectObject func­
tion. When you are done using a drawing tool, delete it by using the DeleteObject
function.

Use the CreatePen function to create a pen for drawing lines and borders. This
function returns a handle of a pen that has the specified style, width, and color.
(Always check the return value of CreatePen to ensure that it is a valid handle.)

The following example creates a dashed, black pen, one pixel wide:

HPEN hDashPen;

hDashPen = CreatePen(PS_DASH, 1, RGB(0, 0, 0));
if ChDashPen != NULL) /* makes sure handle is valid */

The RGB macro creates a 32-bit color value representing a mix of red, green, and
blue intensities. The three arguments specify the intensity of the colors red, green,
and blue, respectively. In this example, all colors have zero intensity, so the
specified color is black.

You can create solid brushes for drawing and filling by using the CreateSolid­
Brush function. This function returns a handle of a brush that contains the
specified solid color. (Always check the return value of CreateSolidBrush to
ensure that it is a valid handle.)

The following example creates a red brush:

HBRUSH hRedBrush

hRedBrush = CreateSolidBrush(RGB(255, 0, 0));
if ChRedBrush !=NULL) /*makes sure handle is valid*/

70 Microsoft Windows Guide to Programming

Once you have created a drawing tool, you can select it into a device context by
using the SelectObject function. The following example selects the red brush for
drawing:

HBRUSH hOldBrush;

hOldBrush = SelectObject(hDC, hRedBrush);

In this example, SelectObject returns a handle to the previous brush. In general,
you should save the handle of the previous drawing tool so that you can restore it
later.

You do not have to create or select a drawing tool before using a device context.
Windows provides default drawing tools with each device context; for example, a
black pen, a white brush, and the system font.

You can delete drawing objects you no longer need by using the DeleteObject
function. The following example deletes the brush identified by the handle
hRedBrush:

DeleteObject(hRedBrush);

You must not delete a selected drawing tool. Instead, use the SelectObject func­
tion to restore a previous drawing tool and remove the tool to be deleted from the
selection, as in the following example:

SelectObject(hDC, hOldBrush);
DeleteObject(hRedBrush);

Although you can create and select fonts for writing text, working with fonts is a
fairly complex process and is not described in this chapter. For more information
about creating and selecting fonts, see Chapter 18, "Fonts."

3.3 Drawing and Writing
GDI provides a wide variety of output operations, from drawing lines to writing
text. Specifically, you can use the LineTo, Rectangle, Ellipse, Arc, Pie, Text­
Out, and DrawText functions to draw lines, rectangles, circles, arcs, pie wedges,
and text, respectively. All these functions use the selected pen and brush to draw
borders and fill interiors, and the selected font to write text.

Chapter 3 Output to a Window 71

Drawing a Line You draw a line by using the LineTo function, although you
usually combine the MoveTo and LineTo functions to draw a line. The following
example draws a line from the coordinates (10,90) to the coordinates (360,90):

MoveTo(hDC, 10, 90);
LineTo(hDC, 360, 90);

Drawing a Rectangle You draw a rectangle by using the Rectangle function.
This function uses the selected pen to draw the border, and the selected brush to
fill the interior. The following example draws a rectangle that has its upper-left
and lower-right comers at the coordinates (10,30) and (60,80), respectively:

Rectangle(hDC, 10, 30, 60, 80);

Drawing an Ellipse or Circle You draw an ellipse or a circle by using the
Ellipse function. This function uses the selected pen to draw the border, and the
selected brush to fill the interior. The following example draws an ellipse within
the rectangle defined by the coordinates (160,30) and (210,80):

Ellipse(hDC, 160, 30, 210, 80);

Drawing an Arc You draw an arc by using the Arc function. With this function,
you define a bounding rectangle for the circle containing the arc, and then specify
the points at which the arc starts and ends. The following example draws an arc
within the rectangle defined by the coordinates (10,90) and (360,120); it draws the
arc from the coordinates (10,90) to the coordinates (360,90):

Arc(hDC, 10, 90, 360, 120, 10, 90, 360, 90);

Drawing a Pie Wedge You draw a pie wedge by using the Pie function. A pie
wedge consists of an arc and two radii extending from the focus of the arc to its
endpoints. The Pie function uses the selected pen to draw the border, and the
selected brush to fill the interior. The following example draws a pie wedge within
the rectangle defined by the coordinates (310,30) and (360,80) and that starts and
ends at the coordinates (360,30) and (360,80), respectively:

Pie(hDC, 310, 30, 360, 80, 360, 30, 360, 80);

Displaying Text You display text by using the TextOut function. This function
displays a string starting at the specified point. The following example displays the
string "A Sample String" at the coordinates (1,1):

TextOut(hDC, 1, 1, "A Sample String", 15);

72 Microsoft Windows Guide to Programming

You can also use the DrawText function to display text. This function is similar to
TextOut, except that it lets you write text on multiple lines. The following ex­
ample displays the string "This long string illustrates the DrawText function" on
multiple lines in the specified rectangle:

RECT rcTextBox;
LPSTR lpTcxt = ''This ln..,n

I VII~ string illustrates

SetRect(&rcTextBox, 1, 10, 160, 40);

the n T ... v+
u1un1 C:AI,, function";

DrawText(hDC, lpText, lstrlen(lpText), &rcTextBox, DT_LEFT);

This example displays the string pointed to by the lpText variable as one or more
left-aligned lines in the rectangle defined by the coordinates (1,10) and (160,40).

Although you can also create and display bitmaps in a window, the process is not
described in this chapter. For more information, see Chapter 11, "Bitmaps."

3 .4 Sample Application: Output
The sample application Output illustrates how to use the WM_P AINT message to
draw within the client area, as well as how to create and use drawing tools. The
Output application is a simple extension of the Generic application described in
the previous chapter. To create the Output application, make the following modifi­
cations to the Generic application:

l. Add new variables.

2. Modify the WM_ CREATE case.

3. Add a WM_PAINT case.

4. Modify the WM_DESTROY case.

5. Compile and link the application.

This sample assumes that you have a color display. If you do not, GDI will simu­
late some of the color output by dithering. Dithering is a method of simulating a
color by creating a unique pattern with two or more available colors. For a color
screen that cannot display orange, for example, Windows simulates orange by
using a pattern of red and yellow pixels. For a monochrome screen, Windows rep­
resents colors with black, white, and shades of gray, instead of colors.

Chapter 3 Output to a Window 73

3.4.1 Adding New Variables
The Output application requires several new global variables. Add the following
variables at the beginning of your C-language source file:

HPEN hDashPen; /* "---" pen handle */
HPEN hDotPen; /* " ... " pen handle */
HBRUSH hOldBrush; I* old brush handle */
HBRUSH hRedBrush; I* red brush handle */
HBRUSH hGreenBrush; /* green brush handle */
HBRUSH hBlueBrush; /* blue brush handle */

Output also requires new local variables in the window procedure. Declare the fol­
lowing variables at the beginning ofMainWndProc:

HOC hDC;
PAINTSTRUCT ps;
RECT rcTextBox;
HPEN hOldPen;

I* handle of device context */
/* paint structure */
/* rectangle around the text */
/* old pen handle */

3.4.2 Adding a WM_ CREATE Case
To enable Output to draw in its client area, you must create the drawing tools.
Since you need only create these tools once, a convenient place to do so is in the
WM_ CREATE message. Add the following statements to MainWndProc:

case WM_CREATE:

/* Create the brush objects. */

hRedBrush CreateSolidBrush(RGB(255, 0, 0));
hGreenBrush CreateSolidBrush(RGBC 0, 255, 0));
hBlueBrush = CreateSolidBrushCRGB(0, 0, 255));

I* Create the "---" pen. */

hDashPen = CreatePen(PS_DASH, /* style */
1, /*width */
RGB(0, 0, 0)); /* color *I

/* Create the " pen. */

hDotPen = CreatePen(2, /* style */
1, /* width */
RGB(0, 0, 0)); /* color */

break;

74 Microsoft Windows Guide to Programming

The CreateSolidBrush functions create the solid brushes to be used for filling the
rectangle, the ellipse, and the circle that Output draws on the screen in response to
the WM_P AINT message. The CreatePen functions create the dotted and dashed
lines used to draw borders.

3.4.3 Adding a WM_PAiNT Case
The WM_PAINT message informs your application when it should redraw all or
part of its client area. To handle this message, add the following statement to the
window procedure:

case WM_PAINT:
{

TEXTMETRIC tm;
int nDrawX;
int nDrawY;
char szText[300];

f* Set up a device context to begin painting. */

hDC = BeginPaintChWnd, &ps);

f*
* Get the size characteristics of the current font.
* This information will be used for determining the
* vertical spacing of text on the screen.
*/

GetTextMetrics(hDC, &tm);

f*
* Initialize drawing position to 1/4 inch from the top
* and from the left of the upper-left corner of the client
* area of the main windows.
*f

nDrawX GetDeviceCaps(hDC, LOGPIXELSX) I 4;
nDrawY GetDeviceCaps(hDC, LOGPIXELSY) I 4;

f*

f* 1/4 inch */
f* 1/4 inch */

* Send characters to the screen. After displaying each
* line of text, advance the vertical position for the next
* line of text. The pixel distance between the top of
* each line of text is equal to the standard height of the
*font characters (tmHeight), plus the standard amount of
*spacing (tmExternalLeading) between adjacent lines.
*/

Chapter 3 Output to a Window 75

lstrcpy(szText, "These characters are being painted using ");
TextOut(hDC, nDrawX, nDrawY, szText, lstrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

lstrcpy(szText, "the TextOut() function, which is fast and");
TextOut(hDC, nDrawX, nDrawY, szText, lstrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

lstrcpy(szText, "allows programmer control of placement and");
TextOut(hDC, nDrawX, nDrawY, szText, lstrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

lstrcpy(szText, "formatting details. However, TextOut() ");
TextOut(hDC, nDrawX, nDrawY, szText, lstrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

lstrcpy(szText, "does not provide any automatic formatting.");
TextOut(hDC, nDrawX, nDrawY, szText, lstrlen(szText));
nDrawY += tm.tmExternalleading + tm.tmHeight;

/*
* Put text in a 5-inch by 1-inch rectangle and display it.
* First define the size of the rectangle around the text.
*I

nDrawY += GetDeviceCaps(hDC, LOGPIXELSY) I 4; /* 1/4 inch */
SetRect(&rcTextBox,

) ;

nDrawX,
nDrawY,
nDrawX + (5 * GetDeviceCaps(hDC, LOGPIXELSX)),
nDrawY + (1 * GetDeviceCaps(hDC, LOGPIXELSY))

/* 5" */
/* l" */

/* Draw the text within the bounds of the above rectangle. */

lstrcpy(szText, "This text is being displayed with a single "
"call to DrawText(). DrawText() isn't as fast"
"as TextOut(), and it is somewhat more"
"constrained, but it provides numerous optional "
"formatting features, such as the centering and "
"line breaking used in this example.");

DrawText(hDC,
szText,
lstrlen(szText),
&rcTextBox,

/*

DT_CENTER I DT_EXTERNALLEADING I DT_NOCLIP
I DT_NOPREFIX I DT_WORDBREAK);

* Paint the next object immediately below the bottom
* of the above rectangle in which the text was drawn.
*/

76 Microsoft Windows Guide to Programming

nDrawY rcTextBox.bottom;

f*
* The (x,y) pixel coordinates of the objects about to
* be drawn are below, and to the right of, the current
*coordinate CnDrawX,nDrawY).
*f

f* Draw a red rectangle. */

hOldBrush = SelectObject(hDC, hRedBrush);
Rectangle(hDC,

nDrawX,
nDrawY,
nDrawX + 50,
nDrawY + 30);

f* Draw a green ellipse. */

SelectObject(hDC, hGreenBrush);
Ellipse(hDC,

f*

nDrawX + 150,
nDrawY,
nDrawX + 150 + 50,
nDrawY + 30);

Draw a blue pie shape. *f

SelectObject(hDC, hBlueBrush);
Pie(hDC,

nDrawX + 300,
nDrawY,
nDrawX + 300 + 50,
nDrawY + 50,
nDrawX + 300 + 50,
nDrawY,
nDrawX + 300 + 50,
nDrawY + 50);

nDrawY += 50;

/* Restore the old brush. */

SelectObject(hDC, hOldBrush);

Chapter 3 Output to a Window 77

I• Select a "---" pen, and save the old value. */

nDrawY += GetDeviceCaps(hDC, LDGPIXELSY) I 4; I• 1/4 inch */
hDldPen SelectDbject(hDC, hDashPen);

I• Move to a specified point. •/

MoveTo(hDC, nDrawX, nDrawY);
I• Draw a line. •/

LineTo(hDC, nDrawX + 350, nDrawY);

I• Select a " " pen. •I

SelectObject(hDC, hDotPen);

/* Draw an arc connecting the line. •/

Arc(hDC,
nDrawX,
nDrawY - 20,
nDrawX + 350,
nDrawY + 20,
nDrawX,
nDrawY,
nDrawX + 350,
nDrawY);

I• Restore the old pen. •/

SelectObject(hDC, hOldPen);

I• Tell Windows you are done painting. •/

EndPaint(hWnd, &ps);
}

break;

Note If you "hard-code" strings by using functions such as lstrcpy, it may be diffi­
cult to translate your application into other languages. If you plan to distribute
your application in more than one language, use string tables instead of hard­
coded strings. For more information about string tables, see the Microsoft
Windows Programmer's Reference, Volume 4.

78 Microsoft Windows Guide to Programming

3.4.4 Modifying the WM_ DESTROY Case
Before terminating, the Output application should delete the drawing tools created
for its window; this frees the memory that each drawing tool uses. To make the ap­
plication do this, use the DeleteObject function to delete the various pens and
brushes in the WM_DESTROY case. Modify the WM_DESTROY case so that it
looks like this:

case WM_DESTRDY:

DeleteObject(hRedBrushl;
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);
DeleteObject(hDashPenl;
DeleteObject(hDotPenl;
PostQuitMessage(0);
break;

You must call the DeleteObject function once for each object you want to delete.

3.4.5 Compiling and Linking
Compile and link the Output application and then start Windows and the applica­
tion. The application should look like this:

~ Output Sample Application lil!lil!
!!elp

These characters are being painted using
the TextOutO function, which is fast and
allows programmer control of placement and
formatting details. However, TextOutO
does not provide any automatic formatting.

This text is being displayed with a single call to DrawTextO. DrawTextO
isn't as fast as TextOutO, and it is somewhat more constrained, but it

provides numerous optional formatting features, such as the centering
and line breaking used in this example.

- •
~----------~ - - ,. ,..

... -- -

You can use the WM_P AINT case of this application to experiment with a variety
of GDI functions. For information about other GDI output functions, see the
Microsoft Windows Programmer's Reference, Volume 2.

Chapter 3 Output to a Window 79

3.5 Related Topics
For more information about working with bitmaps, see Chapter 11, "Bitmaps."

For more information about working with fonts, see Chapter 18, "Fonts."

For more information about window procedures, class and private device contexts,
painting functions, messages, data types, and structures, see Microsoft Windows
Programmer's Reference, Volumes 2 and 3.

Keyboard and Mouse Input

Chapter 4

4.1 Windows Input Messages 83
4.1.1 Message Formats 84
4.1.2 Keyboard Input.. 84
4.1.3 Character Input 85
4.1.4 Mouse Input... 85
4.1.5 Timer Input 86
4.1.6 Scroll Bar Input.. 87
4.1.7 Menu Input ... 88

4.2 Sample Application: Input... 88
4.2.1 How the Input Application Displays Output............................. 89
4.2.2 Adding New Variables .. 90
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11

4.2.12
4.2.13
4.2.14
4.2.15
4.2.16

Setting the Window-Class Style.. 90
Modifying the Create Window Function 91
Setting the Text Rectangles 91
Adding a WM_ CREATE Case.. 92
Modifying the WM_DESTROY Case 92
Adding WM_KEYUP and WM_KEYDOWN Cases............... 92
Adding a WM_ CHAR Case.. 93
Adding a WM_MOUSEMOVE Case....................................... 93
Adding WM_LBUTTONUP and
WM_LBUTTONDOWN Cases .. 93
Adding a WM_LBUTTONDBLCLK Case 93
Adding a WM_ TIMER Case... 94
Adding WM_HSCROLL and WM_ VSCROLL Cases 94
Adding a WM_P AINT Case ... 94
Compiling and Linking .. 95

4.3 Related Topics.. 96

Chapter 4 Keyboard and Mouse Input 83

Most applications require input from the user-typically, by means of the key­
board or the mouse. With the Microsoft Windows operating system, applications
receive keyboard and mouse input in the form of input messages.

This chapter covers the following topics:

• Input messages that Windows sends your application

• Responding to Windows input messages

This chapter also explains how to build a sample Windows 3.1 application, Input,
that responds to various types of input messages.

4.1 Windows Input Messages
Whenever the user presses a key, moves the mouse, or clicks a mouse button,
Windows responds by sending input messages to the appropriate application.
Windows also sends input messages in response to timer input.

Windows provides several types of input messages:

Message type

Keyboard

Character

Mouse

Timer

Scroll bar

Menu

Description

User input through the keyboard

Keyboard input translated into character codes

User input through the mouse

Input from the system timer

User input through a window's scroll bars and the mouse

User input through a window's menus and the mouse

Input messages from the keyboard, mouse, and timer correspond directly to hard­
ware input. Windows passes these messages to your application through the appli­
cation queue.

Character, menu, and scroll bar messages are created in response to mouse and
keyboard actions in the nonclient area of a window, or are the result of translated
keyboard messages. Typically, Windows sends these messages directly to the ap­
propriate window procedure.

84 Microsoft Windows Guide to Programming

4 .1.1 Message Formats
Input messages come in two formats, depending on how your application receives
them:

• Messages that Windows places in the application queue take the form of an
MSG structure. This structure contains members that identify and contain infor­
mation about the message. Your application's message loop retrieves this struc­
ture from the application queue and dispatches it to the appropriate window
procedure.

• Messages that Windows sends directly to a window procedure take the form of
four arguments. The arguments correspond to the four window-procedure pa­
rameters: hWnd, message, wParam, and !Param.

The only difference between these two message forms is that the MSG structure
contains two additional pieces of information: the current location of the cursor
and the current system time. Windows does not pass this information to the win­
dow procedure.

4.1.2 Keyboard Input
Much of an application's user input comes from the keyboard. Windows sends
keyboard input to an application when the user presses or releases a key. Windows
generates keyboard-input messages in response to the following keyboard events:

Message

WM_KEYDOWN

WM_KEYUP

WM_SYSKEYDOWN

WM_SYSKEYUP

Event

User presses a key.
User releases a key.
User presses a system key.
User releases a system key.

The wParam parameter of a keyboard-input message specifies the virtual-key
code of the key the user pressed. A virtual-key code is a device-independent value
for a specific keyboard key. Windows uses virtual-key codes so that it can provide
consistent keyboard input no matter what computer your application is running on.

The !Param parameter contains the keyboard's scan code for the key, as well as
additional information about the keyboard, such as the state of the SHIFT key and
whether the current key was previously up or down. ·

Windows generates two system-key messages, WM_SYSKEYUP and
WM_SYSKEYDOWN. System keys are special keys, such as the ALT and PIO

keys, that belong to the Windows user interface and cannot be used by an applica­
tion in any other way.

Chapter 4 Keyboard and Mouse Input 85

An application receives keyboard-input messages only when it has the input focus.
The input focus is what your application receives when it becomes the active appli­
cation-that is, when the user has selected the application's window. You can also
use the SetFocus function to explicitly set the input focus for a given window, and
the GetFocus function to determine which window has the focus.

4.1.3 Character Input
Applications that read character input from the keyboard must use the
TranslateMessage function in their message loops. TranslateMessage translates
a keyboard-input message into a corresponding Windows-character message,
WM_ CHAR or WM_SYSCHAR. The wParam parameter in these messages con­
tains the Windows character codes for the given key. The lParam parameter is
identical to lParam in the keyboard-input message.

4.1.4 Mouse Input
User input can also come from the mouse. Windows sends mouse-input messages
to the application when the user moves the cursor into and through a window or
presses or releases a mouse button while the cursor is in the window. Windows
generates mouse-input messages in response to the following events:

Message

WM_MOUSEMOVE

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_LBUTTONDBLCLK

WM_MBUTTONDOWN

WM_MBUTTONUP

WM_MBUTTONDBLCLK

WM_RBUTTONDOWN

WM_RBUTTONUP

WM_RBUTTONDBLCLK

Event

User moves the cursor into or through the window.

User presses the left button.

User releases the left button.

User presses, releases, and presses again the left but­
ton within the system's defined double-click time.

User presses the middle button.

User releases the middle button.

User presses, releases, and presses again the middle
button within the system's defined double-click time.

User presses the right button.

User releases the right button.

User presses, releases, and presses again the right but­
ton within the system's defined double-click time.

The wParam parameter corresponding to each button pressed or released includes
a bitmask specifying the current state of the keyboard and mouse buttons, such as
whether the mouse buttons, SHIFT key, and CTRL key are down. The lParam pa­
rameter contains the x- and y-coordinates of the cursor.

86 Microsoft Windows Guide to Programming

Windows sends mouse-input messages to a window only if the cursor is in the win­
dow or if your application has captured mouse input by using the SetCapture
function. This function directs Windows to send all mouse input, regardless of
where the cursor is, to the specified window. Applications typically use this func­
tion to take control of the mouse when carrying out some critical operation with
the mouse, such as selecting something in the client area. Capturing mouse input
prevents other applil:ai.ions from taking control of the mouse before the operation
is completed.

Since the mouse is a shared resource, it is important for an application to release
the captured mouse as soon as it has finished the operation. The application can re­
lease the mouse by using the ReleaseCapture function; it can also determine
which window, if any, has captured the mouse, by using the GetCapture function.

Windows sends double-click messages to a window procedure only if the corre­
sponding window class has the CS_DBLCLKS style. Your application must set
this style when registering the window class. A double-click message is always the
third message in a four-message series. The first two messages are the first button
press and release. The second button press is replaced with the double-click mes­
sage. The last message is the second release. Remember that a double-click mes­
sage occurs only if the first press and the second press occur within the system's
defined double-click time. The application can retrieve the current double-click
time by using the GetDoubleClickTime function, and it can set it by using the
SetDoubleClickTime function (this sets the double-click time for all applications,
not just your own).

4.1.5 Timer Input
Windows sends timer input to your application when a specified interval elapses
for a particular timer. To receive timer input, your application must set a timer by
using the SetTimer function. The application receives the timer input in two
ways:

• Windows places a WM_ TIMER message in your application's queue.

• Windows calls a callback function defined in your application. You specify the
callback function when you call the SetTimer function.

The following example shows how to set a timer so that it generates input at
5-second (5000-millisecond) intervals:

idTimer = SetTimer(hWnd, 1, 5000, (TIMERPRQC) NULL);

The second argument to SetTimer is any nonzero value that your application uses
to identify the particular timer. The last argument specifies the callback function
that will receive timer input. Setting this argument to NULL tells Windows to pro­
vide timer input as a WM_ TIMER message. Because there is no callback function

Chapter 4 Keyboard and Mouse Input 87

specified for timer input, Windows sends the timer input through the application
queue.

The SetTimer function returns a timer identifier-an integer that identifies the
timer. You can use this timer identifier to tum the timer off by using it in the Kill­
Timer function.

4.1.6 Scroll Bar Input
Windows sends a scroll bar message, either WM_HSCROLL or WM_ VSCROLL,
to a window procedure each time the user clicks when the cursor is in a scroll bar.
Applications use the scroll bar messages to direct scrolling within the window. Ap­
plications that display text or other data that does not all fit in the client area usu­
ally provide some form of scrolling. Scroll bars are an easy way to let the user
direct scrolling actions.

To retrieve scroll bar input in your application, add scroll bars to a window. You
can do this by specifying the WS_HSCROLL and WS_ VSCROLL styles when
you create the window. These styles direct the Create Window function to create
horizontal and vertical scroll bars for the window. The following example creates
scroll bars for the given window:

hWnd = CreateWindow("InputWClass", /• window class •/
"Input Sample Application", /• window name •/
WS_OVERLAPPEDWINDOW I WS_HSCROLL I WS_VSCROLL,
CW_USEDEFAULT, /• x position •/
CW_USEDEFAULT, /• y position •/
CW_USEDEFAULT, /•width •/
CW_USEDEFAULT, /• height •/
NULL, /• handle of parent window •/
NULL, /• handle of menu or child window •/
hinst, /• instance handle •/
NULL); /•additional info •/

Windows displays the scroll bars when it displays the window. It automatically
maintains the scroll bars and sends scroll bar messages to the window procedure
when the user moves the scroll box in the scroll bar.

When Windows sends a scroll bar message, it sets the wParam parameter of the
message to indicate the type of scrolling request made. For example, if the user
clicks the up arrow of a vertical scroll bar, Windows sets the wParam parameter to
the value SB_LINEUP. Depending on the event, Windows sets the wParam pa­
rameter to one of the following values:

Value

SB_LINEUP

SB_LINEDOWN

Event

User clicks the up arrow or left arrow of a scroll bar.

User clicks the down arrow or right arrow of a scroll bar.

88 Microsoft Windows Guide to Programming

Value

SB_PAGEUP

SB_PAGEDOWN

SB_ THUMBPOSTTION

SB_THUMBTRACK

4.1. 7 Menu Input

Event

User clicks between the scroll box and the up arrow or left
arrow of a scroll bar.

User clicks between the scroll box and the down arrow or
right arrow of a scroll bar.

lT ser releases the mouse button 'Nhen t11e cursor is in t11e
scroll box (thumb)-typically, after dragging the box.

User drags the scroll box with the mouse.

Whenever the user chooses a command from a menu, Windows sends a menu­
input message to the window procedure for that window. There are two types of
menu-input messages:

• WM_SYSCOMMAND, which indicates that the user has chosen a command
from the System menu.

• WM_ COMMAND, which indicates that the user has chosen a command from
the application's menu.

Since menu input is often the primary source of input for an application, its pro­
cessing can be complex. For more information about menus and menu input, see
Chapter 7, "Menus."

4.2 Sample Application: Input
This sample application, Input, illustrates how to process input messages from the
keyboard, mouse, timer, and scroll bars. The Input application displays the current
or most recent state of each of these input mechanisms. To create the Input applica­
tion, make the following modifications to the Generic application:

1. Add new variables.

2. Set the window-class style.

3. Modify the Create Window function.

4. Set the text rectangles.

5. Adda WM_CREATEcase.

6. Modify the WM_DESTROY case.

Chapter 4 Keyboard and Mouse Input 89

7. Add WM_KEYUP and WM_KEYDOWN cases.

8. Add a WM_ CHAR case.

9. Add a WM_MOUSEMOVE case.

10. Add WM_LBUTTONUP and WM_RBUTTONUP cases.

11. Add a WM_LBUTTONDBLCLK case.

12. Add a WM_ TIMER case.

13. Add WM_HSCROLL and WM_ VSCROLL cases.

14. Add a WM_PAINT case.

15. Compile and link the Input application.

Although Windows does not require a pointing device, this sample is written as if
you have a mouse or other pointing device. If you do not have a mouse, the appli­
cation will not receive mouse-input messages.

4.2.1 How the Input Application Displays Output
The Input application responds to input messages by displaying text that indicates
the type of input message. It uses some simple functions to format and display the
output.

To create a formatted string, use the wsprintf function, the Windows version of
the C run-time function sprintf. The wsprintf function copies a formatted string
to a buffer; you can then pass the buffer address as an argument to the TextOut
function. The following example shows how to create a formatted string:

char MouseText[48];

wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d", wParam,
LOWORD(lParam), HIWORD(lParam));

This example copies the formatted string to the Mouse Text array.

90 Microsoft Windows Guide to Programming

4.2.2 Adding New Variables
Since you will need several new global variables, declare them at the beginning of
the C-language source file:

char MouseText[48]; f* mouse state *f
char ButtonText[48J; f* mouse-button state *f
char KeyboardText[48J; /* keyboard state *f
char CharacterText[48]; f* latest character *f
char Scrol1Text[48J; f* scroll status *f
char TimerText[48J; /* timer state *f
RECT rectMouse;
RECT rectButton;
RECT rectKeyboa rd;
RECT rectCharacter;
RECT rectScroll;
RECT rectTimer;
int idTimer; /* timer identifier *f
int nTimerCount = 0; /* current timer count *f

The character arrays hold strings that describe the current state of the keyboard,
mouse, and timer. The rectangles keep track of where the strings appear on the
screen, and make possible the invalidation technique explained in Section 4.2.15,
"Adding a WM_PAINT Case."

Since you will also need some local variables for the window procedure, declare
them at the beginning of Main WndProc, as follows:

HOC hOC; /* handle of device context *f
PAINTSTRUCT ps; /* paint structure */
char ScrollTypeText[20];
RECT rect;

Add the following variables to the Initlnstance function:

HOC
TEXTMETRIC
RECT
int

hOC;
textmetric;
rect;
nLineHeight;

4.2.3 Setting the Window-Class Style
To enable double-click processing, set the window-class style to CS_DBLCLKS.
In the initialization function, find this statement:

we.style = NULL;

Change it to the following:

we.style = CS_DBLCLKS;

Chapter 4 Keyboard and Mouse Input 91

This enables double-click processing for windows that belong to this class.

4.2.4 Modifying the CreateWindow Function
To create a window that has vertical and horizontal scroll bars, modify the call to
the Create Window function so that it looks like this:

hWnd = CreateWindow("InputWClass",
"Input Sample Window",
WS_OVERLAPPEDWINDOW I WS_HSCROLL I WS_VSCROLL,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hinst,
NU LL);

4.2.5 Setting the Text Rectangles
To establish the client-area rectangles in which different messages are displayed,
add the following statements to the Initlnstance function:

hDC = GetDC(hWnd);
GetTextMetrics(hDC, &tm);
ReleaseDC(hWnd, hDC);
nLineHeight = tm.tmExternalLeading + tm.tmHeight;

rect.left = GetDeviceCaps(hDC, LOGPIXELSX) I 4; /* 1/4 inch*/
rect.right = GetDeviceCaps(hDC, HORZRES);
rect.top = GetDeviceCaps(hDC, LOGPIXELSY) I 4; /* 1/4 inch */
rect.bottom = rect.top + nLineHeight;
rectMouse = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectButton = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectKeyboard = rect;

92 Microsoft Windows Guide to Programming

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectCharacter = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectScroll = rect;

rect.top += nLineHeight;
rect.bottom += nLineHeight;
rectTimer = rect;

4.2.6 Adding a WM_ CREATE Case
To set a timer, use the SetTimer function. You can do this by adding a
WM_ CREATE case to your application, as follows:

case WM_CREATE:

I* Set the timer for five-second intervals. */

idTimer
break;

SetTimer(hWnd, NULL, 5000, (TIMERPROC) NULL);

4.2. 7 Modifying the WM_ DESTROY Case
Your application must also stop the timer before terminating. You can do this by
adding a WM_DESTROY case to the application, as follows:

KillTimer(hWnd, idTimer);

4.2.8 Adding WM_KEYUP and WM_KEYDOWN Cases
To make your application process key presses, add WM_KEYUP and
WM_KEYDOWN cases to the window procedure, as follows:

case WM __ KEYDOWN:
wsprintf(KeyboardText, "WM __ KEYDOWN: %x, %x, %x",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

case WM_KEYUP:
wsprintf(KeyboardText, "WM_KEYUP: %x, %x, %x",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

Chapter 4 Keyboard and Mouse Input 93

4.2.9 Adding a WM_ CHAR Case
To make your application process character input, add a WM_ CHAR case to the
window procedure, as follows:

case WM_CHAR:
wsprintf(CharacterText, "WM_CHAR: %c, %x, %x",

wParam, LOWORDClParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectCharacter, TRUE);
break;

4.2.10 Adding a WM_MOUSEMOVE Case
To make your application process mouse-motion messages, add a
WM_MOUSEMOVE case to the window procedure, as follows:

case WM_MOUSEMOVE:
wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d",

wParam, LOWORD(lParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectMouse, TRUE);
break;

4.2.11 Adding WM_LBUTTONUP and WM_LBUTTONDOWN Cases
To make your application process mouse-button input messages, add
WM_LBUTTONUP and WM_LBUTTONDOWN cases to the window proce­
dure, as follows:

case WM_LBUTTONDOWN:
wsprintf(ButtonText, "WM_LBUTTONDOWN: %x, %d, %d",

wParam, LOWORDClParam), HIWORDClParam));
InvalidateRectChWnd, &rectButton, TRUE);
break;

case WM_LBUTTONUP:
wsprintf(ButtonText, "WM_LBUTTONUP: %x, %d, %d",

wParam, LOWORDClParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.12 Adding a WM_LBUTTONDBLCLK Case
To make your application process input messages resulting from double-clicking
the left mouse button, add a WM_LBUTTONDBLCLK case to the window proce­
dure, as follows:

94 Microsoft Windows Guide to Programming

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: %x, %d, %d",

wParam, LOWORDClParam), HIWORDClParam));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.i3 Adding a WM_ TIMER Case
To make your application process timer messages, add a WM_ TIMER case to the
window procedure, as follows:

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: %x, %d, %d",

wParam, LOWORDClParam), HIWORD(lParam));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.14 Adding WM_HSCROLL and WM_ VSCROLL Cases
To make your application process scroll bar messages, add WM_HSCROLL and
WM_ VSCROLL cases to the window procedure, as follows:

case WM_HSCROLL:
case WM_VSCROLL:

wsprintf(ScrollText, "%s: %s, %x, %x",
CLPSTR) ((message == WM_HSCROLL) ? "WM_HSCROLL"

"WM_VSCROLL"),
CLPSTR) ((wParam == SB_LINEUP) ? "SB_LINEUP" :

CwParam == SB_LINEDOWN) ? "SB_LINEDOWN" :
CwParam == SB_PAGEUP) ? "SB_PAGEUP" :
CwParam == SB_PAGEDOWN) ? "SB_PAGEDOWN" :
CwParam == SB_THUMBPOSITION) ? "SB_THUMBPOSITION"
CwParam == SB_THUMBTRACK) ? "SB_THUMBTRACK"
CwParam == SB_ENDSCROLL) ? "SB_ENDSCROLL" : "unknown"),

ScrollTypeText,
LOWORD(l Pa ram),
HIWORD(lParam));

InvalidateRect(hWnd, &rectScroll, TRUE);
break;

4.2.15 Adding a WM_PAINT Case
To make your application display the current state of the mouse, keyboard, and
timer, use a WM_PAINT message to display the states. Your application repaints
only the parts of its client area that require repainting.

Chapter 4 Keyboard and Mouse Input 95

Add the following statements to the window procedure:

case WM_PAINT:
hDC = BeginPaint(hWnd, &psl;

if (lntersectRect(&rect, &rectMouse, &ps.rcPaint))
TextOut(hDC, rectMouse.left, rectMouse.top,

MouseText, lstrlen(MouseText));
if (lntersectRect(&rect, &rectButton, &ps.rcPaint))

TextOut(hDC, rectButton.left, rectButton.top,
ButtonText, lstrlen(ButtonText));

if (IntersectRect(&rect, &rectKeyboard, &ps.rcPaint))
TextOut(hDC, rectKeyboard.left, rectKeyboard.top,

KeyboardText, lstrlen(KeyboardText));
if (IntersectRect(&rect, &rectCharacter, &ps.rcPaint))

TextOut(hDC, rectCharacter.left, rectCharacter.top,
CharacterText, lstrlen(CharacterText));

if (lntersectRect(&rect, &rectTimer, &ps.rcPaint))
TextOut(hDC, rectTimer.left, rectTimer.top,

TimerText, lstrlen(TimerText));
if (IntersectRect(&rect, &rectScroll, &ps.rcPaint))

TextOut(hDC, rectScroll .left, rectScroll .top,
ScrollText, lstrlen(ScrollText));

EndPaint(hWnd, &ps);
break;

4.2.16 Compiling and Linking
Compile and link the Input application. Then start Windows and the Input applica­
tion. To test the application, press keys on the keyboard, click the mouse button,
move the mouse, and use the scroll bars. The application should look like this:

Input displays text when it receives
mouse, keyboard, or timer messages

WM MOUSEMOVE: 0, 198, 174
WM - LBUTTONUP: 0, 45, 185
WM - KEYUP: 47, 1, c022
WM::: CHAR: g, 1, 22
WM VSCROLL: SB ENOSCROLL 20c8, 0
WM::: TIMER: 100 seconds

96 Microsoft Windows Guide to Programming

4.3 Related Topics
For more information about the Windows message-based programming model,
see Chapter 1, "Overview of the Windows Environment."

For more information about using the cursor for mouse and keyboard input, see
Chapter 6, "Cursors."

For more information about menus and menu input, and scroll bar controls, see
Chapter 7, "Menus," and Chapter 8, "Controls."

For more information about input functions and messages, see the Microsoft
Windows Programmer's Reference, Volumes 2 and 3.

Icons

Chapter 5

5.1 What Is an Icon? .. 99
5.2 Using Built-In Icons... 100
5.3 Using Your Own Icons.. 101

5.3.1 Creating an Icon File ... 101
5.3.2 Defining an Icon Resource.. 101
5.3.3 Loading an Icon Resource... 101

5.4 Specifying a Class Icon.. 102
5.5 Displaying Your Own Icons.. 102
5.6 Displaying an Icon in a Dialog Box... 104
5.7 Sample Application: Icon.. 105

5.7.1 Adding an ICON Statement... 105
5.7.2 Adding an ICON Control Statement....................................... 105
5.7.3 Setting the Class Icon.. 105
5.7.4 Adding a MYICON.ICO Line to the Makefile....................... 106
5.7.5 Compiling and Linking.. 106

5.8 Related Topics.. 106

Chapter 5 Icons 99

A typical application for the Microsoft Windows operating system uses an icon to
represent itself when its main window is minimized.

This chapter covers the following topics:

• What an icon is

• Creating. and using your own predefined icons

• Specifying an icon for your application's window class

• Changing your application's icon "on the fly"

• Displaying an icon in a dialog box

This chapter also explains how to create a sample Windows 3.1 application, Icon,
that illustrates many of these concepts.

5 .1 What Is an Icon?
To the user, an icon is a small graphical image that represents an application when
that application's main window is minimized. For example, Microsoft Paintbrush
uses an icon that looks like a painter's palette to represent its minimized window.
Icons are also used in message and dialog boxes.

To the application, an icon is a type of resource. Before resources are compiled,
each icon is a separate file that contains a set of bitmap images. The images may
be similar in appearance, but each is targeted for a different screen device. When
you want the application to use an icon, have the application request the icon re­
source by name. Windows then determines which of that icon's images is most ap­
propriate for the current screen. Because Windows handles this operation, the
application need not check the screen type or determine which icon image is best
suited for the current screen. The following figure illustrates what happens when
an application requests an icon resource.

100 Microsoft Windows Guide to Programming

The application requests the
icon resource by its name, "My/con".

Windows looks at the My/con
resource and finds that it provides
tour different images tor tour
different display devices.

Application

Mylcon

i
Wi!!!!!!W!

i D. My/con resource

Windows displays /he icon image _..-/··l~ I
that best fits the user's .. · · · · ./ :' :
display type. · · · · · / . '.,

EGA
display

5.2 Using Built-In Icons

VGA
display

Monochrome
display

Custom
display

Windows provides several built-in icons, which you can use in your applications,
and which Windows uses in message boxes to indicate notes, cautions, warnings,
and errors.

To use a built-in icon, you must first load it, using the Loadlcon function to re­
trieve the icon handle. The first argument to the function must be NULL, indicat­
ing that you are requesting a built-in icon. The second argument identifies the icon
you want. For example, the following statement loads the built-in exclamation
mark icon:

hHandicon = Loadicon(NULL, IDI_EXCLAMATION);

Once it has loaded a built-in icon, your application can use the icon-for example,
by specifying it as the class icon for a particular window class, or by including the
icon in a message box. For more information, see Section 5.4, "Specifying a Class
Icon," and Section 5.5, "Displaying Your Own Icons."

Chapter 5 Icons 101

5.3 Using Your Own Icons
Using an icon requires three steps:

1. Create the icon file by using Microsoft Image Editor (IMAGEDIT.EXE).

2. Define the icon resource by using an ICON statement in your application's
resource-definition file.

3. Load the icon resource, when it is needed, by using the Loadlcon function in
your application code.

5.3.1 Creating an Icon File
An icon file contains one or more icon images. You use Image Editor to paint the
images and save them in an icon file. The recommended filename extension for an
icon file is .ICO. For more information about creating and saving an icon, see
Microsoft Windows Programming Tools.

5.3.2 Defining an Icon Resource
Once you have an icon file, you must define that icon in your applicat10n's
resource-definition (.RC) file by adding an ICON statement. The ICON statement
defines a name for the icon and specifies the name of the icon file that contains the
icon. For example, the following resource statement adds the icon named My Icon
to your application's resources:

Myicon ICON myicon.ico

The filename MYICON.ICO specifies the file that contains the images for the icon
named My Icon. When you compile the resource-definition file, the icon images
will be copied from the file MYICON.ICO into your application's resources.

5.3.3 Loading an Icon Resource
Once you have created an icon file and defined the icon resource in the .RC file,
your application can load the icon from its resources by using the Loadlcon func­
tion. This function takes the application's instance handle and the icon's name and
returns a handle to the icon. The following example loads Mylcon and stores its
handle in the variable hMylcon.

hMyicon = Loadicon(hinst, "Mylcon"l;

After loading the icon, the application can display it.

102 Microsoft Windows Guide to Programming

5.4 Specifying a Class Icon
A class icon is an icon that represents a particular window class whenever a win­
dow in that class is minimized. You specify a class icon by supplying an icon
handle in the hlcon field of the window class structure before registering the class.
Once the class icon is set, Windows automatically displays that icon when any
window you create using that window class is minimized.

The following example shows a definition of the window class wc before the class
has been registered. In this definition, the hlcon member is set to the handle re­
turned by Loadlcon.

we.style = NULL;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hinstance = hinst;
wc.hicon = Loadicon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = COLOR_WINDOW + 1;
wc.lpszMenuName =NULL;
wc.lpszClassName = "Generic";

The Loadlcon function returns a handle to the built-in application icon identified
by the IDI_APPLICA TION constant. If you minimize a window that has this
class, you will see a white rectangle with a black border. This is the built-in appli­
cation icon.

5.5 Displaying Your Own Icons
Windows displays a class icon when the application is minimized and removes it
when the application is maximized. All the application does is specify it as the
class icon. This meets the requirements of most applications, since most applica­
tions typically do not display additional information to the user when the applica­
tion is minimized.

However, sometimes you may want your application to display its icon itself, in­
stead of letting Windows display a prespecified class icon. This is particularly use­
ful when you want your application's icon to be dynamic, like the icon in the
Microsoft Windows Clock application. (The Clock application continues to show
the time even when it has been minimized.) Windows lets applications paint
within the client area of a minimized window, so that they can paint their own
icons.

If you want your application to display its own icon, follow these steps:

Chapter 5 Icons 103

1. In the window class structure we, set the class icon to NULL before registering
the window class. Use the following statement:

wc.hicon = NULL;

This step is required because it signals Windows to continue sending
WM_P AINT messages, as necessary, to the window procedure even though the
window has been minimized.

2. Add a WM_P AINT case to your window procedure that draws within the
icon's client area if the window is to receive a WM_PAINT message when the
window is minimized. Use the following statements:

PAINTSTRUCT ps;
HOC hDC;

case WM PAINT:

hDC = BeginPaint(hWnd, &ps);
if (Isiconic(hWnd)) {

/* Output functions for minimized state */

else {

/* Output functions for nonminimized state */

}

EndPaint(hWnd, &ps);
break;

An application must determine whether the window is minimized, since what it
paints in the icon may be different from what it paints in the open window. The
Islconic function returns a nonzero value if the window is minimized.

The BeginPaint function returns a handle of the display context of the icon's
client area. BeginPaint takes the window handle, hWnd, and a long pointer to the
paint structure, ps. BeginPaint fills the paint structure with information about the
area to be painted. As with any painting operation, each call to BeginPaint re­
quires a corresponding call to the EndPaint function. EndPaint releases any re­
sources that BeginPaint retrieved and signals the end of the application's
repainting of the client area.

104 Microsoft Windows Guide to Programming

You can retrieve the size of the icon's client area by calling the GetCiientRect
function. For example, to draw an ellipse that fills the icon, you can use the follow­
ing statement:

GetClientRect(hWnd, &re);
Ellipse(hDC, re.left, re.top, re.right, re.bottom);

You can use any GDI output functions to draw the icon, including the TextOut
function. The only limitation is the size of the icon, which varies from screen to
screen, so make sure that your painting does not depend on a specific icon size.

5.6 Displaying an Icon in a Dialog Box
You can place icons in dialog boxes by using the ICON control statement in the
DIALOG statement. You have already seen an example of a DIALOG statement
in the About dialog box described with the Generic application. The DIALOG
statement for that box looks like this:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME I WS_CAPTION
CAPTION "About Icon"
BEGIN

END

CTEXT "Microsoft Windows"
CTEXT "Generic Application"
CTEXT "Version 3.1"
DEFPUSHBUTTON "OK"

WS_SYSMENU

-1, 37, 5, 68, 8
-1, 0, 14, 144, 8
-1 • 38. 34. 64. 8

!DOK, 53, 59, 32, 14, WS_GROUP

You can add an icon to the dialog box by inserting the following ICON statement
immediately after the DEFPUSHBUTTON statement:

ICON "Myicon", -1, 25, 14, 16, 21

When an icon is added to a dialog box, it is treated as is any other control. It must
have a control identifier, a position for its upper-left corner, a width, and a height.
In this example, 1 is the control identifier, 25 and 14 specify the location of the
icon in the dialog box, and 16 and 21 specify the height and width of the icon, re­
spectively. Windows ignores the height and width, however, and sizes the icon
automatically.

The name Mylcon identifies the icon you want to use. The icon must be defined in
an ICON statement elsewhere within the resource-definition file. For example, the
following statement defines the icon My Icon.

Mylcon ICON MYICON.ICO

Chapter 5 Icons 105

5. 7 Sample Application: Icon
This sample application shows how to incorporate an icon into your application­
in particular, how to do the following:

• Use a custom icon as the class icon.

• Use an icon in the About dialog box.

To create the Icon application, make the following modifications to the Generic ap­
plication:

1. Add an ICON statement to the resource-definition file.

2. Add an ICON control statement to the DIALOG statement in the resource­
definition file.

3. Load the custom icon and use it to set the class icon in the initialization func­
tion.

4. Modify the makefile to cause Microsoft Windows Resource Compiler (RC) to
add the icon to the application's executable file.

5. Compile and link the application.

This sample assumes that you have created an icon by using Image Editor and
have saved the icon in a file named MYICON.ICO.

5. 7.1 Adding an ICON Statement
To add an ICON statement to your resource-definition file, insert the following
line at the beginning of the file, immediately after the #include directives:

Myicon ICON myicon.ico

5. 7.2 Adding an ICON Control Statement
To add an ICON control statement to the DIALOG statement, insert the follow­
ing line immediately after the DEFPUSHBUTTON statement:

ICON "Myicon", -1, 25, 14, 16, 21

5. 7 .3 Setting the Class Icon
To set the class icon, add the following statement to the initialization function in
the C-language source file:

wc.hicon = Loadicon(hinst, "Myicon");

106 Microsoft Windows Guide to Programming

5. 7.4 Adding a MYICON.ICO Line to the Makefile
In the makefile, add the MYICON.ICO file to the list of files on which ICON.RES
is dependent. The relevant lines in the makefile should look like this:

icon.res: icon.re icon.h myicon.ico
re /r icon.re

This change ensures that, ifthe MYICON.ICO file changes, ICON.RC will be re­
compiled to form a new ICON.RES file.

No other changes are required.

5. 7 .5 Compiling and Linking
Compile and link the Icon application, and then start Windows and the Icon appli­
cation. Now, if you choose the About command, Icon displays the About dialog
box, which now contains an icon.

5.8 Related Topics
For more information about functions used with icons, see the Microsoft Windows
Programmer's Reference, Volume 2.

For more information about resource-definition statements, see the Microsoft
Windows Programmer's Reference, Volume 4.

For more information about using Image Editor, see Microsoft Windows Program­
ming Tools.

Cursors

Chapter 6

6.1 Controlling the Shape of the Cursor.. 109
6.1.1 Using Built-In Cursor Shapes.. 109
6.1.2 Using Your Own Cursor Shapes 110

6.1.2.1 Creating a Cursor Shape 110
6.1.2.2 Adding a Cursor to Your Application

Resources . 110
6.1.2.3 Loading a Cursor... 110

6.2 Displaying a Cursor 111
6.2.1 Specifying a Class Cursor.. 111
6.2.2 Explicitly Setting a Cursor Shape.. 111
6.2.3 Example: Displaying the Hourglass During

a Lengthy Operation.. 112
6.3 Using the Cursor with the Mouse.. 113

6.3.1 Starting a Graphics Selection.. 114
6.3.2 Extending a Graphics Selection... 115
6.3.3 Showing a Graphics Selection... 116
6.3.4 Ending a Graphics Selection.. 117

6.4 Using the Cursor with the Keyboard 118
6.4.1 Moving the Cursor ... 118
6.4.2 Using the Cursor When No Mouse Is Available..................... 121

6.5 Sample Application: Cursor... 122
6.5.1 Adding a CURSOR Statement .. 123
6.5.2 Adding New Variables.. 123
6.5.3 Setting the Class Cursor .. 124
6.5.4 Preparing the Hourglass Cursor... 124
6.5.5 Adding a Lengthy Operation... 124
6.5.6 Adding WM_LBUTTONDOWN, WM_MOUSEMOVE, and

WM_LBUTTONUP Cases.. 125

108 Microsoft Windows Guide to Programming

6.5.7 Adding WM_KEYDOWN and WM_KEYUP Cases............. 127
6.5.8 Adding a WM_PAINT Case .. 129
6.5.9 Adding a BULLSEYE.CUR Line to the Makefile.................. 130
6.5 .10 Compiling and Linking.. 130

6.6 Related Topics .. 131

Chapter 6 Cursors 109

The cursor is a special bitmap that shows the user where actions initiated by the
mouse will take place. With most applications for the Microsoft Windows operat­
ing system, the user makes selections, chooses commands, and directs other ac­
tions by using either the mouse or the keyboard.

This chapter covers the following topics:

• Controlling the shape of the cursor

• Displaying the cursor

• Letting the user select information by using the mouse

• Letting the user move the cursor by using the keyboard

This chapter also explains how to create a sample Windows 3.1 application, Cur­
sor, that illustrates some of these concepts.

6.1 Controlling the Shape of the Cursor
Since no one cursor shape can meet the requirements of all applications, Windows
makes it easy for your application to change the shape of the cursor to suit its own
requirements. In order to use a particular cursor shape, your application must first
retrieve a handle of it by using the Load Cursor function. Once the application has
loaded the cursor, it can use that cursor shape whenever necessary.

An application can control the shape of the cursor by using either of two methods:

• Using the built-in cursor shapes that Windows provides.

• Using its own customized cursor shapes.

6.1.1 Using Built-In Cursor Shapes
Windows provides several built-in cursor shapes. These include the arrow, hour­
glass, I-beam, and cross-hair cursors. Most of the built-in cursor shapes have
specialized uses. For example, the I-beam cursor is typically used when the user is
editing text, and the hourglass cursor is used to indicate that a lengthy operation is
in progress, such as reading a disk file.

To use a built-in cursor, use the LoadCursor function to retrieve a handle of the
built-in cursor. The first argument to LoadCursor must be NULL (indicating that
a built-in cursor is requested); the second argument must specify the cursor to
load. The following example loads the I-beam cursor, IDC_IBEAM, and assigns
the resulting cursor handle to the variable hCursor.

hCursor = LoadCursor(NULL, IDC_IBEAM);

110 Microsoft Windows Guide to Programming

Once an application has loaded a cursor, it can use the cursor; for example, it
could display the I-beam cursor when the user is currently editing text. For infor­
mation about how to display the cursor, see Section 6.2, "Displaying a Cursor."

6.1.2 Using Your Own Cursor Shapes
To create and use your own cursor shapes, follow these steps:

1. Create the cursor shape by using Microsoft Image Editor (IMAGEDIT.EXE).

2. Define the cursor in your resource-definition file by using the CURSOR state­
ment.

3. Load the cursor by using the LoadCursor function.

6.1.2.1 Creating a Cursor Shape
The first step is to create the cursor shape, by using Image Editor, with which you
can see an actual-size version of the cursor shape while you are editing it. Once
you have created the cursor, save it in a cursor file. The recommended extension
for cursor files is .CUR.

For information about using Image Editor, see the online Help available with
Image Editor.

6.1.2.2 Adding a Cursor to Your Application Resources
Next, add a CURSOR statement to your resource-definition file. The CURSOR
statement specifies the file that contains the cursor, and defines a name for the cur­
sor. The application will use this cursor name when loading the cursor. Following
is an example of a CURSOR statement:

Bullseye CURSOR BULLSEYE.CUR

In this example, the name of the cursor is Bullseye, and the cursor is in the file
BULLSEYE.CUR.

6.1.2.3 Loading a Cursor
In your application code, retrieve a handle to the cursor by using the LoadCursor
function. For example, the following statement loads the cursor named Bullseye
and assigns its handle to the variable hCursor:

hCursor = LoadCursor(hinst, "Bullseye");

Chapter 6 Cursors 111

In this example, the LoadCursor function loads the cursor from the application's
resources. The instance handle hinst identifies the application's resources and is re­
quired. The name Bullseye identifies the cursor. It is the same name given in the
resource-definition file.

6.2 Displaying a Cursor
Once an application has loaded a cursor shape, it can display the cursor by using
one of two methods:

• Specifying it as the class cursor for all windows in a window class

• Explicitly setting the cursor shape when the cursor moves within the client area
of a particular window

6.2.1 Specifying a Class Cursor
The class cursor defines the shape the cursor will take when it enters the client
area of a window that belongs to that window class. You must specify the class
cursor before registering the window class. To do this, load the cursor you want
your application to use and assign the cursor's handle to the hCursor member of
the window-class structure. For example, to use the built-in arrow cursor,
IDC_ARROW, in your window, add the following statement to your initialization
function:

wc.hCursor = LoadCursor(NULL, IDC_ARROWl;

For each window created using this class, the built-in arrow cursor will appear
automatically when the user moves the cursor into the window.

6.2.2 Explicitly Setting a Cursor Shape
Your application does not have to specify a class cursor. Instead, you can set the
hCursor field to NULL to indicate that the window class has no class cursor. If a
window has no class cursor, Windows will not automatically change the shape of
the cursor when it moves into the client area of the window. This means that your
application will need to display the cursor itself.

To use any cursor, whether built-in or custom, your application must load it first.
For example, to load the custom cursor MyCursor (defined in your application's
resource-definition file) add the following statements to your initialization func­
tion:

static HCURSOR hMyCursor; /* static variable */
hMyCursor = LoadCursor(hinst, "MyCursor"l;

112 Microsoft Windows Guide to Programming

Then, to change the cursor shape, use the SetCursor function to set the shape each
time the cursor moves into the client area. Since Windows sends a
WM_MOUSEMOVE message to the window for each cursor movement, you can
manage the cursor by adding the following statements to the window procedure:

case WM_MOUSEMOVE:
SetCursor(hMyCursor);
break;

Note If you want your application to display the cursor itself, you must set the
class-cursor member to NULL. Otherwise, Windows will attempt to set the cursor
shape for each WM_MOUSEMOVE message, even though your application is
also setting the cursor shape. This will result in a noticeable flicker as the cursor is
moved through the window.

6.2.3 Example: Displaying the Hourglass During a Lengthy Operation
Whenever your application begins a lengthy operation, such as reading or writing
a large block of data to a disk file, it should change the shape of the cursor to an
hourglass. This lets users know that a lengthy operation is in progress and that
they should wait before attempting to continue their work. After the operation is
complete, your application should restore the cursor to its previous shape.

To change the cursor to an hourglass, use the following statements:

HCURSOR hSaveCursor;
HCURSOR hHourGlass;

hHourGlass LoadCursor(NULL, IOC_WAIT);

SetCapture(hWnd);
hSaveCursor = SetCursor(hHourGlass);

f* Lengthy operation */

SetCursor(hSaveCursor);
ReleaseCapture();

In this example, the application defines the variables that will be used to store the
cursor handles. Both variables are type HCURSOR. After defining variables, the

Chapter 6 Cursors 113

application first captures the mouse input, using the SetCapture function. This
keeps the user from attempting to use the mouse to carry out work in another appli­
cation while the lengthy operation is in progress. Once the application has cap­
tured the mouse input, Windows directs all mouse input messages to the specified
window, regardless of whether the mouse is in that window. The application can
then process the messages as appropriate.

After capturing the mouse input, the application then changes the cursor shape by
using the SetCursor function. SetCursor returns a handle to the previous cursor
shape, so that the shape can be restored later. The application saves this handle in
the variable hSaveCursor. After the lengthy operation is complete, the application
restores the previous cursor shape.

Finally, the ReleaseCapture function releases the mouse input.

6.3 Using the Cursor with the Mouse
With a typical Windows application, the user performs many types of tasks by
using a mouse-for example, choosing commands from a menu, selecting text or
graphics, or directing scrolling operations. For most of these tasks, Windows auto­
matically handles the mouse input; for example, when the user chooses a menu
command, Windows automatically sends the application a message that contains
the command identifier.

The application, however, handles one common task itself: the user's selecting in­
formation within the client area. So that the user can select this information (by
using the mouse), the application must perform the following tasks:

• Start processing the selection.

When the user presses the mouse button to start selecting information, the appli­
cation must note the location of the cursor and temporarily capture all mouse
input to ensure that other applications do not interfere with the selection process.

• Provide visual feedback during the selection.

As the user drags the mouse across the screen, the application should show the
user what information is currently being selected. For example, some applica­
tions highlight selected information; others draw a dotted rectangle around it.

• Complete the selection.

When the user releases the mouse button, the application must note the final lo­
cation of the cursor and signal the end of the selection process.

When the selection process is complete, the user can then choose an action to per­
form on the selected information. For example, when using a word-processing ap­
plication, the user might select several words, then choose a command that
changes the selected text to a different font. The following sections discuss each

114 Microsoft Windows Guide to Programming

step in more detail and explain how to let the user select graphics in a window's
client area.

Note The mouse is just one of many possible pointing devices. Other pointing
devices such as graphics tablets, joysticks, and light pens may operate differently
but still provide input identical to that of a mouse. The following examples can
also be used with these devices. Remember ihai when a pointing device is present,
Windows automatically controls the position and shape of the cursor as the user
moves the pointing device.

6.3.1 Starting a Graphics Selection
Because graphics can be virtually any shape, they are potentially more difficult to
select than simple text. The simplest approach to selecting graphics is to let the
user "stretch" a selection rectangle so that it encloses the desired information.

This section explains how to use the "rubber rectangle" method of selecting
graphics. You can use the WM_LBUTTONDOWN, WM_LBUTTONUP, and
WM_MOUSEMOVE messages to create the rectangle. This lets the user create
the selection by choosing a point, pressing the left mouse button, and dragging to
another point before releasing. As the user drags the mouse, your application can
provide instant feedback by inverting the border of the rectangle described by the
starting and current points.

For this method, the application starts the selection upon receiving the
WM_LBUTTONDOWN message. The application must then do three things:
capture the mouse input, save the starting (original) point, and save the current
point, as follows:

BOOL fTrack = FALSE; /* global variables */
int OrgX = 0, OrgY = 0;
int PrevX = 0, PrevY = 0;

case WM_LBUTTONDOWN:
fTrack = TRUE;
PrevX = LOWORDClParam);
PrevY = HIWORD(lParam);
OrgX = LOWORD(lParam);
OrgY = HIWORD(lParam);
InvalidateRect(hWnd, NULL, TRUE);
UpdateWindow(hWnd);

f* Capture all input even if mouse goes outside window. */

SetCapture(hWnd);
break;

Chapter 6 Cursors 115

When the application receives the WM_LBUTTONDOWN message, the ITrack
variable is set to TRUE to indicate that a selection is in progress. As with any
mouse message, the lParam parameter contains the current x- and y-coordinates of
the mouse in the low and high-order words, respectively. These are saved as the
origin x and y values, OrgX and OrgY, as well as the previous values, PrevX and
PrevY. The PrevX and PrevYvariables will be updated immediately when the
next WM_MOUSEMOVE message is received. The OrgX and OrgY variables re­
main unchanged and will be used to determine a comer of the bitmap to be copied.
(The variables ITrack, OrgX, OrgY, PrevX, and PrevY must be global variables.)

To provide immediate visual feedback in response to the WM_LBUTTONDOWN
message, the application invalidates the screen and notifies the window procedure
that it must repaint the screen. The application does this by calling the functions
InvalidateRect and Update Window.

The SetCapture function directs all subsequent mouse input to the window even
if the cursor moves outside of the window. This ensures that the selection process
will continue uninterrupted.

Your application should respond to the WM_PAINT message by redrawing the in­
validated portions of the screen, as in the following example:

case WM_PAINT:
{

}

PAINTSTRUCT ps;
HDC hDC;

hDC BeginPaintChWnd, &ps);
if (OrgX != PrevX 11 OrgY != PrevY) {

MoveTo(hDC, OrgX, OrgY);
LineToChDC, OrgX, PrevY);
LineToChDC, PrevX, PrevY);
LineToChDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);

}

EndPaintChWnd, &ps);

break;

6.3.2 Extending a Graphics Selection
You may want some of your applications to be able to extend an existing selec­
tion. One way to do this is to have the user hold the SHIFT key when making a
selection. Since the wParam parameter contains a flag that specifies whether the
SHIFr key is being pressed, it is easy to check for this and to extend the selection,
as necessary. In this case, extending a selection means preserving its previous
OrgX and OrgY values when you start it. To do this, change the
WM_LBUTTONDOWN case so it looks like this:

116 Microsoft Windows Guide to Programming

case WM_LBUTTONOOWN:
fTrack = TRUE;
PrevX LOWORDClParam);
PrevY = HIWORDClParam);

if C!CwParam & MK_SHIFT)) { /* If shift key */
OrgX LOWORDClParam); /* is not pressed *I
OrgY = HIWORD(lParam);

}

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

/*
*Capture all input even if the mouse goes outside
* the window.
*/

SetCapture(hwnd);
break;

6.3.3 Showing a Graphics Selection
As the user makes the selection, your application must provide feedback about his
or her progress. For the application to do this, you can draw a border around the
selection rectangle by using the LineTo function upon receiving each new
WM_MOUSEMOVE message. To prevent the application from losing informa­
tion already on the screen, draw a line that inverts the screen rather than drawing
over it. You can do this by using the SetROP2 function to set the binary raster
mode to R2_NOT, as in the following example:

case WM_MOUSEMOVE:
{

RECT rectClient;
int NextX;
int NextY;

if (fTrack) {
NextX LOWORDClParam);
NextY HIWORDClParam);

/*Do not draw outside the window's client area. */

GetClientRect(hwnd, &rectClient);

if CNextX < rectClient.left)
NextX rectClient.left;

else
if CNextX >= rectClient.right)

NextX = rectClient.right - 1;

}

break;

Chapter 6 Cursors 117

if (NextY < rectClient.top)
NextY rectClient.top;

else
if (NextY >= rectClient.bottom)

NextY = rectClient.bottom - 1;

f*
* If the mouse position has changed, then clear the
* previous rectangle and draw the new one.
*f

if (NextX != PrevX 11 NextY != PrevY) {
hdc = GetDCChwnd);

}

SetROP2(hdc, R2_NOT); /*erases previous box *f
MoveTo(hdc, OrgX, OrgY);
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);

/* Get the current mouse position. */

PrevX = NextX;
PrevY = NextY;
MoveTo(hdc, OrgX, OrgY); /*draws new box*/
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);
ReleaseDC(hwnd, hdc);

The application processes the WM_MOUSEMOVE message only if the fTrack
variable is TRUE (that is, if a selection is in progress). The purpose of the
WM_MOUSEMOVE processing is to remove the border around the previous rect­
angle and draw a new border around the rectangle described by the current and
original positions. Since the border is the inverse of what was originally on the
screen, inverting again restores it completely. The first four LineTo functions re­
move the previous border; the next four draw a new border. Before drawing the
new border, the application updates the PrevX and PrevY values by assigning
them the current values contained in the lParam parameter.

6.3.4 Ending a Graphics Selection
Finally, when the user releases the left button, your application should save the
final point and signal the end of the selection process. The following statements
complete the selection:

118 Microsoft Windows Guide to Programming

case WM_LBUTTONUP:
fTrack = FALSE; /* no longer carrying out selection */
ReleaseCapture(); /*releases hold on mouse input */

X = LOWORDClParam); /* saves current value
Y = HIWORD(lParam);
break;

When the application receives a WM_LBUTIONUP message, it immediately sets
ff rack to FALSE to indicate that selection processing has been completed. It also
releases the mouse capture by using the ReleaseCapture function. It then saves
the current mouse position in the variables X and Y. This, together with the
selection-origin information saved on receiving the WM_LBUTTONDOWN mes­
sage, records the selection the user has made. The application can now manipulate
the selection and can redraw the selection rectangle, as necessary.

For some of your applications, you might want to check the final cursor position to
ensure that it represents a point to the lower right of the original point. This is the
way most rectangles are described-by their upper-left and lower-right comers.

Note that the ReleaseCapture function is required, since a corresponding Set­
Capture function was called. In general, the application should release the mouse
immediately after the mouse capture is no longer needed.

6.4 Using the Cursor with the Keyboard
Because Windows does not require a pointing device, applications should provide
the user with a way to duplicate mouse actions with the keyboard. To allow the
user to move the cursor by using the keyboard, use the SetCursorPos, SetCursor,
GetCursorPos, ClipCursor, and ShowCursor functions to display and move the
cursor.

6.4.1 Moving the Cursor
To move the cursor directly from your application, use the SetCursorPos func­
tion. This function is useful for letting the user move the cursor by using the key­
board.

To move the cursor, 11se the WM_KEYDOWN message and filter for the virtual­
key values of the arrow keys: VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN.
For each keystroke, the application should update the position of the cursor. The
following example shows how to retrieve the cursor position and convert the
coordinates to client coordinates:

case WM_KEYDOWN:
if (wParam != VK_LEFT && wParam != VK_RIGHT

&& wParam != VK_UP && wParam != VK_DOWN)
break;

GetCursorPos(&ptCursor);

Chapter 6 Cursors 119

I* Convert screen coordinates to client coordinates. */

ScreenToClient(hwnd, &ptCursor);

switch (wParam) {

}

/*
* Adjust the cursor position according to which key
* was pressed. Accelerate the movement by adding the
* repeat variable to the cursor position.
*/

case VK_LEFT:
ptCursor.x
break;

case VK_RIGHT:

repeat;

ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y
break;

case VK_DOWN:

repeat;

ptCursor.y += repeat;
break;

default:
return NULL;

repeat++; /* increases repeat rate */

I* Ensure that the cursor doesn't go outside client area. */

GetClientRect(hwnd, &Rect);

if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;

else
if (ptCursor.x < Rect.left)

ptCursor.x Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

120 Microsoft Windows Guide to Programming

else
if (ptCursor.y < Rect.top)

ptCursor.y = Rect.top;

/* Convert the coordinates to screen coordinates. */

ClientToScreen(hwnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
break;

case WM_KEYUP:
repeat = 1; /* clears repeat count */
break;

In this example, the first if statement filters for the virtual-key values of the arrow
keys: VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN. After this filtering
operation, the GetCursorPos function retrieves the current cursor position. If the
mouse is available, the user could potentially move the cursor with the mouse at
any time; therefore, there is no guarantee that the position values saved on the pre­
vious keystroke are correct.

After retrieving the current cursor position, the application calls the ScreenTo­
Client function to convert the cursor position to client coordinates. The applica­
tion does this for two reasons: Mouse messages give the mouse position in client
coordinates, and client coordinates do not need to be updated if the window
moves. In other words, it is convenient to use client coordinates, because the sys­
tem uses them and because it usually means less work for the application.

In the example, the repeat variable provides accelerated cursor motion. Advancing
the cursor one unit for each keystroke can be frustrating for users if they need to
move to the other side of the screen. You can accelerate the cursor motion by in­
creasing the number of units the cursor advances when the user holds down a key.
When the user holds down a key, Windows sends multiple WM_KEYDOWN mes­
sages without matching WM_KEYUP messages. To accelerate the cursor, you
simply increase the number of units to advance each time a WM_KEYDOWN
message is received.

After accelerating cursor motion, the application calls the GetClientRect function
to retrieve the current size of the client area and store it in the Rect structure. This
information is useful for ensuring that the cursor motion remains within the client
area.

Following the call to GetClientRect, the if statements check the current cursor
position to ensure that it is within the client area. The application then adjusts the
cursor position, if necessary.

In preparation for the SetCursorPos function, the ClientToScreen function
converts the values in the ptCursor structure from client coordinates to screen

Chapter 6 Cursors 121

coordinates. Because SetCursorPos requires screen coordinates rather than client
coordinates, you must convert the coordinates before calling SetCursorPos.

The SetCursorPos function moves the cursor to the desired location.

Within the WM_KEYUP case, the application restores the initial value of the re­
peat variable when the user releases the key.

6.4.2 Using the Cursor When No Mouse Is Available
When no mouse is available, the application must display and move the cursor in
response to keyboard actions. To determine whether a mouse is present, use the
GetSystemMetrics function and specify the SM_MOUSEPRESENT constant, as
follows:

GetSystemMetrics(SM_MOUSEPRESENT);

This function returns a nonzero value if the mouse is present.

You will need to display the cursor and update its position when the application is
activated; when the application is deactivated, you will need to hide the cursor.
The following statements carry out both activation functions:

case WM_ACTIVATE:
if (!GetSystemMetrics(SM_MOUSEPRESENT)) {

if (!HIWORD(lParam)) {

}

}

break;

if (wParam) {

}

SetCursor(hMyCursor);
ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);

ShowCursor(wParam);

In this example, the cursor functions are called only if no mouse is available; that
is, if the GetSystemMetrics function returns FALSE. Since Windows positions
and updates the cursor automatically if a mouse is present, the cursor functions, if
carried out, would disrupt this processing.

The next step is to determine whether the window is minimized (an icon).
The cursor must not be displayed or updated if the window is an icon. In a
WM_ACTIV ATE message, the high-order word is nonzero if the window is
minimized, so the cursor functions are called only if this value is zero.

The final step is to check the wParam parameter to determine whether the window
is being activated or deactivated. This parameter is nonzero if the window is being
activated. When a window is activated, the SetCursor function sets the cursor

122 Microsoft Windows Guide to Programming

shape and the SetCursorPos function positions the cursor. The ClientToScreen
function converts the cursor position to screen coordinates, as required by Set­
CursorPos. Finally, the ShowCursor function shows or hides the cursor, depend­
ing on the value of wParam.

When the system has no mouse installed, applications must be careful when using
the cursor. In general, applications must hide the cursor when L1.e vvindow is
closed, destroyed, or relinquishes control. If an application fails to hide the cursor,
it prevents subsequent windows from using the cursor. For example, if an applica­
tion sets the cursor to the hourglass, displays the cursor, then relinquishes control
to a dialog box, the cursor remains on the screen (possibly in a new shape) but can­
not be used by the dialog box.

6.5 Sample Application: Cursor
This sample application, Cursor, illustrates how to incorporate cursors and how to
use the mouse and keyboard in your applications. It illustrates the following:

• Using a custom cursor as the class cursor

• Showing the hourglass cursor during a lengthy operation

• Using the mouse to select a portion of the client area

• Using the keyboard to move the cursor

To create the Cursor application, make the following modifications to the Generic
application:

1. Add a CURSOR statement to your resource-definition file.

2. Add new variables.

3. Load the custom cursor and use it to set the class cursor in the initialization
function.

4. Prepare the hourglass cursor.

5. Add a lengthy operation to the window procedure (for simplicity, use the ENTER

key to "trigger" the operation).

6. Add WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
cases to the window procedure to support selection.

7. Add a WM_KEYDOWN case to the window procedure to support keyboard­
controlled cursor movement.

8. Add a WM_P AlNT case to the window procedure to redraw the client area
after it has been invalidated.

9. Add a BULLSEYE.CUR line to the makefile.

10. Compile and link the application.

Chapter 6 Cursors 123

This sample assumes that your system has a mouse; if your system does not have a
mouse, the application might not operate as described. However, it is fairly easy to
adjust the sample to work with both the mouse and the keyboard or with only the
keyboard.

6.5.1 Adding a CURSOR Statement
To use a custom cursor, you must first create a cursor file by using Image Editor.
Then specify the name of the file in a CURSOR statement in the resource­
definition file, as follows.

Bullseye CURSOR BULLSEYE.CUR

Make sure that the file BULLSEYE.CUR contains a cursor.

6.5.2 Adding New Variables
Since your application will require several new variables, add the following state­
ments to the beginning of your C-language source file:

char szStr[255];

HCURSOR hSaveCursor;
HCURSOR hHourGlass;

/*general-purpose string buffer*/

/* handle of current cursor
/* handle of hourglass cursor

BOOL fTrack = FALSE; /*TRUE if left button clicked */
int OrgX = 0, OrgY = 0; /* original cursor position */
int PrevX = 0, PrevY = 0; /* current cursor position */
int X = 0, Y = 0; /* last cursor position */
RECT Rect; /* selection rectangle */

POINT ptCursor;
int repeat= 1;

/* x and y coordinates of cursor */
/* repeat count of keystroke */

In this example, the hSaveCursor and hHourGlass variables hold the cursor han­
dles to be used for the lengthy operation. The fTrack variable holds a Boolean flag
indicating whether a selection is in progress. The variables OrgX, OrgY, PrevX,
and PrevY hold the original and current cursor positions as a selection is being
made. OrgX and OrgY, along with the variables X and Y, hold the original and
final coordinates of the selection when the selection is complete. The ptCursor
structure holds the current position of the cursor in the client area. (This position is
updated when the user presses an arrow key.) The Rect structure holds the current
dimensions of the client area and is used to ensure that the cursor stays within the
client area. The repeat variable holds the current repeat count for each keyboard
motion.

124 Microsoft Windows Guide to Programming

6.5.3 Setting the Class Cursor
To set the class cursor, modify a statement in the initialization function. Specifi­
cally, assign the cursor handle to the hCursor member of the window-class struc­
ture. Make the following change in the C-language source file. Find this line:

wc.hCursor = LoadCursor(NULL, T nr A DDnl,I\.,,_,,,,l'\\.111~,

Change it to the following:

wc.hCursor = LoadCursor(hinst, "Bullseye");

6.5.4 Preparing the Hourglass Cursor
Since you will be using the hourglass cursor during a lengthy operation, you need
to load it. The most convenient place to load it is from within the initialization
tasks handled by the fuitlnstance function. Add the following statement to Init­
fustance:

hHourGlass = LoadCursor(NULL, IDC_WAIT);

This makes the hourglass cursor available whenever it is needed.

6.5.5 Adding a Lengthy Operation
A lengthy operation can take many forms. This sample is a function named sieve
that computes several hundred prime numbers. The operation begins when the
user presses the ENTER key. Add the following statements to the window proce­
dure:

case WM_CHAR:
if (wParam == VK_RETURN) {

SetCapture(hwnd);

/* Set the cursor to an hourglass. */

hSaveCursor = SetCursor(hHourGlass);

lstrcpy(szStr, "Calculating prime numbers ... ");
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);
sprintf(szStr, "Calculated Id primes. ", sieve());
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwndl;

Chapter 6 Cursors 125

SetCursor(hSaveCursor); /*restores previous cursor*/
ReleaseCapture();

}

break;

When the user presses ENTER, Windows generates a WM_ CHAR message whose
wParam parameter contains a value representing a carriage return. Upon receiving
the WM_ CHAR message, the window procedure checks for this value and carries
out the sample lengthy operation, sieve. This function, called Eratosthenes Sieve
Prime-Number Program, is from Byte, January 1983. It is defined as follows:

#define NITER 20 /* number of iterations */
#define BUFF_SIZE 8190

BYTE abFlags[BUFF_SIZE + 1] { 0 };

int PASCAL sieve(void)
{

}

inti,k;
int iter, count;

for (iter = 1; iter <=NITER; iter++) { /* sieve NITER times */
count = 0;

}

for (i = 0; i <= BUFF_SIZE; i++) /*sets all flags TRUE */
abFlags[i] =TRUE;

for (i = 2; i <= BUFF_SIZE; i++)
if (abFlags[i]) { /*found a prime? */

for (k = i + i; k <= BUFF_SIZE; k += i)
abFlags[k] = FALSE; /* cancels its multiples */

count++;
}

return count;

6.5.6 Adding WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP
Cases

To carry out a selection, use the statements described in Section 6.3, "Using the
Cursor with the Mouse." Add the following statements to your window procedure:

case WM_LBUTTONDOWN:
fTrack = TRUE;
szStr[0] = '\0';
PrevX LOWORD(lParam);
PrevY = HIWORD(lParam);

12& Microsoft Wintiows Guide to Programming

if (!(wParam & MK_SHIFT)) {/*If shift key */
OrgX LOWORD(lParam); /*is not pressed*/
OrgY = HIWORD(lParam);

}

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

/*
* Capture all input even if the mouse goes outside
* the window.
*f

SetCapture(hwnd);
break;

case WM_MOUSEMOVE:
{

RECT rectClient;
int NextX;
int NextY;

if (fTrack) {
NextX LOWORD(lParam);
NextY HIWORD(lParam);

f* Do not draw outside the window's client area. */

GetClientRect(hwnd, &rectClient);

if (NextX < rectClient.left)
NextX rectClient.left;

else
if (NextX >= rectClient.right)

NextX = rectClient.right - 1;

if (NextY < rectClient.top)
NextY = rectClient.top;

else

f*

if (NextY >= rectClient.bottom)
NextY = rectClient.bottom - 1;

* If the mouse position has changed, then clear the
* previous rectangle and draw the new one.
*f

if (NextX ! = PrevX 11 NextY ! = PrevY) {
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOT); /*erases previous box*/

MoveTo(hdc, OrgX, OrgY);
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);

Chapter 6 Cursors 127

f* Get the current mouse position. */

}
}

}

break;

PrevX = NextX;
PrevY = NextY;
MoveTo(hdc, OrgX, OrgY); /*draws new box *f
LineTo(hdc, OrgX, PrevY);
LineTo(hdc, PrevX, PrevY);
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgY);
ReleaseDC(hwnd, hdc);

case WM_LBUTTONUP:
fTrack = FALSE; /* no longer carrying out selection */
ReleaseCapture(); /* releases hold on mouse input */

X = LOWORD(lParam); /* saves current value
Y = HIWORD(lParam);
break;

6.5.7 Adding WM_KEYDOWN and WM_KEYUP Cases
To let the user control the cursor by using the keyboard, add WM_KEYDOWN
and WM_KEYUP cases to your application's window procedure. The statements
in the WM_KEYDOWN case retrieve the current position of the cursor and up­
date the position when an arrow key is pressed. Add the following statements to
the window procedure:

POINT ptCursor;
int repeat = 1;
RECT Rect;

case WM KEYDOWN:

f* x and y coordinates of cursor */
f* repeat count of keystroke */
f* selection rectangle */

if (wParam != VK_LEFT && wParam != VK_RIGHT
&& wParam != VK_UP && wParam != VK_DOWN)
break;

128 Microsoft Windows Guide to Programming

GetCursorPos(&ptCursor);

/* Convert screen coordinates to client coordinates. */

ScreenToClient(hwnd, &ptCursor);

switch (wParam) {

}

/*
* Adjust the cursor position according to which key
* was pressed. Accelerate the movement by adding the
* repeat variable to the cursor position.
*/

case VK_LEFT:
ptCursor.x
break;

case VK_RIGHT:

repeat;

ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y
break;

case VK_DOWN:

repeat;

ptCursor.y += repeat;
break;

default:
return NULL;

repeat++; /* increases repeat rate */

/* Ensure that the cursor doesn't go outside client area. */

GetClientRectChwnd, &Rect);

if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;

else
if (ptCursor.x < Rect.left)

ptCursor.x Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else
if (ptCursor.y < Rect.top)

ptCursor.y Rect.top;

Chapter 6 Cursors 129

/* Convert the coordinates to screen coordinates. */

ClientToScreen(hwnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
break;

In this example, the GetCursorPos function retrieves the cursor position in screen
coordinates. To check the position of the cursor within the client area, the coordi­
nates are converted to client coordinates by using the ScreenToClient function.
The switch statement then checks for the arrow keys; each time it encounters an
arrow key, the statement adds the current contents of the repeat variable to the ap­
propriate coordinate of the cursor location.

The example then checks the new position to make sure it is still in the client area
(adjusting it if necessary), using the GetClientRect function to retrieve the dimen­
sions of the client area. Finally, the ClientToScreen function converts the position
back to screen coordinates, and the SetCursorPos function sets the new position.

The WM_KEYUP case restores the initial value of the repeat variable when the
user releases the key, as follows:

case WM_KEYUP:
repeat= 1; /* clears repeat count*/
break;

6.5.8 Adding a WM_ PAINT Case
To ensure that the text string and selection rectangle are redrawn when necessary
(for example, when another window has temporarily covered the client area), add
the following case to the window procedure:

case WM_PAINT:
{

}

PAINTSTRUCT ps;

hdc = BeginPaintChwnd, &ps);
TextOut(hdc, 1, 1, szStr, lstrlenCszStrl);
if COrgX != PrevX 11 OrgY != PrevYl {

}

MoveToChdc, OrgX, OrgYl;
LineTo(hdc, OrgX, PrevYl;
LineTo(hdc, PrevX, PrevYl;
LineTo(hdc, PrevX, OrgY);
LineTo(hdc, OrgX, OrgYl;

EndPaint(hwnd, &ps);

break;

130 Microsoft Windows Guide to Programming

6.5.9 Adding a BULLSEYE.CUR Line to the Makefile
In the makefile, add the file BULLSEYE.CUR to the list of files on which
CURSOR.RES is dependent. The relevant lines in the makefile should look like
this:

cursor.res: cursor.re cursor.h bullseye.cur
re Ir cursor.re

This change ensures that, if the file BULLSEYE.CUR changes, CURSOR.RC will
be recompiled to form a new CURSOR.RES file.

6.5.10 Compiling and Linking
Compile and link the Cursor application. Then start Windows and the Cursor appli­
cation. Now, when you move the cursor into the client area, it changes to the
bull's-eye shape.

Press and hold down the left mouse button, drag the mouse to a new position, and
release the mouse button. You should see a selection that looks like this:

Ending point

Press the arrow keys to move the cursor. Then press ENTER to see the application
display the hourglass cursor, indicating that a lengthy operation is in progress.

Chapter 6 Cursors 131

6.6 Related Topics
For more information about keyboard and mouse input, see Chapter 4, "Keyboard
and Mouse Input."

For more information about cursor functions, window-management messages, and
input messages, see the Microsoft Windows Programmer's Reference, Volumes 2
and3.

For more information about resource-definition statements, see the Microsoft
Windows Programmer's Reference, Volume 4.

For more information about Image Editor, see Microsoft Windows Programming
Tools.

Menus

Chapter 7

7 .1 Menus and Menu Items.. 135
7.2 Defining a Menu.. 136

7 .2.1 Menu Identifiers... 137
7 .3 Including a Menu in Your Application.. 137

7.3.1 Specifying the Menu for a Window Class............................... 137
7.3.2 Specifying a Menu for a Specific Window............................. 138

7.4 Processing Input from a Menu... 138
7 .5 Working with Menus from Your Application... 139

7.5.1 Enabling and Disabling Menu Items....................................... 140
7.5.1.1 Setting the Initial State of a Menu Item................ 140
7.5.1.2 DisablingaMenultem .. 140
7.5.1.3 Disabling a Menu Item and Making It

Unavailable.. 141
7.5.1.4 EnablingaMenultem ... 141

7 .5 .2 Checking and Clearing Menu Items.. 141
7 .5 .2.1 Setting an Initial Check Mark............................... 141
7.5.2.2
7.5.2.3

Checking a Menu Item.. 141
Clearing a Menu Item... 142

7.5.3 Adding Menu Items... 142
7.5.3.1 Appending an Item to an Existing Menu 142
7.5.3.2 Inserting an Item in an Existing Menu.................. 142

7.5.4 Changing Existing Menus... 143
7.5.4.1 Performing Several Changes at Once................... 144

7.5.5 Deleting Menu Items... 144
7.5.6 Using Bitmaps as Menu Items... 144
7.5.7 Replacing Menus... 145
7.5.8 Creating New Menus... 146
7.5.9 Initializing Menus.. 147

134 Microsoft Windows Guide to Programming

7.6 Using Special Menu Features .. 148
7.6.1 Providing Accelerator Keys for Menus and Menu Items 148

7.6.1.1 Adding Accelerator Text to a Menu Item 149
7.6.1.2 Creating an Accelerator Table 149
7.6.1.3 LoadinganAcceleratorTable 150
7.6.1.4 Changing the Message Loop to Process

Accelerator Keys... 150
7.6.2 Using Cascading Menus .. 151
7 .6.3 Using Floating Pop-up Menus... 153
7.6.4 Designing Your Own Check Marks .. 155
7.6.5 Using Owner-Drawn Menu Items... 156

7.7 Sample Application: EditMenu .. 158
7.7.1 Adding New Menus to the Resource-Definition File 158
7.7.2 Adding Definitions to the Header File.................................... 159
7.7.3 Adding an Accelerator Table to the

Resource-Definition File.. 160
7.7.4 Adding a New Variable ... 160
7. 7 .5 Loading the Accelerator Table 160
7.7.6 Modifying the Message Loop.. 161
7.7.7 Modifying the WM_ COMMAND Case.................................. 161
7.7.8 Compiling and Linking .. 162

7.8 Related Topics.. 162

Chapter 7 Menus 135

Most applications for the Microsoft Windows operating system use menus so that
the user can select and carry out commands or actions.

This chapter covers the following topics:

• What a menu is

• Defining a menu

• Including a menu in your application

• Processing input from a menu

• Modifying an existing menu

• Working with special menu features

This chapter also explains how to create a sample Windows 3.1 application, Edit­
Menu, that uses and processes input from menus.

7 .1 Menus and Menu Items
A menu is a list of items that, to a user, are your application's commands. Each
menu item can be displayed as text or as a bitmap. By choosing a menu item (with
the mouse or the keyboard), the user tells the application to perform the command
associated with that item. Windows responds to this action by sending the applica­
tion a message that identifies which command the user chose.

To use a menu in your application, follow these general steps:

1. Define the menu in your resource-definition file.

2. Specify the menu in your application code. There are two common ways to do
this:

• When registering the window class, specify a menu (called the class menu)
for that entire window class.

• When creating a window, specify a menu for that window.

3. Initialize the menu, if necessary.

When you have defined and initialized a menu for your application, the user can
choose commands from the menu, and you can have your application add, change,
or replace items, or even the entire menu, as necessary.

136 Microsoft Windows Guide to Programming

7 .2 Defining a Menu
The first step in using a menu is to define it in your application's resource­
definition (.RC) file by using a MENU statement. A MENU statement consists of
the menu name, the MENU keyword, and a pair of BEGIN and END keywords
that enclose one or more of the following menu-definition statements:

• The MENUITEM statement defines a menu item by name, appearance (text or
bitmap), and identifier.

• The POPUP statement defines a pop-up menu, which defines further menu
items by name, appearance, and identifier.

For example, the following MENU statement defines a menu named SampleMenu:

SampleMenu MENU
BEGIN

END

MENUITEM "Exit!", IDM_EXIT
MENUITEM "Recalculate!", IDM_RECALC
POPUP "Options"
BEGIN

END

MENUITEM "Scylla", IDM_SCYLLA
MENUITEM "Charybdis", IDM_CHARYBDIS

In this example, the first line indicates the beginning of a menu definition and
names the menu SampleMenu.

The first MENUITEM statement defines the first item on the menu. The text
Exit! will appear as the leftmost item on the menu bar. When the user chooses the
Exit! command, Windows sends the application a WM_ COMMAND message
whose wParam parameter specifies the menu identifier IDM_EXIT. The second
MENUITEM statement similarly defines the Recalculate! item.

The POPUP statement defines a pop-up menu named Options that will appear on
the menu bar. When the user selects Options from the menu bar, a menu appears
in which the user can choose between the Scylla and Charybdis commands.

Within the POPUP statement are two definitions for the Scylla and Charybdis
menu items, each with its own text and menu identifier.

When the user chooses the Exit!, Recalculate!, Scylla, or Charybdis command,
Windows notifies the application of the user's choice by passing it that item's
menu identifier. Note that Windows does not notify the application when the user
selects the Options pop-up menu; instead, Windows simply displays that menu.

For more information about the MENU, POPUP, and MENUITEM resource
statements, see the Microsoft Windows Programmer's Reference, Volume 4.

Chapter 7 Menus 137

7 .2.1 Menu Identifiers
Each menu item is identified by a unique constant, usually called a menu identi­
fier, which Windows passes to the application when the user chooses the com­
mand associated with the item. You define each menu identifier by using the
#define directive in the resource-definition file or the header file, as in the follow­
ing example:

#define IDM_EXIT 111
#define IDM_RECALC 112
#define IDM_SCYLLA 113
#define IDM_CHARYBDIS 114

You use menu identifiers to direct the flow of control, depending on which com­
mand the user chooses. For more information about handling menu input, see Sec­
tion 7.4, "Processing Input from a Menu."

7 .3 Including a Menu in Your Application
Once you have defined a menu in the resource-definition file, you can include it in
your application code. You do this by associating it with a window. Any over­
lapped or pop-up window can have a menu; a child window cannot (although child
windows can have System menus).

This section explains two common ways to include a menu in your application:

• Specify the menu as the class menu when registering a window class. All win­
dows of that class will then include that menu.

• Specify the menu when creating a window. The window will then include the
menu.

7.3.1 Specifying the Menu for a Window Class
When you register a window class, you are setting the default attributes (including
the default menu) for all windows in that class. The default menu for a window
class is known as the class menu. You can override this default menu by explicitly
supplying a menu handle when you create a window of that class. To specify the
class menu when you register the window class, assign the name of the menu, as
given in the resource-definition file, to the lpszMenuName member of the
window-class structure, as follows:

wc.lpszMenuName = "SampleMenu";

In this example, lpszMenuName is part of a WNDCLASS structure named wc.
The menu name SampleMenu is the name given to the menu in the application's
resource-definition file.

138 Microsoft Windows Guide to Programming

7.3.2 Specifying a Menu for a Specific Window
A window need not use the class menu, since the class menu is simply a default,
not a requirement. To use a menu other than the class menu, load the menu you
want from your application resources by using the LoadMenu function. This func­
tion returns a menu handle. Then, when you call the Create Window function to
create the window, pass the menu handle as the function's hMenu parameter.

The following example loads and specifies a menu by using the LoadMenu and
Create Window functions:

HWND hWnd;
HMENU hSampleMenu;

/* handle of current window */
/* menu handle */

hSampleMenu = LoadMenu(hinst, "SampleMenu");
hWnd = CreateWindow("SampleWindow",

"SampleWindow",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAUL TI
CW_USEDEFAULT,
CW_USEDEFAUL TI
(HWND) NULL,
hSampleMenu,
hinst,
(LPSTR) NULL);

In this example, the LoadMenu function loads the menu named SampleMenu.
The hinst variable specifies that the resource is to be loaded from the application's
resources. LoadMenu then returns a menu handle, which is stored in the hSample­
Menu variable.

The application calls the Create Window function to create a new window named
Sample Window. Finally, the application passes hSampleMenu, the menu handle
that LoadMenu returned, to Create Window. This tells Windows to use Sample­
Menu for the window, instead of using the class menu (if any).

7 .4 Processing Input from a Menu
When a user chooses a command from a menu, Windows sends the corresponding
window procedure a WM_ COMMAND message whose wParam parameter con­
tains the menu identifier of the item. The window procedure must carry out any
tasks associated with the chosen command. For example, if the user chooses the
Open command, the window procedure prompts for the filename, opens the file,
and displays it in the window's client area.

Chapter 7 Menus 139

The most common way to process menu input is with a switch statement in the
window procedure. Usually, the switch statement directs processing according to
the value of the wParam parameter in the WM_ COMMAND message. Each case
processes a different menu identifier, as in the following example:

case WM_COMMAND:
switch (wParam)

{

case IDM_NEW:
f* operations for creating a new file */
break;

case IDM_OPEN:
f* operations for opening a file
break;

case IDM_SAVE:
/* operations for saving this file
break;

case IDM_SAVEAS:
f* operations for saving this file
break;

case IDM_EXIT:

*/

/* operations for exiting the application */
break;

}

break;

In this example, the wParam parameter contains the menu identifier of the item as­
sociated with the command the user chose. For each command the user chooses,
the application performs the appropriate operations.

7 .5 Working with Menus from Your Application
Windows provides functions you can use to change existing menus and create new
menus, while your application runs. This section explains the following:

• Enabling and disabling menu items

• Checking and clearing (removing a check mark from) menu items

• Adding, changing, and deleting menu items

• Using bitmaps as menu items

• Replacing menus

• Creating and initializing menus from your application

140 Microsoft Windows Guide to Programming

When you create a window, it receives a private copy of the class menu. The appli­
cation can alter that window's copy of the menu without affecting other windows'
menus.

Note Whenever you make changes to menus on the menu bar, you must call the
DrawMenuBar function to display the changes.

7.5.1 Enabling and Disabling Menu Items
Usually, a menu item is enabled; its text appears normal, and the user can choose
it as a command. A disabled item appears normal but does not respond to mouse
clicks or keyboard selection. An unavailable item has grayed (sometimes called
"dimmed") text and does not respond to mouse clicks or keyboard selection. Typi­
cally, you disable a menu item, or make it unavailable, when the action it repre­
sents is not appropriate. For example, you might make the Print command in the
File menu unavailable when the system does not have a printer installed.

7.5.1.1 Setting the Initial State of a Menu Item
In the resource-definition file, you can specify whether a menu item is initially dis­
abled or grayed. To do so, use the INACTIVE or GRAYED options with the
MENUITEM statement. For example, the following statement specifies that the
Print menu item is initially grayed:

MENUITEM "Print", IDM_PRINT, GRAYED

The information in the resource-definition file applies only to the initial state of
the menu. You can change the command's state later, using the EnableMenultem
function in your C-language source file. EnableMenultem enables or disables a
menu item or makes it unavailable.

7 .5.1.2 Disabling a Menu Item
A disabled menu item appears normal but does not respond to mouse clicks or key­
board selection. A disabled item is commonly used as a title for related menu op­
tions. The following example disables a menu item:

EnableMenuitem(hMenu, IDM_SAVE, MF_DISABLED);

This example disables a menu item on the menu represented by the menu handle
hMenu. The menu identifier of the item is IDM_SA VE. By specifying the value
MF _DISABLED, you direct Windows to disable the specified item.

Chapter 7 Menus 141

7 .5.1.3 Disabling a Menu Item and Making It Unavailable
So that the user can tell that a command is not currently available, you may want
your application to make it unavailable rather than simply disabling it. Making a
menu item unavailable disables it and redisplays its text in grayed letters. To dis­
able a menu item and make it unavailable, specify the value MF_ GRAYED when
you call EnableMenultem, as in the following example:

EnableMenuitem(hMenu, IDM_PRINT, MF_GRAYED);

This example disables an item on the menu represented by the menu handle
hMenu. The menu identifier of the item is IDM_PRlNT. By specifying the value
MF_ GRAYED, you tell Windows to disable the specified item and redisplay its
text in grayed letters.

7.5.1.4 Enabling a Menu Item
You can enable a disabled menu item by calling EnableMenultem and specifying
the MF _ENABLED value. The following example enables the item identified by
ID_EXIT:

EnableMenultem(hMenu, ID_EXIT, MF_ENABLED);

7.5.2 Checking and Clearing Menu Items
You can display a check mark next to a menu item to indicate that the user has
chosen it. Typically, you check an item when it is part of a group of items that are
mutually exclusive. The check mark indicates the user's latest choice. For ex­
ample, if a group consists of the commands Left, Right, and Center, your applica­
tion might check the Left command to indicate that the user chose that command
most recently.

7 .5.2.1 Setting an Initial Check Mark
In the resource-definition file, you can specify whether a menu item is initially
checked. To do so, use the CHECKED option in the MENUITEM statement. For
example, the following MENUITEM statement specifies that the Left menu item
is initially checked:

MENUITEM "Left", IDM_LEFT, CHECKED

7 .5.2.2 Checking a Menu Item
The information in the resource-definition file applies only to the initial state of
the menu. You can check or clear a menu item later, using the CheckMenultem

142 Microsoft Windows Guide to Programming

function in your C-language source file. CheckMenultem checks or clears a
specified menu item.

The following example places a check mark next to the item whose menu identi­
fier is IDM_LEFT:

CheckMenuitem(hMenu, !DM_LEFT, MF_CHECKED);

7.5.2.3 Clearing a Menu Item
To clear (or "uncheck") a menu item, you call the CheckMenultem function and
specify the value MF _UNCHECKED. The following example clears the check
mark (if any) from the item whose menu identifier is IDM_RIGHT:

CheckMenuitem(hMenu, IDM_RIGHT, MF_UNCHECKEDl;

If you change the menus in the menu bar, you must call the DrawMenuBar func­
tion to display the changes.

7 .5.3 Adding Menu Items
You can add new items to the end of existing menus, or insert new items after par­
ticular items.

7 .5.3.1 Appending an Item to an Existing Menu
To append an item to the end of an existing menu, you use the AppendMenu func­
tion. With this function, you can add a new item to the end of the specified menu
and specify whether the new item is checked, enabled, grayed, and so on.

The following example appends the menu item Raspberries to the end of the Fruit
menu. The example disables the new item and makes it unavailable if raspberries
are not currently in season.

AppendMenu(hFruitMenu,
RaspberriesinSeason ? MF_ENABLED MF_GRAYED,
IDM_RASPBERRIES,
"Raspberries");

7.5.3.2 Inserting an Item in an Existing Menu
To insert an item in an existing menu, you use the lnsertMenu function. This
function inserts the specified menu item at the specified position and moves sub­
sequent items down to accommodate the new item. Like the AppendMenu func­
tion, InsertMenu lets you specify the state of the new menu item when you
insert it.

Chapter 7 Menus 143

The following example inserts the menu item Kumquats before the existing item
Melons. The example disables the new item and makes it unavailable.

InsertMenu(hFruitMenu,
IDM_MELONS,
MF_BYCOMMAND I MF_GRAYED,
IDM_KUMQUATS,
"Kumquats");

You can also insert menu items by numerical position rather than before a specific
item. The following example inserts the item Bananas, making it the third item in
the Fruit menu. (The first item has position 0, the second item 1, and so on.)

