.
A 33N Y
A LAV \ Y

PROGRAMMER'S REFERENCE LIBRARY ﬁ

MICROSOFTe
WINDOWS..,

—
—]
=]
—]
=

=

——

Windows .

Programmer’s Reference

\olume 3

Messages,
Structures,
and Macros

Blfniows3

Programmer's Reference

Volume 3
Messages, Structures, and Macros

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright ©1987-1992 Microsoft Corporation. All rights reserved.

Information in this document is subject to change without notice and does not represent a comMmitment on the part of Microsoft
Corporation. The software, which includes information contained in any databases, described in this document is furnished under
a license agreement or nondisclosure agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the license or nondisclosure agreement. No part of this
manual may be reproduced in any form or by any means, electronic or mechanical, including photocopying and recording, for
any purpose without the express written permission of Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows programmer’s reference.
p. cm.
Includes indexes.
Contents: v. 1. Overview -- v. 2. Functions -- v. 3. Messages,
structures, macros -- v. 4. Resources.
ISBN 1-55615-453-4 (v. 1). -- ISBN 1-55615-463-1 (v. 2). -- ISBN
1-55615-464-X (v. 3). -- ISBN 1-55615-494-1 (v. 4)
1. Microsoft Windows (Computer program) I. Microsoft
Corporation.
QA76.76.W56M532 1992
005.4'3--dc20 91-34199
CIP

Printed and bound in the United States of America.

123456789 MLML 765432

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing Corporation.
Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand ;) ARSI ~ @ 7
(T F L8

British Cataloging-in-Publication Data available.

ITC Zapf Chancery and ITC Zapf Dingbats fonts. Copyright ©1991 International Typeface Corporation. All rights reserved.

Copyright ©1981 Linotype AG and/or its subsidiaries. All rights reserved. Helvetica, Palatino, New Century Schoolbook, Times,
and Times Roman typefont data is the property of Linotype or its licensors.

Arial and Times New Roman fonts. Copyright ©1991 Monotype Corporation PLC. All rights reserved.

Adobe® and PostScript® are registered trademarks of Adobe Systems, Inc. Apple® Macintosh® and TrueType® are registered trade-
marks of Apple Computer, Inc. PANOSE™ is a trademark of ElseWare Corporation. Epson® and FX® are registered trademarks of
Epson America, Inc. Hewlett-Packard® HP® LaserJet® and PCL® are registered trademarks of Hewlett-Packard Company. IBM® is a
registered trademark of International Business Machines Corporation. ITC Zapf Chancery® and ITC Zapf Dingbats® are registered
trademarks of International Typeface Corporation. Helvetica® New Century Schoolbook® Palatino® Times® and Times Roman® are
registered trademarks of Linotype AG and/or its subsidiaries. CodeView® Microsoft® MS® MS-DOS® and QuickC® are registered
trademarks and QuickBasic'™ and Windows™ are trademarks of Microsoft Corporaiion. Ariai® and Tunes New Romain® aic
registered trademarks of Monotype Corporation PLC. Okidata® is a registered trademark of Oki America, Inc.

The Symbol fonts provided with Windows version 3.1 are based on the CG Times font, a product of AGFA Compugraphic Division
of Agfa Corporation.

U.S. Patent No. 4974159

Document No. PC28917-0492

Contents

Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8
Chapter 9
Chapter 10

Appendix A

INPOAUCTION.............ooe ettt v
Organization of This Manual............c.ccceeverieririienriiriieniiieeeeneeneee et eseeseesaees v
Document CONVENtONScveeeeeeeeeseeseeseseesesesssennns reviesstserassenisnerasassintosiesinnie vi
Data Types ’ 1
Messages 1"
2.1 WiInAOW MESSAZES.....ccuerevrrenreninretrertarentraessentesessssesesuesesssessensssessaseosassens 14
2.2 Notification MESSAZEScocererrrrerrererererresserersenieserersessesessensesessessessesessens 213
Structures 229
Macros 429
Printer Escapes 449
Dynamic Data Exchange Transactions 513
File Manager Events and Messages 529
7.1 File Manager EVEnts..........cccccevuereenuerienienieneenieneneeesesesssessesaessessessesseenes 531
7.2 File Manager MESSAZEScceeueervererieesieneeenieiesiasseessessessssessesessassenens 534
Control Panel Messages 541
Common Dialog Box Messages 551
Installable Driver Messages 559
Binary and Ternary Raster-Operation Codes 571
A.1 Binary Raster Operationsceccceceeeeeueeeusuecntrnnruesininneisnsenssnsesssnenes 573

A.2 Ternary Raster OPErationsc.ccccecerveervereereseeresereeresseseeseseeneeeseesessens 576

iv Microsoft Windows Programmer’s Reference

Appendix B Virtual-Key Codes 587
Appendix C Character Sets 593
C.1 ANSI CRATACLEL SELevveeeeeicieeeeeeiieireeeeeeesssrreeeeeeesereeesesssssesesssssssesseessens 596
C.2 Symbol Character SEtcccevererrereruenerrererineseerieeeireeesesessessseesensesens 597
C.3 OEM Character STuvveeieeeieeeeeeeerireeeeeseessseeesesesssseeeessssassesssessssssssessses 598

Introduction

This manual, Microsoft Windows Programmer’s Reference, Volume 3, describes
the data types, messages, structures, macros, and printer escapes supported by the
Microsoft® Windows™ operating system. In addition, dynamic data exchange
(DDE) transactions, File Manager events, raster-operation codes, virtual-key
codes, and character tables are presented.

Organization of This Manual

Following are brief descriptions of the chapters and appendixes in this manual:

Chapter 1, “Data Types,” describes the keywords that define the size and mean-
ing of parameter and return values associated with the Windows application
programming interface (API).

Chapter 2, “Messages,” describes formatted window messages, through which
the Windows operating system communicates with applications, and notifica-
tion messages, which notify a control’s parent window of actions that occur
within the control.

Chapter 3, “Structures,” defines the data structures associated with the func-
tions that are part of the Windows APL.

Chapter 4, “Macros,” describes the purpose and defines the parameters of mac-
ros used to help manipulate data in Windows applications.

Chapter 5, “Printer Escapes,” lists printer escapes for the Windows operating
system.

Chapter 6, “Dynamic Data Exchange Transactions,” describes the transactions
sent by the Dynamic Data Exchange Management Library (DDEML) to an ap-
plication’s dynamic data exchange (DDE) callback function. The transactions
notify the application of DDE activity that affects the application.

Chapter 7, “File Manager Events and Messages,” provides descriptions of the
events and menu commands File Manager sends to communicate with a File
Manager extension dynamic-link library (DLL). The chapter also describes mes-
sages the DLL can send File Manager to retrieve information.

Chapter 8, “Control Panel Messages,” lists the messages Control Panel sends to
communicate with a Control Panel DLL.

vi Microsoft Windows

Programmer’s Reference

Chapter 9, “Common Dialog Box Messages,” describes the messages a com-
mon dialog box can send to notify applications that the user has made or
changed a selection in the dialog box.

Chapter 10, “Installable Driver Messages,” lists the messages the Windows
operating system sends to notify installable drivers about specific events.

Appendix A, “Binary and Ternary Raster-Operation Codes,” lists and describes
the binary and ternary raster operations used by the graphics device interface
(GDI).

Appendix B, “Virtual-Key Codes,” shows the symbolic constant names,
hexadecimal values, and keyboard equivalents for Windows virtual-key codes.

Appendix C, “Character Tables,” illustrates the Windows character set, the
Symbol character set, and the OEM character set used by the Windows operat-
ing system.

Document Conventions

The following conventions are used throughout this manual to define syntax:

Convention Meaning

Bold text Denotes a term or character to be typed literally, such as a

resource-definition statement or function name (MENU or
CreateWindow), a command, or a command-line option
(/mod). You must type these terms exactly as shown.

Italic text Denotes a placeholder or variable: You must provide the

(1
I

actual value. For example, the statement SetCursorPos(X,Y)
requires you to substitute values for the X and Y parameters.

Enclose optional parameters.
Separates an either/or choice.
Specifies that the preceding item may be repeated.

BEGIN Represents an omitted portion of a sample application.

END

Introduction vii

In addition, certain text conventions are used to help you understand this material:

Convention Meaning

SMALL CAPITALS Indicate the names of keys, key sequences, and key combina-
tions—for example, ALT+SPACEBAR.

FULL CAPITALS Indicate filenames and paths, type names and most structure
names (which are also bold), and constants.

monospace Sets off code examples and shows syntax spacing.

Data Types

Chapter 1

AlphabetiC REFETENCEc.coveurueirieieiciicncteectrette et

Chapter 1 Data Types 3

The data types in this chapter are keywords that define the size and meaning of
parameters and return values associated with functions for the Microsoft Windows
operating system, version 3.1. The following table contains character, integer, and

Boolean types; pointer types; and handles. The character, integer, and Boolean
types are common to most C compilers. Most of the pointer-type names begin
with a prefix of P, N (for near pointers), or LP (for long pointers). A near pointer
accesses data within the current data segment, and a long pointer contains a 32-bit
segment:offset value. A Windows application uses a handle to refer to a resource
that has been loaded into memory. Windows provides access to these resources
through internally maintained tables that contain individual entries for each
handle. Each entry in the handle table contains the address of the resource and a
means of identifying the resource type.

The Windows data types are defined in the following table:

Type Definition

ABORTPROC 32-bit pointer to an AbortProc callback function.

ATOM 16-bit value used as an atom handle.

BOOL 16-bit Boolean value.

BYTE 8-bit unsigned integer. Use LPBYTE to create
32-bit pointers. Use PBYTE to create pointers
that match the compiler memory model.

CATCHBUF[9] 18-byte buffer used by the Catch function.

COLORREF 32-bit value used as a color value.

DLGPROC 32-bit pointer to a dialog box procedure.

DWORD 32-bit unsigned integer or a segment:offset
address. Use LPDWORD to create 32-bit
pointers. Use PDWORD to create pointers that
match the compiler memory model.

FARPROC 32-bit pointer to a function.

FNCALLBACK 32-bit value identifying the DdeCallback func-
tion. Use PENCALLBACK to create pointers
that match the compiler memory model.

FONTENUMPROC 32-bit pointer to an EnumFontsProc callback
function.

GLOBALHANDLE 16-bit value used as a handle to a global memory
object.

GNOTIFYPROC 32-bit pointer to a NotifyProc callback function.

GOBJENUMPROC 32-bit pointer to a EnumObjectsProc callback
function.

GRAYSTRINGPROC 32-bit pointer to a GrayStringProc callback

function.

4 Microsoft Windows Programmer’s Reference

Type Definition

HANDLE 16-bit value used as a general handle. Use
LPHANDLE to create 32-bit pointers. Use
SPHANDLE to create 16-bit pointers. Use
PHANDLE to create pointers that match the
compiler memory model.

HCURSOR 16-bit value used as a cursor handle.

HFILE 16-bit value used as a file handle.

HGDIOBJ 16-bit value used as a graphics device interface
(GDI) object handle.

HGLOBAL 16-bit value used as a handle to a global memory
object.

HHOOK 32-bit value used as a hook handle.

HKEY 32-bit value used as a handle to a key in the regis-
tration database. Use PHKEY to create 32-bit
pointers.

HLOCAL 16-bit value used as a handle to a local memory
object.

HMODULE 16-bit value used as a module handle.

HOBJECT 16-bit value used as a handle to an OLE object.

HWND ‘ 16-bit value used as a handle to a window.

HOOKPROC 32-bit pointer to a hook procedure.

HRSRC 16-bit value used as a resource handle.

LHCLIENTDOC 32-bit value used as a handle to an OLE client
document.

LHSERVER 32-bit value used as a handle to an OLE server.

LHSERVERDOC 32-bit value used as a handle to an OLE server
document.

LINEDDAPROC 32-bit pointer to a LineDDAProc callback func-
tion.

LOCALHANDLE 16-bit value used as a handle to a local memory
object.

LONG 32-bit signed integer.

LPABC 32-bit pointer to an ABC structure.

LPARAM 32-bit signed value passed as a parameter to a
window procedure or callback function.

LPBI 32-bit pointer to a BANDINFOSTRUCT struc-
ture.

LPBITMAP 32-bit pointer to a BITMAP structure. Use

NPBITMAP to create 16-bit pointers. Use PBIT-
MAP to create pointers that match the compiler
memory model.

Chapter 1 Data Types

Type

Definition

LPBITMAPCOREHEADER

LPBITMAPCOREINFO

LPBITMAPFILEHEADER

LPBITMAPINFO

LPBITMAPINFOHEADER

LPCATCHBUF
LPCBT_CREATEWND

LPCHOOSECOLOR
LPCHOOSEFONT
LPCLIENTCREATESTRUCT

LPCOMPAREITEMSTRUCT

LPCPLINFO

LPCREATESTRUCT
LPCSTR
LPCTLINFO

LPCTLSTYLE

LPDCB
LPDEBUGHOOKINFO

32-bit pointer to a BITMAPCOREHEADER
structure. Use PBITMAPCOREHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPCOREINFO struc-
ture. Use PBITMAPCOREINFO to create point-
ers that match the compiler memory model.
32-bit pointer to a BITMAPFILEHEADER
structure. Use PBITMAPFILEHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a BITMAPINFO structure. Use
PBITMAPINFO to create pointers that match
the compiler memory model.

32-bit pointer to a BITMAPINFOHEADER
structure. Use PBITMAPINFOHEADER to
create pointers that match the compiler memory
model.

32-bit pointer to a CATCHBUF array.

32-bit pointer to a CBT_CREATEWND struc-
ture.

32-bit pointer to a CHOOSECOLOR structure.
32-bit pointer to a CHOOSEFONT structure.
32-bit pointer to a CLIENTCREATESTRUCT
structure.

32-bit pointer to a COMPAREITEMSTRUCT
structure. Use PCOMPAREITEMSTRUCT to
create pointers that match the compiler memory
model.

32-bit pointer to a CPLINFO structure. Use
PCPLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CREATESTRUCT structure.
32-bit pointer to a nonmodifiable character string.

32-bit pointer to a CTLINFO structure. Use
PCTLINFO to create pointers that match the
compiler memory model.

32-bit pointer to a CTLSTYLE structure. Use
PCTLSTYLE to create pointers that match the
compiler memory model.

32-bit pointer to a DCB structure.

32-bit pointer to a DEBUGHOOKINFO
structure.

Microsoft Windows Programmer’s Reference

Type

Definition

LPDELETEITEMSTRUCT

LPDEVMODE

LPDEVNAMES
LPDOCINFO
LPDRAWITEMSTRUCT
LPDRIVERINFOSTRUCT

LPDRVCONFIGINFO
LPEVENTMSG

LPDRIVERINFOSTRUCT

LPFINDREPLACE
LPFMS_GETDRIVEINFO

LPFMS_GETFILESEL

LPFMS_LOAD
LPHANDLETABLE

LPHELPWININFO
LPINT

LPKERNINGPAIR

32-bit pointer to a DELETEITEMSTRUCT
structure. Use PDELETEITEMSTRUCT to
create pointers that match the compiler memory
model. :

32-bit pointer to a DEVMODE structure. Use
NPDEVMODE to create 16-bit pointers. Use
PDEVMODE to create pointers that match the
compiler memory model.

32-bit pointer to a DEVNAMES structure.
32-bit pointer to a DOCINFO structure.

32-bit pointer to a DRAWITEMSTRUCT struc-
ture. Use PDRAWITEMSTRUCT to create
pointers that match the compiler memory model.

32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a DRVCONFIGINFO struc-
ture. Use PDRVCONFIGINFO to create point-
ers that match the compiler memory model.
32-bit pointer to a EVENTMSG structure. Use
NPEVENTMSG to create 16-bit pointers. Use
PEVENTMSG to create pointers that match the
compiler memory model.

32-bit pointer to a DRIVERINFOSTRUCT
structure.

32-bit pointer to a FINDREPLACE structure.

32-bit pointer to a FMS_GETDRIVEINFO
structure.

32-bit pointer to a FMS_GETFILESEL struc-
ture.

32-bit pointer to a FMS_LOAD structure.
32-bit pointer to a HANDLETABLE structure.

Use PHANDLETABLE to create pointers that
match the compiler memory model.

32-bit pointer to a HELPWININFO structure.
Use PHELPWININFO to create pointers that
match the compiler memory model.

32-bit pointer to a 16-bit signed value. Use PINT
to create pointers that match the compiler
memory model.

32-bit pointer to a KERNINGPAIR structure.

Chapter 1 Data Types

Type Definition

LPLOGBRUSH 32-bit pointer to a LOGBRUSH structure. Use
NPLOGBRUSH to create 16-bit pointers. Use
PLOGBRUSH to create pointers that match the
compiler memory model.

LPLOGFONT 32-bit pointer to a LOGFONT structure. Use
NPLOGFONT to create 16-bit pointers. Use
PLOGFONT to create pointers that match the
compiler memory model.

LPLOGPALETTE 32-bit pointer to a LOGPALETTE structure.
Use NPLOGPALETTE to create 16-bit point-
ers. Use PLOGPALETTE to create pointers that
match the compiler memory model.

LPLOGPEN 32-bit pointer to a LOGPEN structure. Use
NPLOGRPEN to create 16-bit pointers. Use
PLOGPEN to create pointers that match the com-
piler memory model.

LPLONG 32-bit pointer to a 32-bit signed integer. Use
PLONG to create pointers that match the com-
piler memory model.

LPMAT2 32-bit pointer to a MAT2 structure.
LPMDICREATESTRUCT 32-bit pointer to an MDICREATESTRUCT
structure.

LPMEASUREITEMSTRUCT 32-bit pointer to a MEASUREITEMSTRUCT
structure. Use PMEASUREITEMSTRUCT to
create pointers that match the compiler memory

model. :
LPMETAFILEPICT 32-bit pointer to a METAFILEPICT structure.
LPMETARECORD 32-bit pointer to a METARECORD structure.

Use PMETARECORD to create pointers that
match the compiler memory model.

LPMOUSEHOOKSTRUCT 32-bit pointer to a MOUSEHOOKSTRUCT
structure.
LPMSG 32-bit pointer to an MSG structure. Use NPMSG

to create 16-bit pointers. Use PMSG to create
pointers that match the compiler memory model.
LPNCCALCSIZE_PARAMS 32-bit pointer to an NCCALCSIZE_PARAMS
structure.
LPNEWCPLINFO 32-bit pointer to an NEWCPLINFO structure.
Use PNEWCPLINFO to create pointers that
match the compiler memory model.

8 Microsoft Windows Programmer’s Reference

Type Definition

LPNEWTEXTMETRIC 32-bit pointer to a NEWTEXTMETRIC struc-
ture. Use NPNEWTEXTMETRIC to create
16-bit pointers. Use PNEWTEXTMETRIC to
create pointers that match the compiler memory
model.

LPOFSTRUCT 32-bit pointer to an OFSTRUCT structure. Use
NPOFSTRUCT to create 16-bit pointers. Use
POFSTRUCT to create pointers that match the
compiler memory model.

LPOLECLIENT 32-bit pointer to OLECLIENT structure.

LPOLECLIENTVTBL 32-bit pointer to OLECLIENTVTBL structure.

LPOLEOBJECT 32-bit pointer to OLEOBJECT structure.

LPOLEOBJECTVTBL 32-bit pointer to OLEOBJECTVTBL structure.

LPOLESERVER 32-bit pointer to OLESERVER structure.

LPOLESERVERDOC 32-bit pointer to OLESERVERDOC structure.

LPOLESERVERDOCVTBL 32-bit pointer to OLESERVERDOCVTBL
structure.

LPOLESERVERVTBL 32-bit pointer to OLESERVERVTBL structure.

LPOLESTREAM 32-bit pointer to OLESTREAM structure.

LPOLESTREAMVTBL 32-bit pointer to OLESTREAMVTBL structure.

LPOLETARGETDEVICE 32-bit pointer to OLETARGETDEVICE struc-
ture.

LPOPENFILENAME 32-bit pointer to OPENFILENAME structure.
LPOUTLINETEXTMETRIC 32-bit pointer to an OUTLINETEXTMETRIC
structure.

LPPAINTSTRUCT 32-bit pointer to a PAINTSTRUCT structure.
Use NPPAINTSTRUCT to create 16-bit point-
ers. Use PPAINTSTRUCT to create pointers

, that match the compiler memory model.

LPPALETTEENTRY 32-bit pointer to a PALETTEENTRY structure.

LPPOINT 32-bit pointer to a POINT structure. Use
NPPOINT to create 16-bit pointers. Use
PPOINT to create pointers that match the com-
piler memory model.

LPPOINTFX 32-bit pointer to a POINTFX structure.

LPPRINTDLG 32-bit pointer to a PRINTDLG structure.

LPRASTERIZER_STATUS 32-bit pointer to a RASTERIZER_STATUS
structure. .

LPRECT 32-bit pointer to a RECT structure. Use

NPRECT to create 16-bit pointers. Use PRECT
to create pointers that match the compiler
memory model.

Chapter 1 Data Types

9

Type

Definition

LPRGBQUAD
LPRGBTRIPLE
LPSEGINFO
LPSIZE

LPSTR

LPTEXTMETRIC

LPTTPOLYCURVE
LPTTPOLYGONHEADER

LPVOID
LPWINDOWPLA CEMENT

LPWINDOWPOS
LPWNDCLASS

LPWORD

LRESULT
MFENUMPROC

NEARPROC
OLECLIPFORMAT
PATTERN

PCONVCONTEXT
PCONVINFO

32-bit pointer to a RGBQUAD structure.

32-bit pointer to a RGBTRIPLE structure.
32-bit pointer to a SEGINFO structure.

32-bit pointer to a SIZE structure. Use NPSIZE
to create 16-bit pointers. Use PSIZE to create
pointers that match the compiler memory model.
32-bit pointer to a character string. Use NPSTR
to create 16-bit pointers. Use PSTR to create
pointers that match the compiler memory model.
32-bit pointer to a TEXTMETRIC structure.
Use NPTEXTMETRIC to create 16-bit point-
ers. Use PTEXTMETRIC to create pointers that
match the compiler memory model.

32-bit pointer to a TTPOLY CURVE structure.

32-bit pointer to a TTPOLYGONHEADER
structure.

32-bit pointer to an unspecified type.

32-bit pointer to a WINDOWPLA CEMENT
structure. Use PWINDOWPLA CEMENT to
create pointers that match the compiler memory
model.

32-bit pointer to a WINDOWPOS structure.
32-bit pointer to a WNDCLASS structure. Use
NPWNDCLASS to create 16-bit pointers. Use
PWNDCLASS to create pointers that match the
compiler memory model.

32-bit pointer to a 16-bit unsigned value. Use
PWORD to create pointers that match the com-
piler memory model.

32-bit signed value returned from a window pro-
cedure or callback function.

32-bit pointer to an EnumMetaFileProc call-
back function.

16-bit pointer to a function.

16-bit value used as a standard clipboard format.
Equivalent to the LOGBRUSH structure. Use
LPPATTERN to create 32-bit pointers. Use
NPPATTERN to create 16-bit pointers. Use
PPATTERN to create pointers that match the
compiler memory model.

32-bit pointer to a CONVCONTEXT structure.

32-bit pointer to a CONVINFO structure.

10 Microsoft Windows Programmer’s Reference

Type Definition

PHSZPAIR 32-bit pointer to a HSZPAIR structure.

PROPENUMPROC 32-bit pointer to an EnumPropFixedProc or
EnumPropMovableProc callback function.

RSRCHDLRPROC 32-bit pointer to a LoadProc callback function.

TIMERPROC 32-bit pointer to a TimerProc callback function.

UINT 16-bit unsigned value.

WNDENUMPROC 32-bit pointer to an EnumWindowsProc call-
back function.

WNDPROC 32-bit pointer to a window procedure.

WORD 16-bit unsigned value.

WPARAM 16-bit signed value passed as a parameter to a

window procedure or callback function.

‘Messages

Chapter 2
2.1 WiINAOW MESSAEZES ..coueverreerererrrteeeeeeenennennestreseetesessesseessessessessesssessess 14
2.2 Notification MESSAZES.......cecveeereirererenreseeertsiseeessenessesseseesessessessesassesse 213

Chapter2 Messages 13

The Microsoft Windows operating system communicates with applications
through formatted window messages. These messages are sent to an application’s
window procedure for processing.

Some messages return values that contain information about the success of the
message or contain other data needed by an application. To obtain the return
value, the application must call the SendMessage function to send the message to
a window. This function does not return until the message has been processed.

If the application does not require the return value of the message, it can call the
PostMessage function to send the message. This function places a message in a
window’s application queue and then returns immediately. If a message does not
have a return value, the application can use either function to send the message, un-
less the message description indicates otherwise.

A message consists of three parts: a message number, a word parameter, and a
long parameter. Message numbers are identified by predefined message names.
Each message name begins with letters that suggest the meaning or origin of the
message. The word parameter and long parameter, named wParam and [Param re-
spectively, contain values that depend on the message number.

The [Param parameter often contains more than one type of information. For ex-
ample, the high-order word may contain a handle to a window and the low-order
word may contain an integer value. The HIWORD and LOWORD utility macros
can be used to extract the high- and low-order words of the /Param parameter.
The HIBYTE and LOBYTE utility macros can be used with HTIWORD and
LOWORD to access any of the bytes. Casting can also be used.

Following are the four ranges of message numbers:

Range Meaning

0 through WM_USER - 1 Messages reserved for use by Windows.
WM_USER through Ox7FFF Integer messages for use by applications.
0x8000 through 0xBFFF Messages reserved for use by Windows.
0xC000 through OxFFFF String messages for use by applications.

Message numbers in the first range (0 through WM_USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for
future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_USER through 0x7FFF) can be
defined and used by an application to send messages within a private window
class. Such predefined control classes as BUTTON, EDIT, LISTBOX, and
COMBOBOX may use values in this range. Messages in this range should not be
sent to other applications unless the applications have been designed to exchange
messages and to attach the same meaning to the message numbers.

14 BM_GETCHECK

Message numbers in the third range (0x8000 through OxBFFF) are reserved for
future use by Windows.

Message numbers in the fourth range (0xC000 through OxFFFF) are defined at run
time when an application calls the RegisterWindowMessage function to obtain a
message number for a string. All applications that register the identical string can
use the associated message number for exchanging messages with each other. The
actual message number, however, is not a constant and cannot be assumed to be
the same in different Windows sessions.

2.1 Window Messages

This section describes window messages. These messages are presented in alpha-
betic order.

BM_GETCHECK [2x]

BM_GETCHECK
wParam = 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends a BM_GETCHECK message to retrieve the check state of a

button.
Parameters This message has no parameters.
Return Value The return value from a button created with the BS_AUTOCHECKBOX,

BS_AUTORADIOBUTTON, BS_AUTO3STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style may be one of the following values:

Value Meaning

0 Button state is unchecked.

1 Button state is checked.

2 Button state is indeterminate (applies only if the button has the

BS_3STATE or BS_AUTO3STATE style).

If the button has any other style, the return value is 0.

BM_GETSTATE 15

Example This example determines if the ID_MYCHECKBOX control is currently checked:
int checked;

checked = (int) SendDlgltemMessage(hwndDlg, ID_MYCHECKBOX,
BM_GETCHECK, @, 0OL);

See Also BM_GETSTATE, BM_SETCHECK

BM_GETSTATE [2x]

BM_GETSTATE
wParam = 0; /* not used, must be zero */
TParam = @L; /* not used, must be zero */

An application sends a BM_GETSTATE message to retrieve the state of a button.
Parameters This message has no parameters.

Return Value The return value specifies the current state of the button. You can use the follow-
ing masks to extract information about the state:

Mask Description

0x0003 Specifies the check state (radio buttons and check boxes only). A value of 0
indicates the button is unchecked. A value of 1 indicates the button is
checked. A radio button is checked when it contains a dot; a check box is
checked when it contains an X. A value of 2 indicates the check state is in-
determinate (3-state check boxes only). The state of a 3-state check box is
indeterminate when it is grayed.

0x0004 Specifies the highlight state. A nonzero value indicates that the button is
highlighted. A button is highlighted when the user presses and holds the left
mouse button. The highlighting is removed when the user releases the
mouse button.

0x0008 Specifies the focus state. A nonzero value indicates that the button has the
focus.

16 BM_SETCHECK

Example

See Also

This example determines whether a button currently has the focus:

f#fdefine BFFOCUS 0x0008
DWORD dwResult;

dwResult = SendDigItemMessage(hdlg, ID_MYBUTTON, BM_GETSTATE, @, 0L);
if (dwResult & BFFOCUS)

/* button has the focus */

BM_GETCHECK, BM_SETSTATE

BM_SETCHECK

Parameters

Return Value
Comments

Example

See Also

BM_SETCHECK
wParam = (WPARAM) fCheck; /* check state */
1Param = 0L; /* not used, must be zero */

An application sends a BM_SETCHECK message to set the check state of a
button.

fCheck _
Value of wParam. Specifies the check state. This parameter can be one of the
following values:

Value Meaning

0 Set the button state to unchecked.

1 Set the button state to checked.

2 Set the button state to indeterminate. This value can be used only if the

button has the BS_3STATE or BS_AUTO3STATE style.

The return value is always zero.
The BM_SETCHECK message has no effect on push buttons.

This example places a dot inside a radio button:

SendD1gItemMessage(hd1g, ID_MYRADIOBUTTON, BM_SETCHECK, TRUE, OL);

BM_GETCHECK, BM_GETSTATE, BM_SETSTATE

BM_SETSTATE 17

BM_SETSTATE [2x]

Parameters

Return Value

Comments

Example

See Also

BM_SETSTATE
wParam = (WPARAM) fState; /* highlight state */
1Param = 0L; /* not used, must be zero */

An application sends a BM_SETSTATE message to set the highlight state of a
button.

[fState
Value of wParam. Specifies whether the button is to be highlighted. A nonzero
value highlights the button. A zero value removes any highlighting.

The return value is always zero.

Highlighting affects the exterior of a button. It has no effect on the check state of a
radio button or check box.

A button is automatically highlighted when the user presses and holds the left
mouse button. The highlighting is removed when the user releases the mouse
button.

This example highlights and then removes highlighting from a push button, simu-
lating the visual effect of a user clicking the button:

SendD1gItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, TRUE, OL);
/%
* Perform some action; then remove the highlighting,
* thereby returning it to its normal state.
*/

SendD1gItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTATE, FALSE, @L);

BM_GETSTATE, BM_SETCHECK

18 BM_SETSTYLE

BM_SETSTYLE | 5]

BM_SETSTYLE
wParam = (WPARAM) LOWORD(dwStyle); /* style */
1Param = MAKELPARAM(fRedraw, 0); /* redraw flag */

An application sends a BM_SETSTYLE message to change the style of a button.

Parameters dwStyle
Value of wParam. Specifies the button style. For an explanation of button
styles, see the following Comments section.

fRedraw .
Value of the low-order word of /Param. Specifies whether the button is to be
redrawn. A value of TRUE redraws the button. A value of FALSE does not

redraw the button.
Return Value The return value is always zero.
Comments The following are the button styles:
Value Meaning
BS_3STATE Creates a button that is the same as a check box, ex-

cept that the box can be grayed (dimmed) as well as
checked. The grayed state typically is used to show
that a check box has been disabled.

BS_AUTO3STATE Creates a button that is the same as a three-state
‘ check box, except that the box changes its state when
the user selects it. The state cycles through checked,
grayed, and normal.

BS_AUTOCHECKBOX Creates a button that is the same as a check box, ex-
cept that an X appears in the check box when the user
selects the box; the X disappears (is cleared) the next
time the user selects the box.

BS_AUTORADIOBUTTON Creates a button that is the same as a radio button,
except that when the user selects it, the button auto-
matically highlights itself and clears (removes the
selection from) any other buttons in the same group.

BS_CHECKBOX Creates a small square that has text displayed to its
right (unless this style is combined with the
BS_LEFTTEXT style).

BS_DEFPUSHBUTTON Creates a button that has a heavy black border. The
user can select this button by pressing the ENTER key.
This style is useful for enabling the user to quickly
select the most likely option (the default option).

CB_ADDSTRING 19

Value Meaning

BS_GROUPBOX Creates a rectangle in which other buttons can be
grouped. Any text associated with this style is dis-
played in the rectangle’s upper-left corner.

BS_LEFTTEXT Places text on the left side of the radio button or
check box when combined with a radio button or
check box style.

BS_OWNERDRAW Creates an owner-drawn button. The owner window
receives a WM_MEASUREITEM message when the
button is created, and it receives a
WM_DRAWITEM message when a visual aspect of
the button has changed. The BS_OWNERDRAW
style cannot be combined with any other button

styles.

BS_PUSHBUTTON Creates a push button that posts a WM_COMMAND
message to the owner window when the user selects
the button.

BS_RADIOBUTTON Creates a small circle that has text displayed to its

right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually
used in groups of related but mutually exclusive
choices.

An application should not attempt to change a button’s type (for example, chang-
ing a radio button to a check box).

Example This example sends a BM_SETSTYLE message to make a button become the de-
fault push button:

SendDlgItemMessage(hdlg, ID_MYPUSHBUTTON, BM_SETSTYLE,
(WPARAM) BS_DEFPUSHBUTTON, TRUE);

CB_ADDSTRING

CB_ADDSTRING
wParam 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) lpsz; /* address of string to add */

An application sends a CB_ADDSTRING message to add a string to the list box
of a combo box. If the list box does not have the CBS_SORT style, the string is
added to the end of the list. Otherwise, the string is inserted into the list and the list
is sorted.

20 CB_DELETESTRING

Parameters Ipsz
Value of [Param. Points to the null-terminated string to be added. If the combo
box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

Return Value The return value is the zero-based index to the string in the list box. The return
value is CB_ERR if an error occurs; the return value is CB_ERRSPACE if insuffi-
cient space is available to store the new string.

Comments If an owner-drawn combo box was created with the CBS_SORT style but not the
CBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or
more times to the owner of the combo box so that the new item can be properly
placed in the list box.

To insert a string into a specific location within the list, use the
CB_INSERTSTRING message.

Example This example adds the string “my string” to a list box:

DWORD dwIndex;

dwIndex = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_ADDSTRING, @, (LPARAM) ((LPCSTR) "my string"));

See Also CB_INSERTSTRING, WM_COMPAREITEM

CB_DELETESTRING

CB_DELETESTRING
wParam = (WPARAM) index; /* item to delete */
1Param = QL; /* not used, must be zero */

An application sends a CB_DELETESTRING message to delete a string in the list
box of a combo box.

Parameters index
Value of wParam. Specifies the zero-based index of the string to delete.

Return Value The return value is a count of the strings remaining in the list. The return value is
CB_ERR if the index parameter specifies an index greater than the number of
items in the list.

CB_DIR 21

Comments

Example

See Also

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, a WM_DELETEITEM message is sent to the owner
of the combo box so that the application can free any additional data associated
with the item.

