
ta
~
Microsoft"
Windows"cE

CD-ROM
Included

-a .. -i ;t
i1
a a
CD ..

---fit
ei)
C _.
a.
CD

Microsoft ---
PRESS

ta
'fi!Yj
Mic rosoft"
Windows"CE

CD-ROM
Included

The open, scalable Windows platform for the newest devices in:
- Communications - Entertainment - Mobile Computing

Includes
Microsoft

WlndowsCE
2.0

Software
Development

KIt

Microsoft Press

Microsoft'

Windows®CE
Programmer's
Guide

Microsoft Press

I

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, W A 98052-6399

Copyright © 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows CE Programmer's Guide I Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-643-8
1. Microsoft Windows (Computer file)

(Computers) I. Microsoft Corporation.
QA76.76.063M524135 1998
005.26'8--dc21

2. Operating systems

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 3 2 1 0 9 8

97-43824
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Microsoft, MS,
MS-DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are registered trademarks
and Visual J++ and Visual Studio are trademarks of Microsoft Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Managing Editor: Ava Chen
Writers: Jason Black, Cheri Christensen, Jon Christiansen, Tom Clark, Kurt Ding, John Dohlen,

Peggi Goodwin, John Murray, Guy Smith, Waudean Thomas, Nuan Wen
Editors: Laurell Haapanen, Jeanne Hunt
Production: Teresa Atkinson, Troy Gudmundson, Bruce Vanderpool

For Microsoft Press:
Acquisitions Editor: Casey Doyle
Project Editor: Saul Candib .

Contents

Preface xix
How This Book Is Organized xix
About the CD xxi
Microsoft Press Support Information XXI

Document Conventions xxii
For More Information xxii
Acknowledgments xxiii

Part 1 Introduction to Windows CE Programming

Chapter 1 Overview of the Windows CE Operating System 3
Summary of the Windows CE Operating System 5
Kernel 7

Processes and Threads 7
Interrupt Handling 8
Memory Architecture 9

Physical Memory Usage 9
Persistent Storage 11
Communications Interface 12

Serial Communications 13
Network Communications 13
Telephony Application Programming Interface 15

Graphics, Windowing, and Event Subsystem 15
Window Management 16
Controls, Menus, Dialog Boxes, and Resources 17
Graphics Device Interface 18
User Input 19

Additional Support for Applications 19

Chapter 2 Programming Considerations 23
Introduction to Win32 Programming 24

Win32 Application Programming Interface 25
Windows CE Platform and Shell Considerations 26

iii

iv Contents

Programming Tools 27
Windows CE Toolkits 27
Component Object. Model 27

COM Threading Model 29
Structured Storage 29
Persistent Object State 30
Automation Through ActiveX Objects 30

Microsoft Foundation Classes 31
Active Template Library 31
National Language Support 32

Porting Win32-Based Applications to Windows CE 34
Hardware Considerations 34
API Considerations 36
Character Set Considerations 37
User Interface Considerations 37

Debugging and Testing Windows CE-Based Applications 38
Desktop Emulation Debugging and Testing 38
Remote Debugging and Testing 38
Non-Standard Debugging and Testing 39

Part 2 Core Services

Chapter 3 Working with Processes and Threads 43
Creating and Terminating a Process 44
Scheduling Threads 44
Synchronizing Processes and Threads 45

Using Wait Functions 45
Using Synchronization Objects 48

Event Objects 48
Mutex Objects 52
Critical Section Objects 55

Interprocess Synchronization 56
Synchronization and Device 110 58
Synchronizing Access to a Shared Variable 58

Chapter 4 Accessing Persistent Storage 59
Object Identifiers 60
Working with Windows CE Databases 62

Creating and Deleting Databases 63
Getting Information About a Database 64
Enumerating Databases 64
Opening a Database 66
Working with Database Records 66
Reading Records and Properties 68
Sorting Records 70
Searching for Records 71

Chapter 5 Using Communications 75
Serial Communications 76

Implementing Serial Communications 77
Using a Modem 78

TAPI Callback Function 79
Windows CE Networking 80

Sending an ICMP Request 82
Communicating over the Internet 82

Using Winlnet to Access HTTP 83
Accessing Remote File Systems 83

Managing Network Connections with WNet 84
Determining Available Network Resources 84

Windows Sockets 85
Infrared Sockets 85
Using Infrared Sockets 87
Sample Infrared Socket Server 87
Sample Infrared Socket Client 88

Network Security Features 90
Certificate Authentication 90
Implementing a Secure Socket 92
Using a Deferred Handshake 92

TCPIIP 93
Data Link Protocols 94
Remote Access Service 94

Using RAS 95

Contents v

vi Contents

Part 3 User Interface Services

Chapter 6 Designing a User Interface for Windows CE 101
Designing Windows and Dialog Boxes 103
Developing Menus 105
Working with Command Bars 106
Choosing Controls 108
Using Color and Grayscale Palettes 116
Creating Icons and Bitmaps 118
Receiving User Input 119
Providing User Feedback 119

Chapter 7 User Input 121
Keyboard Input 121

User Input System 122
Key and Character Messages 123

Checking Other Keys 124
Hot Key Support 125

Processing Keyboard Messages 125
Using the Caret 126

Stylus Input 126
Stylus Messages 127

Inking Input 128

Chapter 8 Graphics Device Interface 131
Unique Features of the Windows CE GDI 132
Device Contexts 133

Using Device Contexts 134
Display Device Contexts 134
Printer Device Contexts 134
Memory Device Contexts 135
Graphic Objects 135
Saving and Restoring Device Contexts 136
Graphic Modes 136

Bitmaps 136
Using Bitmaps 137

Colors and Palettes 139
Using Colors 140
Creating and Using Palettes 141

Pens 142
Brushes 143
Printing 144
Regions 145

Clipping Regions 146
Shapes and Lines 147
Text and Fonts 149

TrueType and Raster Fonts 150
Using Fonts 150
Enumerating Fonts 152
Formatting Text 153
Drawing Text 153

Chapter 9 Windows. 155
Sample Windows-Based Application 156
Window Fundamentals 159

Window Relationship Fundamentals 160
System-Defined Window Classes 161
Creating Windows 161
Application Windows 164
Destroying Windows 165
Window Styles 165

Nonc1ient Area Styles 167
Window Size and Position 168

Topmost Windows 169
Window Visibility 170

Window Relationships 170
Parent and Child Windows 171
Owner-Owned Windows 171

Messages and Message Queues 172
Message Queues 173

Posting Messages 173
Sending Messages 173

Receiving and Dispatching Messages 174
Processing Intermediate Messages 175

Messages and the Window Procedure 176
Message Types 176

Timers 179
Rectangles 180

Contents vii

viii Contents

Chapter 10 Overview of Controls 181
Overview of Windows Controls 182

Predefined Controls 183
Custom Controls 184
Control Notification Messages 185
Control Messages 185

Overview of Common Controls 186
Common Control Styles 187

Custom Draw Services 189
Paint Cycles, Drawing Stages, and Notification Messages 190
U sing Custom Draw Services 190

Responding to the Prepaint Notification 191
Requesting Item-Specific Notifications 191
Drawing the Item 192
Changing Fonts and Colors 192

Sample Custom Draw Function 192
HTML Viewer Control 193

Chapter 11 Foundation Controls 197
Command Bars 197

Using Command Bars 198
Property Sheets 201

Property Sheet Pages 201
Using Property Sheets 202

Active and Inactive Property Sheet Pages 203
Rebars 204

Rebar Styles 205
Command Bands 206

Using Command Bands 208
Tab Controls 209 '

Tab Control Styles 209
Extended Tab Control Styles 211
Using Tab Controls 211

Tab Control Display Area 212
Tab Control Messages 212
Tab Control Image Lists 213
Tab Size and Position 213

Tab Control Structures 214
Tab Control Item States 214

Toolbars 214
Toolbar Styles 215
Toolbar Size and Position 216
Toolbar Buttons 216

Toolbar Button Styles 217
Toolbar Button States 218

Toolbar Features 219

Chapter 12 File and Scale Controls 221
Header Controls 221

Header Control Styles 222
Header Control Size and Position 222
Header Control Items 223
Header Control Messages 223
Advanced Header Control Features 224

Image Lists 225
Using Image Lists 225
Using Images in Image Lists 226

Using Overlays in Image Lists 227
List Views 228

List View Styles 229
Extended List View Styles 231
List View Structures 231
List View Item States 232
List View Image Lists 232
Items and Subitems 234
Callback Items and the Callback Mask 235
Columns 235
Arranging, Sorting, and Finding List Views 236
List View Item Position 237
Scroll Position 237
Editing Labels 238
Advanced List View Features 238

Trackbars 239
Trackbar Messages 240

Contents ix

x Contents

Tree Views 241
Tree View Styles 242
Parent and Child Items 242
Item Labels 243
Tree View Item States 244
Editing Tree View Labels 245
Tree View Item Position 246
Item Selection 246
Item Information 246
Tree View Image Lists 247
Drag-and-Drop Operations 248

Up-Down Controls 249
Up-Down Control Styles 250
Position and Acceleration 250

Chapter 13 Informational Controls 253
Date and Time Picker Controls 253

Date and Time Picker Styles 254
Date and Time Picker User Interface 255
Format Strings 255

Preset DTP Display Formats 256
Custom Format Strings 256
Format Characters 257
Callback Fields 258

Month Calendar Controls 258
Month Calendar Styles 259
Day States 260
Times 260

Status Bars 261
Size and Height 261
Multiple-Part Status Bars 262
Status Bar Text 262

ToolTips 263
Progress Bars 264

Progress Bar Styles 264
Range and Current Position 264

Chapter 14 Buttons 267
Button States 268

Changes to a Button State 268
Selecting a Button 269
Notification Messages from Buttons 269

Messages to Buttons 270
Button Color Messages 271
Button Default Message Processing 271
Check Boxes 273

Check Box Styles 274
Group Boxes 274
Push Buttons 275

Push Button Styles 276
Owner-Drawn Push Buttons 276

Radio Buttons 277
Radio Button Styles 277

Chapter 15 Window Controls 279
Edit Controls 279

Edit Control Styles 280
Text Buffer 282
Changing the Formatting Rectangle 283
Working with Text 283

Replacing Text 283
Cut, Copy, Paste, and Clear Operations 284
Modifying Text 284
Limiting User-Entered Text 284
W ordwrap Functions 285
Retrieving Points and Characters 285
Undoing Text Operations 285

Scrolling Text in an Edit Control 285
Tab Stops and Margins 286
Password Characters 286

Combo Boxes 287
Combo Box Styles 287
Edit Control Selection Fields 289

List Boxes 289
List Box Styles 290

Contents xi

xii Contents

Scroll Bars 291
Scroll Bar Styles 292
Parts of a Scroll Bar 293
Scroll Box Position and Scrolling Range 294
Scroll Bar Requests 294

Static Controls 295
Static Control Styles 296

Chapter 16 Dialog Boxes, Menus, and Other Resources 299
Dialog Boxes 300

Application-Defined Dialog Boxes 302
Common Dialog Boxes 303
Message Boxes 304

Menus 306
Command Bar Menus 307
Menu Items 308

Owner-Drawn Menu Items 309
Menu Item Separators and Line Breaks 309

Scrolling Menus 309
Creating, Displaying, and Destroying Menus 310

Carets 310
Cursors 312
Icons 312
Bitmaps, Images, and Strings 313
Keyboard Accelerators 313

Accelerator Tables 314
Creating an Accelerator Table Resource 315

Part 4 Connection Services

Chapter 17 Invoking Functions from a Desktop Computer 319
Initializing and Terminating Remote Application Programming Interface 319
Executing Functions and Applications 322
Retrieving Information 323
Handling RAPI Errors 324
Sample RAPI Program 324

Chapter 18 Receiving Connection Notification 327
Registry-Based Notification 327
COM Interface-Based Notification 328

Notification and Unregistration Procedures 328

Contents xiii

Notification when Reestablishing a Remote Connection 330
Unregistering an Application 331

Registering the IDccMan Class Identifier 331

Chapter 19 Transferring Files 333
Registering File Types and File Filters 334

Registering a File Extension Type 334
Generating a Class Identifier for a File Filter 335
Registering a File Filter 336
Sample File Filter Registry Entry 338

Implementing and Using a File Filter 339
Using Remote API Calls in a File Filter 341
Filter-Defined Error Values 341

Implementing a Dummy File Filter 341

Chapter 20 Synchronizing Data 343
Design Considerations 344
ActiveSync Service Provider 344

Desktop Client 344
Windows CE Client 345
Registering the ActiveSync Service Provider 346

Registry Settings for a Desktop Computer 346
Registry Settings for Windows CE-Based Platforms 347

Chapter 21 Installing and Managing Applications 349
General Procedure for Application Installation 349
CAB Wizard 350

.inf File 351
Sample .inf File 359
Setup.dll File 361

Application Manager 362
.ini File Format for Application Manager 363
Sample Application Manager .ini File 364
Troubleshooting Application Installation 364

xlv Contents

Adding Custom Menus to Windows CE Explorer 365
CEUTlL: Helper DLL for Windows CE Services 367

Desktop Registry Structure 367
Examples of CEUTIL Functions 368

Part 5 Web Services

Chapter 22 Mobile Channels 371
Creating Mobile Channels 373

Scripted Mobile Channels 374
Mobile Channels Extension to CDF 375

Top-level Channel URL 375
Extensions to Standard Tags and Attributes 376
CDF Tags for Mobile Channels 380
CDF Omissions 383

Mobile Channels Data Files 383
Mobile Channels Script Files 384

Item Script Selection 386
Channel Script Selection 387
Scripting 388
Example Channel Script 388
Example Item Script 392

Mobile Channels User Interface Elements 394
Channel Synchronization 394
Channel Browser 394
Active Desktop 395

Part 6 Interfaces to Bundled Applications

Chapter 23 Contacts Database 399
Programming with the Contacts Database 400

Opening the Contacts Database 401
Adding and Removing Address Cards 404
Retrieving and Modifying Address Cards 405

Chapter 24 Inbox 407
Message Heap 408
Message Store 408
Mail Messages 409

Message Header 410
Message Attachments 410

Working with Mail Messages 411
Retrieving Mail Messages 411

Using Message Flags 411
Inserting Mail Messages 412
Sending Mail Messages 413
Updating the Message Store 413
Moving and Copying Mail Messages 413
Attaching Files to Mail Messages 414
Handling Mail Errors 414

Chapter 25 Mail Transport Service 415
Registering a Transport Service 416

Registering a Transport Service Library 417
Adding a Transport Service for Inbox 417

Contents xv

Registry Entries Used by Inbox and the Transport Service 418
Implementing a Sample Transport Service 421

Managing Memory for Mail Allocations 422

Part 7 Handheld PC

Chapter 26 Programming for an HlPC 425
Hardware for an HlPC 426
Using Flash Cards on an HlPC 427
HlPC Shell 428

Clipboard API 428
WM_HIBERNA TE Message 429
Notification API 429

User Notifications 430
Application Notifications 431

Applications Bundled with an HlPC 432

xvi Contents

Chapter 27 Designing a User Interface for an H/PC 433
Working with the Desktop and Taskbar 433
Designing Windows and Dialog Boxes 436
Choosing Menus and Controls 438
Receiving User Input for an HlPC 438
Providing Help 439

Chapter 28 Managing Power 441
Power Management States 442
Resuming Operation, Rebooting, and Resetting 444

Chapter 29 Writing Memory-Efficient Applications 445
Memory Pages 445
Types of Memory Allocation 446
Thread Local Storage 448
Monitoring How an Application Uses RAM 449

Using the Remote Memory Viewer 450
Process Information Window 450
Kernel Summary 452
Process Memory Map 454

Handling Low Memory Situations 455
System Out of Memory Dialog Box 457

Application Hibernation 458
Tips for Efficient Memory Use 459

Chapter 30 Connecting to the Desktop and Sending and Receiving Data 461
Connecting to Other Computers 461
Communications and Connectivity Hardware for an HlPC 463

Using the Built-In Serial Port 463
Using the Built-In Infrared Serial Port 464
Using a PC Card Serial Device 464

Communication and Connectivity Software for an HlPC 465

Part 8 Palm PC

Part 9 Appendix

Chapter 31 Programming for a Palm PC 469
Application Guidelines 470
Installing Applications 471
Interfacing with the Shell 472
File Input and Output 472

Using Flash Cards on a Palm PC 474
User Input and Output 475

Contents xvii

Communications and Connectivity Hardware for a Palm PC 476
Applications Bundled with a Palm PC 476
Web Services for a Palm PC 477
Voice Recorder Control for a Palm PC 477

Chapter 32 Palm PC She" 481
Receiving Notifications 482
Navigation Control Buttons 483

Using Hardware Control Buttons 486
Input Panel and Input Methods 487

Input Panel 488
Programming with an Input Panel 489
Installable Input Methods 490
Input Methods Registry Values 491

Enabling Infrared Transfer from within an Application 492

Chapter 33 Designing a User Interface for a Palm PC 493
Design Guidelines 493
Working with the Desktop and Taskbar 494
Designing and Placing Dialog Boxes 496
Choosing Menus and Controls 496
Receiving User Input for a Palm PC 496

Appendix A Lists of Functions and Interfaces 499
ActiveSync Functions 499
ActiveSync Interfaces 499
Clipboard Functions 500
COM/OLE Functions 501
Connection Notification Interfaces 502

xviii Contents

Glossary 539

Index 573

Contacts Database Functions 503
Control Functions 503
Database Management Functions 504
Djalog Box Functions 504
File and Scale Control Functions 505
File Filter Interfaces 515
File System Functions 516
GDI Functions 516
Informational Controls Functions 518
Infrared Sockets Functions 519
Mail Functions 519
Menu Functions 520
Notification Functions 521
Process and Thread Functions 521
Registry Functions 522
RAS Functions 522
RAPI Functions 522
Resource Functions 524
Serial Communications Functions 525
Shell Functions 525
T API Functions 526
Transport Service Functions 526
User Input Functions 527
Windows Functions 527
CEUTIL Functions 529
NLS Functions 530
Windows Controls Functions 53f
Windows Networking Functions /536
Windows Sockets Functions 537
WinInet Functions 537

Preface

The Windows CE Programmer's Guide provides all the information you need
to write applications for Windows CE-based devices using the Microsoft®
Windows® CE application programming interface (API).

The Windows CE Programmer's Guide is written for you, if you are one of
the following:

• A Win32 developer

Including a Win32, independent software vendor (ISY), an independent
hardware vendor (lliY), a service provider developer, or a corporate
MIS developer. You should be proficient in basic Win32 programming.
Additionally, you should understand the essentials of the Windows
message-driven programming model, and the most widely-used features
of the Win32 API.

• An embedded developer

Including a developer experienced in embedded development and 32-bit
embedded operating systems. You should have significant experience
using C or C++ and object-oriented methods.

• An internal developer or an original equipment manufacturer (OEM)

Including an internal developer who is responsible for creating internal
build tools, or an OEM who ports Windows CE to hardware platforms.

xix

How This Book Is Organized
The Windows CE Programmer's Guide contains the following chapters:

Part 1 Introduction to Windows CE Programming

Chapter 1 through Chapter 3 describe the four primary modules of the Windows
CE operating system: the kernel, the file system, the graphics windowing and
events subsystem (GWES), and the communications interface. They also discuss
what you should consider as you develop an application for Windows CEo

xx Windows CE Programmer's Guide

Part 2 Core Services

Chapter 4 and Chapter 5 discuss how Windows CE manages threads, memory,
and resources. They also describe the Windows CE communication interface
and information processing.

Part 3 User Interface Services

Chapter 6 through Chapter 16 provide the information you need to create a
graphical user interface. They discuss windows, controls, dialog boxes, menus,
and other resources, and offer tips for designing an effective user interface.

Part 4 Connection Services

Chapter 17 through Chapter 21 describe how Windows CE establishes a serial
connection with a Windows-based desktop computer to transfer files, debug
remotely, and synchronize databases on the two computers.

Part 5 Web Services

Chapter 22 introduces Mobile Channels technology and describes how to create a
mobile channel.

Part 6 Interfaces to Bundled Applications

Chapter 23 through Chapter 25 discuss how to implement Contacts, Inbox, and
Mail Transport Service functionality in your applications.

Part 7 Handheld PC

Chapter 26 through Chapter 30 describe programming information specific to the
HlPC, such as managing power and sending and receiving data.

Part 8 Palm PC

Chapter 31 through Chapter 33 describe programming information specific to the
Palm PC, such as working with the Palm PC shell.

Part 9 Appendix

The Appendix lists functions and interfaces supported by Windows CEo

Glossary

Preface xxi

About the CD
The disc contains the following:

• Windows CE Emulation Software Development Kit (SDK), version 2.0

• Online Help version of this book

• Windows CE Programmer's Reference

Including documentation for all the Windows CE functions, structures,
messages, and macros

• Windows CE Device Driver Kit (DDK)

• Online Help version of the documentation for the Windows CE DDK

• Documentation for the Microsoft Platform SDK in online Help format

Including complete Win32 documentation

~ To install the online Help or Windows CE Emulation Platform SDK

1. Run Setup.exe from the root directory on the CD.

2. Follow the instructions in each dialog box.

3. On the Setup Type dialog box, choose Custom installation and check only
Online help files to install just the documentation.

-Or-
Install the complete Emulation Platform SDK.

Microsoft Press Support Information
Every effort has been made to ensure the accuracy of this book and the contents
of the companion disc. Microsoft Press provides corrections for books through
the W orId Wide Web at http://mspress.microsoft.com/mspress/support/.

If you have comments, questions, or ideas regarding the book or companion disc,
send them bye-mail to Microsoft:

MSPINPUT@MICROSOFT.COM

or by postal mail to:

Microsoft Press
Attn: Windows CE Programmer's Guide Editor
One Microsoft Way
Redmond, W A 98052-6399

Product support is not offered through these addresses.

xxii Windows CE Programmer's Guide

Document Conventions
The following typographical conventions are used throughout this book.

Convention

monospace

Bold

Italic

UPPERCASE

()

For More Information

Description

Indicates source code, structure syntax, examples, user input, and
program output. For example,

ptbl->SortTable(pSort, TBL_BATCH);

Indicates an interface, method, function, structure, macro, or other
keyword in Windows CE, the Microsoft® Windows® operating
system, C, or C++. For example, CommandBacHeight is a
function. Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Indicates placeholders, most often method or function parameters;
these placeholders stand for information that must be supplied by
the implementation or the user. For example, lpButtons is a function
parameter. Also indicates new terms that are defined in the glossary.

Indicates flags, return values, messages, and properties. For
example, WSAEFAULT is a Windows Sockets error value,
MF _CHECKED is a flag, and TB_ADDBUTTONS is a message.
In addition, uppercase letters indicate segment names, registers,
and terms used at the operating-system command level.

Indicate one or more parameters that you pass to a function,
in syntax.

• Windows CE development

http://microsoft.com/windowsce/

• Windows CE logo requirements

http://microsoft.com/windowsce/logo/

• Windows CE operating system

Inside Windows CE by John Murray, available in the spring of 1998

• Customizing the Windows CE operating system

Windows CE Embedded Toolkit for Visual C++ 5.0 documentation

• The Microsoft Windows programming environment

The Microsoft Platform Software Development Kit and Programming
Windows by Charles Petzold

Preface xxiii

Acknowledgments
The Windows CE developer documentation team would like to thank the
Windows CE program managers and developers and the Windows CE
product support specialists for their support.

PAR T 1

Introduction to Windows
CE Programming

Chapter 1 Overview of the Windows CE Operating System 3
Summary of the Windows CE Operating System 5
Kernel 7
Persistent Storage 11
Communications Interface 12
Graphics, Windowing, and Event Subsystem 15
Additional Support for Applications 19

Chapter 2 Programming Considerations 23
Introduction to Win32 Programming 24
Windows CE Platform and Shell Considerations 26
Programming Tools 27
Porting Win32-Based Applications to Windows CE 34
Debugging and Testing Windows CE-Based Applications 38

CHAPTER 1

Overview of the Windows CE
Operating System

3

Microsoft® Windows® CE is a compact, highly efficient, multiplatform operating
system. It is not a reduced version of Microsoft® Windows® 95, but was designed
from the ground up as a multithreaded, fully preemptive, multitasking operating
system for platforms with limited resources. Its modular design allows it to be
customized for products ranging from consumer electronic devices to specialized
industrial controllers.

General Features of Windows CE

• Provides you with a modular operating system that you can customize for
specific products. The basic core of the operating system requires less than
200 KB of ROM.

• Provides interrupt delivery, prioritizing, and servicing.

• Runs on a wide variety of platforms.

• Supports more than 1,000 of the most frequently used Microsoft® Win32®
functions, along with familiar development models and tools.

• Supports a variety of user-interface hardware, including touch screen and
color displays with up to 32-bits-per-pixel color depth.

• Supports a variety of serial and network communication technologies.

• Supports Mobile Channels to provide Web services for Windows CE users.

• Supports COM/OLE, Automation, and other advanced methods of
interprocess communication.

4 Windows CE Programmer's Guide

Windows CE has four primary modules or groups of modules.

• The kernel supports basic services, such as process and thread handling and
memory management.

• The file system supports persistent storage of information.

• The graphics windowing and events subsystem (GWES) controls graphics and
window-related features.

• The communications interface supports the exchange of information with
other devices.

The Windows CE operating system also contains a number of additional modules
that support such tasks as managing installable device drivers and supporting
COM/OLE. The following illustration describes how these features fit into the
overall structure of the Windows CE operating system.

Development Tools Shell

Built-in Drivers Installable Drivers

Windows CE operating system structure

Chapter 1 Overview of the Windows CE Operating System 5

Summary of the Windows CE Operating System
The following section outlines the major features of Windows CEo The features
mentioned are discussed in more detail throughout the chapter.

Kernel

The Kemel-the core of the operating system-provides system services for
managing threads, memory, and resources. It includes:

• Preemptive, priority-based thread scheduling based on the Win32 process
and thread model. Priority inversion is prevented with a system of priority
inheritance that dynamically adjusts thread priorities.

• Predictable thread synchronization mechanisms, including wait objects.
Examples of these mechanisms are named mutexes, critical sections, and
named and unnamed event objects.

• Efficient memory management based on dynamic-link libraries (DLLs), which
link user applications at run-time.

• A flat, virtual address space, with 32 MB of memory reserved for each
process. Process memory is protected by altering page protections.

• On-demand paging for both read-only memory (ROM) and random access
memory (RAM).

• Heap size that is limited only by available memory.

• Control of interrupt handling. You can map interrupt requests (IRQs) to
hardware interrupts and implement your own interrupt service routines and
interrupt service threads.

• Extensive debugging support, such as including just-in-time debugging.

Persistent Storage

The file system supports persistent storage of information. It includes:

• Support for FAT file systems with up to nine FAT volumes.

• Transactioned file handling to protect against data loss.

• Demand paging for devices that support paging.

• FAT file system mirroring to allow preservation of the file system if power is
lost or cold reset is needed.

• Installable block device drivers.

6 Windows CE Programmer's Guide

Communications Interface

The communications interface supports a wide range of technologies. It includes:

• Support for serial communications, including infrared links.

• Support for Internet client applications, including Hypertext Transfer Protocol
(HTTP) and File Transfer Protocol (FTP) protocols.

• A Common Internet File System (CIFS) redirector for access to remote file
systems by means of the Internet.

• A subset of Windows Sockets (Winsock) version 1.1, plus support for
Secure Sockets.

• A Transmission Control Protocol/Internet Protocol (TCPIIP) transport layer
configurable for wireless networking.

• An Infrared Data Association (IrDA) transport layer for robust
infrared communication.

• Both Point-to-Point Protocol (PPP) and Serial Line Internet Protocol (SLIP)
for serial-link networking.

• Support for local area networking through the network driver interface
specification (NDIS).

• Support for managing phone connections with the Telephony API (TAPI).

• A Remote Access Service (RAS) client for connections to remote file systems
by modem.

Graphics, Windowing, and Events Subsystem (GWES)

The GWES module supports the graphics and windowing functionality needed to
display text and images and to receive user input. It includes:

• Support for a broad range of window styles, including overlapping windows.

• A large selection of customizable controls.

• Support for keyboard and stylus input.

• A command bar combining the functionality of a toolbar and a menu bar.

• An Out of Memory dialog box that requests user action when the system is
low on memory.

Kernel

Chapter 1 Overview of the Windows CE Operating System 7

• Full UNICODE support.

• A multiplatform graphics device interface (GDI) that supports the
following features:

• Both color and grayscale displays, with color depths of up to 32 bits
per pixel.

• Palette management.

• TrueType and raster fonts.

• Printer, memory, and display device contexts (DCs).

• Advanced shape drawing and bit block transfer capabilities.

The Windows CE kernel contains the core operating system functionality that
must be present on all Windows CE-based platforms. It includes support for
memory management, process management, exception handling, multitasking,
and multithreading.

The Windows CE kernel borrows much of what is best from Windows-based
desktop platforms. For example, all Windows CE-based applications run in a fully
preemptive, multitasking environment, in protected memory spaces. Windows CE
supports native Unicode strings, allowing you to internationalize applications.

Unlike the kernels found on Windows-based desktop platforms, the Windows CE
kernel uses DLLs to maximize available memory. The DLLs are written as
reentrant code, which allows applications to simultaneously share common
routines. This approach minimizes the amount of memory-resident code required
to execute applications.

Processes and Threads
As a multitasking operating system, Windows CE can support up to 32
simultaneous processes, each process being a single instance of an application. In
addition, multithreading support allows each process to create multiple threads of
execution. A thread is a part of a process that runs concurrently with other parts.
Threads operate independently, but each one belongs to a particular process and
shares the same memory space. The total number of threads is limited only by
available physical memory.

8 Windows CE Programmer's Guide

Processes rely on Win32 messages to initiate processing, control system
resources, and communicate with the operating system and the user. Each process
has its own message queue. For multithreaded applications, each thread also has
its own separate message queue. When there are no messages in the queue and the
thread is not engaged in any other activity, the system suspends the thread, saving
CPU resources.

Although a thread can operate independently, it often needs to be managed by
the process. For example, one thread may depend on another for information.
Thread synchronization suspends a thread's execution until the thread receives
notification to proceed. Windows CE supports thread synchronization by
providing a set of wait objects, which stops a thread until a change in the wait
object signals the thread to proceed. Supported wait objects include critical
sections, named and unnamed events, and named mutex objects. For more
information, see Chapter 3, "Working with Processes and Threads."

Windows CE implements thread synchronization with minimum processor
resources-an important feature for many battery-powered devices. And,
unlike many operating systems, Windows CE uses the kernel to handle thread­
related tasks, such as scheduling, synchronization, and resource management.
Consequently, an application need not poll for process or thread completion or
perform other thread-management functions.

Because Windows CE is preemptive, it allows the execution of a process or thread
to be preempted by one with higher priority. It uses a priority-based, time-slice
algorithm, with eight levels of thread priority, for thread scheduling.

Interrupt Handling
To provide efficient processing of interrupts, Windows CE splits interrupt
handling into two distinct parts: an interrupt service routine (ISR) and an interrupt
service thread (1ST). When triggered, the ISR does little more than launch the 1ST
that is responsible for handling the event. Once the 1ST has been launched, the
ISR returns and the system can respond to the next interrupt.

Dividing interrupt handling this way allows the ISR to be very small and
fast. This minimizes interrupt latencies and speeds interrupt processing. The
Windows CE Embedded Toolkit for Visual C++ makes it possible for you to
specify interrupt timing and priorities for a specific platform.

Chapter 1 Overview of the Windows CE Operating System 9

Memory Architecture
The Windows CE kernel supports a single, flat, or unsegmented, virtual
address space that all processes share. Instead of assigning each process a
different address space, Windows CE protects process memory by altering page
protections. Because it maps virtual addresses onto physical memory using the
kernel, you do not need to be concerned with the physical layout of the target
system's memory.

Approximately 1 GB of virtual memory is available to processes. It is divided into
33 slots, each 32 MB in size. The kernel protects each process by assigning it to
a unique slot with one slot reserved for the currently running process. Thus, the
number of processes is limited to 32, but there is no limit, aside from physical
memory, on the total number of threads.

The kernel prevents an application from accessing memory outside of its allocated
slot by generating an exception. Applications can check for, and handle, such
exceptions by using the try-except statement.

Windows CE allows memory mapping, which permits multiple processes to
share the same physical memory. Memory mapping results in very fast data
transfer between cooperating processes, or between a driver and an application.
Approximately 1 GB of virtual address space, distinct from that used for the
slots, is allocated for memory mapping.

Windows CE always allocates memory to applications one page at a time. The
system designer specifies page size when the operating system is built for the
target hardware platform. On a Handheld PC (HlPC), for example, the page size
is typically either 1 KB or 4 KB.

Physical Memory Usage
Windows CE-based platforms usually have no disk drive. Therefore, physical
memory, typically consisting of a combination of ROM and RAM, plays a
substantially different role on a Windows CE-based platform than it does on a
desktop computer.

10 Windows CE Programmer's Guide

Because ROM cannot be modified by the user, it is used for permanent storage.
The contents of ROM, determined by the original equipment manufacturer
(OEM), includes the operating system and any built-in applications that the
manufacturer provides, for example, Microsoft® Pocket Word and Microsoft®
Pocket Excel on an HlPc. Depending on your product requirements, you can
also place application code in ROM.

Because on most Windows CE systems, RAM is "maintained continuously, it is
effectively nonvolatile. This feature allows your application to use RAM for
persistent storage as well as program execution, compensating for the lack of a
disk drive. To serve these two purposes, RAM is divided into storage, also known
as the object store, and program memory. Program memory is used for program
execution, while the object store is used for persistent storage of data and any
executable code not stored in ROM.

To minimize RAM requirements on Windows CE-based devices, executable
code stored in ROM usually executes in-place, not in RAM. Because of this,
the operating system needs only a small amount of RAM for such purposes as
stack and heap storage.

Applications are commonly stored and executed in RAM. This approach is used
primarily by third-party applications that are added by the user. Because RAM­
based applications are stored in compressed form, they must be uncompressed
and loaded into program memory for execution. To increase the performance of
application software and reduce RAM use, Windows CE supports on-demand
paging. With it, the operating system needs to uncompress and load only the
memory page containing the portion of the application that is currently executing.
When execution is finished, the page can be swapped out, and the next page can
be loaded.

Like RAM-based applications, ROM-based executable code, including DLLs,
can be compressed. When compressed, the code does not execute in place, but
is handled much like its RAM-based counterpart. The code is uncompressed
and loaded a page at a time into RAM program }Ilemory, and then is swapped
out when no longer needed.

Chapter 1 Overview of the Windows CE Operating System 11

Persistent Storage
The storage memory portion of RAM is referred to as the object store. It includes
three types of data storage:

• The Windows CE file system, which contains application and data files.

• The Windows CE database, which provides structured storage. It offers an
alternative to storing user data and application data in files or in the registry.

• The Windows CE system registry, which is used to store the system
configuration and any other information that an application must
access quickly.

The Windows CE file system holds executable files and data files that the user
installs or creates. It supports up to nine FAT volumes. Each volume is treated
as a storage card. If a storage card has multiple partitions, then each partition is
treated as a separate volume. It is possible to support other types of file systems
by writing block device drivers. For more information on block device drivers,
see the documentation for the Windows CE Device Driver- Kit (DDK). Files are
typically stored in compressed form. Applications access the file system with
standard Win32 file system functions. For more information about Windows file
management, see Chapter 4, "Accessing Persistent Storage."

To reduce the data loss during a critical failure, such as loss of power, the
Windows CE file system is transactioned. In addition. the file system implements
a transactioned mirroring scheme to track FAT file system operations that are not
transactioned. The mirroring scheme restores the FAT volume if power is lost
while a critical operation is performed.

The Windows CE database provides general-purpose, structured storage of data,
but it is not a full-fledged database. In particular, Windows CE databases have
only one level of hierarchy. Records cannot contain other records, nor can they
be shared between databases. For more information about storage, see Chapter 4,
"Accessing Persistent Storage."

Platforms that implement the Windows CE operating system commonly ship with
one or more built-in databases. For example, the HlPC comes with calendar and
contacts applications that use databases to store their information. Windows CE
provides an API that allows users and applications to create and use additional
databases as needed.

12 Windows CE Programmer's Guide

The system registry is used to store a variety of information, such as system or
application configuration data. It is similar to the registry found on Windows­
based desktop platforms. Applications running on a Windows CE-based device
can access and modify information in the registry with standard Win32 functions.

It is also possible to access the Windows CE object store from an attached
desktop computer using one of the following approaches:

• The Windows CE Remote API (RAPI) includes a set of functions that you can
use to manipulate the file system and the registry. An application running on
the desktop computer invokes RAPI functions, which act on the object store of
the linked Windows CE-based device. For more information, see Chapter 17,
"Invoking Functions from a Desktop Computer."

• Windows CE offers an extensive and sophisticated set of tools for transferring
data between a desktop computer and an attached Windows CE-based device.
For example, you can use these tools to synchronize data between a Windows
CE-based device and an attached desktop computer when you update a list of
contacts. For more information, see Chapter 20, "Synchronizing Data."

• The object store can also be modified when installing an application. For more
information, see Chapter 21, "Installing and Managing Applications."

Communications Interface
Windows CE-based platforms support a variety of communications hardware
and data protocols, including serial input/output (I/O) support, such as infrared
transceiver support; a subset of the TAPI; and networking, which includes support
for the following:

• Internet clients, including HTTP and FTP, and Internet security protocols.

• Access to remote file systems through a CIFS redirector.

• Internet Control Message Protocol (ICMP) messaging support.

• A subset of Winsock version 1.1, including support for security protocols.

• A RAS client.

• TCPIIP and IrDA.

• NDIS for local area networking.

• PPP and SLIP for serial link and modem networking.

Chapter 1 Overview of the Windows CE Operating System 13

Serial Communications
Serial I/O is the simplest form of communication supported by Windows CEo It is
used when there is a direct, one-to-one connection between two devices. It can
take place over a variety of hardware connections, but most Windows CE-based
devices use simple serial cables or infrared transceivers. Transferring information
over a serial cable connection is similar to reading from or writing to a file, and it
uses some of the same functions. Windows CE also includes a set of functions
used to manage the connection itself.

Windows CE allows direct serial I/O over an infrared link using the same serial
communication functions that are used for wired connections. When using an
infrared link, the I/O is "raw," which means that the bit stream is not processed
in any way. For example, there is no collision detection in Windows CEo

The IrDA protocols provide more robust communication than raw infrared (IR).
The IrDA protocols are available through Infrared Sockets (IrSock), which is an
extension of Winsock. As an alternative to using IrSock directly, IrComm uses the
same function calls as standard serial communication, but uses IrSock and the
IrDA protocols internally.

Network Communications
Windows CE supports a network stack with a number of options. Network
communications can take place over a variety of hardware, including infrared,
serial, Ethernet, and wireless links. Although the network stack is accessible only
through the Winsock interface, Windows CE also provides several high-level
APIs that use Winsock internally, and handle the details of setting up and
managing socket connections:

• The WinlNET API provides support for Internet browsing protocols, including
FTP and HTTP 1.0. It also provides access to three Internet security protocols,
Secure Sockets Layer (SSL) 2.0, Secure Sockets Layer 3.0, and Private
Communication Technology (PCT) 1.0.

• The WNet API provides access to remote file systems through a Common
Internet File System (CIFS) redirector. Currently, operating system
connections are supported only for Microsoft® Windows® 95 and Microsoft®
Windows NT®. The redirector supports UNC names, such as
IIserverXXlshareXX, but not drive letters.

• ICMP requests, commonly referred to as pings, are used to determine whether
or not a host is available.

14 Windows CE Programmer's Guide

The Winsock interface provides direct access to the network stack. Windows CE
supports a subset of Win sock 1.1, as well as the three Internet security protocols
mentioned earlier. For infrared communication, Windows CE supports the IrSock
extension of Winsock, which enables socket-based infrared communication using
the industry-standard IrDA protocols.

Windows CE supports a RAS client at the same level in the network stack as
Winsock, but this client serves a different purpose. RAS is a multi-protocol router
used to connect remote devices. The Windows CE RAS client is identical to the
Win32 RAS, except it supports only one point-to-point connection at a time.

The TCPIIP suite, developed for the Internet, is arguably the most flexible and
widely implemented network protocol. It is supported by a wide variety of
systems and forms the core of the Windows CE network stack. Many Windows
CE-based mobile devices have wireless communication capabilities. However,
conventional TCPIIP stacks may work poorly with wireless technology because
they were intended to function efficiently on wired networks. The Windows CE
TCPIIP stack is designed to be configured for wireless networking.

At the base of the network stack, Windows CE supports data-link layers for serial­
link networks and local area networks (LANs). Many Windows CE-based devices
connect to a network using a serial communication link, such as a modem. To
support serial-link networking, Windows CE implements the widely used serial
line Internet (SLIP) and Point-to-Point Protocol (PPP). Three protocols are
available for authentication in serial-link communication: Password
Authentication Protocol (PAP), Challenge Handshake Authentication Protocol
(CHAP), and Microsoft CHAP.

To support connections to LANs, Windows CE implements NDIS 4.0, but
supports only Ethernet miniport drivers. Windows CE does not support wide area
networks (W ANs). For more information on NDIS support, see the documentation
for the Windows CE DDK.

Chapter 1 Overview of the Windows CE Operating System 15

Telephony Application Programming Interface
Using a modem involves making and managing a telephone connection, tasks
which fall outside most standard communication protocols. To facilitate the
use of a telephone connection, Windows CE includes a T API service provider
for an AT command-based modem, knows as a Unimodem. T API is a collection
of utilities that allows applications to take advantage of a variety of telephone
and communications services without needing detailed knowledge of the
particular technology. You can use the T API service provider with internal
or PC Card modems.

The Windows CE implementation of T API focuses on outgoing calls and provides
outbound dialing and address translation services. Windows CE does not support
inbound calls. To provide flexibility in the choice of hardware, T API supports
installable service providers.

Graphics, Windowing, and Event Subsystem
The Graphics Windowing and Event Subsystem (GWES) is the graphical user
interface between the user, your application, and the operating system. GWES
handles user input by translating keystrokes, stylus movements, and control
selections into messages that convey information to applications and the operating
system. GWES handles output to the user by creating and managing the windows,
graphics, and text that are displayed on display devices and printers.

GWES supports all the windows, dialog boxes, controls, menus, and resources
that make up Windows CE user interface. This interface allows users to control
applications by choosing menu commands, pushing buttons, checking and
unchecking boxes, and manipulating a variety of other controls. GWES provides
information to the user in the form of bitmaps, carets, cursors, text, and icons.

Even Windows CE-based platforms that lack a graphical user interface use GWES
basic windowing and messaging capabilities. These provide the means for
communication between the user, the application, and the operating system.

16 Windows CE Programmer's Guide

As part of GWES, Windows CE provides support for active power management
to extend the limited lifetime of battery-operated devices. The operating system
automatically determines a power consumption level to match the state of
operation of the device.

The following illustration describes the basic GWES structure.

GWES structure

Window Management
The most central feature of GWES is the window. In Windows CE-based
platforms with traditional graphical displays, the window is the rectangular area
of the screen where an application displays output and receives input from the
user. However, all applications need windows in order to receive messages from
the operating system, even those created for devices that lack graphical displays.

Chapter 1 Overview of the Windows CE Operating System 17

When you create a window, Windows CE creates a message queue for the
window. The operating system translates the information it receives from
the user into messages which it places into the message queue of the active
window. The application processes most of these messages, and passes the
rest back to Windows CE for processing.

Windows CE does not send applications any messages dealing with the nonclient
area of the window. A window's nonclient area is the area of the window where
an application is not allowed to draw, such as the title bar and scroll bars. The
window manager controls the non client area.

Windows CE does not support the Maximize and Minimize buttons. A user can
send the window to the back of the Z order by tapping the window's button on the
taskbar. The user restores the window by tapping its taskbar button again.

The taskbar is always visible on Windows CEo You cannot hide the taskbar or use
the full screen to display a window.

Controls, Menus, Dialog Boxes, and Resources
GWES provides controls, menus, dialog boxes, and resources to provide the user
with a standard way to make selections, carry out commands, and perform input
and output tasks.

Controls and dialog boxes are child windows that allow users to view and
organize information and to set or change attributes. A dialog box is a window
that contains controls.

All menus in Windows CE are implemented as top-level, pop-up windows.
Windows CE supports scrolling menus that automatically add scroll arrows
when a menu does not fit on the screen.

Windows CE does not support menu bars, but it does support command bars,
which combine the functionality of a menu bar and tool bar in one control.
Command bars make efficient use of the limited space available on many
Windows CE-based devices.

18 Windows CE Programmer's Guide

Windows CE supports the following types of controls, menus, dialog boxes,
and resources:

Application-defined dialog boxes

Carets

Combo boxes

Command bars

Cursors

Date and time picker controls

Group boxes

Icons

Images

List boxes

Menus

Month calendar controls

Property sheets

Radio buttons

Scroll bars

Status bars

Tab controls

ToolTips

Tree views

Bitmaps

Check boxes

Command band

Common dialog boxes

Custom draw service

Edit control

Header controls

Image lists

Keyboard accelerators

List views

Message boxes

Progress bars

Push buttons

Rebars

Static controls

Strings

Toolbars

Track bars

Up-down controls

In addition to the controls listed in the previous table, Windows CE supports the
HTML viewer control, which makes it easier for you to add HTML support to
your applications.

Graphics Device Interface
The graphics device interface (GDI) is the GWES subsystem that controls the
display of text and graphics. You use GDI to draw lines, curves, closed figures,
text, and bitmapped images.

GDI uses a device context (DC) to store the information it needs to display text
and graphics on a specified device. The graphic objects stored in a DC include a
pen for line drawing, a brush for painting and filling, a font for text output, a
bitmap for copying or scrolling, a palette for defining the available colors, and a
region for clipping. Windows CE supports printer DCs for drawing on printers,
display DCs for drawing on video displays, and memory displays for drawing
in memory.

User Input

Chapter 1 Overview of the Windows CE Operating System 19

GDI features supported by Windows CE are described in the following table.

GDlfeature

Raster and TrueType fonts

Custom color palettes, and both palettized
and nonpalettized color display devices

Bit block transfer functions and raster
operation codes

Pens and brushes

Printing

Shape drawing functions

Description

Allows only one of these to be used on a
specified system. TrueType fonts generate
superior text output because they are
scalable and rotatable.

Supports color formats of 1, 2, 4, 8, 16, 24,
and 32 bits per pixel (bpp). The first two
are unique to Windows CEo

Allows you to transform and combine
bitmaps in a wide variety of ways.

Supports dashed, wide, and solid pens, and
patterned brushes.

Supports full graphical printing.

Supports the ellipse, polygon, rectangle,
and round rectangle shapes.

You can configure Windows CE to meet the user input requirements of a variety
of different platfonns. Currently, the keyboard, input panel, voice, and the stylus
are the usual input method on Windows CE-based devices.

Keyboard functionality in Windows CE is similar to that of Windows-based
desktop platfonns. And, like those platfonns, Windows CE supports hot keys.
A hot key gives the user high-priority system access for specific purposes, such
as canceling a time-consuming file transfer operation.

A unique feature of Windows CE is that it supports the use of a stylUS and a
touch screen in place of a mouse. Touching the screen with the stylus mimics
the left-button mouse click.

Additional Support for Applications
Windows CE allows you to add several modules to facilitate program
development or add additional programming capabilities.

20 Windows CE Programmer's Guide

The Microsoft Component Object Model (COM) is a powerful tool for object­
oriented development. Windows CE provides a set of functions and structures
designed to support application development based on COM. They can be
divided into two groups:

• COM
A simple protocol that defines COM objects along with a library that offers
object management services.

• Automation

A more sophisticated set of object management services that allows
applications to coordinate their interactions with each other.

Both services are derived from a subset of the Windows NT object services.
For more information on the use of COM/OLE, see the documentation for
the Microsoft Windows Platform SDK.

For Windows CE-based platforms intended to perform as adjuncts to a desktop
computer, Windows CE provides the following tools to allow a user to manage
and transfer data between a desktop computer and an attached Windows CE-based
device. These services include:

• A connection manager for establishing and maintaining the connection. For
more information, see Chapter 18, "Receiving Connection Notification."

• A data synchronization interface to allow synchronization of shared data. For
more information, see Chapter 20, "Synchronizing Data."

• File filters for importing and exporting files. For more information, see
Chapter 19, "Transferring Files."

• RAPI for enabling a client on a desktop computer to request services,
such as file manipulation, from a server on an attached Windows CE-based
device. For more information, see Chapter 17, "Invoking Functions from a
Desktop Computer."

• Application installation and management services for installing and
uninstalling Windows CE-based applications from an attached desktop
computer or other sources. For more information, see Chapter 21, "Installing
and Managing Applications."

Chapter 1 Overview of the Windows CE Operating System 21

Windows CE-based devices may have one or more applications included on
ROM. The Contacts and Inbox applications are of particular interest because they
are open, general-purpose applications. If you have unique requirements, you can
use these applications as processing engines inside proprietary code.

To aid you in implementing compatible applications, the Windows CE SDK
provides a set of functions and structures that a custom application can use to
interface with the built-in Contacts and Inbox applications. They are:

• The Contacts Database API, which supports functions and structures for
querying and manipulating the records in a Contacts database. For more
information, see Chapter 23, "Contacts Database."

• The Mail Interface API, which supports functions and structures that allow an
application to be compatible with the Windows CE Inbox mail client. This API
also provides services for mail transport and storage. For more information,
see Chapter 24, "Inbox."

• The Mail Transport API, which allows applications to connect to the mail
server and transmit and receive messages. For more information, see Chapter
25, "Mail Transport Service."

Most Windows CE-based devices have a shell to manage the user interface (VI)
and handle such tasks as launching applications and switching between tasks.
Because of the variety of Windows CE-based platforms, the operating system
contains no standard shell; each platform has a shell designed for its particular
needs. Refer to OEM documentation for information on the shell available for
a particular platform. The shells implemented for a Palm PC and an RlPC are
discussed in their respective platform-specific sections of this book.

Devices that are integral to a Windows CE-based platform, such as a wired serial
port, have built-in drivers that are provided by the OEM. You can install other
devices by means of the built-in serial port, PC Card slot, or VSB port. Examples
of installable devices include modems, printers, digital cameras, and bar code
readers. Because these are added by the user, they require installable drivers.

The Win32 API provides a rich set of interface methods that make device drivers
easier to write and more adaptable. You use the same functions whether you are
dealing with a disk file, serial port, parallel port, pipe, or other type of device.
Devices and files that must be accessed by multiple processes or threads
simultaneously can be locked on a region-by-region basis. The Win32 API
supports both synchronous and asynchronous methods of device access, and is
designed with complex device interfaces in mind.

22 Windows CE Programmer's Guide

For more information on Windows CE support for installable device drivers, see
the documentation for the Windows CE DDK.

To support development of devices and applications for a variety of locales,
Windows CE includes national language support (NLS). The national language
support API allows you to specify information about the system and the user
locale. Support for localization of applications includes built-in support for
French, German, Italian, Spanish, Brazilian Portuguese, and Japanese.

CHAPTER 2

Programming Considerations

Windows CE is an operating system (OS) based on the Win32 application
programming interface (API). Because of this relationship, you must understand
the Win32 programming environment to develop Windows CE-based
applications. If you are a Windows 95 or Windows NT programmer, you
already know how to write code for Windows CE and how to use an integrated
development environment (IDE). However, if you have never written an
event-driven application, you must become familiar with the fundamentals
of Windows programming.

23

Whether you are an experienced Windows software programmer or a beginner,
you must first determine the unique configuration of the hardware platform and
shell for which you are developing. Because Windows CE is a modular operating
system, an original equipment manufacturer (OEM) chooses specific modules and
components to configure Windows CE-based devices. For example, if you are
programming for a Handheld PC (H/PC), you must know how much RAM the
manufacturer has included.

Once you are familiar with your target platform, your next consideration is what
programming environment to use. For your programming environment, you can
choose among Microsoft® Visual C++®, Microsoft® Visual Basic® or Microsoft®
Visual J++TM. For your Windows CE toolkit, you can choose among
the following:

• Windows CE Toolkit for Visual C++ 5.0

• Windows CE Toolkit for Visual Basic 5.0

• Windows CE Toolkit for Visual J++ 1.1

• Windows CE Embedded Toolkit for Visual C++ 5.0

24 Windows CE Programmer's Guide

In addition to choosing a programming environment and toolkit, you must
determine whether or not to use other available programming tools, such as
the Microsoft Foundation Class (MFC) libraries or the Active Template
Library (ATL).

If you plan to port Windows-based desktop applications to Windows CE, you
need to consider how the hardware design of your target device affects ported
applications. As you will learn later in this chapter, memory, power, user­
interaction devices, and the broad range of CPU and communications options
are all critical concerns when porting. For example, hardware design determines
whether the user interacts with the device by typing on a keyboard, giving voice
commands, or writing on the screen with a stylus.

Other porting considerations include which Win32 APIs are supported by
Windows CE, how the interfaces of the two systems are similar and different,
and whether the desktop application uses the native language format used by
Windows CEo Though these issues require solutions specific to your application
and development needs, the guidelines in this chapter can help you write
applications that port smoothly.

To debug and test your code, the Windows CE IDE provides an emulator for
supported platforms, such as the H/PC. For unsupported platforms, such as a
platform with no user interface, Windows CE provides a debugging interface
that you can use to write your own tools.

The following sections discuss the programming considerations just mentioned
and direct you to additional information. For information on Windows CE
programming considerations, see http://www.microsoft.comlwindowsce/.

Introduction to Win32 Programming
If you are an embedded software programmer, you may be unfamiliar with the
general techniques of event-driven programming in Windows. The purpose of this
section is to outline the fundamentals of the Windows programming model and
the related Win32 API. If you are an experienced Windows programmer, you may
want to skip this section.

Windows is an event-driven operating system. An event may be a keystroke, a tap
on the screen, or a command for a window to repaint itself. Every time an event
takes place, the operating system sends a message to the relevant process.
Essentially, a Windows-based program receives messages, interprets those
messages, and takes an appropriate action.

Chapter 2 Programming Considerations 25

A basic Windows-based program has three primary elements: a window, a
message pump, which is also called a message loop, and a message processor.
This section describes how these work together.

Although windows are commonly thought of in terms of visual display, they can
be defined as non-visible. For example, if you are programming an application
with no user interface, you will need a non-visible window to process messages.
Each window has a window handle, or hwnd, associated with a message processor
that handles messages for the window. Additionally, a window handle is used any
time you need to call a function that requires hwnd as a parameter.

A message pump is a simple loop that runs continuously while the application
runs, receiving messages and dispatching them to the appropriate message
processor. When events occur that generate messages, the operating system places
the messages in a message queue. Each queue has a message pump that takes the
messages one at a time and dispatches them to the appropriate message processor
for handling. Although a simple application will have a single queue, a
multithreaded application may have a queue for each thread. The message pump
continues running until it receives a message to terminate the application.

A simple Windows-based program has two primary functions: a message
processor, usually called a WndProc, and WinMain, which provides an entry
point to the program. The WndProc function processes messages for a particular
window. Although there are many Windows messages, only a few, such as
WM_PAINT and WM_CREATE, must be processed by the application. In
general, an application processes those messages that are relevant to its operation
and passes the remaining messages back to the operating system for default
processing. The primary purpose of WinMain is to host the principal message
pump for the application. It can also handle application initialization and
shutdown procedures.

Win32 Application Programming Interface
The term Win32 describes an API that is common to all of the Microsoft 32-bit
Windows-based platforms-Windows 95, Windows NT, and Windows CEo

The Win32 API is a library of functions and related data types that provide
applications with access to the features supported by Windows-based platforms.
A common API allows you to port applications easily, leverage what you already
know, and draw upon a library of existing programming knowledge, examples,
and third-party resources.

26 Windows CE Programmer's Guide

Although the Win32 API provides you with a common set of interfaces for
Windows 95, Windows NT, and Windows CE, you must be aware of differences
among the platforms. For example, Windows CE is designed for embedded
platforms and therefore does not need to support all the Win32 functions.
Conversely, Windows CE includes functions specifically designed for embedded
platforms that are not supported by Windows-based desktop platforms.

For easy reference, the Win32 components are grouped by functionality into
categories, such as graphics device interface (GDI), multimedia, windows
management, remote procedure calls (RPC), and system services. Within the
GDI category, you will find such components as drawing functions, mouse
manipulation functions, and clipboard functions.

As a programmer, you will find three categories of Win32 components of
particular interest: processes and threads, memory management, and exception
handling. The first two are discussed in separate chapters in this guide. For more
information, see Chapter 3, "Working with Processes and Threads," and Chapter
29, "Writing Memory-Efficient Applications." Because Windows CE does not
support C++ exception handling, you must use the exception handling features
built into the Win32 API. For information on the exception handling macros
supported by Win32, see the appropriate Windows CE toolkit reference.

If you would like to know more about Windows programming, see Programming
Windows 95 by Charles Petzold, which is available from Microsoft Press.
Although this book does not specifically address Windows CE, it adequately
describes event-driven programming. You may also be interested in the sample
code included with the Windows CE SDK.

Windows CE Platform and Shell Considerations
The configuration of your target platform dictates what kind of user interface (VI)
and shell you need. Vnlike Windows-based desktop platforms, Windows CE does
not have a standard VI. Rather, the target hardware determines VI components.
Although most platforms require some kind of VI, the interface may not resemble
the one on a Windows-based desktop computer, and platforms incorporated into
larger systems or computers may have no VI.

If you need a VI similar to that found on a Windows-based desktop computer,
Windows CE provides a shell component for that purpose. However, if you need a
different VI than the shell and the device manufacturer does not provide one, you
must build your own using the Windows CE Shell API. For example, you can use
this API to develop an application that allows the user to write directly on the
device's screen with a stylus. Such capability is not included in the API for
Windows-based desktop platforms.

Chapter 2 Programming Considerations 27

Programming Tools
To write an application for Windows CE, you must assemble and use a set of
development tools based on one of the programming languages that Windows CE
supports. This tool set is your development system. Your language choices are
Visual C++, Visual Basic, or Visual J++. If you choose to program in C++, you
must then decide which of the C++ toolkits is appropriate for your application.
Finally, you can choose to use any of the specialized tools that are supported by
Windows CE: Component Object Model (COM), Microsoft Foundation Classes
(MFC), Active Template Library (ATL), and National Language Support (NLS).
These can aid you in writing your application.

Windows CE Toolkits
After you have chosen and installed a programming language, install one of the
following Windows CE toolkits:

• Windows CE Toolkit for Visual C++ 5.0

• Windows CE Toolkit for Visual Basic 5.0

• Windows CE Toolkit for Visual J++ 1.1

• Windows CE Embedded Toolkit for Visual C++ 5.0

The toolkit you choose becomes part of your existing IDE and supplies tools
for debugging and testing Windows CE-based applications. For example, the
Windows CE Toolkit for Visual C++ 5.0 is equipped with an emulator that
allows you to observe how your application functions without downloading your
program to a target device. Also, the Windows CE Toolkit for Visual C++ 5.0 and
the Windows CE Toolkit for Visual Basic 5.0 have tools that allow you to access
a remote device from a desktop computer and perform Windows CE-specific tasks
on the remote device.

The next sections discuss the specialized development tools that are supported by
WindowsCE.

Component Object Model
COM allows you to develop independent, reusable software components that
connect together to form applications. COM components are binary bits of
executable code that function like mini-applications. They can be disconnected
and replaced at run time without relinking or recompiling the application.
Because COM is language-independent, you can write your components in any
programming language you choose.

28 Windows CE Programmer's Guide

The benefit of using COM is that you can upgrade application components
independently of each other. This allows you to change or add application
features without having to upgrade the entire application. You can plug and
unplug components from your application, as well as interchange them with
other components. In order to achieve this flexibility, COM components must
be able to dynamically link together. Dynamic linking is accomplished through
encapsulation, the process of hiding the details of how a component is
implemented. You can do this by creating an inteiface through which a
component or a client can connect. A client is a program or component that uses
another component. All COM components must interact through an interface.
Additionally, all COM components must inherit from, and implement, the
IUnknown interface.

COM maintains the COM library, which contains a small number of functions
and data structures used to create interfaces and coordinate object services. To use
the libraries in Windows CE, call the CoInitializeEx function before you call any
other functions, except for the memory allocation functions. Similarly, to close the
libraries, call the CoUnitialize function.

COM objects operate according to the client/server model. A COM server is a
COM object that exports and implements interfaces in order to provide services
to clients. The server is responsible for implementing an interface and helping a
client navigate among various interfaces. A COM client creates an instance of a
server object and retrieves a pointer to it. Clients use the services provided by a
server object by calling an interface's methods. A client need not have any
knowledge of the implementation details of the server. The underlying COM
libraries facilitate communication between a server and a client.

Windows supports two types of COM servers: an in-process (Inproc) server,
which resides as a dynamic-link library (DLL) in the client's process, and an out­
of-process server, which resides as an executable file (.exe) on either the local or
a remote computer. Windows CE supports only in-process servers. A COM server
implements the QueryInterface method of the IUnknown interface to make its
services available to clients. This method receives an interface identifier (lID) and
returns a pointer to that interface if it is implemented within the server component.
A client can call methods only on an object that is an instance of the server class.
Thus, the client must instantiate the class before it invokes methods of a
COM object.

Chapter 2 Programming Considerations 29

COM Threading Model
Windows CE supports only a free-threading model in which a component may be
called by any thread at any time. When you develop your application, ensure that
the component synchronizes itself to prevent simultaneous accesses by different
free threads. To register the threading model of a COM object, which is the named
value, you can add ThreadingModel to the object's InprocServer32 key. Use the
string "Free" to present the information in a user-readable form.

Structured Storage
Structured storage is a file system within a file. COM uses it to efficiently store
multiple types of objects in one document. COM defines structured storage as a
collection of two types of COM objects, storage and stream. The former behaves
as a directory and the latter as a file. A storage object must implement the
IStorage interface and a stream object must implement the IStream interface.
Just as a directory in a file system can contain subdirectories and files, a storage
object can contain other storage objects and stream objects. A storage object
keeps track of the locations and sizes of the contained storage and stream objects.
A stream object stores data as a consecutive sequence of bytes.

Structured storage helps to reduce the performance penalties and overhead for
storing separate objects in a flat file. Other benefits include incremental access
and multiple uses of data in a transacted process, as well as providing facilities
for saving files in low-memory situations. Windows CE provides a default
implementation, currently for the HJPC platform, of the interfaces, functions, and
enumeration required for structured storage services. This default implementation
includes the following:

• IStorage, IStream, and IRootStorage

These interfaces provide methods for opening storage, committing
and reverting changes, copying and moving elements, and reading and
writing streams.

• IPersist and IPersistStorage

These interfaces provide methods for reading data formats of individual
objects and are capable of executing persistent storage.

• ILockBytes

This interface provides methods for writing files to specific types of physical
storage media, such as hard disks or tape drives. Objects implementing this
interface are known as LockBytes objects. Windows CE does not provide any
LockBytes objects when implementing default structured storage.

30 Windows CE Programmer's Guide

• StgCreateDocfile, StgCreateDocfileOnILockBytes, StgOpenStorage,
StgOpenStorageOnILockBytes

These functions allow clients to create a new compound file or to open an
existing one on a default or custom LockBytes object.

• STGM enumeration

The flags listed in STGM permit clients to specify the access modes for
regulating access to compound files.

Persistent Object State
Persistent object state refers to information about an object that must be preserved
beyond the object's lifetime. Persistent states are typically stored in nonvolatile
memory, such as hard disks or battery-backed RAM. To make a persistent object
in COM, the object must support a persistent object inteiface. COM uses the
persistent object interface to coordinate operations for initializing, loading, and
saving persistent objects. To conform to the COM persistent object protocol,
client applications determine when and where an object should store its state and
the object determines the format for data storage. A persistent object must also
implement the IPersist interface because all persistent object interfaces inherit
from it. In Windows CE, only structured storage can be made persistent.

Automation Through ActiveX Objects
Just as a user interface helps a user communicate with a software application,
automation enables applications or scripting tools to interact with other
applications or tools. Automation is a COM-based technology that enables
interoperability among Microsoft® ActiveXTM components, including OLE
components. To make their services available, applications or tools define COM
objects to expose their unique features in terms of methods, properties, and
events. Other applications and tools interact with the exposed objects to use these
services. The exposed COM objects are known as ActiveX objects and the
applications or tools calling ActiveX objects are known as ActiveX clients.

ActiveX clients invoke the IDispatch interface, or they call member functions
directly in the object's virtual function table (VTBL). The table lists the addresses
of all the properties and methods of an object, including the member functions
of the interface it supports. The first three members of VTBL are the members of
the IUnknown interface. ActiveX objects implementing a VTBL interface are
standard COM objects. Clients must support pointers to access these objects.
However, the object implementing the lDispatch interface offers additional
features that makes the object accessible to a client without any pointer support.
Clients written in Visual Basic use IDispatch, whereas those written in C++ may
use both VBTL and lDispatch. The ActiveX objects in your applications should
support both interfaces.

Chapter 2 Programming Considerations 31

ActiveX objects publish themselves by means of Type Libraries, which are used
by clients to determine the characteristics of an object, such as the supported
interfaces and the names and addresses of the members of each interface. The
developer of an ActiveX object should create the type library. Windows CE
offers full support of the four type-building interfaces: ICreateTypelnfo,
ICreateTypeInfo2, ICreateTypeLib and ICreateTypeLib2.

For a complete discussion of COM-based object services, see the documentation
for the Microsoft Platform SDK

Microsoft Foundation Classes
MFC is a Windows class library and a complete, object-oriented application
framework. MFC for Windows CE includes additional classes unique to Windows
CE, such as the command bar control. Though you can write your own Windows
CE class libraries, you will find that using the ones provided in MFC saves you
time and effort. By organizing related and reusable Windows CE functions into
logical classes, MFC encapsulates much of the Windows CE API.

As mentioned, MFC is an object-oriented application framework. An application
framework provides both a structural foundation and a set of fundamental
components that you can use to expand on the structure and adapt to different
purposes. An example of this is the MFC message mapping architecture. In non­
MFC applications, the window procedure is a large switch statement that
determines what kind of message the window has received. The switch then
processes the message appropriately. The MFC framework manages messages
more efficiently than this by providing a message pump for every derived class.
The class uses message maps, rather than switch statements, to route messages to
the appropriate message handler function. A message map is a simple set of
macros defined in the MFC library. If you are using the Windows CE MFC Class
Wizard, the Wizard inserts the macros into your code for you when you select the
messages you want your class to handle.

Active Template Library
A TL for Windows CE is a template library specifically designed for creating
ActiveX controls and other COM components. Because your A TL components
implement only the specific interfaces that your project requires, the code you
create is smaller and faster than the code you would create by using MFC for the
same project.

32 Windows CE Programmer's Guide

One important use of ATL is to help you create ActiveX servers. An ActiveX
server is a DLL or .exe that contains one or more COM components. The
components may include simple objects, dialog boxes, and property sheets that
belong to a full ActiveX control. A server also provides the class factories that
instantiate the components when they are requested by clients. It contains code
to enter and remove itself from the registry and notify COM when it can safely
be unloaded from memory. Windows CE supports only in-process servers, which
are DLLs that are loaded directly into the address space of the calling process.
Because an in-process server runs in the same address space as its host, it does
not incur the overhead associated with cross-process marshalling on every call.

National Language Support
If you plan to release your application in the international market, you must keep
language and cultural differences in mind when you develop specifications for
the user interface and feature set. Consider the following potential trouble spots:

• Text expansion. English text often grows when translated. In most cases, text
increases by 10 or 15 percent; in some languages, localized text can be as
much as 30 to 35 percent longer than the source text.

• Use of abbreviations. IIi some languages, abbreviations are not commonly
used, for example, in Georgian, days of the week are not abbreviated.

• Use of symbols, metaphors, and colors. Most have specific cultural meaning.
Some common symbols in the United States may not be recognized or may be
misunderstood in other countries-for example, a mailbox.

• Use of bidirectional text. Text may be written and read from left to right, right
to left, or top to bottom.

• Unique keyboard layout. Languages that use diacritical marks, such as Spanish
and French, must have keyboards that support dead keys.

• Use of an Input Method Editor. Some languages, such as Japanese, have
thousands of glyphs; therefore, the standard keyboard input is not sufficient to
represent all the characters.

• Word order and punctuation. Of particular concern are differences in the
punctuation of currency and other numbers, and the word order of dates.
Though in English, word order is critical to meaning, in highly inflected
languages, such as Spanish, word endings may have more significance.

Chapter 2 Programming Considerations 33

The time to address these concerns is in the design phase of your project.
For example, you will be disappointed to discover-after your program is
completed-that the Spanish word aceptar will not fit onto your application's
OK button. The following list provides tips for making your program easier to
translate or localize:

• Put all text strings that have to be translated in one location, such as a resource
or text file.

• Declare string buffers of a variable size.

• Use the correct sorting method, date, time, and currency representation for
that locale.

• Design controls, buttons, and the taskbar to accommodate different text length.

Windows CE makes your globalization efforts easier in two ways. Because
Windows CE is a Unicode environment, all characters are double-byte; therefore,
you do not have to be concerned with manipulating both single-byte and double­
byte characters. In addition, Windows CE includes NLS, which provides NLS
API as well as some font and keyboard functions. For a list of the NLS functions
supported by Windows CE, see the appendix "Lists of Functions and Interfaces."

You must consider the constraints of the device on which your application will
run when you globalize your application. The following list describes some of the
complex interactions between your application, a Windows CE-based device, and
the needs of users in different countries:

• The manufacturer of the device, not the application programmer, determines
what countries or locales to support.

• Because a user does not log into the device, the user locale and the default
system locale are the same. For example, if you call the function
GetSystemDefaultLangID or the function GetUserDefaultLangID, you
obtain the same information.

• The Windows CE operating system loads only one keyboard driver. Although
it is possible to load a different keyboard driver than the one installed, you
would generally not do this because the device has a built-in keyboard.

• The locale can be changed by the programmer or by the user through an
application such as the Control Panel. Changing the locale often requires
changing the font, because the code page and character set change with the
locale change.

• Because RAM is limited on most Windows CE-based devices, it is not
practical to install multiple fonts. Therefore, using a different font requires
installing a new one, which can be time-consuming.

34 Windows CE Programmer's Guide

For more information on NLS, see Developing International Software by Nadine
Kano, Microsoft Press. \

Porting Win32·Based Applications to Windows CE
Because Windows CE is a Win32-based operating system, you may be able
to re-use code developed for Windows-based desktop platforms with little
modification. Though porting existing code can be quicker and easier than writing
it from scratch, keep the following differences between Windows CE and desktop
platforms in mind:

• Hardware design and function. For example, limited memory will influence
how you manipulate graphics.

• User interface. The conventional desktop computer model of a user interface
that features a keyboard, mouse, and screen may not be appropriate for a
Windows CE-based platform.

• Win32 API and related development tools. Windows CE supports a subset of
what is available for desktop platforms.

• Extensions to the Win32 API. Some unique features of Windows CE may have
no Win32 counterparts, for example, the Notification API. Other Windows CE
features may replace comparable Win32 functionality, for example, the
Command Bar API.

Hardware Considerations
When you port code between platforms, remember that the hardware
configuration of most Windows CE-based platforms differs from that of a
desktop computer. In some cases, a Windows CE-based platform might not
be recognizable as a computer, though the functionality might be typical for a
desktop computer. In addition, a Windows CE-based device may have hardware
that has no counterpart on a conventional desktop computer, such as a Global
Positioning System (GPS) chip. The most important hardware considerations for
Windows CE-based devices are memory, power, user-interaction devices, and the
broad range of CPU and communications options. Just recompiling your code
with the appropriate Windows CE header files is not sufficient. You must
examine the code to be ported while keeping in mind memory, power use, and
user input devices.

Chapter 2 Programming Considerations 35

Windows CE is designed to run on devices that have much less available memory
than desktop computers. They may have no disk drive or other mass-storage
device, or may support PC Cards that can be used as an alternative to a disk.
Even if mass storage is available on the device, RAM is used to store data and
applications and to execute programs. In general, you should limit the RAM
requirements of your application and associated data and resources.

Windows CE supports functions, structures, and messages that are not supported
in Win32, but that may be useful to you when you port code across platforms.
Many of these elements will help you manage limited resources. For example, if
memory resources become tight during operation, Windows CE has a procedure
to reduce memory use and restore available memory to acceptable levels. The key
to this procedure is the WM_HIBERNATE message, which notifies applications
oflow memory. Because this message is not part ofWin32, you must implement a
handler for it and cooperate when the message is received.

A Windows CE-based platform that operates on batteries has a limited energy
supply. If you develop an application for such a platform and must port it, follow
these guidelines to make the most of limited power resources:

• Avoid cycling the CPU unnecessarily. An active CPU, and the PeekMessage
function in particular, consume significant energy.

• Limit your use of common desktop computer hardware that drains batteries
rapidly, such as a modem.

• Do not exceed available battery resources. Windows CE displays a warning
message to users when batteries start to run low, but it does not send a message
to running applications. Therefore, if your application places substantial
demands on the batteries, you will need to poll the system with the
GetPowerStatusEx function to determine battery status.

Applications for desktop computers assume that the user will get information
from a relatively large screen and will communicate with the computer using a
keyboard and a pointing device. Windows CE-based platforms may use very
different hardware than this. The screen is generally smaller or absent, and the
platform may have no keyboard or pointing device at all. On the other hand, a
Windows CE-based platform may provide user-interaction hardware that is not
commonly found on a desktop computer, such as a microphone for speech
recognition or a stylus and screen for handwriting recognition. For more
information about user-interface considerations, see "User Interface
Considerations" later in this chapter.

36 Windows CE Programmer's Guide

In addition, Windows CE offers a variety of communications hardware
options, including infrared (IrDA) and radio transceivers, that require special
consideration. Windows CE supports most standard communication methods,
including serial communication, TCP/IP, and IrDA stacks, through WinSockIt. It
also supports output by means of modems, infrared transceivers, and local-area
networks. For more information about different communications hardware and
communications programming, see Chapter 5, "Using Communications."

API Considerations
When porting code from one platform to another, an important consideration is
the difference in the APIs supported by the two operating systems. As stated
earlier, Windows CE does not support any 16-bit functions and some Win32
functions are not implemented completely, for example, a full range of styles or
flags. Also be aware that Windows CE supports and extends an essential subset of
the Win32 API, while excluding functions that are not needed, or are redundant,
for Windows CE-based devices. For example, the Windows CE graphical device
interface provides a powerful, full-color graphical display system by supporting
many of the shape, bit-block transfer, palette, font, and color functions. However,
to remain compact, some of the Win32 special graphic functions, such as MoveTo
and LineTo, are eliminated.

In addition to supporting a subset of the Win32 API, Windows CE extends it in
a number of ways. Most of these extensions support the unique capabilities of
Windows CE-based platforms. Some, such as the command bar API, replace
a set of Win32 functions and work in a way that is more suitable for
Windows CE-based devices.

When you port an application from Win32 to Windows CE, remove unsupported
functions and modify your code to use supported functions. Then, thoroughly
review your code, keeping in mind the limitations and potentials of your platform.
For more information, see "Example Program for H/PC" in the online Help.

You can reuse any Visual C++, Visual Basic, or Visual J++ code in your
Windows CE-based application. If your application was developed using a
Microsoft IDE, such as Visual C++, Visual Basic, or Visual J++, you can
continue to use that IDE with Windows CE by installing the appropriate toolkit.

As discussed earlier, many Win32 applications are developed using MFC and
A TL. Windows CE supports subsets of both of these tools. In addition, Windows
CE supports a subset of COM/OLE, a powerful and flexible approach to object­
oriented programming that is used by many applications. You may be able to port
an application that uses COM/OLE, MFC, or ATL with only minor revisions.

Chapter 2 Programming Considerations 37

Character Set Considerations
As stated earlier, Windows CE is a Unicode environment. While it supports
ASCII functionality to allow the exchange of text files, the native text format is
Unicode. The following list provides guidelines for converting ASCII-based code
to Unicode:

• Include Tchar.h. It has all the necessary conversions.

• Use the Win32 string functions, rather than the C run-time library equivalents.

• Use TCHAR or LPTSTR for declarations. Declaring character variables as
TCHAR allows the code to be compiled as either Unicode or ASCII.

• Use the TEXT macro for string literals, such as Text("a string"). The TEXT
macro identifies a string as Unicode when the UNICODE compile flag is used
or as an ANSI string when Unicode is not defined.

Use the size of (TCHAR) operator to ensure that your code is valid for both
Unicode and ASCII. When you increment pointers, remember that an ASCII
character is one byte, but that a Unicode character is two bytes.

User Interface Considerations
Some of the greatest differences between a Windows CE-based platform and a
standard desktop computer are in the UI. Though some Windows CE-based
platforms, such as the HlPC, may be similar to a conventional desktop computer,
others may modify or eliminate altogether the familiar screen, keyboard, and
mouse of a desktop computer.

For Windows CE-based platforms, the screen is not as powerful and flexible a
way to communicate information to the user as it is with a desktop computer
because the screen is typically much smaller, with lower resolution. Though
some devices have color screens, many support only grayscale or monochrome
graphics. For devices that dispense with the screen entirely, you may need to
develop alternative ways to communicate information.

A key element of a graphical UI is a pointing device, which enables a user to
interact with the various graphical elements of the UI. Though a mouse may not
be appropriate, some Windows CE-based devices, such as an HIPC, have a touch
screen and stylus that work much the same way as a mouse. Others may have no
pointing device at all, and must depend on other navigation techniques, such as
arrow keys, or may use an entirely different approach to interaction, such as
speech recognition.

38 Windows CE Programmer's Guide

Keyboards on Windows CE-based devices are generally more difficult to use and
are less flexible than they are on desktop computers. Because they may be too
small to support a full set of alphanumeric characters, they may provide only a
collection of special-purpose keys for users to communicate with the application.
Text-entry, if supported, may be through an input panel, which enables a user
to type characters by way of a touch screen, rather than a physical keyboard.
Because this method of text entry is more difficult for users, rely on other forms
of communication over text entry whenever possible.

Debugging and Testing Windows CE·Based
Appl ications

An effective set of debugging tools can speed up the time-consuming process of
debugging an application and make it easier to determine the source of problems.
The Windows CE IDE provides a set of tools for such tasks as emulation and
remote debugging on HlPCs, and special tools for debugging other Windows CE­
based platforms.

Desktop Emulation Debugging and Testing
The desktop emulation tool included with Windows CE allows you to write
and debug an HlPC application on any computer running Windows NT. With
emulation, you can test and debug your application without downloading your
software to a device. You can even use emulation to write a Windows CE-based
application without having a device. Though you can determine a great deal about
the functionality and appearance of your application with emulation, once your
application is running correctly in the emulation environment, you must download
it to a target device for final testing and evaluation. In addition to testing for
defects and reliability, testing for usability is critical, because most Windows CE­
based platforms have a small desktop area that can present access problems.

Remote Debugging and Testing
In addition to desktop emulation, Windows CE contains several tools that enable
you to examine your application as it runs. These remote tools are described in the
following table.

Tool

Remote Connection Server

Remote Zoomin

Remote Registry Editor

Remote Object Viewer

Remote Spy

Chapter 2 Programming Considerations 39

Purpose

Creates a network connection between a desktop computer
and an HlPC. Remote Connection Server will not
synchronize a remote device and a desktop computer.

Enlarges a section of an HlPC screen.

Edits the Windows CE registry .. Because there is no tool
like RegEdit on an HlPC, you view and edit the HlPC
registry using this desktop tool.

Allows you to view the object store on a remote HlPC
device and on a desktop computer.

Displays a graphical view, on a desktop computer, of the
system processes, threads, windows, and window
messages that are running on a remote HlPC.

In order to use the remote tools, you must connect your desktop computer to your
remote device with a standard serial cable connection. For information on how to
physically connect your desktop computer and a remote device, see the user's
guide that came with your device.

Non-Standard Debugging and Testing
If you are developing software for a Windows CE-based platform, such as an
HlPC, you can use the Windows CE emulation environment and remote tools to
debug and test your application. However, if you are developing applications for
other Windows CE-based platforms, such as embedded systems, you will have to
devise your own debugging and testing tools.

The Windows CE API includes the interfaces necessary to create a full-featured
debugger application, such as the one provided with Visual C++ or WinDbg.
Although the creation tools exist, the limited size of the Windows CE
environment makes such a debugger unrealistic. If you decide to write a debugger
application, the best approach is to create a debug client using Windows CE
debug functions and to communicate the relevant events to a desktop computer­
based debugger. When writing a debugging application, choose one of the
following ways to start the debugging session:

• Launch a process with CreateProcess and specify DEBUG_PROCESS
or DEBUG_ONLY _THIS_PROCESS in the dwCreateFlags member. In
addition to the DEBUG_PROCESS flag, use CREATE_SUSPENDED to
prevent the application from running after it is initialized. Once suspended,
a debugger can initialize and add any appropriate break points.

-Or-

40 Windows CE Programmer's Guide

• Attach to an already running application. To attach to a process, you must
obtain permission to access the process by calling OpenProcess and passing
in the identifier of the process you want to debug. If a valid handle is returned,
call DebugActiveProcess to start debugging. After attaching to the process,
the CREATE_PROCESS_DEBUG_EVENT returns the primary thread handle
and the multiple CREATE_THREAD_DEBUG_EVENTs return the secondary
thread handles. After attaching to the process and receiving the initial events,
the process's thread is resumed. Unlike Windows NT, Windows CE has no
EXCEPTION_DEBUG_EVENT. All thread handles must be closed with
CloseHandle when you stop debugging.

Windows CE has built-in support for just-in-time (JIT) debugging. JIT debugging
enables you to run an application outside of the development environment. When
an error occurs, the application calls the installed debugger. Yon register your JIT
debugger by placing the name of your debugger in the registry located at
HKEY _LOCAL_MACHINE\Debug. To enable JIT, you must warm-boot the
device after the JITDebugger value is added to the registry.

If you choose not to write a debugging application, you must create some
debugging tools inside your Windows CE-based application. Windows CE
provides both functions and structures to do this. For a list of supported
debugging functions, see the appendix "Lists of Functions and Interfaces."

No matter what tools you use, you must thoroughly test your application on every
kind of device that will run your application.

PAR T 2

Core Services

Chapter 3 Working with Processes and Threads 43
Creating and Terminating a Process 44
Scheduling Threads 44
Synchronizing Processes and Threads 45
Interprocess Synchronization 56
Synchronization and Device I/O 58
Synchronizing Access to a Shared Variable 58

Chapter 4 Accessing Persistent Storage 59
Object Identifiers 60
Working with Windows CE Databases 62

Chapter 5 Using Communications 75
Serial Communications 76
Using a Modem 78
Windows CE Networking 80

CHAPTER 3

Working with Processes
and Threads

When you start a Windows CE-based application, the operating system
automatically creates a process and a primary thread for that process. A process
is a single instance of a running application and a thread is the basic unit of
execution. Windows CE-based applications can incorporate multiple processes
and each process can contain multiple threads.

Every process has at least one thread. You create additional threads by calling
the Create Thread function. You call the ExitThread function to free up the
resources used by a thread when it is no longer needed. Calling Exit Thread
for an application's primary thread causes the application to terminate.

Note Unlike processes on Windows-based desktop platforms, a Windows CE
process will terminate if its primary thread is terminated, even if there are other
active threads in existence for the process.

43

When the Windows CE operating system initializes, it creates a single 4 GB
virtual address space. It is divided into 33 slots, each 32 MB. The address space is
shared by all processes. When a process initializes, Windows CE selects an open
slot for the process in the system's address space. Slot zero is reserved for the
currently running process. In addition to assigning a slot for each process,
Windows CE creates a stack and a message queue for each thread in the process.
Each stack has an initial size of at least 1 KB. Because the stack size is CPU­
dependent; the system allocates 4 KB for each stack on some devices. The
maximum number of threads is dependent upon the amount of available memory.

When a process initializes, the operating system stores in the slot assigned to the
process all dynamic-link libraries (DLLs), the stack, the heap, the application
code, and the data section for each process. DLLs are loaded at the top of the slot,
followed by the stack, the heap, and the executable file (.exe). The bottom 64 KB
is always left free.

44 Windows CE Programmer's Guide

For an overview of processes and threads, see Chapter I, "Overview of the
Windows CE Operating System." For a list of the functions that support
manipulating processes and threads, see the appendix "Lists of Functions
and Interfaces."

Creating and Terminating a Process
When you initiate a program from within a running application, the application
calls the CreateProcess function to load the new application into memory and
to create a new process with at least one new thread.

~ To create and terminate a process

• Call the CreateProcess function to create a process.

The IpApplicationName parameter must specify the name of the module to
execute. Windows CE does not support passing NULL for IpApplicationName.

• Call the TerminateProcess function to terminate a process.

Windows CE processes do not have exit codes and cannot terminate
themselves. You cannot use TerminateProcess to terminate a Protected
Server Library (PSL) for processes contained therein.

Scheduling Threads
When the operating system creates a new process, it also creates at least one
thread and assigns that thread a priority level. Processes running under Windows
CE are not assigned a priority class, so preemption is based solely on the thread's
priority. Threads with a higher priority are scheduled to run fIrst. Threads with
the same priority level run in a round-robin fashion, with each receiving a slice
of execution time. Threads at a lower priority do not run until all threads with a
higher priority have finished. All threads are created with a default priority of
THREAD_PRIORITY _NORMAL.

~ To change the priority level of a thread

• Call the SetThreadPriority function passing in one of eight priority level
values. The values are described in the following table.

Chapter 3 Working with Processes and Threads 45

Priority

THREAD]RIORITY _TIME_CRITICAL

THREAD]RIORITY _HIGHEST

THREAD]RIORITY _ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY _BELOW_NORMAL

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY _ABOVE_IDLE

THREAD_PRIORITY_IDLE

Description

Indicates 3 points above normal priority.

Indicates 2 points above normal priority.

Indicates 1 point above normal priority.

Indicates normal priority.

Indicates 1 point below normal priority.

Indicates 2 points below normal priority.

Indicates 3 points below normal priority.

Indicates 4 points below normal priority.

Synchronizing Processes and Threads
Windows CE supports preemptive multitasking. Multitasking operating systems
must ensure that processes and threads are synchronized. Windows CE provides
many ways to coordinate multiple threads of execution. For example, you can use
wait functions and synchronization objects. You pass a synchronization object as
a parameter to a wait function. The wait function does not return until its specified
criteria has been met. The type of wait function determines the set of criteria used.
When a wait function is called, it checks whether the wait criteria has been met.
If the criteria has not been met, the calling thread enters an efficient wait state,
consuming very little processor time.

Using Wait Functions
Windows CE supports two types of wait functions, single-object and multiple­
objects. The single object function is WaitForSingleObject. The multiple object
functions are WaitForMultipleObjects and MsgWaitForMultipleObjects.

The WaitForSingleObject function requires a handle of one synchronization
object. This function returns when one of the following occurs:

• The specified object is in the signaled state.

• The time-out interval elapses. You can set the time-out interval to INFINITE
to specify that the wait will not time out.

The WaitForMultipleObjects and MsgWaitForMultipleObjects functions
enable the calling thread to specify an array containing one or more
synchronization object handles. These functions return when one of the
following occurs:

• The state of anyone of the specified objects is set to signaled or the states of
all objects have been set to signaled. You control whether one or all of the
states will be used in the function call.

46 Windows CE Programmer's Guide

• The time-out interval elapses. You can set the time-out interval to INFINITE
to specify that the wait will not time out.

The following code example shows how to use the CreateEvent function to
create two event objects. It then uses the two created objects as parameters in
the function call to WaitForMultipleObjects. The WaitForMultipleObjects
function does not return until one of the objects is set to signaled.

HANDLE hEvents[2];
DWORD i, dwEvent;

for (i = 0; i < 2; i++)
{

}

hEvents[i]
NULL,
FALSE,
FALSE.
NULL) ;

CreateEvent(

if (hEvents[i]
{

II no security attributes
II auto-reset event object
II initial state is nonsignaled
II unnamed object

NULL)

printf("CreateEvent error: %d\n", GetLastError());
ExitProcess(0) ;

}

dwEvent = WaitForMultipleObjects(
2, II number of objects in array
hEvents, II array of objects
FALSE, II wait for any
INFINITE) ; II indefinite wait

switch (dwEvent)
{

}

case WAIT_OBJECT_0 + 0:
break;

case WAIT_OBJECT_0 + 1:
break;

default:
printf("Wait error: %d\n", GetLastError(»;
ExitProcess(0) ;

Chapter 3 Working with Processes and Threads 47

MsgWaitForMultipleObjects is similar to WaitForMultipleObjects, except
that it allows you to specify input event objects in the object handle array.
You select the type of input event to wait for in the dwWakeMask parameter.
MsgWaitForMultipleObjects does not return if there is unread input of
the specified type in the queue. It returns only when new input arrives.

For example, a thread can use MsgWaitForMultipleObjects with its
dwWakeMask parameter set to QS_KEY. This blocks its execution until the state
of a specified object has been set to signaled and there is keyboard input available
in the thread's input queue. The thread can use the GetMessage or PeekMessage
function to retrieve the input.

When waiting for the states of all objects to be setto signaled, the multiple-object
functions do not modify the states of the specified objects until the states of all
objects have been set to signaled. For example, the state of a mutex object can be
signaled, but the calling thread does not get ownership until the states of the other
objects specified in the array have also been set to signaled. In the meantime,
some other thread may get ownership of the mutex object, thereby setting its state
to nonsignaled.

The following code example shows the use of the MsgWaitForMultipleObjects
function in a message loop. The loop continues until a WM_QUIT message
appears in the queue. The dwWakeMask parameter is set to QS_ALLINPUT so
all messages are checked.

int MessageLoop
(

{

HANDLE* lphObjects,
int cObjects

whil e (TRUE)
{

II block-local variable
DWORD result
MSG msg ;

II handles that need to be waited on
II number of handles to wait on

while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE»
{

}

if (msg.message == WM_OUIT)
return 1;

DispatchMessage(&msg);

result = MsgWaitForMultipleObjects(cObjects, lphObjects,
FALSE, INFINITE, OS_ALLINPUT);

48 Windows CE Programmer's Guide

}

}

if (result == (WAIT_OBJECT_0 + cObjects»
{

}

else
{

}

continue;

Other Code (result - WAIT_OBJECT_0)

Be careful when using the wait functions and code that directly or indirectly
create windows. If a thread creates any windows, it must process messages.
Message broadcasts are sent to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Two
examples of code that indirectly create windows are DDE and COM Colnitialize.
If you have a thread that creates windows, use MsgWaitForMultipleObjects
rather than the other wait functions.

Using Synchronization Objects
A synchronization object is an object whose handle can be specified in one of
the wait functions. Windows CE uses event, mutex, and critical section objects
only for synchronization. Although it uses process and thread objects for
synchronization as well, they are available for other uses.

Event Objects
An event object is a synchronization object that allows one thread to notify
another that an event has occurred. A thread uses CreateEvent to create an event
object. The creating thread specifies the initial state of the object and whether it is
a manual-reset or auto-reset event object. The creating thread can also specify a
name for the event object. Threads in other processes can open a handle· of an
existing event object by specifying its name in a call to CreateEvent. For
additional information about names for mutex and event objects, see "Interprocess
Synchronization" later in this chapter. Windows CE uses event objects to tell a
thread when to perform its task or to indicate that a particular event has occurred.
For example, a thread that writes to a buffer resets the event object to signaled
when it has finished writing. By using an event object to notify the thread that its
task is finished, the thread can immediately start performing other tasks.

Chapter 3 Working with Processes and Threads 49

A single thread can specify different event objects in several simultaneous
overlapped operations. If this is the case, use one of the multiple-object wait
functions to wait for the state of anyone of the ° event objects to be signaled. You
can also use event objects in a number of situations to notify a waiting thread
of the occurrence of an event. For example, overlapped input/output (I/O)
operations on files, named pipes, and communications devices use an event
object to signal their completion. For more information about the use of event
objects in overlapped I/O operations, see "Synchronization and Device I/O"
later in the chapter.

In the following code example, an application uses event objects to prevent
several threads from reading from a shared memory buffer while a master thread
is writing to that buffer. The master thread uses the CreateEvent function to
create a manual-reset event object. It sets the event object to nonsignaled when it
is writing to the buffer and then resets the object to signaled when it has finished
writing. The master thread then creates several reader threads and an auto-reset
event object for each thread. Each reader thread sets its event object to signaled
when it is not reading from the buffer.

#define NUMTHREADS 4

HANDLE hGlobalWriteEvent;

void CreateEventsAndThreads(void)
{

HANDLE hReadEvents[NUMTHREADS]. hThread;
DWORD i. IDThread;

hGlobalWriteEvent = CreateEvent
(

NULL.
TRUE.
TRUE,
"WriteEvent"
) ;

if (hGlobalWriteEvent == NULL)
{

}

II no security attributes
II manual-reset event
II initial state is signaled
II object name

II error exit

50 Windows CE Programmer's Guide

}

for(i - 1; i <= NUMTHREADS; i++)
{

}

hReadEvents[i] - CreateEvent
(

NULL.
FALSE.
TRUE.
NULl) ;

if (hReadEvents[iJ ~ NULL)
{

}

II no security attributes
II auto-reset event
II initial state is signaled
II object not named

II error exit

hThread = CreateThread(NULL. 0.
(LPTHREAD_START_ROUTINE) ThreadFunction.
&hReadEvents[iJ. II pass event handle
0. &IDThread);

if (hThread -- NULL)
{

}
II error exit

In the following code example, before the master thread writes to the shared
buffer, it uses the ResetEvent function to set the state of hGlobalWriteEvent,
an application-defined global variable, to nonsignaled. This blocks the reader
threads from starting a read operation. The master thread then uses the
WaitForMultipleObjects function to wait for all reader threads to finish any
current read operations. When WaitForMultipleObjects returns, the master
thread can safely write to the buffer. Mter it has finished writing, it sets
hGlobalWriteEvent and all the reader-thread events to signaled, which enables
the reader threads to resume their read operations.

YOID WriteToBuffer(YOID)
{

DWORD dwWaitResult. i;

if (I ResetEvent(hGlobalWriteEvent))
{

II error exit
}

}

Chapter 3 Working with Processes and Threads 51

dwWaitResult = WaitForMultipleObjects
(

NUMTHREADS,
hReadEvents,
TRUE,
INFINITE) ;

switch (dwWaitResult)
{

case WAIT_OBJECT_0:

break;

default :

II number of handles in array
II array of read-event handles
II wait until all are signaled
II indefinite wait

II Write to the shared buffer.

II An error occurred.

printf("Wait error: %d\n", GetLastError(»;
ExitProcess(0) ;

}

if (1 SetEvent(hGlobalWriteEvent)
{

}

forti - 1; i <- NUMTHREADS; i++)
if (1 SetEvent(hReadEvents[i)
{

}

II error exit

II error exit

In the following code example, before starting a read operation, each reader
thread uses WaitForMultipleObjects to wait for the application-defined global
variable, hGlobalWriteEvent, and its own read event to be signaled. When
WaitForMultipleObjects returns, the reader thread's auto-reset event has been
reset to nonsignaled. This blocks the master thread from writing to the buffer
until the reader thread uses the SetEvent function to set the event's state back
to signaled.

52 WindowsCE Programmer's Guide

VOID ThreadFunction(LPVOID lpParam)
{

}

DWORD dwWaitResult, i:
HANDLE hEvents[2]:

hEvents[0] - (HANDLE) *lpParam: II thread's read event
hEvents[l] = hGlobalWriteEvent:

dwWaitResult - WaitForMultipleObjects
(

2,
hEvents,
TRUE,
INFINITE) :

switch (dwWaitResult)
{

case WAIT_OBJECT_0:
break:

default:

II number of handles in array
II array of event handles
II wait till all are signaled
II indefinite wait

II An error occurred.

printf("Wait error: %d\n", GetLastError(»:
ExitThread(0) :

}

if (! SetEvent(hEvents[0]))
{

}
/I error exit

Mutex Objects
A mutex object is a synchronization object whose state is set to signaled when it is
not owned by any thread, and nonsignaled when it is owned. Its name comes from
its usefulness in coordinating mutually-exclusive access to a shared resource.
Only one thread at a time can own a mutex object. For example, to prevent two
threads from writing to shared memory at the same time, each thread waits for
ownership of a mutex object before executing the code that accesses the memory.
After writing to the shared memory, the thread releases the mutex object.

Chapter 3 Working with Processes and Threads 53

A thread uses the CreateMutex function to create a mutex object. The creating
thread can request immediate ownership of the mutex object and can also specify
a name for the mutex object. Threads in other processes can open a handle to an
existing mutex object by specifying its name in a call to CreateMutex. For
additional information about names for mutex and event objects, see "Interprocess
Synchronization" later in this chapter.

Any thread with a handle of a mutex object can use one of the wait functions to
request ownership of the mutex object. If the mutex object is owned by another
thread, the wait function blocks the requesting thread until the owning thread
releases the mutex object using the ReleaseMutex function. The return value of
the wait function indicates whether the function returned for some reason other
than the state of the mutex being set to signaled.

Once a thread owns a mutex, it can specify the same mutex in repeated calls to
one of the wait functions without blocking its execution. This prevents a thread
from deadlocking itself while waiting for a mutex that it already owns. To release
its ownership under such circumstances, the thread must call ReleaseMutex once
for each time that the mutex satisfied the conditions of a wait function.

If a thread terminates without releasing its ownership of a mutex object, the mutex
object is considered to be abandoned. A waiting thread can acquire ownership of
an abandoned mutex object, but the wait function's return value indicates that the
mutex object is abandoned. To be safe, assume that an abandoned mutex object
indicates that an error has occurred and that any shared resource being protected
by the mutex object is in an undefined state. If the thread proceeds as though the
mutex object had not been abandoned, the object's abandoned flag is cleared
when the thread releases its ownership. This restores typical behavior, if a handle
to the mutex object is subsequently specified in a wait function.

In the following code examples, a process uses the CreateMutex function first to
create a named mutex object, and in the second piece of code, to open a handle of
an existing mutex object. Additionally, it uses structured exception-handling to
ensure that the thread properly releases the mutex object.

54 Windows CE Programmer's Guide

HANDLE hMutex:

hMutex - CreateMutex
(

NUll.
FALSE.
"MutexToProtectDatabase"):

II no security attributes
II initially not owned
II name of mutex

if (hMutex == NUll)
{

II Check for error.
}

When a thread of this process writes to the database, it first requests ownership of
the mutex. If it gets ownership, the thread writes to the database and then releases
its ownership.

The example uses the try-fmally structured exception-handling syntax to ensure
that the thread properly releases the mutex object. To prevent the mutex object
from being abandoned inadvertently, the tinally block of code is executed no
matter how the try block terminates-unless the try block includes a call to the
TerminateThread function.

BOOl FunctionToWriteToDatabase(HANDlE hMutex)
{

DWORD dwWaitResult:

dwWaitResult = WaitForSingleObject(
hMutex. II handle of mutex
5000l): II five-second time-out interval

switch (dwWaitResult)
{

case WAIT_OBJECT_0:
try
{

}

finally
{

II Write to the database.

if (I ReleaseMutex(hMutex»
{

}

break:
}

II Deal with error.

}

}

Chapter 3 Working with Processes and Threads 55

II Cannot get mutex ownership due to time-out.
case WAIT_TIMEOUT:

return FALSE;

II Got ownership of the abandoned mutex object.
case WAIT_ABANDONED:

return FALSE;

return TRUE;

Critical Section Objects
A critical section object is a synchronization object that provides synchronization
similar to that provided by mutex objects, except that critical section objects can
be used only by the threads of a single process. Like a mutex object, a critical
section object can be owned by only one thread at a time, which makes it useful
for protecting a shared resource from simultaneous access. There is no guarantee
about the order in which threads obtain ownership of the critical section; however,
Windows CE processes all threads equally.

A process is responsible for allocating the memory used by a critical section.
Typically, this is done by declaring a variable of the type CRITICAL_SECTION.
Before the threads of the process can use it, you must initialize the critical section
by using the InitializeCriticalSection function.