InsertMenu(hFruitMenu,
2.
MF_BYPOSITION I MF_GRAYED,
IDM_BANANAS,
"Bananas");

7.5.4 Changing Existing Menus
You can change existing menus and menu items by using the ModifyMenu
function. For example, you might need to change the text of a menu item. With
ModifyMenu, you can enable or disable the item, check or clear it, or make it un­
available.

In the following example, the Modify Menu function changes the text of the Water
item to Wine. The example also changes the item's menu identifier.

ModifyMenu(hMenu,
IDM_WATER,
MF_BYCOMMAND,
IDM_WINE,
"Wine");

When you use ModifyMenu, you are essentially telling Windows to replace an
existing menu item with a new one. The third, fourth, and fifth Modify Menu
parameters specify the attributes of the new item.

For example, the following statement changes the item text from Wine to Caber­
net. Although only the item's text is changing, the statement still specifies all the
attributes of the item (in this case, just the menu identifier).

ModifyMenu(hMenu,
IDM_WI NE,
MF_BYCOMMAND,
IDM_WINE,
"Cabernet");

144 Microsoft Windows Guide to Programming

7 .5.4.1 Performing Several Changes at Once
When you use Modify Menu to change a menu item, you can also check or clear
the item, enable or disable it, or make it unavailable.

The following example not only changes the Water command to Wine, it enables
the command (if it is not enabled already), checks it, and changes its menu identi­
fier:

ModifyMenu(hMenu,
IDM_WATER,
MF_BYCOMMAND MF_ENABLED I MF_CHECKED,
IDM_WINE,
"Wine");

7 .5.5 Deleting Menu Items
You can remove menu items and any pop-up menus associated with those items
by using the DeleteMenu function. DeleteMenu permanently removes the
specified item from the specified menu and moves subsequent items up to fill the
gap.

DeleteMenu(hFruitMenu, /* menu handle
1,
MF _BY POSITION);

/* deletes second item */
f* specifies item by menu position *f

This example deletes the Fruit menu's second item. Windows moves any sub­
sequent items up to fill the gap.

The following example deletes the same item, but specifies it by its menu identi­
fier rather than by its position on the menu:

DeleteMenu(hFruitMenu,
IDM_ORANGES,
MF _BYCOMMAND);

7.5.6 Using Bitmaps as Menu Items

f* menu handle */
f* deletes Oranges item */
/* specifies item by menu identifier */

You can also use bitmaps as menu items. There are two ways to do this:

• When you insert or append a new item, specify that you want to use a bitmap in­
stead of text for that item.

• Use the ModifyMenu function to change an existing item so that it appears as a
bitmap instead of text.

You cannot specify a bitmap as a menu item in the .RC file.

Chapter 7 Menus 145

The following example loads a bitmap named Apples and then uses the Modify­
Menu function to replace the text of the Apples menu item with this bitmap image
of an apple.

HMENU hMenu;
HBITMAP hBitmap;

hBitmap = LoadBitmap(hinst, "Apples");

hMenu = GetMenu(hWndl;
,ModifyMenu(hMenu,

IDM_APPLES,
MF_BYCOMMAND I MF_BITMAP,
IDM_APPLES,
(LPSTR) MAKELONG(hBitmap,

f* item to replace

f* menu identifier of new item */
0))

In this example, the LoadBitmap function first loads the bitmap from the file and
returns a handle of the bitmap, saved in the hBitmap variable.

The GetMenu function then retrieves the handle of the current window's menu
and places it in the variable hMenu. This variable is passed as the first parameter
of the Modify Menu function, which specifies the menu to change. The second pa­
rameter of the Modify Menu function-in this case, IDM_APPLES-specifies the
item to be modified.

The third parameter specifies how to make the changes. MF _BYCOMMAND indi­
cates to Windows that you are specifying the item to be changed by its menu iden­
tifier rather than by its position. MF _BITMAP indicates that the new item will be
a bitmap rather than text.

The fourth parameter, set to IDM_APPLES, specifies the new menu identifier for
the item being modified. In this example, the menu identifier does not change.

The new bitmap handle must be passed as the low-order word of the fifth parame­
ter of ModifyMenu. The MAKELONG macro combines the 16-bit handle with a
16-bit constant to make the 32-bit argument. Casting the parameter to an LPSTR
data type prevents the compiler from issuing a warning, since the compiler "ex­
pects" this parameter to be a string.

7.5. 7 Replacing Menus
You can replace menus by using the SetMenu function. Typically, you replace a
menu when the application changes modes and requires a completely new set of
commands. For example, an application might replace a spreadsheet menu with a
charting menu when the user changes from a spreadsheet to a charting mode.

146 Microsoft Windows Guide to Programming

In the following example, the GetMenu function retrieves the menu handle of the
spreadsheet menu and saves it in order for it to be restored later. The SetMenu
function replaces the spreadsheet menu with a charting menu loaded from the ap­
plication's resources.

HMENU hMenu, hOldMenu;
HMENU hSpreadsheetMenu;

hOldMenu = GetMenu(hWndl;
hMenu = LoadMenu(hinst, "ChartMenu");
SetMenu(hWnd, hMenul;

You can also load menus from resources other than those belonging to the applica­
tion (by using the module handle of a library).

7.5.8 Creating New Menus
You can create new menus while your application runs, using the CreateMenu
function. CreateMenu creates a new, empty menu; you can then add items to it by
using the AppendMenu or InsertMenu function. The following example creates
an empty pop-up menu and appends it to the window's menu. It then appends
three items to the new pop-up menu.

HMENU hWinMenu;
HMENU hVeggieMenu;

hVeggieMenu = CreateMenu();

AppendMenu(hWinMenu,
MF_POPUP I MF_ENABLED,
hVeggieMenu,
"Veggies" l;

AppendMenu(hVeggieMenu,
MF_ENABLED,
IDM_CELERY,
"Celery");

AppendMenu(hVeggieMenu,
MF_ENABLED,
IDM_LETTUCE,
"Lettuce");

AppendMenu(hVeggieMenu,
MF _ENABLED,
IDM_PEAS,
"Peas");

7 .5.9 Initializing Menus

Chapter 7 Menus 147

Your application can, if necessary, initialize a menu before Windows displays the
menu. Although you can specify a menu item's initial state (disabled, grayed, or
checked) in the resource-definition file, this method does not work if the initializa­
tion differs from time to time. For example, to disable the Print command only if
the user's system has no printer installed, you could disable the Print item when
you initialize its menu. (Disabling the Print item in the .RC file would not work,
since the application cannot determine whether a printer is available until the appli­
cation is running.)

Just before Windows displays a menu, it sends a WM_INITMENU message to the
window procedure for the window that owns that menu. This enables the window
procedure to check the state of the menu items and, if necessary, modify them
before Windows displays the menu. In the following example, the window func­
tion processes the WM_INITMENU message and sets the state of a menu item,
based on the value of the wChecked variable:

WORD wChecked = IDM_LEFT;

case WM INITMENU:
if (GetMenu(hWnd) != wParam)

break;
CheckMenuitem(wParam, IDM_LEFT,

IDM_LEFT == wChecked ? MF_CHECKED MF_UNCHECKED);
CheckMenuitem(wParam, IDM_CENTER,

IDM_CENTER == wChecked? MF_CHECKED : MF_UNCHECKED);
CheckMenuitem(wParam, IDM_RIGHT,

IDM_RIGHT == wChecked? MF_CHECKED : MF_UNCHECKED);
break;

In this example, the WM_INITMENU message passes the given menu handle in
the wParam message parameter.

To ensure that Windows is about to display the correct menu, the GetMenu func­
tion retrieves a handle of the current window's menu and compares that handle

148 Microsoft Windows Guide to Programming

with the value of wParam. If these are not equal, the window's menu should not
be initialized. Otherwise, the menu is correct and you can use the CheckMenu­
ltem function to initialize the items in the menu.

'7 C I l""inn (.'..,.,.,..i I nn r::: 1
1 .u u.,111y ""n;"101 1tn:;11u rca1u1c~

So far, this chapter has discussed "standard" menus, which drop down from a
menu bar that contains items the user selects by using the mouse, the arrow keys,
or mnemonics. In addition to these menu features, Windows provides the follow­
ing special features:

• Accelerator keys, which provide a keyboard shortcut for selecting menu items

• Cascading menus, which you can use to create several levels of pop-up menus

• Floating pop-up menus, which are normal pop-up menus except that they can
appear anywhere on the screen (usually at the current mouse position)

• Customized check marks, for which you use your own bitmaps instead of using
the standard Windows check mark.

7 .6.1 Providing Accelerator Keys for Menus and Menu Items
Accelerator keys are shortcut keys with which the user can choose a command
from a menu by using a single keystroke. For example, a user could select the De­
lete command simply by pressing the DEL key. Accelerator keys are part of the
resource-definition file and are tied into the application through the C-language
source code.

To provide accelerator keys to menus and menu items in your application, follow
these steps:

1. In the resource-definition file, mark the accelerator key for each item in the
MENUITEM statements.

2. In the resource-definition file, create an accelerator table. An accelerator table
lists the accelerator keys and corresponding menu identifiers. You create it
using the ACCELERATORS resource statement.

3. In the C-language source file, load the accelerator table by using the
LoadAccelerators function.

4. Change the message loop so that it processes accelerator-key messages.

Chapter 7 Menus 149

7 .6.1.1 Adding Accelerator Text to a Menu Item
The menu text should indicate each item's accelerator key so that the user can tell
which key to use for the command. Add the key assignments to the MENUITEM
definitions in the .RC file. For example, suppose your application has the follow­
ing pop-up menu defined in its resource-definition file:

GroceryMenu MENU
PO PUP

END

BEGIN

END

MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM

"&Meats"

"&Beef\tF9",
"&Chicken\tShift+F9",
"&Lamb\tCtrl+F9",
"&Pork\tAlt+F9",

IDM_BEEF
IDM_CHICKEN
IDM_LAMB
IDM_PORK

The pop-up menu Meats has the four items Beef, Chicken, Lamb, and Pork. Each
item has a mnemonic, indicated by the ampersand(&), and an accelerator key sep­
arated from the name with a tab (\t). Whenever a menu item has a corresponding
accelerator key, it should be displayed in this way. The accelerator keys in this
sample are F9, SHIFT+F9, CTRL+F9, and ALT+F9.

7 .6.1.2 Creating an Accelerator Table
To use accelerator keys, add an accelerator table to the resource-definition file
by using the ACCELERATORS statement. This statement lists the accelerator
keys and the corresponding menu identifiers of the associated items. In the
ACCELERATORS statement, as with other resource statements, BEGIN starts
the entry and END marks its end. Following is a typical accelerator table:

GroceryMenu
BEGIN

VK_F9,
VK_F9,
VK_F9,
VK_F9,

END

ACCELERATORS

IDM_BEEF,
IDM_CH I CKEN,
IDM_LAMB,
IDM_PORK,

VI RT KEY
VIRTKEY,
VIRTKEY,
VIRTKEY,

SHIFT
CONTROL
ALT

This example defines four accelerator keys, one for each menu item. The first ac­
celerator key is simply the F9 key; the other three are key combinations using the
ALT, SHIFT, or CTRL key in combination with the F9 key.

The accelerator keys are defined by using the Windows virtual-key code, as indi­
cated by the VIRTKEY option. Virtual keys are device-independent key values
that Windows translates for each computer. These keys offer a way to guarantee
that the same key is used on all computers without your needing to know what the
actual value of the key is on any computer. You may also use ASCII key codes for
accelerators, in which case, you would use the ASCII option.

150 Microsoft Windows Guide to Programming

The ACCELERATORS statement associates each accelerator key with a menu
identifier. fu the preceding example, the IDM_BEEF, IDM_CHICKEN,
IDM_LAMB, and IDM_PORK constants are the menu identifiers of the items on
the Grocery menu. When the user presses an accelerator key, these are the values
that are passed to the window procedure.

7 .6.1.3 Loading an Accelerator Table
The accelerator table, like any other resource, must be loaded before your applica­
tion can use it. To load the accelerator table, use the LoadAccelerators function.
This function takes a handle of the current instance of the application and the
name of the accelerator table (as defined in the .RC file); it returns a handle of the
accelerator table for the associated menu. Typically, you load a menu's accelerator
table when that menu's window has just been created-that is, within the
WM_CREATE case of the window procedure. The following example shows how
to load an accelerator table:

HINSTANCE hinst;
HACCEL hAccTable;

case WM_CREATE:

/* handle of current instance */
/* handle of accelerator table */

hAccTable = LoadAccelerators(hinst, "GroceryMenu");
break;

fu this example, the LoadAccelerators function loads the accelerator table for
GroceryMenu into memory. The function then assigns the handle identifying the
table to the hAccTable variable. The hinst variable identifies the application's
resource-definition file; Grocery Menu is the name of the accelerator table.

Once the table is loaded, the application can use the TranslateAccelerator func­
tion to translate accelerator keys for that menu.

7 .6.1.4 Changing the Message Loop to Process Accelerator Keys
To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. When the message loop receives a keyboard-input message con­
taining an accelerator key, TranslateAccelerator converts the message to a
WM_ COMMAND message containing the appropriate menu identifier for that ac­
celerator key, and sends the resulting WM_ COMMAND message to the window
procedure.

Chapter 7 Menus 151

The message loop should test each message to determine whether it is an
accelerator-key message; if it is, the loop should translate and dispatch the mes­
sage by using TranslateAccelerator. If the message is not an accelerator-key
message, the loop should process it as usual.

Note TranslateAccelerator also translates accelerator keys for commands the
user chooses from the System menu. In such cases, the function translates the
keyboard-input message into a WM_SYSCOMMAND message.

After you add the TranslateAccelerator function, the message loop should look
like this:

while (GetMessage(&msg, NULL, NULL, NULL)) {

}

if (!TranslateAccelerator(hWnd, hAccTable, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}

In this example, the TranslateAccelerator function checks each message to deter­
mine whether it is an accelerator-key message. If the message is an accelerator­
key message, the window handle hWnd identifies the window whose messages are
to be translated (if any are found). The window handle must identify the window
that contains the menu with the accelerator keys. The accelerator handle
hAccTable specifies the accelerator table to use when translating the accelerator
keys. If the message was generated by means of an accelerator key, the Translate­
Accelerator function converts the keystroke to a WM_ COMMAND message con­
taining the appropriate menu identifier, and sends that WM_ COMMAND message
to the window procedure.

If the message is not an accelerator-key message, the application processes it as
usual, by using the TranslateMessage and DispatchMessage functions.

7 .6.2 Using Cascading Menus
You can provide more than one level of pop-up menus in your applications. Such
multilevel pop-up menus are called cascading menus. A multilevel menu structure
can help minimize the number of items on a single pop-up menu, without requir­
ing a dialog box in which the user refines his or her choice. The following figure
shows an example of cascading menus:

152 Microsoft Windows Guide to Programming

Quick J;!asic Quick C
EASCAL

In this example, the user selected the Software menu and then chose the Lan­
guages command from the Software menu. At this point, the Languages pop-up
menu appeared to the right of the cursor. The user then moved the cursor over the
Languages pop-up menu and chose "C." The C pop-up menu then appeared, from
which the user chose either C version 7.0 or QuickC (Microsoft QuickC®).

Cascading menus are simply nested pop-up menus. The menu definition for the
preceding example in figure looks like this:

MenuMenu MENU
BEGIN

POPUP "&Software"
BEGIN

POPUP "&Word Processing"
BEGIN
MENUITEM "&Word 5.0", IDM_WORD
MENUITEM "W&rite", IDM_WRITE
END

POPUP "&Spreadsheet"
BEGIN
MENUITEM "&Microsoft Excel", IDM_EXCEL
MENUITEM "&1+2=4", IDM_l24
END

END

POPUP "&Languages"
BEGIN

END

POPUP "&C"
BEGIN
MENUITEM "C &7.0", IOM_C60
MENUITEM "&Quick C", IDM_QUICKC
END

MENUITEM "Quick &Basic", IDM_QUICKBASIC
MENUITEM "&PASCAL", IDM_PASCAL
END

Chapter 7 Menus 153

Note A cascading pop-up menu has its own menu handle. To control items on a
cascading pop-up menu, you must first retrieve a handle of the menu by calling the
GetSubMenu function.

7.6.3 Using Floating Pop-up Menus
Usually, pop-up menus are attached to another menu-that is, they appear when
the user chooses a command on that menu. With Windows, however, you can also
provide pop-up menus that float, which means they appear at the current cursor
position when the user presses a certain key or clicks a mouse button.

To create a floating pop-up menu, you use the CreatePopupMenu and Track­
PopupMenu functions. If you want the floating pop-up menu to appear when the
user presses a certain key or mouse button, create the floating pop-up menu within
the case statement that handles the input message from that key or button.

The following example displays a floating pop-up menu when the user presses the
left mouse button:

case WM_LBUTTONDOWN:
GetClientRect(hWnd, (LPRECTl&rc);
if (PtinRect((LPRECT)&rc, MAKEPOINT(lParam)))

HandlePopupMenu(hWnd, MAKEPOINT(lParam));
break;

154 Microsoft Windows Guide to Programming

void FAR PASCAL HandlePopupMenu(hwnd, point)
HWND hwnd;
POINT point;

{

}

HMENU hMenu;
HMENU hMenuTrackPopup;

f* Get the menu for the pop-up menu from the resource file. */

hMenu = LoadMenu(hlnst, "PopupMenu"l;
if (!hMenu)

return;

f*
*Get the first menu in the pop-up menu to use in the call
* to TrackPopupMenu. This could also have been created by
* using CreatePopupMenu and then added by using InsertMenu
* or AppendMenu.
*/

hMenuTrackPopup GetSubMenu(hMenu, 0);

f*
* Convert the mouse point to screen coordinates, because that
* is what TrackPopup expects.
*f

ClientToScreen(hwnd, (LPPOINTl&point);

f* Draw and track the "floating" pop-up menu. *f

TrackPopupMenu(hMenuTrackPopup, 0, point.x, point.y, 0, hwnd, NULL);

DestroyMenu(hMenu);

In this example, the lParam parameter of the WM_LBUTTONDOWN message
contains the current position of the mouse. The MAKEPOINT macro converts
this long value to a point, which is then stored in the currentpoint structure.

Once the menu is complete, the application displays it at the current cursor posi­
tion by calling TrackPopupMenu. (The x and y members of the currentpoint
structure specify the current position of the cursor.)

After the user has chosen a command from the menu, the application destroys the
menu, freeing the memory the menu used. The application re-creates the menu
each time the user presses the right mouse button.

Chapter 7 Menus 155

7 .6.4 Designing Your Own Check Marks
Usually when you check a menu item, Windows displays the standard Windows
check mark next to the item's text. An item that is not checked has no special
mark next to it at all. Instead of using the standard Windows check mark, how­
ever, you can specify a bitmap that Windows will display when a menu item is
checked. You can also specify a bitmap to display when an item is not checked
(cleared).

Custom check marks can be particularly useful for helping the user distinguish be­
tween commands that perform an action and commands that can be checked but
are not. Some Windows applications use the following menu-item conventions
based on certain types of commands:

Type of command

Commands that perform an action (for
example, display another menu or a
dialog box)

Commands that are currently checked

Convention

Do not display a check mark for such an
item.

Display either a normal Windows check
mark or a custom check mark. When the
user chooses a checked item again, the check
mark is cleared.

Commands that can be checked but are Display a custom check mark. When the
not user chooses a cleared item, either a standard

Wmdows check mark or a different custom
check mark is displayed.

To provide your own check-mark bitmaps, follow these steps:

1. Use Microsoft Image Editor (IMAGEDIT.EXE) to create the bitmaps you want
to use as check marks.

Windows requires that your check-mark bitmaps be the same size as the stan­
dard check marks. Although you can, during run time, stretch or shrink your
check-mark bitmaps to the right size, try to start with a bitmap that is close to
the right size. (The size of the standard check marks depends on the current
screen. To determine the current size of the standard check marks, use the Get­
MenuCheckMarkDimensions function.)

You can also create a bitmap by hand-by coding the individual bits. For more
information, see Chapter 11, "Bitmaps."

2. In your application's resource-definition file, define each bitmap's name and
source file by using the BITMAP statement, as in the following example:

BitmapChecked BITMAP check.bmp
BitmapNotChecked BITMAP nocheck.bmp

156 Microsoft Windows Guide to Programming

3. In your application source code, use the LoadBitmap function to load each bit­
map from your application resources.

4. Use the GetMenuCheckMarkDimensions function to determine the size of
the standard check marks on the current screen.

5. If necessary, use the StretchBlt function to stretch or shrink each bitmap to the
right size.

6. Use the SetMenultemBitmaps function to specify the check-mark bitmaps for
each menu item.

7. Before your application terminates, it should destroy the bitmaps to free
memory.

The following example shows how to specify check-mark bitmaps for a menu
item:

SetMenuitemBitmaps(hMenu,
0'
MF_BYPOSITION,
hbmCheckOff,
hbmCheckOn);

7 .6.5 Using Owner-Drawn Menu Items

/* menu handle */
/* position of menu item */

/* bitmap for cleared item */
/* bitmap for checked item */

Your application can take complete control over the appearance of menu items by
using owner-drawn items. An owner-drawn item is one for which your application
has total responsibility for drawing in its normal, selected (highlighted), checked,
and cleared states.

For example, suppose your application provides a menu from which the user can
choose a font. Your application could draw each item by using the font that the
item represents; the item for roman would be drawn with a roman font, the item
for italic would be drawn in italic, and so on.

You cannot define an owner-drawn item in your application's resource-definition
(.RC) file. Instead, you must create a new item or modify an existing one by using
the MF_ OWNERDRA W menu flag. You can use any of the following functions
to specify an owner-drawn menu item:

• AppendMenu

• InsertMenu

• ModifyMenu

When you call any of these functions, you can pass a 32-bit value as the
lpNewltem parameter. This 32-bit value can represent any information that is
meaningful to your application, and will be available to your application when
the item is to be displayed. For example, the value could contain a pointer to a

Chapter 7 Menus 157

structure; the structure, in turn, might contain a string and the handle of a logical
font that your application will use to draw the string.

Before Windows displays an owner-drawn item for the first time, it sends the
WM_MEASUREITEM message to the window that owns the item's menu. This
message's !Param parameter points to a MEASUREITEMSTRUCT structure
that identifies the item and contains the optional 32-bit value for the item. When
your application receives the WM_MEASUREITEM message, it must fill in the
item Width and itemHeight members of the structure before returning from pro­
cessing the message. Windows uses the information in these members when creat­
ing the bounding rectangle in which your application draws the menu item; it also
uses the information to detect the user's interaction with the command associated
with the item.

When the item must be drawn (for example, when it is first displayed or when
the user chooses it as a command), Windows sends the WM_DRA WITEM
message to the window that owns the menu. The !Param parameter of the
WM_DRA WITEM message points to a DRA WITEMSTRUCT structure. Like
the MEASUREITEMSTRUCT structure, DRA WITEMSTRUCT contains in­
formation about the item and its optional 32-bit data. In addition, DRA WITEM­
STRUCT contains flags that indicate the state of the item (such as grayed or
checked) as well as a bounding rectangle and a device context with which your ap­
plication will draw the item.

In response to the WM_DRA WITEM message, your application must perform the
following actions before returning from processing the message:

1. Determine the type of drawing that is necessary. To do so, check the item­
Action member of the DRA WITEMSTRUCT structure.

2. Draw the menu item appropriately, using the bounding rectangle and device
context obtained from the DRA WITEMSTRUCT structure. Your application
must draw only within the bounding rectangle. For performance reasons,
Windows does not clip portions of the image that are drawn outside the rect­
angle.

3. Restore all GDI objects selected for the menu item's device context.

For example, if the menu item is selected, Windows sets the itemAction mem­
ber of the DRA WITEMSTRUCT structure to ODA_SELECT, and sets the
ODS_SELECTED bit in the itemState member. This is your application's cue to
redraw the menu item so that the item indicates that it has been selected.

158 Microsoft Windows Guide to Programming

7. 7 Sample Application: EditMenu
The EditMenu sample application illustrates the two most common menus, the
Edit menu and the File menu, and shows how to use accelerator keys in an applica­
tion.

Note The accelerator keys shown in this sample are reserved and should be used
only as accelerator keys for the Edit menu.

To create the EditMenu application, make the following modifications to the
Generic application:

1. Add the Edit and File menus to the resource-definition file.

2. Add definitions to the header file.

3. Add an accelerator table to the resource-definition file.

4. Add a new variable.

5. Load the accelerator table.

6. Modify the message loop in the WinMain function.

7. Modify the WM_ COMMAND case.

8. Compile and link the application.

EditMenu does not show how to use the clipboard. This task is described in Chap­
ter 13, "Clipboard."

7. 7 .1 Adding New Menus to the Resource-Definition File
You must add an Edit and a File menu to the MENU statement in the resource­
definition file. The MENU statement should now look like this:

EditMenuMenu MENU
BEGIN

PO PUP
BEGIN

END

MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM

"&File"

"&New",
"&Open ••• ",
"&Save",
"Save &As ••• ",
"&Print",
SEPARATOR
"E&xit",
SEPARATOR
"&About EditMenu ••• ",

IDM_NEW
IDM_OPEN
IDM_SAVE
IDM_SAVEAS
IDM_PRINT

IDM_EXIT

IDM_ABOUT

POPUP "&Edit"

END

BEGIN

END

MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM
MENU ITEM

"&Undo\tAlt+BkSp",
SEPARATOR
"Cu&t\tShift+Del",
"&Copy\tCtrl+Ins",
"&Paste\tShift+Ins",
"C&lear\tDel",

Chapter 7 Menus 159

IDM_UNDO ,GRAYED

IDM_CUT
IDM_COPY
IDM_PASTE ,GRAYED
IDM_CLEAR ,GRAYED

The File menu contains seven items and two separators. Each item has a mne­
monic, indicated by the ampersand(&).

The Edit menu contains five items and a separator. Each item has a mnemonic and
an accelerator key, which is separated from the name by a tab (\t). Whenever an
item has a corresponding accelerator key, it should be displayed in this way. In the
Edit menu, the five accelerator keys are ALT+BKSP, DEL, CTRL+INS, SHIFT+INS, and
SHIFT+DEL. The separator between the Undo and Cut items places a horizontal bar
between these items in the menu. A separator is recommended between menu
items that otherwise have nothing in common. For example, the Undo command,
when chosen, affects only the application, whereas the remaining commands af­
fect the clipboard.

7. 7 .2 Adding Definitions to the Header File
You must declare each menu identifier in your application's header file. These
constants are used both in the C-language source file and in the resource-definition
file.

A menu identifier can be any integer value. The only restriction is that it must be
unique within a menu, because no two items in a menu can have the same identi­
fier.

Add the following lines to the header file:

#define IDM_ABOUT 100

f* File-menu items */

//define
//define
//define
#define
//define
//define

IDM_NEW 101
IDM_OPEN 102
IDM_SAVE 103
IDM_SAVEAS 104
IDM_PRINT 105
IDM_EXIT 106

160 Microsoft Windows Guide to Programming

/* Edit-menu items */

#define
1/defi ne
1/defi ne
1/defi ne
1/defi ne

IDM_UNDO
IDM_CUT
IDM_COPY
IDM_PASTE
IDM_CLEAR

200
201
202
203
204

7. 7 .3 Adding an Accelerator Table to the Resource-Definition File
Add the following ACCELERATORS statement to the resource-definition file:

EditMenu ACCELERATORS
BEGIN

VK_BACK, IDM_UNDO, VIRTKEY, ALT

END

VK_DEL, IDM_CUT, VIRTKEY, SHIFT
VK_INS, IDM_COPY, VIRTKEY, CONTROL
VK_INS, IDM_PASTE, VIRTKEY, SHIFT
VK_DEL, IDM_CLEAR, VIRTKEY

This statement defines five accelerator keys, one for each menu item. Four acceler­
ators are key combinations using the ALT, SHIFT, or CTRL key.

The ACCELERATORS statement associates each accelerator key with a menu
identifier. The IDM_UNDO, IDM_CUT, IDM_COPY, IDM_PASTE, and
IDM_CLEAR constants identify the Edit-menu items. When the user presses an
accelerator key, these are the values that are passed to the window procedure.

7. 7 .4 Adding a New Variable
Add the following statement to the beginning of the source file:

HACCEL hAccTable; /* handle of accelerator table */

The hAccTable variable is a handle of the accelerator table. It receives the return
value of the LoadAccelerators function and is used in the TranslateAccelerator
function to identify the accelerator table.

7. 7 .5 Loading the Accelerator Table
Before using the accelerator table, you must load it from the application's re­
sources. Add the following statements to the application's lnitlnstance function:

hAccTable = LoadAccelerators(hinst, "EditMenu"l;

Chapter7 Menus 161

This statement loads the accelerator table into memory and assigns the handle iden­
tifying the table to the hAccTable variable. The hinst variable identifies the appli­
cation's resource-definition file, and EditMenu is the name of the accelerator
table. After you have loaded the table, you can use it in the TranslateAccelerator
function.

7. 7 .6 Modifying the Message Loop
To use the accelerator table, you must add the TranslateAccelerator function to
the message loop. After you add the function, the message loop should look like
this:

while CGetMessageC&msg, NULL, NULL, NULL)) {

}

if C!TranslateAccelerator(hWnd, hAccTable, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}

7. 7. 7 Modifying the WM_ COMMAND Case
Your application must be able to process menu commands. In this application, in­
stead of performing tasks, all menu commands activate a "Command not imple­
mented" message box. Replace the WM_ COMMAND case with the following
statements:

case WM_COMMAND:
switch (wParam) {

case IDM_ABOUT:
lpProcAbout

MakeProcinstance((FARPROC) About, hinst);
DialogBox(hinst, "AboutBox", hWnd,

CDLGPROC) lpProcAbout);
FreeProcinstance(lpProcAbout);
break;

f* File-menu commands */

case IDM_NEW:
case IDM_OPEN:
case IDM_SAVE:
case IDM_SAVEAS:
case IDM_PRI NT:

162 Microsoft Windows Guide to Programming

MessageBox(
GetFocus(),
"Command not implemented",
"EditMenu Sample Application",
MB_ICONASTERISK I MB_OK);

break;

case IDM_EXIT:
DestroyWindow(hWnd);
break;

f* Edit-menu commands */

case IDM_UNDO:
case IDM_CUT:
case IDM_COPY:
case IDM_PASTE:
case IDM_CLEAR:

}
break;

MessageBox(
GetFocus(),
"Command not implemented",
"EditMenu Sample Application",
MB_ICONASTERISK I MB_OK);

break;

7. 7 .8 Compiling and Linking
Compile and link the EditMenu application. Start Windows and the EditMenu ap­
plication, and, without opening the pop-up menus, press any of the five accelerator
keys. You will notice that the "Command not implemented" message appears
when you choose a command.

7 .8 Related Topics
For more information about how to process input messages, see Chapter 4, "Key­
board and Mouse Input."

For more information about bitmaps, see Chapter 11, "Bitmaps."

For more information about menu functions and resource-definition statements,
see the Microsoft Windows Programmer's Reference, Volumes 2 and 4.

Controls

Chapter 8

8.1 What Is a Control?... 165
8.2 Creating a Control.. 165

8.2.1 Specifying a Control Class.. 166
8.2.2 Choosing a Control Style... 167
8.2.3 Setting the Parent Window.. 167
8.2.4 Choosing a Control Identifier.. 168

8.3 Using Controls... 168
8.3.1 ReceivingUserinput ... 168
8.3.2 Sending Control Messages.. 169
8.3.3 Disabling and Enabling Input to a Control.............................. 169
8.3.4 Moving and Sizing a Control... 169
8.3.5 Destroying a Control.. 170

8.4 Creating and Using Some Common Controls... 170
8.4.1 Buttons ... 170

8.4.1.1 Push Buttons .. 171
8.4.1.2
8.4.1.3
8.4.1.4
8.4.1.5
8.4.1.6

Default Push Buttons.. 171
Check Boxes.. 172
Radio Buttons.. 173
Owner-DrawnButtons .. 174
Group Boxes .. 175

8.4.2 Static Controls.. 175
8.4.3 List Boxes .. 175

8.4.3.1 Adding a String to a List Box............................... 176
8.4.3.2
8.4.3.3
8.4.3.4

Deleting a String from a List Box......................... 177
Adding Filenames to a List Box 177
Using a Multiple-Selection List Box 178

164 Microsoft Windows Guide to Programming

8.4.3.5
8.4.3.6

Using a Multicolumn List Box.............................. 178
Using an Owner-Drawn List Box......................... 179

8.4.4 Combo Boxes ... 181
8.4.5 Edit Controls.. 182
8.4.6 Scroll Bars.. 183

8.5 Sample Application: EditCntl .. 184
8.5.1 Adding a Constant to the Header File 185
8.5.2 Adding New Variables ... 185
8.5.3 Adding a Create Window Function .. 186
8.5.4 Modifying the WM_ COMMAND Case 187
8.5.5 Adding a WM_SETFOCUS Case ... 187
8.5.6 Adding a WM_SIZE Case... 187
8.5.7 Compiling and Linking .. 188

8.6 Related Topics.. 188

Chapter 8 Controls 165

Controls are special windows you can use applications for the Microsoft Windows
operating system to make them easier to use.

This chapter covers the following topics:

• What a control is

• Creating a control

• Using controls in application windows

This chapter also explains how to create a sample Windows 3.1 application,
EditCntl, that illustrates those concepts.

8 .1 What Is a Control?
A control is a predefined child window that carries out a specific kind of input or
output. For example, to make your application retrieve a filename from the user,
you can create and display an edit control in which the user types the filename. An
edit control is a window that receives and displays keyboard input.

A control, like any other window, belongs to a window class. The window class
defines both the control's window procedure and its default attributes. The win­
dow procedure is important because it determines the appearance of the control
and how it will respond to user input. Window procedures for controls are prede­
fined in Windows, so no extra coding is required in your application when you use
a control.

8.2 Creating a Control
In Windows, you can create a control either from within a dialog box or from
within the client area of any other type of window.

This chapter discusses using controls in a standard window. For information about
how to create controls within a dialog box, see Chapter 9, "Dialog Boxes."

To create a control in a window other than a dialog box, use the Create Window
function. When creating the control, specify its window class, style, parent win­
dow, and identifier. If Create Window is successful, it returns a control handle
that you can use in subsequent functions to move, size, paint, or destroy a window,
or to direct a window to carry out tasks.

The following example shows how to create a push button control:

166 Microsoft Windows Guide to Programming

hButtonWnd = CreateWindow(
"BUTTON", f* control class */
"OK", f* button label */
BS_PUSHBUTTON WS_CHILD I WS_VISIBLE, /* control styles */
20,
40,
30,
12,
hWnd,
IDOK,
hinst,
NULL);

f* x-coordinate */
f* y-coordinate */
/* width in pixels */
f* height in pixels */
/* parent window */
/* control identifier */
/* instance handle */

This example creates a push button that belongs to the BUTTON window class
and has the BS_PUSHBUTTON style. The push button is a child window and will
be visible when first created. The WS_CHILD style is required, but you need not
specify the WS_ VISIBLE style if you plan to use the ShowWindow function to
show the push button. CreateWindowplaces the button at the coordinates (20,40)
in the parent window's client area. The width and height are 30 and 12 pixels, re­
spectively. The parent window is identified by the hWnd handle. The constant
IDOK identifies the push button.

8.2.1 Specifying a Control Class
The control's window class, or control class, defines the control's window proce­
dure and default attributes. You specify a control class when creating the control,
by including the class name (for example, BUTTON) in the lpClassName parame­
ter of the Create Window function.

Windows provides the following built-in control classes:

Class

BUTION

EDIT

LISTBOX

COMBO BOX

SCROLLBAR

STATIC

Description

Produces a small, labeled window that the user can choose in order
to generate yes or no, on or off types of input.

Produces a window in which the user can type and edit text (called
an edit control).

Produces a window that contains a list of names from which the user
can select one or more names.

Produces a combination control consisting of an edit control linked
with a list box. The user can select items from the list box or type in
the edit control or do both.

Produces a window that looks and functions like a scroll bar in a
window.

Produces a small window that contains text or simple graphics.
Static controls are often used to label other controls or to separate a
group of controls.

Chapter 8 Controls 167

8.2.2 Choosing a Control Style
The control styles, which depend on the control class, determine the control's ap­
pearance and function. You specify a control style when creating the control, by in­
cluding the style (for example, BS_PUSHBUTTON) in the dwStyle parameter of
the Create Window function.

Windows provides many predefined control styles. Following are some of the
most common:

Style

BS_pUSHBUTTON

BS_DEFPUSHBUTTON

BS_CHECKBOX

BS_RADIOBUTTON

ES_LEFT

ES_MULTILINE

SS_LEFT

SS_RIGHT

LBS_STANDARD

CBS_DROPDOWN

Description

Specifies a push button, a small window containing a
label that the user can choose in order to notify the parent
window.

Specifies a default push button, which is identical to a
push button except that it has a special border.

Specifies a check box, which the user can select to tum
the control on or off. When the control is on, the box con­
tains an X.

Specifies a radio button (a circle). The user can select the
circle to tum the control on or off. When the control is
on, the circle contains a solid bullet.

Specifies a single-line, left-aligned edit control.

Specifies a multiline edit control.

Specifies a left-aligned, static edit control.

Specifies a right-aligned, static edit control.

Specifies a standard list box. A standard list box includes
a scroll bar and notifies its parent window when the user
makes a selection.

Specifies a combo box consisting of an edit control and a
list box that is displayed when the user selects a box next
to the selection field. If the user selects an item in the list
box, the edit control displays the selected item.

For a complete list of control styles, see the Microsoft Windows Programmer's
Reference, Volume 4.

8.2.3 Setting the Parent Window
Because every control is a child window, it requires a parent window. You specify
the parent window when creating the control, by including the handle of the parent
window in the h W ndP arent parameter of the Create Window function.

As with any child window, a control is affected by changes to its parent window.
For example, if Windows disables the parent window, it also disables the control.

168 Microsoft Windows Guide to Programming

If Windows paints, moves, or destroys the parent window, it also paints, moves, or
destroys the control.

Although a control can be any size and can be moved to any position, it is re­
stricted to the client area of the parent window. Windows clips the control if you
move it outside the parent window's client area or make it larger than the client
area.

8.2.4 Choosing a Control Identifier
When you create a control, you give it a unique identifier. You do this by includ­
ing it in the hM enu parameter of the Create Window function. The control sup­
plies its identifier in any notification message it sends to the window procedure of
the parent window. The control identifier is especially useful if you have several
controls in a window. It is the quickest, easiest way to distinguish one control
from another.

8.3 Using Controls
Once you have created a control, you have several options:

• Receiving user input through the control

• Performing specialized tasks, such as returning a string of text

• Enabling or disabling input to the control

• Moving or sizing the control

• Destroying the control

8.3.1 Receiving User Input
As the user interacts with the control, the control sends information about the inter­
action, in the form of a notification message, to the parent window. A notification
message is a WM_ COMMAND message in which the wParam parameter con­
tains the control identifier and the !Param parameter contains the notification code
and the control handle.

For example, when the user clicks a button, the button sends a WM_ COMMAND
message to the window procedure of the parent window. The WM_ COMMAND
message's wParam parameter contains the button's control identifier; the high­
order word of the message's !Param parameter contains the notification code
BN_CLICKED, which indicates that the user has clicked the button.

Since a notification message has the same basic form as menu input, you process
notification messages much as you would menu input. If you have carefully

Chapter 8 Controls 169

selected control identifiers so that they do not conflict with menu identifiers, you
can process notification messages in the same switch statement you use to process
menu input.

8.3.2 Sending Control Messages
Most controls accept and process a variety of control messages, which are special
messages that direct the control to carry out some task that is unique to the control.
For example, the WM_GETTEXTLENGTH message directs an edit control to re­
turn the length of a selected line of text.

To send a control message to a control, use the SendMessage function. Supply the
message number and any required wParam and !Param parameter values. For ex­
ample, the following statement sends the WM_GETTEXTLENGTH message to
the edit control identified by the handle hEditWnd; it then returns the length of the
selected line in the edit control:

nlength = SendMessage(hEditWnd, WM_GETTEXTLENGTH, 0, 0L);

Many controls also process standard window messages, such as WM_HSCROLL
and WM_ VSCROLL. To send such messages to controls, use the same method
you use to send control messages.

8.3.3 Disabling and Enabling Input to a Control
To disable or enable input to a control, use the Enable Window function.

When you disable a control, it does not respond to user input. So that the user
can tell that the control is disabled, it appears dimmed. To disable a control, use
Enable Window, specifying the value FALSE for thefEnable parameter, as fol­
lows:

EnableWindow(hButton, FALSE);

To restore input to the disabled control, enable it by using the Enable Window
function withfEnable set to TRUE, as follows:

EnableWindow(hButton, TRUE);

8.3.4 Moving and Sizing a Control
To move or size a control, use the Move Window function. This function moves
the control to the specified coordinates in the parent window's client area and sets
the control to the given width and height. The following example shows how to
use Move Window to move and size a control:

170 Microsoft Windows Guide to Programming

MoveWindowChButtonWnd, 10, 10, 30, 12, TRUE);

This example moves a control to the coordinates (10,10) in the client area and sets
the width and height to 30 and 12 pixels, respectively. The value TRUE specifies
that the control should be repainted after being moved.

\Vindows automatically moves a control VvThen moving tl1e parent \.vindo\.v . .LA,,_ con­
trol's position is always relative to the upper-left comer of the parent's client area,
so when the parent window moves, the control remains fixed in the client area but
moves relative to the screen. Although Windows does not size a control when it
sizes the parent window, it sends a WM_SIZE message to the parent window to in­
dicate the new size of the parent window. You can use this message to specify a
new size for the control.

8.3.5 Destroying a Control
To destroy a control, use the Destroy Window function. This function deletes any
internal record of the control and removes it from the parent window's client area.
The following example shows how to destroy a control:

DestroyWindow(hEditWnd);

Windows automatically destroys a control when destroying the parent window. In
general, you will need to destroy a control only if you no longer need it in the
parent window.

8.4 Creating and Using Some Common Controls

8.4.1 Buttons

The rest of this chapter explains more about the following common controls:

• Buttons

• Static controls

• List boxes

• Combo boxes

• Edit controls

• Scroll bars

A button is a small window used for simple yes or no, on or off types of input. Fol­
lowing are some of the most common types of buttons:

Chapter 8 Controls 171

• Push buttons

• Default push buttons

• Check boxes

• Radio buttons

• Owner-drawn buttons

• Group boxes

8.4.1.1 Push Buttons
A push button is a button that the user can select to carry out a specific action. The
button contains text that indicates what that button does. When the user clicks a
push button, the application usually carries out the associated action immediately.
For example, if the user clicks the Cancel button in a dialog box, the application
immediately removes the dialog box and cancels the user's changes to the dialog
box (if any).

To create a button, specify BUTTON as its window class and specify the button
style(s) in the dwStyle parameter. For example, the following call to the
Create Window function creates a push button that has the label Cancel:

HWND hCancelButton;

hCancelButton = CreateWindow(
"BUTTON", "Cancel",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE,
20,40, 80,20, hWnd, IDCANCEL, hinst, NULL);

Because this example specifies the WS_ VISIBLE style, Windows displays
the push button after creating it. The control identifier of the push button is
IDCANCEL. This constant is defined in the WINDOWS.H header file and is in­
tended to be used with Cancel push buttons.

8.4.1.2 Default Push Buttons
A default push button typically allows the user to signal the completion of some
activity, such as filling in an edit control with a filename. A default push button, as
with other buttons, responds to both mouse and keyboard input. If the user clicks
the button, the button sends a BN_CLICKED notification message to the parent
window. The button need not have the input focus in order to respond to mouse
input. It does require the focus, however, to respond to keyboard input. So that the
user can call the keyboard, call the SetFocus function to give the input focus to the

172 Microsoft Windows Guide to Programming

button. The user can then press ENTER or the SPACEBAR to direct the button to send
a BN_CLICKED notification message to the parent window.

Creating a default push button is similar to creating a push button. Specify
BUTTON as the window class of the button, and specify the button style(s) in the
dwStyle parameter. For example, the following call to the Create Window func­
tion creates a defauit push button that has the iabei OK:

HWND hDefButton;

hDefButton = CreateWindow(
"BUTTON", "OK",
BS_DEFPUSHBUTTON I WS_CHILD I WS_VISIBLE,
20,40, 80,20, hWnd, IDOK, hinst, NULL);

Since this example specifies the WS_ VISIBLE style, Windows displays the de­
fault push button after creating it. The control identifier is IDOK. This constant is
defined in the WINDOWS.H header file and is intended to be used with default
push buttons, such as this OK button.

8.4.1.3 Check Boxes
A check box typically allows the user to select an option to use in the current task.
By convention, within a group of check boxes, the user can select more than one
option. (To present options that are mutually exclusive, use radio buttons instead
of check boxes.)

For example, you might present a group of check boxes from which the user
selects font properties for the next output operation. The user could select both
bold and italic by checking both the Bold and the Italic check boxes.

To create a check box, use the BS_CHECKBOX style, as in the following ex­
ample:

#define IDC_ITALIC 201
HWND hCheckBox;

hCheckBox = CreateWindow("BUTTON", "Italic",
BS_CHECKBOX I WS_CHILD I WS_VISIBLE,
20,40, 80,20, hWnd, IDC_ITALIC, hinst, NULL);

In this example, the check box label is Italic and the control identifier is
IDC_ITALIC.

Chapter 8 Controls 173

A check box responds to mouse and keyboard input much as a push button would.
That is, it sends a notification message to the parent window when the user clicks
the check box or presses the SPACEBAR. However, a check box can display a check
(an X) in its box to show that it is currently selected.

To display a check in a check box, send the control the BM_SETCHECK mes­
sage. You can also determine whether the check box is already checked by send­
ing the BM_GETCHECK message. For example, to place a check in the check
box, use the following function:

SendMessage(hCheckBox, BM_SETCHECK, 1, 0L);

This means you can select or clear a check box whenever you want; for example,
when the parent window procedure receives a BN_CLICKED notification mes­
sage. Windows also provides a BS_AUTOCHECKBOX style that automatically
changes its state (selects or clears it) each time the user clicks it.

8.4.1.4 Radio Buttons
Although radio buttons work in much the same way as check boxes, they are usu­
ally used in groups and represent mutually exclusive options. For example, you
might use a group of radio buttons to allow the user to specify text alignment
(right-aligned, left-aligned, or centered). The user could then select only one type
of alignment at a time.

Create a radio button as you would any button. Specify BUTTON as the window
class of the radio button, and specify the button style(s) in the dwStyle parameter.
For example, the following call to the Create Window function creates a radio but­
ton that has the label Right:

HWND HRightJustifyButton
#define IDC_RIGHTJUST

hRightJustifyButton = CreateWindow("BUTTON", "Right",
BS_RADIOBUTTON I WS_CHILD I WS_VISIBLE,
20, 40, 80, 20, hWnd, IDC_RIGHTJUST, hinst, NULL);

As you do with a check box, you must send a BM_SETCHECK message to the
radio button to display a check (actually, a solid circle) in the radio button when
the user selects that button. Also, since radio buttons represent mutually exclusive
choices, you should also send the BM_SETCHECK message to the previously
selected radio button (if any) to clear it. You can determine which radio button in a
group is selected by sending the BM_ GETCHECK message to each button.

174 Microsoft Windows Guide to Programming

You can create radio buttons in a dialog box by using the
BS_AUTORADIOBUTTON style. When all the radio buttons in a group box have
this style, Windows automatically clears the previously selected button when the
user selects a different radio button.

You can also use the CheckRadioButton function to select a radio button and
clear other buttons in a dialog box. When you call CheckRadioHutton, you
specify the identifiers of the first and last buttons in a range of radio buttons and
the identifier of the button (within that range) that is to be selected. Windows
clears all the buttons in the specified range and then selects the appropriate radio
button. For example, in a group of radio buttons representing types of text align­
ment, you might call CheckRadioButton to select the Right button, as in the fol­
lowing example:

CheckRadioButton(hDlg, ID_RIGHTLEFTJUST, ID_LEFTJUST,
ID_RIGHTJUST)

In this example, CheckRadioButton would select the radio button identified by
ID_RIGHTJUST and clear all the other buttons whose identifiers fall within the
range specified by ID_RIGHTLEFTJUST and ID_LEFTJUST, regardless of
whether they are radio buttons.

8.4.1.5 Owner-Drawn Buttons
An owner-drawn button is similar to other buttons, except that the application is re­
sponsible for maintaining the button's appearance, including whether the button
has the input focus, is disabled, or is selected. Windows notifies your application
when the button has been clicked.

To create an owner-drawn button, use the BS_OWNERDRA W style, as in the fol­
lowing example:

hMyOwnButton = CreateWindow("BUTTON", NULL,
BS_OWNERDRAW I WS_CHILD I WS_VISIBLE,
20, 40, 30, 12, hWnd, ID_MYBUTTON,
hinst, NULL);

Whenever the button must be drawn, Windows sends the WM_DRA WITEM
message to the window that owns the button. The IP aram parameter of the
WM_DRA WITEM message contains a pointer to a DRA WITEMSTRUCT struc­
ture. This structure contains, among other information, the control identifier, a
value specifying the type of drawing action required, a value indicating the state of
the button, a bounding rectangle for the button, and a device-context handle for the
button.

In response to the WM_DRA WITEM message, your application must perform the
following actions before returning from processing the message:

Chapter 8 Controls 175

1. Determine the type of drawing that is required. To do so, the application ex­
amines the itemAction member of the DRA WITEMSTRUCT structure.

2. Draw the button appropriately, using the bounding rectangle and device context
obtained from DRA WITEMSTRUCT.

3. Restore all graphics device interface (GDI) objects selected for the button's
device context.

For example, if the button has lost the input focus, Windows sets the itemAction
member ofDRA WITEMSTRUCT to ODA_FOCUS but does not set the
ODS_FOCUS bit in the itemState member. This is your application's cue to
redraw the button so that it no longer appears to have the focus.

8.4.1.6 Group Boxes
Group boxes are rectangles that enclose two or more related buttons or other con­
trols. You can send the WM_SETTEXT message to the group box to place a label
in the upper-left corner of the box. Group boxes do not respond to user input; that
is, they do not generate notification messages.

8.4.2 Static Controls
A static control is a small window that contains text or graphics. You typically use
a static control to label some other control or to create boxes and lines that sepa­
rate one group of controls from another.

The most commonly used static control is the SS_LEFT style-a left-aligned line
of text. That is, the control writes the line's text starting at the left end of the con­
trol, displaying as much of the label as will fit in the control and clipping the rest.
The control uses the system font for the text, so you can calculate an appropriate
size for the control by retrieving the font metrics for this font. For more informa­
tion about fonts and font metrics, see Chapter 18, "Fonts."

Like group boxes, static controls do not respond to user input; that is, they do not
generate notification messages. However, you can change the appearance and loca­
tion of a static control at any time. For example, you can change the text as­
sociated with a static control by using the SetWindowText function or the
WM_SETTEXT message.

8.4.3 List Boxes
A list box is a box that contains a list of selectable items, such as filenames. You
typically use a list box to display a list of items from which the user can select one
or more. There are several styles associated with a list box. Following are the most
common styles:

176 Microsoft Windows Guide to Programming

List box style

LBS_BORDER

LBS_NOTIFY

LBS_SORT

WS_VSCROLL

Description

Specifies a surrounding border.

Sends notification messages to the parent window when the user
selects an item.

Sorts its items alphabetically.

Specifies a vertical scroll bar.

These four styles are included in the LBS_STANDARD style. The following ex­
ample creates a standard list box:

HWND hListBox
#define IDC_LISTBOX 203

hListBox = CreateWindow("Listbox", NULL,
LBS_STANDARD I WS_CHILD I WS_VISIBLE,
20, 40, 120, 56, hWnd, IDC_LISTBOX,
hinst, NULL);

8.4.3.1 Adding a String to a List Box
Use the LB_ADDSTRING message to add a string to a list box. This message
copies the given string to the list box, which displays it in the list. If the list box
has the LBS_SORT style, the string is sorted alphabetically. Otherwise, Windows
simply places the string at the end of the list. The following example shows how
to add a string:

int nindex;

nindex = SendMessage(hListBox,
LB_ADDSTRING, NULL,
(LONG)(LPSTR) "Horseradish");

The LB_ADDSTRING message returns an integer that represents the index of the
string in the list. You can use this index in subsequent list box messages to iden­
tify the string, but only as long as you do not add, delete, or insert any other string.
Doing so may change the string's index.

You can also add a string to a list box by sending the LB_INSERTSTRING mes­
sage to the list box. Unlike the LB_ADDSTRING message, LB_INSERTSTRING
lets you specify where Windows should place the new string in the list box. When
it receives the LB_INSERTSTRING message, the list box does not sort the list,
even ifthe list box was created by using the LBS_SORT style.

Chapter 8 Controls 177

8.4.3.2 Deleting a String from a List Box
You can delete a string from the list box by supplying the index of the string in the
LB_DELETESTRING message, as in the following example:

SendMessage(hListBox, LB_DELETESTRING, nlndex, (LPSTR) NULL);

8.4.3.3 Adding Filenames to a List Box
As noted previously, a common use for a list box is to display a list of filenames,
directories, or disk drives, or a combination of these. The LB_DIR message in­
structs the list box to fill itself with such a list. The message's wP aram parameter
contains a value specifying the MS-DOS attributes of the files, and the !Param pa­
rameter points to a string containing a valid filename template, which can include
the question mark(?) or asterisk (*) wildcards.

For example, to fill a list box with the names of all files in the current directory
that have the .TXT extension, plus a list of directories and disk drives, you would
send the LB_DIR message, as in the following example:

#define FILE_LIST 4010;

int nFiles;

nFiles = SendMessage(hListBox, LB_OIR, FILE_LIST,
(LPSTR) "*.TXT");

The return value of the LB_DIR message indicates how many items the list box
contains.

Note If the list box is in a dialog box, you can call the DlgDirList function to per­
form the same task.

A list box responds to both mouse and keyboard input. If the user clicks a string or
presses the SPACEBAR in the list box, the list box selects the string and indicates the
selection by inverting the string text and canceling the selection from the last item
that was selected, if any. The user can also press a character key to select an item
in the list box; the next item in the list box that begins with the character is
selected. If the list box has the LBS_NOTIFY style, the list box also sends an
LBN_SELCHANGE notification message to the parent window. If the user
double-clicks a string and LBS_NOTIFY is specified, the list box sends the
LBN_SELCHANGE and LBN_DBLCLK messages to the parent window.

178 Microsoft Windows Guide to Programming

You can always retrieve the index of the selected string by using the
LB_GETCURSEL and LB_ GETTEXT messages. LB_GETCURSEL retrieves the
selection's index in the list box, and LB_GETTEXT retrieves the selection from
the list box, copying it to a buffer that you supply.

R 4 ~ 4 I leinn l:ll Multinla-~alartinn I iet Rnv -· • ·-· • --•••=::111 .- •••M••• .. •V "'"'•vv••v•• ._•v• ..,.., ...

A user can select only one list box item at a time, by default. To allow the user to
select more than one item, create the list box by using either of the following
styles:

Style

LBS_MULTIPLESEL

LBS_EXTENDEDSEL

Description

A list box created with the LBS_MULTIPLESEL style is
the same as a standard list box, except that the user can
select more than one item in the list box.

Pressing the SPACEBAR or clicking on an item in this style
of list box changes the selection state of the item. If the
user presses a character key while the list box has the
focus, the selection moves to the next item that begins with
that character; the item is not chosen unless the user
presses the SPACEBAR.

A list box created with the LBS_EXTENDEDSEL style
provides an easy method for selecting several contiguous
items in the list box, as well as for selecting separate items.

8.4.3.5 Using a Multicolumn List Box
Usually, a list box displays its items in a single column. If you anticipate that a list
box will contain a large number of items, you may want to create the list box by
using the LBS_MULTICOLUMN style. This style specifies a list box that can dis­
play its items in several columns, "snaking" the items from the bottom of one
column to the next. Because of this, the list box need not be scrolled vertically.
However, if the list box may contain more items than it can display at one time,
you should create it by using the WM_HSCROLL style to allow the user to scroll
the list box horizontally.

The directory window that Windows File Manager displays is an example of a
window that contains a multicolumn list box. The following example shows how
to create a multicolumn list box that occupies the entire client area of the parent
window:

#define IDC_MULTILISTBOX
RECT Re ct;
HWND hMultiListBox

GetClientRect(hWnd, (LPRECT) &Rect);

hMultiListBox = CreateWindow("Listbox",
NULL,
WS_CHILD I WS_VISIBLE I LBS_SORT I
LBS_MULTICOLUMN I WS_HSCROLL I LBS_NOTIFY,
Re ct.left,
Rect.top,
Rect.right,
Rect. bottom,
hWnd,
IDC_MULTILISTBOX,
hinst,
NU LL);

Chapter 8 Controls 179

In this example, the GetClientRect function retrieves the coordinates of the client
area of the parent window, which are then passed to the Create Window function
to set the location and size of the list box.

To set the width of the columns in a multicolumn list box, send the list box a
LB_SETCOLUMNWIDTH message.

8.4.3.6 Using an Owner-Drawn List Box
Like a button, a list box can be created as an owner-drawn control. In the case of
list boxes, however, your application is required to draw only the items in the list
box.

Creating an Owner-Drawn List Box To create an owner-drawn list box, use the
LBS_OWNERDRA WFIXED or LBS_OWNERDRA WV ARIABLE style. The
LBS_OWNERDRA WFIXED style specifies an owner-drawn list box whose items
are the same height; the style LBS_ OWNERDRA WV ARIABLE specifies a list
box whose items can vary in height.

Adding an Item to an Owner-Drawn List Box To add an item to the list box,
send the list box the LB_ADDSTRING or LB_INSERTSTRING message.
The message's lParam parameter can contain any 32-bit value that you want
to associate with the item. If lParam contains a pointer to a string, the
LBS_HASSTRINGS list box style allows the list box to maintain the memory
and pointers for the string. This allows the application to use the LB_GETTEXT

180 Microsoft Windows Guide to Programming

message to retrieve the text for the particular item. Also, if you created the list box
by using the LBS_HASSTRINGS and the LBS_SORT styles, Windows automat­
ically sorts the items in the list box.

If you create the list box by using the LBS_SORT style (and not the
LBS_HASSTRINGS style), Windows cannot determine the order of the
items within the list box. In this case, when you add an ikm iu iht: iisi box
(using the LB_ADDSTRING message), Windows will send one or more
WM_COMPAREITEM messages to the owner of the list box. This message's
IParam parameter points to a COMPAREITEMSTRUCT structure that contains
identifying information for two items in the list box. When your application re­
turns from processing the message, the return value specifies which of the items
should appear above the other. Windows sends this message repeatedly until all
the items in the list box are sorted.

Measuring an Item in an Owner-Drawn List Box When you add or insert an
item in a list box, Windows determines the size of the item by sending the
WM_MEASUREITEM message to the owner of the list box. Windows requires
this information so it can detect the user's interaction with items in the list box. If
you created the list box with the LBS_OWNERDRA WFIXED style, Windows
sends the message only once, because all the items in the list box will be the same
size. For a list box that was created by using the
LBS_OWNERDRA WV ARIABLE style, Windows sends a
WM_MEASUREITEM message for each item when that item is added to the list
box.

The IP aram parameter of WM_MEASUREITEM contains a pointer to a
MEASUREITEMSTRUCT structure. In addition to the control type and identi­
fier, this structure also contains the number of the list box item to be measured
(if the list box is of the LBS_OWNERDRA WVARIABLE style) and optional
32-bit data associated with the item. Each time the owner window receives the
WM_MEASUREITEM message, it must fill in the itemHeight member of
MEASUREITEMSTRUCT with the height of the item before returning from
processing the message.

Displaying or Updating an Item in an Owner-Drawn List Box When Windows
displays the list box, or whenever the appearance of an item in the list box should
change, Windows sends the WM_DRA WITEM message to the window that owns
the list box. The IP aram parameter of the WM_DRA WITEM message contains a
pointer to a DRA WITEMSTRUCT structure. This structure contains information
identifying the list box item and the type of drawing required. As with an owner­
drawn button, your application uses this information to determine how to draw the
item.

Chapter 8 Controls 181

Deleting an Item from an Owner-Drawn List Box To delete an item from an
owner-drawn list box, send the list box a LB_DELETESTRING message. Upon re­
ceiving this message, Windows sends a WM_DELETEITEM message to the
owner window. (Windows also sends this message for each item when the list box
is destroyed.) The lParam parameter of this message points to a DELETEITEM­
STRUCT structure; this structure identifies the list box, the list box item that is
being deleted, and the 32-bit optional data associated with the item. Your applica­
tion should use this information to clean up any memory that was used for the
item.

8.4.4 Combo Boxes
A combo box is a single control that consists of a list box combined with a static
control or edit control. Depending on the style you use to create the list box, the
list box can be displayed at all times, or it can be hidden until the user displays it.
Except where noted, the mouse and keyboard interface for the edit control and list
box of a combo box is identical to that of a standard edit control or list box.

The CBS_SIMPLE style creates a combo box with an edit control and a list box
that is always displayed below the edit control. When the combo box has the
focus, the user can type in the edit control. If an item in the list box matches what
the user has typed, the matching item moves to the top of the list box. The user can
also select items from the list box by using the mouse or the DOWN ARROW and UP

ARROW keys.

The CBS_DROPDOWN style is similar to CBS_SIMPLE except that the list box
is displayed only if the user selects the arrow next to the edit control or presses the
ALT+DOWN ARROW or ALT+UP ARROW key combination. Even when the list box is
hidden, the user can select items from the list box by using the UP ARROW and
DOWN ARROW keys.

A combo box created with the CBS_DROPDOWNLIST appears identical to a
CBS_DROPDOWN combo box, except that the edit control is replaced by a static
text field. Instead of typing in the edit control, the user can select items from the
list box by typing the first letter of the item. The user can also use the mouse or the
UP ARROW and DOWN ARROW keys to select items in the combo box.

You add and delete items to the list box portion of a combo box in much the
same way you would with a standard list box, but by using the messages
CB_ADDSTRING, CB_INSERTSTRING, CB_DELETESTRING, and CB_DIR.
Windows also provides additional combo box messages for retrieving the contents
of the edit control, matching text with a list box item, and handling the contents of
the edit control.

In many respects, a combo box is similar to a list box in the way it reports the
user's interaction with the control. All of the list box notification codes have

182 Microsoft Windows Guide to Programming

parallel combo box notification codes. In addition to these, Windows sends notifi­
cation codes to indicate the following:

• The list box of the combo box is being dropped down (CBN_DROPDOWN).

• The list box of the combo box is being hidden (CBN_CLOSEUP).

• The user has changed the text in the edit control, and Windows has updated the
screen (CBN_EDITCHANGE).

• The user has changed the text in the edit control, but Windows has not yet up­
dated the screen (CBN_EDITUPDATE).

• The combo box has lost the input focus (CBN_KILLFOCUS). In the case of
CBS_DROPDOWN and CBS_DROPDOWNLIST combo boxes, this causes
Windows to remove the list box from the screen.

• The combo box has gained the focus (CBN_SETFOCUS).

Like a list box, a combo box can be created with a fixed- or variable-height owner­
drawn style. In the case of combo boxes, however, the owner window is re­
sponsible for drawing items in the list box and in the edit control. For example, if
the user selects an item in the list box, the owner of the combo box receives a
WM_DRA WITEM message for the list box item (to draw it as selected) and
another WM_DRA WITEM message for the edit control.

You can also specify the CBS_SORT style for a combo box; Windows sorts
owner-drawn combo boxes in the same manner as it sorts owner-drawn list boxes.

There is no multicolumn style for combo boxes.

8.4.5 Edit Controls
An edit control is a rectangular child window in which the user can type and edit
text. Edit controls have a variety of features, such as multiline editing and scroll­
ing. You specify the features you want by specifying a control style.

Edit control styles define how the control will appear and operate. For example,
the ES_MULTILINE style creates an edit control in which you can type more than
one line of text. The styles ES_AUTOHSCROLL and ES_AUTOVSCROLL
direct the control to scroll horizontally or vertically if the user types more text than
can fit in the control's client area. If these styles are not specified and the user
types more text than can fit on one line, the text wraps to the next line if the con­
trol is a multiline edit control. You can also use the WS_HSCROLL and (for a
multiline edit control) WS_ VSCROLL styles to allow the user to scroll the text in
the control.

Your application can use an edit control in which a user can type a password or
other private text without displaying what is typed. The ES_PASSWORD style
creates an edit control that does not display text as the user types it; instead, the

Chapter 8 Controls 183

control displays an arbitrary character for each character that the user types. By de­
fault, this character is an asterisk (*). To change the character displayed by the con­
trol, send the EM_SETP ASSWORDCHAR message to the control.

You can set tab stops in a multiline edit control by sending the
EM_SETTABSTOPS message to the control. This message specifies the number
of tab stops the control should contain and the distances between the tab stops.

An edit control sends notification messages to its parent window. For example,
it sends an EN_ CHANGE message when the user makes a change to the text.
An edit control can also receive messages, such as EM_ GETLINE and
EM_LINELENGTH. The control carries out the specified action when it receives
a message.

A powerful feature of edit controls is the ability to "undo" a change to its contents.
To determine whether an edit control can undo an action, send it the
EM_ CANUNDO message; the control will return a nonzero value if it can undo
the last change. If the control can undo the change, your application can send the
EM_ UNDO message to the control to reverse the last change made to it.

8.4.6 Scroll Bars
Scroll bars are predefined controls that can be positioned anywhere in a window.
They allow a user to select a value from a continuous range of values. The scroll
bar sends a notification message to its parent window whenever the user clicks the
control by using the mouse or moves the scroll box (or "thumb") by using the key­
board; this allows the parent window to process the messages so that it can deter­
mine the value selected by the user and position the scroll box appropriately.

To create a child-window scroll bar, use the SBS_HORZ or SBS_ VERT style.
You can create a scroll bar with any desired size. If you want the width (of a verti­
cal scroll bar) or height (of a horizontal scroll bar) to match the size of a window
scroll bar, you can use the appropriate system metrics, as shown in the following
example:

hScrollBar = CreateWindow("Scrollbar", NULL,
WS_CHILD I WS_VISIBLE I SBS_VERT,
20, 20,
GetSystemMetrics(SM_CXVSCROLL), 50,
hWnd, IDSCROLLBAR, hinst, NULL);

The GetSystemMetrics function returns the current value for SM_ CXVSCROLL,
which is the width of a standard window scroll bar.

Scroll bars do not have a special set of notification messages. Instead, they send
the same messages (WM_HSCROLL and WM_ VSCROLL) sent by window
scroll bars. The wP aram parameter of these messages contains a value that

184 Microsoft Windows Guide to Programming

indicates what kind of scrolling is being performed. Your application uses this in­
formation to determine how to position the scroll box and what that position
means to your application.

Windows is capable of properly positioning the scroll box associated with a list
box or edit control, based on the contents of the control. However, a scroll bar that
is a child \ViI1do\v represents a rlli~ge of values known only to yow application. As
a result, your application must set the scrolling range for the scroll bar and must
position the scroll box each time the user moves it.

The SetScrollRange function establishes the range of values that the scroll bar rep­
resents. For example, if your application has a scroll bar with which the user can
select a day in a given month, you would call SetScrollRange to set the scroll bar
range to the number of days in a particular month. The following example shows
how your application could set the range for the month of January:

SetScrollRange(hScrollBar, SB_CTL, l, 31, TRUE);

In this example, SB_CTL means the scroll bar is a separate control, not a control
associated with a window. The third and fourth parameters specify the scroll bar
range, and the fourth parameter is set to TRUE to direct Windows to redraw the
scroll bar to reflect the new range.

Even if you have established the range of values that the scroll bar represents,
Windows still cannot position the scroll box properly when the user moves it; your
application must do this. Each time your application receives a WM_HSCROLL
or WM_ VSCROLL message for the scroll bar, it must check the wParam parame­
ter of the message to determine how far the user moved the scroll box. Your appli­
cation can then call the SetScrollPos function to position the scroll box. Also, if
you allow the user (through your application) to change the value represented by
the scroll box position without using the scroll bar (such as by typing in an edit
control), your application must reposition the scroll box based on the new value.

8.5 Sample Application: EditCntl
This sample application illustrates how you can use an edit control in an applica­
tion's main window to provide multiline text entry and editing. The EditCntl appli­
cation fills the client area of its main window with a multiline edit control and
monitors the size of the client area to ensure that the control always just fits. When
completed, the EditCntl application looks like this:

• 1m11 •I

Eile fdit
ffhe EditCntl application lets you type and edit multiple

in es of text.

_ The entire client area is
a single edit control.

Chapter 8 Controls 185

To create the application, make the following modifications to the EditMenu appli­
cation created in Chapter 7, "Menus":

1. Add a new constant to the header file.

2. Add new variables.

3. Add a Create Window function.

4. Modify the WM_ COMMAND case.

5. Add a WM_SETFOCUS case.

6. Add a WM_SIZE case.

7. Compile and link the application.

8.5.1 Adding a Constant to the Header File
The edit control requires a control identifier. Use the following statement to add a
constant to the header file:

#define IDC_EDIT 300

8.5.2 Adding New Variables
To hold the window handle of the edit control, create a global variable. To do this,
add the following statement to the beginning of the C-language source file:

HWND hEditWnd /* handle of edit window */

You must also create a local variable in the WinMain function to hold the coordi­
nates of the client area rectangle. These coordinates are used to determine the size
of the control. To do this, add the following statement to the beginning of the Win­
Main function:

RECT Rect;

186 Microsoft Windows Guide to Programming

8.5.3 Adding a CreateWindow Function
Before you can create the edit control, you must retrieve the dimensions of the
client area to determine the size of the control. After creating the main window,
add the following statements to the WinMain function:

GetClientRect(hWnd, (RECT FAR*) &Rect):

hEditWnd = CreateWindow("EDIT",
NULL,
WS_CHILD I WS_VISIBLE I
ES_MULTILINE I
WS_VSCROLL I WS_HSCROLL I
ES_AUTOHSCROLL I ES_AUTOVSCROLL,
0,
0,
Rect.right - Rect.left,
Rect.bottom - Rect.top,
hWnd,
IDC_EDIT,
hinst,
NULL);

if (!hEditWnd) {
DestroyWindow(hWnd);
return NULL;

}

The GetClientRect function retrieves the dimensions of the main window's client
area and places that information in the Rect structure. The Create Window func­
tion creates the edit control, using the width and height computed by the Rect
structure.

The Create Window function creates the edit control, using the predefined EDIT
control class and specifying the WS_CHILD window style. You can use the prede­
fined controls as child windows only, not as main or pop-up windows. Since a
child window requires a parent window, you must specify the handle of the main
window, hWnd, when calling the function.

For this edit control, a number of control styles are also specified. These control
styles, like window styles, define how the edit control will look and operate. This
one is a multiline control, meaning the user will be able to type more than one line
of text in it. Also, the control will automatically scroll horizontally or vertically if
the user types more text than can fit in it.

The upper-left corner of the control is placed at the upper-left corner of the parent
window's client area. A child window's coordinates are always relative to the
parent window's client area. The next two arguments, Rect.right - Rect.left and
Rect.bottom - Rect.top, define the height and width of the control, ensuring that it
fills the client area when first displayed.

Chapter 8 Controls 187

Since an edit control sends notification messages to its parent window, the control
must have an identifier. Child windows cannot have menus, so use the menu argu­
ment in the Create Window function to specify the control identifier instead. For
this control, the identifier is IDC_EDIT. Any notification messages sent to the
parent window by the control will contain this identifier.

If the Create Window function cannot create the edit control, the function returns
NULL. In such a case, your application cannot continue, so you should use the
Destroy Window function to destroy the main window before terminating the
application.

8.5.4 Modifying the WM_ COMMAND Case
Child window cortrols notify the parent window of events by using a
WM_ COMMAND message. The wParam parameter of this message identifies the
control that generated the message.

To recognize an out-of-memory notification from the edit control, add the follow­
ing code to the WM_ COMMAND case:

case IDC_EDIT:
if (HIWORD(lParam) == EN_ERRSPACE) {

MessageBoxC
GetFocus C) ,

}

break;

"Out of memory.",
"EditCntl Sample Application",
MB_ICONHAND I MB_OK);

8.5.5 Adding a WM_SETFOCUS Case
To set the input focus to the edit control whenever the parent window is activated,
add the following statements to the window procedure:

case WM_SETFOCUS:
SetFocus(hEditWnd);
break;

8.5.6 Adding a WM_ SIZE Case
Because Windows sends a WM_SIZE message to the window procedure when­
ever the width or height of a window changes, you must add a WM_SIZE case to
the window procedure. Changing the main window size does not automatically
change the size of the edit control. The WM_SIZE case is necessary to change the
size of the control.

188 Microsoft Windows Guide to Programming

Add the following statements to the window procedure:

case WM_SIZE:
MoveWindow(hEditWnd, 0, 0, LOWORD(lParam),

HIWORD(lParam), TRUE);
break;

8.5. 7 Compiling and Linking
Compile and link the EditCntl application, and then start Windows and run the ap­
plication. Now, you can insert and delete text, and you can use the mouse instead
of the keyboard to select text. And since you specified ES_MULTILINE,
ES_AUTOVSCROLL, and ES_AUTOHSCROLL when creating the edit control,
the control can edit a full screen of text, then scroll and edit more.

The EditCntl application illustrates the first step required to create a simple text
editor. To create a complete editor, you can add a File menu to the main window
to open and save text files and to copy or retrieve text from the edit control, and
add an Edit menu to the main window to copy, cut, and paste text through the clip­
board. Later chapters illustrate some simple ways to incorporate these features into
your application.

8.6 Related Topics
For more information about processing input messages and about using controls in
dialog boxes, see Chapter 4, "Keyboard and Mouse Input," and Chapter 9, "Dialog
Boxes."

For more information about control functions and resource-definition statements,
see the Microsoft Windows Programmer's Reference, Volumes 2 and 4.

Dialog Boxes

Chapter g

9.1 What Is a Dialog Box?... 191
9 .1.1 Modal Dialog Boxes.. 192
9.1.2 Modeless Dialog Boxes... 192

9.2 Using a Dialog Box.. 193
9 .2.1 Creating a Dialog Box Procedure.. 194
9.2.2 Using Controls in Dialog Boxes.. 195

9.3 Related Topics.. 195

Chapter 9 Dialog Boxes 191

Dialog boxes are pop-up windows that users interact with when using your
Microsoft Windows application. Typically, dialog boxes contain one or more
controls.

This chapter covers the following topics:

• What a dialog box is

• Creating and using both modal and modeless dialog boxes

• Creating a dialog box procedure

• Using controls in dialog boxes

This chapter does not contain a discussion of a sample application that uses dialog
boxes. How you can use dialog boxes has changed for Windows version 3.1,
which now provides common dialog boxes. For more information about using
common dialog boxes in your applications, see the Microsoft Windows Program­
mer's Reference, Volume 1.

9.1 What Is a Dialog Box?
A dialog box is a pop-up window that an application uses to display or prompt for
information-typically, information needed to complete a command. A dialog box
contains one or more controls with which the user can type text, choose options,
and direct the action of a particular command.

You have seen a dialog box already in the Generic application: the About dialog
box. This dialog box contains static text controls that provide information about
the application, and a push button control that the user can use to close the dialog
box and return to the main window. To process a dialog box, you need to supply a
dialog box template, a dialog box procedure, and some means to call the dialog
box.

A dialog box template is text that describes the dialog box and the controls
it contains. You can use either a text editor or Windows Dialog Editor
(DLGEDIT.EXE) to create the template. Once you have created the template, you
add it to your resource-definition file.

A dialog box procedure is a callback function; Windows calls the dialog box pro­
cedure and passes it messages for the dialog box. Although a dialog box procedure
is similar to a window procedure, Windows carries out special processing for
dialog boxes. Therefore, the dialog box procedure does not have the same responsi­
bilities as a window procedure.

192 Microsoft Windows Guide to Programming

The most common way to display a dialog box is in response to menu input. For
example, the Open command on the File menu requires additional information to
complete its task; it displays a dialog box to prompt for the additional information.

There are two types of dialog box: modal and modeless.

9.1.1 Modal Dialog Boxes
You have already seen a modal dialog box (About) in the Generic application. A
modal dialog box temporarily disables the parent window and requires the user to
complete the requested action before returning control to the parent window.
Modal dialog boxes are useful for gathering information your application requires
in order to proceed. For example, Microsoft Windows Notepad displays a modal
dialog box when the user chooses the Open command from the File menu.
Notepad cannot carry out the Open command until the user specifies a file.

Although you can specify almost any window style for a modal dialog box, the rec­
ommended styles are DS_MODALFRAME, WS_CAPTION, and
WS_SYSMENU. The DS_MODALFRAME style gives the dialog box its charac­
teristic thick border.

A modal dialog box starts its own message loop to process messages from the ap­
plication queue without returning to the WinMain function. To prevent input from
going to the parent window, the dialog box disables the parent window before pro­
cessing input. For this reason, you must not create a modal dialog box by using the
WS_CHILD style, since disabling the parent window also disables all child win­
dows belonging to the parent window.

To display a modal dialog box, use the DialogBox or DialogBoxlndirect func­
tion. To terminate a modal dialog box, use the EndDialog function.

9.1.2 Modeless Dialog Boxes
A modeless dialog box, unlike a modal dialog box, does not disable the parent win­
dow. This means that the user can continue to work in the parent window while
the modeless dialog box is displayed. For example, Microsoft Windows Write
uses a modeless dialog box for its Find command. This allows the user to continue
editing the document without having to close the Find dialog box.

Most modeless dialog boxes have the WS_POPUP, WS_CAPTION,
WS_BORDER, and WS_SYSMENU styles. The typical modeless dialog box
has a System menu, a title bar, and a thin black border.

Chapter 9 Dialog Boxes 193

Although Windows automatically disables some of the System-menu commands
for the dialog box, the menu still contains a Close command. The user can use this
command instead of a push button to close the dialog box. You can also include
controls in the dialog box, such as edit controls and check boxes.

A modeless dialog box receives its input through the message loop in the Win­
Main function. If the dialog box has controls, and you want to let the user move to
and select those controls by using the keyboard, call the IsDialogMessage func­
tion in the main message loop. This function determines whether a keyboard input
message is for the dialog box and, if necessary, processes it. The WinMain func­
tion's message loop for an application that has a mode less dialog box will look
like this:

while (GetMessage(&msg, NULL, NULL, NULL) {

}

if (hDlg == NULL I I !IsDialogMessage(hDlg, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}

Since a modeless dialog box may not be present at all times, your application must
check the hDlg variable that holds the handle in order to determine whether it is
valid. If the variable is valid, IsDialogMessage determines whether the message is
for the dialog box. If so, the message is processed and must not be further
processed by the TranslateMessage and DispatchMessage functions.

To terminate a modeless dialog box, use the DestroyWindow function.

9.2 Using a Dialog Box
To create and use a dialog box, follow these steps:

1. Create a dialog box template and add it to the resource-definition file.

2. Create a dialog box procedure to support the box.

3. Export the dialog box procedure.

4. Display the dialog box by calling the DialogBox or DialogBoxlndirect func­
tion (for a modal dialog box) or the CreateDialog or CreateDialoglndirect
function (for a modeless dialog box).

5. Close the dialog box by calling either the EndDialog function (for modal
dialog boxes) or the DestroyWindow function (for modeless dialog boxes).

194 Microsoft Windows Guide to Programming

9.2.1 Creating a Dialog Box Procedure
A dialog box procedure has the following form:

BOOL FAR PASCAL DlgProc(hDlg, message, wParam, lParam)
HWND hDlg;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

switch (message) {

f* Place message cases here. */

default:
return FALSE;

}
}

This is basically a window procedure, except that the DefWindowProc function is
not called. The dialog box procedure should not call DefWindowProc, because de­
fault processing of dialog box messages is handled internally when the dialog box
procedure returns FALSE. If the procedure returns TRUE, no further processing
takes place. (The WM_INITDIALOG message is an exception to this rule about
how TRUE and FALSE affect the processing in a dialog box procedure.)

The dialog box procedure must be defined as a FAR PASCAL function and must
have the specified parameters. BOOL is the required type for the return value.

Just as it does with window procedures, Windows sends messages to a dialog box
procedure when it has information to give the procedure or requires the procedure
to carry out some action. Unlike a window procedure, a dialog box procedure re­
sponds to a message by returning a Boolean value. If the procedure processes the
message, it returns TRUE. Otherwise, it returns FALSE.

In this dialog box procedure, the hDlg variable receives the handle of the dialog
box. The other parameters serve the same purpose as in a window procedure. The
switch statement is used as a filter for different messages. Most dialog box proce­
dures process the WM_INITDIALOG and WM_ COMMAND messages, but little
else.

The dialog box procedure can, if necessary, give the input focus to any control in
the dialog box by processing the WM_INITDIALOG message. After setting the
focus to the desired control, the procedure should return FALSE; otherwise,
Windows sets the input focus to the control of its choosing.

The WM_ COMMAND message is sent to the dialog box procedure by the con­
trols in the dialog box. If there are controls in the dialog box, they send notifica­
tion messages when the user carries out some action within them. For example, a

Chapter 9 Dialog Boxes 195

dialog box procedure with a push button can check WM_ COMMAND messages
for the control identifier of the push button. When it finds this identifier (which is
in the message's wParam parameter), the procedure can carry out the correspond­
ing task.

If you specify the WS_SYSMENU style when creating the dialog box, you should
include a WM_ COMMAND switch statement for the IDCANCEL control identi­
fier, which is sent when the user chooses the Close command in the dialog box's
System menu. The statement should include a call to the EndDialog function.

9.2.2 Using Controls in Dialog Boxes
You use controls in dialog boxes much as you use them in regular windows. When
a control is in a dialog box, however, you can use several special functions to
access the control and send messages to it. For example, the SendDigltem­
Message function sends a message to a control in the dialog box, and the Set­
DlgltemText function sets the text of a control. You need not supply the control
handle in these functions. Instead, you supply the dialog box handle and the con­
trol identifier. If you want the control handle, you use the GetDlgltem function.

9.3 Related Topics
For more information about input messages and controls, see Chapter 4, "Key­
board and Mouse Input," and Chapter 8, "Controls."

For more information about functions used with controls and dialog boxes, see the
Microsoft Windows Programmer's Reference, Volume 2.

File Input and Output

Chapter 1 O

10.1 Overview .. 199
10.2 Rules for Handling Files in Windows ... 200
10.3 Creating a File .. 202
10.4 Opening an Existing File ... 203
10.5 Reading From and Writing To a File... 203
10.6 Reopening a File .. 204
10. 7 Prompting for a File... 204
10.8 Checking the Status of an Open File ... 204
10.9 Sample Application: EditFile... 205

10.9.1 Adding a Definition to the Header File 205
10.9.2 Adding a SaveAs Dialog Box .. 205
10.9.3 Adding Include Statements .. 205
10.9.4 Adding New Variables .. 206
10.9.5 Replacing the WM_ COMMAND Case 206

10.9.5.1 Handling the New Command 207
10.9.5.2 Handling the Open Command.............................. 207
10.9.5.3 Handling the Save Command 208
10.9.5.4 Handling the Save As Command 209
10.9.5.5 Handling the Exit Command................................ 209

10.9.6 Adding WM_QUERYENDSESSION and
WM_CLOSE Cases ... 210

10.9.7 Modifying the OpenDlg Dialog Box Procedure..................... 210
10.9.8 Adding a SaveAsDlg Dialog Box Procedure.......................... 211
10.9.9 Adding Helper Functions... 213
10.9.10 Exporting the SaveAsDlg Dialog Box Procedure................... 216
10.9 .11 Adding Space to the Heap 216
10.9.12 Compiling and Linking .. 217

10.10 Related Topics .. 217

Chapter 10 File Input and Output 199

The Microsoft Windows 3.1 operating system provides common dialog boxes for
many standard operations. (A common dialog box is a dialog box that a
Windows-based application displays by calling a single function rather than by
creating a dialog box procedure and a resource file containing a dialog box tem­
plate.) An application can create a common dialog box for opening a file by call­
ing the GetOpenFileName function and one for closing a file by calling the
GetSaveFileName function. Common dialog boxes simplify the development of
applications for Windows and assist users by providing a standard set of controls.
Common dialog boxes can even be customized to meet the special requirements
of an application. For more information about common dialog boxes, see the
Microsoft Windows Programmer's Reference, Volume 1.

The information in this chapter is provided for developers who choose not to use
the common dialog boxes for file input and output.

10.1 Overview
File input and output in Windows-based applications are similar to file input and
output in standard C run-time applications. However, there are enough differences
between the two systems to make a review of file input and output important. For
example, although you can use C run-time stream input and output (I/0) functions
in Windows, it is preferable to use the low-level, C run-time input and output func­
tions. Also, since Windows is a multitasking operating system, you must manage
open files carefully.

In Windows, applications that do not use the common dialog boxes should use the
OpenFile function to work with files. OpenFile opens and manages files, return­
ing a file handle that you can use with the low-level C run-time functions to read
and write data.

This chapter covers the following topics:

• Handling files in the Windows operating system

• Using the OpenFile function to create, open, close, reopen, prompt for, and
check the status of disk files

• Using the low-level, C run-time input and output functions to read from and
write to disk files

This chapter also explains how to create a sample application, EditFile, that il­
lustrates some of these concepts.

200 Microsoft Windows Guide to Programming

10.2 Rules for Handling Files in Windows
In Windows, multitasking imposes some special restrictions on file access that you
do not encounter in the standard C environment. Since there may be several appli­
cations working with files at the same time, you must follow some simple rules to
avoid conflicts and potential overwriting of files.

• Keep a file open only while you have execution control.

You should close the file before calling the GetMessage function, or any other
function that may yield execution control. Closing the file prevents it from
being affected by changes in the disk environment that may be caused by other
applications. For example, suppose your application is writing to a floppy disk
and temporarily relinquishes control to another application, and the other appli­
cation tells the user to remove the floppy disk and replace it with another.
When your application gets control back and attempts to write to the disk as
before, without having closed and reopened the file, it could destroy data on the
new disk.

Another reason to keep files closed is the MS-DOS open-file limit. MS-DOS
sets a limit on the number of open files that can exist at one time. If many appli­
cations attempt to open and use files, they can quickly exhaust the available
files.

To prevent open-file problems, the OpenFile function provides an
OF _REOPEN option that you can use to close and reopen files. Whenever you
open or create a file, OpenFile automatically copies the relevant facts about the
file, including the path and filename and the current position of the file pointer,
in an OFSTRUCT structure. This means you can close the file, then reopen it
by supplying nothing more than the structure.

If the user changes disks while working in another application, when your appli­
cation calls the OpenFile function, the function will fail to reopen your file. If
your application specifies the OF _PROMPT option when reopening a file,
OpenFile automatically displays a message box asking the user to insert the
correct disk.

• Follow MS-DOS conventions when carrying out file operations.

Ultimately, Windows depends on the MS-DOS file-handling functions to carry
out all file input and output. This means that you must follow MS-DOS conven­
tions when carrying out file operations. For example, in MS-DOS, a filename
can have from one to eight characters and a filename extension can have from
zero to three characters. The name must not contain spaces. Furthermore,
filenames must be specified in the OEM character set, not the Windows charac­
ter set.

Chapter 1 D File Input and Output 201

The OpenFile function translates filenames from the Windows character set to
the OEM set, using the AnsiToOem function. If a filename contains lowercase
extended characters, however, an application should call the AnsiUpper func­
tion before calling OpenFile; otherwise, the extended characters are converted
incorrectly. (All filenames that contain lowercase extended characters must be
converted by calling AnsiUpper and then AnsiToOem.)

Note All edit controls and list boxes use the Windows character set by default,
so if you plan to display MS-DOS filenames or allow users to enter filenames,
they may see unexpected characters wherever an OEM character is not identical
to a Windows character. If your application processes international filenames, it
must be prepared to handle filenames that do not contain conventional single­
byte character values. For such filenames, use the AnsiNext and AnsiPrev
functions to move forward and backward in a string. These functions correctly
handle strings that contain characters that are not one byte in length, such as
strings in computers that are using Japanese characters.

• Use unique filenames for each instance of your application.

Since more than one instance of an application can run at a time, one instance
can end up overwriting the temporary file of another instance. You can prevent
this by using unique filenames for each instance of your application.

To create unique filenames, use the GetTempFileName function. This function
creates a unique name by combining a unique integer with a prefix and
filename extension that you supply. GetTempFileName creates names that fol­
low MS-DOS filename requirements.

Note The GetTempFileName function uses the TEMP environment variable
to create the path and filename of the temporary file. If the user has not set the
variable, the temporary file will be placed in the root directory of the current
drive. If the variable does not specify a valid directory, you will not be able to
create the temporary file.

• Close files before displaying a message box, or use system-modal error mes­
sage boxes.

As mentioned previously, your application should not relinquish control while
it has open files on floppy disks. If your application uses a message box that is
not system-modal, the user can move to another application while the message
box is on display. If your application still has open files, switching applications
like this can cause file I/O problems.

To avoid such problems, whenever your application displays an alert or error
message by using the MessageBox function, it should either close any open
files before displaying the message box, or if closing files is not feasible, make
the message box system-modal.

202 Microsoft Windows Guide to Programming

10.3 Creating a File
To create a new file, use the OpenFile function. When you call OpenFile, you
specify the following:

• A null-terminated filename for the file

• A buffer with the type OFSTRUCT

• The OF_ CREA TE option

The following example creates the FILE. TXT file and returns a handle of the file.
The application can then use this file handle with low-level, C run-time 1/0 func­
tions.

int hFile;
OFSTRUCT OfStruct;

hFile = OpenFile("FILE.TXT", &OfStruct, OF_CREATE);

The OpenFile function creates the file, if necessary, and opens it for writing. If the
file already exists, the function truncates it to zero length and opens it for writing.

If you want to avoid overwriting an existing file, you can check whether the file
exists, before creating a new file, by calling OpenFile as follows:

hFile = OpenFile("FILE.TXT", &OfStruct, OF_EXIST);
if ChFile >= 0) {

wAction = MessageBox(hWnd,
(LPSTR) "File exists. Overwrite?",
(LPSTR) "File",
MB_OKCANCEL);

if CwAction == IDCANCEL)

f* End this processing. *f

}

}

f* Open the file. */

Chapter 10 File Input and Output 203

10 .4 Opening an Existing File
You can open an existing file by using the OF _READ, OF_ WRITE, or
OF _READWRITE option in the OpenFile function. These options direct Open­
File to open existing files for reading, writing, or reading and writing. The follow­
ing example opens the FILE.TXT file for reading:

hFile = OpenFile("FILE.TXT", &OfStruct, OF_READ);

If the file fails to open, you can display a dialog box to indicate that the file was
not found. You can also use OpenFile to prompt for the file, as described in Sec­
tion 10. 7, "Prompting for a File."

10.5 Reading From and Writing To a File
Once you have opened a file, you can read from it or write to it by using low-level,
C run-time functions. The following example opens the FILE.TXT file for reading
and then reads 512 bytes from it:

char buffer[512J;
int count;

h File = Open File ("FI LE. TXT", &OfStruct, OF _READ);
if (hFile >= 0) {

}

count= _lread(hFile, buffer, 512);
_l cl ose(hFi le);

In this example, the file handle is checked before bytes are read from the file.
OpenFile returns 1 if the file could not be found or opened. The _lclose function
closes the file immediately after it has been read.

The following example opens the FILE.TMP file for writing and then writes bytes
from the character-array buffer:

hFile = OpenFile("FILE.TMP", &OfStruct, OF_WRITE);
if (hFile >= 0) {

}

_lwrite(hFile, buffer, count);
_lclose(hFile);

You should always close floppy disk files after reading or writing. This is to pre­
vent problems if you remove the current disk while working with another applica­
tion. You can always reopen a disk file by using the OF _REOPEN option.

204 Microsoft Windows Guide to Programming

1O.6 Reopening a File
If you open a file on a floppy disk, you should close it before your application re­
linquishes control to another application. The most convenient time to close the
file is immediately after reading or writing. The file can always be reopened by
using OpenFile with the OF _REOPEN option:

hFile = OpenFile((LPSTR) NULL, &OfStruct, OF_REOPEN I OF_READ);

In this example, OpenFile uses the filename specified in the OfStruct structure to
open the file.

1O.7 Prompting for a File
By using the OF _PROMPT option in the OpenFile function, you can automat­
ically prompt the user to insert the correct disk before reopening a file. OpenFile
uses the filename to create a prompt string. If you are reopening a file, you must
use the OF _REOPEN and OF _PROMPT options in addition to specifying how
you want to open the file:

hFile = OpenFile((LPSTR) NULL, &OfStruct, OF_PROMPT I OF_REOPEN
I OF _READ);

If you reopen a file as read-only, Windows will check whether the date and time
match the date and time the file was first opened.

10.8 Checking the Status of an Open File
You can retrieve the current status of an open file by using the low-level, C run­
time function fstat. This function fills a structure with information about a file,
such as its length, in bytes (specified in the size field), and the date and time it was
created. The following example fills the FileStatus structure with information
about the FILE.TXT file:

stat FileStatus;

fstat(hFile, &FileStatus);

Chapter 10 File Input and Output 205

10.9 Sample Application: Editfile
The EditFile application is a simple application for Windows that uses the Open­
File and C run-time functions to open and save small text files. When this applica­
tion is completed, you will be able to view text files in an edit control. By using
the Open command in the application's File menu, you can specify the file to be
opened. You will also be able to make changes to a file or enter new text, and save
the text by using the Save or Save As command in the dialog box.

10.9.1 Adding a Definition to the Header File
To support the SaveAs dialog box, you must add the following constant definition
to the header file:

#define MAXFILESIZE 0x7FFF

10.9.2 Adding a SaveAs Dialog Box
The EditFile application requires a dialog box to support the Save As command.
The SaveAs dialog box prompts for a filename and enables the user to type the
name in an edit control. Add the following DIALOG statement to the resource
file:

SaveAs DIALOG 10, 10, 180, 53
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "Save As"
BEGIN

LTEXT "Save As File &Name:",
LTEXT "",

IDC_FI LENAME, 4,
rnc_PATH, 84,

EDITTEXT IDC_EDIT, 4,
DEFPUSHBUTTON "Save", !DOK, 120,
PUSHBUTTON "Cancel", IDCANCEL, 120,

END

10.9.3 Adding Include Statements

4, 72, 10
4, 92; 10

16, 100, 12
16, 50, 14
36, 50, 14

You must include additional C run-time header files to support file input and out­
put operations. Add the following statements to the beginning of the C-language
source file:

#include <sys\types.h>
#include <sys\stat.h>

206 Microsoft Windows Guide to Programming

10.9.4 Adding New Variables
You must declare the following global variables at the beginning of the file:

HANDLE hEditBuffer;
HANDLE hOldBuffer;
HCURSOR hHourGlass;
HCURSOR hSaveCursor;
int hFile;
int count;
PSTR pBuffer;
OFSTRUCT OfStruct;
struct stat FileStatus;
PSTR pEditBuffer;
BOOL fChanges = FALSE;
BOOL fSaveEnabled = FALSE;

I* handle of editing buffer
I* handle of old buffer

*/
*/

I* handlP. of hourglass cursor */
f* handle of current cursor */
/* handle of file */
/* number of chars read or written */
/* address of read/write buffer */
I* information from OpenFile() */
I* information from fstat() */
I* address of edit buffer */
f* TRUE if file is changed *I
f* TRUE if text is in edit buffer */

char Untitled[] = f* default window title */
"Edit File - (untitled)";

The hEditBuffer variable holds the handle of the current editing buffer. This buff­
er, located in the application's heap, contains the current file text. To load a file,
you allocate the buffer, load the file, and then pass the buffer handle to the edit
control. The hOldBuffer variable is used to replace an old buffer with a new one.
The hHourGlass and hSaveCursor handles hold cursor handles for lengthy opera­
tions.

The hFile variable holds the file handle returned by the OpenFile function. The
count variable holds a count of the number of characters to be read or written. The
pBuffer variable is a pointer and holds the address of the character that contains
the characters to be read or written. The OfStruct structure holds information
about the file.

The FileStatus structure also holds information about the file. The fChanges varia­
ble is TRUE if the user has changed the contents of the file. The fSaveEnabled
variable is TRUE if the user has given a valid name for the file to be saved. The
Untitled variable holds the main window's title, which changes whenever a new
file is loaded.

10.9.5 Replacing the WM_ COMMAND Case
Replace the WM_ COMMAND case so that it processes all File-menu commands
except Print. The New command should clear the current filename and empty the
edit control if there is any text in it. The Open command should retrieve the
selected filename, open the file, and fill the edit control. The Save command
should write the contents of the edit control back to the current file. Finally, the
Save As command should prompt the user for a filename and write the contents of
the edit control.

Chapter 1 D File Input and Output 207

10.9.5.1 Handling the New Command
If the user chooses the New command and there is text in the current file that has
been modified, your application should prompt the user with a message box to de­
termine whether the changes should be saved. Add the following statements to the
WM_ COMMAND case:

case IDM_NEW:

if (!QuerySaveFile(hWnd))
return NULL;

fChanges = FALSE;
FileName[0] = 0;
SetNewBuffer(hWnd, NULL, Untitled);
break;

The locally defined function QuerySaveFile checks the file for changes and
prompts the user to save the changes. If the changes are saved, the filename is
cleared and the editing buffer is emptied by the locally defined function SetNew­
Buffer.

10.9.5.2 Handling the Open Command
If the user chooses the Open command and there is text in the current file that has
been modified, your application should prompt the user to determine whether the
changes should be saved before opening the new file. Add the following state­
ments to the WM_ COMMAND case:

case IDM_OPEN:
if (!QuerySaveFile(hWnd))

return NULL;

lpOpenDlg = MakeProcinstance((FARPROC) OpenDlg, hinst);
hFile = DialogBox(hinst, "Open", hWnd, (DLGPROC) lpOpenDlg);
FreeProcinstance(lpOpenDlg);

if (hFile == -1)

return NULL;

hEdi tBuffer =
LocalAlloc(LMEM_MOVEABLE I LMEM_ZEROINIT,

FileStatus.st_size+l);

if (!hEditBuffer) {
_l cl ose(hFile);

}

MessageBox(hWnd, "Not enough memory.",
NULL, MB_OK I MB_ICONHAND);

return NULL;

208 Microsoft Windows Guide to Programming

hSaveCursor = SetCursor(hHourGlass);
pEditBuffer = LocalLock(hEditBuffer);
IOStatus = read(hFile, pEditBuffer, FileStatus.st_size);
_l cl ose(hFi le);

if (IOStatus != FileStatus.st size) {
sprintf(str, "Error reading %s.", FileName);
SetCursor(hSaveCursor); /*removes hourglass*/
MessageBox(hWnd, str, NULL,

MB_OK I MB_ICONEXCLAMATION);
}

LocalUnlock(hEditBuffer);
sprintf(str, "EditFile - %s", FileName);
SetNewBuffer(hWnd, hEditBuffer, str);
SetCursor(hSaveCursor); /*restores cursor *f
break;

When the IDM_OPEN case is processed, the QuerySaveFile function checks the
existing file for changes before displaying the Open dialog box. The DialogBox
function returns a file handle of the open file. This handle is created in the
OpenDlg dialog box procedure. If the file cannot be opened, the function returns
NULL and processing ends. Otherwise, the LocalAlloc function allocates the
space necessary to load the file into memory. The amount of space allocated is de­
termined by the FileStatus structure, which is filled with information about the
open file by the OpenDlg dialog box procedure. If there is no available memory, a
message box is displayed and processing ends. Otherwise, the SetCursor function
displays the hourglass cursor, the LocalLock function locks the new buffer, and
the C run-time read function copies the contents of the file into memory. If the file
was not read completely, a message box is displayed. SetCursor restores the cur­
sor before the MessageBox function is called. The LocalUnlock function unlocks
the editing buffer, and after a new window title is created, SetNewBuffer changes
the editing buffer and title.