This example deletes the first string in a combo box:

DWORD dwRemaining;

dwRemaining = SendDl1gltemMessage(hdlg, ID_MYCOMBOBOX,
CB_DELETESTRING, @, 0OL);

WM_DELETEITEM

CB_DIR

Parameters

CB_DIR
wParam = (WPARAM) (UINT) uAttrs; /* file attributes */
1Param = (LPARAM) (LPCSTR) 1pszFileSpec; /* address of filename */

An application sends a CB_DIR message to add a list of filenames to the list box
of a combo box.

uAttrs
Value of wParam. Specifies the attributes of the files to be added to the list
box. It can be any combination of the following values:

Value Meaning

0x0000 File can be read from or written to.

0x0001 File can be read from but not written to.

0x0002 File is hidden and does not appear in a directory listing.

0x0004 File is a system file.

0x0010 The name pointed to by the IpszFileSpec parameter specifies a directory.
0x0020 File has been archived.

0x4000 All drives that match the name specified by the IpszFileSpec parameter
are included.

0x8000 Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in addi-
tion to files that do not match the specified type.

22 CB_FINDSTRING

IpszFileSpec
Value of [Param. Points to the null-terminated string that specifies the filename
to add to the list. If the filename contains any wild¢ards (for example, *.*), all
files that match and have the attributes specified by the uAztrs parameter will be
added to the list.

Return Value The return value is the zero-based index of the last filename added to the list. The
return value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new strings.

Example This example adds the names of all available drives to a combo box:

DWORD dwIndexLastItem;

dwIndexLastItem = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, CB_DIR,
0x4000 | 0x8000, (LPARAM) ((LPCSTR) "*"));

See Also DigDirList

CB_FINDSTRING

CB_FINDSTRING
wParam = (WPARAM) indexStart; /* item before start of search */
1Param = (LPARAM) (LPCSTR) 1pszFind; /* address of prefix string */

An application sends a CB_FINDSTRING message to find the first string that con-
tains the prefix specified in the list box of a combo box.

Parameters indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of /Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

Return Value The return value is the zero-based index of the matching item, or it is CB_ERR if
the search was unsuccessful.

CB_FINDSTRINGEXACT 23

Comments

Example

See Also

If the combo box’s style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

This example searches for the string “my string” in a combo box and copies it, if
found, to the szBuf buffer:

char szBuf[20];
DWORD dwlIndex;

dwIndex = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_FINDSTRING, @, (LPARAM) ((LPCSTR) "my string"));
if (dwlIndex != CB_ERR)
SendDl1gItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

CB_FINDSTRINGEXACT, CB_SETCURSEL

CB_FINDSTRINGEXACT [31]

Parameters

Return Value

CB_FINDSTRINGEXACT
wParam = (WPARAM) indexStart; /* item before start of search */
1Param = (LPARAM) (LPCSTR) 1pszFind; /* address of prefix string */
An application sends a CB_FINDSTRINGEXACT message to find the first list
box string (in a combo box) that matches the string specified in the [pszFind
parameter.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of [Param. Points to the null-terminated string to search for. This string
can contain a complete filename, including the extension. The search is not
case-sensitive, so this string can contain any combination of uppercase and
lowercase letters.

The return value is the zero-based index of the matching item, or it is CB_ERR if
the search was unsuccessful.

24 CB_GETCOUNT

Comments

See Also

If the combo box’s style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent. -

CB_FINDSTRING, CB_SETCURSEL

CB_GETCOUNT

Parameters
Return Value

Comments

Example

CB_GETCOUNT
wParam = 0; /* not used, must be zero */
TParam = OL; /* not used, must be zero */

An application sends a CB_GETCOUNT message to retrieve the number of items
in the list box of a combo box.

This message has no parameters.
The return value is the number of items in the list box.

The returned count is one greater than the index value of the last item (the index is
zero-based).

This example retrieves the number of items in a combo box:

WORD cListItems;

cListItems = (WORD) SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETCOUNT, @, 0);

CB_GETCURSEL

CB_GETCURSEL ,
wParam = 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends a CB_GETCURSEL message to retrieve the index of the cur-
rently selected item, if any, in the list box of a combo box.

CB_GETDROPPEDCONTROLRECT 25

Parameters

Return Value

Example

See Also

This message has no parameters.

The return value is the zero-based index of the currently selected item, or it is
CB_ERR if no item is selected.

This example retrieves the index of the currently selected string in the list box of a
combo box and then retrieves that string:

char szBuf[20];
DWORD dwlndex;

dwIndex = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX, CB_GETCURSEL, @, 0);
if (dwlndex != CB_ERR)
SendDl1gItemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

CB_SETCURSEL

CB_GETDROPPEDCONTROLRECT [3.1]

Parameters

Return Value

CB_GETDROPPEDCONTROLRECT ,
wParam = 0; /#* not used, must be zero ®/
1Param (LPARAM) (RECT FAR*) Tprc; /* address of RECT structure */

An application sends a CB_GETDROPPEDCONTROLRECT message to retrieve
the screen coordinates of the visible (dropped-down) list box of a combo box.

Ipre
Value of [Param. Points to the RECT structure that is to receive the coordi-
nates. The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

The return value is always CB_OKAY.

26 CB_GETDROPPEDSTATE

Example

This example retrieves the bounding rectangle of the list box of a combo box:

RECT rcl;

SendDTgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETDROPPEDCONTROLRECT, @, (DWORD) ((LPRECT) &rcl));

CB_GETDROPPEDSTATE [31]

Parameters
Return Value

Example

See Also

CB_GETDROPPEDSTATE
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends a CB_GETDROPPEDSTATE message to determine whether
the list box of a combo box is visible (dropped down).

This message has no parameters.
The return value is nonzero if the list box is visible; otherwise, it is zero.

This example determines whether the list box of a combo box is visible:
BOOL fDropped;

fDropped = (BOOL) SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETDROPPEDSTATE, @, 0L);

CB_SHOWDROPDOWN

CB_GETEDITSEL [2x]

CB_GETEDITSEL
wParam = 0; /* not used, must be zero */
1Param = 0QL; /* not used, must be zero */

An application sends a CB_GETEDITSEL message to retrieve the starting and
ending character positions of the current selection in the edit control of a combo
box.

CB_GETEXTENDEDUI 21

Parameters

Return Value

Example

See Also

This message has no parameters.

The return value is a doubleword value that contains the starting position in the
low-order word and the position of the first nonselected character after the end of
the selection in the high-order word.

This example retrieves the selection positions of the edit control of a combo box,
and converts them into starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;

dwResult = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETEDITSEL, @, @L);

LOWORD(dwResult);

HIWORD(dwResult);

wStart
wEnd

CB_SETEDITSEL

CB_GETEXTENDEDUI [31]

Parameters

Return Value

Comments

CB_GETEXTENDEDUI
wParam = 0; /* not used, must be zero */
T1Param oL; /* not used, must be zero */

An application sends a CB_GETEXTENDEDUI message to determine whether a
combo box has the default user interface or the extended user interface.

This message has no parameters.

The return value is nonzero if the combo box has the extended user interface;
otherwise, it is zero. ‘

The extended user interface differs from the default user interface in the following
ways:

m Clicking the static control displays the list box (CBS_DROPDOWNLIST style
only). \
® Pressing the DOWN ARROW key displays the list box (F4 is disabled).

® Scrolling in the static control is disabled when the item list is not visible (arrow
keys are disabled).

28 CB_GETITEMDATA

Example This example determines whether a combo box has the extended user interface:
BOOL fExtended;

fExtended = (BOOL) SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETEXTENDEDUI, @, OL);

See Also CB_SETEXTENDEDUI

CB_GETITEMDATA |

CB_GETITEMDATA
wParam (WPARAM) index; /#* item index */
1Param oL; /* not used, must be zero */

An application sends a CB_GETITEMDATA message to a combo box to retrieve
the application-supplied doubleword value associated with the specified item in
the combo box. (This is the value in the /Param parameter of a CB_SETITEM-
DATA message.)

Parameters index
Value of wParam. Specifies the zero-based index of the item.

Return Value The return value is the doubleword value associated with the item, or it is
CB_ERR if an error occurs.

See Also CB_SETITEMDATA

CB_GETITEMHEIGHT [31]

CB_GETITEMHEIGHT
wParam (WPARAM) index; /* item index */
1Param = 0L; /* not used, must be zero */

An application sends a CB_GETITEMHEIGHT message to retrieve the height of
list items in a combo box.

CB_GETLBTEXT 29

Parameters

Return Value

Example

See Also

index
Value of wParam. Specifies the component of the combo box whose height is
to be retrieved. If the index parameter is —1, the height of the edit-control (or
static-text) portion of the combo box is retrieved. If the combo box has the
CBS_OWNERDRAWYVARIABLE style, index specifies the zero-based index
of the list item whose height is to be retrieved. Otherwise, index should be set
to zero.

The return value is the height, in pixels, of the list items in a combo box. The re-
turn value is the height of the item specified by the index parameter if the combo
box has the CBS_OWNERDRAWVARIABLE style. The return value is the
height of the edit-control (or static-text) portion of the combo box if index is —1.
The return value is CB_ERR if an error occurred.

This example sends a CB_GETITEMHEIGHT message to retrieve the height of
the list items in a combo box:

LRESULT 1rHeight;

1rHeight = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETITEMHEIGHT, @, 0L);

CB_SETITEMHEIGHT

CB_GETLBTEXT

Parameters

CB_GETLBTEXT
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1pszBuffer; /* address of buffer */

An application sends a CB_GETLBTEXT message to retrieve a string from the
list box of a combo box.

index
Value of wParam. Specifies the zero-based index of the string to retrieve.
IpszBuffer
Value of I[Param. Points to the buffer that receives the string. The buffer must
have sufficient space for the string and a terminating null character. A
CB_GETLBTEXTLEN message can be sent before the CB_GETLBTEXT mes-
sage to retrieve the length, in bytes, of the string.

30 CB_GETLBTEXTLEN

Return Value The return value is the length of the string, in bytes, excluding the terminating null
character. If the index parameter does not specify a valid index, the return value is
CB_ERR.

Comments If the combo box was created with an owner-drawn style but without the

CBS_HASSTRINGS style, the buffer pointed to by the IpszBuffer parameter of
the message receives the doubleword value associated with the item.

Example This example retrieves the length of the first item in the list box of a combo box,
allocates sufficient memory for the string, and sends a CB_GETLBTEXT message
to retrieve the string:

DWORD cbItemString;
PSTR psz;

cbItemString = SendDigltemMessage(hdig, ID_MYCOMBOBOX,
CB_GETLBTEXTLEN, @, 0L);
if (cbItemString != CB_ERR) {
psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbItemString);
SendDlgIltemMessage(hd1g, ID_MYCOMBOBOX,
CB_GETLBTEXT, @, (LPARAM) ((LPCSTR) psz));

See Also CB_GETLBTEXTLEN

CB_GETLBTEXTLEN |

CB_GETLBTEXTLEN
wParam (WPARAM) index; /* item index */
1Param = 0OL; /* not used, must be zero */

An application sends a CB_GETLBTEXTLEN message to retrieve the length of a
string in the list box of a combo box.

Parameters index
Value of wParam. Specifies the zero-based index of the string.

Return Value The return value is the length of the string, in bytes, excluding the terminating null
character. If the index parameter does not specify a valid index, the return value is
CB_ERR.

CB_INSERTSTRING 31

Example This example retrieves the length of the first item in the list box of a combo box:

DWORD cbItemString;

cbItemString = SendDlgIltemMessage(hdlg, ID_MYCOMBOBOX,
CB_GETLBTEXTLEN, @, 0OL);

See Also CB_GETLBTEXT

CB_INSERTSTRING

CB_INSERTSTRING
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1psz; /* address of string to insert =/

An application sends a-CB_INSERTSTRING message to insert a string into the
list box of a combo box. Unlike the CB_ADDSTRING message, the
CB_INSERTSTRING message does not cause a list with the CBS_SORT style to
be sorted.

Parameters index
Value of wParam. Specifies the zero-based index of the position at which to in-
sert the string. If this parameter is —1, the string is added to the end of the list.

Ipsz

Value of [Param. Points to the null-terminated string that is to be inserted. If
the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

Return Value The return value is the index of the position at which the string was inserted. The
return value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new string.

Example This example inserts the string “my string” into the third position in the list box of
a combo box:
SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_INSERTSTRING, 2, (LPARAM) ((LPCSTR) "my string™));

See Also CB_ADDSTRING

32 CB_LIMITTEXT

CB_LIMITTEXT

CB_LIMITTEXT
wParam = (WPARAM) cchLimit; /* maximum number of characters */
1Param = 0OL; /* not used, must be zero */

An application sends a CB_LIMITTEXT message to limit the length of the text
that the user may type in the edit control of a combo box.

Parameters cchLimit ,
Value of wParam. Specifies the length, in bytes, of the text the user can enter.
If this parameter is zero, the text length is set to 65,535 bytes.

Return Value The return value is 1 if the message is successful. If this message is sent to a
combo box with the style CBS_DROPDOWNLIST, the return value is CB_ERR.

Comments If the combo box does not have the style CBS_AUTOHSCROLL, setting the text
limit to be larger than the size of the edit control has no effect.

The CB_LIMITTEXT message limits only the text the user can enter. It has no ef-
fect on any text already in the edit control when the message is sent, nor does it af-
fect the length of the text copied to the edit control when a string in the list box is
selected.

Example This example limits the text of the edit control of a combo box to five characters:

SendD1gItemMessage(hdlg, ID_MYCOMBOBOX, CB_LIMITTEXT, 5, QL);

CB_RESETCONTENT

CB_RESETCONTENT
wParam 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends a CB_RESETCONTENT message to remove all items from
the list box and edit control of a combo box.

Parameters This message has no parameters.

Return Value The return value is always CB_OKAY.

CB_SELECTSTRING 33

Comments

Example

See Also

If the combo box was created with an owner-drawn style but without the
CBS_HASSTRINGS style, the owner of the combo box receives a
WM_DELETEITEM message for each item in the combo box.

This example removes all items from the list box and edit control of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_RESETCONTENT, 0, OL);

WM_DELETEITEM

CB_SELECTSTRING

Parameters

Return Value

Comments

CB_SELECTSTRING
wParam (WPARAM) indexStart; /* item before first selection */
1Param (LPARAM) (LPCSTR) TpszSelect; /* address of prefix string */

An application sends a CB_SELECTSTRING message to search for a string in the
list box of a combo box and, if the string is found, to select the string in the list
box and copy it to the edit control.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszSelect
Value of I[Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the index of the selected item if the string was found. The re-
turn value is CB_ERR and the current selection is not changed if the search was
unsuccessful.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string. :

If the combo box’s style is owner-drawn but not CBS_HASSTRINGS and
CBS_SORT, CB_FINDSTRING is used. If the styles are owner-drawn and
CBS_SORT but not CBS_HASSTRINGS, WM_COMPAREITEM messages
are sent.

34 CB_SETCURSEL

Example

See Also

This example searches the entire list box of a combo box for the string “my string”
and, if the string is found, selects it:

DWORD dwlIndexFoundString;

dwIndexFoundString = SendDlgltemMessage(hdlg, ID_MYCOMBOBOX,
CB_SELECTSTRING, -1, (LPARAM) ((LPCSTR) "my string™));

CB_FINDSTRING

CB_SETCURSEL |

Parameters

Return Value

Example

See Also

CB_SETCURSEL
wParam = (WPARAM) index; /* item index */
1Param = 0OL; /* not used, must be zero */

An application sends a CB_SETCURSEL message to select a string in the list box
of a combo box. If necessary, the list box scrolls the string into view (if the list
box is visible). The text in the edit control of the combo box is changed to reflect
the new selection. Any previous selection in the list box is removed.

index
Value of wParam. Specifies the zero-based index of the string to select. If the
index parameter is —1, any current selection in the list box is removed and the
edit control is cleared.

The return value is the index of the item selected if the message is successful. The
return value is CB_ERR if the index parameter is greater than the number of items
in the list or if index is set to —1 (which clears the selection).

This example retrieves the number of items in the list box of a combo box and

~sends a CB_SETCURSEL message to select the last item in the list:

WORD cListItems;

cListItems = (WPARAM) SendDlgltemMessage(hdlg,
ID_MYCOMBOBOX, CB_GETCOUNT, @, 0);
SendDlgItemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETCURSEL,
cListItems - 1, = /% zero-based index, so subtract one from total */
oL);

CB_GETCURSEL, CB_FINDSTRING

_CB_SETEXTENDEDUI 35

CB_ SETEDITSEL

Parameters

Return Value

Comments

Example

See Also

CB_SETEDITSEL
wParam = 0; /* not used, must be zero */
1Param = MAKELPARAM(ichStart, ichEnd); /* start and end positions */

An application sends a CB_SETEDITSEL message to select characters in the edit
control of a combo box.

ichStart :
Value of the low-order word of [Param. Specifies the starting position. If this
parameter is set to —1, the selection, if any, is removed.

ichEnd
Value of the high-order word of /Param. Specifies the ending position. If this
parameter is set to —1, all text from the starting position to the last character in
the edit control is selected.

The return value is nonzero if the message is successful. It is CB_ERR if the mes-
sage is sent to a combo box with the CBS_DROPDOWNLIST style.

The positions are zero-based. To select the first character of the edit control, you
specify a starting position of zero. The ending position is for the character just
after the last character to select. For example, to select the first four characters of
the edit control, you would use a starting position of 0 and an ending position of 4.

This example selects the first four characters of the edit control of a combo box:

SendDl1gItemMessage(hdlg, ID_MYCOMBOBOX,
CB_SETEDITSEL, @, MAKELONG(@, 4));

CB_GETEDITSEL

CB_SETEXTENDEDUI

CB_SETEXTENDEDUI
wParam (WPARAM) (BOOL) fExtended; /* extended UI flag */
1Param oL; /* not used, must be zero */

An application sends a CB_SETEXTENDEDUI message to select either the de-
fault user interface or the extended user interface for a combo box that has the
CBS_DROPDOWN or CBS_ DROPDOWNLIST style.

t

36 CB_SETITEMDATA

Parameters [fExtended
Value of wParam. Specifies whether the combo box should use the extended
user interface or the default user interface. A value of TRUE selects the ex-
tended user interface; a value of FALSE selects the standard user interface.

Return Value The return value is CB_OKAY if the operation is successful, or it is CB_ERR if
an error occurred.

Comments The extended user interface differs from the default user interface in the following
ways:

® Clicking the static control displays the list box (CBS_DROPDOWNLIST style
only).
= Pressing the DOWN ARROW key displays the list box (F4 is disabled).

= Scrolling in the static control is disabled when the item list is not visible (the
arrow keys are disabled).

Example This example selects the extended user interface for a combo box:
SendD1gItemMessage(hdlg, ID_MYCOMBOBOX, CB_SETEXTENDEDUI,
TRUE, OL);
See Also CB_GETEXTENDEDUI

CB_SETITEMDATA |

CB_SETITEMDATA
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (DWORD) dwData; /* item data =/

An application sends a CB_SETITEMDATA message to set the doubleword value
associated with the specified item in a combo box. If the item is in an owner-
drawn combo box created without the CBS_HASSTRINGS 'style, this message re-
places the doubleword value that was contained in the /Param parameter of the
CB_ADDSTRING or CB_INSERTSTRING message that added the item to the
combo box.

Parameters index
Value of wParam. Specifies the zero-based index to the item.

dwData
Value of [Param. Specifies the new value to be associated with the item.

CB_SETITEMHEIGHT - 37

Hetl:rn Value

See Also

The return value is CB_ERR if an error occurs.

CB_ADDSTRING, CB_INSERTSTRING

CB_ SETITEMHEIGHT [31]

Parameters

Return Value

Comments

Example

See Also

CB_SETITEMHEIGHT
wParam (WPARAM) index; /* item index */
1Param (LPARAM) (int) height; /* item height =/

An application sends a CB_SETITEMHEIGHT message to set the height of list
items in a combo box or the height of the edit-control (or static-text) portion of a
combo box.

index
Value of wParam. Specifies whether the height of list items or the height of the
edit-control (or static-text) portion of the combo box is set.

If the combo box has the CBS_OWNERDRAWYVARIABLE style, the index
parameter specifies the zero-based index of the list item whose height is to be
set; otherwise, index must be zero and the height of all list items will be set.

If index is —1, the height of the edit-control or static-text portion of the combo
box is to be set.

height ~
Value of the low-order word of [Param. Specifies the height, in pixels, of the
combo box component identified by index.

The return value is CB_ERR if the index or height is invalid.

The height of the edit-control (or static-text) portion of the combo box is set inde-
pendently of the height of the list items. An application must ensure that the height
of the edit-control (or static-text) portion isn’t smaller than the height of a particu-
lar list box item.

This example sends a CB_SETITEMHEIGHT message to set the height of list
items in a combo box:

LPARAM TrHeight;

SendD1gltemMessage(hdlg, ID_MYCOMBOBOX, CB_SETITEMHEIGHT,
0, 1rHeight);

CB_GETITEMHEIGHT

38 CB_SHOWDROPDOWN

CB_SHOWDROPDOWN

CB_SHOWDROPDOWN

wParam (WPARAM) (BOOL) fShow; /* the show/hide flag */

1Param = 0OL; /* not used, must be zero */
|

An application sends a CB_SHOWDROPDOWN message to show or hide the list
box of a combo box that has the CBS_DROPDOWN or CBS_ DROPDOWNLIST

style.

Parameters fShow
Value of wParam. Specifies whether the drop-down list box is to be shown or
hidden. A value of TRUE shows the list box. A value of FALSE hides the list

box.
Return Value The return value is always nonzero.
Comments This message has no effect on a combo box created with the CBS_SIMPLE style.
Example This example shows the list box of a combo box:

SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, CB_SHOWDROPDOWN, TRUE, @L);

DM_GETDEFID

DM_GETDEFID
wParam 0; /* not used, must be zero */
TParam oL; /* not used, must be zero */

An application sends a DM_GETDEFID message to get the identifier of the de-
fault push button for a dialog box.

Parameters This message has no parameters.

Return Value The return value is a doubleword value. If the default push button has an identifier
value, the high-order word contains DC_HASDEFID and the low-order word con-
tains the identifier value. The return value is zero if the default push button does
not have an identifier value.

EM_CANUNDO 39

Example This example gets the identifier of the default push button of a dialog box:

DWORD dwResult;
WORD idDefPushButton;

dwResult = SendMessage(hdlg, DM_GETDEFID, @, OL);

if (HIWORD(dwResult) == DC_HASDEFID)
idDefPushButton = LOWORD(dwResult);

See Also DM_SETDEFID

DM_SETDEFID &=

DM_SETDEFID
wIDPushBtn = wParam; /#* identifier of new default push button */

An application sends a DM_SETDEFID message to change the identifier of the de-
fault push button for a dialog box.

Parameters wIDPushBtn
Value of wParam. Specifies the identifier of the push button that will become
the default.

Return Value The return value is always nonzero.

EM_CANUNDO [2x]

EM_CANUNDO
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_CANUNDO message to determine whether an edit-
control operation can be undone.

Parameters This message has no parameters.

Return Value The return value is nonzero if the last edit operation can be undone, or it is zero if
the last edit operation cannot be undone.

40 EM_EMPTYUNDOBUFFER

Example This example sends an EM_CANUNDO message to determine whether the last
edit-control operation can be undone and, if so, sends an EM_UNDO message to
undo the last operation:

if (SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_CANUNDO, @, OL))
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, @, OL);

See Also EM_UNDO

EM_EMPTYUNDOBUFFER

EM_EMPTYUNDOBUFFER
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends an EM_EMPTYUNDOBUFFER message to reset (clear) the
undo flag of an edit control. The undo flag is set whenever an operation within the
edit control can be undone.

Parameters This message has no parameters.
Return Value This message does not return a value.
Comments The undo flag is automatically cleared whenever the edit control receives a

WM_SETTEXT or EM_SETHANDLE message.

Example This example resets the undo flag of an edit control:
SendD1gItemMessage(hdlg, ID_MYEDITCONTROL, EM_EMPTYUNDOBUFFER, @, OL);

See Also EM_CANUNDO, EM_SETHANDLE, EM_UNDO, WM_SETTEXT

EM_FMTLINES 4

EM_FMTLINES [2x]

EM_FMTLINES
wParam (WPARAM) (BOOL) fAddEOL; /* line break flag */
1Param = 0L; /* not used, must be zero */

non

An application sends an EM_FMTLINES message to set the inclusion of soft line
break characters on or off within a multiline edit control. A soft line break consists
of two carriage returns and a linefeed inserted at the end of a line that is broken be-
cause of wordwrapping.

This message is processed only by multiline edit controls.

Parameters SfAddEOL
Value of wParam. Specifies whether soft line break characters are to be in-
serted. A value of TRUE inserts the characters; a value of FALSE removes

them.
Return Value The return value is identical to the fAddEOL parameter.
Comments This message affects only the buffer returned by the EM_GETHANDLE message

and the text returned by the WM_GETTEXT message. It has no effect on the dis-
play of the text within the edit control.

A line that ends with a hard line break is not affected by the EM_FMTLINES mes-
sage. A hard line break consists of one carriage return and a linefeed.

Example This example sends an EM_FMTLINES message to turn off soft line breaks, then
allocates a buffer for the text, and then retrieves the text by sending a
WM_GETTEXT message:

WPARAM cbText;
HGLOBAL hmem;
LPSTR 1pstr;

SendD1gItemMessage(hdl1g, ID_MYEDITCONTROL,
EM_FMTLINES, FALSE, 0);

cbText = (WPARAM) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXTLENGTH, 0, 0L);
cbText++; /* make room for the terminating null character */
hmem = (HGLOBAL) GlobalAlloc(GMEM_MOVEABLE, (DWORD) cbhText);
1pstr = GlobalLock(hmem);
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXT, cbText, (LPARAM) lpstr);

See Also EM_GETHANDLE, WM_GETTEXT

42 EM_GETFIRSTVISIBLELINE

EM_GETFIRSTVISIBLELINE [31]

EM_GETFIRSTVISIBLELINE
wParam 0; /* not used, must be zero */
TParam oL; /* not used, must be zero */

An application sends an EM_GETFIRSTVISIBLELINE message to determine the
topmost visible line in an edit control.

Parameters This message has no parameters.

Return Value The return value is the zero-based index of the topmost visible line. For single-line
edit controls, the return value is zero.

Example This example gets the index of the topmost visible line in an edit control:
int FirstVis;

FirstVis = (int) SendD]gItemMess’age(hd1g, IDD_EDIT,
EM_GETFIRSTVISIBLELINE, 0, OL);

EM_GETHANDLE [2x]

EM_GETHANDLE
wParam 0; /* not used, must be zero */
1Param = 0OL; /* not used, must be zero */

An application sends an EM_GETHANDLE message to retrieve a handle to the
memory currently allocated for a multiline edit control. The handle is a local
memory handle and can be used by any of the functions that take a local memory
handle as a parameter.

This message is processed only by multiline edit controls.

Parameters This message has no parameters.

Return Value The return value is a local memory handle identifying the buffer that holds the con-
tents of the edit control. If an error occurs, such as sending the message to a single-

line edit control, the return value is zero.

Comments An application can send this message to a multiline edit control in a dialog box
only if it created the dialog box with the DS_LOCALEDIT style flag set. If the

EM_GETLINE =~ 43

Example

See Also

DS_LOCALEDIT style is not set, the return value is still nonzero, but the return
value will not be meaningful.

This example sends an EM_GETHANDLE message to a multiline edit control and
calls the LocalSize function to determine the current size of the edit control using
the handle returned by the EM_GETHANDLE message:

HANDLE hmemMle;
WORD cbMle;

hmemMle = (HLOCAL) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETHANDLE, @, OL);
cbMle = LocalSize(hmemMle);

EM_SETHANDLE

EM_GETLINE [2x]

Parameters

Return Value

Comments

EM_GETLINE
wParam = (WPARAM) Tine; /* Tine number to retrieve */
TParam = (LPARAM) (LPSTR) 1pch; /* address of buffer for line */

An application sends an EM_GETLINE message to retrieve a line of text from an
edit control.

line
Value of wParam. Specifies the line number of the line to retrieve from a multi-
line edit control. Line numbers are zero-based; a value of zero specifies the first
line. This parameter is ignored by a single-line edit control.

Ipch
Value of [Param. Points to the buffer that receives a copy of the line. The first
word of the buffer specifies the maximum number of bytes that can be copied
to the buffer.

The return value is the number of bytes actually copied. The return value is zero if
the line number specified by the line parameter is greater than the number of lines
in the edit control.

The copied line does not contain a terminating null character.

44 EM_GETLINECOUNT

Example

See Also

This example sets the maximum size of the buffer, sends an EM_GETLINE mes-
sage to get the first line of the multiline edit control, and adds a terminating null
character to the end of the retrieved line:

unsigned char szBuf[128];
WORD cbText;

*(WORD *) szBuf = sizeof(szBuf) - 1; /* sets the buffer size */
cbText = (WORD) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,

EM_GETLINE,

9, /* Tine number */

(DWORD) (LPSTR) szBuf); /* buffer address */
szBuf[cbText] = '\0'; /* terminating null character */

EM_LINELENGTH, WM_GETTEXT

EM_GETLINECOUNT [2x]

Parameters

Return Value

Example

See Also

EM_GETLINECOUNT
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an EM_GETLINECOUNT message to retrieve the number
of lines in a multiline edit control.

This message is processed only by multiline edit controls.
This message has no parameters.

The return value is an integer containing the number of lines in the multiline edit
control. If no text is in the edit control, the return value is 1.

This example sends an EM_GETLINECOUNT message to retﬁeve the number of
lines in a multiline edit control and then sends an EM_LINESCROLL message to
scroll the edit control so that the last line is displayed at the top of the edit control.

int clines;

cLines = (int) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETLINECOUNT, @, 0L);

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINESCROLL, @, MAKELONG(cLines - 1, @));

EM_GETLINE, EM_LINELENGTH

EM_GETMODIFY 45

EM_GETMODIFY [2x]

Parameters

Return Value

Comments

Example

See Also

EM_GETMODIFY
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an EM_GETMODIFY message to determine whether the
contents of an edit control have been modified.

This message has no parameters.

The return value is nonzero if the edit-control contents have been modified, or it is
zero if the contents have remained unchanged.

Windows maintains an internal flag indicating whether the contents of the edit con-
trol have been changed. This flag is cleared when the edit control is first created;
or an EM_SETMODIFY message can be sent to clear the flag.

This example sends an EM_GETMODIFY message to determine whether the edit
control has been modified and, if it has, retrieves the current contents of the edit
control and clears the modification flag by sending an EM_SETMODIFY mes-
sage:

char szBuf[128];

if (SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETMODIFY, @, @L)) {
SendDlgIltemMessage(hdlg, ID_MYEDITCONTROL,
WM_GETTEXT, sizeof(szBuf), (LPARAM) ((LPCSTR) szBuf));
SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETMODIFY, FALSE, 0L);

EM_SETMODIFY

46 EM_GETPASSWORDCHAR

EM_GETPASSWORDCHAR [31]

EM_GETPASSWORDCHAR
wParam = 0; /* not used, must be zero */
1Param = OL; /* not used, must be zero */

An application sends an EM_GETPASSWORDCHAR message to retrieve the
password character displayed in an edit control when the user enters text.

Parameters This message has no parameters.

Return Value The return value specifies the character to be displayed in place of the character
typed by the user. The return value is NULL if no password character exists.

Comments If the edit control is created with the ES_PASSWORD style, the default password
character is set to an asterisk (*).

See Also EM_SETPASSWORDCHAR

EM_GETRECT [2x]

EM_GETRECT
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (RECT FARx) Tprc; /* address of RECT structure */

An application sends an EM_GETRECT message to retrieve the formatting rect-
angle of anedit control. The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of the edit-control window.

Parameters Ipre
Value of /Param. Points to the RECT structure that receives the formatting
rectangle. The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

Return Value The return value is not a meaningful value.

EM_GETSEL 47

Comments

Example

See Also

The formatting rectangle of a multiline edit control can be modified by the
EM_SETRECT and EM_SETRECTNP messages.

This example sends an EM_GETRECT message to retrieve the formatting
rectangle of an edit control:

RECT rcl;

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETRECT, @, (DWORD) ((LPRECT) &rcl));

EM_SETRECT

EM_GETSEL

Parameters

Return Value

Example

See Also

[2x]

EM_GETSEL
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends an EM_GETSEL message to get the starting and ending char-
acter positions of the current selection in an edit control.

This message has no parameters.

The return value is a doubleword value that contains the starting position in the
low-order word and the position of the first nonselected character after the end of
the selection in the high-order word.

This example gets the selection positions of an edit control and converts them into
starting and ending positions:

DWORD dwResult;
WORD wStart, wEnd;

dwResult = SendDlgItemMessage(hdlg, ID_MYCOMBOBOX, EM_GETSEL, @, @L);

wStart = LOWORD(dwResult);
wEnd = HIWORD(dwResult);
EM_SETSEL

48 EM_GETWORDBREAKPROC

EM_GETWORDBREAKPROC [31]

EM_GETWORDBREAKPROC
wParam 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends the EM_GETWORDBREAKPROC message to an edit con-
trol to retrieve the current wordwrap function.

Parameters This message has no parameters.

Return Value The return value specifies the procedure-instance address of the application-de-
fined wordwrap function. The return value is NULL if no wordwrap function ex-
ists.

Comments A wordwrap function scans a text buffer (which contains text to be sent to the dis-

play), looking for the first word that does not fit on the current display line. The
wordwrap function places this word at the beginning of the next line on the dis-
play. A wordwrap function defines at what point Windows should break a line of
text for multiline edit controls, usually at a space character that separates two
words.

See Also EM_SETWORDBREAKPROC, MakeProcInstance, WordBreakProc

EM_LIMITTEXT [2x]

EM_LIMITTEXT
wParam (WPARAM) cchMax; /* text length */
1Param oL; /* not used, must be zero */

An application sends an EM_LIMITTEXT message to limit'the length of the text
the user can enter into an edit control.

Parameters cchMax
Value of wParam. Specifies the length, in bytes, of the text the user can enter.
If this parameter is zero, the text length is set to 65,535 bytes.

Return Value This message does not return a value.

EM_LINEFROMCHAR 49

Comments The EM_LIMITTEXT message limits only the text the user can enter. It has no
effect on any text already in the edit control when the message is sent, nor does it
affect the length of text copied to the edit control by the WM_SETTEXT message.

If an application uses the WM_SETTEXT message to place more text into an edit
control than is specified in the EM_LIMITTEXT message, the user can edit the en-
tire contents of the edit control.

See Also WM_SETTEXT

EM_LINEFROMCHAR [2x]

EM_LINEFROMCHAR
wParam = (WPARAM) ich; /* character index */
1Param = 0L; /* not used, must be zero */

An application sends an EM_LINEFROMCHAR message to retrieve the line num-
ber of the line that contains the specified character index. A character index is the
number of characters from the beginning of the edit control.

This message is processed only by multiline edit controls.