A thread uses EnterCriticalSection to request ownership of a critical section and
it uses the LeaveCriticalSection function to release ownership. If the critical
section object is currently owned by another thread, EnterCriticalSection waits
indefinitely for ownership. In contrast, when a mutex object is used for mutual
exclusion, the wait functions accept a specified time-out interval.

Once a thread owns a critical section, it can make additional calls to
EnterCriticalSection without blocking its execution. This prevents a thread from
deadlocking itself while waiting for a critical section that it already owns. To
release its ownership, the thread must call LeaveCriticalSection once for each
time that it entered the critical section.

Any thread of the process can use the DeleteCriticalSection function to release
the system resources that were allocated when the critical section object was
initialized. After this function has been called, the critical section object can no
longer be used for synchronization.

56 Windows CE Programmer's Guide

When a critical section object is owned, the only other threads affected are those
waiting for ownership in a call to EnterCriticalSection. Threads that are not
waiting are free to continue running.

The following code example shows how a thread initializes, enters, and leaves a
critical section. As with the mutex example described earlier, this example uses
the try-rmally structured exception-handling syntax to ensure that the thread
calls the LeaveCriticalSection function to release its ownership of the critical
section object.

CRITICAL_SECTION GlobalCriticalSection;

InitializeCriticalSection(&GlobalCriticalSection);

{

EnterCriticalSection(&GlobalCriticalSection);
II Access the shared resource.

}

finally
{

II Release ownership of the critical section.
LeaveCriticalSection(&GlobalCriticalSection);

}

Interprocess Synchronization
Because multiple processes can have handles to the same event or mutex object,
these objects can be used to accomplish interprocess synchronization. The process
that creates an object can use the handle returned by the creation function,
CreateEvent or CreateMutex. Other processes can open a handle to the object
by using its name in another call to the appropriate creation function.

Named objects provide an easy way for processes to share object handles. The
name specified by the creating process is limited to the number of characters
defined by MAX_PATH. It can include any character except the backslash path­
separator character (\). Once a process has created a named event or mutex object,
other processes can use the name to call the appropriate function, either
CreateEvent or CreateMutex, to open a handle to the object. Name comparison
is case-sensitive.

The names of event and mutex objects share the same name space. If you specify
a name that is in use by an object of another type when you create an object, the
function succeeds, but GetLastError returns ERROR_ALREADY _EXISTS. To
avoid this error, use unique names and be sure to check function-return values for
duplicate-name errors.

Chapter 3 Working with Processes and Threads 57

If the name specified in a call to CreateEvent matches the name of an existing
event object, the function returns the handle of the existing object. When using
this technique for event objects, however, none of the calling processes should
request immediate ownership of the event. If multiple processes do request
immediate ownership, you may have difficulty predicting which process will
get the initial ownership.

The following code examples illustrate the use of object names by creating
and opening named objects. The first process uses the CreateMutex function
to create the mutex object. Note that the function succeeds even if there is an
existing object with the same name.

HANDLE hMutex;
DWORD dwErr;

hMutex = CreateMutex
(

NULL,
FALSE,
"NameOfMutexObject");

if (hMutex == NULL)

II no security descriptor
II mutex not owned
II object name

printf("CreateMutex error: %d\n", GetLastError());
else

if (GetLastError() == ERROR_ALREADY_EXISTS)
printf("CreateMutex opened existing mutex\n");

else
printf("CreateMutex created new mutex\n");

The second process uses the CreateMutex function to open a handle of the
existing mutex.

HANDLE hMutex;

hMutex = OpenMutex
(

MUTEX_ALL_ACCESS,
FALSE,
"NameOfMutexObject");

if (hMutex == NULL)

II request full access
II handle not inheritable
II object name

printf("OpenMutex error: %d\n", GetLastError());

58 Windows CE Programmer's Guide

Synchronization and Device 1/0
Windows CE supports both synchronous and asynchronous 110 operations
on files and serial communications devices. The WriteFile, ReadFile, and
WaitCommEvent functions can be performed either synchronously
or asynchronously.

When a function is executed synchronously, it does not return until the operation
has been completed. This means that the execution of the calling thread can be
blocked for an indefinite period while it waits for a time-consuming operation to
finish. Functions called for overlapped operation can return immediately, even
though the operation has not been completed. This enables a time-consuming 110
operation to be executed in the background while the calling thread is free to
perform other tasks. For example, a single thread can perform simultaneous 110
operations on different handles, or even simultaneous read-and-write operations
on the same handle.

Windows CE does not support the overlapped 110 features of Windows NT. The
lpOverlapped parameter to ReadFile or WriteFile must be NULL. Therefore,
Windows CE cannot signal the event passed in when the 110 operation is
completed. However, Windows CE does support simultaneous synchronous or
asynchronous calls to ReadFile or WriteFile made by separate threads that are
overlapped in time; this is not supported in Windows NT.

Synchronizing Access to a Shared Variable
The functions InterlockedDecrement, InterlockedExchange, and
Interlockedlncrement provide a simple mechanism for synchronizing access to a
variable that is shared by mUltiple threads. The threads of different processes can
use this mechanism, if the variable is in shared memory.

The Interlockedlncrement and InterlockedDecrement functions combine the
operations of incrementing or decrementing the shared variable and checking
the resulting value. This atomic operation is useful in a multitasking operating
system, in which the system can interrupt one thread's execution to grant a slice
of processor time to another thread. Without such synchronization, one thread
could increment a variable, but be interrupted by the system before it can check
the resulting value of the variable. A second thread could then increment the same
variable. In this scenario, when the first thread receives its next time slice, it
checks the value of the variable, which has now been incremented not once, but
twice. The interlocked variable-access functions of Windows CE protect· against
this kind of error. The InterlockedExchange function atomically exchanges the
values ofthe specified variables.

CHAPTER 4

Accessing Persistent Storage

The persistent storage that Windows CE makes available to applications is
called the object store. This is the part of memory that is not used for the
operating system.

The object store is used for the following purposes:

• Registry entries

The registry is a hierarchical database in which Windows CE stores
information necessary to configure the operating system. It contains
information on user profiles, applications, hardware, ports in use, and so on.
The registry replaces most of the text-based initialization (.ini) files used in
MS-DOS and Windows 3.x configuration files, such as AUTOEXEC.BAT
and CONFIG.SYS.

59

Specific registry locations are described in various chapters of the Windows
CE Programmer's Guide. An example of a registry location used for
synchronization is HKEY _LOCAL_MACHINE\Software\Microsoft\ Windows
CE Services\ Services\Synchronization\Objects.

Windows CE supports a subset of the Win32 registry functions. The
differences between the Windows CE functions and their Win32 counterparts
are minimal. The main difference is that Windows CE assigns a default
security descriptor to keys, so the parameter for security attributes in
RegCreateKeyEx should be set to NULL. For a list of the supported
functions, see the appendix "Lists of Functions and Interfaces."

• Files

The file system functions available to Windows CE-based applications are
those supported by the Windows CE kernel. Note that the C Runtime library
does not include any file access functions, such as fopen, fread, and fprintf.
The following discussion highlights specific points concerning the Windows
CE file system functions. For a list of the file system functions, see the
appendix "Lists of Functions and Interfaces."

60 Windows CE Programmer's Guide

CreateFile opens existing files as well as creates new files. Windows CE does
not support simultaneous read/write operations; thus, files cannot be created
with the overlapped attribute set. To write to a file in the equivalent of append
mode, call CreateFile and SetFilePointer. To overwrite the contents of a file,
call CreateFile and SetEndOfFile. ReadFile does not support asynchronous
reads nor does it support reads through a socket. WriteFile does not support
asynchronous writes, and, unlike MS-DOS, Windows CE interprets zero bytes
as a null write. To truncate or extend files, use SetEndOfFile.

A ROM file is a file stored on a device as read-only memory, for example,
flash memory or PC Cards. A ROM file is an option for dealing with the
memory limitations of a Windows CE-based platform. The GetFileAttributes
function has additional return values for files stored in ROM. The
FILE_ATTRIBUTE_INROM value identifies the file as read-only. The
FILE_ATTRIBUTE_ROMMODULE value indicates that the file is designed
to be executed in place, without first being copied to RAM. The CreateFile
function cannot be used to access this type of file; the LoadLibrary and
CreateProcess functions must be used instead.

• Windows CE databases

The rest of this chapter discusses Windows CE databases and the functions
which relate to them. For a list of the Windows CE database functions, see
the appendix "Lists of Functions and Interfaces."

Object Identifiers
Each object in the object store-whether a directory, file, database, or database
record-is associated with a unique object identifier. The system generates an
object identifier for each object when it is created. The most common use of
object identifiers is accessing databases and their records.

Object type

Directory or file

Database

Database record

Where to obtain the object identifier

The dwOID member of WIN32_FIND_DATA W from
FindFirstFile or FindNextFile.

The dwOID member of
BY _HANDLE_FILE_INFORMATION from
GetFileInformationByHandle.

Return value of CeCreateDatabase or
CeFindNextDatabase.

Return value of CeSeekDatabase,
CeReadRecordProps, or Ce WriteRecordProps.

Chapter 4 Accessing Persistent Storage 61

Another important use of object identifiers is to obtain information on any object
in the store. To accomplish this, a Windows CE-based application calls the
CeOidGetInfo function and supplies the object identifier in the parameter of type
CEOID. CeOidGetInfo returns the object data in a CEOIDINFO structure. This
structure's wObjType member contains a flag that indicates the object type. The
data in the structure depends on the type of object. For example, if the object is a
database record, the CEOIDINFO structure's wObjType member contains the
flag OBJTYPE_RECORD, indicating that the data for the object consists of a
CERECORDINFO structure. If there is no valid object for the object identifier
the return value of CeOidGetInfo is FALSE.

The following code example shows how to use the object identifier to obtain the
object type of any object in the object store.

CEOID WceObjID;
CEOIDINFO WceObjInfo;
TCHAR szMsg[MAX_STRING];

II object identifier
II structure that contains object info
II string to display with object info

if (CeOidGetInfo(WceObjID, &WceObjInfo»
{

}

switch (WceObjInfo.wObjType)
{

}

case OBJTYPE_FILE:
wsprintf(szMsg, TEXT("Object is a file: %s"),

WceObjInfo.infFile.szFileName);
break;

case OBJTYPE_RECORD:
wsprintf(szMsg, TEXT("Object is a record"»;
break;

case OBJTYPE_DATABASE:
wsprintf(szMsg, TEXT("Object is a database: %s"),

WceObjInfo.infDatabase.szDbaseName);
break;

case OBJTYPE_DIRECTORY:
wsprintf(szMsg, TEXT("Object is a directory: %s"),

WceObjInfo.infDirectory.szDirName);
break;

default:
II handle error
break;

62 Windows CE Programmer's Guide

Working with Windows CE Databases
A Windows CE database is simply a general-purpose, flexible, structured
collection of data. A Windows CE database consists of records, where each
record consists of one or more properties. A property refers to a data item that
consists of a property identifer, a data type identifier, and the data value. For
example, an application could use a database of address records, where the
properties of each record include a name, street address, city, state, zip code,
and telephone number. Windows CE supports integer, string, time, and byte
array, or BLOB, data types.

Devices that run the Windows CE operating system usually ship with several
built-in databases and allow users and applications to create additional databases.
For example; the Handheld PC (H/PC) comes with calendar and task list
applications that have databases for user data.

Note that databases allow only one level of hierarchy. That is, records cannot
contain other records. Nor can records be shared by databases--each record
is unique, has a unique object identifier, and is present in only one database.
The recommended maximum size of a record in bytes is given by the constant
CEDB_MAXRECORDSIZE. The recommended maximum property size is
given by CEDB_MAXPROPDATASIZE. Both of these constants are defined
in Rapi.h and Windbase.h.

Unlike traditional databases, opening and closing a Windows CE database does
not imply that any transactioning has occurred. The database is not committed at
closing, but rather it is committed after each individual call.

It is not possible to lock a Windows CE database to restrict access. Thus, several
applications can have open handles to the same database at the same time.
However, Windows CE supports several notification messages that can tell an
application when another application creates, modifies, or deletes database
records. The messages are sent to the specified window when you call
CeOpenDatabase and supply a non-null window handle.

Windows CE supports the following messages:

Message Description

Another thread modified an object in the
object store. The message supplies the object
identifier.

Another thread created an object in the object
store. The message supplies the object
identifier.

Another thread deleted a record. The message
supplies the record's object identifier.

Chapter 4 Accessing Persistent Storage 63

Each database includes information about the database as a whole, such as its
name, an optional database type identifier that you can use to group similar
databases, and up to four sort keys that describe how the records in the database
will be sorted.

Creating and Deleting Databases
The CeCreateDatabase function creates a database. When calling the function,
specify the name, an optional database type identifier, and optional sort order
specifications. CeCreateDatabase returns the object identifier of the newly
created database.

The database type identifier is an optional, application-defined value that allows
you to differentiate individual databases. For example, you can have a different
type of database for an address book than for a to-do list. The type identifier
allows you to group related databases for searching, record management, and
enumeration of databases.

For a discussion of sorting and sort orders, see "Sorting Records" later in
this chapter.

To delete a database, the application passes the database's object identifier
to CeDeleteDatabase.

The following code example shows how to open a database of addresses by
calling the CeOpenDatabase function. If the database does not exist, call
the CeCreateDatabase function to create a new address database with three
different sort orders. After creating the database, try again to open the database.

II Global variables:
II 9_oidAddressDatabase - Object identifier of address database
II 9_hAddressDatabase - Open handle to the address database

BOOL OpenAddressDatabase (HWND hwndNotify. CEPROPID cepidSortProperty)
{

CEOID oidAddressDatabase; II Object identifier of address database
SORTORDERSPEC sort[MAX_MSG_PROPERTIES]; II Sort order descriptions

9_hAddressDatabase - CeOpenDatabase(&oidAddressDatabase.
TEXT("Addresses"). cepidSortProperty. 0. hwndNotify);

if (9_hAddressDatabase == INVALID_HANDLE_VALUE)
{

64 Windows CE Programmer's Guide

sort[0].propid - HHPR_LAST_NAME;
sort[0].dwFlags - 0; /I sort in ascending
sort[l].propid = HHPR_CITY;
sort[l].dwFlags = 0; /I sort in ascending
sort[2].propid - HHPR_STATE;
sort[2].dwFlags - 0; /I sort in ascending

g_oidDatabase - CeCreateDatabase(TEXT("Addresses"), 0,
MAX_MSG_PROPERTIES, sort);

order

order

order

g_hAddressDatabase - CeOpenDatabase(&oidAddressDatabase, NULL,
cepidSortProperty, 0,

}

NULL) ;
}

if (!g_hAddressDatabase)
return FALSE;

return TRUE;

Getting Information About a Database
Each database in the object store contains information about that database
as a whole, including its name, type identifier, and sort order specifications.
This information is defined in the CEDBASEINFO structure through the
CeCreateDatabase and CeSetDatabaselnfo functions. As discussed earlier,
this information can be accessed using CeOidGetlnfo.

The database name is a null-terminated string that contains up to 32 characters.
The type identifier is a double-word value that can be used for any application­
defined purpose, typically to differentiate one type of database from another while
enumerating them. The sort order specification determines the order in which the
database seek functions examine the records in a database.

Enumerating Databases
Enumerating databases is the process of sequentially accessing each database in a
group. The group can either include all databases in the object store or orily those
of a specified type. Enumeration can be used when a change needs to be made to
all databases of a certain type, or when synchronizing data between the desktop
computer and the Windows CE-based device.

Chapter 4 Accessing Persistent Storage 65

To enumerate databases, call the CeFindFirstDatabase and
CeFindNextDatabase functions.

CeFindFirstDatabase establishes and returns a handle to the enumeration context
for the type identifier specified. If the type identifier was zero, the context will
include all the databases. Note that CeFindFirstDatabase does not give the
object identifier for the first database. Use the handle to the enumeration
context to call CeFindNextDatabase repeatedly to obtain the object identifiers
for each database in turn. When there are no more databases of that type,
CeFindNextDatabase returns the value zero. To ensure that there was no
problem with the enumeration, call GetLastError and check for the
ERROR_NO_MORE_ITEMS value.

When the application is finished enumerating databases, it must close the handle
to the enumeration context by using the CloseHandle function.

The following code example enumerates all databases in the object store and adds
their names to a combo box.

HANDLE hEnumDB; II handle to a database enumerator
TCHAR szBuf[MAX_BUF];
HWND hCBl;

II tmp string for combobox or message box
II combo box; value set by calling GetDlgItem

hEnumDB - CeFindFirstDatabase(0);
if (INVALID_HANDLE_VALUE =- hEnumDB)
{

return;
}

II error handling omitted ... uses GetlastError()
II continue only if FindFirst succeeds

while((WceObjID = CeFindNextDatabase(hEnumDB» != 0)
{

if (!CeOidGetInfo(WceObjID. &WceObjInfo))
{

CloseHandle(hEnumDB);
II error handling omitted ... uses GetlastError()

return; II continue only if FindNext succeeds
}

else
{

}

wsprintf(szBuf. WceObjInfo.infDatabase.szDbaseName);
SendMessage(hCB1. CB_ADDSTRING. 0. lPARAM(szBuf»;

}

CloseHandle(hEnumDB);

66 Windows CE Programmer's Guide

Opening a Database
Before accessing records or properties in a database, you must obtain a handle
to the database by calling the CeOpenDatabase function. Specify either the
database name or its object identifier. The CeOpenDatabase function returns
an open database handle that you can use in subsequent calls for reading or
modifying the database. When you finish using the database, close the handle
by calling the CloseHandle function.

Use the CEDB_AUTOINCREMENT flag when calling CeOpenDatabase to
increase performance when reading many properties. This flag directs the system
to automatically increment the seek pointer every time you access a database
property with the CeReadRecordProps function. The seek pointer marks the
record that will be read by the next read operation.

When calling CeOpenDatabase, you can specify the identifier of a property to
use as the sort order for the database. The system uses the sort order to increment
the seek pointer after each subsequent call to CeReadRecordProps, if the
CEDB_AUTOINCREMENT flag is specified. The sort order also determines
the property that the CeSeekDatabase function uses to traverse the database.

The following code example demonstrates the call to CeOpenDatabase.

CEOID objId; II database ID
TCHAR szDbName[MAX_SIZE];
HANDLE hDb;

II contains the database name
II handle to the database

hDb ~ CeOpenDatabase(&objId, II tmp location for the database id
szDbName, II database name
0, II sort order; 0 indicates ignore
CEDB_AUTOINCREMENT, II flags
NULL); II window handle for notifications

II perform error checking on hDb handle before continuing ...
II perform other operations on the database, then close it
CloseHandle(hDb);

For more information about sort order, see "Sorting Records" later in this chapter.
For more information about moving the seek pointer, see "Searching for Records"
later in this chapter.

Working with Database Records
You use several functions to work with database records. These functions allow
you to create, modify, and delete records and their properties.

Chapter 4 Accessing Persistent Storage 67

You can create new records or modify existing records using the
CeWriteRecordProps function. The function parameters include the handle to
the database and the object identifier of the record to add. If the object identifier
is zero, CeWriteRecordProps creates a new record.

To write properties to a record, fill an array of CEPROPV AL structures and pass
the address of the array to CeWriteRecordProps along with the database handle
and the record's object identifier. Each structure contains a property identifier and
the data value for that property. To specify the data value, fill the val member,
which is defined as a CEV ALUNION union. The CEPROPV AL structure also
includes a flag member that you can set to CEDB_PROPDELETE in order to
delete the specified property or properties. If the CeWriteRecordProps function
succeeds, the object identifier of the new or modified record is returned.

Use the CeDeleteRecord function to delete a record from a database, supplying
the object identifier of the record and the handle to the open database that
contains the record.

The following code example creates and writes a new property that is a byte array,
or BLOB.

CEPROPVAL NewProp;
CEBLOB blob;
BYTE * pBuf - NULL;
UINT cbBuf;

II the new property contains a BLOB
II the BLOB contains a byte array
II the actual BLOB data
II count of bytes needed in BLOB

II figure out the size needed. then allocate it
pBuf - (BYTE *) LocalAlloc(LMEM_FIXED. cbBuf);

II put the actual data into pBuf here ...

II now set up to write the new BLOB property
NewProp.propid = CEVT_BLOB;
NewProp.wFlags = 0;
blob.dwCount - cbBuf; II count of bytes in the buffer
blob.lpb = pBuf; II set CEBLOB field to point to buffer
NewProp.val.blob - blob; II BLOB itself points to the buffer
oid = CeWriteRecordProps(hDb.

0. II new record
1. II one property
&NewProp); II pointer to the BLOB property

II perform error handling by checking oid ...

Write a record into a database by filling an array of CEPROPV AL structures
and passing the array to the CeWriteRecordProps function, along with an open
handle to the database in which to add the record. The following code example
shows how to add a record to a database.

68 Windows CE Programmer's Guide

II SetAddressData - Adds a name and address to an address database in
II
II
II
II
II

the object store.
Returns the object identifier of the record in which the name and

address are written.
pAddressData - Pointer to a structure that contains the name and

address to add

II Global variable:
II g_hAddressDatabase - Open handle to the address database

CEOID SetAddressData(PADDRESSDATA pAddressData)
{

CEPROPVAL rgPropVal[ADDRESS_PROP_COUNT];
WORD wCurrent = 0;

II Use a C runti me functi on to zero- fi 11 the a rray of property
II values.

}

memset(&rgPropVal, 0, sizeof(CEPROPVAL) * ADDRESS_PROP_COUNT);

rgPropVal[wCurrent].propid = HHPR_NAME;
rgPropVal[wCurrent++].val.lpwstr - pAddressData->pwszName;

rgPropVal[wCurrent].propid = HHPR_STREET;
rgPropVal[wCurrent++].val.lpwstr - pAddressData->pwszStreet;

rgPropVal[wCurrent].propid - HHPR_CITY;
rgPropVal[wCurrent++].val.lpwstr - pAddressData->pwszCity;

rgPropVal[wCurrent].propid = HHPR_STATE;
rgPropVal[wCurrent++].val.lpwstr = pAddressData->pwszState;

rgPropVal[wCurrent].propid - HHPR_ZIP_CODE;
rgPropVal[wCurrent++].val.ulVal - pAddressData->dwZip;

oid = CeWriteRecordProps(g_hAddressDatabase, 0, wCurrent,
rgPropVal);

return oid;

Reading Records and Properties
After opening a Windows CE database, the. seek pointer is positioned at the first
record according to the selected sort order.

Chapter 4 Accessing Persistent Storage 69

The CeReadRecordProps function reads properties from the record where
the seek pointer is currently positioned. When calling CeReadRecordProps,
indicate the properties to be read by specifying an array of property identifiers.
Also specify the buffer into which the function is to write the property
information, and a value indicating the size of the buffer. If you specify the
CEDB_ALLOWREALLOC flag, the system will reallocate the buffer if it is too
small to hold the property information. Note that the system stores records in
compressed format and must decompress records as they are read. For efficiency,
you should read all of the desired properties in a single call rather than in several
separate calls.

When the property is read successfully, the property information is copied into the
specified buffer as an array of CEPROPV AL structures, and the function returns
the record's object identifier.

If the system cannot find a requested property in the specified
record, the CEPROPV AL structure for that property receives the
CEDB_PROPNOTFOUND flag. All of the variable size data, such
as strings and BLOBs, are copied to the end of the buffer. The
CEPROPV AL structures contain pointers to this data.

If you specified the CEDB_AUTOINCREMENT flag when opening the database,
CeReadRecordProps increments the seek pointer.

The following code example demonstrates how to read properties from the
database using the autoincrement and reallocation flags.

CEOID objId;
HANDLE hDb;
WORD cProps;
LPBYTE pBuf = NULL;
DWORD cbBuf;

II object identifier; use for db. each record
II handle to the database
II count of properties returned by Read operation
II no init size; let CeReadRecordProps realloc
II count of bytes in buffer

hDb = CeOpenDatabase(&objId. II tmp location for the database id
szDbName. II database name
0. II sort order; 0 indicates ignore
CEDB_AUTOINCREMENT.
NULL); II window handle for notifications

II perform error checking on hDb handle before continuing ...
while (objld = CeReadRecordProps(hDb.

CEDB_ALLOWREALLOC.
&cProps. II return count of properties
NULL. II retrieve all properties
&pBuf. II buffer to return prop data
&cbBuf» II count of bytes in pBufl

{ II record is now available in pBufl
II add code here to manipulate the props in this record
}

70 Windows CE Programmer's Guide

II at this paint. all records have been read from the database
CloseHandle(hDb);

Sorting Records
When creating a new database, you can specify up to four sort order descriptions
to associate with the database. A sort order description is a SORTORDERSPEC
structure that contains the identifier of a property on which the database records
are to be sorted. The structure also includes a combination of flags that indicate
whether to sort the records in ascending or descending order, whether the sort is
case-sensitive, and whether to place records that do not contain the specified
property before or after all other records. By default, sorting is done in descending
order and is case-sensitive. Records not containing a specified property are placed
at the end of all other records.

Note Sorts on binary properties are not allowed.

Because sort orders increase the amount of time and system resources needed to
perform each insertion or deletion, it is best to use the minimum number of sort
orders for an application. However, do not use too few. While it is possible to use
CeSetDataBaseInfo to reorder the database, this process is even more expensive
in terms of time and system resources. It could take several minutes to reorder a
large database.

Typically, each record in a database contains a similar set of properties, and each
type of property shares the same property identifier. For example, each record in a
Contacts database might contain a name, street address, city, state, zip code, and
telephone number. Each name property would have the same property identifier,
each street address property would have the same property identifier, and so on.
You can select one of these properties and direct the system to sort the records
based on it. The order in which the records are sorted affects the order in which
the database-seeking function CeSeekDatabase finds records in the database.

You specify the sort order when you call the CeOpenDatabase function. Only
one sort order can be active for each open handle. However, by opening multiple
handles to the same database, you can use more than one sort order.

Note Multiple sort orders cannot be specified for a single property.

Chapter 4 Accessing Persistent Storage 71

Searching for Records
Use the CeSeekDatabase function to search for a record in a database. The
CeSeekDatabase function always uses the current sort order as specified in the
call to CeOpenDatabase. If the CEDB_AUTOINCREMENT flag was specified,
each read operation on the database will automatically increment the seek pointer
from the current position to the next position.

The CeSeekDatabase function can perform different types of seek operations.
When calling the function, you specify a flag that indicates the type of seek
operation, and a value whose meaning depends on the specified flag. For example,
to find a particUlar record, you specify the CEDB_SEEK_CEOID flag and the
object identifier of the desired record. When CeSeekDatabase finds a record, the
seek pointer is positioned at that record. Any subsequent read operation takes
place at the location of the seek pointer.

Note A seek can only be performed on a sorted property value.

Seek operations are affected by the sort order associated with the open database
handle. For example, suppose the Contacts database was opened using a sort on
the name property. If you specify the CEDB_SEEK_ V ALUEFIRSTEQUAL flag
and a value of "Joe Smith," the CeSeekDatabase function will search from the
beginning of the database looking only at the name property of each record,
stopping when, and if, a matching property is found.

You can change the sort order that was set when the database was created by
using the CeSetDatabaselnfo function, but this is not usually advised. The
system maintains a set of indexes and other information that it uses to optimize
database searches for the specified sort orders. When new sort orders are
specified, the system must revise all of that internal information, which can take
several minutes for large databases. The following code example demonstrates a
call to CeSeekDatabase.

72 Windows CE Programmer's Guide

CEOID oid. oidSeek;
DWORD dwIndex;

II Object identifier of record soughtlreturned
II Index of record seeked to

II set value of oidSeek appropriately ...
II actual set operation omitted from this fragment
II Perform the seek
oid - CeSeekDatabase(hDb.

if (!oid)

CEDB_SEEK_CEOID. II request a seek operation
oidSeek. II specifies the record to seek
&dwIndex); lion success. index to the record

II error handling goes here; omitted from this fragment ...
II Continues at this point only if record found
II After finding the record. read it and get its data
oid = CeReadRecordProps(hDb. CEDB_ALLOWREALLOC.

&wCount. NULL. &lpBuffer. &wSize);

The following code example shows how to find a record in a database and
read its properties into a buffer. The function GetAddressData takes two
parameters: the object identifier of a record and a pointer to an application­
defined ADDRESSDATA structure that receives the record's property data.
First, the GetAddressData function allocates a temporary buffer for the property
data, and then it calls the CeSeekDatabase function to find the record that has
the specified object identifier. If the record is found, the CeReadRecordProps
function reads the property data into the temporary buffer. Finally, the property
data is copied from the temporary buffer into the application-defined
ADDRESSDATA structure.

II GetAddressData - Retrieves the contents of an address record
II Returns a code that indicates the result of the function
II pAddressData - Pointer to an application-defined ADDRESS DATA
II structure that receives the data from the address record
II
II Global variable:
II g_hAddressDatabase - Open handle to the address database

ECODE GetAddressData(CEOID oidSeek. PADDRESSDATA pAddressData)
{

LPBYTE lpBuffer; II Buffer for address record
WORD wSize - 1024; II Size of buffer
CEOID oid; II Object identifier of record found
DWORD dwIndex; II Index of record seeked to
WORD wCount; II Number of properties in record
i nt i; II Loop counter
CEPROPID propid; II Property identifier
WORD wLength; II String length
ECODE ec = EC_SUCCESS; II Error/success code

or read

Chapter 4 Accessing Persistent Storage 73

lpBuffer = (LPBYTE) LocalAlloc(LMEM_FIXED, wSize):
if (! 1 pBuffer)

return EC_OUTOFMEMORY:

oid = CeSeekDatabase(g_hAddressDatabase, CEDB_SEEK_CEOID,
oidSeek, &dwIndex):

if (!oid)
return EC_SEEK_FAILURE:

oid = CeReadRecordProps(g_hAddressDatabase, CEDB_ALLOWREALLOC,
&wCount, NULL, &lpBuffer, &wSize):

if (!oid)
return EC_READ_FAILURE:

for (i = 0: i < wCount: i++
{

propid - «CEPROPVAL*) lpBuffer)[i].propid:

switch (propid)
{

case HHPR_NAME:
{

TCHAR* pData:

wLength =

II Copy the addressee's name.

lstrlen«(CEPROPVAL*) lpBuffer)[i].val.lpwstr):
pData - (TCHAR*) LocalAlloc(LMEM_FIXED,

wLength * sizeof(TCHAR) + 1):
If (pData)
{

lstrcpy(pData,
«CEPROPVAL*) lpBuffer)[iJ.val.lpwstr):

pAddressData->pwszName = pData:
}

else
{

}

}

break:

ec - EC_OUTOFMEMORY:

case HHPR_STREET:
{

74 Windows CE Programmer's Guide

}

}

}

II Copy the addressee's street address.
TCHAR* pData;

wLength -
lstrlen«(CEPROPVAL*)lpBuffer)[i].val.lpwstr);

pData ~ (TCHAR*) LocalAlloc(LMEM_FIXED,
wLength * sizeof(TCHAR) + I, FALSE);

if (pData)
{

lstrcpy(pData,
«CEPROPVAL*) lpBuffer)[i].val.lpwstr);

pTaskData->pwszDescription - pData;
}

else
{

ec = EC_OUTOFMEMORY;
}

}

break;

default:
break;

II Copy the remalnlng record properties to
II the ADDRESSDATA structure.

if (ec 1- EC_SUCCESS)
break;

if (lpBuffer)
LocalFree(lpBuffer);

return ec;

75

CHAPTER 5

Using Communications

Windows CE supports a wide range of communications options for transmitting
and receiving data. You can use communications for a variety of tasks, including:

• Downloading files from a desktop computer or network

• Exchanging information with another Windows CE-based device

• Sending and receiving e-mail

• Sending data to a server

• Browsing the Internet

• Reading bar codes

To support the many different types of communication, Windows CE-based
devices can include a variety of hardware. Some hardware may be an integral part
of the device. For example, many Windows CE-based devices include a connector
for a serial cable or an infrared (IR) transceiver. If a PC Card slot is available,
users can also extend the built-in capabilities of the device with third-party
communications hardware, such as a modem or a bar code reader. Available
communications hardware includes:

• Serial cables

• IR transceivers

• Wireless transceivers

• Modems

• Bar code readers

Windows CE supports two basic types of communications technology: serial and
network. While some hardware can support only one type, the same hardware is
often used for both. Which type of communication is appropriate is governed in
large part by how the communicating devices are connected.

76 Windows CE Programmer's Guide

You can use serial communications when two devices have a one-to-one
connection. Each sender has only one possible receiver, and vice versa. A
common example is two devices connected by a serial cable. Because there
is no ambiguity about where the data is from and where it is going, it can be
streamed from one device to the other with little or no processing. Examples
of serial communications include:

• Transferring information from a desktop computer to a Windows CE-based
device by means of a serial cable

• Sending text to a printer using an IR transceiver

With networks, every transmission is usually seen by many receivers, whether
or not they are the intended recipient. For one-to-one communication to take
place over a network, simply streaming the information will not work. Each
transmission must also include addresses that identify the sender and the intended
recipient. A receiver can thus monitor the network and pick out only those
transmissions that are addressed to it. It can then use the senders address to
respond. The Windows CE network stack handles addressing and related tasks.
You use a network for such tasks as:

• Downloading a file from a corporate local area network to a
Windows CE-based device

• Browsing the Internet using a modem connection to an independent
service provider

• Sending e-mail when you are away from home using a wireless service

Serial Communications
Serial communication requires a one-to-one connection between transmitter and
receiver, typically by way of a serial cable. IR transceiver modems are also used
for serial communications.

From the standpoint of software, each serial device is identified by its COM port
name, for example, "COMI:" and "COM2:." The COM-port assignments are
stored in the registry under \HKEY _LOCAL_MACHINE\Drivers. Because they
may be installable, check \HKEY _LOCAL_MACHINE\Active to see which
drivers are loaded.

Serial communication over a COM port is similar to reading from, or writing
to, a file, and it uses some of the same functions. Regardless of the hardware,
the basic procedure works as described in the next section, "Implementing
Serial Communications."

Chapter 5 Using Communications 77

Using IR transceivers is more complex. Windows CE supports two ways to use
an IR transceiver for serial communications. One approach supported by some
Windows CE-based devices treats the IR transceiver like a serial cable. The data
is not processed by the system in any way. The sending and receiving applications
are responsible for dealing with collision-detection and other potential problems.
This approach is referred to as raw infrared, or raw JR.

The COM port assigned to raw IR is determined by the original equipment
manufacturer (OEM) and is listed in the registry. Because it may share a port
assignment with a wired serial connector, you should check the registry. If the
port is shared, you must use EscapeCommFunction to set the port to IR mode.

A second approach to serial IR communications uses the Infrared Data
Association (IrDA) protocols. These protocols are part of the network
stack, and are discussed in "Infrared Sockets" later in this chapter. To simplify
their use for serial communications, Windows CE provides an emulator
(IrComm), that enables an application to communicate using the IrDA protocols
in much the same way it does with raw IR.

From a programming standpoint, the main difference between raw IR and
IrComm is that they have different COM-port assignments. With IrComm,
there is also no need to explicitly configure the port for IR by calling
EscapeCommFunction.

Implementing Serial Communications
This procedure outlines how to implement serial communications in an
application. With the exception of step 3, the procedure is identical for
all three approaches.

~ To use serial communications

1. Determine which COM port you need to open.

Port numbers are stored in the \HKEY _LOCAL_MACHINE\Drivers registry
key. Active drivers are listed in the \HKEY_LOCAL_MACHINE\Active
registry key.

2. Call CreateFile with lpFileName set to the COM-port name, for
example,"COMl :."

The colon (:) is part of the port name and must be included. Set the
lpSecurityAttributes parameter to NULL and the dwFlagsAndAttributes
parameter to zero.

3. For raw IR transmission, place the port in IR mode by calling.
EscapeCommFunction with hFile set to the handle returned
by CreateFile and dw Func set to SETIR.

4. Call SetCommTimeouts to set the communication timeouts.

78 Windows CE Programmer's Guide

5. Call the ReadFile and WriteFile functions to transmit and receive serial data.

When one thread is waiting for a ReadFile function to return, ReadFile calls
issued by other threads are blocked until the initial ReadFile call returns. The
same is true for the WriteFile function.

6. Call CloseHandle to close the serial port.

Using a Modem
An application that uses a modem must be able to handle such tasks as dialing the
appropriate phone number and breaking the connection when the session is over.
To simplify the process of using a modem, Windows CE supports a subset of the
Microsoft telephony application programming interface (TAPI), which handles
only outbound calls. T API provides a set of functions that applications can use
to handle the process of making and managing a modem connection, but not the
actual transfer of data.

.. To make a modem connection using TAPI

1. Call1inelnitialize to initialize T API.

This function returns the number of line devices available. You must provide
the name of the callback function that T API should use to return data. For
more information, see "TAPI Callback Function" later in this chapter.

2. Call1ineOpen to open the line.

3. Call1ineMakeCaU.

When the call is set up, TAPI returns a LINE_REPLY message through
the callback function. This message indicates only that the call has been
established at the local end, perhaps indicated by a dial tone.

As the connection process proceeds, T API returns a series of
LINE_CALLS TATE messages through the callback function
indicating the progress of the connection, for example, dialtone
and ringing. When the connection is completed, T API returns a
LINECALLSTATE_CONNECTED message.

During information transfer, T API continues to manage the connection, but
the application handles data transmission and reception. When transmission is
fInished, TAPI returns a LINE_CALLS TATE message, such as one indicating
that a remote disconnect has occurred.

4. Call1ineClose to close the line.

5. Call1ineShutdown to terminate the session.

Chapter 5 Using Communications 79

TAPI Callback Function
TAPI sends messages to an application through a callback function
implemented by the application. Implement the callback function
according to the following definition.

void CALLBACK LineCallbackFunc (DWORD hDevice. DWORD dwMsg. DWORD
wCallbacklnstance. DWORD dwParaml. DWORD dwParam2. DWORD dwParam3);

hDevice
A handle to the line device associated with the callback. Do not use the
HANDLE type for this parameter.

dwMsg
The line device message. Line device messages are described in the
following table.

Message

LINE_ADDRESS STATE

LINE_CALLINFO

LINE_CALLS TATE

LINE_CLOSE

LINE_CREATE

LINE_DEVSPECIFIC

LINE_LINEDEVSTATE

LINE_REMOVE

Description

Indicates that the status of an address on a currently
open line has changed

Indicates that call information has changed

Indicates that the status of the call has changed

Indicates that the line device has been forcibly closed

Indicates that a new line device has been created

Indicates that a device-specific event has occurred

Indicates that the state of a line device has changed

Indicates that a device has been removed, usually
for good

Reports the results of function calls that completed
asynchronously

Reports the arrival of a new request from
another application

80 Windows CE Programmer's Guide

dwCallbacklnstance
The callback instance data.

dwParaml
A message parameter, used as needed to send additional information.

dwParam2
A message parameter, used as needed to send additional information.

dwParam3
A message parameter, used as needed to send additional information.

Windows CE Networking
Windows CE supports a variety of networking options that range from
serial link networking over a modem to wireless communications.
Networking capabilities include:

• Sending an ICMP request, also known as a ping

• Communicating over the Internet with the Windows CE
Internet API, known as WinInet

• Accessing remote file systems

• Using Windows Sockets

• Using network security features

• Accessing an IR transceiver using the IrDA protocols

There are several types of networking that are supported:

• Local area networking

• Wired serial-link networking using serial cables or modems

• Infrared networking

• Wireless networking

Windows CE network support is organized in layers. The network stack is
responsible for taking data from applications, breaking it into one or more
packets, and adding whatever header information is necessary to ensure that
the packet arrives at its destination. The following illustration describes the
schematics of the network stack.

Chapter 5 Using Communications 81

Network stack schematics

There are several ways to access the network stack:

• The Windows Sockets (Winsock) API provides applications with the means
to exchange packets with a remote site. It handles all the details of creating
the needed header information, but leaves the format of the data up to the
application. All network communication on Windows CE uses Winsock
directly or indirectly.

• The WinInet API supports high-level data protocols, such as Hypertext
Transmission Protocol (HTTP) or File Transfer Protocol (FTP). These APIs
ensure that the data is properly structured and relieve applications of the need
to use Winsock directly.

• A Common Internet File System (CIFS) redirector gives applications access to
remote file systems. Windows CE also provides support for a Remote Access
Service (RAS) client, which allows a Windows CE-based device to connect to
a remote host.

82 Windows CE Programmer's Guide

The following sections describe the Windows CE network stack from the top to
the bottom.

Sending an ICMP Request
Send an Internet Control Message Protocol (ICMP) request, or ping, to determine
whether or not a particular host is available.

~ To send an ICMP request

1. Call ICMPCreateFile to create a handle on which requests can be issued.

2. Call ICMPSendEcho to send an ICMP echo request. It returns the status of
the host.

3. Call ICMPCloseHandle to close the handle created by ICMPCreateFile.

Communicating over the Internet
Much of the communication that takes place over the Internet involves the use
of high-level protocols, such as HTTP. These protocols specify how the data
contained in the packets must be structured.

WinInet provides a set of tools for developing Internet client applications, such as
browsers, that use the FTP and HTTP Internet protocols. WinInet also simplifies
the details of making and using socket connections. Use WinInet to:

• Connect to remote sites.

• Download HTML pages.

• Send FTP requests to upload or download files, or to get directory listings.

The Windows CE version of WinInet is similar to WinInet for Windows-based
desktop platforms, with two significant differences:

• Most callback functions are handled synchronously in Windows CEo
Only InternetReadFile and InternetQueryDataA vailable operate
in both synchronous and asynchronous modes.

• Windows CE supports Unicode by default.

WinInet uses Internet handles that are passed to functions that offer specific
Internet services, such as making an HTTP request. These handles are generally
organized in a tree. The following illustration describes a hierarchy that you might
use for HTTP communications.

Chapter 5 Using Communications 83

Hierarchy of HTTP communications

The hlnternetOpen handle is the root of the tree and is used by all HTTP
sessions. The hlnternetConnect handle identifies a particular site. It is used to
open a connection to the site that is then represented by an hHttpOpen handle.
This handle can then be used to send an HTTP request.

When a parent node handle is closed, all its child handles will be closed
recursively. In the previous example, closing hlntemetConnect2
also closes hHttpOpenA and hHttpOpenB.

For more information about how to use WinInet, see the Microsoft
Platform SDK.

Using Winlnet to Access HTTP
This procedure outlines how to use WinInet to access an internet site using the
HTTP protocol.

~ To use the HTTP protocol

1. Call InternetOpen to get an Internet handle.

2. Call InternetConnect to create a session handle for the site.

3. Call HttpOpenRequest to open the site and prepare it for the HTTP request.

4. Call HttpSendRequest to send the request.

5. Call InternetReadFile or InternetQueryDataAvailable to
download information.

6. Call InternetCloseHandle to close open handles.

Accessing Remote File Systems
For access to remote file systems, Windows CE supports a CIFS redirector. The
CIFS protocol is also referred to as the Server Message Block (SMB) protocol.
A redirector is a module through which one computer gains access to another.
The redirector has two purposes: to reestablish disrupted connections and to
handle remote file system requests by packaging them and then sending them
to the target host for processing. The target host returns the results to the
originating computer.

84 Windows CE Programmer's Guide

The Windows CE redirector allows connections to computers running Windows
NT, Windows 95, or any other server that is compliant with the NT LM 0.12
dialect of the CIFS specification. Applications gain access to the redirector either
through the Windows CE WNet API or the Universal Name Convention (UNC).
Drive letters are not supported.

To use the WNet functions under Windows CE,the redirector dynamic-link
library (DLL), known as Redir.dll, and the NetBios DLL, known as Netbios.dll,
must be installed on the system. If these DLLs are not installed, the WNet
functions return ERROR_NO_NETWORK.

Note The NetBios DLL contains only what is necessary to support the CIFS
redirector. The NETBIOS applications interface is not supported by Windows CEo

Managing Network Connections with WNet
Use one of following functions to establish a network coru;tection:

• WNetAddConnection3, if you know the information needed to identify the
network resource.

-Or-
• WNetConnectDialogl, if you need feedback from the user. This function

prompts the user to choose a local name or UNC in a dialog box.

You can terminate a connection using any of these functions:

• Use WNetCancelConnection2 to break the connection and remove the folder
from the \NETWORK directory.

-Or-

• Use WNetDisconnectDialog to start a general browsing dialog box that allows
the user to manage the disconnection.

-Or-
• Use WNetDisconnectDialogl to disconnect from a network resource. If

the underlying network returns WN_OPEN_FILES, the function prompts
the user for confirmation. If an error occurs, it informs the user.

Determining Available Network Resources
The WNet API includes a set of functions to enumerate the available
network resources.

Chapter 5 Using Communications 85

~ To create a network resource list

1. Call WNetOpenEnum, which returns an enumeration handle used in step 2.

2. Call WNetEnumResource to package the information about the resources in
the form of an array of NETRESOURCE structures.

3. Call WNetOpenEnum to enumerate a container's resources. A container is a
network resource that contains other resources.

4. Call WNetCloseEnum to close the enumeration handle.

Windows Sockets
Sockets are a general purpose, connection-oriented networking interface
supported by most operating systems. The Windows implementation of sockets,
commonly called Winsock, is designed to run efficiently on Windows while
maintaining compatibility with the Berkeley Software Distribution standard,
known as Berkeley Sockets. The Winsock API is the only way for an application
to access the TCP/IP or IrDA protocols on a Windows CE-based device. High­
level APIs, such as WinInet, use Winsock internally, but it can also be
used directly.

Windows CE supports all of the standard Winsock 1.1 calls. It also implements
WSAIoctl, which is provided to allow applications to set and query secure
socket options.

Each socket that is created has an associated SOCKADDR structure that
identifies the underlying transport protocol. Because the length of a network
address is protocol-dependent, each supported protocol has its own SOCKADDR
structure. The Windows CE implementation of Winsock supports two transport
protocols, TCP/IP and IrDA. Their associated SOCKADDR structures
are SOCKADDR_IN for TCP/IP protocol and SOCKADDR_IRDA for
IrDA protocol.

For more information on Winsock, see the documentation for the Microsoft
Platform SDK.

Infrared Sockets
Winsock is typically used with the TCP/IP protocols. Infrared Sockets (IrSock), is
an extension to Winsock that allows it to be used also for IR communication using
the IrDA protocol. Each endpoint must support an IrDA-compliant device and an
IrDA-compliant protocol stack.

86 Windows CE Programmer's Guide '

Some Winsock functions work differently with IrDA than they do with TCPIIP.
The principal differences are:

• Name service

Conventional Winsock name service is best suited to fixed networks in which
the group of devices that can accept a socket connection is relatively static.
Conversely, IrDA is designed to handle browsing for whatever resources
are within range. It works in an ad hoc manner, and devices come and go
frequently as they move in and out of range.

Because of these differences, IrSock does not use the conventional Winsock
name service functions. Instead, name service is incorporated into the
communication stream.

• Method of addressing

Addressing is based on Logical Service Access Point Selectors (LSAP-SELs),
numbered from 1 through 127. Because of the small range of values available,
it is usually better not to bind sockets directly to an LSAP-SEL. Instead, the
Information Access Service (lAS) provides a means for dynamic binding of
sockets to LSAP-SELs.

To use lAS, a server application binds a socket to an lAS service name.
The client application uses the service name when using Connect. Neither
application knows, or needs to know, the LSAP-SEL that is assigned by the
lAS. This procedure is outlined in the following sections.

• Enhanced socket options

Windows CE includes two socket options to access the unique features of the
IrDA protocol:

• IRLMP _lAS_SET allows an application to set a single class in the local
lAS. The application specifies the class to set, the attribute, and the
attribute type. The application must allocate a buffer of the necessary size
for the passed parameters.

• IRLMP _RAW_MODE allows an application to switch between the reliable
TinyTP mode, which is the default setting, and the less reliable IrLMP
mode. This option is only available after calling socket to obtain a socket
handle and before calling bind and connect.

1

Chapter 5 Using Communications 87

Using Infrared Sockets
The basic procedure for using IrSock is similar to that for Winsock. Server
applications and client applications have somewhat different procedures.

~ To create and use a socket with a server application

1. Allocate a stream socket with socket. Use AF _IRDA for the address format
parameter and SOCK_STREAM for the type.

2. Bind the service name to the socket with bind. Pass a SOCKADDR_IRDA
structure for the address parameter.

3. Listen for an incoming connection with listen.

4. Accept an incoming client with accept.

5. Use send and recv to communicate with the client.

6. Close the socket with closesocket.

~ To create and use a socket with a client application

1. Allocate a stream socket with socket, as with the server application.

2. Search for the server, and retrieve its ID with getsockopt.

3. Connect to the server with connect, using SOCKADDR_IRDA for the
name parameter.

4. Use send and recv to communicate with the server.

5. Close the socket with closesocket.

The code examples in the following two sections demonstrate these procedures,
using lAS. You could run these samples on a pair of Handheld PCs (H/PCs) or
Palm PCs, for example.

Sample Infrared Socket Server
This sample IrSock server allocates a socket and binds it to the lAS name,
"MyServer." It then allocates a single connection object and prepares the server
to listen for incoming connections. When the client contacts the server, the server
accepts the connection. It then receives a string from the client, passes one back,
and closes the connection.

88 Windows CE Programmer's Guide

#include <windows.h>
#include <af_irda.h>

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int nCmdShow)

{

SOCKET ServerSock,
ClientSock;

SOCKADDR_IRDA address = {AF_IRDA, 0, 0, 0, 0, "MyServer"};

char
TCHAR
int

helloServer[25];
helloText[25];
idx = 0;

ServerSock = socket(AF_IRDA, SOCK_STREAM, 0);

II ASCII String
II UNICODE String

bind(ServerSock, (struct sockaddr *)&address, sizeof(address»;

listen(ServerSock, I);

ClientSock = accept(ServerSock, 0, 0);

recv(ClientSock, helloServer, sizeof(helloServer), 0);

for (idx = 0; idx <= sizeof(helloServer); idx++)
helloText[idx] = helloServer[idx];

MessageBox (NULL, hell oText, TEXT(" I R Server"), MB_OK);

send(ClientSock, "Hello Client!", strlen("Hello Client!")+I, 0);

closesocket(ClientSock);
closesocket(ServerSock);

return 0;
}

Sample Infrared Socket Client
This sample IrSock client opens a socket and makes five attempts to locate a
server. If none is fQund, it displays a message box to inform the user of the failure.
When a server is detected, the client queries the server for its device identifier and
sends a greeting to the service named "My Server." It then waits for the server to
respond, displays a message box with the response, and closes the socket.

Chapter 5 Using Communications 89

#include <windows.h>
#include <af_irda.h>

#define NumRetries 5

int WINAPI WinMain(HINSTANCE hlnstance, HINSTANCE hPrevlnstance,
LPTSTR lpCmdLine, int nCmdShow)

{

SOCKET sock;
SOCKADDR_IRDA address = {AF_IRDA, 0,0,0,0, "MyServer"};

EVICELIST
int

devList;
devListLen = sizeof(devList),
cnt = 0,
idx = 0;

char
TCHAR

hell oCl i ent[25];
helloText[25];

sock = socket(AF_IRDA, SOCK_STREAM, 0);
devList.numDevice = 0; II initialize number of devices to zero

while «devList.numDevice == 0) && (cnt <= NumRetries»
{

}

getsockopt(sock, SOL_IRLMP, IRLMP_ENUMDEVICES,
(char *)&devList, &devListLen);

cnt++;
Sleep(1000); II Wait one second before retrying

if (cnt > NumRetries)
{

}

else
{

MessageBox (NULL, TEXT("Server could not be located"),
TEXT("IR Client"), MB_OK);

II Get socket address of server
for (idx = 0; idx <- 3; idx++)

address.irdaDeviceID[idx] =
devList.Device[0].irdaDeviceID[idx];

connect(sock, (struct sockaddr *)&address,
sizeof(SOCKADDR_IRDA»;

send(sock, "Hello Server!", strlen("Hello Server!")+l, 0);

recv(sock, helloClient, sizeof(helloClient), 0);

for (idx = 0; idx <- sizeof(helloClient); idx++)
helloText[idx] = helloClient[idx];

90 Windows CE Programmer's Guide

MessageBox (NULL. helloText. TEXn"IR Client">' MB_OK);

closesocket(sock);
}

return 0;
}

Network Security Features
Windows CE supports program comprehension tool (PCT) 1.0 and Secure
Sockets Layer (SSL) versions 2.0 and 3.0 security protocols. These protocols
are available either through WinInet or directly from Winsock.

The simplest approach to using the security protocols is to use WinInet.

~ To access security protocols with Winlnet

1. Connect with InternetConnect, using the INTERNET_FLAG_SECURE flag.

For HTTP, invoke HttpOpenRequest, with the desired security flags set.

2. Proceed with the remainder of the session as described in "Using WinInet to
Access HTTP" earlier in this chapter.

Certificate Authentication
Authentication is the process of determining whether or not a remote host can
be trusted. To establish its trustworthiness, the remote host must provide an
acceptable authentication certificate based on public-key cryptography. Windows
CE supports X.509-style certificates.

Remote hosts establish their trustworthiness by obtaining a certificate from a
Certificate Authority (CA). The CA may, in turn, have certification from a higher
authority, and so on, creating a chain of trust. To determine whether a certificate
is tn,Istworthy, an application must determine the identity of the root CA, and then
decide if it can be trusted.

Windows CE maintains a database of trusted CAs. When a secure connection is
attempted by an application, Windows CE extracts the root certificate from the
certification chain and checks it against the CA database. It delivers the root
certificate to the application through a certificate validation callback function,
along with the results of the comparison against the CA database.

Applications bear ultimate responsibility for deciding whether or not the
certificate is acceptable. They are free to accept or reject any certificate, based
on whatever criteria are appropriate. If the certificate is rejected, the connection
is not completed. At a minimum, a certificate should meet the following two
requirements: It should be current, and the identity contained within the certificate
should match the identity of the root CA.

Chapter 5 Using Communications 91

The certificate validation callback function must be implemented by all
client applications that use secure sockets. The value it returns determines
whether or not the connection will be completed by Winsock. It must have
the following syntax:

int SslValidate
DWORD dwType
LPVOID pvArg
DWORD dwChainLen
LPBLOB pCertChain
DWORD dwFl ags

) ;

The parameters contain the following information:

• The dwType parameter specifies the type of data pointed to by pCertChain.
This must be SSL_CERT_X.509, specifying that pCertChain is a pointer to
an X509 style certificate.

• The pvArg parameter is the application-defined context, passed by the
SSLV ALIDATECERTHOOK structure.

• The dwChainLen parameter is the number of certificates pointed to by
pCertChain. It will always be equal to one.

• The pCertChain parameter is a pointer to the root certificate.

• If the root issuer of the certificate could not be found in the CA database, the
dwFlags parameter will contain SSL_CERT_FLAG_ISSUER_UNKNOWN.
The application can either attempt to verify the issuer itself, or return
SSL_ERR_CERT_UNKNOWN.

The values returned by the callback function are described in the following table.

Return value

SSL_ERR_BAD_DATA

SSL_ERR_BAD_SIG

SSL_ERR_CERT_EXPlliED

SSL_ERR_CERT_REVOKED

SSL_ERR_CERT_UNKNOWN

Description

The certificate is not properly formatted.

The signature check failed.

The certificate has expired.

The certificate has been revoked by its issuer.

The issuer is unknown, or some unspecified
problem arose in the processing of the certificate,
rendering it unacceptable.

The certificate is acceptable.

92 Windows CE Programmer's Guide

Implementing a Secure Socket
The following procedure outlines how to establish a secure socket connection.

~ To implement a secure socket

1. Create a socket with socket.

2. Set the socket in secure mode with setsockopt. Set the level parameter to
SO_SOCKET, optname to SO_SECURE, and set optval to a DWORD set
to SO_SEC_SSL.

3. Specify the certificate validation callback function by invoking WSAloctl
with the SO_SSL_SET_ VALIDATE_CERT_HOOK control code.

4. To specify a particular security protocol, invoke WSAloctl with the
SO_SSL_GET_PROTOCOLS control code to determine the default protocols.
Then call WSAloctl with the SO_SSL_SET_PROTOCOLS control code to
select the protocols to be enabled. Otherwise, Windows CE will select the
protocol to be used.

5. Make a connection with connect.

The certificate callback function is automatically invoked. The connection
can be completed only if the callback function verifies the acceptability of
the certificate by returning SSL_ERR_OKA Y.

6. Transmit and send as usual.

The send and recv functions automatically encrypt and decrypt the data.

7. When finished, close the socket with closesocket.

Using a Deferred Handshake
A deferred handshake allows an application to create an unsecured connection
and then later convert it to a secure connection.

~ To implement secure sockets with a deferred handshake

1. Create a socket with socket.

2. Set the socket in secure mode with setsockopt.

The level parameter should be set to SO_SOCKET, optname should be set
to SO_SECURE, and optval should be a DWORD set to SO_SEC_SSL.

3. Specify the certificate validation callback function by invoking WSAloctl
with the SO_SSL_SET_ V ALIDATE_CERT_HOOK control code.

4. Set the socket in deferred handshake mode with WSAloctl. The
control code should be set to SO_SSL_SET_FLAGS and the flag
set to SSL_FLAG_DEFER_HANDSHAKE.

TCP/IP

Chapter 5 Using Communications 93

5. Establish a non-secure connection with the remote party using connect.

6. Transmit and receive unencrypted data as usual.

7. To switch to secure mode, invoke WSAIoctl with the
SO_SSL_PERFORM_HANDSHAKE control code.

The certificate callback function is automatically invoked. The handshake
is successful only if the callback function verifies the acceptability of the
certificate by returning SSL_ERR_OKA Y.

8. Transmit and receive as usual.

The send and recv functions encrypt and decrypt the data automatically.

9. When finished, close the socket with closesocket.

TCPIIP stacks are designed to work efficiently on wired networks. They
may perform differently on wireless networks. For example, settings that are
appropriate to a 10 Mbps Ethernet connection may consume more bandwidth than
necessary on a wireless network by generating unneeded retransmission requests.

To use wireless networking efficiently, some TCPIIP parameters may need to
be tuned to the characteristics of the supporting network. Because network
parameters are maintained on a per-adapter basis, applications must determine
the appropriate adapter and change the associated registry settings. For more
information about modifying the registry, see Chapter 4, "Accessing Persistent
Storage." The parameters most likely to need modification are:

• Receive window size. The registry key for this parameter is <Adapter
Name>\tcpip\parms\TcpWindowSize. In general, larger receive windows work
better with high-delay, high-bandwidth networks. For greatest efficiency, the
receive window should be an even multiple of the TCP Maximum Segment
Size (MSS). It should not exceed the system maximum. The registry key for
this parameter is tcpip\parms\GlobalMaxTcp WindowSize.

• Initial roundtrip time. The registry key for this parameter is <Adapter
Name>\tcpip\parms\TcpInitialRTT. Roundtrip times are generally longer
for wireless networks than for wired networks.

• Delayed acknowledgment timer. The registry key for this parameter is
<Adapter Name>\tcpip\parms\TcpDelAckTicks.

94 Windows CE Programmer's Guide

Data Link Protocols
Windows CE provides data-link layer support for both serial input/output (110)
and local area networks (LANS). It supports the following:

• Point-to-Point Protocol (PPP) and serial line Internet protocol (SLIP) for
serial- and modem-based networking.

• Dynamic Host Configuration Protocol (DHCP) and Address Resolution
Protocol (ARP) for LANs.

• A subset of NDIS 4.0:

• Only Ethernets are supported.

• Only Miniport drivers are supported, not intermediate or legacy drivers.

NDIS 4.0 does not expose an API to applications. For information related to
device drivers, see the documentation for the Windows CE DDK.

NDIS 4.0 for Windows CE is packaged as a DLL, rather than a .sys file. This
feature permits the ARP and NDIS modules to be partially installed. If an OEM
chooses this option, the network stack will be configured for them but the DLLs
will not be added to ROM. If the modules are needed for an application, the DLLs
can be added to RAM.

Remote Access Service
RAS is a software-based multiprotocol router that is used to connect a remote
device, known as a RAS client, to a host desktop computer, known as an RAS
server. RAS applications are usually executed on the client device and connect
to the server using PPP/SLIP.

Windows CE provides support for an RAS client. While most of the standard
Win32 RAS functions are supported, only one point-to-point connection at a
time is allowed. The connection can be a wired serial connection or a dial-up
modem connection.

Entries in the RAS phone book contain the information necessary to establish an
RAS connection. Windows CE stores these entries in the registry. The RAS phone
book information includes:

• The phone number to dial, along with country code and area code.

• The IP addresses to use while the connection is active.

• The network protocols.

• The type of device being used to make the connection.

Chapter 5 Using Communications 95

Windows CE-based applications that use RAS while running under emulation can
link to Coredll.lib to resolve the RAS API entry points. This is the proper method
for device builds, or use the NT RAS API set, that is, link to NT Rasapi32.lib. The
NT Remote Access Service needs to be installed on the desktop computer with at
least one port configured for dial out. A modem is also required to use RAS.

Using RAS
This procedure outlines how to connect with a RAS server.

~ TouseRAS

1. Determine which phone number to call.

If the number is in the phone book, you can retrieve it with RasEnumEntries.

2. Establish a connection with RasDiai.

• Ignore the dialExtensions parameter, and set it to NULL.

• Set the lpszPhoneBook parameter to NULL.

Phone book entries are stored in the registry.

• Set the dwNotijierType parameter to OxFFFFFFFF.

If the application needs to receive messages from RAS, the messages must
be sent to an HWND. There is no support for callback functions.

3. When the session is complete, terminate it with RasHangup.

If an HWND was specified in the RasDiai call, it receives a
WM_RASDIALEVENT message every time a change-of-state event occurs. The
wParam and lParam values carry the following information:

• wParam: RASCONNSTATE indicates the state that the RasDial remote access
connection process is about to enter.

• lParam: A non-zero value for dwError indicates which error has occurred.

PAR T 3

User Interface Services

Chapter 6 Designing a User Interface for Windows CE 101
Designing Windows and Dialog Boxes 103
Developing Menus 105
Working with Command Bars 106
Choosing Controls 108
Using Color and Grayscale Palettes 116
Creating Icons and Bitmaps 118
Receiving User Input 119
Providing User Feedback 119

Chapter 7 User Input 121
Keyboard Input 121
Stylus Input 126
Inking Input 128

Chapter 8 Graphics Device Interface 131
Unique Features of the Windows CE GDI 132
Device Contexts 133
Bitmaps 136
Colors and Palettes 139
Pens 142
Brushes 143
Printing 144
Regions 145
Shapes and Lines 147
Text and Fonts 149

Chapter 9 Windows 155
Sample Windows-Based Application 156
Window Fundamentals 159
System-Defined Window Classes 161
Creating Windows 161
Application Windows 164
Destroying Windows 165
Window Styles 165
Window Size and Position 168
Window Relationships 170
Messages and Message Queues 172
Timers 179
Rectangles 180

Chapter 10 Overview of Controls 181
Overview of Windows Controls 182
Overview of Common Controls 186
Custom Draw Services 189
HTML Viewer Control 193

Chapter 11 Foundation Controls 197
Command Bars 197
Property Sheets 201
Rebars 204
Command Bands 206
Tab Controls 209
Toolbars 214

Chapter 12 File and Scale Controls 221
Header Controls 221

. Image Lists 225
List Views 228
Trackbars 239
Tree Views 241
Up-Down Controls 249

Chapter 13 Informational Controls 253
Date and Time Picker Controls 253
Month Calendar Controls 258
Status Bars 261
ToolTips 263
Progress Bars 264

Chapter 14 Buttons 267
Button States 268
Messages to Buttons 270
Button Color Messages 271
Button Default Message Processing 271
Check Boxes 273
Group Boxes 274
Push Buttons 275
Radio Buttons 277

Chapter 15 Window Controls 279
Edit Controls 279
Combo Boxes 287
List Boxes 289
Scroll Bars 291
Static Controls 295

Chapter 16 Dialog Boxes, Menus, and Other Resources 299
Dialog Boxes 300
Menus 306
Carets 310
Cursors 312
Icons 312
Bitmaps, Images, and Strings 313
Keyboard Accelerators 313

CHAPTER 6

Designing a User Interface for
Windows CE

101

An application's user interface serves two main purposes: to receive user input
and provide user output. How well your application handles these tasks depends
on your hardware capability, your operating system configuration, and the input
and output requirements of your target platform.

Before designing your application, you need to ask some important questions
about its interface: Will it be graphical or non-graphical? How will your
application receive user input? Will users type commands with a keyboard, with
a touch screen, with voice commands, or with buttons on a console? How will
you provide feedback to the user? Will your device support an LCD screen or
audio feedback?

Windows CE supports a range of device platforms, from handheld computers
to industrial embedded systems. Its modular design allows you to use only the
features you need to create applications for the specific platform you have chosen.
Because user interface requirements vary from one platform to another, this
chapter describes general design considerations for a graphical user interface.
Platform-specific design considerations, such as those pertaining to a Handheld
PC (H/PC) or Palm PC, are discussed in later chapters.

A well-designed user interface focuses on users and their tasks. Good user­
interface design considers general design principles as well as how graphics,
color, and layout influence the usability of an application. Apply the following
design concepts when creating an interface focused on the needs of
the user.

• Give the user control

Allow the user, not the computer or software, to initiate actions. Remember,
the goal of the user is not to use the application, but to accomplish a task.

102 Windows CE Programmer's Guide

• Use familiar concepts

To increase familiarity with the interface, allow users to manipulate
representations of the tasks they perform. For example, if you provide
a desktop-like interface, allow users to drag icons depicting documents
to an icon depicting a trash bin when deleting a file. For other types of
interfaces, be sure buttons and icons relate to the tasks they perform. One
example of this would be to display a wrench icon to start an automotive
maintenance application.

Another way to increase your user's familiarity with the interface is to
avoid using modes whenever possible. Modes, which occur when identical
commands or keystrokes perform different actions in different situations,
force users to think about how the application works instead the tasks at hand.
Though modes are best avoided, warning boxes and message boxes are two
types of modes that are necessary and appropriate.

• Be consistent

Consistency makes the interface familiar and predictable, which reduces user
errors and improves performance. Consistency is enhanced with components
that have a similar appearance and behavior and with actions that have the
same result regardless of context. For example, in a desktop environment,
scroll bars operate the same way, regardless of whether the scroll bar is in
a list box or window. To achieve consistency, reuse standard commands
across tasks and present commands in the same way in each task.

• Allow interactive discovery

Let the user explore the interface through trial and error, while warning him or
her about potential damage to the system or data. To minimize user problems,
provide clear error messages and indicate appropriate actions for the user to
take to recover from an error or correct the problem that caused it. If possible,
make actions reversible or recoverable.

• Provide feedback

Present the user with timely visual and audio cues to confirm that the software
is responding to input.

• Focus on aesthetics

Effective visual design is aesthetically pleasing. An attractive interface
helps the user select appropriate competing information and suggests a
high-quality application.

• Design with simplicity

Simple interfaces, with an uncluttered display, are easy to learn and easy to
use. Show only the most important controls directly on the interface and hide
the rest in menus. Reduce the number of different tasks presented in a single
window or screen and group related tasks together. Simplicity is especially
important in Windows CE-based devices with small displays.

Chapter 6 Designing a User Interface for Windows CE 103

• Support multiple input methods

Whenever possible, provide multiple methods for performing an operation.
To accomplish this, support different types of input devices if possible, and
provide keyboard shortcuts or accelerators for specific tasks, if your device
supports a keyboard.

Designing Windows and Dialog Boxes
Many graphical user interfaces use a desktop metaphor, which simplifies common
file operations by presenting them in a familiar context. Depicting files as paper
documents, directories as folders, and deleted items within a trash can are
examples of the desktop metaphor. Though appropriate for most applications
running on an HPC or similar device, this metaphor may not be appropriate for
some embedded systems, such as a car navigation application or a point-of-sale
device. If the desktop metaphor is not appropriate for your application, use
another familiar metaphor that seems suitable. Virtual reality applications
commonly use a room metaphor.

Whatever metaphor you choose, it is important to provide a context or point
of reference for your application. When using the desktop metaphor, you can
accomplish this by presenting objects in standard windows and dialog boxes. If
using a different metaphor, you may choose to forgo using windows entirely, and
present objects only in dialog boxes. If you do use windows in your application,
they should occupy the full screen, unless your application will be used in
conjunction with another application. An online Help system is one example of
an application whose windows do not take up the full screen because the user
benefits from seeing its windows displayed with another application. If you are
creating an application whose windows do not take up the full screen, design the
window to be a fixed size, because Windows CE does not support the resizing of
windows by users.

Windows CE supports several window styles. Some contain borders, while others
contain scroll bars. One common window style is WS_OVERLAPPED. This
window style displays a window button on the taskbar. This is important because
users navigate from one open window to another by tapping an application's
window button on the taskbar and restore a window by tapping its taskbar button
again. An application displays a button on the taskbar only if its primary window
contains the WS_OVERLAPPED style. Additionally, when the system is running
low on power, it sends the WM_HIBERNATE message to all windows that have
a button on the taskbar. If an application does not have a button on the taskbar it
cannot receive and respond to this message.

104 Windows CE Programmer's Guide

Dialog boxes are secondary windows that contain controls and provide
information to a user about actions. Windows CE supports three types of dialog
boxes: application-defined dialog boxes, message boxes, and property sheets.

An application-defined dialog box helps users perform tasks specific to an
application. It provides a great deal of flexibility by allowing you to place controls
directly onto the body of the dialog box. This is especially useful when designing
interfaces that do not use a desktop metaphor, because you can design an entire
application interface using only application-defined dialog boxes to house
controls. When using an application-defined dialog box, include only as many
controls as are necessary for your application and space them adequately.

An application-defined dialog box can be modal or modeless. A modal dialog box
requires the user to supply information or cancel the dialog box before allowing
the application to continue. A modeless dialog box allows the user to supply
information and return to a previous task without closing the dialog box.

A message box is a modal dialog box that displays a message and
prompts for user input. It typically contains a text message and one
or more predefined buttons.

A property sheet is a collection of tabbed dialog boxes that enables a user to view
and modify the properties of an object.

In a desktop metaphor, a dialog box typically contains OK and Cancel
commands, which initiate a user's request or dismiss the window, respectively.
In Windows CE, the X button represents both the Close and Cancel commands.
Follow these guidelines for using the X and OK buttons in dialog boxes:

• If the only buttons in a dialog box are the OK and Cancel (X) buttons, place
them in the top right corner of the command bar, as they appear in a standard
Windows CE dialog box.

• If a dialog box does not have an OK or Cancel (X) button, place the
Close (X) button in the command bar. Place all other buttons in the
body of the dialog box.

• When the OK and X buttons perform the same function, use the OK button,
because users are more comfortable clicking the OK button than the X button
to confirm an action.

• Never place an OK button both in the command bar and in the body of a
dialog box, because many users find this confusing. However, you can place
a Cancel button in the body of a dialog box and an X button on the command
bar, if you like.

Chapter 6 Designing a User Interface for Windows CE 105

Developing Menus
Menus are collections of commands, attribute selections, separators, and other
selectable elements. All menus in Windows CE are implemented as top-level,
pop-up windows that do not support buttons. Although Windows CE supports
owner-drawn menu items, it handles them as it would other menu items.

Windows CE does not support menu bars. Instead, it combines the functionality
of a menu bar and a toolbar into one control, called a command bar, which makes
efficient use of the screen space available on many Windows CE-based devices.

Windows CE supports the following four types of menus:

• Pop-up

A pop-up menu is a floating menu that displays commands specific to the
object selected by the user, or to the object's immediate context. A pop-up
menu appears at the location on the screen where the user accessed it. It is
typically used for common commands that rarely change in content and for
items that require a small amount of screen space. Restrict the number of
items in a pop-up menu to less than 10.

• Scrolling

Scrolling menus are unique to Windows CEo With scrolling menus, you do not
have to limit the size of a menu to the number of items that fit on the screen. If
a menu is taller than the height of the display area, Windows CE adds scrolling
arrows so the user can scroll the menu up and down. If a menu has too many
columns to fit within the width of the display area, Windows CE ignores all
column breaks and makes the menu a single-column scrolling menu.

• Cascading

A cascading menu is a secondary menu or submenu that appears when a
certain option is selected in the parent menu. A triangular arrow next to the
parent item in a menu indicates a cascading menu. Windows CE displays
cascading menus in alphabetical order. If the height of a cascading menu
exceeds the maximum screen height of 240 pixels, the menu adopts a multiple­
column mode, which shows the remaining menu items in an adjacent column.
Use a cascading menu to group related menu items or when a choice leads to a
short list of related options.

106 Windows CE Programmer's Guide

• Pull-down

A pull-down menu contains commands accessed from a command or menu
bar. It is commonly used to display text, but can also contain graphics, colors,
and shading. When creating a pull-down menu, display all possible command
choices on the menu. Items that cannot be chosen due to the state of the
application should be dimmed. Use a pull-down menu to provide access to a
small number of items whose content rarely changes.

Working with Command Bars
One of the challenges you may encounter when creating a Windows CE-based
application is having to design for a small screen. To maximize the screen real
estate available for applications in the client area, the operating system supports a
new type of control, the command bar. Command bars are unique to Windows CE
because they combine a menu bar, toolbar, and address bar. Windows CE
supports multiple command bars, each containing gripper controls that enable
users to hide buttons and menus. Command bars can contain combo boxes, edit
boxes, and buttons, as well as other types of controls. They also can include the
Close (X) button, the Help (?) button, and the OK button, usually found on the
title bar of Windows-based desktop applications.

Command bars vary from 480 pixels to 640 pixels in length depending on the
screen resolution. Microsoft recommends that you always display a command
bar in Windows CE-based applications when using the desktop metaphor.
Because Windows CE does not allow you to place an application's title or icon
on the command bar, users identify an application by the label and icon on its
taskbar button.

Command bars are composed of bands, separated by gripper controls. Each band
can contain up to one child window, which can be a toolbar or any other control.
The default is to display a toolbar. Additionally, each band can have its own
bitmap, which is displayed as a background for the toolbar on that band. A user
can resize or reposition a band by dragging its gripper bar. If a band has a text
label next to its gripper bar, a user can maximize the band and restore it to its
previous size by tapping the label with the stylus. For more information, see
Chapter 11, "Foundation Controls."

A command bar menu is a list of commands that drops down when a user taps the
menu's caption on the command bar with the stylus. Menu titles on a command
bar appear in bold text. If you include a menu bar, always position it as the fIrst
(leftmost) element on the command bar. If you provide File, Edit, View, Insert,
Format, Tools, and Window menus, always place them in this order, from left
to right. The menu titles appear as bold text surrounded by a rectangular frame.

Chapter 6 Designing a User Interface for Windows CE 107

Windows CE supports ToolTips for command bar and toolbar buttons, but not for
menus or combo boxes on a command bar. ToolTips usually display only the title
of a button command, but they can also display the shortcut key for the command.
If you include a shortcut key, follow these guidelines:

• Place the shortcut key two spaces after the text, in parentheses.

• Capitalize only the first letter of the control key abbreviation.

• Capitalize the command identifier.

• Use a plus sign, with no spaces, between the control key and the letter,
for example, CTRL+B.

You can place check boxes or radio buttons on the command bar to enable users
to toggle between different views. Moving between views can make windows
more readable by eliminating unnecessary scrolling. A command bar button can
display both text and images. This allows you to include text as part of a button
label to provide descriptions, which eliminates the need for ToolTips.

If you choose to place a label next to your edit control on a command bar, you
have two choices. You can insert a static text field above or to the left of the
control. Alternatively, you can include an edit control label inside the text field as
the default text. In this case, you would enclose the label between angle brackets,
for example, <name>. Because the user can no longer see the control's label when
he or she types text in the field, using a static text field is preferable. The default
system font for applications based on Windows CE version 2.0 is Tahoma, 9
point. Windows CE version 1.0 used MS Sans Serif, 8 point, which is a smaller
raster font. If your device has a small screen size and a low-contrast LCD, you
should use a non-bold typeface when displaying control labels, unless the labels
appear on a light gray background.

If you provide individual New, Open, Save, and Print buttons on a command bar,
you must position them in this order, from left to right. If you provide individual
Bold, Italic, and Underline buttons, you must also place them in this order, from
left to right. Always make buttons at least 23 pixels high and 23 pixels wide.
Leave at least 2 pixels between adjacent controls and at least 4 pixels between a
control and the edge of the screen. If you plan to support touch interaction in
which users use a finger rather than a stylus, make all buttons at least 38 x 38
pixels. However, to conserve space, consider creating a combo box button instead
of three or four separate buttons. You can also create a TAB and ARROW KEY
navigation order for command bar buttons. When a command bar button has the
input focus, the button activates if the user presses the SPACEBAR or the
ENTER key. The user must be able to select either option.

108 Windows CE Programmer's Guide

Choosing Controls
Windows CE supplies a set of pre-constructed elements, known as controls, that
you can use to build an application. Controls, objects that users interact with to
enter or manipulate data, commonly appear in dialog boxes, but can also appear
on toolbars and command bars. Windows CE supports many predefined controls,
which can be divided into two categories: window controls and common controls.
Window controls send the WM_COMMAND message and include buttons,
combo boxes, edit controls, list boxes, scroll bars, and static controls. Common
controls send the WM_NOTIFY message and include all other controls. They are
divided into the following sub-categories: foundation controls, file controls, scale
controls, informational controls, and miscellaneous controls that are used for
specific Windows CE-based platform functionality.

Due to the large number of controls available in Windows CE, determining
which control to use in a specified situation is often difficult. When choosing a
control, you must consider the type of input you are trying to capture, the abilities
and limitations of the control, and the characteristics of your platform's screen.
To assist you in this task, all predefined Windows CE controls and their uses are
described in the following tables.

Windows CE Window Controls

Control

Check box

Radio button

Description

A two-part control consisting of
a square box and text options.
Each option acts as a switch that
can be turned on - selected -
or off - deselected. When an
item is turned on, a check
appears within the square box;
otherwise, the square box is
empty. Users can select more
than one option.

A two-part control consisting of
a small circle and text options.
When an option is selected, the
circle appears highlighted or
filled. Only one option can be
selected at one time.

Use

When setting properties,
attributes, or values.
When more than one
choice can be selected.
When ample screen space
is available.
When options do
not change.

When setting properties,
attributes, or values.
When only one choice can
be selected.
When ample screen space
is available.
When options do
not change.

Control

Push button (Command
button)

Group box

Combination box

Edit control

Chapter 6 Designing a User Interface for Windows CE 109

Description

A square or rectangle with a text
or graphic label inside. When
selected, an application
immediately performs the
associated action or command.

A rectangular frame that
surrounds a group of controls.

A control possessing the
characteristics of both an edit
control and a list box or drop­
down list box. Information may
either be typed into the edit
control field or selected from
items displayed in the list box.

A rectangular box in which
information can be typed by the
user or in which information is
displayed for read-only purposes.
Edit controls typically contain
captions and can be designated
as either single-line or
multiple-line.

Use

To perform an action.
To display a menu
or window.
To set a condition or
property value.
When ample screen space
is available.

To visually relate a group
of related controls.
To visually relate
elements within a control.

When options are large in
number and not frequently
selected.
When the list of options
may change.
When only one choice can
be selected.
When screen space is
limited; use with a
drop-down list box
combination only.
To capture unlisted data.
When users prefer to type
information rather than
select it from a list.
When a keyboard
is present.

When options are difficult
to categorize and vary
in length.
When screen space
is limited.
When a keyboard is
present.
When providing a list of
options is not feasible.

110 Windows CE Programmer's Guide

Control

List box

Drop-down list box

Scroll bar

Static control

Description

A rectangular box containing a
list of items from which either a
single selection is made, or
multiple selections are made.
Lists can contain either text or
graphics. If the list exceeds the
boundaries of the box, scroll bars
appear, enabling users to view
the remaining items.

A rectangular box with an arrow
button on the side. When the
arrow button is selected, the box
displays a hidden list of items
which seems to drop-down from
a single item. If the list exceeds
the boundaries of the box, scroll
bars appear, enabling users to
view the remaining list.

A rectangular container
consisting of a scroll area, a
slider box, and arrows. Scroll
bars are typically found on
primary and secondary windows.

A text field that displays read­
only information.

Use

When options are large
in number and not
frequently selected.
When screen space makes
radio buttons or check
boxes impractical.
When the list of options
may change.
When ample screen space
is available.

When only one choice can
be selected.
When screen space
is limited.
When options are large
in number and not
frequently selected.

To view information that
uses more than the allotted
space.

To display a caption.
To provide instructional
information.
To display descriptive
information.

Foundation controls, used to contain or manage other controls, are described in
the following table.

Chapter 6 Designing a User Interface for Windows CE 111

Windows CE Foundation Controls

Control

Command band

Command bar

Toolbar

Property sheet

Tab control

Description

A special kind of rebar
control. It has a fixed band
at the top containing a
toolbar with a Close (X)
button, and optionally, a
Help (?) button and OK
button, in the right corner.
By default, each band in the
command bands control
contains a command bar.
You can override this if you
want a band to contain
some other type of
child window.

A toolbar that combines a
menu bar as well as the
Close (X) button, the Help
(?) button, and the OK
button. A command bar can
contain menus, combo
boxes, buttons, and
separators. A separator is a
blank space you can use to
divide other elements into
groups or to reserve space
in a command bar.

A panel that contains a set
of controls.

A control to define property
sheets. It accepts dialog box
layout specifications and
automatically creates tabbed
property pages.

A tab control resembles a
divider in a notebook and is
used to define sections of
information within the
same window.

Use

To provide easy access to
frequently used commands
or options.
When screen space
is limited.

To provide easy access to
frequently used commands
or options.
When screen space
is limited.

To provide easy access to
frequently used commands
or options.

When creating
property sheets.

To present repetitive,
related information.
To present options or
settings that can be applied
to one object.

112 Windows CE Programmer's Guide

Control

Rebar

Description

A control that acts as a
container for a child
window. It contains one or
more bands; each band can
contain one child window,
which can be a toolbar or
any other control. Each
band can have its own
bitmap, which is displayed
as a background for the
toolbar on that band. A user
can resize or reposition a
band by dragging its gripper
bar. If a band has a text
label next to its gripper bar,
a user can maximize the
band and restore it to its
previous size.

Use

When screen space
is limited.
To hide and show portions
of a command bar.

File controls, used to display files, are described in the following table.

Windows CE File Controls

Control

Header control

Image list

Tree view

Description

A heading above a column
of text or numbers that can
be divided into two or more
parts for multiple columns.
Each part can operate like a
command button to support
a different function.

A special list box that
contains a collection of
images that are all the same
size, such as bitmaps or
icons. Image lists manage
images, but do not display
them. They are designed to
be used with list view and
tree view controls.

A special list box that
displays a hierarchical set of
labeled items as an indented
outline. It includes buttons
that allow the outline to be
expanded and contracted.

Use

To display text
and graphics.
To aid the user in
sorting or sizing columns
of information.

To display a relationship
between a set
of containers.
When ample screen space
is available.
When the displaying of
icons or images
is appropriate.

To display a relationship
between a set
of containers.
When ample screen space
is available.

Chapter 6 Designing a User Interface for Windows CE 113

Control

List view

Description

A special list box that
displays a collection of files
or folders consisting of an
icon and a label. Selection
and navigation in this
control work similarly to
that in a folder window.

Use

When the displaying of
icons is appropriate.
When ample screen space
is available.

Scale controls, used to increment scaled values, are described in the
following table.

Windows CE Scale Controls

Control

Spin box

Trackbar control (Slider)

Description

An edit control with an
associated spin button
control. A spin box allows
the user to select an option
by scrolling through a small
list or by typing an item in
the edit control field.

A bar with tick marks on it
and a slider or thumb. The
tick marks represent a range
of values. When a user
drags the slider arm, it
moves in the appropriate
direction, tick by tick.

Use

When options are
infrequently selected and
small in number.
When screen space
is limited.
To capture unlisted data.
When users prefer to type
information rather than
select it from a list.
When only one choice can
be selected.

To set an attribute.
When only one choice can
be selected.
When a limited range of
possible settings exist.
When options
are incremented.
When ample screen space
is available.

Informational controls, used to provide information about tools, processes, or
time, are described in the following table.

Windows CE Informational Controls

Control

Progress bar

Description

A display-only control that
consists of a rectangular bar
that fills from left to right.

Use

To provide visual feedback
concerning completion of
a process.
When ample screen space
is available.

114 Windows CE Programmer's Guide

Control

Date and time picker

Status bar

Month calendar control

ToolTip

Description

A control that provides
users with an easy a way to
modify date and time
information. Each field in
the control displays a time
element, such as month,
day, hour, or minutes.

An area within a window,
typically at the bottom,
that displays information. It
can contain
display-only controls.

A child window that
displays a monthly
calendar. The calendar can
display one or more months
at a time.

A small pop-up window
containing information
about a control. A ToolTip
appears when a pointer is
moved over a control not
possessing a label.

Use

To modify date and
time information.
When screen space
is limited.

To provide information
about the current state of
what is being viewed in
the window.
To provide a descriptive
message about a selected
menu or toolbar.

To select date information.
When screen space
is limited.

To identify a control that
has no caption.
To reduce screen clutter
caused by control captions.

Miscellaneous controls, used for specific Windows CE-based platform
functionality, are described in the following table.

Windows CE Miscellaneous Controls

Control

HTML viewer control

Description

A control that provides the
functionality required to
implement the Windows CE
Pocket Internet Explorer.

Use

To view HTML text and
embedded images. For more
information about the
HTML viewer control,
see Chapter 10, "Overview
of Controls."

Chapter 6 Designing a User Interface for Windows CE 115

Control

Rich Ink control

Description

A control that captures
. stylus motions in order to
emulate the act of writing or
drawing on paper. The
control's document view,
under the touch screen,
serves as electronic paper.
In addition to capturing
images, Active Ink also has
editing and formatting
capabilities.

Use

To accept user input
without using a keyboard .
For more information about
the Rich Ink control, see
Chapter 7, "User Input."

In addition to predefined controls, Windows CE supports a new custom draw
service. The custom draw service is not a predefined control; it is a service that
makes it easy to customize a common control's appearance. You can use the
custom draw service to change a common control's color or font, or to partially or
completely draw the control. This is useful when your interface uses several text
boxes, because you can draw the borders of the text box before the user inserts
text, and then hide borders when displaying text. This enables you to place text
closer together, making your interface appear less cluttered.

Besides using the controls included in Windows CE, you can also create your
own custom controls. When designing custom controls, avoid the following
pitfalls common to many designs:

• Controls are difficult to use.

Make controls easy to use. For example, make controls larger; use colors that
contrast with the screen background; remove nearby controls and unnecessary
images; and place controls in a central location. Additionally, when you design
a control, have a variety of people test its usability. Also consider differences
in the capabilities of the people that need to use the control.

• Controls are too close together.

They should be spaced far enough apart so that users do not accidentally select
one control while intending to select another.

• Controls are hard to interpret.

A control should in some way resemble or depict its corresponding function so
that users can determine how to use it. For example, it is common to place an
image of scissors on a button control that is used to "cut" or remove text.

• Controls are hard to distinguish.

Controls should have easily recognizable differences. When you have several
similar controls close together and lined up, people confuse them with each
other. Distinguish controls by size, position, shape, and color, and always
distinguish a control by more than a single feature.

116 Windows CE Programmer's Guide

• Controls are hidden.

Controls should be obvious so that users do not overlook them. If you want
to remove a control from view, place it where users expect to find it, such as
in a menu.

• Controls are not predictable.

Controls that have the same function should operate the same way. Controls
should also function the same regardless of where they are placed. Also,
controls should follow a consistent rule. If a control uses a different operating
principle, design the control so that it will not be confused with controls that
operate under different operating principles. Additionally, users expect a
control to behave in ways consistent with previous experiences or cultural
norms. For example, moving a slider control to the right represents an increase
whereas moving the slider to the left represents a decrease.

Using Color and Grayscale Palettes
Designers often rely on color to make an application aesthetically pleasing.
However, using color randomly or excessively can affect usability. To use color
effectively, keep the following guidelines in mind when designing your interface:

• Display no more than four colors on a single screen at one time and limit the
colors for your entire application to fewer than eight. The more colors you use,
the more confusing the screen will appear to the user.

• Use color in combination with other emphasis techniques to discriminate areas
on the interface and identify crucial features. Never use color alone to
distinguish elements, because users may have difficulty distinguishing colors
in inadequate lighting. Use fonts, icons, screen placement, or patterns in
addition to color to distinguish screen elements.

• Avoid spectrally extreme color combinations, such as red and blue or yellow
and purple, because they can make images seem blurred.

• Design applications for a grayscale display whenever possible because many
users may not have color displays. Then, when the application is finished, you
can add color.

• Use bright colors for extended viewing, because dim colors may not be legible
once a user's eyes adapt to the color.

• Avoid colors lacking contrast as well as colors of equal brightness, because
they are not easily distinguished.

• Use black, gray, and white to improve resolution in fine detail.

• Use common color associations, such as red for stop, or green for go, to
avoid confusion.

Color:
White

Teal

Purple

Blue

Light Gray

Dark Gray

Dark Teal

Chapter 6 Designing a User Interface for Windows CE 117

The color design model for Windows CE uses a 16-color Windows palette,
based on the Windows 95 color scheme, and is measured in bits per pixel (bpp).
Windows CE supports pixel formats of 1, 2,4,8,16,24, and 32 bbp. Your
application should determine the color format supported by a display device,
and then adopt a complimentary display strategy.

Note An 8-bpp display driver can display a 32-bpp device independent bitmap
(DIE) by mapping each color in the DIE color table to a specific color on the
device. The palette available in the application displaying the bitmap determines
what mapping is used. The application can lose color information if it does not
use an appropriate palette or if a bitmap uses more colors than the palette can
hold.

Standard Windows CE 16-Color Palette

Red Green Blue Color: Red Green Blue
255 255 255 Dark Blue 0 0 128

0 255 255 Yellow 255 255 0

255 0 255 Green 0 255 0

0 0 255 Dark Yellow 128 128 0

192 192 192 Dark Green 0 128 0

128 128 128 Red 255 0 0

0 128 128 Dark Red 128 0 0

Dark Purple 128 0 128 Black 0 0 0

Standard Windows CE 16-color palette

Some Windows CE-based devices support only a 2-bpp palette, with four gray­
scale colors: black, white, light gray, and dark gray. On a grayscale display, a
single-pixel graphical element, such as a dot or a line, can be difficult to
distinguish without a strong, contrasting color adjacent to it. For example, white
and light gray elements can be hard to see unless presented against a black or dark
gray background.

118 Windows CE Programmer's Guide

Likewise, light colors may be difficult to distinguish. When using light colors,
you may need to double the thickness of pixels or lines to strengthen them. Light
gray works well for creating a shadow effect around large controls on a white
background and for anti-aliasing, which adds colored pixels to a graphic to
smooth jagged edges. If you use light gray as a background color for your screen,
use a white line to visually separate key areas, such a command bar or owner­
drawn menu, from other areas of the screen.

Windows CE does not arbitrate between the palettes of the background and
foreground applications. Because of this, you should use only the first ten and last
ten colors included in the stock palette of a display device, which are generally
the standard Windows VGA colors.

Creating Icons and Bitmaps
In a graphical user interface, icons convey attributes or tasks. An effective icon
clearly represents its function and is easy to remember; an ineffective icon reduces
the usability of an application by making it appear obscure and unapproachable.

Icons are used in different ways. They can either resemble what they represent­
for example, a book used to represent a dictionary--or they can represent a
characteristic of something, such as a gas pump to represent a gas station. Icons
can also be symbolic representations, which mayor may not be clear to the user.
An example of this type of icon is the light bulb icon found in many Windows­
based applications, which turns on and off the Tip Wizard.

Icons are most often used on buttons, but they can be used for progress indicators
as well. When a Windows CE color icon has a Windows 95 equivalent, both icons
use the same design and color. However, you must create a 16-color version and a
grayscale version of the icon to ensure that it displays correctly on both color and
2-bpp devices.

Note The icon editor in the Windows CE Toolkit for Visual C++ 5.0 can create
icon (jco) files that retain both 16-color and 2-bpp gray versions of an icon.

In addition to using Windows 95 icon equivalents, you can create your own icons
using the standard Windows 16-color palette. To add dimensionality to an icon,
use highlights and shadows, but remember, the icons you create must translate
correctly to 2-bpp gray if your device supports both grayscale and color displays.
The following table shows how the 16-color palette translates to four grays.

Chapter 6 Designing a User Interface for Windows CE 119

Color Red Green Blue Gray conversion

Black a a a Black

White 255 255 255 White

Dark gray 128 128 128 Dark gray

Light gray 192 192 192 Light gray

Dark red 128 a a Black

Red 255 a a Dark gray

Dark yellow 128 128 a Dark gray

Yellow 255 255 a Light gray

Dark green a 128 a Black

Green a 255 a Dark gray

Dark cyan a 128 128 Dark gray

Cyan a 255 255 Light gray

Dark blue a a 128 Black

Blue a a 255 Dark gray

Dark magenta 128 a 128 Dark gray

Magenta 255 a 255 Light gray

Receiving User Input
User input devices allow users to interact with the user interface. Windows CE
supports several types of user input devices, such as a keyboard, a touch screen,
a stylus, ink input, and voice recognition, though the types of user input devices
available on your hardware platform may vary. For general design considerations
for user input devices, see Windows Inteiface Guidelines for Software Design.

Providing User Feedback
In addition to receiving user input, a user interface provides feedback to the
user by displaying messages. Messages are communications to the user that are
displayed on the screen. They either inform the user of the system's activities or
status, or they prompt the user to complete some action. To be effective, messages
should be clear, concise, and understandable to the user. To assist you in creating
effective messages, use the following guidelines when writing message text:

• Write using active voice, which is easier to understand than passive voice.

• Always state the problem, cause, and solution in your message text, no matter
how obvious the solution may be.

120 Windows CE Programmer's Guide

• Place important information at the beginning of your text. It is easier to
remember than items placed in the middle.

• Keep messages brief and simple, with sentences that target a fifth-grade
reading level. This will ensure that your message is communicated effectively
to users of varying verbal abilities.

• Avoid using unnecessary technical terminology in your messages. Most
users do not enjoy searching through reference material in order to translate
a message.

• A void blaming the user for errors. Threatening remarks that blame the user for
problems can heighten anxiety and increase the chance of more errors.

• A void patronizing or condescending messages. They are annoying and
often offensive.

• A void relying on default system-supplied messages, because they are often
cryptic and can be frustrating to the user.

You can also include an identification number in your message text in order
to identify the message for support purposes. If you include an identification
number, place it at the end of the message text and not in the title bar or at
the beginning of the text where it may curtail the user's ability to quickly
read the message.

121

CHAPTER 7

User Input

User input is the means by which a user communicates with an interactive device,
such as a Windows CE-based device. An original equipment manufacturer (OEM)
can configure Windows CE to meet the user input requirements of a variety of
different hardware platforms. Windows CE supports keyboard, mouse, and stylus
input devices.

Different Windows CE-based platforms support different combinations of input
devices. For example, some platforms, such as the Palm PC, support a touch
screen, rather than a keyboard, for text entry. Other platforms may include
handwriting recognition software in place of, or in addition to, a keyboard.
Keep your target platform in mind when you design an application.

Keyboard Input
The keyboard is an important means of user input on many Windows CE-based
devices. Windows CE maintains a device-independent keyboard model that
enables it to support a variety of keyboards. Because most Windows CE-based
devices have built-in keyboards, the OEM usually determines the keyboard layout
for a specified Windows CE-based device.

At the lowest level, each key on the keyboard generates a scan code when it
is pressed and released. The scan code is a hardware-dependent number that
identifies the key. Unlike Windows-based desktop platforms, Windows CE has
no standard set of window keyboard scan codes. For this reason, you should not
depend on scan code values unless your application will only run on platforms
for which you know the scan code values.

122 Windows CE Programmer's Guide

The keyboard driver maps each scan code to a virtual key code. The virtual key
code is a hardware-independent number that identifies the key. Because keyboard
layouts vary from language to language, Windows CE offers only the core set of
virtual key codes that are found on all keyboards. This core set includes the Latin
letters, numbers, and a few other critical keys, such as the function and arrow
keys. Keys not included in the core set also have virtual key code assignments,
but their values vary from one keyboard layout to the next. Therefore, you should
only depend on the virtual key codes that are in the core set.

In addition to mapping, the keyboard driver determines which characters
the virtual key generates. A single virtual key generates different characters
depending on the state of other keys, such as the SHIFT and CAPS LOCK keys.
Do not confuse virtual key codes with characters. Although many of the virtual
key codes have the same numerical value as one of the characters that the key
generates, the virtual key code and the character are two different things. For
example, the same virtual key generates the uppercase "A" character and the
lowercase "a" character.

User Input System
The user input system delivers keyboard messages containing scan code, virtual
key code, and character information to the appropriate window. To understand
how this system works, you need to understand the relationship between the
active window, thefocus window, and theforeground window.

Each thread maintains its own active window and focus window. The active
window is a top-level window. The focus window is either the active window
or one of its descendents. At anyone time, there is one thread in the system that
is considered the foreground thread. The active window of this thread is the
foreground window. The user-input system places keyboard messages in the
message queue of the foreground thread. The thread's message loop pulls the
message from the queue and sends it to the thread's focus window. If the focus
window is NULL, the active window receives the message.

To summarize the relationship between these window types:

• The active window is always a top-level window or NULL.

• The focus window is always the active window, a descendent of the active
window, or NULL.

• The foreground window is always the active window of the foreground thread.

Chapter 7 User Input 123

There are a number of ways that a thread can become the foreground thread. If an
application calls the SetForegroundWindow function and specifies a top-level
window, the thread that owns the window becomes the foreground thread and
the window becomes its active window. This function also moves the window
to the top ofthe Z order. You can use SetForegroundWindow on any top-level
window. For more information on Z order, see Chapter 9, "Windows."

In most cases, if the user taps on a window, the system will bring that
window to the foreground. The thread that created the window becomes the
foreground thread. If the foreground window is hidden or destroyed, the system
designates another window as the foreground window. In that case, the new
foreground window's thread becomes the foreground thread. You can use the
GetForegroundWindow function to get the current foreground window.

In general, an application thread does not need to set the foreground window
explicitly. This is usually done by the system as the user selects and closes
windows with the stylus. Use the SetActiveWindow function to activate a
window. If the calling thread is the foreground thread, then the new active
window automatically becomes the foreground window. When the activation
changes, the system sends a WM_ACTIVATE message to the window that is
being deactivated and to the window that is being activated. A thread can use
the GetActiveWindow function to access its active window.

An application thread uses the SetFocus function to move the focus between
its windows. When the focus changes, the system sends a WM_KILLFOCUS
message to the window that is losing the focus. It sends a WM_SETFOCUS
message to the window that is gaining the focus.

The system ensures that the focus window is always the active window or a
descendent of the active window. If the focus is changed to a window with a
different top-level ancestor, the system first changes the activation, and then it
changes the focus.

Key and Character Messages
Windows CE includes two kinds of messages for keyboard events: keystroke
messages, which control a windows behavior, and character messages, which
determine the text that is displayed in the window.

Windows CE generates a keystroke message whenever the user presses or
releases a key. When the user presses a key, the system generates either a
WM_KEYDOWN or WM_SYSKEYDOWN message. If the user holds a key
down long enough to start the keyboard's automatic repeat feature, the system
generates repeated WM_KEYDOWN or WM_SYSKEYDOWN messages.
When the user releases a key, a WM_KEYUP or WM_SYSKEYUP message
is generated.

124 Windows CE Programmer's Guide

System keystroke messages are generated when the user types a key in
combination with the ALT key or when the user types a key and the focus is
NULL. If the focus is NULL, the keyboard event is delivered to the active
window. These messages have the WM_SYS prefix in the message name.

Windows CE does not automatically generate character messages. An
application's message loop calls TranslateMessage to generate character
messages. TranslateMessage translates the keyboard message into the
appropriate character message. Not all keystroke messages generate
character messages.