10.9.5.3 Handling the Save Command
If the user chooses the Save command and there is no current filename, the appli­
cation should carry out the same action as the Save As command. Add the follow­
ing statements to the WM_ COMMAND case:

case IDM_SAVE:
if (!FileName[0])

goto saveas;

if (fChanges)
SaveFile(hWnd);

break;

Chapter 10 File Input and Output 209

The IDM_SA VE case checks for a filename and, if none exists, skips to the
IDM_SA VEAS case. If a filename does exist, the locally defined SaveFile func­
tion saves the file only if changes have been made to it.

10.9.5.4 Handling the Save As Command
The Save As command should always prompt for a filename. You should save the
file only if the user gives a valid filename. Add the following statements to the
WM_ COMMAND case:

case IDM_SAVEAS:
saveas:

lpSaveAsDlg = MakeProcinstance((FARPROC) SaveAsDlg, hinst);
Success= DialogBox(hinst, "SaveAs", hWnd, (DLGPROC) lpSaveAsDlg);
FreeProcinstance(lpSaveAsDlg);

if (Success == !DOK) {
sprintf(str, "EditFile - %s", FileName);
SetWindowText(hWnd, str);
SaveFile(hWnd);

}

break; /* user canceled */

The DialogBox function displays the SaveAs dialog box. The MakeProclnstance
and FreeProclnstance functions create and free the procedure-instance address
for the SaveAsDlg dialog box procedure. The DialogBox function returns IDOK
from SaveAsDlg if the user enters a valid filename. The SetWindowText function
then changes the window title, and the SaveFile function saves the contents of the
editing buffer to the file.

10.9.5.5 Handling the Exit Command
The Exit command should now prompt the user to determine whether the current
file should be saved. Also, to keep track of the changes to the file, your application
should process notification messages from the edit control window. Modify the
IDM_EXIT case and add the IDC_EDIT case to the WM_ COMMAND case, as
follows:

case IDM_EXIT:
QuerySaveFile(hWnd);
DestroyWindow(hWnd);
break;

case IDC_EDIT:
if (HIWORD(lParam) EN_CHANGE)

fChanges = TRUE;
return NULL;

210 Microsoft Windows Guide to Programming

10.9.6 Adding WM_QUERYENDSESSION and WM_ CLOSE Cases
You must process the WM_QUERYENDSESSION and WM_ CLOSE messages
to prevent the contents of your files from being lost when the user closes a file or
ends a session. Add the following statements to the window procedure:

case WM_OUERYENDSESSION: /* message: to end the session? */
return (QuerySaveFile(hWnd));

case WM_CLOSE: /* message: close the window */
if (QuerySaveFile(hWnd))

DestroyWindow(hWnd);
break;

Windows sends a WM_QUERYENDSESSION message to the window procedure
when the user has chosen to exit Windows. The session ends only if TRUE is re­
turned. The QuerySaveFile function checks for changes to the file, saves them if
the user requests they be saved, and returns TRUE or FALSE depending on
whether the user canceled or confirmed the operation.

Windows sends the WM_ CLOSE message to the window procedure when the
user chooses the Close command in the main window's System menu. QuerySave­
File carries out the same task as in WM_QUERYENDSESSION, but to complete
the WM_ CLOSE case, the application must also destroy the main window by
using the Destroy Window function.

10.9.7 Modifying the OpenDlg Dialog Box Procedure
You must modify the IDOK case in the OpenDlg dialog box procedure in order to
open and check the size of the file that is selected by the user. Add the following
statements immediately after the call to the AddExt function in the IDOK case of
the OpenDlg dialog box procedure:

if ((hfile = OpenFile(OpenName, &OfStruct, OF_READ)) < 0) {
sprintf(str, "Error %d opening %s.",

OfStruct.nErrCode, OpenName);
MessageBox(hDlg, str, NULL, MB_OK I MB_ICONHAND);

}

else {
fstat(hfile, &FileStatus);
if (FileStatus.st_size > MAXFILESIZE) {

sprintf(str,

}

"Not enough memory to load %s.\n%s exceeds %ld bytes.",
OpenName, OpenName, MAXFILESIZE);

MessageBox(hDlg, str, NULL,
MB_OK I MB_ICONHAND);

return TRUE;

lstrcpy(FileName, OpenName);
EndDialog(hDlg, hFile);
return TRUE;
}

Chapter 10 File Input and Output 211

The OpenFile function opens the specified file for reading and, if successful, re­
turns a file handle. If the file cannot be opened, the case displays a message box
containing the error number generated by MS-DOS. If the file is opened, the C run­
time fstat function copies information about the file into the FileStatus structure.
The file size is checked to make sure the file does not exceed the maximum size
given by the MAXFILESIZE constant. The case displays an error message if the
size is too big. Otherwise, the strcpy function copies the new name to the
FileName variable and the EndDialog function terminates the dialog box and re­
turns the file handle, hFile, to the DialogBox function.

10.9.8 Adding a SaveAsDlg Dialog Box Procedure
You must supply a dialog box procedure for the SaveAs dialog box. This proce­
dure retrieves a filename from the edit control and copies the name to the global
variable FileName. The dialog box procedure should look like this:

int FAR PASCAL SaveAsDlg(hDlg, message, wParam, lParam)
HWND hDlg;
UINT message;
WPARAM wParam;
LP A RAM lPa ram;
{

char TempName[128J;

switch (message) {
case WM_INITDIALOG:

if (!FileName[0J)
fSaveEnabled FALSE;

else {

}

fSaveEnabled = TRUE;
DlgDirList(hOlg, DefPath, NULL, IDC_PATH, 0x4010);
SetDlgitemText(hOlg, IDC_EDIT, FileName);
SendDlgitemMessage(hDlg, IDC_EDIT, EM_SETSEL, 0,

MAKELONG(0, 0x7fff));

EnableWindow(GetDlgitem(hOlg, IDOK), fSaveEnabled);
SetFocus(GetDlgitem(hOlg, IDC_EDIT));
return FALSE; /* FALSE since focus changed */

212 Microsoft Windows Guide to Programming

}

}

case WM_COMMAND:
switch (wParam) {

case IDC_EDIT:
if (HIWORD(lParam) == EN_CHANGE && !fSaveEnabled)

EnableWindow(GetDlgitem(hDlg, !DOK),
fSaveEnabled =TRUE);

return TRUE;

case IDOK:
GetDlgitemText(hDlg, IDC_EDIT, TempName, 128);
if (CheckFileName(hDlg, FileName, TempName)) {

SeparateFile(hDlg, (LPSTR) str,

}

(LPSTR) DefSpec, (LPSTR) FileName);
if (str[0]) lstrcpy(DefPath, str);
EndDialog(hDlg, IDOK);

return TRUE;

case IDCANCEL:

break;

EndDialog(hDlg, IDCANCEL);
return TRUE;

return FALSE;

The WM_INITDIALOG case enables or disables the Save button. The button
should be disabled if there is no current filename. The Enable Window function,
along with the fSaveEnabled variable, enables or disables the button. If there is a
current filename, it should be the proposed name. The SetDlgltemText function
copies the filename to the edit control, and the SendDlgltemMessage function
selects the entire name for editing. The DlgDirList function sets the IDC_PATH
control to the current directory. Since there is no list box to fill, no list box identi­
fier is given.

The WM_ COMMAND case processes notification messages from the controls in
the dialog box. When the function receives the EN_ CHANGE notification from
the edit control IDC_EDIT, it uses the Enable Window function to enable the
Save button, if it is not already enabled.

When the function receives a notification from the Save button, it uses the Get­
DlgltemText function to retrieve the filename in the edit control, then checks the
validity of the filename by using the locally defined function CheckFileName.
This function ensures that the filename contains no path separators or wildcards. It
then determines whether the file already exists; if the file does exist, CheckFile­
Name uses the MessageBox function to ask the user whether the file should be
overwritten. Finally, the dialog box procedure uses the SeparateFile function to
copy the filename to the DefSpec and DefPath variables.

Chapter 10 File Input and Output 213

10.9.9 Adding Helper Functions
To support the EditFile application, you must add several functions to your
C-language source file:

Function Description

CheckFileName

SaveFile

QuerySaveFile

Checks a filename for wildcards, adds the default filename exten­
sion if one is needed, and checks for the existence of the file.

Saves the contents of the editing buffer in a file.

Prompts the user to save changes if the file has changed without
having been saved.

SetNewBuffer Frees the existing editing buffer and replaces it with a new one.

The CheckFileName function verifies that a filename is not empty and that it con­
tains no wildcards. It also checks to see whether the file already exists by using the
OpenFile function and the OF _EXIST option. If the file exists, CheckFileN ame
prompts the user to see whether the file should be overwritten. To create this func­
tion, add the following statements:

BOOL CheckFileName(hWnd, pDest, pSrc)
HWND hWnd;
PSTR pDest, pSrc;
{

}

PSTR pTmp;

if (!pSrc[0])
return FALSE; /* indicates no filename specified */

pTmp = pSrc;
while (*pTmp) { /* searches string for wildcards */

}

switch (*pTmp++) {

}

case'*':
case'?':

MessageBox(hWnd, "Wildcards not allowed.",
NULL, MB_OK I MB_ICONEXCLAMATION);

return FALSE;

AddExt(pSrc, DefExt); /* adds default extension if needed *I

if (QpenFile(pSrc, &OfStruct, OF_EXIST) >= 0) {
sprintf(str, "Replace existing %s?", pSrc);
if (MessageBox(hWnd, str, "EditFile",

MB_OKCANCEL I MB_ICONHAND) == IDCANCEL);
return FALSE;

}

lstrcpy(pDest, pSrc);
return TRUE;

214 Microsoft Windows Guide to Programming

To open a file for writing, the SaveFile function uses the OF _CREATE option of
the OpenFile function. The OF _CREATE option directs OpenFile to delete the
existing contents of the file. The SaveFile function then retrieves a file-buffer
handle from the edit control, locks the buffer, and copies the contents to the file.
To create this function, add the following statements:

BOOL SaveFile(hWnd)
HWND hWnd;
{

}

int IOStatus; /* result of file write */

if ((hFile = OpenFile(FileName, &OfStruct,

}

OF_PROMPT I OF_CANCEL I OF_CREATE)) < 0) {
sprintf(str, "Cannot write to %s.", FileName);
MessageBox(hWnd, str, NULL, MB_OK I MB_ICONEXCLAMATION);
return FALSE;

hEditBuffer SendMessage(hEditWnd, EM_GETHANDLE, 0, 0L);
pEditBuffer LocalLock(hEditBuffer);
hSaveCursor SetCursor(hHourGlass);
IOStatus = _lwrite(hFile, pEditBuffer, strlen(pEditBuffer));
_lclose(hFile);
SetCursor(hSaveCursor);

if CIOStatus != strlen(pEditBuffer)) {
sprintf(str, "Error writing to %s.", FileName);
MessageBox(hWnd, str, NULL, MB_OK I MB_ICONHAND);
fSuccess = FALSE;

}

else {
fSuccess
fChanges

}

TRUE;
FALSE;

/* indicates file was saved */
/* indicates changes have been saved */

LocalUnlock(hEditBuffer);
return fSuccess;

The EM_GETHANDLE message, sent by using the SendMessage function,
directs the edit control to return the handle of its editing buffer. This buffer is lo­
cated in local memory, so it is locked by using the LocalLock function. Once this
buffer is locked, its contents are written to the file by using the _lwrite function.
The SetCursor function displays the hourglass cursor to indicate a lengthy opera­
tion. If _lwrite fails to write all bytes, the SaveFile function displays a message
box. The LocalUnlock function unlocks the editing buffer before the SaveFile
function returns.

Chapter 1 o File Input and Output 215

The QuerySaveFile function checks for changes to the file and prompts the user to
save or delete the changes, or cancel the operation. If the user wants to save the
changes, the function prompts the user for a filename by using the SaveAs dialog
box. To create this function, add the following statements:

BOOL QuerySaveFile(hWnd)
HWND hWnd;
{

int Response;
FARPROC lpSaveAsDlg;

if (fChanges) {
sprintf(str, "Save current changes: %s", FileName);
Response = MessageBox(hWnd, str,

"Edi tFi le", MB_YESNOCANCEL I MB_ICONEXCLAMATION);
if (Response == !DYES) {

check_name:

}

else

}

}

if (!FileName[0]) {
lpSaveAsDlg = MakeProcinstanceCCFARPROC) SaveAsDlg,

hinst);
Response = DialogBox(hinst, "SaveAs",

hWnd, (DLGPROC) lpSaveAsDlg);
FreeProcinstance(lpSaveAsDlg);

if (Response == IDOK)
goto check_name;

else
return FALSE;

}

SaveFile(hWnd);

else if (Response
return FALSE;

IDCANCEL)

return TRUE;

The SetNewBuffer function retrieves and frees the editing buffer before allocating
and setting a new editing buffer. It then updates the edit control window. To create
this function, add the following statements:

void SetNewBuffer(hWnd, hNewBuffer, Title)
HWND hWnd;
HANDLE hNewBuffer;
PSTR Title;
{

HANDLE hOldBuffer;

216 Microsoft Windows Guide to Programming

}

hOldBuffer = SendMessage(hEditWnd, EM_GETHANDLE, 0, 0L);
LocalFree((HLOCAL) hOldBuffer);
if (!hNewBuffer) /*allocates buffer if none exists*/

hNewBuffer = LocalAlloc(LMEM_MOVEABLE I LMEM_ZEROINIT, 1);

SendMessage(hEditWnd, EM_SETHANDLE, hNewBuffer, 0L);
InvalidateRect(hEditWnd, NULL, TRUE); /* updates buffer*/
UpdateWindow(hEditWnd);
SetWindowTextChWnd, Title);
SetFocus(hEditWnd);
fChanges = FALSE;

The new text will not be displayed until the edit control repaints its client area.
The InvalidateRect function invalidates part of the edit control's client area. The
NULL argument means that the entire control needs repainting, and TRUE speci­
fies that the background should be erased before repainting. All of this prepares
the control for painting. The Update Window function causes Windows to send
the edit control a WM_PAINT message immediately.

1O.9 .1 O Exporting the SaveAsDlg Dialog Box Procedure
You must export the SaveAsDlg dialog box procedure. Add the following line to
the EXPORTS statement in your module-definition file:

SaveAsDlg @4

10.9.11 Adding Space to the Heap
You must add extra space to the local heap. This space is required to support the
edit control, which uses memory from the local heap to store its current text. Make
the following change to the module-definition file:

HEAPSIZE 0x4000

This statement allocates an initial heap size of 16K, which is more than enough for
most edit-control operations. If the edit-control buffer needs to become larger, the
local heap will increase up to 64K minus the ST ACKSIZE setting. Because lo­
cally declared variables are also stored on the heap, files cannot be opened that are
larger than 64K minus the ST ACKSIZE setting minus the storage for locally de­
clared variables.

Chapter 10 File Input and Output 217

10.9.12 Compiling and Linking
Compile and link the application, and then start Windows and the EditFile applica­
tion. Choose the Open command, select a file, and EditFile will read and display
the file. If the file is larger than can fit in the window, you can use the arrow keys
to scroll left and right or up and down.

1 O .1 O Related Topics
For a comparison of the Windows operating system to the standard C environ­
ment, see Chapter 1, "Overview of the Windows Environment."

For more information about using C and assembly language in a Windows-based
application, see Chapter 14, "C and Assembly Language."

For more information about the OpenFile function, see the Microsoft Windows
Programmer's Reference, Volume 2.

Bitmaps

Chapter 11

11.1 What Is a Bitmap?.. 221
11.2 Creating a Bitmap 221

11.2.1 Creating and Loading a Bitmap File 222
11.2.2 Creating and Filling a Blank Bitmap....................................... 223
11.2.3 Creating a Bitmap with Hard-Coded Bits 224
11.2.4 Drawing a Color Bitmap.. 227

11.3 Displaying a Bitmap 229
11.3.1 Using the BitBlt Function to Display a Memory Bitmap....... 229
11.3.2 Stretching a Bitmap... 231
11.3.3 Using a Bitmap in a Pattern Brush.. 232
11.3.4 Displaying a Device-Independent Bitmap 234

11.4 Adding Color to a Monochrome Bitmap... 235
11.5 Deleting a Bitmap .. 236
11.6 Sample Application: Bitmap .. 236

11.6.1 Modifying the Header File .. 237
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7

11.6.8
11.6.9

Adding Bitmap Resources... 238
Adding Bitmap, Pattern, and Mode Menus............................. 238
Adding Global and Local Variables.. 239
Adding a WM_ CREATE Case .. 240
Modifying the WM_DESTROY Case 243
Adding WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_LBUTTONDOWN Cases.. 244
Adding a WM_RBUTTONUP Case....................................... 245
Adding a WM_ERASEBKGND Case.................................... 245

11.6.10 Modifying the WM_ COMMAND Case 245
11.6.11 Modifying the Makefile... 248
11.6.12 Compiling and Linking.. 248

11.7 Related Topics .. 248

Chapter 11 Bitmaps 221

Your application for the Microsoft Windows operating system can use bitmaps to
display images that are otherwise too cumbersome to draw by using graphics
device interface (GDI) output functions. This chapter shows how to create and dis­
play bitmaps for monochrome and color screens.

This chapter covers the following topics:

• What a bitmap is

• Creating and displaying bitmaps

• Adding color to monochrome bitmaps

• Deleting bitmaps

This chapter also explains how to create a sample Windows 3.1 application, Bit­
map, which illustrates many of these concepts.

11.1 What Is a Bitmap?
In general, the term bitmap refers to an image formed by a pattern of bits, rather
than by a pattern of lines. In Windows, there are two kinds of bitmaps:

• A device-dependent bitmap is a pattern of bits, in memory, that can be dis­
played on an output device. Because there is a close correlation between the
bits in memory and the pixels on the screen, a memory bitmap is said to be
device dependent. For such bitmaps, the way the bits are arranged in memory
depends on the intended output device.

• A device-independent bitmap (DIB) describes the appearance of an image,
rather than the way that image is represented internally by a particular display
device. Because this external definition can be applied to any display device, it
is referred to as device independent.

11.2 Creating a Bitmap
You create a bitmap by supplying GDI with the dimensions and color format of
the bitmap, and, optionally, the initial value of the bitmap bits. GDI then returns a
handle to the bitmap. You can use this handle in subsequent GDI functions to
select and display the bitmap.

You can create bitmaps in the following ways:

• Use Microsoft Image Editor (IMAGEDIT.EXE) to draw the bitmap image and
save it in a file. Then add the bitmap file to your application's resources. Your
application loads the bitmap by using the LoadBitmap function.

222 Microsoft Windows Guide to Programming

• Your application can first create a blank bitmap and then use GDI output func­
tions to draw the bitmap bits.

• To hard-code a bitmap, your application can create a blank bitmap and initialize
its bits by using an array of bits.

• Your application can create a bitmap and initialize its bits by using the image in
l.ln Pivl~+inn- r1Piu-iroo._1nrla.nocnrla.-nt h-itm..,,....,, fT\TD\
""".&. ""'"'1..&.U'-""-l.&.0 ""'""" ~ .&."-'""' .u..1.u.'-'p'-'.1..1.U.\.l.l.U. U .. U .. J..l.IU.p \.LJ.l.L')•

11.2.1 Creating and Loading a Bitmap File
You can create a bitmap by using Image Editor. Using this application, you
specify the dimensions of the bitmap, and then fill it in by painting in the blank
area with such tools as a brush, spray can, and even text. Any of these tools can
produce images using colors from a palette of up to 28 colors, which you can de­
fine.

To create and load a bitmap using this method, follow these steps:

1. Start Image Editor and create the bitmap by following the directions given in
Microsoft Windows Programming Tools.

2. After creating the bitmap image, save it in a file that has the filename extension
.BMP.

3. In your application's resource-definition (.RC) file, add a BITMAP statement
that defines that bitmap as an application resource. For example, the following
statement specifies that a bitmap resource is in the file DOG.BMP:

IDDOGBMP BITMAP dog.bmp

The name IDDOGBMP is a resource identifier; the filename DOG.BMP speci­
fies the file that contains the bitmap.

4. In your application's source file, load the bitmap by using the LoadBitmap
function. This function takes the bitmap's resource name, loads the bitmap into
memory, and returns a handle of the bitmap. For example, the following state­
ment loads the bitmap resource named Dog and stores the resulting bitmap
handle in the variable hDogBitmap:

hDogBitmap = LoadBitmap(hinst, MAKEINTRESOURCE(IDDOGBMP));

5. Select the bitmap into a device context by using the SelectObject function. For
example, the following statement loads the bitmap specified by hDogBitmap
into the device context specified by hdcMemory:

SelectObject(hdcMemory, hDogBitmap);

Chapter 11 Bitmaps 223

6. Display the bitmap by using the BitBlt function. For example, the following
statement displays a copy of the bitmap in the memory device context
hdcMemory on the device identified by hDC:

BitBlt(hOC, 10, 10, 100, 150, hdcMemory, 0, 0, SRCCOPY)

This example displays the bitmap beginning at the coordinates (10,10) of the
destination device context. The bitmap is 100 units wide and 150 units high.
The bitmap is taken from the memory device context beginning at the coordi­
nates (0,0). The SRCCOPY value specifies that Windows should copy the
source bitmap to the destination.

11.2.2 Creating and Filling a Blank Bitmap
You can create a bitmap "on the fly" by creating a blank bitmap and then filling it
in by using GDI output functions. Using this method, your application is not
limited to external bitmap files, preloaded bitmap resources, or bitmaps that are
hard-coded in your application source code.

Follow these general steps:

1. Create a blank bitmap by using the CreateCompatibleBitmap or Create­
Bitmap function.

2. Select the bitmap into a memory device context by using the SelectObject func­
tion.

3. Draw the bitmap image by using GDI output functions.

The following example creates a star-shaped bitmap by first making a bitmap that
is compatible with the display and then filling the compatible bitmap by using the
Polygon function:

HOC hOC;
HOC hMemoryOC;
HBITMAP hBitmap;
HBITMAP hOldBitmap;
POINT Points[5] = { 32, 0, 16, 63, 63, 16, 0, 16, 48, 63 };

hOC = GetOC(hWnd);
hMemoryOC = CreateCompatibleOC(hDC);
hBitmap = CreateCompatibleBitmap(hOC, 64, 64);
hOldBitmap = SelectObject(hMemoryOC, hBitmap);
PatBlt(hMemoryOC, 0, 0, 64, 64, WHITENESS);
Polygon(hMemoryOC, Points, 5);
BitBlt(hOC, 0, 0, 64, 64, hMemoryOC, 0, 0, SRCCOPY);
SelectObject(hMemoryOC, hOldBitmap);
OeleteOC(hMemoryOC);
ReleaseOC(hWnd, hOC);

224 Microsoft Windows Guide to Programming

In this example, the GetDC function retrieves a handle to the device context. The
bitmap will be compatible with the screen. (If you want a bitmap to be compatible
with some other device, you should use the CreateDC function to retrieve a
handle of that device.)

The CreateCompatibleDC function creates the memory device context in which
................ .:...- ~ -+ h; _ ... u.:11 h:1-un "C' 11 -.:u.:-no- tl,~,., tho r .. .o.nf.o.i"1nTnno.f.hl0-
tUV .lllta.e,v V.1 U.1\.t U.lUJlctp vv J..1.1 UV UJ. a vv 11 . .1. V.l.lV vv .u..i5 W.J..l.~, U.lV '-'• "'"'"'''-'V••.apu. u.n .. -

Bitmap function creates the blank bitmap, setting the size of the bitmap to 64 by
64 pixels. The number of bits in the bitmap depends on the color format of the
screen. If the screen is a color screen, the bitmap will be a color bitmap and might
have many bits for each pixel.

After the bitmap has been created, the SelectObject function selects the bitmap
into the memory device context and prepares it for drawing. The handle of the pre­
viously selected bitmap is saved in the variable hOldBitmap. The PatBlt function
then clears the bitmap and sets all pixels to white. PatBlt, or a similar function, is
required because the image in a blank bitmap is initially undefined. You cannot de­
pend on having a clean bitmap to draw in.

The Polygon function draws the star by using the endpoints specified in the array
of POINT structures, Points. The BitBlt function then copies the bitmap from the
memory device context to the screen.

The SelectObject and DeleteDC functions restore the previous bitmap and delete
the memory device context. Once the bitmap has been drawn, the memory device
context is no longer needed. You cannot delete a device context when any bitmap
other than the context's original bitmap is selected.

Finally, the ReleaseDC function releases the device context. The bitmap handle
hBitmap may now be used in subsequent GDI functions.

11.2.3 Creating a Bitmap with Hard-Coded Bits
You can create a bitmap and set its initial image to an array of bitmap bits by
using the CreateDIBitmap function. This function creates a memory bitmap of a
given size with a device-dependent color format; it initializes the bitmap image by
translating a device-independent bitmap definition into the device-dependent for­
mat required by the display device and copying this device-dependent information
to the memory bitmap. Typically, this method is useful for creating small bitmaps
for use with pattern brushes, but you may also find it useful for creating larger bit­
maps.

Note Unless the bitmap is monochrome (that is, having a single color plane and
one bit per pixel), the memory bitmap created by CreateBitmap is device-specific
and therefore might not be suitable for display on some devices.

Chapter 11 Bitmaps 225

The following example creates a 64-by-32-pixel monochrome bitmap; the ex­
ample initializes the bitmap by using the bits in the array Square.

HBITMAP
HANDLE
PBITMAPINFO

hBitmap;
hDibinfo;
pDibinfo;

BYTE Square[] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0xFF,0xFF,0xFF,0xFF,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };

if (pDibinfo = CPBITMAPINFO) LocalAlloc(LMEM_FIXED,
sizeof(BITMAPINFOHEADER) + 2 * sizeof(RGBQUAD))) {

HBRUSH hOldBrush, hBrush;
pDibinfo->bmiHeader.biSize = (LONG) sizeof(BITMAPINFOHEADER);
pDibinfo->bmiHeader.biWidth = 64L;
pDibinfo->bmiHeader.biHeight = 32;
pDibinfo->bmiHeader.biPlanes = 1;
pDibinfo->bmiHeader.biBitCount = 1;
pDibinfo->bmiHeader.biCompression = 0L;
pDibinfo->bmiHeader.biSizeimage = 0L;
pDibinfo->bmiHeader.biXPelsPerMeter = 0L;

226 Microsoft Windows Guide to Programming

}

pDibinfo->bmiHeader.biYPelsPerMeter = 0L;
pDibinfo->bmiHeader.biClrUsed = 0L;
pDibinfo->bmiHeader.biClrimportant = 0L;
pDibinfo->bmiColors[0].rgbRed = 0;
pDibinfo->bmiColors[0].rgbGreen = 0;
pDibinfo->bmiColors[0].rgbBlue = 0;
pDibinfo->bmiColors[l].rgbRed = 0xFF;
pDibinfo->bmiColors[l].rgbGreen = 0xFF;
pDibinfo->bmiColors[l].rgbBlue = 0xFF;
hDC = GetDC(hWnd);
hBitmap = CreateDIBitmap(hDC,

LPBITMAPINFOHEADER & pDibinfo->bmiHeader, CBM_INIT,
(LPSTR) Square, (LPBITMAPINFO) pDibinfo, DIB_RGB_COLORS);

. /* Use the bitmap. */

ReleaseDC(hWnd, hDC);
DeleteObject(hBitmap);
LocalFree((HANDLE) pDibinfo);

The CreateDIBitmap function creates and initializes the bitmap before returning
the bitmap handle. The width and height of the bitmap are 64 and 32 pixels, respec­
tively. The bitmap has one bit for each pixel, making it a monochrome bitmap.

The Square array contains the bits used to initialize the bitmap. The BITMAP­
INFO structure determines how the bits in the array are interpreted. It defines the
width and height of the bitmap, how many bits (1, 4, 8, or 24) are used in the array
to represent each pixel, and a table of colors for the pixels. Since the Square array
defines a monochrome bitmap, the bit count per pixel is 1 and the color table con­
tains only two entries, one for black and one for white. If a given bit in the array is
0, GDI draws a black pixel for that bit; if the given bit is 1, GDI draws a white
pixel.

Since the Square array defines a monochrome bitmap, you could also use the
CreateBitmap function to create the bitmap:

hBitmap = CreateBitmap(64, 32, 1, 1, Square);

This is possible because all monochrome memory bitmaps are device independent.
For color bitmaps, however, CreateBitmap cannot use the same bitmap-bit speci­
fication as can CreateDIBitmap.

Once you have created and initialized the bitmap, you can use its handle in sub­
sequent GDI functions. If you want to change the bitmap, you can draw in it by
selecting it into a memory device context as described in Section 11.2.2, "Creating
and Filling a Blank Bitmap." If you want to replace the bitmap image with another
or want to change a portion of it, you can use the SetDIBits function to copy

Chapter 11 Bitmaps 227

another array of bits into the bitmap. The following example replaces the current
bitmap image with the bits in the array Circle:

BYTE Circle[] = {

} ;

SetDIBits(hDC, hBitmap, 0, 32, Circle,
(BITMAPINFD FAR*) &myDIBinfo, DIB_RGB_COLORS);

The SetDIBits function copies the bits in the Circle array into the bitmap specified
by the hBitmap variable. The array contains 32 scan lines, representing the image
of a 64-by-32-pixel monochrome bitmap. If you want to retrieve the current bits
in a bitmap before replacing them, you can use the GetDIBits function. This
function copies a specified number of scan lines from the bitmap into a
device-independent bitmap specification. You can also use GetBitmapBits to
retrieve bits from a monochrome bitmap.

Again, since the Circle array defines a monochrome bitmap, you could call Set­
BitmapBits instead to change the bitmap:

SetBitmapBits(hBitmap, 256, Circle);

The preceding examples show how to create and modify a small bitmap. Typi­
cally, you will not want to hard-code larger bitmaps in your application source
code. Instead, you can store a larger bitmap in a device-independent bitmap file
created by Image Editor or other tools. A device-independent bitmap file consists
of a BITMAPFILEHEADER structure followed by a BITMAPINFO structure
and an array of bytes that together define the bitmap.

For more information about Windows color palettes, see Chapter 19, "Color
Palettes."

11.2.4 Drawing a Color Bitmap
Since hard-coding a color bitmap may require considerable effort, it is usually sim­
pler to create a compatible bitmap and draw in it. For example, to create a color
bitmap that has a red, green, and blue plaid pattern, you simply create a blank bit­
map and use the PatBlt function, with the red, green, and blue brushes, to draw
the pattern. This method has the advantage of generating a reasonable bitmap even
if the screen does not support color. This is because GDI provides dithered
brushes for monochrome screens when a color brush is requested. A dithered
brush is a unique pattern of pixels that represents a color when that color is not
available for the device.

228 Microsoft Windows Guide to Programming

The following statements create the color bitmap by drawing it:

#define PATOROEST

HOC hdc;
HOC hdcMemory;
HBITMAP hBitmap;
HBITMAP hOldBitmap;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH hOldBrush;

hdc GetOC(hwnd);

0x00FA0089L

if ((hdcMemory = CreateCompatibleOC(hdc)) ==NULL)
return NULL;

if ((hBitmap = CreateCompatibleBitmap(hdc, 64, 32)) NULL)
return NULL;

hOldBitmap = SelectObject(hdcMemory, hBitmap);
hRedBrush = CreateSolidBrush(RGB(255, 0, 0));
hGreenBrush = CreateSolidBrush(RGB(0, 255, 0));
hBlueBrush = CreateSolidBrush(RGB(0, 0, 255));

PatBlt(hdcMemory, 0, 0, 64, 32, BLACKNESS);
hOldBrush = SelectObject(hdcMemory, hRedBrush);
PatBlt(hdcMemory, 0, 0, 24, 11, PATOROEST);
PatBlt(hdcMemory, 40, 10, 24, 12, PATOROEST);
PatBlt(hdcMemory, 20, 21, 24, 11, PATOROEST);
SelectObject(hdcMemory, hGreenBrush);
PatBlt(hdcMemory, 20, 0, 24, 11, PATOROEST);
PatBlt(hdcMemory, 0, 10, 24, 12, PATOROEST);
PatBlt(hdcMemory, 40, 21, 24, 11, PATOROEST);
SelectObject(hdcMemory, hBlueBrush);
PatBlt(hdcMemory, 40, 0, 24, 11, PATOROESTJ;
PatBlt(hdcMemory, 20, 10, 24, 12, PATOROEST);
PatBlt(hdcMemory, 0, 21, 24, 11, PATOROEST);

BitBlt(hdc, 0, 0, 64, 32, hdcMemory, 0, 0, SRCCOPY)

SelectObject(hdcMemory, hOldBrush);
OeleteObject(hRedBrush);
OeleteObject(hGreenBrush);
OeleteObject(hBlueBrush);
SelectObject(hdcMemory, hOldBitmap);
ReleaseOC(hwnd, hdc);
OeleteOC(hdcMemory);

In this example, the CreateSolidBrush function creates the red, green, and blue
brushes needed to make the plaid pattern. The SelectObject function selects each

Chapter 11 Bitmaps 229

brush into the memory device context as that brush is needed, and the PatBlt func­
tion paints the colors into the bitmap. Each color is painted three times, each time
into a small rectangle. In this example, the application instructs PatBlt to overlap
the different color rectangles slightly. Since the PATORDEST raster-operation
code is specified, PatBlt uses a Boolean OR operator to combine the brush color
with the color already in the bitmap. The result is a different color border around
each rectangle. After the bitmap is complete, BitBlt copies it from the memory
device context to the screen.

11.3 Displaying a Bitmap
Windows provides several ways to display a bitmap:

• Display a memory bitmap by using the BitBlt function to copy the bitmap from
the memory device context to a screen.

• Use the StretchBlt function to copy a stretched or compressed bitmap from a
memory device context to a screen.

• Use the CreatePatternBrush function to create a brush that incorporates the
bitmap. Any subsequent GDI functions that use the brush, such as PatBlt, will
display that bitmap.

• Use the SetDIBitsToDevice function to display a device-independent bitmap
directly on the output device.

• Display the bitmap as a menu item in a menu by replacing the original menu­
item text, defined in the .RC file, with the bitmap. The user can then choose the
command associated with the menu item to carry out an action. For information
about replacing a menu item with a bitmap, see Chapter 7, "Menus."

11.3.1 Using the BitBlt Function to Display a Memory Bitmap
You can display any bitmap by using the BitBlt function. This function copies a
bitmap from a source to a destination device context. To display a bitmap with
BitBlt, you must first create a memory device context and select the bitmap into it.
The following example displays a bitmap by using BitBlt:

HOC hDC, hdcMemory;

hDC = GetDC(hWnd);
if((hdcMemory = CreateCompatibleDC(hDC)) NULL)

return FALSE;

230 Microsoft Windows Guide to Programming

ReleaseDC(hWnd, hDC);
hOldBitmap = SelectObject(hdcMemory, hBitmap);

if (hOldbitmap) {

}

BitBlt(hDC, 100, 30, 64, 32, hdcMemory, 0, 0, SRCCOPY);
SelectObject(hdcMemory, hOldBitmap);

DeleteDC(hdcMemory);

In the example, the GetDC function specifies the device context for the client area
of the window identified by the hWnd variable. The CreateCompatibleDC func­
tion creates a memory device context that is compatible with the device context.
The SelectObject function selects the bitmap, identified by the hBitmap variable,
into the memory device context and returns the previously selected bitmap. If
SelectObject cannot select the bitmap, it returns zero.

The BitBlt function copies the bitmap from the memory device context into the
screen device context. The function places the upper-left comer of the bitmap at
the coordinates (100,30), copying the entire bitmap, 64 bits wide by 32 bits high.
The hDC and hdcMemory variables identify the destination and source contexts,
respectively. The raster-operation code SRCCOPY directs BitBlt to copy the
source bitmap without combining it with patterns or colors already at the destina­
tion.

The SelectObject, DeleteDC, and ReleaseDC functions clean up after the bitmap
has been displayed. In general, when your application has finished using memory
and device contexts, it should release them as soon as possible. Windows main­
tains a cache of five device contexts that are retrieved by the GetDC, Get­
WindowDC, and BeginPaint functions. If an application does not release one of
these device contexts after using it, other applications might not be able to retrieve
a context when one is needed. If you retrieve a device context by using GetDC,
Get Window DC, or BeginPaint, you must later release it by using ReleaseDC; if
you create the device context by using any other function, you must later delete it
by using DeleteDC. Before deleting a device context, you must call SelectObject,
since you must not delete a device context while any bitmap other than the con­
text's original bitmap is selected.

In the previous example, the width and height of the bitmap were given as 64 and
32 pixels, respectiveJy. Another way to specify the width and height of the bitmap
to be displayed is to retrieve these dimensions from the bitmap itself. You can do
this by using the GetObject function, which fills a specified structure with the di­
mensions of the given object. For example, to retrieve the width and height of a bit­
map, you would use the following statements:

Chapter 11 Bitmaps 231

BITMAP Bitmap;

GetObject((HGDIOBJ) hBitmap, sizeof(BITMAP), &Bitmap);

The next example copies the width and height of the bitmap to the bm Width and
bmHeight members of the structure Bitmap. You can use these values in BitBlt as
follows:

BitBlt(hDC, 100, 30, Bitmap.bmWidth, Bitmap.bmHeight,
hdcMemory, 0, 0, SRCCOPY);

The BitBlt function can display both monochrome and color bitmaps. No special
steps are required to display bitmaps of different formats. Be aware, however, that
BitBlt may convert the bitmap if its color format is not the same as that of the
destination device. For example, when displaying a color bitmap on a mono­
chrome screen, BitBlt converts the pixels having the current background color to
white and all other pixels to black.

11.3.2 Stretching a Bitmap
Your bitmaps are not limited to their original size. You can stretch or compress
them by using the StretchBlt function in place of BitBlt. For example, you can
quadruple the size of a 64-by-32-pixel bitmap by using the following statement:

StretchBlt(hDC, 100, 30, 128, 64, hdcMemory,
0, 0, 64, 32, SRCCOPY);

The StretchBlt function has two additional parameters that BitBlt does not. In par­
ticular, StretchBlt specifies the width and height of the source bitmap. The first
width and height, given as 128 and 64 pixels in the preceding example, apply only
to the final size of the bitmap in the destination device context.

To compress a bitmap, StretchBlt removes pixels from the copied bitmap. This
means that some of the information in the bitmap is lost when it is displayed. To
minimize the loss, you can set the current stretching mode, which StretchBlt uses
to combine some of the information with the pixels that will be displayed. The
stretching mode can be one of the following:

Mode

WHITEONBLACK

BLACKONWHITE

Purpose

Preserves white pixels at the expense of black pixels; for ex­
ample, a white outline on a black background.
Preserves black pixels at the expense of white pixels; for ex­
ample, a black outline on a white background.

232 Microsoft Windows Guide to Programming

Mode

COLORONCOLOR

Purpose

Displays color bitmaps. Attempting to combine colors in a bit­
map can lead to undesirable effects.

The SetStretchBltMode function sets the stretching mode. In the following ex­
a..rnple, SetStretchB!tMode sets the stretching mode to WHITEONBLACK:

SetStretchBltMode(hDC, WHITEONBLACK);

11.3.3 Using a Bitmap in a Pattern Brush
You can use a bitmap in a brush by creating a pattern brush. After creating the pat­
tern brush, you can select the brush into a device context and use the PatBlt func­
tion to copy it to the screen; or the Rectangle, Ellipse, and other drawing
functions can use the brush to fill interiors. When Windows draws with a pattern
brush, it fills the specified area by repeatedly copying the bitmap horizontally and
vertically as necessary. It does not adjust the size of the bitmap to fit in the area as
does the StretchBlt function.

If you use a bitmap in a pattern brush, the bitmap should be at least 8 pixels wide
by 8 pixels high-the default pattern size used by most display drivers. (You can
use large bitmaps, but only the upper-left, 8-by-8 comer will be used.) You may
hard-code the bitmap, create and draw it, or load it as a resource. In any case, once
you have the bitmap handle, you can create the pattern brush by using the
CreatePatternBrush function. The following example loads a bitmap and uses it
to create a pattern brush:

hBitmap = LoadBitmap(hinst, "checks");
hBrush = CreatePatternBrush(hBitmap);

You can then select the brush into a device context by using the SelectObject
function:

hOldBrush = SelectObject(hDC, hBrush);

Since the bitmap is part of the brush, this call to the SelectObject function does
not affect the device context's selected bitmap.

After selecting the brush, you can use the PatBlt function to fill a specified area
with the bitmap. For example, the following statement fills the upper-left comer of
a window with the bitmap:

PatBlt(hDC, 0, 0, 100, 100, PATCOPY);

The PATCOPY raster operation directs PatBlt to completely replace the destina­
tion image with the pattern brush.

Chapter 11 Bitmaps 233

You can also use a pattern brush as a window's background brush. To do this,
simply assign the brush handle to the hbrBackground member of the window­
class structure, as in the following example:

pWndClass->hbrBackground = CreatePatternBrush(hBitmap);

Once you have assigned the brush handle to hbrBackground, Windows uses the
pattern brush whenever it erases the window's background. You can also change
the current background brush for a window class by using the SetClassWord func­
tion. For example, if you want to use a new pattern brush after a window has been
created, you can use the following statement:

SetClassWord(hWnd, GCW_HBRBACKGROUND, hBrush);

Note that this statement changes the background brush for all windows of this
class. If you want to change only the background for one window, you must expli­
citly process the WM_ERASEBKGND messages that the window receives. The
following example shows how to process this message:

case WM_ERASEBKGND:

UnrealizeObject(hBrush);
hOldBrush = SelectObject((HDC) wParam, (HGDIOBJ) hBrush);
GetClientRect(hwnd, &Rect);
PatBlt((HDC) wParam, Rect.left, Rect.top,

Rect.right - Rect.left, Rect.bottom - Rect.top, PATCOPY);
SelectObject((HDC) wParam, (HGDIOBJ) hOldBrush);
return TRUE;

The WM_ERASEBKGND message passes a handle of a device context in the
wParam parameter. The SelectObject function selects the desired background
brush into the device context. The GetClientRect function retrieves the area that
needs to be erased. The PatBlt function copies the pattern, overwriting anything al­
ready in the update rectangle. The final SelectObject function restores the pre­
vious brush to the device context.

Whenever your application or the user moves a window in which a pattern brush
has been or will be used, your application must align the pattern brushes to the
new position by using the UnrealizeObjectfunction. This function resets a
brush's drawing origin so that any patterns displayed after the move match the pat­
terns displayed before the move.

You can use the DeleteObject function to delete a pattern brush that is no longer
needed. This function does not, however, delete the bitmap along with the brush.
To delete the bitmap, call DeleteObject again and specify the bitmap handle.

234 Microsoft Windows Guide to Programming

11.3.4 Displaying a Device-Independent Bitmap
One of the advantages of device-independent bitmaps is that you can display them
directly without having to create an intermediate memory bitmap. The SetDIBits­
ToDevice function sets all or part of a device-independent bitmap directly to an
output device, significantly reducing the memory required to display the bitmap.
When you call SetDIBitsToDevice to display a bitmap, you must suppiy the foi­
lowing information:

• The device context of the target output device

• The location in the device context where the bitmap will appear

• The size of the bitmap on the output device

• The number of scan lines in the source-bitmap buffer from which you are copy­
ing the bitmap

• The location of the first pixel in the source bitmap to copy to the output device

• The device-independent bitmap-information structure and a buffer containing
the bitmap to be displayed

• Whether the color table of the DIB specification contains literal red, green, blue
(RGB) color values or logical-palette color indices

Note The origin for device-independent bitmaps is the lower-left corner of the bit­
map, not the upper-left corner as for other graphics operations.

Following is an example of how an application calls SetDIBitsToDevice:

SetDIBitsToDevice(hDC, 0, 0, lpbi->bmciHeader.bcWidth,
lpbi->bmciHeader.bcHeight, 0, 0, 0,
lpbi->bmciHeader.bcHeight,
pBuf, CBITMAPINFO FAR*) l pbi,
DIB_RGB_COLORS);

In this example, hDC identifies the device context of the target output device;
SetDIBitsToDevice uses this information to identify the screen and determine the
correct color format for the device bitmap.

The next two parameters specify the point on the display surface where SetDIBits­
ToDevice will begin drawing the bitmap; in this case, it is the origin of the device
context itself. The next two parameters supply the width and height of the bitmap.

The sixth and seventh parameters, both of which are set to zero in this example,
specify the first pixel in the source bitmap to be set on the display device; again,
since both are zero, SetDIBitsToDevice begins with the first pixel in the bitmap
buffer.

The next two parameters are used for banding purposes. The first of these two pa­
rameters is set to zero, indicating that the beginning scan line should be the first in

Chapter 11 Bitmaps 235

the buffer; the second parameter is set to the height of the bitmap. As a result, the
entire source bitmap will be set on the display surface in a single band.

The actual bitmap bits are contained in the pBuf buffer, and the lpbi parameter sup­
plies the BITMAPINFO data structure that describes the color format of the
source bitmap.

The last parameter is a usage flag that indicates whether the bitmap color table con­
tains actual RGB color values or indices into the currently realized logical palette.
DIB_RGB_COLORS specifies that the color table contains explicit color values.

11.4 Adding Color to a Monochrome Bitmap
If your computer has a color screen, you can add color to a monochrome bitmap
by setting the foreground and background colors of the display context. The fore­
ground and background colors specify which colors the white and black bits of the
bitmap will have when displayed. You set the foreground and background colors
by using the SetTextColor and SetBkColor functions. The following example
sets the foreground color to red and the background color to green:

SetTextColor(hDC, RGB(255, 0, 0));
SetBkColor(hDC, RGB(0, 255, 0));

In this example, the hDC variable contains the handle of the device context. The
SetTextColor function sets the foreground color to red, and the SetBkColor func­
tion sets the background color to green. The RGB function creates an RGB color
value by using the three specified values. Each value represents an intensity for
each of the primary display colors-red, green, and blue-with the value 255 rep­
resenting the highest intensity, and zero, the lowest. You can produce colors other
than red, green, and blue by combining the color intensities. For example, the fol­
lowing statement creates a yellow RGB value:

RGB(255, 255, 0)

Once you have set the foreground and background colors, no further action is re­
quired. You can display a bitmap (as described earlier), and Windows will auto­
matically add the foreground and background colors. The foreground color is
applied to the white bits (the bits set to 1) and the background color to the black
bits (the bits set to zero). Note that the background mode, as specified by the
SetBkMode function, does not apply to bitmaps. Also, the foreground and back­
ground colors do not apply to color bitmaps.

When displayed in color, the bitmap named Dog will be red and the background
will be green.

236 Microsoft Windows Guide to Programming

11.5 Deleting a Bitmap
A bitmap, like any resource, occupies memory while in use. After you have
finished using a bitmap or before your application terminates, it is important that
you delete the bitmaps you have created, in order to make that memory available
to other applications. To delete a bitmap, first remove it from any device context
in which it is currently selected. Then, delete it by using the DeleteObject func­
tion.

The following example deletes the bitmap identified by the hBitmap variable, after
removing it as the currently selected bitmap in the memory device context iden­
tified by the hdcMemory variable:

SelectObject(hdcMemory, hOldBitmap);
OeleteObject(hBitmap);

The SelectObject function removes the bitmap from selection by replacing it with
a previous bitmap identified by the hOldBitmap variable. The DeleteObject func­
tion deletes the bitmap. Thereafter, the bitmap handle in hBitmap is no longer
valid and must not be used.

11. 6 Sample Application: Bitmap
This sample shows how to incorporate a variety of bitmap operations in an applica­
tion. In particular, it shows how to do the following:

• Load and display a monochrome bitmap

• Create and display a color bitmap

• Stretch and compress a bitmap by using the mouse

• Set the stretching mode

• Create and use a pattern brush

• Use a pattern brush for the window background

In this application, the user specifies (by using the mouse) where and how the bit­
map will be displayed. If the user drags the mouse while holding down the left but­
ton, and then releases that button, the application uses the StretchBlt function to
fill the selected rectangle with the current bitmap. If the user clicks the right but­
ton, the application uses the BitBlt function to display the bitmap.

Chapter 11 Bitmaps 237

To create the Bitmap application, make the following modifications to the Generic
application:

1. Add constant definitions and a function declaration to the header file.

2. Add two monochrome bitmaps, created by using Image Editor, to the resource-
definition file.

3. Add Bitmap, Pattern, and Mode menus to the resource-definition file.

4. Add global and local variables.

5. Add a WM_ CREATE case to the window procedure to create bitmaps and add
bitmaps to the menus.

6. Modify the WM_DESTROY case in the window procedure to delete bitmaps.

7. Add WM_LBUTTONUP, WM_MOUSEMOVE, and WM_LBUTTONDOWN
cases to the window procedure to create a selection rectangle and display bit­
maps.

8. Add a WM_RBUTTONUP case to the window procedure to display bitmaps.

9. Add a WM_ERASEBKGND case to the window procedure to erase the client
area.

10. Modify the WM_ COMMAND case to support the menus.

11. Modify the link command line in the makefile to include the SELECT.LIB
library file.

12. Compile and link the application.

11.6.1 Modifying the Header File
Add the following function declarations and constant definitions to the header file:

f/defi ne IDM_BITMAPl 200
//define IDM_BITMAP2 201
f/defi ne IDM_BITMAP3 202

//define IDM_PATTERNl 300
f/defi ne I DM_PA TTERN2 301
f/defi ne IDM_PATTERN3 302
f/defi ne IDM_PA TTERN4 303

1/defi ne I DM_BLACKONWH ITE 400
f/defi ne IDM_WH ITEONB LACK 401
1/define IDM_CO LO RONCO LOR 402

1/define PA TO RD EST 0x00FA0089L

HBITMAP MakeColorBitmap(HWND);

238 Microsoft Windows Guide to Programming

11.6.2 Adding Bitmap Resources
To add the bitmaps Dog and Cat to your application resources, add the following
statements to your resource-definition file:

Dog BITMAP dog.bmp
Cat BITMAP cat.bmp

The Dog bitmap is the white outline of a dog on a black background. The Cat bit­
map is the black outline of a cat on a white background.

11.6.3 Adding Bitmap, Pattern, and Mode Menus
You must create a MENU statement that defines the Bitmap, Pattern, and Mode
menus used to choose the various bitmaps and modes that are part of the applica­
tion. Add the following MENU statement to your resource-definition file:

BitmapMenu MENU
BEGIN

END

POPUP "&Bitmap"
BEGIN

MENUITEM "", IDM_BITMAPl
END

POPUP "&Pattern"
BEGIN

MENUITEM "", IDM_PATTERNl
END

POPUP "&Mode"
BEGIN

END

MENUITEM "&WhiteOnBlack", IDM_WHITEONBLACK, CHECKED
MENUITEM "&BlackOnWhite", IDM_BLACKONWHITE
MENU ITEM "&Col orOnCol or", IDM_COLORONCOLOR

The Bitmap and Pattern menus each contain a single MENUITEM statement.
This statement defines a menu item that serves as a placeholder only. The applica­
tion will add the actual items to use in the menu by using the AppendMenu
function.

Chapter 11 Bitmaps 239

11.6.4 Adding Global and Local Variables
You must declare the pattern arrays, the bitmap and context handles, and other
global variables used to create and display the bitmaps. To define these global vari­
ables, add the following statements to the beginning of your source file:

short White[] 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
short Black[] 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
short Zigzag[] 0xFF, 0xF7, 0xEB, 0xDD, 0xBE, 0x7F,
short CrossHatch[J 0xEF, 0xEF, 0xEF, 0xEF, 0x00, 0xEF,

HBITMAP hbmpWhite;
HBITMAP hbmpBlack;
HBITMAP hbmpZigZag;
HBITMAP hbmpCrossHatch;
HBITMAP hbmpDog;
HBITMAP hbmpCat;
HBITMAP hbmpClrPattern;
HBITMAP hmenuBitmapl;
HBITMAP hmenuBitmap2;
HBITMAP hmenuBitmap3;
HBITMAP hBitmap;
HBITMAP hOldBitmap;

HBRUSH hBrush; f* brush handle *f
WORD fwStretchMode; f* type of stretch mode to use *f

HDC hdc;
HDC hdcMemory;
BITMAP Bitmap;

f* handle of device context *f
f* handle of memory device context */
f* bitmap structure */

BOOL fTrack = FALSE; /* TRUE if user is selecting a region
RECT Rect;

WORD fwPrevBitmap IDM_BITMAPl;
WORD fwPrevPattern IDM_PATTERNl;
WORD fwPrevMode IDM_WHITEONBLACK;
WORD fwPrevitem;

0xFF, 0xFF
0x00, 0x00
0xFF, 0xFF
0xEF, 0xEF

*/

WORD fwShape = SL_BLOCK; /* shape to use for selection rectangle */

} ;
} ;
} ;
} ;

In this example, the pattern arrays White, Black, Zigzag, and CrossHatch contain
the bits defining the 8-by-8-pixel bitmap images. The variables hbmpWhite,
hbmpBlack, hbmpZigZag, and hbmpCrossHatch contain the bitmap handles of the
brush patterns; hbmpDog, hbmpCat, and hbmpClrPattern contain the bitmap han­
dles of the bitmaps to be displayed; hmenuBitmapl, hmenuBitmap2, and hmenu­
Bitmap3 contain the bitmap handles of bitmaps to be displayed in the Bitmaps
menu; hBrush, hBitmap, and fwStretchMode contain the current background
brush, bitmap, and stretching mode; and hdc, hdcMemory, and hOldBitmap con­
tain handles used with the memory device context. The Bitmap structure specifies
the dimensions of the current bitmap. The ±Track variable indicates a selection in

240 Microsoft Windows Guide to Programming

progress. The Rect structure defines the current selection rectangle. The variables
fwPrevBitmap, fwPrevPattern, fwPrevMode, and fwPrevltem identify the pre­
viously chosen bitmap, pattern, and stretching mode. These identifiers are used to
place and remove check marks in the menus.

Add the following local variables to the Main WndProc function:

HMENU hMenu;
HBRUSH hOldBrush;
HBITMAP hOurBitmap;

11.6.5 Adding a WM_ CREATE Case
The Bitmap application must have a WM_ CREATE case and supporting variable
and function declarations to create or load the bitmaps and to set the menus. The
WM_CREATE case creates four 8-by-8-pixel monochrome bitmaps to be used as
patterns in a pattern brush for the window background. It also creates or loads
three 64-by-32-pixel bitmaps to be displayed in the window. So that the user can
choose a bitmap or pattern for viewing, the WM_ CREA TE case adds the bitmap
or pattern to the Bitmap or Pattern menu by using the AppendMenu function. Fi­
nally, the case sets the initial values of the brush, bitmap, and stretching modes
and creates the memory device context from which the bitmaps are copied.

The WM_ CREATE case creates the four patterns by using the CreateBitmap
function. It loads two bitmaps, Dog and Cat, and creates a third by using the Make­
ColorBitmap function defined within the application. After creating the patterns
and bitmaps, the WM_ CREATE case creates pop-up menus, appends the patterns
and bitmaps to the appropriate menus, and replaces the existing Bitmap and Pat­
tern menus with the new pop-up menus. Next, it sets the hBrush, hBitmap, and
fwStretchMode variables to the initial values for the background brush, bitmap,
and stretching modes. Finally, the case creates the memory device context from
which the bitmaps will be copied to the screen. To create this case, add the follow­
ing statements to your window procedure:

case WM_CREATE:

hbmpWhite = CreateBitmap(8, 8, 1, 1, (LPSTR) White);
hbmpBlack = CreateBitmap(8, 8, 1, 1, (LPSTR) Black);
hbmpZigZag = CreateBitmap(8, 8, 1, l, (LPSTR) Zigzag);
hbmpCrossHatch = CreateBitmap(8, 8, 1, 1, (LPSTR) CrossHatch);

hbmpDog = LoadBitmap(hinst, "dog");
hbmpCat = LoadBitmap(hinst, "cat");
if ((hbmpClrPattern = MakeColorBitmap(hwnd)) NULL)

return -1;

hmenuBitmapl LoadBitmap(hinst, "dog");
hmenuBitmap2 = LoadBitmap(hinst, "cat");

Chapter 11 Bitmaps 241

if ((hmenuBitmap3 = MakeColorBitmap(hwnd)) NULL)
return -1;

hmenu = CreateMenu();
AppendMenu(hmenu, MF_STRING MF_CHECKED, IDM_PATTERNl,

"&White");
AppendMenu(hmenu, MF_STRING MF_CHECKED, IDM_PATTERN2,

"&Black");
AppendMenu(hmenu, MF_BITMAP, IDM_PATTERN3,

(LPSTR) hbmpZigZag);
AppendMenu(hmenu, MF_BITMAP, IDM_PATTERN4,

(LPSTR) hbmpCrossHatch);

ModifyMenu(GetMenu(hwnd), 1, MF_PDPUP I MF_BYPOSITION,
(UINT) hmenu, "&Pattern");

hmenu = CreateMenu();

/* Use bitmaps for menu items. */

AppendMenu(hmenu, MF_BITMAP, IDM_BITMAPl,
(LPSTR) hmenuBitmapll;

AppendMenu(hmenu, MF_BITMAP, IDM_BITMAP2,
(LPSTR) hmenuBitmap2l;

AppendMenu(hmenu, MF_BITMAP, IDM_BITMAP3,
(LPSTR) hmenuBitmap3);

ModifyMenu(GetMenu(hwnd), 0, MF_BYPOSITION I MF_POPUP,
(UINT) hmenu, "&Bitmap");

hBrush = CreatePatternBrush(hbmpWhite);
fwStretchMode = IDM_BLACKONWHITE;

/* Select the first bitmap */

hdc = GetDC(hwnd);
hdcMemory = CreateCompatibleDC(hdc);
ReleaseDC(hwnd, hdcl;
hOldBitmap = SelectObject(hdcMemory, hbmpDog);
GetObject(hbmpDog, 16, (LPSTR) &Bitmap);

break;

The CreateBitmap and LoadBitmap functions work as described in earlier sec­
tions in this chapter. The MakeColorBitmap function is created for this applica­
tion. It creates and draws a color bitmap, using the same method described in
Section 11.2.2, "Creating and Filling a Blank Bitmap." The statements of this func­
tion are specified later in this section. Note that each bitmap is loaded or created
twice. This is required, since no single bitmap handle may be selected into two
device contexts at the same time. To display a bitmap in a menu requires a selec­
tion, as does displaying the bitmap in the client area.

242 Microsoft Windows Guide to Programming

The CreateMenu function creates an empty menu and returns a handle to the
menu. The ChangeMenu functions that specify the pattern handles add the pat­
terns as menu items to the new menu. The MF _BITMAP option specifies that a
bitmap will be added. The CheckMenultem function places a check mark next to
the current menu item, and the last ChangeMenu function replaces the existing
Pattern menu. The same steps are then repeated for the Bitmap menu.

The CreateCompatibleDC function creates a memory device context that is com­
patible with the display. The SelectObject function selects the current bitmap into
the memory device context so that it is ready to be copied to the display. The Get­
Object function copies the dimensions of the bitmap into the Bitmap structure.
The structure can then be used in subsequent BitBlt and StretchBlt functions to
specify the width and height of the bitmap.

The following MakeColorBitmap function creates a color bitmap by creating a bit­
map that is compatible with the display; then it paints a plaid color pattern by
using red, green, and blue brushes and the PatBlt function. To use this function,
add the following definition to the end of your source file:

HBITMAP MakeColorBitmap(HWNO hwnd)
{

HOC hdc;
HOC hdcMemory;
HBITMAP hBitmap;
HBITMAP hOldBitmap;
HBRUSH hRedBrush;
HBRUSH hGreenBrush;
HBRUSH hBlueBrush;
HBRUSH hOldBrush;

hdc GetOC(hwnd);
if ((hdcMemory = CreateCompatibleOC(hdc)) == NULL)

return NULL;
if ((hBitmap = CreateCompatibleBitmap(hdc, 64, 32)) NULL)

return NULL;
hOldBitmap = SelectObject(hdcMemory, hBitmap);
hRedBrush = CreateSolidBrush(RGB(255, 0, 0));
hGreenBrush = CreateSolidBrush(RGB(0, 255, 0));
hBlueBrush = CreateSolidBrush(RGB(0, 0, 255));

PatBlt(hdcMemory, 0, 0, 64, 32, BLACKNESS);
hOldBrush = SelectObject(hdcMemory, hRedBrush);
PatBlt(hdcMemory, 0, 0, 24, 11, PATOROEST);
PatBlt(hdcMemory, 40, 10, 24, 12, PATOROEST);
PatBlt(hdcMemory, 20, 21, 24, 11, PATOROEST);
SelectObject(hdcMemory, hGreenBrush);
PatBlt(hdcMemory, 20, 0, 24, 11, PATOROEST);
PatBlt(hdcMemory, 0, 10, 24, 12, PATOROEST);
PatBlt(hdcMemory, 40, 21, 24, 11, PATOROEST);

SelectObject(hdcMemory, hBlueBrush);
PatBlt(hdcMemory, 40, 0, 24, 11, PATORDEST);
PatBlt(hdcMemory, 20, 10, 24, 12, PATORDEST);
PatBlt(hdcMemory, 0, 21, 24, 11, PATORDEST);

Chapter 11 Bitmaps 243

BitBlt(hdc, 0, 0, 64, 32, hdcMemory, 0, 0, SRCCOPY)

SelectObject(hdcMemory, hOldBrush);
DeleteObject(hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);
SelectObject(hdcMemory, hOldBitmap);
ReleaseDCChwnd, hdc);
DeleteDCChdcMemory);
return hBitmap;

This function carries out the same steps described at the end of Section 11.2.3,
"Creating a Bitmap with Hard-Coded Bits."

11.6.6 Modifying the WM_ DESTROY Case
Before your application terminates, it must delete any bitmaps, patterns, brushes,
and memory device contexts it has created. You delete bitmaps, patterns, and
brushes by using the DeleteObject function. You delete the memory device con­
text by using the DeleteDC function. Modify the WM_DESTROY case so that it
looks like this:

case WM_DESTROY:
SelectObject(hdcMemory, hOldBitmap);
DeleteDC(hdcMemory);
DeleteObject(hBrush);
DeleteObject(hbmpWhite);
DeleteObject(hbmpBlack);
DeleteObject(hbmpZigZag);
DeleteObject(hbmpCrossHatch);
DeleteObject(hbmpDog);
DeleteObject(hbmpCat);
DeleteObject(hbmpClrPattern);
DeleteObject(hmenuBitmapl);
Delete0bject(hmenuBitmap2);
DeleteObject(hmenuBitmap3);

PostQuitMessage(0);
break;

244 Microsoft Windows Guide to Programming

11.6.7 Adding WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_ LBUTTONDOWN Cases

So that the user can select a rectangle in which to copy the current bitmap,
you must add WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_LRUTTONDOWN cases to your application's window procedure.
These cases use the selection functions (described in Chapter 20, "Dynamic-Link
Libraries") to create a selection rectangle and supply feedback to the user. The
WM_LBUTTONUP case then uses the StretchBlt function to fill the rectangle.
To create these cases, add the following statements to your window procedure:

case WM_LBUTTONOOWN:

fTrack = TRUE;
SetRectEmpty(&Rect);
StartSelection(hwnd, MAKEPOINT(lParam), &Rect,

(wParam & MK_SHIFT) ? (SL_EXTEND I fwShape) fwShape);
break;

case WM_MOUSEMOVE:

if (fTrack)
UpdateSelection(hwnd, MAKEPOINT(lParam), &Rect,

fwShape);
break;

case WM_LBUTTONUP:

fTrack = FALSE;
EndSelection(MAKEPOINTClParam), &Rect);
ClearSelection(hwnd, &Rect, fwShape);

hdc = GetDC(hwnd);
SetStretchBltMode(hdc, fwStretchMode);
StretchBlt(hdc, Rect.left, Rect.top,

Rect.right - Rect.left, Rect.bottom - Rect.top,
hdcMemory, 0, 0,
Bitmap.bmWidth, Bitmap.bmHeight,
SRCCOPY);

ReleaseDC(hwnd, hdc);
break;

To use these functions, you also must include the SELECT.H file (defined in
Chapter 20, "Dynamic-Link Libraries"), by adding the following statement to the
beginning of your source file:

#include "select.h"

Chapter 11 Bitmaps 245

11.6.8 Adding a WM_RBUTTONUP Case
You will need to use the BitBlt function to display the current bitmap. To do this,
include the function in a WM_RBUTTONUP case in your window procedure, as
follows:

case WM_RBUTTONUP:

hdc = GetDC(hwnd);
BitBlt(hdc, LOWORD(lParam), HIWORD(lParam),

Bitmap.bmWidth, Bitmap.bmHeight,
hdcMemory, 0, 0, SRCCOPY);

ReleaseDC(hwnd, hdc);
break;

11.6.9 Adding a WM_ERASEBKGND Case
To ensure that the selected background brush is used, you must create a
WM_ERASEBKGND case, by adding the following statements to your window
procedure:

case WM_ERASEBKGND:

UnrealizeObject(hBrushl;
hOldBrush = SelectObject((HDC) wParam, (HGDIOBJ) hBrushl;
GetClientRect(hwnd, &Rectl;
PatBlt((HDCl wParam, Rect.left, Rect.top,

Rect.right - Rect.left, Rect.bottom - Rect.top, PATCOPYl;
SelectObject((HDCl wParam, (HGDIOBJ) hOldBrush);
return TRUE;

The hOldBrush variable is declared as a local variable. The UnrealizeObject func­
tion sets the pattern alignment if the window has moved. The SelectObject func­
tion sets the background brush, and the GetClientRect function determines which
part of the client area must be erased. The PatBit function copies the pattern to the
update rectangle. The final SelectObject function restores the previous brush.

11.6.10 Modifying the WM_ COMMAND Case
To support the Bitmap, Pattern, and Mode menus, you must change the
WM_ COMMAND case. In your window procedure, replace the current
WM_ COMMAND case with the following statements:

case WM_COMMAND:
switch (wParam) {

case IDM_ABOUT:
lpProcAbout =

MakeProcinstance((FARPROCl About, hinst);

246 Microsoft Windows Guide to Programming

DialogBox(hinst,
"AboutBox",
hwnd,
(DLGPROC) lpProcAbout);

FreeProcinstance(lpProcAbout);
break;

case IDM_BITMAPl:

fwPrevitem = fwPrevBitmap;
fwPrevBitmap = wParam;
GetObject(hbmpDog, 16, (LPSTR) &Bitmap);
SelectObject(hdcMemory, hbmpDog);
break;

case IDM_BITMAP2:

fwPrevitem = fwPrevBitmap;
fwPrevBitmap = wParam;
GetObject(hbmpCat, 16, (LPSTR) &Bitmap);
SelectObject(hdcMemory, hbmpCat);
break;

case IDM_BITMAP3:

fwPrevitem = fwPrevBitmap;
fwPrevBitmap = wParam;
GetObject(hbmpClrPattern, 16, (LPSTR) &Bitmap);
hOurBitmap = SelectObject(hdcMemory, hbmpClrPattern);
break;

case IDM_PATTERNl:

fwPrevitem = fwPrevPattern;
fwPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrush(hbmpWhite);
InvalidateRect(hwnd, (LPRECT) NULL, TRUE);
UpdateWindow(hwnd);
break;

case IDM_PATTERN2:

fwPrevitem = fwPrevPattern;
fwPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrush(hbmpBlack);
InvalidateRect(hwnd, (LPRECT) NULL, TRUE);
UpdateWindow(hwnd);
break;

case IDM_PATTERN3:

fwPrevitem = fwPrevPattern;
fwPrevPattern = wParam;
DeleteObject(hBrush);

Chapter 11 Bitmaps 247

hBrush = CreatePatternBrush(hbmpZigZag);
InvalidateRect(hwnd, (LPRECT) NULL, TRUE);
UpdateWindow(hwnd);
break;

case IDM_PATTERN4:

fwPrevitem = fwPrevPattern;
fwPrevPattern = wParam;
DeleteObject(hBrush);
hBrush = CreatePatternBrush(hbmpCrossHatch);
InvalidateRect(hwnd, (LPRECT) NULL, TRUE);
UpdateWindow(hwnd);
break;

case IDM_BLACKONWHITE:

fwPrevitem = fwPrevMode;
fwPrevMode = wParam;
fwStretchMode = BLACKONWHITE;
break;

case IDM_WHITEONBLACK:

fwPrevitem = fwPrevMode;
fwPrevMode = wParam;
fwStretchMode = WHITEONBLACK;
break;

case IDM_COLORONCOLOR:

fwPrevltem = fwPrevMode;
fwPrevMode = wParam;
fwStretchMode = COLORONCOLOR;
break;

CheckMenultem(GetMenu(hwnd), fwPrevitem, MF_UNCHECKED);
CheckMenultem(GetMenu(hwnd), wParam, MF_CHECKED);
break;

Note that this new WM_ COMMAND case handles the IDM_ABOUT case by
using a switch statement instead of an if statement.

248 Microsoft Windows Guide to Programming

11.6.11 Modifying the Makefile
The resource file BITMAP.RES is dependent on the bitmap files DOG.BMP and
CAT.BMP. To ensure that Microsoft Windows Resource Compiler (RC) updates
BITMAP.RES whenever DOG.BMP or CAT.BMP changes, add the following to
the makefile:

bitmap.res: bitmap.re bitmap.h dog.bmp cat.bmp
re Ir bitmap.re

You must also modify the link command line in the makefile to include the
SELECT.LIB library file. This file contains the import declarations for the selec­
tion routines that are used with the WM_LBUTTONUP, WM_MOUSEMOVE,
and WM_LBUTTONDOWN cases. For more information about creating the
library, see Chapter 20, "Dynamic-Link Libraries."

To include the SELECT.LIB library file, modify the link command line so that it
looks like this:

link /nod bitmap, , , slibcew libw select.lib, bitmap.def

11.6.12 Compiling and Linking
After making the necessary changes, compile and link the Bitmap application.
Start Windows and then the Bitmap application.

To display the Dog or Cat bitmaps, press the left mouse button, drag the mouse to
form a rectangle, and release the button. Use the menus to change the background
and the stretching mode. Note the effect of the stretching mode on the Dog and
Cat bitmaps.

11. 7 Related Topics
For more information about functions used for selection, see Chapter 6, "Cursors,"
and Chapter 20, "Dynamic-Link Libraries."

For more information about using bitmaps in menus, see Chapter 7, "Menus."

For more information about functions used with bitmaps, see the Microsoft
Windows Programmer's Reference, Volume 2.

For more information about Image Editor, see Microsoft Windows Programming
Tools.

Printing

Chapter 12

12.1 Printing with Windows .. 251
12.1.1 Functions and Printer Escapes ... 252

12.2 Retrieving Information About the Current Printer.................................. 252
12.3 Printing a Line of Text... 254
12.4 Printing a Bitmap... 256
12.5 Processing Errors During Printing... 257
12.6 Canceling a Print Operation... 259

12.6.1 Defining a Dialog Box That Cancels a Print Operation 260
12.6.2 Defining a Dialog Box Procedure for the

Abort Dialog Box .. 260
12.6.3 Defining a Function That Cancels a Print Operation.............. 261
12.6.4 Performing a Cancelable Print Operation 263
12.6.5 Canceling a Print Operation with the AbortDoc Function...... 263

12.7 Using Banding to Print Images .. 263
12.8 Sample Application: PrntFile... 266

12.8.1 Adding an AbortDlg Dialog Box .. 266
12.8.2
12.8.3
12.8.4

12.8.5
12.8.6

12.8.7

Adding Variables for Printing 267
Adding an IDM_PRINT Case... 267
Creating the AbortDlg Dialog Box Procedure and
AbortProc Function 270
Adding a GetPrinterDC Function.. 271
Exporting the AbortDlg Dialog Box Procedure and
AbortProc Function 272
Compiling and Linking .. 273

12.9 Related Topics.. 273

Chapter 12 Printing 251

Most applications provide a way for users to get printed copies of their program
data. With most operating systems, your application must deal with the varied
capabilities and requirements of many different printers. With the Microsoft
Windows operating system, your application need not provide any printer-specific
code; it can simply print on the current printer. Windows, and the Windows printer
drivers, translate your application's print request to information any printer can
use.

This chapter covers the following topics:

• Printing with Windows

• Getting information about the printer

• Printing a line of text

• Printing a bitmap

• Processing printing errors

• Canceling print operations

• Using banding to print graphics images

This chapter also explains how to create a sample Windows 3.1 application,
PrntFile, that illustrates many of the concepts explained in the chapter.

12 .1 Printing with Windows
With Windows, your application does not print by interacting directly with the
printer. Instead, it prints by sending output to a printer device context. This means
that, when writing your application, you need not worry about each printer's
specific capabilities or requirements.

Printing in Windows is handled by the graphics device interface (GDI). In general,
the procedure for printing information is similar to that for displaying information;
you retrieve a handle to a device context, then send output to that device context.
Typically, an application follows these steps in order to print to the current printer:

1. The application first retrieves information about the current printer, such as its
model name, device driver, and printer port, from the WIN.IN! initialization
file. This information is necessary for the application to create a device context
for the current printer.

2. When your application sends output to a printer device context, Windows acti­
vates the print spooler to manage the print request.

3. Your application uses six printer functions to control the print job. If necessary,
your application can use printer escapes to communicate with the printer's
device driver.

252 Microsoft Windows Guide to Programming

12 .1.1 Functions and Printer Escapes
Six functions provide most of the functionality required for an application that im­
plements printing for Windows version 3 .1:

Function

AbortDoc
EndDoc

EndPage

SetAbortProc

StartDoc
StartPage

Description

Terminates a print job. Supersedes the ABORIDOC printer escape.

Ends a print job. Supersedes the END DOC printer escape.

Ends a page. Supersedes the NEWFRAME printer escape.

Sets the abort function for a print job. Supersedes the
SETABORTPROC printer escape.

Starts a print job. Supersedes the STARTDOC printer escape.

Prepares the printer driver to receive data. Supersedes the
NEWFRAME and BAND INFO printer escapes.

The functions in the preceding list are new for Windows 3.1. Another function,
ResetDC, is also new for Windows 3.1. ResetDC updates a device context, allow­
ing an application to change the paper orientation or paper bin within a single print
job. This ability was not supported by a printer escape in previous versions of
Windows.

The PrintDig function displays a Print dialog box or a Print Setup dialog box.
These dialog boxes are two of the common dialog boxes that are new for
Windows 3 .1. The Print dialog box makes it possible for the user to specify the
properties of a particular print job. The Print Setup dialog box makes it possible
for the user to select additional job properties and configure the printer.

With previous versions of Windows, applications used printer escapes to com­
municate with the device driver associated with the printer. Most applications no
longer need to use printer escapes. Support for escapes is still provided, however,
for backward compatibility with previous versions of Windows and because in
some cases (for example, complex graphics data on PostScript printers) printer
escapes offer functionality that the functions do not. Applications should use the
new printer functions whenever possible, to maximize their compatibility with fu­
ture Windows versions.

For information about printer escapes, see the Microsoft Windows Programmer's
Reference, Volume 3.

12 .2 Retrieving Information About the Current Printer
To create a printer device context for your application, you need information about
the printer, such as its type and the computer port to which it is connected.
Windows Control Panel adds information about the current printer to the device=

Chapter 12 Printing 253

setting in the [windows] section of the WIN.IN! file. Any application can retrieve
this information by using the GetProfileString function. You can then use the in­
formation with the CreateDC function to create a printer device context for a par­
ticular printer on a particular computer port.

Printer information from the WIN.IN! file consists of three settings, separated by
commas:

• The name of the current printer device driver (for example, EPSON9)

• The name of the current printer model (for example, Epson FX-80)

• The current printer port (for example, LPTl :)

The following example retrieves printer information for the currently selected de­
fault printer and divides the fields into separate strings:

char pPrintinfo[80J;
LPSTR lpTemp;
LPSTR lpPrintDevice;
LPSTR lpPrintDriver;
LPSTR lpPrintPort;

GetProfileString("windows",
"device",

(LPSTR) pPrintinfo, 80);
lpTemp = lpPrintDevice = (LPSTR) pPrintinfo;
lpPrintDriver = lpPrintPort = (LPSTR) NULL;

while (*lpTemp) {

}

if (*lpTemp == ',') {
*lpTemp++ = 0;

}

else

while (*lpTemp ==' ')
lpTemp++;

if (!lpPrintDriver)
lpPrintDriver lpTemp;

else {

}

lpPrintPort = lpTemp;
break;

lpTemp AnsiNext(lpTemp);

In this example, the GetProfileString function retrieves information about the cur­
rently selected default printer from the device= field in the [windows] section of
the WIN.INI file. The function then copies the line to the pPrintlnfo array.

254 Microsoft Windows Guide to Programming

A while statement divides the line into three separate fields: the printer driver
name, the name of the printer model, and the printer port.

Because the fields are separated by commas, an if statement checks for a comma
and, if necessary, replaces the comma with a zero in order to end the field with a
terminating null character.

Another while statement skips any leading spaces in the next field. Each pointer­
lpPrintDrvName, lpPrintModel, and lpPrintPort-receives the address of the
beginning of its respective field.

These pointers are then used in a call to the CreateDC function to create a printer
device context for the current printer.

12 .3 Printing a Line of Text
Printing a single line of text requires the following steps:

1. Create the device context for the printer.

2. Start the print request (also called a print job).

3. Start a page.

4. Print the line.

5. End the page.

6. End the print request.

7. Delete the device context.

The following example prints a single line of text on the currently selected default
printer:

LPSTR lpPrintDevice;
LPSTR lpPrintDriver;
LPSTR lpPrintPort;

HDC
DOC INFO

hdcPrint;
DoCinfo; /* used in StartDoc function

hdcPrint CreateDC(lpPrintDriver,
lpPrintDevice,
lpPrintPort,
(LPSTR) NULL);

Chapter 12 Printing 255

if (hdcPrint != NULL) {

}

Docinfo.cbSize = sizeof(DOCINFO);
Docinfo.lpszDocName = "Test";
Docinfo.lpszOutput = (LPSTR) NULL;
StartDoc(hdcPrint, &Docinfo);
StartPage(hdcPrint);
TextOut(hdcPrint, 10, 10, "A single line of text.", 22);
EndPage(hdcPrint);
EndDoc(hdcPrint);
DeleteDCChdcPrint);

In this example, the CreateDC function creates the device context for the printer
and returns a handle of the printer device context. This example stores the handle
in the variable hdcPrint. When calling CreateDC, an application must supply the
first three parameters; the fourth parameter can be set to NULL. In this example, it
is assumed that the GetProfileString function has been used to supply the parame­
ters to the CreateDC function. The last parameter to CreateDC specifies how to
initialize the printer. NULL specifies the default print settings. For more informa­
tion about specifying print settings that differ from the default settings, see Chap­
ter 17, "Print Settings."

After the device context has been created, the StartDoc function starts the print re­
quest by sending Windows the handle of the device context and a far pointer to a
DOCINFO structure. The DOCINFO structure has three members, which de­
scribe the size of the structure, the name of the document being sent to the printer
(that is, the name that is displayed by Print Manager), and the name of the output
file (if the application sends output to a file). If the name of the output file is
NULL, the output is sent to the device specified by the device context. (In this ex­
ample, the output goes to the port specified by the lpPrintPort parameter in the call
to the CreateDC function).

The StartPage function instructs the printer driver to begin a new page frame. The
TextOut function copies the line of text to the printer. The line will be placed
starting at the coordinates (10,10) on the printer paper. The default units are
printer pixels. The default printer coordinates are relative to the upper-left comer
of the printable area. (An application can change either of these by changing the
mapping mode associated with the device context.)

Note Do not expect the line of text to be printed immediately. The spooler collects
all output for a print request before sending it to the printer, so any printing does
not begin until after the call to the EndDoc function.

The EndPage function completes the page. The EndDoc function signals the
end of the print request. Finally, the DeleteDC function deletes the printer device
context.

256 Microsoft Windows Guide to Programming

12 .4 Printing a Bitmap
Printing a bitmap is similar to printing a line of text. To print a bitmap, follow
these steps:

1. Create a memory device context that is compatible with the bitmap.

2. Load the bitmap, and select it into the memory device context.

3. Start the print request.

4. Indicate the beginning of a new page frame.

5. Use the BitBlt function to copy the bitmap from the memory device context to
the printer.

6. Indicate the ending of the current page frame.

7. End the print request.

8. Remove the bitmap from the memory device context and delete the device con­
text.

The following example prints a bitmap named Dog that has been added to the
resource-definition file.

char pPrintinfo[80J;
LPSTR lpTemp;
LPSTR lpPrintDevice;
LPSTR lpPrintDriver;
LPSTR lpPrintPort;

HDC
HBITMAP
BITMAP
DDCINFO

hdcPrint, hdcMemory;
hBitmap, hOldBitmap;
Bitmap;
Docinfo; /* used in StartDoc function

/*
* Use GetProfileString to retrieve strings declared above and
* parse them as shown in the earlier example.
*/

hdcPrint = CreateDC(lpPrintDriver,
lpPrintDevice,
lpPrintPort,
(LPSTRl NULL);

if (hdcPrint != NULL) {
hdcMemory = CreateCompatibleDC(hdcPrintl;
hBitmap = LoadBitmap(hAppinstance, "Dog");
GetObject(hBitmap, sizeof(BITMAPl, &Bitmap);
hOldBitmap = SelectObject(hdcMemory, hBitmapl;

Docinfo.cbSize = sizeof(DOCINFOl;

}

Docinfo.lpszDocName = "Test";
Docinfo.lpszOutput = (LPSTR) NULL;
StartDoc(hdcPrint, &Doclnfo);
StartPage(hdcPrint);
BitBlt(hdcPrint, 10, 30,

Bitmap.bmWidth,
Bitmap.bmHeight,
hdcMemory, 0, 0, SRCCOPY);

EndPage(hdcPrint);
EndDoc(hdcPrint);
DeleteDC(hdcPrint);
SelectObject(hdcMemory, hOldBitmap);
DeleteDC(hdcMemory);
DeleteObject(hBitmap);

Chapter 12 Printing 257

In this example, the application retrieves the printer device context. The
CreateCompatibleDC function then creates a memory device context that is
compatible with the printer's device context.

The LoadBitmap function loads the bitmap Dog from the application's resources,
and the GetObject function retrieves information about the bitmap, such as its
height and width. These values are used later in the BitBlt function.

The SelectObject function selects the bitmap into the memory device context.

The statements for creating the printer device context and starting the print request
are identical to those used in the example that printed a line of text.

To send the bitmap image to the printer, the application uses the BitBlt function.
BitBit copies the bitmap from the memory device context to the printer, placing
the bitmap at the coordinates (10,30). (The BitBlt function takes the place of the
TextOut function, used in the previous example to print a line of text.)

The statements that end the current page frame and end the document are identical
to those used in the previous example.

After the print request is complete, the SelectObject and DeleteDC functions re­
move the bitmap from selection and delete the memory device context. Since the
bitmap is no longer needed, the DeleteObject function removes it from memory.

12.5 Processing Errors During Printing
Although GDI and the spooler attempt to report all printing errors to the user, your
application must be prepared to report and handle out-of-disk-space and out-of­
memory conditions. When there is an error in processing the EndPage function,
it returns a value less than zero. In this case, the return value includes an
SP _NOTREPORTED bit. If the bit is zero, GDI has already notified the user.

258 Microsoft Windows Guide to Programming

If the bit is set, the application must notify the user. The bit is typically set for
general-failure, out-of-disk-space, and out-of-memory errors.

The following example processes unreported errors during printing:

int status;

status= EndPage(hdcPrint);

if (status < 0) { /* Any unreported errors? */
if (status & SP_NOTREPORTED) { /*Yes */

switch (status) {

}

case SP_OUTOFDISK:

/* Inform user; perform any required processing. */

break;

case SP_OUTOFMEMORY:

/* Inform user; perform any required processing. */

break;

default:

/* Inform user; perform any required processing. */

break;
}

else /* Reported, but may need further action */
switch (status I SP_NOTREPORTED) {

case SP_OUTOFDISK:

/* Perform any required processing. */

break;

case SP_OUTOFMEMORY:

/* Perform any required processing. */

break;
}

Chapter 12 Printing 259

In this example, the first if statement determines whether the value that the End­
Page function returns, status, is less than zero and the SP _NOTREPORTED bit is
set. (When Windows sets the SP _NOTREPORTED bit, it indicates that this error
has not been reported to the user.) If these two conditions are met, then the applica­
tion must process the unreported error.

The application then uses a switch statement to provide special responses to the
SP _OUTOFDISK and SP _OUTOFMEMORY errors. For all other unreported
errors, the application simply provides a general-failure alert.

If the status variable is less than zero but SP _NOTREPORTED is not set,
Windows has already reported the error to the user. However, the application can
still process these reported errors.

In most cases, the correct response to an unreported error is to display a message
box explaining the error and to terminate the print request. If the error has already
been reported, you can terminate the request and then restart it after additional disk
space or memory has been made available.

12. 6 Canceling a Print Operation
Your application should always give the user a chance to cancel a lengthy printing
operation. A common way to do this is to display a dialog box when the printing
operation begins. During printing, the user can click the dialog box's Cancel but­
ton to cancel the print operation.

To provide a dialog box from which the user can cancel a printing operation, fol­
low these steps:

1. In your application's resource-definition (.RC) file, define a mode less dialog
box from which the user can cancel a print operation.

2. In your application source code, provide a dialog box procedure that drives the
dialog box.

3. In your application source code, provide a print-canceling function that
processes messages for the dialog box.

4. Modify your application's printing procedure so that it displays the dialog box
and correctly processes messages.

5. Export the dialog box procedure and print-canceling function in the module­
definition (.DEF) file.

260 Microsoft Windows Guide to Programming

12.6.1 Defining a Dialog Box That Cancels a Print Operation
In your application's resource-definition file, provide a dialog box template for the
dialog box that the user can use to cancel the print operation. Add the following
statements:

AbortDlg DIALOG 20, 20, 90, 64
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "PrntFile"
BEGIN

DEFPUSHBUTTON "Cancel", IDCANCEL, 29, 44, 32, 14, WS_GROUP
CTEXT "Sending", -1, 0, 8, 90, 8
CTEXT "text", IDC_FILENAME, 0, 18, 90, 8
CTEXT "to print spooler.", -1, 0, 28, 90, 8

END

12.6.2 Defining a Dialog Box Procedure for the Abort Dialog Box
In your application source code, you must provide a dialog box procedure
for the Abort dialog box. The procedure should process the messages
WM_INITDIALOG and WM_ COMMAND. So that the user can choose the
Cancel button by using the keyboard, the procedure takes control of the input
focus when the dialog box is initialized. The dialog box procedure then ignores all
messages until a WM_ COMMAND message appears. Command input causes the
function to destroy the window and set the fAbort flag to TRUE. The following ex­
ample shows the required statements for the dialog box procedure:

int FAR PASCAL AbortDlg(hWnd, msg, wParam, lParam)
HWND hWnd;
UINT msg;
WPARAM wParam;
LP A RAM 1 Pa ram;
{

if (msg == WM_COMMAND) {

}

if (wParam == IDCANCEL) {

}

f* The user has canceled the print operation. */

fAbort = TRUE; /* global flag

EndDialog(hWnd, wParam);
return TRUE;

else if Cmsg == WM_INITDIALOG)

f* Set the input focus for user input. */

SetFocus (hWnd);
return TRUE;

return FALSE;

12.6.3 Defining a Function That Cancels a Print Operation

Chapter 12 Printing 261

In your application code, you must provide a print-canceling function to process
messages for the Abort dialog box. A print-canceling function retrieves messages
from the application queue and dispatches them if they are intended for the Abort
dialog box. The function continues to loop until it encounters the WM_DESTROY
message or until the print operation is complete.

Applications that make lengthy print requests must pass a print-canceling function
to GDI to handle special situations during printing operations. The most common
situation occurs when a printing operation fills the available disk space before the
spooler can copy the data to the printer. Since the spooler can continue to print
even though disk space is full, GDI calls the print-canceling function to determine
whether it is necessary for the application to cancel the print operation or whether
it can simply wait until disk space is free.

To specify the print-canceling function, first retrieve the procedure-instance
address for the function:

lpAbortProc = MakeProcinstance((FARPROC) AbortProc, hinst);

Then call the SetAbortProc function, specifying the Abort function's address:

SetAbortProc(hDC, (ABORTPROC) lpAbortProc);

GDI will then call the print-canceling function during spooling. The function must
have the following form:

int CALLBACK AbortProc(hdcPrint, Code)
HOC hdcPrint;
int Code;

• The hdcPrint parameter identifies the printer device context.

• The Code parameter specifies the nature of the call. It can take one of two
values:

262 Microsoft Windows Guide to Programming

Value

SP _OUTOFDISK

0

Meaning

Spooler has run out of disk space while spooling the data file.
The printing operation will continue if the application waits
for disk space to become free.

Spooler operation is continuing without error.

Once GDI has called the print-canceling function, the function can return 1RUE to
continue the spooler operation immediately, or FALSE to cancel the printing
operation. Most print-canceling functions call the PeekMessage function totem­
porarily yield control; they then return 1RUE to continue the print operation.
Yielding control typically gives the spooler enough time to free some disk space.

If the print-canceling function returns FALSE, the printing operation is canceled
and the SP _APP ABORT error value is returned by the application's next call to
the EndPage or EndDoc function.

Important If your application encounters a printing error or a canceled print opera­
tion, it must not attempt to terminate the operation by using the EndDoc or Abort­
Doc functions. GDI automatically terminates the operation before returning the
error value.

The following example shows the statements required for the print-canceling func­
tion:

int CALLBACK AbortProc(hdcPrinter, Code)
HOC hdcPrinter; /* for multiple printer display contexts */
int Code; /* for printing status */
{

MSG msg;

I* Process the messages intended for the Abort dialog box. *I

I*

while (PeekMessage((LPMSG) &msg,
NULL, NULL, NULL, PM_REMOVE))

if (!IsDialogMessage(hAbortDlgWnd,
(LPMSG) &msg)) {

TranslateMessage((LPMSG) &msg);
DispatchMessage((LPMSG) &msg);

}

* The fAbort argument is TRUE (return is FALSE)
* if the user has canceled the print operation.
*/

return (!fAbort);

Chapter 12 Printing 263

12.6.4 Performing a Cancelable Print Operation
Before beginning a print operation, your application should do the following to en­
sure that the user can cancel the operation:

1. Define a print-canceling function, as described in the preceding section.

2. Use the MakeProclnstance function to retrieve the procedure-instance address
for the print-canceling function.

When your application begins a print operation, it should do the following:

1. Use the SetAbortProc function to specify the print-canceling function the ap­
plication will use during the print operation. When calling SetAbortProc,
specify the procedure-instance address of the application's print-canceling func­
tion.

2. Use the CreateDialog, ShowWindow, and Update Window functions to create
and display the Abort dialog box.

3. Use the Enable Window function to disable your parent window.

4. Start the normal print operation, but check the return value from the EndPage
function (or the NEXTBAND escape) after each call. If the return value is less
than zero, the user has canceled the operation or an error has occurred.

5. Use the Destroy Window function to destroy the Abort dialog box, if neces­
sary. (Windows destroys the box automatically if the user cancels the print
operation.)

6. Use the Enable Window function to reenable the parent window.

12.6.5 Canceling a Print Operation with the AbortDoc Function
You can use the AbortDoc function to cancel a print operation, even if you do not
have a print-canceling function or an Abort dialog box. Applications can use
AbortDoc to cancel the operation at any time.

12. 7 Using Banding to Print Images
Banding is a technique used to implement the full functionality of the Windows
graphics device interface (GDI) in printer drivers that can print graphics only by
using bitmaps. An application that exploits the banding process can enhance its
printing performance.

Most dot-matrix printers and many laser printers can print only bitmaps and text.
When an application that uses such GDI graphic objects as polygons and lines
prints to a device that does not support these objects, the printer driver does not
send output directly to the printer. Rather, the printer driver generates a bitmap in

264 Microsoft Windows Guide to Programming

memory. When all graphics have been rendered into the bitmap, the bitmap itself
is printed.

For most printers, this bitmap can be very large. For example, a 300-dots-per-inch
(dpi) laser printer requires nearly a megabyte to render a single letter-size page. If
memory is limited, the image is broken into a sequence of smaller rectangles,
called bands, which cover the page. Each of these individual rectangles is rendered
and sent to the printer separately.

There are two ways that the graphics calls can be duplicated on each band. If the
application does not exploit the banding process, GDI will capture all graphics
calls for a page into a metafile. When the application calls the EndPage function
or the NEWFRAME (next page) escape, GDI plays the entire metafile into each
band. Alternatively, the application may request a band from the printer driver and
produce the output itself. This optimizes printing significantly, because in this case
GDI does not create, write, and reread a disk-based metafile.

Whether GDI or the application requests the band from the driver, the process is
very similar. Banding printer drivers implement the NEXTBAND escape. This
escape causes the printer driver to send the previous band to the printer (if any)
and to initialize itself to render the new band. It also returns a rectangle defining
the bounds of the band bitmap relative to the whole page. Output calls made to the
driver's device context after using the NEXTBAND escape go directly to the
printer driver.

GDI (or the banding application) calls the NEXTBAND escape to retrieve the
coordinates of the first band. Then it calls NEXTBAND again after each band is
rendered so that the printer driver can send the current band to the print manager
and retrieve the coordinates of the next band. When all bands have been printed,
NEXTBAND causes the printer driver to eject the page and return an empty rect­
angle to the application, indicating the end of a page.

Note An application that uses banding should determine the end of a page by wait­
ing for NEXTBAND to return an empty rectangle. A banding application should
not use the NEXTFRAME escape.

To use banding to print an image, follow these steps:

1. Use the CreateDC function to retrieve a device context for the printer.

2. Use the Escape function and the NEXTBAND escape to retrieve the coordi­
nates of a band:

Escape(hdcPrinter, NEXTBAND, 0, (LPSTR) NULL, &rcRect);

The function sets the rcRect structure to the coordinates of the current band.
The coordinates are in device units, and all subsequent GDI calls are clipped to
this rectangle.

Chapter 12 Printing 265

3. Determine whether the rcRect structure specifies an empty rectangle. (An
empty rectangle marks the end of a page.) If the rectangle is empty, terminate
the banding operation.

4. Use the DPtoLP function to translate the rcRect coordinates from device units
to logical units.

DPtoLP(hdcPrinter, (POINT FAR*) &rcRect, 2);

5. Use GDI output functions and other functions to draw within the band. To save
time, the application should carry out only those GDI functions that affect the
current band. If an application does not need to save time, GDI will clip all out­
put that does not appear in the band, so no special action is required.

6. Repeat steps 2 through 5.

Once the banding operation is complete, use the DeleteDC function to remove the
printer device context.

The following example shows how to print using banding:

DOCINFO Docinfo;

hdcPrint = CreateDC(lpPrintDriver, /* values from GetProfileString */
lpPrintDevice,
1 pPri ntport,
(LPSTR) NU LL);

if (hdcPrinter != NULL) {
Docinfo.cbSize = sizeof(DOCINFO);
Docinfo.lpszDocName = "Test";
Doc!nfo.lpszOutput = (LPSTR) NULL;
StartDoc(hdcPrinter, &Docinfo);

}

for (;;) {

}

Escape(hdcPrinter, NEXTBAND, 0, (LPSTR) NULL, &rcRect);
if (IsRectEmpty(&rcRect)

break;

DPtoLP(hdcPrinter, (POINT FAR*) &rcRect, 2);

/*
* Place output function here. To save time, use rcRect to
*filter output functions that do not fall in this band.
*I

EndDoc(hdcPrinter);
DeleteDC(hdcPrinter);

266 Microsoft Windows Guide to Programming

12.8 Sample Application: Prntfile
This section explains how to add printing capability to the EditFile application, de­
scribed in Chapter 10, "File Input and Output," by copying the current text from
the edit control and printing it by using the methods described in this chapter. To
add printing capability, modify the EditFile application as follows:

1. Add an AbortDlg dialog box template to the resource-definition file.

2. Add new variables for printing.

3. Add an IDM_PRINT case to the WM_ COMMAND case.

4. Create the AbortDlg dialog box procedure and the AbortProc function.

5. Add a GetPrinterDC function.

6. Export the AbortDlg dialog box procedure and AbortProc function.

7. Compile and link the application.

This example shows how to print the contents of the edit control, including the
statements required to support the print-canceling function and the dialog box pro­
cedure for the Abort dialog box.

12.8.1 Adding an AbortDlg Dialog Box
To support printing, most applications use a new dialog box, AbortDlg. With this
dialog box, the user can cancel a print operation by clicking the Cancel button. To
create this dialog box, add the following DIALOG statement to the resource­
definition file:

AbortDlg DIALOG 20, 20, 90, 64
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "PrntFile"
BEGIN

DefPushButton "Cancel", IDCANCEL, 29, 44, 32, 14, WS_GROUP
Ctext "Sending", -1, 0, 8, 90, 8
Ctext "text", IDC_FILENAME, 0, 18, 90, 8
Ctext "to print spooler.", -1, 0, 28, 90, 8

END

Chapter 12 Printing 267

12.8.2 Adding Variables for Printing
Your application must also declare new variables to support printing. Add the fol­
lowing declarations to the beginning of your source file:

HDC hdcPrinter;
int LineSpace;
int LinesPerPage;
int Currentline;
int LineLength;
WORD wLines;
WORD wlndex;
char szline[128J;
TEXTMETRIC TextMetric;
BOOL bAbort;
HWND hAbortDlgWnd;

/*
/*
/*

/* handle of printer device context
/* spacing between lines
/* lines per page
/* current line
/* line length
/* number of lines to print
/* index into lines to print

buffer to store lines before printing
information about character size
FALSE if user cancels printing

FARPROC lpAbortDlg, lpAbortProc;

*/
*/
*/
*/
*/
*/
*/
*/
*I
*/

The hdcPrint variable is the handle of the printer device context. It receives the re­
turn value from the CreateDC function. The variables LineSpace and LinesPer­
Page hold the amount of spacing between lines and the number of lines that can be
printed per page, respectively. The CurrentLine variable is a counter that keeps
track of the current line on the current page. Lines of text are printed one line at a
time. The dwLines variable contains the number of lines in the edit control. The
TextMetric structure receives information about the font to be used to print the
lines; this example uses only the members TextMetric.tmHeight and Text­
Metric.tmExtemalLeading. The PhysPageSize structure receives the physical
width and height of the printer paper. The height is used to determine how many
lines per page can be printed.