Parameters ich
Value of wParam. Specifies the character index of the character contained in
the line whose number is to be retrieved. If the ich parameter is —1, either the
line number of the current line (the line containing the caret) is retrieved or, if
there is a selection, the line number of the line containing the beginning of the

selection is retrieved.
Return Value The return value is the zero-based line number of the line containing the character
index specified by ich.
Example This example sends an EM_LINEFROMCHAR message to retrieve the line num-

ber of the current line in a multiline edit control:

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINEFROMCHAR, -1, 0L);

See Also EM_LINEINDEX

50 EM_LINEINDEX

EM_LINEINDEX 5]

Parameters

Return Value

Example

See Also

EM_LINEINDEX
wParam = (WPARAM) Tline; /* line number */
1Param = 0L; /* not used, must be zero */

An application sends an EM_LINEINDEX message to retrieve the character index
of a line within a multiline edit control. The character index is the number of char-
acters from the beginning of the edit control to the specified line.

This message is processed only by multiline edit controls.

line
Value of wParam. Specifies the zero-based line number. A value of -1 speci-
fies the current line number (the line that contains the caret).

The return value is the character index of the line specified in the line parameter,
or it is —1 if the specified line number is greater than the number of lines in the
edit control. ,

This example uses the EM_GETLINECOUNT message to retrieve the number of
lines in an edit control and then uses EM_LINEINDEX to retrieve the character
index for the last line in the edit control:

WPARAM clLines, index;
cLines = (WPARAM) SendDlgltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETLINECOUNT, @, OL);

index = (WPARAM) SendDlgItemMessage(hdig, ID_MYEDITCONTROL,
EM_LINEINDEX, clines - 1, 0L);

EM_LINEFROMCHAR

EM_LINELENGTH [2x]

EM_LINELENGTH
wParam (WPARAM) ich; /* character index */
1Param = 0L; /* not used, must be zero */

An application sends an EM_LINELENGTH message to retrieve the length of a
line in an edit control.

EM_LINESCROLL 51

Parameters

Return Value

Comments

See Also

ich
Value of wParam. Specifies the character index of a character in the line whose
length is to be retrieved when EM_LINELENGTH is sent to a multiline edit
control. If this parameter is —1, the message returns the number of unselected
characters on lines containing selected characters. For example, if the selection
extended from the fourth character of one line through the eighth character
from the end of the next line, the return value would be 10 (three characters
on the first line and seven on the next).

When EM_LINELENGTH is sent to a single-line edit control, this parameter is
ignored.

The return value is the length, in bytes, of the line specified by the ich parameter
when an EM_LINELENGTH message is sent to a multiline edit control. The re-
turn value is the length, in bytes, of the text in the edit control when an
EM_LINELENGTH message is sent to a single-line edit control.

Use the EM_LINEINDEX message to retrieve a character index for a given line
number within a multiline edit control.

EM_LINEINDEX

EM_LINESCROLL [2x]

Parameters

EM_LINESCROLL
wParam = 0; /* not used, must be zero */
1Param = MAKELPARAM(dv, dh); /* lines and characters to scroll */

An application sends an EM_LINESCROLL message to scroll the text of a multi-
line edit control.

This message is processed only by multiline edit controls.

dv
Value of the low-order word of /Param. Specifies the number of lines to scroll
vertically.

dh
Value of the high-order word of /Param. Specifies the number of character posi-
tions to scroll horizontally. This value is ignored if the edit control has either
the ES_RIGHT or ES_CENTER style.

52 EM_REPLACESEL

Return Value The return value is nonzero if the message is sent to a multiline edit control, or it is
zero if the message is sent to a single-line edit control.

Comments The edit control does not scroll vertically past the last line of text in the edit con-
trol. If the current line plus the number of lines specified by the dv parameter
exceeds the total number of lines in the edit control, the value is adjusted so that
the last line of the edit control is scrolled to the top of the edit-control window.

The EM_LINESCROLL message can be used to scroll horizontally past the last
character of any line.

Example This example sends an EM_LINESCROLL message to scroll the text in a multi-
line edit control vertically by five lines:

SendD1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_LINESCROLL, @, MAKELONG(5, 0));

EM_REPLACESEL [2x]

EM_REPLACESEL
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) 1pszReplace; /* address of new string =*/

An application sends an EM_REPLACESEL message to replace the current selec-
tion in an edit control with the text specified by the IpszReplace parameter.

Parameters IpszReplace
Value of [Param. Points to a null-terminated string containing the replacement
text.

Return Value This message does not return a value.

Comments Use the EM_REPLACESEL message when you want to replace only a portion of

the text in an edit control. If you want to replace all of the text, use the
WM_SETTEXT message.

If there is no current selection, the replacement text is inserted at the current cursor
location.

EM_SETHANDLE 53

Example

See Also

This example sets the selection to the beginning of the edit control and inserts the
string “C:\":

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, 9));

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_REPLACESEL, @, (LPARAM) ((LPCSTR) "C:\\"));

WM_SETTEXT

EM_SETHANDLE [2x]

Parameters

Return Value

Comments

EM_SETHANDLE
wParam (WPARAM) (HLOCAL) hloc; /* handle of local memory object */
1Param oL; /* not used, must be zero */

An application sends an EM_SETHANDLE message to set the handle to the local
memory that will be used by a multiline edit control.

This message is processed only by multiline edit controls.

hloc
Value of wParam. Identifies the local memory. This handle must have been
created by a previous call to the LocalAlloc function using the
LMEM_MOVEABLE flag. The memory should contain a null-terminated
string, or the first byte of the allocated memory should be set to zero.

This message does not return a value.

Before an application sets a new memory handle, it should send an
EM_GETHANDLE message to retrieve the handle to the current memory buffer
and should free that memory by using the LocalFree function.

Sending an EM_SETHANDLE message clears the undo buffer (EM_CANUNDO
returns zero) and the internal modification flag (EM_GETMODIFY returns zero).
The edit-control window is redrawn.

An application can send this message to a multiline edit control in a dialog box
only if it has created the dialog box with the DS_LOCALEDIT style flag set.

54 EM_SETHANDLE

Example

See Also

This example frees the current memory for the edit control, allocates new
memory, and reads up to BUF_SIZE bytes of a file into the allocated memory. It
then sends an EM_SETHANDLE message to set the handle of the edit control to
the new memory, effectively placing up to BUF_SIZE bytes of the file into the
edit control.

fidefine BUF_SIZE 4 * 1024

HANDLE hFile;

OFSTRUCT ofs;

HLOCAL hOldMem, hNewMem;
PSTR pBuf;

int cbRead;

/* Get the handle to the old memory and free it. */

hO1dMem = (HLOCAL) SendDl1gltemMessage(hdlg,
ID_MYEDITCONTROL, EM_GETHANDLE, @, OL);
LocalFree(hOT1dMem);

/* Allocate new memory and read the file into it. */

hNewMem = LocalAlloc(LMEM_MOVEABLE, BUF_SIZE);

pBuf = LocalLock(hNewMem);

hFile = OpenFile("test.txt", &ofs, OF_READ);

cbRead = _1lread(hFile, pBuf, BUF_SIZE);

pBuf[cbRead] = '\0@'; /* terminating null character */
_Tclose(hFile);

/* Adjust the buffer for the amount actually read in. */
LocalReAlloc(hNewMem, cbRead, 0);

/* Set the handle to the new buffer. */
LocalUnTock(hNewMem) ;

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETHANDLE, hNewMem, 0L);

EM_CANUNDO, EM_GETHANDLE, EM_GETMODIFY, LocalAlloc,
LocalFree

EM_SETPASSWORDCHAR 55

EM_SETMODIFY [2x]

EM_SETMODIFY
wParam (WPARAM) (UINT) fModified; /* modification flag */
1Param = 0L; /* not used, must be zero */

An application sends an EM_SETMODIFY message to set or clear the modifica-
tion flag for an edit control. The modification flag indicates whether the text
within the edit control has been modified. It is automatically set whenever the user
changes the text. An EM_GETMODIFY message can be sent to retrieve the value
of the modification flag.

Parameters fModified
‘ Value of wParam. Specifies the new value for the modification flag. A value of
TRUE indicates the text has been modified, and a value of FALSE indicates it
has not been modified.

Return Value This message does not return a value.

Example This example sends an EM_SETMODIFY message to clear the modification flag:
SendD1gItemMessage(hdlg, ID_MYEDITCONTROL, EM_SETMODIFY, FALSE, 0OL);

See Also EM_GETMODIFY

EM_SETPASSWORDCHAR

EM_SETPASSWORDCHAR
wParam = (WPARAM) (UINT) ch; /* character to display */
1Param = 0L; /* not used, must be zero */

An application sends an EM_SETPASSWORDCHAR message to set or remove a
password character displayed in an edit control when the user types text. When a
password character is set, that character is displayed for each character the user

types.

This message has no effect on a multiline edit control.

Parameters ch
Value of wParam. Specifies the character to be displayed in place of the charac-
ter typed by the user. If the ch parameter is zero, the actual characters typed by
the user are displayed.

56 EM_SETREADONLY

Return Value The return value is nonzero if the message is sent to an edit control.

Comments When the EM_SETPASSWORDCHAR message is received by an edit control,
the edit control redraws all visible characters by using the character specified by
the ch parameter.

If the edit control is created with the ES_PASSWORD style, the default
password character is set to an asterisk (*). This style is removed if an
EM_SETPASSWORDCHAR message is sent with the wParam parameter
set to zero.

Example This example sends an EM_SETPASSWORDCHAR message to set the password
character of an edit control to a question mark:
SendD1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETPASSWORDCHAR, (WORD) '?', @L);

See Also EM_GETPASSWORDCHAR

EM_SETREADONLY [31]

EM_SETREADONLY
wParam = (WPARAM) (BOOL) fReadOnly; /* read-only flag */
1Param = QL; /* not used, must be zero */

An application sends an EM_SETREADONLY message to set the read-only state
of an edit control.

Parameters fReadOnly
Value of wParam. Specifies whether to set or remove the read-only state of the
edit control. A value of TRUE sets the state to read-only; a value of FALSE
sets the state to read/write.

Return Value The return value is nonzero if the operation is successful, or it is zero if an error
occurs.
Comments When the state of an edit control is set to read-only, the user cannot change the

text within the edit control.

Example This example sets the state of an edit control to read-only:

SendD1gItemMessage(hdlg, IDD_EDIT, EM_SETREADONLY,
TRUE, @L);

EM_SETRECT 57

EM_SETRECT 2]

Parameters

Return Value

Comments

EM_SETRECT
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (const RECT FAR#*) 1prc; /* address of RECT */

An application sends an EM_SETRECT message to set the formatting rectangle of
a multiline edit control. The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of the edit-control window.
When the edit control is first created, the formatting rectangle is the same as the
client area of the edit-control window. By using the EM_SETRECT message, an
application can make the formatting rectangle larger or smaller than the edit-
control window.

This message is processed only by multiline edit controls.

Iprc
Value of [Param. Points to a RECT structure that specifies the new dimensions
of the rectangle. The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

This message does not return a value.

The EM_SETRECT message causes the text of the edit control to be redrawn. To
change the size of the formatting rectangle without redrawing the text, use the
EM_SETRECTNP message.

If the edit control does not have a horizontal scroll bar, and the formatting rect-
angle is set to be larger than the edit-control window, lines of text exceeding the
width of the edit-control window (but smaller than the width of the formatting
rectangle) are clipped instead of wrapped.

If the edit control contains a border, the formatting rectangle is reduced by the size
of the border. If you are adjusting the rectangle returned by an EM_GETRECT
message, you must remove the size of the border before using the rectangle with
the EM_SETRECT message.

58 EM_SETRECTNP

Example

See Also

This example retrieves the current formatting rectangle for a multiline edit control,
removes the border width dimensions, and sets the right border to 32767 so that all
text sent to the edit control is clipped rather than wrapped if it exceeds the width of
the edit-control window. The example then sends an EM_SETRECT message to
set the new formatting rectangle.

RECT rect;

SendD1gltemMessage(hdlg, ID_MYEDITCONTROL,
EM_GETRECT, @, (LPARAM) (RECT FAR*) &rect);

rect.left = 0; /* remove border width */
rect.right = 32767; /* clip all lines */
rect.bottom += rect.top; /* remove border height */
rect.top = 0; /* remove border height */

SendDl1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETRECT, @, (LPARAM) (RECT FAR*) &rect);

EM_GETRECT, EM_SETRECTNP, MoveWindow

EM_SETRECTNP 75

EM_SETRECTNP
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (const RECT FAR*) lprc; /# address of RECT */

An application sends an EM_SETRECTNP message to set the formatting rect-
angle of a multiline edit control. The formatting rectangle is the limiting rectangle
of the text. The limiting rectangle is independent of the size of the edit-control win-
dow. When the edit control is first created, the formatting rectangle is the same as
the client area of the edit-control window. By using the EM_SETRECTNP mes-
sage, an application can make the formatting rectangle larger or smaller than the
edit-control window.

The EM_SETRECTNP message is identical to the EM_SETRECT message, ex-
cept that the edit-control window is not redrawn.

This message is processed only by multiline edit controls.

EM_SETSEL 59

Parameters Iprc
Value of [Param. Points to a RECT structure that specifies the new dimensions
of the rectangle. The RECT structure has the following form:

typedef struct tagRECT { /* rc *x/
int left;
int top;
int right;
int bottom;
} RECT;

Return Value This message does not return a value.

See Also - EM_SETRECT

EM_SETSEL 5]

EM_SETSEL
wParam = (WPARAM) (UINT) fScroll; /* flag for caret scrolling */
1Param = MAKELPARAM(ichStart, ichEnd); /#* start and end positions */

An application sends an EM_SETSEL message to select a range of characters in
an edit control.

Parameters SScroll
Value of wParam. When this parameter is zero, the caret is scrolled into view.
When this parameter is 1, the caret is not scrolled into view.

ichStart
Value of the low-order word of /Param. Specifies the starting position.

ichEnd
Value of the high-order word of /[Param. Specifies the ending position.

Return Value The return value is nonzero if the message is sent to an edit control.

Comments If the ichStart parameter is 0 and the ichEnd parameter is —1, all the text in the edit
control is selected. If ichSrart is —1, any current selection is removed. The caret is
placed at the end of the selection indicated by the greater of the two values ichEnd
and ichStart.

60 EM_SETTABSTOPS

Example

See Also

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_CUT message to copy the contents of the edit
control to the clipboard and then to delete the contents of the edit control.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, -1));

SendDlgItemMessage(hdig, ID_MYEDITCONTROL,
WM_CUT, 0, oL);

EM_GETSEL, EM_REPLACESEL

EM_SETTABSTOPS

Parameters

Return Value

Comments

EM_SETTABSTOPS
wParam = (WPARAM) cTabs; /* number of tab stops */
1Param (LPARAM) (const int FAR*) TpTabs; /* tab-stop array */

An application sends an EM_SETTABSTOPS message to set the tab stops in a
multiline edit control (MLE). When text is copied to an MLE, any tab character in
the text causes space to be generated up to the next tab stop.

This message is processed only by MLEs.

cTabs
Value of wParam. Specifies the number of tab stops contained in the IpTabs
parameter. If this parameter is O, the [pTabs parameter is ignored and default
tab stops are set at every 32 dialog box units. If this parameter is 1, tab stops are
set at every n dialog box units, where 7 is the distance pointed to by the IpTabs
parameter. If the cTabs parameter is greater than 1, [pTabs points to an array of
tab stops.

IpTabs
Low and high-order words of /[Param. Points to an array of unsigned integers
specifying the tab stops, in dialog box units. If the cTabs parameter is 1, [pTabs
points to an unsigned integer containing the distance between all tab stops, in
dialog units.

The return value is nonzero if the tabs were set; otherwise, the return value is zero.
The EM_SETTABSTOPS message does not automatically redraw the edit-control

window. If the application is changing the tab stops for text already in the edit con-
trol, it should call the InvalidateRect function to redraw the edit-control window.

EM_SETWORDBREAKPROC 61

Example This example sends an EM_SETTABSTOPS message to set tab stops at every 64
dialog box units. It then calls InvalidateRect to redraw the edit-control window.

WORD wTabSpacing = 64;

SendDlgItemMessage(hdig, ID_MYEDITCONTROL,
EM_SETTABSTOPS, 1, (LPARAM) (int farx) &wTabSpacing);
InvalidateRect(GetDlgItem(hdlg, ID_MYEDITCONTROL),
NULL, TRUE);

See Also GetDialogBaseUnits

EM_SETWORDBREAKPROC [31]

EM_SETWORDBREAKPROC
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (EDITWORDBREAKPROC) ewbprc; /* address of function */

An application sends the EM_SETWORDBREAKPROC message to an edit
control to replace the default wordwrap function with an application-defined
wordwrap function.

Parameters ewbprc
Value of [Param. Specifies the procedure-instance address of the application-
defined wordwrap function. The MakeProcInstance function must be used to
create the address. For more information, see the description of the Word-
BreakProc callback function.

Return Value This message does not return a value.

Comments A wordwrap function scans a text buffer (which contains text to be sent to the dis-
play), looking for the first word that does not fit on the current display line. The
wordwrap function places this word at the beginning of the next display line.

A wordwrap function defines the point at which Windows should break a line of
text for multiline edit controls, usually at a space character that separates two
words. Either a multiline or a single-line edit control might call this function when
the user presses arrow keys in combination with the CTRL key to move the cursor
to the next word or previous word. The default wordwrap function breaks a line of
text at a space character. The application-defined function may define wordwrap
to occur at a hyphen or a character other than the space character.

See Also EM_GETWORDBREAKPROC, MakeProcInstance, WordBreakProc

62 EM_UNDO

EM_UNDO | @

EM_UNDO
wParam = 0; /* not used, must be zero */
1Param = OL; /* not used, must be zero */

An application sends an EM_UNDO message to undo the last edit-control

operation.
Parameters This message has no parameters.
Return Value The return value is always nonzero for a single-line edit control. For a multiline

edit control, the return value is nonzero if the undo operation is successful or zero
if the undo operation fails.

Comments An undo operation can also be undone. For example, you can restore deleted text
with the first EM_UNDO message and remove the text again with a second
EM_UNDO message as long as there is no intervening edit-control operation.

Example This example undoes the last edit-control operation:

SendDi1gItemMessage(hdlg, ID_MYEDITCONTROL, EM_UNDO, @, OL);

See Also EM_CANUNDO

LB_ADDSTRING | [2x]

LB_ADDSTRIN
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) 1psz; /* address of string to add */

An application sends an LB_ADDSTRING message to add a string to a list box. If
the list box does not have the CBS_SORT style, the string is added to the end of
the list. Otherwise, the string is inserted into the list and the list is sorted.

Parameters Ipsz ,
Value of [Param. Points to the null-terminated string that is to be added. If the
list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

LB_DELETESTRING 63

Return Value

Comments

Example

See Also

The return value is the zero-based index to the string in the list box. The return
value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if insuffi-
cient space is available to store the new string.

If an owner-drawn list box was created with the LBS_SORT style but not the
LBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or
more times to the owner of the list box so the new item can be properly placed in

. the list box.

This example adds the string “my string” to a list box:
DWORD dwIndex;

dwIndex = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_ADDSTRING, @, (LPARAM) ((LPCSTR) "my string"));

LB_DELETESTRING, LB_INSERTSTRING, WM_COMPAREITEM

LB_DELETESTRING [2x]

Parameters

Return Value

Comments

LB_DELETESTRING
wParam (WPARAM) index; /* index of string to delete */
1Param oL; /* not used, must be zero */

An application sends an LB_DELETESTRING message to delete a string in a list
box.

index
Value of wParam. Specifies the zero-based index of the string to delete.

The return value is a count of the strings remaining in the list. The return value is
LB_ERR if the index parameter specifies an index greater than the number of
items in the list.

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style,a WM_DELETEITEM message is sent to the owner of
the list box so that the application can free any additional data associated with the
item.

64 LB_DIR

Example This example deletes the first string in a list box:

DWORD dwRemaining;

dwRemaining = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_DELETESTRING, @, OL);

See Also LB_ADDSTRING, WM_DELETEITEM

LB_DIR [2.]

LB_DIR

wParam = (WPARAM) (UINT) uAttrs; /* file attributes */
1Param = (LPARAM) (LPCSTR) 1pszFileSpec; /* filename string's address #*/

An application sends an LB_DIR message to add a list of filenames to a list box.

Parameters uAttrs
Value of wParam. Specifies the attributes of the files to be added to the list’
box. It can be any combination of the following values:

Value Meaning

0x0000 File can be read from or written to.

0x0001 File can be read from but not written to.

0x0002 File is hidden and does not appear in a directory listing.

0x0004 File is a system file.

0x0010 The name pointed to by the IpszFileSpec parameter specifies a directory.

0x0020 File has been archived.

0x4000 All drives that match the name specified by the lpszFileSpec parameter
are included.

0x8000 Exclusive flag. If the exclusive flag is set, only files of the specified
type are listed. Otherwise, files of the specified type are listed in addi-
tion to files that do not match the specified type.

IpszFileSpec
Value of [Param. Points to the null-terminated string that specifies the filename
to add to the list. If the filename contains wildcards (for example, *.*), all files
that match and have the attributes specified by the uAttrs parameter are added
to the list.

LB_FINDSTRING 65

Return Value

Example

See Also

The return value is the zero-based index of the last filename added to the list. The
return value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if
insufficient space is available to store the new strings.

This example adds the names of all available drives to a list box:
DWORD dwIndexLastItem;

dwindexLastItem = SendDlgltemMessage(hdlg, ID_MYLISTBOX, LB_DIR,
0x4000 | 0x8000, (LPARAM) ((LPCSTR) "x"));

DIgDirList

LB_FINDSTRING

Parameters

Return Value

Comments

LB_FINDSTRING
wParam = (WPARAM) indexStart; /* item before start of search */
1Param = (LPARAM) (LPCSTR) 1pszFind; /* address of search string */

An application sends an LB_FINDSTRING message to find the first string in a list
box that contains the specified prefix.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of /Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the index of the matching item, or it is LB_ERR if the search
was unsuccessful.

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_ FINDSTRING depends on
whether the LBS_SORT style is used. If LBS_SORT is used, WM_COM-
PAREITEM messages are sent to the owner of the list box to determine which
item matches the specified string. Otherwise, LB_FINDSTRING attempts to
match the doubleword value against the value of IpszFind.

66 LB_FINDSTRINGEXACT

Example

See Also

This example searches for the string “my string” in a list box and copies it, if
found, to the szBuf buffer:

char szBuf[20];
DWORD dwlIndex;

dwIndex = SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_FINDSTRING, @, (LPARAM) ((LPCSTR) "my string"));
if (dwIndex != LB_ERR)
SendD1gItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwlIndex, (LPARAM) ((LPCSTR) szBuf));

LB_ADDSTRING, LB_FINDSTRINGEXACT, LB_INSERTSTRING

LB_FINDSTRINGEXACT [31]

Parameters

Return Value

LB_FINDSTRINGEXACT
wParam = (WPARAM) indexStart; /* item before start of search */
1Param = (LPARAM) (LPCSTR) 1pszFind; /* address of search string */

An application sends an LB_FINDSTRINGEXACT message to find the first list
box string that matches the string specified in the IpszFind parameter.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of [Param. Points to the null-terminated string to search for. This string
can contain a complete filename, including the extension. The search is not
case-sensitive, so the string can contain any combination of uppercase and
lowercase letters.

The return value is the index of the matching item, or it is LB_ERR if the search
was unsuccessful.

LB_GETCARETINDEX 67

Comments

See Also

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_FINDSTRINGEXACT de-
pends on whether the LBS_SORT style is used. If LBS_SORT is used,
WM_COMPAREITEM messages are sent to the owner of the list box to deter-
mine which item matches the specified string. Otherwise, LB_FINDSTRINGEX-
ACT attempts to match the doubleword value against the value of [pszFind.

LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_GETCARETINDEX &

Parameters

Return Value

Example

See Also

LB_GETCARETINDEX
wParam = 0; /* not used, must be zero */
TParam = 0L; /* not used, must be zero */

An application sends an LB_GETCARETINDEX message to determine the index
of the item that has the focus rectangle in a multiple-selection list box. The item
may or may not be selected.

This message has no parameters.

The return value is the zero-based index of the item that has the focus rectangle in
a list box. If the list box is a single-selection list box, the return value is the index
of the item that is selected, if any.

/

This example sends an LB_GETCARETINDEX message to retrieve the index of
the item that has the focus rectangle in the list box:

LRESULT TrIndex;

TrIndex = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
~ LB_GETCARETINDEX, 0, 0L);

LB_SETCARETINDEX

68 LB_GETCOUNT

LB_GETCOUNT 5]

Parameters

Return Value

Comments

Example

LB_GETCOUNT
wParam = 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an LB_GETCOUNT message to retrieve the number of
items in a list box.

This message has no parameters.

The return value is the number of items in the list box, or it is LB_ERR if an error
occurs.

The returned count is one greater than the index value of the last item (the index is
zero-based).

This example retrieves the number of items in a list box:

DWORD cListItems;

cListItems = SendDlgltemMessage(hdlg, ID_MYLISTBOX, LB_GETCOUNT, @, 0);

LB_GETCURSEL [2x]

Parameters

Return Value

Comments

LB_GETCURSEL
wParam = 0; /* not used, must be zero */
1Param = @L; /* not used, must be zero */

An application sends an LB_ GETCURSEL message to retrieve the index of the
currently selected item, if any, in a single-selection list box.

This message has no parameters.

The return value is the zero-based index of the currently selected item. It is
LB_ERR if no item is currently selected.

An application should use the LB_GETCARETINDEX to retrieve the index of the
item that has the focus rectangle in a multiple-selection list box.

The LB_GETCURSEL message cannot be sent to a multiple-selection list box.

LB_GETHORIZONTALEXTENT 69

Example

See Also

This example retrieves the index of the currently selected string in a list box and
then retrieves that string:

char szBuf[20];
DWORD dwlIndex;

dwindex = SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_GETCURSEL, @, 0);
if (dwIndex != LB_ERR)
SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, (WPARAM) dwIndex, (LPARAM) ((LPCSTR) szBuf));

LB_GETCARETINDEX

LB_GETHORIZONTALEXTENT

Parameters
Return Value

Comments

Example

See Also

LB_GETHORIZONTALEXTENT
wParam 0; /* not used, must be zero */
TParam = @L; /* not used, must be zero */

An application sends the LB_GETHORIZONTALEXTENT message to retrieve
from a list box the width, in pixels, by which the list box can be scrolled horizon-
tally if the list box has a horizontal scroll bar.

This message has no parameters.

The return value is the scrollable width of the list box, in pixels.

To respond to the LB_GETHORIZONTALEXTENT message, the list box must
have been defined with the WS_HSCROLL style.

This example gets the horizontal extent of a list box:

SendDlgltemMessage(hD1g, ID_MYLISTBOX,
LB_GETHORIZONTALEXTENT, @, OL);

LB_SETHORIZONTALEXTENT

70 LB_GETITEMDATA

LB_GETITEMDATA

Parameters

Return Value

Example

See Also

LB_GETITEMDATA
wParam (WPARAM) index; /* item index */
1Param = 0L; /* not used, must be zero */

An application sends the LB_GETITEMDATA message to retrieve the
application-supplied doubleword value associated with the specified item in a
list box. (This is the value of the /Param parameter of an LB_SETITEMDATA
message.)

index
Value of wParam. Specifies the zero-based index of the item.

The return value is the doubleword value associated with the item, or it is
LB_ERR if an error occurs.

This example retrieves the value associated with an item in a list box. The value is
the handle of a global memory object.

HGLOBAL hLBData;
LPSTR 1pLBData;
HWND hListBox;
WPARAM nlndex;

if ((hLBData = LOWORD(SendMessage(hListBox, LB_GETITEMDATA,
nIndex, 0L)))) {
if ((1pLBData = GlobalLock(hLBData))) {

. /* Access or manipulate the data */

GlobalUnlock(hLBData);

LB_ADDSTRING, LB_INSERTSTRING, LB_SETITEMDATA

LB_GETITEMRECT "

LB_GETITEMHEIGHT [31]

Parameters

Return Value

Example

See Also

LB_GETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
TParam = 0L; /* not used, must be zero */

An application sends an LB_GETITEMHEIGHT message to determine the height
of items in a list box.

index
Value of wParam. Specifies the zero-based index of the item in the list box.
This parameter is used only if the list box has the
LBS_OWNERDRAWYVARIABLE style; otherwise, it should be set to zero.

The return value is the height, in pixels, of the items in the list box. The return
value is the height of the item specified by the index parameter if the list box has
the LBS_OWNERDRAWVARIABLE style. The return value is LB_ERR if an
€ITror occurs.

This example sends LB_GETITEMHEIGHT to retrieve the height of the items in
a list box:

LRESULT TrHeight;

TrHeight = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETITEMHEIGHT, @, @L);

LB_SETITEMHEIGHT

LB_GETITEMRECT

LB_GETITEMRECT
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (RECT FAR*) 1prc; /* address of RECT structure */

An application sends an LB. GETITEMRECT message to retrieve the dimensions
of the rectangle that bounds an item as it is currently displayed in the list box win-
dow.

72 LB_GETSEL

Parameters index
Value of wParam. Specifies the zero-based index of the item.

Iprc
Value of [Param. Specifies a long pointer to a RECT structure that receives the
client coordinates for the item in the list box. The RECT structure has the fol-
lowing form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

Return Value The return value is LB_ERR if an error occurs.

LB_GETSEL [2.]

LB_GETSEL :
wParam = (WPARAM) index; /* item index */
1Param = QL; /* not used, must be zero */

An application sends an LB_GETSEL message to retrieve the selection state of an
item. '

Parameters index
Value of wParam. Specifies the zero-based index of the item.

Return Value The return value is a positive number if an item is selected; otherwise, it is zero.
The return value is LB_ERR if an error occurs.

See Also LB_SETSEL

LB_GETSELITEMS 73

LB_GETSELCOUNT

LB_GETSELCOUNT
wParam = 0; /* not used, must be zero */
TParam = 0QL; /* not used, must be zero */

An application sends an LB_GETSELCOUNT message to retrieve the total num-
ber of selected items in a multiple-selection list box.

Parameters This message has no parameters.

Return Value The return value is the count of selected items in a list box. The return value is
LB_ERR if the list box is a single-selection list box.

See Also LB_SETSEL

LB_GETSELITEMS

LB_GETSELITEMS
wParam = (WPARAM) cltems; /* maximum number of items */
1Param = (LPARAM) (int FARx) TplItems; /* address of buffer */
An application sends an LB_GETSELITEMS message to fill a buffer with an
array of integers that specify the item numbers of selected items in a multiple-
selection list box.

Parameters cltems
Value of wParam. Specifies the maximum number of selected items whose
item numbers are to be placed in the buffer.

IpItems
Value of [Param. Specifies a long pointer to a buffer large enough for the num-
ber of integers specified by the cltems parameter.

Return Value The return value is the actual number of items placed in the buffer. The return
value is LB_ERR if the list box is a single-selection list box.

See Also LB_GETSELCOUNT

74 LB_GETTEXT

LB_ GETTEXT | [2x]

LB_ GETTEXT

wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1pszBuffer; /#* address of buffer */

An application sends an LB_GETTEXT message to retrieve a string from a list
box.

Parameters index ~
Value of wParam. Specifies the zero-based index of the string to retrieve.
IpszBuffer
Value of [Param. Points to the buffer that receives the string. The buffer must
have sufficient space for the string and a terminating null character. An

LB_GETTEXTLEN message can be sent before the LB_GETTEXT message to
retrieve the length, in bytes, of the string.

Return Value The return value is the length of the string, in bytes, excluding the terminating null
character. The return value is LB_ERR if the index parameter does not specify a
valid index.

Comments If the list box was created with an owner-drawn style but without the

LBS_HASSTRINGS style, the buffer pointed to by the IpszBuffer parameter
receives the doubleword value associated with the item.

Example This example retrieves the length of the first item in the list box, allocates suffi-
cient memory for the string, and then sends an LB_GETTEXT message to retrieve
the string:

DWORD cbItemString;
PSTR psz;

cbItemString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXTLEN, @, OL);
if (cbItemString != LB_ERR) {
psz = (PSTR) LocalAlloc(LMEM_FIXED, (WORD) cbItemString);
SendDlgItemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXT, @, (LPARAM) ((LPCSTR) psz));

See Also LB_GETTEXTLEN

LB_GETTOPINDEX 75

LB_GETTEXTLEN [2x]

Parameters

Return Value

Example

See Aiso

LB_GETTEXTLEN
wParam = (WPARAM) index; /* item index */
1Param = 0L; /* not used, must be zero */

An application sends an LB_GETTEXTLEN message to retrieve the length of a
string in a list box.

index
Value of wParam. Specifies the zero-based index of the string.

The return value is the length of the string, in bytes, excluding the terminating null
character. The return value is LB_ERR if the index parameter does not specify a
valid index.

This example retrieves the length of the first item in the list box:

_DWORD cbItemString;

cbItemString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_GETTEXTLEN, @, 0OL);

LB_GETTEXT

LB_GETTOPINDEX

Parameters
Return Value

See Also

LB_GETTOPINDEX
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends an LB_GETTOPINDEX message to retrieve the index of the
first visible item in a list box. Initially, the item with index 0 is at the top of the list
box, but if the list box is scrolled, another item may be at the top.

This message has no parameters.

The return value is the zero-based index of the first visible item in a list box.

LB_SETTOPINDEX

76 LB_INSERTSTRING

LB_INSERTSTRING (2]

Parameters

Return Value

Example

See Also

LB_INSERTSTRING
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) (LPCSTR) 1psz; /* address of string to insert */
An application sends an LB_INSERTSTRING message to insert a string into a list
box. Unlike the LB_ADDSTRING message, the LB_INSERTSTRING message
does not cause a list with the LBS_SORT style to be sorted.

index
Value of wParam. Specifies the zero-based index of the position at which to in-
sert the string. If this parameter is —1, the string is added to the end of the list.

Ipsz
Value of [Param. Points to the null-terminated string that is to be inserted. If
the list was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the value of the Ipsz parameter is stored rather than
the string it would otherwise point to.

The return value is the index of the position at which the string was inserted. The
return value is LB_ERR if an error occurs. The return value is LB_ERRSPACE if
insufficient space is available to store the new string.

This example inserts the string “my string” into the third position of the list box:

SendD1gItemMessage(hdlg, ID_MYLISTBOX,
LB_INSERTSTRING, 2, (LPARAM) ((LPCSTR) "my string"));

LB_ADDSTRING

LB_RESETCONTENT | (2]

Parameters

Return Value

LB_RESETCONTENT
wParam 0; /* not used, must be zero */
1Param = 0QL; /* not used, must be zero */

An application sends an LB_RESETCONTENT message to remove all items from
a list box.

This message has no parameters.

This message does not return a value.

LB_SELECTSTRING 71

Comments

Example

See Also

If the list box was created with an owner-drawn style but without the
LBS_HASSTRINGS style, the owner of the list box receives a
WM_DELETEITEM message for each item in the list box.