Windows CE includes four character messages: WM_CHAR, WM_SYSCHAR,
WM_DEADCHAR and WM_SYSDEADCHAR. The WM_CHAR message
contains the character and flags that provide other information. Applications
that display characters that the user types from a keyboard process the
WM_CHAR message.

Some non-English keyboards provide keys that enable the user to add diacritic
marks to characters produced by subsequent keystrokes. In these cases, the system
generates a WM_DEADCHAR message when the diacritic key is pressed. When
the user presses a subsequent key, Windows CE generates a single WM_CHAR
message if the diacritic and character can be combined, or two WM_ CHAR
messages if they cannot be combined. Applications typically do not process
WM_DEADCHAR messages.

If the keystroke is a WM_SYSKEY style message, the system generates
corresponding WM_SYSCHAR and WM_SYSDEADCHAR messages.
Applications usually do not process these messages.

Checking Other Keys
While processing a keyboard message, an application sometimes needs to
determine the status of a different key than the one that generated the current
message. You can use the GetKeyState function to determine the state of certain
keys. This function returns the key's state at the time the current message was
generated. The GetAsyncKeyState function returns the state of the key at the
time of the call.

The Windows CE version of these functions differ slightly from their desktop
counterparts. Unlike the equivalent functions in Windows-based desktop
platforms, GetKeyState supports only a limited number of keys, and
GetAsyncKeyState returns the current key state even if a window in another
thread has the keyboard focus.

Chapter 7 User Input 125

Hot Key Support
A hot key is a key combination that generates a WM_HOTKEY message.
The message is routed to a particular window, regardless of whether or
not that window is the current foreground window or focus window.

You define a hot key by calling the RegisterHotKey function and specifying the
combination of keys that generates the WM_HOTKEY message, the handle of the
window to receive the message, and the hot key identifier. When the user presses
the hot key, the system places a WM_HOTKEY message in the message queue
of the thread that created the specified window. The wParam parameter of the
message contains the hot key identifier. Before the application terminates, it
should use the UnregisterHotKey function to destroy the hot key.

Processing Keyboard Messages
The window procedure of the window that has the keyboard focus receives
keystroke messages when the user types on the keyboard. An application that
responds to keyboard input typically processes WM_KEYDOWN messages only.

In general, you should use the TranslateMessage function in your message
loop to translate every message, not just keystroke messages. Although
TranslateMessage has no effect on other types of messages, using it ensures
that keyboard input is translated correctly.

When a window procedure receives the WM_CHAR message, it should
examine the character code that accompanies the message to determine how
to process the character.

If a window procedure processes system keyboard messages, it should pass the
message to the DefWindowProc function. Otherwise, all system operations
involving the AL T key will be disabled whenever that window has the
keyboard focus. Windows CE uses the WM_SYSCHAR message to implement
menu mnemonics.

The lParam parameter of a keystroke message contains the following additional
information about the keystroke that generated the message.

Information type

Repeat count

Scan code

Explanation

Specifies the number of times the keystroke was repeated as a
result of the user holding down the key.

Gives the hardware-dependent scan code of the key.

126 Windows CE Programmer's Guide

Information type

Context code

Previous key state

Transition state

Using the Caret

Explanation

Has a value of one, if the AL T key was pressed, and of zero, if it
was released.

Has a value of one, if the pressed key was previously down, and
zero, if it was previously up. It has a value of one for
WM_KEYDOWN and WM_SYSKEYDOWN keystroke
messages generated by the automatic repeat feature.

Has a value of one, if the key was released, or of zero, if it
was pressed.

A window that receives keyboard input displays the characters the user types in
the window's client area. A window should use a caret to indicate the position in
the client area where the next character will appear. The window should create
and display the caret when it receives the keyboard focus and it should hide and
destroy the caret when it loses the focus. A window can perform these operations
when the WM_SETFOCUS and WM_KILLFOCUS messages are processed.

Use the CreateCaret, ShowCaret, DestroyCaret, and IDdeCaret functions to
control the visibility of the caret. Use the SetCaretPosition function to change
the position of the caret as the user types.

Stylus Input
In many Windows CE environments, users interact with applications by using a
stylus and a screen. The stylus and screen provide a direct and intuitive alternative
to mouse interaction.

The stylus generates an input event whenever the user touches the screen with a
stylus or moves the stylus when the tip is touching the screen. To an application,
stylus input is a subset of mouse input. When a user presses and releases a stylUS
on a screen, the application processes these events clicks with the left mouse
button. When a user moves the stylus across the screen, the application processes
this as a mouse move event.

Stylus input events in a window are posted to the message queue of the thread that
created the window.

Chapter 7 User Input 127

Stylus Messages
A window receives a stylus message whenever a stylus event occurs within the
window's client area. When the user presses the stylus to the screen, the window
receives a WM_LBUTTONDOWN message. When the stylus is lifted from the
screen, the window receives a WM_LBUTTONUP message. A window will
receive a WM_LBUTTONDBLCLK instead of a WM_LBUTTONDOWN
under the following conditions:

• The window class was registered with the CS_DBLCLKS class style.

• The stylus touches the screen within a certain distance of the last
stylus location.

• The stylus touches the screen within a certain time limit after the stylus
touched the screen.

If the user moves the stylus while pressing it to the screen, Windows CE generates
a WM_MOUSEMOVE message.

Styles input messages supported by Windows CE are described in the
following table.

Message

~_LBUTTONDBLCLK

~_LBUTTONDOWN

~_LBUTTONUP

~_MOUSEMOVE

Meaning

The user double-tapped the screen.

The user pressed the screen.

The user released the stylus from the screen.

The user moved the stylus while the tip was pressed to
the screen.

The lParam parameter of a stylus message indicates the position of the stylus
tip. The low-order word is the x-coordinate and the high-order word is the
y-coordinate. The coordinates are specified in client coordinates. In the client­
coordinate system, all points are specified relative to the upper-left comer of
the client area.

The wParam parameter contains flags that indicate the status of the other stylus
buttons and the CTRL and SHIFT keys at the time of the stylus event. Check
for these flags when the way you process a stylus event depends on the state of
another stylUS button or on the CTRL key or SHIFf key. The wParam parameter
can be a combination of the following flags.

Value

MK_CONTROL

MK_LBUTTON

MK_SHIFf

Meaning

The CTRL key is down.

The stylus is touching the screen.

The SHIFf key is down.

128 Windows CE Programmer's Guide

Inking Input
The Rich Ink control allows you to capture stylus motions with little effort. It
provides a convenient means for applications to accept input from a user without
using a keyboard. For a user, taking notes or drawing sketches with the Rich Ink
control is very much like writing or drawing on paper.

In addition to capturing images, Rich Ink has powerful editing and formatting
capabilities. For example, when the user deletes a word from handwritten notes
on the screen, the control automatically closes the resultant word gap. Some
examples of how Rich Ink can be used include:

• An electronic form application that accepts a user's handwritten signature.

• A calendar application with an embedded Rich Ink control that allows a user
to jot down a "To-Do" list for a selected date.

~ To embed the Rich Ink control in your application

1. Call InitCommonControls to load the common control dynamics-link
library (DLL).

2. Call InitInkX to load and initialize the Rich Ink control.

3. Call CreateDialog to instantiate a dialog box with a custom ink control.

-Or-
1. Call InitCommonControls to load the common control DLL.

2. Call InitInkX to load and initialize the Rich Ink control.

3. Call CreateWindow and specify the class name as WC_INKX.

The EReceipt and InkControl sample codes provide two examples of
the implementation.

After initialization, the Rich Ink control communicates with the calling
application using the standard Windows CE messaging system. It sends the
IM_SHOWCMDBAR message to the ink control to show or hide the command
bar. It sends the IM_GETDATALEN, IM_GETDATA, and IM_SETDATA
messages between the ink control and the application to transmit inking data, such
as a note or sketch. It sends the IM_REINIT message to the ink control to erase
all the content from the control. It sends the standard EM_GETMODIFY and
EM_SETMODIFY messages to the ink control to determine if its content has
been modified and to set the modification flag in the control, respectively.

Chapter 7 User Input 129

As an example of using the ink control, consider a calendar application with
a Rich Ink control, named as InkX, embedded in a dialog box. The control's
command bar can be toggled by using SendDigItemMessage to send an
IM_SHOWCMDBAR message. The state of the command bar is specified in
the accompanying wParam:

SendDlgltemMessage(hlnk, IM_SHOWCMDBAR, (WPARAM)m_bCmdBar, 0L);

Here hlnk is a handle to the InkX control and m_bCmdBar is set to either TRUE
or FALSE to specify whether or not the command bar is visible.

To save an edited or a newly created note, you must get the data length
by sending:

InkDataLen=SendDlgltemMessage(hlnkX, IM_GETDATALEN, 0, 0L);

For each date entry, the application keeps an ink note, plnkData, of the BYTE
pointer type. The application should first allocate sufficient memory to store the
ink note, and then pass the plnkData pointer to the control through the messages
IParam parameter:

InkDatalen=SendDlgltemMessage(hlnkX, IM_GETDATA, InkDataLen,
(LPARAM)plnkData);

When the user taps a calendar date, the application should retrieve any previously
saved ink data and bring up the ink control. It then sends the following message to
refresh the document view with the retrieved ink data:

SendDlgltemMessage(hlnkX, IM_SETDATA, dwlnkDataLen, (LPARAM)plnkData);

The dwlnkDataLen parameter gives the length of the ink data; plnkData is a
pointer to the data itself. You should release the ink data, plnkData, once it has
been passed to the ink control.

131

CHAPTER 8

Graphics Device Interface

In Windows CE, as in Windows-based desktop platforms, the graphics device
interface (GDI) controls the display of text and graphics. You use GDI to draw
lines, curves, closed figures, text, and bit images.

The principle features of the Windows CE GDI are listed in the following table.

GDlfeature

Filled Shapes
and lines

Pens and brushes

Bit block transfer
functions

ROPCodes

Colors

Fonts

Printing

Palettes

Supported attributes

Ellipse, polygon, polyline, rectangle, rounded rectangle

Dashed, wide, and solid pens; pattern brushes

PatBlt, BitBlt, MaskBlt, StretchBlt, TransparentImage

All ROP2, ROP3, and ROP4 codes

Pixel depths of 1, 2, 4, 8, 16, 24, and 32 bits per pixel (bpp)

TrueType and raster fonts

Full graphical printing

Functions that create, change, query, and realize palettes

The Windows CE GDI is designed for devices with limited system resources.
Therefore, it does not include many of the special graphic functions found in
Windows-based desktop platforms. As a consequence, the Windows CE GDI is
a powerful, full color graphical display system with a relatively small footprint.

For more information about GDI in Windows-based desktop platforms, see
the documentation for the Microsoft Platform SDK. For an introduction to the
GDI in 32-bit Windows programming, see Programming Windows 95, by Charles
Petzold (Microsoft Press).

132 Windows CE Programmer's Guide

Unique Features of the Windows CE GDI
The following GDI features are available only in Windows CE, not in Windows­
based desktop platforms.

GDlfeature

Bit block transfer

Colors and palettes

Wiudows CE supports

The new TransparentImage function,
which transfers all portions of a bitmap
except for those drawn in a specified
"transparent" color.

All of the pixel formats supported in
Windows-based desktop platforms, as
well as a 2-bits-per-pixel (bpp) format.

Windows CE does not support the following GDI features found in Windows­
based desktop platforms.

GDlfeature

Bitmaps

Colors and palettes

Device contexts

Fonts

Graphics objects

Pens and brushes

Windows CE does not support

Compressed bitmap formats.

Dithering or a standard palette. If there is
no color table associated with an image, the
color palette selected in the device context
(DC) becomes the default color table.

Windows CE does not arbitrate between the
palettes of the background and foreground
applications. The application running in the
foreground has complete control over the
system palette.

Information DCs.

Streching or polygon-fill graphic modes.

Class or private type device contexts.

Multiple mapping modes. It supports only
the text-mapping mode, which maps the
logical coordinate systems to the physical
coordinate system in a l: 1 ratio.

Multiple font styles. Windows CE allows
either raster or TrueType fonts to be used
on a specified system, but not both.

Paths or metafiles.

Dotted pens, inside frame pens, pen endcap
styles, hatched brushes, or wide, dashed
pens, though it does support wide pens and
dashed pens.

GDI feature

Printing

Regions

Shape and line drawing

Device Contexts

Chapter 8 Graphics Device Interface 133

Windows CE does not support

Print spooling or the printing of multiple
copies. Windows CE has no print manager.

Windows CE does not send graphical
information directly to output devices.
Instead, it passes all graphical operations to
device drivers that, in tum, send the
information to display devices and printers.
One of the reasons Windows CE has a
small footprint is because it does not need
to maintain hardcoded routines for
interfacing with multiple output devices.

Non-rectangular regions. Like Windows 95,
but unlike Windows NT, Windows CE
represents regions using 16-bit values.

Functions necessary to draw an arc, a beizer
curve, a chord, a pie, a polypolygon, or a
polypolyline.

A device context (DC) is a GDI structure containing information that governs
the display of text and graphics on a particular output device. You use a DC to
store, retrieve, and modify the attributes of graphic objects and to specify graphic
modes. The graphic objects stored in a DC include a pen for line drawing, a brush
for painting and filling, a font for text output, a bitmap for copying or scrolling, a
palette for defining the available colors, and a region for clipping.

DCs supported by Windows CE are described in the following table.

Device context type

Display

Printer

Memory

Description

Supports drawing operations on display devices.

Supports drawing operations on printers.

Supports drawing operations on device-dependent bitmaps or
DIE sections.

134 Windows CE Programmer's Guide

The graphics modes control general display characteristics, such as how colors
are mixed. Graphics modes supported by Windows CE are described in the
following table.

Graphics mode type

Background mode

Drawing mode

Description

Defines how background colors are mixed
with window or screen colors for text and
bitmap operations.

Defines how foreground colors are mixed
with window or screen colors for pen,
brush, bitmap, and text operations.

Note Windows CE does not support multiple mapping modes. The only mapping
mode is MM_TEXT, which maps logical coordinates to the physical coordinates
in a I: I ratio from left to right and top to bottom.

Using Device Contexts
You cannot directly modify a device context (DC). You obtain access to a DC
indirectly by using functions that return a handle to a DC.

Display Device Contexts
You create a display device context to draw in the client area of a display device.
To do so, call the BeginPaint or GetDC function and supply a handle to a
window. Windows CE will return a handle to a display device context with
default objects, attributes, and graphic modes. You can begin drawing using these
defaults, or you can choose a new object, change the attributes of an existing
object, or choose a new mode. When you have finished drawing in the display
area, you must release the device context by calling the EndPaint or ReleaseDC
function. Use BeginPaint and EndPaint together, and use GetDC and
ReleaseDC together. You use BeginPaint and EndPaint when you are
processing WM_P AINT messages in your window procedure. The rest of the
time, you generally use GetDC and ReleaseDC to obtain and release a DC.

Note Windows CE supports only common DCs.

Printer Device Contexts
You obtain a handle to a printer DC by calling the CreateDC function. Call the
DeleteDC function to delete the printer DC when you are finished printing.

Chapter 8 Graphics Device Interface 135

Note You must delete, rather than release, a printer device context; the
ReleaseDC function fails if you try to use it to free a printer device context.

Memory Device Contexts
You use a memory device context to store bit images in memory rather than
sending them to an output device. A memory DC allows Windows CE to treat
a portion of memory as a virtual device. You can create a memory DC for a
particular device by calling the CreateCompatibleDC function and supplying a
handle to the device's DC. Memory DCs are also called compatible DCs because
they are created to be compatible with a particular device. Windows CE will
create a temporary I pixel x 1 pixel, monochrome bitmap and select it into the DC
after calling CreateCompatibleDC. Before you can begin drawing with this DC,
you must use the SelectObject function to select a bitmap with the appropriate
width and height into the DC. Once the new bitmap is selected into the memory
DC, you can use the DC to store images. For more information on image storage,
see the "Bitmaps" section later in this chapter.

Graphic Objects
All newly created DCs start with a default brush, palette, font, pen, and region.
You can examine a default object's attributes by calling the GetCurrentObject
and GetObject functions. The GetCurrentObject function returns a handle
identifying the current pen, brush, palette, bitmap, or font, and the GetObject
function initializes a structure containing that object's attributes.

To replace a default object, call one of the following object-specific
creation functions.

Graphic object

Bitmap

Brush

Palette

Font

Pen

Creation functions

CreateBitmap, CreateCompatibleBitmap,
CreateDIBSection

CreateDIBPatternBrushPt, CreatePatternBrush,
CreateSolidBrush

CreatePalette

CreateFontIndirect

CreatePen, CreatePenlndirect

Each of these functions returns a handle identifying the new object. After you
retrieve a handle, you can call the SelectObject function to select the new object
into the DC. However, you should save the handle to the default object. When
you finish using the new object, use SelectObject to restore the default object,
and delete the new object with the DeleteObject function.

136 Windows CE Programmer's Guide

Bitmaps

Note Failure to delete objects that are no longer in use can cause serious
performance problems.

Saving and Restoring Device Contexts
Use the GetDeviceCaps function to retrieve device data using a device context
for any of the following types of devices:

• Raster displays

• Dot-matrix printers

• Ink-jet printers

• Laser printers

GetDeviceCaps can provide information about a device's color format and raster
capabilities, as well as its shape, text, and line drawing capibilites. You supply
GetDeviceCaps with a handle to a device context and an index specifying the
type of data to be retrieved.

The SaveDC function records the condition of your device context's graphic
objects and graphic modes on a special GDI stack. You can call this function to
save your application's original state, providing you with a "clean slate" for later
drawing. Call RestoreDC to return the DC to this original state.

Graphic Modes
Windows CE initializes a device context with default graphic modes. You can get
the current background mix mode with the GetBkMode function and set it with
the SetBkMode function. In Windows CE, the background mix mode effects the
appearence of text and dashed pens. You can set the foreground mix mode with
the SetROP2 function. The foreground mix mode controls how the brush or pen
colors and the image colors are combined. SetROP2 returns the mix mode for the
last foreground mix mode.

You can change the viewport origin from its default starting point of the upper­
left corner of the screen with the SetViewportOrgEx function.

A bitmap is an array of bits that, when mapped to a rectangular pixel array on
an output device, creates an image. You use bitmaps to create, modify, and
store images.

Chapter 8 Graphics Device Interface 137

There are two types of bitmaps: device-dependent bitmaps (DDBs) and device­
independent bitmaps (DIBs). A DDB does not have its own color table and can
therefore only be properly displayed by a device with the same display memory
organization as the one on which it was created. A DIB, on the other hand,
generally has its own color table, and therefore can be displayed on a variety
of devices.

Virtually all graphs information in Windows CE is stored in DIB format.
Windows CE supports DDBs only to remain compatible with applications
written for early versions of Windows. You should use DIBs in all applications
you write for, or port to, Windows CEo

The BITMAP structure contains all of the height, width, and color data needed
to draw a DDB. The data needed to draw a DIB is stored in a BITMAPINFO
structure which consists of a BITMAPINFOHEADER structure and two or
more RGBQUAD structures. The BITMAPINFOHEADER structure contains
information about the dimensions and color format of a DIB. Each RGBQUAD
structure defines one ofthe bitmap's colors.

Windows CE supports bitmaps with pixel depths of 1, 2, 4,8, 16,24, and 32 bits
per pixel (bpp). For more information on colors in Windows CE, see Chapter 6,
"Designing a User Interface for Windows CE."

Windows CE does not support compressed bitmap formats, such as run-length
encoded bitmaps.

Using Bitmaps
You can create a DIB with the CreateDIBSection function, and then select it
into a device context with the SelectObject function. You use the DeleteObject
function to delete the DIB.

In order to store a DDB in memory, you must first create a memory DC
with the CreateCompatibleDC function. This function creates a DC that
is compatible with the specified device. The DC contains a single-bit array
that serves as a placeholder for a bitmap. You can use the CreateBitmap or
CreateCompatibleBitmap function to create a bitmap of the desired size, and
then select it into the DC with the SelectObject function. Windows CE then
replaces the single-bit array with an array large enough to store color information
for the specified rectangle of pixels.

138 Windows CE Programmer's Guide

When you draw using the handle returned by CreateCompatibleDC, the output
does not appear on a device's drawing surface; instead, it is stored in memory.
To copy the image stored in memory to a display device, call the BitBlt function.
BitBlt copies the bitmap data from the bitmap in the source DC into the bitmap in
the target DC. In this case, the source DC is the memory DC, and the target DC is
the display DC. Thus, when BitBlt completes the transfer, the image will appear
on the screen. By reversing the source and target DCs, you can use BitBlt to
transfer images from the screen into memory.

BLT functions, such as BitBlt, can be used to modify as well as transfer bitmaps.
These functions modify a destination bitmap by combining it with a pen, a brush,
and, in some cases, a source bitmap, in a format specified by a raster operation
(ROP) code. Each ROP code specifies a unique logical pattern for combining
graphic objects. For example, the SRCCOPY ROP simply copies a source bitmap
to a destination bitmap while the MERGECOPY ROP merges the colors of a
source rectangle with a specified pattern.

The ROP code types are described in the following table.

ROPtype

ROP2

ROP3

ROP4

Description

Combines a pen or brush with a destination bitmap in one of 16 possible
combinations.

Combines a brush, a source bitmap, and a destination bitmap in one of
256 possible combinations.

Uses a monochrome "mask" bitmap to combine a foreground ROP3 and
a background ROP3. The mask uses zeros and ones to indicate the areas
where each ROP3 will be used.

When the source and destination bitmaps are different sizes, you can use the
StrechBlt function to perform a BL T between the two bitmaps. StrechBlt
copies a bitmap from a source rectangle into a destination rectangle, stretching
or compressing the bitmap to fit the destination rectangle.

You can use the PatBlt function to paint a selected rectangle using a selected
brush and an ROP3 code.

You can use the TransparentImage to transfer all portions of a bitmap except for
those drawn in a specified transparent color. This function is especially useful for
transferring non-rectangular images, such as icons.

Note Windows CE supports arbitrary bit pixel formats, which allow you to use
bit functions between bitmaps with different pixel depths.

Chapter 8 Graphics Device Interface 139

The BITMAPINFO structure defines the dimensions and color information for a
Dill. The BITMAPINFO structure must include a color table if the images are
palettized, usually with formats of 1, 2, 4, and 8 bbp. For non-palettized images
with 16 bpp or 32 bpp, the color table must be three entries long; the entries must
specify the value of the red, green, and blue bitmasks. Because GDI ignores the
color table for 24-bpp bitmaps, you should store the image's pixels in blue-green­
red (BGR) format.

Colors and Palettes
Some display devices and printers display only monochrome images; others
use hundreds, thousands, or even millions of colors. You should design your
applications to display properly on devices with a variety of color capabilities.

The color range available to a display device is determined primarily by the pixel
depth that it supports. Pixel depth is measured in bits per pixel (bpp). Each bit
can have a value of 1 or O. A pixel depth of 1 bpp allows only two values, black
and white. A pixel depth of 2 bpp has four possible color values or all possible
combinations of Os and 1 s with two bits. In general, the number of possible colors
is equal to 2 raised to the power of the pixel depth. Windows CE supports pixel
depths of 1, 2, 4, 8,16,24, and 32 bpp.

Note Windows CE supports a pixel depth of 2 bpp, which is not supported in
Windows-based desktop platforms.

A color palette is an array that contains the color values that can be displayed or
drawn on a output device. Color palettes are used by devices that can only display
a subset of their potential colors at any specified time.

Each time you create a device context, Windows CE creates a default palette for
that device context. Windows CE has no standard color palette. It assigns colors
to a bitmap based on the bitmap's associated color table. If an image has no color
table, Windows CE uses the color palette in the currently selected DC.

The default palette typically has 256 entries (colors), though the exact number
varies. The device determines which colors are in the default palette. Display
devices, for example, often use the 16 standard VGA colors and four other
Windows-defined colors. Printer devices may use other default colors.

If you specify a pen or text color that is not in the default palette, Windows CE
will approximate the color with the closest color in the palette.

140 Windows CE Programmer's Guide

Using Colors

You cannot change the entries in the default palette. However, you can create
your own logical palette and select the palette into a DC in place of the default
palette. You can use logical palettes to define and use colors that meet your
specific needs. Windows CE enables you to create multiple logical palettes. You
can attach each logical palette to a unique DC or you can switch between multiple
logical palettes in a single DC.

Windows CE supports both palettized and non-palettized color display devices.
Palettized devices have a color palette coded directly into their display card.
Non-palettized devices use the pixels' bit values in the frame buffer to directly
define colors in terms of their red, green, and blue values. You can use the
GetDeviceCaps function to determine whether or not a device supports
color palettes.

You can use the GetDeviceCaps function, which specifies the NUMCOLORS
value, to discover the number of colors a device supports. Usually, this count
corresponds to a physical property of the output device, such as the number of
inks in the printer or the number of distinct color signals the display adapter can
transmit to the monitor.

Windows and applications use parameters and variables having the COLORREF
type to pass and store color values. You can extract the individual values of the
red, green, and blue components of a color value by using the GetRValue,
GetGValue, and GetBValue macros, respectively. Use the RGB macro to
create a color value from individual red, green, and blue component values.

If you request a color that the display device cannot generate, Windows CE
will approximate it with a color that the device can generate. For example, if
you attempt to create a red pen for a black and white printer, you will receive
a black pen instead-Windows CE uses black as the approximation for red.

You can discover how Windows CE will approximate a specified color by using
the GetNearestColor function. The function takes a color value and returns the
color value of the closest matching color the device can generate.

Note Windows CE does not support dithering.

Windows CE handles colors in bitmaps differently than colors in pens,
brushes, and text. Compatible bitmaps, created by using the CreateBitmap
or CreateCompatibleBitmap function, retain color information in a device­
dependent format. No color values are used, and the colors are not approximated.

Chapter 8 Graphics Device Interface 141

DIBs retain color information either as color values or color palette indexes. If
color values are used, the colors may be approximated as necessary. Color palette
indexes can only be used with devices that support color palettes. Although
Windows does not approximate colors identified by indexes, the colors in the
bitmap could change if the palette changes.

Note An offscreen DIB section should have the same color table as the screen,
otherwise GDI will have to perform a time-consuming, color-translating BLT
when the DIB section is transferred to the screen. For grayscale devices, the color
table should be OxOOOOOO, Ox808080, OxcOcOcO, and Oxffffff. For color devices,
the application should first query the stock palette to determine its color display
capabilities, and then build a matching color table.

Creating and Using Palettes
To create a logical palette, you should assign values to the members of
a LOGPALETTE structure and pass a pointer to the structure to the
CreatePalette function. The function returns a handle to a logical palette
with the values specified in the LOGPALETE structure.

To gain access to the colors in the logical palette, use the SelectPalette function
to select the palette into the current device context, and then use the
RealizePalette function to make the system palette the same as the palette in the
current device context. You can use the colors in the palette as soon as the logical
palette has been realized.

Note The GetSystemPaletteEntries and RealizePalette functions will fail if the
device associated with the selected device index does not have a settable palette.
You can use GetDeviceCaps to find out if the device has a settable palette.

Your logical palette should have just enough entries to represent the colors you
need. You can use the GetDeviceCaps function to retrieve the maximum palette
size associated with a device, or the SIZEPALETTE member.

You can use the SetPaletteEntries function to change the colors in an existing
logical palette. After you have updated the colors, use RealizePalette to update
the display. If you select a logical palette into more than one DC, any changes
you make to the logical palette will affect all the DCs to which it is attached.

You can use the GetPaletteEntries function to retrieve the color values for a
logical palette. Use the GetNearestPaletteIndex function to retrieve the value
in a specified logical palette that most closely matches a specified color value.

142 Windows CE Programmer's Guide

Pens

Use the DeleteObject function to delete a logical palette. Be sure that the logical
palette is not selected into a device context when you delete it.

Windows CE does not arbitrate between the palettes of the background and
foreground applications. The application running in the foreground has complete
control over the system palette. Because of this, you should generally use only the
first ten and last ten colors included in the stock palette of a display device, which
are generally the standard Windows VGA colors. Applications that use other
colors may not display properly when they run in the background. Because
Windows CE does not perform any color matching operations between the
foreground and background applications, background applications cannot
call RealizePalette.

In Windows CE, a pen is a graphic object for drawing lines. Drawing applications
use pens to draw freehand lines and straight lines. Computer-aided design (CAD)
applications use pens to draw visible lines, section lines, center lines, and so on.
Word processing and desktop publishing applications use pens to draw borders
and rules. Spreadsheet applications use pens to designate trends in graphs and to
outline bar graphs and pie charts.

Windows CE stock pens include the BLACK_PEN and the WHITE_PEN,
which each draw a solid, I-pixel-wide line in their respective color, and the
NULL_PEN which does not draw. You obtain the stock pens with the
GetStockObject function.

You use the CreatePen or CreatePenlndirect functions to create a custom pen
with a unique color, width, or pen style.

The pen styles supported by Windows CE are described in the following table.

Pen style

PS_SOLID

PS_DASH

PS_NULL

Description

Draws a solid line

Draws a dashed line

Does not draw a line

Windows CE supports wide pens and dashed pens, but it does not support wide,
dashed pens, dotted pens, inside frame pens, geometric pens or pen endcap styles.
All Windows CE pens are cosmetic.

You can create a pen with a unique color by storing the red, green, blue (RGB)
triplet that specifies the desired color in a COLORREF structure and passing this
structure's address to the CreatePen or CreatePenlndirect function. In the case
of CreatePenlndirect, the COLORREF pointer is actually incorporated into the
LOGPEN structure, which is used by CreatePenlndirect.

Brushes

Chapter 8 Graphics Device Interface 143

Note The wide pen requires a lot of GDI computation. To improve the
performance of a handwriting application, use a standard-sized pen whenever
possible.

In Windows CE, a brush is a graphic object for painting the interior of closed
shapes. Drawing applications use brushes to paint shapes; word processing
applications use brushes to paint rules; CAD applications use brushes to paint
the interiors of cross-section views; and spreadsheet applications use brushes
to paint graphs.

When you call a function that creates a brush, such as CreatePatternBrush,
it returns a handle to a logical brush. When you select the logical brush into
the DC with the SelectObject function, the device driver for the corresponding
device creates the physical brush that will be used for painting.

When you call a painting function, GDI maps a pixel in the brush bitmap to the
window origin of the client area. The window origin is the upper-left corner of the
window's client area. The coordinates of the mapped pixel are called the brush
origin. The default brush origin is the upper-left corner of the brush bitmap, at
the coordinates (0, 0). You can use the SetBrushOrgEx function to change the
location of the brush origin by a specified number of pixels. To make the changes
effective, you must use the SelectObject function to select the modified brush.

Windows CE supports three types of logical brushes: stock brushes, solid brushes,
and pattern brushes.

The seven types of stock brushes consist of the white brush, black brush, gray
brush, light gray brush, dark gray brush, the null brush (which does not paint),
and the hollow brush. You can use the GetStockObject function to select one
of the stock brushes.

Windows CE maintains 21 stock brushes whose colors are used in window
elements such as menus, scroll bars, and buttons. You can obtain a handle to a
system stock brush with the GetSysColorBrush function. Furthermore, you can
retrieve the color window element with the GetSysColor function, and set a color
corresponding to a window element with the SetSysColors function.

A solid brush contains 64 pixels of the same color in a square that is 8 x 8
pixels. You can call the CreateSolidBrush function to create a solid brush
of a specified color. To paint with your solid brush, use SelectObject to
select it into a specified DC.

144 Windows CE Programmer's Guide

Printing

You can create a pattern brush from an application-defined bitmap or a DIB.
To create a logical pattern brush, you must create a bitmap, and then call the
CreatePatternBrush or CreateDIBPatternBrushPt function, supplying a
handle that identifies the bitmap or DIB.

Windows CE does not support hatched brushes. However, you can achieve
the effect of a hatched brush by creating a pattern brush with the desired hatch
pattern using the CreateDIBPatternBrushPt function. You can create bitmaps
of multiple sizes as well.

Windows CE does not send printing commands directly to output devices.
Instead, it passes all output information to device drivers, which, in tum,
send the information to display devices and printers. Windows CE has a
small footprint in part because it does not need to maintain hardcoded
routines for interfacing with multiple output devices.

Most applications strive for what you see is what you get (WYSIWYG) output.
Ideally, WYSIWYG would mean that text drawn with a specified font and size
on the screen would have a similar appearance when it is printed. However, it is
almost impossible to obtain true WYSIWYG output, partly because of differences
between video and printer technologies.

To obtain a WYSIWYG effect when drawing text, call the CreateFont function
and specify the typeface name and logical size of the font you would like to draw
with, and then call the SelectObject function to select the font into a printer DC.
Windows CE will select a physical font that is the closest possible match to the
specified logical font.

Before you start a print job, you should use SetAbortProc to establish an abort
procedure. Your abort procedure should include a modeless dialog box that allows
a user to cancel a print job. Once you have initialized the necessary variables,
registered your AbortProc function, and displayed your modeless Cancel dialog
box, you can start the print job by calling the StartDoc function.

Once you have started the print job, you can define individual pages in the
document by calling the StartPage and EndPage functions and embedding the
appropriate calls to GDI drawing functions within this bracket. After you have
defined the last page, you can close the document and end the print job with the
EndDoc function .

. As previously stated, Windows CE does not have a print manager. It will not
spool or print more than a single copy of a document at a time.

Regions

Chapter 8 Graphics Device Interface 145

Note The display driver does all the rendering in Windows CE and scales the
output to the printer resolution. If you intend to print text, you should use a
system with TrueType fonts because raster fonts cannot be scaled to different
printer resolutions without severely compromising the quality of the text.

In Windows CE, a region is a rectangle that can be filled, painted, inverted,
framed, and tested to see if it contains a particular point.

You create a region by calling CreateRectRgn or CreateRectRgnlndirect.
These functions return a handle identifying the new region. Once you have a
handle to a region, you can select the region into a DC with the SelectObject
function. You can perform a variety of operations on a region: You can combine
or compare it with another region, paint or invert its interior, draw a frame around
it, retrieve its dimensions, and test whether or not a particular point lies within it.

Note When using the CreateRectRgn and CreateRectRgnlndirect functions,
use values for regions that can be represented by 16-bit integers because that is
how region data is stored in Windows CE.

The following table describes in which ways you can use the CombineRgn
function to combine two regions together.

Value

RGN_AND

RGN_COPY

RGN_DIFF

Meaning

The intersecting parts of two original regions define a new region.

A copy of the first of the two original regions defines a new region.

The part of the first region that does not intersect the second defines a
new region.

The two original regions define a new region.

Those parts of the two original regions that do not overlap define a
new region.

You can use the EquaiRgn function to determine whether or not two regions are
equal in size and shape. You can use the FillRgn function to paint the interior of
a region with a specified brush.

Windows CE does not support the InvertRgn or InvertRect functions. You can
achieve the effect of InvertRect by using the PatBIt function with an ROP code
of DSTINVERT.

146 Windows CE Programmer's Guide

You can retrieve the dimensions of a region's bounding rectangle by calling the
GetRgnBox function. The bounding rectangle is the smallest rectangle that can be
drawn around a region. Use the OffsetRgn function to move a region a specified
number of logical units. Use GetRegionData to retrieve data describing a region.

Note The GetRegionData function returns a different number of rectangles for a
specified region than its Windows equivalent.

The PtlnRegion function determines if a point is inside a specified rectangle. To
determine if the point is in a region, you must pass the location of the point along
with a region's handle to PtlnRegion.

Clipping Regions
You can use clipping regions to restrict your output to a specified subregion of
the client area. To use a clipping region, you must select it into the DC associated
with the display device.

Clipping is used in Windows CE in a variety of ways. Word processing and
spreadsheet applications clip keyboard input to keep it from appearing in the
margins of a page or spreadsheet. CAD and drawing applications clip graphics
output to keep it from overwriting the edges of a drawing or picture.

Some DCs provide a predefined or default clipping region. For example, the
device context created by the BeginPaint contains a predefined rectangular
clipping region that corresponds to the invalid rectangle that needs to be
repainted. However, the DCs created by the CreateDC and GetDC functions
contain empty clipping regions; clipping is only done to keep graphics output in
the window's client area.

You can perform a variety of operations on clipping regions. Some of these
operations require a handle identifying the region and some do not. For example,
you can perform the following operations directly on a DC's clipping region.

• Determine whether part of the client area intersects a region by calling the
RectVisible function.

• Exclude a rectangular part of the client area from the current clipping region
by calling the ExcludeClipRect function.

• Combine a rectangular part of the client area with the current clipping region
by calling the IntersectClipRect function.

Chapter 8 Graphics Device Interface 147

After obtaining a handle identifying the clipping region, you can perform any
operation that is common with regions, such as:

• Combine a copy of the current clipping region with a second region by calling
the CombineRgn function.

• Compare a copy of the current clipping region to a second region by calling
the EqualRgn function.

• Determine whether a point lies within the interior of a copy of the current
clipping region by calling the PtlnRegion function.

Shapes and Lines
Windows CE allows you to draw lines and a variety of filled shapes including an
ellipse, a polygon, a rectangle, and a rounded rectangle.

A line is a set of highlighted pixels on a raster display or a set of dots on a printed
page identified by two points: a starting point and an ending point. In Windows
CE, the pixel located at the starting point is always included in the line, and the
pixel located at the ending point is always excluded.

You can draw a series of connected line segments by calling the Polyline
function and supplying an array of points that specify the ending point of
each line segment.

Note Windows CE does not support the LineTo or the MoveToEx functions.
However, you can use the Polyline function in Windows CE to achieve the same
results that you would get in Windows-based desktop platforms if you called the
MoveToEx function and then made repeated calls to the LineTo function.

Filled shapes are geometric shapes that Windows CE outlines with the current
pen and fills with the current brush. Windows CE supports four filled shapes:
ellipse, polygon, rectangle, and round rectangle, which is a rectangle with
rounded corners.

An application written for Windows uses filled shapes in a variety of ways.
Spreadsheet applications, for example, use filled shapes to construct charts and
graphs; drawing applications allow users to draw figures and illustrations using
filled shapes.

148 Windows CE Programmer's Guide

An ellipse is a closed curve defined by two fixed points-fi andj2-such that
the sum of the distances-di + d2-from any point on the curve to the two fixed
points is constant. The following illustration describes an ellipse drawn by using
the Ellipse function.

Ellipse

I

- - -[~O~~d~n~ Rectangle

Result of the Ellipse function

When calling Ellipse, you supply the coordinates of the upper-left and lower-right
corners of the ellipse's bounding rectangle. A bounding rectangle is the smallest
rectangle that completely surrounds the ellipse.

A polygon is a filled shape with straight sides. Windows CE uses the currently
selected pen to draw the sides of the polygon, and the current brush to fill it.
Windows CE fills all enclosed regions within the polygon with the current brush.

Note Windows CE does not support multiple fill modes. When it fills a polygon,
it fills all subareas created by intersecting lines within the polygon. This manner
of filling is equivalent to the Winding fill mode used on Windows-based desktop
platforms.

A rectangle is a four-sided polygon whose opposing sides are parallel and equal
in length, and whose interior angles are 90 degrees. Although you can use the
Polygon function to draw a rectangle if you supply it with all four sides, it is
easier to use the Rectangle function. This function requires only the coordinates
of the upper-left and the lower-right corners.

You can use the RoundRect function to draw a rectangle with rounded corners.
Supply this function with the coordinates of the lower-left and upper-right corners
of the rectangle, and the width and height of the ellipse used to round each corner.

You can use the FillRect function to paint the interior of a rectangle. You can use
the FillRgn function to fill a region using the specified brush.

Chapter 8 Graphics Device Interface 149

Because Windows CE does not support paths, many line-drawing functions
that are available in the Windows-based desktop platforms are not available
in Windows CEo Windows CE does not support functions to draw an arc, a
beizer curve, a chord, a pie, a polypolygon, or a polypolyline. However, you
can approximate these shapes using existing Windows CE drawing functions.
For example, you can create an arc using the Ellipse function with an
appropriately defined clipping region.

Note The Ellipse and RoundRect functions require a lot of GDI computation. To
increase your application's performance, use these functions sparingly.

Text and Fonts
In Windows CE, a font is a collection of glyphs that share a common design. A
font is characterized by its typeface, style, and size.

A font's typeface determines the specific characteristics of the glyphs, such as the
relative width of the thick and thin strokes used in any specified character. The
style determines a font's weight and slant. Font weights can range from thin to
black. Slants can be roman (upright) and italic. The size of a font is the distance
from the bottom of a lowercase "g" to the top of an adjacent uppercase "M,"
measured in points. A point is approximately 1172 of an inch.

In Windows CE, fonts are grouped into families that share common stoke-width
characteristics. Fonts within a family are distinguished by size and style. The font
families are described in the following table.

Font family name

Decorative

Dontcare

Modem

Roman

Script

Swiss

Description

Specifies a novelty font, for example, Old English.

Specifies a generic family name. This name is used when
information about a font does not exist or does not matter.

Specifies a monospace font with or without serifs. Monospace
fonts are usually modem; examples include Pica, Elite, and
Courier New.

Specifies a proportional font with serifs, for example, Times
New Roman.

Specifies a font that is designed to look like handwriting;
examples include Script and Cursive.

Specifies a proportional font without serifs, for example, Arial.

150 Windows CE Programmer's Guide

These family names correspond to constants found in the WINGDLH header
file: FF _DECORATIVE, FF _DONTCARE, FF _MODERN, FF _ROMAN,
FF _SCRIPT, and FF _SWISS. Use these constants when you create, select,
or retrieve information about a font.

TrueType and Raster Fonts

Using Fonts

Windows CE supports raster and TrueType font technologies but allows only
one type to be used on a specified system. The choice of True Type or raster font
types is made when the system is designed and cannot be changed afterwards
by an application.

The differences between raster and TrueType fonts have to do with the way the
glyph for each character or symbol is stored in the respective font-resource file. A
raster font glpyh is a tiny bitmap that represents a single character's size. Because
the bitmaps for each glyph in a raster font are designed for a specific resolution on
a particular device, raster fonts are generally considered to be device-dependent.

A True Type font glyph contains outlines and hints. Windows CE uses these hints
to adjust the outlines used to draw the glyphs. These hints and the respective
adjustments are based on the amount of scaling used to reduce or increase the size
of the glyph. Because TrueType characters can be scaled up or down and still
retain their original appearance, they are considered to be device-independent.

A font's glyphs are stored in a font-resource file. A font-resource file for a raster
font is stored in a .fon file. True Type fonts have two files, a short .fot header file
and a . ttf file that contains the actual data.

Use the AddFontResource function to load a font from a font-resource file.
When you finish using an installed font, use the RemoveFontResource function
to remove it. Whenever you add or delete a font resource, you should use the
SendMessage function to send a WM_FONTCHANGE message to all top­
level windows in the system. This message notifies other applications that the
application has added or removed a font to the internal font table. You do not
need to use AddFontResources to create or realize system fonts.

There are two stages to selecting a font. In the first stage, you specify the ideal
font you would like to use. This theoretical font is called a logical font. In the
second stage, an internal algorithm finds the physical font that is the closest match
to your specified logical font. A physical font is a font stored on the device or in
the operating system. The process of finding the physical font that most closely
matches a specified logical font is called font mapping.

Chapter 8 Graphics Device Interface 151

~ To use a font

1. Use the EnumFontFamilies function to list the available fonts.

This is especially useful when you want to determine which fonts are available
from a specified font family or typeface.

2. Use the values returned by the font enumeration function to initialize the
members of a LOGFONT structure.

3. Create the logical font by calling the CreateFontIndirect function and
passing it a pointer to the initialized LOGFONT structure.

4. Select the logical font into the current device context with the
SelectObject function.

When you call SelectObject, Windows CE loads the physical font that most
closely matches the logical font specified in the LOGFONT structure.

When initializing the members of the LOGFONT structure, be sure that the
IfCharSet member specifies a specific character set. This member is used in the
font mapping process and the results will be inconsistent if this member is not
initialized correctly. If you specify a typeface name in the IfFaceName member
of the LOGFONT structure, be sure that the IfCharSet value contains a
matching value.

Windows CE keeps a table containing all the fonts available for application use.
When you call CreateFontIndirect, Windows CE chooses a font from this table.

Windows CE provides six stock logical fonts. You can use the GetStockObject
function to obtain a stock font. The stock font values are described in the
following table.

Value Meaning

Specifies a monospace font based on the Windows
character set, usually represented by a Courier font.

Specifies a proportional font based on the Windows
character set, usually represented by the MS Sans
Serif font.

Specifies the preferred font for the specified device,
usually represented by the System font for
display devices.

Specifies a monospace font based on an OEM
character set. For IBM computers and compatibles,
the OEM font is based on the IBM desktop computer
character set.

152 Windows CE Programmer's Guide

Value

Enumerating Fonts

Meauiug

Specifies the System font. This is a proportional font
based on the Windows character set, and is used by
the operating system to display window titles, menu
names, and text in dialog boxes. The System font is
always available. Other fonts are available only if
they have been installed.

Specifies a monospace font compatible with the
System font in Windows versions earlier than 3.0.

You can enumerate the available fonts by calling the EnumFonts or
EnumFontFamiIies function. These functions send information about the
available fonts to a callback function that the application supplies. The callback
function stores the information in the LOGFONT structure and in either the
NEWTEXTMETRIC structure for TrueType fonts or the TEXTMETRIC
structure for raster fonts. By using the information returned from these functions,
you can limit the user's choices to available fonts only.

The EnumFontFamiIies function is similar to the EnumFonts function
but includes some extra functionality for use with TrueType fonts. The
EnumFontFamiIies function enumerates all the styles associated with a specified
typeface, not simply the bold and italic attributes. For example, when the system
includes a TrueType font called Courier New Extra-Bold, EnumFontFamiIies
lists it with the other Courier New fonts.

Note Despite its name, EnumFontFamiIies actually enumerates the styles
associated with a specified typeface-for example, Arial-rather than a font
family, such as Roman.

If you do not supply a typeface name, the EnumFonts and EnumFontFamiIies
functions supply information about one font in each available family. To
enumerate all the fonts in a DC, you can specify NULL for the typeface
name, compile a list of the available typefaces, and then enumerate each
font in each typeface.

A font resource is a group of individual fonts in a specified character set that has
various combinations of heights, widths, and pitches. You can load font resources
and add the fonts in each resource to the operating system font table by using the
AddFontResource function. To remove a font resource from the font table, you
can use the RemoveFontResource function.

Chapter 8 Graphics Device Interface 153

Formatting Text

Drawing Text

Windows CE provides a complete set of functions to format and draw text in an
application's client area and on a printed page.

The default text color for a display DC is black; the default background color
is white; and the default background mode is OPAQUE. Use the SetTextColor
and GetTextColor functions to respectively set and retrieve the color of text
drawn in the client-area of a window or printed by a color printer. Use the
SetBkColor and GetBkColor functions to respectively set or retrieve the
background color. Use the SetBkMode and the GetBkMode functions to
respectively set or retrieve the background mode. The background mode specifies
the logical method for combining the selected background color with the current
colors on the video display.

You can use the GetTextExtentPoint32 function to compute the width and height
of a string of text. You can use the GetTextMetrics function to retrieve a font's
logical dimensions. You can call the GetDeviceCaps function to determine the
dimensions of an output device.

After you have selected a font, set your text-formatting options, and computed
the necessary character width and height values for a string of text, you can draw
characters and symbols using either the DrawText or ExtTextOut function.
When you call one of these functions, the operating system passes the call to the
graphics engine, which in tum passes the call to the appropriate device driver.

In most cases ExtTextOut is faster than DrawText. However, there are some
instances when DrawText is more efficient, as in the case where you need to
draw multiple lines of text within the borders of a rectangular region. DrawText
does not work with rotated text.

155

CHAPTER 9

Windows

A message is the means by which the user communicates with Windows CE and
your application. A window object, which is usually referred to as a window, is
the means by which an application receives messages from the user and the
operating system.

In Windows CE-based systems with graphical displays, windows are the primary
input and output devices. Applications use the graphics device interface (GDI) to
display output in a window. The messaging system passes user input to a window
in the form of messages. Unlike Windows-based desktop platforms, not all
Windows CE-based devices have a graphical display. However, because all
applications need to process messages, all applications must have windows,
even those that do not have a graphical display.

Every window is a member of a window class. A window class is a template for
creating window objects. When you write an application, you register at least one
window class that you use to create a window or windows.

Note Windows CE does not support dynamic data exchange (DDE), multiple­
document interface (MDI), or window properties.

For specific information about designing windows, see Chapter 6, "Designing a
User Interface for Windows CE."

156 Windows CE Programmer's Guide

Sample Windows-Based Application
Every Windows CE-based application must have WinMain as its entry point
function. WinMain performs a number of tasks, including registering the window

. class for the main window and creating the main window. WinMain registers the
main window class by calling the RegisterClass function and it creates the main
window by calling the CreateWindowEx function. WinMain does not need to
do these things itself; it can call other functions to perform any or all of
these tasks.

The system does not automatically display the main window after creating it.
Rather, the application's WinMain function uses the ShowWindow function
to display the window.

Even the simplest Windows-based application has a message loop and a window
procedure. The message loop, typically part of an application's WinMain
function, enables your application to receive messages and to dispatch them to
the appropriate window procedure. The window procedure is a function that
processes the messages that the system sends to your window. The system calls
your window procedure as a result of the messages that your message loop
receives and dispatches. You usually do not call your window procedure directly
from your application. Each window class specifies an initial window procedure.

This section contains a code example that is used to create a simple Windows­
based application. This sample application demonstrates the basic framework
common to all Windows-based applications, and begins executing with the
WinMain function that performs the following tasks:

1. WinMain stashes the application-instance handle in a global variable. Because
this handle is used in various places throughout a program, it is common to put
it in a global variable that is accessible to all functions. The smallest possible
interval a timer can measure is the system-tick interval.

2. WinMain calls the application-defined InitApplication function that calls the
RegisterClass function to register the application's main window class. More
complicated applications may need to register more window classes and to
determine whether other instances of the application are running.

3. WinMain calls the application-defined Initlnstance function that calls the
CreateWindow function to create a window. CreateWindow returns a
window handle identifying the new window. This handle is used to refer to
the window in subsequent function calls.

4. WinMain creates the message loop by calling the GetMessage,
TranslateMessage, and DispatchMessage functions in the format displayed
in the sample application. This loop receives messages and dispatches them to
the window procedures.

Chapter 9 Windows 157

Note that the application does not directly call the window procedure,
MainWndProc. The system calls this function as the message loop receives
and dispatches messages. In this application, MainWndProc processes only the
WM_CLOSE message that tells the window to close. When the window receives
a WM_ CLOSE message, it calls the PostQuitMessage function that causes the
next call to GetMessage to return FALSE. This, in turn, causes the message loop
to terminate and the application to exit.

Windows CE sends many other messages to the window besides WM_CLOSE.
Main WndProc passes all other messages to the DefWindowProc function,
which is the default window procedure provided by the system. You should pass
all messages to DefWindowProc that you do not process yourself; otherwise,
your window may not function correctly.

#include <windows.h>
#define ZeroVar(v) \ memset(&v, 0, sizeof(v»

HINSTANCE g_hlnstance;

const TCHAR* const pszMainWndClassName - TEXH"MainWndClass");

IIHere is the application's window procedure.
LRESULT CALLBACK MainWndProc(

{

}

HWND hwnd,
UINT message,
WPARAM wParam,
LPARAM lParam
)

switch (message,)
{

case WM_CLOSE:

}

DestroyWindow(hwnd);
PostQuitMessage(0);
return 0;

return DefWindowProc(hwnd, message, wParam, lParam);

158 Windows CE Programmer's Guide

BOOl Initlnstance(void)
{

}

BOOl bRet - FALSE:
HWND hwndMain:

hwndMain - CreateWindow(
pszMainWndClassName.
TEXT("Ma in") •
WS_OVERlAPPEDIWS_SYSMENU.
CW_USEDEFAUlT. CW_USEDEFAUlT.
CW_USEDEFAUlT. CW_USEDEFAUlT.
NUll.
NUll.
9-hlnstance.
NULL
) :

ShowWindow(hwndMain. SW_SHOW):
UpdateWindow(hwndMain):

bRet = TRUE:

return bRet:

BOOl InitApplication(void)
{

}

BOOl bRet = FALSE:
WNDC lASS wc:

ZeroVar(wc) :

II Set up information
wc.style
wc.lpfnWndProc
wC.cbClsExtra
wc.cbWndExtra
wc.hlnstance
wc.hlcon
wc.hCursor
wc.hbrBackground
wc.lpszMenuName
wc.lpszClassName

about the class.
- 0:
= MainWndProc:
- 0:
= 0:
= 9-hInstance:
- 0:
- 0:
- (HBRUSH)GetStockObject(WHITE_BRUSH):
- NUll:
= pszMainWndClassName:

bRet = RegisterClass(&wc):
return bRet:

int WINAPI WinMain (
HINSTANCE hInstance,
HINSTANCE hPrevInstance,

{

LPTSTR lpCmdLine,
int nCmdShow
)

MSG msg;
g_hInstance - hInstance;

if (!InitApplication()
{

goto leave;
}

if (!InitInstance()
{

goto leave;
}

while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);
}

leave:
return 0;

}

Window Fundamentals

Chapter 9 Windows 159

The appearance and behavior of a window is largely detennined by its inherent
attributes and its relationship to other windows. You assign attributes to a window
by setting window styles and extended styles, and by calling functions that alter
window attributes.

Windows are always rectangular. They are placed above and below each other
along an imaginary line that runs perpendicular to the screen. This stack of
windows is called the Z order. Each window has a unique position in the Z order.
Windows that appear first in the Z order are considered to be in front of, or on top
of, windows that appear later in the Z order. A window's position in the Z order
affects its screen appearance. Windows may partially or totally obscure each other
depending on their location, size, and position in the Z order.

160 Windows CE Programmer's Guide

A window is divided into a nonclient area, which is occupied by borders,
scroll bars, and various other controls, and a client area, which is everything else.
You are free to draw in the client area, but not in the nonclient area. In Windows
CE, the nonclient area of a window is controlled exclusively by the window
manager. Windows CE does not send applications any messages dealing with the
nonclient area.

A window may be visible or hidden, depending on whether or not its
WS_ VISIBLE style is turned on or off. A window that has the WS_ VISIBLE
style turned off will not be visible on the screen. A window that has the
WS_ VISIBLE style turned on mayor may not be visible on the screen, depending
on whether it is obscured by other windows. Covering or uncovering a window
with another window does not change the WS_ VISIBLE style.

Every window has a unique identifier called a window handle. When you create a
window, you receive a window handle, which you can then use to call functions
that use the window. Handles are especially useful in applications that create
multiple child windows. Applications can change the window's handle by
calling the SetWindowLong function and retrieve the handle by calling the
GetWindowLong function.

Window Relationship Fundamentals
When you create a window, you can designate it as a child of another window. A
window that has a child is referred to as a parent window. Windows CE has rules
governing the display and behavior of parent and child windows. For example, a
child window always appears in front of its parent window and can only draw
inside its parent window.

Child windows can have their own child windows. A child window that can
trace a relationship to a parent window through a chain of parent-child window
relationships, however long, is said to be a descendent of the parent window.
Likewise, a parent window that can trace a relationship to a child window through
a chain of parent-child windows is said to be an ancestor window of that child
window. For example, if Window A is the child window of one of Window B' s
child windows, Window A is a descendent of Window B, and Window B is an
ancestor of Window A.

A window that has no parent is called a top-level window. Windows that have
the same parent are referred to as sibling windows. Even though they may be
in different applications, all top-level windows are considered siblings.

A window can be defined as another window's owner. Top-level windows may
own other top-level windows. Unlike a window in the parent-child relationship,
an owned window is allowed to draw outside of its owner's window.

Chapter 9 Windows 161

System-Defined Window Classes
Windows CE includes several system-defined windows classes. Because
Windows CE registers these classes, you do not need to; you can immediately
create windows with them.

The simplest group of these built-in classes are the controls. Controls provide
simple display and user interaction. You generally create controls as child
windows of a more complicated window.

Dialog boxes are windows that manage a number of controls. You create them
with a template that specifies which controls are to be included in the dialog box.
The dialog box then manages the user interaction between the controls and the
rest of the program.

Message boxes are specialized dialog boxes. They generally have minimal
text and a few buttons. Because the system handles the details of creating
and interacting with the dialog box, message boxes are easy to use.

Creating Windows
You create windows with the CreateWindow or CreateWindowEx function.
The only difference between these functions is that CreateWindowEx supports
the extended style parameter, dwExStyle, while CreateWindow does not. These
functions take a number of parameters that specify the attributes of the window
being created.

Note In Windows CE, CreateWindow is implemented as a macro which calls
Create WindowEx.

Windows CE includes additional functions, including DialogBox, CreateDialog,
and MessageBox, for creating special-purpose windows such as dialog boxes and
message boxes.

162 Windows CE Programmer's Guide

The CreateWindowEx function has the following prototype.

HWND
CreateWindowEx(

DWORD dwExStyle.
LPCWSTR lpClassName.

II Extended style parameter
IIClass name parameter
IIWindow name parameter
IIStyle parameter
IIHorizontal parameter
IIVertical parameter
IIWidth parameter

LPCWSTR lpWindowName.
DWORD dwStyle.
int X.
int Y.
int nWidth.
int nHeight.
HWND hwndParent.
HMENU hMenu.
HINSTANCE hlnstance.
LPVOID lpParam);

IIHeight parameter
IIParent parameter
IIMenu parameter
II Instance handle parameter
IICreation data parameter

The window attributes in CreateWindowEx are described in the following table.

Window attributes

Extended style

Class name

Window name

Description

The dwExStyle parameter specifies one or more window
extended styles. These have their own set of WS_EX_ *
flags and should not be confused with the WS_ * flags.

Every window belongs to a window class. Except for
built-in classes, like controls, an application must register
a window class before creating any windows of that class.
The IpClassName parameter specifies the name of the
class that is used as a template for creating the window.

The window name, which is also called window text, is a
text string that is associated with a window. The
IpWindowName parameter specifies the window text for
the newly created window. Windows use this text in
different ways. A main window, dialog box, or message
box typically displays its window text in its title bar. A
button control, edit control, or static control displays its
window text within the rectangle occupied by the control.
A list box, combo box, or scroll bar control does not
display its window name. All windows have the text
attribute, even if they do not display the text.

Window attribntes

Style

Horizontal and
vertical coordinates

Width and height coordinates

Parent

Menu

Instance handle

Creation data

Chapter 9 Windows 163

Description

The dwStyle parameter specifies one or more window
styles. A window style is a named constant that defines
an aspect of the window's appearance and behavior. For
example, a window with the WS_BORDER style has a
border around it. Some window styles apply to all
windows; others apply only to windows of specific
window classes. For more information about windows
styles, see the "Window Styles" section later in
this chapter.

The X and Y parameters specify the horizontal and
vertical screen coordinates, respecti vel y, of the window's
upper-left comer.

The n Width and nHeight parameters determine the width
and height of the window in device units.

The hwndParent parameter specifies the parent or
the owner of a window, depending on the style flags
passed in.

If neither WS_POPUP nor WS_CHILD is specified, the
hwndParent parameter may be a valid window handle or
NULL. If the parameter is NULL, the new window is a
top-level window without a parent or owner. If it is non­
NULL, the new window is created as a child of the
specified parent window.

IfWS_CHILD is specified, the hwndParent parameter
must be a valid window handle. The new window is
created as a child of the parent window.

If the WS_POPUP style is specified, the new window is
created as a top-level window and the hwndParent
parameter specifies the owner window. If WS_POPUP is
specified, and the parameter is NULL, the new window is
partially owned by Windows CEo The WS_POPUP style
overrides the WS_CHILD style.

Windows CE does not support menu bars. In Windows
CE, you can use the hMenu parameter to identify only a
child window. Otherwise, it must be NULL.

The hlnstance parameter identifies the handle of
the specific instance of the application that creates
the window.

Every window receives a WM_CREATE message when
it is created. The IpParm parameter is passed as one of
the message parameters. Although it can be any value, it
is most commonly a pointer to a structure that contains
data that may be needed to create a particular window.

164 Windows CE Programmer's Guide

The class name for a new window class has to be a Unicode string. You can use
the TEXT macro to cast a string as Unicode, for example, TEXT("classname").

An application uses the SetWindowText function to change the window text after
it creates the window. It uses the GetWindowTextLength and GetWindowText
functions to retrieve the window text from a window.

Application Windows
An overlapped window is a top-level window that is meant to serve as an
application's main window. It can also have a command bar, task bars, and scroll
bars. An overlapped window used as a main window typically includes all of
these components. An application creates an overlapped window by specifying
the WS_OVERLAPPED or WS_OVERLAPPEDWINDOW style in the
CreateWindowEx function.

Because many Windows CE-based devices have small screens, you should use the
full screen for your primary window. To accommodate different screen sizes, use
either the dimensions returned by the GetSystemMetrics function to define the
size of your primary window or specify CW_USEDEFAULT in the nWidth and
nHeight parameters that you send to CreateWindow or CreateWindowEx.

The qualities of an application window depend on the platform for which it was
designed. For Windows CE-based platforms that support graphical user interfaces,
a typical application window may include a command bar, a client area, and a
vertical scroll bar.

The command bar is a Windows CE toolbar that can contain menus, controls,
and separators. An application's command bar typically contains a menu bar as
well as a Close (X) button, a Help (?) button, and an OK button. Windows CE
does not support the Maximize or Minimize buttons found in Windows-based
desktop platforms.

Items on the menu bar represent the main categories of commands. Choosing an
item on the menu bar typically opens a pop-up menu whose items correspond to
the tasks within a specified category. By choosing a command, the user directs the
application to carry out a task. In Windows CE, menu bars are always contained
within command bars; Windows CE does not support stand-alone menu bars.

Note In WindowsCE, the command bar is considered part of the client area.

A pop-up window is a special type of overlapped window used for dialog boxes,
message boxes, and other temporary windows that appear outside an application's
main window. Title bars are optional for pop-up windows; otherwise, pop-up
windows are the same as overlapped windows of the WS_OVERLAPPED style.

Chapter 9 Windows 165

You create a pop-up window by specifying the WS_POPUP style in
CreateWindowEx. To include a title bar, specify the WS_CAPTION style.

Destroying Windows
In general, an application must destroy all the windows it creates. Use the
DestroyWindow function to destroy a window. When a window is destroyed,
the system hides the window, sends a WM_DESTROY message to the window
procedure of the window being destroyed, and removes any internal data
associated with the window. The window handle becomes invalid and can no
longer be used by the application.

Destroying a window automatically destroys the window's descendant windows.
The DestroyWindow function sends a WM_DESTROY message to the initial
window being destroyed and then to its descendant windows. Any windows
owned by the window are also automatically destroyed.

You should destroy any window that is no longer needed. Before destroying a
window, you should save or remove any data associated with the window and
release any system resources allocated for the window. Windows CE releases
any resources that you do not release.

Destroying a window does not affect the window class from which the window
is created. You can still create new windows by using the class, and any existing
windows of that class continue to operate.

Window Styles
Window styles are attributes that are controlled by specific window style flags.
There are also extended window styles that have their own set of flags. For this
discussion, "window style" refers to the basic window styles, as well as the
extended window styles. However, when you write code, you must distinguish
between the two. The basic window styles have a prefix ofWS_ *; the extended
styles have a prefix of WS _EX_ *.

Most window styles are set when you create a window. There are a few, however,
which are sometimes useful to change while a program is running. Use the
SetWindowLong function to change a window style.

166 Windows CE Programmer's Guide

General window styles supported by Windows CE are described in the
following table.

Style

WS]OPUP

WS_VISIBLE

Description

Specifies a child window. This should not be
changed after the window is created.

Specifies a pop-up window. This style should
not be changed after the window is created.

Specifies a window that is initially visible. This
style can be turned on and off to change
window visibility.

Specifies a window that is initially disabled.
A disabled window cannot receive input from
the user.

Excludes the area occupied by child windows
when drawing occurs within the parent window.
This style is used on the parent window.
Windows CE windows always have the
WS_CLIPCHILDREN style.

Excludes the area occupied by sibling windows
that are above a window.

Specifies the first control of a group of controls.
This style is used primarily when creating
dialog boxes. The group consists of this first
control and all controls defined after it, up to the
next control for which the WS_GROUP style is
specified. Because the first control in each
group often has the WS_TABSTOP style, a
user can move from group to group.

Specifies a control that can receive the
keyboard focus when the user presses the TAB
key. This style is used primarily when creating
controls in a dialog box. Pressing the TAB key
changes the keyboard focus to the next control
with the WS_TABSTOP style.

Specifies that a window cannot be activated. If
a child window has this style, tapping it does
not cause its top-level parent to activate.
Although a window that has this style will still
receive stylus events, neither it nor its child
windows can get the focus.

Specifies a stationary window that cannot be
dragged by its title bar.

Style

Chapter 9 Windows 167

Description

Prevents a window from showing animated
exploding and imploding rectangles and from
having a button on the taskbar.

Creates a window that will be placed and
remain above all non-topmost windows.
To add or remove this style, use the
SetWindowPos function.

Note Windows-based desktop platforms do not support the WS_EX_NODRAG,
WS_EX_NOACTIVATE, and WSY:X_NOANIMATION styles. These styles are
only available in Windows CEo

Nonclient Area Styles
Styles that affect the appearance of the nonclient area of a window are described
in the following table.

Style

WS_HSCROLL

WS_VSCROLL

WS_EX_CAPTIONOKBTN

WS_EX_CLIENTEDGE

Description

Specifies a window with a
thin-line border.

Specifies a window with a title bar
and border.

Specifies a window with a dialog box border
style. A window with this style cannot have a
title bar.

Specifies a window with a horizontal scroll bar.

Specifies a window with a vertical
scroll bar.

Specifies a window with
the WS_BORDER and
WS_CAPTION styles.

Specifies a window with a window menu on its
title bar. Use in conjunction with the
WS_CAPTION style.

Includes an OK button in the title bar.

Specifies a window with a border with a sunken
edge.

Includes a Help button (?) in the title bar of the
window.

168 Windows CE Programmer's Guide

Style

WS_EX_OVERLAPPEDWINDOW

Meaning

Specifies a window with a
double border.

Combines the WS_EX_CLIENTEDGE and
WS_EX_ WINDOWEDGE styles.

Specifies a window with a three-dimensional
border style. This style should be used for items
that do not accept user input.

Specifies a window with a border with a
raised edge.

Note Windows CE does not have a system menu, but you can use the
WS_SYSMENU style to add the standard Close (X) button to a window's title
bar.

Window Size and Position
A window's size and position are expressed as a bounding rectangle, given
in coordinates relative to the screen or to the parent window. The coordinates
of a top-level window are relative to the upper-left comer of the screen; the
coordinates of a child window are relative to the upper-left comer of the
parent window.

For example, a top-level window having the coordinates (10, 10) is placed 10
pixels to the right of the upper-left comer of the screen and 10 pixels down from
it. A child window having the coordinates (10, 10) is placed 10 pixels to the right
of the upper-left comer of its parent window's client area and 10 pixels down
from the upper-left comer of that client area.

When you create a window, you can set the initial size and position of the window
directly or direct the system to calculate the initial size and position by specifying
CW _USEDEFAULT in the CreateWindow or CreateWindowEx function. After
creating a window, set the window's size or position by calling the MoveWindow
or SetWindowPos function.

If you need to create a window with a client area of a particular size, use the
AdjustWindowRectEx function to calculate the required size of a window
based on the desired size of the client area. Pass the resulting size values to
the CreateWindowEx function.

Chapter 9 Windows 169

Though you can create a window of any size, you should not create one that
is larger than the screen on your target device. Before setting a window's size,
check the width and height of the screen by using GetSystemMetrics with the
SM_CXSCREEN and SM_CYSCREEN flags.

You can use the GetWindowRect function to retrieve the coordinates of a
window's bounding rectangle. GetWindowRect fills a RECT structure with the
coordinates ofthe window's upper-left and lower-right comers. The coordinates
are relative to the upper-left comer of the screen, even for a child window. The
ScreenToClient or MapWindowPoints function maps the screen coordinates
of a child window's bounding rectangle to coordinates relative to the parent
window's client area.

The GetClientRect function retrieves the position and size of a window's client
area. Because the coordinates are relative to the client area itself, the client area's
upper-left comer is always at location (0, 0) and the coordinates of the lower-right
comer are the width and height of the client area. Because the command bar is
part of the client area in Windows CE, it is included in the dimensions returned
by the GetClientRect function.

Use the WindowFromPoint function to retrieve the handle to the window that
occupies a particular point on the screen. Use the ChildWindowFromPoint
function to retrieve the handle to the child window that occupies a particular point
in the parent window's client area. Use the ClientToScreen function to convert
the client coordinates of a specified point to screen coordinates. Conversely, use
the ScreentoClient function to convert the screen coordinates of a specified point
into client coordinates.

Use the SetWindowPos function to change a window's position in the Z order.
This function can place a window at the top of the Z order, at the bottom of the
Z order, or behind a specific sibling window. SetWindowPos is the primary
function for positioning windows. This function can change all aspects of a
window's position and visibility.

Topmost Windows
A topmost window is a window that has the WS_EX_TOPMOST style. Topmost
windows are above all non-topmost sibling windows in the Z order. You can
create a topmost window by specifying the WS_EX_TOPMOST style when you
create the window. You can also make a window a topmost window by calling
the SetWindowPos function and setting the h WndlnsertAfter parameter to
HWND_TOPMOST.

A window may lose its topmost style by calling SetWindowPos and setting
the h WndlnsertAfter parameter to HWND _NOTOPMOST. If a window is
positioned directly after a non-topmost window, then that window loses its
WS_EX_TOPMOST style.

170 Windows CE Programmer's Guide

Do not confuse topmost with top-level. Top-level refers to whether or not a
window has aparent, whereas topmost refers to a specific style that controls
the Z order for the window.

You can set the SetWindowLong function to give a the window the
WS_EX_TOPMOST style. However, this function does not change
the window's Z order.

Window Visibility
You can control a window's visibility by using the ShowWindow or
SetWindowPos functions to turn its WS_ VISmLE style on or off. Think of the
WS_ VISmLE style as a way to hide a window. If this style is turned off, neither
the window nor any of its descendants will be drawn on the screen. In other
words, hiding a window hides the window itself, as well as all of its children,
all of their children, and so on. Even though a child window is hidden when its
parent is hidden, the child window's WS_ VISmLE style is not changed when
its parent's style is changed. A child window may have the WS_ VISmLE style
turned on and still not be visible, if it has a parent or ancestor window with a
WS_ VISmLE style turned off.

You can use the IsWindowVisible function to determine whether or not a
window is visible. This function checks the window and its ancestors to determine
if the window is visible. A window may be considered visible, but may not appear
on the screen, if it is covered by other windows.

By default, the CreateWindowEx function creates a hidden window, unless you
specify the WS_ VISmLE style. Typically, an application sets the WS_ VISmLE
style after it has created a window to keep details of the creation process hidden
from the user. For example, an application may keep a new window hidden while
it customizes the window's appearance.

Changing the visibility of a window does not automatically change the visibility
of any windows it owns. Also, if you create a dialog box whose parent window
is not visible, the dialog box will be visible. To avoid this inconsistency, do not
create a dialog box that is owned by an invisible window.

Window Relationships
The thread and process that create a window own it. Most functions that modify a
window will only work if they are called by the thread that created the window.
This ownership by a thread or process is not related to the owner-owned
relationship between windows.

Chapter 9 Windows 171

When a thread or process terminates, Windows CE removes all windows that are
owned by that thread or process. Windows that are removed when a thread or
process terminates do not always receive WM_DESTROY messages. For this
reason, it is a good idea for you to destroy your windows explicitly, rather than
depending on the system to do it.

Parent and Child Windows
As previously mentioned, when you create a window, you can designate it as a
child of another window by specifying the WS_CHILD style when you call the
CreateWindowEx functIon. A child window has only one parent window. A
parent can have any number of child windows and these, in tum, can have their
own child windows. Use the IsChild function to determine whether a window is
a descendant window of a specified parent window.

You can change the parent window of an existing child window by calling the
SetParent function. When you do, the system removes the child window from
the client area of the old parent window and moves it to the client area of the
new parent window. The GetParent function retrieves the handle to a window's
parent window.

A child window is always kept directly in front of its parent window. You cannot
place a child window behind its parent or other ancestor window. When the Z
order or screen position of a window is changed, its children automatically move
along with it. A child window is positioned relative to the upper-left comer of its
parent's client rectangle.

Although you can place or size a child window outside of a parent window,
Windows CE does not allow a child window to draw any part of itself outside of
its parent's client rectangle. In Windows CE, a parent window cannot draw on its
children, and a window cannot draw on siblings that are in front of it. In other
words, all windows behave as if they have the WS_CLIPCHILDREN and
WS_CLIPSIBLING styles. You can avoid some of these restrictions by using the
GetDCEx function.

When you use DestroyWindow to destroy a window, its children are destroyed
as well.

Owner-Owned Windows
As previously mentioned, one window can own another. In such cases, the
window that owns another window is called the owner window, and the window
that is owned is called the owned window. Although the relationship between an
owner window and an owned window is similar to the relationship between a
parent and child window there are some differences. For example, unlike child
windows, owned windows can draw outside of their owners.

172 Windows CE Programmer's Guide

You can create an owner-owned relationship between top-level windows when
you create a window with the WS_POPUP style. Because top-level windows
do not have parents, the window that you specify as the parent when you call
the CreateWindow function becomes the owner of the new window. Owned
windows can in turn own other windows. You can use the GetParent function
to return the owner of a specified window. When a window is destroyed, any
windows that it owns are also destroyed.

Owner-owned windows move as a group. If you move a window forward in the Z
order, its owner window and owned windows move forward with it. Windows CE
keeps owned windows in front of their owners. Although Windows CE does not
prevent you from inserting a top-level window between an owner window and
an owned window, it does keep owned groups of windows together when one
is moved in the Z order. This means that when you change a window's Z order,
Windows CE displaces any windows that are between the window and its owned
or owner windows. Moving or sizing a window does not affect the location or size
of its owner or owned windows.

You can create a WS_POPUP window with a NULL owner. When you do,
the window becomes partially owned by the desktop. If Windows CE moves
the desktop to the top of the Z order, these windows will remain on top of the
desktop. However, if you move the window to the top of the Z order, it does
not pull the desktop with it. Threads in the system that do not usually have
any kind of window interface use this style when they need to display a message
to the user.

Messages and Message Queues
Both Windows CE and applications use messages to communicate with windows.
Although messages are generally used to notify a window of particular events,
some messages cause the window to perform an action.

Messages consist of a message identifier and optional parameters. The term
"message" is used to mean either the message identifier or the identifier and
the parameters together. The specific meaning is usually clear from the context.

A message identifier is a named constant that identifies a message. When a
window procedure receives a message, it uses a message identifier to determine
how to process the message. For example:

WM_CREATE is sent to a window when it is created.

WM_DESTROY is sent to a window when it is destroyed.

WM_PAINT is sent to a window when the window's client area has changed and
must be repainted.

Chapter 9 Windows 173

Message parameters contain data or the location of data that a window procedure
will use to process the message. The meaning and value of the message
parameters depend on the message identifier. A message parameter can contain
an integer, packed bit flags, a pointer to a structure containing additional data, or
other information. A window must check the message identifier to determine how
to interpret the message parameters.

Message Queues
The message queue coordinates the transmission of messages for a specified
thread. Every thread can have only one message queue. When a message is
passed to a window, it is placed on the message queue of the window's
thread. The thread receives and dispatches the message.

There are two ways to pass a message to a window. The first is called posting
a message; the second is called sending a message. In this section, the term
"receiver's message queue" refers to the message queue of the thread that created
the receiver window.

Posting Messages
Use the PostMessage function to post a message to a window. PostMessage
combines the message identifier and parameters into a message and places it
on the receiver's message queue. Eventually, the receiver's message loop removes
the message from the message queue and dispatches it to the appropriate
window procedure.

PostMessage is an asynchronous function. Windows CE does not synchronize
between the sending thread and the receiving thread for posted messages. When
the call to PostMessage returns, there is no guarantee that the window procedure
for the receiver window has processed the message. In fact, if the message was
posted to the same thread, the window procedure definitely has not processed
the message.

You can post a message without specifying a window. If you supply a NULL
window handle when you call the PostMessage function, the message is posted
to the queue associated with the current thread. Because no window handle is
specified, you must process the message directly from the message loop. This is
one way to create a message that applies to the entire application, instead of to a
specific window.

Sending Messages
Use the SendMessage function to send messages to a window. Unlike
PostMessage, SendMessage is a synchronous function. It does not return until
the window procedure of the receiver window has processed the message.

174 Windows CE Programmer's Guide

You typically send a message when you want a window procedure to perform a
task immediately. The SendMessage function sends the message directly to the
window procedure of the receiver window. The SendMessage function waits until
the window procedure completes processing and then returns the message result.
Parent and child windows often communicate by sending messages to each other.
For example, a parent window that has an edit control as its child window can set
the text of the control by sending a message to it. The control can notify the
parent window of user-initiated changes to the text by sending messages back to
the parent.

If the receiving thread is the same as the sending thread, SendMessage calls the
window procedure directly. If the receiving thread is a different thread from the
sending thread, the two message queues synchronize the message passing. The
sending thread does not continue executing until the receiving thread processes
the message. The receiving thread does not process the message, if it is not
executing a message loop. Consequently, if you send a message to a window in a
thread that is not executing a message loop, the sending thread stops responding.

Receiving and Dispatching Messages
A message loop that receives and dispatches messages is the heart of
every Windows CE-based application. Every thread that creates a
window is continuously receiving messages and dispatching messages
to window procedures.

You can use the GetMessage function to receive messages. When a thread calls
GetMessage, Windows CE examines the thread's message queue for incoming
messages. Windows CE processes messages in the following order:

1. Windows CE-based checks for messages that were placed on the queue by the
SendMessage function. Mter the system removes the message from the queue,
it dispatches the message to the appropriate window procedure from within the
GetMessage function. This is done to guarantee that the sender and receiver
message queue remain synchronized. The receiver must call GetMessage for
the sent messages to be processed.

2. If no sent message is found, Windows CE checks the queue for messages that
were placed on the queue by a call to PostMessage.

3. If no posted message is found, Windows CE checks the queue for messages
that were posted by the user input system.

By processing user input messages at a lower priority, the system guarantees
that each input message and any posted messages that result from it are
processed completely before moving on to the next input message.

4. If no posted input messages are found, Windows CE checks the queue
for WM_QUIT messages that were placed on the queue by a call
to PostQuitMessage.

Chapter 9 Windows 175

5. If no posted quit messages are found, Windows CE checks the
queue for WM_P AINT messages that were placed on the queue
by the windowing system.

6. If no paint messages are found, Windows CE checks the queue for
WM_ TIMER messages that were placed on the queue by the timer system.

When GetMessage receives any of the previous messages, it returns the message
content. It is then the responsibility of the thread to call DispatchMessage to
dispatch the message to the correct window procedure. If the message is a
WM_QUIT message, the return value of GetMessage is zero, which causes the
thread to end its message loop.

The system dispatches messages in the GetMessage call of the message loop, and
the application dispatches messages by using the DispatchMessage function in
the message loop. Windows CE handles the details of finding the window
procedure of the receiver window.

Processing Intermediate Messages
You may need to process some of the messages you receive from GetMessage
before you send them out using DispatchMessage. The most common processing
routines are TranslateMessage, TranslateAccelerator, and IsDialogMessage.
Some of these routines can dispatch messages internally because the application
no longer needs to call DispatchMessage in the main message loop.

You usually call TranslateMessage before you call DispatchMessage.
TranslateMessage determines which characters go with keyboard messages.
TranslateMessage posts the characters to the message queue to be picked up
on the next pass ofthe message loop.

Use the TranslateAccelerator function to intercept keyboard messages and
generate menu commands. Use the IsDialogMessage function to ensure the
proper operation of modeless dialog boxes.

You can remove a message from its queue with the GetMessage function. Use
the PeekMessage function to examine a message without removing it from its
queue. This function fills an MSG structure with information about the message.
However, you should use the PeekMessage function carefully. Because the
PeekMessage function does not block waiting for a message, it is commonly used
in loops in Windows-based desktop platforms. This allows an application to
continue processing whether or not there are any messages in its queue. In a
Windows CE-based application, if an application does not block waiting for a
message or some other event, the kernel cannot put the CPU into low-power
mode, which can quickly drain the device's batteries. Also, in Windows CE,
PeekMessage does not remove WM_P AINT messages.

176 Windows CE Programmer's Guide

Messages and the Window Procedure
A window procedure is a function that receives and processes all messages sent to
the window. The window procedure in the sample program at the beginning of
this chapter was called the Main WndProc. Every window class has a window
procedure, and every window created with that class initially uses the same
window procedure to respond to messages. Although you can set the window
procedure for an individual window after the window is created, this is a more
advanced programming technique.

The system sends a message to a window procedure by passing the message
data as arguments to the procedure. The window procedure then performs
an appropriate action for the message; it checks the message identifier and,
while processing the message, uses the information specified by the
message parameters.

A window procedure rarely ignores a message. If it does not process a message,
it should pass the message along for default processing. The window procedure
does this by calling the DefWindowProc function, which performs a default
action and returns a message result. The window procedure must then return this
value as its own message result. Most window procedures process just a few
messages and pass the others on to DefWindowProc.

Window procedures can be, and often are, shared by more than one window. The
handle of the specific window receiving the message is available as an argument
of the window procedure.

Message Types
Windows CE supports both system-defined messages and application-defined
messages. System-defined messages have message identifiers ranging from 0
to Ox3ff. Messages with message identifiers ranging from Ox400 to Ox7fff are
available for application-defmed messages.

There are two types of system-defined messages: general window messages,
which are used for all windows, and special purpose messages, which apply to
a particular class of windows. General window messages cover a wide range of
information and requests, including messages for stylus and keyboard input and
window creation and management.

The prefix of the symbolic constant for the message generally identifies the
category to which the message belongs. For example, general window messages
all start with WM, whereas messages that apply only to button controls start
withBM.

Chapter 9 Windows 177

Message types supported by Windows CE are described in the following table.

Message prefix

BM

BN
CB

CBN
CDM

CDN
CPL

DB

DM

DTM

DTN
EM

EN

HDM

HDN
IMN

LB

LBN
LINE

LVM

LVN
MCM

MCN

NM

PBM

PSM

PSN

RB

RBN

SB

SBM

STM

STN
TB

Description

Button message

Button notification

Combo box message

Combo box notification

Common dialog box message

Common dialog box notification

Control panel message

Object store message

Dialog box default push button message

Date time picker and HTML viewer messages

Date time picker notification

Edit control message

Edit control notification

Header control message

Header control notification

Input context message

List box control message

List box notification

Line device message

List view message

List view notification

Month calender message

Month calendar notification

Messages sent by a variety of controls

Progress bar message

Property sheet message

Property sheet notification

Rebar message

Rebar notification

Status bar window message

Scroll bar message

Static bar message

Static bar notification

Toolbar message

178 Windows CE Programmer's Guide

Message prefIX Description

TBM Trackbar message

TBN Trackbar notification

TCM Tab control message

TCN Tab control notification

TVM Tree view message

TVN Tree view notification

UDM Up-down control message

UDN Up-down control notification

WM General window messages

You can define your own messages for use by your own windows. If you create
your own messages, be sure that the window procedure that receives them
interprets and processes them correctly. The operating system makes no attempt
to interpret application-defined messages.

In some situations, you need to use messages to communicate with windows
that are controlled by other processes. In this situation, call the
RegisterWindowMessage function to register a message identifier. The message
number returned by this function is guaranteed to be unique throughout the
system. By using this function, you prevent the conflicts that can arise if different
applications use the same message identifier for different purposes.

Windows CE defines a WM_HIBERNATE message to notify an application when
system resources are running low. When an application receives this message, it
should attempt to release as many resources as possible. Every Windows CE­
based application that uses even moderate amounts of system resources should
implement a handler for the WM_HIBERNA TE message.

Note If an application's window is not visible, it cannot receive a
WM_HIBERNATE message. This is because the WM_HIBERNATE message is
only sent to applications that have a button on the taskbar, which only visible
windows do. A window that is hidden will not get this message, even if it is a top­
level, overlapped window.

Windows CE does not support hooking messages because the extra
processing required by hooks could seriously degrade the performance
of Windows CE-based devices.

Timers

Chapter 9 Windows 179

A timer is a system resource that can notify an application at regular intervals. An
application associates a timer with a window and sets the timer for a specific time­
out period. Each time the specified interval, or time-out value, for a specified
timer elapses, the system uses a WM_ TIMER message to notify the window
associated with the timer. Because the accuracy of a timer depends on the system
clock rate and how often the application retrieves messages from the message
queue, the time-out value is only approximate. The smallest possible interval a
timer can measure is the system tick interval.

Use the SetTimer function to create a timer. The timer can be associated with a
particular window or with just the thread. If you associate the timer with a
window, then message loop processing will cause the WM_TIMER message to
be dispatched to the window's window procedure. If you do not associate the
timer with a window, you must design the message loop to recognize and handle
the WM_ TIMER message.

If the call to SetTimer includes a TimerProc callback function, the procedure
is called when the timer expires. This call is done inside the GetMessage or
PeekMessage function. This means that a thread must be executing a message
loop to service a timer, even if you are using a timer callback procedure.

A new timer starts timing its interval as soon as it is created. An application can
change a timer's time-out value by using the SetTimer function, and it can
destroy a timer by using the KillTimer function. To use system resources
efficiently, applications should destroy timers that are no longer necessary.

You can use the timer and window identifiers to identify timers associated with a
window. You can identify timers that are not associated with a particular window
by using the identifier returned by the SetTimer call.

Timer messages have a low priority in the message queue. Although you know
that the window associated with a timer is notified sometime after the timer
interval expires, you cannot know the exact time it will receive the notification.

Timers expire at regular intervals, but a timer that expires multiple times before
being serviced does not generate multiple WM_ TIMER messages.

180 Windows CE Programmer's Guide

Rectangles
Windows CE uses rectangles to specify clipping regions, identify portions of the
client area that need to be repainted, and define areas for displaying text and
graphics among other things. Use a RECT structure to define a rectangle. The
structure specifies the coordinates of two points: the upper-left and lower-right
corners of the rectangle. The sides of the rectangle extend from these two points
and are parallel to the x-axis and the y-axis.

Because applications can use rectangles for many different purposes, the
Windows rectangle functions do not use an explicit unit of measure. Instead,
all rectangle coordinates and dimensions are given in signed, logical values.
The function in which the rectangle is used determines the unit of measure.

The SetRect function creates a rectangle, the CopyRect function makes a copy of
a specified rectangle, and the SetRectEmpty function creates an empty rectangle.
An empty rectangle is any rectangle that has zero width, zero height, or both. The
IsRectEmpty function determines whether a specified rectangle is empty. The
EqualRect function determines whether two rectangles are identical - that is,
whether they have the same coordinates.

The InflateRect function increases or decreases the width or height of a rectangle
or both. The OffsetRect function moves a rectangle by a specified amount. The
PtlnRect function determines whether a specified point lies within a specified
rectangle. The point is in the rectangle if it lies on the left or top edge of the
rectangle or is completely within the rectangle. The point is not in the rectangle
if it lies on the right or bottom edge. The IntersectRect function creates a new
rectangle that is the intersection of two existing rectangles. The UnionRect
function creates a new rectangle that is the union of two existing rectangles.

CHAPTER 10

Overview of Controls

In Windows CE, a control is a child window that an application uses in
conjunction with another window to perform simple input and output (I/O)
tasks. Controls are most often used within dialog boxes, but they can also
be used in other windows. Controls offer users a familiar interface, making
applications easier to use and learn.

181

Windows CE defines two basic kinds of controls: windows controls and common
controls. Windows controls, which include buttons, combo boxes, edit controls,
list boxes, scroll bars, and static controls, all send WM_COMMAND messages.
Common controls, which include most other controls, generally send a
WM_NOTIFY message, though a few send WM_COMMAND messages as well.

To use windows controls, you must include either the Windows.h or the
Winuser.h header file in your application (Windows.h includes Winuser.h).
To use most of the common controls, you must include the Commctrl.h header
file in your application. To use property sheets, which are a type of common
control, you must include the Prsht.h header file.

You can use macros to send messages for both common and windows controls.
For more information about message-related macros, see the appendix "Lists
of Functions and Interfaces."

Windows CE currently supports the HTML viewer control, which is neither a
standard windows control nor a common control. The HTML viewer control
provides a simple interface for rendering HTML text, displaying embedded
images, and notifying the application of user events.

182 Windows CE Programmer's Guide

Overview of Windows Controls
A windows control is a predefined child window that enables a user to make
selections, carry out commands, and perform input and output tasks. When
Windows creates controls for a dialog box, each control is the child of the dialog
box. When an application creates a control, the control is the child of a window
identified by the application. A control sends messages, called notification
messages, to its parent window when the control is manipulated by the user.
The application relies on these notification messages to determine what action
the user wants the application to take.

Controls are most often used within dialog boxes, but they can also be used in
other windows. Controls within dialog boxes provide the user with the means to
type text, select options, and direct a dialog box to complete its action. Controls
in other windows provide a variety of services, such as letting the user choose
commands, scroll down the screen, and view and edit text.

Windows CE supports the following windows controls:

Check Boxes

Combo Boxes

Edit Controls

Group Boxes

List Boxes

Push Buttons

Radio Buttons

Scroll Bars

Static Controls

You can create windows controls individually by specifying the name of the
window class when calling the CreateWindowEx function.

Because controls are windows, you can manipulate them by using the window­
management functions, such as ShowWindow and EnableWindow. If the
window class for a control supports control messages, you can also manipulate a
control of that class by using the SendMessage function to send these messages
to the control.

For guidelines on using controls in user interface design, see Chapter 6,
"Designing a User Interface for Windows CE."

Chapter 10 Overview of Controls 183

Predefined Controls
Windows provides several predefined window classes for controls. Controls
belonging to these window classes are called predefined controls. An application
creates a predefined control of a particular type by specifying the appropriate
window class name in either the CreateWindowEx function or the dialog box
template. Predefined window classes are described in the following table.

Window class

BUTTON

COMBOBOX

EDIT

LISTBOX

SCROLLBAR

STATIC

Description

Creates a button control, which notifies the parent window when the
user clicks the control.

Creates a combo box -a combination of list box and edit control­
that lets the user select and edit items.

Creates an edit control, which lets the user view and edit text.

Creates a list box, which displays a list from which the user can
select one or more items.

Creates a scroll bar control, which lets the user choose scroll
direction and distance in a related window.

Creates a static control, which often acts as a label for another
control. Static controls can display both text and images, such
as icons.

Each predefined window class has a corresponding set of control styles that
enable an application to vary the appearance and behavior of the controls it
creates. For example, the BUTTON class supports styles to create push buttons,
radio buttons, check boxes, and group boxes. You specify the style when you
create the control.

In addition to control styles, each predefined window class has a corresponding
set of notification and control messages. Applications rely on the notification
messages to determine when the user has provided input to the controls. For
example, a push button sends a BN_CLICKED message to the parent window
when the user clicks the button. Applications use the control messages to retrieve
information from the controls and to manipulate the appearance and behavior of
the controls. For example, an application can send a BM_GETCHECK message
to a check box to determine whether it currently contains a check mark.

Most programmers make extensive use of predefined controls in dialog boxes
and other windows. Because predefined controls offer many capabilities, a full
discussion of each is beyond the scope of this chapter.

184 Windows CE Programmer's Guide

Custom Controls
You can create custom controls to perform tasks not supported by predefined
controls. Windows CE provides the following ways to create custom controls:

• Use owner-drawn buttons, list boxes, and combo boxes.

• Use the subclass procedure to produce a custom control.

• Register and implement an application-defined window class.

Buttons, list boxes, and combo boxes have owner-drawn styles available that
direct the control to send a message to the parent window whenever the control
must be drawn. This feature enables you to alter the appearance of a control. For
buttons, the owner-drawn style affects how the system draws the entire control.
For list boxes and combo boxes, the parent window draws the items within the
control, and the control draws its own outline.

You can designate list boxes, combo boxes, and buttons as owner-drawn controls
by creating them with the appropriate style. When a control has the owner-drawn
style, Windows CE handles the user's interaction with the control as usual,
performing such tasks as detecting when a user has chosen a button and then
notifying the button's owner of the event. However, because the control is owner­
drawn, the parent window of the control is responsible for the visual appearance
of the control.

You can use the subclass procedure to create a custom control. The subclass
procedure alters selected behaviors of the control by processing those messages
that affect the selected behaviors. All other messages pass to the original window
procedure for the control.

You can create custom controls by registering an application-defined window
class and specifying the name of the window class in the CreateWindowEx
function or in the dialog box template. The process for registering an application­
defined window class for a custom control is the same as for registering a class
for an ordinary window. Each class must have a unique name, a corresponding
window procedure, and other information.

At a minimum, the window procedure draws the control. If an application uses
the control to let the user type information, the window procedure also processes
input messages from the keyboard and stylus and sends notification messages to
the parent window. In addition, if the control supports control messages, the
window procedure processes messages sent to it by the parent window or other
windows. For example, controls often process the WM_GETDLGCODE message
sent by dialog boxes to direct a dialog box to process keyboard input in a
specified way.

Chapter 10 Overview of Controls 185

Control Notification Messages
A control sends a notification message to its parent window to notify the parent
about user input or changes to the controL The notification message is a
WM_COMMAND message that includes a control identifier and a notification
code identifying the nature of the event. A control identifier is a unique number
that the application uses to identify the control sending the message. In Windows
CE, control identifiers are only valid for child windows.

The application sets the identifier for a control when it creates the control.
The application specifies the identifier either in the hMenu parameter of the
CreateWindowEx function or in the id member of the dialog box template,
which is the DLGITEMTEMPATE structure.

A control must retrieve its identifier before it can send notification messages.
A control can use the GetDIgCtrlID function to retrieve its control identifier.

Control Messages
A parent window or other windows send control messages to direct a control to
perform specific tasks. The window procedure processes these messages and
carries out the requested action.

Control messages can be predefined or application-defined. Windows has several
predefined messages, such as WM_GETTEXT and WM_GETDLGCODE, that it
sends to controls. These messages typically correspond to window-management
functions that carry out actions on windows. The window procedure for an
application-defined control processes any predefined control message that affects
the operation of the control. Such messages are described in the following table.

Message

WM_GETDLGCODE

WM_GETTEXTLENGTH

Recommendation

Process if the control uses the ENTER, ESC, TAB, or arrow
keys. The IsDialogMessage function sends this message to
controls in a dialog box to determine whether to process the
keys or pass them to the control.

Process if the WM_SETFONT message is
also processed.

Process if the control text is not the same as the title
specified by the CreateWindowEx function.

Process if the control text is not the same as the title
specified by the CreateWindowEx function.

Process if the control displays a caret, a focus rectangle, or
another item to indicate that it has the input focus.

186 Windows CE Programmer's Guide

Message Recommendation

Process if the control displays a caret, a focus rectangle,
or another item to indicate that it has the input focus.

Process if the control text is not the same as the title
specified by the CreateWindowEx function.

Process if the control displays text. Windows CE sends
this message when creating a dialog box that has the
DS_SETFONT style.

Because an application-defined control message is specific to the designated
control, you must explicitly send it to the control by using the SendMessage
or SendDlgItemMessage function. The numeric value for each message must
be unique and must not conflict with the values of other window messages.

Overview of Common Controls
Common controls are a set of windows that are supported by the common
control library, which is a dynamic-link library (DLL) included with the
Windows operating system. Like other control windows, a common control
is a child window that an application uses in conjunction with another window
to perform I/O tasks.

Common controls offer users a familiar interface for performing common tasks,
which makes applications easier to use and learn. Most common controls send
the WM_NOTIFY message instead of the WM_COMMAND message sent by
Windows Controls.

To use most of the common controls, you must include the Commctrl.h header
file in your application. To use property sheets, you must include the Prsht.h
header file.

Before you can create or use any common controls, you have to register them.
You can do this in either of two ways. You can call the InitCommonControls
function, which registers all the common controls at once, except for the rebar,
month calendar, and date and time picker controls. Or, you can call the
InitCommonControlsEx function, which registers a specific common control
class. Calling either of these functions ensures that the common DLL is loaded.

Chapter 10 Overview of Controls 187

Windows CE supports the following common controls:

Command bands

Command bars

Date and time picker

Header controls

Image lists

List views

Month calendar controls

Progress bars

Property sheets

Rebars

Status bars

Tab controls

Toolbars

ToolTips

Trackbars

Tree views

Up-down controls

Windows CE does not support the following controls commonly used on
Windows-based desktop platforms: animation controls, ComboBoxEx
controls, drag lists, flat scroll bars, hot keys, Internet Protocol (IP) address
controls, or rich edit controls. Windows CE supports ToolTips only for
toolbar and command bar buttons.

For general guidelines on using common controls in user interface design,
see Chapter 6, "Designing a User Interface for Windows CE."

Common Control Styles
Though Windows CE supports some styles that apply to a broad spectrum
of common controls, each of the common controls also has a set of styles that
are unique to that control. Unless noted otherwise, these unique styles apply to
header controls, toolbar controls, rebars, and status windows.

188 Windows CE Programmer's Guide

Common control styles supported by Windows CE are described in the
following table.

Style

CCS_ADJUSTABLE

CCS_NOPARENTALIGN

Description

Enables a toolbar's built-in customization features,
which allow the user to drag a button to a new
position or to remove a button by dragging it off the
toolbar. In addition, the user can double-click the
toolbar to display the Customize Toolbar dialog box,
which allows the user to add, delete, and rearrange
toolbar buttons.

Causes the control to position itself at the bottom of
the parent window's client area and sets the width of
the control to be the same as the parent window's
width. Status windows have this style by default.

Prevents a 2-pixel highlight from being drawn at the
top of the control.

Causes the control to resize and move itself
horizontally, but not vertically, in response to a
WM_SIZE message. Header windows have this style
by default. This style does not apply if your control
has the CCS_NORESIZE style.

Prevents the control from automatically moving to the
top or bottom of the parent window. Instead, the
control keeps its position within the parent window
despite changes to the size of the parent. If the
application also uses the CCS_TOP or
CCS_BOTTOM styles, it adjusts the height to the
default, but does not change the position and width of
the control.

Prevents the control from using the default width and
height when setting its initial size or a new size.
Instead, the control uses the width and height
specified in the request for creation or sizing.

Causes the control to position itself at the top of the
parent window's client area and matches the width of
the control to the width of the parent window.
Toolbars have this style by default.

Causes the control to display vertically on the left side
of the parent window.

Causes the control to display vertically on the right
side of the parent window.

Style

Custom Draw Services

Chapter 10 Overview of Controls 189

Description

Causes the control to resize and move itself vertically,
but not horizontally, in response to a WM_SIZE
message. This message does not apply if your control
has the CCS_NORESIZE style.

Causes the control to display vertically.

Windows CE supports the custom draw service. The custom draw service is not
a common control; it is a service that makes it easy to customize a common
control's appearance. You can use it to change a common control's color or font,
or to partially or completely draw the control.

A common control that supports the custom draw service provides this service by
sending an NM_CUSTOMDRAW notification at specific times during drawing
operations. The lParam of the NM_CUSTOMDRA W notification is a reference
to an NMCUSTOMDRA W structure. If the control is a list view, it uses
the NMLVCUSTOMDRAW structure; if it's a tree view, it uses the
NMTVCUSTOMDRA W structure. This structure contains information that the
application can use to determine how to draw the control. The following common
controls can provide the custom draw service:

Command bands

Header controls

List views

Toolbars

Trackbars

Tree views

For information about custom draw services for common controls, see the "Paint
Cycles, Drawing Stages, and Notification Messages" and "Using Custom Draw
Services" sections later in this chapter.

190 Windows CE Programmer's Guide

Paint Cycles, Drawing Stages, and Notification Messages
Like all Windows-based applications, common controls paint and erase
themselves based on messages received from the system or other applications.
The process of a control painting or erasing itself is called a paint cycle. Controls
that support custom draw send NM_CUSTOMDRA W notification messages
periodically throughout each paint cycle. This notification message is
accompanied by an NMCUSTOMDRA W structure or another structure that
contains an NMCUSTOMDRA W structure as its first member.