12.8.3 Adding an IDM_PRINT Case
For your application to carry out the printing operation, you must add an
IDM_PRINT case to the WM_ COMMAND case of the main window procedure.
To do this, add the following statements:

case IDM_PRINT:

hdcPrinter = GetPrinterDC();

if (!hdcPrinter) {

}

sprintf(str, "Cannot print %s", Filename);
MessageBox(hWnd, str, NULL, MB_OK I MB_ICONHAND);
break;

268 Microsoft Windows Guide to Programming

lpAbortDlg = MakeProcinstance((FARPROC) AbortDlg, hinst);
lpAbortProc = MakeProcinstance((FARPROC) AbortProc, hinst);

SetAbortProc(hdcPrinter, CABORTPROC) lpAbortProc);

Docinfo.cbSize = sizeof(DOCINFO);
Docinfo.lpszDocName = "PrntFile text";
Docinfo.lpszOutput = (LPSTR) NULL;

if (StartDoc(hdcPrinter, &Docinfo) < 0) {

MessageBox(hWnd, "Unable to start print
NULL, MB_OK I MB_ICONHAND);

FreeProcinstance(AbortDlg);
FreeProcinstance(AbortProc);
DeleteDC(hdcPrinter);
break;

}

StartPage(hdcPrinter);

job",

fAbort = FALSE; /* clears abort flag */
hAbortDlgWnd = CreateDialog(hinst, "AbortDlg", hWnd,

(DLGPROC) lpAbortDlg);

ShowWindow(hAbortDlgWnd, SW_NORMAL);
UpdateWindow(hAbortDlgWnd);
EnableWindow(hWnd, FALSE);
GetTextMetrics(hdcPrinter, &TextMetric);

LineSpace = TextMetric.tmHeight + TextMetric.tmExternalLeading;
LinesPerPage = GetDeviceCaps (hdcPrinter, VERTRES) I LineSpace;
dwLines = SendMessage(hEditWnd, EM_GETLINECOUNT, 0, 0L);
Currentline = 1;

for (dwlndex IOStatus 0; dwindex < dwLines; dwlndex++) {

}

pLine[0] 128; /* maximum buffer size */
pLine[l] 0;
LineLength = SendMessage(hEditWnd, EM_GETLINE,

(WORD) dwindex, (LONG) ((LPSTR) pLine));
TextOut(hdcPrinter, 0, CurrentLine*LineSpace, (LPSTR) pLine,

Li neLength);

if (++CurrentLine > LinesPerPage) {

EndPage(hdcPrinter);
CurrentLine = 1;
IOStatus = EndPage(hdcPrinter);
if (IOStatus < 0 11 fAbort)

break;
StartPage(hdcPrinter);

}

if (IOStatus >= 0 && !fAbort) {
EndPage(hdcPrinter);
EndDoc(hdcPrinter);

EnableWindow(hWnd, TRUE);
DestroyWindow(hAbortDlgWnd);
FreeProcinstance(AbortDlg);
FreeProcinstance(AbortProc);
DeleteDC(hdcPrinter);
break;

Chapter 12 Printing 269

The locally defined GetPrinterDC function checks the WIN.IN! file for the current
printer and creates a device context for that printer. If there is not a current printer
or the device context cannot be created, the function returns NULL and pro­
cessing ends with a warning. Otherwise, the MakeProclnstance function creates
procedure-instance addresses for the AbortDlg dialog box procedure and the
AbortProc function. The SetAbortProc function sets the abort function. The Start­
Doc function starts the printing job and sets the printing title (shown in the Print
Manager application). If StartDoc fails, the FreeProclnstance function frees the
AbortDlg and AbortProc procedure instances and the DeleteDC function deletes
the device context before processing ends.

The CreateDialog function creates the AbortDlg dialog box, and the Enable­
Window function disables the main window. This prevents users from attempting
to work in the main window while printing. Users can, however, continue to work
in some other application.

Because the edit control may contain more than one line, you should provide ade­
quate spacing between lines. This keeps one line from overwriting or touching
another. The GetTextMetrics function retrieves current font information, such as
height and external leading, which can be used to compute adequate line spacing.
The height is the maximum height of characters in the font. The external leading is
the recommended amount of space, in addition to the height, that should be used
to separate lines of text in this font. The line spacing, which is assigned to the
LineSpace variable, is the sum of the height and external leading members, Text­
Metric.trnHeight and TextMetric.trnExternalLeading.

Because the edit control might contain more lines than can fit on a single page,
you should determine how many lines can fit on a page and advance to the next
page whenever this line limit is reached. An application can use the GetText­
Metrics and GetDeviceCaps functions (as shown in the preceding example) to de­
termine how many lines fit on a page.

The TextOut function can print only one line at a time, so a for statement
provides the loop required to print more than one line of text. The
EM_GETLINECOUNT message, sent to the edit control by using the Send­
Message function, retrieves the number of lines to be printed and determines
the number of times to loop. On each execution of the loop, the EM_GETLINE

270 Microsoft Windows Guide to Programming

message copies the contents of a line from the edit control to the line buffer pLine.
The loop counter dwlndex is used with the EM_GETLINE message to specify
which line to retrieve from the edit control. The EM_GETLINE message also
causes SendMessage to return the length of the line. The length is assigned to the
LineLength variable.

After a line has been copied from the edit controi, it is printed by using ihe Text­
Out function. The product of the variables CurrentLine and LineSpacing deter­
mines they-coordinate of the line on the page. The x-coordinate is set to zero.
After a line is printed, the value of the CurrentLine variable is increased by one. If
CurrentLine is greater than LinesPerPage, it is time to advance to the next page.
Because any text printed beyond the physical bottom of a page is clipped and be­
cause there is no automatic page advance, you should keep track of the number of
lines printed on a page and call the EndPage function to advance to the next page
when necessary. If there are any errors during printing, the EndPage function re­
turns an error value and processing ends.

After all lines in the edit control have been printed, the EndPage function ad­
vances the final page and the EndDoc function terminates the print request. The
DeleteDC function deletes the printer device context, since it is no longer needed,
and the DestroyWindow function destroys the AbortDlg dialog box.

12.8.4 Creating the AbortDlg Dialog Box Procedure and AbortProc Function
The AbortDlg dialog box procedure provides support for the AbortDlg dialog box
that appears while the printing is in progress. The AbortProc function processes
messages intended for the AbortDlg dialog box and cancels the printing operation
if the user has requested it.

The AbortDlg dialog box procedure sets the input focus and sets the name of the
file being printed. It also sets the fAbort variable to TRUE if the user clicks the
Cancel button. To create this dialog box procedure, add the following statements
to the C-language source file:

int FAR PASCAL AbortDlg(hDlg, msg, wParam, lParam)
HWND hDlg;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

switch (msg) {
case WM_COMMAND:

return (fAbort =TRUE);

Chapter 12 Printing 271

case WM_INITOIALOG:

SetFocus(GetOlgitem(hOlg, IOCANCEL));
SetOlgitemText(hOlg, IOC_FILENAME, Filename);
return (TRUE);

return (FALSE);

The AbortProc function checks for messages in the application queue and dis­
patches them to the AbortDlg dialog box procedure or to other windows in the ap­
plication. If one of these messages causes the AbortDlg dialog box procedure to
set the fAbort variable to TRUE, the AbortProc function returns this value, direct­
ing Windows to stop the printing operation. To create this function, add the follow­
ing statements to the C-language source file:

int FAR PASCAL AbortProc(hdcPrinter, Code)
HOC hdcPrinter; /* for multiple printer display contexts */
int Code; /* printing status */
{

}

MSG msg;

while (!fAbort && PeekMessage(&msg, NULL, NULL, NULL, TRUE))
if (!IsOialogMessage(hAbortOlgWnd, &msg)) {

TranslateMessageC&msg);
OispatchMessageC&msg);

}

return (!fAbort);

12.8.5 Adding a GetPrinterDC Function
To create a printer device context for your application, you must add a function to
your C-language source file. The GetPrinterDC function uses the PrintDlg func­
tion to use the Print common dialog box and then creates a printer device context
by using the driver name, device name, and printer port given in the PRINTDLG
structure. To create this function, add the following statements to the C-language
source file:

HOC GetPrinterOC()
{

HOC
LPOEVMOOE
LPOEVNAMES
LPSTR
LPSTR
LPSTR

hOC;
lpOevMode = NULL;
lpOevNames;
lpszOriverName;
lpszOeviceName;
lpszPortName;

272 Microsoft Windows Guide to Programming

}

if (!PrintDlg((LPPRINTDLG) &pd))
return (NULL);

if (pd.hDC) {
hDC = pd.hDC;

}

else {

}

if (!pd.hDevNames)
return <NULL);

lpDevNames = (LPDEVNAMES) GlobalLock(pd.hDevNames);
lpszDriverName =

(LPSTR) lpDevNames + lpDevNames->wDriverOffset;
lpszDeviceName =

(LPSTR) lpDevNames + lpDevNames->wDeviceOffset;
lpszPortName

(LPSTR) lpDevNames + lpDevNames->wDutputOffset;
GlobalUnlock(pd.hDevNames);

if (pd.hDevMode)
lpDevMode = (LPDEVMDDE) GlobalLock(pd.hDevMode);

hDC = CreateDC(lpszDriverName, lpszDeviceName,
lpszPortName, (LPSTR) lpDevMode);

if (pd.hDevMode && lpDevMode)
GlobalUnlock(pd.hDevMode);

if (pd.hDevNames)
GlobalFree(pd.hDevNames);

if (pd.hDevMode)
GlobalFree(pd.hDevMode);

return(hDC);

12.8.6 Exporting the AbortDlg Dialog Box Procedure and AbortProc Function
You must export the AbortDlg dialog box procedure and the AbortProc function.
Add the following lines to your module-definition file under the EXPORTS state­
ment:

AbortDlg @5
AbortProc @6

Called so user can cancel the print function
Processes messages intended for Abort dialog box

Chapter 12 Printing 273

12.8.7 Compiling and Linking
Compile and link the PrntFile application, and then start Windows and activate
PrntFile; you will see that the Print command has been added to the File menu.
You can print by opening a file or by typing text from the keyboard and then
choosing the Print command.

12. 9 Related Topics
For more information about device contexts, see Chapter 3, "Output to a Window."

For more information about controlling printer settings, see Chapter 17, "Print Set­
tings."

For more information about using fonts, see Chapter 18, "Fonts."

For more information about functions used with device contexts, see Microsoft
Windows Programmer's Reference, Volume 2.

Clipboard

Chapter 13

13.1 Using the Clipboard... 277
13.1.1 Copying Text to the Clipboard .. 279
13.1.2 Pasting Text from the Clipboard ... 281
13.1.3 Pasting Bitmaps from the Clipboard 283
13 .1.4 Windows Clipboard Application... 284

13.2 Using Special Clipboard Features.. 284
13 .2.1 Rendering Data on Request... 285
13.2.2 Rendering Formats Before Termination 285
13.2.3 Registering a Private Format... 285
13.2.4 Controlling Data Display in the Clipboard.............................. 286

13.2.4.1 Using a Display Format for Private Data 286
13.2.4.2 Taking Full Control of the

Clipboard-Viewer Display.................................... 287
13.2.4.3 Using the Clipboard-Viewer Chain 288

13.3 Sample Application: ClipText ... 289
13.3.1 Adding New Variables .. 289
13.3.2 Modifying the Instance Initialization Code............................. 289
13.3.3 Adding a WM_INITMENU Case... 290
13.3.4 Modifying the WM_ COMMAND Case................................. 291
13.3.5 Adding a WM_PAINT Case ... 293
13.3.6 Adding an OutOfMemory Function .. 294
13.3.7 Compiling and Linking .. 294

13.4 Related Topics.. 295

Chapter 13 Clipboard 277

The clipboard is the main data-exchange feature of the Microsoft Windows operat­
ing system. It is a common area for storing data handles through which applica­
tions can exchange formatted data. The clipboard holds any number of different
data formats and corresponding data handles, all representing the same data, but in
as many different formats as an application is able to supply. For example, a pie
chart might be held in the clipboard as both a metafile picture and a bitmap. An ap­
plication pasting the pie chart would have to choose which representation matched
its requirements. In general, the format that provides the most information is the
most desirable, as long as the application understands that format.

This chapter covers the following topics:

• Copying text to the clipboard

• Pasting text from the clipboard

• Pasting a bitmap from the clipboard

• Using special clipboard features such as private data formats

This chapter also explains how to build a sample Windows 3.1 application,
ClipText, that illustrates many of the concepts explained in the chapter.

13 .1 Using the Clipboard
To copy data to the clipboard, you format the data by using either a predefined or
private format. For most formats, you allocate global memory and copy the data
into it. You then use the SetClipboardData function to copy the memory handle
to the clipboard.

In Windows applications, copying and pasting are carried out through Edit-menu
commands. To add Edit menu to an application, follow the steps described in
Chapter 7, "Menus."

Windows provides several predefined data formats for use in data interchange.
The following list describes the clipboard formats:

Value

CF_BITMAP

CF_DIB

CF_DIF

CF _DSPBITMAP

Meaning

The data is a bitmap.

The data is a memory object containing a BITMAP­
INFO structure followed by the bitmap data.

The data is in Data Interchange Format (DIP).

The data is a bitmap representation of a private format.
This data is displayed in bitmap format in lieu of the pri­
vately formatted data.

278 Microsoft Windows Guide to Programming

Value

CF _DSPMETAFILEPICT

CF_DSPTEXT

CF _METAFILEPICT

CF_OEMTEXT

CF _OWNERDISPLAY

CF_PALETTE

CF_PENDATA

CF_RIFF

CF_SYLK

CF_TEXT

CF_TIFF

CF_WAVE

Meaning

The data is a metafile representation of a private data
format. This data is displayed in metafile-picture format
in lieu of the privately formatted data.

The data is a textual representation of a private data for­
mat. This data is displayed in text format in lieu of the
privately formatted data.

The data is a metafile (see the description of the META­
FILEPICT structure in the Microsoft Windows Pro­
grammer's Reference, Volume 3).

The data is an array of text characters in the OEM char­
acter set. Each line ends with a carriage return-linefeed
(CR-LF) combination. A null character signals the end
of the data.

The data is in a private format that the clipboard owner
must display.

The data is a color palette.

The data is for the pen extensions to the Windows oper­
ating system.

The data is in Resource Interchange File Format (RIFF).

The data is in Microsoft Symbolic Link (SYLK) format.

The data is an array of text characters. Each line ends
with a carriage return-linefeed (CR-LF) combination. A
null character signals the end of the data.

The data is in Tag Image File Format (TIFF).

The data describes a sound wave. This is a subset of the
CF _RIFF data format; it can be used only for RIFF
WAVE files.

When you paste data from the clipboard by using the GetClipboardData func­
tion, you specify the format you expect. The clipboard supplies the data only if it
has been copied in that format.

Windows supports two formats for text, CF _TEXT and CF _OEMTEXT.
CF_ TEXT is the default Windows text clipboard format. Windows uses the
CF_ OEMTEXT format for text in non-Windows applications. If you call Get­
ClipboardData to retrieve data in one text format and discover that the other text
format is the only one available, Windows automatically converts the text to the re­
quested format before supplying it to your application.

Note Clipboard data objects can be any size. Your application must be able to
work with clipboard data objects larger than 64K. For more information about
working with large data objects, see Chapter 16, "More Memory Management."

Chapter 13 Clipboard 279

13 .1.1 Copying Text to the Clipboard
To copy a short string of text to the clipboard, your application should follow
these steps:

1. Copy the string to global memory.

2. Open the clipboard.

3. Clear the clipboard.

4. Give the global memory handle to the clipboard.

5. Close the clipboard.

The application should copy text to the clipboard when the user chooses the Copy
command from the Edit menu. To process the menu input and copy the text string
to the clipboard, your application should have a WM_ COMMAND case in its win­
dow procedure. To implement the Cut and Copy commands, add the following
statements:

case IDM_CUT:
case IDM_COPY:

if (hText != NULL) {

/*Allocate memory and copy the string to it. */

hData = GlobalAlloc(GMEM_MOVEABLE, GlobalSize (hText));

if (hData == NULL I I

}

(lpData = GlobalLock(hData)) ==NULL I I
(lpszText = GlobalLock(hText)) ==NULL) {

OutOfMemory();
return TRUE;

lstrcpy(lpData, lpszText);
GlobalUnlock(hData);
GlobalUnlock(hText);

f*
* Clear the current contents of the clipboard,
* and set the data handle to the new string.
*f

if (OpenClipboard(hwnd)) {
EmptyClipboard();
SetClipboardData(CF_TEXT, hData);
CloseClipboard();

}

hData = NULL;

280 Microsoft Windows Guide to Programming

if (wParam == IOM_CUT) {
GlobalFree(hText);
hText = NULL;

}

EnableMenuitem(GetMenu (hwnd), IDM_CUT, MF_GRAYEO);
EnableMenuitem(GetMenu(hwnd), IDM_COPY, MF_GRAYEO);
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

return TRUE;

The GlobalAlloc function allocates enough memory to hold the string. The
GMEM_MOVEABLE flag specifies movable memory. The clipboard can take
either fixed or movable memory but should not be given discardable memory.
Movable memory is the most efficient.

Note Always check the return value when allocating or locking memory; a NULL
return value indicates an out-of-memory condition.

You must lock movable memory in order to retrieve the memory address. Use the
Windows lstrcpy function instead of the C run-time strcpy function, since strcpy
cannot handle mixed pointers (string is a short pointer, and lpData is a long
pointer). The clipboard requires the string to have a terminating null character.
Finally, the memory must be unlocked before it can be copied to the clipboard.

Each time your application copies the string to the clipboard, this code allocates
another global memory object. The reason is that once the application passes a
data handle to the clipboard, the clipboard takes ownership of it. This means that
the application can no longer use the handle other than to view contents, and that it
must not attempt to free the handle or change its contents.

The Open Clipboard function opens the clipboard for the specified window.
OpenClipboard will fail if another window already has the clipboard open.

The EmptyCiipboard function clears all existing handles in the clipboard and as­
signs ownership of the clipboard to the window that has it open. An application
must empty the clipboard before copying data to it.

The SetClipboardData function copies the memory handle to the clipboard and
identifies the data format, CF _TEXT. The clipboard is then closed by the Close­
Clipboard function.

Since the clipboard now owns the global memory identified by the hData variable,
it is convenient to set this handle to zero to prevent attempts to free or change the
memory.

Chapter 13 Clipboard 281

13.1.2 Pasting Text from the Clipboard
An application can paste text from the clipboard into its client area. That is, it can
retrieve a text handle from the clipboard and display it in the client area by using
the TextOut function. To do this, the application must do the following:

1. Open the clipboard.

2. Retrieve the data handle associated with CF _TEXT or CF _OEMTEXT.

3. Close the clipboard.

The user should be able to paste only if there is text in the clipboard. To
prevent attempts to paste when no text is present, your application should check
the clipboard before Windows displays the Edit menu by processing the
WM_INITMENU message. If the clipboard is empty, the application should dis­
able the Paste command; if text is present, the application should enable it. Add
the following statements to the window procedure:

case WM_INITMENU:

if (wParam == (WPARAMl GetMenu(hwnd)) {
if COpenClipboard(hwnd)) {

}

}

if CisClipboardFormatAvailable(CF_TEXT)

else

I I IsClipboardFormatAvailable(CF_OEMTEXT))
EnableMenultem((HMENU) wParam, IDM_PASTE, MF_ENABLED);

EnableMenuitem((HMENU) wParam, IDM_PASTE, MF_GRAYEDl;

CloseClipboard();
return TRUE;

else f* Clipboard is not available
return FALSE;

return TRUE;

In this example, the first if statement checks the WM_INITMENU's wParam pa­
rameter against the menu handle returned by the GetMenu function. Since many
applications have at least two menus, including a System menu, it is important to
ensure that the message applies to the Edit menu.

The two calls to the IsClipboardFormatA vailable function check for the
CF _TEXT or CF _OEMTEXT format. Based on whether the CF _TEXT or
CF _OEMTEXT format is found, the EnableMenultem function enables or disa­
bles the Paste command.

282 Microsoft Windows Guide to Programming

Your application must be able to paste from the clipboard when the user chooses
the Paste command from the Edit menu. To make your application process the
menu input and retrieve the text from the clipboard, add an IDM_PASTE case to
the WM_ COMMAND case in the window procedure. Add the following state­
ments immediately after the IDM_COPY case:

case IDM_PASTE:

}

break;

if (OpenClipboard(hwnd)) {

}

else

if ((hClipData = GetClipboardData(CF_TEXT))
CloseClipboard();
break;

}

if (hText != NULL)
GlobalFree(hText);

NU LL) {

hText = GlobalAlloc(GMEM_MOVEABLE, GlobalSize(hClipData));

if (hText == NULL 11

}

(lpClipData = GlobalLock(hClipData)) ==NULL I I
(lpszText = GlobalLock(hText)) ==NULL) {

OutOfMemory();
CloseClipboard();
break;

lstrcpy(lpszText, lpClipData);
GlobalUnlock(hClipData);
CloseClipboard();
GlobalUnlock(hText);
EnableMenuitem(GetMenu(hwnd), IDM_CUT, MF_ENABLED);
EnableMenuitem(GetMenu(hwnd), IDM_COPY, MF_ENABLED);

f* Copy text to the application window. */

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);
return TRUE;

return FALSE;

In this example, the OpenClipboard function opens the clipboard for the
specified window if it is not already open. The GetClipboardData function then
retrieves the data handle for the text (if there is no such data, the function retrieves
zero). You should check this handle before using it, because it is a global-memory

Chapter 13 Clipboard 283

handle. The clipboard format is CF _TEXT, so the global memory is assumed to
contain a null-terminated string consisting of characters in the Windows character
set. This means the global memory can be locked by using the GlobalLock func­
tion, and the contents can be displayed in the client area by using the TextOut
function.

Your application must not modify or delete the data it retrieves from the clipboard.
The application can examine it or make a copy of it, but it must not change the
data. To examine the data, the application might need to lock the handle, as in this
example, but must never leave a data handle locked. The application should un­
lock the handle immediately after using it.

Data handles returned by the GetClipboardData function are for temporary use
only. Handles belong to the clipboard, not to the application requesting data. Do
not rely on a handle remaining valid indefinitely. In general, the application should
copy the data associated with the handle, and then release it without changes.

The CloseClipboard function closes the clipboard; your application should al­
ways close the clipboard immediately after it has been used so that other applica­
tions can use it. Before closing the clipboard, be sure you unlock the data retrieved
by GetCiipboardData.

13.1.3 Pasting Bitmaps from the Clipboard
In addition to retrieving text, your Windows application can retrieve a bitmap
from the clipboard and display it in the client area. To make the application re­
trieve and display a bitmap, you use the same technique as for pasting text, but
you make a few changes to accommodate bitmaps.

First, modify the WM_INITMENU case in the window procedure so that it recog­
nizes the CF _BITMAP format. After you change it, the WM_INITMENU case
should look like this:

case WM_INITMENU:

if (wParam == (WPARAM) GetMenu(hwnd)) {
if (OpenClipboard(hwnd)) {

}

if (lsClipboardFormatAvailable(CF_BITMAP))
EnableMenultem((HMENU) wParam, IDM_PASTE, MF_ENABLED);

else
EnableMenultem((HMENU) wParam, IDM_PASTE, MF_GRAYED);

CloseClipboard();
return TRUE;

284 Microsoft Windows Guide to Programming

}

else /* Clipboard not available
return FALSE;

return TRUE;

Although retrieving a bitmap from the clipboard is as easy as retrieving text, dis­
playing a bitmap requires more work than does displaying text. In general, you
must do the following:

1. Retrieve the bitmap data handle from the clipboard. Bitmap data handles from
the clipboard are graphics device interface (GDI) bitmap handles (created by
using functions such as CreateBitmap).

2. Create a compatible display context, and select the data handle into it.

3. Use the BitBlt function to copy the bitmap to the client area.

4. Release the bitmap handle from the current selection.

For more information about displaying a bitmap, see Chapter 11, "Bitmaps."

13 .1.4 Windows Clipboard Application
The user can view the contents of the clipboard by using the Windows application
Clipboard (CLIPBRD.EXE); for this reason, Clipboard is also known as the clip­
board viewer. It lists the names of all the formats for which handles (NULL or
otherwise) exist in the clipboard, and displays the contents of the clipboard in one
of these formats.

The clipboard viewer can display all the standard data formats. If there are handles
for more than one standard data format, the clipboard viewer displays only one for­
mat, choosing from the following list, in decreasing order of priority: CF _TEXT,
CF _OEMTEXT, CF _MET AFILEPICT, CF _BITMAP, CF _SYLK, and CF _DIF.

For more information about clipboard formats, see the Microsoft Windows Pro­
grammer's Reference, Volume 4.

13.2 Using Special Clipboard Features
The clipboard provides several features that an application can use to improve the
usability of the clipboard and save itself some work. These features are as follows:

• Applications can delay the formatting of data passed to the clipboard; for ex­
ample, if the data format is complex and no other application is likely to use
that format, an application can save time by not formatting that data until
necessary.

Chapter 13 Clipboard 285

• Applications can draw within the Clipboard application's client area. By using
this feature, an application can display data formats that Clipboard cannot.

13.2.1 Rendering Data on Request
If an application uses many data formats, it can save formatting time by passing
NULL data handles to the SetClipboardData function, instead of generating all
the data handles when the user chooses a Cut or Copy command. The application
need not generate a data handle until another application requests a handle by call­
ing the GetCiipboardData function.

When the application calls the GetCiipboardData function with a request for a
format for which a NULL data handle has been set, Windows sends a
WM_RENDERFORMAT message to the clipboard owner. When an application
receives this message, it can do the following:

1. Format the data last copied to the clipboard (the wParam parameter of
WM_RENDERFORMA T specifies the format being requested).

2. Allocate a global memory object and copy the formatted data to it.

3. Pass the global memory handle and the format number to the clipboard by
using the SetCiipboardData function.

To accomplish these steps, the application must maintain a record of the last data
copied to the clipboard. The application may discard this data when it receives the
WM_DESTROYCLIPBOARD message, which is sent to the clipboard owner
whenever the clipboard is emptied by a call to the EmptyClipboard function.

13.2.2 Rendering Formats Before Termination
When an application is destroyed, it is no longer capable of rendering data
it has copied to the clipboard. Accordingly, when the application that owns
the clipboard is being destroyed, Windows sends that application a special
message, WM_RENDERALLFORMATS. Upon receiving a
WM_RENDERALLFORMATS message, an application should follow
the steps described in Section 13.2.1, "Rendering Data on Request," for
all formats that the application is capable of generating.

13.2.3 Registering a Private Format
In addition, an application can create and use private formats, or even new public
ones. To create and use a new data-interchange format, an application must do the
following:

286 Microsoft Windows Guide to Programming

1. Call the RegisterClipboardFormat function to register the name of the new
format.

2. Use the value returned by RegisterClipboardFormat as the code for the new
format when calling the SetClipboardData function.

Registering the format name ensures that the application is using a unique format
number. In addition, it allows Chpboard to dispiay the correct name of the data
being held in the clipboard. For more information about displaying private data
types in Clipboard, see Section 13.2.4, "Controlling Data Display in the Clip­
board."

If two or more applications register formats that have the same name, the applica­
tions will all receive the same format code. This allows applications to create their
own public data types. If two or more applications register a format called
WORKSHEET, for example, they will all have the same format number when call­
ing the SetClipboardData and GetClipboardData functions, and will have a
common basis for transferring WORKSHEET data between them.

13.2.4 Controlling Data Display in the Clipboard
There are two reasons why you might want your application to control the display
of information in Clipboard:

• The application may have a private data type that is difficult or impossible to
display in a meaningful way.

• The application may have a private data type that requires special information
to display.

13.2.4.1 Using a Display Format for Private Data
You can use a display format to represent a private data format that would other­
wise be difficult or impossible to display. The data associated with display formats
are text, bitmaps, or metafile pictures that the clipboard viewer can display as sub­
stitutes for the corresponding private data. To use a display format, you copy both
the private data and the display data to the clipboard. When the clipboard viewer
chooses a format to display, it chooses the display format instead of the private
data.

There are three display formats: CF _DSPTEXT, CF _DSPBITMAP, and
CF _DSPMETAFILEPICT. The data associated with these formats is identical to
the text, bitmap, and metafile-picture formats, respectively. Since text, bitmaps,
and metafile pictures are also standard formats, the clipboard viewer can display
them without help from the application.

Chapter 13 Clipboard 287

The following description assumes that the application has already followed the
steps described in Section 13.1.1, "Copying Text to the Clipboard," to take owner­
ship of the clipboard and set data handles.

To force the display of a private data type in a standard data format, the applica­
tion must take the following steps:

1. Open the clipboard for alteration by calling the OpenClipboard function.

2. Create a global handle that contains text, a bitmap, or a metafile picture, specify­
ing the information that should be displayed in the clipboard viewer.

3. Set the handle to the clipboard by calling the SetCiipboardData function. The
format code passed should be CF _DSPTEXT if the handle is for text,
CF _DSPBITMAP if the handle is for a bitmap, and CF _DSPMET AFILEPICT
if it is for a metafile picture.

4. Signal that the application has finished altering the clipboard by calling the
CloseClipboard function.

13.2.4.2 Taking Full Control of the Clipboard-Viewer Display
An application can take complete control of the display and scrolling of informa­
tion in the clipboard viewer. This control is useful when the application has a
sophisticated private data type that only it can display. Microsoft Write uses this
facility for displaying formatted text.

For the following description, assume that the application has already followed the
steps described in Section 13.1.1, "Copying Text to the Clipboard," to take owner­
ship of the clipboard and set data handles.

To take full control of the clipboard-viewer display, follow these steps:

1. Open the clipboard for alteration by calling the OpenClipboard function.

2. Call the SetClipboardData function, using CF _OWNERDISPLAY as the data
format, with a NULL handle.

3. Signal that the application has finished altering the clipboard by calling the
CloseClipboard function.

The clipboard owner will then receive special messages associated with the dis­
play of information in the clipboard viewer:

Message

WM_pAINTCLIPBOARD
WM_SIZECLIPBOARD
WM_VSCROLLCLIPBOARD
WM_HSCROLLCLIPBOARD

Action

Paints the specified portion of the window.

Notes the window size change.

Scrolls the window vertically.

Scrolls the window horizontally.

288 Microsoft Windows Guide to Programming

Message Action

WM_ASKCBFORMATNAME Supplies the name of the displayed format.

For full descriptions of these messages, see the Microsoft Window's Rrogram­
mer' s Reference, Volume 3.

13.2.4.3 Using the Clipboard-Viewer Chain
Chaining together clipboard-viewer windows provides a way for applications
to be notified whenever a change is made to the clipboard. The notification, in
the form of a WM_DRA WCLIPBOARD message, is passed down the viewer
chain whenever the CloseClipboard function is called. The recipient of the
WM_DRA WCLIPBOARD message must determine the nature of the change
(Empty, Set, and so on) by calling EnumClipboardFormats, GetClipboard­
Data, and other functions, as necessary.

Any window that has made itself a link in the viewer chain must be prepared to do
the following:

1. Remove itself from the chain before it is destroyed.

2. Pass along WM_DRA WCLIPBOARD messages to the next link in the chain.

The code for this action looks like this:

case WM_DESTROY:

ChangeClipboardChain(hwnd, my_save_next);

/* rest of processing for WM_DESTROY */

break;

case WM_DRAWCLIPBOARD:

if (my_save_next != NULL)
SendMessage(my_save_next, WM_DRAWCLIPBOARD, wParam, lParam);

/* rest of processing for WM_DRAWCLIPBOARD */

break;

The my _save_next variable is the value returned from the SetClipboardViewer
function. These clipboard-viewer chain actions should be the first steps taken by
the switch statement branches that process the WM_DESTROY and
WM_DRA WCLIPBOARD messages.

Chapter 13 Clipboard 289

13 .3 Sample Application: ClipText
This sample application illustrates how to copy to and paste from the clipboard.
To create the ClipText application, make the following modifications to the Edit­
Menu application created in Chapter 7, "Menus":

1. Add new variables.

2. Modify the instance initialization code.

3. Add a WM_INITMENU case.

4. Modify the WM_ COMMAND case to process the IDM_CUT, IDM_COPY,
and IDM_PASTE cases.

5. Add a WM_PAINT case.

6. Add an OutOfMemory function.

7. Compile and link the application.

This sample uses global memory to store the text to be copied. For a full explana­
tion of global memory, see Chapter 15, "Memory Management."

13.3.1 Adding New Variables
To contain the handle of the client area text string and its initial data, you must add
the following new global variables to the beginning of your C-language source file:

HANDLE hText = NULL; /* handle of current client-area text*/
char szinitialClientAreaText[]

"This program demonstrates
HANDLE hData, hClipData;
LPSTR lpData, lpClipData;

the use of ... ";
/* handles of clip data */
/* addresses of clip data */

You must also add variables for painting and clipboard data manipulation. Add
these variables to the beginning of your MainWndProc main window procedure:

HOC hdc;
HMENU hMenu;
PAINTSTRUCT ps;
RECT rcClient;
LPSTR lpszText;

13.3.2 Modifying the Instance Initialization Code
When an instance of ClipText is started, it must allocate a global memory object
and fill it with an initial client-area text string. To do this, add the following state­
ments to the instance initialization code:

290 Microsoft Windows Guide to Programming

hText = GlobalAlloc(GMEM_MOVEABLE,
(DWORD) sizeof(szinitialClientAreaText));

if (hText == NULL 11 (lpszText = GlobalLock(hText))
OutOfMemory();
return FALSE;

}

lstrcpy(lpszText, szinitialClientAreaText);
GlobalUnlock(hText);

13.3.3 Adding a WM_INITMENU Case

NULL) {

To prepare the Edit menu for pasting, you must add a WM_INITMENU case to
your window procedure. In general, the Paste command should not be available in
this menu unless there is selected text in the clipboard to paste. Add the following
statements to the window procedure:

case WM_INITMENU:

if (wParam == (WPARAM) GetMenu(hwnd)) {
if (OpenClipboard(hwnd)) {

}

}

if (IsClipboardFormatAvailable(CF_TEXT)

else

I J IsClipboardFormatAvailable(CF_OEMTEXT))
EnableMenuitem((HMENU) wParam, IDM_PASTE, MF_ENABLED);

EnableMenuitem((HMENU) wParam, IDM_PASTE, MF_GRAYED);

CloseClipboard();
return TRUE;

else /* Clipboard is not available
return FALSE;

return TRUE;

These statements process the WM_INITMENU message only if the specified
menu is found on the menu bar. The IsClipboardFormatAvailable function deter­
mines whether text data is present in the clipboard. If data is present, the Enable­
Menultem function enables the Paste command. Otherwise, the Paste command is
disabled.

Chapter 13 Clipboard 291

13.3.4 Modifying the WM_COMMAND Case
To process the Edit menu commands, you must modify the IDM_CUT,
IDM_COPY, and IDM_PASTE cases in the WM_ COMMAND case. The
IDM_CUT and IDM_COPY cases must create a global memory object, fill it with
text, and copy the handle of the object to the clipboard; the IDM_ CUT case must
also discard the current client-area text. The IDM_PASTE case must retrieve a
handle from the clipboard, use its contents to replace the current client-area text,
and request that the client area be repainted.

Replace the existing IDM_CUT and IDM_COPY cases with the following state­
ments:

case IDM_CUT:
case IDM_COPY:

if (hText != NULL) {

/*Allocate memory and copy the string to it. */

hData = GlobalAlloc(GMEM_MOVEABLE, GlobalSize (hText));

if ChData == NULL I I

}

(lpData = GlobalLock(hData)) ==NULL I I
(lpszText = GlobalLock(hText)) ==NULL) {

OutOfMemory();
return TRUE;

lstrcpy(lpData, lpszText);
GlobalUnlock(hData);
GlobalUnlock(hText);

I*
* Clear the current contents of the clipboard,
* and set the data handle to the new string.
*/

if (OpenClipboard(hwnd)) {
EmptyClipboard();
SetClipboardData(CF_TEXT, hData);
CloseClipboard();

}

hData = NULL;

292 Microsoft Windows Guide to Programming

}

if (wParam == IDM_CUT) {
GlobalFree(hText);
hText = NULL;
EnableMenuitem(GetMenu (hwnd), IDM_CUT, MF_GRAYED);
EnableMenuitem(GetMenu(hwnd), IDM_COPY, MF_GRAYED);
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindowChwnd);

return TRUE;

The GlobalAlloc function allocates the global memory object used to pass text
data to the clipboard. The lstrcpy function copies the client-area text into the ob­
ject after the handle has been locked by the GlobalLock function. The handle
must be unlocked before it can be copied to the clipboard. The EmptyClipboard
function is used to remove any existing data from the clipboard.

Replace the IDM_PASTE case with the following statements:

case IDM_PASTE:

if (OpenClipboard(hwnd)) {
if ((hClipData = GetClipboardData(CF_TEXT))

CloseClipboard();
break;

}

if (hText != NULL)
GlobalFree(hText);

NU LU {

hText = GlobalAlloc(GMEM_MOVEABLE, GlobalSize(hClipData));

if (hText ==NULL II

}

(lpClipData = GlobalLock(hClipData)) ==NULL I I
(lpszText = GlobalLock(hText)) ==NULL) {

OutOfMemory();
CloseClipboard();
break;

lstrcpy(lpszText, lpClipData);
GlobalUnlock(hClipData);
CloseClipboard();
GlobalUnlock(hText);
EnableMenuitem(GetMenu(hwnd), IDM_CUT, MF_ENABLED);
EnableMenuitem(GetMenu(hwnd), IDM_COPY, MF_ENABLED);

Chapter 13 Clipboard 293

/* Copy text to the application window. */

else

break;

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);
return TRUE;

return FALSE;

The GetClipboardData function returns a handle of a global memory object. The
GlobalLock function locks this handle, returning the object address that is used to
make a copy of the new client-area text.

13.3.5 Adding a WM_ PAINT Case
A WM_PAINT case is necessary to draw the current client-area text on the screen
when the window has been minimized, resized, or overlaid. To create this case,
add the following statements to the window procedure:

case WM_PAINT:

hdc = BeginPaint(hwnd, &ps);
if (hText != NULL) {

if ((lpszText = GlobalLock (hText))
OutOfMemo ry () ;

}

else {
GetClientRect(hwnd, &rectClient);

NU LL) {

DrawText(hdc, lpszText, -1, &rectClient,
DT_EXTERNALLEADING I DT_NOPREFIX I DT_WORDBREAK);

GlobalUnlock (hText);
}

}

EndPaint(hwnd, &ps);
break;

294 Microsoft Windows Guide to Programming

13.3.6 Adding an OutOfMemory Function
You must add a function that displays a message box when your application is out
of memory. To do this, add the following statements to the application source file:

void OutOfMemory(void)
{

MessageBoxCNULL, "Out of Memory", NULL,
MB_ICONHAND I MB_SYSTEMMODAL);

return;
}

fu the application's header file, add a forward reference to the OutOfMemory func­
tion:

void OutOfMemory(void);

13. 3. 7 Compiling and Linking
After compiling and linking the ClipText application, start Windows, Clipboard,
and Clip Text. Then, choose the Copy command in the Edit menu. You should see
something that looks similar to this:

Clipboard Viewer
file fdit Qisplay !!elp

This text was first typed into Notepad.
then copied to' ••••••••
clipboard. it will
using ClipText~Ei,_le~f~d_it -=-----,---,---.,---,------11

his text was first typed into Notepad.
hen copied to the clipboard. From the
lipboard. it was pasted into ClipText
sing ClipText's Paste command.

Text in the clipboard Text pasted into Clip Text
from the clipboard

Chapter 13 Clipboard 295

13.4 Related Topics
For more information about display contexts, see Chapter 3, "Output to a
Window."

For more information about bitmaps, see Chapter 11, "Bitmaps."

For more information about handling memory, see Chapter 15, "Memory Manage­
ment," and Chapter 16, "More Memory Management."

For more information about using Windows dynamic data exchange (DDE) in­
stead of the clipboard, see Chapter 22, "Dynamic Data Exchange."

For more information about clipboard-management functions, clipboard data for­
mats, and clipboard file formats, see the Microsoft Windows Programmer's Refer­
ence, Volumes 2 and 4.

Advanced Programming Topics

Part 3

C and Assembly Language

Chapter 14

14.1 Choosing a Memory Model... 301
14.2 Using the NULL Constant... 302
14.3 Using Command-Line Arguments and the MS-DOS Environment 303
14.4 Writing Exported Functions... 304

14.4.1 Creating a Callback Function.. 304
14.4.2 Creating the WinMain Function.. 305

14.5 Using C Run-Time Functions .. 306
14.5.1 Using Windows C Libraries .. 306
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7
14.5.8
14.5.9

Allocating Memory.. 307
Handling Strings 307
Using File Input and Output.. 309
Using Console Input and Output... 309
Using Graphics Functions 310
Using Floating-Point Arithmetic... 310
Executing Other Applications 311
Using BIOS and MS-DOS Interface Functions...................... 311

14.5.10 Eliminating C Run-Time Startup Code 311
14.5.10.1 Eliminating C Run-Time Startup Code

from a Windows Application 312
14.5.10.2 Eliminating C Run-Time Startup Code

from a Windows Dynamic-Link Library.............. 312
14.6 Writing Assembly-Language Code... 313

14.6.1 Modifying the Interrupt Flag... 314
14.6.2 Writing Exported Functions in Assembly Language 316
14.6.3 UsingtheESRegister .. 317

14.7 Related Topics.. 318

Chapter 14 C and Assembly Language 301

Parts 1 and 2 of the Microsoft Windows Guide to Programming introduced the
functions you use in the context of a C- or assembly-language application to create
an application for the Microsoft Windows 3 .1 operating system. The focus in these
parts was on the Windows-specific elements of a Windows application.

A complete Windows application might not use only these Windows-specific func­
tions, however. Instead, your application will probably use standard C run-time
library functions and your own functions, which will be called back by Windows
or by other modules in your application. You should know how to incorporate
these functions properly in your applications.

This chapter covers the following topics:

• Choosing a memory model

• Using the NULL constant

• Using command-line arguments and the MS-DOS environment

• Writing exported functions

• Using C run-time functions

• Writing assembly-language code

14.1 Choosing a Memory Model
Like any MS-DOS application, a Windows application can contain one or more
code segments and one or more data segments, depending on the memory model
you select when compiling the source-code modules of your application. For infor­
mation about the memory-model options that are available to you, see Chapter 16,
"More Memory Management."

The memory model you choose will affect how efficiently your application will
run with the Windows operating system. In most cases, the best model is the
mixed model. When using the mixed model, you compile your modules to have de­
fault small- or medium-model settings and to name the data segments. You then
override these default settings by using explicit FAR calls (in coded segments
with the small-model settings) to call functions in other segments, or by using ex­
plicit NEAR calls (in segments with the medium-model settings) to call functions
in the same segment. The mixed model has the following advantages:

• Near calls reduce the amount of code generated by the compiler and make the
functions execute more quickly.

• Compiling the modules by using named code segments partitions the code seg­
ments into smaller segments, which are easier for Windows to manage as it
moves the code segments in memory.

302 Microsoft Windows Guide to Programming

To create an application by using the mixed model (with the small-model default
settings), follow these steps:

1. Provide prototypes for all functions in your source code that are called from out­
side the code segment that defines them. For the sake of convenience, you can
place these prototypes in a header (.H) file. You must provide prototypes for all
function calls made by one code segment to another as far calls using the ~'AR
keyword. Following is an example of a function prototype for a far call:

int FAR MyCalculation(int, int);

2. Compile your C modules by using the I AS option to create the application that
will use the small memory model.

3. Compile your C modules by using the /NT option to name the code segments
of your application.

For more information about these and other compiler options, see Microsoft
Windows Programming Tools.

Creating an application by using the mixed model with medium-model default set­
tings is similar to this procedure, except for two differences: You would explicitly
declare as NEAR those functions that are called only within the data segment that
defines them, and you should compile the modules by using the I AM option to
produce the medium-model default settings.

14.2 Using the NULL Constant
The symbolic constant NULL has different definitions for Windows and the
Microsoft C Optimizing Compiler (CL). The WINDOWS.H header file defines
NULL as follows:

1tdefi ne NU LL 0

On the other hand, the CL library header files (such as STDDEF.H) define NULL
as follows:

1ti fndef NU LL
#define NULL ((void*) 0)
1tendi f

To avoid compiler warnings, you should use NULL only for pointers and handles.
You should not use NULL for such data types as int and WORD.

You can avoid such compiler warnings by making sure that your application in­
cludes WINDOWS.H before any header file from the C run-time library that de­
fines NULL, as shown in the following example:

#include <windows.h>
#include <stddef .h>

Chapter 14 C and Assembly Language 303

Because the header files in the C run-time library do not define NULL if it has al­
ready been defined, the preprocessor does not override the initial definition in
WINDOWS.H.

14.3 Using Command-Line Arguments and the MS-DOS
Environment

Your application can retrieve the command-line arguments specified when the
user started the application; it can also retrieve the current MS-DOS environment.

When a Windows application runs, the Windows startup function copies the com­
mand-line arguments to the __ argc and __ argv variables. Like their counterparts
in a standard C application, these variables represent the number of arguments and
an array of strings containing the arguments. In addition, the environ variable re­
ceives a pointer to an array of strings that contain the current MS-DOS environ­
ment at the time the application was started.

To use these variables, you must declare them as external to your application, as
follows:

extern int _argc;
extern char ** _argv;
extern char * environ[];

You can also retrieve the command-line parameters by parsing the lpszCmdLine
parameter, which Windows passes to your application's WinMain function.

If your application does not require access to the command-line arguments or the
MS-DOS environment, you can reduce the size of your heap and code by eliminat­
ing C run-time initialization code. For information about how to do this, see Sec­
tion 14.5.10, "Eliminating C Run-Time Startup Code."

A dynamic-link library (DLL) cannot access the __ argc, __ argv, and environ
variables. Instead, to retrieve the command-line arguments, the library must parse
the lpszCmdLine parameter, which Windows passes to the LibEntry function. For
more information about LibEntry, see Chapter 20, "Dynamic-Link Libraries."

Since a dynamic-link library does not have access to the environ variable, it must
call the GetDOSEnvironment function to retrieve the environment string.

304 Microsoft Windows Guide to Programming

14.4 Writing Exported Functions
Typically, the functions you define in your application do not require any special
treatment. There are two exceptions to this rule:

• Functions in a dynamic-link library that are called outside of the library

• Callback functions (also called callback procedures)

For information about writing functions in a dynamic-link library, see Chapter 20,
"Dynamic-Link Libraries."

Callback functions are functions in your application that are called by Windows,
not by your application. Following are the common types of callback functions:

• WinMain. This is the entry point for your application.

• Application window procedures. These procedures process messages sent to the
window.

• Application dialog box procedures. These procedures process messages sent to
the dialog box.

• Enumeration callback functions. These functions handle the results of Windows
enumeration functions.

• Memory-notification functions. These functions are called by Windows to
notify your application that a memory object is about to be discarded.

• Window-hook functions (filters). These functions process messages sent to the
windows of other applications. Most window-hook functions must be in a
library.

14.4.1 Creating a Callback Function
For all callback functions, you must follow these steps:

1. Define the callback function by using the PAS CAL keyword. This causes the
function parameters to be pushed onto the stack from right to left, just like stan­
dard Windows functions.

2. Define the callback function by using the FAR keyword. This allows the func­
tion to be called outside the code segment that contains the function. This rule
does not apply to the WinMain function.

3. Compile the module that contains the callback function by using the /Gw op­
tion (not the GW option). This adds the proper Windows prolog and epilog
code to the function, ensuring that the current data segment is used by the func­
tion when it runs.

Chapter 14 C and Assembly Language 305

4. List the callback function in the EXPORTS statement of the application's
module-definition (.DEF) file. This defines the ordinal value and attributes of
the callback function.

With the exception of the WinMain function, your application passes the
procedure-instance address of the callback function to a Windows function to tell
Windows when it should execute the callback function. For example, when you
create a dialog box, one of the parameters of the function that creates the dialog
box is the procedure-instance address of the function that will handle the messages
sent to the dialog box.

To create a procedure-instance address of a function, call the MakeProclnstance
function. This function returns a procedure-instance address that points to prolog
code that is executed before the function is executed. The prolog code binds the
data segment of the instance of your application to the callback function. Thus,
when the function is executed, it has access to variables and data in the data seg­
ment of the application instance. You need not create a procedure-instance address
for the WinMain function or any window procedure that your application regis­
ters by using the RegisterClass function.

When your application no longer needs the callback function (that is, when you
are certain Windows will no longer call it), you should call FreeProclnstance to
free the function from the data segment.

14.4.2 Creating the WinMain Function
Every Windows application must have a WinMain function; like the main func­
tion of a standard C-language application, the WinMain function in effect serves
as the entry point for your application. It contains statements and Windows func­
tions that create windows and read and dispatch input intended for the application.
The function definition has the following form:

int PASCAL WinMain(hinstCurrent, hinstPrevious, lpszCmdline, nCmdShow)
HINSTANCE hinstCurrent;
HINSTANCE hinstPrevious;
LPSTR lpszCmdline;
int nCmdShow;
{

Like all Windows functions, WinMain is declared with the PAS CAL keyword.
As' a result, your definition of WinMain must contain all four parameters, even if
your application does not use them all.

306 Microsoft Windows Guide to Programming

Even though Windows calls it directly, WinMain must not be declared with the
FAR keyword or exported in the definition file, because it is called from startup
code added by the linker to the same data segment. WinMain is implicitly de­
clared NEAR or FAR, depending on the memory model that you use to compile
the module that defines WinMain. This memory model must be consistent with
the memory model of the C run-time link library containing the startup code that
calls '\"/inl\ifain.

14.5 Using C Run-Time Functions
The Microsoft Windows 3 .1 Software Development Kit (SDK) contains special
versions of the C-language run-time libraries that differ from the equivalent librar­
ies supplied with CL. The following sections describe other ways in which the
Windows C run-time libraries differ from those supplied with CL.

14.5.1 Using Windows C Libraries
You can use the Windows C run-time libraries with CL version 5.1 and later. The
Windows-specific versions of the C run-time libraries are adapted for the
Windows environment. The Windows prolog and epilog code have been added to
all C run-time functions that require them. This prevents problems associated with
code-segment movement in low-memory situations. Many C run-time functions
have been rewritten to avoid the assumption that the contents of the DS register
equal the contents of the SS register, which is not true for Windows dynamic-link
libraries. For information about calling C run-time library functions from a
dynamic-link library (with DS equal to SS), see Chapter 20, "Dynamic-Link
Libraries."

The SDK contains two sets of run-time libraries. One set is linked with Windows
applications, and the other set is linked with Windows dynamic-link libraries.
These libraries contain application- or DLL-startup code in addition to C run-time
functions, including memory-model-dependent replacement functions. As a result,
the SDK requires only one import library, LIBW.LIB. This import library is
memory-model independent.

The install command in version 3.1 of the SDK always names the Windows ver­
sions of the C run-time libraries according to the following naming convention:

{SIMICIL}{LIBIDLL}C[E]W.LIB

S, M, C, and L represent small, medium, compact, or large memory model librar­
ies, respectively. LIB and DLL indicate libraries intended to be linked with appli­
cation and DLL modules, respectively. E indicates the emulated math library.
Because of this naming convention, you must explicitly name the Windows ver­
sion of the C run-time library when linking your application. The following shows

Chapter 14 C and Assembly Language 307

an example of using the link command to link an application module to a
Windows C run-time library:

link generic, , , /nod slibcew libw, generic.def

The /nod (no default directory search) option is recommended to prevent link
from searching for a C run-time function in an MS-DOS version of the C run-time
library if it does not find the function in the Windows version of the library. When
you use this option, your application will not compile if you inadvertently called a
C run-time function that is not supported by the Windows C run-time libraries.

The SDK also contains Windows-specific versions of the C run-time header files.
These files help you detect during compilation whether you have inadvertently
called a C run-time function that is not supported in the Windows environment. To
perform this check, add the following directive to your module header file prior to
any #include directives for the C run-time header files:

1fdefine _WINDOWS

The set of C run-time functions that support calling from Windows applications in­
cludes a subset of functions that support calling from Windows dynamic-link li­
braries. The Windows-specific header files identify this subset. If you are creating
a dynamic-link library, you should include both of these directives before any
#include directives for the C run-time header files, as shown in the following ex­
ample:

1fdefine _WINDOWS
#define _WINDLL

14.5.2 Allocating Memory
Although the Windows versions of the C run-time libraries supply replacements
for such memory-allocation functions as malloc and free, you should instead use
Windows-specific memory-allocation functions. For example, although malloc al­
locates a fixed memory object in the local heap, the Windows LocalAlloc function
allows you to define the object as movable in the local heap.

14.5.3 Handling Strings
You can use the C run-time string functions to handle strings. However, in the
small and medium memory models, these functions do not handle strings declared
as far pointers or arrays, such as a dynamically allocated global memory object
created by the GlobalAlloc function. The C run-time buffer-manipulation func­
tions (such as memcpy and memset) are subject to the same restrictions in the
small and medium models.

308 Microsoft Windows Guide to Programming

Windows provides the following functions for handling far strings:

• lstrcat

• lstrcmp

• lstrcmpi

• lstrcpy

• lstrlen

To compare or test characters in the Windows character set, use the following
functions instead of the equivalent C run-time functions:

• AnsiLower

• AnsiLowerBuff

• AnsiNext

• AnsiPrev

• AnsiUpperBuff

• IsChar Alpha

• IsCharAlphaNumeric

• IsCharLower

• IsCharUpper

Windows uses a different collating sequence than do the C run-time functions.

Windows also provides the wsprintf and wvsprintf functions as replacements for
the C run-time sprintf and vsprintf functions. The Windows versions have the fol­
lowing advantages:

• They use far buffers rather than near buffers.

• They are much smaller.

• They allow you to eliminate the C startup code if your application does not re­
quire other C run-time functions. For more information, see Section 14.5.10,
"Eliminating C Run-Time Startup Code."

Note that the Windows versions support only a subset of the string format specifi­
cations. In particular, they do not support floating-point formats, pointer format,
and octal base.

Important If you replace a sprintf or vsprintf function with its equivalent
Windows function, be sure to cast any string passed as a %s argument to a far
pointer:

Chapter 14 C and Assembly Language 309

char buffer[l00];
char *Strl; /* near pointer in small or medium model */

sprintf(buffer,"Str1=%s",strll; /* Valid */
wsprintf(buffer,"Str1=%s",(LPSTR)strll; /* Valid */
wsprint(buffer,"Str1=%s",strll; /* INVALID */

14.5.4 Using File Input and Output
Use the Windows OpenFile function to create, open, reopen, or delete a file.
OpenFile returns an MS-DOS file handle that you can use with such C run-time
functions as read, write, lseek, and close. If you compile your C module by using
the small or medium memory model, the buffer parameter of read and write is a
near pointer (char near*). If you want to read to or write from a buffer declared
in your application as a far pointer or array, use the Windows functions _lread
and _lwrite, which are particularly useful for reading into or writing out of dy­
namically allocated global memory objects. You can also use buffered file-input­
and-output C functions, such as fopen, fread, and fwrite.

You can also use the Windows functions _I open and _ lcreat to create or open a
file.

Since Windows is a multitasking system, other applications may attempt to access
the same file that your application is reading to or writing from. You can control
access by other applications when your application opens a file by setting the ap­
propriate share bit in the wStyle parameter. Your application should leave files
open only while it is reading to and writing from them, unless your application
must control access to the file at other times.

Note If a dynamic-link library opens a file, the file handle belongs to the applica­
tion that called the dynamic-link library. If the library opens more than one file on
behalf of multiple applications, it is possible that MS-DOS will assign the same
file-handle value more than once.

14.5.5 Using Console Input and Output
Your application must share the system console with other applications. Because
of this, the Windows versions of the C run-time libraries exclude the following C
run-time console-input-and-output functions:

• cgets

• cprintf

• cputs

310 Microsoft Windows Guide to Programming

• getch

• getche

• kbhit

• putch

• ungetch

Since it cannot use these functions, your application should accept console input
through the WM_KEYDOWN, WM_KEYUP, and WM_ CHAR messages to your
window and dialog box procedures. If you require more advanced techniques, you
can call the PeekMessage function to look ahead at keyboard input, or you can
install a keyboard filter function in a dynamic-link library by calling the Set­
WindowsHook function.

14.5.6 Using Graphics Functions
The Windows graphics device interface (GDI) provides device-independent
graphics functions. Therefore, the C run-time library functions are not included in
the Windows versions of the C run-time libraries.

14.5.7 Using Floating-Point Arithmetic
If your application uses floating-point variables, you must link your application by
using the /FPi, /FPc, or /FPa option on the link command line.

An application compiled with the /FPi option will use a math coprocessor if on ; is
present at run time. Otherwise, the application will use a floating-point emulate r.
An application compiled with the /FPc option compiles the same as an application
compiled with the /FPi option, except that it can be linked with the alternate math
library instead, if necessary. An application compiled with the /FPa option uses an
alternative math library if no coprocessor is present at run time. This is the small­
est and fastest option available without a coprocessor, but this option sacrifices
some accuracy for speed, relative to the emulator library.

If you use the /FPi or /FPc option, you must include WIN87EM.LIB on the link
command line, as shown:

link sample, , , slibcew win87EM libw, sample.def

The Windows retail setup command automatically installs WIN87EM.DLL in the
user's Windows system directory.

You can use the SIGFPE (signal floating-point error) option of the C run-time
signal function to trap floating-point run-time errors, such as overflow and divi­
sion by zero.

Chapter 14 C and Assembly Language 311

Non-Windows applications typically use the C run-time setjmp and longjmp func­
tions to isolate floating-point exceptions. A Windows application should call the
Windows Catch and Throw functions instead.

14.5.8 Executing Other Applications
Windows provides the WinExec and LoadModule functions, which you can use
in your application to run another application. LoadModule runs Windows appli­
cations only, but WinExec runs both Windows and non-Windows applications.
Your application should call these functions instead of the C run-time exec and
spawn family of functions. Like the spawn function family, WinExec and Load­
Module are nonpreemptive; that is, they allow your application to continue run­
ning while the spawned application runs.

WinExec provides a simple interface for spawning a child process. LoadModule
is more difficult to use because it requires a parameter block for the application
you are running, but this also allows you greater control over the environment in
which the application runs.

14.5.9 Using BIOS and MS-DOS Interface Functions
Do not use the C run-time BIOS interface routines with Windows.

You can use the C run-time Interrupt 21h routines intdos, intdosx, and some of
the_ dos functions such as_ dos_getdrive. You can also use the int86 and int86x
routines to invoke interrupts other than Interrupt 21h. However, you should use in­
terrupts with extreme caution and only if necessary.

14.5.1 O Eliminating C Run-Time Startup Code
Usually, when you link a Windows application or dynamic-link library, the linker
adds C run-time startup code to the _TEXT code segment. For Windows applica­
tions (but not dynamic-link libraries), this startup code in turn allocates memory
for C run-time variables from the application's automatic data segment.

With Windows, you can eliminate this code and data overhead required by the C
run-time libraries if all of the following conditions are true:

• Your application or dynamic-link library does not explicitly call any C run-time
functions.

• Your application uses neither the __ argc nor __ argv command-line argu­
ments nor the environ variable. For more information about how to retrieve the
command line and the MS-DOS environment, see Section 14.3, "Using Com­
mand-Line Arguments and the MS-DOS Environment." Dynamic-link libraries
cannot use __ argc, __ argv, and environ in any case.

312 Microsoft Windows Guide to Programming

• Your application or dynamic-link library does not implicitly call any C run­
time functions, such as to perform stack checking or long division. Stack check­
ing is enabled by default, but you can disable it by using the CL option /Gs.

14.5.10.1 Eliminating C Run-Time Startup Code from a Windows
Application
To eliminate the C run-time startup code from a Windows application, link
the library named xNOCRT.LIB instead of the usual C run-time library
xLIBCEW.LIB (the x placeholder stands for the memory-model specifier
S, M, L, or C).

The following example shows the link command line for an application named
SAMPLE that does not make explicit or implicit calls to C run-time functions:

link /nod sample, , , snocrt libw, sample.def

The xNOCRT.LIB library includes the Windows startup code that ultimately calls
your application's WinMain function.

If you link your application by using xNOCRT .LIB instead of xLIBCEW .LIB and
the linker reports unresolved external symbols that do not belong to your applica­
tion, your application is probably calling C run-time functions implicitly. In this
case, you can still eliminate C run-time startup code and data required for explicit
C run-time calls and for the use of the __ argc, __ argv, and environ variables. To
do this, include xNOCRT.LIB on your linker command line before (rather than in­
stead of) xLIBCEW.LIB. You must also specify the linker option /noe.

The following example shows the linker command line for an application named
Sample if it makes implicit C run-time calls, but not explicit C run-time calls:

link /nod /noe sample, , , snocrt slibcew libw, sample.def

14.5.10.2 Eliminating C Run-Time Startup Code from a Windows
Dynamic-Link Library
To eliminate the C run-time startup code from a Windows dynamic-link library,
link the static library xNOCRTD.LIB in place of the usual C run-time library
xDLLCEW.LIB.

Chapter 14 C and Assembly Language 313

The following example shows the linker command line for a dynamic-link library
named SAMPDLL that does not make explicit or implicit calls to C run-time func­
tions:

link /nod sampdll libentry,sampdll .dll, ,snocrtd libw,sampdll .def

The xNOCRTD.LIB library includes the Windows startup code that ultimately
calls your dynamic-link library's LibMain function.

As with an application, if the linker reports unresolved external references that do
not belong to your dynamic-link library, the library is probably making implicit C
run-time calls. In this case, you can eliminate the startup code required for explicit
C run-time calls by linkingxNOCRTD.LIB along withxDLLCEW.LIB, as fol­
lows:

link /nod /noe sampdll libentry,sampdll.dll ,,snocrtd sdllcew,sampdll.def

Be sure to include the required /noe option.

14.6 Writing Assembly-Language Code
Assembly-language Windows applications are highly structured assembly­
language programs that use high-level-language calling conventions in addition to
Windows functions, data types, and programming conventions. Although you as­
semble assembly-language Windows applications by using the Microsoft Macro
Assembler (ML), the goal is to generate object files that are similar to object files
generated by using CL. Following are some guidelines designed to help you meet
this goal and create assembly-language Windows applications:

1. Include the CMACROS.INC file in the application source files. This file con­
tains high-level-language macros that define the segments, programming mod­
els, function interfaces, and data types needed to create Windows applications.
For more information about Windows assembly-language macros, see the
Microsoft Windows Programmer's Reference, Volume 4.

2. Define the programming model, setting one of the options memS, memM,
memC, or memL to 1. One of these options must be set before you specify the
statement that includes the CMACROS.INC file.

3. Set the calling convention to Pascal by setting the ?PLM option to 1.
This option must be set before you specify the statement that includes the
CMACROS.INC file. Pascal calling conventions are required only for functions
that Windows calls.

4. Set the Windows prolog and epilog option ?WIN to 1. This option must be set
before you specify the statement that includes the CMACROS.INC file. This
option is required only for callback functions (or for exported functions in
Windows libraries).

314 Microsoft Windows Guide to Programming

5. Create the application entry point, the WinMain function, and declare it as a
public function. It should have the following form:

cProc WinMain, <PUBLIC>, <si ,di>
parmW hinst

cBegin WinMain

cEnd WinMain

parmW hPrevinstance
parmD lpCmdline
parmW nCmdShow

The WinMain function should be defined within the standard code segment
CODE.

6. Make sure that your callback functions are declared:

cProc TestWndProc, <FAR, PUBLIC>, <si ,di>
parmW hWnd
parmW message
parmW wParam
parmD l Pa ram

cBegin TestWndProc

cEnd TestWndProc

Callback functions must be defined within a code segment.

7. Link your application with the appropriate C-language library for Windows and
C run-time libraries. To link the application properly, you might need to add an
external definition for the absolute symbol __ acrtused in your application
source file.

Note Windows functions destroy all registers except DI, SI, BP, and DS.

14.6.1 Modifying the Interrupt Flag
Windows in 386 enhanced mode runs at input and output (I/O) privilege level 0
(IOPLO). At this level, the popf and iret instructions will not change the state of
the interrupt flag. (Other flags will still be saved and restored.) This means, for ex­
ample, that the following code will leave interrupts disabled upon completion:

pus hf
cl i

po pf

Chapter 14 C and Assembly Language 315

This is no longer valid code

; Leaves interrupts disabled

In this IOPLO environment, sti and cli are the only instructions that will change
the interrupt flag. Upon exiting a critical section of code in which you require inter­
rupts to be disabled, you cannot rely on the popf instruction to restore the state of
the interrupt flag. Instead, upon examining the interrupt flag, you should explicitly
set it to its saved value (saved by a previous pushfinstruction). The following ex­
ample illustrates the proper method for restoring the interrupt flag:

pushf ; This code illustrates the proper technique
cl i

Ski pSTI:

pop ax
test ah,2
jz SkipSTI
sti

If you have used a software interrupt hook that calls the next interrupt handler in
the chain, you similarly cannot rely on the iret instruction of the next interrupt han­
dler to return the state of the interrupt flag. The following code, for example, is in­
correct:

My_SW_Int_Hook: ; The following is incorrect
sti

pus hf
cl i

Simulate interrupt call with a pushf
and a cli

316 Microsoft Windows Guide to Programming

call [Next_Handler_In_Chain]
The IRET of the next interrupt handler will not restore
the interrupt flag, so it may be left cleared

; (interrupts disabled)

i ret

The proper technique is to place an sti instruction immediately after the call to the
next interrupt handler, to enable interrupts again in case the next interrupt handler
leaves interrupts disabled. This technique is shown in the following example:

My_SW_Int_Hook: ; The foll owing is correct
sti

pus hf
cli
call
sti

iret

; Simulate interrupt call
; and a cli

[Next_Handler_In_Chain]
; Enable interrupts again

with a pushf

in case next handler disables them

14.6.2 Writing Exported Functions in Assembly Language
When you write an exported function in assembly language, do not begin the func­
tion with the following code:

mov ax,xxxx

In this example, xux is any constant value.

This code at the beginning of an exported function is identical to the beginning of
a library code segment that Windows has cached in extended memory. When
Windows attempts to reload the code segment, it treats the constant value as if it
were the address of the library's data segment and fixes up the constant value to
the new address of the data segment.

To ensure that Windows does not treat your code segment as a cached library seg­
ment, simply precede the mov ax instruction with a nop instruction, as follows:

nop
mov ax,xxxx

Chapter 14 C and Assembly Language 317

14.6.3 Using the ES Register
You must take special care when using the ES register in an assembly-language ap­
plication. Under certain circumstances, a selector that points to a discarded data ob­
ject in the ES register can cause your application to produce a general-protection
(GP) fault. Also, a rare combination of circumstances can cause Windows to enter
an infinite loop.

A GP fault occurs when a program pops the ES stack and the selector in the ES
register refers to a segment that has been discarded. For example, in the following
example, ES refers to a global memory object. Freeing the object invalidates the
selector that was temporarily pushed onto the stack.

push es

cCal 1 Global Free <es>

pop es

Your application need not discard a segment explicitly for it to be discarded. The
following example shows how a segment can be discarded indirectly:

push es ; ES refers to a discardable data segment

call far Procl Procl directly or indirectly causes the memory
object pointed to by ES to be discarded

pop es

Windows handles code-segment faults. It does not handle data-segment faults,
however, so this example would result in a GP fault.

An unusual situation can arise that puts Windows in an infinite loop when the ES
register holds the selector to a discardable code segment. In such cases, you should
clear ES before making a call from one discardable segment to another. The fol­
lowing example shows how to make such a call:

318 Microsoft Windows Guide to Programming

mov es, CODESEGl

xor ax, ax
mov es, ax
cul 1 far Procl

CODESEGl is discardable

This sample clears the ES register before
calling from a discardable segment to a
discardable segment

If you fail to clear the ES register in this situation, the Windows segment fault han­
dler can enter an infinite loop, discarding and reloading the three discardable code
segments when memory is low. During this process, the ES stack is pushed and
popped, forcing CODESEG 1 to be unnecessarily reloaded when the "code fence"
has room only for the other two segments.

14. 7 Related Topics
For more information about managing memory, see Chapter 15, "Memory Man­
agement," and Chapter 16, "More Memory Management."

For more information about creating dynamic-link libraries, see Chapter 20,
"Dynamic-Link Libraries."

For more information about Windows assembly-language macros, see the
Microsoft Windows Programmer's Reference, Volume 4.

For more information about compiling and linking applications, see Microsoft
Windows Programming Tools.

Memory Management

Chapter 15

15.1 Using Memory ... 321
15.1.1 Using the Global Heap ... 322
15.1.2 Using the Local Heap .. 323
15 .1.3 Working with Discardable Memory.. 325

15.2 Using Segments.. 326
15.2.1 Using Code Segments .. 327
15.2.2 The DATA Segment. ... 328

15 .3 Sample Application: Memory.. 329
15.3.1 Splitting the C-Language Source File 329
15.3.2 Modifying the Header File .. 330
15.3.3 Adding New Segment Definitions... 330
15.3.4 Modifying the Makefile ... 331
15.3.5 Compiling and Linking.. 332

15.4 Related Topics.. 332

Chapter 15 Memory Management 321

All applications must use memory in order to run. Because the Microsoft
Windows 3.1 operating system is multitasking, several applications may use
memory simultaneously. Windows manages the available memory to make sure
all applications have access to it, and to make memory usage as efficient as
possible.

This chapter provides a brief introduction to the Windows memory-management
system and covers the following topics:

• Using memory in Windows

• Using code and data segments efficiently

This chapter also explains how to build a sample application, Memory, that il­
lustrates these concepts.

15 .1 Using Memory
In the Windows memory-management system, your application can allocate
blocks of memory, called memory objects. You can allocate memory objects from
either the global or the local heap. The global heap is a pool of free memory availa­
ble to all applications. The local heap is a pool of free memory available to just
your application. In managing the system memory, Windows also manages the
code and data segments of your application.

In some memory-management systems, the memory you allocate remains fixed at
a specific memory location until you free it. In Windows, allocated memory can
be also be movable and discardable.

A movable memory object does not have a fixed address; Windows can move it at
any time to a new address. Movable memory objects let Windows make the best
use of free memory. For example, if a movable memory object separates two free
memory objects, Windows can move the movable object to combine the free ob­
jects into one contiguous object.

Discardable memory is similar to movable memory in that Windows can move it,
but Windows can also reallocate a discardable object to zero length if it must use
the space to satisfy an allocation request. Reallocating a memory object to zero
length destroys the data, the object contains, but an application always has the op­
tion of reloading the discarded data whenever it is needed.

When you allocate a memory object, you receive a handle, rather than a pointer, to
that memory object. The handle identifies the allocated object. You use it to re­
trieve the object's current address when you need to access the memory.

To access a memory object, you lock the memory handle. This temporarily fixes
the memory object and returns a pointer to its beginning. While a memory handle

322 Microsoft Windows Guide to Programming

is locked, Windows cannot move or discard the object. Therefore, after you have
finished using the object, you should unlock the handle as soon as possible. Keep­
ing a memory handle locked makes Windows memory management less efficient
and can cause subsequent allocation requests to fail.

Windows lets you compact memory. By "squeezing" the free memory from be­
tween allocated memory objects, Windows collects the largest contiguous free
memory object possible, from which you may allocate additional memory objects.
This squeezing is a process of moving and (if necessary) discarding memory ob­
jects. You can also discard individual memory objects if you temporarily have no
need for them.

15 .1.1 Using the Global Heap
The global heap contains all of system memory. Windows allocates the memory it
needs for code and data from the global heap when it first starts. Any remaining
free memory in the global heap is available to applications and Windows libraries.

Applications typically use the global heap for large memory allocations (greater
than a kilobyte or so). Although you can allocate larger memory objects from the
global heap than you can from the local heap, there is a tradeoff: Because it is eas­
ier to manipulate local data than it is to manipulate global data, your application
will be easier to write if you use only local data.

You can allocate any size of memory object from the global heap. Applications
typically allocate large objects from the global heap; these objects can exceed 64K
if the applications require that much contiguous space. Windows provides special
services for accessing data past the first 64K segment. For more information about
these services, see Chapter 16, "More Memory Management."

To allocate a global memory object, use the GlobalAlloc function. You specify
the size and type (fixed, movable, or discardable); GlobalAlloc returns a handle of
the memory object. Before you can use the memory object, you must lock it by
using the GlobalLock function, which returns the full 32-bit address of the first
byte in the memory object. You can then use this long pointer to access the bytes
in the object.

In the following example, the GlobalAlloc function allocates 4096 bytes of mova­
ble memory, and the GlobalLock function locks it so that the first 256 bytes can
be set to the address OxFF:

HANDLE hMem;
LPSTR lpMem;
inti;

Chapter 15 Memory Management 323

if ((hMem = GlobalAlloc(GMEM_MOVEABLE, 4096)) !=NULL)
if ((lpMem = GlobalLock(hMem)) != (LPSTR) NULL) {

for (i = 0; i < 256; i++)
lpMem[iJ = 0xFF;

GlobalUnlock(hMem);

}

In this example, the application unlocks the memory handle by using the
GlobalUnlock function immediately after accessing the memory object. Once a
movable or discardable memory object is locked, Windows guarantees that the ob­
ject will remain fixed in memory until it is unlocked. This means the address re­
mains valid as long as the object remains locked, but this also keeps Windows
from making the best use of memory if other allocation requests are made.
Cooperative applications unlock memory.

The GlobalAlloc function returns the value NULL if an allocation request fails.
You should always check the return value to ensure that it is a valid handle. If you
want to, you can determine how much memory is available in the global heap by
using the GlobalCompact function. This function returns the number of bytes in
the largest contiguous free memory object.

You should also check the address returned by the GlobalLock function. This
function returns a NULL pointer if the memory handle was not valid or if the con­
tents of the memory object have been discarded.

You can free any global memory you may no longer need by using the
GlobalFree function. In general, you should free such memory so that other appli­
cations can use the space. You should always free global memory before your ap­
plication terminates.

15.1.2 Using the Local Heap
The local heap contains free memory that may be allocated for private use by the
application. The local heap is located in the application's data segment and is
therefore accessible only to a specific instance of the application. You can allocate
memory from the local heap in sizes of up to 64K and the memory can be fixed,
movable, or discardable, as needed.

Windows does not automatically supply a local heap for an application. To request
a local heap for your application, use the HEAPSIZE statement in the applica­
tion's module-definition file. This statement sets the initial size, in bytes, of the
local heap. If the local heap is in a fixed data segment, you may allocate up to the
specified heap size. If the local heap is in a movable data segment, you may allo­
cate beyond the initial heap size and up to 64K, since Windows will automatically
allocate additional space for the local heap until the data segment reaches the 64K
maximum. You should note, however, that if Windows allocates additional local

324 Microsoft Windows Guide to Programming

memory to satisfy a local allocation, it may move the data segment, invalidating
any long pointers to objects in local memory.

The maximum size of any local heap depends on the size of the application's
stack, static data, and global data. The local heap shares the data segment with the
stack and this data. Since a data segment can be no larger than 64K, an applica­
tion's local heap can be no larger than 64K minus the size of the application's
stack, global data, and static data. The application's stack size is defined by the
STACKSIZE statement in the application's module-definition file. The global
and static data sizes depend on how many strings and global or static variables are
declared in the application. Windows enforces a minimum stack size of 5K, so if
the module-definition file specifies a smaller stack size, Windows automatically
sets the stack size to 5K.

You can allocate local memory by using the LocalAlloc function. This function al­
locates a memory object in the application's local heap and returns a handle of the
memory. You lock the local memory object by using the LocalLock function.
This returns a near address (a 16-bit offset) to the first byte in the memory object.
The offset is relative to the beginning of your data segment. In the following ex­
ample, the LocalAlloc function allocates 256 bytes of movable memory, and the
LocalLock function locks it so that the first 256 bytes can be set to the address
OxFF:

HANDLE hMem;
PSTR pMem;
int i;

if ((hMem = LocalAlloc(LMEM_MOVEABLE, 256)) != NULL) {
if ((pMem = Locallock(hMem)) != NULL) {

for (i = 0; i < 256; i++)
pMem[i] = 0xFF;

LocalUnlock(hMem);
}

}

In this example, the application unlocks the memory handle by using the Local­
Unlock function immediately after accessing the memory object. Once a movable
or discardable memory object is locked, Windows guarantees that the object will
remain fixed in memory until it is unlocked. This means the address remains valid
as long as the object remains locked, but this also prevents Windows from making
the best use of memory if other allocation requests are made. If you want to ensure
that you are getting the best performance from your application's local heap, make
sure you unlock memory after using it.

The LocalAlloc function returns the value NULL if an allocation request fails.
You should always check the return value to ensure that a valid handle exists. If
you want to, you can determine how much memory is available in the local heap
by using the Local Compact function. This function returns the number of bytes in
the largest contiguous free memory object in the local heap.

Chapter 15 Memory Management 325

You should also check the address returned by the LocalLock function. This func­
tion returns NULL if the memory handle was not valid or if the contents of the
memory object have been discarded.

15.1.3 Working with Discardable Memory
You create a discardable memory object by combining the
GMEM_DISCARDABLE and GMEM_MOVEABLE constants when allocating
the object. The resulting object will be moved as necessary to make room for other
allocation requests, or if there is not enough memory to satisfy the request, the ob­
ject may be discarded. The following example allocates a discardable object from
global memory:

hMem = GlobalAllocCGMEM_MOVEABLE I GMEM_DISCARDABLE, 4096L);

When Windows discards a memory object, it empties the object by reallocating it,
with zero bytes given as the new size. The contents of the object are lost, but the
memory handle of the object remains valid. Any attempt to lock the handle and
access the object will fail, however.

Windows determines which memory objects to discard by using a least-recently­
used (LRU) algorithm. It continues to discard memory objects until there is
enough memory to satisfy an allocation request. In general, if you have not
accessed a discardable object in some time, it is a candidate for discarding. A
locked object cannot be discarded.

You can discard your own memory objects by using the GlobalDiscard function.
This function empties the object but preserves the memory handle. You can also
discard other applications' memory objects by using the Global Compact func­
tion. This function moves and discards memory objects until the specified or
largest possible amount of memory is available. One way to discard all discardable
objects is to supply -1 as the argument. This is a request for every byte of
memory. Although the request will fail, it will discard all discardable objects and
leave the largest possible free memory object.

Since a discarded memory object's handle remains valid, you can still retrieve
information about the object by using the GlobalFlags function. This is
useful for verifying that the object has been discarded. GlobalFlags sets the
GMEM_DISCARDED bit in its return value when the specified memory object
has been discarded. Therefore, if you attempt to lock a discardable object and the
lock fails, you can check the object's status by using GlobalFlags.

Once a discardable object has been discarded, its contents are lost. If you want to
use the object again, you must reallocate it to its appropriate size and fill it with
the data it previously contained. You can reallocate it by using the GlobalReAlloc
function. The following example checks the object's status, and then fills it with
data if it has been discarded:

326 Microsoft Windows Guide to Programming

lpMem = GlobalLock(hMem);

if (lpMem == NULL) {

}

if (GlobalFlags(hMem) & GMEM_DISCARDED) {
hMem = GlobalReAlloc(hMem, 4096L,

GMEM_MOVEABLE I GMEM_DISCARDABLE);
lpMem = GlobalLock(hMem);

}

f* More program lines */
/* Fill with data. */

GlobalUnlock(hMem);

You can make a discardable object nondiscardable (or vice versa) by using the
GlobalReAlloc function and the GMEM_MODIFY constant. The following ex­
ample changes a movable object, identified by the hMem memory handle, to a
movable, discardable object:

hMem = GlobalReAlloc(hMem, 0, GMEM_MODIFY I GMEM_DISCARDABLE);

The following example changes a discardable object to a nondiscardable one:

hMem = GlobalReAlloc(hMem, 0, GMEM_MODIFY);

When you specify GMEM_MODIFY in a call to the GlobalReAlloc function, the
second parameter is ignored.

15.2 Using Segments
One of the principal features of Windows is that it lets the user run more than one
application at a time. Because multiple applications place greater demands on
memory than does a single application, the ability in Windows to run more than
one application at a time significantly affects how you write applications. Al­
though many computers have at least 640K of memory, this memory rapidly be­
comes limited as the user loads and runs more applications. With Windows, you
must be aware of how your application uses memory and be prepared to minimize
the amount of memory your application occupies at any given time.

To help you manage your application's use of memory, Windows uses the same
memory-management system for your application's code and data segments that
you use within your application to allocate and manage global memory objects.
When the user starts your application, Windows allocates space for the code and
data segments in global memory and then copies the segments from the executable
file into memory. These segments can be fixed, movable, and even discardable.
You specify their attributes in the application's module-definition file.

Chapter 15 Memory Management 327

You can reduce the effect your application has on memory by using movable code
and data segments. By using movable segments, you enable Windows to take
advantage of free memory as the memory becomes available.

By using discardable code segments, you can further reduce the effect your appli­
cation has on memory. If you make a code segment discardable, Windows dis­
cards it, if necessary, to satisfy requests for global memory. Unlike ordinary
memory objects that you may allocate, discarded code segments are monitored by
Windows, which automatically reloads them if your application attempts to ex­
ecute code within them. This means that your application's code segments are in
memory only when they are needed.

Discarding a segment destroys its contents. Windows does not save the current
contents of a discarded segment. Instead, it treats the segment as if it were no
different than when originally loaded and will load the segment directly from the
executable file when it is needed.

15.2.1 Using Code Segments
A code segment is one or more bytes (but never more than 64K) of machine in­
structions. It represents all or part of an application's program instructions.

Important You must not store writable data in code segments; writing to a code
segment causes a general-protection (GP) fault when your Windows version 3.1
application runs. Windows will, however, allow you to store read-only data, such
as a jump table, in a code segment. For more information about running applica­
tions with Windows 3.1, see Chapter 16, "More Memory Management."

Every application has at least one code segment. For example, the sample applica­
tions described in previous chapters have one and only one code segment. You can
also create an application that has multiple code segments. In fact, most Windows
applications have multiple code segments. By using multiple code segments, you
reduce the size of any given code segment to the number of instructions needed to
carry out some task. If you also make these segments discardable, you effectively
minimize the memory requirements of your application's code segments.

When you create medium- or large-model applications, you are creating applica­
tions that use multiple code segments. Medium- and large-model applications typi­
cally have one or more source files for each segment. When working with multiple
source files, compile each source file separately and explicitly name the segment
to which the compiled code will belong. Then link the application, defining the
segments' attributes in the application's module-definition file.

To define a segment's attributes, use the SEGMENTS statement in the module­
definition file. The following example shows definitions for three segments:

328 Microsoft Windows Guide to Programming

SEGMENTS
PAINT_TEXT MOVEABLE DISCARDABLE
INIT_TEXT MOVEABLE DISCARDABLE
WNDPROC_TEXT MOVEABLE DISCARDABLE

You may also use the CODE statement in the module-definition file to define the
default attributes for all code segments. The CODE statement also defines att..~­
butes for any segments that are not explicitly defined in the SEGMENTS state­
ment. The following example shows how to make all segments not listed in the
SEGMENTS statement discardable:

CODE MOVEABLE DISCARDABLE

If you use discardable code segments in your application, you must balance seg­
ment discarding with the number of times the segment may be accessed. For ex­
ample, the segment containing your main window procedure should probably not
be discardable, because Windows calls the procedure often. Typically, this seg­
ment is small (approximately 4K). Because a discarded segment has to be loaded
from disk when needed, the memory savings you may realize by discarding the
window procedure may be offset by the performance loss that comes with ac­
cessing the disk often. To optimize performance, you should ensure that the only
things in the segment containing the main window procedure are called frequently
by the system.

Note A code segment in a library can be fixed or movable. If it is movable, it is
automatically made discardable.

15.2.2 The DATA Segment
Every application has a DAT A segment. The DAT A segment contains the applica­
tion's stack, local heap, and static and global data. Like a code segment, the
DAT A segment cannot be larger than 64K.

A DATA segment can be fixed or movable, but not discardable. If the DATA seg­
ment is movable, Windows automatically locks the segment upon passing control
to the application. Otherwise, a movable DAT A segment may move if an applica­
tion allocates global memory, or if the application attempts to allocate more
memory than is currently available in the local heap. For this reason, it is impor­
tant not to keep long pointers to variables in the DAT A segment.

You define the attributes of the DATA segment by using the DATA statement
in the module-definition file. The default attributes are MOVEABLE and
MULTIPLE. The MULTIPLE attribute directs Windows to create one copy of

Chapter 15 Memory Management 329

an application's data segment for each instance of the application. This means the
contents of the DAT A segment are unique to each instance of the application.

A large-model application may have additional data segments, but only one
DAT A segment. Using large model with additional data segments is not recom­
mended. If your application requires multiple segments of data, you can allocate
them by using the GlobalAlloc function during the initialization of the application.

15.3 Sample Application: Memory
This sample application illustrates how to create a medium-model Windows appli­
cation that uses discardable code segments. To create the Memory application,
make the following modifications to the Generic application:

1. Split the C-language source file into four separate files.

2. Modify the header file.

3. Add new segment definitions to the module-definition file.

4. Modify the makefile.

5. Compile and link the application.

15.3.1 Splitting the C-Language Source File
So that the functions within the file are compiled as separate segments, you must
split the C-language source file into separate files. For this application, you can
split the source file into four parts, as described in the following list:

Source file

MEMORYl.C

MEMORY2.C

Content

Contains the WinMain function. Because Windows executes the
message loop in WinMain frequently, the segment created from
this source file is not discardable. This prevents a situation in
which the segment has to be loaded from the disk often. Because
WinMain is relatively small anyway, keeping this segment in
memory has little effect on available global memory.

Contains the Memorylnit function. Since the Memorylnit function
is used only when the application first starts, the segment created
from this source file can be discardable.

330 Microsoft Windows Guide to Programming

Source file

MEMORY3.C

MEMORY4.C

Content

Contains the MemoryWndProc function. Although the segment
created from this source file can be discardable, the MemoryWnd­
Proc function is likely to be called at least as often as the WinMain
function receives control. In this case, the segment is movable but
not discardable.

Contains the About function. Since the About function is seldom
called (only when the About dialog box is displayed), the code seg­
ment created from this source file can be discardable.

You must include the WINDOWS.Hand MEMORY.H header files in each source
file.

15.3.2 Modifying the Header File
You must move the declaration of the hlnst variable into the MEMORY.H header
file. This ensures that the variable is accessible in all segments. The hlnst variable
is used in the WinMain and MemoryWndProc functions.

15.3.3 Adding New Segment Definitions
To specify the attributes of each code segment, you must add segment definitions
to the module-definition file. This means you must add a SEGMENTS statement
to the file and list each segment by name in the application. After you have made
the changes, the module-definition file should look like this:

NAME Memory

DESCRIPTION 'Sample Microsoft Windows 3.1 Application'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

SEGMENTS
MEMORY MAIN
MEMORY _IN IT
MEMORY_WNDPROC
MEMORY_ABOUT

PRE LOAD MOVEABLE
LOADONCALL MOVEABLE DISCARDABLE
LOADONCALL MOVEABLE
LOADONCALL MOVEABLE DISCARDABLE

CODE MOVEABLE DISCARDABLE

DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 8192

EXPORTS
MainWndProc @1
About @2

Chapter 15 Memory Management 331

In this module-definition file, the SEGMENTS statement defines the attributes of
each segment:

• The MEMORY_MAIN segment contains WinMain.

• The MEMORY _!NIT segment contains the initialization functions.

• The MEMORY_ WNDPROC segment contains the window procedure.

• The MEMORY _ABOUT segment contains the dialog box procedure.

Each segment has the MOVEABLE attribute, but only MEMORY _!NIT and
MEMORY _ABOUT have the DISCARDABLE attribute. Also, only the
MEMORY_MAIN segment is loaded when the application starts. The other seg­
ments have the LOADONCALL attribute, which means they are loaded when
needed.

Although each segment is explicitly defined, the CODE statement is still given.
This statement specifies the attributes of any additional segments the linker may
add to the application-for example, any segments containing C run-time func­
tions called in the application source files.

15.3.4 Modifying the Makefile
To compile the new C-language source files separately, you must refer to each
source file in the makefile. Since this application is a medium-model application,
use the /AM option when compiling. For clarity, you should also name each seg­
ment by using the /NT option.

You will also need to change the link command line so that it refers to the
medium-model library MLIBCEW.LIB rather than the small-model library
SLIBCEW.LIB.

The makefile for the Memory application should look like this:

memory.res: memory.re memory.h
re /r memory.re

memoryl.obj: memoryl.c memory.h
cl /c /AM /Gsw /Zp /NT MEMORY_MAIN memoryl.c

memory2.obj: memory2.c memory.h
cl /c /AM /Gsw /Zp /NT MEMORY_INIT memory2.c

332 Microsoft Windows Guide to Programming

memory3.obj: memory3.c memory.h
cl /c /AM /Gsw /Zp /NT MEMORY_WNOPROC memory3.c

memory4.obj: memory4.c memory.h
cl /c /AM /Gsw /Zp /NT MEMORY_ABOUT memory4.c

memory.exe: memoryl.obj memory2.obj memory3.obj memory4.obj \
memory.def
link memoryl memory2 memory3 memory4,memory.exe,,mlibcew \
libw,memory.def
re memory.res

memory.exe: memory.res
re memory.res

15.3.5 Compiling and Linking
After compiling and linking the Memory application, start Windows, Microsoft
Windows Heap Walker (HEAPWALK.EXE), provided with the SDK, and
Memory. Use Heap Walker to view the various segments of the Memory applica­
tion.

15.4 Related Topics
For more information about managing memory, see Chapter 16, "More Memory
Management."

For more information about memory-management functions, see the Microsoft
Windows Programmer's Reference, Volume 2.

More Memory Management

Chapter 16

16.1 Memory Configurations ... 335
16.1.1 Standard Mode... 336

16.1.1.1 Using Huge Memory Objects in
Standard Mode .. 337

16.1.1.2 Using Global Selectors .. 338
16.1.1.3 Code-Segment and Data-Segment Aliasing 339

16.1.2 386EnhancedMode .. 340
16.1.2.1 Swapping Code and Data...................................... 340
16.1.2.2 Preventing Memory from Being Paged to Disk ... 341

16.2 Storing Data... 342
16.2.1 Managing Automatic Data Segments...................................... 343
16.2.2 Managing Local Dynamic-Data Objects................................. 345

16.2.2.1 Allocating Memory in the Local Heap 346
16.2.2.2 Locking and Unlocking Local

Memory Objects .. 347
16.2.2.3 Changing a Local Memory Object........................ 348
16.2.2.4 Freeing and Discarding Local Memory Objects... 349
16.2.2.5 Retrieving Information About a Local

Memory Object 349
16.2.3 Managing Global Memory Objects... 349

16.2.3.1 Allocating Memory in the Global Heap 351
16.2.3.2 Locking and Unlocking a Global

Memory Object 351
16.2.3.3 Changing a Global Memory Object.. 353
16.2.3.4 Freeing and Discarding Global

Memory Objects.. 354
16.2.3.5 Retrieving Information About a Global

Memory Object 354

334 Microsoft Windows Guide to Programming

16.2.3.6 Locking a Global Memory Object for
Extended Periods... 354

16.2.3.7 Being Notified When a Global Memory Object
Is to Be Discarded ... 355

16.2.3.8 Changing When a Global Memory Object
Is Discarded ... 355

16.2.3.9 Freeing Global Memory in
Low-Memory Conditions 355

16.2.4 Using Extra Bytes in Window and Class Data Structures 356
16.2.5 ManagingResources .. 357

16.2.5.1 Locating a Custom Resource 358
16.2.5.2 Loading a Custom Resource................................. 358
16.2.5.3 Locking and Unlocking a Custom Resource 359
16.2.5.4 Freeing a Custom Resource.................................. 359

16.3 Using Memory Models .. 360
16.4 Using Huge Data .. 361
16.5 Traps to Avoid When Managing Program Data 362
16.6 Managing Memory for Program Code... 364

16.6.1 Using Code-Segment Attributes.. 364
16.6.2 Using Multiple Code Segments ... 365
16.6.3 Balancing Code Segments... 365

16.7 Related Topics.. 366

Chapter 16 More Memory Management 335

Chapter 15, "Memory Management," presented the basic information you need to
know about using memory in a Microsoft Windows 3.1 application. Some applica­
tions require more advanced memory-management techniques, however. This
chapter provides more detailed information about how the Windows operating sys­
tem manages memory and how you should write your application to make the best
use of the Windows advanced memory features.

This chapter covers the following topics:

• Windows memory configurations

• Using data storage in Windows applications

• Using memory models

• Using huge data

• Managing program data

• Managing memory for program code

16 .1 Memory Configurations
You should expect that your Windows application will be run in either of two
memory configurations; most often, which configuration depends on the type of
the system CPU and the amount and configuration of memory. Windows supports
two memory configurations:

• Standard mode

• 386 enhanced mode

If the user started other programs before starting Windows, the amount of memory
available to Windows will be less than that installed in the system.

Because Windows uses different memory configurations on different systems,
your application should be able to run successfully with either memory configura­
tion. The best way to ensure this is to write the application by following all the
Windows memory-management rules. For a list of these rules, see Section 16.5,
"Traps to Avoid When Managing Program Data."

Wherever possible, your application should not contain code that is dependent
upon a particular memory configuration. In some instances, however, an applica­
tion must be able to determine the memory configuration in which it is running.
To do this, the application can call the GetWinFlags function. This function re­
turns a 32-bit value containing flags that indicate the memory configuration in
which Windows is running and other information about the user's system.

336 Microsoft Windows Guide to Programming

16 .1.1 Standard Mode
Windows uses the standard-mode memory configuration by default on systems
that meet the following criteria:

• An 80286-based system with at least 1 megabyte of memory.

• An 80386-based system with at least 1 megabyte of memory, but less than 2
megabytes. On 80386-based systems with 2 megabytes or more, Windows uses
the 386 enhanced-mode memory configuration by default. For a description of
this memory configuration, see Section 16.1.2, "386 Enhanced Mode."

The Windows heap is made up of at least two memory objects, one in conven­
tional (MS-DOS) memory and one in extended memory. Additional conventional
or extended memory objects may be present.

The memory object that Windows uses for the global heap is in conventional
memory. This area begins above any terminate-and-stay-resident (TSR) programs,
device drivers, MS-DOS, and so on, and extends to the top of conventional
memory. This conventional memory is usually 640K, but can be less on some sys­
tems.

The second required memory object for the Windows standard-mode configura­
tion is in extended memory. Windows allocates the object in extended memory
through an extended-memory device driver and then accesses the object directly,
without using the driver. The size and location of this object can vary, depending
on what the user loaded into extended memory before starting Windows.

Windows links the two or more memory objects to form the Windows global
heap. The beginning (bottom) of the conventional memory object is the beginning
(bottom) of the global heap, and the end (top) of the extended-memory object is
the end (top) of the global heap.

The following figure shows a typical Windows standard-mode memory
configuration:

Chapter 16 More Memory Management 337

....------------. Top of extended memory
Discardable code segments

1-----------1 At or above 11000h

Optional high memory area (64K)

1------------1 10000h

AOOOh
(640K)

t
Movable segments

(code and data)
and

discardable data segments

t
Fixed segments
(code and data)

TS R's
Device drivers

MS-DOS
RAM BIOS data
Interrupt table

OOOOh

As with other memory configurations, Windows allocates discardable code seg­
ments from the top of the heap, fixed segments from the bottom of the heap, and
movable code and data segments above fixed segments.

16.1.1.1 Using Huge Memory Objects in Standard Mode
A far address is created from 16-bit segment address and a 16-bit offset. The seg­
ment address is a selector, similar to a Windows handle, that points to an entry in a
local or global descriptor table (LDT or GDT). The table entry indicates whether
the segment referred to by the selector currently resides in memory. If the segment
resides in memory, the table entry provides the linear address of the segment.

If you allocate a huge memory object (larger than 64K), the Microsoft C Optimiz­
ing Compiler (CL) generates huge-pointer code that performs segment arithmetic
to advance a far pointer across segment 64K boundaries. However, CL does this

338 Microsoft Windows Guide to Programming

only if the object is explicitly declared as huge or if the module was compiled with
the huge memory model. Do not directly change the segment address portion of a
far pointer. Attempting to increment the segment address with the intent of advanc­
ing the physical paragraph address will only result in an invalid selector. When the
invalid selector is subsequently used to read or write to the memory location,
either Windows will report a general-protection (GP) fault, or possibly worse, the
invalid selector might inappropriately point to unintended data or code.

If you are programming in assembly language, the proper technique for incre­
menting a far pointer is to use the external variable __ ahincr. Windows fixes up
__ ahincr with the correct constant to increment the segment selector. This is
possible because when Windows allocates the huge memory object, it assigns re­
lated selector values to the related memory segments that are 64K (OxlOOO para­
graphs) in size. This is called selector tiling. The following example illustrates the
proper method for incrementing a far pointer by 64K (the only increment pro­
vided):

extrn ~ahincr:abs

mov ax, es es is the segment address you
wish to increment

add ax, ahincr
mov es, ax

The largest memory object Windows can allocate on an 80286 processor is 1 meg­
abyte less 16 bytes. The largest memory object on an 80386 is 16 megabytes less
64K. If your application requires a memory object larger than 16 megabytes less
64K, see the DOS Protected-Mode Interface (DPMI) specification in the Microsoft
Windows Device Driver Kit. All parts of an application (code and data) are nor­
mally movable in linear memory.

16.1.1.2 Using Global Selectors
To perform memory-mapped input and output, you can use the following global­
selector constants in an assembly-language application to access the corresponding
locations in memory:

• AOOOH

• BOOOH

• B800H

• COOOH

Chapter 16 More Memory Management 339

• DOOOH

• EOOOH

• FOOOH

The following example illustrates how to use these selectors properly:

mov ax, _A000H
mov es,ax

Do not use these selectors except to support hardware devices that perform
memory-mapped input and output.

16.1.1.3 Code-Segment and Data-Segment Aliasing
Usually, you cannot execute code stored in a data segment. In standard mode, an
attempt to execute code in a data segment results in a GP fault. In rare cases, how­
ever, such execution may be necessary, and can be performed by aliasing the data
segment in question. Aliasing involves copying a segment selector and then chang­
ing the TYPE field of the copy so that an operation that is not normally permitted
can be performed on the segment.

Windows provides two functions that perform segment aliasing:

• AllocDStoCSAlias

• ChangeSelector

AllocDStoCSAlias accepts a data-segment selector and returns a code-segment
selector. This permits you to write machine instructions on your data stack, create
an alias for the stack segment, and then execute the code on the stack.