This example removes all items from a list box:

SendD1gItemMessage(hdlg, ID_MYLISTBOX, LB_RESETCONTENT, @, 0L);

WM_DELETEITEM

LB_SELECTSTRING 2]

Parameters

Return Value

Comments

LB_SELECTSTRING
wParam (WPARAM) indexStart; /* item before start of search */
1Param (LPARAM) (LPCSTR) 1pszFind; /* address of search string */

An application sends an LB_SELECTSTRING message to search the list box for
an item that matches the specified string, and if a matching item is found, to select
the item.

indexStart
Value of wParam. Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom of the list box, it con-
tinues from the top of the list box back to the item specified by the indexStart
parameter. If indexStart is —1, the entire list box is searched from the beginning.

IpszFind
Value of /Param. Points to the null-terminated string that contains the prefix to
search for. The search is not case-sensitive, so this string can contain any combi-
nation of uppercase and lowercase letters.

The return value is the index of the selected item if the search was successful. The
return value is LB_ERR if the search was unsuccessful and the current selection is
not changed.

The list box is scrolled, if necessary, to bring the selected item into view.

An item is selected only if its initial characters (from the starting point) match the
characters in the string specified by the IpszFind parameter.

78 LB_SELITEMRANGE

Example

See Also

If the list box was created with an owner-drawn style but without the LBS_HAS-
STRINGS style, the action taken by LB_SELECTSTRING depends on whether
the LBS_SORT style is used. If LBS_SORT is used, WM_COMPAREITEM
messages are sent to the owner of the list box to determine which item matches
the specified string. Otherwise, LB_SELECTSTRING attempts to match the
doubleword value against the value of IpszFind.

This example searches the entire list box for an item that matches the string “my
string” and, if the item is found, selects it:

DWORD dwIndexFoundString;

dwIndexFoundString = SendDlgltemMessage(hdlg, ID_MYLISTBOX,
LB_SELECTSTRING, -1, (LPARAM) ((LPCSTR) "my string"));

LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_SELITEMRANGE

Parameters

Return Value

Comments

LB_SELITEMRANGE
wParam = (WPARAM) (BOOL) fSelect; /* selection flag */
1Param = MAKELPARAM(wFirst, wlLast); /* first and last items */

An application sends an LB_SELITEMRANGE message to select one or more
consecutive items in a multiple-selection list box.

fSelect
Value of wParam. Specifies how to set the selection. If the fSelect parameter is
nonzero, the string is selected and highlighted; if fSelect is zero, the highlight is
removed and the string is no longer selected.

wFirst
Value of the low-order word of /Param. Specifies the zero-based index of the
first item to set.

wLast
Value of the high-order word of /Param. Specifies the zero-based index of the
last item to set.

The return value is LB_ERR if an error occurs.

This message should be used only with multiple-selection list boxes.

LB_SETCOLUMNWIDTH 79

LB_SETCARETINDEX [31]

Parameters

Return Value

Example

See Also

LB_SETCARETINDEX
wParam = (WPARAM) index; /* item index */
1Param = MAKELPARAM(fScroll, @); /* flag for scrolling item */

An application sends an LB_SETCARETINDEX message to set the focus rect-
angle to the item at the specified index in a multiple-selection list box. If the item
is not visible, it is scrolled into view.

index
Value of wParam. Specifies the zero-based index of the item to receive the
focus rectangle in the list box.

fScroll
Value of [Param. If this value is zero, the item is scrolled until it is fully visible.
If this value is nonzero, the item is scrolled until it is at least partially visible.

The return value is LB_ERR if an error occurs.

This example sends an LB_SETCARETINDEX message to set the focus rectangle
to an item in a list box:

WPARAM windex;
windex = 0; /* set index to first item */

SendD1gItemMessage(hdlg, ID_MYLISTBOX, LB_SETCARETINDEX,
windex, 0L);

LB_GETCARETINDEX

LB_SETCOLUMNWIDTH

LB_SETCOLUMNWIDTH
wParam (WPARAM) cxColumn; /* column width */
T1Param oL; /* not used, must be zero */

An application sends an LB_SETCOLUMNWIDTH message to a multiple-
column list box (created with the LBS_MULTICOLUMN style) to set the width,
in pixels, of all columns in the list box.

80 LB_SETCURSEL

Parameters cxColumn
Value of wParam. Specifies the width, in pixels, of all columns.

Return Value ' This message does not return a value.

Example This example sets the width of the columns in a multiple-column list box:
WPARAM wCoiWidth;
wColWidth = 100; /* set column width to 100 pixels */

SendDlgItemMessage(hDlg, ID_MYLISTBOX, LB_SETCOLUMNWIDTH,
wColWidth, oL);

LB_SETCURSEL [2x]

LB_SETCURSEL
wParam (WPARAM) index; /* item index */
1Param = 0L; /* not used, must be zero */

An application sends an LB_SETCURSEL message to select a string and scroll it
into view, if necessary. When the new string is selected, the list box removes the
highlight from the previously selected string.

Parameters index
Value of wParam. Specifies the zero-based index of the string that is selected.
If the index parameter is —1, the list box is set to have no selection.

Return Value The return value is LB_ERR if an error occurs. The return value will be LB_ERR
even though no error has occurred if the index parameter is —1.

Comments This message should be used only with single-selection list boxes. It cannot be
used to set or remove a selection in a multiple-selection list box.

See Also LB_GETCURSEL

LB_SETHORIZONTALEXTENT 81

LB_SETHORIZONTALEXTENT

LB_SETHORIZONTALEXTENT
wParam (WPARAM) cxExtent; /* horizontal scroll width */
1Param oL; /* not used, must be zero */

An application sends the LB_SETHORIZONTALEXTENT message to set the
width, in pixels, by which a list box can be scrolled horizontally. If the size of the
list box is smaller than this value, the horizontal scroll bar horizontally scrolls
items in the list box. If the size of the list box is equal to or greater than this value,
the horizontal scroll bar is hidden.

Parameters cxExtent
‘ Value of wParam. Specifies the number of pixels by which the list box can be
scrolled.
Return Value This message does not return a value.
Comments To respond to the LB_SETHORIZONTALEXTENT message, the list box must

have been defined with the WS_HSCROLL style.

By default, the horizontal extent of a list box is zero. Windows does not display
the scroll bar unless the horizontal extent is set to a value greater than the width, in
pixels, of the client area of the list box.

Example This example sets the horizontal extent of a list box based on the width of the
string about to be added to the list box. The horizontal extent is set if the string is
wider than the widest string in the list box and is wider than the client area of the
list box.

DWORD dwStringExt;
HDC hdclB;

PSTR pszString;
TEXTMETRIC tm;
WORD wlLongest;
WORD wLBWidth;

dwStringExt = GetTextExtent(hdcLB, (LPSTR) pszString,
strlen(pszString)) + tm.tmAveCharWidth;

82 LB_SETITEMDATA

See Also

if ((LOWORD(dwStringExt) > wlLongest) &&
(LOWORD(dwStringExt) > wLBWidth)) {
SendD1gItemMessage(hDlg, ID_MYLISTBOX, LB_SETHORIZONTALEXTENT,
LOWORD(dwStringExt), OL);
wlLongest = LOWORD(dwStringExt);
}

SendDlgItemMessage(hDlg, ID_MYLISTBOX, LB_ADDSTRING, @,
(LPARAM) ((LPCSTR) pszString));

LB_GETHORIZONTALEXTENT

LB_SETITEMDATA |

Parameters

Return Value

Example

LB_SETITEMDATA
wParam = (WPARAM) index; /* item index */
1Param = (LPARAM) dwData; /* value to associate with item */

An application sends the LB_SETITEMDATA message to set a doubleword value
associated with the specified item in a list box.

index
Value of wParam. Specifies the zero-based index of the item.

dwData
Value of [Param. Specifies the value to be associated with the item.

The return value is LB_ERR if an error occurs.
This example associates a handle of a 64-byte memory object with each item in a
list box:

HGLOBAL hLBData;
LPSTR 1pLBData;
HWND hListBox;
WPARAM nlIndex;

case WM_INITDIALOG:

LB_SETITEMHEIGHT 83

if ((hLBData = GlobalAlloc(GMEM_MOVEABLE, 64))) {
if ((1pLBData = GlobalLock(hLBData))) {

. /* Store the data in the memory object. */

GlobalUnlock(hLBData);
}

}
SendMessage(hListBox, LB_SETITEMDATA, nlndex,
MAKELONG(hLBData, 0));

See Also LB_ADDSTRING, LB_GETITEMDATA, LB_INSERTSTRING

LB_SETITEMHEIGHT [31]

LB_SETITEMHEIGHT
wParam = (WPARAM) index; /* item index */
1Param = MAKELPARAM(cyItem, @); /* item height */

An application sends an LB_SETITEMHEIGHT message to set the height of
items in a list box. If the list box has the LBS_OWNERDRAWYVARIABLE style,
this message sets the height of the item specified by the wParam parameter. Other-
wise, this message sets the height of all items in the list box.

Parameters index
Value of wParam. Specifies the zero-based index of the item in the list box.
This parameter is used only if the list box has the
LBS_OWNERDRAWVARIABLE style; otherwise, it should be set to zero.

cyltem
Value of the low-order word of /Param. Specifies the height, in pixels, of the
item.
Return Value The return value is LB_ERR if the index or height is invalid.
Example This example sends an LB_SETITEMHEIGHT message to set the height of the

items in a list box:
LPARAM TpmHeight;

SendDlgItemMessage(hdlg, ID_MYLISTBOX, LB_SETITEMHEIGHT,
0, 1pmHeight);

See Also LB_GETITEMHEIGHT

84 LB_SETSEL

LB_SETSEL [2x]

LB_SETSEL
wParam
1Param

(WPARAM) (BOOL) fSelect; /* selection flag */
MAKELPARAM(index, 0); /* item index */

An application sends an LB_SETSEL message to select a string in a multiple-
selection list box.

Parameters fSelect :

Value of wParam. Specifies how to set the selection. If the fSelect parameter is
TRUE, the string is selected and highlighted; if fSelect is FALSE, the highlight
is removed and the string is no longer selected.

index
Value of the low-order word of /Param. Specifies the zero-based index of the
string to set. If the index parameter is —1, the selection is added to or removed
from all strings, depending on the value of fSelect.

Return Value The return value is LB_ERR if an error occurs.
Comments This message should be used only with multiple-selection list boxes.
See Also LB_GETSEL

LB_SETTABSTOPS

LB_SETTABSTOPS
wParam (WPARAM) cTabs; /* number of tab stops */
1Param (LPARAM) (int FAR%) 1pTabs; /* address of tab-stop array */

An application sends an LB_SETTABSTOPS message to set the tab-stop posi-
tions in a list box.

Parameters cTabs
Value of wParam. Specifies the number of tab stops in the list box.

IpTabs
Value of [Param. Points to the first member of an array of integers containing
the tab stops, in dialog box units. The tab stops must be sorted in increasing
order; back tabs are not allowed.

LB_SETTOPINDEX 85

Return Value The return value is nonzero if all the tabs were set; otherwise, the return value is
ZEr0.
Comments To respond to the LB_SETTABSTOPS message, the list box must have been

created with the LBS_USETABSTOPS style.

If the cTabs parameter is zero and the IpTabs parameter is NULL, the default tab
stop is two dialog box units.

If cTabs is 1, the edit control will have tab stops separated by the distance
specified by IpTabs.

If IpTabs points to more than a single value, a tab stop will be set for each value in
IpTabs, up to the number specified by cTabs.

A dialog box unit is a horizontal or vertical distance. One horizontal dialog box
unit is equal to one-fourth of the current dialog box base width unit. The dialog
box base units are computed based on the height and width of the current system
font. The GetDialogBaseUnits function returns the current dialog box base units,
in pixels.

LB_SETTOPINDEX

LB_SETTOPINDEX
wParam = (WPARAM) index; /* item index . */
1Param = @L; /* not used, must be zero */

An application sends an LB_SETTOPINDEX message to ensure that a particular
item in a list box is visible.

Parameters index
Value of wParam. Specifies the zero-based index of the item in the list box.

Return Value The return value is LB_ERR if an error occurs.

Comments The system scrolls the list box so that either the specified item appears at the top
of the list box or the maximum scroll range has been reached.

86 STM_GETICON

i

Example This example searches for an item in a list box that matches the string “my string’
and, if a match is found, ensures that the item is visible:

int ilndex;

ilndex = (int) SendMessage(hMyListbox, LB_FINDSTRING, -1,
(LPARAM) (LPCSTR) "my string");

if (iIndex != LB_ERR)
SendMessage(hMyListbox, LB_SETTOPINDEX, (WPARAM) ilIndex, OL);

See Also LB_GETTOPINDEX

STM_GETICON (3]

STM_GETICON
wParam 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends an STM_GETICON message to retrieve the handle of the
icon associated with an icon resource.

Parameters This message has no parameters.

Return Value The return value is the icon handle if the operation is successful, or it is zero if the
icon has no associated icon resource or if an error occurred.

Example This example gets the handle of the icon associated with an icon resource:

HICON hlcon;

hIcon = (HICON) SendDlgltemMessage(hdlig, IDD_ICON,
STM_GETICON, 0, OL);

See Also STM_SETICON

WM_ACTIVATE 87

STM_SETICON [31]

STM_SETICON
wParam = (WPARAM) (HICON) hicon; /* handle of the icon */
TParam = @L; /* not used, must be zero */

An application sends an STM_SETICON message to associate an icon with an
icon resource.

Parameters hicon
Value of wParam. Identifies the icon to associate with the icon resource.

Return Value The return value is the handle of the icon that was previously associated with the
icon resource, or it is zero if an error occurred.

Example This example associates the system-defined question-mark icon with an icon re-
source:
HICON hIcon, hOldIcon;

hIcon = LoadIcon((HANDLE) NULL, IDI_QUESTION);
hOldIcon = (HICON) SendDlgltemMessage(hdlg, IDD_ICON,
STM_SETICON, hIcon, 0OL);

See Also STM_GETICON

WM_ACTIVATE 5]

WM_ACTIVATE

fActive = wParam; /* activation flag */
fMinimized = (BOOL) HIWORD(1Param); /* minimized flag =*/
hwnd = (HWND) LOWORD(1Param); /* window handle */

The WM_ACTIVATE message is sent when a window is being activated or
deactivated. This message is sent first to the window procedure of the main win-
dow being deactivated and then to the window procedure of the main window
being activated.

Parameters SfActive
Value of wParam. Specifies whether the window is being activated or deacti-
vated. It can be one of the following values:

88 WM_ACTIVATEAPP

Value Description
WA_INACTIVE The window is being deactivated.
WA_ACTIVE The window is being activated through some method

other than a mouse click (for example, by use of the key-
board interface to select the window).

WA_CLICKACTIVE The window is being activated by a mouse click.

JMinimized
Value of the high-order word of [Param. Speaﬁes the minimized state of the
window being activated or deactivated. A nonzero value indicates the window
is minimized.

hwnd
Value of the low-order word of /Param. Identifies the window being activated
or deactivated. This handle can be NULL.

Return Value An application should return zero if it processes this message.

Comments If the window is activated with a mouse click, it also receives a
WM_MOUSEACTIVATE message.

Example . This example sets the input focus while processing the WM_ACTIVATE message:

case WM_ACTIVATE:
if (wParam && !HIWORD(1Param))

SetFocus(hwnd);
break;

See Also WM_MOUSEACTIVATE, WM_NCACTIVATE

WM_ACTIVATEAPP [2x]

WM_ACTIVATEAPP
fActive = (BOOL) wParam; /* the activation/deactivation flag */
htask = (HTASK) LOWORD(1Param); /* task handle */

The WM_ACTIVATEAPP message is sent when a window is about to be acti-
vated and that window belongs to a different task than the active window. The
message is sent to all top-level windows of the task being activated and to all top-
level windows of the task being deactivated.

WM_ASKCBFORMATNAME 89

Parameters

Return Value

See Also

JActive
Value of wParam. Specifies whether the window is being activated or deacti-
vated. A nonzero value means the window is being activated. A zero value
means the window is being deactivated.

htask
Value of the low-order word of [Param. Specifies a task handle. If the fActive
parameter is nonzero, the handle identifies the task that owns the window being
deactivated. If fActive is zero, the handle identifies the task that owns the win-
dow being activated.

An application should return zero if it processes this message.

WM_ACTIVATE

WM_ASKCBFORMATNAME [2x]

Parameters

Return Value

Comments

See Also

WM_ASKCBFORMATNAME
wParam = (WPARAM) cbMax; /* maximum bytes to copy */
1Param (LPARAM) TpszFormatName; /* address of format name */

A clipboard viewer application sends a WM_ASKCBFORMATNAME message
to the clipboard owner when the clipboard contains the data handle of the
CF_OWNERDISPLAY format (that is, when the clipboard owner should display
the clipboard contents). ’

cbMax
Value of wParam. Specifies the maximum number of bytes to copy.

IpszFormatName
Value of [Param. Points to the buffer where the copy of the format name is to
be stored.

An application should return zero if it processes this message.

The clipboard owner should copy the name of the CF_OWNERDISPLAY format
into the specified buffer, not exceeding the maximum number of bytes.

WM_PAINTCLIPBOARD

90 WM_CANCGELMODE

WM_CANCELMODE [2x]

WM_CANCELMODE

The WM_CANCELMODE message is sent to inform a window to cancel any in-
ternal mode. This message is sent to the focus window when a dialog box or mes-
sage box is displayed, giving the focus window the opportunity to cancel modes
such as mouse capture.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments The DefWindowProc function processes this message by calling the Release-

Capture function. DefWindowProc does not cancel any other modes.

See Also DefWindowProc, ReleaseCapture

WM_CHANGECBCHAIN [2x]

WM_CHANGECBCHAIN
hwndRemoved = (HWND) wParam; /* handle of removed window */
hwndNext = (HWND) LOWORD(1Param); /* handle of next window */

The WM_CHANGECBCHAIN message notifies the first window in the clipboard-
viewer chain that a window is being removed from the chain.

Parameters hwndRemoved
Value of wParam. Identifies the window that is being removed from the
clipboard-viewer chain.

hwndNext
Value of the low-order word of [Param. 1dentifies the window that follows the
window being removed from the clipboard-viewer chain.

Return Value An application should return zero if it processes this message.

WM_CHAR 91

Comments

See Also

Each window that receives the WM_CHANGECBCHAIN message should call
the SendMessage function to pass the message on to the next window in the
clipboard-viewer chain. If the window being removed is the next window in the
chain, the window specified by the ~iwndNext parameter becomes the next window
and clipboard messages are passed on to it.

ChangeClipboardChain, SendMessage

WM_CHAR

Parameters

WM_CHAR
nVKey = wParam; /* virtual-key code */
dwKeyData = (DWORD) 1Param; /* key data */

The WM_CHAR message is sent when a WM_KEYUP message and a
WM_KEYDOWN message are translated. The WM_CHAR message contains the
value of the key being pressed or released.

nVKey
Value of wParam. Specifies the virtual-key code value of the key.
dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value. depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

92 WM_CHARTOITEM

Return Value

Comments |

See Also

An application should return zero if it processes this message.

Because there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high-order word
of the dwKeyData parameter is usually not useful to applications. The information
in the high-order word applies only to the most recent WM_KEYUP or
WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_KEYDOWN, WM_KEYUP

WM_CHARTOITEM

Parameters

Return Value

WM_CHARTOITEM

nKey = wParam; /* key value */
hwndListBox = (HWND) LOWORD(1Param); /* 1ist box handle #*/
iCaretPos = HIWORD(T1Param); /* caret position =*/

The WM_CHARTOITEM message is sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in response to a WM_CHAR
message.

nKey
Value of wParam. Specifies the value of the key the user pressed.

hwndListBox
Value of the low-order word of [Param. Identifies the list box.

iCaretPos
Value of the high-order word of [Param. Specifies the current caret position.

The return value specifies the action that the application performed in response to
the message. A return value of —2 indicates that the application handled all aspects
of selecting the item and requires no further action by the list box. A return value
of —1 indicates that the list box should perform the default action in response to
the keystroke. A return value of 0 or greater specifies the zero-based index of an
item in the list box and indicates that the list box should perform the default action
for the keystroke on the given item.

WM_CHOOSEFONT_GETLOGFONT 93

Comments Only owner-drawn list boxes that do not have the LBS_HASSTRINGS style can
receive this message.
See Also WM_CHAR, WM_VKEYTOITEM

WM_CHILDACTIVATE [2x]

WM_CHILDACTIVATE

The WM_CHILDACTIVATE message is sent to a multiple document interface
(MDI) child window when the user clicks the window’s title bar or when the win-
dow is activated, moved, or sized.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
See Also MoveWindow, SetWindowPos

WM_CHOOSEFONT_GETLOGFONT [31]

WM_CHOOSEFONT_GETLOGFONT
wParam = 0; /* not used, must be zero */
1p1f = (LPLOGFONT) TParam; /* address of a LOGFONT structure */

An application sends a WM_CHOOSEFONT_GETLOGFONT message to the
Font dialog box created by the ChooseFont function to retrieve the current
LOGFONT structure.

Parameters Iplf
Points to a LOGFONT structure that receives information about the current
logical font.

Return Value This message does not return a value.

94 WM_CLEAR

Comments An application uses this message to retrieve the LOGFONT structure while the
Font dialog box is open. When the user closes the dialog box, the ChooseFont
function receives information about the LOGFONT structure.

See Also WM_GETFONT

WM_CLEAR 5]

WM_CLEAR
wParam = 0; /* not used, must be zero */
1Param = 0OL; /* not used, must be zero */

An application sends a WM_CLEAR message to an edit control or combo box to
delete (clear) the current selection, if any, in the edit control.

Parameters This message has no parameters.

Return Value The return value is nonzero if this message is sent to an edit control or a combo
box.

Comments The deletion performed by the WM_CLEAR message can be undone by sending

the edit control an EM_UNDO message.

To delete the current selection and place the deleted contents into the clipboard,
use the WM_CUT message.

Example This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_CLEAR message to delete the contents of the
edit control.

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, -1));

SendDlgItemMessage(hdlg, ID_MYEDITCONTROL,
WM_CLEAR, 0, 0L);

See Also EM_UNDO, WM_COPY, WM_CUT, WM_PASTE

WM_COMMAND 95

WM_CLOSE

Parameters
" Return Value

Example

See Also

[2x]

WM_CLOSE
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

The WM_CLOSE message is sent as a signal that a window or an application
should terminate. An application can prompt the user for confirmation prior to
destroying the window by processing the WM_CLOSE message and calling the
DestroyWindow function only if the user confirms the choice.

This message has no parameters.
An application should return zero if it processes this message.
This example processes a WM_CLOSE message and requests confirmation from
the user before terminating the application:
case WM_CLOSE:
if (MessageBox(hwnd, "Are you sure you want to exit?", "MyApp",
MB_ICONQUESTION | MB_OKCANCEL) == IDOK)

DestroyWindow(hwnd);
return 0OL;

DestroyWindow, PostQuitMessage WM_DESTROY, WM_QUIT

WM_COMMAND 7]

WM_COMMAND

idItem = wParam; /* control or menu item identifier */
hwndCt1 = (HWND) LOWORD(1Param); /* handle of control */
wNotifyCode = HIWORD(1Param); /* notification message */

The WM_COMMAND message is sent to a window when the user selects an item
from a menu, when a control sends a notification message to its parent window, or
when an accelerator keystroke is translated.

96 WM_COMMAND

Parameters

Return Value

Comments

Example

See Also

“idltem
Value of wParam. Specifies the identifier of the menu item or control.

hwndCtl
Value of the low-order word of /Param. Identifies the control sending the mes-
sage if the message is from a control. Otherwise, this parameter is zero.

wNotifyCode
Value of the high-order word of [Param. Specifies the notification message if
the message is from a control. If the message is from an accelerator, this
parameter is 1. If the message is from a menu, this parameter is 0.

An application should return zero if it processes this message.

Accelerator keystrokes that are defined to select items from the System menu
(sometimes referred to as the Control menu) are translated into
WM_SYSCOMMAND messages.

If an accelerator keystroke that corresponds to a menu item occurs when the win-
dow that owns the menu is minimized, no WM_COMMAND message is sent.
However, if an accelerator keystroke occurs that does not match any of the items
on the window’s menu or on the System menu, a WM_COMMAND message is
sent even if the window is minimized.

This example creates an Options dialog box in response to a WM_COMMAND
message sent as a result of a menu selection:

FARPROC 1pProc;

case WM_COMMAND:
switch (wParam) {
case IDM_OPTIONS:
1pProc = MakeProcInstance(OptionsProc, hInstance);
DialogBox(hInstance, "OptionsBox", hwnd, 1pProc);
FreeProcInstance(1pProc);
break;

. /* Process other menu commands. */

}
break;

WM_SYSCOMMAND

WM_COMMNOTIFY 97

WM_COMMNOTIFY 5]

Parameters

Return Value

Comments

See Also

WM_COMMNOTIFY
idDevice = wParam; /* communication-device ID =*/
nNotifyStatus = LOWORD(1Param); /* notification-status flag =/

The WM_COMMNOTIFY message is posted by a communication device driver
whenever a COM port event occurs. The message indicates the status of a win-
dow’s input or output queue.

idDevice
Value of wParam. Specifies the identifier of the communication device that is
posting the notification message.

nNotifyStatus
Value of the low-order word of /Param. Specifies the notification status in the
low-order word. The notification status may be one or more of the following
flags:

Value Meaning

CN_EVENT Indicates that an event has occurred that was enabled in the
event word of the communication device. This event was
enabled by a call to the SetCommEventMask function. The
application should call the GetCommEventMask function to
determine which event occurred and to clear the event.

CN_RECEIVE Indicates that at least chWriteNotify bytes are in the input
queue. The cbWriteNotify parameter is a parameter of the
EnableCommNotification function.

CN_TRANSMIT Indicates that fewer than chOutQueue bytes are in the output
queue waiting to be transmitted. The chOutQueue parameter
is a parameter of the EnableCommNotification function.

An application should return zero if it processes this message.

This message is sent only when the event word changes for the communication
device. The application that sends WM_COMMNOTIFY must clear each event to
be sure of receiving future notifications.

EnableCommNotification

98 WM_COMPACTING |

WM_COMPACTING

Parameters

Return Value

Comments

See Also

WM_COMPACTING
wCompactRatio = wParam; /* compacting ratio */

The WM_COMPACTING message is sent to all top-level windows when Win-
dows detects that more than 12.5 percent of system time over a 30- to 60-second
interval is being spent compacting memory. This indicates that system memory is
low.

wCompactRatio
Value of wParam. Specifies the ratio of central processing unit (CPU) time cur-
rently spent by Windows compacting memory to CPU time currently spent by
Windows performing other operations. For example, 0x8000 represents 50 per-
cent of CPU time spent compacting memory.

An application should return zero if it processes this message.

When an application receives this message, it should free as much memory as
possible, taking into account the current level of activity of the application and the
total number of applications running with Windows. The application can call the
GetNumTasks function to determine how many applications are running.

GetNumTasks

WM_COMPAREITEM

WM_COMPAREITEM
idCtl wParam; /* control identifier */
lpcis (const COMPAREITEMSTRUCT FAR*) 1Param; /* structure */

The WM_COMPAREITEM message determines the relative position of a new
item in the sorted list of an owner-drawn combo box or list box. Whenever the ap-
plication adds a new item, Windows sends this message to the owner of a combo
box or list box created with the CBS_SORT or LBS_SORT style.

WM_COMPAREITEM 99

Parameters

Return Value

Comments

See Also

idCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_COMPAREITEM message.

Ipcis
Value of [Param. Points to a COMPAREITEMSTRUCT data structure that
contains the identifiers and application-supplied data for two items in the
combo box or list box. The COMPAREITEMSTRUCT structure has the fol-
lowing form:

typedef struct tagCOMPAREITEMSTRUCT { /* cis */
UINT CtlType;
UINT Ct11ID;
HWND hwndItem;
UINT itemID1;
DWORD itemDatal;
UINT itemID2;
DWORD itemData2;
} COMPAREITEMSTRUCT;

The return value indicates the relative position of the two items. It may be any of
the following values:

Value Meaning

-1 Item 1 precedes item 2 in the sorted order.
0 Item 1 and item 2 are equivalent in the sorted order.
1 Item 1 follows item 2 in the sorted order.

When the owner of an owner-drawn combo box or list box receives this

message, the owner returns a value indicating which of the items specified in the
COMPAREITEMSTRUCT structure should appear before the other. Typically,
Windows sends this message several times until it determines the exact position
for the new item.

COMPAREITEMSTRUCT

100 WM_COPY

WM_COPY

Parameters

Return Value

Example

See Also

[2]

WM_COPY
wParam = 0; /* not used, must be zero */
1Param = QL; /* not used, must be zero */

An application sends a WM_COPY message to an edit control or combo box to
copy the current selection to the clipboard in CF_TEXT format.

This message has no parameters.

The return value is nonzero if this message is sent to an edit control or a combo
box.

This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_COPY message to copy the contents of the edit
control to the clipboard.

SendD1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(®@, -1));

SendDigltemMessage(hdlg, ID_MYEDITCONTROL,
WM_COPY, @, 0L);

WM_CLEAR, WM_CUT, WM_PASTE

WM_CREATE [2x]

Parameters

WM_CREATE
Tpcs = (CREATESTRUCT FAR*) 1Param; /* structure address */

The WM_CREATE message is sent when an application requests that a window
be created by calling the CreateWindowEx or CreateWindow function. The win-
dow procedure for the new window receives this message after the window is
created but before the window becomes visible. The message is sent to the win-
dow before the CreateWindowEx or CreateWindow function returns.

Ipcs
Value of IParam. Points to a CREATESTRUCT data structure containing in-
formation about the window being created. The members of the CREATE-
STRUCT structure are identical to the parameters of the CreateWindowEx
function.

WM_CTLCOLOR 101

Return Value

See Also

The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT { /* cs *x/
void FAR* TpCreateParams;
HINSTANCE hInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int cX;

int Y

int X3

LONG style;

LPCSTR TpszName;

LPCSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

If an application processes this message, it should return 0 to continue creation of
the window. If the application returns —1, the window will be destroyed and the
CreateWindowEx or CreateWindow function will return a NULL handle.

CreateWindow, CrgateWindowEx, WM_NCCREATE

WM_CTLCOLOR 5]

WM_CTLCOLOR : :

hdcChild = (HDC) wParam; /* child-window display context */
hwndChild = (HWND) LOWORD(1Param); /* handle of child window */
nCt1Type = (int) HIWORD(TParam); /* type of control */

The WM_CTLCOLOR message is sent to the parent of a system-defined control
class or a message box when the control or message box is about to be drawn. The
following controls send this message:

Combo boxes
Edit controls
List boxes
Buttons

Static controls
Scroll bars

102 WM_CTLCOLOR

Parameters

Return Value

Comments

Example

hdcChild
Value of wParam. Identifies the display context for the child window.

hwndChild
Value of the low-order word of /Param. Identifies the child window.

nCtType :
Value of the high-order word of [Param. Specifies the type of the control. This
parameter can be one of the following values:

Value Meaning
CTLCOLOR_BTN Button
CTLCOLOR_DLG Dialog box
CTLCOLOR_EDIT Edit control
CTLCOLOR_LISTBOX List box
CTLCOLOR_MSGBOX Message box
CTLCOLOR_SCROLLBAR Scroll bar
CTLCOLOR_STATIC Static control

If an application processes the WM_CTLCOLOR message, it must return a handle
to the brush that is to be used for painting the control background or it must return
NULL.

To change the text color, the application should call the SetTextColor function
with the desired red, green, and blue (RGB) values.

To change the background color of a single-line edit control, the application must
set the brush handle in both the CTLCOLOR_EDIT and CTLCOLOR_MSGBOX
message codes, and the application must call the SetBkColor function in response
to the CTLCOLOR_EDIT code.

The return value from this message has no effect on a button with the
BS_PUSHBUTTON or BS_DEFPUSHBUTTON style.

This example creates a green brush and passes the handle of the brush to a single-
line edit control in response to a WM_CTLCOLOR message:

static HBRUSH hbrGreen;

switch(msg) {
case WM_INITDIALOG:

/* Create a green brush */

hbrGreen = CreateSolidBrush(RGB(@, 255, 0));
return TRUE;

WM_CUT 103

case WM_CTLCOLOR:
switch(HIWORD(1Param)) {
case CTLCOLOR_EDIT:

/* Set text to white and background to green */

SetTextColor((HDC) wParam, RGB(255, 255, 255));
SetBkColor((HDC) wParam, RGB(OQ, 255, 0));
return hbrGreen;

break;

case CTLCOLOR_MSGBOX:

/%

* For single-line edit controls, this code must be

* processed so that the background color of the format
* rectangle will also be painted with the new color.

%/
return hbrGreen;
}
return (HBRUSH) NULL;
}
See Also SetBkColor

WM_CUT [2x]

WM_CUT
wParam = 0; /* not used, must be zero */
TParam = OL; /* not used, must be zero */

An application sends a WM_CUT message to an edit control or combo box to de-
lete (cut) the current selection, if any, in the edit control and copy the deleted text
to the clipboard in CF_TEXT format.

Parameters This message has no parameters.

Return Value The return value is nonzero if this message is sent to an edit control or a combo
box.

Comments An EM_UNDO message can be sent to the edit control to undo the deletion per-

formed by the WM_CUT message.

104 WM_DDE_ACK

To delete the current selection without placing the deleted text onto the clipboard,
use the WM_CLEAR message.

Example This example sends an EM_SETSEL message to select the entire contents of an
edit control. It then sends a WM_CUT message to delete the contents of the edit
control and to copy the deleted text to the clipboard.

SendDl1gItemMessage(hdlg, ID_MYEDITCONTROL,
EM_SETSEL, @, MAKELONG(@, -1));

SendDl1gItemMessage(hdlg, ID_MYEDITCONTROL,
WM_CUT, o, oL);

See Also WM_CLEAR, WM_COPY, WM_PASTE

WM_DDE_ACK | [2.]

#include <dde.h>

WM_DDE_ACK
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(wLow, wHigh); /* depending on received message */

The WM_DDE_ACK message notifies an application of the receipt and pro-
cessing of a WM_DDE_INITIATE, WM_DDE_EXECUTE, WM_DDE_DATA,
WM_DDE_ADVISE, WM_DDE_UNADVISE, or WM_DDE_POKE message,
and in some cases, of a WM_DDE_REQUEST message.

Parameters hwnd
Value of wParam. Specifies the handle of the window posting the message.
wLow

Value of the low-order word of [Param. Specifies data as follows, depending
on the message to which the WM_DDE_ ACK message is responding:

Message Parameter Description

WM_DDE_INITIATE aApplication An atom that contains the name of
the replying application.

WM_DDE_EXECUTE wStatus A series of flags that indicate the

and all other messages status of the response.

WM_DDE_ACK 105

Return Value

Comments

wHigh
Value of high-order word of [Param. Specifies data as follows, depending on
the message to which the WM_DDE_ACK message is responding:

Message Parameter Description

WM_DDE_INITIATE aTopic An atom that contains the topic with
which the replying server window is
associated.