In addition to other information, the NMCUSTOMDRA W structure informs
the parent window about what stage of the paint cycle the control is in. This is
referred to as the draw stage, and is represented by the value in the structure's
dwDrawStage member. A control informs its parent about four basic, or global,
draw stages. The flag values, defined in Commctrl.h, that represent these stages
in the structure are described in the following table.

Global draw stage value

CDDS_PREPAINT

CDDS_POSTPAINT

CDDS]REERASE

CDDS_POSTERASE

Description

Before the paint cycle begins.

After the paint cycle is complete.

Before the erase cycle begins.

After the erase cycle is complete.

Each of the preceding values can be combined with the CDDS_ITEM flag to
specify draw stages for items. Item-specific values contained in Commctrl.h
are described in the following table.

Item-specific draw stage value

CDDS_ITEMPREPAINT

CDDS_ITEMPOSTP AINT

CDDSJTEMPREERASE

CDDS_ITEMPOSTERASE

Description

Before an item is drawn.

After an item has been drawn.

Before an item is erased.

After an item has been erased.

You must process the NM_ CUSTOMDRA W notification message and then
return a specific value that informs the control what it must do.

Using Custom Draw Services
The key to harnessing custom draw functionality is in responding to the
NM_CUSTOMDRA W notification messages that a control sends. The return
values your application sends in response to these notifications determine the
control's behavior for that paint cycle.

Chapter 10 Overview of Controls 191

This section contains information about how your application can use
NM_ CUSTOMDRA W notification return values to determine the control's
behavior. Use the NM_CUSTOMDRA W notification message for:

• Responding to the prepaint notification

• Requesting item-specific notifications

• Drawing the item yourself

• Changing fonts and colors

Responding to the Prepaint Notification
At the beginning of each paint cycle, the control sends the NM_CUSTOMDRA W
notification message, which specifies the CDDS_PREPAINT value in the
dwDrawStage member of the accompanying NMCUSTOMDRA W structure.
The value that your application returns to this first notification dictates how and
when the control sends subsequent Custom Draw notifications for the rest of that
paint cycle. In response to the first notification, your application can return a
combination of flags, as described in the following table.

Return value

CDRF _NOTIFYlTEDRA W

Effect

The control draws itself. It does not send additional
NM_CUSTOMDRA W messages for this paint cycle.
This flag cannot be used with any other flag.

The control notifies the parent of any item-specific
drawing operations. It sends NM_CUSTOMDRA W
notification messages before and after it draws items.

Requesting Item-Specific Notifications
If your application returns CD&F _NOTIFYITEMDRA W to the initial
prepaint custom draw notification, the control sends notifications for each
item it draws during that paint cycle. These item-specific notifications have
the CDDS_ITEMPREPAINT value in the dwDrawStage member of the
accompanying NMCUSTOMDRA W structure. Your application can request
that the control send another notification when it is done drawing the item by
returning CDRF _NOTIFYPOSTPAINT to these item-specific notifications.
Otherwise, your application can return CDRF _DODEFAULT and the control
will not notify the parent window until it starts to draw the next item.

192 Windows CE Programmer's Guide

Drawing the Item
If your application draws the item, it should return CDRF _SKIPDEFAULT. This
allows the control to skip items that it need not draw, which conserves system
resources. Keep in mind that returning this value means that the control will not
draw any portion of the item, so your application must draw any item images.

Changing Fonts and Colors
Your application can use custom draw to change an item's font. To do this, select
the HFONT you want into the device context specified by the hdc member of the
NMCUSTOMDRA W structure associated with that notification. Because the
font you select might have different metrics than the default font, be sure that
you include the CDRF _NEWFONT bit in the return value for the notification
message. For more information on using this functionality, see the sample code
in the "Sample Custom Draw Function" section later in this chapter.

The font that your application specifies is used to display that item when it is
not selected. Custom draw does not allow you to change the font attributes for
selected items.

Sample Custom Draw Function
The following code example shows how an application-defined function
processes custom draw notification messages sent by a child list view control.
Upon receiving the prepaint notification CDDS_PREPAINT, the function
requests item-specific notifications by returning CDRF _NOTIFYITEMDRA W.
When it receives the subsequent item-specific notifications, it selects a previously
created font into the provided device context and specifies new colors before
returning CDRF _NEWFONT.

Chapter 10 Overview of Controls 193

LRESULT DoNotify(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

}

LPNMLISTVIEW pnm = (LPNMLISTVIEW)lParam;

switch (pnm->hdr.code){
case NM_CUSTOMDRAW:{

}

LPNMLVCUSTOMDRAW lplvcd = (LPNMLVCUSTOMDRAW)lParam;

if(lplvcd->nmcd.dwDrawStage == CDDS_PREPAINT)
return CDRF_NOTIFYITEMDRAW;

if(lplvcd->nmcd.dwDrawStage == CDDS_ITEMPREPAINT){
if(!(lplvcd->nmcd.dwltemSpec % 3»

SelectObject(lplvcd->nmcd.hdc, g_hNewFont);
else

}

return(CDRF_DODEFAULT);

lplvcd->clrText = RGB(150, 75, 150);
lplvcd->clrTextBk = RGB(255,255,255);

return CDRF_NEWFONT;
}

default:
break;

return 0;

HTML Viewer Control
The Hypertext Markup Language (HTML) viewer control provides a viewer for
displaying HTML text and embedded images. The HTML viewer provides the
functionality required to implement Microsoft® Pocket Internet Explorer and the
Help engine.

You can also create other viewers based on the HTML viewer control. An HTML
source can include references to other sources, which may provide different types
of data. If the application determines that some of the data it retrieves is of a type
other than HTML, it can invoke another type of viewer to display that data.

194 Windows CE Programmer's Guide

To use the HTML viewer control, you must include the Htmlctrl.h header file
and either link your application with the Htmlview.d11 dynamic link, or load
the HTML viewer DLL by calling the LoadLibrary function. When you call
LoadLibrary, pass "Htmlview.d1I" as the lpLibFileName parameter.

Before you can create or use the HTML viewer control, you have to register
it by calling the InitHTMLControl function. You create an HTML viewer
control by specifying DISPLA YNAME in the lpClassName parameter to the
Create Window function.

~ To create the HTML viewer control

1. Load the HTML viewer DLL by calling the LoadLibrary function, specifying
"Htmlview.dll" in the lpLibFileName parameter.

2. Register the HTML viewer control class by calling the
InitHTMLControl function.

3. Create a window for the HTML viewer control by calling the CreateWindow
function, specifying DISPLA YNAME in the lpClassName parameter.

~ To display an HTML document

1. Clear the current contents of the HTML viewer control by sending it a
WM_SETTEXT message.

2. Load an HTML document and copy the document's text to the control by
sending the control a series of DTM_ADDTEXT messages for ASCII or
DTM_ADDTEXTW messages for Unicode.

3. When the document processing is complete, send the control a
DTM_ENDOFSOURCE message.

4. Process any NM_HOTSPOT notifications sent by the control when the user
taps a link or submits a form.

5. For each NM_INLINE_IMAGE notification received from the control,
load the image so that the HTML viewer control will display the
image-loading icon.

6. After the image has loaded successfully, send the control a DTM_SETIMAGE
message containing the bitmap handle (HBITMAP) of the image to display.

If the image does not load successfully, send a DTM_IMAGEFAIL message,
which indicates to the control that it should display the broken image icon.

7. For each NM_INLINE_SOUND notification received from the control,
load the sound, and then play it the number of times indicated in the
dwLoopCount parameter.

Chapter 10 Overview of Controls 195

The following code example shows how to create an HTML viewer controL

'define DISPLAYCLASS TEXT("DISPLAYCLASS")

BOOL g_bMakeFit = TRUE; II DTM_ENABLESHRINK Shrink-enable flag
TCHAR const c_szHTMLControlLibrary[] = TEXT("htmlview.dll");

HINSTANCE g_hInstHTMLCtrl;
HINSTANCE hInstance;

II HTML Control Viewer instance
II Application instance

HWND m_hwndHtml; II Handle to HTML DISPLAYCLASS window

g_hInstHTMLCtrl = LoadLibrary(c_szHTMLControlLibrary);

InitHTMLControl(hInstance);

LRESULT WndProc (HWND hwnd, UINT msg, WPARAM wp, LPARAM lp)
{

}

switch (message)
{

}

case WM_CREATE:
{

}

m_hwndHtml - CreateWindow(DISPLAYCLASS, NULL,
WS_CHILD I WS_VISIBLE I WS_VSCROLL I WS_CLIPSIBLINGS,
rc.left, rc.top, rc.right - rc.left, rc.bottom - rc.top,
hWnd, (HMENU)IDC_HTMLVIEW, g_hInst, NULL);

SetFocus(m_hwndHtml);
PostMessage(m_hwndHtml, DTM_ENABLESHRINK, 0, g_bMakeFit);
break;

Note When calling the LoadLibrary and CreateWindow functions, the library
or class name has to be a Unicode string. Use the TEXT macro to cast a string as
Unicode, for example, TEXT("Htmlview.dll").

Pocket Internet Explorer is an example of an application that uses the HTML
viewer controL The application (Webview .exe) links with the dynamic-link
library that provides the HTML viewer control (Htmlview.dll). The application
provides the user interface, retrieves the data from the Uniform Resource
Locators (URL), and interprets the data.

196 Windows CE Programmer's Guide

The following illustration describes how the application interacts with the HTML
viewer control.

r------------------------------------~

I I
I URL Data Data I
I I
I I
I I
I I
I I

I
II

I I
I _____________________________________ 1

Interaction between the application and HTML viewer control

Note The HTML viewer control interface is not an ActiveX control, and does not
expose any COM interfaces.

197

CHAPTER 11

Foundation Controls

The controls described in this chapter are all common controls that contain or
manage other controls. For example, a command bar can contain menus, combo
boxes, and buttons. A command band can contain a variety of controls including
command bands. All of the controls described in this chapter are designed as
containers for other controls.

The following controls are described in this chapter:

• Command bars

• Property sheets

• Rebars

• Command bands

• Tab controls

• Toolbars

Command Bars
A command bar is a toolbar that can include a menu bar as well as the Close (X)
button, the Help (?) button, and the OK button, usually found on the title bar of
Windows-based desktop applications. A command bar can contain menus, combo
boxes, buttons, and separators. A separator is a blank space you can use to divide
other elements into groups or to reserve space in a command bar.

198 Windows CE Programmer's Guide

You create a command bar by using the CommandBar_ Create function.
Windows CE registers this class when it loads the common control dynamic-link:
library (DLL). You can use the InitCommonControls function to ensure that this
DLL is loaded.

Eile Edit ~iew FQ.rmat IDOls

Windows CE command bar

Using Command Bars
You can create a command bar to organize your application's menus and buttons.

~ To create a command bar

1. Initialize an INITCOMMONCONTROLSEX structure with
ICC_BAR_CLASSES in the dwICC member.

2. Register the command bar class by calling the InitCommonControlsEx
function, and then passing in the INITCOMMONCONTROLSEX structure.

3. Create the commands bands control by calling the
CommandBar_ Create function.

4. Add controls to the command bar by calling the
CommandBar_InsertMenubar, CommandBar_AddBitmap,
CommandBar_AddButtons, and
CommandBar_InsertComboBox functions.

5. Add the Close and Help buttons by calling the
CommandBanr_AddAdornments function and passing CMDBAR_HELP
in the dwFlags parameter. Windows CE automatically adds the Close button.

In addition to creating and registering command bars, you can use command bar
functions to perform the following procedures:

• Destroy a command bar.

• Determine a command bar's height.

• Add bitmaps, buttons, and ToolTips to a command bar.

• Insert combo boxes and menu bars into a command bar.

• Determine whether or not a command bar is visible.

• Obtain a handle to a command bar menu or submenu.

• Show or hide a command bar.

• Redraw a command bar.

Chapter 11 Foundation Controls 199

The window procedure for a command bar automatically sets the size ofthe
command bar and positions it along the top of the parent window's client area.
n also destroys the command bar when its parent window is destroyed. Use
the CommandBar_Destroy function to destroy the command bar without
destroying the parent window.

Unlike a scroll bar and a status bar, the command bar is part of the client area of
your application. To determine the useable portion of the application window,
use the CommandBar_Height function to retrieve the command bar's height in
pixels, and then subtract the height of the command bar from the size of the client
rectangle, which you obtain by calling GetClientRect.

Use the CommandBar _AddAdornments function to add the Close button
(X), the Help button (?), and the OK button to a command bar. Though every
command bar must have a Close button, the OK button and the Help button are
optional. Do not call the CommandBar_AddAdornments function until after
you have added all the other elements to the command bar.

A command bar stores the information needed to draw the button images in an
internal list, which is empty when the command bar is created. Each image has
a zero-based index that you use to associate the image with a button. Use the
CommandBar_AddBitmap function to add an array of images to the end of the
list. This function returns the index of the first new image that was added. The
system includes a set of predefined command bar buttons with header files that
define constant values for their indexes.

You can add both buttons and ToolTips to your command bar. Use the
CommandBar_InsertButton function to add a single button or separator
to a command bar. Use the CommandBacAddButtons function to add
several command bar buttons or separators at once to a command bar. To
create a separator, specify TBSTYLE_SEP as the fsStyle member of the
TBBUTTON structure you pass in the lpButton parameter. Use the
CommandBar_AddTooltips function to add ToolTips describing the
command bar buttons.

Use the CommandBaclnsertComboBox function to create a combo box and
insert it into a command bar. This function always creates a combo box with the
WS_CHILD and WS_ VISIBLE styles. You can specify other supported combo
box styles as well.

To insert a menu bar into a command bar, you can use either the
CommandBar_InsertMenubar or CommandBaclnsertMenubarEx function.
CommandBar_InsertMenubar inserts a menu bar identified by a resource
identifier. CommandBar_InsertMenubarEx inserts a menu bar identified by
either a resource name or menu handle.

200 Windows CE Programmer's Guide

Note Each element in a command bar has a zero-based index by which command
bar functions can identify it. The leftmost element has an index of zero, the
element immediately to its right has an index of one, and so on. When you use any
of the CommandBar_Insert functions, the menu bar, button, or combo box is
inserted to the left of the button whose index you specify in the iButton parameter.

Although Microsoft style guidelines recommend that you always have either a
command bar or a command bands control in Windows CE-based applications,
you can provide users with the option to hide the command bar, as long they can
retrieve it. Use the CommandBar_Show function to show or hide the command
bar. Use the CommandBar_IsVisible function to determine whether a command
bar is visible.

Use the CommandBacGetMenu function to obtain the handle of a menu bar
in a command bar. To obtain the handle of a submenu on the menu bar, use the
GetSubMenu function.

Call CommandBacDrawMenuBar to redraw the command bar after modifying
a menu bar on the command bar. Do not use the DrawMenuBar function for
menu bars on the command bar.

Note Do not use OxFFFFFFFF as the command identifier of a command bar
control. This identifier is reserved for use by the command bar.

The following code example shows how to create a command bar.

INITCOMMONCONTROLSEX icex;
icex.dwSize = sizeof(icex);
icex.dwICC = ICC_BAR_CLASSES;
InitCommonControlsEx(&icex);

HWND hwndCB, hwnd;

hwndCB = CommandBar_Create(9_hlnst, hwndParent, ID_COMMANDBAR);

CommandBar_InsertMenubar(hwndCB, 9_hInst, IDM_MAINMENU, 0);

CommandBar_AddBitmap(hwndCB, HINST_COMMCTRL, IDB_STD_SMALL_COLOR, 15,
16, 16);

CommandBar_AddButtons(hwndCB, sizeof(tbButtons)/sizeof(TBBUTTON),
tbButtons);

hwndCombo = CommandBar_InsertComboBox(hwndCB, 9_hInst, COMBO_WIDTH,
CBS_DROPDOWNLIST I WS_VSCROLL, ID_COMBOBOX, 16);

CommandBar_AddAdornments(hwndCB, CMDBAR_HELP, 0);

Chapter 11 Foundation Controls 201

For an example of how to use a command bar in an application, see the Cmdbar
sample application described in "Windows CE Sample Applications" in the
online Help.

Property Sheets
A property sheet is a system-defined dialog box that you use to view or modify
the attributes, or properties, of an object. A property sheet includes a frame, a title
bar, and three buttons: OK, Cancel (X), and Help (?), which are located at the top
of the window. To use property sheets, you must include the Prsht.h header file in
your application.

A property sheet contains and manages one or more related dialog boxes, called
property pages. Each property page has a tab, similar to a tab on a file folder or
in a notebook. A user selects a property page by tapping its tab with a stylus. The
dialog box procedures for each property page receive notification messages when
the user clicks the buttons on that page.

DeletEd ItEms folder options:

DeletE loca I 0 !mmediatEly
messages (I) p'po'n'ij{'it

o 'M~n'ua'iiy'"

DeletE server 0 ImmediatE Iy
messages (I) Upon gisconnect

o Manually

Windows CE property sheet

Property Sheet Pages
Each page in a property sheet is an application-defined modeless dialog box that
manages the controls that allow a user to view and edit the properties of an object.
A property sheet must contain at least one property page, but cannot contain more
than the value of MAXPROPPAGES as defined in the header files.

202 Windows CE Programmer's Guide

A property sheet sends notification messages to the dialog box procedure for a
page when the page becomes active or inactive and when the user clicks the
OK, Cancel (X), or Help (?) button. The notifications are sent in the form of
WM_NOTIFY messages. The IParam parameter of the WM_NOTIFY messages
points to an NMHDR structure, which includes the window handle of the
property sheet dialog box.

Some notification messages require that a property sheet page return either TRUE
or FALSE in response to the WM_NOTIFY message. To respond, the page must
use the SetWindowLong function to set the DWL_MSGRESULT value for the
page dialog box to either TRUE or FALSE.

Note The dialog box procedure for a page must not call the EndDialog function.
Doing so will destroy the entire property sheet, not just the page.

Each page has a corresponding label, which the property sheet displays in the tab
that it creates for the page. Because all property sheet pages expect you to use a
Roman font, not bold, you must ensure that the font is not bold by specifying the
DS_3DLOOK style in the dialog box template.

Note Users access property sheets by using an ALT + Tap action. In Windows CE,
use AL T + Tap for any operation for which you would use a right-click mouse
event on a Windows-based desktop platform.

Using Property Sheets
Before creating a property sheet, you must define one or more pages.

~ To define a property sheet page

1. Create a PROPSHEETPAGE structure that contains information about a
property sheet's icon, label, dialog box template, dialog box procedure, and
other attributes.

2. Call the CreatePropertySheet function and pass it a pointer
to the PROPSHEETPAGE structure. The function returns
a HPROPSHEETPAGE handle to the property page.

Once you have defined one or more property sheet pages, you can create a
property sheet. One way to create a property sheet is to specify the address of
a PROPSHEETHEADER structure in a call to the PropertySheet function.
The structure defines the icon and title for the property sheet and also includes
a pointer to an array of HPROPSHEETP AGE handles. When PropertySheet
creates the property sheet, it includes the pages identified in the array. The order
of the array determines the order of the pages in the property sheet.

Chapter 11 Foundation Controls 203

Another method to create a property sheet is to specify an array
of PROPSHEETHEADER structures instead of an array of
HPROPSHEETPAGE handles. In this case, PropertySheet creates
handles for the pages before adding them to the property sheet.

The PropertySheet function automatically sets the size and initial position of a
property sheet. The position is based on the position of the owner window, and
the size is based on the largest page specified in the array of pages when the
property sheet is created.

After creating a property sheet, you can add and remove pages by using the
PSM_ADDPAGE message. Note that the size of the property sheet cannot change
after it has been created, so the new page must be no larger than the largest page
currently in the property sheet. To remove a page, use the PSM_REMOVEPAGE
message. When you define a page, you can specify the address of the
PropSheetPageProc callback function that the property sheet calls when it
creates or removes the page. Using PropSheetPageProc allows you to initialize
and cleanup individual property sheet pages.

To destroy a page that was created by the CreatePropertySheetPage function
but was not added to the property sheet, use the DestroyPropertySheetPage
function. Destroying a property sheet automatically destroys all of the pages that
have been added to it. The system destroys the pages in reverse order from that
specified in the array used to create the pages.

You specify the title of a property sheet in the PROPSHEETHEADER structure
that you used to create the property sheet. If the dwFlags member includes the
PSH_PROPTITLE value, the property sheet adds the prefix "Properties" to the
specified title string. Use the PSM_SETTITLE message to change the title after a
property sheet has been created.

By default, a property sheet uses the name string specified in the dialog box
template as the label for the property page sheet page. You can override the name
string by including the PSP _USETITLE value as the dwFlags member of the
PROPSHEETPAGE structure that defines the page. When PSP _USETITLE is
specified, the pszTitle member must contain the address of the label string for
the page.

Active and Inactive Property Sheet Pages
A property sheet can have only one active page at a time. The active sheet is at
the top of the overlapping stack of pages. The user activates a page by selecting
its tab; an application uses the PSM_SETCURSEL message to activate a page.
Before the page that will become the active page is visible, the property sheet
sends it the PSN_SETACTIVE notification message. The page should respond
by initializing its control windows.

204 Windows CE Programmer's Guide

Rebars

The property sheet determines whether to enable 'or disable the Help button for
an active page by checking for the PSP _HAS HELP style. If the page has this
style, it supports the Help button. If the PSP _HASHELP style is not present, it
disables the button. When the user clicks the Help button, the active page receives
the PSN_HELP notification message. The page should respond by displaying
help information.

When the user clicks OK, the property sheet sends the PSN_KILLACTIVE
notification message to the active page, giving it an opportunity to validate
the user's changes. If the page determines that the changes are valid, it should
call the SetWindowLong function to set the DWL_MSGRESULT value for
the page to FALSE. In this case, the property sheet sends the PSN_APPL Y
notification message to each page, directing it to apply the new properties to the
corresponding item. If the page determines that the user's changes are not valid, it
should set DWL_MSGRESULT to TRUE and display a dialog box informing the
user of the problem. The page remains active until it sets DWL_MSGRESULT to
FALSE in response to a PSN_KILLACTIVE message.

The property sheet sends the PSN_RESET notification message to all pages when
the user clicks the Cancel button, indicating that it is about to destroy the property
sheet. A page should use the notification to perform cleanup operations.

Note To set the position of a property sheet window in an application, use the
SetWindowPos function rather than the MoveWindow function. Call
SetWindowPos in the dialog box procedure of the property page that will open
first when the user activates a property sheet.

A rebar control, which has one or more bands, is a container for child windows.
Each band can contain one child window, which can be a toolbar or any other
control. Each band can have its own bitmap, which is displayed as a background
for the toolbar on that band. A user can resize or reposition a band by dragging its
gripper bar. If a band has a text label next to its gripper bar, a user can maximize
the band and restore it to its previous size by tapping the label with the stylus.

Windows CE rebar

Rebar Styles

Chapter 11 Foundation Controls 205

Like other common controls, a rebar control sends WM_NOTIFY messages to its
parent window. A rebar control also forwards to its parent window all messages it
receives from the child windows assigned to its bands.

You create a rebar control by specifying REBARCLASSNAME in the
lpClassName parameter to the CreateWindowEx function. This class is
registered when the common control dynamic-link library (DLL) is loaded.
You can use the lnitCommonControlsEx function to ensure that this DLL is
loaded. To register the rebar control class using the InitCommonControlsEx
function, specify the ICC_COOL_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter.

Rebar controls support the Windows CE custom draw service, which makes it
easy to customize a rebar control's appearance. For more information on custom
draw service, see Chapter 10, "Overview of Controls."

Rebar styles supported by Windows CE are described in the following table.

Style

RBS_BANDBORDERS

RBS_FIXEDORDER

RBS_ VERTICALGRIPPER

Description

Causes the control to appear vertically at the left side
of the parent window.

Specifies that the layout of a band will automatically
change when the size or position of its control
changes. When the layout changes, the control sends
an RBN_AUTOSIZE notification.

Displays narrow lines to separate adjacent bands.

Displays multiple bands in the same order at all times.
A user can move bands to different rows, but the band
order is static.

Displays the icon for a band that has one only when
the band is minimized. If a band has a text label, the
label is displayed only when the band is in its restored
state or in its maximized state.

Displays a band at the minimum required height,
when possible. Without this style, the command bands
control displays all bands at the same height, using the
height of the tallest visible band to determine the
height of other bands.

Displays the size grip vertically, instead of
horizontally, in a vertical command bands control.
This style is ignored for command bands controls that
do not have the CCS_ VERT style.

206 Windows CE Programmer's Guide

Note Windows CE is the only Windows-based platform that supports the
RBS_SMARTLABELS style for rebar controls.

Windows CE also supports a rebar band style, called RBBS_NOGRIPPER. When
you assign this style to a band in a rebar, the band does not have a gripper. This
style applies to individual bands, not to the entire rebar.

Command Bands
The command bands control is a special kind of rebar control. It has a fixed
band at the top containing a toolbar with a Close (X) button, and optionally, a
Help (?) button and an OK button, in the right corner. By default, each band
in the command bands control contains a command bar. You can override this,
however, if you want a band to contain some other type of child window.

Windows CE command band

~ To create a command band control

1. Initialize an INITCOMMONCONTROLSEX structure with
(ICC_BAR_CLASSES I ICC_COOL_CLASSES) as the dwICC member.

2. Register the command bands control class and the command bar class
by calling the InitCommonControlsEx function, and passing in the
INITCOMMONCONTROLSEX structure.

3. Create the image list to use for the band images.

4. Create the commands bands control by calling the CommandBands_Create
function, and then passing the image list handle in the himl parameter.

5. Initialize an array of REBARBANDINFO structures, one for each band in the
command bands control.

6. Add the bands by calling the CommandBands_AddBands function, passing
the array of REBARBANDINFO structures in the prbbi parameter.

7. Add controls to the command bars in the bands by calling the appropriate
command bar functions for the controls you want to add.

8. Call the CommandBands_AddAdomments function to add the Close and
Help buttons. When you do this, the Close button is added by default.

Chapter 11 Foundation Controls 207

The following code example demonstrates how to register a command band and
command bar.

INITCOMMONCONTROLSEX icex:
icex.dwSize = sizeof(icex):
icex.dwICC = ICC_BAR_CLASSES I ICC_COOL_CLASSES:
InitCommonControlsEx(&icex):

HWND hwndCmdBands, hwnd:
REBARBANDINFO arbbi[2]:

HIMAGELIST himl = ImageList_Create(16, 16, ILC_COLOR, 2, 0):
hwndCmdBands - CommandBands_Create(g_hinst, hwndParent, BANDS_ID,

RBS_VARHEIGHT I RBS_BANDBORDERS, himl):

arbbi[0].cbSize = sizeof(REBARBANDINFO):
arbbi[0].fMask = RBBIM_ID I RBBIM_STYLEI RBBIM_SIZE
arbbi[0].fStyle - RBBS_NOGRIPPER
arbbi[0].wID = ID_MENUBAND:
arbbi[0].cx = 100:
arbbi[0].iImage = 0:

arbbi[I].cbSize - sizeof(REBARBANDINFO):
arbbi[I]. fMask = RBBIM_ID I RBBIM_IMAGE I RBBIM_SIZE:
arbbi[I].wID = ID_BUTTONBAND:
arbbi[I].cx = 125:
arbbi[I].iImage = 1:

CommandBands_AddBands(hwndCmdBands, g_hinst, 2, arbbi):

hwnd = CommandBands_GetCommandBar(hwndCmdBands, 0):
CommandBar_InsertMenubar(hwnd, g_hinst, IDM_MAINMENU, 0);

hwnd = CommandBands_GetCommandBar(hwndCmdBands, 1);
CommandBar_AddBitmap(hwnd, HINST_COMMCTRL, I DB_STD_SMALL_COLOR , 0, 0,
0) ;

CommandBar_AddButtons(hwnd, sizeof(tbButtons)/sizeof(TBBUTTON),
tbButtons);

CommandBands_AddAdornments(hwndCmdBands, g_hinst, CMDBAR_HELP, NULL);

Command bands controls support the custom draw service, which makes it easy
to customize the appearance of a command bands control. For information on
the custom draw service, see Chapter 10, "Overview of Controls."

208 Windows CE Programmer's Guide

Using Command Bands
Windows CE supports the following functions for creating and manipulating
command bands controls.

Use the CommandBands_AddAdornments function to add a band with
the Close (X) button, the Help (?) button, and the OK button. This band will
always have a Close button. The OK button and the Help button are optional.

Use the CommandBands_AddBands function to add one or more bands to the
control. By default, each band has a command bar as its child window.

Use the CommandBands_Create function to create a command bands control.

You can retrieve a command bar from a band in a command bands control by
using the CommandBands_GetCommandBar function. Pass it the zero-based
index of the band that contains the command bar you want to retrieve.

Unlike scroll bars j;Uld status bars, the command bar is part of the client area of
your application. To determine the useable portion of the application window,
use the CommandBands_Height function to retrieve the command bar's height
in pixels and subtract the height of the command bar from the size of the client
rectangle, which you obtain by calling GetClientRect.

Use the CommandBands_IsVisible function to determine whether a command
bands control is visible.

Use the CommandBands_ GetRestoreInformation function to retrieve
information about the bands in a command band control, before you close
the application window, so you can save the information in the registry. The
next time the application is opened, you can use this information to restore
the command bands control to its previous state.

Although you should always have a command bar or a command bands control
in a Windows CE-based application that has a graphical user interface, you can
provide users with the option to hide the command bands control, as long as it
can be retrieved. Use the CommandBands_Show function show or hide the
command bands control.

A command band is a rebar control and a toolbar control and can be manipulated
using the rebar and toolbar messages.

Chapter 11 Foundation Controls 209

Tab Controls
A tab control is analogous to a set of dividers in a notebook or labels in a file
cabinet. In a property sheet, a user selects a tab to move from one property
sheet page to another.

[compose I Read I Delete I Services I
Windows CE tab control

You send messages to a tab control to add tabs and otherwise affect the control's
appearance and behavior. Each message has a corresponding macro, which you
can use instead of sending the message explicitly. Though you cannot disable an
individual tab in a tab control, you can disable a tab control in a property sheet by
disabling the corresponding page.

Each tab in a tab control consists of a label and application-defined data. This
information is specified by a TCITEM structure. You can add tabs to a tab
control, get the number of tabs, retrieve and set the contents of a tab, and delete
tabs. Tabs are identified by their zero-based index.

Tab Control Styles
Tab control styles supported by Windows CE are described in the following table.

Style

TCS_FOCUSNEVER

TCS_FOCUSONBUTTONDOWN

Description

Displays the tabs at the bottom of the control. If the
TCS_ VERTICAL style is also specified, this style
is interpreted as TCS_RlGHT.

Displays all tabs as buttons with no border drawn
around the display area.

Specifies that all tabs are the same width. You can
not combine this style with the
TCS_RlGHTJUSTIFY style.

Changes the appearance of a selected tab to
indented while other tabs appear to be on the same
plane as the background. This style only applies to
tab controls that have the TCS_BUTTONS style.

Flips all tabs from top to bottom or left to right,
and visa versa.

Creates a tab control that never receives the
input focus.

Specifies that a tab which, when selected, receives
the input focus.

210 Windows CE Programmer's Guide

Style

TCS_FORCEICONLEFT

TCS_FORCELABELLEFT

TCS_MULTILINE

TCS_SCROLLOPPOSITE

Description

Aligns an icon with the left edge of a fIxed-width
tab. This style can only be used with the
TCS_FIXEDWIDTH style.

Aligns a label with the left edge of a fIXed-width
tab; that is, it displays the label immediately to
the right of the icon instead of centering it. This
style can only be used with the
TCS_FIXEDWIDTH style, and it implies the
TCS_FORCEICONLEFT style.

Displays multiple rows of tabs, if necessary, so that
all tabs are visible at once.

SpecifIes that multiple tabs can be selected by
holding down CTRL when selecting a tab. This
style only applies to tabs that have the
TCS_BUTIONS style.

SpecifIes that the parent window is responsible for
drawing tabs.

Leaves a ragged right edge by not stretching a row
of tabs to fIll the entire width of the control. This
style is the default.

Displays multiple tabs vertically on the right side
of controls that use the TCS_ VERTICAL style. If
the TCS_ VERTICAL style is not specifIed, this
style is interpreted as TCS_BOTIOM.

Increases the width of each tab, if necessary, so
that each row of tabs f111s the entire width of the tab
control. This style is valid only when used with the
TCS_MULTILINE style.

SpecifIes that unused tabs move to the opposite
side of the control when a new tab is selected.

Displays only one row of tabs. The user can
scroll to see more tabs, if necessary; This style
is the default.

Displays multiple tabs vertically on the left side of
the control. This style is valid only when used with
the TCS_MULTILINE style. To make tabs appear
on the right side of the control, combine this style
with the TCS_RIGHT style.

Because Windows CE does not support ToolTips for any controls other than
command bar buttons, it does not support the TCS_TOOLTIPS style.

Chapter 11 Foundation Controls 211

Extended Tab Control Styles
Windows CE supports two extended tab control styles. The first style uses
the TCM_SETEXTENDEDSTYLE message or its corresponding macro,
TabCtrl_SetExtendedStyle, to set the extended style. It uses the
TCM_GETEXTENDEDSTYLE message or its corresponding macro,
TabCtrl_GetExtendedStyle, to retrieve the extended style.

Note Because an extended tab control style is not the same as an extended
window style, you cannot pass an extended tab control style to CreateWindowEx
when you create a tab control.

The second extended tab control style, TCS_EX_FLATSEPARATORS, draws
separators between tab items in tab controls that have the TCS_BUTTONS or
TCS_FLATBUTTONS style. When you create a tab control with the
TCS_FLATBUTTONS style, this extended style is set by default.

Using Tab Controls
You create a tab control by specifying WC_TABCONTROL in the lpClassName
parameter to the CreateWindowEx function. Windows CE registers this class
when it loads the common control DLL. You can use the InitCommonControls
function to ensure that this DLL is loaded. To register the tab control class using
the InitCommonControlsEx function, specify the ICC_ TAB_CLASSES flag as
the dwICC member of the INITCOMMONCONTROLSEX structure you pass
in the lplnitCtrls parameter.

To add tabs to a tab control, use the TCM_INSERTITEM message, which
specifies the position of the tab and the address of its TCITEM structure. You
can retrieve and set the contents of an existing tab by using the TCM_ GETITEM
and TCM_SETITEM messages. For each tab, you can specify an icon, a label, or
both. You can also specify application-defined data to associate with the tab.

Other messages that you can use with a tab control are described in the
following table.

Message

TCM_GETITEMCOUNT

TCM_DELETEITEM

TC_DELETEALLITEMS

Description

Retrieves the current number of tabs.

Deletes a tab.

Deletes all tabs in a tab control.

212 Windows CE Programmer's Guide

You can associate application-defined data with each tab. For example, you might
save information about each page with its corresponding tab. By default, a tab
control allocates four extra bytes per tab for application-defined data. You can
change the number of extra bytes per tab by using the TCM_SETITEMEXTRA
message. You can only use this message when the tab control is empty.

The lParam member of the TCITEM structure specifies application-defined data.
If you use more than four bytes of application-defined data, you need to define
your own structure and use it instead of TCITEM. You can retrieve and set
application-defined data the same way you retrieve and set other information
about a tab: Use the TCM_GETITEM and TCM_SETITEM messages.

Note Windows CE does not support vertical text. If you create vertical tabs, and
want to use vertical text, you have to create a text bitmap and rotate it. Then, you
can add the bitmap to an image list and attach it to the tab by specifying its image
list index in the iImage member of the TCITEM or TCITEMHEADER
structure.

Tab Control Display Area
The tab control display area is the area of the control in which an application
displays the current page. An application creates a child window or dialog box to
display the current page, and then it sets the window size and position to fit the
display area. You can use the TCM_ADJUSTRECT message to calculate a tab
control's display area based on the dimensions of a specified rectangle, or to
calculate the dimensions of rectangle given the coordinates of a display area.

Tab Control Messages
When the user selects a tab, a tab control sends notification messages to its parent
window in the form of WM_NOTIFY messages. The tab control sends the
TCN_SELCHANGING notification message before the selection changes, and it
sends the TCN_SELCHANGE notification message after the selection changes.

You can process TCN_SELCHANGING to save the state of the outgoing page.
You can return TRUE to prevent the selection from changing. For example, you
might not want to switch away from a child dialog box in which a control has an
invalid setting.

To display the incoming page in the display area, you must process
TCN_SELCHANGE. Though processing might entail changing the information
displayed in a child window, it will more likely entail destroying or hiding the
outgoing child window or dialog box and creating or showing the incoming child
window or dialog box.

Chapter 11 Foundation Controls 213

You can retrieve and set the current table selection by using the
TCM_GETCURSEL and TCM_SETCURSEL messages.

Tab Control Image Lists
Each tab can have an icon associated with it. An index specifies the icon into
the image list for the tab control. When you create a tab control, it has no image
list associated with it. You can use the ImageLisCCreate function to create
an image list. You can assign it to a tab control by using the
TCM_SETIMAGELIST message.

You can add an image to a tab control's image list just as you would add one to
any other image list. To ensure that each tab remains associated with its assigned
image, remove images by using the TCM_REMOVEIMAGE message instead of
the ImageLisCRemove function.

Because destroying a tab control does not destroy an image list that is associated
with it, you must destroy the image list separately. Retaining the image list may
be useful if you want to assign the same image list to multiple tab controls.

To retrieve the handle of the image list currently associated with a tab control,
you can use the TCM_GETIMAGELIST message.

Tab Size and Position
Each tab in a tab control has a size and a position. You can set the size of tabs,
retrieve the bounding rectangle of a tab, or determine which tab is located at a
specified position.

For fixed-width and owner-drawn tab controls, you can set the exact width and
height of tabs by using the TCM_SETITEMSIZE message. In other tab controls,
you calculate each tab's size based on the icon and label for the tab. The tab
control includes space for a border and an additional margin. You can set the
thickness of the margin by using the TCM_SETPADDING message.

You use messages and styles to learn about tabs. You can determine the current
bounding rectangle for a tab by using the TCM_ GETITEMRECT message.
You can determine which tab, if any, is at a specified location by using the
TCM_HITTEST message. And, in a tab control with the TCS_MULTILINE
style, you can determine the current number of rows of tabs by using the
TCM_GETROWCOUNT message.

214 Windows CE Programmer's Guide

Tab Control Structures
In Windows CE, the TCITEM structure replaces the TC_ITEM structure that
is used by Windows-based desktop platforms. TCITEM has two members that
are not available in its desktop computer counterpart. The dwState member,
which contains the item states, replaces the IpReservedl member, and the
dwStateMask member replaces the IpReserved2 member. The dwStateMask
member is a bit member that specifies which bits of the value in the dwState
member are valid. The mask member supports a value unique to Windows CE,
TCIF _STATE, which indicates whether the dwState member is valid. Windows
CE structures that have been renamed to conform to windows standard naming
conventions are described in the following table. These structures are otherwise
the same as the corresponding structures in Windows-based desktop platforms.

WindowsCE

TCITEMHEADER

NMTCKEYDOWN

Windows-based desktop platforms

TC_ITEMHEADER

TC_KEYDOWN

Tab Control Item States

Toolbars

Tab control item states supported by Windows CE are described in the
following table.

Item state

TCIS_BUTTONPRESSED

TCIS_HIGHLIGHTED

Description

The tab control item is selected.

The tab control item is highlighted and the tab and
text are drawn using the current highlight color.

A toolbar is a control that contains buttons. The buttons in a toolbar usually
correspond to items on the application's menu, providing a quick way for the user
to access these commands. When a user taps a toolbar button with the stylus, the
toolbar sends the command message associated with the button to the toolbar's
parent window. The Windows CE alternative to the toolbar is the command bar.
A command bar combines a menu bar and a toolbar in a single control, which
conserves limited screen space.

Windows CE toolbar

Chapter 11 Foundation Controls 215

You create a toolbar by using the CreateToolbarEx function. Windows CE
registers this class when it loads the common control DLL. You can use the
InitCommonControls function to ensure that this DLL is loaded. To
register the toolbar class using the InitCommonControlsEx function,
specify the ICCj3AR_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls parameter.
You can also use the CreateWindowEx function to register the toolbar class by
specifying the TOOLBARCLASSNAME window class. However, this method
creates a toolbar that initially contains no buttons. You can then add buttons to
the toolbar by using the TB_ADDBUTTONS or TB_INSERTBUTTON message.

A toolbar must be created as a child window with the WS_CHILD style. If you
use CreateWindowEx to create a toolbar, you must specify the WS_CHILD
window style. CreateToolbarEx includes the WS_CHILD style by default. You
must specify the initial parent window when creating the toolbar, but you can
change the parent window after creation by using the TB_SETPARENT message.

Windows CE does not support user customization of toolbars or drag-and-drop
operations for toolbars.

Toolbar Styles
Toolbar styles that are the same in both Windows CE and Windows-based
desktop platforms are described in the following table.

Style

TBSTYLE_CUSTOMERASE

Description

Creates a toolbar that generates
NM_CUSTOMDRA W notification messages when it
processes WM_ERASEBKGND messages.

Creates a flat toolbar, in which both the toolbar and
the buttons are transparent. Button text appears under
button bitmaps.

Places button text to the right of button bitmaps.
This style can only be used with the
TBSTYLE_FLAT style.

Creates a transparent toolbar, in which the toolbar is
transparent but the buttons are not. Button text appears
under button bitmaps.

Creates a toolbar that can have multiple rows of
buttons. Toolbar buttons can wrap to the next line
when the toolbar becomes too narrow to include all
buttons on the same line. Wrapping occurs on
separation and non-group boundaries.

216 Windows CE Programmer's Guide

In Windows CE, the TBSTYLE_LIST style creates a toolbar with variable width
buttons. If you want to use the TBSTYLE_LIST style with fIxed width buttons,
you can override the default behavior by sending a TB_SETBUTIONSIZE or
TB_SETBUTIONWIDTH message.

Windows CE does not support the TBSTYLE_ALTDRAG style or the
TBSTYLE_REGISTERDROP style for toolbars because it does not
support drag-and-drop operations.

Note Because Windows CE does not support an actual ToolTip control, you
cannot pass it a handle to a ToolTip control. Instead, the TB_SETIOOLTIPS
message in Windows CE takes a wParam, which is the number of ToolTip strings
to associate with the toolbar, and an [Param, which is the array of ToolTip strings
to associate with the toolbar buttons.

Toolbar Size and Position
The window procedure for a toolbar automatically sets the size and position of the
toolbar window. The height is based on the height of the buttons in the toolbar.
The width is the same as the width of the parent window's client area. The
CCS_TOP and CCS_BOTTOM common control styles determine whether the
toolbar is positioned along the top or bottom of the client area. By default, a
toolbar has the CCS_TOP style.

The toolbar window procedure automatically adjusts the size of the toolbar
whenever it receives a WM_SIZE or TB_AUTOSIZE message. An application
should send either of these messages whenever the size of the parent window
changes or after sending a message that requires the size of the toolbar to be
adjusted, for example, after sending the TB_SETBUTTONSIZE message.

Toolbar Buttons
Toolbar buttons are bit images, not .child windows as other buttons are.
When a user clicks a toolbar button, the toolbar sends its parent window
a WM_COMMAND message with the button's command identifier.

If you want to assign a shortcut key to a toolbar button, you can use the button's
ToolTip to let the user know what the shortcut is.

Each button in a toolbar can include a bitmap image. A toolbar maintains an
internal list that contains all of the bitmaps that have been assigned to each of its
toolbar buttons. When you call the CreateToolbarEx function, you specify a
monochrome or color bitmap that contains the initial images. The toolbar then
adds the information to the internal list of images. You can add additional images
later by using the TB_ADDBITMAP message.

Chapter 11 Foundation Controls 217

Each image has a zero-based index. The first image added to the internal
list has an index of zero, the second image has an index of one, and so on.
TB_ADDBITMAP adds images to the end ofthe list and returns the index
of the first new image that it added. You use an image's index to associate
the image with a button.

Windows CE assumes that all of a toolbar's bitmaps are the same size. You
specify the size when you create the toolbar by using CreateToolbarEx. If
you use the CreateWindowEx function to create a toolbar, the size of its
bitmaps is set to the default dimensions of 16 x 15 pixels. You can use the
TB_SETBITMAPSIZE message to change the dimensions of the bitmaps,
but you must do so before adding any images to the internal list of images.

Each button can display a string in addition to, or instead of, an image. A toolbar
maintains an internal list that contains all of the strings available to toolbar
buttons. You add strings to the internal list by using the TB_ADDSTRING
message, specifying the address of the buffer containing the strings to add. Each
string must be null-terminated, and the last string must be terminated with two
null characters.

Each string has a zero-based index. The first string added to the internal list of
strings has an index of zero, the second string has an index of one, and so on.
TB_ADDSTRING adds strings to the end of the list and returns the index of the
first new string. You use a string's index to associate the string with a button.

Toolbar Button Styles
Toolbar styles that are the same in both Windows CE and Windows-based
desktop platforms are described in the following table.

Style

TBSTYLE-"BUTTON

TBSTYLE_CHECK

TBSTYLE_CHECKGROUP

TBSTYLE_GROUP

TBSTYLE_AUTOSIZE

Description

Creates a toolbar button that looks like a standard
Windows push button.

Creates a button that toggles between the pressed and
not pressed states each time the user clicks it. The button
has a different background color when it is in the
pressed state.

Creates a check button that stays pressed until another
button in the group is pressed.

Creates a button that stays pressed until another button
in the group is pressed.

Calculates a button's width based on the text of the
button, not on the size of the image.

218 Windows CE Programmer's Guide

Style

TBSTYLE_DROPDOWN

TBSTYLE_SEP

Toolbar Button States

Description

Creates a drop-down list button.

Creates a separator, which provides a small gap between
button groups. A button that has this style does not
receive user input.

Each button in a toolbar has a current state that indicates whether the button is
hidden or visible, enabled or disabled, and pressed or not pressed. You set a
button's initial state when adding the button to the toolbar, and the toolbar
updates the button state in response to a user's actions, for example, when the user
taps it with the stylus. You can use the TB_GETSTATE and TB_SETSTATE
messages to retrieve and set the state of a button.

Toolbar button states that are the same in both Windows CE and Windows-based
desktop platforms are described in the following table.

State

TBSTATE_CHECKED

TBSTATE_ENABLED

TBSTATE_HIDDEN

TBSTATE_HIGHLIGHTED

TBSTATE_INDETERMINATE

TBSTATE]RESSED

TBSTATE_WRAP

Description

The button has the TBSTYLE_CHECKED style
and is being pressed.

The button accepts user input. A button
without this state does not accept user input
and is dimmed.

The button is not visible and cannot receive
user input.

The button is highlighted.

The button is dimmed.

The button is being pressed.

The button has a line break following it.
The button must also have the
TBSTATE_ENABLED state.

The toolbar button state TBSTATE_ELLIPSES is unique to Windows CEo When
a button has this style, if its text does not fit the size of the button, the text is cut
off and ellipses are displayed.

Chapter 11 Foundation Controls 219

Toolbar Features
Windows CE supports messages that allow you to customize the look and
behavior of toolbars and toolbar buttons.

You can create transparent toolbars by specifying the TBSTYLE_FLAT or
TBSTYLE_TRANSPARENT styles. If you give a toolbar the TBSTYLE_FLAT
style, the toolbar displays its buttons, but the toolbar itself is transparent. If you
give a toolbar the TBSTYLE_TRANSPARENT style, the client area shows
through the buttons as well as through the underlying toolbar.

You can use image lists to customize the way a toolbar displays buttons in various
states. You can set and retrieve image lists for toolbar buttons by using the
TB_GETIMAGELIST and TB_SETIMAGELIST messages for buttons in
their default unpressed state, and the TB_GETDISABLEDIMAGELIST and
TB_SETDISABLEDIMAGELIST messages for buttons in their disabled state.
Use the TB_LOADIMAGES message to load images into a toolbar's image list.

Windows CE supports a toolbar button style called a drop-down button. When a
user taps a button that has the TBSTYLE_DROPDOWN style, the toolbar sends a
TBN_DROPDOWN notification to its parent window. The parent window usually
responds by displaying a pop-up menu or list box under the drop-down button.

Note In Windows CE, the TBNOTIFY structure has been renamed
NMTOOLBAR to conform to standard naming conventions, but the two
structures are identical.

Because toolbars in Windows CE support the custom draw service, you have
flexibility to customize a toolbar's appearance. If a toolbar provides this service,
it sends the new NM_CUSTOMDRA W notification at specific times during
drawing operations. The IParam of the NM_CUSTOMDRA W notification is a
pointer to an NMCUSTOMDRA W structure, which contains the information
necessary to draw the customized toolbar. For information on the custom draw
service, see Chapter 10, "Overview of Controls."

221

CHAPTER 12

File and Scale Controls

Two types of controls are described in this chapter: controls that display and
manage files and data, and controls that change scaled values. The file controls
allow a user to readily display and manipulate files or other data. The scale
controls allow a user to increase or decrease a scaled value. For example, the user
can use a trackbar or an up-down control to adjust the volume in an application
that includes sound.

The following file and scale controls are described in this chapter.

• Header controls

• Image lists

• List views

• Tree views

• Trackbars

• Up-Down controls

Header Controls
A header control is a horizontal window that is usually positioned above columns
of data. It is divided into partitions that correspond to the columns, and each
partition contains the title for the column below it. The user can drag the dividers
between the partitions to set the width of each column. A header can also perform
an action, such as sorting the rows of data according to the values in a column the
user selects.

Windows CE header control

222 Windows CE Programmer's Guide

To create a header control, specify WC_HEADER in the IpClassName parameter
to the Create WindowEx function. This class is registered when the common
control dynamic-link library (DLL) is loaded. Use the InitCommonControls
function to ensure that this DLL is loaded.

To register the header control class using the InitCommonControlsEx function,
specify the ICC_ LISTVIEW _CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls parameter.

Header Control Styles
Header control styles supported by Windows CE are described in the
following table.

Style

HDS_DRAGDROP

HDS]ULLDRAG

Description

Causes each header item to look and behave like a button. This
style is useful if an application carries
out a task when the user clicks an item in the header control.

Allows drag-and-drop reordering of header items.

Causes the header control to display column contents even
while a user resizes a column.

Creates a header control that you can hide by setting its height
to zero. This style is useful when you use the control as an
information container instead of a visual control.

Creates a horizontal header control.

Header Control Size and Position
Typically, you must set the size and position of a header control to fit within the
boundaries of a particular rectangle, such as the client area of a window. By using
the HDM_LA YOUT message, you can retrieve the appropriate size and position
values from the header control.

When sending the HDM_LA YOUT message, you specify the address of an
BDLA YOUT structure that contains the coordinates of the rectangle that the
header control is to occupy and that provides a pointer to a WINDOWPOS
structure. The control fills WlNDOWPOS with size and position values
appropriate for positioning the control along the top of the specified rectangle.
The height value is the sum of the heights of the control's horizontal borders and
the average height of characters in the font currently selected into the control's
device context.

Chapter 12 File and Scale Controls 223

Header Control Items
A header control typically has several header items that define the columns of
the control. To add an item to a header control, send the HDM_INSERTITEM
message to the control. The message includes the address of an HDITEM
structure. This structure defines the properties of the header item.

The fInt member of an item's HDITEM structure can include either the
HDF _STRING or HDF _BITMAP flag to indicate whether the control displays
the item's string or bitmap. If you want to display both a string and a bitmap,
create an owner-drawn item by setting the rmt member to include the
HDF _OWNERDRA W flag. You can combine a string and an image from an
image list by combining the HDF _IMAGE and HDF _STRING flags.

The HDITEM structure also specifies formatting flags that tell the
control whether to center, left-align, or right-align the string or bitmap in
the item's rectangle.

HDM_INSERTITEM returns the index of the newly added item. You can use the
index in other messages to set properties or retrieve information about the item.
To delete an item, use the HDM_DELETEITEM message, which specifies the
index of the item to delete.

The HDM_SETITEM message sets the properties of an existing header
item and the HDM_GETITEM message retrieves the current properties
of an item. To retrieve a count of the items in a header control, use the
HDM_GETITEMCOUNT message.

You can define individual items of a header control to be owner-drawn items.
Using this technique gives you more control than you would otherwise have
over the appearance of a header item.

Use the HDM_INSERTITEM message to insert a new owner-drawn item into a
header control or the HDM_SETITEM message to change an existing item to an
owner-drawn item. Both messages include the address of an HDITEM structure,
which should have the rmt member set to the HDF _OWNERDRA W value.

Header Control Messages
A header control sends notification messages to its parent window when the user
clicks or double-clicks an item, when the user drags an item divider, and when the
attributes of an item change. The parent window receives the notifications in the
form of WM_NOTIFY messages.

224 Windows CE Programmer's Guide

Windows CE supplies macros to send header control messages as well as to
support the use of image lists, drag-and-drop functionality, and custom ordering
of header control items.

Advanced Header Control Features
Windows CE enables you to use image lists in header controls, as well as text and
bitmaps. An image list is a collection of images that are all the same size, such as
bitmaps or icons. For more information, see "Image Lists" later in this chapter.

You can use the HDM_SETIMAGELIST message to associate an image list with
a header control. Use the HDM_GETIMAGELIST message to retrieve the handle
of the image list that is associated with a header control. To display an image with
a header control item, specify HDCIMAGE as the mask member, HDF _IMAGE
as the fmt member, and the zero-based index of an image in the list as the iImage
member of the HDITEM structure you use to add the item to the header control.

Header controls support callback requests for text and images in header
control items. To create a callback item, set the pszText member to
LPSTR_TEXTCALLBACK, or the iImage member to CIMAGECALLBACK,
in the HDITEM structure you fill in when you add the item to the header control.
This causes the header control to send the HDN_GETDISPINFO notification
message when the item is about to be drawn. The IParam of the WM_NOTIFY
message is a pointer to an NMHDDISPINFO structure. When the header control
sends the notification, it sets the NMHDDISPINFO structure's members to
specify the type of information it needs in order to draw the item. Return the
requested information to the header control by filling in the appropriate members
of the structure. If you set the mask member to HDCDCSETITEM, the header
control stores the information and does not request it again. Otherwise, the header
control sends the NMHDDISPINFO notification each time the item is redrawn.

Header controls also support drag-and-drop functionality. To create a header
control that supports drag-and-drop operations, specify the HDS_DRAGDROP
style when you create the header control. You can also customize a header
control's drag-and-drop behavior by handling the HDN_BEGINDRAG
and HDN_ENDDRAG notification messages and by sending
HDM_CREATEDRAGIMAGE and HDM_SETHOTDIVIDER messages.

You can support custom ordering of items in a header control
by setting the iOrder member in the HDITEM structure when you add an
item to a header control and by using the HDM_GETORDERARRA Y,
HDM_SETORDERARRA Y, and HDM_ORDERTOINDEX messages.

Chapter 12 File and Scale Controls 225

Header controls support the custom draw service, which gives you flexibility to
customize a header control's appearance. If a header control provides this service,
it sends the NM_CUSTOMDRA W notification at specific times during drawing
operations. The IParam of the NM_CUSTOMDRA W notification is a pointer to
an NMCUSTOMDRA W structure, which contains the information necessary to
draw the customized header control. For information on the custom draw service,
see Chapter 10, "Overview of Controls."

Image Lists
An image list is a collection of images that are all the same size. You can create
the images in a single wide bitmap or as individual bitmaps that you add to the
list one at a time. Image lists manage images, but they do not display the images
directly. They can be used independently or in conjunction with list view and tree
view controls.

There are two types of image lists, nonmasked and masked. A nonmasked image
list consists of a color bitmap that contains one or more images. A masked image
list consists of two bitmaps of equal size. The first is a color bitmap that contains
the images, and the second is a monochrome bitmap that contains a series of
masks-one for each image in the first bitmap.

Windows CE draws a nonmasked image by simply copying it into the target
device context and drawing it over the existing background color of the device
context. Windows CE draws a masked image by combining its bits with the
bits of the mask, typically producing transparent areas in the bitmap where the
background color of the target device context shows through.

Note Most Windows CE-based platforms do not support cursors except for the
wait cursor, which resembles a spinning hourglass. Therefore, image lists cannot
contain cursors.

Using Image Lists
To create an image list, call the ImageLisCCreate function. For a nonmasked
image list, this function creates a single bitmap large enough to hold a specified
number of images of the specified dimensions. Then, it creates a screen­
compatible device context and selects the bitmap into it. For a masked image list,
the function creates two bitmaps and two screen-compatible device contexts.
ImageLisC Create selects the image bitmap into one device context and the mask
bitmap into the other.

226 Windows CE Programmer's Guide

In ImageLisC Create, you specify the initial number of images that will be
in an image list, as well as the number of images by which the list can grow.
If you attempt to add more images than you initially specified, the image list
automatically grows to accommodate the images.

If ImageLisC Create succeeds, it returns a handle to the HIMAGELIST type. Use
this handle in other image list functions to access the image list and manage the
images. You can add and remove images, copy images from one image list to
another, and merge images from two different image lists. When you no longer
need an image list, destroy it by specifying its handle in a call to the
ImageLisCDestroy function.

Use the ImageLisCDuplicate, ImageLisCSetImageCount, and
ImageLisCRemoveAll functions to respectively copy, resize, or
remove all images from an image list.

The IMAGELISTDRA WPARAMS structure, which is used with the
ImageLisCDrawlndirect function, contains information about how to draw an
image from an image list, such as what part of the image to draw, the foreground
and background colors, the style, and a raster operation (ROP) code specifying
how to combine the image's colors with the background colors.

Using Images in Image Lists
You can add icons or other bit images to an image list. To add bit images, specify
the handles to two bitmaps in a call to the ImageLisCAdd function. The first
bitmap contains one or more images to add to the image bitmap, and the second
bitmap contains the masks to add to the mask bitmap. Windows CE ignores the
second bitmap handle for nonmasked images; you can set it to NULL.

The ImageLisCAddMasked function adds bit images to a masked image list.
This function is similar to ImageLisCAdd, in which you do not specify a mask
bitmap. Instead, you specify a color that the system combines with the image
bitmap to automatically generate the masks. Windows CE changes each pixel of
the specified color in the image bitmap to black and sets the corresponding bit in
the mask to one. As a result, any pixel in the image that matches the specified
color is transparent when the image is drawn.

The ImageLisCAddlconfunction adds an icon to an image list. If the image
list is masked, ImageLisCAddIcon adds the mask provided with the icon to
the mask bitmap. If the image list is nonmasked, the mask for the icon is not
used when drawing the image.

Chapter 12 File and Scale Controls 227

To create an icon based on an image and mask in an image list, use the
ImageLisCGetIcon function. The function returns the handle to the icon.
ImageLisCAdd, ImageLisCAddMasked, and ImageLisCAddIcon assign
an index to each image as it is added to an image list. When more than one
image is added at a time, the functions return the index of the first image. The
ImageLisCRemove function removes an image from an image list.

The ImageLisCReplace and ImageLisCReplaceIcon functions replace an
image in an image list with a new image. ImageLisCReplace replaces an image
with a bit image and mask, and ImageLisCReplaceIcon replaces an image with
an icon. Use the ImageLisC Copy function to move or copy images within an
image list.

The ImageLisCMerge function merges two images, storing the new image
in a new image list. The new image is created by drawing the second image
transparently over the first. The mask for the new image is the result of
performing a logical OR operation on the bits of the masks for the two
original images.

The ImageLisCGetImageInfo function fills an IMAGEINFO structure with
information about a single image, including the handles of the image and mask
bitmaps, the number of color planes and bits per pixel, and the bounding rectangle
of the image within the image bitmap. Use this information to directly manipulate
the bitmaps for the image. The ImageLisC GetImageCount function retrieves the
number of images in an image list.

Use the ImageLisCDrawIndirect function to specify custom drawing
properties for an image in an image list. This function takes a pointer to
an IMAGELISTDRA WPARAMS structure as a parameter. The
IMAGELISTDRAWPARAMS structure contains information about
how to draw the image.

Using Overlays in Image Lists
Every image list includes a list of indexes to use as overlays. An overlay is an
image that is drawn transparently over another image. Any image currently in the
image list can be used as an overlay. You can specify up to four overlays for each
image list.

Add the index of an image to the list of overlays by using the
ImageLisCSetOverlayImage function, specifying the handle to the image list,
the index of the existing image, and the desired overlay index. The overlay
indexes are one-based rather than zero-based because an overlay index of zero
means that no overlay will be used.

228 Windows CE Programmer's Guide

List Views

Specify an overlay when drawing an image with the ImageLisCDraw or
ImageLisCDrawEx function. The overlay is specified by performing a
logical OR operation between the desired drawing flags and the result of the
INDEXTOOVERLAYMASK macro. The INDEXTOOVERLAYMASK
macro formats the overlay index for inclusion with the flags for these functions.

A list view is a common control that displays a collection of items, such as files or
folders. Each item has an icon and a label. A user can choose whether to have the
items displayed as large icons, small icons, a list, or a detailed list. You can design
list views so that a user can drag an item to a new location within the list view or
sort the collection by tapping a column header.

[contrail
i Panel i
: :

CBARTEST

Databases My
Documents

HELLO

Image list in list view

Program
Files

Temp Windows

Create a list view by specifying WC_LlSTVIEW in the lpClassName parameter
to the CreateWindowEx function. This class is registered when the common
control DLL is loaded. Use the InitCommonControls function to ensure that
this DLL is loaded.

To register the list view class using the InitCommonControlsEx function,
specify the ICC_ LlSTVIEW _CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter.

Chapter 12 File and Scale Controls 229

You can speed up the creation of large list views by disabling the painting of the
list view before adding the items. You do this by sending a WM_SETREDRA W
message with the redraw flag in wParam set to FALSE. When you are finished
adding items, re-enable painting by sending a WM_SETREDRA W message
with the redraw flag wParam set to TRUE. Before inserting items, send the
L VM_SETITEMCOUNT message with the cItems parameter set to the number
of items in question. When you do this, the list view will allocate the memory it
needs all at once, instead of having to reallocate more memory incrementally as
the internal data structures grow.

You can change the view type after a list view control is created. To retrieve
and change the window style, use the GetWindowLong and SetWindowLong
functions. To determine the window styles that correspond to the current view,
use the LVS_TYPEMASK value.

Note Windows CE does not support hot tracking, hover selection, background
images, or list view ToolTips.

List View Styles
List view styles supported by Windows CE are described in the following table.

Style

L VS_EDITLABELS

LVS_ICON

LVS_LIST

L VS_NOCOLUMNHEADER

L VS_NOLABELWRAP

Description

Specifies that items are left-aligned in icon view and
small icon view.

Specifies that items are aligned with the top of the
list view control in icon view and small icon view.

Specifies that icons automatically remain arranged
in icon view and small icon view.

Specifies that item icons look like buttons in
icon view.

Allows item text to be edited in place. The parent
window must process the L VN_ENDLABELEDIT
notification message.

Specifies icon view.

Specifies list view.

Specifies that no column header is displayed in
report view, which is the default view.

Displays item text on a single line in icon view.
By default, item text may wrap in icon view.

230 Windows CE Programmer's Guide

Style

LVS_NOSORTHEADER

LVS_OWNERDATA

L VS_OWNERDRA WFIXED

LVS_REPORT

L VS_SHAREIMAGELISTS

L VS_SHOWSELALW A YS

LVS_SMALLICON

LVS_SORTASCENDING

LVS_SORTDESCENDING

Description

Disables scrolling, so all items must be displayed
within the client area.

Specifies that column headers do not work like
buttons. This style is useful if clicking a column
header in report view does not carry out any action,
such as sorting.

Creates a virtual list view control.

Enables the owner window to paint items in report
view. The list view control sends a
WM_DRA WITEM message to paint each item; it
does not send separate messages for each subitem.
The itemData member of the
DRA WITEMSTRUCT structure contains the item
data for the specified list view item.

Specifies report view.

Specifies that the control does not destroy the image
lists assigned to it when it is destroyed. This style
enables the same image lists to be used with
multiple list view controls.

Always shows the selection highlighted, even if the
control is not activated.

Allows only one item to be selected at a time. By
default, multiple items can be selected.

Specifies small icon view.

Sorts items based on item text in ascending order.

Sorts items based on item text in descending order.

You can control the way items are arranged in icon view or small icon view by
specifying either the L VS_ALIGNTOP windows style, which is the default, or the
L VS_ALIGNLEFT window style. You can change the alignment after a list view
control is created. To isolate the window styles that specify the alignment of
items, use the LVS_ALIGNMASK value.

Chapter 12 File and Scale Controls 231

Extended List View Styles
Extended list view styles supported by Windows CE are described in the
following table.

Extended style Description

Enables items in a list view control to be
displayed as check boxes. This style uses item
state images to produce the check box effect.

Specifies that when an item is selected, the
item and all its subitems are highlighted. This
style is available only in conjunction with the
L VS_REPORT style.

Displays gridlines around items and subitems.
This style is available only in conjunction
with the L VS_REPORT style.

Enables drag-and-drop reordering of columns
in a list view control. This style is only
available to list view controls that use the
L VS_REPORT style.

Allows images to be displayed for subitems.
This style is available only in conjunction
with the L VS_REPORT style.

Use the LVM_SETEXTENDEDLISTVIEWSTYLE message or its corresponding
macro, ListView _SetExtendedListViewStyle, to set these extended styles, and
use the LVM_GETEXTENDEDLISTVIEWSTYLE message or its corresponding
macro, ListView_GetExtendedListViewStyle, to retrieve these extended styles.

Note These extended styles are not the same as extended window styles; you
cannot pass them to CreateWindowEx when you create a list view control.

List View Structures
Windows CE structures that have been renamed to conform to Windows
standard naming conventions are described in the following table. These
structures are otherwise the same as the corresponding structures in Windows­
based desktop platforms.

232 Windows CE Programmer's Guide

Windows CE

NMLISTVIEW

NMLVKEYDOWN

List View Item States

Previons Win32 name

NM_LISTVIEW

LV_KEYDOWN

Every list view item has a current state that determines its appearance and
functionality. Retrieve and set this state by sending the L VM_ GETITEM,
L VM_SETITEM, and L VM_SETITEMSTATE messages or by using the
ListView_Getltem and ListView_Setltem macros. You set or retrieve the item
state in the state member of the LV_ITEM structure that you pass in the pltem
parameter, IParam, to these messages and macros. List view item states supported
by Windows CE are described in the following table.

State

LVIS_CUT

L VIS_DROPHILITED

LVIS_LINK

LVIS]USHED

Description

The item is marked for a cut-and-paste operation.

The item is highlighted as a target for a
drag-and-drop operation.

The item has the focus, so it is surrounded by a standard
focus rectangle. Although more than one item can be
selected, only one item can have the focus.

The item is a link.

The button-like item appears pushed. This value has no
effect, unless the L VS_BUTTON window style is used.

The item is selected. The appearance of a selected item
depends on whether it has the focus and on the system
colors used for selection.

Use the LVIS_OVERLAYMASK mask to isolate the state bits that
contain the one-based index of the overlay image. You can use the
L VIS_STATEIMAGEMASK mask to isolate the state bits that contain
the one-based index of the state image.

List View Image Lists
By default, a list view control does not display item images. To display item
images, you must create image lists and associate them with the control. A list
view control can have three image lists:

• One that contains full-sized icons displayed when the control is in icon view.

• One that contains small icons displayed when the control is in small icon view,
list view, or report view.

Chapter 12 File and Scale Controls 233

• One that contains state images, which are displayed to the left of the full-sized
icon or small icon.

You can use state images, such as checked or cleared check boxes, to indicate
application-defined item states. State images are displayed in icon view, small
icon view, list view, or report view.

To assign an image list to a list view control, use the LVM_SETIMAGELIST
message to specify whether the image list contains full-sized icons, small icons,
or state images. To retrieve the handle to an image list currently assigned to a
list view control, use the LVM_GETIMAGELIST message. You can use the
GetSystemMetrics function to determine appropriate dimensions for the full­
sized icons and small icons. Use the ImageLisCCreate function to create an
image list, and use other image list functions to add bitmaps to the image list.

Create only the image list that the control will use. For example, if the list view
control will never be in icon view, do not create and assign a large image list
because the large images will never be used. If you create large and small icon
image lists, each image list must contain the same images in the same order.
This is because a single value is used to identify a list view item's icon in both
image lists. You can associate an icon index with an item when you call the
ListView _InsertItem or ListView _SetItem macro.

The full-sized icon and small icon image lists can also contain overlay images,
which are designed to be drawn transparently over the item icons.

~ To use overlay images in a list view control

1. Call the ImageLisCSetOverlaylmage function to assign an overlay image
index to an image in the full-sized icon and small icon image lists.

An overlay image is identified by a one-based index.

2. Call the ListView_Insertltem or ListView_SetItem macro to. associate an
overlay image index with an item.

3. Use the INDEXTOOVERLA YMASK macro to specify an overlay image
index in the state member of the item's LVITEM structure.

You must also set the LVIS_OVERLAYMASK bits in the
stateMask member.

To associate a state image with an item, use the
INDEXTOSTATEIMAGEMASK macro to specify a
state image index in the state member of the L VITEM structure.

234 Windows CE Programmer's Guide

By default, when a list view control is destroyed, it destroys the image lists
assigned to it. However, if a list view control has the L VS_SHAREIMAGELISTS
window style, you are responsibfe for destroying the image lists when they are no
longer in use. You should specify this style if you assign the same image lists to
multiple list view controls; otherwise, more than one control might try to destroy
the same image list.

Items and Subitems
Each item in a list view control has an icon, a label, a current state, and an
application-defined value. By using list view messages, you can add, modify,
and delete items as well as retrieve information about items. You can also find
items with specific attributes.

Each item can also have one or more subitems. A subitem is a string that, in
report view, is displayed in a column to the right of an item's icon and label. To
specify the text of a subitem, use the L VM_SETITEMTEXT or L VM_SETITEM
message. All items in a list view control have the same number of subitems.
The number of subitems is determined by the number of columns in the list
view control.

The L VITEM structure defines a list view item or subitem. To add an item to a
list view control, use the L VM_INSERTITEM message. Before adding multiple
items, you can send the control an L VM_SETITEMCOUNT message to specify
the number of items the control will ultimately contain. This message enables the
list view control to reallocate its internal data structures only once rather than
every time you add an item. Determine the number of items in a list view control
by using the LVM_GETITEMCOUNT message.

Use the LVM_SETITEM message to change the attributes of a list view item. The
L VM_SETITEMTEXT message only changes the text of an item or subitem.

To retrieve information about a list view item, use the L VM_ GETITEM message
specifying the address of the L VITEM structure to fill in. To retrieve only an
item or subitem's text, use the L VM_ GETITEMTEXT message. To delete a list
view item, use the LVM_DELETEITEM message. Delete all items in a list view
control by using the L VM_DELETEALLITEMS message.

Chapter 12 File and Scale Controls 235

Callback Items and the Callback Mask

Columns

For each of its items, a list view control typically stores the label text, the image
list index of the item's icons, and a set of bit flags for the item's state. A callback
item in a list view control is an item for which the application stores the text, icon
index, or both. You can define callback items or change the control's callback
mask to indicate that the application-rather than the control-stores some or all
of this information. You may want to use callbacks if your application already
stores some of this information. You can define callback items when you send the
L VM_INSERTITEM message to add an item to the list view control.

The callback mask of a list view control is a set of bit flags that specify the item
states for which the application, rather than the control, stores the current data.
The callback mask applies to all of the control's items, unlike the callback item
designation, which applies to a specific item. The callback mask is zero by
default, meaning that the list view control stores all item-state information.
After creating a list view control and initializing its items, you can send the
LVM_SETCALLBACKMASK message to change the callback mask. To get
the current callback mask, send the LVM_GETCALLBACKMASK message.

When a list view control must display or sort a list view item for which
the application stores callback information, the control sends the
LVN_GETDISPINFO notification message to the control's parent window.
This message specifies an NML VDISPINFO structure that indicates the type
of information required. The parent window must process L VN_ GETDISPINFO
to provide the requested data.

If the list view control detects a change in an item's callback information, the
control sends an L VN_SETDISPINFO notification message to notify you of
the change. Changes that the list view control detect are alterations to the text,
the icon, or the state information being tracked by the application.

If you change a callback item's attributes or state bits, you can use the
LVM_UPDATE message to force the control to repaint the item. This message
also causes the control to arrange its items if it has the LVS_AUTOARRANGE
style. You can use the L VM_REDRA WITEMS message to redraw a range of
items by invalidating the corresponding portions of the list view control's
client area.

Columns control the way items and their subitems are displayed in report view.
Each column has a title and width and is associated with a specific subitem. The
attributes of a column are defined by an LVCOLUMN structure.

236 Windows CE Programmer's Guide

To add a column to a list view control, use the L VM_INSERTCOLUMN
message. To delete a column, use the LVM_DELETECOLUMN message.
You can retrieve and change the properties of an existing column by using the
LVM_GETCOLUMN and L VM_SETCOLUMN messages. To retrieve or
change a column's width, use the LVM_GETCOLUMNWIDTH and
L VM_SETCOLUMNWIDTH messages.

Unless the LVS_NOCOLUMNHEADER window style is specified, column
headers appear in report view. The user can click a column header, which causes
the live view control to send an LVN_COLUMNCLICK notification message to
the parent window. Typically, the parent window sorts the list view control by the
specified column when the user clicks the column header.

List view controls can set the order in which columns are displayed. To
implement this feature, specify the L VCF _ORDER value and assign the proper
value to the iOrder member in the LVCOLUMN structure.

Arranging, Sorting, and Finding List Views
You can use list view messages to arrange and sort items and to find items based
on their attributes or positions. Although arranging items repositions them to align
on a grid, the indexes of the items do not change. Sorting changes the sequence
of items and their corresponding indexes, and then repositions them in the order
specified. You can arrange items only in icon and small icon views, but you can
sort items in any view.

To arrange items, use the L VM_ARRANGE message. You can ensure that items
are arranged at all times by specifying the LVS_AUTOARRANGE window style.

To sort items, use the L VM_SORTITEMS message. When you sort using this
message, you specify an application-defined callback function that the list view
control calls to compare the relative order of any two items. By specifying the
appropriate item data and supplying an appropriate comparison function, you .can
sort items by their labels, by any subitems, or by any other properties. Note that
sorting items does not reorder the corresponding subitems. Thus, if any subitems
are not callback items, you must regenerate the subitems after sorting.

Ensure that a list view control is always sorted by specifying the
LVS_SORTASCENDING or LVS_SORTDESCENDING window style.
Controls with these styles use the label text of the items to sort them in
ascending or descending order. You cannot supply a comparison function
when using these window styles.

You can find a list view item with specific properties by using the
LVM_FINDITEM message. Use the L VM_GETNEXTITEM message
to find a list view item that is in a specified state and bears a specified
geometrical relationship to a specified item.

Chapter 12 File and Scale Controls 237

List View Item Position
Every list view item has a position and size, which you can retrieve and set using
messages. You can also determine which item, if any, is at a specified position.
The position of list view items is specified in view coordinates, which are client
coordinates offset by the scroll position.

To retrieve and set an item's position, use the LVM_GETITEMPOSITION and
LVM_SETITEMPOSITION messages, respectively. LVM_GETITEMPOSITION
works for all views, but L VM_SETITEMPOSITION works only for icon and
small icon views.

You can determine which item, if any, is at a particular location by using the
L VM_HITTEST message. To get the bounding rectangle for a list item, or for
only its icon or label, use the LVM_GETITEMRECT message.

Scroll Position
Unless the L VS_NOSCROLL window style is specified, you can use messages
to perform a variety of scrolling operations. You can scroll a list view control to
show items that do not fit in the client area of the control, determine a list view
control's scroll position, scroll a list view control by a specified amount, or scroll
a list view control so that a specified list item is visible.

In icon view or small icon view, the current scroll position is defined by the view
origin. The view origin is the set of coordinates, relative to the visible area of the
list view control, that correspond to the view coordinates (0, 0). To get the current
view origin, use the LVM_GETORIGIN message. This message should be used
only in icon or small icon view; it returns an error in list or report view.

In list or report view, the current scroll position is defined by the top index. The
top index is the index of the first visible item in the list view control. To get the
current top index, use the LVM_GETTOPINDEX message. This message returns
a valid result only in list view or report view; it returns zero in icon or small
icon view.

Use the L VM_ GETVIEWRECT message to get the bounding rectangle of all
items in a list view control relative to the visible area of the control.

The LVM_GETCOUNTPERPAGE message returns the number of items that
fit in one page of the list view control. This message returns a valid result only
in list and report views; in icon and small icon views, it returns the total number
of items.

To scroll a list view control by a specific amount, use the L VM_SCROLL
message. Using the L VM_ENSUREVISIBLE message, you can scroll the
list view control, if necessary, to ensure that a specified item is visible.

238 Windows CE Programmer's Guide

Editing Labels
A list view control that has the L VS_EDITLABELS window style enables a user
to edit item labels in place. The user begins editing by clicking the label of an
item that has the focus. An application can begin editing automatically by using
the L VM_EDITLABEL message. The list view control notifies the parent
window when editing begins and when it is canceled or completed. When editing
is completed, the parent window is responsible for updating the item's label,
if appropriate.

When label editing begins, a list view control sends its parent window an
L VN_BEGINLABELEDIT notification message. You can process this message
to allow selective editing of specific labels; returning a nonzero value prevents
label editing.

When label editing is canceled or completed, a list view control sends its parent
window an L VN_ENDLABELEDIT notification message. The parent window
is responsible for updating the item's label if it keeps the new label.

During label editing, you can get the handle to the edit control used for label
editing by using the LVM_GETEDITCONTROL message. To limit the amount of
text a user can type, you can send the edit control an EM_LIMITTEXT message.
You can even subclass the edit control to intercept and discard invalid characters.

Advanced List View Features
In Windows CE, you can set the order of the columns that display in
report view by setting the iOrder member in the LVCOLUMN structure
when you add a column to a list view control. You can also set the
column order by using the LVM_GETCOLUMNORDERARRA Y and
L VM_SETCOLUMNORDERARRA Y messages.

To display an image from an image list next to the title of a column in report
view, specify LVCF _IMAGE in the mask member and LVCFMT_IMAGE in the
fmt member. When you add a column to a list view control, specify the zero­
based index of an image in the list in the iImage member of LVCOLUMN.

List view controls in Windows CE support a custom draw service, which gives
you flexibility to customize a list view's appearance. If a list view provides this
service, it sends the NM_CUSTOMDRA W notification at specific times during
drawing operations. For information on the custom draw service, see Chapter 10,
"Overview of Controls."

Trackbars

Chapter 12 File and Scale Controls 239

Windows CE supports a list view style, L VS_ OWNERDATA, for creating a
virtual list view. The only data that a virtual list view manages is input focus and
item selection information. All other data is managed by the owner of the list
view. This enables a list view to handle very large data sets, especially in cases
where the data is stored in a database that has its own data access methods.

A trackbar, also known as a slider control, is a common control that consists of a
bar with tick marks on it and a slider, also known as a thumb. When a user drags
the slider or clicks on either side of it, the slider moves in the appropriate
direction, tick by tick.

Window CE trackbar

Create a trackbar by specifying TRACKBAR_CLASS in the lpClassName
parameter to the CreateWindowEx function. This class is registered when the
common control DLL is loaded. You can use the InitCommonControls function
to ensure that this DLL is loaded.

To register the trackbar class using the InitCommonControlsEx function,
specify the ICC_BAR_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter.

A trackbar can have either one or two buddy windows. A buddy window is a
companion control.

Trackbars in Windows CE support the custom draw service, which gives you
flexibility to customize a trackbar's appearance. For information on the custom
draw service, see Chapter 10, "Overview of Controls."

240 Windows CE Programmer's Guide

Trackbar Messages
You can send messages to the trackbar to retrieve information about the window
and to change its characteristics.

To retrieve the position of the slider, which is the value that the user has
chosen, use the TBM_GETPOS message. To set the position of the slider,
use the TBM_SETPOS message.

The range of a trackbar is the set of contiguous values that the trackbar can
represent. Use the TBM_SETRANGE message to set the range of a trackbar
when it is first created. You can dynamically alter the range by using the
TBM_SETRANGEMAX and TBM_SETRANGEMIN messages. An
application that allows the range to be changed dynamically usually retrieves
the final range settings when the user has finished working with the trackbar.
To retrieve these settings, use the TBM_GETRANGEMAX and
TBM_GETRANGEMIN messages.

A trackbar automatically displays tick marks at each end, unless you specify
the TBS_NOTICKS style. Use the TBS_AUTOTICKS style to automatically
display additional tick marks at regular intervals along the trackbar. By default,
a TBS_AUTOTICKS trackbar displays a tick mark at each increment of the
trackbar's range. To specify a different interval for the automatic tick marks,
send the TBM_SETTlCFREQ message to the trackbar.

To set the position of a single tick mark, send the TBM_SETTIC message. A
trackbar maintains an array of DWORD values that stores the position of each tick
mark. The array does not include the first and last tick marks that the trackbar
creates automatically. You can specify an index in this array when you send
the TBM_ GETTIC message to get the position of the corresponding tick
mark. Alternatively, you can send the TBM_GETPTlCS message to get a
pointer to the array. To retrieve the physical position of a tick mark, send the
TBM_GETTlCPOS message. The TBM_CLEARTICS message removes all but
the first and last of a trackbar's tick marks.

A trackbar's line size determines how far the slider moves in response to
keyboard input from the arrow keys, such as the RIGHT ARROW or DOWN
ARROW key. To retrieve or set the line size, send the TBM_GETLINESIZE and
TBM_SETLINESIZE messages, respectively.

A trackbar's page size determines how far the slider moves in response to
keyboard input, such as the PAGE UP or PAGE DOWN key, or mouse input,
such as clicks in the trackbar channel. To retrieve or set the page size, send the
TBM_ GETPAGESIZE and TBM_SETPAGESIZE messages.

Tree Views

Chapter 12 File and Scale Controls 241

An application can send messages to retrieve the dimensions of a trackbar. The
TBM_GETTHUMBRECT message retrieves the bounding rectangle for the
slider. The TBM_GETTHUMBLENGTH message retrieves the length of the
slider. The TBM_GETCHANNELRECT message retrieves the bounding
rectangle for the trackbar's channel, which is the area over which the slider
moves. If a trackbar has the TBS_FIXEDLENGTH style, you can send the
TBM_SETTHUMBLENGTH message to change the length of the slider.

A trackbar with the TBS_ENABLESELRANGE style can indicate a selection
range by highlighting a range of the trackbar's channel and displaying triangular
tick marks at the start and end of the selection. When a trackbar has this style,
you can send messages to set and retrieve the selection range. Typically, an
application handles the trackbar notification messages and sets the trackbar's
selection range according to the user's input. The TBM_SETSEL message sets
the starting and ending positions of a selection. To set just the starting position
or just the ending position of a selection, use the TBM_SETSELSTART or
TBM_SETSELEND message. To retrieve the starting and ending positions of
a selection range, send the TBM_GETSELSTART and TBM_GETSELEND
messages. To clear a selection range, send the TBM_CLEARSEL message.

A tree view control is a hierarchical display of labeled items. The top item in the
hierarchy is called the root. An item that has other items below it in the hierarchy
is referred to as those items' parent, and the items below it are its children. Child
items, when displayed, are indented below their parent item. The hierarchy can be
expanded or collapsed at any level to display or hide any parent item's children.

You create a tree view by specifying WC_ TREEVIEW in the IpClassName
parameter to the CreateWindowEx function. This class is registered when
the common control dynamic-link library (DLL) is loaded. You can use the
InitCommonControls function to ensure that this DLL is loaded.

To register the tree view class using the InitCommonControlsEx function,
specify the ICC_ TREEVIEW _CLASSES flag as the dwICC member ofthe
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls parameter.

Windows CE does not support hot tracking, hover selection, or ToolTips for
tree views.

Tree views in Windows CE support the custom draw service, which gives you
greater flexibility to customize a tree view's appearance.

242 Windows CE Programmer's Guide

Tree View Styles
Tree view styles govern aspects of a tree view control's appearance. You set the
initial styles when you create the tree view control. You can retrieve and change
the styles after creating the tree view control by using the GetWindowLong and
SetWindowLong functions.

Tree view styles supported by Windows CE are described in the following table.

Style

TVS_DISABLEDRAGDROP

TVS_EDITLABELS

TVS_HASBUTIONS

TVS_HASLINES

TVS_LINESATROOT

TVS_SHOWSELAL WAYS

Parent and Child Items

Description

Enables items in a tree view control to be displayed as
check boxes. This style uses item state images to
produce the check box effect.

Prevents the tree view control from sending
TVN_BEGINDRAG notification messages.

Allows the user to edit the labels of tree view items.

Displays plus (+) and minus (-) buttons next to parent
items. The user clicks the buttons to expand or collapse
a parent item's list of child items. To include buttons
with items at the root of the tree view, you must also
specify the TVS_LINESATROOT style.

Uses lines to show the hierarchy of items.

Uses lines to link items at the root of the tree view
control. This value is ignored if TVS_HASLINES
is not also specified.

Uses the system highlight colors to draw the
selected item.

Specifies that when a new tree view item is selected,
the selected item will automatically expand and the
previously selected item will collapse.

Any item in a tree view control can have a list of subitems-called child items­
associated with it. An item that has one or more child items is called a parent item.
A child item is displayed below its parent item and is indented to indicate that it is
subordinate to the parent. An item that has no parent appears at the top of the
hierarchy and is called a root item.

To add an item to a tree view control, send the TVM_INSERTITEM message
to the control. The message returns a handle to the HTREEITEM type, which
uniquely identifies the item. When adding an item, specify the handle to the new .
item's parent item. If you specify NULL or the TVCROOT value instead of a
parent item handle in the TVINSERTSTRUCT structure, the item is added as a
root item.

Item Labels

Chapter 12 File and Scale Controls 243

At any time, the state of a parent item's list of child items can be either expanded,
partially expanded, or collapsed. When the state is expanded, the child items of
the expanded section are displayed below the parent item. When it is collapsed,
the child items are not displayed. The list automatically toggles between the
expanded and collapsed states when the user double-taps the parent item or, if
the parent has the TVS_HASBUTTONS style, when the user clicks the button
associated with the parent item. You can expand or collapse the child items by
using the TVM_EXPAND message.

A tree view control sends the parent window a TVN_ITEMEXPANDING
notification message when a parent item's list of child items is about to be
expanded or collapsed. The notification gives an application the opportunity
to prevent the change or to set any attributes of the parent item that depend
on the state of the list of child items. After changing the state of the list, the
tree view control sends the parent window a TVN_ITEMEXP ANDED
notification message.

When a list of child items is expanded, it is indented relative to the parent item.
Set the amount of indentation by using the TVM_SETINDENT message or
retrieve the current amount by using the TVM_GETINDENT message.

A tree view control uses memory allocated from the heap of the process that
creates the tree view control. The maximum number of items in a tree view is
based on the amount of memory available in the heap.

You typically specify the text of an item's label when you add the item to the
tree view control. The TVM_INSERTITEM message includes a TVITEM
structure that defines the item's properties, including a string containing the
text of the label.

A tree view control allocates memory for storing each item; the text of the
item labels takes up a significant portion of this memory. If you maintain a copy
of the strings in the tree view control, you can decrease the memory requirements
of the control by specifying the LPSTR_ TEXTCALLBACK value in the pszText
member of TVITEM instead of passing actual strings to the tree view. Using
LPSTR_TEXTCALLBACK causes the tree view control to retrieve the text of an
item's label from the parent window whenever the item needs to be redrawn.

244 Windows CE Programmer's Guide

Tree View Item States
Every tree view item has a current state that determines its appearance and
functionality. You can retrieve and set this state by sending the TVM_GETITEM
and TVM_SETITEM messages, or by using the Tree View _ GetItem and
Tree View _SetItem macros. You set or retrieve the item state by using the state
member of the TV_ITEM structure that you pass in the pltem parameter (lParam)
to these messages and macros.

Windows CE supports the TVIS_EXPANDPARTIAL item state. This state
indicates that a tree view item is partially expanded. This could happen if an error
occurs during data retrieval and some of the child items cannot be retrieved from
the data source. The tree view displays the items that were successfully retrieved,
but continues to display the plus symbol next to the parent item as well. This
indicates to the user that more information is available. When the user clicks the
plus symbol again, the application repeats the query.

Item states supported by Windows CE are described in the following table.

State

TVIS_BOLD

TVIS_CUT

TVIS_DROPHILITED

TVIS_EXPANDED

TVIS_EXPANDEDONCE

TVIS_EXPANDPARTIAL

Description

Windows CE uses a bold font to draw the item.

Windows CE selects the item for cutting
and pasting.

Windows CE selects the item for dropping
and dragging.

Windows CE expands the items list of child items so
that the child items are visible. This state applies
only to parent items.

Windows CE expands the the item's list of child
items at least once. Windows CE does not send
the TVN_ITEMEXPANDING and
TVN_ITEMEXP ANDED notifications for parent
items that have specified this value. This value
applies only to parent items.

Windows CE partially expands the items. This could
happen if an error occurs during data retrieval and
some of the child items cannot be retrieved from the
data source.

Windows CE gives the item the focus and surrounds
it with a standard focus rectangle. Although more
than one item can be selected, only one item can
have the focus.

Style

TVIS_OVERLA YMASK

TVIS_STATEIMAGEMASK

Editing Tree View Labels

Chapter 12 File and Scale Controls 245

Description

Windows CE includes the item's overlay image
when it draws the image. The index of the overlay
image must be specified in the state member of
the TV_ITEM structure by using the
INDEXTOOVERLAYMASK macro. The
overlay image must be added to the tree view's
image list by using the
ImageLisCSetOveriayImage function. This value
should not be combined with any other value.

Windows CE selects the item. The appearance
of a selected item depends on whether it has the
focus and on whether the system colors are used
for selection.

Windows CE includes the item's state image when it
draws the item. The index of the state image must be
specified in the state member of the TV_ITEM
structure by using the
INDEXTOSTATEIMAGEMASK macro. This
value should not be combined with any other value.

The user can directly edit the labels of items in a tree view control that has
the TVS_EDITLABELS style. The user begins editing by clicking the label
of the item that has the focus. An application begins editing by using the
TVM_EDITLABEL message. The tree view control notifies the parent window
when editing begins and when it is canceled or completed. When the user or
application completes editing, the parent window is responsible for updating the
item's label, if appropriate.

When the user begins editing the label, a tree view control sends its parent
window a TVN_BEGINLABELEDIT notification message. By processing this
notification, an application can allow editing of some labels and prevent editing
of others. Returning zero allows editing, and returning nonzero prevents it.

When the user cancels or completes editing the label, a tree view control sends its
parent window a TVN_ENDLABELEDIT notification message. The pszText
member of TVlTEM is zero if editing is canceled.

246 Windows CE Programmer's Guide

Tree View Item Position
To add an item to a tree view control, send the TVM_INSERTITEM message to
the control. The message includes a TVINSERTSTRUCT structure that specifies
the handle to the parent item and the handle to the item after which the new item
is to be inserted. The second handle must identify either a child item of the
specified parent or one of these values: TVCFIRST, TVCLAST, or TVCSORT.

When you specify TVCFIRST or TVCLAST, the tree view control places the
new item at the beginning or end of the specified parent item's list of child items.
When you specify TVCSORT, the tree view control inserts the new item into the
list of child items in alphabetical order based on the text of the item labels.

Put a parent item's list of child items in alphabetical order by using the
TVM_SORTCHILDREN message. The TVM_SORTCHILDRENCB message
allows you to sort child items based on criteria that you define. When you use
this message, you specify an application-defmed callback function that the tree
view control can call whenever the relative order of two child items needs to
be determined.

Item Selection
A tree view control notifies the parent window when the selection changes
from one item to another by sending the TVN_SELCHANGING and
TVN_SELCHANGED notification messages. The notifications also include
information about the item that gains the selection and the item that loses
the selection. You can use this information to set item attributes that depend
on the selection state of the item. Returning TRUE in response to
TVN_SELCHANGING prevents the selection from changing, and returning
FALSE allows the selection to change. Change the selection by sending the
TVM_SELECTITEM message.

Item Information
Tree view controls support a number of messages that retrieve information about
items in the control.

The TVM_GETITEM message can retrieve an item's handle and attributes. An
item's attributes include its current state, the indexes in the control's image list
of the item's selected and nonselected bit images, a flag that indicates whether
the item has child items, the address of the item's label string, and the item's
application-defined 32-bit value.

The TVM_ GETNEXTITEM message retrieves the tree view item that bears the
specified relationship to the current item. The message can retrieve an item's
parent, the next or previous visible item, the first child item, and so on.

Chapter 12 File and Scale Controls 247

The TVM_ GETITEMRECT message retrieves the bounding rectangle for a
tree view item. The TVM_GETCOUNT and TVM_GETVISIBLECOUNT
messages retrieve a count of the items in a tree view control and a count of the
items that can be fully visible in the tree view control's window, respectively.
You can ensure that a particular item is visible by using the
TVM_ENSUREVISIBLE message.

Tree View Image Lists
Each item in a tree view control can have four bit images associated with it:

• An image, such as an open folder, displayed when the item is selected.

• An image, such as a closed folder, displayed when the item is not selected.

• An overlay image that is drawn transparently over the selected or
nonselected image.

• A state image, which is an additional image displayed to the left of the selected
or nonselected image. You can use state images, such as checked and cleared
check boxes, to indicate application-defined item states.

By default, a tree view control does not display item images. To display item
images, you must create image lists and associate them with the control.

A tree view control can have two image lists: a normal image list and a state
image list. A normal image list stores the selected, nonselected, and overlay
images. A state image Ust stores state images. Use the ImageLisCCreate
function to create an image list, and use other image list functions to add bitmaps
to the image list. Then, to associate the image list with the tree view control, use
the TVM_SETIMAGELIST message. The TVM_GETIMAGELIST message
retrieves a handle to one of a tree view control's image lists.

In addition to the selected and nonselected images, a tree view control's normal
image list can contain up to four overlay images. Overlay images are designed to
be drawn transparently over the selected and nonselected images. To assign an
overlay mask index to an image in the normal image list, call the
JmageLisCSetOverlayJmage function.

By default, all items display the first image in the normal image list for both the
selected and nonselected states. Also, by default, items do not display overlay
images or state images. You can change these default behaviors for an item by
sending the TVM_INSERTITEM or TVM_SETITEM messages. These messages
use. the TVlTEM structure to specify image list indexes for an item.

248 Windows CE Programmer's Guide

To associate an overlay image with an item, use the
INDEXTOOVERLA YMASK macro to specify an overlay mask index in
the state member of the item's TVITEM structure. You must also set the
TVIS_OVERLAYMASK bits in the stateMask member. Overlay mask indexes
are one-based; an index of zero indicates that the application not specify an
overlay image.

To associate a state image with an item, use the
INDEXTOSTATElMAGEMASK macro to specify a state image index in the
state member of the item's TVITEM structure. The index identifies an image in
the control's state image list.

Note You can speed up the creation of large tree views by disabling the painting
of the tree view before adding the items. You do this by sending a
WM_SETREDRA W message with the redraw flag set to FALSE. When you are
finished adding items, re-enable painting by sending a WM_SETREDRA W
message with the redraw flag set to TRUE.

Drag-and-Drop Operations
A tree view control notifies the parent window when the user starts to drag
an item with a mouse. The parent window receives a TVN_BEGINDRAG
notification message when the user begins dragging an item with the left mouse
button and a TVN_BEGINRDRAG notification message when the user begins
dragging with the right button. You can prevent a tree view control from sending
these notifications by giving the tree view control the
TVS_DISABLEDRAGDROP style.

You obtain an image to display during a drag operation by using the
TVM_CREATEDRAGIMAGE message. The tree view control creates a dragging
bitmap based on the label of the item being dragged. Then, the tree view control
creates an image list, adds the bitmap to it, and returns the handle to the image
list.

You must provide the code that actually drags the item. This typically involves
using the dragging capabilities of the image list functions and including code for
processing the WM_MOUSEMOVE and WM_LBUTTONUP messages sent to
the parent window after the drag operation has begun.

Chapter 12 File and Scale Controls 249

To use an item in a tree view control as the target of a drag-and-drop operation,
use the SendMessage function to send a TVM_HITTEST message to determine
when the stylus is on a target item. To do this, specify the address of a
TVHITTESTINFO structure that contains the current coordinates of the stylus.
When the SendMessage function returns, the structure contains a flag indicating
the location of the stylus relative to the tree view control. If the stylus is over an
item in the tree view control, the structure contains the handle to the item as well.

You indicate that an item is the target of a drag-and-drop operation by using the
TVM_SETITEM message to set the state to TVIS_DROPHILITED. An item
that has this state is drawn in the style used to indicate a target for a drag-and­
drop operation.

Up-Down Controls
An up-down control, also known as a spin button control, is a pair of arrow
buttons that a user can tap with the stylus to increment or decrement a value. An
up-down control is most often used with a companion control, called a buddy
window, in which the current value is displayed. In Windows CE-based
applications, up-down controls can only be "buddies" with edit controls.

td~,;,rol
o Up-Down Control

Up-Down control and buddy window

You create an up-down control by using the CreateUpDownControl function.
This class is registered when the common control DLL is loaded. You can use
the InitCommonControls function to ensure that this DLL is loaded.

To register the up-down control class using the InitCommonControlsEx
function, specify the ICC_UPDOWN_CLASS flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IplnitCtrls parameter.

Windows CE does not support hot tracking.

250 Windows CE Programmer's Guide

Up-Down Control Styles
Control styles for up-down controls supported by Windows CE are described in
the following table.

Style

UDS_NOTHOUSANDS

Position and Acceleration

Description

Positions the up-down control next to the left edge of
the buddy window. The buddy window is moved to the
right and its width is decreased to accommodate the
width of the up-down control.

Positions the up-down control next to the right
edge of the buddy window. The width of the buddy
window is decreased to accommodate the width of the
up-down control.

Causes the up-down control to process the UP ARROW
and DOWN ARROW keys on the keyboard.

Automatically elects the previous window in the Z order
as the up-down control's buddy window. In Windows
CE, the window must be an edit control.

Causes the up-down control's arrows to point left and
right instead of up and down.

Refrains from inserting a thousands separator between
every three decimal digits.

Causes the up-down control to set the text of the buddy
window, using the WM_SETTEXT message, when the
position changes. The text consists of the position
formatted as a decimal or hexadecimal string.

Causes the position to wrap if it is incremented or
decremented beyond the end or beginning of the range.

Mter you have created an up-down control, you can change it in several ways.
You can change its current position, minimum position, and maximum position
by sending messages. You can change the radix base, that is, either base 10 or
base 16, used to display the current position in the buddy window. And, you can
change the rate at which the current position changes when the up or down arrow
is clicked.

To retrieve the current position of an up-down control, use the UDM_GETPOS
message. For an up-down control with a buddy window, the current position is the
number in the buddy window's caption. The up-down control retrieves the current
caption and updates its current position if the caption has changed because the
user edited the text of an edit control.

Chapter 12 File and Scale Controls 251

The buddy window's caption can be either a decimal or hexadecimal string,
depending on the radix base of the up-down control. Set the radix base by
using the UDM_SETBASE message and retrieve the radix base by using
the UDM_GETBASE message.

The UDM_SETPOS message sets the current position of a buddy window. Note
that unlike a scroll bar, an up-down control automatically changes its current
position when the up and down arrows are clicked. Therefore, an application does
not need to set the current position when processing the WM_ VSCROLL or
WM_HSCROLL message.

You can change the minimum and maximum positions of an up-down control by
using the UDM_SETRANGE message. The maximum position may be less than
the minimum, in which case clicking the up arrow button decreases the current
position. Put another way, up moves toward the maximum position. To retrieve
the minimum and maximum positions for an up-down control, use the
UDM_GETRANGE message.

You can control the rate at which the position changes when the user holds down
an arrow button by setting the up-down control's acceleration. The acceleration
is defined by an array of UDACCEL structures. Each structure specifies a time
interval and the number of units by which to increment or decrement at the end
of that interval. To set the acceleration, use the UDM_SETACCEL message. To
retrieve acceleration information, use the UDM_GETACCEL message.