This function allocates a new selector; after calling AllocDStoCSAlias, you must
call the FreeSelector function when you no longer need the selector.

You must be careful not to use a selector returned by AllocDStoCSAiias if it is
possible that the segment has moved. The only way to prevent a segment from
moving is by calling the GlobalFix function to fix it in linear address space before
aliasing the segment.

You can also be sure that a segment has not moved if your application does not
yield to another task and does not take any action that could result in memory
being allocated. Typically, this would require you to allocate and free a new selec­
tor each time your application yields or allocates memory. To avoid allocating
and freeing a selector so frequently, you can use a temporary selector. Change­
Selector provides a convenient method for "aliasing" a temporary selector

340 Microsoft Windows Guide to Programming

(generating a code selector corresponding to a given data selector, or vice versa).
This function accepts two selectors: a temporary selector, and the selector you
want to convert. To convert the selector repeatedly, you would perform the follow­
ing steps:

1. Call AllocateSelector to create a temporary selector.

2. As often as necessary, can ChangeSeiecior, passing it the temporary seledor
and the selector you want to convert. Because ChangeSelector uses a pre­
viously allocated selector, you need not free the selector each time you convert
it. Instead, you call ChangeSelector each time you need the converted selector
after the converted segment might have moved.

3. When you no longer need the converted selector, call FreeSelector to free the
temporary selector.

16.1.2 386 Enhanced Mode
If the user's system has at least 2 megabytes of extended memory available and an
80386 microprocessor, then Windows and Windows applications will run in 386
enhanced mode. In this mode, by taking advantage of certain features of the 80386
processor, Windows implements a virtual-memory management scheme using
disk swapping. The result of this scheme is that the amount of memory available
to all applications can be several times the amount of extended memory on the sys­
tem. In this mode, Windows can theoretically address 4 gigabytes of memory, but
is limited by the amount of RAM and disk space available for swapping.

Note Because 386 enhanced mode uses the protected-mode features of the 80386
processor, the restrictions for using memory in standard mode also apply to using
memory in 386 enhanced mode.

The following describes the memory configuration of 386 enhanced mode:

• The global heap is essentially one large virtual address space shared by all appli­
cations.

• The size of the global heap's virtual address space is not bounded by the
amount of extended memory. The disk serves as a secondary memory medium
that extends the virtual address space.

16.1.2.1 Swapping Code and Data
The 386 enhanced-mode fixed code and data segments are located lower in
memory than nondiscardable, movable code and data segments, and discardable
data segments, which are allocated above the fixed code and data segments. Dis­
cardable code segments are allocated from the top of memory.

Chapter 16 More Memory Management 341

The 386 enhanced-mode memory configuration is distinct from standard mode, be­
cause Windows swaps code and data between physical memory and the disk. In
standard mode, Windows may remove discardable data from memory, but it does
not save the data to disk so that it may be read back into memory when needed.

In 386 enhanced mode, Windows continues allocating physical memory until it is
used up, and then begins swapping 4K pages of code and data from physical
memory to disk in order to make additional physical memory available. Windows
swaps 4K objects (pages), rather than unequal-sized code and data segments. A
swapped 4K object may be only part of a given code or data segment, or it may
cross over two or more code or data segments.

This memory swapping, or paging, is transparent to the application. If the applica­
tion attempts to access a code or data segment of which some part has been paged
out to disk, the 80386 microprocessor issues an interrupt, called a page fault, to
Windows. Windows then swaps other pages out of memory and restores the pages
that the application needs. Windows chooses the pages that it swaps to disk based
on a least-recently-used (LRU) algorithm.

This virtual-memory system provides as much additional memory as the size of
the Windows swap file that is reserved on the user's disk. Windows determines
the size of the swap file based on the total amount of physical memory on the sys­
tem and the amount of disk space available. The user can modify the size of the
swap file by changing an entry in the SYSTEM.IN! file and can establish a per­
manent swap file by using the swapfile command.

The Windows demand-loading of code and data segments operates on top of the
Windows virtual-memory paging scheme. That is, Windows treats virtual memory
as though it were conventional memory for purposes of determining which code
and data segments to discard. Windows, however, removes discardable code and
data segments only when virtual memory is exhausted.

16.1.2.2 Preventing Memory from Being Paged to Disk
Occasionally, it is necessary to ensure that certain memory is always present in
physical memory and is never paged to disk. For example, a dynamic-link library
(DLL) function may be required to respond immediately to an interrupt instead of
waiting for the system to generate a page fault and load the data from the disk. In
such cases, a memory object can be page-locked to prevent it from being paged to
disk.

To page-lock a memory object, call the GlobalPageLock function, passing it the
global selector of the segment that is to be locked. This function increments (in­
creases by one) a page-lock count for the segment; as long as the count for a given
segment is nonzero, the segment will remain at the same physical address and will
not be paged out to disk. When you no longer require the memory to be locked,

342 Microsoft Windows Guide to Programming

call the GlobalPageUnlock to decrement (decrease by one) the page-lock count.
In standard mode, these functions have no effect.

Note You should page-lock memory only in critical situations. Do not routinely
page-lock memory to lock down a spreadsheet, for example. Page-locking
memory adversely affects the performance of all applications, including yours.

16.2 Storing Data
Windows supports seven types of data storage, each of which is appropriate for
different situations. The following list describes each type of storage, and suggests
how to decide which type to use.

Type

Static data

Automatic data

Local dynamic data

Global dynamic data

Description

Includes all C-language variables that the application source
code implicitly or explicitly declares by using the static key­
word. Static data also includes all C-language variables de­
clared as external, either explicitly (using the extern
keyword) or by default (by declaring it outside the functions).

Includes all variables that are allocated in the stack at the time
a function is called. The variables include the function pa­
rameters and any locally declared variables. For more informa­
tion about automatic data, see Section 16.2.1, "Managing
Automatic Data Segments."

Includes all data that is allocated by using the LocalAlloc
function. Local dynamic data is allocated out of a local heap
in the automatic data segment to which an application's DS
register is set. Allocating memory objects from the local heap
of a Windows application is similar to allocating memory
by using the malloc C run-time library function in a non­
Windows application that uses the small- or medium-memory
model. For more information about local dynamic data, see
Section 16.2.2, "Managing Local Dynamic-Data Objects."

Includes all data that is allocated out of the Windows global
heap by using the GlobalAlloc function. The global heap is a
system-wide memory resource. Allocating memory objects
from the global heap is roughly equivalent to using the
malloc function in a non-Windows application that uses the
compact- or large-memory model. The difference is that in
Windows, your application allocates memory objects out of a
heap potentially shared by other applications, while a non­
Windows application essentially has the whole heap to itself.
For more information about global dynamic data, see Section
16.2.3, "Managing Global Memory Objects."

Chapter 16 More Memory Management 343

Type Description

Window extra bytes Specifies extra bytes that are allocated in the data structure
that Windows maintains internally for a window created by
your application. To create this kind of window, register a
class for it (by calling the RegisterClass function) and re­
quest that extra bytes be allocated for each window that is a
member of this class. You request the extra bytes by specify­
ing a nonzero value for the cbWndExtra member of the
WNDCLASS structure that you pass to RegisterClass. You
can then store data in and retrieve data from this area by
making calls to the SetWindowWord, SetWindowLong,
GetWindowWord, and GetWindowLong functions. For
more information about Window extra bytes, see Section
16.2.4, "Using Extra Bytes in Window and Class Data
Structures."

Class extra bytes

Resources

Specifies extra bytes that are allocated at the end of the
WNDCLASS structure created for a window class. When you
register the window class, you specify a nonzero value for the
cbClsExtra member. You can then store and retrieve data
from this area by making calls to the functions SetClass­
Word, SetClassLong, GetClassWord and GetClassLong.
For more information about using class extra bytes, see Sec­
tion 16.2.4, "Using Extra Bytes in Window and Class Data
Structures."

Specifies nonmodifiable collections of data stored in the re­
source portion of an executable file. This data can be loaded
into memory where your application can use it conveniently.
You can define private resources that contain whatever kind
of read-only data you want to store. You compile a resource
into your executable (.EXE) or .DLL file by using Microsoft
Wmdows Resource Compiler (RC). At run time, you can then
access the resource data by using various Windows library
functions. For more information about resources, see Section
16.2.5, "Managing Resources."

16.2.1 Managing Automatic Data Segments
Each application has one data segment called the automatic data segment, which
may contain up to 64K. The automatic data segment contains the following kinds
of data:

Type

Task header

Description

Contains 16 bytes of information that Windows maintains for each ap­
plication. The task header is always located in the first 16 bytes of the
automatic data segment.

344 Microsoft Windows Guide to Programming

Type Description

Static data Includes all C-language variables that are declared as static or extern,
either explicitly or by default.

Stack Stores automatic data. The stack has a fixed size, but the active area
within the stack grows and contracts as functions execute and return.
Each time a function is called, the return address is pnshed onto the ac­
tive portion of the stack, along with the parameter values passed to the
function.

Local heap Contains all local dynamic data.

The following figure shows the layout of the application's automatic data seg­
ment:

Local heap

Stack
Upto64K

Static data

Task header

The size of the stack is always fixed for a given application. You specify the size,
in bytes, of the stack by using the STACKSIZE statement in your application's
module-definition (.DEF) file. Windows enforces a minimum stack size of SK.
You should experiment with your application to determine an optimum stack size,
although keep in mind that the results of a stack overflow are unpredictable.

The size of the local heap is set to an initial value for the application according to
the HEAPSIZE statement in your application's .DEF file. The local heap will
grow as needed when you call the LocalAlloc function. For applications, the ini­
tial size of the local heap must be at least large enough to hold the current environ­
ment variables; a minimum heap size of lK is recommended. If your application
does not require access to environment information, you can link your application
to an object file that will prevent this initialization information from being placed
in the heap. For more information, see Chapter 14, "C and Assembly Language."

If your application requests memory from the local heap beyond what is available,
the heap can grow until the total data segment reaches 64K. If some of the local
heap objects are freed, however, the size of the heap does not automatically shrink.
You can recover this area by calling the LocalShrink function. This function first
compacts the local heap, and then truncates the automatic data segment to the
specified number of bytes. LocalShrink will truncate below neither the highest
currently allocated memory object, nor the originally specified heap size.

Chapter 16 More Memory Management 345

You can declare the automatic data segment to be fixed or movable in the applica­
tion's .DEF file, just as you can any data or code segment. Unless you have a good
reason to do otherwise, always declare the automatic data segment as movable and
multiple. The automatic data segment is always preloaded. The following example
shows how to declare the automatic data segment in the .DEF file:

DATA MOVEABLE MULTIPLE

By declaring the application's automatic data segment as movable, you allow
Windows to relocate the data segment in memory as its size changes. If the auto­
matic data segment is fixed, Windows increases the size of the local heap only if
adjacent memory happens to be available. Consequently, if you declare the auto­
matic data segment to be fixed, you should be careful to specify an adequate initial
HEAPSIZE value in the .DEF file.

You should specify the MULTIPLE attribute for DAT A to provide a separate
automatic data segment for each instance of your application. Only dynamic-link
libraries can be declared with the SINGLE attribute for DAT A. In fact, dynamic­
link libraries must be declared this way, since they can have only one instance
each.

16.2.2 Managing Local Dynamic-Data Objects
In Windows, a local heap can be set up in any data segment. The application's
automatic data segment, however, is by far the most common place a local heap is
used.

The Locallnit function establishes a specified area within any data segment as a
local heap. Calls to LocalAlloc and other local memory functions operate on the
data segment currently referenced by the DS register. As long as this data segment
has been initialized by Locallnit, the local memory functions will work.

If you are developing a dynamic-link library that requires a local heap, you should
call Locallnit during the initialization of the library. If you are developing a
Windows application, as opposed to a dynamic-link library, you should not call
Locallnit for the application's automatic data segment. Based on the location of
other data in the automatic data segment (the task header, static data, and stack)
and the heap size specified in the application's .DEF file, Windows itself calls
Locallnit with the correct values for the location and size of the local heap.

The organization of a local heap is similar to that of a global heap:

• Fixed objects are located at the bottom of the local heap.

• Nondiscardable, movable objects are allocated above the fixed objects.

• Discardable objects are allocated from the top of the local heap.

346 Microsoft Windows Guide to Programming

The following figure illustrates this organization:

Discardable objects

~

t
Movable objects

t
Fixed objects__ __________ __.Bottom

As Windows adds new objects to an application's local heap, movable objects
may move as Windows compacts the heap. Also, Windows may discard some ob­
jects to make room for new ones. Windows never moves fixed objects when they
are allocated in a local heap.

16.2.2.1 Allocating Memory in the Local Heap
By using the LocalAlloc function, you can allocate a specified size object in a
local heap and can specify certain characteristics of the object. The most important
characteristic is whether the object is fixed or movable, and if movable, whether it
is discardable.

When you allocate an object in a local heap, other objects may be moved or dis­
carded. In certain cases, you may not want the local heap to be reorganized as the
new object is added. You may want to guarantee that pointers previously set to
movable objects remain unchanged. To guarantee that no objects will be discarded
from the local heap when you call LocalAlloc, set the LMEM_NODISCARD flag
in the wFlags parameter. To guarantee that no objects in the local heap will be
moved or discarded, specify the LMEM_NOCOMPACT flag.

LocalAlloc returns a handle to the allocated local memory object. If memory in
the local heap is not available, LocalAlloc returns NULL. In managing an object
using all other Windows memory functions described below, you should use the
handle returned by LocalAlloc.

Chapter 16 More Memory Management 347

16.2.2.2 Locking and Unlocking Local Memory Objects
To many C programmers who are used to using the C run-time library function
malloc, using memory handles may seem foreign at first. Because allocated ob­
jects in the local heap may move around as new objects are added, you cannot
always expect a pointer to an allocated object to remain valid. The purpose of a
local memory handle is to provide a constant reference to a movable object.

Since a memory handle is an indirect reference, you must dereference the handle
to obtain the near address of the local object. You do this by calling the Local­
Lock function. This function temporarily fixes the object at a constant location in
the local heap. This means that the near address returned by LocalLock will re­
main valid until you subsequently call LocalUnlock. The following example
shows how to use LocalLock to dereference the handle of a movable object.

HLOCAL hlocalObject;
char NEAR * pclocalObject;

I* NEAR is not necessary in small and medium models. *I

if (hlocalObject = LocalAlloc(LMEM_MOVEABLE, 32)) {
if (pcLocalObject = Locallock(hlocalObject)) {

else

}

}

/*
* Use pclocalObject as the near address of the locally
* allocated object.
*/

LocalUnlock(hlocalObject);

else {

/* The lock failed. React accordingly. */

}

/* The 32 bytes cannot be allocated. React accordingly. */

If you allocate a local memory object and specify the LMEM_FIXED attribute,
the object is already guaranteed not to move in memory. Consequently, you need
not call LocalLock to lock the object temporarily at a fixed address. Also, you
need not dereference the handle, as you normally would by using LocalLock,

348 Microsoft Windows Guide to Programming

because the 16-bit handle is simply the 16-bit near address of the local memory ob­
ject. The following example illustrates this:

char NEAR * pclocalObject;

/* NEAR is not necessary in small or medium models. */

if CpclocalObject = LocalAlloc(LMEM_FIXED,32)) {

}

/*
* Use pclocalObject as the near address of the locally
* allocated object. It is not necessary to lock and unlock
* the fixed local object.
*/

else {

I* The 32 bytes cannot be allocated. React accordingly. */

}

You should avoid leaving a movable object locked if your application needs to al­
locate other objects in the local heap. Otherwise, memory management in
Windows is less efficient, since Windows has to work around the locked object
while attempting to make room for another object in the movable area of the local
heap.

16.2.2.3 Changing a Local Memory Object
You call the LocalReAlloc function to change the size of a local memory object
but still preserve its contents. If you specify a smaller size, Windows truncates the
object. If you specify a larger size, Windows fills the new area of the object with
zeros if you specify LMEM_ZEROINIT; otherwise, the contents of the new area
are undefined. Calling LocalReAlloc may cause objects in the local heap to be dis­
carded or moved, just as when you call the LocalAlloc function. To prevent
Windows from discarding objects, specify LMEM_NODISCARD; to prevent
Windows from moving objects, specify LMEM_NOCOMPACT.

You can also call LocalReAlloc to change the object's attribute from
LMEM_MOVEABLE to LMEM_DISCARDABLE or vice versa. To do so, you
must also specify LMEM_MODIFY, as follows:

Chapter 16 More Memory Management 349

hlocalObject LocalAlloc (32, LMEM_MOVEABLE);

hlocalObject = LocalReAlloc(hlocalObject,
32, LMEM_MODIFY I LMEM_DISCARDABLE);

You cannot use LMEM_MODIFY with LocalReAlloc to change the attribute of
the local memory object to or from LMEM_FIXED.

16.2.2.4 Freeing and Discarding Local Memory Objects
The Windows functions LocalDiscard and LocalFree discard and free local ob­
jects, respectively.

There is a difference between freeing a local object and discarding it. When you
discard a local object, its contents are removed from the local heap, but its handle
remains valid. When you free a local object, not only are its contents removed
from the local heap, but its handle is removed from the table of valid local
memory handles. A local object can be discarded or freed only if there are no out­
standing locks on it.

You may want to discard an object rather than free it, if you want to reuse its
handle. To reuse the handle, call the LocalReAlloc function, specifying the handle
and a nonzero size value. By reusing the handle in this way, you save Windows
the time required to free an old handle and create a new one. Reusing a handle also
allows you to determine how much local memory is available before attempting to
allocate a local memory object.

16.2.2.5 Retrieving Information About a Local Memory Object
The LocalSize and LocalFlags functions provide you with information about a
local memory object. LocalSize returns the size of the object. LocalFlags indi­
cates whether the memory object is discardable and, if so, whether it has been dis­
carded. LocalFlags also reports the lock count for the memory object.

16.2.3 Managing Global Memory Objects
The global heap is the Windows system-wide memory resource that is shared
among applications. An application may request Windows to allocate memory ob­
jects out of the global heap by calling GlobalAlloc, the same function that
Windows itself calls to allocate internally used memory objects. By using the
global memory functions described in this section, you can take advantage of the
same memory-management mechanisms Windows uses for its own purposes. In
addition, by using these functions, your application can compete or cooperate with

350 Microsoft Windows Guide to Programming

the system itself with essentially the same privileges. Misusing these privileges re­
duces your application's ability to cooperate with Windows and other applications.

The following considerations may help you determine whether to allocate memory
for a given data object out of the global heap or the local heap:

• You should address a memory object allocated from the local heap by using a
near pointer (after you dereference the handle by using LocalLock). On the
other hand, you should address a memory object allocated from the global heap
by using a far pointer (after you dereference the handle by using the Global­
Lock function).

• An application's local heap is a relatively scarce memory resource, since it
must fit in the application's automatic data segment (limited to 64K bytes)
along with the stack and static data; the global heap is much larger.

If a memory object is in the current working set of your application, you should at­
tempt to design it as a local object to take advantage of the more efficient near ad­
dressing. The current working set is data that you must frequently access during a
fairly lengthy operation. Objects that are less frequently accessed belong in the
global heap. For some applications, it might make sense to transfer data between
the application's local heap and the global heap as the working set changes.

When designing the structure of global memory objects, you often have the choice
of breaking them down into elementary objects or consolidating them into larger
objects. In making this choice, you should consider the following:

• Each global memory object carries an overhead of at least 20 bytes.

• Global memory objects are aligned on 32-byte boundaries. The first 16 bytes
are reserved for certain overhead information. In both standard-mode and 386
enhanced-mode memory configurations, there is a systemwide limit of 8192
global memory handles, only some of which are available to any given applica­
tion.

In general, you should avoid allocating small global memory objects. A small ob­
ject (128 bytes or less) carries at least a 15 percent space overhead, plus the
memory that is wasted ifthe object's size (plus 16 bytes) is not a multiple of 32
bytes. This overhead may be justifiable in some cases, but you should weigh care­
fully the overhead involved. You should especially avoid allocating a large num­
ber (many hundreds) of small global objects if they can be consolidated into
fewer, larger global objects. This consolidation not only eliminates space overhead
but also avoids unnecessary use of the limited number of global memory handles.

With these considerations in mind, how you manage objects in the global heap is
similar to how you manage memory objects in a local heap. For information about
managing local memory, see Section 16.2.2, "Managing Local Dynamic-Data
Objects."

Chapter 16 More Memory Management 351

16.2.3.1 Allocating Memory in the Global Heap
You call the GlobalAlloc function to allocate an object of specified size in the
global heap. Windows manages memory objects in the global heap according to
the same classifications used for memory objects in a local heap: fixed, movable,
and discardable.

The same mechanisms for compacting memory that are applied in managing
a local heap also apply to the global heap. Thus, you may specify
GMEM_NODISCARD or GMEM_NOCOMPACT when you call the Global­
Alloc function. For details, see the discussion of LMEM_NODISCARD and
LMEM_NOCOMPACT under the description of the LocalAlloc function in Sec­
tion 16.2.2.1, "Allocating Memory in the Local Heap."

GlobalAlloc returns a handle to the allocated global memory object. If memory in
the global heap is not available, GlobalAlloc returns NULL. It is always important
to check the return value from GlobalAlloc, since you have no guarantee that your
allocation requests can be satisfied. Most of the functions that manage global
memory require this handle to identify the memory object.

16.2.3.2 Locking and Unlocking a Global Memory Object
You can dereference the handle to a global memory object by calling the Global­
Lock function. GlobalLock returns a far pointer that is guaranteed to remain valid
until you subsequently call the GlobalUnlock function.

GlobalLock must lock the object by fixing it in memory to ensure that the pointer
it returns will remain valid until you call GlobalUnlock. Because it has locked the
object, GlobalLock increments a lock count for the object. This count helps pre­
vent the object from being discarded or freed while it is still being used.

Windows need not fix the object in memory unless it is discardable. The pointer
will always be valid whenever the object moves in linear memory. Because
Windows does not lock the object in memory, GlobalLock does not increment the
lock count for a nondiscardable object. GlobalUnlock decrements the lock count
of an object only if GlobalLock incremented it for the object. However, you must
still call GlobalUnlock when you no longer need the pointer returned by Global­
Lock.

In addition to GlobalLock and GlobalUnlock, several other functions affect the
lock count for an object:

Increments lock count

GlobalFix

GlobalWire

LockSegment

Decrements lock count

GlobalUnfix

GlobalUn Wire

UnlockSegment

352 Microsoft Windows Guide to Programming

For more information about how these functions affect a global memory object
and its lock count, see the Microsoft Windows Programmer's Reference, Volume
2. The GlobalFlags function returns the lock count of a global memory object as
set by these functions.

As noted earlier, it is not necessary to call LocalLock to dereference a local
handle if the object is aiiocated as Ll\tlliM_FIXED. Tnere is no similar capability
for fixed global objects. Even fixed global objects must always be locked to
dereference the handle.

The following example uses GlobalLock to dereference the handle of a movable
global object:

HGLOBAL hGlobalObject;
char FAR* lpGlobalObject;

if (hGlobalObject = GlobalAlloc(GMEM_MOVEABLE, 1024)) {
if (lpGlobalObject = Globallock(hGlobalObject)) {

}

}

f*
* Use lpGlobalOBject as the far address of the
* globally allocated object.
*f

GlobalUnlock(hGlobalObject);

else {

/* The lock failed. React accordingly. */

}

else {

/*The 1024 bytes cannot be allocated. React accordingly. */

}

If you allocate an object whose size is 64K or larger, you should cast and save the
pointer returned by GlobalLock as a huge pointer. The following example allo­
cates a 128K global memory object:

HGLOBAL hGlobalObject;
char huge * hpGlobalObject;

if (hGlobalObject = GlobalAlloc(GMEM_MOVEABLE, 0x20000L)) {

Chapter 16 More Memory Management 353

if (hpGlobalObject

}

= (char huge*) Globallock(hGlobalObject)) {

/*
* Use hpGlobalOBject as the far address of the
* globally allocated object.
*/

GlobalUnlock(hGlobalObject);

else {

/*The lock failed. React accordingly. */

else {

/*The 128K cannot be allocated. React accordingly. */

}

16.2.3.3 Changing a Global Memory Object
You can change the size or attributes of a global memory object while preserving
its contents by calling GlobalReAlloc. If you specify a smaller size, Windows
truncates the object. If you specify a larger size and also specify
GMEM_ZEROINIT, Windows fills the new area of the object with zeros. By
specifying GMEM_DISCARD or GMEM_NOCOMPACT, you ensure that
Windows will not discard or move objects to satisfy the GlobalReAlloc request.

You can also call GlobalReAlloc to change the object's attribute from nondiscard­
able to discardable, or vice versa. Unlike LocalReAlloc, however, GlobalReAlloc
can change a GMEM_FIXED object to GMEM_MOVEABLE or
GMEM_DISCARDABLE. But it cannot change a movable or discardable object
to a fixed object. To change the attribute of a global object, you must also specify
the GMEM_MODIFY flag. For more information about doing this, see Section
16.2.2.3, "Changing a Local Memory Object."

Be careful when you are changing the size of a global memory object if its size in­
creases across a multiple of 64K. Windows may return a new global handle for the
reallocated memory object. For example, this applies if you change the size of the
object from SOK to 70K, or 120K to 130K. In standard mode, this applies if you
change the size of the object across a multiple of 65,519 bytes (64K less 17 bytes).

354 Microsoft Windows Guide to Programming

Because of the selector-tiling technique Windows uses, Windows might have to
search for a larger set of related selectors when the size of a global object in­
creases across a multiple of 64K. If so, Windows returns the first selector of the
larger set as the global handle. For more information about selector tiling, see Sec­
tion 16.1.1.1, "Using Huge Memory Objects in Standard Mode."

The following example reallocates a globai memory object.

if (hTempHugeObject = GlobalReAlloc(hHugeObject,

}

0x20000L,
GMEM_MOVEABLE)) {

hHugeObject = hTempObject;

else {

/* The object could not be allocated. React accordingly. */

}

In this example, the temporary handle hTempHugeObject preserves the original
handle in case GlobalReAlloc returns a NULL handle, indicating a failure to
reallocate.

16.2.3.4 Freeing and Discarding Global Memory Objects
The GlobalFree and GlobalDiscard functions are identical to the LocalFree and
LocalDiscard functions, except that they operate on global rather than local
memory objects. For more information, see the discussion on LocalFree and
LocalDiscard in Section 16.2.2.4, "Freeing and Discarding Local Memory
Objects."

16.2.3.5 Retrieving Information About a Global Memory Object
The GlobalSize and GlobalFlags functions provide current information about a
global memory object. GlobalSize returns the current size of the object. Global­
Flags indicates whether the object is discardable and, if so, whether it has been
discarded. It also indicates whether the object was allocated with the
GMEM_DDESHARE or GMEM_NOT_BANKED flag.

16.2.3.6 Locking a Global Memory Object for Extended Periods
When you call GlobalLock to prevent a movable object from moving as other ob­
jects are manipulated in the global heap, you can hinder the ability of Windows to
manage these other objects efficiently. To lock a discardable memory object for an
extended period, use the GlobalWire function. To lock a nondiscardable memory
object for an extended period, use GlobalLock. GlobalWire relocates the

Chapter 16 More Memory Management 355

movable object to the lower area of the global heap reserved for fixed objects and
then locks it. By moving the locked object to low memory, Windows can compact
upper memory more efficiently but will require additional CPU cycles to move the
object. Call GlobalUnWire to unlock the object. After the object is unlocked, it
can migrate out of the fixed portion of the global heap.

16.2.3. 7 Being Notified When a Global Memory Object Is to Be
Discarded
If you want your application to be notified whenever Windows is about to discard
a global memory object, call the GlobalNotify function. GlobalNotify is useful if
you are writing a custom virtual-memory-management system that swaps data to
and from disk, for example. You specify the address of the notification callback
function in your application.

16.2.3.8 Changing When a Global Memory Object Is Discarded
As Windows manages the global heap, it employs a least-recently-used (LRU) al­
gorithm for determining which global memory objects should be discarded when
memory must be freed. You can call the GlobalLRUOldest function to move an
object to the oldest position in the LRU list. This means that this object will be the
most likely object to be discarded if Windows subsequently requires more
memory. Conversely, by calling the GlobalLRUNewestfunction, you ensure that
an object is least likely to be discarded.

These functions are useful, for example, for discarding initialization code when it
is no longer needed. You could also use these functions if you were writing a cus­
tom virtual-memory-management system that swaps data to and from disk. With
these functions, you can influence which objects are least or most likely to be dis­
carded by Windows, thus minimizing the amount of disk swapping.

16.2.3.9 Freeing Global Memory in Low-Memory Conditions
Global memory is a shared resource; the performance of all applications depends
on the ability of all applications to share that resource. When system memory is
low, your application should be prepared to free global memory that it has allo­
cated.

Windows sends the WM_ COMP ACTING message to all top-level windows when
Windows detects that more than 15 percent of system time over a 30- to 60-second
interval is being spent compacting memory. This indicates that system memory is
low.

When your application receives this message, it should free as much memory as
possible, taking into account the current level of activity of the application and the

356 Microsoft Windows Guide to Programming

total number of applications running in Windows. The application can call the Get­
NumTasks function to determine how many applications are running.

16.2.4 Using Extra Bytes in Window and Class Data Structures
You can store extra, appiication-defined data by using the daia strul.tures that de­
scribe the attributes of a window or a window class. This extra data is known as
window extra bytes and class extra bytes, respectively.

This private data is located at the end of a data structure that Windows maintains
for the window. When you call the RegisterClass function, the cbWndExtra
member of the WNDCLASS structure specifies the number of extra bytes of infor­
mation that will be maintained for each window member of that class. The extra
bytes are initialized to zero.

The technique of using the private data area of a window is particularly useful in
cases where you have two or more windows that belong to the same class, and you
want to associate different data with each window. Without the private data facil­
ity, you would have to maintain a list of private structures for each window. Then,
each time you needed to access the data for a particular window, you would first
have to locate the corresponding entry in the list. By using the private data facility,
however, you can directly access the private data through the window handle
rather than by using a separate list.

An additional advantage of using the window's private data area to store data is
that you can encapsulate the data associated with each window better than if you
were to store it as static data in the same module as, for example, the window pro­
cedure.

To write to the window's private data area, call the SetWindowWord and Set­
WindowLong functions. These two functions accept a byte offset within the area
you set aside for private data. A zero offset refers to the first word or long value in
the private area. An offset of 2 (bytes) refers to the second word value in the pri­
vate area. An offset of 4 (bytes) refers to the third word value or the second long
value in the private area. Note that SetWindowWord and SetWindowLong also
accept constants such as GWW _STYLE and GWL_ WNDPROC, which are de­
fined in WINDOWS.H. These constants are negative offsets within the window's
structure. The length of the structure (minus the private area) is thus added to the
offset you provide in the call to SetWindowWord or SetWindowLong to deter­
mine the offset relative to the beginning of the structure.

To read from the private data area of a window, call the GetWindowWord and
GetWindowLong functions. The offsets you specify work the same way as for
SetWindowWord and SetWindowLong.

The structure for a window is allocated in USER's local heap. If you want to as­
sociate a large amount of data (more than 10 bytes) with the window, you should

Chapter 16 More Memory Management 357

store a global handle in the window's private area instead of storing the actual
data. The handle points to the data. This way, you increase the size of the win­
dow's structure only by the two bytes needed for the global handle, rather than by
the large size of the private data itself.

Just as you can associate private data with a particular window, you can also as­
sociate private data with a window class. The functions that do this are SetClass­
Word, SetClassLong, GetClassWord, and GetClassLong. There are probably
fewer occasions for associating private data with a window class than with a win­
dow. Using the private area for the window class is appropriate for data that is logi­
cally related to the window class as a whole and that is common among multiple
windows of the same class.

16.2.5 Managing Resources
A resource is read-only data-stored in your application's .EXE file or your
library's .DLL file-that Windows reads from disk on demand. Certain types ofre­
sources have prescribed formats recognized by Windows. These include bitmaps,
icons, cursors, dialog boxes, and fonts. You can create these resources by using
the resource editors included in the Microsoft Windows 3 .1 Software Develop­
ment Kit (SDK): Microsoft Image Editor (IMAGEDIT.EXE), Microsoft
Dialog Editor (DLGEDIT.EXE), and Microsoft Windows Font Editor
(FONTEDIT.EXE). You link these resources into your .EXE or .DLL file by
using Microsoft Windows Resource Compiler (RC). You take advantage of
Windows' ability to work with these resource formats by calling associated func­
tions such as Loadlcon and CreateDialog.

A resource is read into memory by Windows as a single data segment. The re­
source may be declared in the resource-definition file to be fixed, movable, or dis­
cardable. When determining whether a resource should be fixed, movable, or
discardable, you should take into account the same considerations as you would
for a global memory object.

If you declare a resource by using the PRELOAD option, Windows loads the re­
source into memory during the startup of your application. Otherwise, Windows
loads it when it is needed (the LOADONCALL option).

In addition to using resources whose formats Windows recognizes, you can also
develop resources only your application recognizes. The data may be in any for­
mat that you design, including ASCII text, binary data, or a mixture of these.

When deciding whether to maintain data as a resource or as a separate file, con­
sider the following:

• By compiling the resource into your application's .EXE file, you simplify the
packaging of your application. You and your user need not worry about install­
ing additional data files along with the application's .EXE file.

358 Microsoft Windows Guide to Programming

• On the other hand, maintaining the data as a resource means that you must re­
compile your application's .EXE file if you change the data. If you plan to dis­
tribute updated data to several users, you may find it easier to distribute a new
data file rather than a new .EXE file.

For more information about compiling a user-defined resource into an .EXE or
.DLL file, see Microsoft Windows Programming Tools.

16.2.5.1 Locating a Custom Resource
The FindResource function determines the location of the resource according to
the name specified in your resource-definition file. The function returns a handle,
which you can then use in a call to the LoadResource function to load the re­
source. The resource handle returned by FindResource refers to information that
describes the resource type declared in the resource-definition file, the position of
the resource in the .EXE or .DLL file, and the size of the resource.

For example, suppose you want to maintain an ASCII text file as a resource. The
source text file is named MYTEXT.TXT. You name the resource MyText, and
you arbitrarily name the resource type TEXT. The resource-definition statement
for this resource is as follows:

MyText TEXT MyText.txt

In your application, you retrieve the resource handle by calling FindResource, as
follows:

HANDLE hMyTextResloc;

hMyTextResloc = FindResource(hinst, "MyText", "TEXT");

16.2.5.2 Loading a Custom Resource
The call to FindResource does not load the resource from the .EXE or .DLL file
into memory. Rather, it finds only the location of the resource and returns the re­
sult of the search as a handle that points to the resource-location information. To
load the resource into memory, you call the LoadResource function, as follows:

HRSRC hMyTextResloc;
HGLOBAL hMyTextRes;

'.

hMyTextResloc FindResource(hinst, "MyText", "TEXT");

Chapter 16 More Memory Management 359

if (!hMyTextRes = LoadResource(hinst, hMyTextResloc)) {

f*
*Handle the case that memory is not available
* to load resource.
*/

LoadResource itself calls GlobalAlloc to allocate the memory object for the re­
source data, and then copies the data from disk to the memory object.

16.2.5.3 Locking and Unlocking a Custom Resource
To access the resource data now residing in a global memory object, you must call
the LockResource function to lock the resource and retrieve a far pointer to the
data. This is equivalent to using the GlobalLock function to retrieve the far
pointer to a memory object allocated by the GlobalAlloc function. The following
example continues the previous one:

LPSTR lpstrMyText;

lpstrMyText = LockResource(hMyTextRes);

Once you have the far address to the resource, you can read it as you would from a
global memory object locked by GlobalLock.

If you have defined the resource as discardable and it has been discarded, Lock­
Resource will first load the resource back from disk. Unlike GlobalLock,
LockResource saves you the trouble of calling LoadResource again if the re­
source has been discarded.

You should call UnlockResource when you are not in the process of accessing the
resource data. This function is equivalent to GlobalUnlock. If you declare the re­
source as movable or discardable, this provides Windows the flexibility to move
or discard the resource from memory as necessary to satisfy other memory­
allocation requests.

16.2.5.4 Freeing a Custom Resource
The FreeResource function is similar to the GlobalFree function. It discards the
memory used by the resource data as well as by the resource handle. If you need to
load the resource again, you can call LoadResource, using the resource location
handle returned by your initial call to FindResource.

360 Microsoft Windows Guide to Programming

16.3 Using Memory Models
A Windows application is like an MS-DOS application in that it may have one or
more code segments and one or more data segments. The memory model, which
you specify when you compile your source-code modules, determines whether
compiler-generated instructions use near or far addresses. If you use a memory
model that specifies only one code or data segment, the compiler generates instruc­
tions that employ near (16-bit) addresses for, respectively, code or data references.
If you compile by using a memory model that specifies multiple code or data seg­
ments, the compiler generates instructions that use far (32-bit) addresses for code
or data references. The following figure shows how the memory model affects the
way an application addresses code and data:

Number
of

data
segments

One

Multiple

Number of code segments

One Multiple

Small Medium
memory memory
model model

Compact Large
memory memory
model model

There are two memory models, large and huge, for compiling a module that gener­
ates far addresses for both code and data references. In the large memory model,
far pointers can be incremented only within the 64K offset range of a segment. In
the huge memory model, far pointers can be incremented across 64K boundaries,
causing both the segment address and the offset to be incremented. Also, if a mod­
ule is compiled with the large memory model, Windows will be able to load only
one instance of the module.

Ideally, a Windows application will use the medium model, and the size of its
modules will be SK or less. The module that initializes the application should be
marked PRELOAD and DISCARDABLE in the .DEF file. The module that
processes the message queue should be marked PRELOAD. All other modules
should be marked LOADONCALL and DISCARDABLE. An application that
follows these guidelines will start faster and consume fewer system resources.

If you are using CL, compile your Windows application's C-language source-code
modules, using the I AS option for the small model or the I AM option for the me­
dium model.

You can also use a mixed memory model. For a mixed model, you compile mod­
ules by using the I AS option, assign the same code-segment name to those mod­
ules whose code segments you want to group together, and assign different

Chapter 16 More Memory Management 361

code-segment names to those modules for which you want to generate different
code segments. To assign a code-segment name to a module, use the CL option
INT. A function that is called from a different code segment must be declared as a
far function in the module where the call is made, as in the following example:

UINT FAR PASCAL FuncinAnotherCodeSeg(UINT, LONG);
UINT uReturn;

uReturn FuncinAnotherCodeSeg(0, 0L);

The advantage of using the mixed memory model is that you need only define
calls made between code segments as FAR. Functions that are declared FAR in­
crease code size and require more machine cycles to be called.

For another form of the mixed memory model, you can compile modules with the
I AM option, which makes function calls FAR by default. Then, instead of declar­
ing FAR functions, you prototype as NEAR those functions that are called only
within the same segment. The disadvantage of this method is that all C run-time
library functions will also be FAR functions.

16.4 Using Huge Data
You can declare data as huge in C-language modules. CL will correctly perform
the arithmetic required to increment the pointer across segment boundaries. You
can pass a huge pointer to Windows library functions or to your own functions
that expect a far pointer, but only if the function is not expected to internally incre­
ment the far pointer so that it points to an object that straddles a 64K boundary.
For example, the following code is acceptable, because 16 is a factor of 64K
(65,356):

char huge Record[10000][16J;
int i ;

TextOut(hDC, x, y, (LPSTR) Record[i], 16);

The following example violates this limitation, because the pointer passed to the
TextOut function will eventually point to an object that straddles a 64K boundary:

char huge Record[10000][15J;
int i;

/* DON'T DO THIS. */

TextOut(hDC, x, y, (LPSTR) Record[i], 15);

362 Microsoft Windows Guide to Programming

Since 15 is not a factor of 64K, the pointer would be incremented across a seg­
ment boundary.

16.5 Traps to Avoid When Managing Program Data
The previous sections in this chapter explained the basics of how Windows man­
ages memory. They provided guidelines for choosing between methods for allocat­
ing program data and for effectively using a particular method.

This section focuses on common Windows programming errors that you should
avoid when managing program data. Once you understand how Windows man­
ages memory, the following guidelines will be quite clear.

Do not assume the privilege level in which your application is running.
Future versions of Windows may change the privilege-level ring in which applica­
tions will run.

Do not use DOS protected-mode interface (DPMI) services in a Windows
application.
You can use DPMI services only in a dynamic-link library, and only the DPMI
services not provided by Windows. Do not use DPMI services for hooking inter­
rupts or faults. The DPMI specification does not provide for unhooking chained in­
terrupts.

Avoid far pointers to static data in small and medium models.
Suppose a module contains the following declaration:

f* DO NOT FOLLOW THIS EXAMPLE. */

static LPSTR lpstrDlgName = "MyDlg";

hDlg = CreateDialog(hinst,
lpstrDlgName,
hWndParent,
(DLGPROCl lpDialogProc);

The LPSTR (char FAR *) pointer initially set by the Windows loader will be
made invalid if the automatic data segment that contains the literal MyDlg moves
in memory (unless the automatic data segment is a fixed segment).

Chapter 16 More Memory Management 363

The proper way to write the preceding code is to declare the string with a near
pointer, PSTR (char NEAR*), and cast it to the LPSTR data type required by
the CreateDialog function, as shown in the following example:

/* FOLLOW THIS EXAMPLE. */

static PSTR pstrDlgName = "MyDlg";

hDlg = CreateDialog(hinst,
(LPSTR) pstrDlgName,
hWndParent,
(DLGPROC) lpDialogProc);

The cast to LPSTR dynamically pushes the current value of the DS register in­
stead of the value of DS at the time the module was loaded.

Do not pass data to other applications by means of a global handle.
You should not use a global handle to share data with another application, because
you should assume that your application and other Windows applications have dis­
joint address spaces.

In future versions of Windows, the address spaces of applications may be disjoint.

The only methods supported by Windows to pass data between applications are
the clipboard and the dynamic data exchange (DDE) protocol. If you pass a global
handle through DDE to another application, the global object must have been allo­
cated with the GMEM_DDESHARE flag. To share memory, you should always
useDDE.

Do not assume any relationship between a handle and a far pointer in any
mode.
When using global memory objects, you must always call the GlobalLock func­
tion to dereference a handle to a far pointer, regardless of the mode in which
Windows is running.

Do not load a segment register with a value other than one provided by
Windows or MS-DOS.
In Windows, segment registers are interpreted as selectors, not physical paragraph
addresses. Therefore, you should not read the interrupt table by setting ES or DS
to zero, for example. Use only the appropriate MS-DOS function to hook an inter­
rupt vector.

364 Microsoft Windows Guide to Programming

Do not perform segment arithmetic.
Do not increment the segment address of a far pointer in an attempt to increment
the pointer. This technique is not supported in Windows. For more information,
see Section 16.2.3.2, "Locking and Unlocking a Global Memory Object."

Do not compare segment addresses.
Do not compare the selector values that Windows assigns to memory objects to de­
termine which object is lower in memory. This technique is not supported in
Windows.

Do not read or write past the ends of memory objects.
Do not read or write past the ends of memory objects under any circumstances. Al­
though this may go undetected in other memory configurations, Windows will re­
port this error as a GP fault.

16.6 Managing Memory for Program Code
You should plan how Windows will manage the code segments that make up the
executable portion of your application or library. When planning, consider the fol­
lowing:

• Whether your code segments should be fixed, movable, or discardable

• Whether your application or library will contain one or more code segments

• How to maintain a balance of size and far calls between your code segments

• The order in which Windows loads the code segments

16.6.1 Using Code-Segment Attributes
Windows uses the same memory-management facilities for handling code seg­
ments as it does for handling data segments. You can, and generally should, parti­
tion your application into separate code segments. You can declare a particular
code segment to be fixed, movable, or discardable, just as you can for the applica­
tion's automatic data segment and global objects.

In your application's .DEF file, you can use the CODE statement to specify
whether the code segments are by default fixed, movable, or discardable. For ex­
ample, the following statement declares that the default attribute of all code seg­
ments will be MOVEABLE:

CODE MOVEABLE;

Chapter 16 More Memory Management 365

For information about overriding this default attribute for specific code segments,
see Section 16.6.2, "Using Multiple Code Segments."

If you declare your code segments as discardable, Windows can free memory held
by those code segments when it is necessary to allocate additional memory. Be­
cause a code segment is always unmodifiable, there is no risk that information will
be lost when it is discarded. When your application makes a call to a code segment
that is not currently in memory, Windows will first load it from the .EXE file. If a
discardable code segment is not in memory, however, Windows requires extra
time to load the segment from disk. On the other hand, this penalty is minimized
because Windows uses a least-recently-used (LRU) algorithm for discarding seg­
ments, and so Windows does not discard frequently used segments.

16.6.2 Using Multiple Code Segments
Most Windows applications should be compiled by using the mixed memory
model. The code should be partitioned into relatively small segments (8K or less).
This allows Windows to move the code segments fluidly in memory. For more in­
formation about the mixed model, see Section 16.3, "Using Memory Models."

When you compile a C module, the code segment is assigned the name _TEXT by
default. You can assign the code segment a different name, using the /NT option
of CL. You partition the code by assigning different names to the code segments
for different modules. The following command line produces a code segment
named CODESEG 1:

cl /u /c /AS /Gsw /Oas /Zpe /NT COOESEGl modulel.c

You can assign attributes in the application's .DEF file that override the values
you specified for the default CODE. For example, the following .DEF file excerpt
declares all code segments to be movable except the code segment named
CODESEG 1, which is discardable:

CODE LOADONCALL MOVEABLE

SEGMENTS
CODESEGl MOVEABLE DISCARDABLE

16.6.3 Balancing Code Segments
Although it is a good idea to keep code segments small, compare the costs of a far
call between code segments to a near call within a code segment. A far call costs
more for Windows applications than it does for MS-DOS applications. Each far
call carries the overhead of extra instructions, because Windows has to direct the
call to a code segment that may have been moved or discarded.

366 Microsoft Windows Guide to Programming

The task of balancing code segments in an application is a matter of minimizing
the frequency of far calls that must be made between segments, while maintaining
roughly equal-sized segments whose sizes do not exceed 8K. Functions that
frequently call each other should be grouped in the same code segment, subject to
the code-size guideline.

16. 7 Related Topics
For more information about using C and assembly language in your Windows ap­
plications, see Chapter 14, "C and Assembly Language."

For more information about memory-management functions, see the Microsoft
Windows Programmer's Reference, Volume 2.

Print Settings

Chapter 17

17 .1 Overview.. 369
17 .2 How Windows Manages Print Settings... 370

17 .2.1 Print Settings and the DEVMODE Structure.......................... 370
17.2.2 Print Settings and the Printer Environment............................. 372

17.3 Using Device-Driver Functions... 372
17.4 Determining the Capabilities of the Printer Driver 37 4
17 .5 Working with Print Settings 37 4

17 .5 .1 Specifying ExtDeviceMode Input and Output........................ 375
17.5.2 Retrieving a Copy of the Print Settings................................... 376
17.5.3 Changing the Print Settings... 376
17 .5 .4 Tailoring Print Settings for Use with the

CreateDC Function.. 377
17 .5 .5 Changing the Print Settings Without Affecting

Other Applications... 379
17.5.6 Prompting the User for Changes to the Print Settings............ 380

17 .6 Copying Print Settings Between Drivers... 381
17. 7 Maintaining Your Own Print Settings 382
17.8 Working with Older Printer Drivers.. 382
17.9 Related Topics .. 383

Chapter 17 Print Settings 369

The Microsoft Windows 3.1 operating system provides common dialog boxes
for many standard operations. (A common dialog box is a dialog box that a
Windows-based application displays by calling a single function rather than by
creating a dialog box procedure and a resource file containing a dialog box tem­
plate.) An application can create a common dialog box for changing the print set­
tings by calling the PrintDlg function. Common dialog boxes simplify the
development of applications for Windows and assist users by providing a standard
set of controls. Common dialog boxes can even be customized to meet the special
requirements of an application. For more information about common dialog boxes,
see the Microsoft Windows Programmer's Reference, Volume 1.

17 .1 Overview
When a user prints from your Microsoft Windows 3.1 application, the resulting
output depends not only on the data your application sends to the printer, it also de­
pends on the current print settings for that printer. Print settings can include infor­
mation such as page size, print orientation, or which paper bin to use.

The simplest way to print (illustrated in Chapter 12, "Printing") uses the current
print settings without validating or changing them. This approach works as long as
the settings are appropriate for your application's requirements. If the settings are
not appropriate, your application's printed output could be less than ideal. For ex­
ample, if your application prints a spreadsheet that requires a landscape print orien­
tation on a printer that is set up for portrait orientation, your application's data will
probably run off the right side of the paper.

With the Windows operating system, your application can change the print set­
tings to fit the situation (for example, changing the print orientation to landscape,
or specifying a different paper bin). After your application has tailored the print
settings, it can print using those settings.

Because print settings differ from printer to printer, an application must interact
with a printer's device driver in order to change the settings for that printer. Most
printer drivers for Windows provide special functions that your application can
use to control print settings easily.

This chapter explains how to use these printer-driver functions to control print set­
tings. It covers the following topics:

• How Windows manages print settings

• Using device-driver functions

• Finding out the capabilities of a printer driver

• Controlling print settings

• Copying print settings from one driver to another

370 Microsoft Windows Guide to Programming

• Letting the user change the print settings

• Working with drivers written for previous versions of Windows

17 .2 How Windows Manages Print Settings
When your application prints, it uses a printer device context that it created by
using the CreateDC function. When creating a device context for a printer, the ap­
plication specifies the printer driver and name, the output port, and, optionally,
print settings for that driver. These settings are device-specific, applying to a
specific printer and printer driver. Because the exact settings can differ from
printer to printer, ensure that your application supplies the specific information
that each printer driver requires.

When an application calls CreateDC to create a printer device context in prepara­
tion for printing, Windows creates the device context by using the first print set­
tings it can find. It searches for print settings in the following order:

1. Windows first uses the print settings (if any) that the application passed by
using the DEVMODE structure pointed to by the lpvlnitData parameter of the
CreateDC function.

2. If the application did not pass any print settings when calling CreateDC,
Windows searches for the print settings that the printer driver stored most re­
cently in memory.

3. If the printer driver has not yet stored any print settings in memory, the printer
driver searches for the print settings in the WIN.IN! file. If WIN.INI does not
contain complete print settings for this printer and port, the printer driver fills
any gaps by using its own built-in default settings.

Your application has the most control over print settings if you specify settings
when calling the CreateDC function. If you do specify print settings by using
CreateDC, Windows uses those settings instead of other settings that may be
available from the driver or from WIN.INI.

17.2.1 Print Settings and the DEVMODE Structure
Usually, print settings are defined in the form of a DEVMODE structure. For ex­
ample, when you pass print settings to the CreateDC function, you are passing a
pointer to a DEVMODE structure. Printer drivers usually store print settings as
strings in the WIN .INI file in order to retain the settings between Windows ses­
sions. Typically, your application does not create the DEVMODE structure itself;
instead, it gets a complete structure from the printer driver and modifies it, as nec­
essary. This method ensures that the structure is complete and correct.

Chapter 17 Print Settings 371

The DEVMODE structure includes three types of information:

Information

Header information

Device-independent settings

Device-specific information

Description

The first five members in the DEVMODE structure
make up the structure's header information. This infor­
mation includes the model name (for example, "HP
LaserJet Series II"), version information, and informa­
tion about the size of the structure. You should always
provide complete header information.

Most of the members in the DEVMODE structure are
device-independent settings, such as print orientation,
paper size, and number of copies. Although the
complete structure always includes all the
device-independent settings, some printers do not sup­
port all the settings. For example, many printers can
print on one side of the paper only; printer drivers for
those printers would therefore ignore the DEVMODE
structure's dmDuplex member, which specifies two­
sided printing.

The optional dmDriverData member of DEVMODE
contains device-specific information that is defined by
each device driver. This information follows the DEV­
MODE structure in memory. Typically, an application
would simply pass this information on without modify­
ing it in any way.

The best way to supply a complete DEVMODE structure when calling CreateDC
is to first use the ExtDeviceMode function (included in printer drivers written for
Windows versions 3.0 and later). This function tells the printer driver to create a
DEVMODE structure by using its current print settings. Because the driver itself
creates the DEVMODE structure and includes its device-specific information,
your application treats the structure as complete and correct. The application can
then pass the resulting DEVMODE structure when calling the CreateDC function.

Your application can modify the members of the DEVMODE structure created by
ExtDeviceMode to create a customized device context. For example, an applica­
tion could change the value of the dmOrientation member of DEVMODE from
DMORIENT_PORTRAIT to DMORIENT_LANDSCAPE before passing the
structure to the CreateDC function. An application should never customize the
device context in this manner without first using the DeviceCapabilities and
GetDeviceCaps functions to verify that the printer supports the changes.

For more information about the CreateDC function and the DEVMODE struc­
ture, see the Microsoft Windows Programmer's Reference, Volumes 2 and 3, re­
spectively.

372 Microsoft Windows Guide to Programming

17.2.2 Print Settings and the Printer Environment
A printer environment is a collection of print settings in memory. There can be
one printer environment for each printer port. The current printer driver (whatever
the user has installed for that port) creates and maintains the port's printer environ­
ment.

The settings in each port's environment are the same as those in the WIN.INI file,
except that the WIN .INI information consists of character strings in a file, while
the environment is the same information in the form of a DEVMODE structure in
memory. Having the information in memory speeds up the process of creating a
printer device context for that port.

When an application creates a printer device context without specifying its own
customized print settings, Windows uses the settings in the printer environment.
Because the printer environment is associated with a printer port, changes to the
settings in a printer environment affect any application that does not provide its
own print settings when creating a printer device context for that port.

When using printer drivers written for Windows versions 3.0 and later, an applica­
tion can control the print settings to meet its own requirements; the changes need
not affect other applications that are using the same port. (When using printer
drivers written for earlier versions of Windows, applications can change the print
settings only by changing the WIN.IN! file and the printer environment; this af­
fects all applications that use that port without providing their own print settings.)

17 .3 Using Device-Driver Functions
Most printer drivers include special functions that an application can use to control
print settings for that driver and printer port.

• Windows printer drivers (for versions 3.0 and later) include the ExtDevice­
Mode function, which provides many ways for an application to alter print set­
tings without affecting other applications. An application can also use this
function to return a copy of the settings in a driver's DEVMODE structure; the
application can then modify those settings, rather than creating a DEVMODE
structure from scratch. (ExtDeviceMode also includes the functionality that the
DeviceMode function provides in older drivers.)

• Windows drivers also include the DeviceCapabilities function. The application
can use this function to determine which DEVMODE members a particular
driver sul?ports.

• Older printer drivers include the DeviceMode function. This function displays
a dialog box from which the user can select print settings, such as page orienta­
tion and paper size, for the printer. The user's changes affect the WIN.IN! file
and the printer environment.

Chapter 17 Print Settings 373

Because device-driver functions are part of the device driver and are not regular
Windows functions, you must use the following procedure to call a device-driver
function:

1. Load the device driver into memory by calling the LoadLibrary function.

2. Use the GetProcAddress function to retrieve the address of the function you
want. (If GetProcAddress returns a NULL pointer, then that device driver does
not provide the function you requested.)

3. Use the pointer returned by GetProcAddress to call the device-driver function.

4. After you have finished using the device-driver function, call the Windows
FreeLibrary function to unload the device driver from the system.

The following example calls the ExtDeviceMode function of the PSCRIPT.DRV
printer driver:

FARPROC lpfnExtDeviceMode;
FARPROC lpfnDeviceMode;
HINSTANCE hDriver;

if ((hDriver = LoadLibrary("PSCRIPT.DRV")) =< 32) {

/* Handle the error. */

}

lpfnExtDeviceMode = GetProcAddress(hDriver, "ExtDeviceMode");

if (lpfnExtDeviceMode != NULL) {

}

f*
* If the driver supports ExtDeviceMode, call the driver's
* ExtDeviceMode function, using the procedure address in
* lpfnExtDeviceMode.
*f

else {

f*
* The driver is not a Windows 3.x driver and does not support
* the newer functions; use the DeviceMode function instead.
*f

lpfnDeviceMode GetProcAddress(hDriver, "DeviceMode"l;

374 Microsoft Windows Guide to Programming

}

if ClpfnDeviceMode != NULL) {

/*

}

* If the driver supports DeviceMode, call the driver's
* DeviceMode function by using the procedure address in
* lpfnDeviceMode.
*I

FreeLibrary(hDriver); /*when finished, unloads driver from memory*/

17 .4 Determining the Capabilities of the Printer Driver
You can use the DeviceCapabilities function to determine the capabilities of a par­
ticular printer, including which DEVMODE members the driver supports. For ex­
ample, if your application must print in landscape orientation, it might call
DeviceCapabilities to determine whether the current printer supports landscape
orientation.

For more information about the DeviceCapabilities function, see the Microsoft
Windows Programmer's Reference, Volume 2.

17 .5 Working with Print Settings
You can use the ExtDeviceMode function to perform one or more actions at a
time-for example:

• Retrieve a DEVMODE structure containing the driver's current print settings.

• Change one or more of the driver's current print settings.

• Prompt the user for print settings.

• Reset the printer environment and the information in WIN.IN!.

Because ExtDeviceMode provides so many different features, you will probably
find that your application calls ExtDeviceMode repeatedly during the process of
retrieving, altering, and maintaining print settings.

When calling the ExtDeviceMode function, your application should specify the
following information:

• The module handle of the printer driver (returned by the LoadLibrary or Get­
ModuleHandle function).

• The name of the printer model (for example, HP LaserJet Series II).

Chapter 17 Print Settings 375

• The name of the port to which the printer is connected (for example, LPT2).

• The operation(s) that the device driver is to perform. Your application requests
different operations by setting the values that make up thefwMode parameter.
To request several operations at once, combine two or more values by using the
OR operator.

• The input buffer (if any). The application can supply a partial or complete DEV­
MODE structure as input. (Unlike other functions that use DEVMODE, Ext­
DeviceMode does not require that the input DEVMODE structure be
complete.)

• The output buffer (if any). At the application's request, the driver writes a
complete DEVMODE structure to the output buffer.

Note The ExtDeviceMode function requires eight parameters in all; the list above
includes only parameters that are directly relevant to this discussion. For a
complete list of parameters for the ExtDeviceMode function, see the Microsoft
Windows Programmer's Reference, Volume 2.

17 .5.1 Specifying ExtDeviceMode Input and Output
By setting thefwMode parameter, you specify how a driver's ExtDeviceMode
function will receive input and where it will send output. The driver's response
differs depending on the value(s) you use.

If you setfwMode to zero, ExtDeviceMode simply returns the size, in bytes, of
the output DEVMODE structure. This is often the first call you will make to Ext­
DeviceMode, because it lets you know how large to make the output buffer.

You can setfwMode to one or more values other than zero. The following table de­
scribes the values for the fwMode parameter and notes whether a value controls
input or output.

Value Input/Output

DM_MODIFY Input

DM_PROMPT Input

DM_COPY Output

DM_UPDATE Output

Description

Directs the driver to change its current print
settings to match those the application sup­
plied as a DEVMODE structure in the input
buffer.

Directs the driver to display its Print Setup
dialog box, then change its current print set­
tings to match those the user specifies.

Writes the driver's current print settings to
the output buffer in the form of a DEV­
MODE structure.

Writes the driver's current print settings to
the printer environment and the WIN.INI file.

376 Microsoft Windows Guide to Programming

You can use a combination ofjwMode values to let both your application and the
user control the print settings.

Important To change the settings, you must specify at least one input value and
one output value. For example, you could use a combination of the input value
DM_PROMPT and the output value DM_UPDATE to tell the driver to take input
from the user and \Vrite the resulting settings to the cu..1cnt printei enviroruuent
and WIN.INT. If you specify only an output value (DM_COPY or DM_UPDATE),
the driver provides its current settings and ignores any input you provide. If you
specify only an input value (DM_PROMPT or DM_MODIFY), calling ExtDevice­
Mode generates no output, so your input has no real effect.

17 .5.2 Retrieving a Copy of the Print Settings
It is often useful when working with print settings to determine a particular printer
driver's current settings. This lets your application determine whether the settings
are appropriate for its own printing requirements. Follow these steps to retrieve a
copy of the driver's print settings:

1. Determine how much space the output DEVMODE structure will require. To
do this, call ExtDeviceMode with thefwMode parameter set to zero. Ext­
DeviceMode returns the size, in bytes, of the output DEVMODE structure (the
one the driver would create if you setfwMode to DM_COPY).

2. Allocate a buffer of this size.

3. Call ExtDeviceMode again, including the following information in the parame­
ters:

Parameter

lpdmOutput

fwMode

Value

A pointer to the output buffer you just allocated

DM_COPY

The printer driver then puts a DEVMODE structure containing its current print
settings into the buffer you specified.

Because the output buffer contains a complete DEVMODE structure, you can
easily pass that data to the CreateDC function.

17.5.3 Changing the Print Settings
Often, when printing, your application may have to change the print settings to
suit its own printing requirements. To change the print settings, set the fwM ode
parameter of ExtDeviceMode to both an input value (DM_MODIFY or
DM_PROMPT) and an output value (DM_COPY or DM_UPDATE). You can
specify multiple values, as long as you use at least one input and one output value.
(To change the settings without affecting other applications, do not specify the

Chapter 17 Print Settings 377

DM_UPDATE output value; that value causes the driver to change the default
print settings to those you specify.)

There are several different ways to provide new print settings as input. For each
method, you setfwMode to a different combination of values. The input methods
are as follows:

• Provide a partial DEVMODE structure with the new settings you want. (When
calling ExtDeviceMode, specify the value DM_MODIFY.)

• Display the driver's Printer Setup dialog box so that the user can change the set­
tings. (When calling ExtDeviceMode, specify the value DM_PROMPT.)

• Provide a partial DEVMODE structure and, in addition, display the driver's
Printer Setup dialog box. This method lets both your application and the user
change the settings. (When calling ExtDeviceMode, specify both the
DM_MODIFY and DM_PROMPT values.)

When changing the print settings, you not only provide new print settings as input,
you also specify where you want the driver to place the updated print settings. The
driver provides as output a complete, valid DEVMODE structure that reflects the
changes your application or the user (or both) has just made to the print settings.
Your instructions tell the driver where to put this output structure. You determine
the driver's output by specifying one or more output values for thefwMode pa­
rameter of the ExtDeviceMode function.

You can direct the driver to do one of the following:

• Place the updated DEVMODE structure in the output buffer. Your application
can then pass this output structure to CreateDC and other Windows functions.
(When calling ExtDeviceMode, specify the value DM_COPY infwMode.)

• Write the updated DEVMODE structure to memory. When the printer driver
does this, it resets the printer environment for that printer port and changes the
relevant entries in WIN.IN!. The new settings affect any application that uses
that port and does not provide its own print settings. (When calling ExtDevice­
Mode, specify the value DM_UPDATE infwMode.)

• Place the updated DEVMODE structure in the output buffer, reset the printer
environment, and update WIN.IN!. (When calling ExtDeviceMode, specify
both the DM_COPY and DM_UPDATE values infwMode.)

17. 5 .4 Tailoring Print Settings for Use with the Create DC Function
To use a printer, your application must first create a printer device context by
using the CreateDC function. This function has an optional parameter, lpvlnit­
Data, which specifies the print settings to use when creating the printer device con­
text. The simplest way to print is to set lpvlnitData to NULL; Windows then
creates the device context by using the current print settings for that printer port.

378 Microsoft Windows Guide to Programming

To print using your own settings instead of the current default settings, you can
pass CreateDC a DEVMODE structure containing the print settings you want.
Windows then creates the device context by using your customized print settings.

When calling the CreateDC function, you should provide only DEVMODE struc­
tures that you have received directly from the printer driver. Although it is
possible to simply edit a DEVMODE structure an.d then pass it directly to
CreateDC, it is not recommended. CreateDC requires a correct and complete
DEVMODE structure. Therefore, any minor inconsistencies in the structure can
result in an invalid device context. To ensure that a DEVMODE structure is valid,
pass it to the printer driver as input. The driver then provides a complete, correct
DEVMODE structure that incorporates your changes; you can safely pass this out­
put structure to CreateDC.

To use particular print settings, you should provide, as input to ExtDeviceMode, a
partial DEVMODE structure that contains the settings you want. The driver
changes only those settings for which you supply a new value. This means that
you can use this method to change a single print setting-for example, changing
from portrait to landscape orientation-without affecting the driver's other print
settings. In response to ExtDeviceMode, the driver provides as output a complete
DEVMODE structure that includes your changes.

To change the print settings, follow these steps:

1. Set up a partial or complete DEVMODE structure that contains the members
you want to change.

If you are supplying a partial structure be sure to include all five header mem­
bers (dmDeviceName, dmSpecVersion, dmDriverVersion, dmSize, and
dmDriverExtra). Set the dmDriverVersion and dmDriverExtramembers to
zero if you are not passing any driver-specific information. Set the dmFields
member to indicate which of the device-independent settings you are providing.

For example, to request that a printer driver use landscape orientation with let­
ter-sized paper, you could set up the following DEVMODE structure:

DEVMODE dm;
lstrcpy(dm.dmDeviceName, szDeviceName);
I* Header information */
dm.dmVersion = DM_SPECVERSION;
dm.dmDriverVersion = 0;
dm.dmSize = sizeof(DEVMODE);
dm.dmDriverExtra = 0;
/* Device-independent settings */
dm.dmFields = DM_ORIENTATION I DM_PAPERSIZE;
dm.dmOrientation = DMORIENT_LANDSCAPE;
dm.dmPaperSize = DMPAPER_LETTER;

The first five members make up the structure's header information. The
szDeviceName value is a string that contains the name of the device, such as

Chapter 17 Print Settings 379

HP LaserJet Series II. For information about how to retrieve this value from the
WIN.IN! file, see Chapter 12, "Printing."

2. Call ExtDeviceMode, including the following information in the parameters:

Parameter

lpdmlnput

lpdmOutput

fwMode

Value

A pointer to the buffer that contains the partial or complete DEV­
MODE structure you are supplying

A pointer to the output buffer

DM_MODIFY I DM_COPY

The driver then changes its settings to match those in your input structure and
writes the resulting settings to the output buffer as a complete DEVMODE
structure.

3. Pass the output DEVMODE structure to CreateDC to create a printer device
context that uses the new settings.

After modifying its DEVMODE structure, the driver copies it to the output buffer.
The output DEVMODE structure will be a complete structure and will include the
changes you specified in your partial structure. Because the driver has just vali­
dated your changes, it is safe to pass this output structure to the CreateDC func­
tion.

17 .5.5 Changing the Print Settings Without Affecting Other Applications
Your application can alter the print settings without affecting other applications.
To make your application do this, follow these steps:

1. Call ExtDeviceMode, including the following information in the parameters:

Parameter

lpdmlnput

lpdmOutput

fwMode

Value

A pointer to the buffer that contains the partial or complete DEV­
MODE structure you are supplying

A pointer to the output buffer

DM_MODIFY I DM_COPY

or

DM_pROMPT I DM_COPY

or

DM_MODIFY I DM_pROMPT I DM_COPY

Note that you can specify either or both input values (DM_PROMPT and
DM_MODIFY). This call to ExtDeviceMode saves a private copy of the print
settings in a buffer that your application maintains. Since the call omits the
DM_UPDATE output value, the driver does not copy the new print settings to

380 Microsoft Windows Guide to Programming

the printer environment and WIN.IN!. Therefore, other applications will not be
affected by your private print settings.

2. Pass the output DEVMODE structure to CreateDC to create a printer device
context that uses the new settings.

Note You can save the output DEVMODE structure to a permanent location such
as a reserved area in your application's document file. Then, in a later session,
your application can read the DEVMODE structure from the document file and
pass it directly to CreateDC without having to first call ExtDeviceMode.

17 .5.6 Prompting the User for Changes to the Print Settings
Your application can direct the printer driver to display its Print Setup dialog box,
from which the user can specify changes to the print settings. The driver changes
its current settings to reflect the user's preferences. The driver's output DEV­
MODE structure (if any) then includes the user's changes.

To make you application prompt the user for print settings, follow these steps:

1. Call ExtDeviceMode, including the following information in the parameters:

Parameter

lpdmOutput

fwMode

Value

A pointer to the output buffer

DM_PROMPT I DM_COPY

The driver then displays its Print Setup dialog box, from which the user can
select new print settings.

If the user clicks the OK button after changing the print settings, the ExtDevice­
Mode function returns the value IDOK and the driver places a DEVMODE
structure in the output buffer. This output structure includes the user's changes.
If the user clicks the Cancel button instead, the function returns the value
IDCANCEL and the driver's output structure will not include any of the user's
selections.

2. To set up a printer device context that includes the user's changes, pass the out­
put DEVMODE structure to CreateDC.

Setting the Values in the Print Setup Dialog Box To preset the values that ap­
pear in the driver's Print Setup dialog box, your application can supply a DEV­
MODE structure with its own settings and direct the driver to display its dialog
box. The driver's Print Setup dialog box will appear with the settings you
specified in the input DEVMODE structure. The user can then change some or all
of the settings. After the user clicks the OK button, the driver provides an output
DEVMODE structure that reflects the settings as they appeared when the user

Chapter 17 Print Settings 381

clicked OK. The output structure includes settings your application passed as
input, with any changes the user made.

To prompt the user with a dialog box that reflects your application's print settings,
follow these steps:

1. Set up a partial or complete DEVMODE structure that contains any settings
you want to change. For information about setting up a partial DEVMODE
structure, see Section 17.4.4, "Tailoring Print Settings for Use with the
CreateDC Function."

2. Call ExtDeviceMode, including the following information in the parameters:

Parameter

lpdmlnput

lpdmOutput

fwMode

Value

A pointer to the buffer that contains the partial or complete DEV­
MODE structure you are supplying

A pointer to the output buffer

DM_MODIFY I DM_PROMPT I DM_COPY

The driver first changes its current settings to reflect the settings you provided.
It then displays its Print Setup dialog box with the new settings; the user can
change some or all of the settings in the dialog box.

If the user clicks the OK button after changing the print settings, the ExtDevice­
Mode function returns the value IDOK and the driver places in the output buff­
er a DEVMODE structure that includes your changes as updated by the user. If
the user clicks the Cancel button instead, the function returns the value
IDCANCEL and the driver's output DEVMODE structure includes only the
changes your application provided.

3. To set up a printer device context that includes the new settings, pass the output
DEVMODE structure to CreateDC.

17 .6 Copying Print Settings Between Drivers
To copy print settings from one driver to another, follow these steps:

1. Copy the first driver's DEVMODE structure by using the steps outlined in Sec­
tion 17.4.2, "Retrieving a Copy of the Print Settings."

2. Delete the device-specific information in the output DEVMODE structure by
setting the dmDriverVersion and dmDriverExtramembers to zero.

3. Determine the size of the buffer required for the DEVMODE structure for the
second printer by calling the ExtDeviceMode function with thefwMode pa­
rameter set to zero and all other parameters set to information specific to the
second printer.

382 Microsoft Windows Guide to Programming

4. Copy the DEVMODE structure produced in steps 1and2 to the buffer allo­
cated in step 3. It is not necessary to copy the device-specific information to the
buffer.

5. Free the buffer allocated in step 1.

6. Change the dmDeviceName member of the new DEVMODE structure to the
na..T..e of the second device.

7. Call the second driver's ExtDeviceMode function, including the following in­
formation in the parameters:

Parameter

lpdmlnput

lpdmOutput

fwMode

Value

A pointer to the buffer that contains the altered DEVMODE struc­
ture

A pointer to the output buffer

DM_MODIFY I DM_COPY

The second driver then places a valid, complete DEVMODE structure in the out­
put buffer. The output structure reflects the device-independent settings your appli­
cation copied from the first driver, but contains the second driver's device-specific
information.

17. 7 Maintaining Your Own Print Settings
With Windows, your application can maintain application-specific default print
settings, or even settings specific to a particular document. So that your applica­
tion can do this, store the DEVMODE structure that contains the settings you
want to use as defaults. You can store the structure in an application setup file to
provide application-wide defaults, or you can store it as part of a document, for
document-specific setups.

17 .8 Working with Older Printer Drivers
Printer drivers written for versions of Windows earlier than 3 .0 provide only the
DeviceMode function, which displays a dialog box from which the user can
specify print settings, such as page orientation and paper size. With these printer
drivers, changes made to the print settings affect the entire system, not just the call­
ing application.

Like other device-driver functions, the DeviceMode function is part of the driver,
not part of GDI. (For an explanation about how to call device-driver functions, see
Section 17 .2, "Using Device-Driver Functions.") When you call a driver's Device­
Mode function, the driver displays its Printer Setup dialog box, from which the
user can change the print settings for that printer and printer port.

Chapter 17 Print Settings 383

The following example shows how to use the function's procedure address,
lpfnDeviceMode, to call the DeviceMode function:

if (lpfnDeviceMode !=NULL) /*if driver supports this function ... */
{

(*lpfnDeviceMode) ((HWND) hWnd, '* handle of parent window *'
(HANDLE) hDriver, '* handle of driver module */
(LPSTR) "PSCRIPT", /* printer name */
(LPSTR) "LPTl:"); '* port name */

}

17 .9 Related Topics
For more information about printing from your Windows application, see Chapter
12, "Printing."

For more information about functions and structures used for print settings, see the
Microsoft Windows Programmer's Reference, Volumes 2 and 3.

For information about writing printer drivers, see the Microsoft Windows Device
Driver Kit (DDK).

Fonts

Chapter 18

18.1 FontFundamentals ... 387
18.1.1 Font Organization.. 387
18.1.2 Measuring Characters.. 388
18.1.3 Measuring Line and Intercharacter Spacing............................ 389
18.1.4 Character Sets.. 390

18.1.4.1 Windows Character Set.. 391
18.1.4.2 OEM Character Set ... 392
18.1.4.3 Symbol Character Set.. .. 392
18.1.4.4 Vendor-Specific Character Sets 392

18.2 Fonts in Windows .. 393
18.2.1 Raster, Vector, and TrueType Fonts .. 393
18.2.2 Font Resource Files... 394
18.2.3 Basics ofTrueType Fonts .. 395

18.2.3.1 Benefits ofTrueType .. 396
18.2.3.2 Compatibility with Earlier Windows Versions..... 397

18.2.4 Text and Character Attributes.. 398
18.2.4.1 Line and Character Spacing 398
18.2.4.2 Logical and Physical Inches 401
18.2.4.3 Font Sizes.. 402

18.2.5 Font Mapper... 402
18.2.6 Standard Font Dialog Box... 403

18.3 TrueType Font Technology... 404
18.3.1 What You See Is What You Get: WYSIWYG 405
18.3.2 Embedded Fonts .. 405

18.3.2.1 Embedding a Font in a Document 406
18.3 .2.2 Installing and Using an Embedded Font............... 406

386 Microsoft Windows Guide to Programming

18.3.3 Printer Portability ... 408
18.3.3.1 Line Breaks and Justification 408
18.3.3.2 Performance and Printer Portability 409

18.3.4 Document Portability ... 410
18.3.5 Disk Space, Memory Usage, and Speed 410
18.3.6 Font Design and Scaling .. 411
18.3.7 Designing Portable Fonts... 411

18.4 Using Fonts in Applications ... 413
18.4.1 Using Stock Fonts .. 413
18.4.2
18.4.3
18.4.4
18.4.5
18.4.6
18.4.7

Enumerating Fonts ... 415
Checking a Device's Text Capabilities 417
Creating a Logical Font... 418
Retrieving Information About the Selected Font 420
Retrieving Information About a Logical Font......................... 421
Drawing Text ... 421
18.4.7.1 Setting the Text Alignment 422
18.4.7.2 Using Color ... 422
18.4.7.3 Using Multiple Fonts in a Line 423
18.4.7.4 Rotating Text ... 425

18.4.8 True Type Font Functions and Structures 426
18.4.8.1 Retrieving Character Outlines 426
18.4.8.2 Using Portable TrueType Metrics 428
18.4.8.3 PanoseNumbers .. 431

18.4.9 Creating Customized Fonts .. 431
18.4.9.1 CreatingFontFiles .. 432
18.4.9.2

18.4.9.3
18.4.9.4
18.4.9.5

Creating the Resource-Definition File
for a Font... 433
Creating a Dummy Code Module 433
Creating a Module-Definition File........................ 434
Compiling and Linking a Font Resource File....... 435

18.4.9.6 Adding TrueType Fonts .. 436
18.5 Related Topics .. 436

Chapter 18 Fonts 387

This chapter describes the fonts an application can use with the Microsoft
Windows 3 .1 operating system and discusses how to use Windows font functions
in applications. The information includes a description of TrueType font tech­
nology, which is new for Windows 3.1.

18.1 Font Fundamentals
The vocabulary used to describe fonts may be unfamiliar to application
developers. This section defines some of the terms and concepts that a developer
needs to use when describing a font.

18.1.1 Font Organization
A typeface is a collection of characters that share design characteristics; for ex­
ample, Courier is a common typeface. A font is a collection of characters that have
the same typeface and size.

The Windows graphics device interface (GDI) organizes fonts by family; each
family consists of fonts that have a common design. Families are distinguished by
stroke width and serif characteristics. A stroke is a horizontal or vertical line. A
horizontal stroke is called a cross-stroke. The main vertical line in a character is
called a stem.

f-Cross-stroke

-Stem

Serifs are short cross-lines drawn at the ends of the main strokes of a letter. Type­
faces without serifs are called sans serif typefaces.

Serif - M M _Sans-serif

Within a font family, fonts are distinguished by stylistic variations that generally
involve their weight and slant. Weights are described by adjectives such as "extra
light," "light," "demi," "demi bold," "book," "bold," "heavy bold," "extra bold,"
and "black." The slant of a font is described by "roman," "italic," and "oblique." A
roman font is the upright form of the font; an oblique font is slanted; and an italic
font is both slanted and relatively cursive. Font families usually do not include
both italic and oblique fonts.

388 Microsoft Windows Guide to Programming

GDI uses five family names to categorize typefaces and fonts. A sixth name
(FF _DONTCARE) allows an application to use the default font. Following are the
font-family names, each described briefly:

Font-family name

FF _DECORATIVE

FF _DONTCARE

FF_MODERN

FF_ROMAN

FF_SCRIPT

FF_SWISS

Description

Specifies a novelty font. An example is Old English.

Specifies a generic family name. This name is used when in­
formation about a font does not exist or does not matter.

Specifies a font that has a constant stroke width, with or
without serifs. Fixed-pitch fonts are usually modem; ex­
amples include Pica, Elite, and Courier New.

Specifies a font that has a variable stroke width, with serifs.
An example is Times New Roman®.

Specifies a font that is designed to look like handwriting; ex­
amples include Script and Cursive.

Specifies a font that has a variable stroke width, without
serifs. An example is Arial®.

GDI family names do not always correspond to traditional typographic categories.

18.1.2 Measuring Characters
Both the visible and invisible parts of a character affect its measurement. The vis­
ible part of a character is called a glyph. The invisible part is a rectangular region
that contains the character; this region is called a character cell. The origin of a
character cell is its upper-left corner. When a text-output function specifies coordi­
nates at which the text should appear, GDI places the origin of the first character
cell at those coordinates. (This is the default behavior for GDI. An application can
change this at any time by using the SetTextAlign function.)

The most common unit of measurement for measuring characters is the point. In
the computer industry, a point is exactly 1/72 of an inch. Font heights in Windows
can be specified in "twips," which are 1/20 of a point (that is, 1/1440 of an inch).
Point size refers to the size of the character cell, but only loosely to the size of the
visible characters; the glyphs from different 12-point fonts can have different
heights. The following example shows the different font heights in alternating
glyphs from Times New Roman, Palatino®, and Arial, each at 12 points:

AAAaaaBBBbbbCCCcccDDDddd

Following are some of the character-cell measurements an application can affect
or query when it creates a font:

Measurement

Ascent

Base line

Descent

Height

Width

Chapter 18 Fonts 389

Description

Specifies the distance from the base line to the top of a character.
The ascender of a character is the part of the character above the
base line. In Windows, the value for the ascent is the distance
from the base line to the top of the character cell; this can include
white space. The typographic ascent, on the other hand, corre­
sponds to the tallest character in a font. For TrueType fonts, this
character is often the lowercase "f."

Specifies the line on which all characters stand. The base line is
typically the lowest point of most of the capital letters in a font.
(Though the tail of the "Q," for example, can extend below the
base line.)

Specifies the distance from the base line to the bottom of a char­
acter. The descender of a character is the part of the character
below the base line. For example, the tail of the letter "g" is a de­
scender. In Windows, the value for the descent is the distance
from the base line to the bottom of the character cell; this can in­
clude white space. The typographic descent, on the other hand,
corresponds to the character in a font that extends farthest
beneath the base line. For TrueType fonts, this character is often
the lowercase "g."

Specifies the vertical space required for a font. The height of a
font is the sum of the ascent, descent, and internal leading for that
font. (For a description of internal leading, see Section 18.1.3.)

Specifies the horizontal space required for a character cell in a
font. GDI returns widths for the average character cell in a font
and for the widest character cell. The average width can be
simple or weighted, depending on the font. An application can
also retrieve the widths for individual characters. These widths in­
clude the empty space preceding and following the glyph.

18.1.3 Measuring Line and lntercharacter Spacing
Line spacing, like character size, is typically specified in points. If a 10-point font
is displayed with 12-point line spacing, this is abbreviated as "10/12" and is called
"ten on twelve" line spacing.

Following are some of the line and intercharacter measurements an application can
affect or query when it creates a font:

Measurement

External leading

Description

Specifies the space between rows of text. External leading is not
part of the character cell. When the internal leading for a font
does not contain parts of characters, the apparent line spacing is
the external leading plus the internal leading. Windows does not
support negative values for external leading.

390 Microsoft Windows Guide to Programming

Measurement

Internal leading

Overhang

Pitch

Description

Specifies the difference between the height of the character
glyphs for a font (the font's em square) and the height of the char­
acter cell for a font. Applications use internal leading to deter­
mine the point size for a font; the point size is the height of the
character cell minus its internal leading. Some applications have
used internal leading incorrectly; specifically, internal leading is
not strictly reserved for diacritical marks, nor should it be used as
the space to be removed from the first line on a page.

Specifies a characteristic of some glyphs that occupy the same
horizontal space as adjacent glyphs. All of the characters in most
italic fonts use overhangs to keep the characters relatively close
together-for example, in the italic word Is, the top part of the let­
ter "I" is directly over the bottom of the letter "s."

Specifies the general type of horizontal character spacing. A font
can have either fixed or variable pitch. The character cells in a
fixed-pitch font are all the same size, but in a variable-pitch font
they vary depending on the width of the glyph. Another term for
a fixed-pitch font is a monospace font.

The external leading for a font is specified by the designers of the font. The con­
cept of internal leading is specific to Windows.

The following figure shows internal and external leading and their relationship to
the height of a font. The names beginning with the letters "tin" are members of the
TEXTMETRIC structure.

}--- tmExterna/Leading
~------~~------'-

_______ __,,,__ ___ , _ J _1:- tmlnterna/Leading

L tmHeight

j tmAscent

tmDescent

18.1.4 Character Sets
All fonts use a character set. A character set contains punctuation marks, numer­
als, uppercase and lowercase letters, and all other printable characters. Each ele­
ment of a character set is identified by a number.

Chapter 18 Fonts 391

Most character sets used in Windows are supersets of the U.S. ASCII character
set, which defines characters for the 96 numeric values from 32 through 127.
There are four major groups of character sets:

• Windows

•OEM

• Symbol

• Vendor-specific

18.1.4.1 Windows Character Set
The Windows character set is the most commonly used character set in Windows
programming. It is essentially equivalent to the ANSI character set. The blank
character is the first character in the Windows character set. It has a hexadecimal
value of Ox20 (decimal 32). The last character in the Windows character set has a
hexadecimal value ofOxFF (decimal 255).

Many fonts specify a default character. Whenever a request is made for a character
that is not in the font, GDI provides this default character. Many fonts using the
Windows character set specify the period(.) as the default character. TrueType
fonts typically use an open box as the default character.

Fonts use a break character to separate words and justify text. Most fonts using the
Windows character set specify the blank character, whose hexadecimal value is
Ox20 (decimal 32).

For Windows version 3 .1, 24 characters have been added to the Windows code
page:

Character

f

t
:j:

%0

s

CE

Name

base line single quote

florin

base line double quote

ellipsis

dagger

double dagger

circumflex

permille

S Hacek

left single guillemet

OE ligature

left single quote

right single quote

Windows character code

130

131

132

133

134

135

136

137

138

139

140

145

146

392 Microsoft Windows Guide to Programming

Character Name Windows character code

left double quote 147
right double quote 148
bullet 149
en dash 150
em dash 151
tilde 152

TM trademark ligature 153
s Hacek 154
right single guillemet 155

re oe ligature 156
y YDieresis 159

The characters for left and right single quote were added to the character set for
the release of Windows version 3.0.

18.1.4.2 OEM Character Set
The OEM character set is typically used in full-screen MS-DOS sessions for
screen display. Characters 32 through 127 are usually the same in the OEM, U.S.
ASCII, and Windows character sets. The other characters in the OEM character
set (0 through 31and128 through 255) correspond to the characters that can be
displayed in a full-screen MS-DOS session. These characters are generally differ­
ent from the Windows characters.

18.1.4.3 Symbol Character Set
The Symbol character set contains special characters typically used to represent
mathematical and scientific formulas.

18.1.4.4 Vendor-Specific Character Sets
Many printers and other output devices provide fonts based on character sets that
differ from the Windows and OEM sets-for example, the EBCDIC character set.
To use one of these character sets, the printer driver translates from the Windows
character set to the vendor-specific character set.

Chapter 18 Fonts 393

18.2 Fonts in Windows
Windows applications can use three different kinds of font technologies to display
and print text. This section discusses these font technologies and gives
Windows-specific background information about fonts.

18.2 .1 Raster, Vector, and True Type Fonts
Previous versions of Windows had two types of fonts: raster and vector. Windows
version 3.1 introduces a third type-TrueType fonts.

Raster fonts are stored as bitmaps. These bitmaps are designed for output devices
of a particular resolution. GDI typically synthesizes bold, italic, underline, and
strikeout characteristics for raster fonts; however, the results are not always attrac­
tive. When GDI must change the size of a raster font, aliasing problems can also
reduce the attractiveness of the text. Raster fonts are useful for specialized applica­
tions in which TrueType fonts are not available. Another possible advantage to
using raster fonts derives from the large number of raster fonts that are often pre­
sent on a user's system; an application could look for the name of a particular
specialized or decorative font and use a True Type font if the specified font was not
present.

When an application requests an italic or bold font that is not available, GDI syn­
thesizes the font by transforming the character bitmaps. When an application using
only raster fonts requests a point size that is not available, GDI also transforms the
bitmaps to produce the font. Because TrueType font families include bold, italic,
and bold italic fonts, and because TrueType fonts are scalable to any requested
point size, GDI does not synthesize fonts as frequently as it did for earlier versions
of Windows. For more information about this subject, see Section 18.2.5, "Font
Mapper."

Windows version 3.1 contains a new set of raster fonts. This set, called Small
Fonts, is for use at resolutions of less than 8 points. Although True Type fonts can
be scaled to less than 8 points, glyphs this small may not be legible enough for reg­
ular use. Because glyphs this small contain very little detail, it is more efficient to
use the raster small fonts than to scale TrueType fonts to the small size. (GDI syn­
thesizes bold and italic attributes for the raster small fonts, when necessary.)

Vector fonts are stored as collections of GDI calls. They are time-consuming to
generate but are useful for such devices as plotters, on which bitmapped characters
cannot be used. (By drawing lines, GDI can simulate vector fonts on a device that
does not directly support them.) Prior to the introduction of TrueType fonts, vector
fonts were also useful for applications that used very large or distorted characters
or characters that needed to be perpendicular to a base line that was at an angle
across the display surface.

394 Microsoft Windows Guide to Programming

True Type fonts are stored as collections of points and hints that define character
outlines. (Hints are algorithms that distort scaled font outlines to improve the ap­
pearance of the bitmaps at specific resolutions.) When an application requests a
TrueType font, the TrueType rasterizer uses the outline and the hints to produce a
bitmap of the size requested by the application.

The default font for a device context is the System font, a proportionally spaced
raster font representing characters in the Windows character set. Its font name is
System. Windows uses the System font for menus, window titles, and other text.

It is possible to have multiple fonts in the system that have the same name (for ex­
ample, a Courier device font and a Courier GDI raster font). However, applica­
tions typically do not present a font name to the user more than once-instead,
they discard duplicates. Applications can control which font is presented to the
user when duplicate font names occur by using the lfOutPrecision member of the
LOGFONT structure.

18.2.2 Font Resource Files
The SYSTEM subdirectory of a user's Windows directory (the directory in which
Windows is installed) contains the system's font resource files. A font resource
file is an empty Windows library; it contains no code or data but does contain re­
sources.

Raster and vector font resource files are identified by the .FON filename exten­
sion. TrueType font resource files have the .FOT filename extension. Each .FOT
file is a relatively short header that refers to a file containing TrueType font infor­
mation. These TrueType font-information files have the same base filename as the
.FOT files, but have the .TTF filename extension.

Some of the filenames for raster and vector fonts are followed by a lowercase let­
ter that indicates the resolution for which the font was designed. This letter varies
according to the type of display device that was specified when the fonts were in­
stalled. Following are the lowercase letters used to identify different resolutions:

Letter Device

a CGA

b EGA

c Okidata printers

d IBM and Epson printers

e VGA

f IBM 8514/A

For information about defining and using a specialized font resource, see Section
18.4.9, "Creating Customized Fonts." For more information about the format of

Chapter 18 Fonts 395

font resource files, see the Microsoft Windows Programmer's Reference,
Volume4.

18.2.3 Basics of TrueType Fonts
The TrueType fon~s incorporated into Windows 3.1 are much more versatile than
the fonts that were available in previous versions of Windows. TrueType fonts can
be scaled and rotated; they allow the same fonts to be used on the screen as are
used on printers; and they allow documents to be portable between printers, appli­
cations, and systems.

The following table lists the 13 core TrueType fonts distributed with Windows ver­
sion 3.1. (Windows 3.1 may include additional TrueType fonts that supplement
this core set.)

Fontfamily

Arial

Courier New

Symbol®

Times New Roman

Fontname

Arial

Arial Bold

Arial Italic

Arial Bold Italic

Courier New

Courier New Bold

Courier New Italic

Courier New Bold Italic

Symbol

Times New Roman

Times New Roman Bold

Times New Roman Italic

Times New Roman Bold Italic

Type

Sans serif, variable pitch

Sans serif, variable pitch

Sans serif, variable pitch

Sans serif, variable pitch

Serif, fixed pitch

Serif, fixed pitch

Serif, fixed pitch

Serif, fixed pitch

NIA
Serif, variable pitch

Serif, variable pitch

Serif, variable pitch

Serif, variable pitch

TrueType font technology offers many benefits to application designers, at little or
no cost. It is not necessary to revise an application written for Windows version
3.0 for that application to use TrueType fonts. If you want your application to take
full advantage of the greater precision and versatility available with True Type
fonts, however, you can use the following new font functions:

Function

CreateScalableFontResource

EnumFontFamilies
GetChar ABCWidths

Description

Creates a font resource file for a specified TrueType
font.

Retrieves the fonts available on a specified device.

Retrieves the widths of consecutive TrueType char­
acters.

396 Microsoft Windows Guide to Programming

Function

GetFontData

GetGlyphOutline

GetOut!ineTextMetrics
GetRasterizerCaps

Description

Retrieves font-metric data (or the entire font) from a
TrueType font file.

Retrieves data describing an individual character in
a TrueType font.

Retrieves font metrics for TrueType fonts.

Determines whether TrueType is installed.

18.2.3.1 Benefits of TrueType
TrueType fonts offer many advantages over previous font technologies for
Windows:

• What you see is what you get (WYSIWYG).

Applications can scale and rotate TrueType fonts. TrueType fonts are attractive
at all sizes. An application can use the same fonts on the screen and the printer.

• Printer portability.

TrueType fonts work on different printers. Because detailed font metrics are
available, an application can compose documents in a device-independent fash­
ion.

• Document portability.

Applications can embed TrueType fonts in documents. TrueType fonts work on
different platforms. Applications can use the detailed font metrics to compose
documents in a platform-independent fashion.

• Simplicity.

The versatility of True Type fonts reduces the number of required choices and
compromises.

TrueType solves two important problems: matching fonts to the printer in use, and
presenting high-quality fonts at any size on all devices.

The most obvious benefit ofTrueType fonts is that they are scalable. Users can
use TrueType to get virtually any point size they like. With TrueType, Windows
users no longer need to think about the availability of point sizes on their printer or
screen, about running a utility to create raster fonts, or about disk storage for these
bitmaps.

TrueType fonts are presented to applications through the same enumeration and
selection functions as the raster fonts. As a result, TrueType fonts work with every
Windows application. Windows printer drivers have also been modified as re­
quired to support the use of True Type.

Chapter 18 Fonts 397

18.2.3.2 Compatibility with Earlier Windows Versions
The introduction of True Type fonts introduces a few issues that are important for
applications developed for earlier versions of Windows.

Identifying TrueType Fonts for Users Before TrueType fonts were introduced,
some users had many different fonts to choose between; now, these users have still
more choices. (Users can simplify their choices by selecting the "Enable True Type
Fonts" and "Show Only TrueType Fonts in Applications" check boxes in the
Fonts dialog box from Control Panel.) Applications can use the standard font
dialog box to make it easier for users to manage the fonts on their systems. (For
more information about the standard font dialog box, see Section 18.2.6, "Stan­
dard Font Dialog Box.")

Character Widths TrueType fonts use ABC character spacing, a spacing
method that does not rely on the width of a character cell and any overhang (the
method used for raster fonts). The extra accuracy of ABC spacing can introduce a
problem for applications written prior to Windows version 3 .1. Older applications
that use character widths instead of ABC widths with TrueType fonts incorrectly
calculate the end of the last glyph in the line. This calculation could be off by as
much as several pixels. It is also possible that a line could start slightly to the left
of the starting point specified by the application. These inaccuracies sometimes
lead to problems when the screen is redrawn or when a selection of text is
highlighted; pieces of glyphs can be handled incorrectly at either end of a line of
text.

Many applications written before TrueType became available use the ExtTextOut
function to clip or redraw lines of text that extend beyond the visible margins of
the document.This method prevents any extra pieces of glyphs from being left be­
hind because of incorrect character-width calculations.

For more information about ABC character widths, see Section 18.2.4.1, "Line
and Character Spacing."

MS Serif and MS Sans Serif Fonts In Windows version 3.1, the raster fonts
Tms Rmn and Helv have been replaced by identical fonts named MS® Serif and
MS Sans Serif, respectively. The Tms Rmn and Helv font names are mapped to
their replacements in a new section of WIN.INI called [FontSubstitutes]. When­
ever an application requests Helv or Tms Rmn, the font mapper checks this sec­
tion and makes the appropriate substitution. The [FontSubstitutes] section also
maps Helvetica® to Arial and Times® to Times New Roman.

A user could change the [FontSubstitutes] section to map any font name to any
other font name. For example, a user could map Tms Rmn and Helv to the Times
New Roman and Arial TrueType fonts. Entries in [FontSubstitutes] do not change

398 Microsoft Windows Guide to Programming

the names of fonts, however; a user could not force Arial to appear as Helvetica in
font menus.

The EnumFonts and EnumFontFamilies functions use the [FontSubstitutes] sec­
tion of WIN .INI so that applications written prior to Windows version 3 .1 do not
fail unexpectedly when enumerating preexisting font names. If an application
specifies IIelv in a call to EnumFontFamilies, GDI enumerates the availabk MS
Sans Serif fonts. When an application calls either of these functions with a NULL
family name, GDI enumerates a representative font from each available family, re­
turning the actual names of the fonts, not the remapped names.

Because most Windows applications display font menus that include only the
fonts that can be printed on the current printer, this change in font names does not
affect most users. Only users of dot-matrix printers see the new names in font
menus and dialog boxes.

Font-Height Metrics Can Depend on Attributes Because the members of a
True Type font family, such as bold and italic, come from different outlines, in
some cases the font-height metrics could be different within a TrueType font
family. For raster fonts this is not a problem, because when Windows simulates at­
tributes, these metrics are preserved, and because hand-tuned bitmaps were made
with matching heights. For the set of fonts shipped with Windows 3.1, most (but
not all) of the height metrics match.

18.2.4 Text and Character Attributes
Character attributes are such features as whether a character is bold or italic and
whether it has serifs. Text attributes are such features as line and character spacing
and text justification. This section introduces some of these attribute categories.
For descriptions of individual attributes, see the descriptions of the LOG FONT,
NEWTEXTMETRIC, TEXTMETRIC, and OUTLINETEXTMETRIC struc­
tures in the Microsoft Windows Programmer's Reference, Volume 3.

18.2.4.1 Line and Character Spacing
Before the introduction of True Type fonts, it was difficult for an application to
position characters exactly, especially ifthe characters were in a string that in­
cluded bold or italic text. Instead of the width of the character glyph, most
Windows functions use the advance width of characters, which includes space on
either side of the glyph, as in the following figure:

Chapter 18 Fonts 399

Character width
1

• I •
Advance width

Applications can control the spacing of True Type characters accurately by using
ABC character spacing. GDI constructs ABC spacing from information provided
by the TrueType rasterizer. The "A" spacing is the width to add to the current posi­
tion before placing the glyph. The "B" spacing is the width of the glyph itself. The
"C" spacing is the white space to the right of the glyph. The total advance width is
given by A+B+C.

Because either or both of the A and C increments can be negative, characters can
overhang or underhang the character cell in a way that was not previously possible
with GDI. For example, in the following figure the A, B, and C increments for the
letter "g" are all positive, but the A and C increments for the letter "f' are nega­
tive.

8

A 8 C A c
1. I .1 t 1

Advance width

An application can use the GetChar ABCWidths function to retrieve the ABC
spacing for characters in a TrueType font.

400 Microsoft Windows Guide to Programming

When an application using TrueType fonts calls a text-output function, GDI uses
the font's complete set of ABC widths to provide character-placement information
to the device driver.

Some applications determine the line spacing between text lines of different sizes
by using a font's maximum ascender and descender. An application can retrieve
these values by calling the GetTextMetrics function and then checking the
tmAscent and tmDescent members of the NEWTEXTMETRIC structure.

The maximum ascent and descent are different from the typographic ascent and de­
scent; in TrueType fonts, the typographic ascent and descent are typically the top
of the "f' glyph and bottom of the "g" glyph. Rounded characters typically extend
slightly beyond the limits of characters with straight edges, to overcome an optical
illusion that would make them appear too small otherwise. An application can re­
trieve the typographic ascender and descender for a TrueType font by calling the
GetOutlineTextMetrics function and checking the values in the otmAscent and
otmDescent members of the OUTLINETEXTMETRIC structure.