WM_DDE_EXECUTE hCommands A handle that identifies the data item
containing the command string.

All other messages altem An atom that specifies the data item
for which the response is sent.

This message does not return a value.

The wStatus word consists of a DDEACK data structure. The DDEACK structure
has the following form: ’

#include <dde.h>

typedef struct tagDDEACK { /% ddeack */
WORD bAppReturnCode:8,
reserved:6,
fBusy:1,
fAck:1;
} DDEACK;

For a full description of this structure, see Chapter 3, “Structures.”

Posting

Except in response to the WM_DDE_INITIATE message, the application posts
the WM_DDE_ACK message by calling the PostMessage function, not the Send-
Message function. When responding to WM_DDE_INITIATE, the application
sends the WM_DDE_ACK message by calling SendMessage.

When acknowledging any message with an accompanying altem atom, the applica-
tion posting WM_DDE_ACK can either reuse the altem atom that accompanied
the original message or delete it and create a new one.

When acknowledging WM_DDE_EXECUTE, the application that posts
WM_DDE_ACK should reuse the hCommands object that accompanied the origi-
nal WM_DDE_EXECUTE message.

106

WM_DDE_ADVISE

See Also

If an application has initiated the termination of a conversation by posting
WM_DDE_TERMINATE and is awaiting confirmation, the waiting application
should not acknowledge (positively or negatively) any subsequent messages sent
by the other application. The waiting application should delete any atoms or
shared memory objects received in these intervening messages (but should not de-
lete the atoms in response to the WM_DDE_ACK message).

Receiving
The application that receives WM_DDE_ACK should delete all atoms accompany-
ing the message.

If the application receives WM_DDE_ACK in response to a message with an
accompanying hData object, the application should delete the ~Data object.

If the application receives a negative WM_DDE_ACK message posted in reply to
a WM_DDE_ADVISE message, the application should delete the 2Options object
posted with the original WM_DDE_ADVISE message.

If the application receives a negative WM_DDE_ACK message posted in reply to
a WM_DDE_EXECUTE message, the application should delete the hCommands
object posted with the original WM_DDE_EXECUTE message.

DDEACK, PostMessage, WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_INITIATE, WM_DDE_POKE,
WM_DDE_REQUEST, WM_DDE_TERMINATE, WM_DDE_UNADVISE

WM_DDE_ADVISE [2x]

f#include <dde.h>

WM_DDE_ADVISE
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param MAKELPARAM(hOptions, altem); /* send options and data item =/

A dynamic data exchange (DDE) client application posts the WM_DDE_ADVISE
message to a DDE server application to request the server to supply an update for
a data item whenever it changes.

WM_DDE_ADVISE 107

Parameters

Return Value

Comments

hwnd
Value of wParam. Identifies the sending window.

hOptions
Value of the low-order word of [Param. Specifies a handle of a global memory
object that specifies how the data is to be sent.

altem
Value of the high-order word of [Param. Specifies the data item being re-
quested.

This message does not return a value.

The global memory object identified by the AOptions parameter consists of a DDE-
ADVISE data structure. The DDEADVISE data structure has the following form:

#include <dde.h>

typedef struct tagDDEADVISE { /* ddeadv */
WORD reserved: 14, '
fDeferUpd:1,
fAckReq:1;
short cfFormat;
} DDEADVISE;

For a full descriptidn of this structure, see Chapter 3, “Structures.”

If an application supports more than one clipboard format for a single topic and
item, it can post multiple WM_DDE_ADVISE messages for the topic and item,
specifying a different clipboard format with each message.

Posting
The application posts the WM_DDE_ADVISE message by calling the Post-
Message function, not the SendMessage function.

The application allocates hOptions by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

The application allocates altem by calling the GlobalAddA tom function.

If the receiving (server) application responds with a negative WM_DDE_ACK
message, the posting (client) application must delete the hOptions object.

108 WM_DDE_DATA

Receiving

The application posts the WM_DDE_ACK message to respond positively or nega-
tively. When posting WM_DDE_ACK, the application can reuse the altem atom
or delete it and create a new one. If the WM_DDE_ACK message is positive, the
application should delete the hOptions object; otherwise, the application should
not delete the object.

See Also DDEADVISE, GlobalAddAtom, GlobalAlloc, PostMessage,
WM_DDE_DATA, WM_DDE_REQUEST

WM_DDE_DATA [2x]

#include <dde.h>

WM_DDE_DATA
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(hData, altem); . /* memory object and data item */

A dynamic data exchange (DDE) server application posts a WM_DDE_DATA
message to a DDE client application to pass a data item to the client or to notify
the client of the availability of a data item.

Parameters hwnd ,
Value of wParam. Specifies the handle of the window posting the message.

hData
Value of the low-order word of /Param. Identifies the global memory object
containing the data and additional information. The handle should be set to
NULL if the server is notifying the client that the data item value has changed
during a warm link. A warm link is established when the client sends a
WM_DDE_ADVISE message with the fDeferUpd bit set.

altem
Value of the high-order word of /Param. Specifies the data item for which data
or notification is sent.

Return Value This message does not return a value.

Comments The global memory object identified by the AData parameter consists of a DDE-
DATA structure. The DDEDATA structure has the following form:

WM_DDE_DATA 109

#include <dde.h>

typedef struct tagDDEDATA { /* ddedat */
WORD unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Value[l];
} DDEDATA;

For a full description of this structure, see Chapter 3, “Structures.”

Posting
The application posts the WM_DDE_DATA message by calling the PostMessage
function, not the SendMessage function.

The application allocates hData by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

The application allocates altem by calling the GlobalAddAtom function.

If the receiving (client) application responds with a negative WM_DDE_ACK
message, the posting (server) application must delete the ZData object.

If the posting (server) application sets the fRelease member of the DDEDATA
structure to FALSE, the posting application is responsible for deleting hData upon
receipt of either a positive or negative acknowledgment.

The application should not set both the fAckReq and fRelease members of the
DDEDATA structure to FALSE. If both members are set to FALSE, it is difficult
for the posting (server) application to determine when to delete AData.

Receiving

If fAckReq is TRUE, the application posts the WM_DDE_ACK message to re-
spond positively or negatively. When posting WM_DDE_ACK, the application
can reuse the altem atom or delete it and create a new one.

If fAckReq is FALSE, the application deletes the altem atom.

If the posting (server) application specified hData as NULL, the receiving (client)
application can request the server to send the actual data by posting a
WM_DDE_REQUEST message.

After processing a WM_DDE_DATA message in which hData is not NULL, the
application should delete ~Data unless either of the following conditions is true:

110 WM_DDE_EXECUTE

See Also

= The fRelease member is FALSE.

= The fRelease member is TRUE, but the receiving (client) application responds
with a negative WM_DDE_ACK message.

DDEDATA, GlobalAddAtom, GlobalAlloc, PostMessage, WM_DDE_ACK,
WM_DDE_ADVISE, WM_DDE_POKE, WM_DDE_REQUEST

WM_DDE_EXECUTE [2x]

Parameters

Return Value

Comments

#include <dde.h>

WM_DDE_EXECUTE
wParam = (WPARAM) hwnd; /* handle of posting window */
T1Param = MAKELPARAM(reserved, hCommands); /* commands to execute */

A dynamic data exchange (DDE) client application posts a
WM_DDE_EXECUTE message to a DDE server application to send a string to
the server to be processed as a series of commands. The server application is ex-
pected to post a WM_DDE_ACK message in response.

hwnd
Value of wParam. Identifies the sending window.

reserved
Value of the low-order word of [Param. Reserved; must be zero.

hCommands
Value of the high-order word of /Param. Identifies a global memory object con-
taining the command(s) to be executed.

This message does not return a value.

The command string is a null-terminated string, consisting of one or more opcode
strings enclosed in single brackets ([]) and separated by spaces.

Each opcode string has the following syntax. The parameters list is optional.
opcode parameters

The opcode is any application-defined single token. It cannot include spaces, com-
mas, parentheses, or quotation marks.

WM_DDE_INITIATE 11

See Also

The parameters list can contain any application-defined value or values. Multiple
parameters are separated by commas, and the entire parameter list is enclosed in
parentheses. Parameters cannot include commas or parentheses except inside a
quoted string. If a bracket or parenthesis character is to appear in a quoted string, it
must be doubled—for example, “((”.

The following are valid command strings:

[connect][download(queryl,results.txt)][disconnect]
[query("sales per employee for each district")]
[open("sample.xIm")][run("rlcl")]

Posting
The application posts the WM_DDE_EXECUTE message by calling the Post-
Message function, not the SendMessage function.

The application allocates hCommands by calling the GlobalAllec functlon with
the GMEM_DDESHARE option.

When processing a WM_DDE_ACK message posted in reply to a
WM_DDE_EXECUTE message, the application that posted the original
WM_DDE_EXECUTE message must delete the hCommands object sent back in
the WM_DDE_ACK message.

Receiving
The application posts the WM_DDE_ACK message to respond positively or nega-
tively, reusing the hCommands object.

PostMessage, WM_DDE_ACK

WM_DDE_INITIATE [2x]

f#Hinclude <dde.h>

WM_DDE_INITIATE
wParam = (WPARAM) hwnd; /* sending window's handle */
1Param = MAKELPARAM(aApplication, aTopic); /* application and topic =*/

A dynamic data exchange (DDE) client application sends a WM_DDE_INITIATE
message to initiate a conversation with server applications responding to the
specified application and topic names.

112 WM_DDE_INITIATE

Parameters

Return Value

Comments

Upon receiving this message, all server applications with names that match the
aApplication application and that support the aTopic topic are expected to
acknowledge it (see the WM_DDE_ACK message).

hwnd .
Value of wParam. Identifies the sending window.

aApplication
Value of the low-order word of /Param. Specifies the name of the application
with which a conversation is requested. The application name cannot contain
slash marks (/) or backslashes (\). These characters are reserved for future use
in network implementations. If aApplication is NULL, a conversation with all
applications is requested.

aTopic
Value of the high-order word of /Param. Specifies the topic for which a conver-

sation is requested. If the topic is NULL, a conversation for all available topics
is requested.

This message does not return a value.

If aApplication is NULL, any application can respond. If aTopic is NULL, any
topic is valid. Upon receiving a WM_DDE_INITIATE request with the aTopic
parameter set to NULL, an application is expected to send a WM_DDE_ACK mes-
sage for each of the topics it supports.

Sending

The application sends the WM_DDE_INITIATE message by calling the Send-
Message function, not the PostMessage function. The application broadcasts the
message to all windows by setting the first parameter of SendMessage to —1, as
shown:

SendMessage(-1, WM_DDE_INITIATE, hwndClient, MAKELONG(aApp, aTopic));

If the application has already obtained the window handle of the desired server, it
can send WM_DDE_INITIATE directly to the server window by passing the
server’s window handle as the first parameter of SendMessage.

The application allocates aApplication and aTopic by calling GlobalAddA tom.

When SendMessage returns, the application deletes the aApplication and aTopic
atoms.

WM_DDE_POKE 113

See Also

Receiving

To complete the initiation of a conversation, the application responds with one or
more WM_DDE_ACK messages, where each message is for a separate topic.
When sending a WM_DDE_ACK message, the application creates new
aApplication and aTopic atoms; it should not reuse the atoms sent with the
WM_DDE_INITIATE message.

GlobalAddAtom, SendMessage, WM_DDE_ACK

WM_DDE_POKE | [2x]

Parameters

#include <dde.h>

WM_DDE_POKE
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(hData, altem); /* data handle and item */

A dynamic data exchange (DDE) client application posts a WM_DDE_POKE
message to a server application. A client uses this message to request the server to
accept an unsolicited data item. The server is expected to reply with a
WM_DDE_ACK message indicating whether it accepted the data item.

hwnd
Value of wParam. Specifies the handle of the window posting the message.

hData
Value of the low-order word of /Param. Identifies the data being posted. The
handle identifies a global memory object that contains a DDEPOKE data struc-
ture. The DDEPOKE structure has the following form:

#include <dde.h>

typedef struct tagDDEPOKE { /* ddepok */
WORD unused:13,
fRelease:1,
fReserved:2;
short cfFormat;
BYTE Value[ll;
} DDEPOKE;

114 WM_DDE_POKE

Return Value

Comments

See Also

For a full description of this structure, see Chapter 3, “Structures.”

altem
Value of the high-order word of /Param. Specifies a global atom that identifies
the data item being offered to the server.

This message does not return a value.

Posting
The posting (client) application should do the following:

= Use the PostMessage function to post the WM_DDE_POKE message.

= Use the GlobalAlloc function with the GMEM_DDESHARE option to allocate
memory for the data.

= Use the GlobalAddA tom function to create the atom for the data item.

= Delete the global memory object if the server application responds with a nega-
- tive WM_DDE_ACK message.

» Delete the global memory object if the client has set the fRelease member of
the DDEPOKE structure to FALSE and the server responds with either a posi-
tive or negative WM_DDE_ACK.

Receiving
The receiving (server) application should do the following:

= Post the WM_DDE_ACK message to respond positively or negatively. When
posting WM_DDE_ACK, reuse the data-item atom or delete it and create a new
one.

= Delete the global memory object after processing WM_DDE_POKE unless
either the fRelease flag was set to FALSE or the fRelease flag was set to
TRUE but the server has responded with a negative WM_DDE_ACK message.

DDEPOKE, GlobalAlloc, PostMessage, WM_DDE_ACK, WM_DDE_DATA

WM_DDE_REQUEST 115

WM_DDE_REQUEST [2x]

f#Hinclude <dde.h>

WM_DDE_REQUEST
wParam = (WPARAM) hwnd; /* handle of posting window =/
1Param = MAKELPARAM(cfFormat, altem); /* clipboard format and item */

A dynamic data exchange (DDE) client application posts a WM_DDE_REQUEST
message to a DDE server application to request the value of a data item.

Parameters hwnd
Value of wParam. Identifies the sending window.

cfFormat
Value of the low-order word of [Param. Specifies a standard or registered clip-
board format number.

altem
Value of the high-order word of I[Param. Specifies which data item is being re-
quested from the server.

Return Value This message does not return a value.

Comments Posting
The application posts the WM_DDE_REQUEST message by calling the Post-
Message function, not the SendMessage function.

The application allocates altem by calling the GlobalAddAtom function.

Receiving

If the receiving (server) application can satisfy the request, it responds with a
WM_DDE_DATA message containing the requested data. Otherwise, it responds
with a negative WM_DDE_ACK message.

When responding with either a WM_DDE_DATA or WM_DDE_ACK message,
the application can reuse the alfem atom or delete it and create a new one.

See Also GlobalAddAtom, PostMessage, WM_DDE_ACK

116 WM_DDE_TERMINATE

WM_DDE_TERMINATE

Parameters

Return Value

Comments

See Also

#include <dde.h>

WM_DDE_TERMINATE
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = 0L; /* not used, must be zero */

A dynamic data exchange (DDE) application (client or server) posts a
WM_DDE_TERMINATE message to terminate a conversation.

hwnd
Value of wParam. Identifies the sending window.

This message does not return a value.

Posting
The application posts the WM_DDE_TERMINATE message by calling the Post-
Message function, not the SendMessage function.

While waiting for confirmation of the termination, the posting application should
not acknowledge any other messages sent by the receiving application. If the post-
ing application receives messages (other than WM_DDE_TERMINATE) from the
receiving application, it should delete any atoms or shared memory objects accom-
panying the messages.

Receiving
The application responds by posting a WM_DDE_TERMINATE message.

PostMessage

WM_DDE_UNADVISE 117

WM_DDE_UNADVISE . | [2x]

Parameters

Return Value

Comments

See Also

f#include <dde.h>

WM_DDE_UNADVISE
wParam = (WPARAM) hwnd; /* handle of posting window */
1Param = MAKELPARAM(cfFormat, altem); /* clipboard format and item =*/
A dynamic data exchange (DDE) client application posts a
WM_DDE_UNADVISE message to inform a server application that

the specified item or a particular clipboard format for the item should no

longer be updated. This terminates the warm or hot link for the specified item.

hwnd
Value of wParam. Identifies the sending window.

cfFormat
Value of the low-order word of [Param. Specifies the clipboard format of the
item for which the update request is being retracted. When the cfFormat
parameter is NULL, all active WM_DDE_ADVISE conversations for the item
are to be terminated.

altem
Value of the high-order word of /Param. Specifies the item for which
the update request is being retracted. When altem is NULL, all active
WM_DDE_ADVISE conversations associated with the client are to be
terminated.

This message does not return a value.

Posting

The application posts the WM_DDE_UNADVISE message by calling the Post-
Message function, not the SendMessage function.

The application allocates altem by calling the GlobalAddAtom function.

Receiving

The application posts the WM_DDE_ACK message to respond positively or nega-
tively. When posting WM_DDE_ACK, the application can reuse the altem atom
or delete it and create a new one.

GlobalAddAtom, PostMessage, WM_DDE_ACK

118 WM_DEADCHAR

WM_DEADCHAR [2x]

WM_DEADCHAR
chDeadKey
dwKeyData

wParam; /* dead-key character */
(DWORD) 1Param; /* key data */

The WM_DEADCHAR message is sent when a WM_KEYUP message and a
WM_KEYDOWN message are translated. It specifies the character value of a
dead key. A dead key is a key, such as the umlaut (double-dot) character, that is
combined with other characters to form a composite character. For example, the
umlaut-O character consists of the dead key, umlaut, and the O key.

Parameters chDeadKey
Value of wParam. Specifies the dead-key character value.

dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following

table:
Bit Description
0-15 Specifies the repeat count. The value is the number of times the keystroke

is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM). ‘

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is O if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

Return Value An application should return zero if it processes this message.

Comments An application typically uses the WM_DEADCHAR message to give the user
feedback about each key pressed. For example, an application can display the
accent in the current character position without moving the caret.

Because there is not necessarily a one-to-one correspondence between keys
pressed and character messages generated, the information in the high-order word

WM_DELETEITEM 119

See Also

of the dwKeyData parameter is usually not useful to applications. The information
in the high-order word applies only to the most recent WM_KEYUP or
WM_KEYDOWN message that precedes the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_KEYDOWN

WM_ DELETEITEM

Parameters

Return Value

sée Also

WM_DELETEITEM
idCt1 = wParam; /* control identifier =/
Tpdis = (const DELETEITEMSTRUCT FAR*) 1Param; /#* structure */

The WM_DELETEITEM message is sent to the owner of an owner-drawn list box
or combo box when the list box or combo box is destroyed or when items are re-
moved by the LB_DELETESTRING, LB_RESETCONTENT,
CB_DELETESTRING, or CB_RESETCONTENT message.

idCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_DELETEITEM message.

Ipdis
Value of [Param. Points to a DELETEITEMSTRUCT structure that contains
information about the item deleted from the list box. The DELETEITEM-
STRUCT structure has the following form:

typedef struct tagDELETEITEMSTRUCT { /* deli =/
UINT CtlType;
UINT Ct1ID;
UINT itemlD;
HWND hwndItem;
DWORD itemData;
} DELETEITEMSTRUCT;

An application should return TRUE if it processes this message.

CB_DELETESTRING, CB_RESETCONTENT, LB_DELETESTRING,
LB_RESETCONTENT

120 WM_DESTROY

WM_DESTROY [2x]

WM_DESTROY

The WM_DESTROY message is sent when a window is being destroyed. It is sent
to the window procedure of the window being destroyed after the window is re-
moved from the screen.

This message is sent first to the window being destroyed and then to the child win-
dows as they are destroyed. During the processing of the WM_DESTROY mes-
sage, it can be assumed that all child windows still exist.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments If the window being destroyed is part of the clipboard-viewer chain (set by calling

the SetClipboardViewer function), the window must remove itself from the
clipboard-viewer chain by calling the ChangeClipboardChain function before
returning from the WM_DESTROY message.

Example This example processes the WM_DESTROY message by calling the PostQuit-
Message function:

case WM_DESTROY:
PostQuitMessage(0);
return 0L;

See Also ChangeClipboardChain, DestroyWindow, PostQuitMessage, SetClipboard-
Viewer, WM_CLOSE

WM_DESTROYCLIPBOARD [2x]

WM_DESTROYCLIPBOARD

The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when
the clipboard is emptied by a call to the EmptyClipboard function.

Parameters This message has no parameters.

WM_DRAWCLIPBOARD 121

Return Value

See Also

An application should return zero if it processes this message.

EmptyClipboard

WM_DEVMODECHANGE [2x]

Parameters

Return Value

Comments

See Also

WM_DEVMODECHANGE
1pszDev = (LPCSTR) 1Param; /#* address of device name */

The WM_DEVMODECHANGE message is sent to all top-level windows when
the default device-mode settings have changed.

IpszDev v
Value of IParam. Points to the device name specified in the Windows initializa-
tion file, WIN.INI.

An application should return zero if it processes this message.

Applications that receive this message may reinitialize their device-mode settings.
Applications that use the ExtDeviceMode function to save and restore device set-
tings typically do not process this message.

This message is not sent when the user changes the default printef from Control
Panel. In this case, a WM_WININICHANGE message is generated.

ExtDeviceMode, WM_WININICHANGE

WM_ DRAWCLIPBOARD ‘ 7]

WM_DRAWCLIPBOARD

The WM_DRAWCLIPBOARD message is sent to the first window in the
clipboard-viewer chain when the contents of the clipboard change. Only applica-
tions that have joined the clipboard-viewer chain by calling the SetClipboard-
Viewer function need to process this message.

122 WM_DRAWITEM

Parameters
Return Value

Comments

See Also

This message has no parameters.
An application should return zero if it processes this message.

Each window that receives the WM_DRAWCLIPBOARD message should call
the SendMessage function to pass the message on to the next window in the clip-
board-viewer chain. The handle of the next window is returned by the Set-
ClipboardViewer function; the handle may be modified in response to a
WM_CHANGECBCHAIN message.

SendMessage, SetClipboardViewer, WM_CHANGECBCHAIN

WM_DRAWITEM

Parameters

WM_DRAWITEM
idCt1 (int) wParam; /* control identifier */
1pdis (const DRAWITEMSTRUCT FAR*) T1Param; /* structure */

The WM_DRAWITEM message is sent to the owner of an owner-drawn button,
combo box, list box, or menu when a visual aspect of the button, combo box, list
box, or menu has changed.

idCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_DRAWITEM message. This parameter is zero if the message was sent by
a menu.

Ipdis
Value of [Param. Points to a DRAWITEMSTRUCT structure that contains in-
formation about the item to be drawn and the type of drawing required. The
DRAWITEMSTRUCT structure has the following form:

typedef struct tagDRAWITEMSTRUCT { /% ditm */
UINT Ctl1Type;
UINT Ct11ID;
UINT itemID;
UINT = itemAction;
UINT itemState;
HWND hwndItem;
HDC hDC;
RECT rcltem;
DWORD itemData;

} DRAWITEMSTRUCT;

WM_DRAWITEM 123

Return Value

Comments

Example

See Also

An application should return TRUE if it processes this message.

The itemA ction member of the DRAWITEMSTRUCT structure defines the
drawing operation that is to be performed. The data in this member allows the
owner of the control to determine what drawing action is required.

Before returning from processing this message, an application should ensure that
the device context identified by the ADC member of the DRAWITEMSTRUCT
structure is in the default state.

This example shows how to process the WM_DRAWITEM message:
LPDRAWITEMSTRUCT Tpdis;

case WM_DRAWITEM:
Tpdis = (DRAWITEMSTRUCT FAR*) 1Param;

switch (1pdis->itemAction) {

case ODA_DRAWENTIRE:
: /% Redraw the entire control or menu. */
;eturn TRUE;

case ODA_SELECT:
: /* Redraw to reflect current selection state. */
‘;eturn TRUE;

case ODA_FOCUS:
: /* Redraw to reflect current focus state. */
;eturn TRUE;

}
break;

WM_COMPAREITEM, WM_DELETEITEM, WM_INITDIALOG,
WM_MEASUREITEM

124 WM_DROPFILES

WM_DROPFILES | 1]

WM_DROPFILES
hDrop = (HANDLE) wParam; /* handle of internal drop structure */

The WM_DROPFILES message is sent when the user releases the left mouse but-
ton over the window of an application that has registered itself as a recipient of
dropped files.

Parameters hDrop
Value of wParam. Identifies an internal data structure describing the dropped

files. This handle is used by the DragFinish, DragQueryFile, and DragQuery-
Point functions to retrieve information about the dropped files.

Return Value An application should return zero if it processes this message.

See Also DragA cceptFiles, DragFinish, DragQueryFile, DragQueryPoint

WM_ENABLE | 2]

WM_ENABLE
fEnabled = (BOOL) wParam; /* the enabled/disabled flag */

The WM_ENABLE message is sent when an application changes the enabled state
of a window. It is sent to the window whose enabled state is changing. This mes-
sage is sent before the EnableWindow function returns but after the enabled state
(WS_DISABLE style bit) of the window has changed.

Parameters [fEnabled
Value of wParam. Specifies whether the window has been enabled or disabled.
This parameter is TRUE if the window has been enabled; it is FALSE if the
window has been disabled.

Return Value An application should return zero if it processes this message.

See Also EnableWindow

WM_ENTERIDLE 125

WM_ENDSESSION | 5]

Parameters

Return Value

Comments

See Also

WM_ENDSESSION
fEndSession = (BOOL) wParam; /* end-session flag */

The WM_ENDSESSION message is sent to an application that has returned
a nonzero value in response to a WM_QUERYENDSESSION message. The
WM_ENDSESSION message informs the application whether the session is
actually ending.

fEndSession
Value of wParam. Specifies whether the session is being ended. It is TRUE if
the session is being ended; otherwise, it is FALSE.

An application should return zero if it processes this message.

If the fEndSession parameter is TRUE, Windows can terminate any time after all
applications have returned from processing this message. Therefore, an application
should perform all tasks required for termination before returning from this mes-
sage.

The application does not need to call the DestroyWindow or PostQuitMessage
function when the session is ending.

DestroyWindow, ExitWindows, PostQuitMessage,
WM_QUERYENDSESSION

WM_ENTERIDLE [2x]

Parameters

WM_ENTERIDLE
fwSource = wParam; /* idle-source flag */
hwndD1g = (HWND) LOWORD(1Param); /* handle of dialog box or window */

The WM_ENTERIDLE message informs an application’s main window proce-
dure that a modal dialog box or a menu is entering an idle state. A modal dialog
box or menu enters an idle state when no messages are waiting in its queue after it
has processed one or more previous messages.

JwSource
Value of wParam. Specifies whether the message is the result of a dialog box
or a menu being displayed. This parameter can be one of the following values:

126 WM_ERASEBKGND

Return Value
Comments

See Also

Value Description
MSGF_DIALOGBOX The system is idle because a dialog box is being dis-
played.
MSGF_MENU The system is idle because a menu is being displayed.
hwndDlg

Value of the low-order word of [Param. Identifies the dialog box (if fwSource
is MSGF_DIALOGBOX) or the handle of the window containing the displayed
menu (if fwSource is MSGF_MENU).

An application should return zero if it processes this message.
The DefWindowProc function returns zero when it processes this message.

DefWindowProc

WM_ERASEBKGND | [2x]

Parameters

Return Value

Comments

WM_ERASEBKGND
hdc = (HDC) wParam; /* device-context handle */

The WM_ERASEBKGND message is sent when the window background needs
to be erased (for example, when a window is resized). It is sent to prepare an in-
validated region for painting.

hdc
Value of wParam. Identifies the device context.

An application should return nonzero if it erases the background; otherwise, it
should return zero.

The DefWindowProc function erases the background by using the class back-
ground brush specified by the hbrbackground member of the WNDCLASS struc-
ture.

If the hbrbackground member is NULL, the application should process the
WM_ERASEBKGND message and erase the background color. When processing
the WM_ERASEBKGND message, the application must align the origin of the in-
tended brush with the window coordinates by first calling the UnrealizeObject
function for the brush and then selecting the brush.

WM_GETDLGCODE 127

See Also

Windows computes the background by using the MM_TEXT mapping mode. If
the device context is using any other mapping mode, the area erased may not be
within the visible part of the client area.

UnrealizeObject, WM_ICONERASEBKGND

WM_FONTCHANGE [2x]

Parameters
Return Value

Comments

See Also

WM_FONTCHANGE
wParam = 0; /* not used, must be zero */
1Param = 0OL; /* not used, must be zero */

An application sends the WM_FONTCHANGE message to all top-level windows
in the system after changing the pool of font resources.

This message has no parameters.
An application should return zero if it processes this message.
An application that adds or removes fonts from the system (for example, by using

the AddFontResource or RemoveFontResource function) should send this mes-
sage to all top-level windows.

To send the WM_FONTCHANGE message to all top-level windows, an applica-
tion can call the SendMessage function with the ~Awnd parameter set to OXFFFF.

AddFontResource, RemoveFontResource, SendMessage

WM_GETDLGCODE [2x]

WM_GETDLGCODE

The WM_GETDLGCODE message is sent to the dialog box procedure associated
with a control. Normally, Windows handles all arrow-key and TAB-key input to the
control. By responding to the WM_GETDLGCODE message, an application can
take control of a particular type of input and process the input itself.

128 WM_GETFONT

Parameters This message has no parameters.
Return Value The return value is one or more of the following values, indicating which type of
input the application processes:
Value Meaning
DLGC_DEFPUSHBUTTON Default push button
\ DLGC_HASSETSEL EM_SETSEL messages
h DLGC_PUSHBUTTON Push button
DLGC_RADIOBUTTON . Radio button
DLGC_WANTALLKEYS All keyboard input
DLGC_WANTARROWS Arrow keys
DLGC_WANTCHARS WM_CHAR messages
DLGC_WANTMESSAGE All keyboard input (the application passes this
message on to the control)
DLGC_WANTTAB TAB key
Comments Although the DefWindowProc function always returns zero in response to the

WM_GETDLGCODE message, the window procedures for the predefined control
classes return a code appropriate for each class.

The WM_GETDLGCODE message and the returned values are useful only with
user-defined dialog box controls or standard controls modified by subclassing.

WM_GETFONT

WM_GETFONT
wParam = 0; /* not used, must be zero */
1Param = 0L; /* not used, must be zero */

An application sends a WM_GETFONT message to a control to retrieve the font
with which the control is currently drawing its text.

Parameters This message has no parameters.

Return Value The return value is the handle of the font used by the control, or it is NULL if the
control is using the system font.

See Also WM_SETFONT

WM_GETMINMAXINFO 129

WM_GETMINMAXINFO (7]

WM_GETMINMAXINFO
1pmmi = (MINMAXINFO FAR*) 1Param; /* address of structure */

The WM_GETMINMAXINFO message is sent to a window whenever Windows
needs the maximized position or dimensions of the window or needs the maxi-
mum or minimum tracking size of the window. The maximized size of a window
is the size of the window when its borders are fully extended. The maximum track-
ing size of a window is the largest window size that can be achieved by using the
borders to size the window. The minimum tracking size of a window is the small-
est window size that can be achieved by using the borders to size the window.

Windows fills in a MINMAXINFO data structure, specifying default values for
the various positions and dimensions. The application may change these values if
it processes this message.

Parameters Ipmmi
Value of IParam. Points to a MINMAXINFO data structure. The MINMAX-
INFO structure has the following form:

typedef struct tagMINMAXINFO { /* mmi =/
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;
} MINMAXINFO;

Return Value An application should return zero if it processes this message.

Example This example processes a WM_GETMINMAXINFO message and sets the min-
imum tracking width of the window to 200 and the minimum tracking height of
the window to 500:

MINMAXINFO FAR* 1pmmi;

case WM_GETMINMAXINFO:
Tpmmi = (MINMAXINFO FAR#*) 1Param;
Tpmmi->ptMinTrackSize.x = 200;
Tpmmi->ptMinTrackSize.y = 500;

break;

130 WM_GETTEXT

WM_ GETTEXT | | 22]

WM_GETTEXT .
wParam (WPARAM) cchTextMax; /* number of bytes to copy */
T1Param (LPARAM) TpszText; /* address of buffer for text */

An application sends a WM_GETTEXT message to copy the text that corresponds
to a window into a buffer provided by the caller.

Parameters cchTextMax
Value of wParam. Specifies the maximum number of bytes to be copied, includ-
ing the terminating null character.

IpszText
Value of [Param. Points to the buffer that is to receive the text.

Return Value The return value is the number of bytes copied. It is CB_ERR if the message is
sent to a combo box that has no edit control.

Comments For an edit control, the text to be copied is the contents of the edit control. For a
: combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title. To copy the text of an item in a list box, an application can use
the LB_GETTEXT message.

When the WM_GETTEXT message is sent to a static control with the SS_ICON
style, the handle of the icon will be returned in the first two bytes of the buffer
pointed to by IpszText. This is true only if the WM_SETTEXT message has been
used to set the icon.

Example This example copies text from an edit control to a buffer:

HWND hwndMyEdit;
char szBuffer[32];

hwndMyEdit = GetDlgItem(hdlg, ID_MYEDITCONTROL);

SendMessage(hdlg, WM_GETTEXT, sizeof(szBuffer),
(LPARAM) ((LPSTR) szBuffer));

See Also LB_GETTEXT, WM_GETTEXTLENGTH, WM_SETTEXT

WM_ GETTEXTLENGTH 131

WM_GETTEXTLENGTH [2x]

WM_GETTEXTLENGTH
wParam = 0; /* not used, must be zero */
1Param = 0@L; /* not used, must be zero */

An application sends a WM_GETTEXTLENGTH message to determine the
length, in bytes, of the text associated with a window. The length does not include
the terminating null character.

Parameters This message has no parameters.
Return Value The return value is a word specifying the length, in bytes, of the text.
Comments For an edit control, the text to be copied is the contents of the edit control. For a

combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title. To determine the length of an item in a list box, an application
can use the LB_GETTEXTLEN message.

Example This example enables the push button in a dialog box if the user has entered text in
an edit control in the dialog box:

case ID_MYEDITCONTROL:
if (HIWORD(1Param) == EN_CHANGE)
EnableWindow(GetDlgItem(hdlg, IDOK),
(BOOL) SendMessage(LOWORD(1Param),
WM_GETTEXTLENGTH, @, 0L));
return TRUE; ; /

See Also LB_GETTEXTLEN, WM_GETTEXT

132 WM_HSCROLL

WM_HSCROLL

Parameters

Return Value

Comments

See Also

WM_HSCROLL
wScrol1Code = wParam; /* scroll bar code */
nPos = LOWORD(1Param); /* current position of scroll box */

hwndCt1 = (HWND) HIWORD(1Param); /# handle of the control */

The WM_HSCROLL message is sent to a window when the user clicks the win-
dow’s horizontal scroll bar. \

wScrollCode
Value of wParam. Specifies a scroll bar code that indicates the user’s scrolling
request. This parameter can be one of the following values:

Value Description
SB_LEFT Scroll to far left.
SB_LINELEFT Scroll left.
SB_LINERIGHT Scroll right.
SB_PAGELEFT Scroll one page left.
SB_PAGERIGHT Scroll one page right.
SB_RIGHT Scroll to far right.