CHAPTER 13

Informational Controls

Windows CE contains a set of common controls that provide information
about tools, processes, or time. These informational controls are described
in this chapter:

• Date and time picker controls

• Month calendar controls

• Status bars

• ToolTips

• Progress bars

Date and Time Picker Controls

253

The date and time picker (DTP) is a control that displays information about dates
and times, and provides users with an easy way to modify this information. Each
field in the control displays a time element, such as month, day, hour, or minute.
A user selects a field by tapping it with the stylus and then types a new value
from the keyboard.

Wednesday,. December :ill,. 1997

Windows CE date and time picker

The way date and time information is displayed is determined by a format string.
A DTP control can display time information in any of three preset formats, or you
can create custom format strings to specify a different order in which to display
the fields. For more information on the three preset formats, see "Preset DTP
Display Formats" later in this chapter. You can also add customized date and
time information to a DTP control by using callback fields.

254 Windows CE Programmer's Guide

To create a date and time picker control, specify DATETIMEPICK_CLASS in
the lpClassName parameter to the CreateWindowEx function. This class is
registered when the common control dynamic-link library (DLL) is loaded. You
can use the InitCommonControls function to ensure that this DLL is loaded.

To register the date and time picker class using the lnitCommonControlsEx
function, specify the ICC_DATE_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter.

Date and Time Picker Styles
Date and time picker styles supported by Windows CE are described in the
following table.

Style

DTS_APPCANPARSE

DTS_LONGDATEFORMAT

DTS_SHORTDATEFORMAT

Description

Allows the owner to parse user input. When a DTP
control has this style, a user can make changes
within the client area of the control by pressing the
F2 key. The control sends a DTN_USERSTRING
notification message when the user is
finished editing.

Displays the date in long format. The default
format string for this style is defined by
LOCALE_SLONGDATEFORMAT, which
produces output like "Friday, April 19, 1996."

Enables the control to accept "no date" as a valid
selection state. This state can be set with the
DTM_SETSYSTEMTIME message or verified
with the DTM_GETSYSTEMTIME message.

Displays the date in short format. The default
format string for this style is defined by
LOCALE_SSHORTDATE, which produces
output like "4/19/96."

Displays the time. The default format
string for this style is defined by
LOCALE_STIMEFORMAT, which produces
output like "5:31:42 PM." An up-down control is
placed to the right of the DTP control to modify
time values.

Places an up-down control to the right of a DTP
control to modify time values. This style can be
used instead of the drop-down month calendar,
which is the default style.

Chapter 13 Informational Controls 255

Date and Time Picker User Interface
Each field in the DTP control displays a portion of the time information that the
control stores internally. The user can select a field to set the keyboard focus, and
then provide keyboard input to change the time information represented by that
field. The DTP control automatically updates internal time information based on
the user's input. Input types recognized by the control as valid are described in the
following table.

Input type

Arrow keys

END and HOME Keys

Numbers

Format Strings

Description

The control accepts arrow keys to navigate the fields in the
control and change values. The user can press the LEFT
ARROW key or RIGHT ARROW key to move in that
direction through the control. If the user attempts to move
past the last field in a specified direction, the keyboard
focus moves to the field on the opposite side of the control.
The UP ARROW and DOWN ARROW keys change
values in the current field incrementally.

The control accepts the VK_END and VK_HOME virtual
keys to change the value within the current field to its
upper and lower limits, respectively.

The control accepts numeric input in two-character
segments. If the value typed by the user is invalid, such as
setting the month to 14, the control rejects it and resets the
display to the previous value.

As stated earlier, a DTP control relies on a format string to determine how it
will display fields of information. By default, a DTP control can display time
information in the format DTS_LONGDATEFORMAT.

Custom format strings provide flexibility for your application. In a custom
format string, you can specify the order in which the control will display fields
of information or indicate specific callback fields. The format characters of the
format string define the DTP control's display and field layout.

256 Windows CE Programmer's Guide

Preset DTP Display Formats
By default, a DTP control can display time information fields in three preset
formats or according to a custom format string. Window styles used by the
preset formats, which are format strings, are described in the following table.

Style

DTS_LONGDATEFORMAT

DTS_SHORTDATEFORMAT

DTS_TIMEFORMAT

Custom Format Strings

Description

The control displays the date in long format. The
default format string for this style is defined by
LOCALE_SLONGDATEFORMAT, which
produces output like "Friday, April 19, 1996."

The control displays the date in short format, which is
the default style setting. The default format string for
this style is defmed by LOCALE_SSHORTDATE,
which produces output like "4/19/96."

The control displays the time. The default
format string for this style is defined by
LOCALE_STIMEFORMAT, which produces output
like "5:31:42 PM." An up-down control is placed to
the right of the DTP control to modify time values.

You can customize the display of a DTP control using custom format strings.
DTP controls support specified format characters that you can combine to
create a format string. To assign the format string to the DTP control, use the
DTM_SETFORMAT message.

You can add body text to the format string. For example, if you want the control
to display the current date with the format "Today is: 04:22:31 Tuesday Mar 23,
1996", use the following format string: Today is: 'hh':'m':'s ddddMMMdd',
'yyy. Body text must be enclosed in single quotation marks.

Note that segments of nonformat characters in the preceding example are
delimited by single quotation marks. Failure to surround body text in this
way will result in unpredictable display by the DTP control.

Chapter 13 Informational Controls 257

Format Characters
Format characters supported by DTP controls are described in the following table.

String
fragment

"d"

"dd"

"ddd"

"dddd"

"gg"

"h"

"hb"

"H"

"HH"

"rn"
"mm"

"M"

"MM"

"MMM"

"MMMM"

"t"

"tt"

"X"

"y"

"yy"

"yyy"

Description

The one-digit or two-digit day.

The two-digit day. Single-digit day values are preceded by a zero.

The three-character weekday abbreviation.

The full weekday name.

The period and era string contained in the CAL_SERASTRING value
associated with the specified locale. Windows CE ignores this
element if the date to be formatted does not have an associated era or
period string.

The one-digit or two-digit hour in 12-hour format.

The two-digit hour in 12-hour format. Single-digit values are preceded
by a zero.

The one-digit or two-digit hour in 24-hour format.

The two-digit hour in 24-hour format. Single-digit values are preceded
by a zero.

The one-digit or two-digit minute.

The two-digit minute. Single-digit values are preceded by a zero.

The one-digit or two-digit month number.

The two-digit month number. Single-digit values are preceded
by a zero.

The three-character month abbreviation.

The full month name.

The one-letter AM and PM abbreviation (that is, "AM" is displayed
as "A").

The two-letter AM and PM abbreviation (that is, "AM" is displayed
as "AM").

The callback field. The control uses the other valid format characters
and queries the application to fill in the "X" portion of the string. The
application must be prepared to handle the DTN_ WMKEYDOWN,
DTN_FORMAT, and DTN]ORMATQUERY notification messages.
Multiple "X" characters can be used in a series to signify unique
callback fields.

The one-digit year. For example, 1996 would be displayed as "6."

The last two digits of the year. For example, 1996 would be displayed
as "96."

The full year. For example, 1996 would be displayed as "1996."

258 Windows CE Programmer's Guide

Callback Fields
In addition to the standard format characters that define DTP fields, you can
customize your output by specifying certain parts of a format string as callback
fields. To declare a callback field, include one or more ASCII Code 88 "X"
characters anywhere in the body of the format string. Like other DTP control
fields, callback fields are displayed in left-to-right order, based on their location
in the format string.

You can create unique callback fields by repeating the "X" character. Thus,
the following format string contains two callback fields: XXddddMMMdd',
'yyyXXX. Remember, because callback fields are treated as valid fields,
your application must be prepared to handle DTN_ WMKEYDOWN
notification messages.

When the DTP control parses the format string and encounters a callback field, it
sends DTN_FORMAT and DTN_FORMATQUERY notification messages. The
owner of the control must respond to these notifications to ensure that the custom
information is properly displayed.

Month Calendar Controls
A month calendar control is a child window that displays a monthly calendar. The
calendar can display one or more months at a time.

",Will ~N:;W&h X J\>; ,*K ,MW= ThK'*¥"" ~"',%'1 "',x= = ~ %=~ _ ~~

! I1Il December 1997 I1Il ,
5 JUI T W T F 5
30 1 2 _4 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 1 2 3
4 5 6 7 8 9 10

Today: 12/3/97

Month calendar control

Chapter 13 Informational Controls 259

When a user taps the name of a month with the stylus, a pop-up menu appears that
lists all the months of the year. A user can select a month by tapping its name on
the menu. A user who is using the DTP control can use ALT +DOWN ARROW
to activate the month calendar control. The user can scroll the displayed months
forward or backward either by tapping the left arrow or right arrow at the top of
the control or by pressing the PAGE UP or PAGE DOWN keys on the keyboard.
When a user taps the year displayed at the top of the calendar next to the month,
an up-down control appears. The user can use this control to change the year.
The user can also use CTRL+PAGE UP or CTRL+PAGE DOWN to scroll from
one year to another. A user can press keys on the keyboard to navigate; the arrow
keys scroll between days, the HOME key moves to the beginning of a month,
and the END key moves to the end of a month. Unless the calendar has the
MCS_NOTODA Y style, the user can return to the current day by tapping the
Today label at the bottom of the month calendar control.

You create a month calendar control by specifying MONTHCAL_CLASS
in the lpClassName parameter to the CreateWindowEx function. This class
is registered when the common control DLL is loaded. You can use the
InitCommonControls function to ensure that this DLL is loaded.

To register the month calendar control class using the InitCommonControlsEx
function, specify the ICC_DATE_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtris parameter.

Month Calendar Styles
Month calendar styles supported by Windows CE are described in the
following table.

Style

MCS_MULTISELECT

MCS_NOTODA YCIRCLE

Description

Specifies that the month calendar will send
MCN_GETDA YSTATE notifications to request
information about which days should be displayed
in bold.

Allows the user to select a range of dates. By
default, the maximum range is one week. You can
change the maximum selectable range using the
MCM_SETMAXSELCOUNT message.

Creates a month calendar that does not display a
Today selection.

Creates a month calendar that does not circle the
current date.

Displays the week number, from I through 52, to the
left of each week in the calendar.

260 Windows CE Programmer's Guide

Day States

Times

A month calendar control that uses the MCS_DAYSTATE style supports
day states. The control uses day state information to determine how it draws
specific days within the control. Day state information is expressed as a 32-bit
data type, MONTHDAYSTATE. Each bit in a MONTHDAYSTATE bit field,
from 1 through 31, represents the state of a day in a month. If a bit is on, the
corresponding day will be displayed in bold; otherwise it will be displayed with
no emphasis.

An application can explicitly set day state information by sending the
MCM_SETDA YSTA TE message or by using the corresponding macro,
MonthCaCSetDayState. Additionally, month calendar controls that use the
MCS_DAYSTATE style send MCN_GETDAYSTATE notification messages
to request day state information.

Because the month calendar control is created, it will insert the current time into
its "today" date and time. When a time is later set programmatically, the control
will either copy the time fields as they are or validate them first, and then, if
invalid, store the current default times. Messages that set a date and the manner
in which those messages treat time fields are described in the following table.

Message

MCM_SETCURSEL

MCM_SETSELRANGE

Description

The control copies the time fields as they are, without
validation or modification.

The control validates the time fields of the structures passed
in. If they are valid, the time fields are copied without
modification. If they are invalid, the control copies the time
fields from the "today" date and time.

The control validates the time fields of the structures passed
in. If they are valid, the time fields are copied without
modification. If they are invalid, the control retains the time
fields from the current selection ranges.

The control copies the time fields as they are, without
validation or modification.

When a date is retrieved from the month calendar control, the time fields
will be copied from the stored times without modification. Handling of the time
fields by the control is provided as a convenience to you. The control does not
examine or modify the time fields as a result of any operation other than those
previously listed.

Chapter 13 Informational Controls 261

Status Bars
A status bar, also known as a status window, is a horizontal window positioned
at the bottom of a parent window. It displays status infonnation defined by
the application.

Status bar

You create a status bar by calling the CreateStatusWindow function.
This class is registered when the common control DLL is loaded. You
can use the InitCommonControls function to ensure that this DLL is
loaded. To register the status bar class using the InitCommonControlsEx
function, specify the ICC_ BAR_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter.

Size and Height
The window procedure for the status bar control automatically sets the initial size
and position of the window. The width is the same as that of the parent window's
client area. The height is based on the width of the window's borders and on the
metrics of the font that is currently selected into the status bar's device context.

The window procedure automatically adjusts the size of the status bar whenever
it receives a WM_SIZE message. Typically, when the size of the parent window
changes, the parent sends a WM_SIZE message to the status bar.

An application can set the minimum height of a status bar's drawing area
by sending the window an SB_SETMINHEIGHT message that specifies
the minimum height in pixels. The drawing area does not include the
window's borders.

262 Windows CE Programmer's Guide

You retrieve the widths of the borders of a status bar by sending the window
an SB_GETBORDERS message. The message includes the address of a three­
element array that receives the widths.

Multiple-Part Status Bars
A status bar can have many different parts, each displaying a different line of text.
You divide a status bar into parts by sending the window an SB_SETPARTS
message, which specifies the number of parts to create and the address of an
integer array. The array contains one element for each part, and each element
specifies the client coordinate of the right edge of a part.

A status bar can have a maximum of 255 parts, although applications typically
use far fewer than that. You retrieve a count of the parts in a status bar, as well
as the coordinate of the right edge of each part, by sending the window an
SB_GETPARTS message.

A simple mode status bar is useful for displaying Help text for menu items while
the user is scrolling through the menu. You put a status bar in simple mode by
sending it an SB_SIMPLE message. A simple mode status bar displays only one
part. When the text of the window is set, the window is invalidated, but it is not
redrawn until the next WM_P AINT message. Waiting for the message reduces
screen flicker by minimizing the number of times the window is redrawn.

The string that a status bar displays while in simple mode is maintained separately
from the strings that it displays while it is not in simple mode. This means you
can put the window in simple mode, set its text, and switch out of simple mode
without the original text being changed.

Windows CE supports a status bar notification, SBN_SIMPLEMODECHANGE,
that a status bar sends when the simple mode changes as a result of receiving an
SB_SIMPLE message.

Status Bar Text
You set the text of any part of a status bar by sending the SB_SETTEXT message,
specifying the zero-based index of a part, an address of the string to draw in the
part, and the technique for drawing the string. The drawing technique determines
whether the text has a border and, if it does, the style of the border. It also
determines whether the parent window is responsible for drawing the text.

By default, text is left-aligned within the specified part of a status bar. You can
embed tab characters, for example, \ t, in the text to center it or right-align it. Text
to the right of a single tab character is centered, and text to the right of a second
tab character is right-aligned.

ToolTips

Chapter 13 Informational Controls 263

To retrieve text from a status bar, use the SB_GETTEXTLENGTH and
SB_GETTEXT messages.

If your application uses a status bar that has only one part, you can perform
text operations by using the WM_SETTEXT, WM_GETTEXT, and
WM_GETTEXTLENGTH messages. These messages deal only with the
part that has an index of zero, allowing you to treat the status bar much like
a static text control.

To display a line of status information without creating a status bar, use the
DrawStatusText function. The function uses the same techniques to draw the
status information as it uses to draw the window procedure for the status bar, but
it does not automatically set the size and position of the status information. When
calling the DrawStatusText function, you must specify the size and position of
the status information as well as the device context of the window in which to
draw it.

A ToolTip is a tiny, rectangular pop-up window that displays a brief description
of a command bar button's purpose when the user holds the stylus on the button
for more than 0.5 second. If the user lifts the stylus from the screen while it is still
positioned over the button, the button is activated. If the user moves the stylus
away from the button before raising the stylus from the screen, the button is
not activated.

Selected Button

ToolTip

Windows CE supports ToolTips only for command bar and toolbar buttons. it
does not support ToolTips for the menus or combo boxes in a command bar. To
add ToolTips to a command bar, use the CommandBar_AddTooltips function.

The CommandBar_AddtoolTips function does not make a copy of the array of
ToolTip strings you pass to it. It directly uses the memory address you pass to it in
the IpToolTips parameter. Do not release the memory allocated for this array until
the program exits.

ToolTips usually display only the name of a button's command, but they can also
display the shortcut key for the command. For more information about shortcut
keys, see Chapter 16, "Dialog Boxes, Menus, and Other Resources."

264 Windows CE Programmer's Guide

Progress Bars
A progress bar is a common control that indicates the progress of a lengthy
operation by displaying a colored bar inside a horizontal rectangle. The length of
the bar in relation to the length of the rectangle corresponds to the percentage of
the operation that is complete.

Progress bar

You create a progress bar by specifying PROGRESS_CLASS in the lpClassName
parameter to the CreateWindowEx function. This class is registered when the
common control DLL is loaded. You can use the InitCommonControls function
to ensure that this DLL is loaded.

To register the progress bar class using the InitCommonControlsEx function,
specify the ICC_PROGRESS_CLASS flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the lplnitCtrls parameter.

Progress Bar Styles
Progress bar styles supported by Windows CE are described in the
following table.

Style

Range and Current Position

Description

Displays progress status in a smooth scrolling bar instead of
the default segmented bar.

Displays progress status vertically, from bottom to top.

A progress bar's range represents the entire duration of the operation, and the
current position represents the progress that the application has made toward
completing the operation. The window procedure uses the range and the current
position to determine the percentage of the progress bar to fill with the highlight
color as well as to determine what text, if any, to display within the progress bar.

H you do not set the range values, the system sets the minimum value to zero and
the maximum value to 100. You can adjust the range to convenient integers by
using the PBM_SETRANGE message.

Chapter 13 Informational Controls 265

A progress bar provides several messages that you can use to set the current
position. The PBM_SETPOS message sets the position to a specified value. The
PBM_DELTAPOS message advances the position by adding a specified value to
the current position. The PBM_SETSTEP message allows you to specify a step
increment for a progress bar. Subsequently, whenever you send the PBM_STEPIT
message to the progress bar, the current position advances by the specified
increment. By default, the step increment is set to 10.

Note The range values in a progress bar are considered signed integers. Any
number greater than Ox7FFFFFFF is interpreted as a negative number.

267

CHAPTER 14

Buttons

Windows CE provides dialog boxes and controls to support communication
between an application and the user. A button is a Windows control that a user
can turn on or off to provide input to an application. Buttons can be used alone
or in groups and can appear with or without application-defined text, known as
a label. Buttons belong to the BUTTON window class.

The user turns a button on or off by selecting it with the stylus or keyboard.
Selecting a button changes its visual appearance and state, for example, from
checked to unchecked. A button can send messages to its parent window, and
a parent window can send messages to a button.

Although you can use buttons in overlapped, pop-up, and child windows, they are
designed for use in dialog boxes where Windows CE standardizes their behavior.
If you use buttons outside dialog boxes, you increase the risk that your application
may behave in a nonstandard fashion. You can create customized buttons by using
window subclassing procedures.

Windows CE provides four kinds of buttons: push buttons, check boxes, radio
buttons, and group boxes. Each type has one or more styles that affect the button's
appearance, behavior, or both.

The following button types are described in this chapter:

• Check boxes

• Group boxes

• Push buttons

• Radio buttons

268 Windows CE Programmer's Guide

Button States
A button's state can be characterized by its focus state, push state, and check
state. The focus state applies to a check box, radio button, or push button. A
button receives the keyboard focus when the user selects it and loses the focus
when the user selects another control. Only one control can have the keyboard
focus at a time.

The push state applies to a push button, check box, radio button, or three-state
check box, but does not apply to other buttons. The push state of a button can be
either pushed or not pushed. When a push button is pushed, the button is drawn
as a sunken button. When it is not pushed, it is drawn as a raised button. When a
check box, radio button, or three-state check box is pushed, the background of the
button appears dimmed. When it is not pushed, the background of the button does
not appear dimmed.

The check state applies to a check box, radio button, or three-state check box,
but does not apply to other buttons. The state can be checked, unchecked, or
indeterminate; the latter state applies only to three-state check boxes. A check box
is checked when it contains a check mark, and is unchecked when it does not. A
radio button is checked when it contains a black dot and it is unchecked when it
does not. A three-state check box is checked when it contains a check mark,
unchecked when it does not, and indeterminate when it contains a box that
appears dimmed. Windows CE changes the check state of an automatic button,
but the application must change the check state of a button that is not automatic.

Changes to a Button State
When the user selects a button, either the operating system or the application must
change one or more of the button's state elements. Windows CE automatically
changes the focus state for all button types, the push state for push buttons, and
the check state for all automatic buttons. The application must make all other
state changes, taking into account the button's type, style, and current state. For
example, an application must change the check state for a check box or a radio
button. When an application changes the check state for a radio button, it may
also need to change the check state of other radio buttons in the same group to
ensure the mutually exclusive nature of radio buttons.

An application can determine a button's state by sending it a BM_ GETCHECK or
BM_GETSTATE message; the application can set a button's state by sending it a
BM_SETCHECK or BM_SETSTA TE message.

Chapter 14 Buttons 269

Selecting a Button
Windows CE provides three ways for a user to select a button: by touching it with
a stylus, by tabbing to it and then pressing the ENTER key, or by tabbing to the
selected button in the group and using the arrow keys to move within that group.
This last method is only available if the button is part of a group defined by the
WS_GROUP style. In addition to these predefined methods, you can create a
keyboard accelerator to a button. A keyboard accelerator, also known as a
shortcut key, is a keystroke or combination of keystrokes that generates a
WM_COMMAND message. For more information about keyboard
accelerators, see Chapter 16, "Dialog Boxes, Menus, and Other Resources."

Selecting a button generally causes the following events:

1. Windows gives the button the keyboard focus.

2. The button sends its parent window a message to notify it of the selection.

3. The parent window or Windows CE sends the button a message to change
its state.

4. The parent window or Windows CE repaints the button to reflect its
new state.·

Notification Messages from Buttons
When the user selects a button, its state changes, and the button sends notification
messages to its parent window about the changed state. For example, a push
button control sends the BN_CLICKED notification message whenever the user
chooses the button. In all cases, the low-order word of the wParam parameter
contains the control identifier, the high-order word of wParam contains the
notification code, and the IParam contains the control window handle.

Both the message and the parent window's response to it depend on the type,
style, and current state of the button. Button notification messages that an
application should monitor and process are described in the following table. .

Message

BN_CLICKED

BN_DISABLE

BN_PUSHED

BN_KlLLFOCUS

BN_PAINT

BN_SETFOCUS

BN_UNPUSHED

Description

The user clicked a button.

A button is disabled.

The user pushed a button.

The button lost the keyboard focus.

The button should be painted.

The button gained the keyboard focus.

The button is no longer pushed.

270 Windows CE Programmer's Guide

A button sends the BN_DISABLE, BN_PUSHED, BN_KILLFOCUS,
BN_PAINT, BN_SETFOCUS, and BN_UNPUSHED notification messages only
if it has the BS_NOTIFY style. It sends the BN_CLICKED notification message
regardless of the BS_NOTIFY style.

For automatic buttons, the operating system perfonns pushing, unpushing, and
painting. In this case, the application typically processes only the BN_CLICKED
notification message. For buttons that are not automatic, the application usually
responds to the notification message by sending a message to change the state of
the button.

When the user selects an owner-drawn button, the button sends its parent window
a WM_DRA WITEM message containing the identifier of the control to be drawn
and infonnation about its dimensions and state.

Messages to Buttons
A parent window can send messages to a button in an overlapped or child window
by using the SendMessage function. It can send messages to a button in a dialog
box by using the SendDlgItemMessage and CheckRadioButton functions.

An application can use the BM_GETCHECK message to retrieve the check state
of a check box or radio button. An application can also use the BM_GETSTATE
message to retrieve the button's current states, that is, the check state, push state,
and focus state.

The BM_SETCHECK message sets the check state of a check box or radio button
and the BM_SETST ATE message sets the push state of a button. You can change
the style of a button by using the BM_SETSTYLE message, which changes the
button styles within a type. For example, it changes a check box to an automatic
check box. This message is not designed for changing between types, for
example, changing a check box to a radio button. An application should not
change a button from one type to another.

You can use the DM_GETDEFID message to retrieve the identifier of the default
push button control in a dialog box. You can use the DM_SETDEFID message to
set the default push button for a dialog box. When you use the SetFocus function
on a dialog box control, you should use the WM_NEXTDLGCTL message, rather
than the DM_SETDEFID message, to change the default button style.

Chapter 14 Buttons 271

Button Color Messages
Windows provides default color values for buttons. The system sends a
WM_CTLCOLORBTN message to a button's parent window before the button
is drawn. This message contains a handle of the button's device context and a
handle of the child window. The parent window can use these handles to change
the button's text and background colors. Default button-color values are described·
in the following table.

Value

COLOR_BTNFACE

COLOR_BTNIllGHLIGHT

COLOR_BTNSHADOW

COLOR_BTNTEXT

COLOR_GRAYTEXT

COLOR_WINDOW

COLOR_ WINDOWFRAME

COLOR_WINDOWTEXT

Element colored

Button faces.

Highlight area-the top and left edges-of a button.

Shadow area-the bottom and right edges-of
a button.

Regular text in buttons.

In buttons, disabled text appears dimmed. This color
is set to zero if the current display driver does not
support a solid gray color.

Window backgrounds.

Window frames.

Text in windows.

An application can retrieve the default values for these colors by
calling the GetSysColor function, or it can set the values by calling
the SetSysColors function.

Button Default Message Processing
The window procedure for the predefined button control window class processes
defaults for all messages that the button control procedure does not process. When
the button control procedure returns FALSE for any message, the predefined
window procedure checks the messages and performs the default actions
described in the following table.

Message

BM_GETCHECK

BM_GETSTATE

Default action

Sends the button a WM_LBUTfONDOWN and a
WM_LBUTTONUP message, and sends the parent
window a BN_CLICKED notification message.

Returns the check state of the button.

Returns the current check state, push state, and focus
state of the button.

272 Windows CE Programmer's Guide

Message

WM_ENABLE

WM_ERASEBKGND

WM_GETFONT

WM_KEYDOWN

WM_KEYUP

WM_LBUTTONDBLCLK

WM_LBUTTONDOWN

WM]AINT

Default action

Sets the check state for all styles of radio buttons and
check boxes. If the wParam parameter is greater than
zero for radio buttons, the button is given the
WS_TABSTOP style.

Sets the push state of the button. For owner-drawn
buttons, a WM_DRA WITEM message is sent to the
parent window if the state of the button has changed.

Sets the button style. If the low-order word of the
lParam parameter is TRUE, the button is redrawn.

Changes the check state of a check box when the user
presses the space bar.

Paints the button.

Erases the background for owner-drawn buttons. The
backgrounds of other buttons are erased as part of the
WM]AINT and WM_ENABLE processing.

Returns a handle of the current font.

Pushes the button, if the user presses the SPACEBAR.

Releases the mouse capture for all cases except the
TAB key.

Removes the focus rectangle from a button. For push
buttons and default push buttons, the focus rectangle is
invalidated. If the button has the mouse capture, the
capture is released, the button is not clicked, and any
push state is removed.

Sends a BN_DBLCLK notification message to the
parent window for radio buttons and owner-drawn
buttons. For other buttons, a double-click is processed
as a WM_LBUTTONDOWN message.

Highlights the button if the position of the mouse
cursor is within the button's client rectangle.

Releases the mouse capture if the button has the
mouse capture.

Draws the button according to its style and,
current state.

Draws a focus rectangle on the button getting the
focus. For radio buttons and automatic radio
buttons, the parent window is sent a BN_CLICKED
notification message.

Sets a new font and, optionally, updates the window.

Message

Check Boxes

Chapter 14 Buttons 273

Default action

Sets the text of the button. In the case of a group box,
the message paints over the preexisting text before
repainting the group box with the new text.

Releases the mouse capture for all cases except the
TAB key.

A check box is a small square box with a label next to it. A user can turn a check
box on or off by tapping it with the stylus or pressing the space bar when the
check box has the keyboard focus. The box is empty in its default off state and
has a check mark in it when it is turned on.

n'··· .. · .. ·· .. ·· .. · .. ·· · ·· .. ,
~ ~!Y.?:~Y.~ ... ?~99..~.~~
o 19nore UPPERCASE

Checkbox

Applications display check boxes in a group box to permit the user to choose
from a set of related but independent options. For example, an application might
present a group of check boxes from which the user can select error conditions
that produce warning beeps.

When the user selects a check box of any style, the check box receives the
keyboard focus from Windows CE, which sends the check box's parent window
a WM_COMMAND message containing the BN_CLICKED notification code.
The parent window does not acknowledge this message if it comes from an
automatic check box or automatic three-state check box, because Windows CE
automatically sets the check state for those styles. But the parent window must
acknowledge the message if it comes from an application-defined check box or
three-state check box because the parent window, not Windows CE, is responsible
for setting the check state for those styles. Regardless of the check box style,
Windows CE automatically repaints the check box once its state is changed.

274 Windows CE Programmer's Guide

Check Box Styles
Check box styles supported by Windows CE are described in the following table.

Style

Group Boxes

Description

Creates a check box in which the box can be unavailable
as well as checked or unchecked. Use the unavailable
state to show that the state of the check box is
not detennined.

Creates a three-state check box in which the state cycles
through checked, unavailable, and unchecked each time
the user selects the check box.

Creates a check box in which the check state
automatically toggles between checked and unchecked
each time the user selects the check box.

Creates a small, empty check box with a label displayed
to the right of it. To display the text to the left of the
check box, combine this flag with the
BS_RIGHTBUTTON style.

Left-aligns the text in the button rectangle that is on the
right side of the check box.

Right-aligns text in the button rectangle that is on the
right side of the check box.

Positions a check box's square on the right side of the
button rectangle.

Turns the control into a tab stop, which allows the user
to select the control by tabbing through the controls in
a dialog box.

A group box is a rectangular area within a dialog box in which you can group
together controls that are semantically related. The controls are grouped by
drawing a rectangular border around them. Any text associated with the group
box is displayed in its upper-left comer. The sole purpose of a group box is to
organize controls related by a common purpose, which is usually indicated
by the label. The group box has only one style, defined by the constant
BS_GROUPBOX. Because a group box cannot be selected, it has no check state,
focus state, or push state. An application cannot send messages to a group box.

Chapter 14 Buttons 275

Group Box

Group box

Because group boxes are opaque in Windows CE, you must always add them to
your dialog box template after you have added everything else. Anything you
add to the template after you add the group box will be hidden underneath it. By
adding group boxes last, you ensure that the group boxes are at the bottom of the
Z order and will not hide your other controls.

You create a group box by specifying the BS_GROUPBOX style in the
CreateWindow or CreateWindowEx function.

Push Buttons
A push button, also known as a command button, is a small, rectangular control
that a user can turn on or off by tapping it with the stylus. A push button has a
raised appearance in its default, or off, state and a depressed appearance when it is
turned on. Windows CE supports owner-drawn push buttons, which are discussed
later in this chapter.

Push button

When the user clicks a push button, it receives the keyboard focus from Windows
CE, which sends the button's parent window a WM_COMMAND message
containing the BN_CLICKED notification code. In response, the dialog box
closes and carries out the operation indicated by the button.

276 Windows CE Programmer's Guide

Push Button Styles
Button styles supported by Windows CE are described in the following table.

Style

BS_BOTTOM

BS_CENTER

BS_DEFPUSHBUTTON

BS_RIGHT

BS_TOP

BS_VCENTER

WS_TABSTOP

Description _

Places the text at the bottom of the button rectangle.

Centers the text horizontally in the button rectangle.

Creates a push button with a heavy black border. If the
button is in a dialog box, the user can select the button by
pressing the ENTER key, even when the button does not
have the input focus. This style is useful for enabling the
user to quickly select the most likely option, or default.

Left-aligns the text in the button rectangle.

Enables a button to send BN_DBLCLK, BN_KlLLFOCUS,
and BN_SETFOCUS notification messages to its parent
window. Note that the button sends the BN_CLICKED
notification message regardless of whether it has this style.

Creates an owner-drawn button. The owner window
receives a WM_MEASUREITEM message when the button
is created and a WM_DRA WITEM message when a visual
aspect of the button has changed.

Creates a push button that posts a WM_COMMAND
message to the owner window when the user clicks
the button.

Right-aligns text in the button rectangle.

Places text at the top of the button rectangle.

Vertically centers text in the button rectangle.

Turns the control into a tab stop, which allows the user
to select the control by tabbing through the controls in a
dialog box. .

Owner-Drawn Push Buttons
When you use the BS_OWNERDRA W style for a button, you assume all
responsibility for drawing the button. You cannot use any other button styles with
the BS_OWNERDRA W style. When you use an owner-drawn button, you have to
trap the WM_DRA WITEM message in the window procedure for the button's
parent window, and you must insert the code that erases the background, if
necessary, and draws the button.

Chapter 14 Buttons 2n

The WM_DRA WITEM message is not generated by the window manager;
it is part of the interface between a button and its owner. When you use a
built-in button class, the button's window procedure automatically sends the
WM_DRAWITEM message to the button's parent window when the button
receives a WM_PAINT message. If you create a new class of button-a button
that is not a built-in button-and you want it to support the WM_DRA WITEM
message, you must send the WM_DRA WITEM message to the button's parent
window whenever the button needs to be redrawn.

Note Windows CE does not support the BS_BITMAP, BS_FLAT, BS_ICON,
BS_PUSHBOX, BS_TEXT, or BS_USERBUTTON styles. Use the
BS_OWNERDRA W style to create the effects you would otherwise achieve by
using the BS_BITMAP, BS_ICON, or BS_USERBUTTON button styles.

Radio Buttons
A radio button, also known as an option button, is a small, round button with a
label next to it. The label may be text, an icon, or a bitmap. A user can select a
radio button by tapping it with the stylus. Radio buttons are usually grouped
together in a group box, representing a set of related, but mutually exclusive
options. When a user selects a radio button, all other radio buttons in the same
group are automatically cleared.

@t:l.one
o !2ulleted

o Numbered

Radio button

When the user selects an automatic radio button, Windows CE automatically sets
the check state of all other radio buttons within the same group to unchecked. For
standard radio buttons, use the WS_GROUP style to achieve the same effect.

Radio Button Styles
Windows CE supports most of the radio button styles that Windows-based
desktop platforms support, but it does not support the BS_LEFTTEXT style,
which places the radio button to the right of the assoicated text. You can
achieve the same effect by using the BS_RIGHTBUTTON style.

278 Windows CE Programmer's Guide

Radio button styles are described in the following table. They are the same in
Windows CE as they are in Windows-based desktop platforms.

Style

BS_AUTORADIOBUTTON

BS_RADIOBUTTON

BS_RIGHTBUTTON

Description

Creates a radio button that, when selected by a user,
clears all other buttons in the same group.

Creates a small circle with a label displayed to the right
of it. To display the text to the left of the circle, combine
this flag with the BS_RIGHTBUTTON style.

Left-aligns the text in the button rectangle on the right
side of the check box.

Right-aligns the text in the button rectangle on the right
side of the check box.

Positions a check box's square on the right side of the
button rectangle.

Turns the control into a tab stop, which allows the user
to select the control by tabbing through the controls in a
dialog box.

279

CHAPTER 15

Window Controls

Windows controls send WM_COMMAND messages. This distinguishes them·
from common controls, which send WM_NOTIFY messages. In this chapter you
will learn about all of the windows controls except for those that belong to the
button class. For more information on windows controls and common controls,
see Chapter 10, "Overview of Controls." For information about buttons, see
Chapter 14, "Buttons."

The following windows controls are described in this chapter:

• Edit controls

• Combo boxes

• List boxes

• Scroll bars

• Static controls

Edit Controls
An edit control, which is also called a text box, is a rectangular window in which
a user can type and edit text from the keyboard.

Edit control

Generally, you provide a label for an edit control by placing a static control with
the appropriate text above or next to the edit control. However, if you do not have
enough space to do this, you can include the label as the default text inside the
edit control, enclosed between angle brackets, for example, <edit control label>.

280 Windows CE Programmer's Guide

An edit control is selected and receives the input focus when a user touches it
with a stylus or presses the TAB key. After it is selected, the edit control displays
its text, if any, and a flashing caret that indicates the insertion point. The user can
then type text, move the insertion point, or select text to be moved or deleted by
using the stylus or keys on the keyboard. An edit control can send notification
messages to its parent window in the form ofWM_COMMAND messages. A
parent window can send messages to an edit control in a dialog box by calling
the SendDlgItemMessage function.

Windows provides both single-line edit controls (SLEs), and multiline edit
controls (MLEs). Edit controls belong to the EDIT window class.

Because Windows CE does not support rich edit controls, you cannot use edit
control masks.

Edit Control Styles
Windows provides several edit control styles. An individual edit control can have
several styles at the same time. If you use stand-alone tools to develop dialog
boxes, you may not need to specify edit control styles explicitly. However, if
you create an edit control for your application using the CreateWindow or
CreateWindowEx function, you must specify these edit control styles.

Every edit control specifies a combination of style values that define the
appearance and features of the edit control. The style values can establish the
appearance of a single-line or multiline edit control, align the text in the control,
and determine if and how text appears in the edit control. The number and type
of styles the application uses depend on the type and purpose of the edit control.

Edit control styles supported by Windows CE are described in the following table.

Style

ES_AUTOHSCROLL

ES_AUTOVSCROLL

ES_CENTER

ES_COMBOBOX

ES_LEFf

ES_LOWERCASE

Description

Automatically scrolls text to the right by 10 characters when
the user types a character at the end of the line. When the user
presses the ENTER key, the control scrolls all text back to
position zero.

Scrolls text up one page when the user presses the ENTER key
on the last line.

Centers text in a multiline edit control.

Indicates that the edit control is part of a combo box.

Left-aligns text.

Converts all characters to lowercase as they are typed into the
edit control.

Style

ES_NUMBER

ES_OEMCONVERT

ES]ASSWORD

ES_READONLY

ES_RIGHT

Chapter 15 Window Controls 281

Description

Designates a multiline edit control. The default is a single-line
edit control.

When the multiline edit control is in a dialog box, the default
response to pressing the ENTER key is to activate the default
button. To use the ENTER key as a carriage return, use the
ES_ W ANTRETURN style.

When the multiline edit control is not in a dialog box and
the ES_AUTOVSCROLL style is specified, the edit control
shows as many lines as possible and scrolls vertically when
he user presses the ENTER key. If you do not specify
ES_AUTOVSCROLL, the edit control shows as many lines
as possible and beeps if the user presses the ENTER key
when no more lines can be displayed.

If you specify the ES_AUTOHSCROLL style, the multiline
edit control automatically scrolls horizontally when the caret
goes past the right edge of the control. To start a new line,
the user must press the ENTER key. If you do not specify
ES_AUTOHSCROLL, the control automatically wraps words
to the beginning of the next line when necessary. A new line is
also started if the user presses the ENTER key. The window
size determines the position of the word wrap. If the window
size changes, the word wrapping position changes and the text
is redisplayed.

Multiline edit controls can have scroll bars. An edit control
with scroll bars processes its own scroll bar messages. Note
that edit controls without scroll bars scroll as described in the
previous paragraphs and process any scroll messages sent by
the parent window.

Negates the default behavior for an edit control. The default
behavior hides the selection when the control loses the input
focus and inverts the selection when the control receives the
input focus. If you specify ES_NOHIDESEL, the selected text
is inverted, even if the control does not have the focus.

Allows only digits to be typed into the edit control.

Converts text typed in the edit control from the Windows
character set to the OEM character set, and then converts it
back to the Windows set. This style is most useful for edit
controls that contain file names.

Displays an asterisk (*) for each character typed into the edit
control. You can use the EM_SETPASSWORDCHAR
message to change the character that is displayed.

Prevents the user from typing or editing text in the edit control.

Right-aligns text in a multiline edit control.

282 Windows CE Programmer's Guide

Text Buffer

Style Description

Converts all characters to uppercase as they are typed into the
edit control.

Specifies that a carriage return be inserted when the user
presses the ENTER key while typing text into a multiline edit
control in a dialog box. If you do not specify this style,
pressing the ENTER key has the same effect as pressing the
dialog box's default push button. This style has no effect on a
single-line edit control.

Turns the control into a tab stop, which allows the user
to select the control by tabbing through the controls in a
dialog box.

When Windows CE creates an edit control, it automatically creates a text
buffer, sets its initial size, and increases the size as necessary. Windows CE
stores edit control text in a buffer and copies it to the control. The size can be
up to a predefined limit of approximately 30,000 characters for single-line edit
controls. Because this limit can change, it is called a soft limit. You can set a
hard limit to the buffer size by sending an EM_SETLIMITTEXT message to the
edit control. If the buffer exceeds either limit, Windows sends the application an
EN_ERRS PACE message. You can retrieve the current text limit by sending an
EM_ GETLIMITTEXT message.

You free the buffer by calling the LocalFree function, or you can obtain a new
buffer, and buffer handle, by calling the LocalAlloc function.

You can initialize or reinitialize an edit control's text buffer by calling the
SelDigItemText function. It can retrieve the content of a text buffer by
calling the GetDIgItemText function.

For each edit control, Windows CE maintains a read-only flag that indicates
whether the control's text is read/write, which is the default, or read-only. An
application can set the read/write or read-only flag for the text by sending the
control an EM_SETREADONL Y message. To determine whether an edit control
is read-only, an application can call the GetWindowLong function using the
GWL_STYLE constant. The EM_SETREADONL Y message applies to both
single-line and multiline edit controls.

You can change the font that an edit control uses by sending the WM_SETFONT
message. Changing the font does not change the size of the edit control;
applications that send the WM_SETFONT message may have to retrieve the font
metrics for the text and recalculate the size of the edit control.

Chapter 15 Window Controls 283

Changing the Formatting Rectangle
The visibility of an edit control's text is governed by the dimensions of its
window rectangle and its formatting rectangle. The window rectangle is the
client area of the window containing the edit control. The formatting rectangle
is a construct maintained by Windows CE for formatting the text displayed in the
window rectangle. When an edit control is first displayed, the two rectangles are
identical on the screen. An application can make the formatting rectangle larger or
smaller than the window rectangle. Making the formatting rectangle larger limits
the visibility of the edit control's text, whereas making it smaller creates extra
white space around the text.

You can set the coordinates of an edit control's formatting rectangle by sending it
an EM_SETRECT message. The EM_SETRECT message automatically redraws
the edit control's text. To establish the coordinates of the formatting rectangle
without redrawing the control's text, send the control an EM_SETRECTNP
message. To retrieve the coordinates of the formatting rectangle, send the
control an EM_GETRECT message. These messages apply to multiline edit
controls only.

Working with Text
After selecting an edit control, the user can select text in the control by using
the mouse or keys on the keyboard. You can retrieve the starting and ending
character positions of the current selection in an edit control by sending the
control an EM_GETSEL message.

You can also select text in an edit control by sending the control an EM_SETSEL
message with the starting and ending character indexes for the selection. For
example, you can use EM_SETSEL with EM_REPLACESEL to delete text
from an edit control. These three messages apply to both single-line and multiline
edit controls.

ReplaCing Text
You can replace selected text in an edit control by sending the control an
EM_REPLACESEL message with a pointer to the replacement text. If there
is no current selection, EM_REPLACESEL inserts the replacement text at the
insertion point. You might receive an EN_ERRSP ACE notification message if
the replacement text exceeds the available memory. This message applies to
both single-line and multiline edit controls. You can use EM_REPLACESEL to
replace part of an edit control's text or the SetDlgItemText function to replace
all of it.

284 Windows CE Programmer's Guide

Cut, Copy, Paste, and Clear Operations
Windows CE provides four messages for moving text between an edit control
and the clipboard. The WM_COPY message copies the current selection, if any,
from an edit control to the clipboard without deleting it from the edit control. The
WM_CUT message deletes the current selection, if any, in the edit control and
copies the deleted text to the clipboard. The WM_ CLEAR message deletes the
current selection, if any, from an edit control, but does not copy it to the clipboard
unless the user pressed the SHIFT key. The WM_PASTE message copies text
from the clipboard into an edit control at the insertion point. These four messages
apply to both single-line and multiline edit controls.

Modifying Text
The user can select, delete, or move text in an edit control. Windows CE
maintains an internal flag for each edit control indicating whether the content of
the control has been modified. Windows CE clears this flag when it creates the
control and sets the flag whenever the text in the control is modified. You can
retrieve the modification flag by sending the control an EM_GETMODIFY
message and set or clear the modification flag by sending the control an
EM_SETMODIFY message. These messages apply to both single-line and
multiline edit controls.

Limiting User-Entered Text
The default limit to the amount of text a user can type in an edit is 30,000
characters. An application can change the amount of text the user can type by
sending the control an EM_SETLIMITTEXT message. This message sets a hard
limit to the number of bytes the user can type into an edit control, but affects
neither text that is already in the control when the message is sent nor text copied
to the control by the SetDlgItemText function or the WM_SETTEXT message.
For example, suppose that the application uses the SetDlgItemText function to
place 500 characters in an edit control, and the user also typed 500 characters, for
a total of 1,000 characters. If the application then sends an EM_SETLIMITTEXT
message limiting user-entered text to 300 characters, the 1,000 characters already
in the edit control remain there, and the user cannot add any more text. On the
other hand, if the application sends an EM_SETLIMITTEXT message limiting
user-entered text to 1,300 characters, the 1,000 characters remain, but the user can
add 300 more characters.

When the user reaches the character limit of an edit control, Windows CE sends
the application a WM_COMMAND message containing an EN_MAXTEXT
notification message. This notification message does not mean that memory has
been exhausted, but that the limit for user-entered text has been reached; the user
cannot type any more text. To change this limit, an application must send the
control a new EM_SETLIMITTEXT message with a higher limit.

Chapter 15 Window Controls 285

Wordwrap Functions
An application may direct a multiline edit control to add or remove a soft
linebreak character-two carriage returns and a linefeed-automatically at
the end of wrapped text lines. An application can tum this feature on or off by
sending the edit control an EM-YMTLINES message. This message applies only
to multiline edit controls and does not affect a line that ends with a hard linebreak
-one carriage return and a linefeed typed by the user.

Retrieving Points and Characters
You can determine which character is closest to the specified point in an edit
control by sending the EM_CHARFROMPOS message. The message returns the
character index and line index of the character nearest the point. Similarly, you
can determine the client coordinates of the specified character in an edit control
by sending the EM_POSFROMCHAR message. You specify the index of a
character and the message returns the x- and y-coordinates of the upper-left comer
of the character.

Undoing Text Operations
Every edit control maintains an undo flag that indicates whether an application
can reverse, or undo, the most recent operation on the edit control; for example,
to undo a text deletion. The edit control sets the undo flag to indicate that the
operation can be undone and resets it to indicate that the operation cannot be
undone. You can determine the setting of the undo flag by sending the control
an EM_CANUNDO message.

You can undo the most recent operation by sending the control an EM_UNDO
message. An operation can be undone provided no other edit control operation
occurs first. For example, the user can delete text; replace the text or undo the
deletion; and then delete the text again or undo the replacement. The EM_UNDO
message applies to both single-line and multiline edit controls and always works
for single-line edit controls.

Scrolling Text in an Edit Control
To implement scrolling in an edit control, you can use the automatic scrolling
styles, or you can explicitly add scroll bars to the edit control. To add a horizontal
scroll bar, use the style WS_HSCROLL; to add a vertical scroll bar, use the
style WS_ VSCROLL. An edit control with scroll bars processes its own scroll
bar messages.

286 Windows CE Programmer's Guide

Windows CE provides three messages that you can send to an edit control with
scroll bars. The EM_LINES CROLL message can scroll a multiline edit control
both vertically and horizontally. The lParam parameter specifies the number of
lines to scroll vertically starting from the current line and the wParam parameter
specifies the number of characters to scroll horizontally, starting from the current
character. The edit control does not acknowledge messages to scroll horizontally
if it has the ES_CENTER or ES_RIGHT style. This message applies to multiline
edit controls only.

The EM_SCROLL message scrolls a multiline edit control vertically, which is
the same effect as sending a WM_ VSCROLL message. The wParam parameter
specifies the scrolling action. The EM_SCROLL message applies to multiline
edit controls only.

Tab Stops and Margins
To set tab stops in a multiline edit control use the EM_SETT ABSTOPS message.
The default for a tab stop is eight characters. When you add text to the edit
control, tab characters in the text automatically generate space up to the next tab
stop. The EM_SETT ABSTOPS message does not automatically cause Windows
CE to redraw the text. To do that, you can call the InvaIidateRect function. The
EM_SETTABSTOPS message applies to multiline edit controls only.

You can set the width of the left and right margins for an edit control by using the
EM_SETMARGINS message. After sending this message, Windows CE redraws
the edit control to reflect the new margin settings. You can retrieve the width of
the left or right margin by sending the EM_GETMARGINS message. By default,
the edit control margins are set to be just wide enough to accommodate the largest
character horizontal overhang, known as a negative ABC width, for the font
currently in use in the edit control.

Password Characters
You can use a password character in an edit control to conceal user input. When a
password character is set, it is displayed in place of each character the user types.
When a password character is removed, the control displays the characters the
user types. If you create an edit control using the style ES_PASSWORD, the
default password character is an asterisk (*). An application can use the
EM_SETPASSWORDCHAR message to remove or define a different password
character and the EM_GETPASSWORDCHAR message to retrieve the current
password character. These messages apply to single-line edit controls only.

Chapter 15 Window Controls 287

Combo Boxes
A combo box is a control that combines a list box with an edit control. Selecting
an item in the list box displays the selected text in the edit control. If the combo
box style allows keyboard input, typing characters into the edit control highlights
the first list box item that matches the characters typed. A combo box can appear
either in a dialog box or on the command bar.

Combo box

To create a command bar combo box and insert it into a command bar, use the
CommandBar_InsertComboBox function.

Note If you provide Style, Font, and Font Size combo boxes, you must position
them in the order they are listed in this note.

Combo Box Styles
Because of limited screen space, Windows CE-based devices use either
the CBS_DROPDOWN or CBS_DROPDOWNLIST style rather than the
CBS_SIMPLE style that is popular on Windows-based desktop platforms.
In the CBS_SIMPLE style, the list box is always visible and the current
selection is displayed in the edit control. In the the CBS_DROPDOWN or
CBS_DROPDOWNLIST styles, the list box is not displayed until the user
selects an icon next to the edit control, which conserves space on the screen.
The difference between the two styles is that the CBS_DROPDOWNLIST style
has a static text field that always displays the current selection instead of having
an edit control.

Window CE does not support owner-drawn combo boxes.

Note If you specify the CBS_EX_CONSTSTRINGDATA style when the
application inserts a string into the list part of a combo box, the combo box stores
the pointer passed to it by the application rather than copying the string. This
saves RAM resources when you have a large table of strings in ROM that you
want to insert into a combo box.

288 Windows CE Programmer's Guide

All combo boxes in Windows CE have the LBS_HASSTRINGS style by default.

Combo box styles supported by Windows CE are described in the following table.

Style

CBS_AUTOHSCROLL

CBS_DISABLENOSCROLL

CBS_DROPDOWNLIST

CBS_NOINTEGRALHEIGHT

CBS_SORT

CBS_UPPERCASE

Description

Automatically scrolls the text in an edit control to
the right when the user types a character at the end
of the line. If this style is not set, only text that fits
within the rectangular boundary is allowed.

Shows a disabled vertical scroll bar in the list box
when the box does not contain enough items to
scroll. Without this style, the· scroll bar is hidden
when the list box does not contain enough items.

Displays only the edit control by default. The user
can display the list box by selecting an icon next to
the edit control.

Displays a static text field that displays the current
selection in the list box.

Converts any uppercase characters typed into the
edit control of a combo box to lowercase.

Specifies that the combo box will be exactly the size
specified by the application when it created the
combo box. Usually, Windows sizes a combo box so
that it does not display partial items.

Converts text typed in the combo box edit control
from the Windows character set to the OEM
character set and then back to the Windows set. This
style is most useful for combo boxes that contain file
naines. It applies only to combo boxes created with
the CBS_DROPDOWN style.

Automatically sorts strings typed into the list box.

Converts any lowercase characters typed into the
edit control of a combo box to uppercase.

Turns control into a tab stop, which allows the user
to select the control by tabbing through the controls
in a dialog box.

Windows CE does not support the CBS_OWNERDRA WFIXED or
CBS_OWNERDRA WV ARlABLE styles for combo boxes.

Chapter 15 Window Controls 289

Edit Control Selection Fields

List Boxes

The edit control selection field is the portion of a combo box that displays the
currently selected list item. In drop-down combo boxes, which are combo boxes
that have the CBS_DROPDOWN style, the selection field is an edit control and
can be used to type text that is not in the list.

You can retrieve or set the contents of the edit control selection field and can
determine or set the edit selection. You can also limit the amount of text a user
can type in the selection field. When the contents of the selection field change,
Windows CE sends notification messages to the parent window or dialog
box procedure.

To retrieve the content of the edit control selection field, send a WM_GETTEXT
message to the combo box. To set the contents of the selection field of a drop­
down combo box, send the WM_SETTEXT message to the combo box.

A list box is a window that displays a list of character strings. The user selects a
string from the list by tapping it with the stylus. When a string is selected, it is
highlighted. You can use a vertical or horizontal scroll bar with a list box to scroll
lists that are too long for the control window. The list box automatically hides or
shows the scroll bar, as needed.

List box

A dialog box procedure is responsible for initializing and monitoring its child
windows, including any list boxes. The dialog box procedure communicates with
the list box by sending messages to it and by processing the notification messages
sent by the list box.

Windows CE does not support owner-drawn list boxes.

290 Windows CE Programmer's Guide

List Box Styles
There are two types of list boxes: single-selection, which is the default, and
multiple-selection. In a single-selection list box,- the user can select only one item
at a time. In a multiple-selection list box, the user can select more than one item at
a time. To create a multiple-selection list box, specify the LBS_MULTIPLESEL
or the LBS_EXTENDEDSEL style.

Note Windows CE supports the LBS_EX_CONSTSTRINGDATA style, which
saves RAM resources when you have a large table of strings in ROM that you
want to insert into a list box.

All list boxes in Windows CE have the LBS_HASSTRINGS style by default.

List box styles supported by Windows CE are described in the following table.

Style

LBS_DISABLENOSCROLL

LBS_EXTENDEDSEL

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

Description

Shows a disabled vertical scroll bar for the list
box when the box does not contain enough items
to scroll. If you do not specify this style, the scroll
bar is hidden when the list box does not contain
enough items.

Allows the user to select multiple items by
using the SHIFf key and the mouse or special
key combinations.

Specifies a multicolumn list box that
the user scrolls horizontally. You set the
width of the colunms by using the
LB_SETCOLUMNWIDTH message.

Turns string selection on or off each time a
user clicks or double-clicks a string in the list
box. A user can select any number of
strings simultaneously.

Specifies that the list box will be exactly the size
specified by the application when it created the
list box. Usually, Windows sizes a list box so
that it does not display partial items.

Specifies that the list box's appearance is not
automatically updated when changes are made.
You can change this style by sending a
WM_SETREDRA W message.

Specifies that the user can view list box strings
but cannot select them.

Notifies the parent window whenever the user
clicks or double-clicks a string in the list box.

Scroll Bars

Style

LBS_SORT

LBS_STANDARD

LBS_USETABSTOPS

LBS_ W ANTKEYBOARDINPUT

Chapter 15 Window Controls 291

Description

Sorts strings in the list box alphabetically.

Sorts strings in the list box alphabetically. The
parent window receives an input message
whenever the user clicks or double-clicks a string.
The list box has borders on all sides.

Enables a list box to recognize and expand tab
characters when drawing its strings. The default
tab positions are 32 dialog box units. A dialog box
unit is equal to one-fourth of the current dialog
box base-width unit. Windows CE calculates
these units based on the height and width of the
current system font.

Specifies that the owner of the list box receives
WM_ VKEYTOlTEM messages whenever the
user presses a key and the list box has the input
focus. This enables an application to perform
special processing on the keyboard input.

Turns control into a tab stop, which allows the
user to select the control by tabbing through the
controls in a dialog box.

Windows CE supports the LBS_NODATA style for compatibility with
applications written for earlier versions of Windows.

A scroll bar is a rectangle that contains a scroll box and has direction arrows at
both ends. The user can tap the arrows, click on the gray area between the arrows,
or drag the scroll box to scroll the scroll bar's parent window.

Scroll bar

Scroll bars should be included in any window for which the content of the client
area extends beyond the window's borders. A scroll bar's orientation determines
the direction in which scrolling occurs when the user operates the scroll bar. A
horizontal scroll bar enables the user to scroll the content of a window to the left
or right. A vertical scroll bar enables the user to scroll the content up or down.

292 Windows CE Programmer's Guide

You can use as many scroll bar controls as needed in a single window. When
you create a scroll bar control, you must specify the scroll bar's size and position.
However, if a scroll bar control's window can be resized, your application must
adjust the scroll bar's size whenever the size of the window changes.

Scroll Bar Styles
A scroll bar control can have a number of styles to control the orientation and
position of the scroll bar. You specify the styles that you want when you call
the CreateWindowEx function to create a scroll bar control. Some of the styles
create a scroll bar control that uses a default width or height. However, you must
always specify the x- and y-coordinates and the other dimensions of the scroll bar.

Scroll bar styles supported by Windows CE are described in the following table.

Style

SBS_BOTTOMALIGN

Description

Aligns the bottom edge of the scroll bar with
the bottom edge of the rectangle defmed by
the CreateWindowEx parameters x, y,
n Width, and nHeight. The scroll bar has the
default height for system scroll bars. Use this
style with the SBS_HORZ style.

Designates a horizontal scroll bar. If the
SBS_TOPALIGN style is not specified, the
scroll bar has the height, width, and position
specified by the parameters of
Create Window.

Aligns the left edge of the scroll bar with
the left edge of the rectangle defined by
the parameters of CreateWindow. The
scroll bar has the default width for system
scroll bars. Use this style with the
SBS_ VERT style.

Aligns the right edge of the scroll bar with the
right edge of the rectangle defined by
the parameters of CreateWindowEx. The
scroll bar has the default width for system
scroll bars. Use this style with the
SBS_ VERT style.

Designates a size box. If you do not specify
the SBS_SIZEBOXTOPLEFTALIGN style,
the size box has the height, width, and
position specified by the parameters of
CreateWindowEx.

Style

SBS_SIZEBOXBOTTOMRIGHTALIGN

SBS_SIZEBOXTOPLEFT ALIGN

Parts of a Scroll Bar

Chapter 15 Window Controls 293

Description

Aligns the lower-right comer of the size box
with the lower-right comer of the rectangle
specified by the parameters of
CreateWindowEx. The size box has the
default size for system size boxes. Use this
style with the SBS_SIZEBOX style.

Aligns the upper-left comer of the size box
with the upper-left comer of the rectangle
specified by the parameters of
CreateWindowEx. The size box has the
default size for system size boxes. Use this
style with the SBS_SIZEBOX style.

Aligns the top edge of the scroll bar with
the top edge of the rectangle defined by
the parameters of CreateWindow. The
scroll bar has the default height for system
scroll bars. Use this style with the
SBS_HORZ style.

Designates a vertical scroll bar. If you do
not specify the SBS_LEFTALIGN style, the
scroll bar has the height, width, and position
specified by the parameters of
CreateWindow.

A scroll bar consists of a gray area with an arrow button at each end and a scroll
box, which is sometimes called a thumb; between the arrow buttons. A scroll bar
represents the overall length or width of a data object in a window's client area;
the scroll box represents the portion of the object that is visible in the client area.
The position of the scroll box changes whenever the user scrolls a data object to
display a different portion of it. Windows CE also adjusts the size of a scroll bar's
scroll box so that it indicates what portion of the entire data object is currently
visible in the window. If most of the object is visible, the scroll box occupies most
of the scroll bar's shaft. Similarly, if only a small portion of the object is visible,
the scroll box occupies a small part of the shaft.

The user scrolls the content of a window by clicking one of the arrow buttons, by
clicking in the gray area, or by dragging the scroll box. When the user clicks an
arrow button, the application scrolls the content by one unit, which is typically a
single line or column. When the user clicks one of the gray areas, the application
scrolls the content by one window. The amount-of scrolling that occurs when the
user drags the scroll box depends on the distance the user drags the scroll box and
on the scrolling range of the scroll bar.

294 Windows CE Programmer's Guide

Scroll Box Position and Scrolling Range
The position of the scroll box is represented as an integer; it is relative to the left
or upper end of the scroll bar, depending on whether the scroll bar is horizontal or
vertical. The position must be within the minimum and maximum values of the
scrolling range. For example, in a scroll bar with a range of zero through 100,
position 50 is in the middle, with the remaining positions distributed equally
along the scroll bar. The initial range depends on the scroll bar. Standard scroll
bars have an initial range of zero through 100. Scroll bar controls have an empty
range-both minimum and maximum values are zero-unless you supply an
explicit range when you create the control. You can alter the range at any time
after its initial creation. You can use the SetScroIlInfo function to set the range
values, and the GetScroIlInfo function to retrieve the current range values.

You can set a page size for a scroll bar. The page size represents the number
of data units that can fit in the client area of the owner window given its current
size. For example, if the client area can hold eight lines of text, an application
would set the page size to eight. Windows CE uses the page size, along with the
scrolling range and length of the scroll bar's gray area, to set the size of the scroll
box. Whenever a window containing a scroll bar is resized, an application should
call the SetScrollInfo function to set the page size. An application can retrieve the
current page size by calling the GetScrolllnfo function.

Scroll Bar Requests
The user makes scrolling requests by clicking various parts of a scroll bar.
Windows CE sends the request to the specified window in the form of a
WM_HSCROLL or WM_ VSCROLL message for horizontal and vertical scroll
bars, respectively. Each message includes a notification code that corresponds
to the user's action to the handle of the scroll bar, for scroll bar controls only,
and, in some cases, to the position of the scroll box.

Usually an application scrolls the content of a window in the direction opposite
that indicated by the scroll bar. For example, when the user clicks the gray area
below the scroll box, an application scrolls the object in the window upward to
,reveal a portion of the object that is below the visible portion. An application
can also scroll a rectangular region using the ScrollDC function.

When you process the WM_ CREATE message you can set scrolling units. It is
convenient to base the scrolling units on the dimensions of the font associated
with the window's display context (DC). To retrieve the font dimensions for a
specific DC, use the GetTextMetrics function. When you process the WM_SIZE
message, you can adjust the scrolling range and scrolling position to reflect the
dimensions of the client area as well as the number of lines of text that will
be displayed.

Chapter 15 Window Controls 295

The scroll bar sends WM_HSCROLL and WM_ VSCROLL messages to the
window procedure whenever the user clicks the scroll bar or drags the scroll
box. The low-order words of WM_ VSCROLL and WM_HSCROLL each
contain a notification message that indicates the direction and magnitude of
the scrolling action.

When you process the WM_HSCROLL and WM_ VSCROLL messages, you
should examine the scroll bar notification message and calculate the scrolling
increment. After you apply the increment to the current scrolling position, you can
scroll the window to the new position by using the ScrollWindowEx function.
You can use the SetScrollInfo function to adjust the position of the scroll box.

After you scroll a window, it makes part of the window's client area invalid. To
ensure that the invalid region is updated, you use the UpdateWindow function
to generate a WM_P AINT message.

Static Controls
A static control is a control used to display text, to draw frames or lines
separating other controls, or to display icons. A static control does not accept
user input, but it can notify its parent window of stylus taps if the static control
is created with SS_NOTIFY style.

Static control

Although you can use static controls in overlapped, pop-up, and child windows,
they are designed for use in dialog boxes where Windows CE standardizes their
behavior. If you use static controls outside of dialog boxes, you increase the risk
that the application might behave in a nonstandard fashion.

Windows CE does not support owner-drawn static controls.

296 Windows CE Programmer's Guide

Static Control Styles
Static control styles supported by Windows CE are described in the
following table.

Style

SS_LEFfNOWORDWRAP

Description

Specifies that a bitmap will be displayed in the static
control. The text is the name of a bitmap defined
elsewhere in the resource file, not a file name. The style
ignores the n Width and nHeight parameters; the control
automatically sizes itself to accommodate the bitmap.

Specifies a simple rectangle and centers the error value
text in the rectangle. Windows CE formats the text
before display. The control automatically wraps words
that extend past the end of a line to the beginning of the
next centered line.

Specifies that the midpoint of a static control with the
SS_BITMAP style will remain fixed when you resize
the control. The four sides are adjusted to accommodate
a new bitmap. If the bitmap is smaller than the control's
client area, the rest of the client area is filled with the
color of the pixel in the upper-left comer of the bitmap.

Specifies that an icon will be displayed in the static
control. The text is the name of an icon defmed
elsewhere in the resource file, not a file name. The style
ignores the n Width and nHeight parameters; the icon
automatically sizes itself.

Specifies a rectangle and left-aligns the text in the
rectangle. Windows CE formats the text before
display. The control automatically wraps words that
extend past the end of a line to the beginning of the next
left-aligned line.

Specifies a rectangle and left-aligns the text in the
rectangle. Tabs are expanded but words are not
wrapped. Text that extends past the end of a line
is clipped.

Prevents interpretation of any ampersand (&) characters
in the control's text as accelerator prefix characters.

An application can combine SS_NOPREFIX with other
styles by using the bitwise OR (I) operator. This can be
useful when file names or other strings that may contain
an ampersand (&) must be displayed within a static
control in a dialog box.

Sends the parent window the STN_CLICKED
notification when the user clicks the control.

Style

Chapter 15 Window Controls 297

Description

Specifies a rectangle and right-aligns the specified text
in the rectangle. Windows CE fonnats the text before
display. The control automatically wraps words that
extend past the end of a line to the beginning of the next
right-aligned line.

In Windows CE, you can use only the SS_CENTERIMAGE style in conjunction
with the SS_BITMAP style. Even if you specify SS_ICON, you cannot set the
image by calling:

SendMessage(hStatic. STM_SETIMAGE. IMAGE_ICON. (LPARAM) hlcon):

You have to use:

SendMessage(hStatic. STM_SETIMAGE. IMAGE_BITMAP. (LPARAM) hBitmap):

If you specify SS_CENTERIMAGE, and do not specify either SS_ICON or
SS_BITMAP, the static control will behave as though you had specified the
SS_BITMAP style.

Windows CE does not support the SS_SIMPLE static control styles but you can
emulate this style by using the SS_LEFT or SS_LEFTNOWORDWRAP style.
Windows CE also does not support the SS_BLACKFRAME, SS_BLACKRECT,
SS_GRA YFRAME, SS_GRA YRECT, SS_OWNERDRA W,
SS_ WHITEFRAME, SS_ WHITERECT styles but you can use the WM_PAINT
message to achieve the same results.

CHAPTER 16

Dialog Boxes, Menus, and
Other Resources

299

A resource is binary data, such as a bitmap, an image, or a string, that you can
add an application's executable file. Windows CE resources include cursors,
icons, menus, dialog boxes, bitmaps, string-table entries, message-table entries,
keyboard-accelerator tables, and user-defined data. The Windows CE-based
platform you are targeting will determine which Windows resources are available
for use.

Before using a resource, you must load it into memory. The FindResource
function finds a resource in a module and returns a handle to the binary
resource data. The LoadResource function uses the resource handle returned
by FindResource to load the resource into memory. After you load a resource
by using LoadResource, Windows CE automatically unloads and reloads the
resource as memory conditions and application execution require. Thus, you
need not explicitly unload a resource you no longer need.

You can use FindResource and LoadResource to find and load any type of
resource, but you should use these functions only if you must access the binary
resource data for subsequent function calls. To use a resource immediately, you
should use one of the resource-specific functions described in the following table
to find and load resources in one call.

Function

FormatMessage

LoadAccelerators

LoadBitmap

LoadCursor

LoadIcon

LoadImage

LoadMenu

LoadString

Action

Loads and formats a message-table entry

Loads an accelerator table

Loads a bitmap resource

Loads a cursor resource

Loads an icon resource

Loads an icon, cursor, or bitmap

Loads a menu resource

Loads a string-table entry

300 Windows CE Programmer's Guide

Before terminating, an application should release the memory occupied by
accelerator tables, bitmaps, cursors, icons, and menus by using one of the
functions described in the following table.

Resource

Accelerator table

Bitmap

Cursor

Icon

Menu

Dialog Boxes

Release function

Destroy AcceleratorTable

DeleteObject

DestroyCursor

Destroylcon

DestroyMenu

A dialog box is a temporary window that contains controls. You can use it to
display status information and to get input from the user. Most applications use
dialog boxes to prompt for additional information. Many applications also use
dialog boxes to display information or options while the user works in another
window. For example, word processing applications often use a dialog box with
a text-search command. While the application searches for text, the dialog box
remains on the screen. The user can return to the dialog box and continue
searching for the word or search for a new word. Applications that use dialog
boxes in this way create a dialog box when the user chooses a command. The
application continues to display the dialog box for as long as the application
runs or until the user closes the dialog box.

Windows CE supports two types of dialog boxes to accommodate different
application uses-modal and modeless. A modal dialog box requires the user to
supply information or dismiss the dialog box before allowing the application to
continue. Applications use modal dialog boxes in conjunction with commands
that require additional information before they can proceed. A mode less dialog
box allows the user to supply information and return to a previous task without
closing the dialog box. Modal dialog boxes are simpler to manage than their
modeless counterparts because they are created, perform their task, and are
destroyed by calling a single function.

Chapter 16 Dialog Boxes, Menus, and Other Resources 301

To create either a modal or modeless dialog box, you must supply a dialog box
template to describe the dialog box style and content. You must also supply a
dialog box procedure to carry out tasks. The dialog box template is a binary
description of the dialog box and the controls it contains. You can create this
template as a resource that you can load from your executable file. The dialog box
procedure is an application-defined callback function that the system calls when it
has input for the dialog box or tasks for the dialog box to carry out. Although a
dialog box procedure is similar to a window procedure, it does not have the
same responsibilities.

You typically create a dialog box by using either the DialogBox or CreateDialog
function. DialogBox creates a modal dialog box; CreateDialog creates a
modeless dialog box. These two functions load a dialog box template from
your executable file and create a pop-up window that matches the template'S
specifications. There are other functions that create a dialog box by using
templates in memory; they pass additional information to the dialog box
procedure as the dialog box is created.

Dialog boxes usually belong to a predefined, exclusive window class. The system
uses this window class and its corresponding window procedure for both modal
and modeless dialog boxes. When the function is called, it creates the window
for the dialog box, as well as the windows for the controls in the dialog box, and
then sends selected messages to the dialog box procedure. While the dialog box is
visible, the predefined window procedure manages all messages, processing some
messages and passing others to the dialog box procedure so that the procedure can
carry out tasks. You do not have direct access to the predefined window class
or window procedure, but you can use the dialog box template and dialog box
procedure to modify the style and behavior of a dialog box. Dialog box types are
described in the following table.

Dialog box type

Application-defined dialog box

Common dialog box

Message box

Property sheet, a collection of
tabbed dialog boxes

Description

Helps a user perform tasks specific to an application.

Provides a familiar way for users to perform tasks
that are common to many applications.

Notifies a user of an event or situation and offers
limited responses.

Provides a convenient way to view and modify object
properties. These are discussed in Chapter 11,
"Foundation Controls."

302 Windows CE Programmer's Guide

Application-Defined Dialog Boxes
An application-defined dialog box is a child window that you design to suit the
needs of your application. You can use any kind of control in a dialog box and
lay it out in any format you like.

Font DOD
Eont:

Preview:

A aBbCcYyZz

Application-dermed dialog box

~ize: Font Style ---,

~ !2old

o Italic
o !.!.nderline

In Windows CE, all dialog boxes are control parents. They are also recursive.
This means that if a dialog box has a child dialog box when a user tabs through
the parent dialog box, the dialog box manager tabs into the child dialog box as
well. If a dialog box is outside the visible area of the screen, Windows CE does
not automatically reposition it.

If a user presses ALT+H while the dialog box has the input focus, the system
posts a WM_HELP message to the dialog box procedure. Respond to this
message by displaying context-sensitive Help for the dialog box.

Note Sometimes it is necessary for a dialog box to appear on top of all other
windows. For example, under low memory conditions, the System Out of
Memory Dialog Box will send a WM_ CLOSE message to an application. If the
application is not in the foreground, any dialog box it displays will be hidden
behind the current foreground window, unless you create the dialog box with
the DS_SETFOREGROUND style. Because putting the dialog box in the
foreground will not bring the application's main window forward, put in the
dialog box any information that the user may need to decide what action to take.

In Windows CE, dialog boxes have the WS_POPUP style by default. If you
want to use the WS_CillLD style instead, specify it in the style member of
the DLGTEMPLATE structure you pass in the lpTemplate parameter to any
of these functions. You can also specify the DS_SETFOREGROUND or
DS_CENTER styles.

Chapter 16 Dialog Boxes, Menus, and Other Resources 303

Dialog box styles supported by Windows CE are described in the following table.

Dialog box style Description

DS_ABSALIGN Indicates that the coordinates of the dialog box are screen
coordinates. If this style is not specified, Windows CE
assumes they are client coordinates.

DS_CENTER Centers the dialog box vertically and horizontally in the
working area.

DS_MODALFRAME Creates a dialog box with a modal dialog-box frame that you
can combine with a title bar and System menu by specifying
the WS_CAPTION and WS_SYSMENU styles.

DS_SETFONT Indicates that the header of the dialog box template contains
additional data specifying the font to use for text in the client
area and the controls of the dialog box. The font data begins
on the WORD boundary that follows the title array. It
specifies a 16-bit point size value and a Unicode font name
string. If possible, the system creates a font according to the
specified values. The system then passes the handle of the
font to the dialog box and to each control by sending them the
WM_SETFONT message.

DS_SETFOREGROUND Brings the dialog box to the foreground.

Common Dialog Boxes
A common dialog box is a system-defined dialog box that standardizes how users
perform complex operations that are common to most applications. Windows CE
supports the Color, Open, Save As and Print common dialog boxes. The
following screen shot illustrates a Print dialog box.

Pr int a tim II
B"inter:

PQrt:

Paper Si~e:

~ Draft Mode

Print common dialog box

Print Range

@All

o ~election

Or ientation

@ Portrgit

o LanQ5cape

Margins (inches) -------...,

L!:l.ft: Il:~?~" i lop:

B.ight: !2.ottom:

304 Windows CE Programmer's Guide

Each of the common dialog boxes has a unique purpose. The Color dialog box
provides a user with a way to select a color from a set of custom colors or from a
set of basic colors that are determined by the display driver. The Open dialog
box provides users with a way to select a file to open. The Save As dialog box
provides users with a way to save a file under a name other than the name with
which it was opened. The Print dialog box provides users with a way to select
print options. Users must print the entire document or the currently selected
portion and can print only one copy at a time. The settings in the Print dialog box
are always initialized to the current default printer. If the user has never used the
Print dialog box before, the first printer registered in the registry is the default.
After that, the last printer the user selected is the default.

Note You can set the widths and minimum widths of the left, top, right, and
bottom margins of the printed page by including values for the rcMargin and
rcMinMargin members of the PRINTDLG structure.

Common dialog boxes are centered vertically and horizontally on the screen and
are not movable. They always have the Help button displayed.

Message Boxes
A message box is a special kind of modal dialog box that an application uses to
display messages and prompt for simple input. A message box typically contains
a text message and one or more predefined buttons. You do not need to provide a
dialog box template or dialog box procedure for a message box. Windows creates
the template based on the text and buttons you specify and supplies its own dialog
box procedure.

Pocket Word II I
Save changes 1D '\My Documents\Docl,?

Message box

Use the MessageBox function to create a message box, specifying the text and
the number and types of buttons to display. Because Windows CE controls the
creation and management of the message box, you do not provide a dialog box
template and dialog box procedure. Windows CE creates its own template based
on the text and buttons specified for the message box and supplies its own dialog
box procedure.

Chapter 16 Dialog Boxes, Menus, and Other Resources 305

Note As with dialog boxes, sometimes it is necessary for a message box to appear
on top of all other windows. In particular, under low-memory conditions, the
System Out of Memory Dialog Box sends a WM_CLOSE message to an
application. If the application is not in the foreground, any message box it puts up
is hidden behind the current foreground window, unless you create the message
box with the MB_SETFOREGROUND style. Because putting the message box in
the foreground will not bring the application's main window forward, put any
information in the message box that the user may need to decide what action to
take.

The MessageBeep function, generally used with message boxes, plays a
waveform sound. The waveform sound for each sound type is identified
by an entry in the sounds section of the registry.

Message box styles that are supported by Windows CE are described in the
following table.

Message Box Style

Bntton

MB_ABORTRETRYIGNORE

MB_YESNO

MB_ YESNOCANCEL

MB_DEFBUTTONI

MB_DEFBUTTON2

MB_DEFBUTTON3

Icon

MB_ICONASTERISK
MB_ICONINFORMATION

MB_ICONEXCLAMA TION
MB_ICONW ARNING

Description

The message box contains three buttons: Abort,
Retry, and Ignore.

The message box contains one button: OK.

The message box contains two buttons: OK
and Cancel.

The message box contains two buttons: Retry
and Cancel.

The message box contains two buttons: Yes and No.

The message box contains three buttons: Yes, No,
and Cancel.

The first button is the default button. Note that the
first button is always the default unless you specify
MB_DEFBUTTON2.

The second button is the default button.

The third button is the default button.

Description

An icon consisting of a lowercase letter i in a circle
appears in the message box.

An exclamation-point icon appears in the
message box.

306 Windows CE Programmer's Guide

Menus

Message Box Style

Icon

MB_ICONERROR
MB_ICONHAND
MB_ICONSTOP

MB_ICONQUESTION

Window style

MB_SETFOREGROUND

MB_TOPMOST

Description

A stop-sign icon appears in the message box.

A question-mark icon appears in the message box.

Description

The user must respond to the message box before
continuing work in the window identified by the
h Wnd parameter. However, the user can move to
the windows of other applications and work in those
windows.

Depending on the hierarchy of windows in the
application, the user may be able to move to other
windows within the application. All child windows of
the message box's parent window are automatically
disabled, but pop-up windows are not.

MB_APPLMODAL is the default value. Windows
CE does not support either MB_SYSTEMMODAL
or MB_TASKMODAL.

The message box becomes the foreground window.

The message box is created with the
WS_EX_TOPMOST window style.

A menu is a list of menu items. Choosing a menu item opens a submenu or causes
the application to carry out a command. Each menu must have an owner window.
Windows CE sends messages to a menu's owner window when the user selects
the menu or chooses an item from the menu.

Chapter 16 Dialog Boxes, Menus, and Other Resources

IICI Edit ~iew

!:::l.ew .,
Qpen ... Ctrl+O

2ave Ctrl+S

Save 8.5 ...

Pa55~ord ...

!:rint ... Ctrl+P

Print Area .,

8.ecent Files .,

~lo5e Ctrl+W

Menu

All menus in Windows CE are implemented as top-level, pop-up windows. A
pop-up menu is a floating menu that displays commands specific to the object
selected by the user or to the object's immediate context.

307

Windows CE sends a WM_COMMAND message to the window that owns the
menu when the user chooses a command item. Each menu item that opens a
submenu is associated with a handle to that corresponding submenu. When the
user points to such an item, Windows CE opens the submenu. No command
message is sent to the owner window; however, Windows CE sends it a
WM_INITMENUPOPUP message before displaying the submenu. You can get
the handle to the submenu associated with an item by using the GetSubMenu or
GetMenuItemlnfo function.

Command Bar Menus
The command bar combines the functionality of the menu bar and toolbar in
one control. The menu names on a command bar represent the main categories
of commands that an application provides. Selecting a menu name from the
command bar opens a menu whose menu items correspond to the commands in a
specified category. For example, a command bar might contain a File menu name
that, when selected by the user, activates a menu with menu items such as New,
Open, and Save. For more information about command bars, see Chapter 11,
"Foundation Controls."

308 Windows CE Programmer's Guide

Menu Items
Windows CE generates a unique handle for each menu. A menu handle is a value
of the HMENU type. You must specify a menu handle in many of the Windows
CE menu functions. To retrieve the handle to the submenu associated with a menu
item, use the GetSubMenu or GetMenultemInfo function.

In addition to having a unique handle, each menu item in a command bar or menu
has a unique position value. The leftmost item in a command bar, or the top item
in a menu, has position zero. The position value is incremented for subsequent
menu items. Windows CE assigns a position value to all items in a menu,
including separators. When calling a menu function that modifies or retrieves
information about a specific menu item, specify the item using either its handle
or its position.

A menu item can be checked or unchecked. Windows CE displays a bitmap next
to checked menu items to indicate their checked state; it does not display a bitmap
next to unchecked items. Only menu items in a menu can be checked; items in a
command bar cannot be checked.

Applications check or uncheck a menu item to indicate whether an option is in
effect. For example, suppose an application has a toolbar that the user can show
or hide by using a Toolbar command on a menu. When the toolbar is hidden,
the Toolbar menu item is unchecked. When the user chooses the command, the
application checks the menu item and shows the toolbar. A check mark attribute
controls whether a menu item is checked. Set a menu item's check mark attribute
by using the CheckMenultem function.

Sometimes, a group of menu items corresponds to a set of mutually exclusive
options. In this case, indicate the selected option by using a checked radio menu
item-analogous to a radio button control. Checked radio items are displayed
with a bullet bitmap instead of a check mark bitmap. To check a menu item and
make it a radio item, use the CheckMenuRadioltem function.

When a menu item is not available to the user, the item should be dimmed.
Dimmed menu items cannot be chosen. An application dims an unavailable
menu item to provide a visual cue to the user that a command is not available.
You can use a dimmed item when an action is not appropriate. For example, you
can dim the Print command in the File menu when the system does not have a
printer installed.

A menu item can be enabled or dimmed by using the EnableMenultem
function. To determine whether a menu item is enabled or dimmed, use
the GetMenuItemInfo function.

Chapter 16 Dialog Boxes, Menus, and Other Resources 309

Owner-Drawn Menu Items
You can completely control the appearance of a menu item by using an owner­
drawn item. Owner-drawn items require an application to take total responsibility
for drawing selected, checked, and unchecked states. For example, if an
application provides a font menu, it can draw each menu item by using the
corresponding font; the item for Roman will be drawn in Roman, the item for
Italic will be drawn in Italic, and so on.

Windows CE handles owner-drawn menu items differently than Windows-based
desktop platforms do. In some respects, it treats an owner-drawn item as it would
any other menu item. On other Windows-based platforms, the device context
(DC) is initialized to its default state. Under Windows CE, however, the DC is
initialized to the dimmed or highlighted status of the current item. Also, unlike
other Windows-based platforms, Windows CE automatically highlights an owner­
drawn menu item when it has the keyboard focus.

Menu Item Separators and Line Breaks
Windows provides a special type of menu item, called a separator, that appears as
a horizontal line. You can use a separator to divide a menu into groups of related
items. A separator cannot be used in a command bar, and the user cannot select
a separator.

When a menu contains more items than will fit in one column, the menu is
truncated unless you force the line to break. You can cause a column break to
occur at a specific item in a menu by assigning the MFCMENUBREAK type
flag to the item or using the MENUBREAK option in the MENUITEM statement.
Windows places that item and all subsequent items in a new column. The
MFT_MENUBARBREAK type flag has the same effect, except that a vertical
line appears between the new column and the old. If you use the AppendMenu
or InsertMenu function to assign line breaks, you should assign the type flags
MFT_MENUBREAK or MFT_MENUBARBREAK.

Scrolling Menus
Some Windows CE-based platforms include scrolling menus. On these platforms,
if a menu does not fit on the screen, Windows CE automatically adds scrolling
arrows so users can scroll the menu up and down.

When the user cannot scroll any further in one direction or the other, the
associated arrow is dimmed. Pressing the up or down arrow scrolls the menu one
item at a time. No menu item is highlighted while the user is scrolling. Changing
the selection by using a keyboard arrow or keyboard mnemonic causes the newly
selected item to scroll into view if it is not already displayed. If a menu has too
many columns to fit the width of the display area, Windows CE ignores all
column breaks and makes the menu a single-column scrolling menu.

310 Windows CE Programmer's Guide

If an individual menu item is too large to be drawn without being clipped by the
up or downarrow, the item is not drawn at all. This may leave a large blank space
next to an arrow.

Creating, Displaying, and Destroying Menus

Carets

Most applications create menus using menu-template resources. A menu template
defines a menu, including the items in the menu bar and all submenus. For
information about creating a menu-template resource, see the documentation
included with your development tools.

After you create a menu-template resource and add it to your application's
executable (.exe) me, use the LoadMenu function to load the resource into
memory. Implementing menus as resources makes an application easier to localize
for use in multiple countries because only the resource-definition me needs to be
localized for each language, not the application's source code.

To create an empty menu bar, use the CreateMenu function; to create an empty
menu, use the CreatePopupMenu function. To add items to a menu, use the
AppendMenu and InsertMenu functions.

To display a shortcut menu, use the TrackPopupMenuEx function. Shortcut
menus, also called floating pop-up menus or context menus, are typically
displayed when the WM_CONTEXTMENU message is processed. The older
TrackPopupMenu function is still supported, but new applications should use
the TrackPopupMenuEx function.

If a menu is assigned to a window and that window is destroyed, Windows CE
automatically destroys the menu, freeing the menu's handle and the memory
occupied by the menu. Windows CE does not automatically destroy a menu that
is not assigned to a window. An application must destroy the unassigned menu
by calling the DestroyMenu function.

For general guidelines on menu design, see Chapter 6, "Designing a User
Interface for Windows CE."

A caret is a flashing line or block in the client area of a window that indicates
the place at which the user will insert text or graphics. To display a solid caret,
Windows CE inverts every pixel in the window rectangle. Windows CE does
not support bitmap carets. The following screen shot illustrates a caret as it
appears in text.

Chapter 16 Dialog Boxes, Menus, and Other Resources 311

Micro s oft Winc¢ws CE

lcaret

Caret

~ To create and display a caret

1. Call the CreateCaret function.

Windows CE formats a caret by inverting the pixel color within the rectangle
specified by the caret's position, width, and height.

2. Call the SetCaretPos function to set the caret's position.

3. Call the ShowCaret function to make the caret visible. When the caret
appears, it automatically begins flashing.

The system sends the WM_SETFOCUS message to the window receiving the
keyboard focus; therefore, an application should create and display the caret
while processing this message.

The elapsed time, in milliseconds, required to invert the caret is called the blink
time. The caret will blink as long as the thread that owns the message queue has
a message pump processing the messages. The user can set the blink time of the
caret using Control Panel, and applications should respect the settings that the
user has chosen. An application can determine the caret's blink time by using
the GetCaretBIinkTime function. If you are writing an application that allows
the user to adjust the blink time, such as a Control Panel applet, use the
SetCaretBIinkTime function to set the rate of the blink time to a specified
number of milliseconds.

Theflash time is the elapsed time, in milliseconds, required to display, invert,
and restore the caret's display. The flash time of a caret is twice as much as
the blink time.

You can determine the position of the caret using the GetCaretPos function. An
application can move a caret in a window by using the SetCaretPos function. A
window can move a caret only if it already owns the caret. SetCaretPos can move
the caret whether it is visible or not.

You can temporarily remove a caret by hiding it, or you can permanently remove
the caret by destroying it. To hide the caret, use the HideCaret function. This is
useful when your application must redraw the screen while processing a message,
but must keep the caret out of the way. When the application finishes drawing, it
can display the caret again by using the ShowCaret function. Hiding the caret
does not destroy its shape or invalidate the insertion point. Hiding the caret is
cumulative; that is, if the application calls HideCaret five times, it must also call
ShowCaret five times before the caret will reappear.

312 Windows CE Programmer's Guide

Cursors

Icons

To remove the caret from the screen and destroy its shape, use the DestroyCaret
function. DestroyCaret destroys the caret only if the window involved in the
current task owns the caret.

A cursor is a small bit image that reflects the position of the mouse, or other
pointing device, as it tracks across the screen. Windows CE platforms implement
cursors in different ways.

On many Windows CE-based platforms, users interact with applications by
tapping the stylus on the screen. Because there is no mouse, there is no need
for a cursor to indicate the current mouse position. However, even if your target
platform does not support a pointing device, every application should display the
wait cursor, which is a spinning hourglass, whenever it executes a command that
renders the current window or the system unresponsive to user input.

Target platforms that support mouse cursors support cursors the same way
that Windows-based desktop platforms do, except that they do not support
color cursors.

Some Windows CE-based platforms only support the wait cursor and the
SetCursor and LoadCursor functions. On these platforms, you can use
the following code example to load the wait cursor.

SetCursor(LoadCursor(NULL, IDC_WAIT));

An icon is a picture that is used to identify an application, file, or other object.
It consists of a bit image combined with a mask. An application's icon always
appears on the taskbar while the application is running, and it can be used to
recover the application's main window when another window has the foreground.
The icon also can be used to identify the application in the Windows CE Explorer.

Icon

Every application should register both 16 x 16-pixel and 32 x 32-pixe1 icons for
its main executable file and the types of files it stores in the file system.

Chapter 16 Dialog Boxes, Menus, and Other Resources 313

Icons are associated with window classes rather than with individual windows.
Use the WM_GETICON message to retrieve the handle ofthe icon associated
with a window class and the WM_SETICON message to associate an icon with
a window class.

Windows CE does not support any of the standard predefined icons (IDC *) that
Windows-based desktop platforms support.

For information on icon design, see Chapter 6, "Designing a User Interface for
Windows CE."

Bitmaps, Images, and Strings
Initialize a bitmap with the LoadBitmap function. The bitmap you create with
this function will be read-only. This is because Windows CE does not copy the
bitmap into RAM, as Windows-based desktop platforms do.

In Windows CE, the bitmap only exists in a resource, which is part of the
program's executable file. When you select the bitmap into a DC, you cannot
modify the DC-for example, by drawing text into it-because that would
require the ability to write to the bitmap.

Use the Loadlmage function to load an image. Windows CE does not support
stretching and shrinking of images or any loading options other than
LR_DEFAULTCOLOR.

Use the LoadString function to load a string. Windows CE only supports
Unicode strings.

Keyboard Accelerators
A keyboard accelerator, also known as a shortcut key, is a keystroke, or
combination of keystrokes, that generates a WM_COMMAND message.
Keyboard accelerators are often used as shortcuts for commonly used menu
commands, but you can also use them to generate commands that have no
equivalent menu items. Include keyboard accelerators for any common or frequent
actions, and provide support for the common shortcut keys wherever they apply.

You can use an ASCII character code or a virtual-key code to define the
accelerator. An ASCII character code makes the accelerator case-sensitive. The
ASCII "C" character can define the accelerator as ALT+c rather than ALT+C.
Because accelerators do not need to be case-sensitive, most applications use
virtual-key codes for accelerators rather than ASCII character codes.

314 Windows CE Programmer's Guide

If an application defines an accelerator that is also defined in the system
accelerator table, the application-defined accelerator overrides the system
accelerator, but only within the context of the application. A void this practice,
however, because it prevents the system accelerator from performing its standard
role in the Windows user interface. For general guidelines on assigning shortcut
keys, see Chapter 6, "Designing a User Interface for Windows CE."

Accelerator Tables
An accelerator table consists of an array of ACCEL structures, each
defining an individual accelerator. Each ACCEL structure includes the
following information:

• The accelerator's keystroke combination

• The accelerator's identifier

• Various flags

Call the TranslateAccelerator function in the message loop associated with
the thread's message queue to process accelerator keystrokes for a specified
thread. This function monitors keyboard input to the message queue, checking
for key combinations that match an entry in the accelerator table. When
TranslateAccelerator finds a match, it translates the keyboard input, that is,
the WM_KEYUP and WM_KEYDOWN messages, into a WM_COMMAND
or WM_SYSCOMMAND message. It then sends the message to the window
procedure of the specified window.

The WM_COMMAND message includes the identifier of the accelerator that
caused TranslateAccelerator to generate the message. The window procedure
examines the identifier to determine the source of the message and then processes
the message accordingly.

Note Unlike Windows-based desktop platforms, Windows CE does not maintain
a system-wide accelerator table that applies to all applications.

Windows CE maintains accelerator tables for each application. An application can
define any number of accelerator tables for use with its own windows. A unique
32-bit handle, HACCEL, identifies each table. However, only one accelerator
table can be active at a time for a specified thread. The handle of the accelerator
table passed to the TranslateAccelerator function determines which accelerator
table is active for a thread. The active accelerator table can be changed at any time
by passing a different accelerator-table handle to TranslateAccelerator.

Chapter 16 Dialog Boxes, Menus, and Other Resources 315

~ To create an accelerator table

1. Use a resource compiler to create an accelerator table resource and to add it
your executable file.

2. Call the LoadAccelerators function at run time to load the accelerator table
and to retrieve the handle of the accelerator table.

3. Pass a handle to the accelerator table to the TranslateAccelerator function to
activate the accelerator table.

You can create an accelerator table for an application at run time by passing
an array of ACCEL structures to the CreateAcceleratorTable function.
This method supports user-defined accelerators in the application. Like the
LoadAccelerators function, CreateAcceleratorTable returns an accelerator­
table handle that can be passed to TranslateAccelerator to activate the
accelerator table.

Accelerator tables loaded by LoadAccelerators are automatically destroyed by
Windows CEo CreateAcceleratorTable creates a table that must be destroyed
before an application closes. Use the DestroyAcceleratorTable function to
destroy an accelerator table.

Creating an Accelerator Table Resource
Create an accelerator-table resource by using the ACCELERATORS statement
in your resource-definition file. You must assign a name or a resource identifier
to the accelerator table, preferably unlike that of any other resource. Windows CE
uses this identifier to load the resource at run time.

Each accelerator you define requires a separate entry in the accelerator table.
In each entry, you define the keystroke that generates the accelerator and the
accelerator's identifier. The keystroke is either an ASCII character code or
virtual-key code. You must also specify whether the keystroke must be used
in some combination with the ALT, SHIFf, or CTRL keys.

An ASCII keystroke is specified either by enclosing the ASCII character
in double quotation marks or by using the integer value of the character in
combination with the ASCII flag. The following code examples show how
to define ASCII accelerators.

"A". ID_ACCELl
65. ID_ACCEL2. ASCII

SHIFT+A
SHIFT+A

316 Windows CE Programmer's Guide

A keystroke that generates a virtual-key code is specified differently depending on
whether the keystroke is an alphanumeric key or a non-alphanumeric key. For an
alphanumeric key, the key's letter or number, enclosed in double quotation marks,
is combined with the VIRTKEY flag. For a non-alphanumeric key, the Windows
virtual-key code for the specific key is combined with the VIRTKEY flag. The
following code examples show how to define virtual-key code accelerators.

"a", ID_ACCEL3, VIRTKEY
ID_ACCEL4, VIRTKEY

A (caps-lock on) or a
; 1 NSERT key

If you want the user to press the ALT, SHIFT, or CTRL keys in some
combination with the accelerator keystroke, specify the ALT, SHIFT,
and CONTROL flags in the accelerator's definition. The following code
examples show possible combinations.

"8", ID_ACCEL5, ALT
"I", ID_ACCEL6, CONTROL, VIRTKEY
VK_F5, ID_ACCEL7, CONTROL, ALT, VIRTKEY

ALLSHIFT+8
CTRL+I
CTRL+ALT+F5

PAR T 4

Connection Services

Chapter 17 Invoking Functions from a Desktop Computer 319
Initializing and Terminating Remote Application Programming Interface 319
Executing Functions and Applications 322
Retrieving Information 323
Handling RAPI Errors 324
Sample RAPI Program 324

Chapter 18 Receiving Connection Notification 327
Registry-Based Notification 327
COM Interface-Based Notification 328

Chapter 19 Transferring Files 333
Registering File Types and File Filters 334
Implementing and Using a File Filter 339
Implementing a Dummy File Filter 341

Chapter 20 Synchronizing Data 343
Design Considerations 344
ActiveSync Service Provider 344

Chapter 21 Installing and Managing Applications 349
General Procedure for Application Installation 349
CAB Wizard 350
Application Manager 362
Adding Custom Menus to Windows CE Explorer 365
CEUTIL: Helper DLL for Windows CE Services 367

CHAPTER 17

Invoking Functions from a
Desktop Computer

319

Windows CE supports a remote application programming interface (RAPI) that
gives an application running on a desktop computer the ability to invoke function
calls on a Windows CE-based platform. The desktop computer is the RAPI client
and the Windows CE-based platform is the RAPI server. The communication uses
Windows Sockets (Winsock) and can take place over a serial link, a modem
connection, or a network connection.

The function calls behave much like the equivalent Windows CE functions.
For the most part, RAPI functions have the same syntax, parameters, and return
values as the corresponding Windows CE versions. Any differences are noted in
the reference documentation for the RAPI functions.

Note String and character parameters must be in Unicode format. Use the
appropriate conversion routines, if necessary.

Initializing and Terminating Remote Application
Programming Interface

Before making RAPI calls, you must call the CeRapiInit or CeRapiInitEx
function. These functions perform routine initialization and set up the
communications link between the desktop computer and the platform.

The CeRapiInitcall is a synchronous operation. It does not return control to
the application until a connection is made or an error occurs. In contrast, the
CeRapiInitEx call is an asynchronous operation and it returns immediately.
CeRapiInitEx continues the initialization until a connection is made, an error
occurs, or there is a call to CeRapiUninit. Although CeRapiInitEx avoids
blocking any threads, it is a more complicated method of initialization.

320 Windows CE Programmer's Guide

~ To initialize RAPI using CeRapiInitEx

1. Call CeRapiInitEx.

2. If an error is returned, exit.

3. If successful, call WaitForSingleObject or WaitForMultipleObjects
to wait on the event handle passed back in the beRapiInit member
of RAPIINIT.

4. When beRapiInit is signaled, check for a successful connection or an
error value.

S. Check the hrRapiInit member of the RAPllNIT structure for the final
return value.

When you are finished with RAPI, call CeRapiUninit to terminate the connection
and perform any necessary cleanup. Because creating and terminating connections
are fairly expensive operations, establish and terminate the link only once per
session, not on a per-call basis.

The following code example shows how to use the CeRapiInitEx function.
Following the CeRapiInitEx call, the MsgWaitForMuitipleObjects function
is used to wait on one of two events. The first event is when the event handle is
passed back through the beRapiInit member of the RAPllNIT structure. The
second event is when a user terminates a connection.

HRESULT InitRapi(HEVENT hExit)
{

RAPIINIT ri = { sizeof(RAPIINIT) };
HRESULT hr - CeRapiInitEx(&ri);
if (FAILED(hr))
{

return(hr);
}

HANDLE ahWait[] = { hExit ri.heRapiInit };
enum {WAIT_EXIT-WAIT_OBJECT_0. WAIT_INIT };

DWORD dwObj = WaitAndDispatch(ARRAYSIZE(ahWait). ahWait);

if (WAIT_INIT == dwObj)
{

}

if (FAI LED(ri . hrRapi Init»
{

CeRapi Uni nit() ;
}

return(ri.hrRapiInit);

//Event signaled by RAPI

tiConnection failed

}

Chapter 17 Invoking Functions from a Desktop Computer 321

//Event signaled by user or timeout occurred
CeRapi Uni nit();

if (WAIT_EXIT == dwObj)
{

return(HRESULT_FROM_WIN32(ERROR_CANCELLED»;
}

return(EJAIL) ;

enum
{

}

WAD_ALLINPUT = 0x0000.
WAD_SENDMESSAGE = 0x0001.

DWORD WaitAndDispatch(DWORD nCount. HANDLE *phWait. DWORD dwTimeout.
UINT uFlags)
{

DWORD dwObj;
DWORD dwStart = GetTickCount();
DWORD dwTimeLeft - dwTimeout;

for (; ;)
{

dwObj = MsgWaitForMultipleObjects(nCount. phWait. FALSE.
dwTimeLeft. (uFlags&WAD_SENDMESSAGE) ? QS_SENDMESSAGE

QS_ALLI NPUT) ;
if (dwObj == (DWORD)-l)
{

dwObj = WaitForMultipleObjects(nCount. phWait. FALSE. 100);
if (dwObj == (DWORD)-l)
{

}

}

break;

else if (dwObj == WAIT_TIMEOUT)
{

break;
}

if «UINT)(dwObj-WAIT_OBJECT_0) < nCount)
{

break;
}

MSG msg;
if (uFlags & WAD_SENDMESSAGE)
{

322 Windows CE Programmer's Guide

}

}

PeekMessage(&msg. NULL. 0. 0, PM_NOREMOVE):
}

else
{

}

while (PeekMessage(&msg, NULL. 0. 0, PM_REMOVE»
{

DispatchMessage(&msg):
}

if (INFINITE 1= dwTimeout)
{

}

dwTimeLeft - dwTimeout - (GetTickCount() - dwStart):
if «int)dwTimeLeft < 0)
{

break:
}

return(dwObj) :

Executing Functions and Applications
Among all RAPI functions, there are two functions that execute functions and
applications residing on the Windows CE-based platform:

• CeCreateProcess

This function creates a new process that runs a specified executable file
residing on the Windows CE-based platform.