Applications that use the HPPCLSA printer driver may experience problems with
line spacing for the scalable fonts that are built into the HP LaserJet III printer.
These fonts use external leading in the place of internal leading; accent marks for
capital letters print outside the character cell reported by the tmHeight member of
the NEWTEXTMETRIC structure.

TrueType font metrics do not correspond exactly to the metrics for Windows
raster fonts, because TrueType font metrics have been designed by Apple Com­
puter, Inc. TrueType metrics are required for any application that produces a docu­
ment that is portable between Windows and an Apple Macintosh computer.

The following figure shows the difference between the vertical text metric values
returned in the NEWTEXTMETRIC and OUTLINETEXTMETRIC structures.
(The names beginning with "otm" are members of the OUTLINETEXT­
METRIC structure.)

tmHeight

tmExterna/Leading

tmlnterna/Leading

Baseline-to-baseline
distance

Chapter 18 Fonts 401

otmMacAscent

otmMacDescent

otmMacLineGap

The overhang added by GDI when it synthesizes a bold or italic font is not taken
into account by the GetTextExtent function. For more information about taking
the overhang into account in character spacing, see Section 18.4.7.3, "Using Multi­
ple Fonts in a Line."

18.2.4.2 Logical and Physical Inches
A logical inch is a measure Windows uses for presenting legible fonts on the
screen; it is generally 30 to 40 percent larger than a physical inch. A 10-point font
on a screen is larger than a 10-point font produced by a printer. Fonts on the
screen are made larger because most screens do not have high enough resolutions
to make a 10-point font legible. Furthermore, users generally read text on screens
from a greater distance than they read text on paper.

Although logical inches solve the problem of legible fonts on the screen, they pre­
vent a perfect match between the output of the screen and printer. The text on a
screen is not simply a scaled version of the text that will appear on the page, partic­
ularly if graphics are incorporated into the text.

An application can retrieve the physical dimensions of a font by calling the Get­
OutlineTextMetrics function. To determine the dimensions of an output device,
an application can call the GetDeviceCaps function. GetDeviceCaps returns both
physical and logical dimensions.

402 Microsoft Windows Guide to Programming

18.2.4.3 Font Sizes
Most Windows applications use the MM_TEXT mapping mode instead of
MM_TWIPS, because MM_ TEXT makes possible a relatively simple conversion
from logical to physical font sizes. With MM_ TEXT, each logical unit is mapped
to one pixel.

To determine the point size for a font, an application must first convert the infor­
mation returned in the NEWTEXTMETRIC or OUTLINETEXTMETRIC
structure using the size of the logical inch for the output device. For example, an
application using MM_ TEXT units might use a font that has a cell height
(tmHeight) of 12 and an internal leading (tmlnternalLeading) of 2. The cell
height minus the internal leading gives the point size in logical units; in this case,
the point size of the font is 10 units (pixels).

To convert this value into a typographic point size (that is, a value in which one
point equals 1/72 inch), the application should use the GetDeviceCaps function to
determine the vertical size and resolution of the screen and the number of pixels
per logical inch supported by that device. For example, if an application working
in MM_ TEXT mapping mode requires a 12-point font, it could use the value pro­
duced by the following algorithm in the lflleight member of the LOGFONT
structure:

-1*((LOGPIXELSY*12)/72)

Using a negative value in the lflleight member causes GDI to use the value as the
height of the character glyphs, not the height of the character cell. The
LOGPIXELSY value is returned by a call to the GetDeviceCaps function. The
point size of the requested font is 12, and the number of points in a physical inch
is 72.

Similarly, an application could use the following algorithm to determine the point
size of a font from information returned in the NEWTEXTMETRIC structure:

((tmHeight - tmlnternalLeading) * 72) I LOGPIXELSY

For more information about setting a point size, see Section 18.4.4, "Creating a
Logical Font." For more information about querying a point size, see Section
18.4.5, "Retrieving Information About the Selected Font."

18.2.5 Font Mapper
When calling a font-creation function, an application describes the font either by
using a LOGFONT structure in a call to the CreateFontlndirect function or by
using the parameters of the CreateFont function. The font returned by these func­
tions is called a logical font, because a font matching the described characteristics
is not necessarily available in the system. GDI uses the logical font to create a

Chapter 18 Fonts 403

physical font, by finding the closest match to the logical font among the available
TrueType, raster, vector, and device-dependent fonts.

The Windows font mapper determines which of the available fonts is the closest
match to the requested logical font. The font mapper often chooses a TrueType
font as the closest match; it will choose a raster or vector font only when the logi­
cal font matches the characteristics of the raster or vector font very closely or
when the logical font specifies the name of the raster or vector font. Typically, a
TrueType font is chosen when it is specifically requested or when GDI would
otherwise have to synthesize the font. For example, if a font name is not specified
in the logical font or if the specified name does not exist, the font mapper chooses
a TrueType font that matches the requested point size, serif characteristics, and
pitch.

When the font mapper determines that a TrueType font is the closest match for a
requested logical font, the TrueType engine produces enhanced GDI raster charac­
ters that are presented to the raster device. (The characters are enhanced by the use
of ABC character widths.) For devices that do not have raster font capabilities, the
driver must request the TrueType engine to provide the glyphs in a form the driver
can use.

When the font mapper chooses between raster fonts, it chooses the font that is
closest to the requested size without being larger than that size.

When an application requests a very small font, the font mapper may choose one
of the small fonts stored in the SMALLX.FON font resource file. TrueType fonts
specify a suggested minimum size, which can be retrieved by calling the Get­
OutlineTextMetrics function and checking the otmusMinimumPPEM member
of the OUTLINETEXTMETRIC structure. When an application requests a font
smaller than this size, the font mapper typically chooses a small font instead of a
TrueType font. If the requested size is not available as a small font, however, GDI
scales the True Type font instead. Microsoft's 13 core True Type fonts are designed
to be readable as small as 8 points on a VGA screen, although they can be used at
smaller sizes.

18.2.6 Standard Font Dialog Box
Windows applications should take advantage of the standard font dialog box for
Windows 3.1. Following are the advantages of this dialog box:

• It shows the user the font family name (for example, Times New Roman) along
with the styles (for example, Regular, Bold Italic, and other combinations of
italic and weight) for the installed fonts.

• It allows Windows version 3.0 simulations and effects to be applied, ifthe user
wants them. When bold or italic simulations are applied, the user is warned that
the font may not print as selected.

404 Microsoft Windows Guide to Programming

• It displays weights or styles outside the four standard styles (regular, bold,
italic, bold italic).

• It clearly tells the user which fonts are TrueType and which are not.

The standard font dialog box also introduces a consistent user interface and frees
applications from having to implement their own dialog boxes for fonts, while re­
taining enough flexibility for applications to add custom controls. The dialog box
looks like this:

Eonl: Font Stl!le:

6 m [Regular

l'.lf ~:~~~YS Bold
Bold Italic

MOOERN Italic 1
MS SANS SERIF 2

Effects

['-~ 0 Strikeout

0 !!nderline AaBbYyZz

J;;olor:

l•Black II

For more information about the standard font dialog box, see the Microsoft
Windows Programmer's Reference, Volume 1.

18.3 TrueType Font Technology
With TrueType fonts, applications have much greater control over the final appear­
ance of documents than was possible with previous Windows font technologies.
Much of this added control is the result of the portability of TrueType fonts: An
application can move them from the system to a printer, from a printer to the sys­
tem, from one system to another system (by "embedding" them in documents),
and even port them between incompatible operating systems.

Sophisticated desktop-publishing and word-processing applications go to great
lengths to make the screen output mimic the printer output. Some applications
even change the way the fonts appear on the screen, in an attempt to show users
what the printer output will look like. This kind of application benefits greatly
from exploiting the advantages of True Type.

Chapter 18 Fonts 405

18. 3 .1 What You See Is What You Get: WYSIWYG
WYSIWYG means that the screen output matches the printer output. With perfect
WYSIWYG, the user would be able to place a page of printed output over the
same screen output and see every character and graphic element in exactly the
same place. If the screen and printer have different resolutions, however, this de­
gree of matching is impossible. Usually, WYSIWYG simply means that line
breaks, paragraph breaks, and page breaks are the same on both devices and that
justified paragraphs are presented properly. WYSIWYG does not mean the same
document on two different printers will be formatted in exactly the same way. Be­
cause most applications make the best use of the available printer, WYSIWYG
often applies only to the correspondence between the screen and printer for a
given printer.

TrueType offers a higher level of WYSIWYG than was available with earlier ver­
sions of Windows, because it works on every device. Most Windows applications
lay out the screen based on the target printer. The fonts they enumerate for the user
are the fonts that can be printed. Because TrueType fonts work on the target
printer, they are enumerated by the printer driver to the application and are typi­
cally displayed to the user as printer fonts. When the application and GDI match
screen fonts to the printer fonts, the TrueType fonts are used on the screen as well.

If no screen font matches the widths of characters in the chosen printer font,
WYSIWYG is difficult to achieve. When this happens, applications sometimes
make the average width of the characters match, with as little variation in specific
characters as possible. More exact matching is achieved with a technique known
as metric coercion. There are two basic methods of coercing character metrics:
width coercion and shape coercion. Width coercion simply adjusts the spacing be­
tween words and characters, and shape coercion applies a transformation to each
character to force it into a bounding box. Because shape coercion can lead to unac­
ceptably deformed characters, width coercion is typographically preferred.

Although Windows does not include a function to deform individual characters,
the lfWidth member of the LOG FONT structure allows an application to scale
the width of a TrueType font independently of its height. (Most applications do
not scale TrueType fonts in this manner, however, because the results are usually
unattractive.)

18.3.2 Embedded Fonts
Embedding a font is the technique of bundling the fonts used by a document into
the document itself for transmission to another computer. Embedding a font
guarantees that a font specified in a transmitted document will be present on the
computer receiving the document. Not all fonts can be moved from computer to
computer, however, since most fonts are licensed to only one computer at a time.
In Windows, only TrueType fonts can be embedded.

406 Microsoft Windows Guide to Programming

Applications should embed a font in a document only on request from a user. An
application cannot be distributed along with documents that contain embedded
fonts, nor can an application itself contain an embedded font. Whenever an appli­
cation distributes a font, in any format, the proprietary rights of the owner of the
font must be acknowledged.

A font's license may not allow ernbeuuing; ii may give read-write permission for a
font to be installed and used on the destination computer; or it may give read-only
permission. Read-only permission allows a document to be viewed and printed
(but not modified) by the destination computer; documents with read-only
embedded fonts are themselves read-only. Read-only embedded fonts may not be
unbundled from the document and installed on the destination computer.

Applications that support embedded fonts determine the license status of a font by
checking the otmfsType member of the OUTLINETEXTMETRIC structure. If
bit 1 of otmfsType is set, embedding is not permitted for the font. If bit 1 is clear,
the font can be embedded. If bit 2 is set, the embedding is read-only.

It may be a violation of a font vendor's proprietary rights and/or user license agree­
ment to embed any fonts for which embedding is not permitted or to fail to ob­
serve the following guidelines on embedding fonts.

18.3.2.1 Embedding a Font in a Document
When an application has determined that a font can be embedded, it can use the
GetFontData function to read the font file. (Setting the dwTable and dwOffset pa­
rameters of GetFontData to OL and the cbData parameter to - lL ensures that the
application will read the entire font file, starting at the beginning of the font).

After retrieving the font data, the application can store it with the document, using
any applicable format. Most applications build a font directory in the document,
listing which fonts are embedded and whether the embedding is read-write or read­
only. (An application can use the otmpStyleName and otmFamilyName mem­
bers of the OUTLINETEXTMETRIC structure to identify the font.)

If the read-only bit is set for the embedded font, applications must encrypt the font
data before storing it with the document. The encryption method need not be com­
plicated; for example, using the XOR operator to combine the font data with an
application-specified constant is adequate and fast.

18.3.2.2 Installing and Using an Embedded Font
An embedded font must be separated from the containing document and installed
in the user's system before Windows can use it. Although the exact procedure for
separating the font from the document depends on the method the application uses
to embed it, the following three steps are always taken:

Chapter 18 Fonts 407

1. Resolve name conflicts before installing the font.

2. Write the font data to a file, decoding read-only fonts as necessary.

3. Use the CreateScalableFontResource function to create a font resource file
for the unembedded font.

An application should avoid installing a font with the same name as a preexisting
font. To determine whether there is duplication in style names, an application
could compare the information returned by EnumFontFamilies against the family
name and style name stored with the embedded font.

Embedded fonts that have read-write permission (that is, that can be permanently
installed on the user's system) should be written to a file that has the .TTF
filename extension. Embedded fonts with read-only permission should not use the
.TTF extension and should avoid the .FOT and .FON extensions. (A typical
filename extension for read-only embedded fonts is .TTR.) Because files for read­
only embedded fonts must be removed from the system and from storage as soon
as the containing document is closed, their names do not need to be meaningful ex­
cept to the application.

Most applications put the files for embedded fonts that have read-write permission
into either the SYSTEM subdirectory of the user's Windows directory or into the
application's working directory. Files for read-only embedded fonts are typically
put into a temporary directory.

Before installing an embedded font, an application must use the CreateScalable­
FontResource function to create a font resource file. Font resource files for fonts
with read-write permission should use the .FOT filename extension. Font resource
files for read-only fonts should use a different extension (for example, .FOR) and
should be hidden from other applications in the system by specifying 1 for the first
parameter of CreateScalableFontResource. The font resource files can be in­
stalled by using the AddFontResource function.

Applications should offer users the option of permanently installing embedded
fonts that have read-write permission. To permanently install a font, applications
should concatenate the family and style names and then use the WriteProfile­
String function to insert this string along with the .FOT file name in the [Fonts]
section of the WIN .INI file. A typical font entry in the [Fonts] section looks like
this example:

Times New Roman Bold (TrueType)=TIMESBD.FOT

If a document contains one or more read-only embedded fonts, the user must not
be permitted to edit the document. If the user is allowed to edit the document in
any way, the application must first strip away and delete the read-only embedded
fonts. As mentioned earlier, read-only embedded fonts must be removed from the
system and storage immediately when the document in which they were bundled
is closed.

408 Microsoft Windows Guide to Programming

To delete read-only embedded fonts, an application should follow these steps:

1. Call the RemoveFontResource function for each font to be deleted.

2. Delete the font resource file for each font.

3. Delete each TrueType font file for each font.

When an application creating a file for a read-only embedded font specifies 1 for
the first parameter of the CreateScalableFontResource function, the EnumFonts
and EnumFontFamilies functions will not enumerate this font. Hiding read-only
embedded fonts in this manner makes it unlikely that another application could
use them, even though Windows resources are theoretically available to all
processes in Windows. If an application does use a read-only embedded font in­
stalled by another application, it could be difficult for the installing application to
delete the font. The RemoveFontResource function will not delete a font that is
currently in use. In this case, an application should delete the resource file and the
TrueType font file when the user closes the document that contained the read-only
fonts.

It is very important that applications delete the TrueType font file for read-only
embedded fonts. If the delete operation fails when the user closes the document,
the application should periodically attempt to delete the file as the application
runs, when it closes, and the next time it starts.

In some cases, an application could be unable to delete a TrueType font file for a
read-only embedded font because of external events (such as a system failure).
There is no legal liability for events that are out of the control of the application.

18.3.3 Printer Portability
A document with printer portability is formatted identically on all output devices
under Windows-all monitors and all printers. Although TrueType allows the
same font to be used on all output devices, this does not guarantee that line breaks
will be the same on all devices. For line breaks to match, applications must take
advantage of TrueType design metrics. These design metrics allow an application
to compute the fractional portion of the spacing at the ends of lines and make up
the difference in the interword spacing. This computation reduces the round-off
error from a half-pixel per character to a half-pixel per line, preserving line breaks
in all cases.

18.3.3.1 Line Breaks and Justification
Applications must cooperate in order to guarantee the printer portability enabled
by TrueType technology, because different devices may have different resolutions.
Even when fonts are portable across printers, glyphs designed or rasterized for
different resolutions must have different pixel widths. For applications that use the

Chapter 18 Fonts 409

TextOut function, for example, different character widths can lead to accumulated
round-off errors that change line breaks and paragraph placement.

Applications that lay out a document at the highest printer resolution attempt to
distribute any difference in character resolutions in white spaces. This method is
not always successful; for example, it fails when all glyphs are one pixel larger at
600 dots per inch (DPI) than at 300 DPI. In this case, fonts with a width of 45 at
600 DPI would have a width of 23 at 300 DPI, a width of 11 at 150 DPI, and so
on. There could easily be insufficient white space to absorb the glyphs at the lower
resolutions if line breaks were being preserved, because the glyphs become larger
in relation to the resolution of the device. In this case, the characters would have to
overlap to preserve the line breaks. Even if all the character widths exactly
doubled when changing from a resolution of 300 DPI to 600 DPI, the line breaks
might not be the same if an application justified text-that is, aligned it on both
the left and right. It is possible that another half-pixel of white space at the lower
resolution would allow one more word on the line. At the higher resolution, the
half-pixel would become a full pixel and the line breaks would change. (Similar
device-resolution problems occur in the vertical direction.) TrueType exposes the
design width of characters to help applications maintain line breaks. For informa­
tion about design widths, see Section 18.4.8.2, "Design Widths."

Different printers, or even different production runs of the same printer, can have
different limits for their printable areas. If a document has been laid out up to the
margins of one printer, it may not format identically on a different printer. If
glyphs are in contact with the margins on the first printer, parts of the glyph may
be beyond the printable area on the second printer. Depending on the printer, the
glyph will either be clipped or dropped completely.

Prior to the introduction of True Type, sophisticated desktop-publishing and word­
processing applications were forced to "reflow" the entire document whenever a
user selected a different printer. Applications can now use TrueType font metrics
to solve this problem. For a description of using these metrics, see Section
18.4.8.2, "Using Portable TrueType Metrics."

18.3.3.2 Performance and Printer Portability
Printer portability can potentially downgrade font performance, quality, or both,
depending on such factors as the type of connection between the computer and
printer, the speed of the computer, the memory in the printer and the computer, the
number of fonts being used, differing resolutions between the screen and printer,
and the number of characters used in each font. Documents that are fully portable
between printers necessarily cannot take advantage of the specialized features of a
particular printer.

GDI cannot perform text operations to printer-compatible memory device con­
texts. This means that it is not possible to build a bitmap describing a page to be
printed and then send the completed bitmap to the printer.

410 Microsoft Windows Guide to Programming

18.3.4 Document Portability
A portable document appears the same on different operating systems. In the case
of TrueType, documents can be portable between Windows and the Apple Macin­
tosh computer; this could also be called platform portability. If a document ap­
pears the same on the Macintosh and with Windows, it can also look the same
imported into different applications on either platform.

Since the same TrueType fonts work on the Macintosh, in Windows, and on all
devices supported by both systems, the same characters and metrics could be ex­
posed for all applications. Currently, however, fully portable documents are not
possible. Windows and the Macintosh computer have slightly different character
sets. Even though TrueType fonts contain the default Macintosh and PostScript
character sets, Windows does not give applications access to the Macintosh charac­
ters. Likewise, a Macintosh application cannot gain access to the Windows charac­
ters present in TrueType fonts. Document portability is also a problem with
international document exchange. Localized versions of True Type fonts will still
be in use for both the Apple System 7 and Windows version 3 .1, leading to further
character-set incompatibilities when documents that use these fonts are transmitted
to a system that does not have them.

18.3.5 Disk Space, Memory Usage, and Speed
An application's overall font performance could decrease if a large font cache
forced the paging of more segments to the disk. With previous font technologies,
this could occur even in situations that were not "low memory." Because fonts are
cached glyph by glyph as they are used, however, less memory is used for the
cache than would be required to keep the corresponding raster fonts in memory;
this leads to a net performance gain. The only time the font cache uses more
memory than fonts required in earlier versions of Windows is when multiple logi­
cal fonts would have been mapped to the same raster font. Typically, however,
any additional swapping to disk caused by these larger caches is still faster overall
than discarding and subsequently re-rendering bitmaps.

Hard-disk space is not a large problem for TrueType fonts, although more disk
space is required for fonts with the introduction of True Type. The two reasons for
this increased space requirement are that raster fonts are shipped with TrueType
fonts, for backward-compatibility reasons, and that users may have preexisting
soft fonts on their hard disks.

Hard-disk space is not the only limitation imposed on TrueType fonts. GDI im­
poses an internal limit to the number of True Type fonts that can exist simul­
taneously on a system. The maximum number of physical fonts is 1170. (The
maximum number of logical fonts that can exist simultaneously on a system is
253.)

Chapter 18 Fonts 411

18.3.6 Font Design and Scaling
Raster fonts are designed to be attractive and readable at a particular aspect ratio.
(The aspect ratio is the ratio of the width and height of a pixel.) The digitized
aspect of a font is the ideal x-aspect and y-aspect of that font. Windows provides
an aspect-ratio filter to select fonts designed for a particular aspect ratio from all of
the available fonts. The GetAspectRatioFilter function retrieves the setting for
the current aspect-ratio filter. An application can use the SetMapperFlags func­
tion to change the algorithm the font mapper uses when it maps physical fonts to
logical fonts.

The aspect ratio of the screen is not as critical for scalable fonts as it is for raster
fonts. The dimensions of the em square for a True Type font are used when scaling
the font to a specified point size. (An em square is a square whose width is ap­
proximately equal to the width of the uppercase M.) Because the height of the em
square is given in pixels, it can be thought of as the point size in device units. For
example, a font could be referred to as a 50-ppem (pixels per em square) font. The
pixel size determines the physical point size. For example, a 75-ppem font on a
300-DPI device is an 18-point font, while on a 150-DPI device it would be a 36-
point font. The number of pixels required for the desired point size is computed by
using the resolution of the output device and the em square size, according to the
following formula:

ppem = (PointSize/72) * DeviceResolution

According to this formula, a 12-point font on a 72-DPI screen is at 12 ppem, while
on a 300-DPI device it is at 50 ppem.

TrueType fonts can be scaled linearly, nonlinearly, or optically, depending on their
design. Linear scaling means that the character width is scaled and rounded to the
appropriate ppem. Nonlinear scaling means that hinted character widths can be
larger or smaller than the scaled widths. Optical scaling is a superset of nonlinear
scaling; it includes the preservation of the color and contrast of a font across point
sizes. Optical scaling can involve changing the proportions of the stroke widths to
preserve their perceived width and color.

The TrueType fonts shipped with Windows 3.1 scale nonlinearly. Windows appli­
cations can also support linearly and optically scaled TrueType fonts.

18.3.7 Designing Portable Fonts
Most application developers need not be concerned with font-portability issues.
This discussion is included here with other portability issues for those developers
who need to create fonts that are portable between systems. Microsoft currently
publishes a TrueType Font Files Specification, which teaches font vendors how to
create a single TrueType font that will work in Windows, on the Macintosh com­
puter, and in Truelmage.

412 Microsoft Windows Guide to Programming

Microsoft uses the same byte ordering in TrueType font files as Apple uses in its
font files, to help make the fonts portable between the systems. As a result,
Windows fonts can be moved directly to the Macintosh computer, where they can
quickly be converted into font suitcases for installation. (The format of True Type
font files precisely follows the format of the Apple "sfnt" resource. To convert an
MS-DOS binary TrueType font into an sfnt resource requires editing the file infor­
mation, setting Type to sfnt and Creator to bass. The sfnt resource can then be inte­
grated into a standard Macintosh font suitcase. To move a font suitcase to
Windows, an application need only extract the sfnt portion from the data fork and
move the suitcase, unaltered, to Windows. After the suitcase has been moved to
Windows, it can be installed by using Control Panel or the CreateScalableFont­
Resource and AddFontResource functions.

If a Macintosh font is installed that does not contain the Windows "cmap" map­
ping table, the system maps text fonts (for example, Times or ITC Zapf
Chancery®) from the Macintosh character set onto the Windows character set.
Novelty fonts (like ITC Zapf Dingbats®), which have no formal character set, are
not mapped; these fonts are taken along with the Macintosh character encodings.
The decision whether to remap is based on a test that looks at the "post" table
(which contains PostScript names). Whenever necessary, Windows compensates
for missing metric tables based on other metric data in the font; anything that can­
not be computed in a reasonable manner is given a default value.

The creation of portable fonts requires more than just the right characters and the
right character-mapping tables. All the metrics needed by all systems must be in­
cluded and must yield the same results. Matchingmetrics for the individual charac­
ters is not a problem; since the characters and their hints and metrics appear only
once in the TrueType font, the same metrics are available across platforms. The
more difficult problems in the creation of portable fonts have to do with line­
spacing metrics, the determination of font styles, and making these factors match
across systems.

The Apple System 7 core TrueType fonts ship with metrics designed to be compat­
ible with the raster fonts in System 6. The "hdmx" table will be used to force
widths onto TrueType fonts that match those for the bitmaps at bitmap sizes. The
"name" table (and its ability to group fonts by separating the family and subfamily
names) is not used. (The name used comes from the FOND Macintosh font re­
source.) Only the macStyle bits (from the "head" table) denoting regular, bold,
italic, or bold italic are used.

Apple's line spacing recommendations are less robust than the line-spacing used
by Microsoft. The following formula defines the default recommended line spac­
ing for a Macintosh font:

line spacing :::: ascent - descent + leading

The values for ascent, descent and leading come directly from TrueType values:

Macintosh

ascent

descent

leading

True Type

otmMacAscent
otmMacDescent
otmMacLineGap

Chapter 18 Fonts 413

For its TrueType fonts, Apple recommends that Ascender - Descender = units­
PerEm, and LineGap = 0. This recommendation is based on the definition of point
size for Macintosh raster fonts. Macintosh documentation defines the point size of
a font as being equal to the line spacing (ascent- descent+ leading). Although this
definition is compatible with previous Apple font metrics, it ties line spacing to the
size of the em square. Because some fonts (for example, Palatino) have ascenders
and descenders that extend beyond the em square, the line-spacing definition is in­
consistent for these fonts.

Windows and the Macintosh have the same default line spacing for a font only if
the following formula is true:

otmMacLineGap >= (tmAscent + tmDescent)-(otmMacAscent-otmMacDescent)

Microsoft TrueType fonts follow this formula to ensure that default line spacing is
preserved between the Macintosh and Windows. The core fonts and all fonts from
vendors that follow the Microsoft specification will have the same character
widths, the same default line spacing, and the same character forms.

Unless the Windows and Macintosh font heights are equal, a font with a line gap
of zero will yield different default line spacings in Windows and on the Macintosh.

Despite some incompatibilities, TrueType and GDI accept Macintosh-only fonts.
Metrics that are not present in Macintosh-only fonts are set to default values. Al­
though these default values are imperfect, using them allows Macintosh-only fonts
to work in Windows.

18.4 Using Fonts in Applications
The remainder of this chapter discusses the implementation of font functions in
Windows applications.

18. 4 .1 Using Stock Fonts
GDI offers a variety of stock fonts that an application can retrieve and use. For
many applications, the stock fonts provide all the functionality required for basic
text output. To use stock fonts, an application specifies the type of font in the Get­
StockObject function. GetStockObject creates a handle to a logical font. When
the application selects that handle into a device context, the font mapper uses the

414 Microsoft Windows Guide to Programming

logical font to create a physical font. The application can select and use this physi­
cal font for text output.

GDI offers the following stock fonts:

Font

ANSI_FIXED _FONT

ANSI_ VAR_FONT

DEVICE_DEFAULT_FONT

OEM_FIXED_FONT

SYSTEM_FONT

Description

Specifies a fixed-pitch font based on the Windows
character set. A Courier font is typically used.

Specifies a variable-pitch font based on the Windows
character set. MS Sans Serif is typically used.

Specifies a font preferred by the given device. Be­
cause this font depends on how the GDI font mapper
interprets font requests, the font may vary widely
from device to device.

Specifies a fixed-pitch font based on an OEM charac­
ter set. OEM character sets vary from system to sys­
tem. For IBM computers and compatibles, the OEM
font is based on the IBM PC character set.

Specifies the System font. This is a variable-pitch
font based on the Windows character set, and is used
by the system to display window titles, menu names,
and text in dialog boxes. The System font is always
available. Other fonts are available only if they have
been installed.

The following example retrieves a handle of the Windows variable stock font,
selects it into a device context, and then writes a string using that font:

HFONT hfnt, hOldFont;

hfnt = GetStockObject(ANSI_VAR_FONT);
if (hOldFont = SelectObject(hdc, hfnt)) {

TextOut (hdc, 10, 50, "Sample ANSI_VAR_FONT text.", 26);
SelectObject(hdc, hOldFont);

If no other stock fonts are available, GetStockObject returns a handle to the Sys­
tem font (SYSTEM_FONT).

Applications that use the GetStockObject function to retrieve the handle of a logi­
cal font should work in MM_ TEXT units. The logical font identified by the handle
returned by GetStockObject may specify a height that does not match the height
of the requested logical font when the application works in mapping modes other
than MM_ TEXT.

Chapter 18 Fonts 415

18.4.2 Enumerating Fonts
An application can discover which fonts are available for a given device by using
the EnumFonts or EnumFontFamilies function. These functions send informa­
tion about the available fonts to a callback function that the application supplies.
The callback function receives information in LOGFONT and NEWTEXT­
METRIC structures. (The NEWTEXTMETRIC structure contains information
about a TrueType font. When the callback function receives information about a
non-TrueType font, the information is contained in a TEXTMETRIC structure.)
By using this information, an application can allow the user to choose among only
those fonts that are available.

The EnumFontFamilies function is similar to the EnumFonts function but in­
cludes some extra functionality. New and upgrading applications should use
EnumFontFamilies instead of EnumFonts. EnumFontFamilies allows an appli­
cation to take advantage of the style name that is available with TrueType fonts.

In previous versions of Windows, the only style attributes were weight and italic;
any other styles were specified in the family name for the font. If an application
used the EnumFonts function to query the available Courier fonts, for example,
EnumFonts might return information for Courier, Courier Bold, Courier Bold
Italic, and Courier Italic, but it would not return information about any other Cour­
ier fonts that might be installed, because any other Courier fonts would typically
have a different family name.

TrueType fonts are organized around a family name (for example, Courier New)
and style names (for example, italic, bold, and extra-bold). The EnumFont­
Families function enumerates all the styles associated with a given family name,
not simply the bold and italic attributes; if the system included a True Type font
called Courier New Extra-Bold, EnumFontFamilies would list it with the other
Courier New fonts. The capabilities ofEnumFontFamilies are helpful for fonts
with many or unusual styles and for fonts that cross international borders. (Be­
cause a style name often changes with the language spoken in a country, an appli­
cation that depends on the EnumFonts function could enumerate fonts whose
names would change from country to country, while EnumFontFamilies would
continue to enumerate the font families correctly.)

If an application does not supply a typeface name, the EnumFonts and Enum­
FontFamilies functions supply information about one font in each available
family. To enumerate all the fonts in a device context, an application can specify
NULL for the typeface name, compile a list of the available typefaces, and then
enumerate each font in each typeface.

416 Microsoft Windows Guide to Programming

The following example uses the EnumFontFamilies function to retrieve the num­
ber of available raster, vector, and TrueType fonts:

FONTENUMPROC lpEnumFamCallBack;
UINT uAlignPrev;
int aFontCount[J = { 0, 0, 0 };
char szCount[BJ;

lpEnumFamCallBack = (FONTENUMPROC) MakeProcinstance(
(FARPROC) EnumFamCallBack, hinstApp);

EnumFontFamilies(hdc, NULL, lpEnumFamCallBack,
(LPARAM) aFontCount);

FreeProcinstance((FARPROC) lpEnumFamCallBack);

uAlignPrev = SetTextAlign(hdc, TA_UPDATECP);

MoveTo(hdc, 10, 50);
TextOut(hdc, 0, 0, "Number of raster fonts: ", 24);
itoa(aFontCount[0], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));

MoveTo(hdc, 10, 75);
TextOut(hdc, 0, 0, "Number of vector fonts: ", 24);
itoa(aFontCount[lJ, szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));

MoveTo(hdc, 10, 100);
TextOut(hdc, 0, 0, "Number of TrueType fonts: " 26);
itoa(aFontCount[2], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(siCount));

SetTextAlign(hdc, uAlignPrev);

BOOL FAR PASCAL EnumFamCallBack(lplf, lpntm, FontType, aFontCount)
LPLOGFONT lplf;
LPNEWTEXTMETRIC lpntm;
short FontType;
LPSTR aFontCount;
{

int far * aiFontCount = (int far *) aFontCount;

if (FontType & RASTER_FONTTYPE)
aiFontCount[0J++;

else if (FontType & TRUETYPE_FONTTYPE)
aiFontCount[2J++;

else
aiFontCount[l]++;

Chapter 18 Fonts 417

if CaiFontCount[0J I I aiFontCount[lJ I I aiFontCount[2J)
return TRUE;

else
return FALSE;

This example uses two masks, RASTER_FONTTYPE and
TRUETYPE_FONTTYPE, to determine the type of font being enumerated.
If the RASTER_FONTTYPE bit is set, the font is a raster font. If the
TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither bit is
set, the font is a vector font. A third mask, DEVICE_FONTTYPE, is set when a
device (for example, a laser printer) supports downloading TrueType fonts; it is
zero if the device is a display adapter, dot-matrix printer, or other raster device.
An application can also use the DEVICE_FONTTYPE mask to distinguish GDI­
supplied raster fonts from device-supplied fonts. GDI can simulate bold, italic,
underline, and strikeout attributes for GDI-supplied raster fonts, but not for
device-supplied fonts.

An application can also check bit 1 and 2 in the tmPitchandFamily member of
the NEWTEXTMETRIC structure to identify a TrueType font. If bit 1 is zero
and bit 2 is 1, the font is a TrueType font.

Vector fonts are categorized as OEM_CHARSET instead of ANSI_CHARSET.
Some applications identify vector fonts by using this information, checking the
tmCharSet member of the NEWTEXTMETRIC structure. This categorization
usually prevents the font mapper from choosing vector fonts unless they are
specifically requested. (Most applications do not use vector fonts, because they are
slow and generally unattractive, and because True Type fonts offer many of the
same scaling and rotation features that required the use of vector fonts in earlier
versions of Windows.)

18.4.3 Checking a Device's Text Capabilities
Applications can use the EnumFonts and EnumFontFamilies functions to
enumerate the fonts in a printer-compatible memory device context. An applica­
tion can also use the GetDeviceCaps function to retrieve information about the
text capabilities of a device. By calling the GetDeviceCaps function with the
NUMFONTS index, an application can determine the minimum number of fonts
supported by a printer. (An individual printer may support more fonts than
specified in the return value from GetDeviceCaps with the NUMFONTS index.)
By using the TEXTCAPS index, an application can identify many of the text capa­
bilities of the specified device.

The following example uses the GetDeviceCaps function to determine whether a
device supports text rotation:

418 Microsoft Windows Guide to Programming

int result;

result = GetDeviceCaps(hdc, TEXTCAPS);
if (result & TC_CR_90)

TextOut(hdc, 10, 100, "Device can rotate text 90 degrees", 33);
if (result & TC_CR_ANY)

TextOutChdc, 10, 120, "Device can rotate text at any angle", 351;
else if ((result & TC_CR_90) == 0 && (result & TC_CR_ANY) == 0)

TextOut(hdc, 10, 100, "Device cannot rotate text", 25);

18.4.4 Creating a Logical Font
A logical font is a list of font attributes, such as height, width, character set, and
typeface. An application creates a logical font to describe the font that is best
suited for a given task; the font mapper uses this logical font to choose the avail­
able physical font that best matches the specified characteristics. For more infor­
mation about the font mapper, see Section 18.2.5, "Font Mapper."

An application can use either the CreateFont or the CreateFontlndirect function
to create a logical font. Most applications use CreateFontlndirect, assigning
values to a LOGFONT structure. These functions return a handle of a logical
font, which can then be selected into a device context and used.

The following example is a function that takes a handle of a device context, the
name of a font, and a nominal point size as input. It creates a logical font of the re­
quested size and face name and selects that font into the specified device context.

BOOL FAR PASCAL CreateLogFont(hdc, pszFace, PointSize)
HDC hdc;
PSTR pszFace;
int PointSize;
{

HFONT hfnt, hfntOld;
PLOGFONT plf = CPLOGFONT) LocalAlloc(GPTR, sizeof(LOGFONT));

if (GetMapMode(hdc) != MM_TEXT) {

}

TextOut(hdc, 100, -200, "Mapping mode must be MM_TEXT",
28);

return FALSE;

plf->lfHeight = -MulDiv(PointSize,
GetDeviceCaps(hdc, LOGPIXELSY), 72);

lstrcpy(plf->lfFaceName, pszFace);

hfnt = CreateFontindirect(plf);

}

hfntOld = SelectObject(hdc, hfnt);

. /* Use font for text output. */

LocalFree((LOCALHANDLE) plf);
SelectObject(hdc, hfntOld);
if (DeleteObject(hfnt))

return TRUE;
else

return FALSE;

Chapter 18 Fonts 419

Memory for the logical font in this example is allocated and initialized to zero (by
using the LocalAlloc function with the GPTR constant); this means the logical
font created by the CreateFontlndirect function uses default values for all mem­
bers except lfHeight and lfFaceName. (Applications should always specify values
for at least these two members.) For a description of all of the members of the
LOGFONT structure, see the Microsoft Windows Programmer's Reference,
Volume3.

The function in this example uses the Windows MuIDiv function to convert the
specified point size into a different negative value and then assigns that value to
the lfHeight member. This conversion is required because logical inches are larger
than physical inches. (For a description of logical inches, see Section 18.2.4.2,
"Logical and Physical Inches.") The MuIDiv function multiplies the requested
point size by the result of dividing the number of pixels per logical inch by the
number of points in a physical inch (72). A negative value is specified for
lfHeight to indicate that the system should interpret this value as the height of the
character glyphs in the font; when a positive value is specified, GDI interprets it as
the height of a font's character cells, including internal leading.

An application would use a positive value for the lfHeight member to choose a
font that fits within a specific height. For example, to display a page in "print pre­
view" mode, an application would retrieve the height of the printer font from the
tmHeight member of the NEWTEXTMETRIC structure, scale that height to the
screen resolution, and use this value for the lfHeight member. The formula in this
case would look like this:

tmHeight * DPI of screen
lfHeight = ----------

DPI of printer

The results of this calculation should always be rounded down to the nearest
whole number.

When an application specifies the handle of a logical font in a call to the Select­
Object function, the font mapper returns a handle of the physical font that is the
best match for the requested attributes.

420 Microsoft Windows Guide to Programming

An application that requires a raster font can identify the available raster fonts by
calling the EnumFontFamilies function and checking the RASTER_FONTIYPE
bit. The application can then specify the typeface name in a LOGFONT structure.
Similarly, vector fonts can be selected by checking the RASTER_FONTIYPE
and TRUETYPE_FONTTYPE bits. An application can also specify a vector font
by specifying OEM_CHARSET in the lfCharSet member of the LOGFONT
structure, as discussed in Section 18.4.2, "Enumerating Fonts."

An application can use TrueType fonts exclusively by specifying
OUT_TI_ONLY _PRECIS in the lfOutPrecision member of the LOGFONT
structure. This is important for applications that use object linking and embedding
(OLE), because metafiles can be scaled much better when they use only TrueType
fonts.

18.4.5 Retrieving Information About the Selected Font
Applications can retrieve font information from a device context by using the
GetTextMetrics, GetTextFace, and GetOutlineTextMetrics functions.

The GetTextMetrics function copies a TEXTMETRIC structure into a buffer.
The TEXTMETRIC structure contains a description of the physical font, includ­
ing the average dimensions of the character cells within the font, the spacing be­
tween lines of text, the number of characters in the font, and the character set on
which the font is based. An application working with TrueType fonts can call the
GetOutlineTextMetrics function to retrieve information in an OUTLINETEXT­
METRIC structure.

Applications often use the TEXTMETRIC structure to determine how much
space to specify between lines of text. For example, to compute an appropriate
value for single-line spacing, an application could add the values of the tmHeight
and tmExternalLeading members. The tmHeight member specifies the height of
each character cell, and tmExternalLeading specifies the font designer's recom­
mended spacing between the bottom of one character cell and the top of the next.
(More accurate information can be retrieved for TrueType fonts from the
OUTLINETEXTMETRIC structure; in this case, applications can add the
values of the otmAscent, otmDescent, and otmLineGap members.) The follow­
ing example writes several lines of single-spaced text:

TEXTMETRIC tm;
int LineSpacing, i, Yincrement;

GetTextMetrics(hdc, &tm);
LineSpacing = tm.tmHeight + tm.tmExternalleading;

Chapter 18 Fonts 421

Ylncrement = 50;
for (i = 0; i < 4; i++) {

TextOut(hdc, 10, Ylncrement, "Single-line spacing", 19);
Ylncrement += LineSpacing;

The GetTextFace function copies a name identifying the typeface of the selected
font into a buffer. An application can use this information in dialog boxes and
menus.

18.4.6 Retrieving Information About a Logical Font
An application can retrieve information about a font by specifying the font handle
in a call to the GetObject function. The GetObject function copies logical-font in­
formation to a LOGFONT structure.

The following example uses the GetObject function to retrieve logical-font infor­
mation for a font and then checks whether the font is italic:

LOG FONT l f;

GetObject(hfnt, sizeof(LOGFONT), &lf);
if (lf.lfltalic)

return TRUE;
else

return FALSE;

18.4.7 Drawing Text
An application can use the following functions to draw text:

Function

DrawText

ExtTextOut

GrayString

TabbedTextOut

Description

Draws formatted text in a rectangle. DrawText formats text by
expanding tabs into appropriate spaces, aligning text to the left,
right, or center of the given rectangle, and breaking text into lines
that fit within the given rectangle. This is not a GDI function; it is
in USER.EXE.

Writes a character string within a rectangular region. The rectan­
gular region can be opaque (filled with the current background
color), and it can be a clipping region.

Draws gray text by writing the text in a memory bitmap, graying
the bitmap, and then copying the bitmap to the device. Gray­
String grays the text regardless of the selected brush and back­
ground. This is not a GDI function; it is in USER.EXE.

Writes a character string, expanding tabs to the values specified
in an array of tab-stop positions.

422 Microsoft Windows Guide to Programming

Function Description

TextOut Writes a character string at a specified location.

The ExtTextOut function is the fastest Windows text-output function. The
DrawText function is the slowest (although it offers the richest formatting op­
tions).

Instead of using the GrayString function, an application could simply set the text
color to gray, as follows:

dwColorPrevious = SetTextColor(hdc, GetSysColor(COLOR_GRAYTEXT));

18.4. 7.1 Setting the Text Alignment
An application can query and set the text alignment for a device context by using
the GetTextAlign and SetTextAlign functions. The text-alignment settings deter­
mine how text is positioned relative to a given location. Text can be aligned to the
right or left of the position or centered over it; it can also be aligned above or
below the point. In addition, an application can use the SetTextAlign function to
update the current position when a text-output function is called.

For example, the following example uses the SetTextAlign function to update the
current position when the TextOut function is called. In this example, cArial is an
integer that specifies the number of Arial fonts:

UINT uAlignPrev;
char szCount[8J;

uAlignPrev = SetTextAlign(hdc, TA_UPDATECP);
MoveTo(hdc, 10, 50);
TextOut(hdc, 0, 0, "Number of Arial fonts: ", 23);
itoa(cArial, szCount, 10);
TextOut(hdc, 0, 0, (LPSTR) szCount, strlen(szCountll;
SetTextAlign(hdc, uAlignPrev);

18.4.7.2 Using Color
When an application first creates a device context, the text color is black and the
background color is white. An application can add color to text by setting the text
and background colors of the device context. The text color determines the color
of the character to be written; the background color determines the color of every­
thing in the character cell except the character.

An application can set the text and background colors by using the SetTextColor
and SetBkColor functions. The following example sets the text color to red and
the background color to green:

Chapter 18 Fonts 423

SetTextColorChdc, RGBC255,0,0));
SetBkColor(hdc, RGB(0,255,0));

The background color applies only when the background mode is opaque. The
background mode determines whether the background color in the character cell
has any effect on what is already on the screen. If the mode is opaque, the back­
ground color overwrites anything already on the screen; if the mode is transparent,
anything on the screen that would otherwise be overwritten by the background is
preserved. The background color for an italic string that GDI has synthesized is
sheared along with the characters; this can lead to unexpected results when the text
background color is different from the window background color. An application
can set and retrieve the background mode by using the SetBkMode function and
GetBkMode functions. Similarly, an application can retrieve the current text and
background color by using the GetTextColor and GetBkColor functions.

18.4. 7 .3 Using Multiple Fonts in a Line
Different type styles within a font family can have different widths. For example,
bold and italic styles of a family are always wider than the roman style for a given
point size. An application that can display or print several type styles on a single
line must keep track of the width of the line to avoid having characters print on top
of one another.

An application can use the following functions to retrieve the width (or extent) of
text in the current font:

Function

GetTabbedTextExtent

GetTextExtent

Description

Computes the width and height of a character string. If the
string contains one or more tab characters, the width of the
string is based upon a specified array of tab-stop positions.

Computes the width and height of a line of text.

When necessary, GDI synthesizes a font by changing the character bitmaps. To
synthesize a character in a bold font, GDI draws the character twice: once at the
starting point, and again one pixel to the right of the starting point. To synthesize a
character in an italic font, GDI draws the two rows of pixels at the bottom of the
character cell, moves the starting point one pixel to the right, draws the next two
rows, and continues until the character has been drawn. The base line of a synthe­
sized italic character is shifted to the right by an amount determined by the height
of the character cell. To determine the amount a base line is shifted to the right, an
application can perform the following calculation, using values retrieved by a call
to the GetTextMetrics function:

units base line shifted right= (tmDescent * tmOverhang) I tmAscent

424 Microsoft Windows Guide to Programming

One way to write a line of text that contains multiple fonts is to use the GetText­
Extent function after each call to TextOut and add the length to a current posi­
tion. The following example writes the line "This is a sample string.", using bold
characters for the words "This is a", italic characters for the word "sample", and
system default characters for "string.":

int XIncrement;
TEXTMETRIC tm;
HFONT hfntDefault, hfntitalic, hfntBold;

XIncrement = 10;
hfntDefault = SelectObject(hdc, hfntBoldl;
TextOut(hdc, XIncrement, 50, "This is a" 10);

XIncrement += LDWORDCGetTextExtent(hdc, "This is a " 10));
GetTextMetricsChdc, &tml;
XIncrement -= tm.tmOverhang;
SelectObject(hdc, hfntitalic);
GetTextMetrics(hdc, &tml;
XIncrement -= tm.tmOverhang;
TextOut(hdc, XIncrement, 50, "sample" 7);

XIncrement += LOWORDCGetTextExtent(hdc, "sample ", 7));
SelectObject(hdc, hfntDefaultl;
TextOut(hdc, XIncrement - tm.tmOverhang, 50, "string.", 7);

In this example, the GetTextExtent function returns a 32-bit value (of type
DWORD) containing both the length and height of the specified string. The LO­
W ORD macro then retrieves the length of the string, which is added to the current
position. The GetTextMetrics function retrieves the overhang for the current font.
Because the overhang is zero if the font is a True Type font, the overhang value
does not change the string placement in that case. For raster fonts, however, it is
important to use the overhang value. (For more information about overhangs, see
Section 18.1.3, "Measuring Line and Intercharacter Spacing.") The overhang is
subtracted from the bold string once, to bring subsequent characters closer to the
end of the string if the font is a raster font. Because overhang affects both the
beginning and end of the italic string in a raster font, the glyphs begin to the right
of the specified location and end to the left of the endpoint of the last character
cell. (The GetTextExtent function retrieves the extent of the character cells, not
the extent of the glyphs.) To account for the overhang for the raster italic string,
this example subtracts the overhang before placing the string and subtracts it again
before placing subsequent characters.

An application that must place characters with greater precision can use the Get­
CharWidth or GetChar ABCWidths function to retrieve the widths of individual
characters in a font. The GetChar ABCWidths function is more accurate than the
GetCharWidth function, but only when it is used with TrueType fonts; when Get­
Char ABCWidths is used with non-True Type fonts, it retrieves the same informa­
tion as GetCharWidth.

Chapter 18 Fonts 425

The SetTextJustification function adds extra space to the break characters in a
line of text. An application can use the GetTextExtent function to determine the
extent of a string, subtract the extent from the total amount of space the line should
occupy, and use the SetTextJustification function to distribute the extra space
among the break characters in the string. The SetTextCharacterExtra function
adds extra space to every character cell in the selected font, including the break
character. (An application can use the GetTextCharacterExtra function to deter­
mine the current amount. of extra space being added to the character cells; the de­
fault setting is zero.)

ABC spacing also allows an application to perform very accurate text alignment.
For example, when an application right aligns a raster roman font without using
ABC spacing, the advance width is calculated as the character width. This means
the white space to the right of the glyph in the bitmap is aligned, not the glyph it­
self. By using ABC widths, applications have more flexibility in the placement
and removal of white space when aligning text, because they have information that
allows them to finely control intercharacter spacing.

18.4. 7 .4 Rotating Text
Applications can rotate TrueType fonts at any angle. This is useful for labeling
charts and other illustrations. The following example rotates a string in 10-degree
increments around the center of the client area by changing the value of the
lfEscapement member of the LOG FONT structure used to create the font:

RECT re;
int angle;
HFONT hfnt, hfntPrev;
LPSTR lpszRotate = "String to be rotated.";
PLOGFONT plf = (PLOGFONT) LoealAlloe(LPTR, sizeof(LOGFONT));

lstrepy(plf->lfFaeeName, "Arial");
plf->lfWeight = 700;

GetClientReet(hwnd, &re);
SetBkMode(hde, TRANSPARENT);

for (angle = 0; angle < 3600; angle+= 100) {
plf->lfEseapement = angle;

}

hfnt = CreateFontlndireet(plf);
hfntPrev = SeleetObjeet(hde, hfnt);
TextOut(hde, re.right I 2, re.bottom I 2,

lpszRotate, lstrlen(lpszRotate));
SeleetObjeet(hde, hfntPrev);
DeleteObjeet(hfnt);

SetBkMode(hde, OPAQUE);
LoealFree((LOCALHANDLE) plf);

426 Microsoft Windows Guide to Programming

This example produces the following pattern:

The lfOrientation member of the LOG FONT structure is ignored by GDI, which
currently, assumes that the values for ltEscapement and lfOrientation are iden­
tical.

18.4.8 TrueType Font Functions and Structures
Some of the functions and structures that allow an application to take advantage of
the extra functionality of True Type are discussed elsewhere in this chapter. This
section describes some of the True Type functions that are useful for applications
that must take full advantage of the new font technology.

18.4.8.1 Retrieving Character Outlines
Applications can use the GetGlyphOutline function to retrieve the outline of a
glyph from a TrueType font. GetGlyphOutline returns the outline as a bitmap or
as a series of poly lines and splines.

When an application retrieves a glyph outline as a series of polylines and splines,
the information is returned in a TTPOLYGONHEADER structure followed by
as many TTPOLYCURVE structures as are required to describe the glyph. All
points are returned as POINTFX structures and represent absolute positions,
not relative moves. The starting point given by the pfxStart member of the
TTPOL YGONHEADER structure is the point at which the outline for a contour
begins. The TTPOL YCURVE structures that follow can be either polyline re­
cords or spline records. Polyline records are a series of points; lines drawn be­
tween the points describe the outline of the character. Spline records represent the
quadratic curves used by TrueType (that is, quadratic b-splines).

Chapter 18 Fonts 427

Each polyline and spline record contains as many sequential points as possible, to
minimize the number of records returned.

The starting point given in the TTPOL YGONHEADER structure is always on
the outline of the glyph. The specified point is both the starting point and the
ending point for the contour.

A polyline record begins with the last point in the previous record (or with the
starting point, for the first record in the contour). Each point in the record is on the
glyph outline and can be connected simply by using straight lines.

A spline record begins with the last point in the previous record (or with the
starting point, for the first record in the contour). For the first spline record, the
starting point and the last point in the record are on the glyph outline. For all other
spline records, only the last point is on the glyph outline. All other points in the
spline records are off the glyph outline and must be rendered as the control points
ofb-splines.

The last spline or polyline record in a contour always ends with the contour's
starting point. This ensures that every contour is closed.

Because b-splines require three points (one point that is off the glyph outline be­
tween two that are on the outline), applications must perform some calculations
when a spline record contains more than one off-curve point.

For example, if a spline record contains three points (A, B, and C) and it is not the
first record, points A and B are off the glyph outline. To interpret point A, an appli­
cation can use the current position (which is always on the glyph outline) and the
point on the glyph outline between points A and B. To find this point between A
and B, the application can perform the following calculation:

M =A + (B - A) I 2

The midpoint between consecutive off-outline points in a spline record is a point
that is on the glyph outline, according to the definition of the spline format used in
TrueType fonts. In preceding formula, M is the midpoint on the line between
points A and B.

If the current position is designated by P, the two quadratic splines defined by this
spline record are (P, A, M) and (M, B, C).

To render a TrueType character outline in GDI, an application must use both the
polyline and the spline records. GDI can render polylines easily, but it does not
support any spline formats. To use the spline records, an application must convert
them into a series of poly lines that approximate the spline.

The glyph outline returned by the GetGlyphOutline function is for a grid-fitted
glyph. (A grid-fitted glyph has been modified so that its bitmap image conforms as

428 Microsoft Windows Guide to Programming

closely as possible to the original design of the glyph.) If an application requires
an unmodified glyph outline, it should request the glyph outline for a character in
a font whose size is equal to the font's em units. (To create a font with this size, an
application can set the lflleight member of the LOG FONT structure to the nega­
tive of the value of the ntmSizeEM member of the NEWTEXTMETRIC struc­
ture.)

18.4.8.2 Using Portable TrueType Metrics
Applications that use the TrueType font metrics can achieve a high degree of
printer and document portability. Applications that must maintain compatibility
with earlier versions of Windows can use the True Type metrics, as can applica­
tions that are written specifically for Windows version 3 .1.

Design Widths Design widths overcome most of the problems of
device-dependent text introduced by physical devices. Design widths are a kind of
logical width. Independent of any rasterization problems or scaling transforma­
tions, each glyph has a logical width and height. Composed to a logical page, each
character in a string has a place independent of the physical device widths. Al­
though a logical width implies that widths can be scaled linearly at all point sizes,
this is not necessarily true for either nonportable or most TrueType fonts. At
smaller point sizes, some glyphs are made wider relative to their height for better
readability.

The characters in TrueType core fonts are designed against a 2048-by-2048 grid.
The design width is the width of a character in these grid units. (TrueType sup­
ports any integer grid size up to 16,384 by 16,384; grid sizes that are integer
powers of 2 scale faster than other grid sizes.)

The outline of a font is designed in notional units. The em square is the notional
grid against which the font outline is fitted. (The otmEMSquare member of
OUTLINETEXTMETRIC and the ntmSizeEM member of NEWTEXT­
METRIC give the size of the em square in notional units.) When a font is created
that has a point size (in device units) equal to the size of its em square, the ABC
widths for this font are the desired design widths. For example, if the size of an em
square is 1000 and the ABC widths of a character in the font are 150, 400, and
150, a character in this font that has a height of 10 in device units would have
ABC widths of 1.5, 4, and 1.5, respectively. Since the MM_ TEXT mapping mode
is most commonly used with fonts (and MM_ TEXT is equivalent to device units),
this is a simple calculation.

Because of the high resolution of True Type design widths, applications that use
them must take into account the large numeric values that can be created.

Chapter 18 Fonts 429

Device vs. Design Units Portable metrics in fonts are known as design units.
To apply to a given device, design units must be converted to device units. An ap­
plication can use the following formula to convert design units to device units:

DeviceUnits = (DesignUnits/unitsPerEm) * (PointSize/72) * DeviceResolution

The variables in this formula have the following meanings:

Variable

Device Units

DesignUnits

unitsPerEm

PointSize

DeviceResolution

Description

Specifies the DesignUnits font metric converted to device units.
This value is in the same units as the value given for Device­
Resolution.

Specifies the font metric to be converted to device units. This
value could be any font metric, including the width of a character
or the ascender value for an entire font.

Specifies the em square size for the font.

Specifies size of the font in points. (One point equals 1/72 of an
inch.)

Specifies number of device units (pixels) per inch. Typical values
might be 300 for a laser printer or 96 for a VGA screen.

Note This formula should not be used to convert device units back to design units.
Device units are always rounded to the nearest pixel. The propagated round-off
error can become very large, especially when an application is working with
screen sizes.

Requesting Design-Unit Metrics Font metrics for a physical font can be re­
trieved only after a font has been selected into a device context. When a font is
selected into a device context, it is scaled for the device, which makes the font
metrics specific to the device. To request design units, an application should create
a logical font whose height is specified as -unitsPerEm. Applications can retrieve
the value for unitsPerEm by calling the EnumFontFamilies function and check­
ing the ntmSizeEM member of the NEWTEXTMETRIC structure.

Metrics for Portable Documents The following table specifies the most impor­
tant font metrics for applications that require portable documents and the functions
that allow an application to retrieve them:

Function Metric

EnumFontFamilies ntmSizeEM

Use

Retrieving design metrics; con­
version to device metrics

430 Microsoft Windows Guide to Programming

Function

GetChar ABCWidths

GetCharWidth

GetOutlineTextMetrics

Metric

ABCWidths

Advance Widths

otmfsType
otmsCharSlopeRise

otmsCharSlopeRun

otmAscent
otmDescent
otmLineGap
otmpFamilyName
otmpStyleName
otmpFullName

Use

Accurate placement of charac­
ters at the start and end of mar­
gins, picture boundaries, and
other text breaks

Placement of characters on a
line. (This function is not new
for Windows 3.1.)

Font-embedding bits

Y-component for slope of cur­
sor for italic fonts

X-component for slope of cur­
sor for italic fonts

Line spacing

Line spacing

Line spacing

Font identification

Font identification

Font identification (typically,
family and style name)

The otmsCharSlopeRise, otmsCharSlopeRun, otmAscent, otmDescent, and
otmLineGap members of the OUTLINETEXTMETRIC structure are scaled or
transformed to correspond to the current device mode and physical height (as
given in the tmHeight member of the NEWTEXTMETRIC structure).

Font identification is important if the same font must be selected when a document
is reopened or moved to a different system. The font mapper always selects the
correct font when it is asked for by full name. The family and style names are
needed in order to provide input to the standard font dialog box for proper place­
ment of the selection bars.

The otmsCharSlopeRise and otmsCharSlopeRun values are used to produce a
close approximation of the main italic angle of the font. For typical roman fonts,
otmsCharSlopeRise is 1 and otmsCharSlopeRun is 0. For italic fonts, the values
attempt to approximate the sine and cosine of the main italic angle of the font (in
counterclockwise degrees past vertical); note that the italic angle for upright fonts
is 0. Because these values are not expressed in design units, they should not be
converted into device units.

The character plac~ment and line spacing metrics allow an application to compute
device-independent line breaks that are portable across screens, printers, typeset­
ters, and even platforms. If all applications adopt these techniques, documents
moved from one application to another will not reflow.

Chapter 18 Fonts 431

Device-independent page layout requires seven basic steps:

1. Normalize all design metrics to a common ultra-high resolution (UHR) value
(for example, 65,536 DPI); this prevents round-off errors.

2. Compute line breaks based on UHR metrics and physical page width; this
yields a starting point and an ending point of a line within the text stream.

3. Compute the device page width in device units (for example, pixels).

4. Fit each line of text into the device page width, using the line breaks computed
in step 2.

5. Compute page breaks by using UHR metrics and the physical page length; this
yields the number of lines per page.

6. Compute the line heights in device units.

7. Fit the lines of text onto the page, using the lines per page from step 5 and the
line heights from step 6.

18.4.8.3 Panose Numbers
TrueType font files include Panose numbers, which applications can use to choose
a font that closely matches their specifications. The Panose system classifies faces
by 10 different attributes. These attributes are each rated on a scale. The resulting
values are concatenated to produce a number. Given this number for a font and a
mathematical metric to measure distances in the Panose space, an application can
determine nearest neighbors. A PANOSE structure is part of the OUTLINE­
TEXTMETRIC structure (whose values are filled in by calling the GetOutline­
TextMetrics function).

18.4.9 Creating Customized Fonts
GDI keeps a system font table containing all the fonts that applications can use.
GDI chooses a font from this table when an application calls the CreateFont or
CreateFontlndirect function. There can be up to 253 entries in the system font
table.

A font resource is a group of individual fonts representing characters in a given
character set that have various combinations of heights, widths, and pitches. Appli­
cations can load font resources and add the fonts in the resource to the system font
table by using the AddFontResource function. After a font resource has been
added, the application can use the individual fonts in the resource. In other words,
the CreateFont function takes the fonts into account when it tries to match a
physical font with the specified logical font. (Fonts in the system font table are
never directly accessible to an application. They are available only through the
CreateFontlndirect and CreateFont functions, which return handles of the fonts,
not memory addresses.)

432 Microsoft Windows Guide to Programming

An application can add a font resource to the system font table by using the Add­
FontResource function. To remove a font resource, an application can use the
RemoveFontResource function.

Whenever an application adds or removes a font resource, it should inform all
other applications of the change by sending a WM_FONTCHANGE message to
them. An application can use the following call to the SendMessage function to
send the message to all windows:

SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);

An application can use the GetProfileString function to retrieve a list of any fonts
the user has used Control Panel to install. The application would use GetProfile­
String to search the [Fonts] section of the WIN.IN! file.

An application can create font resources by creating font files and adding them as
resources to a font resource file. To create a font resource file, an application
should follow these steps:

1. Create the font files.

2. Create a resource-definition file for the font.

3. Create a dummy code module.

4. Create a module-definition file that describes the fonts and the devices that use
the fonts.

5. Compile and link the sources.

A font resource file is an empty Windows dynamic-link library; it contains no
code or data, but does contain resources. An application can add a font file to an
empty library, along with such resources as icons, cursors, and menus, by using
Microsoft Windows Resource Compiler (RC).

18.4.9.1 Creating Font Files
An application can create raster font files by using Microsoft Windows Font Edi­
tor (FONTEDIT.EXE), as described in Microsoft Windows Programming Tools.
(Font Editor cannot be used to generate vector or TrueType fonts.) The application
can use any number, size, and type of font files in a font resource. In most cases,
enough fonts should be included to reasonably satisfy most logical-font requests
for the target device.

GDI can scale device-independent raster fonts by 1 to 8 times vertically and 1to5
times horizontally. GDI can also simulate bold, underlined, strikeout, and italic
fonts. Font designers may choose to allow GDI to synthesize some sizes and prop­
erties of a font, rather than providing separate font files.

Chapter 18 Fonts 433

Font Editor modifies existing .FNT files; it cannot create font files from scratch.
The Microsoft Windows 3.1 Software Development Kit (SDK) includes two .FNT
files that font designers can load into Font Editor, modify, and save as customized
fonts. The file named ATRMl 111.FNT is a fixed-width font. The file named
VGASYS.FNT is a variable-width font.

The Save As dialog box in Font Editor includes two File Format radio buttons.
Font files saved in Font Editor 3.0 format can be used only in 386 enhanced mode.
Font files saved in Font Editor 2.0 format can be used in all modes.

18.4.9.2 Creating the Resource-Definition File for a Font
An application can add resources to a font file by adding one or more FONT state­
ments to the resource-definition file. The resource-definition file can add .FNT
files to a Windows library, a device driver, or a resource-only file that contains
only icons, cursor, fonts, and other resources. Because font resources are available
to all applications, they should not be added to application modules.

The FONT statement has the following form:

number FONT filename

One statement is required for each font file to be placed in the resource. The
number must be unique, because it is used to identify the font later. The following
is a typical resource-definition file for a font resource:

1 FONT FNTFIL01.FNT
2 FONT FNTFIL02.FNT
3 FONT FNTFIL03.FNT
4 FONT FNTFIL04.FNT
5 FONT FNTFIL05.FNT
6 FONT FNTFIL06.FNT

You can add fonts to modules that contain other resources by adding them to the
existing resource-definition file. An application can have icon, menu, cursor, and
dialog box definitions in the resource-definition file, as well as FONT statements.

18.4.9.3 Creating a Dummy Code Module
A dummy code module provides the object file from which the font resource file
is made. A developer can create the dummy code module by using the assembler
and the Cmacros. The module's source file could look like this:

TITLE FONTRES - Stub file to build a .FON resource file

.xlist
include cmacros.inc
. list

434 Microsoft Windows Guide to Programming

sBegin CODE
db 0
sEnd CODE
end

Microsoft Segmented Executable Linker LINK version 4 allows empty code seg­
ments, but LINK versions 5.12 and later does not. The inclusion of "db O" be­
tween sBegin and sEnd in the preceding example prevents an empty code segment.

The developer can assemble this source file by using the masm command. The ob­
ject file that will be created will contain no code and no data, but it can be linked
to an empty Windows library to which the font resources can be added.

Developers who build font files using version 6.0 of Microsoft Macro Assembler
(ML) should use version 5.3 of the CMACROS.INC file (included with ML) in­
stead of version 5.2 of the file, which is included with the SDK.

18.4.9.4 Creating a Module-Definition File
The module-definition file for the font resource must contain a LIBRARY state­
ment that defines the resource name, a DESCRIPTION statement that describes
the font resource characteristics, and a DATA statement. The module-definition
file for a font resource should look like this:

LI BRA RY FONTRES

DESCRIPTION 'FONTRES 133,96,72 System, Terminal (Set #3)'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'
DATA NONE

The DESCRIPTION statement provides device-specific information about the
font that is used to match a font with a given screen or printer. The following are
the three possible formats for the DESCRIPTION statement in a font resource. In
each case, the first characters in the description must be a single quote and the
name of the library module (FONTRES):

DESCRIPTION 'FONTRES Aspect, LogPixelsX, LogPixelsY: Cmt'
DESCRIPTION 'FONTRES CONTINUOUSSCALING: Cmt'
DESCRIPTION 'FONTRES DEVICESPECIFIC DeviceTypeGroup: Cmt'

The first format specifies a font that was designed for a specific aspect ratio and
logical pixel width and height, and can be used with any device having the same
aspect and logical pixel dimensions. Aspect is the value (100* AspectY)/AspectX
rounded to an integer. The AspectX, AspectY, LogPixelsX, and LogPixelsYvalues
are the same as the values given in the corresponding device's GDIINFO struc­
ture (values that are accessible by using the GetDeviceCaps function). You can

Chapter 18 Fonts 435

specify more than one set of Aspect, LogPixelsX, and LogPixelsYvalues. The Cmt
value is a comment. The following statements are examples:

DESCRIPTION 'FONTRES 133,96,72: System, Terminal (Set 1f3)'
DESCRIPTION 'FONTRES 200,96,48; 133,96,72; 83,60,72; 167,120,72: \

MS Sans Serif'

The second format specifies a continuous scaling font. This typically corresponds
to vector fonts that can be drawn to any size and that do not depend on the aspect
or logical pixel width of the output device. The following statement is an example:

DESCRIPTION 'FONTRES CONTINUOUSSCALING : Modern, Roman, Script'

The third format specifies a font that is specific to a particular device or group of
devices. The DeviceTypeGroup can be DISPLAY or a list of device-type names­
the same names an application might specify as the second parameter in a call to
the CreateDC function. Following is an example of the third format:

DESCRIPTION 'FONTRES DISPLAY: HP 7470 plotters'
DESCRIPTION 'FONTRES DEVICESPECIFIC HP 7470A, HP 7475A: \

HP 7470 plotters'

Note The maximum length of a DESCRIPTION line is 127 characters. Because
GDI is capable of synthesizing attributes, such as bold, italic, and underline, the
font designer need not create separate .FNT files for fonts with these attributes.
Windows may use other fonts that do not correspond to the user's screen aspect
ratio. These are generic raster fonts that are intended for output devices such as bit­
map printers, which rely on the display driver to draw text.

18.4.9.5 Compiling and Linking a Font Resource File
The following makefile lists the commands required to compile and link a font re­
source file:

fontres.obj: fontres.asm
masm fontres;

fontres.exe: fontres.def fontres.obj fontres.rc fontres.exe \
fntfil01.fnt fntfil02.fnt fntfil03.fnt \
fntfil04.fnt fntfil05.fnt fntfil06.fnt

link fontres.obj, fontres.exe, NUL, /nod, fontres.def
re fontres.rc
rename fontres.exe custom.fan

By convention, all raster font resource files have the .FON filename extension.
The last line in the makefile renames the executable file to CUSTOM.FON.

436 Microsoft Windows Guide to Programming

18.4.9.6 Adding TrueType Fonts
Because Windows cannot directly interpret the native TrueType font file format, a
file that mimics the standard .FON file (called a .FOT file) is required to make in­
ternal bookkeeping and enumeration easier. The CreateScalableFontResource
function produces a .FOT file that points to the TrueType font file. Once this .FOT
file is produced, Windows applicaiions can use TrueType fonts transparently by
using the AddFontResource and RemoveFontResource functions. Applications
could also use the CreateScalableFontResource function to install special fonts
for logos, icons, and other graphics.

18.5 Related Topics
For more information about functions used with TrueType fonts, see the Microsoft
Windows Programmer's Reference, Volume 2.

Color Palettes

Chapter 19

19 .1 What a Color Palette Does... 439
19.2 How a Color Palette Works ... 440
19.3 Creating and Using a Logical Palette .. 442

19.3.1 Creating aLOGPALETTE Structure 442
19.3.2 Creating a Logical Palette.. 445
19.3.3 Selecting the Palette into a Device Context............................ 445
19.3.4 Realizing the Palette.. 446

19 .4 Drawing with Palette Colors.. 446
19 .4.1 Directly Specifying Palette Colors 446
19.4.2 Indirectly Specifying Palette Colors.. 447
19.4.3 Using a Palette When Drawing Bitmaps................................. 449

19.5 Changing a Logical Palette .. 450
19.6 Responding to Changes in the System Palette ... 452

19.6.1 Responding to the WM_QUERYNEWPALETTE
Message.. 453

19.6.2 Responding to the WM_PALETTECHANGED Message 453
19.7 Related Topics .. 455

Chapter 19 Color Palettes 439

Color palettes in the Microsoft Windows operating system provide an interface be­
tween an application and a color output device (such as a display device). Through
this interface the application can take full advantage of the color capabilities of the
output device without severely interfering with the colors displayed by other appli­
cations. Windows takes color information contained in an application's logical
palette (a graphics object that is essentially a list of colors needed by the applica­
tion) and applies it to a system palette (the list of colors that is available on the
system and that is shared by all Windows applications). When more than one appli­
cation displays colors from a logical palette, Windows intervenes, controlling
which application has primary access to the system palette and maintaining a high
level of color quality for the remaining applications.

This chapter covers the following topics:

• Creating a logical palette for your application and preparing it for use

• Using colors in the palette for painting in a window's client area

• Making changes in your logical palette and controlling when Windows displays
those changes

• Responding to changes in the system palette made by other applications

19.1 What a Color Palette Does
Many color graphics adapters (screens) are capable of displaying a wide range of
colors. In most cases, however, the number of colors that the screen can render at
any given time is more limited. For example, a screen that is potentially able to
produce 26,000 different colors may be able to show only 256 of those colors
simultaneously, because of hardware limitations. When such a limitation exists,
the device often maintains a palette of colors. When an application requests a color
that is not currently displayed, the device adds the requested color to the palette.
However, when the number of requested colors exceeds the maximum number for
the device, it maps the requested color to an existing color; this means the colors
displayed are different from the colors requested. When this happens, the system
attempts to replace requested colors with similar existing colors, so the difference
between the requested colors and the displayed colors is often small.

Windows color palettes provide a buffer between a color-intensive application and
the system. A color palette allows an application to use as many colors as are nec­
essary without interfering with colors displayed by other windows. When a win­
dow uses a color palette and has the input focus, Windows ensures that it will
display all the colors it requests, up to the maximum number available simul­
taneously on the screen, and displays additional colors by matching them to availa­
ble colors. In addition, Windows matches the colors requested by inactive
windows as closely as possible to the available colors. This reduces undesirable
changes in what colors are displayed in inactive windows.

440 Microsoft Windows Guide to Programming

19.2 How a Color Palette Works
Windows provides a device-independent method for accessing the color capabili­
ties of a display device by managing the device's system palette, if the device has
one.

As noied previousiy, your appiication empioys the system palette by creating and
using one or more logical palettes. A logical palette is a graphics device interface
(GDI) object that specifies the colors to be drawn in the device context. Each entry
in the palette contains a specific color. When performing graphics operations, the
application does not indicate which color is to be displayed by supplying an expli­
cit red, green, blue (RGB) value. Instead, the application accesses the palette either
directly or indirectly. Using the direct method, it indicates which color to use in
your logical palette by specifying an index into the palette entries. Using the in­
direct method, you specify a palette-relative RGB value similar to an explicit RGB
value. For a more complete description of these two methods, see Sections 19 .4.1,
"Directly Specifying Palette Colors," and 19.4.2, "Indirectly Specifying Palette
Colors."

When a window requests that the system use the colors in the window's logical
palette (a process known as realizing the window's palette), Windows first exactly
matches entries in the logical palette to current entries in the system palette.

If it cannot make an exact match for a given logical-palette entry, Windows sets
the entry in the logical palette into an unused entry in the system palette.

Finally, when all entries in the system palette have been used, Windows matches
logical-palette entries as closely as possible to entries in the system palette.
Windows sets aside 20 static colors (called the default palette) in the system
palette to aid this color matching.

Windows always satisfies the color requests of the foreground window first; this
ensures that the active window will have the best color display. For the remaining
windows, Windows satisfies the color requests of the window that most recently
received the input focus, and so on. This process is shown in the following figure:

Chapter 19 Color Palettes 441

System Palette Logical Palette 1
(Active Window)

0 0
1
2

2 3
4

3 5

4 6
7

5

6

7
0
1

8 2
3

9 4
5

A 6

B
7
8

In this figure, a hypothetical screen has a system palette capable of containing 12
colors. The application that created Logical Palette 1, which contains 8 colors,
owns the active window and was the first to realize its logical palette. Logical
Palette 2, which contains 9 colors, is owned by a window that realized its logical
palette while it was inactive. Because the active window was active when it real­
ized its palette, Windows mapped all of the colors in Logical Palette 1 directly to
the system palette.

Colors 1, 3, and 5 in Logical Palette 2 are identical to colors in the system palette.
When the second application realized its logical palette, Windows simply matched
those colors to the existing system colors to save space in the palette. Colors 0, 2,
4, and 6 of Logical Palette 2 were not already in the system palette, however, so
Windows mapped those colors into the system palette.

Colors 7 and 8 in Logical Palette 2 do not exactly match colors in the system
palette. Because the system palette was full, Windows could not map these 2
colors into the system palette. Instead, it matched them to the closest colors in the
system palette.

442 Microsoft Windows Guide to Programming

19.3 Creating and Using a Logical Palette
To use a logical palette, your application must first perform four steps:

1. Create a LOGPALETTE structure that describes the palette.

2. Create the palette itself.

3. Select the palette into a device context.

4. Realize the palette.

19. 3 .1 Creating a LOG PALETTE Structure
The LOGPALETTE structure describes the logical palette you plan to use. It con­
tains the following information:

• A Windows version number (for Windows versions 3.0 and 3.1, this value
should be Ox300)

• The number of entries in the palette

• An array of PALETTEENTRY structures, each of which contains 1-byte
values for red, green, and blue, and a flags member named peFlags. The pe­
Flags member can be set to one of the following values:

• NULL

• PC_EXPLICIT

• PC_NOCOLLAPSE

• PC_RESERVED

Specifying NULL for the peFlags member informs Windows that the palette entry
contains an RGB value and that it should be mapped normally.

Setting the PC_EXPLICIT flag indicates to Windows that the palette entry does
not contain color values; instead, the low-order word of the entry specifies an
index into the system palette.

Setting the PC_NOCOLLAPSE flag indicates to Windows that the color will be
placed in an unused entry in the system palette instead of being matched to an ex­
isting color in the system palette. Once this color is in the system palette, colors in
other logical palettes can be matched to this color. If there are no unused entries in
the system palette, the color is matched normally.

An application sets PC_RESERVED in a palette entry when it is going to animate
the entry (that is, change it dynamically by using the AnimatePalette function).
Setting this flag prevents Windows from attempting to match colors from other
logical palettes to this color while the entry is mapped to the system palette.

Chapter 19 Color Palettes 443

The ShowDIB code sample creates its LOGPALETTE structure as follows:

#define PALETTESIZE 256

/* Make space for the logical palette. */

pLogPal = (NPLOGPALETTE) LocalAlloc(LMEM_FIXED,
(sizeof(LOGPALETTE) + (sizeof(PALETTEENTRY) * (PALETTESIZE))));

ShowDIB initializes the palette structure with 256 entries; however, you can make
a palette any size you need.

ShowDIB fills in the palette entries by opening a bitmap (.BMP) file and copying
the color values in the BITMAPINFO structure's color table to the corresponding
palette entries:

HPALETTE CreateBIPalette(lpbi)
LPBITMAPINFOHEADER lpbi;
{

LOG PALETTE
HPALETTE
WORD
BYTE
BYTE
BYTE
int
RGBQUAD

*pPa l ;
hpal = NULL;
nNumColors;
red;
green;
blue;
i ;
FAR *pRgb;

if (! l pbi)
return NULL;

if (lpbi->biSize != sizeof(BITMAPINFOHEADER))
return NULL;

/*
* Retrieve a pointer to the color table, and retrieve the
* number of colors in the table.
*/

pRgb = (RGBQUAD FAR*) ((LPSTR) lpbi + (WORD) lpbi->biSize);
nNumColors = DibNumColors(lpbi);

if (nNumColors) {

/*Allocate memory for the logical-palette structure. */

pPal = (LOGPALETTE*) LocalAlloc(LPTR, sizeof(LOGPALETTE) +
nNumColors * sizeof(PALETTEENTRY));

444 Microsoft Windows Guide to Programming

/*

if (!pPal)
return NULL;

pPal->palNumEntries = nNumColors;
pPal->palVersion = 0x300;

* Fill in the palette entries from the DIB color table and
* create a logical color palette.
*/

}

for (i = 0; i < nNumColors; i++) {
pPal->palPalEntry[i].peRed
pPal->palPalEntry[i].peGreen
pPal->palPalEntry[i].peBlue
pPal->palPalEntry[iJ.peflags

}

hpal = CreatePalette(pPal);
Localfree((HANDLE) pPal);

pRgb[i].rgbRed;
pRgb[i].rgbGreen;
pRgb[i].rgbBlue;
(BYTE) 0;

else if (lpbi->biBitCount == 24) {

/*
* A 24-bitcount DIB has no color-table entries, so set
*the number of entries to the maximum value (256).
*/

nNumColors = MAXPALETTE;
pPal = (LOGPALETTE*) LocalAlloc(LPTR, sizeof(LOGPALETTE) +

nNumColors * sizeof(PALETTEENTRYll;
if (! pPa l)

return NULL;

pPal->palNumEntries = nNumColors;
pPal->palVersion = 0x300;

red= green= blue= 0;

/*
* Generate 256 (= 8*8*4) RGB combinations to fill the
* palette entries.
*/

for (i = 0; i < pPal->palNumEntries; i++) {
pPal->palPalEntry[iJ.peRed red;
pPal->palPalEntry[iJ.peGreen green;
pPal->palPalEntry[iJ.peBlue blue;
pPal->palPalEntry[iJ.peflags (BYTE) 0;

}

}

if (!(red+= 32))
if (!(green+= 32))

blue+= 64;

hpal = CreatePalette(pPal);
LocalFree((HANDLE) pPal);

return hpal;

Chapter 19 Color Palettes 445

ShowDIB first calls the DibNumColors function to determine the number of
colors in the color table. If there is a color table (that is, the biBitCount member is
not 24), it copies the RGBQUAD values in each bmiColors member in the
BITMAPINFO structure to the corresponding palette entry. If there is no color
table, Show DIB creates a palette of 256 entries containing a spread of colors.
When ShowDIB displays the bitmap, Windows matches the colors in the bitmap
to the colors in this spread.

19.3.2 Creating a Logical Palette
After the application has created the LOGPALETTE structure, the next step is to
create a logical palette by calling the CreatePalette function:

hPal = CreatePalette((LPSTR) plogPal);

CreatePalette accepts a long pointer to the LOGPALETTE structure as its only
parameter and returns a handle of the palette (HPALETTE).

19.3.3 Selecting the Palette into a Device Context
As you would any other GDI object, you must select the palette into the device
context in which it is to be used. The usual way to do this is by calling the Select­
Object function. However, because SelectObject does not recognize a palette ob­
ject, you must instead call SelectPalette to select the palette into the device
context:

hDC = GetDC(hWnd);
SelectPalette(hDC, hPal, 0);

These statements associate the palette with the device context so that any reference
to a palette (such as a palette index passed to a GDI function instead of a color)
will be to the selected palette.

446 Microsoft Windows Guide to Programming

To delete a logical-palette object, you use the DeleteObject function.

Since the palette is independent of any particular device context, several windows
can share it. However, Windows does not make a copy of the palette object when
an application selects the palette into a device context; consequently, any change
to the palette affects all device contexts using the same palette. Also, if an applica­
tion selects a palette object into more than one device context, the device contexts
must all belong to the same physical device (such as a screen or printer). In other
respects, however, a palette object is like other Windows objects.

19.3.4 Realizing the Palette
After your application has selected its palette into a device context, it must realize
the palette before using it, as follows:

RealizePalette(hDC);

When your application calls the RealizePalette function, Windows compares the
system palette with your logical palette and matches identical colors. If there is
room in the system palette, Windows then maps unmatched colors in the logical
palette to the system palette. Finally, ifthere are unmatched colors that it could not
map to the system palette, Windows matches the remaining colors to the nearest
color in the system palette.

19.4 Drawing with Palette Colors
Once your application has created a logical palette, selected it into a device con­
text, and realized it, you can use the palette to control the colors used by GDI func­
tions that draw within the client area of the screen. For functions that require a
color (such as CreatePen and CreateSolidBrush), you specify, directly or in­
directly, which palette color you want to use.

19.4.1 Directly Specifying Palette Colors
Use the direct method to specify a palette color by supplying an index into your
logical palette instead of an explicit RGB value to functions that expect a color.
The PALETTEINDEX macro accepts an integer representing an index into your·
logical palette and returns a palette-index COLORREF value, which you would
use as the color specifier for such functions. For example, to fill a region bounded
by pure green with a solid brush consisting of pure red, you could use a sequence
similar to the following:

plogPal->palPalEntry[5].pRed = 0xFF;
plogPal->palPalEntry[5J.pGreen = 0x00;
plogPal->palPalEntry[5J.pBlue = 0x00;
pLogPal->palPalEntry[5].pFlags = (BYTE) 0;
plogPal->palPalEntry[6J.pRed = 0x00;
plogPal->palPalEntry[6J.pGreen = 0xFF;
pLogPal->palPalEntry[6J.pBlue = 0x00;
pLogPal->palPalEntry[6].pFlags = (BYTE) 0;

hPal = CreatePalette((LPSTR) plogPalJ;
hDC = GetDC(hWndJ;
SelectPalette(hDC, hPal, 0);
RealizePalette(hDC);
lSolidBrushColor = PALETTEINDEX(5);
lBoundaryColor = PALETTEINDEX(6);

Chapter 19 Color Palettes 447

hSolidBrush = CreateSolidBrush(lSolidBrushColor);
hOldSolidBrush = SelectObject(hDC, hSolidBrush);
hPen = CreatePen(lBoundaryColorJ;
hOldPen = SelectObject(hDC, hPenJ;
Rectangle(hDC, xl, yl, x2, y2J;

This example indicates to Windows that it should draw a rectangle bounded by the
color in the palette entry at index 6 (green) and filled with the color located in the
entry at index 5 (red).

Note that the brush created by CreateSolidBrush is independent of any device
context. As a result, the color specified in the lSolidBrushColor parameter is the
color in the sixth entry of the palette that was current when the brush was selected
into the device context (not when the application created the brush). Selecting and
realizing a different palette and selecting the brush again would change the color
drawn by the brush. Thus, when using a logical palette, you need only create a
brush for each type required (such as solid or vertical hatch). You can then change
the color of the brush by using different palettes or by changing the color in the
palette entry to which the brush refers.

19.4.2 Indirectly Specifying Palette Colors
Using an index into a logical palette allows your application greater control over
the colors displayed. This method becomes impractical, however, when dealing
with a device that has 2A24 colors with no system palette. On a device capable of
supporting full 24-bit color, this limits your application to displaying only the
colors in your logical palette. By specifying palette colors indirectly, you can
avoid this limitation.

You specify a palette color indirectly by using a palette-relative RGB COLOR­
REF value instead of a palette index. A palette-relative RGB value is a 32-bit

448 Microsoft Windows Guide to Programming

value that has the second bit in the high-order byte set to 1 and one-byte values for
red, green, and blue in the remaining bytes. The PALETTERGB macro accepts
three values that indicate the relative intensity of red, green, and blue, and returns
a palette-relative RGB COLORREF value, which, like a palette-index COLOR­
REF value, you can use in place of an explicit RGB COLORREF value for func­
tions that require a color.

By specifying a palette-relative RGB value instead of a palette index, your applica­
tion can draw to an output device by using palette colors, without having to deter­
mine first whether the device supports a system palette. The following table shows
how Windows interprets a palette-relative RGB value.

Device supports
a system palette?

Yes

No

How Windows uses a palette-relative RGB value

Windows matches the RGB information to the nearest color in
the currently selected logical palette and uses that palette entry as
though the application had directly specified the entry.

Windows uses the RGB information as though the palette­
relative RGB were an explicit RGB value.

For example, assume your application includes the following statements:

plogPal->palPalEntry[5J.pRed = 0xFF;
plogPal->palPalEntry[5].pGreen = 0x00;
plogPal->palPalEntry[5].pBlue = 0x00;
CreatePalette((LPSTR) &pa);
crRed = PALETTERGB(0xFF, 0x00, 0x00);

If the target output device supports a system palette, crRed would be equivalent to
this:

crRed = PALETTEINDEX(5);

If the output device does not support a system palette, however, crRed would be
equivalent to this:

crRed = RGB(0xFF, 0x00, 0x00);

Even when using a logical palette, an application can use an explicit RGB value to
specify color. In such cases, Windows displays the color as it would for an applica­
tion that does not use a color palette, by displaying the nearest color in the default
palette. If an application creates a solid brush by using an explicit RGB value,
Windows simulates the color by dithering-that is, producing a pattern of pixels
made up of colors in the default palette.

Chapter 19 Color Palettes 449

19.4.3 Using a Palette When Drawing Bitmaps
A device-independent bitmap's color table can contain indices into the currently
selected logical palette instead of explicit RGB values. (For more information, see
Section 19.3.1, "Creating a LOGPALETTE Structure.") This allows Windows to
avoid color matching and can significantly increase the speed with which images
are rendered. The ShowDIB code sample demonstrates this by converting its DIB
color table into palette indices, as shown in the following example:

lpbi = (VOID FAR*) Globallock(hbiCurrent);
if (lpbi->biBitCount != 24) {

}

fPalColors = TRUE;

pw = (WORD FAR*) ((LPSTR) lpbi + lpbi->biSize);

for Ci = 0; i<Cint) lpbi->biClrUsed; i++)
*pw++ = (WORD) i;

GlobalUnlock(hbiCurrent);

Note that ShowDIB had already set the biClrUsed member of the BITMAP­
INFOHEADER structure to the number of colors in the color table.

After converting the DIB color table into palette indices, ShowDIB calls the
SetDIBits function with the DIB_PAL_COLORS flag, as shown in the following
example:

/* Set the DIB bits to a device-dependent format */

if (lpbi->biHeight != (LONG) SetDIBits(hMemDC,
hBitmap,

}

0,
(WORD) lpbi->biHeight,
pBuf,
(LPB ITMAP INFO) l pbi ,
fPalColors ?
DIB_PAL_COLORS :
DIB_RGB_COLORS)) {

ErrMsg("Could not draw DIB scans!");
GlobalUnlock(hBuf);
GlobalFree(hBuf);
GlobalUnlockChbiCurrent);
_lclose(fh);
return;

Depending on whether the original device-independent bitmap used 24-bit pixels,
ShowDIB sets the wUsage parameter of SetDIBits to DIB_RGB_COLORS
(for a 24-bit bitmap) or DIB_PAL_COLORS (for all other bitmaps).
DIB_RGB_COLORS instructs Windows to use the color values in the BITMAP­
INFO color table when setting the bits in the device-dependent memory bitmap. If

450 Microsoft Windows Guide to Programming

the wUsage parameter is set to DIB_PAL_COLORS, however, Windows inter­
prets the color table as 16-bit indices into a logical palette and sets the bits in the
memory bitmap by using the indicated color values in the logical palette of the cur­
rent device context.

If the BITMAPINFO color table contains explicit RGB values instead of palette
indices, Windows matches those values to the nearest colors in the currently
selected logical palette, as though they were palette-relative RGB values.

Note If the source and destination device contexts have selected and realized
different palettes, the BitBlt function does not properly move bitmap bits to or
from a memory device context. In such a case, you must call the GetDIBits func­
tion with the wUsage parameter set to DIB_RGB_COLORS to retrieve the bitmap
bits from the source bitmap in a device-independent format. You then use the
SetDIBits function to set the retrieved bits in the destination bitmap. This ensures
that Windows will properly match colors between the two device contexts. BitBlt
can successfully move bitmap bits between two screen display contexts, even if
they have selected and realized different palettes. The StretchBlt function prop­
erly moves bitmap bits between device contexts whether or not they use different
palettes.

19.5 Changing a Logical Palette
You can change one or more entries in a logical palette by calling the SetPalette­
Entries function. This function accepts the following parameters:

• The handle of the palette to be changed and an integer specifying the first
palette entry to be changed

• An integer specifying the number of entries to be changed

• An array of PALETTEENTRY structures, each of which contains the red,
green, and blue intensities and flags for each entry

Windows does not map changes made to the palette until the application calls
RealizePalette for any device context in which the palette is selected. Because
this changes the system palette, colors displayed in the client area will likewise
change. For more information about how to respond when Windows changes the
system palette, see Section 19.6, "Responding to Changes in the System Palette."

A second method of updating a logical palette is by animating it. In most cases, an
application animates its logical palette when it is necessary to change the palette
rapidly and to make those changes immediately apparent.

Chapter 19 Color Palettes 451

To animate a palette, the application must first set the flags in the affected palette
entries to PC_RESERVED. This flag has two functions:

• It enables animation for the palette entry.

• It prevents Windows from matching colors displayed in other device contexts
to the corresponding color in the system palette.

The following example shows how ShowDIB sets the PC_RESERVED flag in all
the entries in an existing logical palette:

for (i = 0; i < plogPal->palNumEntries; i++) {
plogPal->palPalEntry[i].peFlags = (BYTE) PC_RESERVED;

SetPaletteEntries(hpalCurrent, 0, plogPal->palNumEntries,
plogPal->palPalEntry);

The AnimatePalette function accepts the same parameters as SetPaletteEntries.
Unlike SetPaletteEntries, however, AnimatePalette changes only those palette
entries in which the PC_RESERVED flag is set.

When an application calls AnimatePalette, Windows immediately maps the
changed entries to the system palette, but it does not rematch the colors displayed
in the device contexts by using the palette for which the application called
AnimatePalette. In other words, if a pixel was displaying the color in the fifth
entry in the system palette before the application called AnimatePalette, it will
continue to display the color in that entry after AnimatePalette is called, even if
the fifth entry now contains a different color.

To demonstrate palette animation, ShowDIB sets a system timer and then calls
AnimatePalette to shift each entry in the palette each time its window receives a
WM_ TIMER message:

case WM_TIMER:

f* WM TIMER is the signal for palette animation. */

hDC = GetDC(hWnd);
hOldPal = SelectPalette(hDC, hpalCurrent, 0); {

PALETTEENTRY peTemp;

f*
* Shift all palette entries left by one
* position and wrap around the first entry.
*f

452 Microsoft Windows Guide to Programming

}

peTemp = plogPal->palPalEntry[0];
for (i = 0; i < (plogPal->palNumEntries - 1); i++)

plogPal->palPalEntry[iJ =
plogPal->palPalEntry[i + 1];

pLogPal->palPalEntry[iJ = peTemp;

/* Replace entries in logical palette with new entries. */

AnimatePalette(hpalCurrent, 0, plogPal->palNumEntries,
plogPal->palPalEntry);

SelectPalette(hDC, hDldPal, 0);
ReleaseDC(hWnd, hDC);

f*
* Decrement animation count and terminate
* animation if it reaches zero.
*f

if (!(--nAnimating))
PostMessage(hWnd, WM_COMMAND, IDM_ANIMATE0, 0L);

break;

Animating an entire logical palette will degrade colors displayed by other applica­
tions' windows if the active window is using the animated palette, particularly if
the animated palette is large enough to "take over" the system palette. For this rea­
son, your application should animate no more entries than it requires.

19.6 Responding to Changes in the System Palette
Whenever an application realizes a logical palette for a particular device context,
Windows maps colors in that logical palette into the system palette if the system
palette does not already contain those colors and if there are available entries in
the system palette. Because the system palette has changed, many or all of the
colors displayed in the client areas of all windows using palettes likewise change.
So that applications can respond appropriately to these changes, Windows sends
the following two messages to overlapped and pop-up windows to deal with the
changes:

• WM_QUERYNEWPALETIE

• WM_PALETIECHANGED

Chapter 19 Color Palettes 453

19.6.1 Responding to the WM_QUERYNEWPALETTE Message
Windows sends the WM_QUERYNEWP ALETTE message to the window that is
about to become active. When a window receives this message, the application
that owns the window should realize its logical palette, invalidate the contents of
the window's client area, and then return TRUE to inform Windows that it has
changed the system palette.

ShowDIB responds to the WM_QUERYNEWP ALETTE message as follows:

case WM_QUERYNEWPALETTE:

/* If palette realization causes a palette change, redraw. */

if (fLegitDraw) {

}

else

hDC = GetDC(hWnd);
hOldPal = SelectPalette(hDC, hpalCurrent, 0);

i = RealizePalette(hDC);

SelectPaletteChDC, hOldPal, 0);
ReleaseDC(hWnd, hDC);

if (i) {

InvalidateRect(hWnd, CRECT FAR*) NULL, 1);
UpdateCount = 0;
return 1;

} else
return FALSE;

return FALSE;
break;

19.6.2 Responding to the WM_PALETTECHANGED Message
Windows sends the WM_P ALETTECHANGED message to all overlapped and
pop-up windows when any window changes the system palette by realizing its
logical palette. The wParam parameter of this message contains the handle of the
window that realized its palette. If your window responds to this message by realiz­
ing its own palette, to avoid creating a loop you should first determine that this
handle is not the handle of your window.

454 Microsoft Windows Guide to Programming

When an inactive window receives the WM_P ALETTECHANGED message, it
has three options:

• It can do nothing. In this case, the colors displayed in the window's client area
potentially will be incorrect until the window updates its client area. Consider
this option only if color quality is unimportant to your application when its win­
do\vs are inactive or if your application does not use a palette.

• It ::an realize its logical palette and redraw its client area. This option ensures
that the colors displayed in the window's client area will be as correct as
possible, because Windows updates the colors in the client area by using the
window's logical palette. This accuracy does increase the time required to re­
draw the client area, however. So if the quality of the colors displayed by your
inactive window is crucial to your application, or if the image contained in your
window's client area can be redrawn quickly, choose this option.

• It can realize its logical palette and directly update the colors in its client area.
This option provides a reasonable compromise between performance and color
quality. A window directly updates the colors in its client area by realizing its
palette and then calling the UpdateColors function. When an application calls
UpdateColors, Windows quickly updates the client area by matching the cur­
rent colors in the client area pixel by pixel to the system palette. Since the
match is made based on the color of the pixel before the system palette changed
rather than on the contents of the window's logical palette, the accuracy of the
match decreases each time the window calls UpdateColors. Consequently, if
color accuracy is of any importance to your application when your windows are
inactive, limit the number of times the application calls UpdateColors for a
window before repainting the window's client area.

The following demonstrates how ShowDIB updates its client area in response to
the WM_P ALETTECHANGED message:

case WM_PALETTECHANGED:

/*
* If SHOWDIB was not responsible for palette
* change and if palette realization causes a
* palette change, redraw.
*/

if (wParam != (WPARAM) hWnd) {
if (flegitDraw) {

hDC = GetDC(hWnd);
hOldPal = SelectPalette(hDC, hpalCurrent, 0);

i = RealizePalette(hDC);

break;

if (i) {

if (fUpdateColors) {
UpdateColors(hDC);
UpdateCount++;

else

Chapter 19 Color Palettes 455

InvalidateRect(hWnd, (RECT FAR*) NULL, 1);
}

SelectPalette(hDC, hDldPal, 0);
ReleaseDC(hWnd, hDC);

When ShowDIB receives the WM_P ALETTECHANGED message, it first deter­
mines whether the wParam parameter contains its own window handle. This
would indicate that it was the window that had realized its logical palette and so
no response is needed. After selecting and realizing its logical palette, the window
determines whether a flag was set indicating that the user had chosen the Update
Colors command from the Options menu. If the user had done so, the window
calls UpdateColors to update its client area and sets a flag to indicate that it has
directly updated its colors. Otherwise, the window invalidates its client area, forc­
ing it to be redrawn.

19. 7 Related Topics
For more information about displaying bitmaps, see Chapter 11, "Bitmaps."

For more information about color-palette and GDI functions and about data types,
messages, and structures used by logical palettes, see the Microsoft Windows Pro­
grammer's Reference, Volumes 2 and 3.

Dynamic-Link Libraries

Chapter 20

20.1 What Is a Dynamic-Link Library? ... 459
20.1.1 Import and Dynamic-Link Libraries 460
20.1.2 Application and Dynamic-Link Modules................................ 461
20.1.3 Dynamic-Link Libraries and Tasks... 462
20.1.4 Dynamic-Link Libraries and Stacks.. 462
20.1.5 How Windows Locates Dynamic-Link Libraries................... 463

20.2 When to Use a Custom Dynamic-Link Library...................................... 464
20.2.1 Sharing Objects Between Applications................................... 464

20.2.1.1 Sharing Code... 465
20.2.1.2 Sharing Resources... 465

20.2.2 Customizing an Application for Different Markets 466
20.2.3 Windows Hooks ... 467
20.2.4 Device Drivers... 467
20.2.5 Custom Controls .. 468
20.2.6 Project Management.. 473

20.3 Creating a Dynamic-Link Library... 474
20.3.1 Creating the C-Language Source File 474

20.3.1.1 Initializing a Dynamic-Link Library..................... 476
20.3.1.2 Terminating a Dynamic-Link Library.................. 480

20.3.2 Creating the Module-Definition File....................................... 481
20.3.3 Creating the Makefile.. 482

20.3.3.1 CompilerOptions .. 483
20.3.3.2 Linker Command Line.. 484
20.3.3.3 Symbol File Generator: MAPSYM 484
20.3.3.4 Import Library Manager: IMPLIB 485
20.3.3.5 Resource Compiler: RC .. 485

458 Microsoft Windows Guide to Programming

20.4 Application Access to Dynamic-Link Code .. 485
20.4.1 Creating a Prototype for the Library Function........................ 485
20.4.2 Importing the Library Function... 486

20.4.2.1 Implicit Link-Time Import 486
20.4.2.2 Explicit Link-Time Import.................................... 487
20.4.2.3 Dynamic Run-Time Import 487

20.5 Rules for Windows Object Ownership.. 488
20.6 Sample Dynamic-Link Library: Select.. 489

20.6.1 Creating the Functions... 490
20.6.2
20.6.3
20.6.4
20.6.5
20.6.6

Creating the Initialization Function... 495
Creating the Exit Routine 495
Creating the Module-Definition File 496
Creating the Header File 496
Compiling and Linking.. 496

20.7 Related Topics .. 497

Chapter 20 Dynamic-Link Libraries 459

The Microsoft Windows operating system provides special libraries, called
dynamic-link libraries, (DLLs) that applications can use to share code and re­
sources. In addition, you can create your own dynamic-link libraries to share code
and resources among your applications.