SB_THUMBPOSITION Scroll to absolute position. The current position is
specified by the nPos parameter.

SB_THUMBTRACK Drag scroll box (thumb) to specified position. The cur-
rent position is specified by the nPos parameter.

nPos
Value of the low-order word of I[Param. Specifies the current position of the
scroll box if the wScrollCode parameter is SB_THUMBPOSITION or
SB_THUMBTRACK; otherwise, the nPos parameter is not used.

hwndCtl
Value of the high-order word of /Param. Identifies the control if
WM_HSCROLL is sent by a scroll bar. If WM_HSCROLL is sent as a result of
the user clicking a pop-up window’s scroll bar, the high-order word is not used.

An application should return zero if it processes this message.

The SB_THUMBTRACK scroll bar code typically is used by applications that
give some feedback while the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position
of the scroll box by using the SetScrollPos function.

SetScrollPos, WM_VSCROLL

WM_HSCROLLCLIPBOARD 133

WM_HSCROLLCLIPBOARD [2x]

Parameters

Return Value

Comments

See Also

WM_HSCROLLCLIPBOARD

hwndCBViewer = (HWND) wParam; /* handle of clipboard viewer */
wScrol1Code = LOWORD(1Param); /* scroll bar code */
nPos = (int) HIWORD(1Param); /* scroll box position */

The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the
clipboard owner when the clipboard data has the CF_OWNERDISPLAY format
and an event occurs in the clipboard viewer’s horizontal scroll bar. The owner
should scroll the clipboard image, invalidate the appropriate section, and update
the scroll bar values.

hwndCBViewer
Value of wParam. Identifies a clipboard-viewer window.

wScrollCode
Value of the low-order word of /Param. Specifies a scroll bar code. This
parameter can be one of the following values:

Value Description
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position.
SB_TOP Scroll to upper left.

nPos

Value of the high-order word of /Param. Specifies the scroll box position if the
scroll bar code is SB_THUMBPOSITION; otherwise, the high-order word of
IParam is not used.

An application should return zero if it processes this message.

The clipboard owner should use the InvalidateRect function or repaint as needed.
The scroll bar position should also be reset.

InvalidateRect, WM_VSCROLLCLIPBOARD

134 WM_ICONERASEBKGND

WM_ICONERASEBKGND |

WM_ICONERASEBKGND
hdc = (HDC) wParam; /* device-context handle */

The WM_ICONERASEBKGND message is sent to a minimized (iconic) window
when the background of the icon must be filled before painting the icon. A win-

dow receives this message only if a class icon is defined for the window; other-
wise, WM_ERASEBKGND is sent.

Parameters hdc
Value of wParam. Identifies the device context of the icon.

Return Value An application should return zero if it processes this message.

Comments The DefWindowProc function fills the icon background with the background
brush of the parent window.

See Also DefWindowProc, WM_ERASEBKGND

WM_INITDIALOG | [2x]

WM_INITDIALOG
hwndFocus = (HWND) wParam; /* handle of control for focus */
dwData = 1Param; /* application-specific data */

The WM_INITDIALOG message is sent to a dialog box procedure 1mmed1ately
before the dialog box is displayed.

Parameters hwndF ocus
Value of wParam. Identifies the first control in the dialog box that can be given
the input focus. Usually, this is the first control in the dialog box with the
WS_TABSTORP style.

dwData
Value of [Param. Specifies application-specific data that was passed by the
function used to create the dialog box if the dialog box was created by one of
the following functions:

CreateDialogParam
DialogBoxIndirectParam
DialogBoxParam

WM_INITMENU 135

Return Value An application should return nonzero to set the input focus to the control identified
by the hwndFocus parameter. An application should return zero if the dialog box
procedure uses the SetFocus function to set the input focus to a different control

in the dialog box.
Example This example changes the font used by controls in a dialog box to a font that is not
bold. ’

HFONT hD1gFont;
LOGFONT T1Font;

case WM_INITDIALOG:
/* Get dialog box font and create version that is not bold. */

hD1gFont = (HFONT) NULL;
if ((hD1gFont = (HFONT) SendMessage(hdlg, WM_GETFONT, @, 0L))) {
if (GetObject(hDlgFont, sizeof(LOGFONT), (LPSTR) &1Font)) {
1Font.1fWeight = FW_NORMAL;
if (hD1gFont = CreateFontIndirect((LPLOGFONT) &1Font)) {
SendD1gItemMessage(hdlg, ID_CTRL1, WM_SETFONT,
hDlgFont, @L);
SendD1gltemMessage(hdlg, ID_CTRL2, WM_SETFONT,
hDlgFont, @L);

. /* Set font for remaining controls. */

}
}
return TRUE;

See Also CreateDialogParam, DialogBoxIndirectParam, DialogBoxParam, SetFocus

WNM_INITMENU (2]

WM_INITMENU
hmenulnit = (HMENU) wParam; /* handle of menu to initialize */

The WM_INITMENU message is sent when a menu is about to become active. It
occurs when the user clicks an item on the menu bar or presses a menu key. This
allows an application to modify the menu before it is displayed.

136 WM_INITMENUPOPUP

Parameters

Return Value

Comments

See Also

hmenulnit
Value of wParam. Identifies the menu to be initialized.

An application should return zero if it processes this message.

This message is sent only when a menu is first accessed; only one
WM_INITMENU message is generated for each access. This means, for example,
that moving the mouse across several menu items while holding down the button
does not generate new messages. WM_INITMENU does not provide information
about menu items.

WM_INITMENUPOPUP

WM_INITMENUPOPUP

Parameters

Return Value

WM_INITMENUPOPUP

hmenuPopup = (HMENU) wParam; /* handle of pop-up menu */
nIndex = (int) LOWORD(1Param); /* index of pop-up menu */
fSystemMenu = (BOOL) HIWORD(1Param); /* System-menu flag */

The WM_INITMENUPOPUP message is sent when a pop-up menu is about to be-
come active. This allows an application to modify the pop-up menu before it is dis-
played, without changing the entire menu.

hmenuPopup :
Value of wParam. Identifies the pop-up menu.

nindex
Value of the low-order word of /Param. Specifies the index of the pop-up menu
in the main menu.

fSystemMenu
Value of the high-order word of /Param. Specifies a nonzero value if the pop-
up menu is the System menu (sometimes referred to as the Control menu);
otherwise, this parameter is zero.

An application should return zero if it processes this message.

WM_KEYDOWN 137

Example

See Also

This example initializes the items in a pop-up menu:

int nCount;
WORD wltem;
UINT ulD;

case WM_INITMENUPOPUP:
nCount = GetMenultemCount(wParam);
for (wltem = @; witem < nCount; wltem++) {
ulD = GetMenultemID(wParam, wltem);
. /* Initialize menu items. */

}
break;

WM_INITMENU

WM_KEYDOWN | [2x]

Parameters

WM_KEYDOWN
wVkey = wParam; /* virtual-key code */
dwKeyData = 1Param; /* key data */

The WM_KEYDOWN message is sent when a nonsystem key is pressed. A non-
system key is a key that is pressed when the ALT key is not pressed, or it is a key
that is pressed when a window has the input focus.

wVkey
Value of wParam. Specifies the virtual-key code of the given key.

dwKeydata
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

138 WM_KEYUP

Bit Description

25-26 Not used.
27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
' while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.
31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

For a WM_KEYDOWN message, the value of bit 29 (context code) is 0 and
the value of bit 31 (key-transition state) is O.

Return Value An application should return zero if it processes this message.

Comments Because of the autorepeat feature, more than one WM_KEYDOWN message may
occur before a WM_KEYUP message is sent. The previous key state (bit 30) can
be used to determine whether the WM_KEYDOWN message indicates the first
down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER key on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

See Also WM_CHAR, WM_KEYUP

WM_KEYUP [2x]

WM_KEYUP
wVkey = wParam; /% virtual-key code %/
dwKeyData = 1Param; /* key data */

The WM_KEYUP message is sent when a nonsystem key is released. A non-
system key is a key that is pressed when the ALT key is not pressed, or it is a key
that is pressed when a window has the input focus.

WM_KEYUP

139

Parameters

Return Value

Comments

See Also

wVkey

Value of wParam. Specifies the virtual-key code of the given key.

dwKeyData

Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following

table:

Bit Description

0-15 Specifies the repeat count: The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM). '

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

- 27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

For a WM_KEYUP message, the value of bit 29 (context code) is 0 and the
value of bit 31 (key-transition state) is 1.

An application should return zero if it processes this mesSage.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the dwKeyData parameter.

WM_CHAR, WM_KEYDOWN

140 WM_KILLFOCUS

WM_KILLFOCUS

Parameters

Return Value
Comments

See Also

WM_KILLFOCUS

hwndGetFocus = (HWND) 1Param;

[2x]

/* handle of window receiving focus */

The WM_KILLFOCUS message is sent immediately before a window loses th

input focus.

hwndGetFocus

Value of wParam. Identifies the window that receives the input focus. (This
parameter may be NULL.)

An application should return zero if it processes this message.

If an application is displaying a caret, the caret should be destroyed at this point.

SetFocus, WM_SETFOCUS

WM_LBUTTONDBLCLK

Parameters

WM_LBUTTONDBLCLK
fwKeys = wParam;
xPos
yPos

LOWORD(TParam);
HIWORD(1Param); /* vertical position of cursor

/* key flags

*/

/* horizontal position of cursor */

*/

The WM_LBUTTONDBLCLK message is sent when the user double-clicks the

left mouse button.

fwKeys

Value of wParam. Indicates whether various virtual keys are down. This

parameter can be any combination of the following values:

Value Description
MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

WM_LBUTTONDOWN 14

Return Value

Comments

See Also

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos '
Value of the high-order word of I[Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_LBUTTONDBLCLK messages. Windows generates a
WM_LBUTTONDBLCLK message when the user presses, releases, and again
presses the left mouse button within the system’s double-click time limit. Double-
clicking the left mouse button actually generates four messages: a
WM_LBUTTONDOWN message, a WM_LBUTTONUP message, the
WM_LBUTTONDBLCLK message, and another WM_LBUTTONUP message.

WM_LBUTTONDOWN, WM_LBUTTONUP

WM_LBUTTONDOWN

Parameters

WM_LBUTTONDOWN

fwKeys = wParam; /* key flags / */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(TParam); /* vertical position of cursor */

The WM_LBUTTONDOWN message is sent when the user presses the left
mouse button.

fwKeys
Value of wParam. Specifies whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

‘MK_CONTROL Set if CTRL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of IParam. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

142 WM_LBUTTONUP

Return Value

See Also

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_LBUTTONDBLCLK, WM_LBUTTONUP

WM_LBUTTONUP

Parameters

Return Value

See Also

WM_LBUTTONUP .
fwKeys = wParam; /* key flags */

xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_LBUTTONUP message is sent when the user releases the left mouse
button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down.
This parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of IParam. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_LBUTTONDBLCLK, WM_LBUTTONDOWN

WM_MBUTTONDBLCLK 143

WM_MBUTTONDBLCLK | [2x]

WM_MBUTTONDBLCLK

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_MBUTTONDBLCLK message is sent when the user double-clicks the
middle mouse button.

Parameters fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

Return Value An application should return zero if it processes this message.

Comments Only windows that have the CS_DBLCLKS class style can receive
WM_MBUTTONDBLCLK messages. Windows generates a
WM_MBUTTONDBLCLK message when the user presses, releases, and again
presses the middle mouse button within the system’s double-click time limit.
Double-clicking the middle mouse button actually generates four messages: a
WM_MBUTTONDOWN message, a WM_MBUTTONUP message, the
WM_MBUTTONDBLCLK message, and another WM_MBUTTONUP message.

See Also WM_MBUTTONDOWN, WM_MBUTTONUP

144 WM_MBUTTONDOWN

WM_MBUTTONDOWN

Parameters

Return Value

See Also

WM_MBUTTONDOWN

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_MBUTTONDOWN message is sent when the user presses the middle
mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_MBUTTONDBLCLK, WM_MBUTTONUP

WM_MBUTTONUP

WM_MBUTTONUP

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor #*/
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_MBUTTONUP message is sent when the user releases the middle
mouse button.

WM_MDIACTIVATE 145

Parameters

Return Value

See Also

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_MBUTTONDBLCLK, WM_MBUTTONDOWN

WM_MDIACTIVATE

WM_MDIACTIVATE

/* Message sent to MDI client */

wParam = (WPARAM) (HWND) hwndChildAct; /* child to activate */
1Param = 0L; /* not used, must be zero */

/* Message received by MDI child =/

wParam = (WPARAM) fActivate; /* activation flag */
hwndAct = (HWND) LOWORD(1Param); /* child being activated */
hwndDeact = (HWND) HIWORD(1Param); /* child being deactivated */

An application sends the WM_MDIACTIVATE message to a multiple document
interface (MDI) client window to instruct the client window to activate a different
MDI child window. As the client window processes this message, it sends
WM_MDIACTIVATE to the child window being deactivated and to the child win-
dow being activated.

146 WM_MDICASCADE

Parameters In message sent to MDI client window:

hwndChildAct
Value of wParam. Identifies the MDI child window to be activated.

In message received by MDI child window:

fActivate
Value of wParam. Specifies whether to activate or deactivate the child window.
If this parameter is TRUE, the child window is activated. If this parameter is
FALSE, the child window is deactivated.

hwndAct
Value of the low-order word of [Param. Identifies the child window being
activated.

hwndDeact
Value of the high-order word of /Param. 1dentifies the child window being
deactivated.

Return Value An application should return zero if it processes this message.

Comments An MDI child window is activated independently of the MDI frame window.
When the frame window becomes active, the child window that was last activated
with the WM_MDIACTIVATE message receives the WM_NCACTIVATE mes-
sage to draw an active window frame and title bar; it does not receive another
WM_MDIACTIVATE message.

See Also WM_MDIGETACTIVE, WM_NCACTIVATE, WM_MDINEXT

WM_ MDICASCADE

WM_MDICASCADE
fnCascade = wParam; /* cascade flag */

The WM_MDICASCADE message is sent to a multiple document interface
(MDI) client window to arrange all its child windows in a cascade format.

Parameters fnCascade
Value of wParam. Specifies a cascade flag. Currently, only the following flag
may be specified:

WM_MDICREATE 147

Return Value

See Also

Value Meaning
MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being
cascaded.

An application should return zero if it processes this message.

WM_MDIICONARRANGE, WM_MDITILE

WM_MDICREATE

Parameters

Return Value

Comments

WM_MDICREAT
wParam 0; /* not used, must be zero */
TParam (LPARAM) (MDICREATESTRUCT FAR*) lpmcs; /* structure address */

An application sends the WM_MDICREATE message to a multiple document in-
terface (MDI) client window to create a child window.

Ipmcs
Value of [Param. Points to an MDICREATESTRUCT structure. The
MDICREATESTRUCT structure has the following form:

typedef struct tagMDICREATESTRUCT { /* mdic */
LPCSTR szClass;
LPCSTR szTitle;
HINSTANCE hOwner;

int X;
int y;
int CX;
int cy;
DWORD style;

LPARAM 1Param;
} MDICREATESTRUCT;

The return value is the handle of the new window in the low-order word and zero
in the high-order word.

The window is created with the style bits WS_CHILD, WS_CLIPSIBLINGS,
WS_CLIPCHILDREN, WS_SYSMENU, WS_CAPTION, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX, plus additional style bits
specified in the MDICREATESTRUCT structure to which lpmcs points.

148 WM_MDIDESTROY

See Also

Windows adds the title of the new child window to the window menu of the frame
window. An application should create all child windows of the client window with
this message.

If the MDIS_ALLCHILDSTYLES style is set when the MDI client window is
created, CreateWindow overrides the default style bits.

If a client window receives any message that changes the activation of child win-
dows while the currently active MDI child window is maximized, Windows re-
stores the currently active child window and maximizes the newly activated child
window.

When the MDI child window is created, Windows sends the WM_CREATE mes-
sage to the window. The I[pmcs parameter of the WM_CREATE message contains
a pointer to a CREATESTRUCT structure. The IpCreateParams member of the
CREATESTRUCT structure contains a pointer to the MDICREATESTRUCT
structure passed with the WM_MDICREATE message that created the MDI child
window.

An application should not send a second WM_MDICREATE message while a
WM_MDICREATE message is still being processed. For example, it should not
send a WM_MDICREATE message while an MDI child window is processing its
WM_CREATE message.

WM_MDIDESTROY

WM_MDIDESTROY

Parameters

Return Value

Comments

WM_MDIDESTROY :
hwndChild = (HWND) wParam; /#* handle of child to destroy */

An application sends the WM_MDIDESTROY message to a multiple document
interface (MDI) client window to close an MDI child window.

hwndChild
Value of wParam. Identifies the child window to destroy.

An application should return zero if it processes this message.

This message removes the title of the child window from the frame window and
deactivates the child window. An application should close all MDI child windows
with this message.

WM_MDIICONARRANGE 149

If a client window receives any message that changes the activation of child win-
dows while the currently active MDI child window is maximized, Windows re-
stores the currently active child window and maximizes the newly activated child
window.

See Also WM_MDICREATE

WM_MDIGETACTIVE

WM_MDIGETACTIVE
The WM_MDIGETACTIVE message retrieves the multiple document interface

(MDI) child window that is active, along with a flag indicating whether the child
window is maximized.

Parameters This message has no parameters.
Return Value The return value is the handle of the active MDI child window in its low-order
word. If the window is maximized, the high-order word is 1; otherwise, the high-

order word is 0.

See Also WM_MDIACTIVATE

WM_MDIICONARRANGE

WM_MDIICONARRANGE
The WM_MDIICONARRANGE message is sent to a multiple document interface
(MDI) client window to arrange all minimized document child windows. It does
not affect child windows that are not minimized.

Parameters This message has no parameters.

Return Value An application should return zero if it processes this message.

See Also WM_MDICASCADE, WM_MDITILE

150 WM_ MDIMAXIMIZE

WM_MDIMAXIMIZE

Parameters

Return Value

Comments

WM_MDIMAXIMIZE
hwndMaximize = (HWND) wParam; /* handle of child to maximize */

The WM_MDIMAXIMIZE message causes a multiple document interface (MDI)
client window to maximize an MDI child window. When a child window is maxi-
mized, Windows resizes it to make its client area fill the client window. Windows
places the child window’s System menu (sometimes referred to as the Control
menu) in the frame’s menu bar so that the user can restore or minimize the child
window; Windows adds the title of the child window to the frame window’s menu
of child windows.

hwndMaximize
Value of wParam. Identifies the child window to maximize.

An application should return zero if it processes this message.

If an MDI client window receives any message that changes the activation of its
child windows while the currently active MDI child window is maximized, Win-
dows restores the currently active child window and maximizes the newly acti-
vated child window.

WM_MDINEXT

Parameters

WM_MDINEXT
wParam = (WPARAM) hwndChild; /* handle of child window */
1Param = (LPARAM) fNext; /* next or previous child window */

An application sends the WM_MDINEXT message to a multiple document inter-
face (MDI) client window to activate the child window immediately behind the
currently active child window and place the currently active child window behind
all other child windows.

hwndChild
Value of wParam. Specifies the handle of the child window.

fNext

Value of [Param. If this parameter is zero, the message specifies that the next
MDI child window should be activated. If this parameter is nonzero, the mes-
sage specifies that the previous MDI child window should be activated.

WM_MDISETMENU 151

Return Value An application should return zero if it processes this message.

Comments If an MDI client window receives any message that changes the activation of its
child windows while the currently active MDI child window is maximized, Win-
dows restores the currently active child window and maximizes the newly acti-
vated child window.

See Also WM_MDIACTIVATE, WM_MDIGETACTIVE

WM_MDIRESTORE

WM_MDIRESTORE
wParam = (WPARAM) wIDChild; /* handle of child window */

An application sends the WM_MDIRESTORE message to a multiple document in-
terface (MDI) client window to restore an MDI child window from maximized or
minimized size.

Parameters wIDChild

Value of wParam. Specifies the handle of the child window.
Return Value An application should return zero if it processes this message.
See Also WM_MDIMAXIMIZE

WM_MDISETMENU

WM_MDISETMENU
wParam = (WPARAM) (BOOL) fRefresh; /* refresh flag */
1Param = MAKELPARAM(hmenuFrame, hmenuWindow); /* new menus */

An application sends a WM_MDISETMENU message to replace the menu of a
multiple document interface (MDI) frame window, the Window pop-up menu, or
both.

Parameters fRefresh
Value of wParam. Specifies whether to refresh the current menus or specify
new menus. It is TRUE if the menus should just be refreshed. It is FALSE if,

152 WM_MDITILE

instead, the hmenuFrame and hmenuWindow parameters should be used to
specify new menus for the window.

hmenuFrame
Value of the low-order word of /Param. Identifies the new frame-window
menu. If this parameter is zero, the frame-window menu is not changed.

hmenuWindow
Value of the high-order word of /Param. Identifies the new Window pop-up
menu. If this parameter is zero, the Window pop-up menu is not changed.

Return Value The return value is the handle of the frame-window menu replaced by this mes-
sage.
Comments After sending this message, an application must call the DrawMenuBar function

to update the menu bar.

If this message replaces the Window pop-up menu, MDI child-window menu
items are removed from the previous Window menu and added to the new Win-
dow pop-up menu.

If an MDI child window is maximized and this message replaces the MDI frame-
window menu, the System menu (sometimes referred to as the Control menu) and
restore controls are removed from the previous frame-window menu and added to
the new menu.

See Also DrawMenuBar

WM_MDITILE

WM_MDITILE
fTile = wParam; /* tiling flag */

The WM_MDITILE message is sent to a multiple document interface (MDI)
client window to arrange all its child windows in a tiled format.

Parameters [Tile
Value of wParam. Specifies a tiling flag. This parameter can be one of the fol-
lowing flags:

WM_MEASUREITEM 153

Value Meaning

MDITILE_HORIZONTAL Tiles MDI child windows so that they are wide
rather than tall.

MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being
tiled.

MDITILE_VERTICAL Tiles MDI child windows so that they are tall
rather than wide.

Return Value An application should return zero if it processes this message.

See Also WM_MDICASCADE, WM_MDIICONARRANGE

WM_MEASUREITEM

WM_MEASUREITEM
nIDCt1 = (int) wParam; /* control identifier */
1pmisCt]l = (MEASUREITEMSTRUCT FAR*) 1Param; /* address of structure */

The WM_MEASUREITEM message is sent to the owner of an owner-drawn but-
ton, combo box, list box, or menu item when the control is created. When the
owner receives the message, the owner fills in the MEASUREITEMSTRUCT
structure pointed to by the /pmisCt message parameter and returns; this informs
Windows of the dimensions of the control. If a list box or combo box is created
with the LBS_ OWNERDRAWVARIABLE or CBS_OWNERDRAWVARIABLE
style, this message is sent to the owner for each item in the control; otherwise, this
message is sent once.

Parameters nIDCtl
Value of wParam. Specifies the identifier of the control that sent the
WM_MEASUREITEM message. This parameter is 0 if the message was sent
by a menu. This parameter is —1 when the system is requesting the dimensions
of an edit control in an owner-drawn combo box.

IpmisCtl
Value of [Param. Points to a MEASUREITEMSTRUCT structure that con-
tains the dimensions of the owner-drawn control.

154 WM_MENUCHAR

Return Value

Comments

See Also

The MEASUREITEMSTRUCT structure has the following form:

typedef struct tagMEASUREITEMSTRUCT { /* mi */
UINT Ctl1Type;
UINT Ct1ID;
UINT itemID;
UINT itemWidth;
UINT itemHeight;
DWORD itemData;
} MEASUREITEMSTRUCT;

An application should return TRUE if it processes this message.

Windows sends the WM_MEASUREITEM message to the owner of a combo
box or list box created with the OWNERDRAWFIXED style before sending
WM_INITDIALOG. As a result, when the owner receives this message, Windows
has not yet determined the helght and width of the font used in the control; func-
tion calls and calculations requiring these values should occur in the main functlon
of the application or library.

WM_COMPAREITEM, WM_DELETEITEM, WM_DRAWITEM,
WM_INITDIALOG

WM_MENUCHAR

Parameters

WM_MENUCHAR

chUser = wParam; /* ASCII character */
fMenu = LOWORD(1Param); /* menu flag */
hmenu = (HMENU) HIWORD(1Param); /% handle of the menu */

The WM_MENUCHAR message is sent when the user presses the key corre-
sponding to a menu mnemonic character that doesn’t match any of the predefined
mnemonics in the current menu. It is sent to the window that owns the menu.

chUser

Value of wParam. Specifies the ASCII character that corresponds to the key the
user pressed.

fMenu
Value of the low-order word of [Param. Specifies the type of the selected
menu. This parameter can be one of the following values:

WM_MENUSELECT 155

Value Meaning

MF_POPUP The menu is a pop-up menu.

MF_SYSMENU The menu is a System menu (sometimes referred to as a
Control menu).

hmenu
Value of the high-order word of /Param. Identifies the selected menu.
Return Value The return value is one of the following command code values in the high-order
word:
Value Description
0 Informs Windows that it should discard the character corresponding to the
key the user pressed, and creates a short beep on the system speaker.
1 Informs Windows that it should close the current menu.
2 Informs Windows that the low-order word of the return value contains the

item number for a specific item. This item is selected by Windows.

The low-order word is ignored if the high-order word contains O or 1. An applica-
tion should process this message when an accelerator key has been used to select a
bitmap placed in a menu.

Comments The WM_MENUCHAR message is generated when the user presses ALT and any
key, even if the key does not correspond to a mnemonic character. In this case, the
hmenu parameter contains the window handle of the menu.

‘

WM_MENUSELECT (2]

WM_MENUSELECT

wIDItem = wParam; /* item identifier or menu handle */
fwMenu = LOWORD(1Param); /* menu flags */
hmenu = (HMENU) HIWORD(1Param); /* handle of the menu */

The WM_MENUSELECT message is sent to the window associated with a menu
when the user selects a menu item.

Parameters wiIDItem
Value of wParam. Specifies the menu-item identifier if the selected item is a
menu item. If the selected item contains a pop-up menu, wiDItem contalns the
handle of the pop-up menu.

156 WM_MOUSEACTIVATE

Return Value

Comments

fwMenu
Low word of [Param. Specifies one or more menu flags. This parameter can be
a combination of the following values:

Flag Description
MF_BITMAP Item is a bitmap.
MF_CHECKED Item is checked.
MF_DISABLED Item is disabled.
MF_GRAYED Item is grayed.

MF_MOUSESELECT Item was selected with a mouse.
MF_OWNERDRAW Item is an owner-drawn item.

MF_POPUP Item contains a pop-up menu.
MF_SEPARATOR Item is a menu-item separator.
MF_SYSMENU Item is contained in the System menu (sometimes re-

ferred to as the Control menu). The #menu parameter
identifies the System menu associated with the message.

hmenu
High word of [Param. If the fwMenu parameter contains the MF_SYSMENU
flag, this parameter specifies the menu handle of the System menu.

An application should return zero if it processes this message.

If the fwMenu parameter contains —1 and the hmenu parameter contains 0, Win-
dows has closed the menu. This occurs both when the menu is closed because the
user pressed ESC or clicked outside the menu and when the user has selected a
menu item.

WM_MOUSEACTIVATE [2x]

WM_MOUSEACTIVATE

hwndTopLevel = (HWND) wParam; /* handle of top-level parent */
wHitTestCode = LOWORD(1Param); /* hit-test code */
wMsg = HIWORD(TParam); /* mouse-message identifier */

The WM_MOUSEACTIVATE message is sent when the cursor is in an inactive
window and the user presses a mouse button. The parent window receives this
message only if the child window passes it to the DefWindowProc function.

WM_MOUSEMOVE 157

Parameters hwndTopLevel
Value of wParam. Identifies the top-level parent window of the window being
activated.

wHitTestCode
Value of the low-order word of [Param. Specifies the hit-test area code. A hit
test is a test that determines the location of the cursor.

wMsg
Value of the high-order word of [Param. Specifies the identifier of the mouse
message.
Return Value The return value specifies whether the window should be activated and whether
the mouse event should be discarded. It must be one of the following values:
Value Meaning
MA_ACTIVATE Activate the window.
MA_NOACTIVATE Do not activate the window.
MA_ACTIVATEANDEAT Activate the window and discard the mouse event.
MA_NOACTIVATEANDEAT Do not activate the window; discard the mouse
event.
Comments If the child window passes the message to the DefWindowProc function, Def-

WindowProc passes this message to a window’s parent window before any pro-
cessing occurs. If the parent window returns a nonzero value, processing is halted.

WM_MOUSEMOVE [2x]

WM_MOUSEMOVE

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor %/

The WM_MOUSEMOVE message is sent to a window when the mouse cursor
moves. If the mouse is not captured, the message goes to the window beneath the
cursor. Otherwise, the message goes to the window that has captured the mouse.

Parameters fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

158 WM_MOVE

Return Value

Comments

See Also

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of I[Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

The MAKEPOINT macro can be used to convert the /Param parameter to a
POINT structure.

SetCapture, WM_NCHITTEST

WM_MOVE

Parameters

WM_MOVE
xPos = (int) LOWORD(1Param); /* horizontal position */
yPos = (int) HIWORD(1Param); /* vertical position */

The WM_MOVE message is sent after a window has been moved.

xPos

Value of the low-order word of [Param. Specifies the new x-coordinate of the
upper-left corner of the client area of the window.

yPos
Value of the high-order word of /Param. Specifies the new y-coordinate of the
upper-left corner of the client area of the window.

WM_NCACTIVATE 159

Return Value An application should return zero if it processes this message.

Comments The xPos and yPos parameters are given in screen coordinates for overlapped and
pop-up windows and in parent-client coordinates for child windows.

An application can use the MAKEPOINT macro to convert the [Param parameter
to a POINT data structure.

See Also MAKEPOINT, POINT

WM_NCACTIVATE 7]

WM_NCACTIVATE
fActive = (BOOL) wParam; /* the active/inactive flag */

The WM_NCACTIVATE message is sent to a window when its nonclient area
needs to be changed to indicate an active or inactive state.

Parameters fActive
Value of wParam. Specifies when a title bar or icon needs to be changed to indi-
cate an active or inactive state. The fActive parameter is TRUE if an active title
bar or icon is to be drawn. It is FALSE for an inactive title bar or icon.

Return Value When the fActive parameter is FALSE, an application should return TRUE to indi-
cate that Windows should proceed with the default processing or FALSE to pre-
vent the caption bar or icon from being deactivated. When fActive is TRUE, the
return value is ignored.

Comments The DefWindowProc function draws the title bar and title bar text in their active
colors when the fActive parameter is TRUE and in their inactive colors when
fActive is FALSE.

See Also DefWindowProc

160 WM_NCCALCSIZE

WM_NCCALCSIZE]

Parameters

Return Value

WM_NCCALCSIZE
fCalcValidRects = (BOOL) wParam; /* valid-area flag =*/
Tpncsp = (NCCALCSIZE_PARAMS FAR*) 1Param; /* address of data */

The WM_NCCALCSIZE message is sent when the size and position of a win-
dow’s client area needs to be calculated. By processing this message, an applica-
tion can control the contents of the window’s client area when the size or position
of the window changes.

SfCalcValidRects
Value of wParam. Specifies whether the application should specify which part
of the client area contains valid information. Windows will copy the valid infor-
mation to the specified area within the new client area. If this parameter is
TRUE, the application should specify which part of the client area is valid.

~lpncsp

Value of [Param. Points to an NCCALCSIZE_PARAMS data structure that

contains information an application can use to calculate the new size and posi-
tion of the client rectangle. The NCCALCSIZE_PARAMS structure has the

following form:

typedef struct tagNCCALCSIZE_PARAMS {
RECT rgrc[3];
WINDOWPOS FAR* 1ppos;

} NCCALCSIZE_PARAMS;

Regardless of the value of fCalcValidRects, the first rectangle in the array
specified by the rgrc member contains the coordinates of the window. For a
child window, the coordinates are relative to the parent window’s client area.
For top-level windows, the coordinates are screen coordinates. An application
should process WM_NCCALCSIZE by modifying the rgre[0] rectangle to re-
flect the size and position of the client area.

The rgre[1] and rgre[2] rectangles are valid only if fCalcValidRects is TRUE.
In this case, the rgrc[1] rectangle contains the coordinates of the window
before it was moved or resized. The rgre[2] rectangle contains the coordinates
of the window’s client area before the window was moved. All coordinates are
relative to the parent window or screen.

An application should return zero if fCalcValidRects is FALSE.

An application can return zero or a valid combination of the following values if
fCalcValidRects is TRUE:

WM_NCCALCSIZE 161

Comments

See Also

Value

Meaning

WVR_ALIGNTOP, WVR_ALIGNLEFT,
WVR_ALIGNBOTTOM,
WVR_ALIGNRIGHT

WVR_HREDRAW,
WVR_VREDRAW

WVR_REDRAW

WVR_VALIDRECTS

These values, used in combination,
specify that the client area of the window
is to be preserved and aligned appro-
priately relative to the new location of the
client window. For example, to align the
client area to the lower-left, return
WVR_ALIGNLEFT | WVR_ALIGNTOP.

These values, used in combination with
any other values, cause the window to be
completely redrawn if the client rectangle
changed size horizontally or vertically.
These values are similar to the
CS_HREDRAW and CS_VREDRAW
class styles.

This value causes the entire window
to be redrawn. It is a combination -
of WVR_HREDRAW and
WVR_VREDRAW.

This value indicates that, upon return from
WM_NCCALCSIZE, the rgre[1] and
rgre[2] rectangles contain valid source
and destination area rectangles, respec-
tively. Windows combines these rectan-
gles to calculate the area of the window
that can be preserved. Windows copies
any part of the window image that is
within the source rectangle and clips the
image to the destination rectangle. Both
rectangles are in parent-relative or screen-
relative coordinates.

This return value allows an application to
implement more elaborate client-area pre-
servation strategies, such as centering or
preserving a subset of the client area.

If fCalcValidRects is TRUE and an application returns zero, the old client area is
preserved and is aligned with the upper-left corner of the new client area.

Redrawing of the window may occur, depending on whether CS_HREDRAW or
CS_VREDRAW was specified. This is the default, backward-compatible Def-
WindowProc processing of this message (in addition to the usual client rectangle
calculation described in the preceding table).

DefWindowProc, MoveWindow, SetWindowPos

162 WM_NCCREATE

'WM_NCCREATE 5]

WM_NCCREATE
1pcs = (CREATESTRUCT FAR%) 1Param; /* address of initialization data */

The WM_NCCREATE message is sent prior to the WM_CREATE message when
a window is first created.

Parameters Ipcs

Value of [Param. Points to the CREATESTRUCT data structure for the win-
dow. The CREATESTRUCT structure has the following form:

typedef struct tagCREATESTRUCT { /* cs x/
void FAR* 1pCreateParams;
HINSTANCE hInstance;

HMENU hMenu;

HWND hwndParent;
int cy;

int CX;

int y;

int X;

LONG style;

LPCSTR 1pszName;

LPCSTR IpszClass;

DWORD dwExStyle;
} CREATESTRUCT;

Return Value The return value is nonzero if the nonclient area is created. It is zero if an error
occurs; in this case, the CreateWindow or CreateWindowEx function will return
NULL.