• CeRapiInvoke

This function remotely executes a function residing on the Windows CE-based
platform and provides for both input parameters and output data. It operates
in either of two modes: block, known as synchronous, or stream, known
as asynchronous.

In block mode, the caller passes both input parameters and output data in a
single buffer. Because this is a synchronous call, all input data must be present
in memory at the time of the call and all output data must be present before the
function finishes.

Chapter 17 Invoking Functions from a Desktop Computer 323

In stream mode, an IStream type interface is used to exchange arbitrarily­
sized data in any order and direction. The caller can pass input data in a single
buffer, but from that point on all data should be exchanged through the stream.
Because the data can be read, written, and stored in chunks, stream code is
significantly faster than block mode. The interface used is based on Istream,
but has two additional methods to allow you to do timeouts.

Note LocalAlloc allocates the memory passed for both the plnput and
ppOutput parameters of CeRapiInvoke. The called function frees the input
memory allocation, and the calling application frees the output memory
allocation.

Retrieving Information
~ To retrieve path information

• Call the CeGetTempPath function to get the path to the directory that is
designated for temporary files.

-Or-

• Call the CeGetSpecialFolderPath function to get the path to a specific shell
folder, which depends on the input parameter. The possibilities include the
recycle bin, Start menu directory, document template directory, network
directory, and folders for fonts or installed printers.

~ To retrieve other information

• Call the CeFindAIIDatabases function to get information about all databases
of a specified type.

-Or-

• Call the CeFindAIlFiles function to get information about all files and
directories in a specified directory of the Windows CE object store.

In both cases, the information is returned in an array of
CE_FIND_DATA structures.

You must free the memory allocated by the CeFindAIIDatabases,
CeFindAIIFiles, or CeReadRecordProps function by calling the
CeRapiFreeBuffer function.

324 Windows CE Programmer's Guide

Handling RAPI Errors
In addition to errors associated with their non-RAPI counterparts, RAPI functions
can fail because of RAPI-re1ated errors. Network errors, for example, will need to
be communicated back to the calling application.

RAPI functions that fail due to a RAPI-related error will return the error value
defined for their Win32-based counterpart. To distinguish between RAPI and non­
RAPI errors, use either the CeRapiGetError function or the CeGetLastError
function. To determine if a function failed because of RAPI errors, call
CeRapiGetError. To determine if a function failed because of non-RAPI errors,
call CeGetLastError, which works the same as the GetLastError function does
on Windows-based platforms.

Sample RAPI Program
The following code example shows the basics of initializing the RAPI client,
making calls, and handling errors.

#include <stdio.h>
#include <rapi .h>
#include <string.h>

void PrintDirectory(LPWSTR Path, UINT Indent)
{

if (! Path
return;

DWORD foundCount;
LPCE_FIND_DATA findDataArray;

WCHAR searchPath[MAX_PATH];
wcscpy(searchPath, Path);
wcscat(searchPath, L"*");

if (!CeFindAllFiles(searchPath,

{

FAF_ATTRIBUTES FAF_NAME,
&foundCount,
&findDataArray

printf("*** CeFindAllFiles failed. ***\n");

Chapter 17 Invoking Functions from a Desktop Computer 325

if CeGetLastError()!- ERROR_SUCCESS)
printf("failure occurred on the HPC funttion\n");

return;
}

if (! foundCount)
{

}

for (UINT indCount = 0 ; indCount < Indent indCount++)
printf(" ");

printf("No files found.\n");
return;

for (UINT i = 0 ; i < found Count ; i++
{

for (UINT indCount = 0 ; indCount < Indent indCount++)
printf(" ");

wprintf(findDataArray[i].cFileName);
printf("\n");

if (findDataArray[i].dwFileAttributes &
FILE_ATTRIBUTE_DIRECTORY)

}

{

}

}

WCHAR newPath[MAX_PATH];

wcscpy(newPath. Path);
wcscat(newPath. findDataArray[i].cFileName);
wcscat(newPath. L"\\");
PrintDirectory(newPath. Indent + 1);

CeRapiFreeBuffer(findDataArray)

void main()
{

}

HRESULT hr = CeRapilnit();
if (FAILED(hr))
{

}

printf("*** CeRapiInit() failed. ***\n");
return;

PrintDirectory(L"\\". 0);

CeRapiUninit() ;

CHAPTER 18

Receiving Connection Notification

There are two methods to register the desktop application:

• Registry-based notification using command lines that are registered in the
system registry.

327

• COM interface-based notification using two Component Object Model (COM)
interfaces, one implemented by the connection manager and the other by the
application, to perform the registration.

Registry-Based Notification
In registry-based notification, an application places a command line in the desktop
system registry in one of two keys. When the event specified by the key occurs,
the command line is executed. Registry-based notification is appropriate for
applications that do not need some control of the connection manager nor the
ability to register and unregister for connection notifications.

The keys used in registry-based notification are HKEY_LOCAL_MACHlNE
\sOFTW ARE\Microsoft\ Windows CE Services\AutoStartOnConnect and
AutoStartOnDisconnect. When a Windows CE-based device is connected to a
desktop computer, the command line under AutoStartOnConnect is executed.
Likewise, when the device is disconnected, the command line under
AutoStartOnDisconnect is executed.

~ To register an application for automatic execution

1. Construct a named value that uniquely identifies the application.
It should include a company and product name-for example,
MicrosoftHPCExplorerAutoConnect. Enter the named value under the
appropriate key, either AutoStartOnConnect or AutoStartOnDisconnect.

2. Define the named value as the application that is to be executed. Include
command line arguments.

328 Windows CE Programmer's Guide

The following registry editor (.reg) file shows how to register a command line
for both AutoStartOnConnect and AutoStartOnDisconnect. In this example,
when the Windows CE-based device is connected, Notepad.exe is started with
a command line argument of c:\contig.sys. When the device is disconnected,
Notepad.exe is started with a command line argument of c:\autoexec.bat.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\AutoStartOnConnect]
"MicrosoftAutoConnectSample"-"notepad c:\\config.sys"
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\AutoStartOnDisconnect]
"MicrosoftAutoDisconnectSample"="notepad c:\\autoexec.bat"

COM Interface-Based Notification
The second method you can use to register a desktop application is COM
interface-based notification. In this method, two COM interfaces, IDccMan and
IDccManSink, are used to register an application in the desktop registry. The
Windows CE Services connection manager implements the IDccMan interface,
while the application implements the IDccManSink interface. Although the
COM interface-based notification method is more complex than registry-based
notification, by using it you get some control of the connection manager and the
ability, to register and unregister for connection notifications.

The Windows CE Services connection manager, which resides on the desktop,
displays an icon next to the clock in the taskbar when the Windows CE-based
device is connected or is waiting to be connected to the desktop computer. This
icon-two terminals with a connecting cable-indicates the connection status.
By right-clicking the icon you can start Windows CE Explorer.

Notification and Unregistration Procedures
The notification process follows the same basic steps for connection and
disconnection of the Windows CE-based device. The following procedure
assumes that the IDccMan and IDccManSink interfaces have been implemented.

1. Initialize the COM library and register the application for the
appropriate event.

2. Connect or disconnect the Windows CE-based device.

3. Perform the application processing.

Chapter 18 Receiving Connection Notification 329

The Connection Notification Client sample program shows several connection
notification scenarios, including a new remote connect, a disconnect, and a
reconnect. To see the actual sequence of interface method calls for any of these
scenarios, build and run the program. Then, view the Notification Messages list
box output in the Connection Notification Test dialog box. For a description of
this sample, see "Windows CE Sample Applications" in the online Help.

~ To receive notification when the Windows CE-based device connects to a
desktop computer

1. Initialize the COM library and register with the Windows CE Services
connection manager.

a. Call the COM function Colnitialize to initialize the Component
Object library.

b. Call the COM function CoCreateInstance with the DccMan class
identifier (CLSID _DccMan) and IDccMan interface identifier
(IID_IDccMan) and receive a pointer to the IDccMan interface. For
more information on CLSID _DccMan and lID _IDccMan, see
"Registering the IDccMan Class Identifier" later in this chapter.

c. Call the IDccMan::Advise method, which provides the connection
manager with a pointer to the IDccManSink interface that you
implemented. It also registers the application with the connection manager.

d. The Windows CE Services connection manager calls the
IDccManSink::OnLogInactive method, notifying the application
that there is no connection between the desktop computer and the
mobile device.

2. Establish the connection between the desktop and the mobile device.

a. The Windows CE Services connection manager calls the
IDccManSink::OnLogListen method. Then, it waits for the remote
connection services for both the desktop computer and the Windows CE­
based device to respond. Until they are both running, the connection
manager will not proceed.

b. For Windows 95-based systems only, the connection manager calls the
IDccManSink: :OnLogAnswered method when the connection manager
has detected the communications interface.

c. The Windows CE Services connection manager calls the
IDccManSink: :OnLogActive method when the connection is
established between the Windows CE-based device and Windows CE
Services connection manager.

d. The Windows CE Services connection manager calls the
IDccManSink::OnLoglpAddr method, providing the IP
address that it obtained for the communications socket.

330 Windows CE Programmer's Guide

Note Only when the IDccManSink::OnLoglpAddr notification occurs is the
connection completely established.

3. Perform the desired processing in the application, which can include
processing on the desktop, remote processing on the Windows CE-based
device using remote application programming interface (RAPI), or calling the
IDccMan methods. However, the application should wait to initialize RAPI,
using CeRapiInit, until the IDccManSink: :OnLogActive notification is
received. This ensures that a connection is established between the desktop
computer and the device.

~ To receive notification when the Windows CE-based device disconnects from
the desktop

1. Initialize the COM library and register the application, as described in the
previous section.

2. Disconnect the device from the desktop computer. Windows CE Services
notifies the application when the desktop computer and device are
disconnected by calling the IDccManSink: :OnLogDisconnection method.

3. Perform the desired processing in the application. Because there is no
connection to the device, this processing can only take place on the
desktop computer.

Notification when Reestablishing a Remote Connection
If a connection was established, but then was disconnected by the desktop
computer or the Windows CE-based device, the IDccMan: :OnLogActive
notification occurs when the connection is reestablished.

When an application calls the IDccMan: :ShowCommSetting function and
the OK button is clicked in the Communications Properties dialog box, the
following notification sequence occurs:

1. IDccManSink::OnLogListen

2. IDccManSink: :OnLogDisconnection

3. IDccManSink::OnLoglnactive

4. IDccManSink: :OnLogListen

If instead the Cancel button is clicked in the dialog box, no notification is sent
and a Listen state is maintained.

The Connection Notification Client source code uses the IDccMan interface and
implements the IDccManSink interface.

Chapter 18 Receiving Connection Notification 331

Unregistering an Application
One of the advantages to using the COM interface-based notification process is
that it allows an application to unregister itself from being notified. This might
be helpful when an application needs to run only once.

~ To unregister an application from being notified

1. Call IDccMan::Unadvise, which releases the memory associated with the
IDccManSink interface.

2. Call IDccMan::Release, which releases the IDccMan object.

3. Call CoUninitialize to perform any OLE cleanup. Note that a call to
CoUninitialize is required for each successful call to Colnitialize.

Registering the IDccMan Class Identifier
As mentioned earlier, both the DccMan class identifier, CLSID_DccMan,
and the IDccMan interface identifier, lID_IDccMan, are passed in the call
to CoCreateinstance. Because the Windows CE Services setup application
registers CLSID _DccMan, your application only needs to register lID _IDccMan.

The following sample registry file shows the IDccMan class identifier being
initialized in the registry.

REGEDIT4
[HKEY_CLASSES_ROOT\CLSID\499c0c20-A766-11cf-8011-00A0c90A8F78]
@="Connection Manager"

[HKEY_CLASSES_ROOT\CLSID\499c0c20-A766-11cf-8011- /
00A0c90A8F78\InprocServer32]

@="C:\\Windows\\System\\Rapi .dll"
"Thr;ead i ngMode 1 "=" Apa rtment"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\499c0c20-A766-11cf-8011- /
00A0c90A8F78]

@="Connection Manager"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\499c0c20-A766-11cf-8011- /
00A0c90A8F78\InprocServer32]

@="C:\\Windows\\System\\Rapi .dll"
"ThreadingModel" = "Apartment"

CHAPTER 19

Transferring Files

A file filter is a dynamic-link library (DLL) that controls the transfer of data
between the desktop computer and the Windows CE-based device. File filters
are used by the Windows CE Services application on the desktop computer to
automatically convert files as they are transferred.

333

File formats used by the Windows CE operating system and Windows CE-based
applications are generally different from those of the corresponding Windows­
based applications. For example, Pocket Word does not support OLE compound
files. Windows CE Services automatically adjusts file formats as files are
transferred between the desktop computer and the Windows CE-based device.

Some of the common filters provided with Windows CE Services include:

• Pocket Word (.pwd) to Microsoft® Word (.doc)

• Microsoft Word (.doc) to Pocket Word (.pwd)

• Pocket Excel (.pxl) to Microsoft® Excel 5.0 (.xls)

• Microsoft Excel (.xls) to Pocket Excel (.pxl)

• Windows bitmap (.bmp) to Windows CE 4-colorbitmap (.2bp)

You can extend the file-filtering capability of Windows CE Services by defining
your own application-specific filters. This section describes file filters and the
interfaces used to create them.

Implementing a file filter is similar for importing and exporting files. The only
differences are in the registry settings and in how the body of the file filter-the
converter function-changes data. The examples in this section demonstrate the
procedure for importing files, but typically you would write a converter function
that handles both importing and exporting, using dual registry settings that
indicate both the import and export functionality.

334 Windows CE Programmer's Guide

Note The words "importing" and "exporting" in this chapter are from the
perspective of the Windows CE-based device. Thus, importing a file with a file
filter transfers a file from the desktop computer to the device, whereas exporting a
file with a file filter transfers a file from the device to the desktop.

Registering File Types and File Filters
Windows CE Services uses the registry entries to determine which conversions
are available for a given file type and how to invoke the filter that supports the
conversion. For this reason, you must register each file type and file filter properly
using the following procedure.

~ To register file types and their filters

1. Register the file extension type.

2. Generate a class identifier (CLSID) for the file filter.

3. Register the file filter.

The following sections describe each step in detail.

Note CEUTIL, a utility DLL, has functions that are especially helpful when
dealing with the desktop registry entries for Windows CE Services. For
information about CEUTIL, see Chapter 21, "Installing and Managing
Applications."

Registering a File Extension Type
Windows CE Explorer, like Windows Explorer, allows you to customize a
type name, as displayed in the details view of Explorer, and an icon for
any file extension, for example, .pwd. File filters must be registered under
HKEY _CLASSES_ROOT.

The following is the structure ofHKEY_CLASSES_ROOT:

HKEY_CLASSES_ROOT\.<file extension>
\(Default) = <Class Name>

HKEY_CLASSES_ROOT\<Class Name>
\(Default) = <Name to be displayed in the "Type" column of Explorer>
\DefaultIcon = <filename or index of the icon for this type>

Chapter 19 Transferring Files 335

Generating a Class Identifier for a File Filter
Every file filter must be given a unique CLSID, which identifies class objects to
OLE. CLSIDs are universally unique identifiers (UUIDs), also called globally
unique identifiers (GUIDs). The file filter's CLSID must be included in your
application and it must be registered with the operating system when your
application is installed.

If the file filter supports both importing and exporting, a unique CLSID must be
associated with each file filter that is to be registered for the respective import
and export registry setting.

The GUID Generator tool lets you generate a GUID that you can use to identify
your file filter. A GUID Generator application, named Guidgen.exe, is provided
with Microsoft Visual C++. The GUID Generator calls the CoCreateGuid
function to generate a new GUID. It also lets you copy the GUID to the
clipboard for insertion into your application's source code using one of the
following formats:

• IMPLEMENT_OLECREATE macro format

Defined in an IMPLEMENT_OLECREATE macro, which
allows instances of a CCmdTarget-derived class to be created
by Automation clients. For example:

II {CA761230-ED42-11CE-BACD-00AA0057B223}
IMPLEMENT_OLECREATE«<class». «external_name».
0xca761230. 0xed42. 0xl1ce. 0xba. 0xcd. 0x0. 0xaa.
0x0. 0x57. 0xb2. 0x23);

• DEFINE_GUID macro format

Defined in an IMPLEMENT_OLECREATE macro, which is included
with Microsoft Visual C++ in the file Afxdisip.h. It allows instances of a
CCmdTarget-derived class to be created by Automation clients. For example:

II {CA761230-ED42-11CE-BACD-00AA0057B223}
DEFINE_GUID«<name».
0xca761230. 0xed42. 0xllce. 0xba. 0xcd. 0x0. 0xaa. 0x0. 0x57. 0xb2.
0x23) ;

• Statically allocated structure format

Declared as a statically allocated structure. For example:

II {CA761232-ED42-11CE-BACD-00AA0057B223}
static canst GUID «name» = { 0xca761232. 0xed42. 0xl1ce.
{ 0xba. 0xcd. 0x0. 0xaa. 0x0. 0x57. 0xb2. 0x23 } };

336 Windows CE Programmer's Guide

• Registry entry format

Specified in a form suitable for registry entries or registry editor scripts.
For example:

{CA761233-ED42-11CE-BACD-00AA0057B223}

Registering a File Filter
A file filter is registered by placing its CLSID in two locations. The first place
is under the file type's extension key in the InstalledFilters subkey. This
registration associates the file filter with the file type it converts. The other place
to register a file filter is under the HKEY_CLASSES_ROOT\CLSID key. This
registration provides information on the file filter's capabilities and its DLL.

Optionally, a file filter can be registered under the file type's extension key as the
Defaultlmport or DefaultExport named value. As the names imply, these values
define the default file filters for the file type.

Each key under HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\
Windows CE Services\Filters is the name of a file extension. This is called the
file type's extension key. Under each extension key is the InstalledFilters subkey,
which contains the CLSID of each file filter that can convert this file type. The
CLSID must identify an OLE Component Object Model (COM) object that is
used for the conversion. The filters that are registered under the InstalledFilters
subkey will be listed in the Windows CE Services user interface as filter options.
Whichever file filter is also listed under the extension key as the Defaultlmport
or DefaultExport value will be shown as the default.

Note Any filter defined as the Defaultlmport or DefaultExport named value
must be an InstalledFilters value also.

The following is the structure of the Filters key and the InstalledFilters subkey.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters

\.<file extension>
[Defaultlmport = <Default import filter CLSID>]
[DefaultExport = <Default export filter CLSID>]
\InstalledFilters

[<clsidl>]

[more CLSID's for this extension]

[more extensions]

Chapter 19 Transferring Files 337

The HKEY_CLASSES_ROOT\CLSID key gives basic information
concerning file filters. Each file filter that has been identified in the
HKEY _LOCAL_MACHINE\sOFTW ARE\Microsoft\ Windows CE
Services\Filters key must be registered in this key. The following is the
key's structure and its subkeys.

HKEY_CLASSES_ROOT\CLSID

\<clsid>
\(Default) = <Description in "Edit Conversion Settings" listbox>
\DefaultIcon = <filename.index for the icon for this type>
\InProcServer32 = <filename of the DLL that handles his type>

ThreadingModel = Apartment
\PegasusFi lter

[Import]
[HasOptions]
Description = <String to display in the conversion dialog>
NewExtension = <extension of converted file>

\ ... [more clsids for filters]

The clsid key is a named value that is the CLSID of the registered file filter. This
key contains the following subkeys:

• Defaultlcon

Defines the icon name string or icon resource identifier for the icon
associated with the file filter DLL.

• InProcServer32

Identifies the file filter DLL using the default value, and defines the
Apartment model capabilities of the file filter in the ThreadingModel
named value.

• PegasusFilter

Provides information on the specific capabilities of the file filer. Possible
named values for this key are described in the following table.

Named Value

Import

HasOptions

Description

If this named value exists, the conversion type is for importing
files from the desktop computer to the Windows CE-based
device. Otherwise, the conversion type is for exporting files
from the desktop computer to the Windows CE-based device.

If this named value exists, the file filter supports the
I CeFileFilter: :FilterOptions method.

338 Windows CE Programmer's Guide

Named Value

Description

NewExtension

Description

The data for this named value is a string that describes the
conversion. Windows CE Services displays this text on the
property sheets displayed by selecting the Device~ Desktop or
Desktop~ Device tab control selections from the File
Conversion Properties dialog box and then clicking the Edit
button to display the Edit Conversion Settings dialog box.

For example, if the Import named value exists, then, on the
Desktop~ Device property sheet, the data value defined by the
Description named value will be displayed under the file
conversions details "Convert to HPC files of the type."

Defines the extension of the file that will be created on the
destination device.

Sample File Filter Registry Entry
The following is a sample registry editor (.reg) file used to register the Bitmap
Image file filter converter. It is to be used when a bitmap file is imported from a
desktop computer to a Windows CE-based device. The sample file can be used
to convert a bitmap file with a .bmp format to a bitmap file with the .2bp format
used by Windows CEo The last three entries register the .2bp file extension to be
displayed with a specific icon and name.

Note The 2bp.dll file converter is registered and installed when Windows CE
Services is installed on the desktop computer.

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters\.bmp]
"DefaultImport"-"{DA01ED80-97E8-11cf-8011-00A0C90A8F78}"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE
Services\Filters\.bmp\InstalledFilters]
"{DA01ED80-97E8-11cf-8011-00A0C90A8F78}"=""

[HKEY_CLASSES_ROOT\CLSID\{DA01ED80-97E8-11cf-8011-00A0C90A8F78}]
@="Bitmap Image"

[HKEY_CLASSES_ROOT\CLSID\{DA01ED80-97E8-11cf-8011-
00A0C90A8F78}\DefaultIcon]
@="c:\Program Files\Windows CE Services\2bp.dll.-1000"

Chapter 19 Transferring Files 339

[HKEY_CLASSES_ROOT\CLSID\{DA01ED80-97E8-11cf-8011-
00A0C90A8F78}\InProcServer32]
@="2bp.dll"
"ThreadingModel"="Apartment"

[HKEY_CLASSES_ROOT\CLSID\{DA01ED80-97E8-11cf-8011-
00A0C90A8F78}\PegasusFilter]
"Import"=
"Description"="Bitmap Image."
"NewExtension"="2bp"

[HKEY_CLASSES_ROOT\.2bp]
@="2bpfile"

[HKEY_CLASSES_ROOT\2bpfile]
@="Bitmap Image"

[HKEY_CLASSES_ROOT\2bpfile\DefaultIcon]
@="c:\Program Files\Windows CE Services\minshell.dll. -2025"

Implementing and Using a File Filter
The Windows CE SDK includes a sample file filter named Copyfilt that imports
a binary file (.bin) from a desktop computer to a binary file (.pbn) on a Windows
CE-based device. The Copyfilt sample file filter demonstrates basic operations for
implementing a file filter, which are described in the following procedure.

~ To implement a file filter

1. Register the file filter DLL.

See "Registering a File Filter" earlier in this chapter.

2. Implement the ICeFileFilter interface and methods.

For a list of file filter interfaces, see the appendix "Lists of Functions
and Interfaces."

3. Windows CE Services calls the Querylnterface method for the file filter's
ICeFileFilterOptions interface. If this interface is available, it then calls the
ICeFileFilterOptions::SetFilterOptions method with a correctly initialized
CFF _CONVERT OPTIONS structure. The bNoModalUI
member specifies whether the converter is allowed to bring up modal VI
while performing the conversion.

For a file filter that includes selectable conversion options, the
ICeFileFilter::FilterOptions method should be implemented. This allows
a user to select among the conversion options supported by the file filter.

340 Windows CE Programmer's Guide

~ To use a file filter

1. The user uses the drag-and-drop method to transfer a file between Windows
CE Explorer on the desktop and on the device.

2. Windows CE Services prompts the user for a conversion type, using the File
Conversion Properties dialog box.

3. Windows CE Services calls the file filter's ICeFileFilter::NextConvertFile
method to perform the custom file conversion. Information about the file
conversion and about the source and destination files is passed by pointers
to the CFF_CONVERTINFO, CFF_DESTINATIONFILE, and
CFF _SOURCEFILE structures.

Within the ICeFileFilter::NextConvertFile method:

a. Call ICeFileFilterSite::OpenSourceFile to open the source file.

b. Call ICeFileFilterSite::OpenDestinationFile to open the destination file.

c. Read data from the stream file that was opened using the
OpenSourceFile method.

d. Convert the data. This can include ISV-developed code and RAPI calls.

e. Check on the status of the NextConvertFile pbCancel parameter
occasionally to ensure that the user has not aborted the conversion process.
If the conversion has been aborted, perform all cleanup operations and exit.

f. Write the converted data to the stream file that was opened using the
OpenDestinationFile method.

g. Report the progress of the file conversion by occasionally calling the
ICeFileFilterSite::ReportProgress method. Windows CE Services uses
this information to update a status bar showing the percentage completion
of the conversion. You should limit your use of this method because it can
add substantially to the conversion time.

h. Report data that is intentionally discarded during conversion by calling the
ICeFileFilterSite::ReportLoss method. Windows CE Services displays
a message with this information when the file conversion is complete.
Depending on the error format passed in the call, Windows CE Services
may call the file filter's ICeFileFilter::FormatMessage method, in order
to properly format the message.

i. Close the source file, using the ICeFileFilterSite::CloseSourceFile
method, and then close the destination file, using the
I CeFileFilterSite: : CloseDestinationFile method.

Chapter 19 Transferring Files 341

Using Remote API Calls in a File Filter
It is possible to use remote application programming interface (RAPI) calls in a
file filter. This allows use of any RAPI functions that are appropriate to your
application, such as registry or file functions.

Do not initialize RAPI in the file filter DLL by using CeRapiInit. Rather, the
NextConvertFile method should have already performed the RAPI initialization
and established a connection between the desktop computer and the Windows CE­
based device. If a RAPI call fails because there is no connection established, the
file converter should perform some type of default action rather than just failing.
For example, this could involve querying the user to select from various options.

To determine if a call failed due to a failure in the RAPI, use CeRapiGetError.
To diagnose non-RAPI related errors, use CeGetLastError.

For more information on RAPI, see Chapter 17, "Invoking Functions from a
Desktop Computer."

Filter-Defined Error Values
There are two ways that file filter errors are returned. First, the NextConvertFile
method uses the HRESULT_FROM_WIN32 macro to return an HRESULT
error value if the method fails.

But, there is a way to have an error value that is customized to your data type. The
NextConvertFile function can return a filter-defined error value in the variable
pointed to by the perr parameter. To use this method, the error value must be
defined by using the CF _DECLARE_ERROR macro defined in the Replerr.h
header file. Also, the filter DLL must include a message table that contains the
error value and a corresponding message string. When Windows CE Services gets
the filter-defined error value, it then uses the Win32 FormatMessage function to
create the error string, using ICeFileFilter::FormatMessage to check the filter
object first for the relevant string O. For more information about message tables,
see the Microsoft Platform SDK.

Implementing a Dummy File Filter
A dummy file filter gives the appearance that files are being converted without
actually implementing a file filter or performing a filter conversion. Instead, the
file is passed without any conversion whatsoever.

342 Windows CE Programmer's Guide

Implementing such a dummy filter may be desirable for a file that has a unique
file type or one that has not been registered already in the desktop registry. It
might also be useful for a file that does not need any conversion when it is
transferred between Windows Explorer on the desktop computer and Explorer
for the device.

Usually, if a file with an unregistered file type is copied to the device, the device
will display the warning No Converter Selected. This warns the user that the file
will be transferred without conversion. In this situation, implementing a dummy
filter would avoid alarming the user with the file conversion warning.

Note The No Converter Selected warning will be displayed only if the mobile
device's File Conversions Properties is set to enable file conversion. Ifthe
Enable File Conversion check box is unchecked, then the No Converter
Selected warning will not be displayed.

~ To register a dummy file filter

1. Modify HKLM\Software\Microsoft\ Windows CE Services\Filters, the
desktop computer registry key, by adding a subkey. This subkey should name
the file extension for the type of files that should be converted using the NULL
file conversion. For example, if you are converting files with extension .abc,
then you must add a subkey .abc.

2. Under the .abc subkey, create a string value named Defaultlmport that is set
to Binary Copy. This string value identifies the conversion for files with .abc
extensions that are imported from the desktop computer to the Windows CE­
based device.

3. Under the .abc subkey, create a string value named DefaultExport that is set
to Binary Copy. This identifies the conversion for files with .abc extensions
that are exported from the device to the desktop computer.

The following registry editor (.reg) file registers the example .abc dummy
file filter.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows CE Services\Filters\.abc]
"Defaultlmport"="Binary Copy"
"DefaultExport"="Binary Copy"

In this example, when a file with an .abc extension is copied between the desktop
computer and the Windows CE-based device, it will seem as though a conversion
process is taking place because you do not receive the warning No Converter
Selected from Windows CE Services. However, no filter actually is being used,
because an InstalledFilters subkey has not been added under the .abc key.

343

CHAPTER 20

Synchronizing Data

A computer user with a Windows CE-based device and a desktop computer
may need to ensure that data is the same, or synchronized, on both. For example,
when a user updates information in a personal information manager (PIM)
application, that information needs to be synchronized with Schedule+ data on
the desktop computer.

Windows CE Services provides interfaces that simplify the synchronization
process. Because it takes care of many common services, such as connectivity,
conflict resolution, and detection of changes and deletions, you need to develop
only the code for your specific data.

You use the synchronization interfaces of Windows CE Services to develop a
client and a server. The ActiveSync™ Service Provider, known as the client, has
two parts, one that resides on the Windows CE-based device and another that
resides on the desktop computer. The ActiveSync Service Manager, known as
the server, is the synchronization engine built into Windows CE Services on
the desktop computer. Together, the server and the client make up ActiveSync.
Once ActiveSync is installed and the required registry entries have been made,
user-defined data is automatically synchronized between the device and the
desktop computer.

For a sample application that implements ActiveSync for a stock portfolio, see
the Stockpor program in the SDK.

When discussing synchronization, the store is a database that holds the data to
be synchronized. An object is a logical unit of data in the store, for example,
an appointment. An object type is a name for a particular group of objects, for
example, appointment. Afolder is a logical container for an object type, for
example, all appointments in Schedule+.

344 Windows CE Programmer's Guide

Design Considerations
To develop ActiveSync for your application, you first analyze the data to be
synchronized. Define the object, the object type, the folder, the object identifier,
and the database to hold the objects. Decide on the way to compare objects and
the method for indicating that an object has changed. As you do this, keep the
following requirements in mind:

• The object definition depends entirely on your application. It could be an
appointment, an address, or some other item. The object type and the folder
depend upon the object.

• The object identifier must satisfy several criteria. It cannot change once it is
created; it cannot be reused for any other object; and it must be ordered. This
allows object identifiers to be compared. Globally unique identifiers (GUIDs),
for example, would satisfy these criteria.

• The database must accommodate the objects to be synchronized, but it can be a
flat file, a Windows CE database, or some other custom format.

• Time stamps and version numbers are common ways to indicate that an object
has changed.

Once these requirements are met, you can design and implement ActiveSync.

ActiveSync Service Provider
As mentioned earlier, the ActiveSync Service Provider, or client, that you
implement has two parts: one for the desktop' computer and one for the Windows
CE-based device. The ActiveSync Service Manager, or server, communicates
with the clients on the desktop computer and the device during synchronization.
Each client must be registered on its respective device.

Desktop Client
The desktop client is an OLE in-process (Inproc) server dynamic-link library
(DLL) that must:

• Have access to the store while synchronization is taking place.

• Be able to create, read, write, and delete any object in the store.

• Determine if an object has changed since the last time it was synchronized.

• Enumerate all objects that need to be synchronized.

Chapter 20 Synchronizing Data 345

• Be able to read an object and convert it into a series of bytes, a process
called serialization.

• Take such a series of bytes and convert them back to an object, a process
called de serialization.

~ To implement the desktop client

1. Create one GUm for the store, using the Visual C++ GUlD generator tool,
Guidgen.exe.

2. Define HREPLITEM and HREPLFLD. These handles can be simply
pointers to data structures.

3. Define HREPLOBJ, which is a generic handle that can be either
HREPLITEM or HREPLFLD.

4. Implement all methods in IReplStore.

These methods implement the following functionality:

• Initialize the store.

• Provide a folder handle for the specified object type and return a pointer to
the IReplObjHandler interface.

• Provide for management of the object types.

• Provide a way for Windows CE Services to display related information in
the main window.

• Enumerate objects for a specified object type.

5. Implement all methods in IReplObjHandler.

Windows CE Client
The Windows CE client can be a single DLL that exports the following functions:

• InitObjType, which initializes the data for an object type and, at termination,
frees allocated resources.

• GetObjTypelnfo, which gets information for an object type.

• ObjectNotify, which allows the server to prompt the Windows CE client
whether it is interested in the current change or deletion to the device's
store. Also, it sends the object identifier to the desktop client.

• ReportStatus, which is an optional function that allows the server to get
the status on the Windows CE-based platform synchronization objects.

Besides implementing the previous functions, you must also implement the
methods in IReplObjHandler. However, these methods can be stubbed, rather
than fully implemented.

346 Windows CE Programmer's Guide

Registering the ActiveSync Service Provider
For Windows CE Services to use ActiveSync, valid registry entries must exist in
the registry on both the desktop computer and on the Windows CE-based device.

Note The CEUTIL utility DLL functions are especially helpful when dealing
with desktop registry entries for Windows CEo For more information, see Chapter
21, "Installing and Managing Applications."

Registry Settings for a Desktop Computer
On the desktop computer, you must register the object type to be synchronized
and you must also register ActiveSync as an in-process server. For object-type
registration, you must enter values under HKEY _LOCAL_MACHINES
\Software\Microsoft\Windows CE Services\Services\Synchronization\Objects.
The keys under Objects are the object types to be synchronized. For each object
type, you must define five values: Default, Display Name, Plural Name, Store,
and Disabled.

The Default value can be anything; it is usually a description of the object
type. The Display Name and Plural Name are names for the object, for
example, "Appointment" and "Appointments." The Store value is the OLE
programmatic identifier, ProgID, of the store that implements the IReplStore and
IReplObjHandler interfaces. The Disabled value indicates whether the service
is shown as disabled or enabled in Windows CE Services. A non-zero value
indicates the service is disabled.

Using Schedule+ synchronization as an example, the desktop component is
Scdstore.dll. This DLL synchronizes data for five different object types:
Appointment, Contact, File, Inbox, and Task. A 32-bit OLE in-process server
implements IReplStore and various IReplObjHandler interfaces, one for each
object type. The following screen shot illustrates the desktop registry location for
synchronization objects.

~(Default]
~ Display Name

~ Plural Name

~Store
~:9.i~~~!~~::i

Desktop registry structure

Chapter 20 Synchronizing Data 347

"OutLook Appointment Object"
"Appointment' ,

"Appointments"
"MS.WinCE.OutLook"

OxOOOOOOOO (0]

You must register ActiveSync for OLE to recognize it as a valid in-process
server. To do this, you must register the ProgID, the Class ID, and the
GUID under HKEY_CLASSES_ROOT. Register the ProgID under
HKEY_CLASSES_ROO1\<ProgID>\Clsid, where the Default value of the
Clsid key is the GUID for the store; in this case, it is {a417bc 1 0-7be 1-11 ce-ad82-
00aa006ec559} .

To specify the location of the OLE in-process server, use the following
keys: HKEY_CLASSES_ROO1\Clsid\<Class ID>\lnProcServer32 and
HKEY_CLASSES_ROO1\Clsid\<Class ID>\ProgID. The Default value of
the InprocServer32 key is the full path of the 32-bit DLL that implements the
IReplStore interface. In the Schedule+ example, this is the path to Scdstore.dll.
The Default value of ProgID key is the ProgID of the store. In this example, it
is MS.WinCE.Outlook. For more information on registration, see the OLE
documentation in the Microsoft Platform SDK.

For another example of the required desktop registry keys, see the Stockpor
program in the SDK.

Registry Settings for Windows CE-Based Platforms
On the Windows CE-based platform, the registry settings are similar to
those for the desktop computer. You must register the object types and the
corresponding DLL under HKEY_LOCAL_MACHINE\Windows CE Services
\Synchronization\Objects. Under the Objects key, there is a list of keys, one key
for each object type. The only value needed is for Store, which specifies the name
of the DLL that exports the necessary functions.

Using the Schedule+ example, the Windows CE-based platform component is a
DLL named Pegobj.dll, which exports the four functions mentioned previously.

You can set these registry entries when you install your application with the
device connected. The following screen shot illustrates the Windows CE-based
device registry location for synchronization objects.

348 Windows CE Programmer's Guide

Device registry structure

For an example of the required registry keys on the Windows CE-based platform,
see the Stockpor program in the SDK.

CHAPTER 21

Installing and Managing
Applications

Windows CE uses a cabinet file to install an application on a Windows CE­
based device. A cabinet (.cab) file is composed of multiple files that have been
compressed into one. Compressing all files into one has three main benefits: it
ensures that all the files for your application are present, it prevents a partial
installation, and it allows installation from several sources, such as a desktop
computer or Web site.

349

You use CAB Wizard to generate a .cab file for your application. The Windows
CE Application Manager uses that .cab file to install the application. The
Application Manager also removes an application from the Windows CE-based
device. This chapter describes the methods and tools involved in these processes,
and it includes a checklist for troubleshooting application installations.

This chapter also describes how to manage applications by registering desktop
file filters, synchronizing services, adding custom menu items, and accessing
partnership settings.

General Procedure for Application Installation
Because the .cab files are self-contained setup packages, they are source­
independent. For example, they can be installed from a companion desktop
computer or transferred from another device using an infrared (rR) link.

~ To create the multiple device-specific .cab files for a single application

1. Create a single Win32 setup .inf file with Windows CE-specific modifications.

2. Optionally, create a Setup.dll file to provide custom control of the
installation process.

3. Start CAB Wizard with the Setup .inf file and the device-specific
application files.

350 Windows CE Programmer's Guide

~ To install an application on the Windows CE·based device from a
desktop computer

1. Create a single Application Manager initialization (.ini) file to provide
information about the application for Application Manager.

2. Create a desktop setup program using any available third-party desktop setup
program. This program will:

• Copy the multiple device-specific .cab files to the desktop computer.

• Launch the Application Manager, with the Application Manager .ini file as
a parameter.

For more information, see" .inf File" and "Setup.dll File" later in this chapter.

CAB Wizard
The CAB Wizard creates a Windows CE-specific .cab file using the Win32
Setup information (.int) file, an optional Setup.dll file created by an independent
software vendor (ISV), and the application files.

The command-line syntax for CAB Wizard is:

cabwiz.exe "inf-file" [ldest dest-directory] [lerr error-file] [lcpu cpu-type
[cpu-type]]

Note The /cpu parameter, followed by multiple CPU values, must be the last
qualifier in the command line.

The Windows CE SDK files that must be installed in the same directory on the
desktop computer are: Cabwiz.exe, Makecab.exe, and Cabwiz.ddf. Cabwiz.exe
must be called with its full path in order to run correctly.

inf-file
Absolute full path for the setup .inf file.

dest-directory
Absolute destination directory for the.cab files. If no directory is specified, the
.cab files are created in the directory of inf-file.

errorjile
File name for a log file that contains all warnings and errors encountered
during the compilation of the .cab files. If no file name is specified, errors are
displayed in message boxes. If a file name is used, CAB Wizard runs without
the user interface (UI); this is useful for automated builds.

.inf File

Chapter 21 Installing and Managing Applications 351

cpu-type
Creates a .cab file for each processor tag that you specify. A processor tag
is a label used in the Win32 setup .inf file to differentiate between different
processor types.

The following command line example creates .cab files for the SH3 and MIPS
chips, assuming that the Win32 setup ,inf file contains the SH3 and MIPS tags:

cabwiz.exe "c:\myfile.inf" /err myfile.err /cpu sh3 mips

CAB Wizard can create multiple .cab files with a single setup .inf file and
multiple application binaries. This is useful for creating multiple .cab files, each
one for a specific processor type. To indicate information for a specific processor,
append an extension. describing the processor, known as a processor tag, to these
section names: CEDevice, DefaultInstall, SourceDisksNames, and
SourceDisksFiles. For example:

[DefaultInstall]
[DefaultInstall.sh3]
[DefaultInstall.mips]

;shared by all platforms. processed first
;specific to the SH3 chip
;specific to the MIPS chip

Information in sections without an extension is valid, unless it is specifically
overridden by information in a section with an extension. The exception to
this is the UnsupportedPlatforms key in the CEDevice section, described later.

Version

[Version]
Signature = "signature-name"
Provider = "INF-creator"
CESignature = "$Windows CE$"

signature-name
Must be "$Windows NT$" or "$Windows 95$."

INF-creator
The company name of the application. For example:

Provider = "Microsoft"

352 Windows CE Programmer's Guide

CEStrings

This is a section specific to Windows CE that specifies string substitutions for the
application name and the default install directory.

[CEStrings]
AppName = app-name

InstallDir default-install-dir

app-name
Name of the application. Other instances of %AppName% in the .inf file will
be replaced with this string value.

default-install-dir
Default installation directory on the device. Other instances of %InstallDir% in
the .inf file will be replaced with this string value.

For example, to have AppName mean "Game Pack," and to have InstallDir mean
%CEI %\%AppName%, use this code:

[CEStrings]
AppName="Game Pack"
InstallDir=%CEl%\%AppName%

Strings

[Strings]
string-key = value
[string-key = value]

CEDevice

[CEDevice]
[ProcessorType =[processor-type]]
[UnsupportedPlatforms = platform-family-name[,platform-family-name]]
[VersionMin [major-version.minor-version]]
[VersionMax [major-version.minor-version]]
[BuildMin [build-number]]
[BuildMax [build-number]]

All keys are optional. If a key is non-existent, no checking is performed. If a
key exists but there is no data, then no checking is performed. The exception is
UnsupportedPlatforms; if this key exists but there is no data, the previous value
is not overridden.

Chapter 21 Installing and Managing Applications 353

processor-type
Value returned by SYSTEMINFO.dwProcessorType. For example, the value
for the SH3 CPU is 10003 and the MIPS CPU is 4000.

platform-family-name
List of platform family names known to be unsupported. If the name specified
in [CEDevice.xxx] is different from that in [CEDevice], both platform family
name values are unsupported for processor "xxx." That is, the list of specific
unsupported platform family names is appended to the previous list of
unsupported platform family names. Application Manager will not display the
application for an unsupported platform. Also, the user will be warned during
setup if the .cab file is copied to an unsupported device. For example:

[CEDevice]
UnsupportedPlatforms = p7tfrml
[CEDevice.SH3]
UnsupportedPlatforms =

minor-version or major-version

p7tfrml is unsupported

p7tfrml is still unsupported

Numeric value returned by OSVERSIONINFO.dwVersionMinor and
OSVERSIONINFO.dwVersionMajor. The .cab file is valid for the currently
connected device, if the version of the currently connected device is less than
or equal to VersionMax and also greater than or equal to VersionMin.

build-number
Numeric value returned by OSVERSIONINFO.dwBuildNumber. The .cab
file is valid for the currently connected device, if the version of the currently
connected device is less than or equal to BuildMax and also greater than or
equal to BuildMin.

The following code example shows three CEDevice sections, one that gives
basic information for any \cpu and two that are specific to the SH3 and the
MIPS processor chips.

[CEDevice] ; a "template" for all platforms
UnsupportedPlatforms - p7tfrml ; does not support p7tfrml
; the following specifies version 1.0 devices only
VersionMin - 1.0
VersionMax = 1.0

[CEDevice.SH3] ; inherits all [CEDevice] settings
; this will create a CAB file specific for "SH3" devices
ProcessorType = 10003 the SH3 CAB file is only valid for the
SH3 processors
UnsupportedPlatforms - p7tfrml is still unsupported
; the following overrides the version settings so that no version
checking is performed
VersionMin =
VersionMax -

354 Windows CE Programmer's Guide

[CEDevice.MIPS]
; this will create a
ProcessorType - 4000

; inherits all [CEDevice] settings
CAB file specific for "MIPS" devices

the "MIPS" CAB file is only valid for
the MIPS processor
UnsupportedPlatforms -p7tfrm2
for the "MIPS" CAB file

p7tfrml and p7tfrm2 are unsupported

Note To create the two CPU-specific .cab files for the setup .inffile in the
previous example, CAB Wizard must be run with the parameter /cpu sh3 mips.

Defaultlnstall

[Default[nstall]
Copyfiles=copyfi7e-7ist-section[.copyfi7e-7ist-section]
AddReg=add-registry-section[.add-registry-section]
[CEShortcuts-shortcut-7ist-section[.shortcut-7ist-section]]
[CESetupDLL-setup-DLL]
[CESelfRegister=se7f-reg-DLL-fj7ename[.se7f-reg-DLL-fi7ename]

shortcut-List-section

new key
new key
new key

String that identifies one more section that defines shortcuts to a file; see the
CEShortcuts description later in this section.

setup-DLL
Optimal string that specifies a Setup.dll. It is written by the ISV and contains
customized functions for operations during installation and removal of the
application. The file must be specified in the [SourceDisksFiles] section. For
more information, see the associated description later in this section.

self-reg-DLL-filename
String that identifies files that self-register, exporting the COM functions
DllRegisterServer and DllUnregisterServer. You must specify the files
in the SourceDiskFiles section.

If installation on the device fails to call the file's exported DllRegisterServer
function, then the file's exported DllUnregisterServer function will not be
called during uninstallation.

SourceDisksNames

[SourceDisksNames]
disk-ordina7- ,disk-7abe7"path
[disk-ordina7= ,disk-7abe7"path]

SourceDisksFiles

[SourceDisksFiles]
fi7ename-disk_number[,subdir]
[fi7ename=disk_number[,subdir]]

Chapter 21 Installing and Managing Applications 355

DestinationDirs

[DestinationDirs]
file-list-section - 0.subdir
[file-list-section - 0.subdirJ
[DefaultDestDir-0.subdir]

Note Windows CE does not support directory identifiers (DirID).

Subdir
String that identifies the destination directory. String substitutions supported
by Windows CE are described in the following table. These can only be used
for the beginning of the path.

String

%CEl%

%CE2%

%CE3%

%CE4%

%CE5%

%CE6%

%CE7%

%CE8%

%CE9%

%CElO%

%CEll%

%CE12%

%CE13%

%CE14%

%CE15%

%CE16%

%CE17%

For example:

Replacement value

\Program Files

\Windows

\ Windows\Desktop

\ Windows\Startup

\My Documents

\Program Files\Accessories

\Program Files\Communication

\Program Files\Games

\Program Files\Pocket Outlook

\Program Files\Office

\ Windows\Programs

\Windows\Programs\Accessories

\Windows\Programs\Communications

\ Windows\Programs\Games

\ Windows\Fonts

\ Windows\Recent

\ Windows\Favorites

[DestinationDirs]
Files.Common = 0.%CEl%\My Subdir
Files.Shared = 0.%CE2%

:\Program Files\My Subdir
:\Windows

356 Windows CE Programmer's Guide

CopyFiles

[copyfile-list-section]
destination-file-name,[source-file-name],[,flags]
[destination-file-name,[source-file-name],[,flags]]

Source-file-name is optional if it is the same as destination-file-name.

Flags
Numeric value that specifies an action to be done while copying files. Values
supported by Windows CE are described in the following table.

Flag Value

COPYFLG_NOSKIP OxOOOOO002

COPYFLG_REPLACEONL Y OxOOOO0400

Ox40000000

Ox80000000

AddReg

[add-registry-section]

Description

Wam user if attempt is made
to skip a file after an error
has occurred.

Do not allow user to skip
copying a fIle.

Do not overwrite an
existing file in the
destination directory.

Copy source file to the
destination directory only if
the fIle is already in the
destination directory.

Do not copy if target is
newer.

Ignore date while overwriting
the target fIle.

Reference when a shared
DLL is counted.

registry-root-string , subkeY,[value-name], flags~ value[,value]
[registry-root-string, subkey,[value-name], flags, value[,value]]

Chapter 21 Installing and Managing Applications 357

registry-root-strings
String that specifies the registry root location. Values supported by Windows
CE are described in the following table.

Root string Description

HKCR

HKCU

HKLM

Same as HKEY_CLASSES_ROOT.

SameasHKEY_CURRENT_USER.

Same as HKEY _LOCAL_MACHINE.

value-name
Registry value name. If empty, the registry value name "(default)" is used.

flags
Numeric value that specifies information about the registry key. Values
supported by Window CE are described in the following table.

Flag Value

FLG_ADDREG_NOCLOBBER Ox00000002

FLG_ADDREG_TYPE_SZ OxOOOOOOOO

FLG_ADDREG_TYPE_MULTCSZ OxOOOlOOOO

OxOOOOOOOl

OxOOO 1 000 1

Description

If the registry key exists, do not
overwrite it. This flag can be
used in combination with any of
the flags later in this table.

Registry data type REG_SZ.

Registry data type
REG_MULTCSZ. The value
field that follows can be a list of
strings separated by commas.

Registry data type
REG_BINARY. The value field
that follows must be a list of
numeric values separated by
commas, one byte per field, and
must not use the Ox hex prefix.

Data type REG_DWORD. Only
the noncompatible format in the
Win32 Setup .inf documentation
is supported.

358 Windows CE Programmer's Guide

The following code example shows how the AddReg section is used.

[RegSection]
: the following uses (FLG_ADDREG_TYPE_MULTI_SZ I FLG_ADDREG_NOCLOBBER)
to create a multi-string with the "noclobber" flag

HKLM.Software\~icrosoft\Games.Title.0x00010002. "Game"."Pack"
: the following uses FLG_ADDREG_TPE_BINARY to create an 8-byte binary
registry value

HKLM.Software\Microsoft\Games.Data.0x00000001.2.F.B.3.0.A.6.D
: the following uses (FLG_ADDREG_TYPE_DWORD I FLG_ADDREG_NOCLOBBER) to
create a dword with the "no clobber" flag

HKLM.Software\Microsoft\Games.HighScore.0x00010003.456

CEShortcuts

This is a Windows CE-specific section.

[shortcut-list-section]

shortcut-file-name.shortcut-type-flag.target-file/path[.standard­
destination-path]
[shortcut-file-name.shortcut-type-flag.target-file/path[.standard­
destination-path]]

shortcut-file-name
String that identifies the shortcut name. It does not require the .Ink extension.

shortcut-type-flag
Numeric value. Zero or empty represents a shortcut to a file; any non-zero
numeric value represents a shortcut to a folder.

target-file/path ~
String value that specifies the destination location. For a file, use the target file
name, for example, MyApp.exe, that must be defined in a file copy list. For a
path, use afile-list-section name defined in [DestinationDirs], for example,
DefaultDestDir, or the %InstalIDir% string.

standard-destination-path
Optional string value. A standard %CEx% path or %InstalIDir%. If no value
is specified, the shortcut-list-section name of the current section or the
"DefaultDestDir" from the [DestinationDirs] section is used.

Chapter 21 Installing and Managing Applications 359

The following code example shows how the CEShortcuts section is used.

[DestinationDirs]
file_list = 0%CE2%
Links = 0%CE3%
DefaultDestDir = 0%InstallDir%
[file_list]
"my final app.exe",app.exe,,0
[L inks]

shortcut name is "file 1"
; thi sis a shortcut to a fil e; the ta rget is "my fi na 1 app. exe"
; shortcut is created in the folder used in "[DestinationDirs] Links"
section, which is currently %CE3%
"file 1",0,"my final app.exe"

;shortcut name is "file2"
;this is a shortcut to a file; the target is "my final app.exe"
;shortcut is created in the %InstallDir% folder
"file 2",0,"my final app.exe",%InstallDir%

;shortcut name is "path 1"
;this is a shortcut to a folder
;the shortcut target is the folder used in "[DestinationDirs]
DefaultDestDir" section, which is currently %I~stallDir%
;shortcut is created in the folder used in "[DestinationDirs] Links"
section which is currently %CE3%
"path 1",I,DefaultDestDir

;shortcut name is "path 2"
;this is a shortcut to a folder
;the target is the folder used in "[DestinationDirs] Links" section
which is currently %CE3%
;shortcut is created in the %InstallDir% folder
"path 2",I,Links,%InstallDir%

Sample .inf File
[Version] ; required section
Signature = "$Windows NT$"
Provider = "Microsoft"
CESignature - "$Windows CE$"

[CEDevice.SH3]
ProcessorType - 10003

[CEDevice.MIPS]
ProcessorType = 4000

SH3 processor

MIPS processor

360 Windows CE Programmer's Guide

[DefaultInstall] required section
Add Reg = RegSettings.All
CEShortcuts - Shortcuts.All

[DefaultInstall.SH3]
CopyFiles - Files.Common, Files.SH3

[DefaultInstall.MIPS]
CopyFiles = Files.Common. Files.MIPS

[SourceDisksNames] ; required section
1 = ."Common files C:\app\common ;using an absolute path

[SourceDisksNames.SH3]
2 - ."SH3 files sh3

[SourceDisksNames.MIPS]
2 = ,"MIPS files mips

[SourceDisksFiles]
begin.wav = 1
end.wav = 1
sample.hlp - 1

[SourceDisksFiles.SH3]
sample.exe = 2

[SourceDisksFiles.MIPS]
sample.exe = 2

[DestinationDirs]

;using a relative path

;using a relative path

; required section

uses the SourceDisksNames.SH3 id of 2

uses the SourceDisksNames.MIPS id of 2

required section
\Windows\Desktop
\Windows

Shortcuts.All - 0.%CE3%
Files.Common = 0.%CE2%
Files.SH3 = 0,%InstallDir%
Files.MIPS = 0,%InstallDir%
DefaultDestDir = 0.%InstallDir%

[CEStrings] required section
AppName = My Test App
InstallDir - %CEl%\%AppName%

[Strings] optional section
reg_path = Software\Microsoft\My Test App

[Shortcuts.All]
Sample App.0.sample.exe
Sample App.0.sample.exe.%InstallDir%

uses path in DestinationDirs
path is explicitly specified

Setup.dll File

Chapter 21 Installing and Managing Applications 361

[Fil es. Common]
begin.wav ••• 0
end.wav ••• 0
Sample Help File.hlp.sample.hlp •• 0

[Files.SH3]
sample.exe ••• 0

[Files.MIPS]
sample.exe ••• 0

[RegSettings.All]

rename destination file

HKLM.%reg_path% •• 0x00000000.alpha : (default) = "alpha"
HKLM.%reg_path%.test.0x00010001.3 : test = 3
HKLM.%reg_path%\new.another.0x00010001.6 : new\another = 6

The device-specific Setup.dll file is an optional file, written by the ISV, that
enables you to perfonn custom operations during installation and removal of
your application. The file exports the following functions:

• InstalCInit is called before installation begins. You can use this function
to check the application version in a reinstall scenario and to determine if
a dependent application is present.

• Install_Exit is called after installation completes. You can use this function
to handle errors that occurred during installation of the application.

• UninstalCInit is called before uninstallation begins. You can use this
function to close the application, if it is running.

• Uninstall_Exit is called after uninstallation completes. You can use
this function to save database data into a file and delete the database,
telling the user where the user data files are stored and how to reinstall
the application.

Note Once the Setup.dll file is incorporated into the .cab file, it is renamed. You
cannot make any assumptions on file name or location of this DLL on the device.
Thus, you must specify the full path and file name when you write these
functions. Also, you must include the SDK public header file, Ce_setup.h.

362 Windows CE Programmer's Guide

Application Manager
The Application Manager program, CeAppMgr.exe, resides on a user's
desktop computer. It is responsible for adding and removing applications on
the Windows CE-based device, as well as deleting the application files from
the desktop computer.

~ To register an application with Application Manager

1. Copy the application .cab file to the desktop computer.

2. Copy the Application Manager .ini file for the application to the
desktop computer.

3. Run Application Manager with the .ini file as a parameter.

This process can be done using a third-party desktop computer installation
program. With this approach, Application Manager automatically installs the
application on the Windows CE-based device. If the Windows CE device is not
connected, Application Manager notes that the application has not been installed.
When the device is subsequently connected, Application Manager automatically
completes the installation.

The command line syntax for the Application Manager, CeAppMgr.exe is:

CEAppMgr.exe [/report] "CEAppMgr-INI-file" ["CEAppMgr-INI-file"]

CEAppMgr-INI-file
Full file name and path of the CEAppMgr .ini file for a single application. If
the application has multiple components, you can run Application Manager
once with the multiple .ini files, one for each component.

report
Optional parameter that provides information concerning the installation
process in the event of problems. This parameter should not be included
in the final setup program.

You can extract the full file name and path of Application Manager from the
default registry value of the registry key: HKLM\Software\Microsoft\ Windows
\CurrentVersion\App Paths\CEAppMgr.exe. Because the returned value is the
full file name and path of CEAppMgr.exe, you can remove the CEAppMgr.exe
file name to get the desktop installation directory of Windows CE Services. You
can use the desktop installation directory to copying files to the desktop computer.
The location for your files will be the installation directory with your
application's subdirectory appended.

Because the installation procedure registers the application's .cab files with
Application Manager, the application can be reinstalled on the device at a
later time or installed on another device.

Chapter 21 Installing and Managing Applications 363

.ini File Format for Application Manager
The .ini file contains information that registers an application with Application
Manager. The .ini file has the following format:

[CEAppManager]
Version
Component

version-number
component-name

[component-name]
Description descriptive-name
[Uninstall uninsta"-name]
[InstallDir install-directory]
[IconFile = icon-filename]
[Icon Index icon-index]
[DeviceFile = device-filename]
CabFiles cabfile-name [. cabfile-name]

version-number
Numeric version of Application Manager, which is 1.0.

component-name
String that identifies the name of the section for the application.

descriptive-name (string)
String that will appear in the description field of Application Manager when
the user chooses the application.

un install-name
String that identifies the application's Windows uninstall registry key name.
This name must match the application's registered Windows uninstall key
name, found in the registry HKLM\Software\Microsoft\ Windows
\CnrrentVersion\Uninstall. Providing this key name enables Application
Manager to automatically uninstall the application on the desktop and on the
device when the user clicks the Remove button in the Application Manager
user interface.

install-directory
String that identifies the desktop install directory containing the location of the
.cab files. If this key is non-existent, which is recommended, then the path of
the .inf file is used for the install directory.

icon-filename
String that identifies the relative path from install-directory to the desktop icon
file. This string is used to display the device-filename when the file name is
viewed in Windows CE Services.

icon-index
Numeric index into icon-filename. The value is used to display the device­
filename when viewed in Windows CE Services. If this key is non-existent,
then the first icon in icon-filename is used.

364 Windows CE Programmer's Guide

device-filename
File name on the device that will display the icon specified by icon-filename
and icon-index when the device-filename is viewed in Windows CE Services.

cab file-name
File name of the .cab files available, relative to install-directory.

Sample Application Manager .ini File
[CEAppManager]
Version 1.0
Component Games

[Games]
Description = Game Pack for your Windows CE-based device
Uninstall = Game Pack

;do not specify the "InstallDir" key so that CEAppMgr will use the
directory of this INI file as the install directory

IconFile = gamepack.ico
IconIndex = 0
DeviceFile = gamepack.exe

;we have multiple CAB files specific to a CPU type
;these files are relative to the install directory
CabFiles= SH3\gamepack.cab. MIPS\gamepack.cab

Troubleshooting Application Installation
To identify and avoid problems that may occur when you install an application on
Windows CE, follow these guidelines:

CAB Wizard

• Use %% for a % character when using this character in an .inf file string, as
specified in the Win32 SDK documentation. This will not work under the
[Strings] section.

• Do not use .inf files created for Windows CE for installing to Windows-based
desktop platforms.

• Do not use .cab files created for Windows CE for installing to Windows-based
desktop platforms.

• Ensure that the files "Makecab.exe" and "Cabwiz.ddf," included in the
Windows CE SDK, are in the same directory as "Cabwiz.exe."

• Call Cabwiz.exe with the full path.

Chapter 21 Installing and Managing Applications 365

• Do not create a .cab file using the Makecab.exe file included in the Windows
CE SDK. You must use Cabwiz.exe, which uses Makecab.exe to generate the
.cab files for Windows CEo

• Do not make .cab files with the read-only file attribute set.

Application Manager (CeAppMgr)

• Use the full path for the location of the CeAppMgr .ini file when you call
Ceappmgr.exe to register an application.

• Use the Ireport parameter in debug versions to verify that CeAppMgr is using
the correct information for the .cab files.

• Verify in the CeAppMgr .ini file that the string list in the CabFiles key
contains no unnecessary spaces.

• Verify in the CeAppMgr .ini file that the string list in the CabFiles key
matches the actual .cab files name and relative path.

• Verify in the CeAppMgr .ini file that the string value in the Component key
exists elsewhere in the .ini file.

• Verify that the desktop computer's setup program is calling the correct
CeAppMgr .ini file, using the full path.

• There are various third-party desktop setup programs that will not correctly
update the actual file sizes when overwriting existing files. Because the
Application Manager will verify the actual file size with the embedded file
size of the .cab file, be sure that the installed .cab file sizes are correct. To
ensure this happens for future upgrade scenarios, delete the known existing
.cab files when you reinstall an application.

Adding Custom Menus to Windows CE Explorer
Windows CE Services allows additional menu items to be added to the Tools
menu in the Explorer window in two different ways. The method described in this
section uses code to directly place values in the proper registry locations. You can
also use the CEUTIL utility DLL to create custom menus and perform other tasks.

366 Windows CE Programmer's Guide

In order to add a custom menu, create a subkey and add several values under
HKEY _LOCAL_MACHINE\sOFTWARE\Microsoft\Windows CE Services\
CustomMel1us as follows:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOWS CE Services\CustomMenus]
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOW$
CE Services\CustomMenus\subkey]
"Di spl ayName"-" di sp 1 ayName"
"Command"-"myApp.exe"
"StatusHel p"-" StatusHe 1 pText"
"Versi on"-vers ion_number

subkey
String that identifies the subkey to be created under the Tools menu.

DisplayName
String that identifies the display name of the menu item. An ampersand (&)
specifies a hot key.

myApp.exe
String that identifies the command that will be executed by WinExec when a
user chooses the menu item.

StatusHelpText
String that identifies the status and Help text that appears in the status bar
when a user browses the menu item.

version_number
Application version. This value should be OxOOO20000.

The following sample registry file adds a calculator menu item.

REGEDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WINDOWS CE Services\CustomMenus]
[HKEY _LOCAL_MACH I NE\SOFTWARE\Mi crosoft \WI NDOWS
CE Services\CustomMenus\MyApp]
"DisplayName"-"&My Calculator"
"Command"-"calc.exe"
"StatusHelp"-"Brings up the calculator"
"Version"-dword:00020000

Chapter 21 Installing and Managing Applications 367

CEUTIL: Helper DLL for Windows CE Services
Use CEUTIL, a utility DLL, to handle the desktop registry entries for Windows
CE Services. CEUTIL encapsulates the registry top-level locations, to ensure
forward-compatibility for applications. It also provides helper functions for
browsing device partnerships and querying the currently connected, or selected,
device settings. In general, this DLL is a replacement for, and compatible with,
the Win32 registry application programming interface (API) used when referring
to any subkeys under the Windows CE Services root.

Use CEUTIL to do the following tasks:

• Register desktop file filters.

• Register desktop synchronization services.

• Access device-partnership settings used for both file filters and
synchronization services.

• Add custom menu items.

For a list of the CEUTIL functions, see the appendix "Lists of Functions
and Interfaces."

Desktop Registry Structure
The following list describes the desktop registry structure used by Windows CE
Services and the corresponding identifiers used in CEUTIL to refer to particular
keys in the structure:

• HKEY _LOCAL_MACHINE\software\Microsoft\Windows CE Services,
hereafter referred to as MACHINE_ROOT, stores general information.

• HKEY_CURRENT_USER\Software\Microsoft\Windows CE Services,
hereafter referred to as LOCAL_ROOT, stores partnership information.

The first time a device is connected to a desktop computer and a partnership is
created, the various synchronization and filter settings are copied from the
MACIDNE_ROOT to the partnership subkey under LOCAL_ROOT.

368 Windows CE Programmer's Guide

Examples of CEUTIL Functions
The following code example shows how to enumerate device partnerships and get
file sync folder path.

HCESVC
HCESVC
HCESVC
DWORD
DWORD

hsvc
hsvcSync
hsvcProfil e
cProfilesEnum
nProfileID

NULL;
= NULL;

NULL;
0;
0;

while (SUCCEEDED (CeSvcEnumProfiles(&hsvc, cProfilesEnum, &nProfileID)))
{

if (nProfileID != (DWORD)-l)
{

if (SUCCEEDED(CeSvcOpenEx(hsvcProfile,
TEXT("Services\\Synchronization"), FALSE, &hsvcSync)))

{

TCHAR szPath[MAX_PATH];
if (SUCCEEDED(CeSvcGetString(hsvcSync, TEXT("Briefcase

Path"), szPath, sizeof(szPath)/sizeof(TCHAR))))

}

}

{

//complete tasks
}

CeSvcClose(hsvcSync);
}

CeSvcClose(hsvcProfile);

}

cProfilesEnum++;

The following code example shows how to add a custom menu.

HCESVC hsvcMyMenu = NULL;

if (SUCCEEDED(CeSvcOpen(CESVC_CUSTOM_MENUS, TEXT("MyApp"), TRUE,
&hsvcMyMenu)))
{

CeSVCSetString(hsvcMyMenu, TEXT("DisplayName"), TEXT("&My
Calculator"));

CeSVCSetString(hsvcMyMenu, TEXT("Command"), TEXT("calc.exe"));
CeSVCSetString(hsvcMyMenu, TEXT("StatusHelp"), TEXT("Displays

cal cul ator"));

}

CeSVCSetString(hsvcMyMenu, TEXT("Version"), 0x00020000);
CeSvcClose(hsvcMyMenu);

PAR T 5

Web Services

Chapter 22 Mobile Channels 371
Creating Mobile Channels 373
Mobile Channels User Interface Elements 394

371

CHAPTER 22

Mobile Channels

Windows CE users can access the World Wide Web using a Windows CE-based
device, such as a Palm PC, with the underlying technology Mobile Channels. This
Windows CE technology adopts and extends Microsoft Internet Explorer 4.0
(IE4) standards for offline Web browsing on a Windows CE-based device.

IE4 defines a channel standard for delivering information for offline Web
browsing on a desktop computer. An IE4 channel is a self-describing Web site
that contains all the information necessary for efficient download of Web content
to a desktop computer. The Channel Definition Format (CDF) is a standard that
contains meta information about a Web site and encapsulates the instructions to
IE4 on how to download the site for offline browsing. IE4 defines three basic
types of channels that all use the standard CDF technology or extensions to it
Active Channels, Desktop Components, and Software Distribution Channels.

The Mobile Channels technology introduces a fourth type of channel with its
own extensions designed to offer offline browsing experiences to Windows CE
users. A mobile channel is a Web site that conforms to the Mobile Channels
CDF extensions.

Mobile Channels technology provides the following benefits for you:

• A convenient mechanism for ad-hoc transfer of Web information to a
Windows CE-based device.

• The notion of a channel subscription as implemented in IE4, whereby the
transfer of Web information is performed on a recurring basis.

• An efficient mechanism to transfer and store the information, given the limited
bandwidth of Windows CE-based device connections to the desktop computer
and on-device storage capacities.

372 Windows CE Programmer's Guide

The Mobile Channels technology embodies the following aspects:

• Creation

Following Mobile Channels design guidelines, you create a mobile channel
by developing a Web site. The site must be suitable for a Windows CE-based
device in terms of format and quantity of information. A mobile channel uses
standard HTML scripting techniques to render data-driven pages. It has three
fundamental components: the CDF to define the channel, a set of script files to
render the channel, and a set of data files to be rendered.

• Publishing

A content provider publishes a mobile channel on the Web or a corporate
intranet by providing HTML links to the CDF. These links can appear on any
HTML Web page, such as an existing standard Web site or desktop Active
Channel. A mobile channel makes an excellent mobile complement to a
traditional Web site. In addition, a mobile channel may be featured within the
Mobile Channel Guide, which is similar in concept to the Active Channel
Guide for IE4. For more information about publishing your mobile channel in
the Mobile Channel Guide, see the http://www.microsoft.comlwindowsce
/palmpc/channels/ Web site.

• Subscription

A channel subscription is a recurring update of information. It does not mean
that the user makes payment for receiving the content. A user can subscribe to
a mobile channel in a manner consistent with IE4 in the following ways:

• By accessing a link to a mobile channel CDF.

• By accessing the Mobile Channel Guide on the Web.

• By clicking on any channel link.

A user can access a Mobile Channels CDF file within the context of a standard
Web site or channel. Once the subscription is established, the Mobile Channels
content is downloaded by IE4 to the desktop computer.

A channel provider can let a user choose to update a subscription, that is, to
download new content on a one-time or recurring basis. Mobile Channels
downloads information on a regular basis, keeping the channel up-to-date
at all times.

• Synchronization

Once a mobile channel has been downloaded by IE4 into a desktop computer's
Internet channel cache, a user can synchronize the content of the site with a
Windows CE-based device using Windows CE Services. In general, a mobile
channel is synchronized each time the Windows CE-based device is attached
to the desktop computer.

Chapter 22 Mobile Channels 373

• Viewing

A user can view a mobile channel on a Windows CE-based device using an
offline Web browser, such as Channel Browser on the Palm PC. A user can
also view a mobile channel directly on a desktop computer using the IE4
browser or Active Desktop. An IE4 user can download and view Mobile
Channels content without having a Windows CE-based device, provided
that he or she has the appropriate desktop computer software.

• Logging

Because a mobile channel is intended to be viewed offline, there is no direct
way for the system to track what links or pages a user is viewing. However,
because you might need such traffic information to determine the usage pattern
for a site, Mobile Channels provides a way to log and report this information
to a Web site. Similar to IE4's offline logging mechanism, any page in a
mobile channel can be marked for logging. As a user browses the channel,
visited items are kept in a list. When the mobile device is next synchronized,
this information is optionally transferred to the IE4 desktop computer. From
there, it is uploaded to a Web site in the manner established for the IE4 offline
logging feature.

• Mobile Desktop Components

A Mobile Desktop Component is a one-page channel designed to fit in a very
small space. A mobile-channel provider may elect to have a Mobile Desktop
Component appear in the Mobile Channels Active Desktop, or simply in
Active Desktop on a Windows CE-based device, such as a Palm PC.

Creating Mobile Channels
The foundation of Mobile Channels rests upon two key technologies: CDF
and Active Server Pages (ASP) scripting. Mobile Channels has developed a
streamlined and optimized subset of functionality that allows devices to work with
limited storage space over the narrow bandwidth of Windows CE connectivity.
For information on client -side scripting in a mobile channel, see the appendix
"Mobile Channels Scripting Environment" in the online Help.

There are two ways to construct a mobile channel. In the first approach, a group
of standard HTML pages are connected by hyperlinks. This approach is sufficient
for small page sets that do not have repetitive data. The CDF file serves primarily
as an inventory of files to be brought over to the device. This non-scripted, page­
group approach may be desirable when the page set consists of few pages with
highly dissimilar content, and when the content is static and does not need to be
incrementally updated.

374 Windows CE Programmer's Guide

In the second approach, more complex page sets are organized with the help of a
scripting language to build pages "on the fly." This is more desirable when the
page set consists of:

• Highly repetitive data.

• Small data portions that need to be updated dynamically without changing the
overall structure of the page.

• Template pages that can load and display similar data dynamically.

The design rules are simple and familiar for the first method of constructing a
mobile channel. The documentation for IE4 channels describes how to create
channels of this type. Scripted channels operate on principles similar to any
dynamic Web site, and because scripted channels provide the most flexibility, this
chapter discusses them in detail. Be aware that all Windows CE-based devices
have a limited HTML control that does not support frames or dynamic HTML.

Scripted Mobile Channels
A scripted mobile channel has three components: scripts, data, and a COP file.
The scripts define templates to specify the appearance and layout of the channel,
subchannels, and item views. The data ,is typically dynamic and is formatted in
a manner specific to the content. Scripts are written in a subset of Visual Basic
Script (VBS). The scripting environment is similar to the scripting environment
of the Active Server Pages in Internet Information Server (lIS).

Oata is packaged in small and simple text files for use with devices that have
limited bandwidth and storage capacity. This data is readily accessible through the
script. Mobile Channels stores scripts, data files, and all content on the Windows
CE-based device in a special-purpose cache similar to the IE4 cache. URL
references are made to the Mobile Channels Transport Protocol. This transport
then invokes the script interpreter to run scripts to access data and COP files. Both
scripts and data are fetched from the cache. The interpreter outputs pure HTML
back to the transport and eventually to the Channel Browser application.

At display time, scripts are executed on the Windows CE-based device to
construct HTML pages. These pages render data in a browser using structural
information contained in the COP file. Por example, a script might determine
what subchannel of a COP file is being displayed and fetch the title and logo for
that subchannel from the COP file, incorporating them into the page layout. Items
or additional subchannels within the subchannel may be fetched from the COP
file to present an index to the subchannel. Item titles can be fetched directly from
the items.

Chapter 22 Mobile Channels 375

Although this blending of scripts, data items, and CDP files is more complex
than a standard channel or Web pages, it is beneficial when properly applied. By
separating the content into a template and data, Mobile Channels is able to deliver
content in small segments of data instead of full HTML pages. This incremental
approach makes it economical to update time-critical information. It also makes it
possible to create default, or generic, scripts that can render channels,
subchannels, and data, if a script is missing.

~ To create a scripted mobile channel

1. Describe the channel content using Channel Definition Pormat (CDP) and its
Mobile Channels extensions.

2. Separate the content into Mobile Channels script files and Mobile
Channels files.

3. Write script files to comply with the scripting protocol for the Windows CE­
based device.

4. Package incremental data, such as news articles or stock quotes, in one or
more text files.

Mobile Channels Extension to CDF
CDP is a standard for creating Active Channels in IE4. It is based on the
Extensible Markup Language (XML). Por the complete specifications, see
the Microsoft Internet SDK Web site http://www.microsoft.com/msdn/sdk
linetsdk/help/. As mentioned earlier, Mobile Channels adds a channel to the
existing IE4 channels. It calls for additional tags to extend CDP for optimizing the
mobile-channel performance on a Windows CE-based device. Mobile Channels·
uses these additional tags to navigate through CDP files and to reduce the storage
space required on the device.

Top-level Channel URL
You use the path to the CDP in two attributes of the top-level CHANNEL
element. The HREF attribute references the CDP path using the Mobile Channels
Transport Protocol (MCTP). The SELF attribute references the CDP path using
the standard HTTP prefix. Unlike the IE4 implementation, the SELF attribute is a
required attribute of the top-level CHANNEL element.

376 Windows CE Programmer's Guide

The HREF attribute uses the MCTP prefix to indicate the CDP file as a mobile
channel. This causes special processing when referenced under IE4 where the
mobile channel is registered for synchronization to the Windows CE-based
device. Unlike the HREF under IE4, in a mobile channel, the URL does not
directly indicate the page to render. Rather, it references the top-level channel as
specified by the CDP file. The appropriate CHANSCRIPT tag determines what
script is used to render the top-level of the channel. Por a detailed description of
CHANSCRIPT, see "CDP Tags for Mobile Channels" later in this chapter. The
BASE attribute has the same functionality for Mobile Channels as it does for
Active Channels in IE4. The following code example illustrates that the attribute's
URL is an HTTP URL.

<CHANNEL HREF= .. mctp://www.microsoft.com/test.cdf .. ID-"test"
BASE - .. http://www.microsoft.com/test/
SELF - .. http://www.microsoft.com/test.cdf .. />

<ITEM HREF-"mi crosoft. com/START. MCS" I D="Sta rt"/>
<CHANSCRIPT VALUE-"Start"/>

</CHANNEL>

In this code example, the CHANSCRIPT tag is used to specify the starting page
or script by referencing the ID tag of the script that is defined in the ITEM tag.
The START.MCS file is a Mobile Channels script that defines how to display
the top-most page of the channel.

In the mobile channel CDP file, the HREP for the CHANNEL tag is the only one
that has an MCTP-style URL. All other HREP values are of the HTTP-style.

Extensions to Standard Tags and Attributes
Mobile Channels recognizes several attributes and attribute values that may
appear in standard CDP tags. These tags are described in the following table.

Attribute

ID

DEFAULTPREF

USAGE

CHANNEL

Description

A short string identifier for the CHANNEL, ITEM, and
LOGO elements.

A Boolean operator indicating the suggested preference setting
for a CHANNEL element. It can be On or Off.

New usage values for Mobile Channels are MobileChannel and
MobileDesktopComponent.

CHANNEL element may take a USAGE tag specifying
either of the two new USAGE values previously defined. It is
required for the top-level CHANNEL element of a Mobile
Desktop Component.

Chapter 22 Mobile Channels 377

Each tag or attribute is discussed in detail in the following list:

• ID
An ID tag is a text string used as an attribute to identify the specified element.
An ID tag must be provided for all CHANNEL, ITEM, and LOGO elements
in a mobile channel.

10 = "ChanId"
10 = "ItemId"
10 = "LogoId"

An ID tag is used for short and quick references of a mobile channel element
both within a CDP and within scripts. Within the CDP, the ID tag is used as a
value for both CHANSCRIPT and ITEMSCRIPT tags to refer to the
associated ITEM tag that represents the script file.

Within a script, the ID tag is used, along with the MCTP syntax, to form
unique URLs in the Mobile Channels namespace. The ID tag is used in the
MCTP transport to uniquely reference a channel or item. MCTP references are
of the form "mctp://CDFidiChanID" for a channel or "mctp://CDFidiltemID"
for an item.

Keep the string length of an ID tag to the minimum necessary to uniquely
define it within the CDP over time. Keeping the ID string length to the
minimum is important to conserve network bandwidth and storage space.

In a CDP file, the ID tag of the top-level channel is used as a handle to the
channel. The maximum length of the ID string is 64 characters, but a handle of
between 6 and 10 characters is recommended for the top-level ID to be unique.
The following are three CDP examples that define IDs.

(CHANNEL 10 = "Sports" >
(ITEM HREF = .. www.microsoft.com/test/sports/article001.mcd ..

10 = "Artl" >
(LOGO HREF = .. www.microsoft.com/test/sports/sportslogo.gif ..

STYLE = "IMAGE"
10 = "L_Sports" >

378 Windows CE Programmer's Guide

The ID tag is required for each parent element and can be of a single
occurrence. There are no applicable child elements for this tag.

• USAGE

For the USAGE tag, Mobile Channels defines the following two new values:

• MobileChannel

The statement

<USAGE VALUE - "MobileChannel"/)

specifies the channel as a mobile channel, or an item as a special Mobile
Channels data item. The top-level channel should be given a USAGE value
of "MobileChannel." When the USAGE value is set to "Mobile Channel,"
Mobile Channels items will be seen on Channel Explorer on the device but
not on the channel bar on IE4. This feature makes it possible to properly
display the items as the special Mobile Channels Data (MCD) files on the
device and to ignore them in IE4. For example,

<ITEM HREF-"http://www.microsoft.com/test1.mcd" 10-"T1")
<USAGE VALUE-"MobileChannel"/)

<lITEM)
<ITEM HREF-"http://www.microsoft.com/test2.mcs" 10-"T2")

<USAGE VALUE-"None"/)
<lITEM)

Item T1 is a Mobile Channels data item and will be seen in the Channel
Explorer feature on the device, but not by IE4 on the desktop computer.
Item T2 is a Mobile Channels script and will not be seen by either IE4 or
the Channel Explorer on the device. The USAGE tag has no applicable
child element.

Note that the statement

<USAGE VALUE-""/)

is equivalent to

<USAGE VALUE-"None"/)

Chapter 22 Mobile Channels 379

The former is recommended because it helps to save storage space on
the device.

• MobileDesktopComponent

The statement

(USAGE VALUE = "MobileDesktopComponent"/)

specifies the channel as a Mobile Channels desktop component. This is
used strictly on a Windows CE-based device to make the channel available
as a component for the Windows CE Active Desktop. For example:

(CHANNEL HREF="http://www.mydomain.com/myChannel.cdf")
(USAGE VALUE="MobileDesktopComponent"/)

(/CHANNEL)

The channel, as specified by "myChannel.cdf' can be registered as a
component for the Windows CE Active Desktop.

There can be only one occurrence of this usage value in a given desktop
component CDF file. And there are no applicable child elements.

• DEFAULTPREF

The DEFAULTPREF tag can be used as follows:

(CHANNEL ID = "Chanld")
(DEFAULTPREF VALUE="ON"I"OFF"/)

(/CHANNEL)

The tag marks a subchannel with specific default preferences. You can use this
attribute to control what subchannels a user receives content for by default. By
default, when a new channel is synchronized to a Windows CE-based device,
items within subchannels marked with the attribute DEFAULTPREF =
"OFF" are not transferred.

This mechanism allows you to create a channel that offers more content than
can reasonably be accommodated by the limited storage resources available
on a Windows CE-based device, and yet does no, by default, overwhelm the
device with all ofthis content. The DEFAULTPREF setting is applied only
when the channel is first synchronized to the device. After this, the user can
change his or her preferences to include more or less content than the
DEFAULTPREF settings allow.

The DEFAULTPREF tag can have values of either "ON" or "OFF." If
DEF AULTPREF attribute is not specified, the Windows CE-based device
treats the subchannel as if it were marked with DEFAULTPREF = "ON."

380 Windows CE Programmer's Guide

For Example:

(CHANNEL ID-"SubChanl")
(DEFAULTPREF VALUE-"OFF"/)

(/CHANNEL)

The DefaultPref tag can appear only once in a CHANNEL element.

CDF Tags for Mobile Channels
Additional tags recognized by Mobile Channels are described in the
following table.

Tag

CHANSCRIPT

ITEMSCRIPT

ITEMFORMAT

Description

Identifies the ID of the script file to render the channel
and subchannels.

Identifies the ID of the script file to render the item data file.

Defines the file structure for data files.

The following list describes each tag in detail:

• CHANSCRIPT

The CHANSCRIPT tag is used as follows:

(CHANSCRIPT VALUE-"ChannelID"/)

The CHANSCRIPT tag specifies a Mobile Channels script (MCS) to be used
to render the display of a channel. The CHANSCRIPT tag value applies to all
child channels of the current channel or subchannel. This tag supersedes the
CHANSCRIPT value previously defined by a parent CHANNEL element,
if any exist. The VALUE attribute specifies the ID of the ITEM element
corresponding to the script to be run to render this level of the channel.
For example,

(CHANSCRIPT VALUE-"ChanSeriptl"/)

where the channel script identified by "ChanScriptl" has been defined
elsewhere in the CDF file, say, as follows:

(ITEM HREF-"http://www.mierosoft.eom/ehannel .mes" ID-"ChanSeriptl")
(USAGE VALUE-"None"/)

(I ITEM)

Chapter 22 Mobile Channels 381

The top-level CHANNEL element can have at least one CHANSCRIPT tag
as the child element. Each subchannel can have at most one such tag.

• ITEMSCRIPT

The ITEMSCRIPT tag is used as follows:

(ITEMSCRIPT VALUE - "ItemID"/)

The ITEMSCRIPT tag specifies a script to be used to render the display of
MCD items. The ITEMSCRIPT tag value applies to all child items of the
current channel or subchannel. This tag supersedes the ITEMSCRIPT value
previously defined by a parent CHANNEL element, if any exist. The VALUE
attribute specifies the ID of the ITEM element corresponding to the script to
run to render this level of the channel. For example,

(ITEMSCRIPT VALUE - "A_Script" I)

The item script file here refers to the following ITEM element defined
elsewhere in the CDF file:

(ITEM HREF-"http://www.microsoft.com/items . mcs" 10-" A_Scri pt")
(USAGE VALUE-"None"/)

(lITEM)

You can set the V ALUE attribute to "None" or "" for the USAGE tag to
prevent the script file from appearing in the Channel Explorer.

The topmost CHANNEL element can have at least one ITEMSCRIPT tag.
At all other channel levels there can be at most one such tag.

• ITEMFORMAT

The ITEMFORMAT tag is used as follows:

(ITEMFORMAT VALUE-"header_b7ock ; repeaLb7ock"/)

The tag specifies the format of a class of MCD items by identifying the
associated file structure. MCD items are simple text files that can have a
unique header and a repeating block structure for record-oriented data. Special
helper functions are provided in the scripting environment to access the MCD
content using information contained in the ITEMFORMAT tag. Both
header _block and repeaCblock are optional, but at least one of them must
exist. If repeaCblock exists, it must be preceded by the semi-colon (;). The
header block typically contains the description about the items. And the
repeatable data block contains description about items. The header _block and
repeaCblock are of the form

vI[-tI]. v2[-t2]. _ • vn[-tn]

382 Windows CE Programmer's Guide

Here vi is the field name of the block value and ti is the optional type of the
block value. If ti is omitted, the default value "HTML" is assumed. Valid types
are listed in the following table.

Type Description

HTML

TEXT

IMG

HREF

HTML text including markup.

Same as HTML.

ID of image item in CDF files.

URL to a page, for example, data file and channel script.

A data block is merely a group of values. There is one value per line. Any
meaningful data file should have at least one data block. For example, three
data blocks might be used to show a portfolio of three stocks. In the following
example, the Market mobile channel displays stock values listed in the
Stocks.mcd file. The header gives the title and displays the date of the shown
stocks. The data to be listed includes the name, the low price, high price, and
closing prices of each stock.

< ITEM HREF-.. http://www.market.com/Stocks . mcs" I O-"StocLS">
<USAGE VALUE-"None">

<lITEM>

<CHANNEL 10- "Stock_C">
<TITLE>Market</TITLE>
<ITEM HREF= .. http://www.market.com/Stocks . mcd" I O-"Stock_O">

<USAGE VALUE-"MobileChannel"l>
<ITEMSCRIPT VALUE-"Stock_S"I>
<ITEMFORMAT VALUE ="Title,Oate,Picture-IMG;

Name,Low,High,Close"l>
<lITEM>

</CHANNEL>

Here the header block has three values, Title, Date, and Picture, and the data
block has four: Name, Low, High, and Close.

IMG indicates the field that represents an image, such as a JPEG or GIF file.
The field value is the identifier of the item defining the URL of the image. The
built-in item script creates an IMG value to display this item.

The data block may be repeated to build a table of stock prices. If the
Stocks.mcd file contains a single data block, the script displays a single
stock per page. If it has multiple data blocks, the script could display a table
of stocks.

The repeat block can be omitted, as shown in the following example, which is
represents a news article with a title, an image, and the body of text:

<ITEMFORMAT VALUE-"TITLE, PICTURE-IMG, BOOY"I>

Chapter 22 Mobile Channels 383

The header block can also be omitted, as shown in the following example that
represents a page with stock listings. The semi-colon (;) is used to indicate the
value list. It is the repeat block and not a header block.

(ITEMFORMAT VALUE ="; Name. Low. High. Close"/)

CDF Omissions
Not all the standard lE4 tags are supported in Mobile Channels. In particular,
Mobile Channels does not support any Software Update Channel tags. In
addition, the Mobile Channels parser ignores the LOGIN tag. However, while the
EARLIESTTIME, INTERVAL TIME, and LASTTIME tags are ignored on the
device, they are supported on the desktop computer and used by lE4 to download
the channel from the Web.

Mobile Channels Data Files
Data files are used to deliver incremental data for a channel. These are simple text
files that contain data with one data item per line in the file. Within the CDP file,
a structure for the data file may be declared using an ITEMFORMAT tag as
discussed earlier.

Each data file must have a .mcd extension. The CDP file must include an ITEM
tag to define the MCD file. Within the ITEM tag, the ID attribute is used as a
shorthand reference for the MCD file from within a script without having
to reference its complete URL.

Unlike the conventional script-drives-data approach, where script files are run
and call for data to display, Mobile Channels does the opposite for displaying
incremental data. Because new information can come in at any time within a new
MCD file, it is more efficient to activate the script to display data when it arrives.
This data-triggers-script approach has an added benefit: it permits the inheritance
of scripts.

The file format for data files is flexible. It is simply a text file that contains the
data, such as references to images, with each item on a separate line. Mobile
Channels exposes methods within the scripting environment for reading this
content from the file.

The ITEMFORMAT tag is used to specify the type of data present in the file.
Generally, files have the following format:

[Header Block]
[Data Block 1]
[Data Block 2]

[Data Block n]

384 Windows CE Programmer's Guide

Each block may consist of zero or more fields, as specified in the
ITEMFORMAT. This allows a single data file to be used as a simple database
that can have rows of data. In the following code example file, data items are
organized in the structure, as specified by the following ITEMFORMA T tag:

(ITEMFORMAT VALUE="TITLE,DATE,PICTURE=IMG;NAME,LOW,HIGH,CLOSE"/)

The different blocks are commented for the purpose of illustration. Comments
should not be present in any MCD file. The first block is the header block, which
contains general information such as a title, date, and image. The remaining
repeating data blocks follow the header block.

Stock Info
Apri 1 24, 1997
ClintonPic
MSFT
110.25
112.50
111. 00
DEC
21
23
22
IBM
132.50
132.75
132.75

Mobile Channels Script Files

'header block

'data block 1

'data block 2

'data block 3

Mobile Channels employs two types of scripts: channel scripts and item scripts.
In the CDF, a CHANNELSCRIPT tag identifies a script for a channel and an
ITEMSCRIPT tag identifies a script for an item. All Mobile Channels script
files end with an .mcs extension.

Scripts are invoked in a data-driven manner. When it is time to display a
particular data file, the reference is made to the data file and the appropriate item
script is located to display it. Likewise, when it is time to show channel content,
such as a listing of subchannels or data items, the reference to the channel is made
and the appropriate channel script is located to display it. For more detail on how
scripts are associated with the data or channels, see "Item Script Selection" and
"Channel Script Selection" later in this chapter.

Chapter 22 Mobile Channels 385

The following code example illustrates a CDF file that is referenced later.

(!-- Declare item scripts -->
(ITEM HREF-"Http://www.microsoft.com/test/scriptl.mcs" ID-"ISl">

(USAGE VALUE-"None"l>
(lITEM>
(ITEM HREF-"Http://www.microsoft.com/test/script2.mcs" ID-"IS2">

(USAGE VALUE-"None"l>
(lITEM>

(!-- Declare channel scripts -->
(ITEM HREF-"Http://www.microsoft.com/testlscript3.mcs" ID-"CSl">

(USAGE VALUE-"None"l>
(I ITEM>
(ITEM HREF-"Http://www.microsoft.com/test/script4.mcs" ID-"CS2">

(USAGE VALUE-"None"l>
(lITEM>

(CHANNEL HREF - "Http://www.microsoft.com/test/test.cdf" ID-"test">
(TITLE>Test Channel(/TITLE>
(!-ISI is the general item script to use within the channel -->
(ITEMSCRIPT VALUE-"ISl"l>

(!-CSI is the general channel script to use within the channel -->
(CHANSCRIPT VALUE - "CSl"l>

(CHANNEL ID = "Cl">
(TITLE>Test Subchannel 2(/TITLE>

(!-This channel is rendered by the general channel script CSI -->

(ITEM HREF-"http://www.microsoft.com/testlitem- a. mcd" I D-" ITA">
(!-This item is rendered by the item-specific IS2 script-->
(ITEMSCRIPT VALUE-"IS2"1>
(USAGE VALUE-"MobileChannel"l>

(lITEM>

(/CHANNEL>
(CHANNEL ID - "C2">

(TITLE>Test Subchannel 2(/TITLE>

(!-This channel is rendered by the channel-specific script CS2-->
(CHANSCRIPT VALUE - "CS2" I>
(ITEM HREF-"http://www.microsoft.com/test/item-b.mcd" ID-"ITB">

(!-This item is rendered by the general lSI item script-->

(USAGE VALUE-"MOBILECHANNEL"I>
(lITEM>

(/CHANNEL>
(/CHANNEL>

386 Windows CE Programmer's Guide

Item Script Selection
When it is necessary to render a particular data fIle in the browser, the appropriate
script must be selected. Item scripts are responsible for rendering MCD data
fIles and are invoked as a result of referencing the URL of the data fIle. The
appropriate script is selected based upon the proximity of an ITEMSCRIPT tag
to the particular MCD data fIle.

An item URL, as appears in scripts, is in the following form:

mctp:IICDFid/ItemId

Here "mctp:lf' specifies the use of the Mobile Channels Transport Protocol to
resolve the URL and to invoke the scripting engine. CDFid is the ID tag of the
top-level CHANNEL element and is used to scope the channel identifier to the
correct CDP fIle. Itemld is the ID tag of the ITEM element for the MCD data fIle
to be rendered.

The MCD data fIle appears in an ITEM element within the channel hierarchy.
The location of the ITEM element relative to an ITEMSCRIPT element
determines which script will be used to render the data. The script fIle is identified
by matching the ID value in the ITEMSCRIPT element with the ID value of an
ITEM element, which is the item for the script fIle, within the CDP.

ITEMSCRIPT elements can be children of either CHANNEL elements or
ITEM elements. An ITEMSCRIPT determines the script to be used for all
items of the current channel and its subchannels. An item script, as identified by
ITEMSCRIPT, for a CHANNEL or ITEM element supercedes any previously
defined ITEMSCRIPT value.

Thus, an inheritance model is used. When it is necessary to render a particular
MCD item, the nearest ITEMSCRIPT element in the hierarchy is used to
determine what script should render the data. In the event that the appropriate
script is not available on the device, a built-in script is used to render the data.
The default item script simply enumerates through all the fields specified in the
ITEMFORMAT tag and for each one displays the appropriate data from the
specified MCD fIle. If the MCD fIle contains a repeating block, all the block
values are enumerated on the page in a list until the end of the MCD fIle.

By convention, item scripts are specified at the top-level of a channel, usually at
the top of the fIle. Each item script is assigned a unique ID. The script can then
be referenced using an ITEMSCRIPT element from any location in the CDP
hierarchy. In a script, data links are anchored using a regular HREP link to the
MCTP transport, rather than the usual HTTP protocol.

Given the previous CDP example specified, the following statement in a script fIle
shows the data in the item-a.mcd fIle:

 Click Here to See Item A

Chapter 22 Mobile Channels 387

Referencing by MCTP is based on the channel identifier "TEST" and the data file
identifier "ITA," not the item script file. The appropriate ITEMSCRIPT tag is
sought in the hierarchy to show the data. This conforms to the inheritance model.
The scriptl.mcs script renders the item-b.mcdfile whereas script2.mcs renders the
item-a.mcd data file.

Note In order for an image to be rendered on IE4 desktop computer, you should
reference images using standard HTTPreferences, rather than MCTP. If allowing
the channel to be viewed on IE4 is not important, then the MCTP type URLs may
be used. They will render correctly on the Windows CE-based device.

Channel Script Selection
In addition to rendering data from data files, it is usually necessary to render
the current location within the CDP so that the user can navigate to the desired
data. When it is necessary to render a CDP navigation page in the browser, the
appropriate script must be selected. Channel scripts are responsible for rendering
the CDP navigation pages supplied by a content provider. As with an item script,
referencing the URL of the subchannel results in the invocation of a channel
script. The appropriate script is selected based upon the proximity of a
CHANSCRIPT tag to the particular CHANNEL element in the URL.

A channel URL, as appears in scripts, is of the following form:

mctp:IICDFid/ChanId

Here, "mctp:lf' specifies the use of the Mobile Channels Transport Protocol to
resolve the URL and to invoke the scripting engine. CDFid is the ID tag of the
top-level CHANNEL element. It is used to scope Chanld to the correct CDP file.
Chanld is the ID tag of the CHANNEL element for the subchannel within the
CDP to be rendered. As a user navigates through the channel, he or she is
effectively moving up and down through the CDP channel hierarchy accessing
data files. At each level in the channel hierarchy, it is possible to associate a script
to display the channel content, which is usually a list of subchannels or available
items.

The CHANSCRIPT element identifies the script to be used to display the current
channel location in a way similar to how the ITEMSCRIPT element identifies
the script to display data. The location of a CHANNEL element relative to a
CHANSCRIPT element determines which script will be used to render the
subchannel. The script file is identified by matching the ID value in the
CHANSCRIPT element with the ID value of an ITEM element-that is, the
ITEM for the script file-within the CDP.

388 Windows CE Programmer's Guide

CHANSCRIPT elements are children of CHANNEL elements. A
CHANSCRIPT element determines the script to be used for the current channel
and its subchannels. A CHANSCRIPT tag specified for a CHANNEL element
supercedes any previously defined CHANSCRIPT value.

Thus, an inheritance model is used. When it is necessary to render a particular
subchannel, the nearest CHANSCRIPT element upward in the hierarchy is used
to determine what script should render the data. In the event that the appropriate
script is not available on the device, a built-in script is used to render the channel
as best it can.

In the previous CDP example, the following statement in a script file shows the
Test Subchannel 2:

Click Here to See Subchannel 2

Referencing by MCTP is based on the channel identifier "TEST" and the
subchannel identifier "C2," not the channel script file. The appropriate
CHANSCRIPT tag is located in the hierarchy, in conformance to the inheritance
model, to show the channel. The script4.mcs script renders the "C2" subchannel
whereas script3.mcs renders the "Ct" subchannel.

Scripting
A script specifies the layout and behavior of HTML pages. Script segments are
enclosed between the <% and %> or <%= and %> delimiter pairs. The second
pair of delimiters entails special use and meaning in the script file. In each script
segment, there must be at least one valid executable, or non-comment, statement.
There must also be at least one scripting segment in the MCS file. Any empty
script segment generates a syntax error. Scripting segments can be freely
intermixed with standard HTML text, provided that the script-generated HTML
output has the valid syntax within the context of the standard HTML display code.
In the following sections are code examples of channel script and item script files.