This chapter covers the following topics:

• What a dynamic-link library is

• When to use a dynamic-link library

• How to build a dynamic-link library

This chapter also explains how to build a sample library, SELECT.DLL, that il­
lustrates the concepts this chapter covers.

20.1 What Is a Dynamic-Link Library?
A dynamic-link library is an executable module containing functions that
Windows applications can call to perform useful tasks. Dynamic-link libraries
exist primarily to provide services to application modules. These libraries play an
important role in Windows, which uses them to make its functions and resources
available to Windows applications. All Windows libraries are dynamic-link
libraries.

Dynamic-link libraries are similar to run-time libraries, such as the C run-time
libraries. The main difference is that dynamic-link libraries are linked with the ap­
plication at run time, not when you link the application files by using Microsoft
Segmented Executable Linker (LINK). Linking a library with an application at run
time is called dynamic linking; linking the library with an application by using the
linker is called static linking.

One way to understand dynamic-link libraries is to compare them to static-link
libraries. An example of a static-link library is MLIBCEW.LIB, the medium­
model Windows C run-time library. MLIBCEW.LIB contains the executable code
for C run-time functions such as strcpy and strlen. You use C run-time functions
in your application without having to include the source code for those functions.
When you link your C application, the linker incorporates information from the ap­
propriate static-link library. Wherever the application's code uses a C run-time
function, the linker copies that function to the application's executable (.EXE) file.

The primary advantage of static-link libraries is that they make a standard set of
functions available to applications, and do not require the applications to include
the original source code for those functions. Static-link libraries, however, can be
inefficient in a multitasking system such as Windows. If two applications are run­
ning simultaneously and they use the same static-library function, there will be
two copies of that function present in the system. This is an inefficient use of

460 Microsoft Windows Guide to Programming

memory. It would be more efficient for both applications to share a single copy of
the function, but static-link libraries provide no facility for sharing code between
applications.

With dynamic-link libraries, on the other hand, several applications can
share a single copy of a function. Every standard Windows function, such as
Getl'vfessage, Create Window, or TextOut, is in one of three dynamic-link librar­
ies: either KRNL286.EXE or KRNL386.EXE, USER.EXE, and GDI.EXE. If two
Windows applications are running at the same time and both use a particular
Windows function, both share a single copy of the source code for that function.

fu addition to being able to share code, applications using dynamic-link libraries
can share other resources, such as data and hardware. For example, Windows fonts
are text-drawing data that applications can share by means of dynamic-link librar­
ies. Likewise, Windows device drivers are dynamic-link libraries that applications
can use to share hardware resources.

20.1.1 Import and Dynamic-Link Libraries
Thus far, we have described two types of libraries: static-link and dynamic-link
libraries. There is a third type of library that is important when working with
dynamic-link libraries: import libraries. An import library contains information
that Windows uses to locate code in a dynamic-link library.

During linking, the linker uses static-link libraries and import libraries to resolve
references to external functions. When an application uses a function from a static­
link library, the linker copies the code for that function into the application's .EXE
file. When the application uses a function from a dynamic-link library, however,
the linker does not copy any code. Instead, it copies information from the import
library-information that indicates where to find the necessary code in the
dynamic-link library at run time. While the application is running, this relocation
information creates a dynamic link between the executing application and the
dynamic-link library.

The following table summarizes the uses of each of the three types of libraries.

Library Linked at Linked at Example Example
type link time run time library function

Static Yes No MLIBCEW.LIB strcpy
Import Yes No LIBW.LIB TextOut
Dynamic No Yes GDI.EXE Text Out

As this table indicates, when an application calls the strcpy function in the C run­
time library the linker links the application to the library by copying the code of
the function from the MLIBCEW.LIB run-time library into the application's .EXE

Chapter 20 Dynamic-Link Libraries 461

file. But when the application calls the TextOut GDI function, the linker copies lo­
cation information for TextOut from the LIBW.LIB import library into the .EXE
file. It does not copy the code of the function itself. Then, at run time, when the ap­
plication makes the call to TextOut, Windows uses the location information in the
.EXE file to locate TextOut in the dynamic-link library GDI.EXE. It then exe­
cutes the TextOut function in GDI.EXE. In other words, import libraries provide
the connection between application modules and dynamic-link library modules.

20.1.2 Application and Dynamic-Link Modules
Modules are a fundamental structural unit in Windows. There are two types of
modules: application modules and dynamic-link modules. You should already be
familiar with application modules; the .EXE file for every Windows application is
considered a module. Examples of dynamic-link modules include any Windows
system file with an extension of .DLL, .DRV, or .FON. (Some Windows system
modules have a filename extension of .EXE instead of .DLL.)

Application and dynamic-link modules have the same file format. This format,
which is sometimes called the New EXE Header Format, allows dynamic linking
to take place. You can use the Microsoft EXE File Header Utility (EXEHDR) to
read the header of a module file. EXEHDR provides information about the func­
tions that the module imports or exports. EXEHDR is included with Microsoft C
Optimizing Compiler (CL); for information about how to run EXEHDR, see your
C compiler documentation.

A module exports a function to make the function available to other modules.
Thus, dynamic-link modules export functions for use by applications and other
dynamic-link libraries. For example, the Windows dynamic-link library GDI.EXE
exports all the graphics device interface (GDI) functions. Unlike dynamic-link
modules, however, application modules cannot export functions for use by other
applications.

A module imports a function contained in another module if it must use that func­
tion. Importing a function creates a dynamic link to the code for that function.

There are two ways to import a function into a module:

• By linking the module with an import library that contains information for that
function

• By listing the individual function in the IMPORTS section of the module­
definition file

Although both application and dynamic-link modules can import and export func­
tions, they differ in one important respect: Unlike applications modules, dynamic­
link modules are not tasks.

462 Microsoft Windows Guide to Programming

20.1.3 Dynamic-Link Libraries and Tasks
One of the basic differences between an application module and a dynamic-link
module is in the notion of the task. A task is the fundamental unit of scheduling in
Windows. An application module is said to be a tasked executable module. When
an application module is loaded, a call is made to its entry point, the WinMain
funciion, which typically contains the message loop. As the appiication moduie
creates windows and begins to interact with the user, the message loop connects
the application module to the Windows scheduler. As long as the user is inter­
acting with the application's windows, messages are fed to the application module
and the module retains control of the processor.

A dynamic-link library is sometimes said to be a nontasked executable module.
Like the application module, a dynamic-link module may contain an entry point.
When the module is loaded, the entry point for the library is called but, typically,
performs only minor initialization. Unlike the application module, a dynamic-link
module does not interact with the Windows scheduler by means of a message
loop; instead, the dynamic-link module waits for tasks to request its services.

Application modules are the active components of Windows. They receive system­
and user-generated messages and, when necessary, call library modules for
specific data and services. Library modules exist to provide services to application
modules.

Note Some dynamic-link libraries are not completely passive; for example, some
are device drivers for interrupt-driven devices such as the keyboard, mouse, and
communication ports. However, the interaction of such libraries is carefully con­
trolled to avoid disrupting the Windows scheduler. If you require a dynamic-link
library to take an active role, you should write it according to the guidelines de­
scribed in Section 20.2.4, "Device Drivers."

20.1.4 Dynamic-Link Libraries and Stacks
Unlike a task module, a dynamic-link module does not have its own stack. Instead,
it uses the stack segment of the task that called it. This can create problems when a
library calls a function that treats the DS and SS registers as if they hold the same
address. This problem is most likely to occur in small- and medium-model
dynamic-link libraries, since pointers in these models are, by default, near point­
ers. Many C run-time library functions, for example, treat DS and SS as equal.
You must take care when you call these functions from within your dynamic-link
library.

Chapter 20 Dynamic-Link Libraries 463

Your library can also encounter difficulties when calling user-written functions.
Consider, for example, a dynamic-link library containing a function that declares a
variable within the body of the function. The address of this function will be rela­
tive to the stack of the task that called the library. If this function passes the
variable to a second function that expects a near pointer, the second function will
assume that the address it receives is relative to the dynamic-link library's data
segment rather than to the stack segment of the task that called it.

The following example shows a function in a dynamic-link library passing a vari­
able from the stack, rather than from its data segment:

void DLLFunction(WORD wMyWordl
{

char szMyString[10];

AnotherFunction(szMyString);
}

In this example, if AnotherFunction was declared as accepting a near pointer to a
character array (char NEAR*), it will interpret the address it receives as being an
offset of the data segment, rather than of the stack segment of the task that called
the library.

To ensure that your dynamic-link library does not attempt to pass stack variables
to functions that expect near pointers, you should compile your library modules by
using the CL I Aw option. This will produce warning messages that indicate when
the library is making a call to a function that treats DS and SS as equal. When you
receive a warning for a particular function, you can either remove that function
call from your library, or rewrite the library source module so that it does not pass
a stack variable to that function.

20.1.5 How Windows Locates Dynamic-Link Libraries
Windows locates a dynamic-link library by searching the same directories it
searches to find an application module. For Windows to the find the library, it
must be in one of the following directories, which Windows searches in the order
listed:

1. The current directory.

2. The Windows directory (the directory containing WIN.COM); use the Get­
WindowsDirectory function to retrieve the path of this directory.

3. The Windows system directory (the directory containing such system files as
GD I.EXE); use the GetSystemDirectory function to retrieve the path of this
directory.

464 Microsoft Windows Guide to Programming

4. Any of the directories listed in the PATH environment variable.

5. Any directory in the list of directories mapped in a network.

Implicitly loaded libraries must be named with the .DLL extension.

20.2 When to Use a Custom Dynamic-Link Library
Although dynamic-link libraries are central to the architecture of Windows, they
are not necessary components of most Windows applications. Your application
does not have to use a dynamic-link library simply to maximize memory manage­
ment in Windows. If you split your application into multiple code segments,
Windows provides a type of dynamic linking between code segments that allows
for optimal memory usage. For more information about using multiple code seg­
ments, see Chapter 16, "More Memory Management."

Among other purposes, however, dynamic-link libraries are useful for the follow­
ing tasks:

• Sharing code and resources among applications

• Easily customizing your application for different markets

• Filtering messages on a systemwide basis

• Creating device drivers

• Allowing Microsoft Dialog Editor (DLGEDIT.EXE) to support your custom­
designed controls

• Facilitating the development of a complex application

20.2.1 Sharing Objects Between Applications
By using dynamic-link libraries, applications can share certain types of objects, in­
cluding code and resources. Sharing other types of objects, including data and file
handles, is much more limited. This is because file handles and data are created in
an application's private address space. Attempts to share file handles, or to share
data (outside of dynamic data exchange, the clipboard, and the library's data seg­
ment) will lead to unpredictable results, and could be incompatible with future ver­
sions of Windows.

Chapter 20 Dynamic-Link Libraries 465

20.2.1.1 Sharing Code
If you are developing a family of applications, you may want to consider using
one or more dynamic-link libraries. This saves memory when two or more applica­
tions that use a common set of DLL functions are running at the same time. With
these libraries, multiple applications can share common routines that would be du­
plicated for each application if static-link libraries were used.

Suppose, for example, that you are creating two graphics applications, one a vec­
tor (draw) program and the other a bitmap (paint) application. A common require­
ment for both programs is the ability to import drawings created by other
applications. For these applications, you could create dynamic-link libraries for
each supported "foreign" file format that would convert it into an intermediate for­
mat. Your paint and draw applications could then convert this intermediate data
into their own formats. The applications themselves would be required to contain
only the code to convert from a single format to their own format. To support the
importing of a new file type, you would simply develop a new library module and
distribute it to the user, instead of modifying, recompiling, and distributing the ap­
plication modules themselves.

20.2.1.2 Sharing Resources
Resources are read-only data objects that are bound into an executable file by
Microsoft Windows Resource Compiler (RC). You can bind resources into an ap­
plication's .EXE file, as well as into a library's .DLL file. Applications can share a
dynamic-link library's resources; this saves memory when multiple applications
are running. Windows has built-in support for eight resource types:

• Accelerator tables

• Bitmaps

• Cursors

• Dialog box templates

• Fonts

• Icons

• Menu templates

• String tables

In addition to using the standard Windows resources, you can create custom re­
sources and install them in an executable file. For more information about re­
sources, see Chapter 16, "More Memory Management."

Any application can freely use resources that reside in a dynamic-link library.
However, each application must explicitly request each resource object it requires.

466 Microsoft Windows Guide to Programming

For example, if an application uses a menu resource called MainMenu in a library
named MENULIB.DLL, it would have to contain code similar to the following:

HINSTANCE hlibrary;
HMENU hMenu;

hlibrary = Loadlibrary("MENULIB.DLL");

hMenu = LoadMenu(hlibrary, "MainMenu"l;

20 .2 .2 Customizing an Application for Different Markets
You can use dynamic-link libraries for customizing your application for different
markets. For each market, you would create a library containing code, data, and re­
sources that would make your application more appropriate for that market. You
need not design and compile a completely separate application module for each
market. Instead, you need only create a general-purpose application that would
draw upon the market-specific information contained in the library.

Dynamic-link libraries are often used to customize applications for international
markets. The libraries can supply language- and culture-specific data for applica­
tions that are to be marketed in different countries. For example, an application
could be shipped with its application module, APPFILE.EXE, and with three
language-specific libraries: ENGLISH.DLL, FRENCH.DLL, and GERMAN.DLL.

When the product is installed, the correct language library could be selected and
used for all dialog box templates, menus, string information, and other language­
specific information.

When you use the resources of a library, you use the library's instance handle to
identify it. You obtain the library instance handle by calling the LoadLibrary
function:

HINSTANCE hlibrary;

hlibrary = Loadlibrary("FRENCH.DLL"l;

The hLibrary value could be used anywhere that an hinst value is requested for
normal resource loading. For example, if the FRENCH.DLL library contains a
menu template named MAINMENU, the application loads the library and then
accesses the menu with the following call:

HMENU hMenu;

hMenu = LoadMenu(hlibrary, "MAINMENU"l;

Chapter 20 Dynamic-Link Libraries 467

20.2.3 Windows Hooks
With Windows, applications can use hooks to filter messages on a systemwide
basis. A Windows hook is a function that receives and processes events before
they are sent to an application's message loop. For example, a function that pro­
vides special-purpose processing of keystrokes before passing them to an applica­
tion is a Windows hook function.

There are seven types of Windows hooks, which are explained more fully in the
Microsoft Windows Programmer's Reference, Volume 2.

20.2.4 Device Drivers
Standard Windows device drivers are implemented as dynamic-link libraries. Fol­
lowing are the standard Windows device drivers:

Device driver Purpose

COMM.DRY Serial communication

DISPLAY.DRY Video display

KEYBOARD.DRY Keyboard input

MOUSE.DRY Mouse input

SOUND.DRY Sound output

SYSTEM.DRY Timer

The SYSTEM.INI file identifies the drivers that are to be installed when Windows
starts.

A device driver for a nonstandard device also must be implemented by using cus­
tom dynamic-link libraries. Different applications can then access the device, and
the device driver provides the necessary synchronization to prevent conflicts be­
tween the applications.

Because interrupts can occur at any time, not just during the execution of the appli­
cation that is using the device, device interrupt-handling code must be in a fixed
code segment.

Interrupt-handling code in a device driver should not call client applications
directly. In addition, such a device driver must not call application code using the
SendMessage function, because there is no mechanism to synchronize such calls
with an application's normal message processing. Such calls can lead to race con­
ditions, data corruption, and indeterminate results.

Instead, interrupt-handling code must wait to be polled by the client applications,
in much the same way that the communication driver must be polled by its client

468 Microsoft Windows Guide to Programming

applications. Alternatively, a device driver can use the PostMessage function to
place a message in the application's message queue.

20.2.5 Custom Controls
If you have developed custom controls, you can place the code for ihe controls in a
dynamic-link library. You can then use Dialog Editor to access the library to dis­
play your custom control during a dialog box editing session. For more informa­
tion about Dialog Editor, see its online help file.

For your control library to be used by Dialog Editor and other applications, you
will need to define and export the functions described in this section.

In the following function descriptions, Class is used as a placeholder for the class
name of your control. The name of your custom control is the same name a user of
Dialog Editor specifies for the control. The control name is typically the same as
the module name of the dynamic-link library, but not necessarily.

Structure definitions, such as for CTLINFO, and constants that define the inter­
face of a custom control by using Dialog Editor, are provided in the
CUSTCNTL.H header file.

This section describes six functions that your custom-control library must export.
The library should export these functions by ordinal value, as shown in the follow­
ing list:

Exported function

WEP

C/asslnit or LibMain

Class Info
C/assStyle

Class Flags

C/assWndFn

C/assDlgFn

Ordinal value

Any number except 2 through 6

Not required

2

3
4

5
6

For example, the functions exported by the Rainbow custom-control example are
declared in the RAINBOW.DEF file as follows:

EXPORTS
WEP
RAINBOW INFO
RAINBOWSTYLE
RAINBOWFLAGS
RAINBOWWNDFN
RAINBOWDLGFN

@1 RESIDENTNAME
@2
@3
@4
@5
@6

Chapter 20 Dynamic-Link Libraries 469

For more information about the LibMain function, see Section 20.3.1.1, "Initializ­
ing a Dynamic-Link Library." For more information about the WEP function, see
Section 20.3.1.2, "Terminating a Dynamic-Link Library."

Following are descriptions of the custom-control functions:

HANDLE FAR PASCAL Classlnit(hinst, wDataSegment,
wHeapSize, lpszCmdLine)

The C/asslnit function takes care of all the initialization necessary to use the
dynamic-link control library. Your assembly-language entry point to the library
usually calls this function. In addition to saving the library instance handle by
using a global static variable, this function should register the control window
class and initialize the local heap by calling the Locallnit function, if your
assembly-language entry routine does not initialize the local heap. If you link the
custom-control dynamic-link library with LIBENTRY.OBJ instead of providing
your own assembly-language entry point, this function is named LibMain. For
more information about dynamic-link-library entry points and initialization, see
Section 20.3.1.1, "Initializing a Dynamic-Link Library."

Parameter

hinst
wDataSegment

wHeapSize

lpszCmdLine

Type

HANDLE
WORD

WORD
LPSTR

Description

Identifies the instance of the library.

Specifies the library data segment.

Specifies the default library heap size.

Specifies the initial command-line arguments.

The return value is a library-instance handle if the function registers the control
class and completes the initialization. Otherwise, the return value is NULL.

HANDLE FAR PASCAL C/asslnfo()

The C/asslnfo function provides the calling process with basic information about
the control library. Based on the information returned, the application can create
instances of the control by using one of the supported styles. For example, Dialog
Editor calls this function to query a library about the different control styles it can
display.

This function has no parameters.

The return value identifies a CTLINFO structure if the function is successful.
This information becomes the property of the caller, which must explicitly release
it by using the GlobalFree function when the structure is no longer needed. If
there was insufficient memory to allocate and define this structure, the return
value is NULL.

The CTLINFO structure defines the class name and version number. The
CTLINFO structure also contains an array of CTL TYPE structures, each of

470 Microsoft Windows Guide to Programming

which lists commonly used combinations of control styles (called variants) with a
short description and suggested size information.

Following are the structure definitions and their related values:

/* general style & size definitions */

#define CTLTYPES 12
#define CTLDESCR 22
#define CTLCLASS 20
#define CTLTITLE 94

/* control information structure */

typedef struct {

UINT wType;
UINT wWidth;
UINT wHeight;
DWORD dwStyle;
char szDescr[CTLDESCRJ;

} CTLTYPE;

typedef struct {
UINT wVersion;
UINT wCtlTypes;
char szClass[CTLCLASS];
char szTitle[CTLTITLE];
char szReserved[10J;
CTLTYPE Type[CTLTYPESJ;

} CTLINFO;

typedef CTLINFO * PCTLINFO;
typedef CTLINFO FAR *LPCTLINFO;

For full descriptions of the CTL TYPE and CTLINFO structures, see the
Microsoft Windows Programmer's Reference, Volume 3.

BOOL FAR PASCAL ClassStyle(hWnd, hCt!Style, lpfnStrTold, lpfnldToStr)

Dialog Editor calls the C/assStyle function to display a dialog box to edit the style
of the selected control. When this function is called, it should display a modal
dialog box in which the user can edit the CTLSTYLE members. The user inter­
face of this dialog box should be consistent with that of the predefined controls
that Dialog Editor supports.

Parameter

hWnd

hCtlStyle

Type

HWND
HANDLE

Description

Identifies the parent window of the dialog box.

Identifies the CTLSTYLE structure.

Parameter Type

lpfnStrTold LPFNSTRTOID

lpfnldToStr LPFNIDTOSTR

Chapter 20 Dynamic-Link Libraries 471

Description

Points to a function supplied by Dialog Editor
that converts a string to a numeric identifier.

Points to a function supplied by Dialog Editor
that converts a numeric identifier to a string.

The return value is nonzero if the CTLSTYLE structure was changed. Otherwise,
it is zero.

The CTLSTYLE structure specifies the attributes of the selected control, includ­
ing the current style flags, location, dimensions, and associated text. The
CTLSTYLE structure has the following format:

/* control style structure */

typedef struct {
UINT wX;
UINT wY;
UINT wCx;
UINT wCy;
UINT wid;
DWORD dwStyle;
char szClass[CTLCLASS];
char szTitle[CTLTITLE];

} CTLSTYLE;

typedef CTLSTYLE * PCTLSTYLE;
typedef CTLSTYLE FAR * LPCTLSTYLE;

For a full description of the CTLSTYLE structure, see the Microsoft Windows
Programmer's Reference, Volume 3.

Dialog Editor keeps track of user-specified control identifiers and their correspond­
ing symbolic-constant names, maintaining them in a header file that is included
when the application is compiled. The control-style function accesses this informa­
tion by using the functions pointed to by the lpfnStrTo/d and lpfnldToStrparame­
ters. The parameters point to two function entry points within Dialog Editor itself.
To call these functions, you should prototype them as follows:

f* ID to string translation function prototypes */

typedef WORD
typedef DWORD

(FAR PASCAL *LPFNIDTOSTR) (WORD, LPSTR, WORD);
(FAR PASCAL *LPFNSTRTOID) (LPSTR);

The Dialog Editor entry-point function pointed to by the lpfnldToStrparameter al­
lows you to translate the numeric identifier provided in the CTLSTYLE structure
into a text string containing the symbolic-constant name defined in the header file.
This text string can then be displayed in place of a numeric value in your custom
control's style dialog box. The first parameter is the control identifier. The second

472 Microsoft Windows Guide to Programming

parameter is a long pointer to a buffer that receives the string, and the third pa­
rameter is the maximum length of that buffer. The function pointed to by
lpfnldToStr returns the number of characters copied to the string. If the function re­
turns zero, it failed.

The function pointed to by lpfnStrTold works in reverse, translating a string to a
numeric identifier. The function accepts the string containing a symbolic-constant
name and returns the corresponding control identifier. If the low-order word of the
return value is nonzero, the high-order word contains the control identifier, which
you can use to update the wld member of the CTLSTYLE structure. If the low­
order word of the return value is zero, the constant name was undefined and the
C/assStyle function should generate an error message.

Typically, whenever C/assStyle is called it will call the function pointed to by
lpfnldToStr, passing it the value contained in the CTLSTYLE member wld. If the
function pointed to by lpfnldToStr returns a value greater than zero, ClassStyle dis­
plays the resulting string in an edit control so the user can change it. Otherwise, it
displays the numeric value of the control identifier. If the user changes the edit
field, C/assStyle calls the function pointed to by lpfnStrTold to verify that the
string contains a valid symbolic-constant name and replaces the CTLSTYLE
member wld with the high-order word of the return value.

BOOL FAR PASCAL ClassDigFn(hDlg, wMessage, wParam, !Param)

The ClassDigFn function is the dialog box procedure responsible for processing
all the messages sent to the style dialog box. The style dialog box is invoked when
the C/assStyle function is called. The C/assDigFn function should enable the user
to edit selected portions of the CTLSTYLE structure passed to the C lassStyle
function.

Parameter

hDlg

wMessage

wParam

lParam

Type

HWND

WORD

WORD

LONG

Description

Identifies the window that will receive the message.

Specifies the message.

Specifies 16 bits of additional message-dependent infor­
mation.

Specifies 32 bits of additional message-dependent infor­
mation.

The return value is nonzero if the function is successful. Otherwise, it is zero.

WORD FAR PASCAL ClassFlags(dwFlags, lpStyle, wMaxString)

The C/assFiags function translates the specified class style flags into a correspond­
ing text string for output to a resource-definition (.RC) file. This function should
not interpret the flags contained in the high word, since these are managed by

Chapter 20 Dynamic-Link Libraries 473

Dialog Editor. Note that you should use the same control style definitions that are
specified in your control header file.

Parameter

dwFlags

lpStyle

wMaxString

Type

DWORD
LPSTR
WORD

Description

Specifies the current control flags.

Points to a buffer that will receive the style string.

Specifies the maximum length, in bytes, of the style
string.

The return value is the number of characters copied to the buffer identified by the
lpStyle parameter, if the function is successful. Otherwise, the return value is zero.

LONG FAR PASCAL ClassWndFn(hWnd, wMessage, wParam, lParam)

The ClassWndFn function is the window procedure responsible for processing all
the messages sent to the control.

Parameter

hWnd

wMessage

wParam

/Par am

Type

HWND
WORD
WORD

LONG

Description

Identifies the window that will receive the message.

Specifies the message.

Specifies 16 bits of additional message-dependent infor­
mation.

Specifies 32 bits of additional message-dependent infor­
mation.

The return value indicates the result of the message processing and depends on the
message sent.

20.2.6 Project Management
If you are developing a large or complex application, dynamic-link libraries can
make your task easier. By splitting an application into clearly defined subsystems,
you can logically divide work between different groups of developers. Each sub­
system can then be developed as a separate dynamic-link library.

One of the challenges in such a project is defining the interface between each two
subsystems. Since dynamic-link code can freely call functions in other dynamic­
link modules, Windows imposes no constraints on subsystem definitions. In addi­
tion, Windows manages the movement and discarding of code segments to
minimize the problems that memory limitations often cause for MS-DOS develop­
ment projects. To take advantage of this feature, you should define code segments
as MOVEABLE, or MOVEABLE and DISCARDABLE, in the module­
definition (.DEF) file.

474 Microsoft Windows Guide to Programming

One benefit of using multiple dynamic-link libraries is that, because each library
has its own data segment, data corruption between subsystems is minimized. This
type of encapsulation is useful in developing large applications.

There is another type of encapsulation, however, that might cause problems in
large projects that require multiple applications to run simultaneously. Because
each application is treated as if it has its own private address space, applications
can move global data to other applications only by using dynamic data exchange
(DDE). For more information on using DDE, see Chapter 22, "Dynamic Data
Exchange."

20.3 Creating a Dynamic-Link Library
This section provides sample code that you can use as a basis for creating a
dynamic-link library. To create the library, you must have at least three files:

• AC-language source file

• A module-definition (.DEF) file

• Amakefile

Once you have created these files, you run the Microsoft Program Maintenance
Utility (NMAKE) to compile and link the source file.

20.3.1 Creating the C-Language Source File
Like any other type of C application, dynamic-link libraries can contain multiple
functions. Each function that other applications or libraries will use must be de­
clared as FAR and must be listed in the EXPORTS section of the library's
module-definition (.DEF) file. The module-definition file for this sample library
is discussed further in Section 20.3.2, "Creating the Module-Definition File."

/* MINDLL.C -- Sample DLL code to demonstrate minimum code *f
/* needed to create a dynamic-link library. */

#include <windows.h>

int FAR PASCAL LibMain(HINSTANCE hinst,
WORD wDataSeg,
WORD cbHeapSize,
LPSTR lpszCmdLine)

{

f* Perform DLL initialization. *f

if (cbHeapSize != 0)
UnlockData(0);

return 1;

Chapter 20 Dynamic-Link Libraries 475

/* if DLL data seg is MOVEABLE */

/* initialization successful

VOID FAR PASCAL MinRoutine(int iParaml,
LPSTR lpszParam2)

char cLocalVariable; /* local variables on stack

I* MinRoutine code goes here. */

}

int FAR PASCAL WEP(int nParameter)
{

}

if (nParameter == WEP_SYSTEM_EXIT) {

/* System shutdown is in progress. Respond accordingly. */

return 1;
}

else {

}

if (nParameter WEP _FREE_DLL) {

}

/*
* DLL usage count is zero. Every application that had
* loaded the DLL has freed it.
*I

return 1;

else {

/*Value is undefined. Ignore it. */

return 1;
}

Source code for a dynamic-link library uses the WINDOWS.H header file in the
same way application source code does. WINDOWS.H contains data-type defini­
tions, application programming interface (API) entry-point definitions, and other
useful parameter information.

The PASCAL declaration defines the parameter-passing and stack-cleanup con­
vention for this function. This declaration is not required for dynamic-link func­
tions, but its use results in slightly smaller and faster code and, therefore, is
recommended. You cannot use the Pascal calling convention for functions with a

476 Microsoft Windows Guide to Programming

variable number of parameters, or for calling C run-time functions. In such cases,
the CDECL calling convention is required.

There are two parameters shown on the MinRoutine parameter list, but dynamic­
link functions can have as few or as many parameters as are required. The only re­
quirement is that pointers passed from outside the dynamic-link module must be
long pointers.

20.3.1.1 Initializing a Dynamic-Link Library
You must include an automatic initialization function in your dynamic-link
library. The initialization function performs one-time startup processing. Windows
calls the function once, when the library is initially loaded. When subsequent appli­
cations load the library to use it, Windows does not call the initialization function;
instead, it increments the library's usage count.

Windows maintains a library in memory as long as its usage count is greater than
zero. If the count becomes zero, it is removed from memory. When an application
reloads the library into memory, Windows will call the initialization function
again.

Following are some typical tasks a library's initialization function might perform:

• Registering window classes for window procedures contained in the library

• Initializing the library's local heap

• Setting initial values for the library's global variables

This initialization function is required in order to allocate the library's local heap.
The local heap must be created before the library calls any local heap functions,
such as LocalAlloc. While Windows automatically initializes the local heap for
Windows applications, dynamic-link libraries must explicitly initialize the local
heap by calling the Locallnit function.

In addition, you should include the following declaration in the initialization func­
tion:

extrn acrtused:abs

This ensures that, if the library does not call any C run-time functions, it will be
linked with the dynamic-link startup code in the Windows dynamic-link C run­
time libraries (xDLLCyW.LIB).

Initialization information is passed in hardware registers to a library when it is
loaded. Since hardware registers are not accessible from the C language, you must
provide an assembly-language routine to obtain these values. The location and
value of the heap information are as follows:

Register

DI

DS

ex
ES:SI

Chapter 20 Dynamic-Link Libraries 477

Value

Identifies the library's instance handle.

Identifies the library's data segment, if any.

Contains the heap size specified in the library's .DEF file.

Points to the command line (in the lpCmdLine member of the Load­
Module function's lpvParameterBlock parameter).

The Microsoft Windows 3.1 Software Development Kit (SDK) includes an
assembly-language file, LIBENTRY.ASM, that you can use to create an initializa­
tion function for your dynamic-link library. The LibEntry function in this file is de­
fined as follows:

;

LIBENTRY .ASM

Windows dynamic-link library entry routine

This module generates a code segment called INIT_TEXT.
It initializes the local heap if one exists and then calls
the LibMain function, which should have the following form:

BOOL FAR
WORD
WORD
DWORD

PASCAL LibMain(HANDLE hinst,
wDataSeg,
cbHeap,
ignore); /* Always NULL - ignore

The result of the call to LibMain is returned to Windows.
The C function should return TRUE if it completes initialization
successfully; it should return FALSE if some error occurs.

Note - The last parameter to LibMain is included for compatibility
reasons. Applications that need to modify this file and remove
the parameter from LibMain can do so by simply removing the two
instructions marked with "****" in the following code.

;

include cmacros.inc

externFP <LibMain> ; the C routine to be called

createSeg INIT_TEXT, INIT_TEXT, BYTE, PUBLIC, CODE
sBegin INIT_TEXT
assumes CS,INIT_TEXT

478 Microsoft Windows Guide to Programming

?PLM=0 'C'naming
externA < acrtused> ensures that Win DLL startup code

is linked

?PLM=l 'PASCAL' namfng
externFP <Localinit> Windows heap initialization routine

cProc LibEntry, <PUBLIC,FAR> ; entry point into DLL

include CONVDLL.INC

cBegin

cal le:

error:

exit:

cEnd

push di handle of the module instance
push ds library data segment
push ex heap size
push es always NULL; may remove ****
push Si always NULL; may remove ****
; If we have some heap, then initialize it.
jcxz callc ; Jump if no heap specified

Call the Windows function Localinit to set up the heap.
Localinit((LPSTR)start, WORD cbHeap);

xor
cCall
or
jz

ax,ax
Localinit <ds, ax, ex>
ax,ax Did it do it ok ?
error ; Quit if it failed

; Invoke the C routine to do any special initialization.

call LibMain
jmp short exit

pop
pop
pop
pop
pop

si
es
ex
ds
di

Invoke the 'C' routine (result in AX)
LibMain is responsible for stack cleanup

Clean up stack on a Localinit error

sEnd INIT_TEXT

end LibEntry

You can find an assembled copy of this function in the file LIBENTRY.OBJ. You
can use the LibEntry function to create a C-language initialization function. To use

Chapter 20 Dynamic-Link Libraries 479

the LibEntry function unchanged, just add its filename, LIBENTRY.OBJ, to your
link command line as follows:

link mindll.obj libentry.obj, mindll.dll,mindll.map /map,
mdl l cew. lib l ibw. l ib/noe/nod,mi ndll .def

LibEntry calls a FAR PASCAL function named LibMain. Your dynamic-link
library must contain the LibMain function if you link the library with the file
LIBENTRY.OBJ.

Following is a sample LibMain function:

int FAR PASCAL LibMain(HINSTANCE hinst,
WORD wDataSeg,

{

}

WORD cbHeapSize,
LPSTR lpszCmdLine)

f* Perform DLL initialization. */

if (cbHeapSize != 0)
UnlockData(0);

/* if DLL data seg is MOVEABLE */

return 1; /* successful installation; otherwise, return 0 */

LibMain takes four parameters: hinst, wDataSeg, cbHeapSize, and lpszCmdLine.
The first parameter, hinst, is the instance handle of the dynamic-link library. The
wDataSeg parameter is the value of the data-segment (DS) register. The cbHeap­
Size parameter is the size of the heap defined in the module-definition file.
LibEntry uses this value to initialize the local heap. The lpszCmdLine parameter
contains command-line information and is rarely used by dynamic-link libraries.

If you do not want the dynamic-link data segment to be locked, the call to Unlock­
Data is necessary, because the Locallnit function leaves the data segment locked.
UnlockData restores the data segment to its normal unlocked state.

If the dynamic-link library's initialization is successful, the library returns a value
of 1. If the initialization is not successful, the library returns a value of 0 and is un­
loaded from system memory.

Note If you are writing the dynamic-link library entirely in assembly language,
you must reserve the first 16 bytes of the dynamic-link data segment and initialize
the area with zeros. If the dynamic-link module contains any C-language code,
however, the C Optimizing Compiler automatically reserves and initializes this
area.

480 Microsoft Windows Guide to Programming

20.3.1.2 Terminating a Dynamic-Link Library
Windows dynamic-link libraries typically include a termination function. A termi­
nation function, sometimes called an exit procedure, performs cleanup operations
for a library before it is unloaded.

Libraries that contain window procedures that have been registered (by using the
RegisterClass function) are not required to remove the class registration (by using
the UnRegisterCiass function); Windows does this automatically when the library
terminates.

You should define the termination function as shown in the following example. In
this example, a single argument is passed, nParameter, which indicates whether
all of Windows is shutting down (nParameter==WEP _SYSTEM_EXIT), or just
the individual library (WEP _FREE_DLL). This function always returns 1 to indi­
cate success.

int FAR PASCAL WEP(int nParameter)
{

}

if (nParameter == WEP_SYSTEM_EXIT) {

/* System shutdown is in progress. Respond accordingly. *I

return 1;
}

else {
if (nParameter WEP _FREE_OLL) {

}

I*
* The DLL use count is zero. Every application that
* had loaded the DLL has freed it.
*/

return 1;

else {

/* Value is undefined. Ignore it. */

return 1;
}

The name of the termination function must be WEP, and it must be included in
the EXPORTS section of the dynamic-link library's module-definition file. It is
strongly recommended, for performance reasons, that the ordinal entry value and
the RESIDENTNAME keyword be used, to minimize the time used to find
this function. Since using the RESIDENTNAME keyword causes the export

Chapter 20 Dynamic-Link Libraries 481

information for this function to stay in memory at all times, it is not recommended
for use with other exported functions.

20.3.2 Creating the Module-Definition File
This section contains the module-definition file for a minimum dynamic-link
library. This file provides input to LINK to define various attributes of the library.
Note that there is no ST ACKSIZE statement, because dynamic-link libraries
make use of the calling application's stack.

LIBRARY MinDLL

DESCRIPTION 'MinDLL -- Minimum Code Required for DLL.'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

CODE MOVEABLE DISCARDABLE

DATA MOVEABLE SINGLE

HEAPSIZE 0

EXPORTS
MinRoutine @1
WEP @2 RESIDENTNAME

The LIBRARY keyword identifies this module as a dynamic-link library. The
name of the library, MinDLL, follows this keyword and must be the same as the
name of the library's .DLL file.

The EXETYPE WINDOWS statement is required for every Windows applica­
tion and dynamic-link library.

The DESCRIPTION statement takes a string that can be up to 128 characters in
length. It is typically used to hold module description information and perhaps a
copyright notice. This statement is optional in a dynamic-link library.

The STUB statement defines an MS-DOS 2.x application that is copied into the
body of the library's .DLL file. The purpose of the stub is to provide information
to users who attempt to run Windows modules from the MS-DOS command
prompt. If you do not provide a STUB statement, the linker inserts one automat­
ically.

The CODE statement defines the default memory attributes of the library's code
segments. Movable and discardable code segments offer the most freedom to the
Windows memory manager, which ensures that the proper code segment is

482 Microsoft Windows Guide to Programming

available when it is needed. You can also use the SEGMENTS statement, which
is not included in this example, to define the attributes for individual code seg­
ments.

The DATA statement is required. It defines memory attributes of the library's data
segment. The MOVEABLE keyword allows the memory manager to move the
segment if needed. The SINGLE keyword is required for dynamic-link libraries,
because they always have a single data segment, regardless of the number of appli­
cations that access it.

The HEAPSIZE statement defines the initial (and minimum) size of a library's
local heap. Libraries that allocate local memory (by using the LocalAlloc func­
tion) must initialize the heap at library startup time. The heap size is passed to the
library's LibEntry routine, which, in turn, can call the Locallnit function to initial­
ize the library's local heap, using that heap size. For more information, see Section
20.3.1.1, "Initializing a Dynamic-Link Library." In the example, the heap size is
set to zero because the local heap is not used.

The EXPORTS statement defines the functions that will be used as entry points
from applications or from other dynamic-link libraries. Windows uses this infor­
mation to establish the proper data segment to be used by each library function.
Each function should have a unique ordinal entry value, which, in this example, is
specified after the @ as the value 1. The ordinal entry value is an optimization that
allows the dynamic-link mechanism to operate faster and to use less memory.

20.3.3 Creating the Makefile
The NMAKE utility controls the creation of executable files to ensure that only
the minimum required processing is performed. Four utilities are used in creating a
dynamic-link library:

• Microsoft C Optimizing Compiler (CL)

• Microsoft Segmented Executable Linker (LINK)

• Microsoft Import Library Manager (IMPLIB)

• Microsoft Windows Resource Compiler (RC)

A fifth (optional) utility, the Microsoft Symbol File Generator (MAPSYM), is also
used but only with the debugging version of Windows.

The makefile for creating the sample library is as follows.

mindll .obj: mindll .c
cl /ASw le /Gsw /Os /W3 mindll .c

Chapter 20 Dynamic-Link Libraries 483

mi ndll . dll: mi ndl l . obj
link mindll .obj libentry.obj, mindll .dll ,mindll .map/map, \

mdl l cew. lib l ibw. l ib/noe/nod,mindl l .def
mapsym mindll.map
implib mindll.lib mindll.def
re mindll .dll

For more information about NMAKE see the CL documentation.

20.3.3.1 Compiler Options
CL uses five sets of options, which are briefly described following. For more infor­
mation, see the CL documentation. The following example shows the options used
to compile the sample dynamic-link library:

cl /ASw le /Gsw /Os /W3 mindll.c

The I ASw option controls the default addressing to be created by the compiler.
The S option specifies the small model, which uses short data pointers and near
code pointers. Thew option tells the compiler that the stack is not part of the de­
fault data segment (that is, SS != DS). This causes the compiler to generate an
error message when it detects the improper creation of a near pointer to an auto­
matic variable.

The /c option requests compile-only operation. This is required if your dynamic­
link library has multiple C-language source-code modules.

The /Gsw option consists of two parts. The s option disables normal CL stack
checking. This is required because the stack checking is incompatible with
Windows. Thew option requests that Windows prolog and epilog code be at­
tached to every FAR function. This code is used for two purposes: to assist in
establishing the correct data segment, and to allow the memory manager to move
code segments at any time during system operation.

The /Os option tells CL to optimize for size rather than for speed. This option is
not required, but is recommended.

The /W3 option sets the warning level to 3 (the highest warning level is 4). It is a
good idea to use this option during the development process to allow CL to per­
form various checks on data types and function prototypes, among others. This op­
tion is not required, but it is recommended.

484 Microsoft Windows Guide to Programming

20.3.3.2 Linker Command Line
The link command takes five arguments, each separated by a comma:

link mi ndl l. obj l i bentry. obj, mi ndl l. dll, mi ndl l. map/map,
mdllcew.lib libw.lib/noe/nod,mindll .def

The first argument lists the object (.OBJ) files that are to be used to create the
dynamic-link library. If you use the standard dynamic-link initialization function,
include the LIBENTRY.OBJ file as an object.

The second argument specifies the name of the final executable file. The linker
uses the .DLL extension for dynamic-link libraries. Implicitly loaded libraries
must be named with the .DLL extension. An implicitly loaded library is imported
in the application's module-definition file rather than explicitly loaded by the
LoadLibrary function. For more information about loading a dynamic-link
library, see Section 20.4, "Application Access to Dynamic-Link Code."

The third argument is the name of the .MAP file, which is created when you
specify the /map option. This file contains symbol information for the global varia­
bles and functions. It is used as input to MAPSYM, described in the following sec­
tion.

The fourth argument lists the import libraries and the static-link libraries required
to create the dynamic-link library. There are two listed in this example:
MDLLCEW.LIB and LIBW.LIB. MDLLCEW.LIB is a C run-time library that
contains some dynamic-link startup code and C run-time library functions and
math support. LIBW.LIB contains import information for the Windows API func­
tions. The fourth argument also includes two linker options, /nod and /noe. The
/nod option disables default library searches based on memory-model selection. If
you use C run-time functions, you must also include the appropriate C run-time
library in this library list. The /noe option disables extended library searches. This
inhibits the error messages created by the linker when a symbol is identified in
multiple libraries.

The fifth argument is the name of the module-definition file, described in Section
20.3.2, "Creating the Module-Definition File."

20.3.3.3 Symbol File Generator: MAPSYM
MAPSYM reads the .MAP file created by the linker and creates a symbol file
having the .SYM extension. The symbol file is used by the debugging version of
Windows to create stack trace information when a fatal error occurs.

Chapter 20 Dynamic-Link Libraries 485

20.3.3.4 Import Library Manager: IMPLIB
IMPLIB creates an import library with the .LIB extension from a dynamic-link
library's module-definition file. An import library is listed on the linker command
line of applications that will use the functions in the library. Because of this, refer­
ences to library functions in an application can be properly resolved.

20.3.3.5 Resource Compiler: RC
All dynamic-link libraries must be compiled by using RC, to mark them as com­
patible with Windows version 3.1. You can compile the library by using the RC
option /p. This marks the library as private to the calling application and means
that no other applications should attempt to use the library.

20.4 Application Access to Dynamic-Link Code
This section describes the three steps you must follow for an application to access
a function in a dynamic-link library:

1. Create a prototype for the library function.

2. Call the library function.

3. Import the library function.

20.4.1 Creating a Prototype for the Library Function
A prototype statement should be used to define each library function in each appli­
cation source file. The prototype statement for the sample function is as follows:

VOID FAR PASCAL MinRoutine (int, LPSTR);

The purpose of a prototype statement is to define a function's parameters and re­
turn value to the compiler. The compiler is then able to create the proper code for
the library function. In addition, the compiler is able to issue warning messages
when a function's prototype differs from its usage and when the /W2 compiler op­
tion has been selected. It is strongly recommended that you create prototypes for
application functions as well, to minimize the problems that can occur from errors
of this type. For example, a warning message would be generated if MinRoutine,
as defined previously, were used with the wrong number of parameters, as in the
following example:

MinRoutine (5);

486 Microsoft Windows Guide to Programming

Calling the Library Function The call to a dynamic-link library function is indis­
tinguishable from a call to a static-link library function, or to other functions in the
application itself. Once you have made the proper prototype definition, the ex­
ported functions can be called by using normal C syntax.

20.4.2 importing ihe Library Funciion
There are three ways an application can import dynamic-link library functions:

• Import implicitly at link time

• Import explicitly at link time

• Import dynamically at run time

In each case, dynamic-link information contained in the application identifies the
name of the library and the function name or function's ordinal entry value. The
implicit import is the most commonly used method.

20.4.2.1 Implicit Link-Time Import
An implicit import is performed by listing the import library for the dynamic-link
library on the linker command line for an application. You create the import
library by using IMPLIB, as discussed in Section 20.3.3, "Creating the Makefile."

The SDK contains a set of import libraries to allow linking to Windows DLLs.
The following table lists these files and the purpose of each.

Filename

LIEW.LIB

SDLLCEW.LIB

MDLLCEW.LIB

CDLLCEW.LIB

LDLLCEW.LIB

Purpose

Import information for Windows dynamic-link libraries.

Startup code for Windows dynamic-link libraries, C run-time
library functions, and emulated math packages for small-model
dynamic-link libraries.

Startup code for Wmdows dynamic-link libraries, C run-time
library functions, and emulated math packages for medium­
model dynamic-link libraries.

Startup code for Windows dynamic-link libraries, C run-time
library functions, and emulated math packages for compact­
model dynamic-link libraries.

Startup code for Wmdows dynamic-link libraries, C run-time
library functions, and emulated math packages for large-model
dynamic-link libraries.

Filename

SLIBCEW.LIB

MLIBCEW.LIB

CLIBCEW.LIB

LLIBCEW.LIB

WIN87EM.LIB

Chapter 20 Dynamic-Link Libraries 487

Purpose

Startup code for Windows applications, C run-time library func­
tions, and emulated math packages for small-model applications.

Startup code for Windows applications, C run-time library func­
tions, and emulated math packages for medium-model applica­
tions.

Startup code for Windows applications, C run-time library func­
tions, and emulated math packages for compact-model applica­
tions.

Startup code for Windows applications, C run-time library func­
tions, and emulated math packages for large-model applications.

Import information for the Windows floating-point dynamic-link
library.

20.4.2.2 Explicit Link-Time Import
Like an implicit import, an explicit import is performed at link time. You perform
an explicit import by listing each function in the IMPORTS section of the applica­
tion's module-definition file. In the following example, there are three parts: the
imported function name (MinRoutine), the dynamic-link library name (MinDLL),
and the ordinal entry value of the function in the library (1).

IMPORTS
MinRoutine=MinDLL.l

Due to performance and size considerations, it is strongly advised that application
developers define ordinal entry values for all exported dynamic-link library func­
tions. If you do not assign an ordinal entry value, however, you perform the expli­
cit import as in the following example:

IMPORTS
MinDLL.MinRoutine

20.4.2.3 Dynamic Run-Time Import
For dynamic run-time imports, the application must first load the library and expli­
citly ask for the address of the necessary function. After this is done, the applica­
tion can call the function. In the following example, an application links
dynamically with the Createlnfo function in the Windows library INFO.DLL.

HINSTANCE hlibrary;
FARPROC l pFunc;

hlibrary = Loadlibrary("INFO.DLL");
if (hlibrary >= 32) {

lpFunc = GetProcAddress(hlibrary, "Createinfo");

488 Microsoft Windows Guide to Programming

if (lpFunc != (FARPROC) NULL)
(*lpFunc) ((LPSTR) Buffer, 512);

FreeLibrary(hLibrary);
}

In this exa...tnple, the LoadLibrary function loads the necessa..~; \X/indo\vs libra..ry
and returns a module handle of it. The GetProcAddress function retrieves the
address of the Createlnfo function by using the function's name, Createlnfo. The
function address can then be used to call the function. The following statement is
an indirect function call that passes two arguments (Buffer and the integer 512) to
the function:

*(lpFunc) ((LPSTR) Buffer, 512);

Finally, the FreeLibrary function decrements (decreases by 1) the library's usage
count. When the usage count becomes zero (that is, when no application is using
the library), the library is removed from memory.

You could gain slightly better performance if the Createlnfo function had an ordi­
nal value assigned in the library's module-definition file. Following is an example
of such a .DEF file entry:

EXPORTS
Createinfo @27

This statement defines the ordinal value of Createlnfo as 27. Using this value in­
volves changing the call to the GetProcAddress function to the following:

GetProcAddress(hLibrary, MAKEINTRESOURCE(27));

20.5 Rules for Windows Object Ownership
Windows memory objects can be in global or local memory. Windows objects in­
clude the following:

• Bitmaps

• Metafiles

• Application code segments

• Resources (except fonts)

Windows treats memory objects as follows:

• An application that allocates memory owns that memory.

Chapter 20 Dynamic-Link Libraries 489

• When a dynamic-link library allocates a global object, the application that
called the library owns that object.

• When an application or dynamic-link library terminates, Windows purges the
system of all objects and window classes owned by that application or library.

• Data sharing should be performed by using the clipboard or dynamic data ex­
change (DDE), although you can also share data by using the data segment of a
dynamic-link library. When using the clipboard or DDE, Windows copies the
data into the private address space of the receiving application.

• GDI objects (pens, brushes, device contexts, and regions) are not typical
Windows objects in that they are not purged when the owning application termi­
nates. For this reason, an application or dynamic-link library must explicitly de­
stroy any GDI objects it created before terminating.

20.6 Sample Dynamic-Link Library: Select
This sample dynamic-link library contains functions that you can use to carry out
selections by using the mouse. The functions are based on the graphics selection
method described in Chapter 6, "Cursors." These functions provide two kinds of
selection feedback: a box that shows the outline of the selection, and a block that
shows the entire selection inverted. The library exports the following functions:

Function

StartSelection

UpdateSelection

EndSelection

ClearSelection

Action

Starts the selection and initializes the selection rectangle. When
selecting with the mouse, you call this function when you receive
a WM_LBUTIONDOWN message.

Updates the selection box or block. When selecting with the
mouse, you call this function when you receive a
WM_MOUSEMOVE message.

Ends the selection and fills in the selection rectangle with the final
selection dimensions. When selecting with the mouse, you call
this function when you receive a WM_LBUTTONUP message.

Clears the selection box or block from the screen and empties the
selection rectangle.

The selection rectangle is a RECT structure that the application supplies and that
the library functions fill in. The coordinates given in the rectangle are client coordi­
nates.

To create this library you need to create several files:

File

SELECT.C

SELECT.DEF

Contents

The C-language source for selection functions

The module-definition file for the Select library

490 Microsoft Windows Guide to Programming

File Contents

SELECT.H

SELECT

SELECT.LIB

The header file for the Select library

The makefile for the Select library

The import library for the Select library

The Select library does not have an initialization file because the functions do not
use a local heap and because no other initialization is necessary.

20.6.1 Creating the Functions
You can create the library functions by following the description given in Chapter
6, "Cursors." Simply copy the statements used to make the graphics selection into
the corresponding functions. Also, to make the selection functions more flexible,
add the additional block capability.

After you change it, the StartSelection function should look like this:

void FAR PASCAL StartSelectionChWnd, ptCurrent, lpSelectRect, fFlags)
HWND hWnd;
POINT ptCurrent;
LPRECT lpSelectRect;
int fFlags;
{

}

if ClpSelectRect->left != lpSelectRect->right I I
lpSelectRect->top != lpSelectRect->bottom)

ClearSelection(hWnd, lpSelectRect, fFlags);

lpSelectRect->right = ptCurrent.x;
lpSelectRect->bottom = ptCurrent.y;

f* If you are extending the box, invert the current rectangle. */

if ((fFlags & SL_SPECIAL) == SL_EXTEND)
ClearSelectionChWnd, lpSelectRect, fFlags);

/* Otherwise, set origin to current location. */

else {
lpSelectRect->left = ptCurrent.x;
lpSelectRect->top = ptCurrent.y;

}

SetCaptureChWnd);

This function receives four parameters: a window handle, hWnd; the current
mouse location, ptCurrent, a long pointer to the selection rectangle, lpSelectRect,
and the selection flags,fF/ags.

Chapter 20 Dynamic-Link Libraries 491

The first step is to clear the selection if the selection rectangle is not empty. The
IsRectEmpty function returns TRUE ifthe rectangle is empty. The StartSelection
function clears the selection by calling the ClearSelection function, which is also
in this library.

The next step is to initialize the selection rectangle. The StartSelection function ex­
tends the selection (leaving the upper-left comer of the selection unchanged), if
the SS_EXTEND bit in the/Flags argument is set. Otherwise, it sets the upper-left
and lower-right comers of the selection rectangle to the current mouse location.
The SetCapture function directs all subsequent mouse input to the window even
if the cursor moves outside of the window. This is to ensure that the selection
process continues uninterrupted. To call this function, an application would use
the following statements:

case WM_LBUTTONDOWN:

fTrack = TRUE; /* User has pressed the left button. */
StartSelection(hWnd, MAKEPOINT(lParam), &Rect,

CwParam & MK_SHIFT) ? SL_EXTEND I Shape : Shape);
break;

After you change it, the UpdateSelection function should look like this:

void FAR PASCAL UpdateSelection(hWnd, ptCurrent, lpSelectRect, fFlags)
HWND hWnd;
POINT ptCurrent;
LPRECT lpSelectRect;
int fFlags;
{

HOC hDC;
short OldROP;

hDC = GetDC(hWnd);

switch (fFlags & SL_TYPE) {

case SL_BOX:

OldROP = SetROP2(hDC, R2_NOTXORPEN);
MoveTo(hDC, lpSelectRect->left, lpSelectRect->top);
LineTo(hDC, lpSelectRect->right, lpSelectRect->top);
LineTo(hDC, lpSelectRect->right, lpSelectRect->bottom);
LineTo(hDC, lpSelectRect->left, lpSelectRect->bottom);
LineTo(hDC, lpSelectRect->left, lpSelectRect->top);
LineTo(hDC, ptCurrent.x, lpSelectRect->top);
LineTo(hDC, ptCurrent.x, ptCurrent.y);
LineTo(hDC, lpSelectRect->left, ptCurrent.y);
LineTo(hDC, lpSelectRect->left, lpSelectRect->top);
SetROP2(hDC, OldROP);
break;

492 Microsoft Windows Guide to Programming

}

case SL_BLOCK:

PatBlt(hDC,
lpSelectRect->left,
lpSelectRect->bottom,
lpSelectRect->right - lpSelectRect->left,
ptCurrent.y - lpSelectRect->bottom,
DSTINVERTl;

PatBlt(hDC,
lpSelectRect->right,
lpSelectRect->top,
ptCurrent.x - lpSelectRect->right,
ptCurrent.y - lpSelectRect->top,
DSTINVERT);

break;

lpSelectRect->right = ptCurrent.x;
lpSelectRect->bottom = ptCurrent.y;
ReleaseDC(hWnd, hDC);

As the user makes the selection, the UpdateSelection function provides feedback
about the user's progress. For the box selection, the function first clears the current
box by drawing over it, and then draws the new box. This requires eight calls to
the LineTo function.

To update a block selection, the UpdateSelection function inverts the rectangle by
using the PatBlt function. To avoid flicker while the user selects, UpdateSelection
inverts only the portions of the rectangle that are different from the previous selec­
tion rectangle. This means the function inverts two separate pieces of the screen. It
"assumes" that the only area that needs inverting is the area between the previous
and current mouse locations. The following figure shows the typical coordinates
for describing the areas being inverted:

Chapter 20 Dynamic-Link Libraries 493

1

x
OriginB

Rectangle HeightB

I Origin A B

_j HeightA Rectangle

!
A

..... Width A --1- Width B -I
y

To set the origin of the area to be inverted, the first PatBlt call inverts the leftmost
rectangle by using lpSelectRect->left (the location of the x-coordinate of the
mouse when its button was first pressed) and lpSelectRect->bottom (the most re­
cent update of they-coordinate location). The width of the first area is determined
by subtracting lpSelectRect->left from lpSelectRect->right (the most recent update
of the x-coordinate location). The height of this area is determined by subtracting
lpSelectRect->bottom from ptCurrent.y (the current y-coordinate location).

The second PatBlt call inverts the rightmost rectangle by using lpSelectRect->
right and lpSelectRect->top to set the origin of the area to be inverted. The width
of this second area is determined by subtracting lpSelectRect->bottom from
ptCurrent.x. The height of the area is determined by subtracting lpSelectRect->top
from ptCurrent. y.

When the selection updating is complete, the values lpSelectRect->right and
lpSelectRect->bottom are updated by assigning them the current values contained
in ptCurrent.

To update a box selection, the application should call the UpdateSelection function
as follows:

case WM_MOUSEMOVE:

if (fTrack)
UpdateSelection(hWnd, MAKEPOINT(lParam), &Rect, Shape);

break;

494 Microsoft Windows Guide to Programming

After you change it, the EndSelection function should look like this:

void FAR PASCAL EndSelection(ptCurrent, lpSelectRect)
POINT ptCurrent;
LPRECT lpSelectRect;
{

}

lpSelectRect->right
lpSelectRect->bottom = ptCurrent.y;
ReleaseCapture();

The EndSelection function saves the current mouse position in the selection rect­
angle. The ReleaseCapture function is required because a corresponding Set­
Capture function was called. In general, you should release the mouse
immediately after mouse capture is no longer needed.

Finally, when the user releases the left mouse button, the application should call
the EndSelection function to save the final point:

case WM_LBUTTONUP:

if (fTrack)
EndSelection(MAKEPOINT(lParam), &Rect);

fTrack = FALSE;
break;

After you change it, the ClearSelection function should look like this:

void FAR PASCAL ClearSelection(hWnd, lpSelectRect, fFlags)
HWND hWnd;
LPRECT lpSelectRect;
int fFlags;
{

HOC hDC;
short OldROP;

hDC = GetDC(hWnd);
switch (fFlags & SL_TYPE) {

case SL_BOX:

OldROP = SetROP2(hDC, R2_NOTXORPEN);
MoveTo(hDC, lpSelectRect->left, lpSelectRect->top);
LineTo(hDC, lpSelectRect->right, lpSelectRect->top);
LineTo(hDC, lpSelectRect->right, lpSelectRect->bottom);
LineTo(hDC, lpSelectRect->left, lpSelectRect->bottom);
LineTo(hDC, lpSelectRect->left, lpSelectRect->top);
SetROP2(hDC, OldROP);
break;

case SL_BLOCK:

PatBlt(hDC,
lpSelectRect->left,
lpSelectRect->top,

Chapter 20 Dynamic-Link Libraries 495

lpSelectRect->right - lpSelectRect->left,
lpSelectRect->bottom - lpSelectRect->top,
DSTINVERT);

break;
}

ReleaseDC(hWnd, hDC);

Clearing a box selection means removing it from the screen. You can remove the
outline by drawing over it with the XOR pen. Clearing a block selection means re­
storing the inverted screen to its previous state. You can restore the inverted screen
by inverting the entire selection.

20.6.2 Creating the Initialization Function
Select uses the standard LibEntry function contained in the LIBENTRY.OBJ file.
This function in turn calls a function named LibMain, which should be defined in
the source code of the dynamic-link library and which performs library-specific in­
itialization. Since Select does not require initialization beyond that provided by
LibEntry, it simply returns a value of 1 to indicate success. The LibMain function
of the Select library is defined as follows:

int FAR PASCAL LibMain(hinst, wDataSeg, cbHeapSize, lpszCmdLine)
HINSTANCE hinst;
WORD wDataSeg,
WORD cbHeapSize;
LPSTR lpszCmdLine;
{

return 1;
}

20.6.3 Creating the Exit Routine
Like every DLL, Select must include the standard exit dynamic-link library,
WEP. Again, since Select does not require any cleanup tasks, the WEP function
simply returns:

int FAR PASCAL WEP(nParameter)
int nParameter;
{

return;
}

496 Microsoft Windows Guide to Programming

20.6.4 Creating the Module-Definition File
To link the Select library, you must create a module-definition file containing the
following:

LIBRARY Select

CODE MOVEABLE DISCARDABLE
DATA SINGLE

EXPORTS
WEP
StartSelection
UpdateSelection
EndSelection
ClearSelection

@1 RESIDENTNAME
@2
@3
@4
@5

Because the selection functions do not use global or static variables and there is no
local heap, the DAT A statement is used to specify no data segment. The default
heap size is zero.

20.6.5 Creating the Header File
You must also create the SELECT.H header file for the Select library. This file
contains the definitions for the constants used in the functions, as well as function
definitions. The header file should look like this:

void FAR PASCAL StartSelection(HWND, POINT, LPRECT, int);
void FAR PASCAL UpdateSelection(HWND, POINT, LPRECT, int);
void FAR PASCAL EndSelection(POINT, LPRECT);
void FAR PASCAL ClearSelection(HWND, LPRECT, int);

You should also use the header file in applications that use the selection functions.
This will ensure that proper parameter and return types are used with the functions.

20.6.6 Compiling and Linking
To compile and link the Select library, you must create the makefile, as follows:

select.obj: select.c select.h
cl /c /Asnw /Gsw /W3 /Os /Zp select.c

select.dll: select.obj
link select libentry,select.dll ,,/noe /nod sdllcew libw,select.def
re select.dll
implib select.lib select.def

Chapter 20 Dynamic-Link Libraries 497

After you have compiled and linked the Select library, you can create a small test
application to confirm that it is working properly. For a description of an applica­
tion that uses the selection functions, see Chapter 11, "Bitmaps," or Chapter 13,
"Clipboard."

20. 7 Related Topics
For information about using the C language to create a dynamic-link library, see
Chapter 14, "C and Assembly Language."

For information about managing memory in a dynamic-link library, see Chapter
16, "More Memory Management."

Multiple Document Interface

Chapter 21

21.1 Elements of a Multiple Document Interface Application........................ 501
21.2 Initializing a Multiple Document Interface Application......................... 502

21.2.1 Registering the Window Classes... 502
21.2.2 Creating the Windows ... 503

21.3 Writing the Main Message Loop... 504
21.4 Writing the Frame Window Procedure.. 505
21.5 Writing the Child Window Procedure... 506
21.6 Associating Data with Child Windows .. 506

21.6.1 Storing Data in the Window Structure 506
21.6.2 Using Window Properties .. 507

21.7 Controlling Child Windows ... 507
21. 7 .1 Creating a Child Window.. 508
21.7.2
21.7.3

Destroying a Child Window.. 509
Activating and Deactivating a Child Window 509

21.7.4 Arranging Child Windows on the Screen 510
21.8 Related Topics.. 510

Chapter 21 Multiple Document Interface 501

The multiple document interface (MDI) in the Microsoft Windows operating sys­
tem is a user-interface standard for presenting and manipulating multiple docu­
ments within a single Windows application. An MDI application has one main
window, in which the user can open and work with several documents. Each docu­
ment appears in its own child window in the main application window. Because
each child window has a frame, System menu, Maximize and Minimize buttons,
and an icon, the user can control it just as if it were a normal, independent win­
dow. The difference is that the child windows cannot move outside the main appli­
cation window.

This chapter covers the following topics:

• The structure of an MDI application

• Writing procedures for an MDI application

• Controlling the child windows of an MDI application

21.1 Elements of a Multiple Document Interface Application
Like most Windows applications, an MDI application contains a message loop for
dispatching messages to the application's various windows. The MDI message
loop is similar to normal message loops, except for the way it handles menu accel­
erator keys.

The main window of an MDI application is similar to that of most Windows appli­
cations. In an MDI application, the main window is called the frame window and
differs from a normal main window in that its client area is filled by a special child
window called the client window. Because Windows maintains the MDI client
window and controls the MDI interface, the application need not store a lot of in­
formation about the MDI user interface. (In this sense, the MDI client window is
similar to a standard control, such as a radio button; it has a standard behavior that
Windows provides automatically. The application can use the client window but
need not provide code that defines how the window appears or behaves.)

Visually, an MDI client window is simply a large monochromatic rectangle. To
the user, the client window is part of the main window; it provides a background
upon which the child windows appear. The application defines the child windows;
usually, there is one child window per document. The MDI child windows look
much like the main window: They have window frames, System menus, and Min­
imize and Maximize buttons. The main difference to the user is that each child
window contains a separate document. Also, the child windows cannot move out­
side the client window.

502 Microsoft Windows Guide to Programming

The following figure shows the sample application Multipad, a typical MDI appli­
cation:

fdit §can::h ~ir.duw

i ransmissionRetryTimeout=45
' swapdisk=
u KeyboardDelay=2

eyboardSpeed=31
creenSaveActive=O
creenSaveTime0ut=300
osPrint=no
oolSwitch=l
evice=OMS-PS 81 O.pscriptLPTl:

Frame window

Client
window

In general, an application controls the MDI interface by passing messages up and
down the hierarchy of MDI windows. The MDI client window, which Windows
controls, carries out many operations on behalf of the application.

21.2 Initializing a Multiple Document Interface Application
The first place in which an MDI application differs from a normal Windows appli­
cation is in the initialization process. Although the overall process is the same, an
MDI application requires that you set certain values in the window class structure.

To initialize an MDI application, you first register its window classes (if there is
no previous instance of the application) just as you would for a normal applica­
tion. You then create and display any windows that will be initially visible.

21.2.1 Registering the Window Classes
In general, a typical MDI application must register two window classes: one for its
frame window and one for its child window. The class structure for the frame win­
dow is similar to the class structure for the main window in non-MDI applications.

Chapter 21 Multiple Document Interface 503

The class structure for the MDI child windows differs slightly from the structure
for child windows in non-MDI applications; following are the differences:

• The class structure should have an icon, because the user can minimize an MDI
child window as if it were a normal application window.

• The menu name should be NULL, because MDI child windows cannot have
their own menus.

• The class structure should reserve extra space in the window structure. With
this space, the application can associate data, such as a filename, with a particu­
lar child window.

An application may have more than one window class for its MDI child windows,
if there is more than one type of document available in the application.

Note that the application does not register a class for the MDI client window,
which Windows defines.

In the Multipad application, the locally defined function InitializeApplication reg­
isters the MDI window classes.

21.2.2 Creating the Windows
After registering its window classes, your MDI application can create its windows.
It first creates its frame window, again by using the Create Window function.
After creating its frame window, the application creates its client window by using
Create Window. It should specify MDICLIENT as the client window's class
name. MDICLIENT is a preregistered window class, defined by Windows. The
!Param parameter of Create Window should point to a CLIENTCREATE­
STRUCT structure. This structure contains the following members:

Member

hWindowMenu

idFirstChild

Description

Identifies a pop-up menu used for controlling MDI child win­
dows. As child windows are created, the application adds their
titles to the pop-up menu as menu items. The user can then acti­
vate a child window by choosing its title from the window menu.
Multipad places this pop-up menu in its Window menu and re­
trieves a handle of the pop-up menu by using the GetSubMenu
function.

Specifies the window identifier of the first MDI child window.
The first MDI child window created will be assigned this identi­
fier. Additional windows will be created with subsequent window
identifiers. When a child window is destroyed, Windows im­
mediately reassigns the window identifiers to keep their range
continuous.

504 Microsoft Windows Guide to Programming

When a child window's title is added to the window menu, the menu item is as­
signed the child window's identifier, which means that the frame window will re­
ceive WM_ COMMAND messages with these identifiers in the wParam
parameter. Thus, you should choose the value for the idFirstChild member so that
it does not conflict with menu-item identifiers in the frame window's menu.

The titles of child windows are added to the end of the window menu. If the appli­
cation adds strings to the window menu by using the AppendMenu function,
these strings can be overwritten by the titles of the child windows when the win­
dow menu is repainted. (The window menu is repainted whenever a child window
is created or destroyed.) Applications that add strings to the window menu of MDI
applications should use the InsertMenu function and verify that the titles of child
windows have not overwritten these new strings.

The MDI client window is created with the WS_CLIPCHILDREN style bit set,
since the window must not paint over its child windows.

In Multipad, the locally defined Initializeinstance function creates the frame win­
dow. However, Multipad does not create its client window at this point. Instead, it
does this as part of the frame window's WM_CREATE message processing.
Multipad handles the WM_ CREATE message in its MPFrameWndProc function.
After creating the frame window and the client window, Multi pad carries out any
additional initialization, such as loading the accelerator table and checking a
printer driver.

Multipad then creates its first MDI child window, either empty or containing a file
appearing on the command line. (For information about creating MDI child win­
dows, see Section 21.7.1, "Creating a Child Window.")

21.3 Writing the Main Message Loop
The main message loop for an MDI application is similar to a normal message
loop, except that the MDI application uses the TranslateMDISysAccel function
to translate child-window accelerator keys.

The System-menu accelerator keys for an MDI child window are similar to those
in a normal window's System menu. The difference is that child-window accelera­
tor keys respond to the CTRL key rather than the ALT (Menu) key.

A typical MDI application's message loop looks like this:

Chapter 21 Multiple Document Interface 505

while (GetMessage(&msg, NULL, 0, 0)) {
if (!TranslateMDISysAccel(hwndMDIClient, &msg)

&& !TranslateAccelerator(hwndFrame, hAccel, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

This loop is similar to a normal message loop that handles accelerator keys. The
difference is that the MDI message loop calls TranslateMDISysAccel before
checking for application-defined accelerator keys or dispatching the message as
usual.

The TranslateMDISysAccel function translates WM_KEYDOWN messages into
WM_SYSCOMMAND messages to the active MDI child window. The function
returns FALSE if the message is not an MDI accelerator message; in that case, the
application uses the TranslateAccelerator function to determine whether any of
the application-defined accelerator keys were pressed. If not, the loop dispatches
the message to the appropriate window procedure.

21.4 Writing the Frame Window Procedure
The frame window procedure for an MDI application is similar to a normal appli­
cation's main window procedure, with a few differences:

• Usually, a window procedure passes all messages it does not handle to the Def­
WindowProc function. The window procedure for an MDI frame window
passes such messages to the DefFrameProc function instead.

• The frame window procedure passes DefFrameProc all messages it does not
handle; in addition, it also passes some messages that the application does
handle. For a list of messages your application must pass to DefFrameProc,
see the Microsoft Windows Programmer's Reference, Volume 2.

DefFrameProc also handles WM_SIZE messages by resizing the MDI client win­
dow to fit into the new client area. The application can calculate a smaller area for
the MDI client window, if necessary (for example, to allow room for status or rib­
bon windows).

DefFrameProc will also set the focus to the client window upon receiving a
WM_SETFOCUS message. The client window sets the focus to the active child
window, ifthere is one. As noted previously, the WM_ CREATE message causes
the frame window to create its MDI client window.

The frame window procedure in Multipad is called MPFrameWndProc. The han­
dling of other messages by MPFrameWndProc is similar to that of non-MDI appli­
cations. WM_ COMMAND messages in Multipad are handled by the locally

506 Microsoft Windows Guide to Programming

defined CommandHandler function, which calls DefFrameProc for command
messages Multipad does not handle. If Multipad did not do this, the user would
not be able to activate a child window from the Window menu, because the
WM_ COMMAND message sent by choosing the window's item (command)
would be lost.

21.5 Writing the Child Window Procedure
Like the frame window procedure, an MDI child window procedure uses a special
function for processing messages by default. All messages the child window proce­
dure does not handle must be passed to the DefMDIChildProc function rather
than to the DetWindowProc function. In addition, some window-management
messages (such as WM_SIZE, WM_MOVE, and WM_GETMINMAXINFO)
must be passed to DefMDIChildProc even if the application handles the message,
in order for MDI to function correctly. For a complete list of messages the applica­
tion must pass to DefMDIChildProc, see the Microsoft Windows Programmer's
Reference, Volume 2.

The child window procedure in Multipad is named MPChildWndProc.

21.6 Associating Data with Child Windows
Because the number of child windows varies depending on how many documents
the user opens, an MDI application must be able to associate data (for example,
the name of the current file) with each child window. There are two ways to do
this:

• Storing data in the window structure

• Using window properties

21. 6 .1 Storing Data in the Window Structure
When the application registers the window class, it may reserve extra space in the
window structure for application data specific to this particular class of windows.
To store and retrieve data in this extra space, the application uses the functions
GetWindowWord, SetWindowWord, GetWindowLong, and SetWindow­
Long.

Chapter 21 Multiple Document Interface 507

If the application must maintain a large amount of data for a document window,
the application can allocate memory for a data structure and then store the handle
of the structure in the extra space of the window structure.

Multipad uses this technique. For example, the WM_ CREATE message pro­
cessing in the Multipad window procedure MPChildWndProc creates a multiline
edit control used as the text-editor window. Multipad stores the handle to this edit
control in its child window structure by using the SetWindowWord function.
Whenever Multipad must use the edit control, it calls the GetWindowWord
function to retrieve the handle of the edit control. Multipad maintains several per­
document variables this way.

21.6.2 Using Window Properties
Your MDI application can also store per-document data by using window proper­
ties. Properties are different from extra space in the window structure in that you
need not allocate extra space when registering the window class. A window can
have any number of properties. Also, where offsets are used to access the extra
space in window structures, properties are referred to by string names.

Associated with each property is a handle. For example, Multipad could have used
a property called EditCntl to store the edit control window handle discussed pre­
viously. The handle could be any 2-byte value and could be a handle of a data
structure. Properties are often more convenient than extra space in the window
structure. This is because, when using properties, the application is not required to
reserve extra space in advance or to calculate offsets to variables. On the other
hand, accessing extra space by offset is generally faster than accessing properties.

21. 7 Controlling Child Windows
To control its child windows, an MDI application sends messages to its MDI
client window. This type of control includes creating, destroying, activating, or
changing the state of a child window.

Generally, an application will work only with the active child window. For ex­
ample, in Multipad, most of the File menu commands and all of the Edit and
Search menu commands refer to the active window. Thus, Multipad maintains the
hwndActive and hwndActiveEdit variables, because only the windows identified
by those variables will receive messages.

508 Microsoft Windows Guide to Programming

There are exceptions. For example, the application might send messages to all
child windows in order to determine each window's state. Multipad does this
when closing, to ensure that all files have been saved.

Because MDI child windows may be minimized, the application must be careful to
avoid manipulating icon title windows as if they were normal MDI child windows.
Icon title windows appear when the application enumerates child windows of the
MDI client window. Icon titles differ from other child windows, however, in that
they are owned by an MDI child window. Thus, you can use the GetWindow
function with the GW _OWNER index to detect whether a child window is an icon
title. Non-title windows will return NULL. Note that this test is insufficient for top­
level windows, because pop-up menus and dialog boxes are owned windows as
well.

21. 7 .1 Creating a Child Window
To create an MDI child window, the application sends a WM_MDICREATE mes­
sage to the MDI client. (The application must not use the Create Window function
to create MDI child windows.) The lParam parameter of a WM_MDICREATE
message is a far pointer to a structure called MDICREATESTRUCT, which con­
tains members similar to Create Window function parameters.

Multipad creates its MDI child windows by using its locally defined AddFile
function (located in the source file MPFILE.C). The AddFile function sets the
title of the child window by assigning the szTitle member of the window's
MDICREATESTRUCT structure to either the name of the file being edited or to
"Untitled." The szClass member is set to the name of the MDI child-window class
registered in the Multipad InitializeApplication function. The owner hOwner
member is set to the application's instance handle.

The MDICREATESTRUCT structure contains four dimension members: x and
y, which are the position of the window, and ex and cy, the horizontal and vertical
extents of the window. Any of these may be assigned explicitly by the application
or may be set to CW _USEDEFAULT, in which case Windows picks a position or
size or both according to a cascading algorithm. All four fields must be initialized
in all cases. Multipad uses CW _USEDEFAULT for all dimensions.

The last member is the style member, which may contain style bits for the win­
dow. To create an MDI child window that can have any combination of window
styles, specify MDIS_ALLCHILDSTYLES for the window style. When this style
is not specified, an MDI child window has the WS_MINIMIZE,
WS_MAXIMIZE, WS_HSCROLL, and WS_ VSCROLL styles as default settings.

Chapter 21 Multiple Document Interface 509

You can use the WS_MINIMIZE or WS_MAXIMIZE bit to set the original state
of the window.

The pointer passed in the !Param parameter of the WM_MDICREATE message
is passed to CreateWindow and appears as the first member in the CREATE­
STRUCT structure passed in the WM_ CREATE message. In Multipad, the child
window initializes itself during WM_ CREATE message processing by initializing
document variables in its extra data and by creating the edit control's child
window.

21. 7 .2 Destroying a Child Window
To destroy an MDI child window, use the WM_MDIDESTROY message. Pass
the child window's handle in the message's wParam parameter.

21. 7 .3 Activating and Deactivating a Child Window
You can activate or deactivate a child window by using the WM_MDINEXT and
WM_MDIACTIVATE messages. WM_MDINEXT activates the next MDI child
window in the window list, and WM_MDIACTIV ATE activates the child window
specified by the message's wParam parameter. The user usually controls child
window activation by using the MDI user interface. Multipad does not use either
of these messages directly.

A more common use of WM_MDIACTIV ATE is tracking activation changes.
WM_MDIACTIV A TE is also sent to the MDI child windows being activated and
deactivated, so by monitoring WM_MDIACTIV A TE messages sent to child win­
dows, the application can track the active window.

Multipad maintains two global variables, hwndActive and hwndActiveEdit, which
are the window handles of the active MDI child window and its edit control, re­
spectively. Maintaining these variables simplifies sending messages to these win­
dows.

You can retrieve the active MDI child window at any time by using the
WM_MDIGET ACTIVE message, which returns a handle of the active child win­
dow in its low-order word. The application could then use the GetWindowWord
function to retrieve a window handle of the document's edit control. To explicitly
maximize and restore a child window, the application could use the
WM_MDIMAXIMIZE and WM_MDIRESTORE messages, with the wParam pa­
rameter of each message set to the handle of the child window the application
wants to change. Again, these are messages that an application will not normally
use, since Windows manages the MDI user interface on behalf of the application.

510 Microsoft Windows Guide to Programming

21. 7 .4 Arranging Child Windows on the Screen
Windows provides three utility messages that you can use to arrange MDI child
windows:

Message

WM_MDilCONARRANGE

WM_MDITILE

21.8 Related Topics

Description

Arranges in order all ihe child windows that are not
minimized, diagonally from upper-left to lower-right.
(This message also arranges child window icons.)

Arranges all child window icons along the bottom of
the MDI client window.

Arranges all child windows that are not minimized so
that they are tiled within the MDI client window.
(This message also arranges child window icons.)

For more information about creating and managing windows, see the Microsoft
Windows Programmer's Reference, Volume 1.

For more information about MDI functions, see the Microsoft Windows Program­
mer's Reference, Volume 2.

For more information about the window class structure, see the Microsoft
Windows Programmer's Reference, Volume 3.

Dynamic Data Exchange

Chapter 22

22.1 Data Exchange in Windows... 514
22.1.1 Clipboard Transfers 514
22.1.2
22.1.3
22.1.4
22.1.5

Dynamic-Link Libraries 514
Dynamic Data Exchange 514
Uses for Windows Dynamic Data Exchange.......................... 515
Dynamic Data Exchange from the User's Point of View....... 515

22.2 Dynamic-Data-ExchangeConcepts ... 516
22.2.1 Client, Server, and Conversation... 516
22.2.2 Application, Topic, and Item Names....................................... 517
22.2.3 Permanent Data Links .. 518
22.2.4 Atoms and Shared Memory Objects 518

22.3 Dynamic-Data-Exchange Messages.. 519
22.4 Dynamic-Data-Exchange Message Flow .. 520

22.4.1 Initiating a Conversation .. 521
22.4.2 Transferring a Single Item... 523

22.4.2.1 Retrieving an Item from the Server 523
22.4.2.2 Submitting an Item to the Server 526

22.4.3 Establishing a Permanent Data Link 528
22.4.3.1 Initiating a Data Link.. 528
22.4.3.2 Initiating a Data Link with the

Paste Link Command.. 529
22.4.3.3 Notifying the Client That Data Has Changed....... 532
22.4.3.4 Terminating a Data Link 533

22.4.4 Carrying Out Commands in a Remote Application................ 534
22.4.5 Terminating a Conversation 534

22.5 The System Topic .. 536
22.6 Related Topics .. 536

Chapter 22 Dynamic Data Exchange 513

The Microsoft Windows operating system provides several methods for transfer­
ring data between applications. One way to transfer data is to use Windows dy­
namic data exchange (DDE). DDE is a message protocol that developers can use
for data exchanging between Windows applications. When used in an application,
DDE offers the user a more integrated Windows work environment.

Windows version 3 .1 includes the Dynamic Data Exchange Management Library
(DDEML). The DDEML is a dynamic-link library (DLL) that applications run­
ning with Windows can use to share data. The DDEML provides an application
programming interface (API) that simplifies the task of adding DDE capability to
a Windows application. Instead of sending, posting, and processing DDE mes­
sages directly, an application uses the functions provided by the DDEML to man­
age DDE conversations. (A DDE conversation is the interaction between client
and server applications.) The DDEML also provides a facility for managing the
strings and data that are shared among DDE applications. Instead of using atoms
and pointers to shared memory objects, DDE applications create and exchange
string handles, which identify strings, and data handles, which identify global
memory objects. DDEML provides a service that makes it possible for a server ap­
plication to register the service names that it supports. The names are broadcast to
other applications in the system, which can then use the names to connect to the
server. The DDEML also ensures compatibility among DDE applications by forc­
ing them to implement the DDE protocol in a consistent manner.

Existing applications that use the message-based DDE protocol are fully compat­
ible with those that use the DDEML. That is, an application that uses message­
based DDE can establish conversations and perform transactions with applications
that use the DDEML. Because of the many advantages of the DDEML, new appli­
cations should use it rather than the DDE messages.

The DDEML can run on systems that have Windows version 3.0 or later installed.
The DDEML does not support real mode. To use the API elements of the DDE
management library, you must include the DDEML.H header file in your source
files, link with DDEML.LIB, and ensure that DDEML.DLL resides in the sys­
tem's path.

This chapter provides guidelines for implementing dynamic data exchange for ap­
plications that cannot use the DDEML. For more information about the DDEML,
see the Microsoft Windows Programmer's Reference, Volume 1.

This chapter covers the following topics:

• Data exchange in Windows

• DDE concepts

• DDE messages

• DDE message flow

514 Microsoft Windows Guide to Programming

22 .1 Data Exchange in Windows
In general, Windows supports three mechanisms that applications can use to ex­
change data with one another:

• Clipboard transfers

• Dynamic-link libraries

• Dynamic data exchange

Windows does not support sharing global memory handles directly. Because of ex­
panded memory considerations, as well as compatibility with future versions of
Windows, you should not dereference (by using the GlobalUnlock function), or
otherwise manipulate, globalmemory handles created by another application.
DDE is the only Windows mechanism that supports passing of global-memory
handles between applications.

22.1.1 Clipboard Transfers
With the Windows clipboard, a user can transfer data between applications in the
system. The user issues a command in an application to copy selected data to the
clipboard. Then, in another application, the user issues a command to paste the
data from the clipboard into the second application's workspace. In general, the
clipboard is a temporary repository of information that requires direct involvement
of the user to initiate and complete the transfer.

22.1.2 Dynamic-Link Libraries
You can design a dynamic-link library (DLL) to serve as a repository for data
shared between applications. This dynamic-link library offers an application inter­
face for storing and retrieving data. The data itself is stored in the library's local
heap or in the static data area of its data segment. Handles or addresses of this data
can be passed to applications only as logical identifiers, never to be deferenced by
the applications themselves. Only the dynamic-link library can dereference its
handles or address, using the GlobalUnlock or LocalUnlock function or address
indirection. In general, you can use only the dynamic-link library's data segment
for data exchange.

22.1.3 Dynamic Data Exchange
The Windows DDE protocol is a standard for cooperating applications. By using
the protocol, applications exchange data and carry out remote commands by
means of Windows messages.

Chapter 22 Dynamic Data Exchange 515

Because Windows has a message-based architecture, passing messages is the most
appropriate method for automatically transferring information between applica­
tions. However, Windows messages contain only two parameters (wParam and
lParam) for passing data. As a result, these parameters must refer indirectly to
other pieces of data if more than a few words of information are to be passed be­
tween applications.

The DDE protocol defines exactly how wParam and lParam are used to pass
larger pieces of data by means of global atoms and global shared-memory handles.

A global atom is a reference to a character string. In the DDE protocol, atoms iden­
tify the applications exchanging data, the nature of the data being exchanged, and
the data items themselves.

A global shared-memory handle is a handle of a memory object allocated by
GlobalAlloc, using the GMEM_DDESHARE option. In the DDE protocol, global
shared-memory objects store data items passed between applications, protocol op­
tions, and remote command execution strings.

The DDE protocol has specific rules for applications involved in a DDE exchange.
These rules apply to allocating and deleting global atoms and shared memory ob­
jects.

22.1.4 Uses for Windows Dynamic Data Exchange
DDE is most appropriate for data exchanges that do not require ongoing user inter­
action. Usually, an application provides a method for the user to establish the link
between the applications exchanging da~a. Once that link is established, however,
the applications exchange data without further user involvement.

DDE can be used to implement a broad range of application features:

• Linking to real-time data, such as to stock market updates, scientific instru­
ments, or process control.

• Creating compound documents, such as a word-processing document that in­
cludes a chart produced by a graphics program. Using DDE, the chart will
change when the source data is changed, while the rest of the document remains
the same.

• Performing data queries between applications, such as a spreadsheet querying a
database application for accounts past due.

22.1.5 Dynamic Data Exchange from the User's Point of View
The following example illustrates two cooperating Windows DDE applications, as
seen from the user's point of view.

516 Microsoft Windows Guide to Programming

A Microsoft Excel spreadsheet user wants to track the price of a particular stock
on the New York Stock Exchange. The user has a Windows application called
Quote that in turn has access to NYSE data. The DDE conversation between
Microsoft Excel and Quote takes place as follows:

• The user initiates the conversation by supplying the name of the application
(Quote) that will supply the data and the particular topic of interest (NYSE).
The resulting DDE conversation is used to request quotes on specific stocks.

• Microsoft Excel broadcasts the application and topic names to all DDE applica­
tions currently running in the system. Quote responds, establishing a conversa­
tion with Excel about the NYSE topic.

• The user can then create a spreadsheet formula in a cell that requests that the
spreadsheet be automatically updated whenever a particular stock quotation
changes. For example, the user could request an automatic update whenever a
change in the selling price of ZAXX stock occurs, by specifying the following
Microsoft Excel formula:

='Quote' I 'NYSE' !ZAXX

• The user can terminate the automatic updating of the ZAXX stock quotation at
any time. Other data links that were established separately (such as for quota­
tions for other stocks) still will remain active under the same NYSE conversa­
tion.

• The user can also terminate the entire conversation between Excel and Quote
on the NYSE topic, so that no specific data links may be subsequently estab­
lished on that topic without initiating a new conversation.

22.2 Dynamic-Data-Exchange Concepts
Certain concepts and terminology are key to understanding dynamic data ex­
change. The following sections explain the most important of these.

22.2.1 Client, Server, and Conversation
Two applications participating in dynamic data exchange are engaged in a DDE
conversation. The application that initiates the conversation is the client applica­
tion; the application responding to the client is the server application. An applica­
tion can be engaged in several conversations at the same time, acting as the client
in some and as the server in others.

A DDE conversation takes place between two windows, one for each of the partici­
pating applications. The window may be the main window of the application; a
window associated with a specific document, as in a multiple document interface

Chapter 22 Dynamic Data Exchange 517

(MDI) application; or a hidden (invisible) window whose only purpose is to
process DDE messages.

Since a DDE conversation is identified by the pair of handles of the windows en­
gaged in the conversation, no window should be engaged in more than one conver­
sation with another window. Either the client application or the server application
must provide a different window for each of its conversations with a particular
server or client application.

An application can ensure that a pair of client and server windows is never in­
volved in more than one conversation by creating a hidden window for each con­
versation. The sole purpose of this window is to process DDE messages.

22.2.2 Application, Topic, and Item Names
DDE identifies the units of data passed between the client and server with a three­
level hierarchy of application, topic, and item names.

Each DDE conversation is uniquely defined by the application name and topic. At
the beginning of a DDE conversation, the client and server determine the applica­
tion name and topic. The application name is usually the name of the server appli­
cation. For example, in a conversation in which Microsoft Excel acts as the server,
the conversation application name is Excel.

The DDE topic is a general classification of data within which multiple data items
may be "discussed" (exchanged) during the conversation. For applications that
operate on file-based documents, the topic is usually a filename. For other applica­
tions, the topic is an application-specific name.

Because the client and server window handles together identify a DDE conversa­
tion, the application name and topic that define a conversation cannot be changed
during the course of the conversation.

A DDE data item is information related to the conversation topic that is exchanged
between the applications. Values for the data item can be passed from the server to
the client, or from the client to the server. Data can be passed with any of the
standard clipboard formats or with a registered clipboard format. For more infor­
mation about standard clipboard formats, see the description of the SetClipboard­
Data function in Microsoft Windows Programmer's Reference, Volume 2. For
more information about registering clipboard formats, see the description of the
RegisterClipboardFormat function. A special, registered format named Link is
used to identify an item in a DDE conversation.

518 Microsoft Windows Guide to Programming

22.2.3 Permanent Data Links
Once a DDE conversation has begun, the client can establish one or more per­
manent data links with the server. A data link is a communication mechanism by
which the server notifies the client whenever the value of a given data item
changes. The data link is permanent in the sense that this notification process con­
tinues until the data link or the DDE conversation itself is terminated.

There are two kinds of permanent DDE data links: warm and hot. In a warm data
link, the server notifies the client that the value of the data item has changed, but
the server does not send the data value to the client until the client requests it. In a
hot data link, the server immediately sends the changed data value to the client.

Applications that support hot or warm data links typically provide a Copy or Paste
Link command in their Edit menu to permit the user to establish links between ap­
plications. For more information, see Section 22.4.3.2, "Initiating a Data Link with
the Paste Link Command."

22.2.4 Atoms and Shared Memory Objects
Certain arguments of DDE messages are global atoms. Applications using these
atoms must follow explicit rules about when to to allocate and delete these atoms.
In all cases, the sender of a message must delete any atom which the intended re­
ceiver will not receive due to an error condition, such as failure of the Post­
Message function.

DDE uses shared memory objects for three purposes:

• To carry a data item value to be exchanged. This is an item referenced by the
hData argument in the WM_DDE_DATA and WM_DDE_POKE messages.

• To carry options in a message. This is an item referenced by the hOptions argu­
ment in a WM_DDE_ADVISE message.

• To carry an execution-command string. This is an item referenced by the
hCommands argument in the WM_DDE_EXECUTE message and its corre­
sponding WM_DDE_ACK message.

Applications that receive a DDE shared memory object must treat it as read only.
It must not be used as a mutual read-write area for the free exchange of data.

As with a DDE atom, a shared memory object should be freed properly to provide
for effective memory management. Shared memory objects should be properly
locked and unlocked. In all cases, the sender of a message must delete any shared
memory object which the intended receiver will not receive due to an error condi­
tion, such as failure of the PostMessage function.

Chapter 22 Dynamic Data Exchange 519

For information about how the DDE messages allocate and delete atoms and
shared memory objects, see the Microsoft Windows Programmer's Reference,
Volume3.

22.3 Dynamic-Data-Exchange Messages
Because DDE is a message-based protocol, it employs no special Windows func­
tions or libraries. All DDE transactions are conducted by passing certain defined
DDE messages between the client and server windows.

There are nine DDE messages; the symbolic constants for these messages are de­
fined in the Microsoft Windows 3.1 Software Development Kit (SDK) header file
DDE.H, not WINDOWS.H. Certain data structures for the various DDE messages
are also defined in DDE.H.

The nine DDE messages are summarized as follows. For a detailed description of
each DDE message, see the Microsoft Windows Programmer's Reference,
Volume 3.

Message

WM_DDE_ACK

WM_DDE_ADVISE

WM_DDE_DATA

WM_DDE_EXECUTE

WM_DDE_INITIATE

WM_DDE_POKE

WM_DDE_REQUEST

WM_DDE_TERMINATE

WM_DDE_UNADVISE

Description

Acknowledges receiving or not receiving a message.

Requests the server application to supply an update or
notification for a data item whenever it changes. This
establishes a permanent data link.

Sends a data-item value to the client application.

Sends a string to the server application, which is ex -
pected to process it as a series of commands.

Initiates a conversation between the client and server ap­
plications.

Sends a data-item value to the server application.

Requests the server application to provide the value of a
data item.

Terminates a conversation.

Terminates a permanent data link.

An application calls the SendMessage function to issue the
WM_DDE_INITIATE message or a WM_DDE_ACK message sent in response to
WM_DDE_INITIATE. All other messages are sent by the PostMessage function.
The window handle of the receiving window appears as the first parameter of
these calls. The second parameter contains the message to be sent, the third pa­
rameter identifies the sending window, and the fourth parameter contains the
message-specific arguments.

520 Microsoft Windows Guide to Programming

22 .4 Dynamic-Data-Exchange Message Flow
A typical DDE conversation consists of the following events:

1. The client application initiates the conversation, and the server application re­
sponds.

2. The applications exchange data by any or all of the following methods:

• The server application sends data to the client at the client's request.

• The client application sends unsolicited data to the server application.

• The client application requests the server application to send data whenever
the data changes (hot data link).

• The client application requests the server application to notify the client
whenever a data item changes (warm data link).

• The server application carries out a command at the client's request.

3. Either the client or server application terminates the conversation.

An application window that processes requests from a client or server must
process them strictly in the order in which they are received.

A client can establish conversations with more than one server; a server can have
conversations with more than one client. When handling messages from more than
one source, a client or server must process the messages of a given conversation
synchronously, but need not process all messages synchronously. In other words,
it can shift from one conversation to another as needed.

If an application is unable to process an incoming request because it is waiting for
a DDE response, it must post a WM_DDE_ACK message with the ffiusy flag set
to 1 to prevent deadlock. An application can also send a busy WM_DDE_ACK
message if it, for any reason, cannot process an incoming request within area­
sonable amount of time.

An application should be able to handle, in some way, the failure of a client or
server to respond with a message within a certain time. Since the length of the
time-out interval may vary depending on the nature of the application and the con­
figuration of the user's system (including whether it is on a network), the applica­
tion should provide a way for the user to specify the interval.

Chapter 22 Dynamic Data Exchange 521

22.4.1 Initiating a Conversation
To initiate a DDE conversation, the client sends a WM_DDE_INITIATE message.
Usually, the client broadcasts this message by calling the SendMessage function,
with -1 as the first parameter. If the application already has the window handle of
the server application, however, it can send the message directly to that window.
The client prepares atoms for the application and topic names by calling the
GlobalAddAtom function. The client may request conversations with any poten­
tial server application and for any potential topic by supplying NULL (wildcard)
atoms for, respectively, the application and topic.

The following example illustrates how the client initiates a conversation, where
both the application and topic are specified:

atomApplication = *SzApplication == 0 ?
NULL : GlobalAddAtom((LPSTR)szApplication);

atomTopic = *szTopic == 0 ?
NULL : GlobalAddAtom((LPSTR)szTopic);

flnlnitiate = TRUE;
SendMessage(-1,

WM_DDE_IN ITIATE,
hwndClientDDE,
MAKELONG(atomApplication, atomTopic));

flnlnitiate = FALSE;
if (atomApplication != NULL)

GlobalDeleteAtom(atomApplication);
if (atomTopic != NULL)

GlobalDeleteAtom(atomTopic);

Note that if your application uses NULL atoms, you need not use the GlobalAdd­
Atom and GlobalDeleteAtom functions. In this example, the client application
creates two global atoms containing the name of the server and the name of the
topic, respectively.

The client application sends a WM_DDE_INITIATE message with these two
atoms in the IP aram parameter of the message. The special window handle -1 in
the call to the SendMessage function directs Windows to send this message to all
other active applications. SendMessage does not return to the client application
until all applications that receive the message have, in tum, returned control to
Windows. This means that all WM_DDE_ACK messages sent in reply by the
server applications are guaranteed to have been processed by the client by the time
the SendMessage call has returned.

After SendMessage returns, the client application deletes the global atoms.

522 Microsoft Windows Guide to Programming

Server applications respond according to the following logic:

Post a positive
WM_DDE_ACK
to the client for
the requested

topic.

N

N

Post a positive
WM_D DE_ACK to
the client for each
topic supported by

the application.

To acknowledge one or more topics, the server must create atoms for each conver­
sation (requiring duplicate application-name atoms ifthere are multiple topics)
and send a WM_DDE_ACK message for each conversation, as follows:

if ((atomApplication = GlobalAddAtom("Server")) != 0) {

}

if ((atomTopic = GlobalAddAtom(szTopic)) != 0) {

}

SendMessage(hwndClientDDE,
WM_DDE_ACK,
hwndServerDDE,
MAKELONG(atomApplication, atomTopicl);

GlobalDeleteAtom(atomApplicationl;

GlobalDeleteAtom(atomTopic);

Chapter 22 Dynamic Data Exchange 523

if ((atomApplication == 0) I I (atomTopic 0)) {

I* error handling */

}

When a server responds with a WM_DDE_ACK message, the client application
should save the handle of the server window. The client application receives this
handle as the wParam parameter of the WM_DDE_ACK message. The client ap­
plication then sends all subsequent DDE messages to the server window identified
by this handle.