Comments Scroll bars are initialized (the scroll bar position and range are set), and the win-
dow text is set. Memory used internally to create and maintain the window is allo-
cated.

See Also CreateWindow, WM_CREATE

WM_NCHITTEST 163

WM_NCDESTROY [2x]

WM_NCDESTROY

The WM_NCDESTROY message informs a window that its nonclient area is
being destroyed. The DestroyWindow function sends the WM_NCDESTROY
message to the window following the WM_DESTROY message.
WM_NCDESTROY is used to free the allocated memory object associated with

the window.
Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments This message frees any memory internally allocated for the window.
See Also DestroyWindow, WM_NCCREATE

WM_NCHITTEST [2x]

WM_NCHITTEST ;
xPos (int) LOWORD(TParam); /* horizontal position of cursor =/
yPos (int) HIWORD(1Param); /* vertical position of cursor =/

The WM_NCHITTEST message is sent to the window that contains the cursor or
to the window that used the SetCapture function to capture the mouse input. It is
sent every time the mouse is moved.

Parameters xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, in screen coordinates.

yPos
Value of the high-order word of IParam. Specifies the y-coordinate of the cur-
sor, in screen coordinates.

Return Value The return value of the DefWindowProc function is one of the following values
indicating the position of the cursor:

164 WM_NCHITTEST

Comments

Example

Value Meaning

HTBORDER In the border of a window that does not have a sizing border

HTBOTTOM In the lower horizontal border of a window

HTBOTTOMLEFT In the lower-left corner of a window border

HTBOTTOMRIGHT In the lower-right corner of a window border

HTCAPTION In a title bar area

HTCLIENT In a client area

HTERROR On the screen background or on a dividing line between win-
dows (same as HTNOWHERE except that the DefWindow-
Proc function produces a system beep to indicate an error)

HTGROWBOX In a size box (same as HTSIZE)

HTHSCROLL In the horizontal scroll bar

HTLEFT In the left border of a window

HTMAXBUTTON In a Maximize button

HTMENU In a menu area

HTMINBUTTON In a Minimize button

HTNOWHERE On the screen background or on a dividing line between
windows

HTREDUCE In a Minimize button

HTRIGHT In the right border of a window

HTSIZE In a size box (same as HTGROWBOX)

HTSYSMENU In a System menu (sometimes referred to as a Control menu)
or in a close button in a child window

HTTOP In the upper horizontal border of a window

HTTOPLEFT In the upper-left corner of a window border

HTTOPRIGHT In the upper-right corner of a window border

HTTRANSPARENT In a window currently covered by another window

HTVSCROLL In the vertical scroll bar

HTZOOM In a Maximize button)

The MAKEPOINT macro can be used to convert the /Param parameter to a

POINT structure.

This example shows a portion of a subclass procedure that detects mouse mes-
sages in a static window:

WM_NCLBUTTONDBLCLK 165

See Also

LONG 1RetVal;

case WM_NCHITTEST:
1RetVal = DefWindowProc(hwnd, msg, wParam, 1Param);
if (1RetVal == HTTRANSPARENT) {

. /* Process mouse events in static window. */

}
break;

default:
CallWindowProc(1pStaticProc, hwnd, msg, wParam, 1Param);

DefWindowProc, GetCapture

WM_NCLBUTTONDBLCLK

Parameters

Return Value
Comments

See Also

WM_NCLBUTTONDBLCLK

nHittest = wParam; /* hit-test code */
xCursor LOWORD(TParam); /* cursor horizontal position */
yCursor HIWORD(1Param); /* cursor vertical position */

The WM_NCLBUTTONDBLCLK message is sent when the user double-clicks
the left mouse button while the cursor is within a nonclient area of the window.

nHittest
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xCursor
Value of the low-order word of [Param. Specifies the horizontal position of the
cursor, in screen coordinates.

yCursor
Value of the high-order word of [Param. Specifies the vertical position of the
cursor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_SYSCOMMAND

166 WM_NCLBUTTONDOWN

WM_NCLBUTTONDOWN

Parameters

Return Value
Comments

See Also

WM_NCLBUTTONDOWN

wHitTestCode = wParam; /* hit-test code _®/
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCLBUTTONDOWN message is sent to a window when the user
presses the left mouse button while the cursor is within a nonclient area of the win-
dow.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, in screen coordinates.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_NCLBUTTONDBLCLK, WM_NCLBUTTONUP,
WM_SYSCOMMAND

WM_NCLBUTTONUP

‘WM_NCLBUTTONUP

Parameters

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position #*/

The WM_NCLBUTTONUP message is sent to a window when the user releases
the left mouse button while the cursor is within a nonclient area of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

WM_NCMBUTTONDBLCLK 167

Return Value
Comments

See Also

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, in screen coordinates.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, in screen coordinates.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_NCLBUTTONDOWN, WM_NCLBUTTONUP,
WM_SYSCOMMAND

WM_NCMBUTTONDBLCLK [2x]

Parameters

Return Value

See Also

WM_NCMBUTTONDBLCLK

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(TParam); /* vertical cursor position */

The WM_NCRBUTTONDOWN message is sent to a window when the user
double-clicks the middle mouse button while the cursor is within a nonclient area
of the window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of I/Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDOWN, WM_NCMBUTTONUP

168 WM_NCMBUTTONDOWN

WM_NCMBUTTONDOWN [2x]

WM_NCMBUTTONDOWN

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCMBUTTONDOWN message is sent to a window when the user
presses the middle mouse button while the cursor is within a nonclient area of the
window.

Parameters wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.
Return Value An application should return zero if it processes this message.

See Also WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONUP

WM_NCMBUTTONUP [2a]

WM_NCMBUTTONUP

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(TParam); /* vertical cursor position */

The WM_NCMBUTTONUP message is sent to a window when the user releases
the left mouse button while the cursor is within a nonclient area of the window.

Parameters wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

WM_NCMOUSEMOVE 169

Return Value

See Also

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCMBUTTONDBLCLK, WM_NCMBUTTONDOWN

WM_NCMOUSEMOVE 5]

Parameters

Return Value
Comments

See Also

WM_NCMOUSEMOVE

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCMOUSEMOVE message is sent to a window when the cursor is
moved within a nonclient area of the window.

wHitTestCode
Value of wParam. Specities the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of IParam. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

An application should return zero if it processes this message.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCHITTEST, WM_SYSCOMMAND

170 WM_NCPAINT

WM_NCPAINT 2]

WM_NCPAINT

The WM_NCPAINT message is sent to a window when its frame needs painting.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments The DefWindowProc function paints the window frame.

An application can intercept this message and paint its own custom window frame.
The clipping region for a window is always rectangular, even if the shape of the
frame is altered.

See Also DefWindowProc

WM_NCRBUTTONDBLCLK [2x]

WM_NCRBUTTONDBLCLK

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCRBUTTONDBLCLK message is sent to a window when the user
double-clicks the right mouse button while the cursor is within a nonclient area of
the window.

Parameters wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.

WM_NCRBUTTONDOWN mn

Return Value

See Also

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCRBUTTONDOWN, WM_NCRBUTTONUP

WM_NCRBUTTONDOWN

Parameters

Return Value

See Also

WM_NCRBUTTONDOWN

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(1Param); /* vertical cursor position */

The WM_NCRBUTTONDOWN message is sent to a window when the user
presses the right mouse button while the cursor is within a nonclient area of the
window.

wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate. .

An application should return zero if it processes this message.

WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONUP

172 WM_NCRBUTTONUP

WM_NCRBUTTONUP [2x]

WM_NCRBUTTONUP

wHitTestCode = wParam; /* hit-test code */
xPos = LOWORD(1Param); /* horizontal cursor position */
yPos = HIWORD(TParam); /* vertical cursor position */

The WM_NCRBUTTONUP message is sent to a window when the user releases
the right mouse button while the cursor is within a nonclient area of the window.

Parameters wHitTestCode
Value of wParam. Specifies the code returned by WM_NCHITTEST. For more
information, see the description of the WM_NCHITTEST message.

xPos
Value of the low-order word of /Param. Specifies the x-coordinate of the cur-
sor, as a screen coordinate. ‘

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor, as a screen coordinate.
Return Value An application should return zero if it processes this message.

See Also WM_NCHITTEST, WM_NCRBUTTONDBLCLK, WM_NCRBUTTONDOWN

WM_NEXTDLGCTL [2x]

WM_NEXTDLGCTL
wCt1Focus = wParam; /* identifies control for focus */
fHandle = (BOOL) LOWORD(1Param); /* wParam handle flag */

An application sends the WM_NEXTDLGCTL message to a dialog box procedure
to set the focus to a different control in a dialog box.

Parameters wCtlFocus
Value of wParam. If the fHandle parameter is nonzero, the wCtlFocus parame-
ter is the handle of the control that receives the focus. If fHandle is zero,
wCtlFocus is a flag that indicates whether the next or previous control with the
WS_TABSTORP style receives the focus. If wCtlFocus is zero, the next control
receives the focus; otherwise, the previous control with the WS_TABSTOP
style receives the focus.

WM_PAINT 173

Return Value

Comments

See Also

fHandle
Low-order word of [Param. Indicates how Windows uses the wParam parame-
ter. If fHandle is nonzero, wParam is a handle associated with the control that
receives the focus; otherwise, wParam is a flag that indicates whether the next
or previous control with the WS_TABSTOP style receives the focus.

An application should return zero if it processes this message.

The effect of this message differs from that of the SetFocus function because
WM_NEXTDLGCTL modifies the border around the default button.

Do not use the SendMessage function to send a WM_NEXTDLGCTL message if
your application will concurrently process other messages that set the control
focus. In this case, use the PostMessage function instead.

PostMessage, SendMessage, SetFocus

WM_PAINT

Parameters
Return Value

Comments

[2x]

WM_PAINT

The WM_PAINT message is sent when Windows or an application makes a re-
quest to repaint a portion of an application’s window. The message is sent when
the UpdateWindow or RedrawWindow function is called or by the Dispatch-
Message function when the application obtains a WM_PAINT message by using
the GetMessage or PeekMessage function.

This message has no parameters.
An application should return zero if it processes this message.

The DispatchMessage function sends this message when there are no other mes-
sages in the application’s message queue.

A window may receive internal paint messages as a result of calling the Redraw-
Window function with the RDW_INTERNALPAINT flag set. In this case, the
window may not have an update region. An application should call the Get-
UpdateRect function to determine whether the window has an update region. If
GetUpdateRect returns zero, the application should not call the BeginPaint and
EndPaint functions.

174 WM_PAINTCLIPBOARD

See Also

It is an application’s responsibility to check for any necessary internal repainting
or updating by looking at its internal data structures for each WM_PAINT mes-
sage, because a WM_PAINT message may have been caused by both an invalid
area and a call to the RedrawWindow function with the
RDW_INTERNALPAINT flag set.

An internal WM_PAINT message is sent only once by Windows. After an internal
WM_PAINT message is returned from the GetMessage or PeekMessage function
or is sent to a window by the UpdateWindow function, no further WM_PAINT
messages will be sent or posted until the window is invalidated or until the
RedrawWindow function is called again with the RDW_INTERNALPAINT flag
set.

BeginPaint, DispatchMessage, EndPaint, GetMessage, PeekMessage, Redraw-
Window, UpdateWindow

WM_PAINTCLIPBOARD

Parameters

WM_PAINTCLIPBOARD
hwndViewer = (HWND) wParam; /* handle of viewer */
pps = (PAINTSTRUCT FAR*) LOWORD(1Param); /* points to paint data */

The WM_PAINTCLIPBOARD message is sent by a clipboard viewer to the
clipboard owner when the owner has placed data on the clipboard in the
CF_OWNERDISPLAY format and the clipboard viewer’s client area needs
repainting.

hwndViewer
Value of wParam. Specifies a handle to the clipboard viewer window.

pps

Value of the low-order word of /Param. Points to a PAINTSTRUCT data
structure that defines which part of the client area to paint. The PAINT-
STRUCT structure has the following form:

typedef struct tagPAINTSTRUCT { /* ps */
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[16];
} PAINTSTRUCT;

WM_PALETTECHANGED 175

Return Value An application should return zero if it processes this message.

Comments To determine whether the entire client area or just a portion of it needs repainting,
the clipboard owner must compare the dimensions of the drawing area given in the
rcPaint member of the PAINTSTRUCT structure to the dimensions given in the
most recent WM_SIZECLIPBOARD message.

An application must use the GlobalLock function to lock the memory that con-

tains the PAINTSTRUCT data structure. The application should unlock that
memory by using the GlobalUnlock function before it yields or returns control.

See Also GlobalLock, GlobalUnlock, WM_SIZECLIPBOARD

WM_PALETTECHANGED

WM_PALETTECHANGED
hwndPalChg = (HWND) wParam; /* handle of window that changed palette */

The WM_PALETTECHANGED message is sent to all top-level and overlapped
windows after the window with the input focus has realized its logical palette,
thereby changing the system palette. This message allows a window without the
input focus that uses a color palette to realize its logical palette and update its
client area.

Parameters hwndPalChg
Value of wParam. Specifies the handle of the window that caused the system
palette to change.

Return Value An application should return zero if it processes this message.

Comments This message is sent to all top-level and overlapped windows, including the one
that changed the system palette and caused this message to be sent. If any chlld
windows use a color palette, this message must be passed on to them.

To avoid an infinite loop, a window that receives this message should not realize
its palette unless it determines that wParam does not contain its own window
handle.

176 WM_PALETTECHANGED

Example This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT i3

/*

* If this application changed the palette, ignore the message.
*/

case WM_PALETTECHANGED:
if (wParam == hwnd)
return @L;
/* Otherwise, fall through to WM_QUERYNEWPALETTE. */
case WM_QUERYNEWPALETTE:
/*

* If realizing the palette causes the palette to change,
* redraw completely.

*/
hdc = GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);

i = RealizePalette(hdc); /* i == entries that changed */
SelectPalette (hdc, hpalT, FALSE);

ReleaseDC(hwnd, hdc);

/* If any palette entries changed, repaint the window. */

if (i > 0)
InvalidateRect(hwnd, NULL, TRUE);

return i;

See Also WM_PALETTEISCHANGING, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY 177

WM_PALETTEISCHANGING [31]

WM_PALETTEISCHANGING
hwndRealize = (HWND) wParam; /* handle of window to realize palette */

The WM_PALETTEISCHANGING message informs applications that an applica-
tion is going to realize its logical palette.

Parameters hwndRealize
Value of wParam. Specifies the handle of the window that is going to realize its
logical palette.

Return Value An application should return zero if it processes this méssage.

See Also ' WM_PALETTECHANGED, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY

WM_PARENTNOTIFY

fwEvent = wParam; /* event flags */
wValuel = LOWORD(1Param); /* child handle/cursor x-coordinate */
wValue2 = HIWORD(1Param); /* child ID/cursor y-coordinate */

The WM_PARENTNOTIFY message is sent to the parent of a child window
when the child window is created or destroyed or when the user clicks a mouse
button while the cursor is over the child window. When the child window is being
created, the system sends WM_PARENTNOTIFY just before the CreateWindow
or CreateWindowEx function that creates the window returns. When the child
window is being destroyed, the system sends the message before any processing to
destroy the window takes place.

Parameters fwEvent
Value of wParam. Specifies the event for which the parent is being notified. It
can be any of the following values:

Value Description
WM_CREATE The child window is being created.
WM_DESTROY The child window is being destroyed.

WM_LBUTTONDOWN The user has placed the mouse cursor over the child
window and clicked the left mouse button.

178 WM_PASTE

Return Value

Comments

See Also

Value Description

WM_MBUTTONDOWN The user has placed the mouse cursor over the child
window and clicked the middle mouse button.

WM_RBUTTONDOWN The user has placed the mouse cursor over the child
window and clicked the right mouse button.

wValuel
Value of the low-order word of [Param. If the fwEvent parameter is
- WM_CREATE or WM_DESTROY, the wValuel parameter specifies the
handle of the child window. Otherwise, wValuel specifies the x-coordinate of
the cursor. :

wValue2
Value of the high-order word of [Param. If fwEventis WM_CREATE or
WM_DESTROY, the wValue2 parameter specifies the identifier of the child
window. Otherwise, wValue?2 specifies the y-coordinate of the cursor.

An application should return zero if it processes this message.

This message is also sent to all ancestor windows of the child window, including
the top-level window.

All child windows except those that have the WS_EX_NOPARENTNOTIFY send
this message to their parent windows. By default, child windows in a dialog box
have the WS_EX_NOPARENTNOTIFY style unless the CreateWindowEx func-
tion was called to create the child window without this style.

CreateWindow, CreateWindowEx, WM_CREATE, WM_DESTROY,
WM_LBUTTONDOWN, WM_MBUTTONDOWN, WM_RBUTTONDOWN

WM_PASTE

[2x]

WM_PASTE
wParam = 0; /* not used, must be zero */
1Param = QL; /* not used, must be zero */

An application sends the WM_PASTE message to an edit control or combo box to
insert the data from the clipboard into the edit control at the current cursor posi-
tion. Data is inserted only if the clipboard contains data in CF_TEXT format.

WM_POWER 179

Parameters

Return Value

Example

~ See Also

This message has no parameters.

The return value is nonzero if this message is sent to an edit control or a combo
box.

This example pastes data from the clipboard to an edit control:

SendDl1gItemMessage(hdlg, IDD_MYEDITCONTROL, WM_PASTE, @, 0L);

WM_CLEAR, WM_COPY, WM_CUT

WM_POWER ']

Parameters

Return Value

WM_POWER
fwPowerEvt = wParam; /* power-event notification message */

The WM_POWER message is sent when the system, typically a battery-powered
personal computer, is about to enter the suspended mode.

JfwPowerEvt
Value of wParam. Specifies a power-event notification message. This parame-
ter may be one of the following values:

Value Meaning
PWR_SUSPENDREQUEST Indicates that the system is about to enter the sus-
pended mode.

PWR_SUSPENDRESUME Indicates that the system is resuming operation
after entering the suspended mode normally—that
is, the system sent a PWR_SUSPENDREQUEST
notification message to the application before the
system was suspended. An application should per-
form any necessary recovery actions.

PWR_CRITICALRESUME Indicates that the system is resuming operation
after entering the suspended mode without first
sending a PWR_SUSPENDREQUEST notifica-
tion message to the application. An application
should perform any necessary recovery actions.

The value an application should return depends on the value of the wParam para-
meter, as follows:

180 WM_QUERYDRAGICON

Value of wParam Return Value

PWR_SUSPENDREQUEST PWR_FAIL to prevent the system from entering the
suspended state; otherwise PWR_OK

PWR_SUSPENDRESUME 0

PWR_CRITICALRESUME 0

Comments This message is sent only to an application that is running on a system that con-
forms to the advanced power management (APM) basic input-and-output system
(BIOS) specification. The message is sent by the power-management driver to
each window returned by the EnumWindows function.

The suspended mode is the state in which the greatest amount of power savings
occurs, but all operational data and parameters are preserved. Random-access
memory (RAM) contents are preserved, but many devices are likely to be turned
off.

See Also EnumWindows

WM_QUERYDRAGICON

WM_QUERYDRAGICON

The WM_QUERYDRAGICON message is sent to a minimized (iconic) window
that does not have an icon defined for its class. The system sends this message
whenever it needs to display an icon for the window.

Parameters This message has no parameters.

Return Value An application should return a doubleword value that contains a cursor or icon
handle in the low-order word. The cursor or icon must be compatible with the dis-
play driver’s resolution. If the application returns NULL, the system displays the
default cursor. The default return value is NULL.

Comments If an application returns the handle of an icon or cursor, the system converts the
icon or cursor to black-and-white.

The application can call the LoadCursor or LoadIcon function to load a cursor or
icon from the resources in its executable file and to obtain this handle.

WM_QUERYENDSESSION 181

Example This example returns an icon handle in response to the WM_QUERYDRAGICON
message. The icon is loaded from the resources in the application’s executable file.

static HICON hlIcon;

switch(msg) {
case WM_CREATE:

/* Load icon resource. */
hIcon = LoadIcon(hInstance, (LPCSTR) "MyIcon");

. /* Initialize other variables. */

return 0L;
case WM_QUERYDRAGICON:
/* Icon is about to be dragged. Return handle to custom icon. */

return (hlIcon);

. /* Process other messages. */

See Also LoadCursor, LoadIcon

WM_QUERYENDSESSION [2x]

WM_QUERYENDSESSION

The WM_QUERYENDSESSION message is sent when the user chooses to end
the Windows session, or when an application calls the ExitWindows function. If
any application returns zero, the Windows session is not ended. Windows stops
sending WM_QUERYENDSESSION messages as soon as one application returns
zero and sends WM_ENDSESSION messages, with the wParam parameter set to
FALSE, to any applications that have already returned nonzero.

182 WM_QUERYNEWPALETTE

Parameters This message has no parameters.

Return Value An application should return nonzero if it can conveniently terminate; otherwise, it
should return zero.

Comments The DefWindowProc function returns nonzero when it processes this message.

See Also DefWindowProc, ExitWindows, WM_ENDSESSION

WM_QUERYNEWPALETTE

WM_QUERYNEWPALETTE

The WM_QUERYNEWPALETTE message informs an application that it is about
to receive the input focus, giving the application an opportunity to realize its logi-
cal palette when it receives the focus.

Parameters This message has no parameters.

Return Value An application should return nonzero if it realizes its logical palette; otherwise, it
should return zero.

Example This example shows how an application selects and realizes its logical palette:

HDC hdc;
HPALETTE hpalApp, hpalT;
UINT 1;

/*
* If this application changed the palette, ignore the message.
*/

case WM_PALETTECHANGED:
if (wParam == hwnd)
return 0L;

/* Otherwise, fall through to WM_QUERYNEWPALETTE. */

WM_QUERYOPEN 183

See Also

case WM_QUERYNEWPALETTE:

/*
* If realizing the palette causes the palette to change,
* redraw completely.

*/
hdc = GetDC(hwnd);
hpalT = SelectPalette (hdc, hpalApp, FALSE);

i = RealizePalette(hdc); /* i == entries that changed */
SelectPalette (hdc, hpalT, FALSE);

ReleaseDC(hwnd, hdc); ‘

/*-1f any palette entries changed, repaint the window. */

if (1> 0)
InvalidateRect(hwnd, NULL, TRUE);

return i;

WM_PALETTECHANGED, WM_PALETTEISCHANGING

WM_QUERYOPEN [2x]

Parameters

Return Value

Comments

WM_QUERYOPEN

The WM_QUERYOPEN message is sent to a minimized window when the user
requests that the window be restored to its preminimized size and position.

This message has no parameters.

An application that processes this message should return a nonzero value if the
icon can be opened or zero to prevent the icon from opened.

While processing this message, the application should not perform any action that
would cause an activation or focus change (for example, creating a dialog box).

The DefWindowProc function returns nonzero when it processes this message.

184 WM_ QUEUESYNC

WM_QUEUESYNC [31]

Parameters

Return Value

Comments

WM_QUEUESYNC
The WM_QUEUESYNC message is sent by a computer-based training (CBT) ap-

plication to separate user-input messages from other messages sent through the
journal playback hook (WH_JOURNALPLAYBACK).

This message has no parameters.
A CBT application should return zero if it processes this message.

Whenever a CBT application uses the journal playback hook, the first and last mes-
sages rendered are WM_QUEUESYNC. This allows the CBT application to inter-
cept and examine user-initiated messages without doing so for events that it sends.

WM_QUIT

Parameters

Return Value

See Also

WM_QUIT
wExit = wParam; /* exit code */

The WM_QUIT message indicates a request to terminate an application and is
generated when the application calls the PostQuitMessage function. It causes the
GetMessage function to return zero.

wExit
Value of wParam. Specifies the exit code given in the PostQuitMessage func-

tion.

This message does not have a return value, because it causes the message loop to
terminate before the message is sent to the application’s window procedure.

GetMessage, PostQuitMessage

WM_RBUTTONDBLCLK 185

WM_RBUTTONDBLCLK o]

Parameters

Return Value

Comments

See Also

WM_RBUTTONDBLCLK

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_RBUTTONDBLCLK message is sent when the user double-clicks the
right mouse button.

fwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left button is down.
MK_MBUTTON Set if middle button is down.
MK_RBUTTON Set if right button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

Only windows that have the CS_DBLCLKS class style can receive
WM_RBUTTONDBLCLK messages. Windows generates a
WM_RBUTTONDBLCLK message when the user presses, releases, and again
presses the right mouse button within the system’s double-click time limit.
Double-clicking the right mouse button actually generates four messages: a
WM_RBUTTONDOWN message, a WM_RBUTTONUP message, the
WM_RBUTTONDBLCLK message, and another WM_RBUTTONUP message.

WM_RBUTTONDOWN, WM_RBUTTONUP

186 WM_RBUTTONDOWN

WM_RBUTTONDOWN

Parameters

Return Value

See Also

WM_RBUTTONDOWN

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_RBUTTONDOWN message is sent when the user presses the right
mouse button.

fwKeys
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left mouse button is down.
MK_MBUTTON Set if middle mouse button is down.
MK _SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of /Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

An application should return zero if it processes this message.

WM_RBUTTONDBLCLK, WM_RBUTTONUP

WM_RBUTTONUP

WM_RBUTTONUP

fwKeys = wParam; /* key flags */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_RBUTTONUP message is sent when the user releases the right mouse
button.

WM_RENDERALLFORMATS 187

Parameters JfwKeys
Value of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description

MK_CONTROL Set if CTRL key is down.
MK_LBUTTON Set if left mouse button is down.
MK_MBUTTON Set if middle mouse button is down.
MK_SHIFT Set if SHIFT key is down.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor. The coordinate is relative to the upper-left corner of the window.
Return Value An application should return zero if it processes this message.

See Also WM_RBUTTONDBLCLK, WM_RBUTTONDOWN

WM_RENDERALLFORMATS [2x]

WM_RENDERALLFORMATS

The WM_RENDERALLFORMATS message is sent to the clipboard owner when
the owner application is being destroyed.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments The clipboard owner should render the data in all the formats it is capable of gener-

ating and pass a data handle for each format to the clipboard by calling the Set-
ClipboardData function. This ensures that the clipboard contains valid data even
though the application that rendered the data is destroyed. The application should
call the OpenClipboard function before calling SetClipboardData and should
call the CloseClipboard function afterward.

188 WM_RENDERFORMAT

Example In this example, the application sends a WM_RENDERFORMAT message to it-
self for each clipboard format that the application supports:

case WM_RENDERALLFORMATS:
OpenClipboard(hwnd);
SendMessage(hwnd, WM_RENDERFORMAT, CF_DIB, @L);
SendMessage(hwnd, WM_RENDERFORMAT, CF_BITMAP, 0L);
CloseClipboard();
break;

See Also CloseClipboard, OpenClipboard, SetClipboardData, WM_RENDERFORMAT

WM_RENDERFORMAT [2x]

WM_RENDERFORMAT
uFmt = (UINT) wParam; /* clipboard data format */

The WM_RENDERFORMAT message is sent to the clipboard owner when a par-
ticular format with delayed rendering needs to be rendered. The receiver should
render the data in that format and pass it to the clipboard by calling the Set-
ClipboardData function.

Parameters uFmt
Specifies the data format. It can be any one of the formats described with the
SetClipboardData function.

Return Value An application should return zero if it processes this message.

Comments The application should not call the OpenClipboard and CloseClipboard func-
tions while processing this message.

Example This example uses an application-defined function to render clipboard data. The
function returns a data handle that is passed to the clipboard by the SetClipboard-
Data function.

HANDLE hData;

case WM_RENDERFORMAT:
if (hData = RenderFormat(wParam))
SetClipboardData(wParam, hData);
break;

See Also CloseClipboard, OpenClipboard, SetClipboardData,
WM_RENDERALLFORMATS

WM_SETCURSOR 189

WM_SETCURSOR)

Parameters

Return Value

Comments

See Also

WM_SETCURSOR

hwndCursor = (HWND) wParam; /* handle of window with cursor */
nHittest = LOWORD(1Param); /* hit-test code */
wMouseMsg = HIWORD(1Param); /* mouse-message number */

The WM_SETCURSOR message is sent to a window if mouse input is not cap-
tured and the mouse causes cursor movement within the window.

hwndCursor
Value of wParam. Specifies a handle to the window that contains the cursor.

nHittest
Value of the low-order word of IParam. Specifies the hit-test area code.

wMouseMsg
Value of the high-order word of [Param. Specifies the number of the mouse
message.

An application should return TRUE to halt further processing or FALSE to con-
tinue.

If the nHirtest parameter is HTERROR and the wMouseMsg parameter is a mouse
button—down message, the MessageBeep function is called.

The DefWindowProc function passes the WM_SETCURSOR message to a
parent window before processing. If the parent window returns TRUE, further
processing is halted. Passing the message to a window’s parent window gives the
parent window control over the cursor’s setting in a child window. The Def-
WindowProc function also uses this message to set the cursor to a pointer if it is
not in the client area or to the registered-class cursor if it is in the client area.

For a standard dialog box to set the cursor for one of its child window controls, it
must force the DefDIgProc function to return TRUE in response to the WM_SET-
CURSOR message. (DefDIgProc provides default processing for the standard
dialog box class.) When DefDIgProc returns TRUE, the dialog box procedure re-
tains control over the cursor. When the dialog box procedure processes WM_SET-
CURSOR, it can return TRUE by using the SetWindowLong function and the
DWL_MSGRESULT offset, as shown in the following example:

SetWindowlLong(hwndD1g, DWL_MSGRESULT, MAKELONG(TRUE, 0));

DefWindowProc, MessageBeep, SetWindowLong

190 WM_SETFOCUS

- WM_SETFOCUS [2x]

WM_SETFOCUS
hwnd = (HWND) wParam; /* handle of window losing focus */

The WM_SETFOCUS message is sent after a window gains the input focus.

Parameters hwnd
Value of wParam. Contains the handle of the window that loses the input focus.
(This parameter may be NULL.)

Return Value An application should return zero if it processes this message.
Comments To display a caret, an application should call the appropriate caret functions at this
point.

WM_SETFONT

WM_SETFONT
wParam = (WPARAM) hfont; /* handle of the font */
1Param = (LPARAM) MAKELONG((WORD) fRedraw, 0); /* redraw flag */

An application sends the WM_SETFONT message to specify the font that a con-
trol is to use when drawing text.

Parameters hfont
Value of wParam. Specifies the handle of the font. If this parameter is NULL,
the control will use the default system font to draw text.

fRedraw
Value of the low-order word of /Param. Specifies whether the control should
be redrawn immediately upon setting the font. Setting the fRedraw parameter to
TRUE causes the control to redraw itself.

Return Value An application should return zero if it processes this message.

WM_SETFONT 191

Comments

Example

The WM_SETFONT message applies to all controls, not just those in dialog boxes.

The best time for the owner of a dialog box to set the font of the control is when it
receives the WM_INITDIALOG message. The application should call the
DeleteObject function to delete the font when it is no longer needed—for ex-
ample, after the control is destroyed.

The size of the control is not changed as a result of receiving this message. To pre-
vent Windows from clipping text that does not fit within the boundaries of the con-
trol, the application should correct the size of the control window before changing
the font.

Before Windows creates a dialog box with the DS_SETFONT style, Windows
sends the WM_SETFONT message to the dialog box window before creating the
controls. An application creates a dialog box with the DS_SETFONT style by
calling any of the following functions:

= CreateDialogIndirect

® CreateDialogIndirectParam

= DialogBoxIndirect

®= DialogBoxIndirectParam

The DialogBoxHeader structure that the application passes to these functions

must have the DS_SETFONT style set and must contain the wPointSize and
szFaceName members that define the font the dialog box will use to draw text.

For more information about the DialogBoxHeader structure, see Chapter 7,
“Resource Formats Within Executable Files,” in the Microsoft Windows
Programmer’s Reference, Volume 4.

This example changes the font used by controls in a dialog box to a font that is not
bold.

HFONT hD1gFont;
LOGFONT 1Font;

case WM_INITDIALOG:

/* Get dialog box font and create version that is not bold. */

192 WM_SETREDRAW

See Also

hDigFont = (HFONT) NULL; .
if ((hDIgFont = (HFONT) SendMessage(hdlg, WM_GETFONT, @, 0L))) {
if (GetObject(hD1gFont, sizeof(LOGFONT), (LPSTR) &1Font)) {
1Font.1fWeight = FW_NORMAL;
if (hD1gFont = CreateFontIndirect((LPLOGFONT) &1Font)) {
SendD1gItemMessage(hdlg, ID_CTRL1, WM_SETFONT,
hD1gFont, @L);
SendD1gItemMessage(hdlg, ID_CTRL2, WM_SETFONT,
hDl1gFont, @L);

. /* Set font for remaining controls. */
}

}
return TRUE;

CreateDialogIndirect, CreateDialogIndirectParam, DeleteObject, DialogBox-
Indirect, DialogBoxIndirectParam

WM_SETREDRAW

Parameters

Return Value

Comments

WM_SETREDRAW
wParam (WPARAM) fRedraw; /* state of redraw flag */
1Param = 0OL; /* not used, must be zero */

An application sends a WM_SETREDRAW message to a window to allow
changes in that window to be redrawn or to prevent changes in that window from
being redrawn.

fRedraw
Value of wParam. Specifies the state of the redraw flag. If this parameter is
nonzero, the redraw flag is set. If this parameter is zero, the flag is cleared.

An application should return zero if it processes this message.

This message sets or clears the redraw flag. If the redraw flag is cleared, the con-
tents of the specified window will not be updated after each change, and the win-
dow will not be repainted until the redraw flag is set. For example, an application
that needs to add several items to a list box can clear the redraw flag, add the
items, and then set the redraw flag. Finally, the application can call the
InvalidateRect function to cause the list box to be repainted.

WM_SHOWWINDOW 193

WM_SETTEXT [2x]

WM_SETTEXT
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) pszText; /* address of window-text string =/

An application sends a WM_SETTEXT message to set the text of a window.

Parameters pszText
Value of [Param. Points to a null-terminated string that is the window text.

Return Value The return value is LB_ERRSPACE (for a list box) or CB_ERRSPACE (for a
combo box) if insufficient space is available to set the text in the edit control. It is
CB_ERR if this message is sent to a combo box without an edit control.

Comments For an edit control, the text to be set is the contents of the edit control. For a
combo box, the text is the contents of the edit-control (or static-text) portion of the
combo box. For a button, the text is the button name. For other windows, the text
is the window title.

This message does not change the current selection in the list box of a combo box.
An application should use the CB_SELECTSTRING message to select the item in
the list box that matches the text in the edit control.