Example Channel Script
<html>
<%

Set MC = Server.CreateObject("MobileChannels.Utilities")
URL = Request.ServerVariables("URL")
DataID = Request.QueryString("DATAID")
Pieces = Split(URL."I")
ChanID - Pieces(2)

• Get logo and title of channel
TopElem = MC.Locate(ChanID)
ChanTitl e =
LogoHref - 0
If TopElem Then

ChanTitle = MC.Title(TopElem)
LogoElem = TopElem

Chapter 22 Mobile Channels 389

LogoElem = MC.Navigate(LogoElem,"INMATCH","LOGO")
Do While LogoElem

Loop
End If

LogoStyleElem = MC.Navigate(LogoElem,"INMATCH","STYLE")
If LogoStyleElem Then

If StrComp(MC.Value(LogoStyleElem),"IMAGE",l) = 0 Then
LogoHref = MC.Href(LogoElem)
If LogoHref Then

If MC.HrefExists(LogoHref) Then
Exit Do

Else
LogoHref = 0

End If
End If

End If
End If
LogoElem = MC.Navigate(LogoElem,"NEXT")

If LogoElem Then
LogoElem - MC.Navigate(LogoElem,"MATCH","LOGO")

End If

NeedTitle = 1
Response.Write("<head><title>" & ChanTitle & "</title></head>")
If LogoHref Then

Response.Write("<body>

")

ElseIf ChanTitle And Len(ChanTitle) Then
Response.Write("<body>

<h3>" & ChanTitle & "</h3>")
NeedTitl e = 0

Else
Response.Write("<body>")

End If

• Decide whether you need a title for this chan/subchan
If DataID And (DataID <> ChanID) Then

NeedTitle = 1
Else

DataID = ChanID
End If

390 Windows CE Programmer's Guide

SubTitle - 0
SubElem = MC.Locate(DataID)
If SubElem Then

SubTitle - MC.Title(SubElem)
If SubTitle And NeedTitle Then

Response.Write("(b)" & SubTitle & "(/b)(br) :(br)")
End If

, Display contents of chan/subchan
Response.Write("(table border-0 cellpadding--2 cellspacing--2)")
ChildElem - MC.Navigate(SubElem,"In")
Do While ChildElem

ShowIt = 1
IsChan = 0
If MC.Tag(ChildElem) - "CHANNEL" Then

IsChan = 1
If Not MC.IsSubscribed(ChildElem) Then

ShowIt = 0
End If

ElseIf MC.Tag(ChildElem) - "ITEM" Then
VisParElem = MC.Navigate(ChildElem,"InMatch","USAGE")

If VisParElem Then
Usage = MC.Value(VisParElem)

If Usage Then
If StrComp(Usage,"None",l) - 0 Then

ShowIt = 0
End If

End If
End If

, Be sure item exists
If ShowIt Then

ChildHref - MC.Href(ChildElem)
If ChildHref Then

Else

If Not MC.HrefExists(ChildHref) Then
ShowIt - 0

End If

ShowIt - 0
End If

End If
Else

ShowIt = 0
End If

Chapter 22 Mobile Channels 391

If ShowIt Then
• Be sure you can get the ID

IDVal - 0
IDElem - MC.Navigate(ChildElem,"InMatch","ID")

If IDElem Then
IDVal = MC.Value(IDElem)

End If
If Not IDVal Then

ShowIt = 0
End If

End If
• Get titl e

If ShowIt Then
ItemTitle - MC.Title(ChildElem)
If Not ItemTitle Or (Len(ItemTitle) - 0) Then

ShowIt - 0
Else

If Len(ItemTitle) > 26 Then
ItemTitle = Mid(ItemTitle,0,25) & "

End If
End If

End If
• You know what it is and are going to try to show it

If ShowIt Then

%>

If IsChan Then
Response.Write("(tr>(td>*")

Else
Response.Write("(tr>(td>")

End If
Response.Write("(td> (a href-mctp:ll" & ChanID & "I"

& IDVal & a>" & ItemTitle & "(fa>")
End If
Chil dEl em - MC.Navigate(ChildElem,"Next")
Loop
Response.Write("(/table>")

El se
Response.Write("Data ID not found.")

End If

(br> (br>(hr>
(b>Note:(/b> This page was automatically generated because the correct
scripts could not be found. If this problem persists after
synchronization,
please contact the content provider.
(I body>
(/html>

392 Windows CE Programmer's Guide

Example Item Script
<html>

<%
Set MC
URL
DataID
Pieces
ChanID

= Server.CreateObject("MobileChannels.Utilities")
- Request.ServerVariables("URL")
- Request.OueryString("DATAID")
- Split(URL."I")
= Pieces(2)

• Get logo and title of channel
TopElem - MC.Locate(ChanID)
ChanTitle - ""
LogoHref = 0
If TopElem Then

ChanTitle = MC.Title(TopElem)
LogoElem = TopElem
LogoElem - MC.Navigate(LogoElem."INMATCH"."LOGO")

Do While LogoElem
LogoStyleElem - MC.Navigate(LogoElem."INMATCH"."STYLE")

If LogoStyleElem Then
If StrComp(MC.Value(LogoStyleElem)."IMAGE".l) - 0 Then

LogoHref - MC.Href(LogoElem)

End If
End If

If LogoHref Then
If MC.HrefExists(LogoHref) Then

Exit Do
Else

LogoHref - 0
End If

End If

LogoElem - MC.Navigate(LogoElem."NEXT")
If LogoElem Then

LogoElem - MC.Navigate(LogoElem."MATCH"."LOGO")
End If

Loop
End If

Response.Write("<head><title>" & ChanTitle & "</title></head>")
If LogoHref Then

Response.Write("<body><a href-mctp://" & ChanID & ">

 :
")

ElseIf ChanTitle And Len(ChanTitle) Then
Response.Write("<body><a href-mctp:ll" & ChanID & ">

<h3>" & ChanTitle & "</h3>")
Else

Response.Write("<body>")
End If

Dump article out best we can
ArtElem = 0
If DataID Then

ArtElem = MC.Locate(DataID)
End If
If ArtElem Then
For Blk=0 To 100

Data = MC.Data(ArtElem,Blk)
If Not Data.Count Then

Exit For
End If

For Field=0 To Data.Count - 1
Tag = Data(Field).Tag
Val = Data(Field).Value
Type = Data(Field).Type
If Val And Len(Val) Then

If (StrComp(Type,"Html",l)
= 0) Then

Chapter 22 Mobile Channels 393

0) Or (StrComp(Type,"Text",l)

• Output text in standard html
If Tag And Len(Tag) Then

Response.Write("" & Tag & ". ")
End If
Response.Write(Val & "
")

ElseIf StrComp(Type,"Img",ll = 0 Then
• Try to create an image

ImgElem = MC.Locate(Val)
If ImgElem Then

ImgHref = MC.Href(ImgElem)
If ImgHref Then

Response.Write("<img src=" & ImgHref
& ">
")

End If
End If

ElseIf StrComp(Type,"Href",l)
• Write an href

o Then

Response.Write("" & Tag & "
")
End If

End If

%>

Next
Next
End If

<hr>
Note: This page was automatically generated because the correct
scripts could not be found. If this problem persists after
synchronization,
please contact the content provider.
</body>
</html>

394 Windows CE Programmer's Guide

Mobile Channels User Interface Elements
Mobile Channels user interface elements include the Channel Browser and
Active Desktop, as well as controls panels for changing settings for channel
synchronization. The following discussion focuses on how these are used
and point out features that you should be aware of in order for the elements
to work properly.

Channel Synchronization
As a synchronizing agent, Microsoft Windows CE Services copies mobile channel
contents into the channel cache of the Windows CE-based device. Channel
synchronization is a two-way operation. From the desktop computer to the device,
the synchronization agent copies channel content, such as CDF, scripts, data, and
images. From the device to the desktop computer, the agent posts the usage
logging data to the logging host site.

When the agent synchronizes mobile channels, it consults with a list of subscribed
channels that a user can select from the Channel Synchronization Options panel.
The list covers the subscribed channels with associated CDF files on both the
desktop computer and the device. The CDF files must have the top-level channels
defined with the following USAGE tag:

(USAGE VALUE-"MobileChannel"/)

Channel Browser
A user launches Channel Browser to select and to view a mobile channel. The
browser follows the special Mobile Channels transport protocol to render the
content. To conserve storage space and bandwidth, channel content is expressed
both in terms of a template, which is a script file, and data to be filled into that
template. When data arrives and must be displayed, Channel Browser runs the
appropriate script to process the data and display it in HTML. format.

Channel Browser's main window holds a command bar, a channel bar, and an
HTML control. The command bar features a menu and a toolbar. The channel bar
displays icons of subscribed channels. The icon files can be of the GIF, or JPEG
format. You specify the icons in CDF files using the LOGO tag with STYLE
setting to "ICON."

(LOGO STYLE-"Ieon"
ID-"ieonl"
HREF -"http://www.msnbe.eom/mobileChannels/ieonl.gif"/)

Chapter 22 Mobile Channels 395

The HTML control displays the content for the current channel. You are
responsible for supplying the content, specifying page layout, and providing the
navigation scheme from within the channel. Except for a smaller screen size,
Channel Browser is modeled after the IE4 browser on a desktop computer. This
similarity provides a consistent Web experience for Windows CE users.

Channel Browser includes Home Channel, a virtual channel at the top of the
channel hierarchy, which you can see in Channel Explorer. Home Channel
contains links to the main pages of all subscribed channels. A built-in home
channel script displays the subscribed channels. Users can access this channel
using the Home Channel command from either the Go menu or the appropriate
button on the toolbar.

From the Go menu of Channel Browser, a user can choose "Explore Channel. •• "
to bring up the Channel Explorer dialog box. This pop-up window provides a
hierarchical view of the mobile channels. It offers users a shortcut to channel
navigation without having to trace through all the intermediate pages. Each
channel and item may have an icon associated with it. Top-level channels are
listed in order, as specified in Preferences. Within a channel, the subchannels
and items are listed according to the hierarchy specified in the CDF file. The
icon displayed at each level is derived from the LOGO tag in CDF, as explained
earlier. If you fail to supply a logo, the default channel or item icon is used. The
<TITLE> flag specifies the name of each channel. For example,

<CHANNEL>
<TITLE>Mobile Channel Tips</TITLE>

</CHANNEL>

By choosing the Properties command on the File menu of Channel Browser, a
user can examine item properties from the Item Properties panel for any item page
displayed in the browser. The information, including the title of the item and the
date of creation and last modification, is extracted from the CDF file defining
the item.

Active Desktop
Windows CE Active Desktop shares many features with Channel Browser and
uses the underlying Mobile Channels infrastructures. Its main window uses
HTML controls to display the system information and selected shortcuts to
applications. Each control represents a desktop component. On a Windows CE­
based device, such as the Palm PC, Active Desktop components typically include
the Windows CE Logo, Owner Information, Appointments, Tasks, Messages, and
custom desktop components. Tapping the Appointment component launches the
Calendar application. Similarly, the Tasks and Messages items provide shortcuts
to the Tasks and Inbox applications, respectively.

396 Windows CE Programmer's Guide

Each desktop component is driven by a Mobile Channels script. You can supply
the script file for defining desktop components. The following MCS file for the
Owner component, as supplied by the Palm PC operating system, gives you a
working example.

<%
Set MC - Server.CreateObject("MobileChannels.Utilities")
URL - Request.ServerVariables("URL")
Q - Chr(34)

%>

<HTML>
<HEAD>
<META HTTP-EQUIV-"Content-Type" content-"text/html; charset-iso-8859-1">
<META HTTP-EQUIV-"LAUNCHAPP" content-"ctlpnl .exe?passwrdg.l.0">

<%

%>

Refresh - ";URL-MCTP:llowner"
Notify - Q & "PRIVUPDATE-756" & Refresh & Q
Response.Write("<META HTTP-EQUIV-NOTIFY content-" & Notify & ">")

<TITLE>Owner</TITLE>
</HEAD>
<BODY>
<%

%>

Response.Write("")
Response.Write(MC.LibraryCall("owner.dll". "GetOwnerInfo"»

Response.Write("")

<I BODY>

You create a desktop component in a CDP file in which the desktop component is
defined as a child element of a channel. To do this, you must use the following tag
in the CDP file containing the desktop component:

<USAGE VALUE-"MobileDesktopComponent"l>

Any such script is appropriately registered as a desktop component. The script
files are then fed into the MCTP transport to process the data into the HTML
format for display in the viewer. All the usual HTML tags are allowed.

PAR T 6

Interfaces to Bundled
Applications

Chapter 23 Contacts Database 399
Programming with the Contacts Database 400

Chapter 24 Inbox 407
Message Heap 408
Message Store 408
Mail Messages 409
Working with Mail Messages 411

Chapter 25 Mail Transport Service 415
Registering a Transport Service 416
Implementing a Sample Transport Service 421

399

CHAPTER 23

Contacts Database

Contacts, a Windows CE personal information manager (PIM) application, is
organized as a series of records, called address cards. Each address card contains
a number of fields, called properties. Among the many predefined properties are
name, address, telephone number, birthday, and anniversary. Contacts is bundled
with Windows CE and includes a graphical user interface.

Contacts can be used as is, if the default application settings meet the needs of
the user. However, you can take advantage of the open application programming
interface and design new Contacts database applications. For example, you can
design an application to track a doctor's patient-contact information, including
dates of previous and future office visits. You can retrieve,· store, and query the
records and properties in your Contacts database.

Because Contacts is built on the Windows CE object store, you need to be
familiar with the object store to completely understand the database. For more
information about the object store, see Chapter 4, "Accessing Persistent Storage."

A Contacts database includes the following basic elements.

• Address card

An address card stores information about one individual. The information is
parsed into a set of predetermined properties. Each address card is represented
by an AddressCard structure. The number of address cards in a Contacts
database depends on the amount of available memory on the hardware
device. To determine the number of records in the database, call the
GetNumberOfAddressCards function.

400 Windows CE Programmer's Guide

• Object identifier and position index

A typical operation performed against an address card requires identification
of the record and specification of its location in the database. To accomplish
this, Windows CE assigns each address card a unique object identifier and a
position index value. If you know the object identifier for an address card,
you can get its position index by calling the GetAddressCardlndex function.
Conversely, by calling GetAddressCardOid and passing in the position index
as a variable, you can get the object identifier.

• Property and property tag

A property has an associated identifier called a property tag that is unique
within the context of a single address card. To manipulate a property, you set
the property tag with a call to the SetMask function. For example, you set the
HHPR_HOME_TELEPHONE_NUMBER property tag to enable the home
telephone number property of an address card. When accessing a property, you
use the GetPropertyDataStruct function to specify whether the information
should be retrieved by the position index, property name, or property tag. The
information is then passed into a PropertyDataStruct structure.

• Sort order

Sort order specifies how the records are indexed. For example, records can be
sorted according to the names or telephone numbers of the individuals. You
can use up to four properties as the position indexes for sorting. However, you
can sort only one property at a time. You specify an array of sort order options
when you create a new database using CreateAddressBook and you specify
a sort order out of the options list when you open an existing database using
OpeuAddressBook. You can change and retrieve the sort -order properties
using the SetColumnProperties or GetColumnProperties function. In
addition, you can change or retrieve the current sort order in an opened
database using the SetSortOrder or GetSortOrder function.

Programming with the Contacts Database
Designing your database application involves calling the Contacts API to
manipulate the database elements. In general, your application will include
the following processes:

• Opening your database

• Adding and removing address cards

• Opening address cards

• Searching for a named property

Chapter 23 Contacts Database 401

• Modifying address cards

• Closing the opened address cards

• Closing your database

You can use wrapper functions to map a user-defined setting to a system-defined
one. For an application that tracks patient visits to a doctor, you can use the
stBirthDate and stAnniversary properties to hold the time and dates of previous
and future office visits. The following code example shows how to write a
SetOffice VisitDates function to set these two properties.

void SetOfficeVisitDates(SYSTEMTIME stVisit. BOOl fPrev. ADDRESSCARD *
myAC)
{

if(fPrev)
myAC.stBirthdate=stVisit;

else
myAC.stAnniversary=stVisit;

II previous office visit

II future office visit

Similarly, the following code example shows how to write a GetOfliceVisitDates
to return the appropriate date for the office visit.

SYSTEMTIME GetofficeVisitDate(BOOl fPrev. ADDRESSCARD myAC)
{

}

if(fPrev)
return myAC.stBirthdate;

else
return myAC.stAnniversary;

II previous office visit

II future office visit

Opening the Contacts Database
Before you can work with any address cards, you must first open your database
and specify a sort order and a handle to a window. The window receives
notification messages from the object store. Before you can open the database,
you must create it by calling the CreateAddressBook function.

~ To open the Contacts database

1. Call the OpenAddressBook function.

2. Define a sort order to be used and specify a window to receive the
notification message.

If the Boolean function returns TRUE, you can proceed to work with the
opened database. The function returns FALSE if you attempt to open a non­
existing database. If another Contacts database application has altered the
sort order in an existing database, the function returns FALSE as well.

402 Windows CE Programmer's Guide

3. Call GetLastError to get error information. If the error value is
ERROR_FILE_NOT_FOUND, the database does not exist.

4. Call the CreateAddressBook function to create the database before
re-opening it.

-Or-

If the error value is ERROR_INVALID _PARAMETER, the database does
exist, but the sort order has been altered. Call OpenAddressBook again, but
without specifying a sort order.

The CreateAddressBook function can take as input a NULL array for the sort
order properties. In this case, the function uses the surname, company name,
office telephone number, and home telephone number properties as the default
sort order parameters.

Multiple applications can open the Contacts database simultaneously. To
coordinate data access and preserve data integrity, the operating system sends
object-store notification messages to attached applications whenever the database
is modified. The notification messages have the DB_CEOID_ prefix and are
defined in the Windbase.h header file. After receiving a notification message, an
application calls the RecountCards function to recalculate the number of records
in the database.

The following code example illustrates how to open the Contacts database.
When OpeoAddressBook fails because the database does not exist,
CreateAddressBook is invoked to create the database before OpenAddressBook
is called again. The GetPropertyDataStruct function examines address card
properties to ensure that the database has not been corrupted. The sample function
returns TRUE if the database was successfully opened or FALSE if it was not.

BOOL OpenUpTheAddressBook(HWND hwndParent. HHPRTAG hhSortProp)
{

DWORD dwError;
HHPRTAG propList[MAX_COLUMNS];
int nColumns;
int index;

if (!OpenAddressBook(hwndParent.
dwError = GetLastError();
if (dwError == ERROR_FILE_NOT
{

II Error code
II Sort-order property tags
II Number of sortable columns
II Loop index

hhSortProp» {

FOUND)

if (!CreateAddressBook(NULL. 0»
{

goto InitError;
}

}

}

Chapter 23 Contacts Database 403

if (!OpenAddressBook(hwndParent. hhSortProp»
{

goto InitError;
}

} el se if (dwError -- ERROR_INVALID_PARAMETER)
{

} else

if (!OpenAddressBook(hwndParent. 0»
{

goto InitError;
}

nColumns - MAX_COLUMNS;
if (!GetColumnProperties(&propList. &nColumns»

{

goto InitError;
}

for (index = 0; index < nColumns; index++)
{

if (GetPropertyDataStruct(GPDS_PROPERTY.
propList[index]. NULL) == GPDS_ERR)

}

{

MessageBox(hwndParent. IDS_CORRUPT_DATABASE.
MB_ICONEXCLAMATION 1MB_OK);

goto InitError;
}

hhSortProp - propList[0];
if (!OpenAddressBook(hwndParent. hhSortProp»

{

{

goto InitError;
}

goto InitError;
}

return TRUE;

InitError:
return FALSE;

404 Windows CE Programmer's Guide

Adding and Removing Address Cards
Follow these procedures for adding and deleting records from your
Contacts database.

~ To add an address card to the Contacts database

1. Initialize an AddressCard structure to hold whatever properties the new card
is to have.

2. For each property you will include in the new card, call the SetMask function
on the initialized AddressCard with a (HHPR _ *) property tag. Only
properties that are enabled by SetMask can be saved to the object store.

3. Call the AddAddressCard function to insert the new address card into
the database.

If the operation is successful, AddAddressCard returns the object identifier in
the myAC_oid parameter and the position index in the myAc...poslndex parameter.
The position index is determined by the current sort order. The following code
example illustrates how to add an address to the Contacts database.

ADDRESSCARD myAC;
PEGOID myAC_oid;
int myAC_posIndex;

memset(myAC.0.sizeof(myAC»; II to be sure everything starts from 0
myAC.stBirthday.wYear=1969;
myAC.stBirthday.wMonth=l;
myAc.stBirthday.wDay=19;
myAC.pszGivenName="Mimmo";
SetMask(&myAC. HHPR_BIRTHDAY);
SetMask(&myAC. HHPR_GIEVN_NAME);
if(!AddAddressCard(&myAC. &myACoid. &myACposIndex»
{

II error handling
}

~ To remove an address card from the Contacts database

• Call the DeleteAddressCard function on the object identifier of the card.

Chapter 23 Contacts Database 405

Retrieving and Modifying Address Cards
Before you can modify an address card, you must first retrieve its current
properties. There are two ways to retrieve the properties.

~ To retrieve an address card

• Call GetAddressCardProperties to open the address card and retrieve a
selected set of properties. This is the preferred method because this function
allocates less memory.

-Or-

• Call OpenAddressCard to allocate memory for an address card and retrieve
all ofthe card's properties.

~ To modify an address card

1. Change members of the AddressCard structure retrieved by
OpenAddressCard or GetAddressCardProperties.

2. Set the property tag for each modified property with a call to the SetMask
function to make the modification persistent.

3. Call the ModifyAddressCard function on the modified AddressCard
structure to complete the process.

To save system resources, you should free the memory allocated by
OpenAddressCard or GetAddressCardProperties after the modification
is finished by calling the FreeAddressCard function. For every call to
OpenAddressCard or GetAddressCardProperties, there should be a
corresponding call to FreeAddressCard.

407

CHAPTER 24

Inbox

The Windows CE Inbox application provides users with access to electronic mail
by means of Simple Mail Transport Protocol (SMTP) and Post Office Protocol 3
(POP3). Inbox works with any Transmission Control ProtocollInternet Protocol
(TCPIIP) network, including the Internet.

Inbox is a Windows CE-based companion to a Microsoft Exchange client running
on the user's desktop computer. It is an integral part of the personal information
management (PIM) software that comes bundled with some Windows CE-based
devices, such as an H/PC.

Inbox has an open application programming interface. The mail interface enables
any application to send and receive mail messages mediated through Inbox.
When a specified type of message is received, Inbox can automatically launch
an application and pass it the message. You can take advantage of this open
application programming interface (API) to write additional mail transport and
storage applications.

Note Windows CE does not support the Microsoft Messaging API (MAPI)
standard. Messaging applications must use the mail interface described in this
chapter.

Writing a mail application involves:

• Maintaining a local message heap to work with a message.

• Working with the MailMsg and MailAtt structures to manipulate a message
and its attachment.

• Working with the message store to store, retrieve, and query messages.

Before we discuss how to work with mail messages, you should be familiar with
some of the basic mail message elements, including message heap, message store,
messages, and message attachments.

408 Windows CE Programmer's Guide

Message Heap
Opening a message usually creates a private heap for dynamic storage of data
from the message store. A handle to this private heap is registered as the hHeap
member of a MailMsg structure, discussed later in this chapter. To optimize
memory use, you should free the private heap when you are done with the
message by calling the MailFree function. To prevent fragmentation of the
global heap, use local heaps to work with mail messages. To conserve the
memory resource, open messages one at a time.

Message Store
The message store is a database in the object store used to store messages. It is
partitioned into folders arranged in a flat hierarchy. Windows CE defines five
types of folders:

• Inbox

A built-in folder for storing all incoming messages.

• Outbox

A built-in folder for queuing messages to be sent the next time a
connection is made.

• Sent Items

A built-in folder for storing a copy of sent messages.

• Deleted Items

A built-in pseudofolder that displays messages marked for deletion.

• User-Defined

Additional folders (up to 21) that a user can create. Folder names are limited to
31 characters.

You may not rename or delete any of the built-in folders. Deleted messages
remain in their original folders, but are marked with a flag. They are visible only
in the Deleted Items pseudofolder. When a user recovers a deleted message, the
flag is unmarked and the message become visible again in the original folder.

Chapter 24 Inbox 409

Mail Messages
Windows CE uses the MailMsg structure to encapsulate information about a mail
message. The data structure contains the following elements:

• The message's object identifier

• The message's header and body

• The time the message is received

• Additional status information about the message and the operation to be
performed against it

You must create and initialize a MailMsg structure in order to use it to read and
write messages to and from the message store. If you declare a MailMsg structure
on the stack, to be sure that the structure is cleanly initialized, you should call:

memset(&MailMsg. 0. sizeof(MailMsg»;

The unique object identifier is registered as the oid member of the MailMsg
structure. You use this identifier for direct access to messages in the message
store. There are a number of flags you can use to perform specific operations on
the message. These flags are assigned to the dwFlags member of the MailMsg
structure. The mail and transport functions assign flags to denote the status of the
message. You can assign flags to specify how to handle a message. For example,
you can selectively retrieve messages of certain types, and you can flag a new
message to be sent after the user issues the Send command.

Mail flags are divided into four categories:

• Folder flags

Determine which folder to locate or store the message in, or which
folder the message will be moved or copied into. The flags have the
MAIL_FOLDER_ prefix.

• Status flags

Determine the type of message being searched for before a call is made
to retrieve a message. After the function call they contain the status of
the message. The flags have the MAIL_STATUS_ prefix.

• Message store flags

Determine how much of the message is read into memory when the message is
retrieved. The flags have the MAIL_ prefix.

• Message attachment flags

Determine the status of message attachments and the mode of operation to be
performed on them. The flags have the ATT_ prefix.

410 Windows CE Programmer's Guide

When you assign MAIL_FOLDER_SENT to dwFlag, the system will
move the message to the Sent Items folder. Messages that are flagged with
MAIL_STATUS_DELETE are displayed in the Deleted Items folder and are
invisible from the original folder. MAIL_STATUS_ATTACHMENTS indicates
that the message has attachments. If you want to fetch the full body of a message
from the message store, set dwFlags to MAIL_FULL. All the mail flags are
defined in the Msgstore.h header file.

Message Header
The message header pwcHeaders usually contains information, such as the
name and address of the sender and receiver of the message. It consists of
one or more entries, each of which contains two fields: Name and Value. Both
fields are Unicode strings that can be read with MailGetField and modified
with MailSetField. Entries a message header might contain are described in
the following table.

Name Field

To

From

cc

Subject

Value Field

john@street.com

frank@hill.com

bob@river.com

The way it was, is and will be

When creating a message header string, you should terminate the Name and Value
strings with a NULL character. For the last Value field, you must terminate it with
two NULL characters to indicate the end of the header.

For the most part, the strings assigned to the Name fields have no special meaning
to the system, unless the string is "Type." In this case, the system checks the
corresponding value field to see if it matches the name of a dynamic-link library
(DLL) registered with the system. The body of the message is passed to the DLL
for processing.

Message Attachments
Windows CE uses a MailAtt structure to hold information about an attachment to
a mail message. The members identify the attachment and specify the name and
status of the attached file. An attachment is the attached file plus a header. The
file name is registered in the szOriginalName member of the MailAtt structure
and the header is the MailAtt structure itself.

Chapter 24 Inbox 411

An attachment can be classified as local or non-local. A local attachment consists
of the header and a locally-stored copy of the original file. A non-local attachment
has only the header with the name of the attached file. The actual file is not stored
on the Windows CE-based device. The file name is simply a placeholder for the
attachment. Non-local attachments are possible only when they are attached to a
service-linked message.

Multiple attachments to a message are arranged in the MailAttArray structure.
Because a file can be attached to a message more than once, it is possible that
conflicts arise in the name space of the local files of the attachment. When this
happens, Windows CE automatically resolves the name conflicts.

Working with Mail Messages
You can follow the general procedure for working with messages.

~ To work with mail messages

1. Open the message store with MailOpen.

2. Perform tasks such as retrieving messages, inserting messages, sending
messages, copying and moving messages, and updating Message Store.

3. If you use MailFirst, MailGet, or MailNext in step 2, free the heap
with MailFree.

4. Close the message store with MailClose.

Retrieving Mail Messages
Before using a message and its related information, you must retrieve it from
the message store. If you know the object identifier of the message, you can call
Mail Get to retrieve the message directly from the message store. Otherwise, you
need to use MailFirst to get the first message. You can then step through the
message store with repeated calls to MailNext.

USing Message Flags
Message flags provide you with many options to manipulate mail messages. In
fact, you do not write code to perform the low-level operations. You simply set
appropriate flags and the system takes care of the rest. For example, if you want
to retrieve a message from the Inbox folder only, you set the dwFlags member
of the MailMsg structure to MAIL_FOLDER_INBOX before you call MailFirst.

412 Windows CE Programmer's Guide

You can use other message flags to enhance the performance of your application.
You use MAIL_GET_BODY and MAIL_GET_FLAGS to determine how much
of the message is to be read into memory. If you set MAIL_GET_BODY, the
entire message is read into memory. Otherwise, everything except the message
body is read into memory. In either case, the system allocates memory from the
local heap. A handle to the heap is passed back through the hHeap member of
the MailMsg structure.

To get minimal information about the messages, without allocating memory, you
set dwFlags to MAIL_GET_FLAGS. MAIL_GET_FLAGS instructs the system
to read only the dwFlags member of the MailMsg structure. For example, you
can build an array of pointers to unopened messages stored in the Inbox folder.

~ To build an array of pointers to unopened messages stored in the
Inbox folder

1. Call MailFirst to get the flags and object identifier of the first unopened
message in the Inbox.

2. Store the identifier number and any other desired information.

3. Reset the flags to specify the same folder and type of message.

4. Call MaiiNext with the MAIL_GET_FLAGS flag set to retrieve the flags·
and object identifier of the next message.

5. Save the information.

6. Repeat steps 3, 4, and 5 until you have handled all of the messages
in the Inbox.

To retrieve a particular message body, you can pass the object identifier
to MailGet.

Inserting Mail Messages
~ Follow this procedure to insert a new message into a message store folder

1. Create the message body and header string.

2. Create a MailMsg structure.

3. Point the szBody member of the structure to the message body.

4. Use MaiiSetField to put the header string into the pwcHeaders member.

5. Set the message flags to point to the folder.

6. Set any other relevant flags, for example, MAIL_STATUS_COMPOSED.

7. Fill in the dwMsgLen, ftDate, and szSvcNam members, if relevant.

8. Use MailPut to put the message in the desired folder.

Chapter 24 Inbox 413

The procedure just described works well for simple mail messages without
attachments or for a non-Interpersonal Message (non-IPM), which is any message
that is processed by an application, rather than read directly by a user. If you need
to add non-IPM properties or attachments to the newly created message, be aware
that a transport may be registered to receive database notifications and may
attempt to manipulate the message as soon as it is written. For example, a
transport may move or delete a message in the Outbox folder before the call to
MailPutAttachment. To avoid unexpected deletion, create outgoing messages in
the Inbox folder only after the message is completely written to the message store
and is ready to be sent. Use MailUpdate to move the message to the Outbox
folder. Set the Boolean variable to FALSE.

Sending Mail Messages
Sending a message is a simple task, requiring a few lines of code. When a user
finishes composing a message and activates the Send command, the application
sets flags and the system performs all the necessary actions required to send
the message to its destination or destinations. To send a mail message, the
application sets the MAIL_STATUS_COMPOSED flag, and sets the
MAIL_FOLDER_OUTBOX flag to direct the message to the Outbox folder.
The next time a user connects to the service specified on the message, the
message is sent.

Updating the Message Store
If your application changes any of the members of MaiIMsg, for example,
setting the MAIL_STATUS_READ flag, the message store is not affected until
the message is reinserted. You must call the MailUpdate function to make

the modifications permanent in the message store.

Moving and Copying Mail Messages
An application can move and copy mail messages in the message store. To move
an existing message, change the folder flag and pass the resulting MaiIMsg
structure to MailUpdate. To copy a message, change the folder flag and pass the
structure to MailPut.

A user can move and copy service-linked mail messages. When Inbox downloads
messages from a service provider, it checks the copy and move status flags of
all messages in the Inbox folder that belong to the service provider, which is
specified by the szSvcID and szSvNam members of the MailMsg structure. If
MAIL_STATUS_MOVE is set, the message is moved to the specified folder. If
MAIL_STATUS_COPY is set, the message is copied to the specified folder, with
the original message remaining in the Inbox folder.

414 Windows CE Programmer's Guide

Attaching Files to Mail Messages
You can use theMailPutAttachment.MailGetAttachment.
MailDeleteAttachment, MailRequestAttachment, and
MailLocaiAttachmentLen functions to work with mail attachments. With these
functions you can create, open, or delete an attachment. You can also request to
download one or query for its length.

You work with attachments the way you would work with a message: You
register an intended operation in the dwFlags parameter of the MailAtt structure.
For example, you set the parameter to ATT_DISP _RETRIEVE when you want
the attachment downloaded to the local device.

The Mail Interface API uses the szLocalName member of MailAtt to determine
whether the attachment is local or non-local. For a non-local attachment, you must
set szLocaiName to NULL before passing it to MailPutAttachment for example.
For a non-local attachment, you must specify the length, ulSize, of the original
file. For local attachments, the size is determined by examining the file.

Handling Mail Errors
When an error occurs, call the MailError function to obtain the
error information. You can also call MailErrorMsg to obtain a
more descriptive error condition.

415

CHAPTER 25

Mail Transport Service

Transport services, available as dynamic-link libraries (DLLs), allow a mail client
to interact with a server to transmit or receive messages. The Windows CE mail
transport service, Smtp.dll, is a message broker between Inbox, the Windows CE
mail client, and an Internet mail server that is compliant with the Simple Mail
Transfer Protocol (SMTP) and Post Office Protocol 3 (POP3) protocols. The
operations of the mail transport service are transparent to the user.

Transport services are not limited to electronic mail. You can write a custom
transport for paging, fax, file systems and other services. Similarly, you can
write a custom client application. In any case, a transport is responsible for
implementing a set of transport application programming interfaces (APIs) and
making it available for a client to call. If you write a transport that uses Inbox
as a client, you must declare and implement all the transport service interface
functions and structures that Inbox expects. For lists of these functions and
structures, see the appendix "Lists of Functions and Interfaces."

Note You can use the mail message API to deliver messages to the mail client
without server interaction, for example, for a built-in, one-way pager card.
However, this chapter describes interactive transports only.

As part of initialization, the mail transport service retrieves from the registry
information about the name of an SMTP or POP3 server, port, user name,
password, return address, and so on. The transport service uses a private
SERVICE structure to represent the server it communicates with and the
MailMsg structure to transport mail messages between the client and the server.

416 Windows CE Programmer's Guide

A mail transport service works closely with a client application. For example,
Inbox calls functions exported by Smtp.dll to perform standard mail operations,
such as connecting and sending mail to an Internet mail server, and receiving and
deleting mail from that server. A transport service must implement a minimum
number of functions that the client application needs to call. Additionally, it may
choose to implement a few optional functions. Before the client can communicate
with a transport library, the transport must register itself in the registry and the
client must add the transport to its list of interactive services.

Registering a Transport Service
A transport service library must register itself in the registry under the
HKLM\PMail\ServicLibs key so that a client application can locate
and load the DLL. Register Smtp.dll as the SMTP subkey.

All interactive transport services must register with the client application so
that a user can choose one for connecting to the server. An interactive transport
is the transport that appears in the service list visible to users. On the other
hand, passive services are those that deliver mail without requiring the user's
interaction. In Inbox, interactive services are added to the Service menu once
they are registered as a named key under HKLM\PMail\ServiceInfo. If the user
removes an interactive service, Inbox deletes the associated registry entry. Passive
services are registered as a named key under HKLM\PMail\PassiveServiceInfo.
The client uses the passive service registration information to allow the user to
select the transport for outgoing messages. Unlike interactive services, passive
services have no subkeys.

The user can add registered interactive services to the Service menu of the Inbox
application by tapping the Compose menu followed by the Options dialog box,
and then the Add dialog box. The following sections provide sample registry
entries and demonstrate how to install a transport service and add it to the Inbox
client application.

Chapter 25 Mail Transport Service 417

Registering a Transport Service Library
Following is a sample registry, with Inbox running as the mail client, that makes
use of a sample transport service.

~ To register a transport service library

1. Under the ServiceLibs key, create a transport subkey that uniquely identifies
the name of the transport service.

In this example, the transport subkey is named SAMPLE to refer to the
sample transport service DLL, Sample.dll.

2. Under the SAMPLE subkey, register a SvcName named value to identify
the name of the service. In this example, the string value is "Sample
Transport Service."

3. Under the SAMPLE subkey, register a SvcLib named value that defines the
name of the transport service DLL.

Inbox will load this DLL when it makes a connection to the specified service
by calling the service's TransportConnect function.

Adding a Transport Service for Inbox
Using Inbox, a user has added the "Sample Transport Service" to the list
of Installed Services. The service has been mapped to the MyMail key.

~ To add a transport service for Inbox

1. From Inbox, tap Compose, tap Options, tap the Services tab control, and tap
the Add button to bring up installed services. Highlight the Sample transport
service called "Sample Transport Service."

2. Tap the OK button, and then type MyMail as a unique name for the
selected service.

The SvcKey value is the HKLM\PMail\ServiceLibs\SAMPLE subkey.
Inbox uses this key to identify the name of the DLL to be loaded into memory
when the desired service is connected. In this example, the DLL is Sample.dll.

3. Finish making choices in the dialog box to define the service's properties
appropriately and tap OK to close the dialog box.

Inbox adds the MyMail subkey under HKLM\PMail\ServiceInfo that
includes information and properties for the service. Note that these properties
can be modified by the service's TransportProps routine, once the new
service is connected.

4. The SvcKey value is the HKLM\PMail\ServiceLibs\sAMPLE subkey.
Inbox uses this key to identify the name of the DLL to be loaded into memory
when the desired service is connected. In this example, the DLL is Sample.dll.

418 Windows CE Programmer's Guide

Note The PMall key refers to the Inbox application.

The previous procedure could result in the following registry entries.

'HKEY_LOCAL_MACHINE'
[PMail]

[ServiceInfo]
[MyMail]

REG_DWORD: CopyMaxLines - 0x32
REG_DWORD: CopyAllLines - 0x0
REG_DWORD: GrabRead - 0xl
REG_DWORD: TypeOfGrab = 0x0
REG_DWORD: SvcAutoDisco - 0x0
REG_DWORD: NewMailNotify - 0xl
REG_DWORD: RefreshTime - 0x5
REG_DWORD: DoRefresh - 0xl
REG_SZ: SvcAddrBook = Internet
REG_SZ: SvcProfile = Direct
REG_DWORD: SvcRemember = 0xl
REG_SZ: SvcRtn -
REG_SZ: SvcSMTPHost -
REG_SZ: SvcPass =

REG_SZ: SvcUser = thisuser
REG_SZ: SvcPOP3Host = pop3svr-msg
REG_SZ: SvcKey - SAMPLE

[Servi ceLi bs]
[SMTP]

REG_SZ: SvcName = Internet Mail
REG_SZ: SvcLib - smtp.dll

[SAMPLE]
REG_SZ: SvcName - Sample Transport Service
REG_SZ: SvcLib - sample.dll

Registry Entries Used by Inbox and the Transport Service
Registry values under the MyMall subkey that are specific to, and set by, the
transport, but that are also used by Inbox, are described in the following table.
These registry values are usually set by the Service Definition dialog box that
gets called when a mail service is being added, for example, MyMall. Once the
MyMall service is connected, these and other values under the MyMail registry
subkey may be modified or added by the service's TransportProps routine.

Note The "Type" entry in the table defines the registry value type.

Registry value Type

CopyMaxLines

CopyAllLines

GrabRead

TypeOfGrab

SvcAutoDisco

NewMailNotify

Chapter 25 Mail Transport Service 419

Description

Indicates the maximum number of messsage
body lines to copy from the server.

This value is relevant only if the Copy AllLines
value is set to zero.

Indicates that the entire message body
should be copied from the server, if the
value is non-zero.

If this value is zero, CopyMaxLines lines of
the message body are copied.

Indicates whether a remote message should be
saved locally when it is read from the server.

If the TypeOfGrab value is one, and the
messages are not remote, GrabRead will be
ignored. If this value is not zero, the remote
message is saved locally.

If this value is zero, the remote message is not
stored locally when read. If your service allows
this option, messages with attachments and
non-Interpersonal Messages (non-IPMs) will
not work properly in this scenario.

Indicates whether the entire message or only
the message header should be copied from
the server.

If this value is zero, only the message headers
are copied. If this value is one, all messages,
headers, and bodies are copied. However, the
amount of the body to be copied is limited to
CopyMaxLines.

Indicates whether Inbox should force an
automatic disconnect after the service
sends or receives messages.

If this value is zero, the user must manually
discounect the service. If this value is one,
Inbox automatcally disconnects the service after
connecting and performing the implied send­
and-receive operations.

Indicates what type of notification Inbox should
perform when a new message arrives.

If this value is zero, Inbox beeps. If this value
is one, Inbox beeps and also displays a
message box.

420 Windows CE Programmer's Guide

Registry value Type

RefreshTime

DoRefresh

SvcAddrBook

SvcRemember

Description

Indicates the number of minutes between
refreshes. This is relevant only if the
DoRefresh value is one.

Indicates whether messages should periodically
be refreshed; the refresh interval is defmed by
the RefreshTime registry value.

If this value is zero, Inbox does not do a
periodic refresh. If this value is one, Inbox
refreshes every RefreshTime minutes.

Indicates which address book (data base
contacts) field to use for queries. This is a
Unicode string.

For example, you could set SvcAddrBook to
the value "Internet," or the value "2-Way
Paging." Each of these strings is a long name,
caned a property name of a database property.
You can obtain this property name by
specifying a property with a call to
GetPropertyDataStruct function.
GetPropertyDataStruct also returns a
database position index of the specified
property. The property name returned can then
be used with GetMatchingEntry.

The transport service can set SvcAddrBook to
the long name of any property identifier that it
will search.

Indicates whether the password should
be remembered.

If this value is zero, Inbox displays a dialog box
and prompts the user for a password each time
the service connects. If this value is one, the
system remembers the password, and Inbox
does not display the dialog box.

Registry value Type

SvcRtn

SvcPass

SvcKey

Chapter 25 Mail Transport Service 421'

Description

A Unicode string that defines the default
return address to use. On a "Reply," Inbox
will place this string in the "From:" field of
the message header.

The service driver could check or modify this
entry to provide an appropriate or desired
return address.

A Unicode string that stores the password
provided at the time of logon.

An encrypted Unicode string that identifies the
registry key that corresponds to the currently
connected service; this key is under the
ServiceLibs subkey.

This indicates to Inbox the DLL that is to be
loaded when the SvcName service is connected
by the user within the Inbox application.

See "Registering a Transport Service" earlier in
this chapter.

Implementing a Sample Transport Service
The SDK includes a sample transport service. For a description of this sample,
see Windows CE Sample Applications in the online Help. This Svcsampl sample
transport service performs message service routines, such as creating, writing
to, and reading from files that are located in the Inbox folder. This is performed,
for demonstration purposes, using file system functions, such as CreateFile,
ReadFile, and WriteFile. For transport functions that perform such tasks as
sending, receiving, and deleting messages, a handle to a MaiIMsg structure is
passed. The MailMsg structure contains the message header and body, and
information about the message.

The sample transport service provided with the SDK sample code allocates a local
heap in TransportInit for a transport-defined SERVICE structure. This structure
supports handling the messages and provides a number of service functions that
you can use for message handling. For example, the sample service locates
messages in a mail directory specified by the szMailDir member of the
SERVICE structure. These messages are stored as individual text files; file
names are numbers with a .txt suffix, assigned in sequence.

422 Windows CE Programmer's Guide

Every mail message that arrives on a server is given a persistent unique ID. The
system guarantees that this ID is different for every mail message and that it never
changes. However, because these IDs are long-up to 70 characters-and are
not convenient to use inside the transport service, Windows CE provides an
alternative. <For each session, the service generates a non-persistent session ID to
reference a long unique ID. Each time a connection is made to the server-that
is, each time a POP3 session is created-the server looks at all of the currently
stored messages and assigns a session ID to each message. The messages are
numbered from one through the total number of messages. This makes it easier
to reference a particular message without having to use its long unique ID. The
drawback is that you have no guarantee that message number five on this session
with a session ID of five will still be message number five the next time the
service is connected. Because of this, the session ID can not be trusted from one
connection of a service to the next connection of that service.

Managing Memory for Mail Allocations
Inbox uses HeapCreate and HeapAlloc to allocate a private heap for each mail
message; however, Inbox opens only one mail message at a time, in order to
conserve memory. When Inbox is finished working with a message, it frees
the allocated memory by calling HeapDestroy. If a service or application needs
to create a memory heap, following this method can help to minimize
memory fragmentation.

When working with a mail message, if Inbox has already allocated a heap for
a message, then the service can reallocate memory on the existing heap. For
example, if the handle hHeap in the MailMsg structure is not NULL, that is,
if the handle exists, the service can allocate additional memory to this existing
heap. In this way, Inbox takes care of freeing memory when it calls the
MailFree function.

When following the method just described, the TransportRecv routine should
create a private heap using HeapCreate for each mail message. A good initial
size is 2 Kb. TransportRecv should store this heap handle in the hHeap member
of the MailMsg structure. All dynamic storage in the MailMsg structure will use
this private heap. Heap allocated storage should include the szSvcId, szSvcNam,
pwcHeaders, and szBody members of the MailMsg structure.

The TransportFreeMsg routine should check for a NULL heap handle, delete the
heap, and set the bHeap member of the MailMsg structure to NULL.

PAR T 7

Handheld PC

Chapter 26 Programming for an HIPC 425
Hardware for an HlPC 426
Using Flash Cards on an HlPC 427
HlPC Shell 428
Applications Bundled with an HlPC 432

Chapter 27 Designing a User Interface for an HlPC 433
Working with the Desktop and Taskbar 433
Designing Windows and Dialog Boxes 436
Choosing Menus and Controls 438
Receiving User Input for an HlPC 438
Providing Help 439

Chapter 28 Managing Power 441
Power Management States 442
Resuming Operation, Rebooting, and Resetting 444

Chapter 29 Writing Memory-Efficient Applications 445
Memory Pages 445
Types of Memory Allocation 446
Thread Local Storage 448
Monitoring How an Application Uses RAM 449
Handling Low Memory Situations 455
Application Hibernation 458
Tips for Efficient Memory Use 459

Chapter 30 Connecting to the Desktop and Sending and Receiving Data 461
Connecting to Other Computers 461
Communications and Connectivity Hardware for an H/PC 463
Communication and Connectivity Software for an H/PC 465

CHAPTER 26

Programming for an H/PC

The Handheld PC (HlPC) is a category of mobile computing devices based on
the Windows CE operating system. More than a personal digital assistant, the
HlPC is a full-featured computer that extends the Microsoft Windows family
to compact platforms. An HlPC is housed in a clamshell with an embedded
keyboard, a touch-sensitive screen, and a stylus.

425

The HlPC is a mobile companion to a Windows-based desktop computer. The
programming model and development environment of both are very similar.
However, when writing applications for an HlPC, you must carefully consider the
unique features of a handheld device. In this chapter, we will discuss in detail
HlPC hardware and the HlPC shell, and comment briefly on bundled applications.
For other features of the HlPC that you must consider when programming
applications, see the chapters identified in the following table.

For information on

Power supply

Memory

Communication and
connectivity

See

Chapter 28, "Managing Power"

Chapter 29, "Writing Memory-Efficient Applications"

Chapter 30, "Connecting to the Desktop and Sending
and Receiving Data"

426 Windows CE Programmer's Guide

Hardware for an H/PC
Because an original equipment manufacturer (OEM) can choose different
Windows CE components to include in the HlPC, not all devices have the same
features. When programming for the HlPC, you must consider what hardware
features the OEM has made available to you. Pay particular attention to the
amount of ROM and RAM and the memory page size of the device. In general,
HlPCs contain the following hardware:

• Display

HlPCs have an LCD with a resolution of 480 x 240 or higher in a landscape
orientation. The screen can have a color resolution of 2, 4, or 8 bits per pixel
color resolution. The pixel arrangement renders the display in black and white,
grayscale, or 256 colors.

• Touch panel

A continuous resistive touch panel covers the LCD. The touch panel, which
works similarly to a mouse on a desktop computer, allows a user to directly
manipulate objects on the screen. Tapping the screen sends the same kind
of messages that are generated by clicking the left button of a mouse that is
connected to a Windows-based desktop computer. Because an HlPC has no
mouse, cursor support is limited to a spinning hourglass used as a wait cursor.
You cannot change the shape of the cursor to indicate an active target, such as
a hyperlink.

• Keyboard

The HlPC keyboard is a QWERTY keyboard with some keys omitted.
QWERTY is the standard English-language keyboard layout named for the six
leftmost characters in the top row of alphabetic characters. The HlPC keyboard
includes a CTRL key, an ALT key, and two SHIFT keys. Infrequently used
keys, such as PRINT SCREEN and SCROLL LOCK, are not included. The
keyboard supports separate key-down and key-up events.

• Audio hardware

You use the built-in audio hardware to associate sounds with notification
events or to play wave (.wav) files. To reduce code size, you access .wav
files stored in ROM.

• Serial port

HlPCs include a built-in, nine-pin serial port. Applications use the serial port
for communication between the HlPC and a desktop computer. HlPCs can
connect to desktop computers by using a serial cable or an optional docking
cradle that is connected to the desktop computer. The cradle is available from
HlPC manufacturers. Some HlPCs support data communications through a
modem connected to the serial port. The serial port can be used as a printer
port as well.

Chapter 26 Programming for an H/PC 427

• Infrared communications serial port

An infrared communications serial port that conforms to the Infrared Data
Association (IrDA) specifications is included. HlPCs can communicate with
other HlPCs, desktop computers, or printers through IrDA-compliant infrared
ports. Additionally, IR ports support printers that are IR-enabled, as well as
printers with parallel interfaces.

• Hardware expansion slot

Some HlPCs have an internal modem, a built-in, one-way pager, or a PC
Card slot for additional communications hardware. Because Windows CE
supports only a portion of the Personal Computer Memory Card International
Association (PCMCIA) standard, not all modems are supported. However,
because Windows CE &UPports installable device drivers, third-party software
and hardware vendors can add support for additional devices by providing
device drivers that you can install into an HlPC's RAM. H/PCs also support
flash cards as a means of transferring files and adding extra memory.

Using Flash Cards on an H/PC
Flash cards can be a useful method for transferring files and adding extra memory
to an H/Pc. This section outlines the method for accessing files on flash cards.

A flash card is assigned the folder name Storage Card on the H/PC. To create,
copy, or delete files on the storage card, open the Storage Card folder and then
create, copy, or delete files on it. A user accesses files on a flash card by double­
tapping on the My Handheld PC icon, which brings up the Explorer window,
and then selecting the Storage Card folder.

The following code example creates a file named Testfile under \storage
card\testdir.

HANDLE hFile;
DWORD dwFileLen;
char szText[]="This is a test file.";

if (CreateDirectory(TEXT("\\Storage Card\\testdir"). NULL))
{

}

hFile = CreateFile(TEXT("\\Storage
GENERIC_WRITEIGENERIC_READ.
FILE_SHARE_READ.
NULL.
CREATE_ALWAYS.
0.
NULL) ;

Card\\testdir\\test.txt").
Ilwe need read and write access
Iiallow read access for others
Iisecurity attributes
Iialways create new file
Ilfile attribute

WriteFile(hFile. szText. strlen(szText). &dwFileLen. 0);
CloseHandle(hFile);

428 Windows CE Programmer's Guide

H/PC Shell

The actual path for the flash card is \Storage Card, but due to the special
character inside the quotes you need to assign the path as \\Storage Card.

The HlPC shell is a user interface to the Windows CE operating system. The
shell is based on the Windows 95 shell and provides many features familiar to
Windows users, such as the desktop window, the recycle bin, the taskbar, and
drag-and-drop capability. To program HlPC applications successfully, you must
be aware ofthe graphical elements of the shell, as well as the shell-supported
functions, structures, and messages. For example, you must program your
application's user interface to work within the constraints of the shell's graphical
user interface. For information on the graphical features of the shell and for
guidelines on designing an interface, see Chapter 6, "Designing a User Interface
for Windows CE," and Chapter 27, "Designing a User Interface for an HlPC."

In addition to its familiar graphical features, the HlPC shell includes some
functions and messages that are unique to Windows CE. These include the
clipboard application programming interface (API), the WM_HIBERNATE
message, and the notification API. For a list of the elements of these APIs,
see the appendix "Lists of Functions and Interfaces."

Clipboard API
The clipboard is the standard Windows method of transferring data between a
source and a destination. Clipboard operations are copy, cut, and paste. Because
all applications have access to the clipboard, a user can easily transfer data within
a single application or between applications.

In most cases, your HlPC application will use the clipboard the same way that it
is used by Windows-based desktop platforms. However, the clipboard API does
not support clipboard viewers and private clipboard formats, and it provides
clipboard functions that are not available to its desktop counterpart, such as
GetClipboardDataAlloc. This function is similar to the GetClipboardData
function, except that the memory for the data is allocated and owned by the
calling process, rather than by the clipboard. The GetClipboardDataAlloc
function can save you from making an extra memory allocation when clipboard
data is transferred across processes.

Chapter 26 Programming for an HlPC 429

WM_HIBERNATE Message
Because it is necessary for applications sharing limited resources to cooperate
with one another, Windows CE provides the hibernation message. The HlPC shell
sends a WM_HIBERNATE message whenever system resources are low. The
hibernation message advises applications to release any resources they do not
need to recover their current state when they are reactivated. The release of
resources by other applications allows the one currently in the foreground to
complete its task. For information on using the WM_HIBERNATE message,
see Chapter 29, "Writing Memory-Efficient Applications."

Notification API
A notification is a signal from the operating system that an event has occurred.
When an application is registered for a specific event notification, the system
generates a notification when that event occurs. The HlPC shell uses notifications
to communicate with the user and with other Windows CE-based applications.
The notification functions and structures are grouped into a notification API that
is particularly useful for applications that run on a mobile device.

Windows CE generates two types of notifications, user and application. A user
notification alerts the user about a timer event. For example, the system might
display a dialog box and playa sound before a scheduled appointment. The
notification alerts the user so that he or she can perform some action. User
notifications are always associated with an application, but the application is
not started until the user takes some action.

An application notification starts an application when either a timer event or
a system event occurs. When the system starts an application as a result of a
notification, the system specifies a command-line parameter that identifies the
event that has occurred.

User notifications and application notifications have several differences. User
notifications alert the user, are generated only by timer events, and are executed
entirely by the operating system. The application is started only when the user
responds to the notification. In contrast, application notifications mayor may not
involve the user, can be generated by timer or system events, and always involve
the system starting an application.

The two types of events used in notifications are timer events and system
events. A timer event indicates that a specified time has arrived. A system
event is a system occurrence, such as establishing a network connection or
changing a device. A timer event would typically be used for a calendar or
a to-do-list application.

430 Windows CE Programmer's Guide

User Notifications
You use the CeSetUserNotification function to register a user notification. It
specifies the time when the notification should occur, the name of the associated
application, and the way the notification appears to the user, such as a flashing
LED or a sound.

At the specified time, the system places the application icon into the taskbar. If
the specified time has already passed, the system places the icon in the taskbar
immediately. An icon placed into the taskbar is called a taskbar annunciator.
The taskbar can contain multiple annunciator icons at the same time, if they are
for different applications. But only one icon for a specified application will be
displayed at any time.

When the user taps the annunciator icon, the system starts a new instance of the
corresponding application. It also passes a command-line parameter that tells the
application why it is being started. If an instance of the application is already
running, the new instance must send an application-defined message to the
previous instance. The new instance then shuts down.

User notifications exist in either a registered state or an active state. The
notification is registered from the time you call CeSetUserNotification until
the time the user is notified. The notification is active from the time the user is
notified until the event is handled.

Depending on what user notifications an HlPC supports, the operating system
notifies the user of an event in one of the following ways:

• Playing a wave (.wav) file

The user can choose a specific sound for each notification. The user can
override sound notifications using the Volume/Sounds setup from the
Control Panel.

• Flashing the light-emitting diode (LED)

When a notification causes the LED to flash, the flashing continues until the
user handles the notification. If multiple notifications cause the LED to flash,
the flashing stops only when the user has handled all notifications.

• Displaying a dialog box

A notification dialog box contains an application-defined title, application­
defined text, an OK button, and a Snooze button. Clicking the OK button
handles the notification. If the user clicks the Snooze button, the dialog box
disappears and is redisplayed after five minutes. Clicking the Snooze button
does not handle the notification.

• Vibrating the Windows CE-based device

Chapter 26 Programming for an H/PC 431

The actions that the system performs for a particular notification should be based
on preferences selected by the user. The system obtains a user's preferences by
calling CeGetUserNotificationPreferences. This function displays a dialog
box that contains the options available on the Windows CE-based device. The
OEM determines available options. The system places the user's choices into a
CE_USER_NOTIFICATION structure. The structure's address is specified in
the call to CeSetUserNotification, which makes the user's preferences available
to the system. CeSetUserNotification is used both for creating a new user
notification and for modifying an existing notification.

User notifications are handled in two ways. For notifications that display a
dialog box, clicking the OK button handles the notification. For notifications
that do not display a dialog box, the application started by the user handles the
notification by calling CeHandleAppNotifications. This function marks all
active notifications for the application as "handled" and also removes the taskbar
annunciator icon. CeHandleAppNotifications handles only active notifications,
not registered notifications.

To delete registered user notifications, use CeClearUserNotification.
For example, if a user sets a calendar appointment and then deletes the
appointment before the specified time, this function removes the notification.

The taskbar annunciator for an active notification remains in the taskbar until the
user handles the notification. In cases where an application has multiple active
notifications, all of its active notifications must be handled before the annunciator
icon is removed.

Application Notifications
The Windows CE operating system uses application notifications to communicate
with applications without requiring user intervention. Application notifications
are generated when a system event or a timer event occurs. An application does
not need to be running when the notification occurs.

The system sends a system-event notification when a specified system event
occurs. Examples of system events are the completion of data synchronization
and the establishment of a network connection. Whenever the specified event
occurs, the system starts the application with a command-line parameter.

You register an application for system-event notification by calling
the CeRunAppAtEvent function. For a complete list of events and
command line parameters, see CeRunAppAtEvent. Once you have registered a
notification for a system event, the notification occurs each time the event occurs.
You can delete the registration of an application for all system events by calling
CeRunAppAtEvent and specifying NULL as the second parameter.

432 Windows CE Programmer's Guide

The system sends a timer-event notification at a specified date and time. You
register for a timer-event notification using the CeRunAppAtTime function.
Timer-event notifications are useful when the user notification method does not
provide the user with necessary information to handle an event. In a timer event­
notification, the system issues the notification at the specified time and the
application displays the notification information.

Note Use CeRunAppAtEvent and CeRunAppAtTime sparingly. Automatically
starting an application can confuse the user and cause low-memory conditions on
a device with restricted memory. Ideally, the application that starts automatically
should be small and non-intrusive.

You must register a separate notification for each instance of a recurring timer
event. Typically, an application sets all of the instances for a specified period
of time upon startup. To handle cases where the specified time period elapses
without the user running the application, register the CeRunAppAtTime
function to run the application for each desired time during the next time period.

Applications Bundled with an H/PC
Manufacturers bundle software applications with HJPCs. Of the bundled
applications, two contain open APIs for manipulating the data used by the
bundled applications: Inbox, a mail application, and Contacts, a contacts database
application. Such APIs, unique to Windows CE, tum the bundled applications into
back-end engines that facilitate rapid application development on HJPCs.

The mail API allows you to build applications that work with Inbox. The
address store API allows you to build applications that work with the Contacts
information manager. This API exposes functions for adding, sorting, modifying,
and deleting records that appear in Contacts.

CHAPTER 27

Designing a User Interface
for an H/PC

433

Because the Handheld PC (RlPC) is designed to be a companion to a Windows­
based desktop computer, the shell and the core applications look like their desktop
counterparts. This similarity leverages the end user's knowledge of Windows
and provides a solid base of potential customers when a new RlPC application
is introduced.

On RlPC devices, users will recognize elements made familiar by Windows
desktop platforms: a desktop and a taskbar, windows and dialog boxes,
menus and controls. These and other elements allow the user to control the
RlPC environment.

When designing an RlPC application, all of the principles of good user interface
design discussed in previous chapters apply. The information presented here is
intended to serve as a supplement, rather than a substitute for, information
presented in Chapter 6, "Designing a User Interface for Windows CE."

Working with the Desktop and Taskbar
The desktop forms a visual background for all operations. It provides a familiar
interface for accessing documents, launching applications, switching between
tasks, browsing the file system, and performing other services. The components
of the RlPC desktop include a work area, a taskbar, and application shortcuts or
icons, such as the Recycle Bin and Inbox. Though you cannot programmatically
control the appearance of the desktop, it is important to understand its
specifications, so that you can design your interface accordingly.

434 Windows CE Programmer's Guide

Microsoft Microsoft Calendar
Pocket Excel Pocket Word

R~,"'" .deE Contacts

Inbox Tasks

HlPC desktop

The RIPe desktop is similar to other Windows desktops. It contains file, folder,
and shortcut icons that can be positioned anywhere on the desktop. Unlike other
Windows-based platforms, however, the RIPe has a virtual border around its
desktop to prevent icons from being fully obscured by the screen edge or taskbar.
The desktop does not permit users to position an icon's (0, 0) point beyond the
boundaries defined by the following rectangle coordinates:

(-16, -16), (464, -16), (464,198), (-16,198)

Additionally, the browser in the RIPe is integrated with Pocket Internet Explorer,
which means that it contains two views: an HTML view to display Internet
content and a File view to display a folder's contents. The browser assumes the
appropriate view depending on how it was launched. If it is launched by opening
a folder, it assumes the File view. If it is launched by pointing to a URL, is
assumes the HTML view. Each view in the browser contains it own toolbar. The
File view toolbar contains controls similar to the Windows Explorer toolbar. The
HTML toolbar contains controls similar to the Internet Explorer toolbar.

The taskbar is used to switch between open windows and to access global
commands and other frequently used objects. It contains a Start button, window
buttons, and a status area. It also contains a Desktop button that provides quick
access to the desktop from any application. Because RIPe applications do not
have title bars, users identify a running application primarily by the icon and
text displayed on its taskbar button.

HlPC taskbar

Chapter 27 Designing a User Interface for an H/PC 435

By default, the taskbar is the topmost window in the shell. When fully displayed,
the taskbar is 26 pixels tall and either 480 or 640 pixels wide depending on the
resolution of the display. The taskbar for the H/PC 2.0 supports autohide
functionality. While hidden, the taskbar is 5 pixels tall. When a user hides the
taskbar, a notification is sent to all applications that the usable vertical screen is
increased by 21 pixels. To reactivate a hidden taskbar, each H/PC touch screen
contains a 2.5 mm tap region around all four edges of the display. This, combined
with the height of the taskbar, provides a generous tap region for activating
the taskbar.

The H/PC taskbar also contains the following elements:

• Start menu

The Start menu has two components: the main menu and cascading menus.
The main menu has a maximum height equal to 240 pixels, the height of the
display. Thus, the menu displays only the number of items that can fit into this
region. If the contents exceeds this number, the menu displays as many items
as possible in alphabetical order. The width of the main menu cannot exceed
120 pixels. Any menu items wider than 120 pixels are cropped. The cropped
text is replaced with ellipses.

Cascading menus are also displayed in alphabetical order. They have a
maximum height of 240 pixels. If the number of items displayed exceeds the
height of the screen, the menu adopts a multiple-column mode and shows the
remaining menu items in the adjacent column.

Like other Windows-based platforms, main and cascading menus use the
16 x 16 pixel icon associated with the menu item. Items that cascade to
additional menus are appended with a triangular arrow.

• Window buttons

The H/PC displays window buttons for all open parent windows. Window
buttons are 23 pixels tall; button width is equal to the width of the available
taskbar tray area divided by the number of buttons. The maximum button
width is 1/3 of the available tray area. The minimum button width is 26 pixels.
All window buttons display an icon and caption. The icon is 16 x 16 pixels so
that the window button is always able to display the entire icon. The caption
truncates as the width of the button decreases in size. Activated window
buttons do not have bold captions.

436 Windows CE Programmer's Guide

• Desktop button

The Desktop button provides quick access to the desktop. When the button is
pressed, it brings the desktop forward, into focus, effectively hiding the current
application. When the desktop is in the foreground, the Desktop button
appears depressed to denote the desktop is being displayed. Pressing the
Desktop button while the Desktop button appears depressed causes the
previously active application to reactivate. The Desktop button is 23 x 22
pixels, the size of the standard toolbar button, and is located on the far right
edge of the taskbar.

• Notification area

You can add a status indicator to the notification area of the taskbar. Indicators
are represented by graphics supplied by your application. They contain
information that is global in nature or needs monitoring by the user when
working with other applications. When adding a status indicator to the taskbar,
provide a pop-up window that displays additional information or controls for
the object when the user taps the indicator icon. Also provide one that displays
commands for the object when the user performs an AL T + Tap action on the
indicator icon. Carry out the default command defined in the pop-up menu
when the user double-taps the indicator icon. Display a ToolTip that indicates
what the status indicator represents, and provide the user with an option not to
display the status indicator.

Status indicators are 16 x 16 pixels, except for the clock, which occupies a
fixed space. All status indicators are placed 3 pixels to the left of the clock
with 0 pixels between each indicator. If you add a status indicator to the
taskbar, you must define its access method. The methods supported by the
taskbar include Down-Tap, Up-Tap, Double-Tap, and ALT+Tap.

Designing Windows and Dialog Boxes
Windows enable the user to view and interact with data. Consistency in window
design is important because it enables users to easily transfer their skills and focus
on tasks, rather than learn new conventions.

The RlPC supports most common Win32 application programming interface
(API) window functions; however, due to constraints posed by the RlPC screen
size, the system is designed for full-screen applications. Windows can be moved
around the screen, but they cannot be resized by users. It is possible to create
smaller windows for applications, such as a calculator, that can be used while
another application is displayed, but most applications should use the
entire screen.

Chapter 27 Designing a User Interface for an H/PC 437

While all HlPC devices conform to a hardware specification standard, some
manufacturers offer features that extend the functionality of their devices.
These additional features include an expanded 640 x 240 pixel LCD screen. The
expanded screen allows applications to display up to 80 characters per line at an
easily readable character size or half-height VGA graphics resolution. This means
the font aspect ratio is similar to a desktop computer and it eliminates the feeling
that the characters are squeezed onto the screen.

You can take advantage of the expanded screen size by designing applications
capable of displaying a full-width view of documents and images. This minimizes
the amount of scrolling and makes applications easier to use. Programming
applications for a 640 x 240 screen does not necessarily require that a separate
set of code be maintained for HlPCs with standard screens. Create application
windows using default values that indicate full screen size regardless of its
dimensions. Position objects using relative, as opposed to absolute, coordinates.

Primary windows for the HlPC are similar to all other standard windows.
However, unlike other windows, which contain frames or borders, and title bars,
HlPC primary windows do not contain title bars. Instead, they contain a command
bar. For information on designing command bars, see Chapter 6, "Designing a
User Interface for Windows CE."

Dialog boxes differ from primary windows in their behavior and use. For
example, dialog boxes do not have taskbar window buttons, so users
cannot switch between open dialog boxes by tapping a button on the taskbar.
Additionally, dialog boxes obtain or display supplemental information related
to objects displayed in a primary window.

Dialog boxes must be smaller than primary windows in order to differentiate
between windows. Windows-based desktop platforms use a bold system font
when displaying dialog box text. Windows CE uses the non-bold system font
when displaying text, except for text on a light gray background. The default
system font for Windows CE is Tahoma, 9 point.

Note If you are developing Windows CE-based applications under emulation,
and you want to layout windows and dialog boxes that look the same on your
desktop computer as they will look on an HlPC, use Tahoma.fon.

438 Windows CE Programmer's Guide

The HlPC supports common dialog boxes, which provide a familiar way for users
to perform standard tasks common to many applications. Windows CE supports
the Color, Print, Open, and Save As common dialog boxes, which function the
same on an HlPC as they do in Windows 95, with the following exceptions:

• The HlPC 2.0 Print dialog box implements a simple printing interface with
one common dialog box that enables the user to choose a printer type, printer
port, number of copies, print range, orientation, and margin settings. Windows
95 and Windows NT provide a common Print dialog box, a page setup dialog
box, and a print setup dialog box to cover these operations.

• The HlPC 2.0 Font dialog box is a shared dialog box that contains a default
font option and color list.

Common dialog boxes are not movable and are always centered vertically and
horizontally on the screen. They always display the Help button.

Choosing Menus and Controls
HlPC applications can use all of the standard menus and controls available
in Windows CEo For suggestions on choosing a menu or control for your
application, see Chapter 6, "Designing a User Interface for Windows CE."

Receiving User Input for an H/PC
The HlPC supports both keyboard and stylus input. It does not support a mouse,
and therefore does not have hover capability. The HlPC keyboard layout
resembles a standard desktop computer keyboard, but most HlPC keyboard
devices do not include the following keys:

DELETE

INSERT

NUMLOCK

PAUSE

PRINTSCRN

SCROLL LOCK

FUNCTION KEYS

Note Users can use SHIFT+BACKSPACE as a substitute for the DELETE key.

Chapter 27 Designing a User Interface for an H/PC 439

The HlPC supports the Windows key, but Microsoft does not require hardware
platforms to include it. Therefore, avoid writing applications that require users
to use keys that may not be supported.

When the user presses the stylus to the screen, the input focus moves to the object
under the stylus. If the object is a button, it displays its pressed appearance. If the
user moves the stylus off the control without lifting the stylus from the screen, the
control returns to its original state. Moving the stylus back over the control while
the stylus is still touching the screen returns the control to its pressed state. The
command associated with the control is only activated if the user lifts the stylus
from the screen while the stylus is over the control. If the stylus is not over the
control when the user lifts it, no action occurs. If the user presses the stylus to
the screen over an object that can be dragged, and then moves the stylus while
still touching the screen, the object moves with the stylus.

The HlPC conventions for selection using a stylus are the same as the standard
Windows conventions for selection using a pen or mouse. The HlPC supports
standard drag-and-drop operations using the stylus. It does not support non­
default drag-and-drop operations, however, which are the right mouse button
drag-and-drop operations on desktop platforms.

The HlPC supports third-party, handwriting-recognition applications. If you
support this functionality in your applications, see the Windows Interface
Guidelines for Software Design for implementation conventions.

Providing Help
Users can access Help in the HlPC either by selecting the Help command on the
Start menu or by tapping a Help (?) button included on a window's command
bar. This Help button looks similar to the What's This? button in Windows 95
and Windows NT, but it functions differently. The What's This? button
activates a Help mode in which the user can select a field about which to receive
information. On the HlPC, the Help (?) button brings up the Help contents for the
current window.

When creating a Help system for an application, follow these guidelines:

• Use ALT+H as the shortcut key for accessing Help.

• Write your application's Help file using HTML.

• Create each topic as a text file with an .htp extension.

• Create your contents page as a text file also, but save it with an .htc extension.

CHAPTER 28

Managing Power

The primary function of power management is to increase the battery life of a
Handheld PC (RlPC). This is accomplished by providing accurate estimates

441

of remaining battery life and notifying the user when the batteries are nearing
depletion. Power management for an RlPC is based on the following assumptions:

• The computer is used less than two hours per day in bursts from five minutes
to one hour.

• The display is powered 100 percent of the time during use.

• The CPU runs less than 10 percent of the time during typical use.

• The computer uses both main batteries and a backup battery.

• The device has no nonvolatile writable memory.

• Maximum battery life is obtained without PC Cards or with PC Cards that
require very little power from the computer batteries. PC Cards drawing
appreciable power from the internal batteries significantly reduce battery life.

An RlPC manages power by allowing the operating system to automatically
select one of three operating states based on user and program activities.
These states are:

• Dead

The computer uses no power. It has no batteries, or all batteries are completely
dead. All contents of RAM are lost. The user purchases the device in this state.

• Suspend

The computer uses minimal power. The CPU internal and external clocks
stop and the CPU uses extremely low power. Peripherals and DRAM are
usually off. The CPU might take as long as 100 milliseconds to wake up
from this state.

442 Windows CE Programmer's Guide

• On
The computer uses more power than in the other two states. Any time the
display, keyboard, or touch screen are active, the device is in the on state.
When in the on state, the computer can switch between two CPU modes:
full speed and idle. In full-speed mode, the CPU runs at normal operating
frequency. In idle mode, the CPU internal clock stops and the CPU uses little
power. Peripherals and DRAM may be on or off. The CPU can enter and exit
this state in approximately 10 milliseconds.

Power Management States
With the exception of the dead state, the computer never completely stops
using power. In the suspend state, it uses minimal power to maintain its
clock, its applications, and the persistent data stored in RAM. To reduce power
requirements, the computer removes power from unneeded circuits and devices,
such as the keyboard decoder, display, scratch-pad memory, and processor. A PC
Card's driver determines the power that it uses when the computer is in the
suspend state.

The computer switches to the suspend state for the following events:

• The user selects the Suspend command.

• The computer detects a critical power condition.

• The activity timer performs a time-out.

The operating system uses an activity timer to gauge whether the user is actively
using the computer. The timer counts down while the computer is in the on state.
When the timer reaches zero, the computer switches to the suspend state. The user
can set the maximum value of this timer in seconds. Two events reset the timer to
its maximum value: a key press or release and a touch event. When the timer
reaches five seconds, the computer sounds a warning to alert the user that it is
about to suspend operation. The operating system does not notify an application
when it enters the suspend state because most applications are not affected by this
transition. When the device resumes operation, applications also resume operation
as if they had been continuously running.

Chapter 28 Managing Power 443

Functions that applications can use to reset activity times or to set timers and
events that can switch the computer from the suspend state to the on state are
described in the following table.

Fuuctiou

CeRunAppAtTime

WaitCommEvent

Description

Sets a timer or runs an application at a
specified time.

Waits for a communications event to occur. Serial,
Infrared Data Association (IrDA), or PC Card
devices can return EV _POWER when the device
resumes operation.

If an application uses the Sleep function, it does not increment the elapsed time
counter while the computer is in suspend state. It starts counting again when
computer operation resumes. The internal clock is not affected when computer
operation is suspended. Though an application is not notified when it enters the
suspend state, the operating system does notify a device driver by calling a power­
handler function. A device driver might use this notification to suspend operation
of the device it controls, which may result in a device not being available
immediately after the computer switches to the on state. For example, when a file
stored on a PC Card is open and the user tries to save the file before the card is
turned on, the system returns an error message.

The computer switches to the on state for the following events:

• After the user presses the On button.

• After the user triggers an alarm event.

• After the user performs a warm or cold boot.

• After the user changes the battery.

In the on state, the default mode is full-speed. The computer switches from full­
speed mode to idle mode when all processes are idle. Switching to idle mode is
transparent to the user and most applications, because the system continues to
process interrupts, including the time slice interrupt.

When the computer is in the on state, some applications may prevent the
operating system from switching the computer to the idle mode. These
applications retain control by using idle loops or by using functions that do not
let the operating system block operation. All applications can enhance power
management by using functions that let the operating system block a return
to the application. For example, use the GetMessage function rather than the
PeekMessage function, because GetMessage lets the system block a return to
the application and PeekMessage does not. Letting the operating system retain
control allows it to determine when the system is inactive so that it can select the
most efficient operating state for the computer.

444 Windows CE Programmer's Guide

Resuming Operation, Rebooting, and Resetting
Resuming computer operation from the on state's idle mode or the suspend state
does not alter computer memory or change application settings. In contrast,
rebooting or resetting the computer does alter memory and affect program
operation. The differences between these transitions are described in the
following table.

Transition

Wake-up,
or resume

Cold boot,
or cold reset

Power-on reset

Warm boot,
or warm reset

Description

Transitions from the suspend state to the on state's full-speed
mode. Wake-up does not change memory or application settings.

Resets the device completely. All applications are terminated, the
working memory is cleared, and the object store is cleared.

Transitions from the dead state to the on state. Power-on reset has
the same consequences as a cold boot.

Terminates all applications and clears working memory. The
object store integrity is maintained.

The cold boot and power-on reset transitions occur when power is first applied to
the computer, or when all power is removed from the computer and then reapplied
after one minute. Unless the computer uses nonvolatile memory, the user will
have to load or reload applications after a power-on reset. Object store data is lost
after a cold boot.

A warm boot occurs when the user presses the reset button on the computer. This
button is placed in a pin-hole recess or under the battery cover to protect it from
accidental activation. Users perform a warm boot only when the computer has
stopped responding or has become unstable. A warm boot stops applications that
are running and clears the memory used for application execution. Memory used
for the object store and file system is preserved.

CHAPTER 29

Writing Memory-Efficient
Applications

A Handheld PC (HJPC) application must run in the portion of RAM memory

445

not used for storage memory. Because available memory depends on what
applications and data are installed on the device, you cannot predict the amount of
memory available for an application. A 350 KB application may seem small by
desktop computer standards, but it is large for an HJPC. For maximum portability,
applications must be small enough to run on 2 MB devices.

To use available memory efficiently, you must decide what functions are
absolutely necessary to the users of your application. Consider reducing or
eliminating features that do not meet this criteria. Follow the suggestions in
this chapter to write memory-efficient applications for an HIPe.

Memory Pages
In Windows CE, you allocate memory one page at a time. You cannot allocate
less than a page, and as a programmer, you have no control over the page size.
That is determined by the original equipment manufacturer (OEM). Currently,
your choice is either 1 KB or 4 KB. When choosing a page size, the OEM is
faced with tradeoffs: A large page size often wastes memory, but a small page size
requires more operating system overhead to keep track of pages. When you need
to allocate memory for a small object, the larger your page size, the more memory
you waste. On the other hand, a small page decreases the amount of memory
the translation look-aside buffer (TLB) can address, which can reduce the
buffer's effectiveness.

Because RAM is limited on HJPC devices, OEMs generally keep page size small.
When you make decisions that affect memory allocation, you should assume that
the device you are using has a 1 KB page size. If you need to know the exact page
size for your device, check the page specification with the Remote Memory
Viewer tool provided with Windows CEo

446 Windows CE Programmer's Guide

Types of Memory Allocation
Applications often need to allocate blocks of memory to use while they are
executing. There are various memory pools from which the required memory
can be allocated.

A primary reason for allocating memory is to store data. When a Windows CE
program begins, the system initially allocates 1 KB of memory to the stack. It then
adds memory to the stack, as needed, one page at a time up to the fixed limit of 58
KB. To store data, you typically declare it on the stack.

Although the system can shrink a stack when memory is low, it does so only if
all other sources of memory pages are exhausted. The stack is a good source of
memory for data that changes frequently but is not appropriate for constant data.
Neither is the stack the best source of large amounts of memory because the stack
does not shrink until all pages are used.

Note Do not allow the stack for a thread to grow larger than 58 KB. Exceeding
this threshold results in a system-access violation that causes the program to stop
functioning.

Declaring static or global data causes the system to put the data in the read/write
(RIW) data section of the application module. This section does not grow or
shrink. Its size is set by the operating system when your application initializes.
Determining the size of your application's data section allows you to estimate
how much memory is available after your program is loaded. To do this, use the
standard Win32 DumpBin utility, Dumpbin.exe, or the Remote Memory Viewer.

Use the information you obtain from the Memory Viewer to arrange your declared
data to use as little memory as possible. Following are some suggestions for
arranging your data:

• Look carefully at everything in the RIW section.

• Declare all constant data items.

The compiler will move declared constant data into the read-only data section.

• Move other types of data into the RIW section once the system has removed
the constant data.

Removing constant data from the RIW section and moving other data into the
section uses space that would otherwise be wasted. This allows you to use less
heap space.

Chapter 29 Writing Memory-Efficient Applications 447

• Place a note in your code to remind you to look at your memory use each time
you add more data.

It would be counterproductive to fill the section with additional data, and then
have it grow by an entire page just to accommodate an additional variable.

• The loader needs 50 to 75 bytes free in the RIW section.

Leave space for the loader.

When you declare static or global data objects, the operating system takes care
of the memory storage, but you need to explicitly allocate memory. Although
Windows CE has various functions for allocating memory, the most-used
functions are VirtualAlloc, LocalAlloc, and HeapAlloc. To free the allocated
memory, use the companion functions VirtualFree, LocalFree and HeapFree.
To create and remove heaps, use HeapCreate and HeapDestroy. You can use a
combination of these functions to minimize wasted RAM.

The VirtualAlloc function is the primary tool for allocating virtual memory in
the Windows CE operating system. You use VirtualAlloc to directly allocate a
number of memory pages. Although it is the most efficient tool for allocating a
large memory object, you should not use VirtualAlloc to allocate small memory
objects. Because VirtualAlloc can only allocate whole pages, if you need only a
partial page, memory is wasted.

One advantage to using VirtualAlloc is that the allocated memory is easily
returned if the system runs low on memory. When you are finished using the
allocated memory, free it by using VirtualFree. The system returns the memory
to the global virtual memory pool immediately.

Each process has its own default heap from which you can allocate memory. If
a process needs memory, call LocalAlloc to allocate memory and LocalFree to
free memory. Whenever you use the function LocalAlloc, if there is not enough
available memory in the default heap to supply the requested amount of memory,
the system adds to the amount of memory in the heap. When the system needs
memory and tries to compact a heap, sometimes it cannot because there are
partially-filled pages. Even when unused memory exists, if it is fragmented,
the system cannot use it. This results in the number of available pages not
corresponding to the total amount of free space in the heap. Though the operating
system automatically shrinks the heap if it has one or more free memory pages,
partially filled pages do not cause the system to shrink the heap.

The HeapCreate function creates a new heap for a process that is separate from
the default heap for that process. Memory for the new heap is reserved, but it is
not committed until needed. To allocate and free memory, use the HeapAlloc and
HeapFree functions. You can free the new heap by using HeapDestroy, which
returns the memory back to the virtual memory pool.

448 Windows CE Programmer's Guide

Creating a separate heap is a good allocation strategy when you need to make a lot
of small, temporary memory allocations. For example, you could create a separate
heap for an application that works with documents. This heap would allocate all
memory for a document. When the user closed the document, the application
would free the heap and return the memory to the global virtual memory pool.
Using a separate heap keeps the size of the default heap small and avoids
generating the numerous partially-filled pages you get when you use
VirtualAlloc. Because each heap requires approximately 500 bytes of
overhead, you should create separate heaps only if you expect to allocate
at least 5 KB of memory.

Thread Local Storage
It is often necessary for every thread of a process to have its own copy of
read/write data. To provide this data, Windows CE supports thread local storage
(TLS). TLS enables each thread to allocate the objects it owns in memory and
to manipulate thread-specific data. You can use the TlsAlloc, TlsSetValue,
TlsGetValue, and TlsFree functions to allocate and free memory for
thread storage.

When a dynamic-link library (DLL) attaches to a process, the DLL uses TlsAlloc
to allocate a TLS index. The DLL then allocates dynamic storage and uses the
TLS index in a call to TlsSetValue to store the address in the TLS slot. The
TLS index is stored in a global or static variable of the DLL. Each time the DLL
attaches to a new thread of the process, the DLL allocates dynamic storage for the
new thread and uses the TLS index in a call to TlsSetValue to store the address in
the TLS slot.

Each time an initialized thread makes a DLL call that requires the data in its
dynamic storage, the DLL uses the TLS index in a call to TlsGetValue to
retrieve the address of the dynamic storage for that thread.

TLS functions supported by Windows CE are described in the following table.

Function

TlsAlloc

TlsFree

TlsGetValue

TlsSetValue

Description

Allocates a TLS index. The index is available to any thread in
the process for storing and retrieving thread-specific values.

Releases the TLS index, making it available for reuse.

Retrieves the value pointed to by the TLS index.

Stores a value in the slot pointed to by the TLS index.

Chapter 29 Writing Memory-Efficient Applications 449

Use the following criteria to help you decide which memory allocation ,method is
best in particular situations:

• For a single, large data item with multiple pages, use VirtualAlloc.

• For a set of small data items that have the same lifetime, allocate memory from
a separate heap created by HeapCreate.

• For data items that exist for the lifetime of the application, put the items in the
RIW static data section, if there is sufficient space.

• For small items that exist for the scope of a function, allocate memory from
the stack.

• For small items with random, overlapping lifetimes, allocate memory from the
default heap. Try to keep the total size of the heap consistent and predictable.

Monitoring How an Application Uses RAM
Windows CE provides two tools to monitor how much memory your application
is currently using: a map file and the Remote Memory Viewer. The two tools are
quite different. A map file is a data file produced by the compile and link process
and the Remote Memory Viewer is a utility included in the Windows CE
integrated development environment (IDE). The Remote Memory Viewer requires
that your desktop computer be connected to a remote device to get information
about your application's memory use. However, you can get valuable information
from a map file without being connected to a remote device. In this section, we
briefly discuss making and using a map file, followed by a detailed discussion of
Remote Access Viewer.

A memory map file is very helpful to a programmer because it shows how much
memory is used in each static section of your application. When you build your
application, if you set the map link option, the linker makes a memory map data
file and writes it to your hard drive. The length of each static section is provided
at the top of the file. In addition to showing the static section lengths, a map file
also shows how much data is in the read-only section, .rdata. The RIW data
section is composed of two subsections: .data, which contains all initialized global
data, and .bss, which contains uninitialized data. RIW data is initialized to zero by
the loader. Note the section number, which is typically two for RIW. Then, look
in the symbols area of the map file to see what data is in this section and how
much space each item uses. For example, to calculate the total memory that is
taken up by RIW, add the amount needed by .data and .bss and roundup to the
next multiple of the page size.

450 Windows CE Programmer's Guide

Using the Remote Memory Viewer
The Remote Memory Viewer allows you to view remotely all virtual memory use
in the Windows CE system. The Viewer consists of the process information
window and two menu commands: the Kernel Summary and the Process
Memory Map, which is located on the Tools menu of the VC++ IDE. The
Process Memory Map allows you to examine an application's memory use
from a desktop computer.

Process Information Window
The process information window of the Remote Memory Viewer is divided into
three sections. The first section provides process information, including the slot
assignment and the number of memory pages used. It also describes how much
memory the system devotes to aspects of the process, such as RIW memory and
the stack.

Chapter 29 Writing Memory-Efficient Applications 451

Sc011 bOO 51KB 1KB 26S1KB
Sc011bSc Sc3accOO 04 125[0)KB 32KB 1SKB 15KB 1299KB
Sc011c1S Sc3e7S00 06 160[0)KB 30KB 9KB 3KB 1552SKB

device.exe Sc011ca4 c3 Sc3eOOOO OS 320[0)KB 22KB 30KB 10KB 1390KB
gwes.exe Sc011d30 e4 Sc3d9cOO Oa 371 [O)KB 120KB 199KB 1SKB 1464KB
afd.exe Sc011dbc 105 Sc3c5cOO Oc 294[0)KB SOKB 21KB 13KB 3577KB
she1132. exe Sc011e4S 126 Sc3bcSOO Oe 37S[0)KB 11KB 72KB 14KB 1264KB
rnaapp.exe Sc011ed4 407 Sc3a6S00 10 67[0)KB 7KB 15KB 5KB 1147KB
r apisrv. exe Sc011f60 3eS Sc3a5cOO 12 94[0)KB 6KB 10KB 7KB 1266KB
PPPRTSvr.Exe Sc011fec 449 Sc37eOOO 14 25S[36)KB 55KB 16KB 6KB 1267KB

Sc3fe26c 00000003
Sc3feaOO 00000000 00000003
ScOOS52S 00000000 00000003
Sc3f03dO repllog.exe afd.exe 00000000 00000003
Sc3f0304 repllog.exe afd.exe 00000000 00000003
Sc3f2474 repllog.exe repllog. exe 00000100 00000003
Sc3f2c7c repllog.exe gwes.exe 00000000 00000003
Sc3fe1aO filesys. exe filesys. exe 00000000 00000003
Sc3fa07c device.exe device.exe 00000000 00000003
Sc3fa6eS device.exe 00000100 00000003

PPP.dll 00000020 Sc3f5f4S 03d40000 01 d41a04
D<PORT.dll 00000020 Sc3f632S 03d30000 01d3049c
AUDIO.dll 00000010 Sc3f7c2S 03f40000 01f413fc
KEYBDDR.dll 00000010 Sc3fS310 03f90000 01 f91c9c
TOUCH.dll 00000010 Sc3fS7fc 03fSOOOO 01 fS1d54
WINSOCK.dll 0000030a Sc3f9cec 03d10000 01 d11954
IRCOMM.dll OOOOOOOS Sc3f9fcO 03d20000 01d204bO
SERIAL.dll OOOOOOOS Sc3fa62c 03f30000 01f31f1 c
PCM CIA. dll OOOOOOOS Sc3fb10c 03f70000 01f714aO
COREDLL.dll 000003ff Sc3fee3S 03feOOOO 01fe1cSS

Process information window

452 Windows CE Programmer's Guide

Process fields included in the process information section of the window.are
described in the following table.

Field

Process Name

Proc#

PID

Ptr

Slot

Code

RIW

RIO

Stack

Reserved

Description

Process name.

Process handle.

Process identifier.

Address of the slot containing the process.

Slot number for the process.

The number of ROM-code pages used. RAM use is
specified in parentheses.

The number of read/write data pages.

The number of read-only data pages.

The number of stack pages.

The number of reserved pages.

The second section of the process information window provides information
about the threads running in each process. It identifies the handle of the thread,
the name of the process in which the thread is running, and the thread's priority
and status.

The third section of the process information window provides information about
DLL modules, including each module's name, handle, location in memory, and
in-use flag. The in-use flag indicates which processes are currently using the
DLL. Because each bit corresponds to a process slot number, an in-use flag with
a value of Ox00000006 indicates that the DLL is being used by the processes in
slots two and three.

Kernel Summary
The Remote Memory Viewer contains menu commands that help you understand
how your application uses memory. The first, the Kernel Summary command,
opens the Kernel Summary dialog box, which describes the resources currently
in use by the Windows CE kernel.

Chapter 29 Writing Memory-Efficient Applications 453

Page size=1024 1999 total pages 1382 pages free
87 pages used by kernel.
617 pages consumed.
Inx Size Used Max Extra Entries N8.Ille

0: 204 6936 7140 204 34(35) Thread
1: 188 3384 3948 564 18(21) Module
2: 44 572 572 0 13(13) APISet
3: 36 2340 2376 36 65(66) Event
4: 24 456 504 48 19(21) ServerHandle
5: 268 54404 55208 804 203(206) MemBlock
6: 16 448 448 0 28(28) CallStack

Kernel Summary dialog box

The top line of text in the Kernel Summary dialog box provides the system's
page size in bytes. This value, which is determined by the OEM, allows you
to convert memory use from pages to bytes. The dialog box also lists the total
number of pages, as well as any free pages available. The next two lines of text
in the Kernel Summary dialog box identify the total pages used and the number
of pages used by the kernel.

Below the three lines of text is a table which gives you information about kernel
objects. Each row of this table provides information about a different object type.
Meanings of each column heading in this Kernel Summary dialog box table are
described in the following table.

Heading

Inx

Size

Used

Max

Extra

Entries

Name

Description

The object type number. This is an index number.

The size, in bytes, of an object of this type. The type of object is
identified in the last row of this table under the heading Name.

The total number of bytes currently used by the kernel to hold all the
objects of this type. This number is calculated by multiplying the
number of objects by the size of each object.

The number of bytes allocated to hold all the objects of this type.

The extra memory currently allocated, which is the difference between
Max and Used.

The first item gives the number of objects currently in use. The second,
which appears in parentheses, gives the maximum number of objects of
this type that the kernel has ever had.

The name of the object type.

454 Windows CE Programmer's Guide

Process Memory Map
The second menu command in the Remote Memory Viewer that helps you
understand how your application uses memory is the Process Memory Map
command. This command opens the Process Memory Map dialog box, which
provides a detailed picture of how a selected process uses memory.

-CCCCCCCCCCCCCCCCCCCWRRRRRRR--

--ssssssss
04030000: ~-ww--W----------------------------------

04130000: ---sss
04140000: ---sss
04150000: ---s
05d10000: -CCCCCCCCCCWRR-
05dbOOOO: -CCCCCCCCCCCCCCWRR-
05dcOOOO: -CCCCCCCCCCCCCCCCCCCCCCCCWRR--
05feOOOO: -CCWRRRR
05ffOOOO: R--

Process Memory Map dialog box

Each line of text in the Process Memory Map dialog box begins with the address
of a 64 KB region of memory. Symbols indicating how a process allocates pages
in this region are described in the following table.

Symbol

s
C

c

W

R

r

a
P

Description

Stack page

Code page in ROM

Code page in RAM

Read/write data page in RAM

Read-only data page in ROM

Read-only data page in RAM

Object store page

Pending commit

Reserved page available for commitment

Any white space at the end of a line represents the amount of wasted free space.

Chapter 29 Writing Memory-Efficient Applications 455

Handling Low Memory Situations
No matter how effectively you use the VirtualAlloc, LocalAlloc and
HeapCreate functions to allocate memory, and how efficiently your application
uses RAM, the system may run low on memory. When memory is low, the
VirtualAlloc function cannot find any unallocated pages. This can cause your
application to stop functioning.

At a programming level, a low-memory situation can manifest itself to the
application in the following ways:

• A call to the VirtualAlloc function fails.

• The LocalAlloc or HeapAlloc function attempts to grow a heap,
but fails to do so.

• The stack tries to grow, but fails to do so.

The first two failures are returned in an orderly fashion and the user receives
warning messages. These failures occur following a call by the application to
a function, such as CreateWindow. The third manifestation has more serious
consequences because it causes the process to wait for a free page, and causes
the program to stop responding.

To avoid the problems associated with low memory, the system constantly
monitors the amount of memory available and tries to prevent low-memory
situations from occurring. It does this in several ways. When an application
attempts to allocate memory, the system filters the request. Filtering prevents a
single application from using all available memory with one large allocation by
lowering the maximum allocation limit. When the system enters a low memory
situation, the system lowers the memory limit further.

Another way that the system tries to prevent low-memory situations is by
sending warning messages to applications. When available memory falls below a
hibernation threshold, the system enters the limited-memory regime from which it
asynchronously sends a WM_HIBERNATE message to each active application.
This message warns the application that available memory is scarce.

Windows CE uses two additional thresholds, low and critical, that define
successively more restrictive memory regimes. Values for memory thresholds are
described in the following table. The values are based on a 1 KB memory page;
values for a 4 KB memory page are provided in parentheses.

456 Windows CE Programmer's Guide

Threshold

Hibernation threshold

Low-memory threshold

Critical-memory threshold

Value

128KB

(160 KB)

64KB

(96 KB)

16KB

(48 KB)

Description

The point at which the system enters a
limited-memory state. The system sends a
WM_HIBERNA TE message when its
memory falls below this value.

The minimum available memory size that
the system must maintain when it is in a
low-memory state.

The minimum available memory size that
the system must maintain when it is in a
critical-memory state.

Maximum memory allocations in limited-memory states are described in the
following table.

Maximum allocations in
limited-memory conditions

Low Memory

Critical Memory

Value

16KB

8KB

Description

The maximum amount of memory that the
system allows Virtual Alloc to allocate
when the system is in a low-memory state.

The maximum amount of memory
that the system allows VirtualAlloc to
allocate when the system is in a critical­
memory state.

The system must respond to four limited-memory scenarios in Windows CEo
These scenarios occur when an application does one of the following:

• Requests less memory than the low-memory maximum

• Requests more memory than the low-memory maximum

• Requests less memory than the critical-memory maximum

• Requests more memory than the critical-memory maximum

If an application calls VirtualAlloc and requests less memory than the low­
memory maximum, but enough to cause the system to fall below the low-memory
threshold, the system displays a System Out of Memory dialog box. This dialog
box is discussed in more detail in the next section. In this scenario, the user must
either select applications for the system to close or allocate more RAM to
program memory. If the user chooses to close applications, the system sends
WM_CLOSE messages. If an application receives a WM_CLOSE message but
does not shut down within eight seconds, the system displays an End TaskIW ait
dialog box. This gives the user the choice of terminating the application or
waiting to see if the application closes itself.

Chapter 29 Writing Memory-Efficient Applications 457

Any VirtualAlloc call fails if it causes the amount of available memory in the
system to fall below the low-memory threshold. The system does not display the
System Out of Memory dialog box. LocalAlloc does not necessarily have the
same constraint as VirtualAlloc. Depending on the state of the system heap, a
function call to LocalAlloc can succeed.

If an application calls VirtualAlloc to request less memory than the critical­
memory maximum, the system displays the System Out of Memory dialog box.
The user must either select applications for the system to close or increase the
amount of RAM allocated to program memory, if there is any available RAM.
The system calls TerminateProcess to terminate any applications selected by
the user.

Applications that call VirtualAlloc fail if the function causes the amount of
available memory in the system to fall below the critical-memory threshold.
Depending on the state of the system heap, a function call to LocalAlloc
can succeed.

System Out of Memory Dialog Box
As discussed in the previous section, the operating system displays a System Out
of Memory dialog box in some low-memory scenarios. This dialog box informs
the user that memory is critically low on the roPC and prompts the user either
to close applications or to increase the amount of RAM allocated to program
memory. This dialog box is a special, system modal dialog box that freezes the
rest of the system. When it is invoked, socket connections stop functioning and
other threads stop running.

After the System Out of Memory dialog box closes, any applications selected by
the user are shut down just as if the Close button was clicked. Applications have
eight seconds to close. If more memory is requested after four seconds have
passed and memory is still critically low, the dialog box reappears.

Note The success of an approach that sends the WM_CLOSE messages when
memory is low depends on the ability of an application to shut down in response
while allocating little additional memory in the process. If your application
requires a significant amount of memory to shutdown, try caching the needed
memory. For example, you could hide a Do You Want to Save Your Document
dialog box, and then make it visible if you need to close the application
unexpectedly.

458 Windows CE Programmer's Guide

Application Hibernation
Windows CE uses the WM_HIBERNATE message as its primary mechanism for
asking applications to free memory. When freeing memory is required, the system
posts the message to one or more applications, beginning with the application that
has been inactive the longest. It requests memory from the active application last
and does not send WM_HIBERNATE messages to invisible windows.

Note In Windows CE, hibernating is vital. All properly constructed Windows
CE-based applications must have a handler for WM_HIBERNATE.

When the system brings an application to the foreground, it sends an
WM_ACTIV ATE message. If the hibernating application had released memory
previously, the system does not restore its memory resources to the pre­
hibernation state. Applications should have a WM_ACTIVATE handler that can
deal with the restoration of memory resources following hibernation.

An application must take the following actions when it receives a
WM_HIBERNATE message:

• Free any large blocks of memory that were allocated by VirtualAlloc, for
example, a cache.

• Free as many Graphics Windowing and Event Subsystem (GWES) objects as
possible, including windows, bitmaps, and device contexts, because they use
large amounts of memory.

• Save the state of the heap in order to restore it later, and then free the
entire heap.

As the amount of available memory drops, the system posts WM_HIBERNATE
messages at an increasing rate. If the system reaches a situation where a call to
VirtualAlloc is about to fail, it tries to free pages by shrinking stacks. The system
shrinks stacks in first-in, first-out order to minimize the risk of a stack fault,
which causes an application to fail. If the system cannot free any stack pages,
VirtualAlloc fails and the function is returned to the application as a failed
function call.

Chapter 29 Writing Memory-Efficient Applications 459

Tips for Efficient Memory Use
Writing memory-efficient applications requires practice. Here are some
suggestions to guide you while you design and program applications for an H/PC.

• Decide how much memory to allocate to your application.

Whenever the system attempts to allocate more than 16 KB of memory, it has
the potential to fail without displaying the System Out of Memory dialog box
and without sending a low memory warning to the user.

Once the system is in a low-memory regime, any memory allocation greater
than 8 KB has the potential to fail. Because of this, your application should
not allocate large amounts of memory in its shutdown code. The user already
knows that a low-memory situation exists.

Small memory allocations almost never fail. Before this type of allocation
fails, the user has been sent both low-memory and critical-memory warnings,
in the form of System Out of Memory dialog boxes, and has had an
opportunity to respond.

• Load only the data that the application needs for the immediate operation,
and write the data back to the file when it is no longer needed.

If you are using large data sets, consider loading only the data that an
operation needs immediately, especially if the data will not be modified
in the process. When the data is no longer needed, write it back to the file
immediately. By loading data on demand, you gain memory, although you
lose speed.

• Remove read-only pages when resources are limited.

If you are not modifying data, declare the data as constant so the kernel can
remove it if necessary. The kernel will restore the data the next time it accesses
the page.

• Design applications that can modify their use of temporary files or eliminate
temporary files completely.

Many programs use temporary files that are deleted when the program
terminates. Though this may be convenient, such files are a burden on
memory resources while the temporary files exist.

Consider not using temporary files. Though eliminating the use of temporary
files may decrease speed, simplicity, or perhaps the robustness of the
application, the increase in memory efficiency is sufficient to offset the
liabilities of this approach. If possible, design applications that can modify
their own use of temporary files depending on the state of memory resources.

460 Windows CE Programmer's Guide

• Compress text and bitmaps.

Data stored in text format and as uncompressed bitmaps uses memory
inefficiently. Although some compression takes place when files are loaded
from a desktop computer to an HlPC, you need to use the memory-saving
techniques of compression and decompression fully for maximum benefit.

• Limit your use of bitmaps.

While one of the most appealing features of Windows-based platforms is
the rich graphical environment you can create, graphics use a lot of memory.
To conserve memory, you must limit your use of bitmaps and other graphic
displays. One approach to conserving memory while retaining bitmaps is to
use an algorithm to generate the image on demand, rather than loading the
bitmap or other graphics file into memory. Though you gain memory with this
approach, you lose speed. Generating images on demand works best for line
drawings, though it is practical for other types of graphics as well.