If your client application uses NULL atoms for the application or topic, you
should expect that it will receive acknowledgments from more than one server ap­
plication. As stated in Section 22.2.1, "Client, Server, and Conversation," creating
a unique, hidden window for each DDE conversation ensures that a pair of client
and server windows is never involved in more than one conversation. To follow
this practice, however, the client application must terminate conversations with all
but one of the server applications that respond to the same WM_DDE_INITIA TE
message from the client.

22.4.2 Transferring a Single Item
Once a DDE conversation has been established, the client can retrieve the value of
a data item from the server by issuing the WM_DDE_REQUEST message, or the
client can submit a data-item value to the server by issuing the WM_DDE_POKE
message.

22.4.2.1 Retrieving an Item from the Server
To retrieve an item from the server, the client sends the server a
WM_DDE_REQUEST message specifying the item and format to retrieve, as fol­
lows:

if ((atomitem = GlobalAddAtom(szitemName)) != 0) {

}

if (!PostMessage(hwndServerDDE,
WM_DDE_REQUEST,
hwndClientDDE,
MAKELONG(CF_TEXT, atomitem)))

GlobalDeleteAtom(atomitem);

if (atomitem == 0) {

I* error handling*/

}

524 Microsoft Windows Guide to Programming

In this example, the client specifies the clipboard format CF _TEXT as the pre­
ferred format for the requested data item.

The receiver (server) of the WM_DDE_REQUEST message typically must delete
the item atom, but if the PostMessage call itself fails, the client must delete the
atom.

If the server has access to the requested item and can render it in the requested for­
mat, the server copies the item value as a global shared-memory object and sends
the client a WM_DDE_DATA message, as follows:

f*
*Allocate the size of the DDE data header, plus the data: a
* string,<CR><LF><NULL>. The byte for the string's terminating
*null character is counted by DDEDATA.Value[l].
*f

if (!(hData = GlobalAlloc(GMEM_MOVEABLE I GMEM_DDESHARE,
(LONG) sizeof(DDEDATA) + strlen(szitemValue) + 2)))

return;
if (!(lpData = (DDEDATA FAR*) Globallock(hData))) {

GlobalFree(hData);
return;

}

lpData->cfFormat = CF_TEXT;
lstrcpy((LPSTR) lpData->Value, (LPSTR) szitemValue);

f* Each line of CF_TEXT data is terminated by CR/LF.*/

lstrcat((LPSTR) lpData->Value, (LPSTR) "\r\n");
GlobalUnlock(hData);
if ((atomltem = GlobalAddAtom((LPSTR) szitemName)) != 0) {

}

if (!PostMessage(hwndClientDDE,
WM_DDE_DATA,

}

hwndServerDDE,
MAKELONG(hData, atomltem))) {

GlobalFree(hData);
GlobalDeleteAtom(atomitem);

if (atomltem 0) {

f* error handling*/

}

Chapter 22 Dynamic Data Exchange 525

In this example, the server application allocates a memory object to contain the
data item. The memory is allocated with the GMEM_DDESHARE option, so that
the server and client applications can share the memory. After allocating the
memory object, the server application locks the object so it can obtain the object's
address. The data object is initialized as a DD ED AT A structure.

The server application then sets the cfFormat member of the structure to
CF_ TEXT to inform the client application that the data is in text format. In re­
sponse, the client copies the value of the requested data into the Value member of
the DDEDATA structure.

After the server has filled the data object, the server unlocks the data. It then
creates a global atom containing the name of the data item.

Finally, the server issues the WM_DDE_DATA message by calling the Post­
Message function. The handle of the data object and the atom containing the item
name are contained in the lParam parameter of the message.

If the server cannot satisfy the request, it sends the client a negative
WM_DDE_ACK message, as follows:

f* negative acknowledgment */

PostMessage(hwndClientDDE,
WM_DDE_ACK,
hwndServerDDE,
MAKELONG(0, atomitem));

Upon receiving a WM_DDE_DATA message, the client processes the data-item
value as appropriate. Then, ifthe fAckReq bit specified in the WM_DDE_DATA
message is 1, the client must send the server a positive WM_DDE_ACK message,
as follows:

hData = LOWORD(lParam); /* of WM_DDE_DATA message*/
atomitem = HIWORD(lParam);
if (!(lpDDEData = CDDEDATA FAR*) Globallock(hData))

I I (lpDDEData->cfFormat != CF_TEXT)) {

}

PostMessage(hwndServerDDE,
WM_DDE_ACK,
hwndClientDDE,
MAKELONG(0, atomitem)); /* negative ACK*/

f* Copy data from lpDDEData here.*/

526 Microsoft Windows Guide lo Programming

if ClpDDEData->fAckReq) {

}

PostMessage(hwndServerDDE,
WM_DDE_ACK,
hwndClientDDE,
MAKELONGC0x8000, atomitem)); /* positive ACK*/

bRelease = lpDDEData->fRelease;
GlobalUnlock(hData);
if CbRelease)

GlobalFree(hData);

In this example, the client examines the format of the data; if the format is not
CF _TEXT (or ifthe client cannot lock the memory for the data), the client sends a
negative WM_DDE_ACK message to indicate that it cannot process the data.

If it can process the data, the client examines the fAckReq member of the DD E­
DAT A structure to determine whether the server requested that it be informed that
the client received and processed the data successfully. If the server did request
this information, the client sends the server a positive WM_DDE_ACK message.

The client saves the value of the fRelease member before unlocking the data ob­
ject, because unlocking the data invalidates the pointer to the data. The client then
examines the flag value to determine whether the server application requested the
client to free the global memory containing the data; the client acts accordingly.

Upon receiving a negative WM_DDE_ACK message, the client may ask for the
same item value again, specifying a different clipboard format. Typically, a client
will first ask for the most complex format it can support, and then step down if
necessary through progressively simpler formats until it finds one the server can
provide.

If the server supports the Formats item of the System topic, the client can deter­
mine once what clipboard formats the server supports, instead of determining
them each time the client requests an item. For more information about the System
topic, see Section 22.5, "The System Topic."

22.4.2.2 Submitting an Item to the Server
The client may send an item value to the server by using the WM_DDE_POKE
message. The client renders the item to be sent and sends the WM_DDE_POKE
message, as follows:

if C ! C hPokeData
= GlobalAllocCGMEM_MOVEABLE I GMEM_DDESHARE,
(LONG) sizeof(DDEPOKE) + lstrlen(szValue) + 2)))

return;

Chapter 22 Dynamic Data Exchange 527

if (! (l pPokeData
= CDDEPOKE FAR*) Globallock(hPokeData))) {

GlobalFree(hPokeData);
return;

lpPokeData->fRelease =TRUE;
lpPokeData->cfFormat = CF_TEXT;
lstrcpy((LPSTR) lpPokeData->Value, (LPSTR) szValue);

/* Each line of CF_TEXT data is terminated by CR/LF.*/

lstrcat((LPSTR) lpPokeData->Value, (LPSTR) "\r\n");
GlobalUnlock(hPokeData);
if ((atomitem = GlobalAddAtom((LPSTR) szitem)) != 0) {

}

if (!PostMessage(hwndServerDDE,
WM_DDE_POKE,

}

hwndClientDDE,
MAKELONG(hPokeData, atomitem))) {

GlobalDeleteAtom(atomitem);
GlobalFree(hPokeData);

if (atomitem == 0) {

/*error handling*/

}

Note that sending data by using a WM_DDE_POKE message is essentially the
same as sending it by using a WM_DDE_DATA message, except that
WM_DDE_POKE is sent from the client to the server.

If the server is able to accept the data-item value in the format in which it was ren­
dered by the client, the server processes the item value as appropriate and sends
the client a positive WM_DDE_ACK message. If it is unable to process the item
value, because of format or other reasons, the server sends the client a negative
WM_DDE_ACK message.

hPokeData = LOWORD(lParam);
atomitem = HIWORD(lParam);
GlobalGetAtomName(atomitem, szitemName, ITEM_NAME_MAX_SIZE);

528 Microsoft Windows Guide to Programming

if (!(lpPokeData = (DDEPOKE FAR*) Globallock(hPokeData))
J J lpPokeData->cfFormat != CF_TEXT
J J !IsitemSupportedByServer(szitemName))) {

PostMessage(hwndClientDDE,
WM_DDE_ACK,
hwndServerDDE,
MAKELONG(0, atomltPm)); /* neg ACK */

}

lstrcpy(szitemValue, lpPokeData->Value); /* copies value */
bRelease = lpPokeData->fRelease;
GlobalUnlock(hPokeData);
if (bRelease) {

GlobalFree(hPokeData);
}

PostMessage(hwndClientDDE,
WM_DDE_ACK,
hwndServerDDE,
MAKELONGC0x8000, atomitem)); I* positive ACK */

In this example, the server calls the GlobalGetAtomName function to retrieve the
name of the item sent by the client. The server then determines whether it supports
the item and whether the item is rendered in the correct format (CF _TEXT). If not,
or if the server cannot lock the memory for the data, it sends a negative acknowl­
edgment back to the client application.

22.4.3 Establishing a Permanent Data Link
A client application can use DDE to establish a link to an item in a server applica­
tion. Once such a link is established, the server sends periodic updates of the
linked item to the client (typically, whenever the value of the item changes). Thus,
a permanent data stream is established between the two applications; this data
stream remains in place until it is explicitly disconnected.

22.4.3.1 Initiating a Data Link
The client initiates a data link by sending a WM_DDE_ADVISE message, as fol­
lows:

if (!hOptions = GlobalAlloc(GMEM_MOVEABLE I GMEM_DDESHARE,
sizeof(DDEADVISE))))

return;
if (!(lpOptions = (DDEADVISE FAR*) Globallock(hOptions))) {

GlobalFree(hOptions);
return;

}

lpOptions->cfFormat = CF_TEXT;
lpOptions->fAckReq = TRUE;
lpOptions->fDeferUpd = FALSE;
GlobalUnlock(hOptions);

Chapter 22 Dynamic Data Exchange 529

if ((atomltem = GlobalAddAtom(szltemName)) != 0) {
if (!(PostMessage(hwndServerDDE,

WM_DDE_ADVISE,
hwndClientDDE,
MAKELONG(hOptions, atomltem))) {

GlobalDeleteAtom(atomltem);
GlobalFree(hOptions);

if (atomltem == 0) {

f* error handling */

}

In this example, the client application sets the IDeferUpd flag of the
WM_DDE_ADVISE message to FALSE. This directs the server application to
send the data to the client whenever the data changes.

If the server has access to the item and can render it in the requested format, the
server notes the new link (recalling the flags specified in hOptions) and sends the
client a positive WM_DDE_ACK message. From then on, until the client issues a
matching WM_DDE_UNADVISE message, the server sends the new data to the
client every time the value of the item changes in the server application.

If the server is unable to service the WM_DDE_ADVISE request, it sends the
client a negative WM_DDE_ACK message.

22.4.3.2 Initiating a Data Link with the Paste Link Command
Applications that support hot or warm data links typically support a registered clip­
board format named Link. When associated with the application's Copy and Paste
Link commands, this clipboard format allows the user to establish DDE conversa­
tions between applications simply by copying a data item in the server application
and pasting it into the client application.

A server application supports the Link clipboard format by placing in the clip­
board a string containing the application, topic, and item names when the user
chooses the Copy command from the Edit menu. Following is the standard Link
format:

application\Otopic\Oitem\0\0

A single null character separates the names, and two null characters terminate the
entire string.

530 Microsoft Windows Guide lo Programming

Both the client and server applications must register the Link clipboard format, as
shown:

cflink = RegisterClipboardFormat("Link");

A client application supports the Link clipboard format by means of a Paste Link
command on its Edit menu. When the user chooses this command, the client appli­
cation parses the application, topic, and item names from the Link-format clip­
board data. Using these names, the client application initiates a conversation for
the application and topic, if such a conversation does not already exist. The client
application then sends a WM_DDE_ADVISE message to the server application,
specifying the item name contained in the Link-format clipboard data.

Following is an example of a client application's response to the Paste Link com­
mand being chosen:

void DoPastelink(hwndClientDDE)
HWND hwndClientDDE;
{

HANDLE
LPSTR
HWND
char
char
char
int

hData;
lpData;
hwndServerDDE;
szApplication[APP_MAX_SIZE + 1];
szTopic[TOPIC_MAX_SIZE + 1];
szitem[ITEM_MAX_SIZE + 1];
nBuflen;

if (OpenClipboard(hwndClientDDE)) {
if (!(hData = GetClipboardData(cflink)) I I

!(lpData = Globallock(hData))) {
CloseClipboard();
return;

}

/* Parse the clipboard data.*/

if ((nBuflen = lstrlen(lpData)) >= APP_MAX_SIZE) {
CloseClipboard();
GlobalUnlock(hData);
return;

}

lstrcpy(szApplication, lpData);
lpData += (nBuflen + 1); /*skips over null */
if ((nBuflen = lstrlen(lpData)) >= TOPIC_MAX_SIZE) {

CloseClipboard();
GlobalUnlock(hData);
return;

}

lstrcpy(szTopic, lpData);
lpData += (nBuflen + 1); /*skips over null */

}

}

Chapter 22 Dynamic Data Exchange 531

if ((nBuflen = lstrlen(lpData)) >= ITEM_MAX_SIZE) {
CloseClipboard();
GlobalUnlock(hData);
return;

lstrcpy(szitem, lpData);
GlobalUnlock(hData);
CloseClipboard();

if (hwndServerDDE
FindServerGivenAppTopic(sszApplication, zTopic))

}

/*App/topic conversation is already started. */

if (DoesAdviseAlreadyExist(hwndServerDDE, szitem))
MessageBox(hwndMain,

else

"Advisory already established",
"Client", MB_ICONEXCLAMATION I MB_OK);

SendAdvise(hwndClientDDE, hwndServerDDE, szitem);

else {

}

f* Must initiate a new conversation first. */

Sendinitiate(szApplication, szTopic);
if (hwndServerDDE =

FindServerGivenAppTopic(szApplication, szTopic))
SendAdvise(hwndServerDDE, szitem);

return;

In this example, the client application opens the clipboard and determines whether
the clipboard contains data in the Link format (ctLink) that it had previously regis­
tered. If not, or if it cannot lock the data in the clipboard, the client returns.

After the client application has retrieved a pointer to the clipboard data, it parses
the data to extract the application, topic, and item names.

The client application determines whether a conversation on the topic already ex­
ists between it and the server application. If a conversation does exist, the client ap­
plication checks whether a link already exists for the data item. If such a link
exists, the client displays a message box to the user; otherwise, it calls its own
SendAdvise function to send a WM_DDE_ADVISE message to the server for the
item.

If a conversation on the topic does not exist already between the client and the
server, the client first calls its own Sendlnitiate function to broadcast the
WM_DDE_INITIA TE message to request a conversation and, second, calls its

532 Microsoft Windows Guide to Programming

own FindServerGivenAppTopic function to establish the conversation with the
window that responds on behalf of the server application. Once the conversation
has begun, the client application calls Send.Advise to request the link.

22.4.3.3 Notifying the Client That Data Has Changed
When the client establishes a link by using the WM_DDE_ADVISE message­
with the tDeferUpd flag not set (that is, equal to zero), the client has requested the
server to send the data item each time the item's value changes. In such cases, the
server renders the new value of the data item in the previously specified format
and sends the client a WM_DDE_DAT A message, as follows:

f*
*Allocate the size of a DOE data header, plus data (a string),
* plus a <CR><LF><NULL>
*f

if (!(hData = GlobalAlloc(GMEM_MOVEABLE I GMEM_DDESHARE),
sizeof(DDEDATA) + strlen(szitemValue) + 3)))

return;
if (!(lpData = (DDEDATA FAR*) Globallock(hData))) {

GlobalFree(hData);
return;

}
lpData->fAckReq = bAckRequest; f* as specified in original */

/* WM_DDE_ADVISE message */
lpData->cfFormat = Cf _TEXT;
lstrcpy(lpData->Value, szitemValue); /* copies value to be sent */
lstrcat(lpData->Value, "\r\n"); /* CR/LF for CF_TEXT format */
GlobalUnlock(hData);
if ((atomitem = GlobalAddAtom(szitemName)) != 0) {

}

if (!PostMessage(hwndClientDDE,
WM_DDE_DATA,

}

hwndServerDDE,
MAKELONG(hData, atomitem))) {

GlobalFree(hData);
GlobalDeleteAtom(atomitem);

if (atomitem == 0) {

/*error handling*/

}

The client processes the item value as appropriate. If the fAckReq bit for the item
is set, the client sends the server a positive WM_DDE_ACK message.

Chapter 22 Dynamic Data Exchange 533

When the client establishes the link with the IDeferUpd flag set (that is, equal to
1), the client has requested that only a notification, not the data itself, be sent each
time the data changes. In such cases, when the item value changes, the server does
not render the value but simply sends the client a WM_DDE_DAT A message with
a null data handle, as follows:

if (bDeferUpd) { f* checking whether the flag was originally*/
f* set in the WM_DDE_ADVISE message */

}

if ((atomitem = GlobalAddAtom(szitemName)) != 0) {

}

if (!PostMessage(hwndClientDDE,
WM_DDE_DATA,
hwndServerDDE,

}

MAKELONG(0, atomitem))) { /* NULL data
GlobalDeleteAtom(atomitem);

if (atomitem == 0) {

f* error handling */

}

As necessary, the client can then request the latest value of the data item by issu­
ing a normal WM_DDE_REQUEST message, or it can simply ignore the notice
from the server that the data has changed. In either case, if fAckReq is equal to 1,
the client is expected to send a positive WM_DDE_ACK message to the server.

22.4.3.4 Terminating a Data Link
If the client requests that a specific data link be terminated, the client sends the
server a WM_DDE_UNADVISE message, as follows:

if ((atomitem = GlobalAddAtom(szitemName)) != 0) {

}

if (!PostMessage(hwndServerDDE,
WM_DDE_UNADVISE,
hwndClientDDE,
MAKELONG(0, atomitem))) {

GlobalDeleteAtom(atomitem);
}

if (atomitem == 0) {

f* error handling */

}

534 Microsoft Windows Guide to Programming

The server checks whether the client currently has a link to the specific item in this
conversation. If it does, the server sends the client a positive WM_DDE_ACK
message; the server is then no longer required to send updates about the item. If
the server has no such link, it sends a negative WM_DDE_ACK message.

To terminate all links for a conversation, the client sends the server a
WM_DDE_UNADViSE message with a nuil item atom. The server determines
whether the conversation has at least one link currently established. If it does, the
server sends the client a positive WM_DDE_ACK message; the server then no
longer has to send any updates in the conversation. If the server has no links in the
conversation, it sends the client a negative WM_DDE_ACK message.

22.4.4 Carrying Out Commands in a Remote Application
A Windows application can use the WM_DDE_EXECUTE message to cause a
certain command or series of commands to be carried out in another application.
The client sends the server a WM_DDE_EXECUTE message containing a handle
of a command string, as follows:

if (!(hCommand = GlobalAlloc(GMEM_MOVEABLE I GMEM_DDESHARE,
sizeof(szCommandString) + 1)))

return;
if (!(lpCommand = Globallock(hCommand))) {

GlobalFree(hCommand);
return;

}

lstrcpy(lpCommand, szCommandString);
GlobalUnlock(hCommand);
if (!PostMessage(hwndServerDDE,

WM_DDE_EXECUTE,
hwndClientDDE,
MAKELONG(0, hCommand))) {

GlobalFree(hCommand);
}

The server attempts to carry out the specified command string. If the server is
successful, it sends the client a positive WM_DDE_ACK message; otherwise, it
sends a negative WM_DDE_ACK message. This WM_DDE_ACK message re­
uses the hCommand handle passed in the original WM_DDE_EXECUTE message.

22.4.5 Terminating a Conversation
Either the client or the server can issue a WM_DDE_TERMINATE message toter­
minate a conversation at any time. Similarly, both the client and server applica­
tions should be prepared to receive this message at any time. An application must
terminate all of its conversations before shutting down.

Chapter 22 Dynamic Data Exchange 535

The application terminating the conversation sends a WM_DDE_TERMINATE
message, as follows:

PostMessage(hwndServerDDE, WM_DDE_TERMINATE, hwndClientDDE, 0L);

This informs the other application that the sending application will send no further
messages and that the recipient can close its window. The recipient is expected in
all cases to send a WM_DDE_ TERMINATE message promptly in response. It is
not permissible to send a negative, busy, or positive WM_DDE_ACK message.

After an application has sent the WM_DDE_TERMINATE message to the partner
in a DDE conversation, it must not respond to any messages from that partner,
since the partner might already have destroyed the window to which the response
would be sent.

When an application is about to terminate, it should end all active DDE conversa­
tions before completing processing of the WM_DESTROY message. Your appli­
cation should include timeout logic to allow for the possibility that one of its DDE
partners is unable to respond to the WM_DDE_TERMINATE message. The fol­
lowing example shows how a server application terminates all DDE conversations:

void TerminateConversations(hwndServerDDE)
HWND hwndServerDDE;
{

}

HWND hwndClientDDE;
LONG 1 Ti meOut;
MSG msg;

f* Terminate each active conversation.*/

hwndClientDDE = NULL;
while (hwndClientDDE = GetNextLink(hwndClientDDE))

SendTerminate(hwndServerDDE, hwndClientDDE);
}

f* Wait for all conversations to terminate; wait for timeout. */

lTimeDut = GetTickCount() +(LONG) nAckTimeOut;
while (PeekMessage(&msg, NULL, WM_DDE_FIRST, WM_DDE_LAST,

PM_REMOV E)) {

}

DispatchMessage C&msg);
if (msg.message == WM_DDE_TERMINATE) {

if (!AtLeastOneLinkActive())
break;

}

if (GetTickCount() > lTimeOut)
break;

return;

536 Microsoft Windows Guide to Programming

22.5 The System Topic
Applications are encouraged to support the System topic at all times. This topic
provides a context for items of information that may be of general interest to
another application.

Data-iit:rn values shouid be rendered in CF _TEXT format. Individuai eiements of
item values for a System topic should be delimited by tab characters. Suggested
items for the System topic include:

Item

Sysltems

Topics

ReturnMessage

Status

Formats

22.6 Related Topics

Description

List of System-topic items supported by the application.

List of topics supported by the application at the current time; this
list can vary from moment to moment.

Supporting detail for the most recently used WM_DDE_ACK mes­
sage. This item is useful when more than eight bits of application­
specific return data are required.

Indication of the current status of the application. When a server re­
ceives a WM_DDE_REQUEST message for this System-topic
item, it should respond by posting a WM_DDE_DATA message
with a string containing either Busy or Ready, as appropriate.

List of clipboard format numbers that the application can render.

For more information about using the clipboard to exchange data, see Chapter 13,
"Clipboard."

For more information about allocating and using memory objects for dynamic data
exchange, see Chapter 15, "Memory Management," and Chapter 16, "More
Memory Management."

For more information about DDE functions and about sending messages to other
applications, see the Microsoft Windows Programmer's Reference, Volumes 2
and3.

Index

386 enhanced-mode memory configuration
described, 340
page-locking memory, 341
swapping code and data, 340

A
ABC character spacing

defined, 399
illustrated, 399
justifying text, 425

Abort dialog box
defining, 259-260
dialog box procedure for, 260
disabling the parent window, 263

AbortDoc function
canceling printing, 263
printing errors or cancellations, 261

AbortProc function, 261
About dialog box

creating a dialog box procedure, 42
creating a dialog box template, 40
creating a header file, 41
illustrated, 23
menu for the About command, 43
overview of creating, 39
WM_ COMMAND message, processing, 44

Accelerator key
accelerator table

creating, 149
loading, 150

adding to menu items, 149
defined, 148
translating

for MDI child windows, 504
for non-MDI windows, 150

ACCELERATORS statement, 149
AddFontResource function

creating customized fonts, 431
installing embedded fonts, 407
using TrueType fonts transparently, 436

Advance width for fonts, illustrated, 399
AllocateSelector function, 340
AllocDStoCSAlias function, 339

AnimatePalette function, 451
AnsiLower function, 308
AnsiLowerBuff function, 308
AnsiN ext function, 201, 308
AnsiPrev function, 201, 308
AnsiToOem function, 201
AnsiUpper function, 201
AnsiUpperBuff function, 308
AppendMenu function

bitmaps, adding to menus, 240
menu items, adding to menus, 142
new menus, creating, 146
owner-drawn menu items, specifying, 156

Application
See also Generic application; Sample applications
assembly-language applications, 313
building

overview, 17
using Generic as a template, 57

command line, viewing, 37
compiling, 13
customizing for international markets, 466
debugging and optimizing, 15
dynamic-link libraries, accessing, 485
elements of, described, 8-12
exchanging data. See Data exchange
guidelines for writing, 17-19
input focus, 85
linking, 13
MS-DOS vs. Windows, 5-8
running from other applications, 311
sharing resources, described, 7
source files, updating, 16
standard Windows application, described, 23
subsystems of, using dynamic-link libraries, 473
tools for creating, xxii, 13-17

Application module
described, 461
tasked executable modules, 462

Application queue
creating message loops, 33
last message posted, WM_PAINT, 66

Arc function, 71
Arial fonts, listed, 395

538 Index

Arrow cursor, built-in
loading and using, 109
specifying in a WNDCLASS structure, 30

Arrow keys, moving the cursor, 118
Ascent, character-cell measurements, 389
Aspect ratio of a font, defined, 411
Assembly-language code

global selectors, 338
guidelines for writing, 313
modifying the interrupt flag, 314
writing exported functions, 316

Assembly-language macros, 313
ATRMl 111.FNT file, fixed-pitch font, 432
Automatic data

See also Data storage
defined,342

Automatic data segment
contents, described, 343
illustrated, 344
movable and multiple, 345

B
Background color

for text, 422
for windows, 30

Background mode, retrieving, 422
Banding, using to print images, 263
Bar, as a document convention, xxiii
Base line, character-cell measurements, 389
BeginPaint function

displaying icons, 102
overview of device context, 67

BIOS interface routines, restrictions with, 311
BitBlt function

blank bitmap, filling, 224
color bitmaps, drawing, 229
palette, using to draw bitmaps, 450
memory bitmaps, displaying, 230
pasting bitmaps from the clipboard, 283
printing bitmaps, 256-257

Bitmap
bitmap file, creating and loading, 221
blank bitmap, creating and filling, 223
check mark for menu items, 155
color bitmaps, creating, 227
deleting, 236
device-dependent bitmap, defined, 221

Bitmap (continued)
device-independent bitmap, defined, 221
displaying

bitmaps in pattern brushes, 232
device-independent bitmaps, 234
memory bitmaps, 229-230
stretched or compressed bitmaps, 231

hard-coded bits, 224
memory bitmaps, 221, 224
menu

adding bitmaps to, 144, 240
defining, 238

monochrome, adding color to, 235
object ownership rules, 488
palette colors, drawing with, 449
pasting from the clipboard, 283
printing, 256-257
raster fonts, 393
resource-definition file, adding bitmaps, 238
sample application, 236-248

BITMAP statement, 155, 222
BITMAPFILEHEADER structure, 227
BITMAPINFO structure

creating bitmaps with hard-coded bits, 224-227
displaying device-independent bitmaps, 234
filling palette entries, 442

BITMAPINFOHEADER structure, 449
Bold type, as a document convention, xxiii
Brackets, as a document convention, xxiii
Break character, defined, 391
Brush drawing tool

creating, 69
drawing with, 70
pattern brush, 232

Button
check boxes, 172
group boxes for buttons, 175
owner-drawn buttons, 174
push buttons

in an About dialog box, 41
creating, 171
default push buttons, 172

radio buttons, 173
BUTTON control class, 166

c
.C filename extension, 48

C-language source file
.C filename extension, 48
for dynamic-link libraries

creating, 474
initializing, 476

for small-model applications, creating, 48
WINDOWS.H header file

including before other header files, 41
including in each source file, 25

C Optimizing Compiler (CL)
automatic type casting and checking, 29
command-line options

applications, 13
dynamic-link libraries, 483

compiling dynamic-link libraries, 483
compiling small-model applications, 56
NULL constant, defined, 302
overview, 13
using with Windows C run-time libraries, 306

C run-time functions
BIOS interface routines, restrictions, 311
C run-time startup code, eliminating, 311
console input and output

excluded functions, 309
using communications functions instead, 18

file input and output
rules for writing applications, 18
Windows vs. C run-time functions, 309

floating-point arithmetic, 310
graphics functions, 310
memory allocation

rules for writing applications, 19
using Windows-specific functions, 307

running other applications, 311
stream input-and-output, 18
string functions, 307
Windows C run-time libraries, described, 306

C run-time libraries
See also C run-time functions
C run-time startup code, eliminating, 311
vs. dynamic-link libraries, 12, 459
linking small applications with, 57
Windows versions, described, 306

Callback functions
assembly-language applications, 313
common types, described, 304
compiling modules with the /Gw option, 304
creating, 304--305
module-definition files, creating, 47

Callback procedures. See Callback functions

calloc C run-time function, 19
Capturing mouse input, 86
Cascading menu, 151
Catch function, 311
CB_ADDSTRING message, 181
CB _DELETESTRING message, 181
CB_DIRmessage, 181
CB _INSERTSTRING message, 181
CDLLCEW.LIB import library, 486
CF _BITMAP data format, 277
CF _DIB data format, 277
CF _DIF data format, 277
CF _DSPBITMAP display format, 277

Index 539

CF _DSPMETAFILEPICT display format, 277
CF _DSPTEXT display format, 278
CF _MET AFILEPICT data format, 278
CF _OEMTEXT data format, 278
CF _OWNERDISPLA Y data format, 278
CF _PALETTE data format, 278
CF _PENDATA data format, 278
CF _RIFF data format, 278
CF _SYLK data format, 278
CF _TEXT data format, 278
CF_ TIFF data format, 278
CF_ WA VE data format, 278
ChangeSelector function, 339-340
Character

See also Font
cells

defined, 388
measurements, 388

matching by metric coercion, 405
spacing

ABC character spacing, defined, 399
illustrated, 399
justifying text, 425
measurementsfor,389

Character input
creating a message loop for, 33
processing, 93
translation of keyboard-input messages, 85

Character sets
comparing or testing characters, 308
defined, 390
effect on document portability, 410
OEM,392
Symbol, 392
vendor-specific, 392
Windows, 391

Check box, creating, 172

540 Index

Check mark for menu items
checking and clearing menu items, 141-142
designing, 155

CheckFileName function, 213
CheckMenultem function

checking and clearing menu items, 141-142
initializing menu items, 147

CheckRadioButton function, 174
Child process, spawning, 311
Child window

See also Client window; Controls
MDI child windows

activating and deactivating, 509
arranging, 510
child window procedure, 506
class structure, 503
controlling, described, 507
creating, 503, 508
destroying, 509
translating accelerator keys, 504

restriction with menus, 137
CL. See C Optimizing Compiler
Class cursor, 111
Class extra bytes

defined,343
storing, 356

Class icon, 102
Class menu, 137
ClassDlgFn function, 472
ClassFlags function, custom control library, 4 72
Classlnfo function, custom control library, 469
Classlnit function, custom control library, 469
ClassStyle function, custom control library, 470
ClassWndFn function, custom control library, 473
CLIBCEW.LIB import library, 487
Client application, DDE conversations, 516
Client area of a window, updating, 32
Client window in MDI applications

creating, 503
described, 501

CLIENTCREATESTRUCT structure, 503
ClientToScreen function

displaying floating pop-up menus, 154
using the cursor with no mouse, 121-122

Clipboard
clipboard viewer

chaining clipboard-viewer windows, 288
controlling data display in, 287
described, 284

Clipboard (continued)
copying text to, 279
DDE data links, 529
display format for private data, 286
formats

Link format, 529
predefined, listed, 277
private, registering, 285
rendering before termination, 285
rendering data on request, 285

OutOfMemory function, 294
pasting bitmaps from, 283
pasting text from, 281
sample application, 289-294
size of data objects, 278

CLIPBRD.EXE application, 284
close function, 203
CloseClipboard function

chaining clipboard-viewer windows, 288
controlling the clipboard viewer, 287
copying text to the clipboard, 280
pasting text from the clipboard, 283
using display formats, 286

CMACROS.INC file, 313
Code segments

aliasing, 339
attributes, default \

defining for applicatioi\s, 327, 364
defining for dynamic-link libraries, 481
overriding, 365

balancing, 365
discardable, sample application using, 329-332
eliminating C run-time startup code, 311
multiple, 365
naming when compiling C modules, 301, 365
object ownership rules, 488
overview, 327
restriction on storing writable data in, 327
swapping, 340
viewing by using Heap Walker, 332

CODE statement
default segment attributes, 327, 364
dynamic-link libraries, using in, 481
Generic application, using in, 4 7
overview, 327

Code View for Windows (CVW), 15
Collating sequence, Windows vs. C run-time

functions, 308

Color
See also Color palette
bitmaps

creating color bitmaps, 227
monochrome, adding color to, 235

text and text background, 422
window background, 30

Color palette
animating, 451
changing, 450-452
color requests from windows (illustrated), 441
default palette, 440
described, 439-440
drawing with palette colors

bitmaps, 449
specifying colors directly, 446
specifying colors indirectly, 447

logical palette
changing entries in, 450-452
creating, 445
deleting, 445
described, 440
LOGP ALETTE structure, creating, 442
realizing the palette, 446
selecting into a device context, 445

system palette
defined,439
responding to changes in, 452--453

updating colors, 453
Columns, in list boxes, 178
Combo box, creating, 181
COMBOBOX control class, 166
Command

About command, creating a menu for, 43
menu items, 140

accelerator keys, 148-149
adding to existing menus, 142
bitmaps as check marks, 155
bitmaps as menu items, 144
changing existing items, 143
checking and clearing, 141
defining in the .RC file, 136
deleting, 144
described, 135
owner-drawn, 156

processing a WM_COMMAND message, 44
Command line for an application, viewing, 37
Command-line arguments, retrieving, 303
COMPAREITEMSTRUCT structure, 180
Comparing characters, 308

Index 541

Compiling
See also C Optimizing Compiler (CL)
applications

overview, 13
small-model applications, 56

dynamic-link libraries, 483
Console input and output

restriction with C run-time functions, 309
using communications functions instead, 18

Controls
buttons

check boxes, 172
default push buttons, 172
group boxes, 175
owner-drawn buttons, 174
push buttons, 171
radio buttons, 173

combo boxes, 181
control class

built-in control classes, 166
control styles, 167

control messages, sending, 169
creating

in dialog boxes, 195
in standard windows, 165

custom control library, 468
defined, 165
destroying, 170
edit controls, 182
identifier, assigning to a control, 168
input

enabling and disabling, 169
receiving, 168

list boxes
filenames, adding, 177
input, responding to, 177
multicolumn, 178
multiple-selection, 178
owner-drawn, 179-180
strings, adding, 176
styles, described, 175

moving and sizing, 169
parent window for controls, specifying, 167
sample application, 184-188
scroll bars, 183
static controls, 175

Conventional memory, 336
Coordinate system for a device context, 68
Copying text to the clipboard, 279

542 Index

Copyright information
DESCRIPTION statement, 46
in the About dialog box, 39

Courier New fonts, listed, 395
CreateBitmap function

blank bitmaps, 223
monochrome memory bitmaps, 224

CreateCompatibleBitmap function, 223
CreateCompatibleDC function

creating bitmaps, 224
displaying bitmaps, 229-230
pasting bitmaps from the clipboard, 283
printing bitmaps, 256--257

CreateDC function
creating bitmaps, 224
passing modified print settings to, 379
passing print settings to, 377
printer device context, 254

CreateDialog function, Abort dialog box, 263
CreateDIBitmap function, 224
CreateFont function

creating customized fonts, 431
creating logical fonts, 418

CreateFontlndirect function
creating customized fonts, 431
creating logical fonts, 418

CreateMenu function, 146
CreatePalette function, 445
CreatePattemBrush function, 232
CreatePen function, 69
CreatePopupMenu function, 153
CreateScalableFontResource function

described, 395
installing embedded fonts, 407
pointing to TrueType font files, 436

CreateSolidBrush function
creating brushes, 69
creating color bitmaps, 227

Create Window function
associating menus with windows, 138
controls, creating, 165-168
Generic application, 30
MDI applications, 503
restriction with MDI child windows, 508
scroll bars, creating, 87

Cross-hair cursor, built-in, 109
CTEXT statement, 41
CTLINFO structure, 469
CTLSTYLE structure, 470
CTLTYPE structure, 469
.CUR filename extension, 110

Cursor
accelerating, 120
built-in cursors

loading and using, 109
shapes, described, 109
specifying in a WNDCLASS structure, 30

class cursor, 111
creating, 110
.CUR filename extension, 110
defined, 109
displaying

by setting a cursor shape, 111
by specifying a class cursor, 111

hourglass for lengthy operations, 112
keyboard input

moving the cursor, 118
using the cursor without a mouse, 121

loading, 110
mouse, using the cursor with

described, 113
ending graphics selections, 117
extending graphics selections, 115
showing graphics selections, 116
starting graphics selections, 114

resource-definition file, defining in, 110
sample application, 122-130

CURSOR statement, 110
CVW (Code View for Windows), 15

D
Data exchange

See also Clipboard; Dynamic data exchange
dynamic-link libraries

sharing code, 464
sharing resources, 465

restriction with global handles, 363
types of, supported by Windows, 514

Data formats
predefined, listed, 277
private, registering, 285

Data links, DDE
initiating, 528
notification of data change, 532
Paste Link command, 529
permanent data links, defined, 518
terminating, 533

Data segments
aliasing, 339
defining attributes of, 328
swapping, 340

DATA statement
attributes

MULTIPLE for applications, 345
SINGLE for dynamic-link libraries, 482

defining data segment attributes, 328
Generic application, 4 7

Data storage
automatic data segment, 343-345
extra bytes in data structures, 356
global memory objects

allocating, 351
changing attributes or size, 353
changing position in LRU list, 355
designing the structure of, 350
freeing and discarding, 354
locking and unlocking, 351
locking for extended periods, 355
low-memory conditions, 355
notification of discard, 355
retrieving information about, 354

local dynamic-data objects
allocating, 346
changing size or attributes, 348
freeing and discarding, 349
local heap organization, 345
locking and unlocking, 347

resources
discardable, fixed, or movable, 357
freeing, 359
loading custom resources, 358
loading on call or preloading, 357
locating, 358
locking and unlocking, 359
separate file vs. resource, 357

types of data storage, 342
Data structures. See Structures
Data types

commonly used data types, 25
primary, restriction with NULL, 302
WINDOWS.H header file, 25

DDE. See Dynamic data exchange
DDEDAT A structure, 525-526
Debugging tools, 15
.DEF filename extension, 13
Default palette, defined, 440
DefFrameProc function, 505
DefMDIChildProc function, 506
DEFPUSHBUTTON statement, 41

Index 543

DefWindowProc function
erasing output to a window, 66
passing messages from window procedures, 38
restrictions

with dialog box procedures, 194
with messages from dialog box procedures, 42

DeleteDC function
memory device context, 224
printer device context, 255
using after calling SelectObject, 230

DELETEITEMSTRUCT structure, 181
DeleteMenu function, 144
DeleteObject function

deleting bitmaps, 236
deleting drawing tools, 70
deleting logical palettes, 446

Deleting
See also Destroying windows
bitmaps, 236
device contexts

memory,224
printer, 255

drawing tools, 70
output to a window, 66

Dereferencing handles
global memory objects, 350-351
local memory objects, 347

Descent, character-cell measurements, 389
DESCRIPTION statement

dynamic-link libraries, 481
fontresources,434
Generic application, 46

Destroying windows
controls, 170
dialog boxes, modeless, 193
freeing allocated resources, 35
MDI child windows, 509
processing the WM_DESTROY message, 39

DestroyWindow function
controls, 170
modeless dialog boxes, 193

Device context
client area, invalidating, 67
colors, setting, 422
coordinate system, 68
defined, 7
described, 65

544 Index

Device context (continued)
fonts

default font, 394
enumerating, 415
retrieving font information, 420

handle, retrieving, 66
memory

deleting and releasing, 224, 230
selecting bitmaps into, 223-224

palettes, selecting into a device context, 445
preparing, 68
printer

creating, 254
deleting, 255
including changes made by users, 380
passing print settings to CreateDC, 377
printer environment, 372
search order for print settings, 370
updating, 252

releasing, 66
text alignment, setting, 422
WM_P AINT message, processing, 66

Device driver
defined, 7
.DRV filename extension, 467
interrupt handling, 467
printer

capabilities, determining, 374
copying print settings between, 3 81
creating a DEVMODE structure, 370
functions, 372
loading and unloading, 372
older drivers, 382
printer environment, maintaining, 372

restriction with SendMessage function, 467
standard Windows device drivers, listed, 467

Device-independent graphics, 7
Device units, converting design units to, 429
DeviceCapabilities function, 371-372, 374
DeviceMode function, 382
DEVMODE structure

changing print settings
changes made by users, 380
changing default settings, 377
presetting Print Setup dialog box, 381
when creating a device context, 377
without affecting other applications, 379

copying print settings between drivers, 381
defining print settings, 370-371
retrieving a copy of print settings, 376
storing print settings, 382

Dialog box
Abort dialog box

defining, 259-260
dialog box procedure, creating, 260

About dialog box
described, 39
dialog box procedure, creating, 42
dialog box template, creating, 40
header file, creating, 41
illustrated, 23
menu for the About command, 43
processing a WM_ COMMAND message, 44

controls, 195
custom control library, 468
described, 10
dialog box procedure, creating, 194
displaying, 192
font dialog box, illustrated, 404
icons, displaying in, 104
input, receiving, 192
modal, 192
modeless, 192
opening files, common dialog box for, 199
print settings, common dialog box for, 369
SaveAs dialog box

defining, 205
dialog box procedure, creating, 211

template, defined, 191
terminating, 192-193

Dialog box procedure
creating

for the Abort dialog box, 260
for the About dialog box, 42
for the SaveAs dialog box, 211

described, 42
procedure-instance address, 44
writing exported functions, 304

DIALOG statement
About dialog box template, 40
adding icons to dialog boxes, 104
SaveAs dialog box, defining, 205

DialogBox function
About dialog box, creating, 44
modal dialog boxes, displaying, 192
opening files, 208
SaveAs dialog box, displaying, 209

Disabling
input to a control, 169
menu items, 140

Discardable memory
creating discardable memory objects, 325
described, 321

Disk space for fonts, 410
DispatchMessage function

creating a message loop, 33
restriction with dialog boxes, 193

Display format, using for private data, 286
Dithering, defined, 448
DlgDirList function, 177, 212
DLL. See Dynamic-link libraries
.DLL filename extension, 461, 463
DOCINFO structure, 255
Document conventions, xxiii
Double-clicking

enabling double-click processing, 90
setting the double-click time, 86

DPMI services, restriction with applications, 362
DPtoLP function, 265
Drawing

See also Bitmap
drawing tools, 69-70
text

colors, setting, 422
functions for drawing text, 421
text alignment, setting, 422

using palette colors
bitmaps, 449
specifying colors directly, 446
specifying colors indirectly, 447

within windows
described, 65
displaying text, 71
invalidating the client area, 67
processing WM_PAINT messages, 66
using brush and pen tools, 70
using the GetDC function, 66

DRA WITEMSTRUCT structure
owner-drawn buttons, 174
owner-drawn list box items, 180
owner-drawn menu items, 157

DrawMenuBar function, 140
DrawText function, 71, 421
.DRY filename extension, 461, 467
Dynamic data exchange (DDE)

conversations
client and server, defined, 516
identifying units of data, 517
initiating, 521
retrieving an item, 523
server response, illustrated, 522

Index 545

Dynamic data exchange (DDE) (continued)
conversations (continued)

submitting an item, 526
terminating, 534

messages, 519
overview, 514-515
permanent data links

defined, 518
initiating, 528
notification of data change, 532
Paste Link command, 529
terminating, 533

remote applications, 534
System topic, 536

Dynamic-link libraries
C-language source file, 474
C run-time startup code, eliminating, 312
command-line arguments, retrieving, 303
compiling, 482
custom controls

ClassDlgFn function, 472
ClassFlags function, 4 72
Classlnfo function, 469
Classlnit function, 469
ClassStyle function, 470
ClassWndFn function, 473
exporting functions, 468

customizing for international markets, 466
data sharing, 488
described, 12, 459
device drivers, 467
.DLL filename extension, 463
font resource file, defined, 432
functions

calling, 486
creating prototype for, 485
importing, 486-487

header file, 496
import libraries, described, 460
initializing, 476
linked with Windows C run-time libraries, 306
linking, 482
locating, 463
makefile, 482
module-definition file, 481
modules

vs. application modules, 461
nontasked executable modules, 462

multiple, for large applications, 473
object ownership rules, 488
opening files, 309

546 Index

Dynamic-link libraries (continued)
sample application, 489-497

E

sharing objects between applications, 464
stacks

restriction on passing stack variables, 463
trouble calling user-written functions, 463

iasks, 462
terminating, 480
vs. static-link libraries, 459
Windows hooks, 467

EDIT control class, 166
Edit control, creating, 182
Ellipse function, 71
Ellipsis, as a document convention, xxiii
EM_CANUNDO message, 182
EM_GETLINE message, 182
EM_LINELENGTH message, 182
EM_SETP ASSWORDCHAR message, 182
EM_SETTABSTOPS message, 182
EM_ UNDO message, 182
Embedded font

checking permission to embed, 405
installing and using, 406
read-only, removing, 407
storing font data with documents, 406

EmptyClipboard function
copying text to the clipboard, 280
discarding copied data, 285

EN_ CHANGE message, 182
EnableMenultem function

disabling menu items, 141
enabling menu items, 141
Paste command, availability of, 281

Enable Window function
enabling input to a control, 169
performing a cancelable print operation, 263

Enabling
input to a control, 169
menu items, 140--141

EndDialog function
About dialog box, 42
modal dialog boxes, 192

EndDoc function
ending a print request, 255
restriction on using, 262

EndPage function
ending a page, 255
errors in processing, 257-259

EndPaint function
displaying icons, 102
overview of device context, 67

Enumeration callback functions, 304
EnumFontFamilies function

described, 395
ut:sign-unii metrics, 429
enumerating fonts, 415
font names, checking for duplicates, 406
font substitutes, 398
metrics for portable documents, 429
raster fonts, identifying, 419

EnumFonts function
enumerating fonts, 415
vs. EnumFontFamilies function, 415
font substitutes, 398

Epilogcode
added to C run-time routines, 306
adding to each function, 13
creating callback functions, 304

ES register, in assembly-language code, 317
Escape function, retrieving band coordinates, 264
EXE File Header Utility (EXEHDR), 461
.EXE filename extension, 56, 461
Executable stub, 46
EXETYPE WINDOWS statement

dynamic-link libraries, 481
Generic application, 46

Exit command, processing, 209
Exit procedure, dynamic-link libraries, 480
Exported functions

See also Callback functions; Dynamic-link libraries
creating, 304--305
creating in assembly language, 316
dynamic-link modules, described, 461

EXPORTS statement
AbortDlg and AbortProc functions, 272
About dialog box procedure, 42
callback functions, creating, 304
dynamic-link libraries, 480, 482
Generic application, 47
SaveAsDlg dialog box procedure, 216
window procedure, naming, 38

ExtDeviceMode function
changing print settings

changing default settings, 377
when creating a device context, 377
without affecting other applications, 379

copying print settings between drivers, 381
creating a DEVMODE structure, 370
parameters, 374

ExtDeviceMode function (continued)
Print Setup dialog box

displaying, 380
setting values in, 381

retrieving a copy of print settings, 376
specifying input and output, 375

Extended memory
386 enhanced-mode memory configuration, 340
standard-mode memory configuration, 336

External leading, defined, 389
Extra bytes. See Window extra bytes
ExtTextOut function, 397, 421

F
Far address, large or huge memory model, 360
FAR keyword

About dialog box procedure, defining, 42
callback functions, creating, 304
mixed memory model, 301
restriction with the WinMain function, 18
window procedures, defining, 38

Far pointer
addressing global memory objects, 350
dereferencing handles to, 350, 363
incrementing, 337
restrictions

incrementing the segment address, 364
static data in small/medium models, 362

FARPROC data type, 25
FF _DECORATIVE font family, 388
FF _DONTCARE font family, 388
FF _MODERN font family, 388
FF _ROMAN font family, 388
FF _SCRIPT font family, 388
FF _SWISS font family, 388
File input and output

closing files
before displaying message boxes, 201
before yielding application control, 200

creating files, 202
File menu commands, processing, 206-209
filenames, unique, 201
handling files, rules for, 200
MS-DOS conventions for, 200
open-file problems, preventing, 200
openingfiles,203
overview, 199
prompting for files, 204
reading from files, 203

File input and output (continued)
reopening files, 204
sample application, 205-217
SaveAs dialog box, defining, 205
status of open files, checking, 204
using C run-time functions, 309
writing to files, 203

Index 547

File menu commands, processing, 206-209
Filename

MS-DOS conventions for, 200
translation to OEM character set, 201
unique for application instances, 201

Filename extensions
.C (C-language source file), 48
.CUR (cursor file), 110
.DEF (module-definition file), 13
.DLL (dynamic-link library), 461
.DRV (device driver), 467
.EXE (application module), 56, 461
.FNT (font file), 432
.FON

dynamic-link module, 461
font resource file, 394

.FOT (TrueType font resource file), 394

.H (header file), 54

.ICO (icon file), 101

.INC (assembly-language macro), 313

.LIB (import library), 485

.MAP (MAPSYM file), 484

.OBJ (object file), 56

.RC (resource-definition file), 15

.RES (resource file), 56

.SYM (symbol file), 484

.TTF
embedded font with full permission, 407
TrueType font-information file, 394, 407

Filter (window-hook function)
defined,467
writing exported functions, 304

FindResource function, 358
Floating pop-up menu, 153
Floating-point arithmetic, 310
.FNT filename extension, 432
.FON filename extension, 394, 461
Font

See also TrueType fonts
attributes of text and characters, 398-402
break character, 391
character sets, 390-391
compatibility with earlier Windows versions, 397

548 Index

Font (continued)
creating

described, 431
dummy code module, 433
font files, 432
module-definition file, 434
resource-definition file, 433

default character, 391
defined, 387
design units, 429
design widths, 428
dialog box, illustrated, 404
disk space requirements, 410
embedded

checking permission to embed fonts, 405
installing and using, 406
read-only fonts, removing, 407
storing font data with documents, 406

enumerating, 415
families, used by GDI, 388
fontmapper,402-403
font resource files

compiling and linking, 435
described, 394
dummy code module for, 433
installing, 406

font subtitute section in WIN.IN!, 397
functions, new (list of), 395
glyph outlines, retrieving, 426
graphics, installing fonts for, 436
logical and physical inches, 401
logical fonts

creating, 418
vs. physical fonts, 403
retrieving information about, 421

maximum number per system, 410
measuring

characters, 388
line and character spacing, 389

memory usage and performance, 410
metrics

design units, 429
metric coercion, 405
portable documents, 429
retrieving, 420
vertical text metrics, illustrated, 401

multiple fonts in a text line, 423
names, duplicate, 394
Panose numbers, 431

Font (continued)
point size

defined,388
determining, 402

portability
across platforms, 410
across printers, 408
designing portable fonts, 411
metrics for portable documents, 429

raster fonts, 393
rotating (illustrated), 426
scaling, 411
stock fonts, 414
System font, 393
system font table, maximum entries, 431
terminology for font concepts, 387
text

drawing text, 421-422
text capabilities of devices, 417

vector fonts, 393
width (extent), retrieving, 423
WYSIWYG output, 405

Font Editor, 14, 432
Font files

creating, 432
.FNT filename extension, 432
tools for creating, xxii, 14
True Type, deleting for read-only fonts, 407

Font resource file
compiling and linking, 435
described, 394
dummy code module for, 433
.FON and .FOT filename extensions, 394
installing, 406

FONT statement, 433
Formatted string, creating, 89
.FOT filename extension, 394, 407
Frame window procedure, MDI applications, 505
free C run-time function, translated by Windows, 19
FreeLibrary function

calling device-driver functions, 373
importing functions dynamically, 487

FreeProclnstance function
Abort dialog box, 269
About dialog box, 45
callback functions, creating, 305
SaveAs dialog box, 209

FreeResource function, 359
FreeSelector function, 340
fstat C run-time function, 204

Functions

G

callback functions
assembly-language applications, 313
commontypes,described,304
creating, 304-305
module-definition files, creating, 47

called by Windows
PASCAL keyword required, 18
types of, 18

child window procedure, 506
dynamic-link library functions

calling, 486
creating prototype for, 485
importing, 486--487

exported functions
creating, 304--305
creating in assembly language, 316

exporting, described, 461
frame window procedure, MDI applications, 505
importing, described, 461
initialization functions

dynamic-link libraries, 476
instance initialization function, 36
main initialization function, 35

printer driver functions, 372
prolog and epilog code, adding, 13
prototypes for declaring functions, 29
return values, checking, 18
termination, for dynamic-link libraries, 480
text output functions, 421
window procedure. See Window procedure
WinMain. See WinMain function

GDI. See Graphics device interface
GDilibrary

defined, 12
dynamic-link libraries, described, 460

Generic application
About dialog box, creating, 39, 45
C-language source file, creating, 48
command-line parameter, 37
compiling and linking, 56
creating, overview of steps, 48
data types and structures, 25
handles, 26
header file

creating, 41
including in each source file, 25

illustrated, 23

Generic application (continued)
initialization functions, 35
instances of applications, 26
makefile, 56
message loop, 33
module-definition file, 45-47, 55
overview, 23
resource-definition file, 54
template for applications, 57
terminating an application, 34
window class, registering, 27-30
window procedure, 37
window

creating, 30
showing and updating, 32

WinMain function, 24--37
yielding application control, 34

GetAspectRatioFilter function, 411
GetBitmapBits function, 227
GetBkColor function, 422
GetBkMode function, 422
GetCapture function, 86

Index 549

getchar C run-time function, restriction with, 18
GetCharABCWidths function

character spacing, described, 399
described, 395
metrics for portable documents, 430
multiple fonts in a line, 424

GetCharWidth function, 423, 430
GetClassLong function, 357
GetClassWord function, 357
GetClientRect function

accelerating cursor movement, 120
creating multicolumn list boxes, 178
displaying icons, 102

GetClipboardData function
pasting text from the clipboard, 283
rendering data on request, 285

GetCursorPos function, 120
GetDC function

creating bitmaps, 224
displaying bitmaps, 229-230
retrieving device-context handles, 66

GetDeviceCaps function
device dimensions, retrieving, 401
lines per page, determining, 269
point size, determining, 402
text capabilities of devices, checking, 417
using before customizing a device context, 370

GetDialogBaseUnits function, 40
GetDIBits function, 227

550 Index

GetDlgltem function, 195
GetDOSEnvironment function, 303
GetDoubleClick function, 86
GetFocus function, 85
GetFontData function

described, 396
embedding fonts, 406

GetGlyphOutline function, 396, 426
GetMenu function

initializing menus, 147
replacing menus, 146
using bitmaps as menu items, 145

GetMenuCheckMarkDimensions function, 155
GetMessage function

closing files before calling, 200
creating a message loop, 33
retrieving the WM_PAINT message, 66
terminating message loop and application, 35
yielding application control, 34

GetNumTasks function, 355
GetObject function

bitmap dimensions, retrieving, 230
bitmaps, pasting from the clipboard, 283
logical-font information, retrieving, 421

GetOpenFileName function, 199
GetOutlineTextMetrics function

described, 396
font information, retrieving, 420
metrics for portable documents, 430
minimum size of TrueType font, 403
physcial font dimensions, 401
typographic ascender and descender, 400

GetPrinterDC function, 271
GetProcAddress function

calling device-driver functions, 373
importing functions dynamically, 487

GetProfileString function
listing installed fonts, 431
printing a line of text, 254
retrieving printer information, 253

GetRasterizerCaps function, 396
GetSaveFileName function, 199
GetStockObject function

standard background brush, 30
stock fonts, 414

GetSubMenu function
cascading pop-up menus, 153
MDI child windows, 503

GetSystemDirectory function, 463
GetSystemMetrics function, 121, 183
GetTabbedTextExtent function, 423

GetTempFileName function, 201
GetTextAlign function, 422
GetTextCharacterExtra function, 425
GetTextColor function, 422
GetTextExtent function, 423
GetTextFace function
GetTextMetrics function

determining line spacing, 400
determining lines per page, 269
retrieving font information, 420

GetUpdateRect function, 233
GetWindow function, 508
GetWindowLong function

MDI applications, 506
overview, 356

GetWindowWord function
MDI applications, 506, 509
overview, 356

GetWinFlags functions, 335
Global atom, defined, 514
Global dynamic data

See also Data storage
defined, 342

Global handle
restriction on sharing data, 363
shared-memory handle, DDE protocol, 514

Global heap
386 enhanced-mode memory configurations, 340
allocating global memory objects, 322
described, 322
vs. local heap, 350
moving locked objects to low memory, 355
preventing reorganization of, 351
standard-mode memory configuration, 336

Global memory
See also Memory object
allocating, 322
freeing before application terminates, 323
freeing in low-memory conditions, 355
locking and unlocking, 322, 351

Global selector, 338
GlobalAddAtom function, 521
GlobalAlloc function

allocating global memory objects, 322
allocating global shared-memory handles, 514
copying text to the clipboard, 279
using the handle returned by, 351

GlobalCompact function
checking available memory, 323
discarding memory objects, 325

GlobalDeleteAtom function, 521

GlobalDiscard function, 325
GlobalFix function, 339
GlobalFlags function

described, 354
obtaining lock count, 352
verifying status of discarded objects, 325

GlobalFree function
freeing global memory objects, 354
using before application terminates, 323

GlobalGetAtomName function, 526
GlobalLock function

copying text to the clipboard, 279
dereferencing handles, 350--351, 363
locking global memory objects, 322, 351
locking objects for extended periods, 355

GlobalLRUNewest function, 355
GlobalLRUOldest function, 355
GlobalNotify function, 355
GlobalPageLock function, 341
GlobalPageUnlock function, 342
GlobalRealloc function

changing object attributes, 326
changing object size, 353
reallocating a discarded object, 325

GlobalSize function, 354
GlobalUnlock function

copying text to the clipboard, 279
unlocking global memory objects, 323, 351

GlobalUn Wire function, 355
GlobalWire function, 354
Glyph

defined, 388
grid-fitted, 428
outlines, retrieving, 426

Graphics
installing special fonts for, 436
selecting

described, 113
ending selections, 117
extending selections, 115
showing selections, 116
starting selections, 114

Graphics device interface (GDI)
See also Bitmap; Font
banding, using to print images, 263
bitmaps, creating, 223
device context

coordinate system, 68
described, 65

Index 551

Graphics device interface (GDI) (continued)
device context (continued)

handle, retrieving, 66
invalidating the client area, 67
preparing, 68
releasing, 66
WM_P AINT message, processing, 66

displaying text, 71
drawing tools

creating, 69
deleting, 70
selecting, 70

drawing with brush and pen tools, 70
logical palettes, described, 440
objects, destroying explicitly, 488
sample application, 73-78

Graphics operations, device-independent, 7
Grayed menu items, 140--141
GrayString function, 421
Group box for buttons, 175
Guidelines for writing applications, 17-19

H
.H filename extension, 54
Handle

defined,26
dereferencing

global memory objects, 350
local memory objects, 347

global
restriction on sharing data, 363
shared-memory, DDE protocol, 514

instance handle, 26
memory handle, defined, 321
specifying unsigned integers for, 25

HANDLE data type, 25
Header file

C run-time vs. Windows, 306
#define directive, 306
for dynamic-link libraries, 496
for small-model applications, 41
.H filename extension, 54
menu identifiers, 137
WINDOWS.H

including in each source file, 25
NULL constant, defined, 302

Heap
See also Global heap; Local heap
examining contents of, 15

552 Index

Heap (continued)
memory configurations

386 enhanced mode, described, 340
standard mode, described, 336

Heap Walker, viewing code segments, 332
HEAPSIZE statement

for dynamic-link libraries, 482
for small-model applications, 47
managing automatic data segments, 344
providing a local heap, 323

Hourglass cursor
displaying during lengthy operations, 112
loading, 109

Huge data, declaring in C-language modules, 361
Huge memory model, 360
Huge memory object, 337
HWND data type, 25

I-beam cursor, built-in, 109
.ICO filename extension, 101
Icon

built-in icons
loading and using, 100
specifying in a WNDCLASS structure, 29

class icon, 102
defined, 99
displaying for a minimized window

class icon, 102
your own icons, 102

displaying in a dialog box, 104
fonts for, installing, 436
.ICO filename extension, 101
icon files, creating, 101
loading, 101
requesting (illustrated), 100
resource-definition file, defining in, 101
sample application, 105-106

ICON statement
adding icons to dialog boxes, 104
defining icon resources, 101

IDM_COPY case, 279, 291
IDM_CUTcase, 291
IDM_PASTE case

pasting bitmaps, 283
pasting text, 281

IDM_pRINT case, 267

Image Editor, 14
bitmap file, creating and loading, 221
check marks for menu items, 155
cursor shapes, creating, 110
icon files, creating, 101

IMPLIB (Import L~brary Manager), 485
Import libraries

creating, 485
described, 460
.LIB filename extension, 485
listed and defined, 486
required by the SDK, 306

Import Library Manager (IMPLIB), 485
Importing dynamic-link library functions

dynamically at link time, 487
explicitly at link time, 487
implicity at link time, 486

Importing functions into modules, 461
Inactive menu items, 140--141
.INC filename extension, 313
Include file. See Header file
Incrementing a far pointer, 337
Initialization functions

dynamic-link libraries, 476
instance initialization function, 36
main initialization function, 35

Input focus, 85
Input messages

compared with MS-DOS application input, 6
described, 83
formats, 84
keyboard input messages, 84
menu input messages, 88
message loops

creating, 33
described, 10-12

mouse input messages, 85
received by dialog box procedures, 42
received by window procedures, 38
sample application

creating, 88
illustrated, 95

scroll bar input messages, 87
timer input messages, 86

Input queue
creating message loops, 33
last message posted, WM_P AINT, 66

InsertMenu function
adding menu items to menus, 142, 146
owner-drawn menu items, 156

Install command, naming Windows C libraries, 306
Instance of an application

declaring DATA as multiple, 345
filenames, unique, 201
instance handle, 26
instance initialization function, 36
MakeProclnstance function

About dialog box, 44
creating callback functions, 304

Integers, common data types for specifying, 25
Internal leading, defined, 390
Interrupt

device interrupt handling, 467
page fault, 340
using int86 and int86x functions, 311

Interrupt 21h, C run-time functions, 311
Interrupt flag, assembly-language code, 314---316
InvalidateRect function

invalidating the client area, 67
selecting graphics, 115

InvalidateRgn function, 67
IsCharAlpha function, 308
IsCharAlphaNumeric function, 308
IsCharLower function, 308
IsCharUpper function, 308
IsClipboardFormatAvailable function, 281
IsDialogMessage function, 193
Islconic function, 102
Italic, as a document convention, xxiii

K
Kernel library

defined, 12
dynamic-link libraries described, 460

Keyboard input

L

See also Input messages
accelerator keys, translating, 150
compared with MS-DOS application input, 6
cursor

moving the cursor, 118
using without a mouse, 121

messages, described, 84
mouse actions, duplicating, 118
processing, 92

Large memory model
described, 360
using data segments, 328

Index 553

LB_ADDSTRING message, 176, 180
LB_DELETESTRINGmessage, 176, 181
LB _DIR message, 177
LB_GETCURSEL message, 178
LB_ GETTEXT message, 178
LB_INSERTSTRING message, 176, 180
LB_SETCOLUMNWIDTH message, 179
LDLLCEW.LIB import library, 486
Leading

external and internal, defined, 389-390
illustrated, 390

Least-recently-used (LRU) object, discarding, 325
.LIB filename extension, 485
LIBENTRY.ASM file, 477
LibMain function, 479
Libraries

See also Dynamic-link libraries
C run-time libraries

vs. dynamic-link, 12
linking applications with SLIBCEW.LIB, 57
Windows versions of, described, 306

code segments, discardable and movable, 327
import libraries

creating, 485
listed and defined, 486

library functions
calling, 486
creating prototypes for, 485
importing, 486--487

static-link, described, 459
tools for creating, xxii
Windows. See Dynamic-link libraries

LIBRARY keyword, 481
LIBRARY statement, font resources, 434
LIEW.LIB import library

defined, 486
required by the SDK, 306

Line breaks, affected by TrueType font metrics, 409
Line spacing

measurements, described, 389
retrieving text metric values, 400

Linear scaling of True Type fonts, 411
Lines, drawing, 71
LineTo function

drawing lines, 71
showing graphics selections, 116

LINK (Segmented Executable Linker)
described, 13
linking dynamic-link libraries, 484
linking small-model applications, 56

554 Index

Link command
eliminating C run-time startup code, 311-312
including WIN87EM.LIB, 310
linking dynamic-link libraries, 484
linking small-model applications, 56
overview, 13
using with Windows C run-time libraries, 306

Link format, clipboard, 529
Linking

applications
overview, 13
small-model applications, 56
with dynamic-link libraries, 459

dynamic-link libraries, 484
List box

combo box, 181
filenames, adding, 177
input, responding to, 177
multicolumn, 178
multiple-selection, 178
owner-drawn, 179-180
strings, adding, 176
styles, described, 175

LISTBOX control class, 166
LLIBCEW.LIB import library, 487
Load.Accelerators function, 150
LoadBitmap function

loading a bitmap resource, 221
using bitmaps as menu items, 144

Load Cursor function, 109-110
Loadlcon function, 100-101
LoadLibrary function

calling device-driver functions, 373
importing functions dynamically, 487
loading language-specific information, 466

LoadMenu function, 138
LoadModule functions, 311
LoadResource function, 358-359
Local dynamic data

See also Data storage
defined,342

Local heap
automatic data segments, managing, 344
C run-time startup code, eliminating, 311
data segment, establishing in, 345
described, 323
functions, vs. C run-time functions, 19
illustrated, 346

Local heap (continued)
initializing for dynamic-link libraries, 476
local memory objects, allocating, 323
preventing reorganization of, 346
providing for an application, 323
size, specifying, 344

Local memory
See also Memory object
allocating, 323
locking and unlocking, 323, 347

LocalAlloc function
vs. C run-time functions, 19
local memory objects, allocating, 323, 346
logical fonts, creating, 419
size of the local heap, increasing, 344

LocalCompact function, 324
LocalDiscard function, 349
LocalFlags function, 349
LocalFree function

vs. C run-time functions, 19
freeing local memory objects, 349

Locallnit function
dynamic-link libraries, 476
restriction with applications, 345

LocalLock function
dereferencing handles, 347
locking local memory objects, 323, 347

LocalReAlloc function
vs. C run-time functions, 19
changing object attributes or size, 348
reusing a handle, 349

LocalShrink function, 344
LocalSize function, 349
LocalUnlock function, 324, 347
Lock count of global memory objects, 351
Locking custom resources, 359
Locking memory

See also Memory object
global memory, 322, 351
local memory, 323, 347

LockResource function, 359
LOGFONT structure

enumerating fonts, 415
font names, duplicate, 394
logical fonts, creating, 418
logical-font information, retrieving, 421
point size, determining, 402 · '
raster or vector fonts, specifying, 420
rotating text, 426
TrueType fonts, specifying only, 420

Logical inch, font dimensions, 401
Logical palette

See also Color palette
changing entries in, 450-452
creating, 445
deleting, 445
described, 440
LOGP ALETTE structure, creating, 442
mapping colors to the system palette, 440
realizing, 446
selecting into a device context, 445

LOGP ALETTE structure, 442
LONG data type, 25
Low-memory conditions, freeing memory, 355
LPS1R data type, 25
LRU (least-recently-used) object, discarding, 325
lstrcat function, 307
lstrcmp function, 307
lstrcmpi function, 307
lstrcpy function, 279, 307
lstrlen function, 307

M
Macros, assembly-language, 313
Main initialization function, 35-36
Main window

displaying, 32
filling a WNDCLASS structure, 28
posting the WM_ QUIT message, 39

Makefile
described, 16
for dynamic-link libraries, 482
for small-model applications, 56

MakeProclnstance function
About dialog box, 44
canceling print operations, 263
creating callback functions, 305
SaveAs dialog box, 209

malloc C run-time function, 19
.MAP filename extension, 484
MAPSYM (Microsoft Symbol-File Generator), 484
MDI. See Multiple document interface
MDICREATES1RUCT structure, 508
MDLLCEW.LIB import library, 486
MEASUREITEMS1RUCT structure, 157
Medium memory model

described, 360
restriction with far pointers, 362
restrictions with C run-time functions, 307
sample application, 329-332

Index 555

Memory
See also Global heap; Local heap; Memory

configuration; Memory management
allocating with Windows-specific functions, 307
blocks. See Memory object
discardable

allocating, 325
described, 321

fixed, described, 321
global

freeing before an application terminates, 323
freeing in low-memory conditions, 355
locking and unlocking, 322, 351

handle, defined, 321
local, locking and unlocking, 323, 347
models. See Memory models
movable, described, 321
objects. See Memory object
OutOtMemory function, clipboard, 294
page-locking, 341
sharing among applications, described, 7
swapping, 340

Memory block. See Memory object
Memory configuration

386 enhanced mode
described, 340
page-locking memory, 341
swapping code and data, 340

determining by calling GetWinFlags, 335
standard mode

described, 336
global selectors, 338
illustrated, 337
segment aliasing, 339
using huge memory objects, 337

Memory management
See also Data storage; Memory configuration;

Memory models
allocating memory

described, 321
determining which heap to use, 350
discardable memory, 325
in the global heap, 322, 351
in the local heap, 323, 346

automatic data segments, 343-345
code segments

balancing, 365
default attributes, 364
multiple, 365
overview, 326-327

556 Index

Memory management (continued)
data segments, defining attributes, 328
dynamic vs. static linking, 459
dynamic-link libraries

sharing code, 464
sharing resources, 465

huge data, 361
low-memory conditions, 355
rules for managing data, 362
sample medium-model application, 329-332

Memory model
huge, described, 360
illustrated, 360
large

described, 360
using data segments, 328

medium
described, 360
restriction with far pointers, 362
restrictions with C run-time functions, 307
sample application, 329-332

mixed
advantages, described, 301
described, 360
medium-model default settings, 301
multiple code segments, 365
small-model default settings, 301

near vs. far addresses, 360
small

restriction with far pointers, 362
restrictions with C run-time functions, 307

Memory-notification procedure, 304
Memory object

See also Memory management
defined, 321
discardable

creating, 325
described, 321

global
addressing with far pointers, 350
allocating, 322, 351
designing the structure of, 350
discarding, 325
freeing, 354
information about, obtaining, 354
lock count, 351
locking and unlocking, 322, 351
locking for extended periods, 355
low-memory conditions, 355
notification of discard, 355
object attributes, changing, 326

Memory object (continued)
global (continued)

object size, changing, 353
position in LRU list, changing, 355
reading into or writing out of, 309
shared-memory objects, DDE protocol, 514

handle, defined, 321
huge, using in standard-mode configuration, 337
local

addressing with near pointers, 350
allocating, 323, 346
attributes or size, changing, 348
freeing and discarding, 349
information about, obtaining, 349
locking and unlocking, 323, 347

movable, described, 321
ownership rules, 488
page-locking, 341
restrictions

comparing selector values, 364
reading or writing past the end, 364

swapping, 340
Menu

About command, defining a menu for, 43
accelerator keys

accelerator table, 149-150
adding to menu items, 149
defined, 148
MDI child windows, 504
translating, 150

associating with a window, 137-138
changing existing menus, 143
class menu for a window class, 137
creating, 146
defined, 135
described, 9
identifiers, 137
initializing, 147
input messages

described, 88
processing, 138

menu items
adding to existing menus, 142
bitmaps as menu items, 144
bitmaps for check marks, 155
checking and clearing, 141
defined, 135
deleting, 144
enabling and disabling, 140--141
owner-drawn, 156
resource-definition file, defining in, 136

Menu (continued)
pop-up menus

cascading, 151
defining, 136
floating, 153

replacing, 145
resource-definition file, defining in, 136
sample application, 158-162

Menu bar, displaying menu changes, 140
MENU statement, 136
MENUITEM statement

accelerator keys, 149
bitmap and pattern menus, 238
check mark, 141
defining menu items, 136
initial state of menu items, 140

Message box, closing files before displaying, 201
Message loop

accelerator keys, translating, 150
application vs. dynamic-link modules, 462
creating, 33
defined, 33
MDI applications, 504
overview, 10--12
terminating, 34
WinMain function, described, 24
yielding application control, 34

MessageBox function, 201
Messages

See also Message loop
character input, 85
control messages, 169
dynamic data exchange, 519
input messages

compared with MS-DOS application input, 6
described, 83
format of, 84

keyboard input, 84
menu input, 88
monitoring with Spy, 15
mouse input, 85
notification messages for controls, 168
rectangles for message text, 91
scroll-bar input, 87
timer input, 86
window-management messages, 38

Metafile
object ownership rules, 488
scaling with TrueType fonts, 420

Metric coercion, character matching, 405

Metrics, font. See Font
Mixed memory model

advantages, described, 301
code segments, multiple, 365
default settings, 301
described, 360

MLIBCEW.LIB import library, 487
Modal dialog box, 192
Mode menu, defining, 238
Modeless dialog box, 192
ModifyMenu function

Index 557

changing menus or menu items, 143
specifying owner-drawn menu items, 156
using bitmaps as menu items, 144

Module-definition file
code segment attributes, 327
data segment attributes, 328
.DEF filename extension, 13
described, 13
for applications, 45-47
for dynamic-link libraries, 481-482
for font resources, 434
importing library functions, 487

Mouse
controlling by capturing input, 86
double-clicking

enabling double-click processing, 90
setting double-click time, 86

Mouse input
See also Input messages
capturing, 86
compared with MS-DOS application input, 6
messages, described, 85
processing, 93
selecting graphics

described, 113
ending selections, 117
extending selections, 115
showing selections, 116
starting selections, 114

MoveTo function, 71
Move Window function, 169
MS-DOS

environment
compared with Windows, 5, 8
retrieved by an application, 303

file-handling conventions, 200
protected-mode interface (DPMI) services, 362

MSG structure
defined, 26
format of input messages, 84

558 Index

Multiple document interface (MDI)
child windows

activating and deactivating, 509
arranging, 510
child window procedure, 506
controlling, described, 507
creating, 508
destroying, 509

described, 501
elements of MDI applications, 501
extra space in window structures, 506
frame window procedure, 505
initializing MDI applications

creating frame and client windows, 503
registering window classes, 503

message loop, 504
sample application, Multipad, 502
window properties, 507

Multitasking

N

See also Memory management
dynamic vs. static linking, 459
dynamic-link libraries

sharing code, 464
sharing resources, 465

file input and output, 309
handles used to protect data, 26
instances of applications, 26
sharing resources, described, 7
yielding application control, 34

NAME statement, 46
Near address, small or medium memory model, 360
NEAR keyword, mixed memory model, 301
Near pointer, addressing local memory objects, 350
New command, processing, 207
NEWTEXTMETRIC structure

ascender and descender values, 400
design-unit metrics, retrieving, 429
enumerating fonts, 415
point size, determining, 402

NMAKE (Program Maintenance Utility), 16
Nmake command, 17
Nonlinear scaling of TrueType fonts, 411
Notification message, defined, 168
NULL constant, Windows vs. C version 6.0, 302

0
.OBJ filename extension, 56
Object linking and embedding, TrueType fonts, 420
OEM character set, 392
OFSTRUCT structure, 200
Open command, processing, 207
OpenClipboard function

controlling the clipboard viewer, 287
copying text to the clipboard, 280
pasting text from the clipboard, 282
using display formats, 286

OpenDlg dialog box procedure, 210
OpenFile function

vs. common dialog boxes, 199
creating files, 202
file handle and C run-time functions, 309
filenames, translation of, 201
open-file problems, preventing, 200
opening files, 203
prompting for files, 204
reopening files, 204
rules for writing applications, 18

Optical scaling of True Type fonts, 411
Optimizing tools, 15
OUTLINETEXTMETRIC structure

Panose numbers, 431
permission to embed fonts, checking, 405
point size, determining, 402
typographic ascender and descender, 400

OutOfMemory function, clipboard, 294
Output to a window

See also Graphics device interface
device context

client area, invalidating, 67
coordinate system, 68
described, 65
handle, retrieving, 66
preparing, 68
releasing, 66
WM_PAINT message, processing, 66

displaying text, 71
drawing with brush and pen tools, 70
erasing, 66
sample application, 73-78

Overhang of characters
defined,390
retrieving, 423

Owner-drawn items, creating
buttons, 174

p

list boxes, 179-180
menu items, 156

Page fault, 386 enhanced mode, 340
Page layout, device-independent, 429
Page-locking

adverse effect on performance, 341
in 386 enhanced mode, described, 341

Paging, virtual-memory
described, 340
preventing, 341

PAINTSTRUCT structure
defined,26
filling, 67

Palette. See Color palette
PALETTEENTRY structures, 442, 450-452
Panose numbers, TrueType fonts, 431
P ANOSE structure, 431
Parallel port, restriction on accessing, 18
Parent window

specifying for controls, 167
specifying when creating a window, 30

PASCAL keyword
About dialog box procedure, defining, 42
callback functions, creating, 304
dialog box procedures, defining, 194
required for functions called by Windows, 18
window procedures, defining, 38

Password, in edit controls, 182
Paste Link command, initiating data links, 529
Pasting text from the clipboard, 281
PatBlt function

clearing bitmaps, 224
drawing color bitmaps, 227
filling an area with a bitmap, 232

Pattern brush, using bitmaps in, 232
Pattern menu, defining, 238
PeekMessage function, 262, 309
Pen drawing tool

creating, 69
drawing with, 70

Physical inch, font dimensions, 401
Pie function, 71
Pie wedge, drawing, 71
Pitch, defined, 390

Point size
assigning, 419
defined, 388
determining, 402
querying, 420

POINT structure, 224
Pointer

See also Far pointer; Near pointer

Index 559

incrementing across segment boundaries, 337, 361
specifying with LPSTR or FARPROC, 25
using the NULL constant for, 302

POINTFX structure, 426
Polygon function, drawing bitmaps, 224
Pop-up menu

cascading, 151
defining in the .RC file, 136
deleting, 144
floating, 153
for the About command, 43

POPUP statement, 136
Port, restriction on accessing, 18
PostMessage function

DDE conversations, 523
device drivers, 468

PostQuitMessage function, 35
Previous instance of an application, 26
Print settings

See also ExtDeviceMode function
application-specific, storing, 382
changing

default settings, 377
when creating a device context, 377
without affecting other applications, 379

common dialog box for, 369
copying between drivers, 381
defining in a DEVMODE structure, 370
device driver

capabilities, determining, 374
functions, 372
older printer drivers, 382

document-specific, storing, 382
overview, 369
printer environment, 372
Print Setup dialog box

displaying, 380
setting values in, 381

retrieving a copy of, 376
search order, 370

560 Index

Print Setup dialog box
displaying, 380
setting values in, 381

PrintDlg function, 369
Printer

See also Device context
current, information from WIN.IN! file, 253
text capabilities, determining, 417

Printer driver
capabilities, determining, 374
DEVMODE structure, creating, 370
functions, 372
loading and unloading, 372
print settings, copying between drivers, 381

. printer environment, maintaining, 372
Pnnter portability, TrueType fonts, 408
printf C run-time function, restriction with, 18
Printing

banding, 263
bitmaps, 256-257
canceling

AbortDoc function, 263
cancelable print operations, 263
defining a dialog box procedure, 260
defining the Abort dialog box, 259-260
print-canceling function, 261

device context for
creating, 254
deleting, 255

error processing, 257-259
functions, described, 252
lines of text, 254
overview, 251
printer escapes, vs. new functions, 252
printer information from WIN.INI file, 253
sample application, 266-273

Private data
associating with a window class, 356
storing as extra bytes, 356

Privilege level, restriction with, 362
Procedure-instance address

About dialog box, 45
creating for callback functions, 304

Profiler, 15
Program Maintenance Utility (NMAKE), 16
Prolog code

added to C run-time routines, 306
adding to each function, 13
creating callback functions, 304

Protected mode, using 386 enhanced mode, 340

PROTMODE statement, 335
Push button

creating, 171
default, 172
in an About dialog box, 41

putchar C run-time function, restriction with, 18

a
QuerySaveFile function, 213
Queued input

R

creating message loops, 33
described, 6
last message posted, WM_PAINT, 66

Radio button, creating, 173
Raster fonts

aspect ratio, 411
character spacing, illustrated, 399
described, 393
replacements for Tms Rmn and Helv, 397

Re command, 15
.RC filename extension, 15
read C run-time function, 208
Reading from files, 203
Real mode, Windows 3.0, 335
RealizePalette function

realizing palettes, 446
updating palettes, 450, 452

realloc C run-time function, 19
RECT structure, 26
Rectangle

drawing text in, 421
for message text, 91
for text in About dialog boxes, 41
group boxes for buttons, 175
RECT structure, 26
selection rectangle

creating, 114
drawing a border around, 116

Rectangle function, 71
RegisterClass function, 27
RegisterClipboardFormat function, 286
Registering window classes, 27-30
ReleaseCapture function

ending a graphics selection, 117
releasing mouse input, 86
using with the hourglass cursor, 112

ReleaseDC function
blank bitmaps, creating, 224
device context, releasing, 66
vs. EndPaint function, 67
memory bitmaps, displaying, 230

RemoveFontResource function
deleting read-only embedded fonts, 408
removing font resources, described, 431

.RES filename extension, 56
ResetDC function, 252
RESIDENTNAME keyword, 480
Resource

See also Bitmap; Cursor; Dialog box; Font; Icon
data, defined, 343
discardable, fixed, or movable, 357
freeing, 359
loading

after discarding the resource, 359
after freeing the resource, 359
custom resources, 358
on call or preloading, 357

locating, 358
locking and unlocking, 359
object ownership rules, 488
resource vs. separate file, 357
sharing between applications, 465

Resource Compiler (RC)
compiling dynamic-link libraries, 485
compiling small-model applications, 56
overview, 15

Resource-definition file
Abort dialog box, 259-260
About dialog box, 40
accelerator table, 149
bitmaps, defining, 221
compiling, 15
cursors, defining, 11 O
font resources, 433
for small-model applications, 54
icons, defining, 101
including WINDOWS.H first, 41
menus

bitmap and mode, 238
for the About command, 43
identifiers, 137
MENU statement, 136

.RC filename extension, 15
Resource editors, 14
Resource file

overview of Resource Compiler (RC), 15
.RES filename extension, 56

Index 561

Resource sharing. See Sharing computer resources
RETURN statement, 35
RGB function, 235
Rotating text, illustrated, 426
Rules for writing applications, 17

s
Sample applications

bitmap, 236-248
clipboard (copying and pasting text), 289-294
controls (edit control), 184-188
cursor, 122-130
dynamic-link library, 489-497
file input and output, 205-217
icon, 105-106
input (processing input messages), 88-95
medium-model application, 329-332
menu (Edit and File menus), 158-162
output to a window, 72-78
printing capability, 266-273

Sans serif typeface, defined, 387
Save As command, processing, 209
Save command, processing, 208
SaveAs dialog box

defining, 205
dialog box procedure for, 211
displaying, 209

SaveAsDlg dialog box procedure
creating, 211
exporting, 216

SaveFile function, 213
Scaling of True Type fonts, 411
scanf C run-time function, restriction with, 18
Screen, sharing among applications, 7
ScreenToClient function, 120
Scroll bar

See also Input messages
creating, 87, 183
input messages, 87
processing input messages, 94

SCROLLBAR control class, 166
SDLLCEW.LIB import library, 486
Segment address, restrictions with, 364
Segment aliasing, 339
Segment arithmetic, restriction with, 364
Segment register, restriction on loading, 363
Segmented Executable Linker (LINK), 13
SEGMENTS statement

defining segment attributes, 327
using in dynamic-link libraries, 481

562 Index

Selecting graphics
described, 113
ending selections, 117
extending selections, 115
showing selections, 116
starting selections, 114

SelectObject function
bitmaps

bitmap files, creating, 222
blank bitmaps, creating, 223-224
color bitmaps, creating, 227
displaying, 229-231
pasting from the clipboard, 283
pattern brushes, using bitmaps in, 232
removing from memory device context, 236

drawing tools, selecting, 70
fonts, matched by font mapper, 419

Selector
defined, 337
global, 338
restriction on comparing segment addresses, 364
selector tiling

defined, 337
increasing global-object size, 353

temporary, 339
SelectPalette function, 445
SendDlgltemMessage function, 195, 212
SendMessage function

adding or removing font resources, 431
DDE conversations, 521
printing lines of text, 269
restriction with device drivers, 467
sending control messages, 169

Serial port, restriction on accessing, 18
Serif, defined, 387
Server application, DDE conversations, 516
SetAbortProc function, 261
SetBitmapBits function, 227
SetBkColor function, 235, 422
SetBkMode function, 422
SetCapture function

capturing mouse input, 86
selecting graphics, 115
using the hourglass cursor, 112

SetClassLong function, 357
SetClass Word function

associating private data with a window class, 357
changing background brushes, 233

SetClipboardData function
controlling the clipboard viewer, 287
copying text to the clipboard, 280
rendering data on request, 286
using display formats, 287

SetClipboardViewer function, 288
SetCursor function, 111
SetCursorPos function, 118, 121
SetDIBits function

drawing bitmaps with palette colors, 449
replacing an array of bits, 227

SetDIBitsToDevice function, 234
SetDlgltemText function, 195, 212
SetDoubleClick function, 86
SetFocus function, 85
SetMapMode function, 68
SetMapperFlags function, 411
SetMenu function, 145
SetMenultemBitmaps function, 156
SetNewBuffer function, 213
SetPaletteEntries function, 450-451
SetROP2 function, 116
SetScrollRange function, 184
SetStretchBltMode function, 231
SetTextAlign function, 422
SetTextColor function, 235, 422
SetTextJustification function, 425
SetTimer function, 86
SetViewportOrg function, 68
SetWindowLong function

MDI applications, 506
overview, 356

SetWindowsHook function, 309
SetWindowText function, 175, 209
SetWindowWord function

MDI applications, 506
overview, 356

Sharing computer resources
described, 7
yielding application control, 34

ShowCursor function, 121
ShowWindow function

displaying an Abort dialog box, 263
displaying windows, 32

signal C run-time function, 310
SLIBCEW.LIB import library, 57, 487
SLIBW.LIB library, 57
Small memory model

restriction with far pointers, 362
restrictions with C run-time functions, 307

Small-model application, compiling, 56
Spawning child processes, 311
sprintf function, vs. wsprintf function, 308
Spy (SPY.EXE), 15
Stack

defined,344
dynamic-link libraries

restriction on passing stack variables, 462
trouble calling user-written functions, 462

specifying the size of, 344
Stack checking, disabling, 311
ST ACKSIZE statement

excluded from dynamic-link libraries, 481
for applications, 47
managing automatic data segments, 344

Standard Windows application, described, 23
Standard-mode memory configuration

described, 336
global selectors, 338
huge memory objects, 337
illustrated, 337
segment aliasing, 339

StartDoc function, 255
StartPage function, 255
Startup code, C run-time, eliminating, 311
STATIC control class, 166
Static control, creating, 175
Static data

defined, 342
in the automatic data segment, 344
restriction with far pointers, 362

Static-link libraries
See also Dynamic-link libraries
vs. dynamic-link libraries, 459

Status of open files, checking, 204
Stock fonts, 414
Storing data. See Data storage
StretchBlt function

check marks for menu items, 156
drawing bitmaps with palette colors, 450
stretching or compressing bitmaps, 231

String, formatted, 89
Structures

commonly used structures, 26
packing when compiling applications, 13
storing window or class extra bytes, 356

STUB statement
dynamic-link libraries, 481
small-model applications, 46

STYLE statement, 41
Swap file, and virtual-memory paging, 340

Index 563

Swapping code and data, 386 enhanced mode, 340
Switch statement, directing message processing, 38
.SYM filename extension, 484
Symbol character set, 392
Symbol-File Generator (MAPSYM), 484
System font table, maximum entries, 431
System font, defined, 393
SYSTEM.IN! file

device drivers installed by, 467
swap file, 340

System-key messages, 84
System-modal error message box, 201
System palette

See also Color palette
default palette, 440
defined,439
mapping colors from logical palettes, 440, 446
responding to changes in

WM_PALETTECHANGED message, 453
WM_QUERYNEWPALETTE message, 453

System queue, creating message loops, 34
System topic, 536

T
TabbedTextOut function, 421
Task header, defined, 343
TEMP environment variable, 201
Template, using Generic as, 57
Temporary files, 201
Terminating an application, 34
Termination function, dynamic-link libraries, 480
Text

alignment of text, setting, 422
attributes, 398, 402
colors of text, setting, 422
displaying, 71
formatted string, creating, 89
functions for drawing text, 421
justifying, 425
rectangles for message text, 91
rotating (illustrated), 426

TEXTMETRIC structure
enumerating fonts, 415
retrieving font information, 420

TextOut function
copying text to a printer, 255
displaying text, 71
pasting text from the clipboard, 281
printing text, 269
text-output functions, described, 421

564 Index

Throw function, 311
Timer

input messages
compared with MS-DOS application input, 6
described, 86
processing, 94

setting, 86
stopping, 86

Times New Roman fonts, listed, 395
Title of window, specifying, 30
Tools

for building applications, listed, xxii
for compiling applications, 13
for compiling resource-definition files, 15
for creating bitmaps, cursors, icons, 14
for creating font files, xxii, 14
for creating libraries, xxii
for debugging and optimizing, xxii, 15
for linking applications, 13
for updating application source files, 16

TrackPopupMenu function, 153
TranslateAccelerator function, 150
TranslateMDISysAccel function, 504
TranslateMessage function

character input, described, 85
creating a message loop, 33
restriction with dialog boxes, 193

TrueType fonts
ABC character spacing

illustrated, 399
justifying text, 425
older applications, 397

benefits of, 396
compatibility issues, 397
described, 393
design units

converting to device units, 429
retrieving metrics, 429

design widths, 428
disk space requirements, 410
embedded

checking permission to embed fonts, 405
installing and using, 406
read-only, removing, 407
storing font data with documents, 406

enumerating, 415
font dialog box, illustrated, 404
font files, pointing to, 436
font functions, new (list of), 395
fontmapper,402-403

True Type fonts (continued)
glyph outlines, retrieving, 426
identifying for users, 397
listed, 395
logical and physical inches, 401
maximum number per system, 410
memory usage and performance, 410
metrics

for portable documents, 429
vertical text metrics, illustrated, 401

minimum size, retrieving, 403
object linking and embedding, using with, 420
Panose numbers, 431
portability

across platforms, 410
across printers, 408
designing portable fonts, 411-413

rotating (illustrated), 426
scaling, 411
.TTF filename extension, 394, 407
typographic ascender and descender, 400
WYSIWYG output, 405

. TTF filename extension
embedded font with full permission, 407
TrueType font-information file, 394, 407

TTPOL YCURVE structure, 426
TTPOL YGONHEADER structure, 426
Twip, defined, 388
Typeface, defined, 387

u
UnlockData function, 479
Unlocking custom resources, 359
Unlocking memory

See also Memory object
global memory, 323, 351
local memory, 324, 347

UnlockResource function, 359
UnrealizeObject function, 233
UpdateColors function, 454
Update Window function

for an immediate WM_P AINT message, 67
selecting graphics, 115
updating an Abort dialog box, 263
using after calling ShowWindow, 32

User interface, described, 5
User library

defined, 12
dynamic-link libraries described, 460

v
ValidateRect function, 67
ValidateRgn function, 67
Vector fonts, 393
Vertical bar, as a document convention, xxiii
VGASYS.FNT file, variable-pitch font, 432
Virtual-key code, 84
Virtual-memory paging, 386 enhanced mode, 340
vsprintf function, vs. wvsprintf function, 308

w
WEP termination function, 480
while statement, creating a message loop, 33
WIN.IN! file

font substitutes, 397
information for printer device context, 253
vs. printer environment, 372

WIN87EM.LIB import library, 487
Window

See also Child window; Controls; Main window
client windows in MDI applications, 501
colors

background,30
color requests, satisfying, 440
updating when system palette changes, 453-455

creating, 30
described, 8
destroying, 35
displaying, 32
handle, specifying, 25
menus, associating with, 137-138
output to. See Graphics device interface
properties, storing data, 507
updating, 32

Window class
class name, 30
control class, 166
cursor, specifying, 111
defined, 27
extra bytes

allocating space for, 29
MDI applications, 506
storing, 356

filling the WNDCLASS structure, 28-30
icon, specifying, 102
MDI applications, 503
menu, specifying, 137
registering, 27-30

Window extra bytes
allocating space for, 29
defined,343
MDI applications, 506
storing, 356

Index 565

Window function. See Window procedure
Window-hook function

defined,467
writing exported functions, 304

Window-management messages, 38
Window procedure . .

child window procedure, MDI apphcat10ns, 506
described, 37
frame window procedure, MDI applications, 505
PASCAL calling convention, 38
prototypes for declaring, 29
return value from PostQuitMessage, 35
writing exported functions, 304

Window properties, storing data, 507
Windows applications. See Applications
Windows character set

comparing or testing characters, 308
described, 391

Windows libraries. See Dynamic-link libraries
WINDOWS.H header file

including before other header files, 41, 302
including in each source file, 25
NULL constant, defined, 302

WinExec function, running other applications, 311
WinMain function

application control, yielding, 34
creating a window, 30
data types, 25
described, 24
displaying and updating windows, 32
exported functions, creating, 305
FAR keyword, restriction with, 18
handles, 26
including in all Windows applications, 18
initialization functions, 35
instances of applications, 26
message loop, creating, 33
parameters pas~ed to, 24
PASCAL calling convention, 24
prototypes in header file, 41
registering a window class, 27-30
structures, 25
terminating an application, 34

WINSTUB.EXE file, 46
WM_ACTIVATEmessage, 121

566 Index

WM_ASKCBFORMATNAME message, 288
WM_ CHAR message

character input, described, 85
message loops, creating, 34

WM_ CLOSE message, 210
WM_ COMMAND message

Abort dialog box procedure, 260
accelerator keys, translating, 150
controls, receiving input, 168
copying text to the clipboard, 279
defined, 88
dialog box procedures, 194
File menu commands, processing, 206-209
MDI applications, 504
menu input, processing, 138
processing for the About command, 44

WM_ CREA TE message
bitmaps, adding to a bitmap menu, 240
creating drawing tools, 73
setting a timer, 92

WM_DDE_ACK message
command strings, executing, 534
conversations, initiating, 521
data change, responding to, 532
data links

initiating, 528
terminating, 533

retrieving items, 523
submitting items, 526

WM_DDE_ADVISE message
initiating data links, 528
responding to the Paste Link command, 529

WM_DDE_DATA message
notification of data change, 532
retrieving items from the server, 523

WM_DDE_EXECUTE message, 534
WM_DDE_INITIA TE message, 521
WM_DDE_POKE message, 526
WM_DDE_REQUEST message, 523
WM_DDE_TERMINA TE message, 534
WM_DDE_UNADVISE message, 533
WM_DELETEITEM message, 181
WM_DESTROY message

clipboard-viewer windows, chaining, 288
DDE conversations, ending, 534
processing by window procedures, 39
timer, stopping, 92

WM_DESTROYCLIPBOARD message, 285
WM_DRA WCLIPBOARD message, 288

WM_DRA WITEM message
combo box items, 181
list box items, 180
owner-drawn buttons, 174

WM_ERASEBKGND message
erasing output to a window, 66
processing for one window, 233

WM_FONTCHANGE message, 431
WM_HSCROLL message, 87, 183
WM_HSCROLLCLIPBOARD message, 287
WM_INITDIALOG message

Abort dialog box procedure, 260
dialog box procedures, 194
processed by About dialog box procedure, 42
SaveAs dialog box, 212

WM_INITMENU message
checking the clipboard before processing, 281
initializing menus, 147
recognizing CF _BITMAP format, 283

WM_KEYDOWN message
cursor

accelerating, 120
moving, 118

keyboardinput,described,84
MDI child windows, 504
message loops, creating, 34

WM_KEYUP message
cursor, moving, 120
keyboard input, described, 84
message loops, creating, 34

WM_LBUTTONDBLCLK message, 85
WM_LBUTTONDOWN message

extending graphics selections, 115
mouse input, described, 85
selecting graphics, 114

WM_LBUTTONUP message
ending a graphics selection, 117
mouse input, described, 85

WM_MBUTTONDBLCLK message, 85
WM_MBUTTONDOWN message, 85
WM_MBUTTONUP message, 85
WM_MDIACTIV ATE message, 509
WM_MDICASCADE message, 510
WM_MDICREATE message, 508
WM_MDIDESTROY message, 509
WM_MDIGETACTIVE message, 509
WM_MDIICONARRANGE message, 510
WM_MDIMAXIMIZE message, 509
WM_MDINEXT message, 509

WM_MDIRESTORE message, 509
WM_MDITILE message, 510
WM_MEASUREITEM message, 180
WM_MOUSEMOVE message

cursor shapes, managing, 111
graphics

selecting, 114
showing graphics selections, 116

mouse input, described, 85
WM_P AINT message

client areas, invalidated, 67
clipboard, 293
graphics, selecting, 115
last message in application queue, 66
mouse, displaying current state of, 94
overview, 65
processing, 66

WM_p AINTCLIPBOARD message, 287
WM_PALETTECHANGED message, 453
WM_QUERYENDSESSION message, 210
WM_QUERYNEWP ALETTE message, 453
WM_QUIT message, 34
WM_RBUTTONDBLCLK message, 85
WM_RBUTTONDOWN message, 85
WM_RBUTTONUP message, 85
WM_RENDERALLFORMATS message, 285
WM_RENDERFORMAT message, 285
WM_SETFOCUS message, 505
WM_SETTEXT message, 175
WM_SIZE message, 505
WM_SIZECLIPBOARD message, 287
WM_SYSCHAR message, 85
WM_SYSCOMMAND message

accelerator keys, translating, 150
defined,88
MDI child windows, 504

WM_SYSKEYDOWN message, 84
WM_SYSKEYUP message, 84
WM_ TIMER message, 86
WM_ VSCROLL message, 87, 183
WM_ VSCROLLCLIPBOARD message, 287
WNDCLASS structure

defined, 26
extra bytes

allocating space for, 29
storing, 356

filling with parameters, 28-30
WORD data type, 25
Word wrap, retrieving character widths, 423
Writing to files, 203

wsprintf function
creating a formatted string, 89
vs. sprintf function, 308

Index 567

wvsprintf function, vs. vsprintf function, 308
WYSIWYG output, 405

y
Yield function, avoiding, 34
Yielding application control, 34

Microsoft Corporation
One Microsoft Way
Redmond, WA98052-6399

0392 Part No. 28919