See Also WM_GETTEXT

WM_SHOWWINDOW [2x]

WM_SHOWWINDOW
fShow = (BOOL) wParam; /* show/hide flag */
fnStatus = LOWORD(T1Param); /* status flag */

The WM_SHOWWINDOW message is sent to a window when it is about to be
hidden or shown. A window is hidden or shown when the ShowWindow function
is called; when an overlapped window is maximized or restored; or when an
overlapped or pop-up window is minimized or displayed on the screen. When an
overlapped window is minimized, all pop-up windows associated with that win-
dow are hidden.

Parameters fShow
Value of wParam. Specifies whether a window is being shown. It is TRUE if
the window is being shown; it is FALSE if the window is being hidden.

194 WM_ SIZE

Return Value

Comments

See Also

[fnStatus
Value of the low-order word of [Param. Specifies the status of the window
being shown. The fnStatus parameter is zero if the message is sent because of a
ShowWindow function call; otherwise, fnStatus is one of the following values:

Value Description

SW_PARENTCLOSING Parent window is being minimized, or a pop-up
window is being hidden.

SW_PARENTOPENING Parent window is opening (being displayed) or a pop-
up window is being shown.

An application should return zero if it processes this message.

The DefWindowProc function hides or shows the window as specified by the
message.

The WM_SHOWWINDOW message is not sent under the following circum-
stances:

= When a main window is created with the WS_MAXIMIZE or WS_MINIMIZE
style

= When the SW_SHOWNORMAL flag is specified in the call to the Show-
Window function

DefWindowProc, ShowWindow

WM_SIZE

Parameters

WM_SIZE

fwSizeType = wParam; /* sizing-type flag */
nWidth = LOWORD(1Param); /* width of client area */
nHeight = HIWORD(1Param); /* height of client area */

The WM_SIZE message is sent to a window after its size has changed.

fwSizeType
Value of wParam. Specifies the type of resizing requested. This parameter can
be one of the following values:

WM_SIZECLIPBOARD 195

Return Value

Comments

See Also

Value Description

SIZE_MAXIMIZED Window has been maximized.
SIZE_MINIMIZED Window has been minimized.

SIZE_RESTORED Window has been resized, but neither SIZE_MINIMIZED
nor SIZE_ MAXIMIZED applies.
SIZE_MAXHIDE Message is sent to all pop-up windows when some other
. window is maximized.

SIZE_MAXSHOW Message is sent to all pop-up windows when some other
window has been restored to its former size.

nWidth
Value of the low-order word of /Param. Specifies the new width of the client
area.

nHeight
Value of the high-order word of [Param. Specifies the new height of the client
area.

An application should return zero if it processes this message.
If the SetScrollPos or MoveWindow function is called for a child window as a re-
sult of the WM_SIZE message, the fRepaint parameter should be nonzero to cause

the window to be repainted.

MoveWindow, SetScrollPos

WM_SIZECLIPBOARD [2x]

Parameters

WM_SIZECLIPBOARD .
hwndViewer = (HWND) wParam; /* handle of clipboard viewer */
hglb = (HGLOBAL) LOWORD(1Param); /* handle of global object */

The WM_SIZECLIPBOARD message is sent by the clipboard viewer to the clip-
board owner when the clipboard contains data with the CF_OWNERDISPLAY
attribute and the size of the client area of the clipboard-viewer window has
changed. ‘

hwndViewer
Value of wParam. Identifies the clipboard-application window.

196 WM_SPOOLERSTATUS

Return Value

Comments

See Also

hglb
Value of the low-order word of [Param. Identifies a global memory object that
contains a RECT data structure. The structure specifies the area that the clip-
board owner should paint. The RECT structure has the following form:

typedef struct tagRECT { /* rc */
int left;
int top;
int right;
int bottom;
} RECT;

An application should return zero if it processes this message.

A WM_SIZECLIPBOARD message is sent with a null rectangle (0,0,0,0) as the
new size when the clipboard application is about to be destroyed or minimized.
This permits the clipboard owner to free its display resources.

An application must use the GlobalLock function to lock the memory that con-
tains the RECT data structure. The application should unlock that memory by
using the GlobalUnlock function before it yields or returns control.

GlobalLock, GlobalUnlock, SetClipboardData, SetClipboardViewer

WM_SPOOLERSTATUS |

Parameters

Return Value

Comments

WM_SPOOLERSTATUS
fwJobStatus = wParam; /* job-status flag */
cJobsLeft = LOWORD(1Param); /* number of jobs remaining */

The WM_SPOOLERSTATUS message is sent from Print Manager whenever a
job is added to or removed from the Print Manager queue.

fwlobStatus
Value of wParam. Specifies the SP_JOBSTATUS flag.

cJobsLeft
Value of the low-order word of [Param. Specifies the number of jobs remaining
in the Print Manager queue.

An application should return zero if it processes this message.

- This message is for informational purposes only.

WM_SYSCHAR 197

WM_SYSCHAR | 2]

Parameters

Return Value

Comments

WM_SYSCHAR
wKeyCode = wParam; /* ASCII key code */
dwKeyData = 1Param; /* key data */

The WM_SYSCHAR message is sent to the window with the input focus when a
WM_SYSKEYUP and a WM_SYSKEYDOWN message are translated. It speci-
fies the virtual-key code of the System-menu key. (The System menu is some-
times referred to as the Control menu.)

wKeyCode
Value of wParam. Specifies the ASCII-character key code of a System-menu
key.

dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

An application should return zero if it processes this message.

When the context code is zero, the message can be passed to the Translate-
Accelerator function, which will handle it as though it were a normal key mes-
sage instead of a System-menu key message. This allows accelerator keys to be
used with the active window even if the active window does not have the input
focus.

198 WM_SYSCOLORCHANGE

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the /Param parameter.

See Also TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSCOLORCHANGE | [2x]

WM_SYSCOLORCHANGE

The WM_SYSCOLORCHANGE message is sent to all top-level windows when a
change is made in the system color setting.

Parameters This message has no parameters.

Return Value An application should return zero if it processes this message.

Comments Windows sends a WM_PAINT message to any window that is affected by a sys-
tem color change.

Applications that have brushes that use the existing system colors should delete
those brushes and re-create them by using the new system colors.

See Also SetSysColors, WM_PAINT

WM_SYSCOMMAND [2x]

WM_SYSCOMMAND

wCmdType = wParam; /* command value */
xPos = LOWORD(1Param); /* horizontal position of cursor */
yPos = HIWORD(1Param); /* vertical position of cursor */

The WM_SYSCOMMAND message is sent when the user selects a command
from the System menu (sometimes referred to as the Control menu) or when the
user selects the Maximize button or the Minimize button.

WM_SYSCOMMAND 199

Parameters

Return Value

Comments

wCmdType
Value of wParam. Specifies the type of system command requested. This
parameter can be one of the following values:

Value Meaning
SC_CLOSE Close the window.
SC_HOTKEY Activate the window associated with the

application-specified hot key. The low-order
word of I[Param identifies the window to

activate.
SC_HSCROLL Scroll horizontally.
SC_KEYMENU Retrieve a menu through a keystroke.
SC_MAXIMIZE (or SC_ZOOM) Maximize the window.
SC_MINIMIZE (or SC_ICON) Minimize the window.
SC_MOUSEMENU Retrieve a menu through a mouse click.
SC_MOVE Move the window.
SC_NEXTWINDOW Move to the next window.
SC_PREVWINDOW Move to the previous window.
SC_RESTORE Restore window to normal position and size.
SC_SCREENSAVE Execute the screen-saver application specified
in the [boot] section of the SYSTEM.INI file.
SC_SIZE Size the window.
SC_TASKLIST Execute or activate the Windows Task
Manager application.
SC_VSCROLL Scroll vertically.

xPos
Value of the low-order word of [Param. Specifies the x-coordinate of the cur-
sor, if a System-menu command is chosen with the mouse. Otherwise, this
parameter is not used.

yPos
Value of the high-order word of [Param. Specifies the y-coordinate of the cur-
sor, if a System-menu command is chosen with the mouse. Otherwise, this
parameter is not used.

An application should return zero if it processes this message.

The DefWindowProc function carries out the System-menu request for the prede-
fined actions specified in the preceding table.

In WM_SYSCOMMAND messages, the four low-order bits of the wCmdType
parameter are used internally by Windows. When an application tests the value of
wCmdType, it must combine the value OxFFFO with the wCmdType value by using
the bitwise AND operator to obtain the correct result.

200 WM_SYSDEADCHAR

The menu items in a System menu can be modified by using the GetSystem-
Menu, AppendMenu, InsertMenu, and ModifyMenu functions. Applications
that modify the System menu must process WM_SYSCOMMAND messages.
Any WM_SYSCOMMAND messages not handled by the application must be
passed to the DefWindowProc function. Any command values added by an appli-
cation must be processed by the application and cannot be passed to DefWindow-
Proc.

An application can carry out any system command at any time by passing a
WM_SYSCOMMAND message to the DefWindowProc function.

Accelerator keystrokes that are defined to select items from the System menu are
translated into WM_SYSCOMMAND messages; all other accelerator key strokes
are translated into WM_COMMAND messages.

See Also AppendMenu, DefWindowProc, GetSystemMenu, InsertMenu, ModifyMenu,
WM_COMMAND

WM_SYSDEADCHAR [2x]

WM_SYSDEADCHAR

wDeadKey = wParam; /* dead-key character */
cRepeat = (int) LOWORD(1Param); /* repeat count */
cAutoRepeat = HIWORD(T1Param); /* autorepeat count */

The WM_SYSDEADCHAR message is sent to the window with the input focus
when WM_SYSKEYUP and WM_SYSKEYDOWN messages are translated. It
specifies the character value of a dead key.

Parameters wDeadKey
Value of wParam. Specifies the dead-key character value.

cRepeat
Value of the low-order word of /Param. Specifies the repeat count.

cAutoRepeat
Value of the high-order word of /Param. Specifies the auto-repeat count.

Return Value An application should return zero if it processes this message.

See Also WM_SYSKEYDOWN, WM_SYSKEYUP

WM_SYSKEYDOWN 201

WM_SYSKEYDOWN [2x]

Parameters

Return Value

WM_SYSKEYDOWN
wVkey = wParam; /% virtual-key code */
dwKeyData = 1Param; /* key data */

The WM_SYSKEYDOWN message is sent to the window with the input focus
when the user holds down the ALT key and then presses another key. If no window
currently has the input focus, the WM_SYSKEYDOWN message is sent to the ac-
tive window. The window that receives the message can distinguish between these
two contexts by checking the context code in the dwKeyData parameter.

wVkey
Value of wParam. Specifies the virtual-key code of the key being pressed.

dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.

27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0.

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up.

31 Specifies the key-transition state. The value is 1 if the key is being re-

leased, or it is O if the key is being pressed.

For WM_SYSKEYDOWN messages, the value of bit 29 (context code) is 1 if
the ALT key is down while the key is pressed; it is 0 if the message is sent to the
active window because no window has the input focus. The value of bit 31 (key-
transition state) is 0.

An application should return zero if it processes this message.

202 WM_SYSKEYUP

Comments

See Also

When the context code is zero, the message can be passed to the Translate-
Accelerator function, which will handle it as though it were a normal key mes-
sage instead of a system-key message. This allows accelerator keys to be used
with the active window even if the active window does not have the input focus.

Because of the autorepeat feature, more than one WM_SYSKEYDOWN message
may occur before a WM_SYSKEYUP message is sent. The previous key state (bit
30) can be used to determine whether the WM_SYSKEYDOWN message indi-
cates the first down transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the /Param parameter.

TranslateAccelerator, WM_SYSKEYUP

WM_SYSKEYUP 5]

Parameters

WM_SYSKEYUP
wVkey = wParam; /* virtual-key code */
dwKeyData = 1Param; /* key data */

The WM_SYSKEYUP message is sent to the window with the input focus when
the user releases a key that was pressed while the ALT key was held down. If no
window currently has the input focus, the WM_SYSKEYUP message is sent to
the active window. The window that receives the message can distinguish between
these two contexts by checking the context code in the /Param parameter.

wVkey
Value of wParam. Specifies the virtual-key code of the key being pressed.

dwKeyData
Value of [Param. Specifies the repeat count, scan code, extended key, context
code, previous key state, and key-transition state, as shown in the following
table:

Bit Description

0-15 Specifies the repeat count. The value is the number of times the keystroke
is repeated as a result of the user holding down the key.

16-23 Specifies the scan code. The value depends on the original equipment
manufacturer (OEM).

WM_SYSKEYUP 203

Return Value

Comments

See Also

Bit Description

24 Specifies whether the key is an extended key, such as a function key or a
key on the numeric keypad. The value is 1 if it is an extended key; other-
wise, it is 0.

25-26 Not used.
27-28 Used internally by Windows.

29 Specifies the context code. The value is 1 if the ALT key is held down
while the key is pressed; otherwise, the value is 0. '

30 Specifies the previous key state. The value is 1 if the key is down before
the message is sent, or it is 0 if the key is up. ‘

31 Specifies the key-transition state. The value is 1 if the key is being re-
leased, or it is 0 if the key is being pressed.

For WM_SYSKEYUP messages, the value of bit 29 (context code) is 1 if the
ALT key is down while the key is pressed; it is O if the message is sent to the
active window because no window has the input focus. The value of bit 31
(key-transition state) is 1.

An application should return zero if it processes this message.

When the context code is zero, the message can be passed to the Translate-
Accelerator function, which will handle it as though it were a normal key mes-
sage instead of a system-key message. This allows accelerator keys to be used
with the active window even if the active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
key and the right CTRL key on the main section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the
numeric keypad; and the division (/) and ENTER keys on the numeric keypad. Some
other keyboards may support the extended-key bit in the [Param parameter.

For non-U.S. Enhanced 102-key keyboards, the right ALT key is handled as the
CTRL+ALT key combination. The following list shows the messages that result
when the user presses and releases this key, in the sequence they occur:

WM_KEYDOWN VK_CONTROL
WM_KEYDOWN VK_MENU
WM_KEYUP VK_CONTROL
WM_SYSKEYUP VK_MENU

BW N =

TranslateAccelerator, WM_SYSKEYDOWN

204 WM_SYSTEMERROR

WM_SYSTEMERROR

WM_SYSTEMERROR
wErrSpec = wParam; /* specifies when error occurred */

The WM_SYSTEMERROR message is sent when the Windows kernel encounters
an error but cannot display the system-error message box.

Parameters wErrSpec
Value of wParam. Specifies when the error occurred. Currently, the only valid
value is 1, indicating that the error occurred when a task or library was terminat-

ing.
Return Value An application should return zero if it processes this message.
Comments A shell application should process this message, displaying a message box that in-

dicates an error has occurred.

WM_TIMECHANGE [2x]

WM_TIMECHANGE
wParam = 0; /* not used, must be zero */
1Param oL; /* not used, must be zero */

An application sends the WM_TIMECHANGE message to all top- level windows
after changing the system time.

Parameters This message has no parameters.
Return Value An application should return zero if it processes this message.
Comments Any application that changes the system time should send this message to all top-

level windows. To send the WM_TIMECHANGE message to all top-level win-
dows, an application can use the SendMessage function with the siwnd parameter
set to HWND_BROADCAST.

See Also SendMessage

WM_TIMER 205

WM_TIMER [2x]

WM_TIMER
wTimerID = wParam; /* timer identifier */
tmprc = (TIMERPROC FAR*) 1Param; /* address of timer callback */

The WM_TIMER message is posted to the installing application’s message queue
or sent to the appropriate TimerProc callback function after each interval
specified in the SetTimer function used to install a timer.

Parameters wTimerID
Value of wParam. Specifies the identifier of the timer.

tmprc
Value of [Param. Points to a callback function that was passed to the SetTimer
function when the timer was installed. If the tmprc parameter is not NULL, the
system passes the WM_TIMER message to the specified callback function
rather than posting the message to the application’s message queue.

Return Value An application should return zero if it processes this message.

Comments The DispatchMessage function sends this message when no other messages are in
the application’s message queue.

Example This example uses the WM_TIMER message to create a blinking effect for a line
of text:

DWORD dwXYVal;
WORD wXVal, wYVal;
char szMessage[1l6];

case WM_TIMER:
hdc = GetDC(hwnd);
dwXYVal = GetTextExtent(hdc, (LPCSTR) szMessage,

I1strlen(szMessage));

wXVal = LOWORD(dwXYVal);
wYVal = HIWORD(dwXYVal);
PatB1t(hdc, 10, 10, (int) wXVal, (int) wYVal, PATINVERT);
ReleaseDC(hwnd, hdc);
ValidateRect(hwnd, NULL);
break;

See Also SetTimer, TimerProc

206 WM_UNDO

WM_UNDO

Parameters

Return Value

See Also

[2x]

WM_UNDO
An application sends the WM_UNDO message to an edit control to undo the last

operation. When this message is sent to an edit control, the previously deleted text
is restored or the previously added text is deleted.

This message has no parameters.

The return value is nonzero if the operation is successful, or it is zero if an error
occurs.

WM_CLEAR, WM_COPY, WM_CUT, WM_PASTE

WM_USER

Comments

[2x]

WM_USER

WM_USER is a constant used by applications to help define private messages.

The WM_USER constant is used to distinguish between message values that are
reserved for use by Windows and values that can be used by an application to send
messages within a private window class. There are four ranges of message num-
bers:

Range Meaning

0 through WM_USER - 1 Messages reserved for use by Windows.
WM_USER through Ox7FFF Integer messages for use by private window classes.
0x8000 through OXBFFF Messages reserved for use by Windows.

0xC000 through OxFFFF String messages for use by applications.

Message numbers in the first range (0 through WM_USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for
future use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_USER through 0x7FFF) can be de-
fined and used by an application to send messages within a private window class.
These values cannot be used to define messages that are meaningful throughout an
application, because some predefined window classes already define values in

this range. For example, such predefined control classes as BUTTON, EDIT,

WM_VKEYTOITEM 207

See Also

LISTBOX, and COMBOBOX may use these values. Messages in this range
should not be sent to other applications unless the applications have been designed
to exchange messages and to attach the same meaning to the message numbers.

Message numbers in the third range (0x8000 through 0xBFFF) are reserved for
future use by Windows.

Message numbers in the fourth range (0xC000 through OXFFFF) are defined at run
time when an application calls the Register WindowMessage function to obtain a
message number for a string. All applications that register the same string can use
the associated message number for exchanging messages. The actual message
number, however, is not a constant and cannot be assumed to be the same in differ-
ent Windows sessions.

RegisterWindowMessage

WM_VKEYTOITEM

Parameters

Return Value

WM_VKEYTOITEM

wVkey = wParam; /* virtual-key code */
hwndLB = (HWND) LOWORD(1Param); /* handle of the Tist box */
nCaretPos = HIWORD(1Param); /* caret position */

The WM_VKEYTOITEM message is sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in response to a
WM_KEYDOWN message.

wVkey
Value of wParam. Specifies the virtual-key code of the key that the user
pressed.

hwndLB
Value of the low-order word of [Param. Identifies the list box.

nCaretPos
Value of the high-order word of [Param. Specifies the current position of the
caret.

The return value specifies the action that the application performed in response to
the message. A return value of —2 indicates that the application handled all aspects
of selecting the item and requires no further action by the list box. A return value
of —1 indicates that the list box should perform the default action in response to
the keystroke. A return value of 0 or greater specifies the zero-based index of an

208 WM_VSCROLL

Comments

See Also

item in the list box and indicates that the list box should perform the default action
for the keystroke on the given item.

Only list boxes that have the LBS_HASSTRINGS style can receive this message.

WM_CHARTOITEM, WM_KEYDOWN

WM_VSCROLL

Parameters

WM_VSCROLL
wScrol1Code = wParam; /* scroll bar code */
nPos = LOWORD(TParam); /* current scroll box position */

hwndCt1 = (HWND) HIWORD(1Param); /* handle of the control */

The WM_VSCROLL message is sent to a window when the user clicks the win-
dow’s vertical scroll bar.

wScrollCode
Value of wParam. Specifies a scroll bar code that indicates the user’s scrolling
request. This parameter can be one of the following values:

Value Description
SB_BOTTOM Scroll to bottom.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to absolute position. The current position is
specified by the nPos parameter.

SB_THUMBTRACK Drag scroll box (thumb) to specified position. The
current position is specified by the nPos parameter.
SB_TOP Scroll to top.
nPos

Value of the low-order word of /Param. Specifies the current position of the
scroll box if wScrollCode is SB_THUMBPOSITION or SB_THUMBTRACK;
otherwise, this parameter is not used.

WM_VSCROLLCLIPBOARD 209

Return Value

Comments

See Also

hwndCtl
Value of the high-order word of [Param. Identifies the control if
WM_VSCROLL is sent by a scroll bar. If WM_VSCROLL is sent as a result of
the user clicking a pop-up window’s scroll bar, the high-order word is not used.

An application should return zero if it processes this message.

The SB_THUMBTRACK message typically is used by applications that give
some feedback while the scroll box is being dragged.

If an application scrolls the contents of the window, it must also reset the position
of the scroll box by using the SetScrollPos function.

SetScrollPos, WM_HSCROLL

WM_VSCROLLCLIPBOARD [2x]

Parameters

WM_VSCROLLCLIPBOARD

hwndViewer = (HWND) wParam; /* handle of clipboard viewer */
wScrol1Code = LOWORD(1Param); /* scroll bar code */
wThumbPos = HIWORD(1Param); /* scroll box position */

The WM_HSCROLLCLIPBOARD message is sent by the clipboard viewer to the
clipboard owner when the clipboard data has the CF_OWNERDISPLAY format
and there is an event in the clipboard viewer’s vertical scroll bar. The owner
should scroll the clipboard image, invalidate the appropriate section, and update
the scroll bar values.

hwndViewer
Value of wParam. Specifies a handle to a clipboard-viewer window.

wScrollCode
Value of the low-order word of [Param. Specifies one of the following scroll
bar values:

Value Description
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.

SB_PAGEUP Scroll one page up.

210 WM_WINDOWPOSCHANGED

Value Description

SB_THUMBPOSITION Scroll to absolute position.

SB_TOP Scroll to upper left.
wThumbPos

Value of the high-order word of [Param. Specifies the scroll box position if the
scroll bar code is SB_THUMBPOSITION; otherwise, the high-order word is

not used.
Return Value An application should return zero if it processes this message.
Comments The clipboard owner should use the InvalidateRect function or repaint the win-

dow as needed. The scroll bar position should also be reset.

See Also InvalidateRect, WM_HSCROLLCLIPBOARD

WM_WINDOWPOSCHANGED [31]

WM_WINDOWPOSCHANGED
pwp = (const WINDOWPOS FARx*) 1Param; /* structure address */

The WM_WINDOWPOSCHANGED message is sent to a window whose size,
position, or z-order has changed as a result of a call to SetWindowPos or another
window-management function.

Parameters pwp

Value of [Param. Points to a WINDOWPOS data structure that contains infor-
mation about the window’s new size and position. The WINDOWPOS struc-
ture has the following form:

typedef struct tagWINDOWPOS { /* wp */

HWND hwnd;

HWND hwndInsertAfter;
int X3

int y;

int CX;

int cy;

UINT flags;
} WINDOWPOS;

Return Value An application should return zero if it processes this message.

WM_WINDOWPOSCHANGING 211

Comments

See Also

The DefWindowProc function, when it processes the
WM_WINDOWPOSCHANGED message, sends the WM_SIZE and
WM_MOVE messages to the window. These messages are not sent if an
application handles the WM_WINDOWPOSCHANGED message without calling
DefWindowProc. It is more efficient to perform any move or size change pro-
cessing during the WM_WINDOWPOSCHANGED message without calling
DefWindowProc.

WM_MOVE, WM_SIZE, WM_WINDOWPOSCHANGING

WM_ WINDOWPOSCHANGING G

Parameters

Return Value

Comments

WM_WINDOWPOSCHANGING
pwp = (WINDOWPOS FAR*) 1Param; /* address of WINDOWPOS structure */

The WM_WINDOWPOSCHANGING message is sent to a window whose size,
position, or z-order is about to change as a result of a call to SetWindowPos or
another window-management function.

pwp .
Value of [Param. Points to a WINDOWPOS data structure that contains infor-
mation about the window’s new size and position. The WINDOWPOS struc-
ture has the following form:

typedef struct tagWINDOWPOS { /* wp */

HWND hwnd;

HWND hwndInsertAfter;
int X3

int y;

int CX;

int cy;

UINT flags;

} WINDOWPOS;

An application should return zero if it processes this message.

During this message, modifying any of the values in the WINDOWPOS structure
affects the new size, position, or z-order. An application can prevent changes to
the window by setting or clearing the appropriate bits in the flags member of the
WINDOWPOS structure.

For a window with the WS_OVERLAPPED or WS_THICKFRAME style, the
DefWindowProc function handles a WM_WINDOWPOSCHANGING message
by sending a WM_GETMINMAXINFO message to the window. This is

212 WM_WININICHANGE

done to validate the new size and position of the window and to enforce the
CS_BYTEALIGNCLIENT and CS_BYTEALIGN client styles. An application
can override this by not passing the WM_WINDOWPOSCHANGING message
to the DefWindowProc function.

See Also WM_WINDOWPOSCHANGED

WM_WININICHANGE [2x]

WM_WININICHANGE
wParam = 0; /* not used, must be zero */
1Param = (LPARAM) (LPCSTR) pszSection; /* address of string */

An application sends the WM_WININICHANGE message to all top-level win-
dows after making a change to the Windows initialization file, WIN.INI. The
SystemParametersInfo function sends the WM_WININICHANGE message
after an application uses the function to change a setting in the WIN.INI file.

Parameters pszSection
Value of /Param. Points to a string that specifies the name of the section that
has changed (the string does not include the square brackets that enclose the sec-

tion name).
Return Value An application should return zero if it processes this message.
Comments To send the WM_WININICHANGE message to all top-level windows, an appli-

cation can use the SendMessage function with the iwnd parameter set to
HWND_BROADCAST.

If an application changes many different sections in WIN.INI at the same time,
the application should send the WM_WININICHANGE message once with the
pszSection parameter set to NULL. Otherwise, an application should send a sepa-
rate WM_WININICHANGE message for each change it makes to WIN.INI.

If an application receives a WM_WININICHANGE message with the pszSection
parameter set to NULL, the application should check all sections in WIN.INI that
affect the application.

See Also SendMessage, SystemParametersInfo

BN_DISABLE 213

2.2 Notification Messages

Notification messages notify a control’s parent window of actions that occur
within the control. Controls use the WM_COMMAND message to notify the
parent window of actions that occur within the control. The wParam parameter of
the WM_COMMAND message contains the control identifier; the low-order word
of the [Param parameter contains the handle of the control; and the high-order
word of [Param contains the control notification message.

This section lists notification messages in alphabetic order.

BN_ CLICKED (2]

See Also

BN_CLICKED

The BN_CLICKED notification message is sent when the user clicks a button.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRAW but—
ton style and the DRAWITEMSTRUCT structure for this task.

DRAWITEMSTRUCT, WM_DRAWITEM

BN_DISABLE [2x]

See Also

BN_DISABLE

The BN_DISABLE notification message is sent when a button is disabled. This
notification is provided for compatibility with applications written prior to Win-
dows version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.

DRAWITEMSTRUCT, WM_DRAWITEM

214 BN_DOUBLECLICKED

BN_DOUBLECLICKED [2x]

BN_DOUBLECLICKED

The BN_DOUBLECLICKED notification message is sent when the user double
clicks a button. This notification is provided for compatibility with applications
written prior to Windows version 3.0. New applications should use the
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for
this task.

See Also DRAWITEMSTRUCT, WM_DRAWITEM

BN_HILITE [2x]

BN_HILITE

The BN_HILITE notification message is sent when the user highlights a button.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRAW but-
ton style and the DRAWITEMSTRUCT structure for this task.

See Also DRAWITEMSTRUCT, WM_DRAWITEM

BN_PAINT | | [2x]

BN_PAINT

The BN_PAINT notification message is sent when a button should be painted.
This notification is provided for compatibility with applications written prior to
Windows version 3.0. New applications should use the BS_OWNERDRAW but-
ton style and the DRAWITEMSTRUCT structure for this task.

See Also DRAWITEMSTRUCT, WM_DRAWITEM

CBN_CLOSEUP 215

BN_UNHILITE [2x]

See Also

BN_UNHILITE

The BN_UNHILITE notification message is sent when the highlight should be re-
moved from a button. This notification is provided for compatibility with applica-
tions written prior to Windows version 3.0. New applications should use the
BS_OWNERDRAW button style and the DRAWITEMSTRUCT structure for
this task. '

DRAWITEMSTRUCT, WM_DRAWITEM

CBN_ CLOSEUP o9

Parameters

Comments

See Also

The CBN_CLOSEUP notification message is sent when the list box of a combo .
box is hidden. The control’s parent window receives this notification message
through a WM_COMMAND message.

wParam
Specifies the identifier of the combo box.

IParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_CLOSEUP notification message in the high-order word.

This notification message is not sent to a combo box that has the CBS_SIMPLE
style.

The order in which notifications will be sent cannot be predicted. In parti-
cular, a CBN_SELCHANGE notification may occur either before or after a
CBN_CLOSEUP notification.

CBN_DROPDOWN, CBN_SELCHANGE, WM_COMMAND

216 CBN_DBLCLK

CBN_DBLCLK |

The CBN_DBLCLK notification message is sent when the user double-clicks a
string in the list box of a combo box. The control’s parent window receives this
notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.
[Param

Specifies the handle of the combo box in the low-order word and the
CBN_DBLCLK notification message in the high-order word.

Comments This notification message can occur only for a combo box with the CBS_SIMPLE
style. For a combo box with the CBS_DROPDOWN or CBS_DROPDOWNLIST
style, a double-click cannot occur because a single click hides the list box.

See Also CBN_SELCHANGE, WM_COMMAND

CBN_DROPDOWN

The CBN_DROPDOWN notification message is sent when the list box of a
combo box is about to be dropped down (made visible). The parent window of the
combo box receives this notification message through a WM_COMMAND mes-
sage.

Parameters wParam
Specifies the identifier of the combo box.

IParam ‘
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_DROPDOWN notification message in the high-order word.

Comments This notification message can occur only for a combo box with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

See Also CBN_CLOSEUP, WM_COMMAND

CBN_EDITUPDATE 217

CBN_EDITCHANGE

The CBN_EDITCHANGE notification message is sent after the user has taken an
action that may have altered the text in the edit-control portion of a combo box.
Unlike the CBN_EDITUPDATE notification message, this notification message is
sent after Windows updates the screen. The parent window of the combo box re-
ceives this notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_EDITCHANGE notification message in the high-order word.

Comments This message does not occur if the combo box has the CBS_DROPDOWNLIST
style.
See Also CBN_EDITUPDATE, WM_COMMAND

CBN_EDITUPDATE

The CBN_EDITUPDATE notification message is sent when the edit-control por-
tion of a combo box is about to display altered text. This notification is sent after
the control has formatted the text, but before it displays the text. The parent win-
dow of the combo box receives this notification message through a
WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

IParam
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_EDITUPDATE notification message in the high-order word.

Comments This message does not occur if the combo box has the CBS_DROPDOWNLIST
style.

See Also CBN_EDITCHANGE, WM_COMMAND

218 CBN_ERRSPACE

CBN_ERRSPACE

The CBN_ERRSPACE notification message is sent when a combo box cannot
allocate enough memory to meet a specific request. The parent window of the
combo box receives this notification message through a WM_COMMAND mes-
sage.

Parameters wParam
' Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_ERRSPACE notification message in the high-order word.

See Also WM_COMMAND

CBN_KILLFOCUS |

The CBN_KILLFOCUS notification message is sent when a combo box loses the
input focus. The parent window of the combo box receives this notification mes-
sage through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_KILLFOCUS notification message in the high-order word.

See Also CBN_SETFOCUS, WM_COMMAND

CBN_SELCHANGE |

The CBN_SELCHANGE notification message is sent when the selection in the
list box of a combo box is about to be changed as a result of the user either click-
ing in the list box or changing the selection by using the arrow keys. The parent
window of the combo box receives this code through a WM_COMMAND
message.

CBN_SELENDOK 219

Parameters

See Also

wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELCHANGE notification message in the high-order word.

CBN_DBLCLK, CB_SETCURSEL, WM_COMMAND

CBN_SELENDCANCEL [31]

Parameters

Comments

See Also

The CBN_SELENDCANCEL notification message is sent when the user clicks an
item and then clicks another window or control to hide the list box of a combo
box. This notification message is sent before the CBN_CLOSEUP notification
message to indicate that the user’s selection should be ignored.

wParam
Specifies the identifier of the combo box.

[Param
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELENDCANCEL notification message in the high-order word.

The CBN_SELENDCANCEL or CBN_SELENDOK notification message is sent
even if the CBN_CLOSEUP notification message is not sent (as in the case of a
combo box with the CBS_SIMPLE style).

CBN_SELENDOK, WM_COMMAND

CBN_ SELENDOK | o

The CBN_SELENDOK notification message is sent when the user selects an
item and then either presses the ENTER key or clicks the DOWN ARROW key to
hide the list box of a combo box. This notification message is sent before the
CBN_CLOSEUP notification message to indicate that the user’s selection should
be considered valid.

220 CBN_SETFOCUS

Parameters wParam
Specifies the identifier of the combeo box.
IParam

Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SELENDOK notification message in the high-order word.

Comments The CBN_SELENDOK or CBN_SELENDCANCEL notification message is sent
even if the CBN_CLOSEUP notification message is not sent (as in the case of a
combo box with the CBS_SIMPLE style).

See Also CBN_SELENDCANCEL, WM_COMMAND

CBN_SETFOCUS |

The CBN_SETFOCUS notification message is sent when a combo box receives
the input focus. The parent window of the combo box receives this notification
message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the combo box.

IParam , :
Specifies the handle of the combo box in the low-order word, and specifies the
CBN_SETFOCUS notification message in the high-order word.

See Also CBN_KILLFOCUS, WM;COMMAND

EN_CHANGE [2x]

The EN_CHANGE notification message is sent when the user has taken an action
that may have altered text in an edit control. Unlike the EN_UPDATE notification

-message, this notification message is sent after Windows updates the display. The
control’s parent window receives this notification message through a
WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

EN_HSCROLL 221

[Param
Specifies the handle of the edit control in the low-order word, and specifies the
EN_CHANGE notification message in the high-order word.

See Also EN_UPDATE, WM_COMMAND

EN_ERRSPACE [2x]

The EN_ERRSPACE notification message is sent when an edit control cannot allo-
cate enough memory to meet a specific request. The control’s parent window re-
ceives this notification message through a WM_COMMAND message.

Parameters wParam
Specifies the identifier of the edit control.

IParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_ERRSPACE notification message in the high-order word.

See Also WM_COMMAND

EN_HSCROLL 2]

EN_HSCROLL

The EN_HSCROLL notification message is sent when the user clicks an edit con-
trol’s horizontal scroll bar. The control’s parent window receives this notification
message through a WM_COMMAND message. The parent window is notlﬁed
before the screen is updated.

Parameters wParam
Specifies the identifier of the edit control.

IParam
Specifies the handle of the edit control in the low-order word, and specifies the
EN_HSCROLL notific