• Include memory management capabilities in your application to supplement
those in the system.

An application that downloads large amounts of data over a modem, such
as e-mail or stock quotations, may require more memory than the system
has available. Use GetStoreInformation to determine the amount of free
memory in the object store prior to the download, and then warn the user
of potential problems.

• Offer users the option of turning off automatic backups.

Though an application that automatically creates backup files protects the
user from unintentional data loss, the backup files use valuable memory. If
your application supports backup files, prompt the user to tum off automatic
backups if memory is low.

If the application has a desktop component, be sure it is sensitive to the
memory limitations of the Windows CE-based platform. When downloading
an application or data, inform the user if the system has too little memory
remaining for the device to operate effectively.

CHAPTER 30

Connecting to the Desktop and
Sending and Receiving Data

461

The Handheld PC (RlPC) is an extension of your desktop computer and allows
you to access your critical data when you are away from your desk. By connecting
the two computers, you can transfer data from one to the other. You can also
perform tasks on the RlPC remotely. For example, you can debug applications or
edit the RlPC's registry from your desktop computer. And, by connecting your
RlPC to communication devices, such as modems and pagers, you can send and
receive e-mail and faxes, and browse the Internet.

Connecting to Other Computers
Being able to share data between your RlPC and a desktop computer extends the
functionality of both computers. For example, you can edit the letter you wrote in
Pocket Word on your RlPC using Microsoft Word on your desktop computer. Or,
in Microsoft Excel on your desktop computer, you can recalculate spreadsheet
totals that you generated on your RlPC with Pocket Excel. Although you typically
connect an HIPC to a desktop computer, you can also connect it to a variety of
other devices. The following list identifies programming considerations for a
variety of tasks you can accomplish with your RlPC connected to a desktop
computer or another device.

• Synchronizing data

With Windows CE, you can synchronize databases on an RlPC with a
corresponding database on a desktop computer. Windows CE automatically
synchronizes the Schedule+ data on the desktop computer with the personal
information manager (PIM) data on the RlPC. You can write similar
synchronization applications using RAPI functions.

462 Windows CE Programmer's Guide

• Converting fIles

Windows CE supports an application programming interface (API) for
converting fIles to a different format when they are transferred between the
desktop and the HlPC. Converting is necessary because HlPC applications do
not incorporate all of the features of their desktop counterparts. For example,
Pocket Word does not incorporate all of the features of Word on the desktop
computer. Consequently, before a document can be transferred for use on the
HlPC, items like unsupported fonts and OLE objects need to be converted or
stripped from the fIle. Altering the fIles before they are transferred is
accomplished with fIle fIlters.

A fIle filter is a dynamic-link library (DLL) that controls the transfer of
files between the HlPC and the desktop computer. Windows CE Explorer
automatically adjusts file formats for some types of files and you can extend
its file filtering capabilities by defining new application-specific filters of your
own. For information about existing filters and how to write new filters, see
Chapter 19, "Transferring Files."

• Installing applications

Because HlPCs do not have floppy disk drives installed, applications that
are not loaded in ROM have to be loaded from a desktop computer or
other device. Windows CE supports a distinct set of functions and load-
file commands for installing applications on the HlPc. You can use these
functions to retrieve information about the HlPC, load application files,
update the HlPC registry, and create a script for unloading the file App Install.

• Using remote tools

The Windows CE integrated development environment (IDE) supports remote
connections to use debugging applications, such as Spy, Process Viewer, and
Heap Walker. You can also perform remote debugging by using either User
Datagram Protocol (UOP) or Transmission Control ProtocolJInternet Protocol
(TCPIIP). UDP is faster than TCPIIP; however, TCPIIP is more reliable.

In addition to debugging, you can remotely edit an HlPC's registry with the
remote registry editor or capture an image from the remote device and display
it on the desktop computer.

• Sending and receiving e-mail and faxes, and browsing the Internet

Because of the portability of the HlPC, it is an excellent tool for sending and
receiving e-mail and faxes, and for using Web browsers from remote locations.
The HlPC shell and Windows CE Pocket Internet Explorer are fully integrated,
which allows you to use either the browser or the Windows CE shell as your
interface for manipulating fIles and shortcuts on the HlPC.

Chapter 30 Connecting to the Desktop and Sending and Receiving Data 463

• Printing data

Because Windows CE includes printing support, HlPC applications may
enable printing. Use the PrintDlg function to provide printing capability in
your applications. The PrintDlg function in Windows CE is the same as it is
on Windows desktop platforms with one exception. Because Windows CE
does not support the Print Setup dialog box, the members associated with it
do not exist in the Windows CE PRINTDLG structure.

Because the Print Setup dialog box is not supported in Windows CE, you
cannot set page ranges or specify the number of copies to print. You must print
the entire document, or the currently selected portion of the document, and you
can print only one copy at a time. However, Windows CE does support some
page setup functionality. In Windows CE, two new members have been added
to the PRINTDLG structure: rcMargin and rcMinMargin. The rcMargin
member specifies the widths of the left, top, right, and bottom margins; the
rcMinMargin member specifies the minimum allowable widths for
those margins.

Communications and Connectivity Hardware
for an H/PC

Windows CE provides support for a number of standard and optional
communications and connectivity hardware. With the right combination of
hardware and software, you can accomplish the tasks described above with ease.

All HlPCs are equipped with the following communications hardware:

• An RS-232C nine-pin serial communications port

• An infrared (IR) port that complies with the Infrared Data Association
(IrDA) specification

HlPC manufacturers may provide other communication and connectivity
hardware, such as internal modems and one-way pagers. One device that
is often included is a PC Card slot.

Using the Built-In Serial Port
The built-in, nine-pin serial port on an HIPC operates identically to the RS232-
compliant serial port on a desktop computer. Windows CE provides support for
applications that communicate over the built-in serial port by exposing many of
the serial functions, file functions, and Windows Socket functions that are used
by Windows communications applications.

464 Windows CE Programmer's Guide

Unlike Windows desktop platforms, the Windows CE CreateFile function
requires a colon appended to the device name. In most cases, "COMl:"

, designates the built-in serial port on an H/Pc.

Using the Built-In Infrared Serial Port
The H/PC IR port supports point-to-point serial connections with any IrDA­
compliant device. IR links are an ideal method for exchanging data between two
H/PCs. You can establish connections between two IrDA-compliant devices
whose ports are aligned within 15 degrees of each other. They must also be
no more than three feet apart. IrDA specifications provide for serial IR links
operating at speeds up to 115.2 KBps.

Some manufacturers supply only one universal asynchronous receiver transmitter
(UART) to control the built-in serial port and the IR port. To access the IR port
on H/PCs with a shared UART, you must redirect communications by using the
EscapeCommFunction.

~ To open and use the IR port on HlPCs with one UART for both ports

1. Call CreateFile to open the built-in, nine-pin serial port, usually "COMl:."

2. Call EscapeCommFunction with the handle obtained from CreateFile as the
hFile parameter, and SETIR as the dwFunc parameter.

The SETIR flag indicates the serial port is to be set to IR mode.
EscapeCommFunction will return TRUE if an IR capable port
has been selected.

3. Fill the device control block structure DCB with the existing communication
port settings by calling the GetCommState function.

4. Configure the communication port by assigning values to the members of the
DCB and calling the SetCommState function.

5. Set the timeout values for read/write operations on the port with a call to the
SetCommTimeouts function.

6. Perform ReadFile and WriteFile operations on the device handle returned
from CreateFile.

Windows CE supports Windows Sockets (Winsock) and the IR extensions to
Winsock (IrSock) for developing communications applications for the H/PC.

Using a PC Card Serial Device
Windows CE detects PC Cards when they are inserted or if they are in place when
the user starts the H/PC. The system automatically loads the device drivers needed
to use the card when it detects a supported card.

Chapter 30 Connecting to the Desktop and Sending and Receiving Data 465

All active, top-level windows receive a WM_DEVICECRANGE message from
the system when a card is first inserted. To determine if a card was inserted before
the application started running, call the EnumPnplds function. It returns a
double-zero-terminated list of zero-terminated plug and play IDs of all active PC
Cards. In most cases, the list returned from EnumPnplds contains only one
member because most HlPCs come equipped with only one PC Card slot.

Alternatively, TAPI applications can call the LineGetDevCaps function to
determine if a particular modem is inserted into the HlPCs PCMCIA slot.
The devSpecific member of the LineDevCaps structure returned from
LineGetDevCaps contains the device type and indicates whether or not
it is active.

Communication and Connectivity Software for an H/PC
As mentioned earlier, the right combination of hardware and software is essential
for you to accomplish communication and connectivity tasks. The communication
applications that are bundled with the RIPC reside in ROM. They are described in
the following list:

• Remote Networking, which combines the functionality of two
Windows-based applications.

• Windows CE uses dial-up networking for connecting to a Remote Access
Service (RAS) server. Unlike Dial-Up Networking on Windows-based
desktop platforms, Remote Networking allows the HlPC to be a dial-up
client, but not a server. The HlPC supports connections to RAS servers
using Point-to-Point Protocol (PPP) with TCP/IP as the underlying
network protocol.

• Windows CE uses direct cable connection (DCC) for establishing a direct
serial connection between the HlPC client and a Windows-based desktop
computer host. Direct cable connection allows the client to share the
resources of the host computer. DCC uses PPP to establish a data-link-level
connection to run network protocols and transport layer protocols. You can
determine the state of the DCC connection by using the RAS API set.

• Terminal

The Windows CE Terminal application uses a serial cable or modem
connection to connect the HlPC with a desktop computer to transfer files or
act as a remote terminal. You can also use Terminal to connect to a remote
Bulletin Board System (BBS). Although Terminal does not support file
transfer protocols, you can use it to cut and paste information from a BBS.

466 Windows CE Programmer's Guide

You can use Terminal to configure modems and set up dialing properties. It
also allows the following terminal emulation:

• Generic TTY

• VT-lOOIANSI

• PC Link

In addition to the bundled applications, some manufactures may include
software that allows the user to connect a modem to the device's serial port.

PAR T 8

PalmPC

Chapter 31 Programming for a Palm PC 469
Application Guidelines 470
Installing Applications 471
Interfacing with the Shell 472
File Input and Output 472
User Input and Output 475
Communications and Connectivity Hardware for a Palm PC 476
Applications Bundled with a Palm PC 476
Web Services for a Palm PC 477
Voice Recorder Control for a Palm PC 477

Chapter 32 Palm PC Shell 481
Receiving Notifications 482
Navigation Control Buttons 483
Input Panel and Input Methods 487
Enabling Infrared Transfer from within an Application 492

Chapter 33 Designing a User Interface for a Palm PC 493
Design Guidelines 493
Working with the Desktop and Taskbar 494
Designing and Placing Dialog Boxes 496
Choosing Menus and Controls 496
Receiving User Input for a Palm PC 496

469

CHAPTER 31

Programming for a Palm PC

The Palm PC is a mobile personal information manager (PIM) that is based on
the Windows CE operating system. With the Palm PC, the user can capture and
receive data rapidly in real-time situations. And the Palm PC is convenient to
use-it fits easily in a pocket and can be used with one hand.

As an electronic organizer, the Palm PC manages contacts, appointments, and
other personal and business information. As a voice recorder, it can capture
ideas and thoughts as you speak them. As electronic paper, the Palm PC can store
telephone numbers and short messages. As an Internet device, it can send and
receive e-mail messages. As an information appliance, the Palm PC can receive
personal information and news broadcast from a wireless network or a broadcast
feed when integrated paging capability is enacted.

Palm PCs support the Windows CE kernel and include many familiar graphical
user interface elements found in Windows-based desktop platforms. A typical
Palm PC is equipped with 4 MB of ROM and at least 1 MB of RAM. The device
may have a CompactFlash Type II Card slot built in for storage expansion and
wireless connectivity. In addition, all Palm PCs have a RS232 serial port and an
Infrared Data Association (IrDA) port. Some Palm PCs come with a docking
cradle that provides a connection to the desktop computer by means of a serial
port. The cradle also provides AC power for downloading bulk data overnight
by means of a one-way pager.

This chapter describes these features of the Palm PC:

• Shell and user interface (UI)

• Input panel and input methods

• File input and output

• Desktop connectivity

470 Windows CE Programmer's Guide

Application Guidelines
Applications for the Palm PC must be carefully designed to enhance the user
experience. This means a simple approach to applications and fast access to
data. Because of the size of the Palm PC device, an application designer must be
conscientious to organize the functionality appropriately to conserve the screen
resources and to provide the optimal usability. In the user interface design, this
means exposing the critical functions in the most explicit manner possible, and
hiding more advanced or less-frequently used functions in places such as
pop-up menus.

In general, you should follow these guidelines when you design your
Palm PC application:

• An application can have only a single instance. If necessary, multiple-instance
features, such as the multiple document interface (MDI) functionality, must be
supported from within the application.

• An application must not show the file system. This means that Open, Save,
Browse, and other functionality may not expose any path information.

• An application must be able to close and start up immediately to ensure fast
user access to applications. If startup performance is slower than desired, the
user interfaces should be displayed before the data is processed.

• Applications must offer the Infrared SendlInfrared Receive functionality
because Palm PC does not support Windows CE Explorer that could otherwise
carry out the functions. They should use File/Send and File/Receive, or
File/Send TolIR Recipient and File/Receive commands.

• Top-level application windows must be accessible from the Start menu
or its Programs submenus, because any running application does not get an
icon on its taskbar. However, top-level dialog boxes without parents will be
adopted by the Desktop application. This ensures that the user can bring
such dialog boxes to the foreground by tapping the desktop icon on the
taskbar. Any owned pop-up window will appear when its owner is brought
from the background.

• Design your application to display data in a single-column format to suit the
narrow screen of a Palm PC, unless crucial circumstances dictate otherwise.

• A void using numerous navigation controls to leave as much screen space as
possible for data, rather than controls.

• Do not provide a Close button on the application's toolbar. The Palm PC shell
automatically shuts down idle applications in the background when an active
application requests more memory than is available. Similarly, an application
should not enable the File->Exit menu item. Applications must handle state
and data persistence gracefully.

Chapter 31 Programming for a Palm PC 471

• Palm PC employs the Coolbar model to display both the menus and the toolbar
buttons. Coolbar is a command bar with toolbar buttons and, possibly, a
retractable menu field. If you use Coolbar in your application, you should
group its functionality into frequently used and infrequently used features. The
user should access frequently used features by means of the toolbar buttons
and infrequently used options from a pop-up menu.

Installing Applications

Macro string

%CEl%

%CE2%

%CE3%

%CE4%

%CE5%

%CE6%

%CE7%

%CE8%

%CE9%

%CEIO%

%CEll%

%CE12%

%CE13%

%CE14%

%CE15%

%CE16%

%CE17%

The Palm PC is different than Windows-based desktop platforms in two ways
that affect how you install applications. First, the file structure is different.
Second, because there is no Windows CE Explorer, the user cannot search for
executable files or data files.

The following table shows the subset of the Windows CE application installation
macros that you can use for a Palm PC. Use these macros in the DestinationDirs
section of the CAB Wizard setup .inf file.

Windows CE directory

\Program Files

\Windows

\Windows\Desktop

\ Windows\StartUp

\My Documents

\Program Files\Accessories

\Program Files\Conununication

\Program Files\Games

\Program Files\Pocket Outlook

\Program Files\Office

\Windows\Programs

\ Windows\Programs\Accessories

\Windows\Programs\Conununications

\Windows\Programs\Games

\Windows\Fonts

\ Windows\Recent

\ Windows\Favorites

Palm PC directory

\Program Files

\Windows

\ Windows\StartUp

\My Documents

\Program Files\Accessories

\Program Files\Conununication

\Program Files\Games

\Windows\Start Menu\Programs

\ Windows\Start Menu\Programs\Accessories

\ Windows\Start Menu\Programs\Conununications

\ Windows\Start Menu\Programs\Games

\ Windows\Fonts

\ Windows\Start Menu

472 Windows CE Programmer's Guide

As you can see in the table, several Windows CE directory locations are not
included in the Palm PC file structure. These correspond to macro strings
%CE3%, %CE9%, %CElO%, and %CE16%. Also, the locations corresponding
to %CEll % through %CE14%, and %CE17%, are different than they are on
other Windows CE-based platforms.

Because the Palm PC has no Windows CE Explorer, you need to install a link in
the Start menu to access your executable files. You should install this link in
\Windows\Start Menu\Programs and its subfolders. Place data files in projects
under the \My Documents folder. The File Open and File Save dialog boxes
automatically place data files in \My Documents under a project folder that
the user chooses. Use the Win32 functions GetSaveFileName and
GetOpenFileName to display these dialog boxes.

Note For the Palm PC, the user will only be able to view shortcuts created in
\Windows\Start Menu and its subfolders.

Interfacing with the Shell
The Palm PC shell is the user interface to the Palm PC's operating system. From
the shell, a user gains access to the Palm PC file system. The shell lets a user start
applications from the desktop or use hardware control buttons. It cooperates with
the input panel to enable a user to select an input method. The shell also makes it
possible for a user to receive system notifications. With the Palm PC shell
application programming interface (API), you can make all these features
available in applications. For more information on using the shell API, see
Chapter 32, "Palm PC Shell."

File Input and Output
The Palm PC does not expose its file system to the user. Users access the file
system by specifying file attributes for a file in the Projects dialog box. In this
dialog box, a user can open or save a file and organize files by folders and
properties. You can incorporate these features into your own applications using
the exposed API.

In the Palm PC, all files are stored in the \My Documents folder, which is
accessible by all applications. Items in the folder can be documents or subfolders
for a project. The top-level folder has a default name, All. A user cannot delete
or rename this folder, but can create subfolders in it for projects. However, the
subfolders can only be one level deep. The user places files related to a project in
a subfolder. The name of this subfolder is the name of the project.

Chapter 31 Programming for a Palm PC 473

The Palm PC uses Projects to carry out file input and output. Projects consists of
four dialog boxes and a few APIs. You use the functions to manipulate files. The
dialog boxes provide a user with a set of user interface elements for opening and
saving documents. The documents, including voice and ink notes, are organized
by projects. A file is associated with its project folder and identified by its file
name. It has a set of editable attributes that describes various file properties, such
as the location, type, size, and date of the last modification. The four dialog boxes
in Projects are:

• Folder
Manages all project folders. It allows the user to create a new folder, and
rename or delete existing ones. In addition, the user can use it to select the
current folder. ..

• Properties

Displays the file properties, including the name of a file; the number of
multiple files; the folder name; and the type, location, and size of a file.

• Open
Allows the user to select from all the files on the device. Files can be selected
and sorted by folder or file type.

• Save As
Allows the user to save one file at a time with specified properties, such as
project, file name, type, size, location, and modification date.

You can enable these system-defined dialog boxes by calling the
GetOpenFileName and GetSaveFileName functions. The two functions
take an OPENFILENAME structure as input. Depending on the input, the
GetOpenFileName function creates either a Folder or an Open dialog box. To
open a Folder dialog box, you must set the Flags member of the input structure
to the OFN_PROJECT value. Otherwise, the user will get an Open dialog box.
Similarly, the GetSaveFileName function creates Properties and Save As dialog
boxes. If you set the Flags member to the OFN_PROPERTY value, the function
creates a Properties dialog box. Otherwise, it opens a Save As dialog box. You
would use such dialog boxes in applications like Voice Recorder and Note Taker.

Because Palm PC applications must not expose the file system in any way,
Projects does not make available any file manager view. Instead, the Folder
and Properties dialog boxes allow users to specify the folder and location
of files. The location can be the main memory or a CompactFlash card.

474 Windows CE Programmer's Guide

Using Flash Cards on a Palm PC
Flash cards can be a useful method for transferring files and adding extra memory
to a Palm PC. This section outlines the method for accessing files on flash cards.

You must create a folder called My Documents on the flash card to mimic the file
structure on the Palm PC. Files can be placed directly in this folder or under one
of its immediate subdirectories.

The two ways to access fIles on a Palm PC flash card are through code in your
applications and through a desktop computer connected to a Palm PC.

For coding purposes, the path of the flash card is \Storage Card. On the desktop,
after synchronizing with the Palm PC, you click the Storage Card icon. This
brings you to the root directory of the Storage Card. You can then create, copy,
and delete directories and files on the flash card.

The following code example shows how to create a file named Test.txt under
\Storage Card\My Documents\testdir.

hFile;
dwFileLen;

HANDLE
DWORD
char szText[]-"This is a test file.";

if (CreateDirectory(TEXT("\\Storage Card\\My Documents\\testdir").
NULL»
{

hFile - CreateFile(TEXT("\\Storage Card\\My Documents\\testdir
\ \ test. txt").

}

GENERIC_WRITEIGENERIC_READ.
FILE_SHARE_READ.
NULL.
CREATE_ALWAYS.
0.
NULL) ;

!!we need read and write access
!!allow read access for others
!!security attributes
!!always create new file
!!file attribute

WriteFile(hFile. szText. strlen(szText). &dwFileLen. 0);
CloseHandle(hFile);

The path for the flash card is \Storage Card, but due to the special character inside
the quotes you need to assign the path as \\Storage Card.

Chapter 31 Programming for a Palm PC 475

Before opening and processing a document, an application performs certain
file operations to ascertain whether an item, such as a file or folder, exists in a
specified location and whether it is of the appropriate file type for processing. For
this, Windows CE exposes other Projects functions to perform the following three
classes of file operations:

• Enumeration of folders and files

• Checking for CompactFlash cards

• Searching for files in a folder

Projects functions are described in the following table.

Function

GetOpenFileName

GetSaveFileName

EnumProjects

EnumProjectFiles

FindFirstFlashCard

FindNextFlashCard

FindFirstProjectFile

FindNextProjectFile

User Input and Output

Description

Creates a system-defined dialog box for opening a file.

Creates a system-defined dialog box for saving a file.

Enumerates all folders on the requested mountable
file system.

Enumerates all files within a folder or all folders on the
requested mountable file system.

Searches for and returns the first mountable file system.

Finds the next mountable file system.

Finds the first file in a folder on the requested
mountable file system.

Finds the next file in a folder.

A Palm PC has a touch-sensitive screen with a resolution of 240 x 320 pixels in a
portrait orientation. The screen handles both input and output. A user can use a
stylus to type, write, or sketch on the touch screen. A Palm PC has no physical
keyboard attached to it. Instead, it uses the input panel to emulate typing on a
QWERTY keyboard. The input panel is bundled as the default means for alpha­
numeric input. A user chooses among the input methods (IMs) installed in the
system. With the built-in microphone and speaker, a Palm PC is capable
of voice input and output of speech quality. As such, audio is a built-in
notification mechanism. Other notification options include a flashing LED
and mechanical vibrations.

476 Windows CE Programmer's Guide

A Palm PC has various hardware navigation control buttons for fast data access
and application switching. These include:

• Action and Exit buttons for application control without using the touch screen.

• Two rocker switches for up and down navigation, RockUp and RockDown.

• Application-switching buttons, for example, Appl through App16.

You should map at least one application-switching button to the Voice Recorder
application; the limit is 16. The exact number you have available depends on the
original equipment manufacturer (OEM). The OEM typically specifies a default
behavior for each button. For example, the Appl button may be assigned to
launch the Voice Recorder application. However, you can overide the default
mapping by using the Palm PC Buttons control panel. For more information on
user input and output, see Chapter 32, "Palm PC Shell."

The Palm PC allows users to take handwritten notes. The underlying technology
is known as Rich Ink. The Microsoft Note Taker application is the built-in word
processor for Palm PC that accepts handwritten input. It lets a user write and draw
on the touch screen with a stylus. The user can edit a handwritten note with Cut
and Paste menu items, open a saved ink file, and read it from the screen. You can
enable note taking in your applications that take textual or graphical inputs. For
more information; see the documentation for the Microsoft Platform SDK.

Communications and Connectivity Hardware for
a Palm PC

Desktop connectivity refers to the services for connecting a Palm PC to a
Windows-based desktop platform to perform file synchronization and convert
documents automatically from one format to another during data transfer. The
exposed API for desktop connectivity includes the remote API (RAPI) and the
connection notification API.

Applications Bundled with a Palm PC
Many Windows CE PIM applications, such as Inbox and Contacts, are
implemented for and bundled with Palm PCs. In porting to the Palm PC
platform, these applications undergo some changes, mostly in their user
interfaces, to meet the requirements of a Palm PC.

The PIM and productivity applications implemented for a Palm PC support open
APIs to allow an application programmer to take advantage of Windows CE
address and message stores. You can use these open APIs to enable and enhance
the existing functionality of the bundled PIM applications.

Chapter 31 Programming for a Palm PC 477

Web Services for a Palm PC
A Palm PC is a mobile Web station that connects the user with the Web. It
supports the Mobile Channels technology, which defines a standard compliant
with Microsoft® Internet Explorer 4.0 for creating mobile channels on a
Windows-based desktop platform and viewing them on a Palm PC or a desktop
computer. For more information, see Chapter 22, "Mobile Channels."

Voice Recorder Control for a Palm PC
The Voice Recorder control is designed to enable, with minimal effort, voice
recording and playback functionality in its container applications. For example,
the Inbox application can incorporate the control to record a voice mail message
in a file and attach the voice note to a regular e-mail message. It is a simple task
to program with the Voice Recorder control because the exposed API elements
are minimal.

Working with the Voice Recorder control involves using only one function, two
data structures, and a small number of messages. First you must create and
initialize the control. You may do so after the owner window is created. The
control is represented by a data structure of the CM_ VOICE_RECORDER
type and must be properly initialized. The following code example illustrates
this process of initiation and initialization.

II be sure that the owner window exists
if C!IsWindowChwndMain» return FALSE;

II initialize the control's data structure.
CM_VOICE_RECORDER cmvr;
memsetC &cmvr. 0. sizeofCcmvr»;
cmvr.cb = sizeofCCM_VOICE_RECORDER);
cmvr.dwStyle = VRS_NO_MOVE;
cmvr.xPos = 100; II use -1 to center the control relative to owner
cmvr.yPos = 160;
cmvr.hwndParent = hwndMain;
cmvr.lpszRecordFileName = TEXTC"\\My Documents\VoiceRec.wav");

II returns the handle to the control
hwndVoice = VoiceRecorder_CreateC&cmvr);

478 Windows CE Programmer's Guide

The Voice Recorder control offers a user-interface element that provides the user
with the Record, Playback and Stop functionality commonly found in an audio
recorder. Pressing the Record button on this VI element starts the Voice Recorder
engine. Pressing the Stop button terminates the recording or playback session.
Other features exposed through the VI element include Grip, Cancel (X), and
OK buttons for moving the control, interrupting the recording process, and
exiting the control. To move the control around the screen, the user presses
and holds the Grip button on the left side and drags it to the desired location.
Applications can use the SetWindowPos function to accomplish the same task
programmatically. Currently, it is not possible to use the Grip button to manually
move the dialog box beyond the area outlined by the boundaries of the owner
window. The Cancel button, when pressed, discards the recording session and
dismisses the dialog box. This button is equivalent to the built-in Exit hardware
control button for Palm PC. The OK button, when pressed, saves the recording in
a file before dismissing the dialog box. This button is equivalent to the Action
hardware control button. Also, in order for Action to work, the control, dwStyle,
must be set with VRS_MODAL, but not VRS_NO_OKCANCEL nor
VRS_NO_OK.

The Record, Playback, and Stop features can also be enacted from within the
container application. To accomplish this, the application sends the VRM_ *
messages to the Voice Recorder control. For example,

SendMessage(hwndVoice, VRM_RECORD, NULL, NULL);

This issues a command (VRM_RECORD) to the Voice Recorder control,
hwndVoice, to start recording. Similarly, a VRM_PLAY message activates
playback, and a VRM_STOP message terminates recording or playback. For
more information about these and other VRM_ * messages, see the Reference
section of this document.

Conversely, the Voice Recorder control, when it is not of the VRS_NO_NOTIFY
style, dispatches the VRN_ * notification messages to the application's window
whenever the control experiences changes in its mode of operation. These
messages are sent in the WM_NOTIFY format. The following code example
shows how the application can intercept such messages.

Chapter 31 Programming for a Palm PC 479

case WM_NOTI FY
{

}

LPNMHDR pnmh = (LPNMHDR) lParam;
switch (pnmh->code);

{

}

case VRN_ERROR:
MessageBox(NULL, TEXT("Error_"), NULL, MB_OK);
break;

case VRN_RECORD_START:
MessageBox(NULL, TEXT("Recording_"), NULL, MB_OK);
break;

case VRN_RECORD_STOP:
MessageBox(NULL, TEXT("Stop recording_"), NULL, MB_OK);
break;

case VRN_PLAY_START:
MessageBox(NULL, TEXT("Playing_"), NULL, MB_OK);
break;

case VRN_PLAY_STOP:
MessageBox(NULL, TEXTC"Stop playing ... "), NULL, MB_OK);
break;

case VRN_CANCEL:
MessageBox(NULL, TEXTC"Cancel. .. ") , NULL, MB_OK);
break;

case VRN_OK:
MessageBox(NULL, TEXTC"OL"), NULL, MB_OK);
break;

default:
return DefWindowProc(hwnd, msg, wp,lp);

The Voice Recorder control is a dialog box of the pop-up window style,
WS_POPUP.1t can have an owner window, but not a parent window. As
a pop-up window, the control does not change its state when its owner window
moves or resizes, and it will always appear in Z order above its owner windows
and consequently above the owner's child windows. When the owner window
spawns child windows, each of which in turn creates a Voice Recorder control,
the topmost parent of the children still assumes ownership of the controls. As
such, all the VRN_ * notification messages are sent to the topmost owner window,
not its children. Furthermore, closing a child window will not cancel its
associated control.

For more information on Z order and windows, see Chapter 9, "Windows."

CHAPTER 32

Palm PC Shell

The Palm PC shell is optimized for fast application access rather than for
managing a large number of documents and applications. Thus, the Palm PC
does not support Windows CE Explorer for managing files. Users cannot
access the file system from the Palm PC shell.

The Palm PC shell allows users to launch new applications or to reactivate idle
applications using the Start menu and its Programs submenu, or the hardware
application switching buttons. The shell includes the following user interface
elements: a Start menu, an Input Panel button, a Desktop button, and a date
and time annunciator panel, which are all displayed on the taskbar. Running
applications are not shown on the taskbar, but they are accessible from the
Start menu. For this reason, applications can have a single instance only.

The Palm PC desktop is an application-based Active Desktop. For information
on Active Desktop, see the Microsoft Platform SDK. Users can configure
Active Desktop to display up to five application items, such as Logo, Owner,
Appointments, Tasks, and Messages. Tapping on a displayed item launches
the associated application. For example, tapping Appointments starts the
Calendar application.

481

Tapping the Desktop icon on the taskbar toggles between Desktop and the most­
recently active application. As a Palm PC application, Desktop can and will
adopt, as its child window, a parentless dialog box of the WS_POPUP style. Thus,
tapping the Desktop button will bring up such dialog boxes from the background.

482 Windows CE Programmer's Guide

The Palm PC shell optimizes memory use for running applications. When the
demand for memory is high, the shell sends a WM_ CLOSE message to idle
applications and closes them to make room for the active one. This automatic
shutdown comes without any warning. Therefore, if you need to preserve the
application's state from one session to another, you must handle the state
persistence within your application. Typically, you archive any persistent state
variables to a temporary file after the application receives a WM_CLOSE
message, but before the message is passed to the operating system. Every time
the application is started, it should check for this temporary file. If the file exists,
the application should restore the application state.

The Input Panel button consists of two buttons grouped together and serves two
purposes: bringing up and retracting the input panel window, and choosing the
active input method. Each input method should display an icon on the left side
of the Input Panel button to indicate the currently active input method. For
example, the Palm PC uses a keyboard icon for the keyboard input method. If
you provide a custom input method, it should instruct the Input Panel button to
change the keyboard icon to the one of your design. For more information, see the
IIMCailback::SetImlnfo function.

You can use the Palm PC shell application programming interface (API) to make
the system services available to your applications. In this chapter, we will discuss
how your applications can do the following:

• Receive notifications

• Work with hardware navigation control buttons

• Access the input panel and manage input methods

• Send and receive infrared transfer

Receiving Notifications
The Palm PC notification system consists of a common dialog box for setting
overall preferences, as well as for selecting options for individual items. The
common dialog box can be accessed by any application. Notifications can
include audio signals, a flashing LED, or interrupted messages on the screen.

Chapter 32 Palm PC Shell 483

Navigation Control Buttons
The Palm PC has four hardware navigation control buttons: Action, Exit, Rocker,
and Apps. These buttons allow the user to launch applications, navigate lists,
activate records, and exit from fields and dialog boxes with one hand. These
buttons act similarly to familiar keyboard buttons, as described in the
following table.

Navigation control button

Action

Exit

Rocker

App

Similar key on a keyboard

ENTER

ESC

UP ARROW and DOWN ARROW

No keyboard equivalent

The original equipment manufacturer (OEM) decides on the number and the
purpose of the Apps switches. But every Palm PC must have at least one
application-switching button mapped to the Voice Recorder application. If you
associate Appl with the Voice Recorder, the shell launches or reactivates that
application when a user presses the application switching button. Mter that, the
user can hold the Action button down to start recording and release it to stop
recording. Apps switches make your applications easily accessible to users.

Pressing and releasing one or more navigation control buttons sends a sequence
of virtual key codes to the shell. OEMs are responsible for providing the device
driver to map the virtual key codes for the hardware control buttons. The
following table lists a sample virtual key mapping. It may not be consistent
with the driver installed on your target device.

Operations on buttons Status message Functional message

Press the Action button VK_F23 (down)

Release Action VKY23 (up) VK_RETURN (down) and
VK_RETURN (up)

Press the Exit button VK_F24 (down)

Release Exit VK_F24 (up) VK_ESCAPE (down) and
VK_ESCAPE (up)

Press RockUp VK_UP (down)

Hold RockUp down VK_PRIOR (down) and
VK_PRIOR (up) for each auto-repeat

Release RockUp VK_UP (up)

Press RockI>ovnm VK_DOWN (down)

Hold RockI>own down VK_NEXT (down) and
VK_NEXT (up) for each auto-repeat

Release RockI>ovnm VK_DOWN (down)

484 Windows CE Programmer's Guide

Operations on bnttons Status message Functional message

Press Appl VK_LWIN (down) OxCl (down)

Release Appl VK_LWIN (up) OxCl (up)

Press App2 VK_LWIN (down) OxC2 (down)

Release App2 VK_LWIN (up) OxC2 (up)

Press App3 VK_LWIN (down) OxC3 (down)

Release App3 VK_LWIN (up) OxC3 (up)

Press App4 VK_LWIN (down) OxC4 (down)

Release App4 VK_LWIN (up) OxC4 (up)

For more information on virtual key mapping, see the device driver
documentation available from the manufacturer of your target device.

The sample in the table illustrates how you might work with the hardware control
buttons. A status message specifies the type and state of a button. Action can be
pressed or released. The same applies to other buttons. A functional message
specifies an intended action. For the application-switching buttons from Appl
through App16, it also specifies the identify of the button. The application­
switching buttons are registered in the Windows CE registry. Because the
functional messages correspond to the associated registry keys, Appl is
associated with \HKEY _LOCAL_MACIllNE\software\Microsoft
\shell\Keys\40Cl, App2 is associated with \HKEY_LOCAL_MACIDNE
\software\Microsoft\shell\Keys\40C2, and so on. Each key contains a named
value that specifies the path of an application that is associated with a chosen
button. When a user presses Appl, for example, the OxCl message is sent to
the shell. The shell searches the registry for the 40Cl key and launches the
application using the information stored in the registry.

A user can use the Palm PC Buttons control panel to associate a navigation
control button with any application that is accessible through the Start menu
or its Programs submenu. Therefore, if you intend to use an installation script,
install your application in the Start menu or Programs submenu folder. Do
not modify the registry keys to associate your application with a button in the
installation unless you notify the user of the change or present him or her with
an opportunity to overwrite the suggested mapping.

Chapter 32 Palm PC Shell 485

The separation of status and functional messages gives you flexibility when you
use the navigation control buttons in your applications. Because these messages
are separate, a custom Note Taker application can start with the most recently
saved note when a user presses and releases the associated application-switching
button. Alternatively, it can start with a new document, if he or she presses and
holds the button down. Furthermore, the user uses multiple buttons together to
create chorded actions, in which different combinations of status messages are
followed by various functional messages.

The shell includes standard implementation for chorded actions. When a user
presses Action and Exit, the shell is sent a sequence of status messages with no
functional messages: VK_23 (down), VK_24 (down), VK_24 (up), and VK_23
(up). The shell turns on the back light of the device. Similarly, when Exit and
Action are chorded, the shell initiates the device calibration upon receiving the
following messages: VK_24 (down), VK_23 (down), VK_LCONTROL (down),
VK_MENV (down), VK_EQUAL (down), VK_LCONTROL (up), VK_MENV
(up), VK_EQUAL (up), VK_23 (up), and VK_24 (up). Other standard
implementations of chorded actions are listed in the following table.

Button IlButton 2 Action sequence Effects

Action/Exit Press and hold Action, and then Turns on back light
press Exit.

Exit/Action Press and hold Exit, and then Initiates calibration
press Action.

ExitIRockUp Press and hold Exit, and then Increases contrast
press RockUp.

ExitIRockDoWD Press and hold Exit, and then Decreases contrast
press RockDoWD.

ActionIRockUp Press and hold Action, and then Implements Shiftffab
press RockUp.

ActionIRockDoWD Press and hold Action, and then Implements Tab
press RockDoWD.

To minimize potential interference with the standard shell functionality, you
should avoid using such combinations of the navigation control buttons in
your applications.

486 Windows CE Programmer's Guide

When Windows CE dispatches messages generated by the navigation control
buttons to the Palm PC shell, the shell acts as a mediator between the hardware
control buttons and your applications. This added level of indirection may
deteriorate the performance of the application. If performance is critical, you can
have these messages sent directly to your applications. Do this by calling the
SHGetAppKeyAssoc (szApp) and RegisterHotKey (hWndApp, key/d, KeyFlag,
vkCode) functions. The fIrst function returns a valid virtual key code, if there is
one, of the hardware button associated with the szApp application, for example,
MyApp.exe. The second function registers the hWndApp window, which is your
application, to receive the 'messages when the user presses a hardware button.

Whenever an application-switching button is mapped or remapped to an
application, the application receives a WM_ WININICHANGE message. If your
application processes certain documents, as does Note Taker or Voice Recorder,
you can have it call the SHGetAppKeyAssoc and RegisterHotKey functions,
after receiving a WM_ WININICHANGE message. This ensures that your
application launches itself and creates a new document when the user presses
and holds down the associated application-switching button.

Using Hardware Control Buttons
To use the hardware navigation control buttons effectively in your Palm PC
application, follow these guidelines:

• Ensure that your application automatically places its focus in the controls that
determine various data views when it retrieves a record from a database
application, such as an address card in Contacts.

• Use the RockUp and RockDown buttons for viewing information, not
manipulating it. An application should have these buttons associated with
those data view controls; thus, the buttons are used to select the desired
panel to view the record.

• Expose user interface (UI) elements for common actions in the main
application view or directly map common actions to hardware control buttons.

• Ensure that the content of the control buttons does not change when a user tabs
between them.

• Keep focus and default focus the same whenever possible, so that the Action
button activates the control that currently has focus when the user presses it.

Chapter 32 Palm PC Shell 487

Input Panel and Input Methods
The Palm PC uses a touch-sensitive screen, rather than a keyboard, to receive user
input, and it uses an input panel to select an input method (1M). The shell and
the system cooperate to expose functions and structures, and to send window
messages that make Palm PC applications aware of the input panel. Applications
can respond to changes in the input panel state either by adjusting themselves or
by altering the input panel states.

The Palm PC shell exposes a component object model (COM) interface. This
interface allows you to install IMs that work with the input panel to translate user
actions and manage input data. An 1M is an in-process COM component that
implements the IInputMethod interface. It manages the input panel window's
screen and is responsible for rendering screen output and responding to user input.
Typically, an 1M converts user input into characters and then sends it to the
system by means of exposed input panel functions. Windows CE provides a
default QWERTY-keyboard 1M to handle alphanumeric input. Another bundled
1M is Pen Input.

The choice of 1M available to the user is managed by the input panel control
panel. The control panel communicates with the shell using the registry and
exposes input panel-related API. IMs are added to the system using the COM
component installation procedures.

The following illustration describes the interaction between applications, the
GWE component of the operating system, the input panel, and IMs.

488 Windows CE Programmer's Guide

Input Panel

Keyboard event
generation

Palm PC interaction

Usual key event
delivery

The input panel VI elements include a window, a button on the taskbar, and a
control panel. The Input Panel button and the control panel let a user change
the state of the input panel window and select a favorite IM.

An input panel window is a rectangular area that the user can choose to dock
above the taskbar or float in various screen positions. The default input panel
window size is 240 pixels wide by 80 pixels high. The user can elect to display
or hide the input panel by pressing or releasing the Input Panel button on the
taskbar. The current state of the input panel is contained in the SIPINFO
structure. Applications can enable or disable the visible state by setting or clearing
the SIP_ON bit in the fdwFlags member. The user interacts with the visible input
panel window to create system input.

Chapter 32 Palm PC Shell 489

The shell spawns a dedicated thread that registers itself as an input panel thread
with the system. The thread creates an input panel window and performs the
initialization before it enters a message loop to respond to messages and to the
input panel user interface elements. The thread also dispatches messages to the
IM's window. The thread calls into the 1M object, permitting the 1M to create
windows that will respond as special input panel windows. The method of input is
determined by the currently selected 1M. The Palm PC has a default 1M installed
that displays a keyboard image and converts taps on the keyboard into characters.
For more information on thread calls into an 1M object, see "Installable Input
Methods" later in this chapter.

Windows CE grants the input panel thread a special status. Windows created by
the thread are topmost ones that are obscured by other windows. The input panel
window, together with its children, will not receive the input focus when a user
taps it. Because of this, the system focus remains unchanged when user input
takes place using an input panel window. In most cases, the system focus should
not change when the IM is called to take input. For example, if an edit control has
the focus, the input panel should allow text input into the edit control without
changing the focus.

Programming with an Input Panel
An input panel-aware application must know when the input panel changes its
state and what the new or current state of the input is. The input panel state
consists of its visibility status, its docking or floating status, and its size and
position. The current input panel state is contained in the SIPINFO structure. A
change in the input panel state will generate a WM_SETTINGCHANGE message
that is sent to all top-level windows. Applications can determine the input panel
information by using the SHSiplnfo function.

The rcSipRect member of SIPINFO defines the input panel area of the screen.
This area is separate from the working area regardless of application states.

Your application should not raise or lower the input panel on the screen unless
you are certain that users want this feature.

490 Windows CE Programmer's Guide

Installable Input Methods
An 1M is a mechanism for the user to provide text or graphics input by means of
a touch screen. The 1M occupies space inside an input panel window created by
the system. It is responsible for rendering that space and for responding to user
interaction in that space. Typically, an 1M creates a child window of the input
panel window to respond to input from the user. This is because the 1M does not
have access to the WndProc callback function of the input panel windows unless
it subclasses that window. The communication between the input panel and an 1M
is facilitated by the IInputMethod and IIMCallback interfaces.

An installable 1M is a COM component that implements the IInputMethod
interface. Either you or an OEM may provide an installable 1M and the user may
change the 1M that is selected into an input panel. The input panel dynamically
loads the selected 1M by invoking the CoCreateInstance function. When the
user selects a new 1M, the input panel frees the old 1M by calling Release on the
interface pointer. The input panel calls IInputMethod functions to notify the 1M
of events related to the input panel and to request information. On the other hand,
the input panel implements and exposes the 11M Callback interface so that the 1M
can ask the input panel to send keystrokes and to change the icon displayed in the
Input Panel button on the taskbar.

An 1M is added to the input panel's pool of available IMs when it is installed as
an in-process COM server. The input panel and the input panel control panel work
in conjunction to present the list of installed IMs available to the user. Together,
they allow the user to select the current 1M.

In response to the input panel's calls to IInputMethod, an 1M creates windows
in the contexts of the input panel thread. This way, the input panel and the 1M
belong to the same message loop. Thus, the input panel thread can call into
the window procedure of the windows created by IMs. Similarly, all the
calls to IIMCallback should be made on the input panel thread. That is,
an 1M should only call the methods in response to a call coming through an
IInputMethod method.

An 1M can create desired worker threads to perform user interface functions.
However, be sure that these worker threads do not call into IIMCailback.
Windows created from worker threads belong to a message queue of a thread
that is different from the input panel thread because certain GWEIUSER window
functions work well only if they are called from the same thread that has
created the window.

Chapter 32 Palm PC Shell 491

To avoid mixing threads and the user interface within an 1M, your application
should not create any threads; rather, it should let the input panel thread do
all work in the 1M. Alternatively, your application can create worker threads
itself, and then it can have the input panel thread work with all VIs for all of
the 1M windows.

Input Methods Registry Values
IMs are installed in the system as in-process COM servers using the standard
COM registry keys. The key HKEY_CLAS_ROO1\CLSID contains subkeys
representing COM components. The subkeys are textual representation class
identifiers (CLSIDs). The CLSID subkeys contain an InprocServer32 subkey
with a default-no name-value specifying the path of the dynamic link library
(DLL) that implements the component. The CLSID subkeys also contain an
IsSIPlnputMethod subkey with a default-no name-value equal to the string
"1." The following is an example of 1M registry entries.

Key

HKEY _CURRENT_USER\CLSID\

{ 4a4a96d7 -ae04-11dO-a4f8-00aaOOa7 49b9}\

InprocServer32

IsSIInputMethod

Default value

"MS QWERTY 1M"

"\ Windows\a1phanum.dll"

"I"

Technically, any COM component that implements IInputMethod is an 1M
capable of being selected into an input panel. The IsSIPlnputMethod key
provides a shortcut to presenting a list of IMs to the user without loading and
querying each object for the IInputMethod interface.

If you develop your own 1M component, you should supply the installation
program to perform self-registration of the component by calling
DllRegitsterServer and DllUnregisterServer functions. These functions are to
be implemented in the 1M server DLL. The input panel control panel provides no
user interface for the self-registration service. For more information on COM
component registration, see Chapter 2, "Programming Considerations" and the
OLE documentation in the Microsoft Platform SDK.

492 Windows CE Programmer's Guide

Enabling Infrared Transfer from within an Application
Palm PC applications can transmit data, such as records or files, from one Palm
PC device to another by means of the built-in Infrared Data Association (!rDA)
port. Such transfers must take place between two compatible devices running the
same application. Use File/Send or File/Send TolInfrared Recipient menu items
to initiate the Infrared Send command. Similarly, use the FilelReceive menu
items to activate the Infrared Receive process. It is your responsibility to declare
and implement the equivalent infrared transfer functions by using the standard
Windows CE communication API. For more information about the
communication API, see Chapter 5, "Using Communications."

The Infrared Send command initiates the IR transfer on selected data when the
File/Send or File/Send TolInfrared Recipient menu item is invoked. It also
brings up an Infrared Send dialog box on the sending device to display the
transfer status. To receive the IR transfer, the receiving IR port must be aligned
with the sending IR port. Tapping the FilelReceive menu item activates the
Infrared Receive command and displays an Infrared Receive dialog box. The
dialog boxes remain open until the transfer is complete. An application can
implement a simultaneous transfer of multiple records or files.

If the transfer fails, the Infrared Receive dialog box displays error messages. The
whole process must be restarted if subsequent transfers are desired.

CHAPTER 33

Designing a User Interface for a
Palm PC

493

The Palm PC is a mobile companion to a Windows-based desktop computer. It
incorporates many of the graphical user interface (VI) elements that are familiar
to users of other Windows-based platforms. These elements include a desktop,
a taskbar, windows, dialog boxes, menus, and controls. However, unlike other
Windows-based platforms, a Palm PC supports voice and ink input; has a small,
portrait-oriented touch-sensitive screen; and relies for user input on an input
panel and stylus, instead of a traditional keyboard. Though the principles
of user interface design discussed in previous chapters also apply to Palm PC
applications, this chapter focuses on design considerations specific to the
Palm PC.

For more information on general design considerations for all Windows CE-based
devices, see Chapter 6, "Designing a User Interface for Windows CE."

Design Guidelines
Palm PCs are designed with simplicity and accessibility in mind. An application
that exposes too many functions on its interface risks alienating the user by
making the application seem too complex. When you design your application,
place commands for critical application features in the most accessible area
available, usually on a toolbar, and commands for advanced or infrequently used
features in a less accessible area, such as on a menu. Where you place a command
item is important because Palm PC applications do not contain separate menu bars
and toolbars to help users organize the interface. They contain command bars, a
combination toolbar and menu bar, which cannot display toolbar buttons and
menus at the same time. To issue a command, users must take an extra step by
exposing either the toolbar or the menu bar portion of the command bar before
issuing a command. For information on working with command bars, see Chapter
6, "Designing a User Interface for Windows CE."

494 Windows CE Programmer's Guide

Other considerations to be aware of when designing a user interface include
displaying data and placing controls. Follow these guidelines when you create
a Palm PC application:

• Ensure that top-level application windows are accessible from the Start menu
because running applications do not get a button on the taskbar. However,
top-level dialog boxes without parents will be adopted by the desktop. This
ensures that a user can bring these dialog boxes to the foreground by tapping
the desktop button on the taskbar. Any owned pop-up window appears when
its owner is brought to the foreground.

• Display data in a single-column format to suit the narrow screen of a Palm PC.

• Avoid using a large number of controls in windows and dialog boxes, because
they require a large amount of screen space. Instead, dedicate as much space as
possible to displaying user data.

• Do not provide a Close button on the application's command bar. A Palm PC
automatically closes idle applications when an active application requests
more memory than is available.

Working with the Desktop and Taskbar
The Palm PC desktop provides a user with a familiar interface for launching
applications and switching between tasks. The background of the desktop
can consist of a wallpaper image, no wallpaper, or an Active Desktop. Active
Desktops can be customized by users to contain Web or HTML content supplied
by a Mobile Channels content provider. In Active Desktop mode, each desktop
component is displayed in its own HTML control, all of which are tiled to share
the available screen space. If a user adds or removes a component, the total space
is redistributed equally among the remaining components.

The Palm PC desktop includes a taskbar, which contains a Start menu, an Input
Panel button, a Desktop button, and date and time annunciator panel. Because
taskbars do not contain buttons for running applications, users cannot switch
between applications by pressing a taskbar button. Instead, users launch new
applications or reactivate idle applications using the Start menu, or by pressing
application-switching buttons found on the device casing.

The Start menu has two components: the main menu and cascading menus. The
main menu, which has a maximum height of 320 pixels, contains four standard
items: Programs, Settings, Find, and Help. It also has room for 11 additional
applications known as Favorites. If there are too few applications on the main
menu to use the entire 320 pixels, it shrinks vertically to fit the list of Favorites.
The minimum height of the main menu equals the height of the Windows CE
banner displayed on the left side of the menu. The width of the main menu is
fixed; item names are truncated with ellipses if they are too long.

Chapter 33 Designing a User Interface for a Palm PC 495

A cascading menu can accommodate more items than can fit vertically in a single
column by displaying a scroll arrow above the top item and below the bottom
item. As a menu cascades, it overlaps the previous menu, including the main
menu. A cascading menu has a maximum width of 180 pixels, but it truncates to
120 pixels to accommodate three columns of menus on the screen at one time. As
on other Windows-based platforms, the main and cascading menus of a Palm PC
use an icon associated with the menu item that is 16 by 16 pixels. Items that
cascade to additional menus are appended with a triangular arrow. Items on a
cascading menu appear in alphabetical order by default. Because users cannot
manipulate or view the file system on a Palm PC, directories are not displayed on
cascading menus.

The Input Panel button displays and hides the input panel, a user interface
element that contains a keyboard. Users operate the keyboard using a touch screen
and a stylus. When the input panel is displayed, application windows typically
resize so that the input panel does not obscure any information. The icon on the
Input Panel button changes to reflect the current input method. For example, if
handwriting recognition is the current input method, the button displays the
handwriting icon, and if the keyboard is the selected input method, the button
displays the keyboard icon.

The Desktop button provides quick access to the desktop. When the button is
pressed, it brings the desktop forward, into focus, effectively hiding the current
application. When the desktop is in the foreground, the Desktop button appears
depressed to denote that the desktop is displayed. Pressing the Desktop button
while it appears depressed causes the previously active application to reactivate.
The Desktop button is 23 by 22 pixels, the size of a standard toolbar button, and
is located on the far right edge of the taskbar.

The date and time annunciator panel provides immediate access to date and
time information from any state or application. It also displays icons, called
annunciators, which indicate that a user notification is active. Taskbars can
contain up to six annunciator icons at once for different applications. However,
only one instance of an icon for any application is displayed at a time. If more
than six annunciators are displayed, the least recent annunciator is hidden. When
you design an application, include an annunciator only when necessary in order to
conserve space in the taskbar. If you do include an annunciator, be sure that icons
are unambiguous.

496 Windows CE Programmer's Guide

Designing and Placing Dialog Boxes
The Palm PC supports most common Win32 application programming interface
(API) window and dialog box functions; however, dialog boxes for a Palm PC
application must be much more dynamic than dialog boxes for other Windows­
based platforms, because the input panel can appear and disappear frequently
and unpredictably.

When you design a dialog box, keep the following guidelines in mind to ensure
that it will work in conjunction with the input panel:

• Use the entire screen for the dialog box and make it easily resizable when the
input panel appears and disappears.

• Place text input and output controls outside the area used by the input panel
when you design a full-screen dialog box. This will ensure that the dialog box
will not be hidden when the input panel is raised and lowered.

• Design the dialog box to resize, if necessary, to prevent the input panel from
obscuring critical data or an area that accepts text. This may require that you
move the controls to other panels.

• Size a dialog box to fit, without being cramped, above the screen area
occupied by the input panel.

• Center a partial-screen dialog box above the space reserved for the input
panel, even if the input panel is not displayed when the dialog box is created.
This avoids the possibility that the input panel will obscure the dialog box.
However, if the space above the input panel cannot accommodate a partial­
screen dialog box, align the top of the dialog box with the top of the screen.

Choosing Menus and Controls
Palm PC applications can use all of the standard menus and controls available
in Windows CEo For suggestions on choosing menus and controls for your
application, see Chapter 6, "Designing a User Interface for Windows CE."

Receiving User Input for a Palm PC
Palm PCs support several types of user input devices, such as an input panel that
emulates a keyboard, a touch screen, a stylus, and an ink-recognition application.

Conventions for implementing various user input devices into your application are
described in the Windows Interface Guidelines for Software Design.

PAR T 9

Appendix

Appendix A Lists of Functions and Interfaces 499
ActiveSync Functions 499
ActiveSync Interfaces 499
Clipboard Functions 500
COM/OLE Functions 501
Connection Notification Interfaces 502
Contacts Database Functions 503
Control Functions 503
Database Management Functions 504
Dialog Box Functions 504
File and Scale Control Functions 505
File Filter Interfaces 515
File System Functions 516
GDI Functions 516
Informational Controls Functions 518
Infrared Sockets Functions 519
Mail Functions 519
Menu Functions 520
Notification Functions 521
Process and Thread Functions 521
Registry Functions 522
RAS Functions 522
RAPI Functions 522
Resource Functions 524
Serial Communications Functions 525
Shell Functions 525

T API Functions 526
Transport Service Functions 526
User Input Functions 527
Windows Functions 527
CEUTIL Functions 529
NLS Functions 530
Windows Controls Functions 532
Windows Networking Functions 536
Windows Sockets Functions 537
WinInet Functions 537

APPENDIX A

Lists of Functions and Interfaces

ActiveSync Functions
The following functions are implemented in the Windows CE-based platform
ActiveSync module by the ActiveSync service manager:

InitObjType

GetObjTypeInfo

ObjectNotify

ReportStatus

ActiveSync Interfaces
The following interfaces are implemented on the desktop computer by an
ActiveSync service provider and Windows CE Services:

IReplStore

IReplObjHandler

IReplNotify

IEnumReplItem

IReplStore interface methods

ActivateDialog

CompareItem

CopyObject

FindItemClose

FreeObject

GetFolderinfo

GetStoreInfo

BytesToObject

CompareStoreiDs

FindFirstItem

FindNextltem

GetConflictlnfo

GetObjTypeUIData

Initialize

499

500 Windows CE Programmer's Guide

IsFolderChanged

IsltemReplicated

ObjectToBytes

ReportStatus

IReplNotify interface methods

GetWindow

OnltemNotify

SetStatusText

QueryDevice

IReplObjHandler interface methods

DeleteObj

GetPacket

SetPacket

Setup

Reset

IEnumReplItem interface methods

Clone

GetFolderHandle

Next

Reset

Skip

Clipboard Functions

IsltemChanged

Is ValidObject

RemoveDuplicates

UpdateJtem

Windows CE supports the following clipboard functions:

CloseClipboard

EmptyClipboard

GetClipboardData

GetClipboardFormatName

GetOpenClipboardWindow

IsClipboardFormatA vailable

SetClipboardData

CountClipboardFormats

EnumClipboardFormats

GetClipboardDataAlioc

GetClipboardOwner

GetPriorityClipboardFormat

RegisterClipboardFormat

Open Clipboard

APPENDIX A Lists of Functions and Interfaces 501

COM/OLE Functions
Windows CE supports the following COM functions:

CLSIDFromString

CoFreeLibrary

CoGetClassObject

CoLoadLibrary

CoTaskMemFree

CoUninitialize

StringFromGUID2

CoCreatelnstance

CoFreeUnusedLibraries

ColnitializeEx

CoTaskMemAlloc

CoTaskMemRealloc

StringFromCLSID

StringFromIID

Windows CE supports the following OLE functions:

CreateOleAdviseHolder

OleCreate

OleDraw

OleIsRunning

OleRun

OleSave

OleSetContainedObject

Windows CE supports the following Automation functions:

SysAllocString

SysAllocStringLen

SysFreeString

All variant type functions

DispGetParam

DispInvoke

SetErrorlnfo

LoadTypeLib

RegisterTypeLib

SysStringByteLen

BstrFrom Vector

SysReAllocString

SysReAllocStringLen

SysStringLen

All SafeArray functions

DispGetIDsOtNames

CreateErrorlnfo

CreateTypeLib2

LoadRegTypeLib

SysAllocStringByteLen

VectorFromBstr

All variant utility functions

502 Windows CE Programmer's Guide

Windows CE supports the following OLE storage functions:

ReadClassStg

ReadClassStm

StgCreateDocfile

StgOpenStorage

WriteClassStg

WriteClassStm

StgCreateDocfileOnILockBytes

StgOpenStorageOnILockBytes

Windows CE does not support the following functions:

Function

OIeUninitialize

Oielnitialize

CoInitialize

Use instead

CoUninitialize

CoInitializeEx

CoInitializeEx

Connection Notification Interfaces
The following interfaces are implemented by the application:

IDccManSink

IDccManSink: :AddRef

IDccManSink: :OnLogActive

IDccManSink::OnLogDisconnection

IDccManSink: :OnLoginactive

IDccManSink: :OnLogListen

IDccManSink::QueryInterface

IDccManSink: : Release

IDccManSink: :OuLogAnswered

IDccManSink: :OnLogError

IDccManSink: :OnLogIpAddr

IDccManSink::OnLogTerminated

The following interfaces are implemented by the Windows CE Services
connection manager:

IDccMan

IDccMan: : QueryInterface

IDccMan: :AddRef

IDccMan: :Release

IDccMan: :Advise

IDccMan: :ShowCommSettings

IDccMan:: Unadvise

APPENDIX A Lists of Functions and Interfaces 503

Contacts Database Functions
Windows CE supports the following functions for using the Contacts database:

AddAddressCard

CreateAddressBook

FreeAddressCard

GetAddressCardOid

GetColumnProperties

GetNumberOfAddressCards

GetSortOrder

OpenAddressBook

RecountCards

SetMask

Control Functions

CloseAddressBook

DeleteAddressCard

GetAddressCardlndex

GetAddressCardProperties

GetMatchingEntry

GetPropertyDataStruct

Modify AddressCard

OpenAddressCard

SetColumnProperties

SetSortOrder

Windows CE supports the following control functions:

CreateWindow

InitHTMLControl

LoadLibrary

Windows CE supports the following control methods:

IWebBrowser: :geCBusy

IWebBrowser: :Navigate

IWebBrowser: :Refresh2

DWebBrowserEvents: :
NavigateComplete

DWebBrowserEvents: :
FrameBeforeNavigate

DWebBrowserEvents: :FrameNewWindow

DWebBrowserEvents: : Title
Change

IWebBrowser: :geCLocationURL

IWebBrowser: :Refresh

IWebBrowser: : Stop

DWebBrowserEvents::BeforeNavigate

DWebBrowserEvents: :FrameNavigate
Complete

DWebBrowserEvents::New
Window

504 Windows CE Programmer's Guide

Windows CE supports the following control messages:

DTM_ADDTEXT DTM_ADDTEXTW

DTM_ANCHOR DTM_ANCHORW

DTM_ENABLESHRINK DTM_ENDOFSOURCE

DTM_IMAGEFAIL DTM_SELECTALL

DTM_SETIMAGE NM_BASE

NM_CONTEXTMENU NM_HOTSPOT

NM_HTMLVIEW NM_INLINE_IMAGE

NM_INLINE_SOUND NM_META

NM_TITLE WM_SETTEXT

Database Management Functions
Windows CE supports the following functions for database management:

CeCreateDatabase

CeFindFirstDatabase

CeDeleteDatabase

CeSeekDatabase

Ce WriteRecordProps

CeSetDatabaselnfo

Dialog Box Functions

CeOpenDatabase

CeFindNextDatabase

CeDeleteRecord

CeReadRecordProps

CeOidGetInfo

Windows CE supports the following application-defined dialog box functions:

CreateDialog (modeless)

CreateDialoglndirectParam (modeless)

DialogBox (modal)

DialogBoxIndirectParam (modal)

EndDialog(modal)

GetDialogBaseUnits

GetDlgltemlnt

CreateDialoglndirect (modeless)

CreateDialogParam (modeless)

DialogBoxlndirect (modal)

DialogBoxParam(modal)

GetDlgCtrlID

GetDlgItem

SetDlgItemlnt

APPENDIX A Lists of Functions and Interfaces 505

Windows CE supports the following application-defined dialog box messages:

DM_GETDEFID

EM~ETTABSTOPS

WM_CANCELMODE

WM_GETDLGCODE

WM_NEXTDLGCTL

DM_SETDEFID

LB_SETTABSTOPS

WM_CTLCOLORDLG

WM_INITDIALOG

Windows CE supports the following common dialog box functions:

ChooseColor

CommDlgExtendedError

GetOpenFileName

GetSaveFileName

PrintDlg

Windows CE supports the following common dialog box messages:

CDM_GETFILEPATH

CDM_GETFOLDERPATH

CDM_HlDECONTROL

CDM_SETDEFEXT

File and Scale Control Functions

CDM_GETFOLDERIDLIST

CDM_GETSPEC

CDM_SETCONTROLTEXT

CDN_TYPECHANGE

Windows CE supports the following file and scale control functions:

AddPropSheetPageProc

CommandBands_AddBands

CommandBands_GetCommandBar

CommandBands_Height

CommandBands_Show

CommandBar_AddBitmap

CommandBacAddTooltips

CommandBar_Destroy

CommandBacGetMenu

CommandBar_Insert

CommandBar_InsertComboBox

CommandBar_InsertMenubarEx

CommandBar_Show

CommandBands_AddAdornments

CommandBands_ Create

CommandBands_GetRestorelnformation

CommandBands_IsVisible

CommandBar_AddAdornments

CommandBacAddButtons

CommandBacCreate

CommandBar_DrawMenuBar

CommandBar_Height

CommandBar_InsertButton

CommandBacInsertMenubar

CommandBar_IsVisible

CreateMappedBitmap

506 Windows CE Programmer's Guide

CreatePropertySheetPage

CreateToolbarEx

DestroyPropertySheetPage

ExtensionPropSheetPageProc

GetClientRect

ImageLisCAdd

ImageLisCAddMasked

ImageLisCCopy

ImageLisCDestroy

ImageLisCDragLeave

ImageLisCDragShowNolock

ImageLisCDrawEx

ImageLisCDuplicate

ImageLisCGetBkColor

ImageLisCGetlcon

ImageLisCGetlmageCount

ImageLisCLoadBitmap

ImageLisCMerge

ImageLisCRemoveAll

ImageLisCReplace

ImageLisCSetBkColor

ImageLisCSetlconSize

ImageLisCSetOverlaylmage

InitCommonControlsEx

PropertySheet

PropSheetProc

SetWindowText

TabCtrCSetExtendedStyle

CreateStatusWindow

CreateWindowEx

DrawStatusText

GetClientRect

GetSubMenu

ImageLisCAddlcon

ImageLisCBeginDrag

lmageLisCCreate .

ImageLisCDragEnter

ImageLisCDragMove

ImageLisCDraw

ImageLisCDrawIndirect

ImageLisCEndDrag

lmageLisCGetDraglmage

ImageLisCGetlconSize

ImageLisCGetImagelnfo

ImageLisCLoadlmage

ImageLisCRemove

ImageLisCRemoveAll

ImageLisCReplacelcon

ImageList~etDragCursorImage

ImageLisCSetlmageCount

InitCommonControls

MoveWindow

PropSheetPageProc

SetWindowPos

TabCtrCGetExtendedStyle

Windows CE supports the following file and scale macros:

CreateUpDownControl

Header_CreateDraglmage

Header_GetlmageList

Header_ GetltemCount

Header_GetOrderArray

Header_Layout

Header_Deleteltem

Header_ GetItem

Header_GetItemRect

Header_InsertItem

Header_OrderTolndex

APPENDIX A Lists of Functions and Interfaces 507

HeadecSetHotDivider

Header_SetItem

ListView _Approximate ViewRect

ListView _ CreateDraglmage

ListView _DeleteColumn

ListView _EditLabel

ListView _FindItem

ListView _ GetCallbackMask

ListView _ GetColumn

ListView _GetColumn Width

ListView _ GetEditControl

ListView _ GetExtendedListViewStyle

ListView _ GetImageList

ListView _ Getltem

ListView _GetltemPosition

ListView _ GetltemSpacing

ListView _ GetltemText

ListView _ GetOrigin

ListView _ GetSelectionMark

ListView _ GetSubItemRect

ListView _ GetTextColor

ListView_GetViewRect

ListView _InsertColumn

ListView _RedrawItems

ListView _SetBkColor

ListView _SetColumn

ListView _SetColumn Width

ListView _SetExtendedListViewStyle

ListView _SetImageList

ListView _SetItemCount

ListView _SetltemPosition

ListView _SetltemState

ListView _SetSelectionMark

ListView _SetTextColor

ListView _SubItemHitTest

MonthCal_ GetColor

Header_SetImageList

Header_SetOrder Array

ListView _Arrange

List View _DeleteAllItems

List View _Delete Item

List View _Ensure Visible

ListView _ GetBkColor

ListView _ GetCheckState

ListView _ GetColumnOrder Array

ListView _ GetCountPerPage

List View _ GetExtendedListviewStyle

ListView _GetHeader

List View _ GetISearchString

ListView _ GetItemCount

ListView _GetltemRect

ListView _ GetltemState

ListView _ GetNextltem

ListView _ GetSelectedCount

ListView _GetStringWidth

ListView _ GetTextBkColor

ListView _ GetToplndex

ListView_HitTest

List View _InsertItem

ListView _Scroll

ListView _SetCallbackMask

ListView _SetColumnOrder Array

List View _SetExtendedList ViewStyle

List View _SetlconSpacing

ListView _Setltem

ListView _SetItemCountEx

List View _SetltemPosition32

ListView _SetltemText

ListView _SetTextBkColor

ListView _SortItems

ListView _Update

MonthCal_ GetCurSel

508 Windows CE Programmer's Guide

MonthCaC GetFirstDayOfW eek

MonthCaC GetMaxTodayWidth

MonthCaC GetMonthDelta

MonthCaC GetRange

MonthCal_ GetToday

MonthCaCSetColor

MonthCal_SetDayState

MonthCaCSetMaxSelCount

MonthCal_SetRange

MonthCal_SetToday

PropSheeCApply

PropSheeC Changed

PropSheeC GetTabControl

PropSheeCPressButton

PropSheeCRebootSystem

PropSheeCRestartWindows

PropSheeCSetCurSelByID

PropSheeCSetTitle

TabCtrl_DeleteAllItems

TabCtrl_DeselectAll

TabCtrC GetCurSel

TabCtrl_ GetImageList

TabCtrl_ GetltemCount

TabCtrC GetRowCount

TabCtrCHitTest

TabCtrCRemoveImage

TabCtrCSetExtendedStyle

TabCtrl_Setltem

TabCtrl_SetItemSize

TabCtrl_SetPadding

Tree View _DeleteAllItems

Tree View _EditLabel

Tree View _Ensure Visible

Tree View _ GetChiid

Tree View _ GetDropHilite

Tree View _ GetFirstVisible

MonthCal_ GetMaxSelCount

MonthCal_ GetMinReqRect

MonthCal_ GetMonthRange

MonthCaC GetSelRange

MonthCal_HitTest

MonthCal_SetCurSel

MonthCaCSetFirstDayOfW eek

MonthCaCSetMonthDelta

MonthCal_SetSelRange

PropSheeCAddPage

PropSheeC CancelToClose

PropSheeCGetCurrentPageHwnd

PropSheet_IsDialogMessage

PropSheeC QuerySiblings

PropSheeCRemovePage

PropSheeCSetCurSel

PropSheeCSetFinishText

TabCtrCAdjustRect

TabCtrCDeleteltem

TabCtrC GetCurFocus

TabCtrC GetExtendedStyle

TabCtrC Getltem

TabCtrl_GetltemRect

TabCtrCHighlightltem

TabCtrl_InsertItem

TabCtrCSetCurSel

TabCtrl_SetImageList

TabCtrl_SetItemExtra

TabCtrCSetMinTab Width

Tree View _ CreateDragImage

Tree View _Deleteltem

Tree View _EndEditLabelNow

Tree View_Expand

Tree View _ GetCount

Tree View _ GetEditControl

Tree View _ GetImageList

APPENDIX A Lists of Functions and Interfaces 509

Tree View _GetIndent

Tree View _ GetItem

Tree View _ GetNextItem

Tree View _ GetNextVisible

Tree View _ GetPrevSibling

Tree View _ GetRoot

Tree View _ GetVisibleCount

Tree View _InsertItem

Tree View _SelectDropTarget

Tree View _SelectSetFirst Visible

Tree View _SetIndent

Tree View _SortChiidren

Tree View _ GetISearchString

Tree View _ GetItemRect

Tree View _ GetNextSibling

Tree View _ GetParent

Tree View _ GetPrev Visible

Tree View _ GetSelection

Tree View _HitTest

Tree View_Select

Tree View _SelectItem

Tree View _SetImageList

Tree View _SetItem

Tree View _SortChiidrenCB

Windows CE supports the following file and scale control messages:

DTM_GETMCCOLOR

DTM_GETMONTHCAL

DTM_GETSYSTEMTIME

DTM_SETMCCOLOR

DTM_SETRANGE

DTN_CLOSEUP

DTN_DROPDOWN

DTN_FORMATQUERY

DTN_ WMKEYDOWN

HDM_DELETEITEM

HDM_GETITEM

HDM_GETITEMRECT

HDM_HITTEST

HDM_LAYOUT

HDM_SETHOTDIVIDER

HDM_SETITEM

HDN_BEGINDRAG

HDN_DIVIDERDBLCLICK

HDN_ENDTRACK

HDN_ITEMCHANGED

HDN_ITEMCLICK

HDN_TRACK

DTM_GETMCFONT

DTM_GETRANGE

DTM_SETFORMAT

DTM_SETMCFONT

DTM_SETSYSTEMTIME

DTN_DATETIMECHANGE

DTN_FORMAT

DTN_USERSTRING

HDM_CREATEDRAGIMAGE

HDM_GETIMAGELIST

HDM_GETITEMCOUNT

HDM_GETORDERARRAY

HDM_INSERTITEM

HDM_ORDERTOINDEX

HDM_SETIMAGELIST

HDM_SETORDERARRA Y

HDN_BEGINTRACK

HDN_ENDDRAG

HDN_GETDISPINFO

HDN_ITEMCHANGING

HDN_ITEMDBLCLICK

L VM_APPROXIMATEVIEWRECT

510 Windows CE Programmer's Guide

LVM_ARRANGE

L VM_DELETEALLITEMS

L VM_DELETEITEM

L VM_ENSUREVISIBLE

L VM_GETBKCOLOR

LVM_GETCOLUMN

LVM_GETCOLUMNWIDTH

L VM_GETEDITCONTROL

L VM_GETHEADER

L VM_GETISEARCHSTRING

L VM_GETITEMCOUNT

L VM_GETlTEMRECT

LVM_GETITEMSTATE

L VM_GETNEXTITEM

L VM_GETORIGIN

L VM_GETSELECTIONMARK

L VM_GETSUBITEMRECT

L VM_GETTEXTCOLOR

L VM_GETVIEWRECT

L VM_HITTEST

L VM_INSERTITEM

LVM_SCROLL

L VM_SETCALLBACKMASK

L VM_SETCOLUMNORDERARRA Y

L VM_SETEXTENDEDLISTVIEWSTYLE

L VM_SETIMAGELIST

L VM_SETITEMCOUNT

L VM_SETlTEMPOSITlON32

L VM_SETITEMTEXT

L VM_SETTEXTBKCOLOR

L VM_SETWORKAREAS

L VM_SUBITEMHITTEST

L VN_BEGINDRAG

L VN_COLUMNCLICK

L VN_DELETEITEM

L VN_ENDLABELEDIT

LVM_CREATEDRAGIMAGE

LVM_DELETECOLUMN

L VM_EDITLABEL

LVM]INDITEM

LVM_GETCALLBACKMASK

LVM_GETCOLUMNORDERARRAY

LVM_GETCOUNTPERPAGE

L VM_GETEXTENDEDLISTVIEWSTYLE

L VM_GETlMAGELlST

L VM_GETITEM

L VM_GETlTEMPOSITlON

L VM_GETITEMSPACING

L VM_GETITEMTEXT

LVM_GETNUMBEROFWORKAREAS

L VM_GETSELECTEDCOUNT

L VM_GETSTRINGWIDTH

LVM_GETTEXTBKCOLOR

L VM_GETTOPINDEX

LVM_GETWORKAREAS

L VM_INSERTCOLUMN

L VM_REDRA WITEMS

L VM_SETBKCOLOR

L VM_SETCOLUMN

L VM_SETCOLUMNWIDTH

L VM_SETICONSPACING

L VM_SETITEM

L VM_SETlTEMPOSITlON

L VM_SETITEMSTATE

L VM_SETSELECTIONMARK

L VM_SETTEXTCOLOR

L VM_SORTITEMS

LVM_UPDATE

L VN_BEGINLABELEDIT

L VN_DELETEALLITEMS

LVN_ENDDRAG

L VN_GETDISPINFO

APPENDIX A Lists of Functions and Interfaces 511

L VN_INSERTITEM

L VN_lTEMCHANGED

LVN_KEYDOWN

L VN_ODCACHEHINT

LVN_ODSTATECHANGED

MCM_GETCOLOR

MCM_GETFIRSTDAYOFWEEK

MCM_GETMAXTODA YWIDTH

MCM_GETMONTHDELTA

MCM_GETRANGE

MCM_GETTODA Y

MCM_SETCOLOR

MCM_SETDA YSTATE

MCM_SETMAXSELCOUNT

MCM_SETRANGE

MCM_SETTODA Y

MCN_GETDAYSTATE

MCN_SELECT

NM_CLICK

NM_CUSTOMDRA W

NM_KEYDOWN

NMCUSTOMDRA W

NMRBAUTOSIZE

NMTOOLBAR

PBM_GETPOS

PBM_SETPOS

. PBM_SETRANGE32

PBM_STEPIT

PSM_APPLY

PSM_CHANGED

PSM_GETTABCONTROL

PSM_PRESSBUTTON

PSM_REBOOTSYSTEM

PSM_RESTARTWINDOWS

PSM_SETCURSELID

PSM_SETTITLE

L VN_ITEMACTIV ATE

L VN_ITEMCHANGING

L VN_MARQUEEBEGIN

LVN_ODFINDITEM

L VN_SETDISPINFO

MCM_GETCURSEL

MCM_GETMAXSELCOUNT

MCM_GETMINREQRECT

MCM_GETMONTHRANGE

MCM_GETSELRANGE

MCM_HITTEST

MCM_SETCURSEL

MCM_SETFIRSTDA YOFWEEK

MCM_SETMONTHDELTA

MCM_SETSELRANGE

MCN_GETDAYSTATE

MCN_SELCHANGE

MCN_SETDA YSTATE

NM_CUSTOMDRA W

NM_CUSTOMDRA W

NM_NCHITTEST

NMCUSTOMDRA W

NMREBAR

PBM_DELTAPOS

PBM_GETRANGE

PBM_SETRANGE

PBM_SETSTEP

PSM_ADDPAGE

PSM_CANCELTOCLOSE

PSM_GETCURRENTPAGEHWND

PSM_ISDIALOGMESSAGE

PSM_QUERYSIBLINGS

PSM_REMOVEPAGE

PSM_SETCURSEL

PSM_SETFINISHTEXT

PSM_UNCHANGED

512 Windows CE Programmer's Guide

PSN_APPLY

PSN_KILLACTIVE

PSN_RESET

RB_DELETEBAND

RB_GETBANDCOUNT

RB_GETBARHEIGHT

RB_GETBKCOLOR

RB_GETROWCOUNT

RB_GETTEXTCOLOR

RB_IDTTEST

RB_INSERTBAND

RB_MINIMIZEBAND

RB_SETBARINFO

RB_SETPARENT

RB_SHOWBAND

RBIDTTESTINFO

RBN_BEGINDRAG

RBN_HEIGHTCHANGE

REBARBANDINFO

SB_GETBORDERS

SB_GETRECT

SB_GETTEXTLENGTH

SB_SETICON

SB_SETPARTS

SB_SIMPLE

TB_ADDBITMAP

TB_ADDSTRING

TB_BUTTONCOUNT

TB_CHANGEBITMAP

TB_COMMANDTOINDEX

TB_ENABLEBUTTON

TB_GETBITMAPFLAGS

TB_GETBUTTONINFO

TB_GETBUTTONTEXT

TB_GETDISABLEDIMAGELIST

TB_GETINSERTMARK

PSN_HELP

PSN_QUERYCANCEL

PSN_SETACTIVE

RB_GETBANDBORDERS

RB_GETBANDINFO

RB_GETBARINFO

RB_GETRECT

RB_GETROWHEIGHT

RB_GETTEXTCOLOR

RB_IDTOINDEX

RB_MAXIMIZEBAND

RB_SETBANDINFO

RB_SETBKCOLOR

RB_SETTEXTCOLOR

RB_SIZETORECT

RBN_AUTOSIZE

RBN_ENDDRAG

RBN_LAYOUTCHANGED

REBARINFO

SB_GETPARTS

SB_GETTEXT

SB_ISSIMPLE

SB_SETMINHEIGHT

SB_SETTEXT

SB_SIMPLEMODECHANGE

TB_ADDBUTTONS

TB_AUTOSIZE

TB_BUTTONSTRUCTSIZE

TB_CHECKBUTTON

TB_DELETEBUTTON

TB_GETBITMAP

TB_GETBUTTON

TB_GETBUTTONSIZE

TB_GETDISABLEDIMAGELIST

TB_GETIMAGELIST

TB_GETITEMRECT

APPENDIX A Lists of Functions and Interfaces 513

TB_GETMAXSIZE

TB_GETROWS

TB_GETSTYLE

TB_GETTOOLTIPS

TB_HlGHLIGHTBUTION

TB_INSERTBUTTON

TB_ISBUTIONCHECKED

TB_ISBUTTONHIDDEN

TB_ISBUTTONINDETERMINATE

TB_LOADIMAGES

TB_MOVEBUTION

TB_REPLACEBITMAP

TB_SETBUTIONUNFO

TB_SETBUTTONWIDTH

TB_SETDISABLEDIMAGELIST

TB_SETDRAWTEXTFLAGS

TB_SETINDENT

TB_SETMAXTEXTROWS

TB_SETROWS

TB_SETSTYLE

TBM_CLEARSEL

TBM_GETBUDDY

TBM_GETLINESIZE

TBM_GETPAGESIZE

TBM_GETPTICS

TBM_GETRANGEMIN

TBM_GETSELSTART

TBM_GETIHUMBRECT

TBM_GETTICPOS

TBM_SETLINESIZE

TBM_SETPOS

TBM_SETRANGEMAX

TBM_SETSEL

TBM_SETSELSTART

TBM_SETIlC

TBN_DELETINGBUTION

TB_GETRECT

TB_GETSTATE

TB_GETTEXTROWS

TB_HIDEBUTTON

TB_INDETERMINATE

TB_INSERTMARKHITTEST

TB_ISBUTTONENABLED

TB_ISBUTTONHIGHLIGHTED

TB_ISBUTTONPRESSED

TB_MAPACCELERATOR

TB_PRESSBUTION

TB_SETBITMAPSIZE

TB_SETBUTIONSIZE

TB_SETCMDID

TB_SETDISABLEDIMAGELIST

TB_SETIMAGELIST

TB_SETINSERTMARK

TB_SETPARENT

TB_SETSTATE

TB_SETTOOLTIPS

TBM_CLEARTICS

TBM_GETCHANNELRECT

TBM_GETNUMTICS

TBM_GETPOS

TBM_GETRANGEMAX

TBM_GETSELEND

TBM_GETIHUMBLENGTH

TBM_GETIlC

TBM_SETBUDDY

TBM_SETPAGESIZE

TBM_SETRANGE

TBM_SETRANGEMIN

TBM_SETSELEND

TBM_SETTHUMBLENGTH

TBM_SETIICFREQ

TBN_DROPDOWN

514 Windows CE Programmer's Guide

TBN_GETBUTTONINFO TCM_ADJUSTRECT

TCM_DELETEALLITEMS TCM_DELETEITEM

TCM_DESELECT ALL TCM_GETCURFOCUS

TCM_GETCURSEL TCM_GETEXTENDEDSTYLE

TCM_GETIMAGELIST TCM_GETITEM

TCM_GETITEMCOUNT TCM_GETITEMRECT

TCM_GETROWCOUNT TCM_GETTOOLTIPS

TCM_HIGHLIGHTITEM TCM_HITTEST

TCM_INSERTITEM TCM_REMOVEIMAGE

TCM_SETCURFOCUS TCM_SETCURSEL

TCM_SETEXTENDEDSTYLE TCM_SETIMAGELIST

TCM_SETITEM TCM_SETITEMEXTRA

TCM_SETITEMSIZE TCM_SETMINTABWIDTH

TCM_SETP ADDING TCM_SETTOOL TIPS

TCN_KEYDOWN TCN_SELCHANGE

TCN_SELCHANGING TVM_CREATEDRAGIMAGE

TVM_DELETEITEM TVM_EDITLABEL

TVM_ENDEDITLABELNOW TVM_ENSUREVISIBLE

TVM_EXPAND TVM_GETCOUNT

TVM_GETEDITCONTROL TVM_GETIMAGELIST

TVM_GETINDENT TVM_GETISEARCHSTRING

TVM_GETITEM TVM_GETITEMRECT

TVM_GETNEXTITEM TVM_GETVISIBLECOUNT

TVM_HITTEST TVM_INSERTITEM

TVM_SELECTITEM TVM_SETIMAGELIST

TVM_SETIMAGELIST TVM_SETINDENT

TVM_SETITEM TVM_SETITEM

TVM_SORTCHILDREN TVM_SORTCHILDRENCB

TVN_BEGINDRAG TVN_BEGINLABELEDIT

TVN_DELETEITEM TVN_ENDLABELEDIT

TVN_GETDISPINFO TVN_ITEMEXPANDED

TVN_ITEMEXPANDING TVN_KEYDOWN

TVN_SELCHANGED TVN_SELCHANGING

TVN_SETDISPINFO UDM_GETACCEL

UDM_GETBASE UDM_GETBUDDY

UDM_GETPOS UDM_GETRANGE

APPENDIX A Lists of Functions and Interfaces 515

UDM_SETACCEL

UDM_SETBUDDY

UDM_SETRANGE

WM_COMMAND

WM_NOTIFY

WM_VSCROLL

File Filter Interfaces

UDM_SETBASE

UDM_SETPOS

UDN_DELTAPOS

WM_HSCROLL

WM_SETREDRAW

The following interface and methods are implemented by
Windows CE Services:

ICeFileFilterSite

ICeFileFilterSite: :AddRef

ICeFileFilterSite: :OpenSourceFile

ICeFileFilterSite: :CloseSourceFile

ICeFileFilterSite: :ReportProgress

ICeFileFilterSite: : QueryInterface

ICeFileFilterSite: :Release

ICeFileFilterSite: :OpenDestinationFile

ICeFileFilterSite::CloseDestinationFile

ICeFileFilterSite::ReportLoss

The following interface and methods are implemented by a vendor-supplied file
converter dynamic-link library (DLL):

ICeFileFilter

ICeFileFilter: : Querylnterface

ICeFileFilter: :AddRef

ICeFileFilter: : Release

ICeFileFilter: :NextConvertFile

ICeFileFilter: :FilterOptions

ICeFileFilter: :FormatMessage

The following interface and methods are optionally implemented by a
vendor-supplied v2 file converter DLL:

ICeFileFilterOptions::QueryInterface

ICeFileFilterOptions::AddRef

ICeFileFilterOptions: :Release

ICeFileFilterOptions::SetFilterOptions

516 Windows CE Programmer's Guide

File System Functions
Windows CE supports the following functions for file systems:

/CreateDirectory

/' CloseHandle

/DeleteFile

hriteFile, FlushFileButTers/'

/~indFirstFile
~ ~tEndOfFile

vVCopyFile

"/GetFileAttributes

)< GetFilelnformationByHandle

vGetFileTime

)G CeOidGetInfo

GDI Functions

/CreateFile

VRemoveDirectory

VReadFile

AindClose

/FindNextFile

JSetFilePointer

~MoveFile
4etFileAttributes

~GetFileSize
AetFileTime

Windows CE supports the following GDI functions:

f AbortDoc

r BitBIt

G- CreateBitmap

- .([;- CreateCompatibleDC

G-CreateDIBPatternBrushPt

6CreateFontIndirec't

&- CreatePatternBrush

G CreatePenIndirect

G ,CreateRectRgnlndirect

v\£ DeleteDC
+ DrawEdge

+ DrawText

I~ EndDoc

'1' EnumFontFamilies

- - EnumFonts (~"..,t" r)
G- EquaiRgn . ~"'/M"'"'.

~ ExtTextOut

G AddFontResource

C- CombineRgn

- (j;.. CreateCompatibleBitmap

..I ~ 'CreateDC

..,;. a CreateDIBSection

6- CreatePaiette

G CreatePen

G- CreateRectRgn

G-CreateSolidBrush

~eleteObject
_ :-DrawFocusRect

+- Ellipse

vf EndPage

~G EnumFontFamProc

- _EnumFontsProc (e.vt:d~ .fIN<.l":1W!!',r)
- r;... ExciudeClipRect

+ FilIRect

--t. FiIIRgn

- G GetBkMode
_ <::. GetClipRgn

t- GetDeviceCaps

G- GetNearestPaletteIndex

G- GetObjectType

?+ GetPixel .. .
(;,. GetRgnBox

r;:. GetSysColorBrnsh

- cZ GetTextColor

- - GetTextExtentPoint

- G- GetTextFace

- G,:. ·IntersectClipRect

CrOffsetRgn

~OlygOn
r;. PtInRegion

"r-Rectangle

-c;;. RectVisible

-6- RestoreDC

-c;.. SaveDC

-60 SelectClipRgn

- c;:..SelectPalette

-G:- SetBkColor

_ <;;SetBrushOrgEx

+- SetPixel

_ ~SetROP2 -c6e-tltc;'llJJ,

- G.. SetViewportOrgEx

vi' StartPage .

-I- TransparentImage

APPENDIX A Lists of Functions and Interfaces 517

- G-GetBkColor

- t;.. GetClipBox

- r;. GetCurrentObject

- G GetNearestColor

~ GetObject

r; GetPaletteEntries

C; GetRegionData

G: GetStockObject

- C. GetSystemPaletteEntries

- r; GetTextEI'tentExPoint

- G ~etTextExtentPoint32
-c:' GetTextMetrics

-.,I- MaskBlt

- -r PatBlt

-t'Polyline

- (;. 'RealizePalette

r;:.. .. RectlnRegion

G: RemoveFontResource

-+- RoundRect

_- ScrollDC

- 6- SelectObject

-+- SetAbortProc

- t,!; SetBkMode

c;:.. SetPaletteEntries

G- . SetRectRgn

- $.SetTextColor

vP StartDoc
I .:..r StretchBlt

518 Windows CE Programmer's Guide

Informational Controls Functions
Windows CE supports the following· informational controls functions:

CreateWindow

DoFormat

GetSubMenu

Map WindowPoints

PrepCache

TrackPopupMenuEx

CreateWindowEx

GetDayNum

IsLeapYr

OnNotify

Retrieveltem

Windows CE supports the following informational controls messages:

DTM_SETFORMAT

DTN_DATETDdECHANGE

DTN_FORMAT

DTN_USERSTRING

L VM_ARRANGE

L VM_DELETElTEM

LVM_GETNEXTITEM

LVM_GETWORKAREAS

LVM_ODCACHEHINT

L VM_SETITEM

L VM_SETITEMPOSITION

L VM_SETITEMSTATE

LVM_SETWORKAREAS

L VN_GETDISPINFO

MCM_GETDAYSTATE

MCM_SETMONTHDELTA

MCN_SELECT

RB_DELETEBAND

RB_SETBANDINFO

TB_ADDSTRING

TB_GETRECT

WM_NOTIFY

DTN_CLOSEUP

DTN_DROPDOWN

DTN_FORMATQUERY

DTN_ WMKEYDOWN

L VM_DELETEALLITEMS

LVM_GETITEMSTATE

LVM_GETNUMBEROFWORKAREAS

L VM_INSERTITEM

L VM_ODFINDITEM

L VM_SETITEMCOUNT

L VM_SETITEMPOSITION32

L VM_SETITEMTEXT

L VM_SORTITEMS

L VN_ODCACHEHINT

MCM_SETDAYSTATE

MCN_SELCHANGE

NM_CUSTOMDRA W

RB_INSERTBAND

RB_SETBARINFO

TB_DROPDOWN

TB_LOADIMAGES

APPENDIX A Lists of Functions and Interfaces 519

Infrared Sockets Functions
The subset of Windows Sockets functions used by Infrared Sockets with
modifications are described in the following table:

IrSock function

accept

bind

closesocket

connect

getsockopt

listen

recv

send

setsockopt

socket

Mail Functions

Modification

None.

Must be called before listen is called.

None.

None.

IRLMP _lAS_GET and IRLMP _ENUMDEVICES options have
been added.

None.

None.

None.

The IR_LMP _lAS_SET option has been added.

The AF _IRDA value was added for the address format parameter.
Only the SOCK_STREAM socket type is supported.

Windows CE supports the following functions for mail:

To obtain and release resources:

MailOpen

MailClose

MailFree

MailOpeoNotify

To manipulate messages:

MailPut

MailGet

MailFirst

MailNext

MailDelete

MailUpdate

MailGetSvcId

520 Windows CE Programmer's Guide

To manipulate folders:

MailGetFolderId

MailGetFolderName

MailPutFolder

To manipulate headers in the pwcHeaders member of the MailMsg structure:

MailHeaderLen

MailGetField

MailSetField

To work with attachments:

MailDeleteAttachment

MailGetAttachment

MailPutAttachment

MailRequestAttachment

MailLocalAttachmentLen

To sort messages:

MailGetSort

MailSetSort

To check error status:

MailError

MailErrorMsg

Menu Functions
Windows CE supports the following menu functions:

AppendMenu

CheckMenuRadioltem

CommandBar_InsertMenuhar

CreatePopupMenu

DestroyMenu

EnableMenuItem

GetSubMenu

InsertMenu

RemoveMenu

TrackPopupMenu

CheckMenultem

CommandBar_GetMenu

CreateMenu

DeleteMenu

DrawMenuBar

GetMenultemInfo

GetSystemMenu

LoadMenu

SetMenuItemInfo

TrackPopupMenuEx

APPENDIX A Lists of Functions and Interfaces 521

Windows CE supports the following menu messages:

WM_CANCELMODE

WM_COMMAND

WM_ENTERMENVLOOP

WM_ExmMENVLOOP

WM_INITMENVPOPUP

WM_MEASUREITEM

WM_MENUCHAR

Notification Functions
Windows CE supports the following notification functions:

CeClearUserNotification

CeGetUserNotificationPreferences

CeHandleAppNotifications

CeRunAppAtEvent

CeRunAppAtTime

CeSetUserNotification

Process and Thread Functions
Windows CE supports the following functions for manipulating processes:

CreateProcess

GetCurrentProcess

GetCurrentProcessld

TerminateProcess

Windows CE supports the following functions for manipulating threads:

CreateTbread

GetCurrentThread

GetExitCodeThread

ResumeThread

SuspendThread

ExitThread

GetCurrentThreadld

GetThreadPriority

SetThreadPriority

Sleep

522 Windows CE Programmer's Guide

Registry Functions
Windows CE supports the following functions for working with the registry:

RegEnumKeyEx

RegCreateKeyEx

RegCloseKey

RegQueryValueEx

RegDeleteKey

RAS Functions

RegEnum Value

RegOpenKeyEx

RegQueryInfoKey

RegSetValueEx

RegDelete Value

Windows CE supports the following RAS functions:

RasDeleteEntry

RasEnumConnections

RasGetConnectStatus

RasGetEntryDialParams

RasHangup

RasSetEntryDevConfig

RasSetEntryProperties

RAPI Functions

RasDiai

RasEnumEntries

RasGetEntryDevConfig

RasGetEntryProperties

RasRenameEntry

RasSetEntryDiaiParams

RasValidateEntryName

Windows CE supports the following RAPI functions:

CeRapiFreeBuffer

CeRapiGetError

CeRapiinit

CeRapiinitEx

CeRapiinvoke

CeRapiUninit

APPENDIX A Lists of Functions and Interfaces 523

Windows CE supports the following database functions:

CeCreateDatabase

CeDeleteRecord

CeFindFirstDatabase

CeOpenDatabase

CeReadRecordProps

CeSetDatabaseInfo

CeDeleteDatabase

CeFindAllDatabases

CeFindNextDatabase

CeRapiFreeBuffer

CeSeekDatabase

CeWriteRecordProps

Windows CE supports the following file and object store management functions:

CeCloseHandle CeCopyFile

CeCreateDirectory CeCreateFile

CeDeleteFile CeFindAllFiles

CeFindClose CeFindFirstFile

CeFindNextFile CeGetFileAttributes

CeGetFileSize CeGetFileTime

CeGetStorelnformation CeGetTempPath

CeMoveFile CeOidGetInfo

CeRapiFreeBuffer CeReadFile

CeRemoveDirectory CeSetEndOtFile

CeSetFileAttributes CeSetFilePointer

CeSetFileTime CeWriteFile

Windows CE supports the following miscellaneous RAPI functions:

CeCheckPassword

CeGetDesktopDeviceCaps

CeGetSpecialFolderPatb

CeGetSystemMetrics

CeGetVersionEx

CeSHCreateShortcut

CeCreateProcess

CeGetLastError

CeGetSystemInfo

CeGetSystemPowerStatusEx

CeGlobalMemoryStatus

CeSHGetShortcutTarget

Windows CE supports the following registry functions:

CeRegCloseKey

CeRegDeleteKey

CeRegEnumKeyEx

CeRegOpenKeyEx

CeRegQueryValueEx

CeRegCreateKeyEx

CeRegDelete Value

CeRegEnumValue

CeRegQuerylnfoKey

CeRegSetValueEx

524 Windows CE Programmer's Guide

Windows CE supports the following window management functions:

CeGetClassName

CeGetWindow

CeGetWindowLong

CeGetWindowText

Resource Functions
Windows CE supports the following resource functions:

Clip Cursor

CreateCaret

Createlconlndirect

DestroyCaret

Destroylcon

ExtractIconEx

GetCaretBlinkTime

GetClipCursor

GetCursorPos

LoadAccelerators

LoadCursor

Loadlcon

LoadString

SetCaretBlinkTime

SetCursor

ShowCaret

TranslateAccelerator

CreateAcceleratorTable

CreateCursor

Destroy AcceleratorTable

DestroyCursor

DrawlconEx

FindResource

GetCaretPos

GetCursor

HideCaret

LoadBitmap

LoadImage

LoadResource

LockResource

SetCaretPos

SetCursorPos

ShowCursor

Windows CE supports the following resource messages:

WM_GETICON

APPENDIX A Lists of Functions and Interfaces 525

Serial Communications Functions
Windows CE supports the following serial communications functions:

CreateFile

CloseHandle

ReadFile

WriteFile

DeviceloControl

Windows CE supports the following functions for setting up and using
serial devices:

ClearCommBreak

EscapeCommFunction

GetCommModemStatns

GetCommState

PurgeComm

SetCommMask

SetCommTimeouts

TransmitCommChar

Shell Functions

ClearCommError

GetCommMask

GetCommProperties

GetCommTimeouts

SetCommBreak

SetCommState

SetupComm

WaitCommEvent

Windows CE supports the following shell functions:

SHAddToRecentDocs

Shell_Notifylcon

SHGetFileInfo

SHGetPathFromlDList

SHGetSpecialFolderLocation

SHShowOutOfMemory

SHCreateShortcut

ShellExecuteEx

SHGetMalloc

SHGetShortcutTarget

SHLoadDIBitmap

526 Windows CE Programmer's Guide

T API Functions
TAPI functions are identified as asynchronous if they can return before
making a call to the application's callback function; otherwise, they are
considered synchronous.

Windows CE supports the following T API functions:

lineClose

lineDeallocateCall

lineGetDevCaps

lineGetID

linelnitialize

lineNegotiateAPIV ersion

lineSetDevConfig

lineShutdown

IineTranslateDialog

Transport Service Functions

lineConfigDialogEdit

lineDrop

lineGetDevConfig

lineGetTranslateCaps

lineMakeCall

lineOpen

lineSetStatusMessages

lineTranslateAddress

Inbox expects a set of functions that are exported by the transport service DLL.
To create a transport service you must export and provide an implementation for
each of the transport interface functions listed in the table below.

The following functions are used by Inbox and must be exported by a transport
service DLL. These functions are identified by the prefix Transport.

TransportConnect

TransportDel

TransportError

TransportFreeMsg

TransportNonlpEn

TransportRecv

TransportSend

TransportView

TransportCount

TransportDisconnect

TransportErrorMsg

Transportlnit

TransportProps

TransportRelease

TransportSetPassword

APPENDIX A Lists of Functions and Interfaces 527

User Input Functions
Windows CE supports the following user input functions:

EnableHardwareKeyboard

GetAsyncKeyState

GetKeyState

keybd_event

mouse_event

Sendlnpnt

GetKeyboardStatus

GetDoubleClickTime

GetMouseMovePoints

Map VirtnalKey

llegjsterHotKey

UnregisterHotKey

Windows CE supports the following messages:

WM_CAPTURECHANGED

WM_DEADCHAR

WM_KEYDOWN

WM_KEYLAST

WM_LBUTTONDBLCLK

WM_LBUTTONUP

WM_SYSCHAR

WM_SYSKEYDOWN

Windows Functions

WM_CHAR

WM_HOTKEY

WM_KEYFIRST

WM_KEYUP

WM_LBUTTONDOWN

WM_MOUSEMOVE

WM_SYSDEADCHAR

WM_SYSKEYUP

Windows CE supports the following windows functions:

BeginPaint BringWindowToTop

CallWindowProc ChiidWindowFromPoint

ClientToScreen Copyllect

Create Window Create WindowEx

DetwindowProc DispatchMessage

DrawFrameControl EnableWindow

EndPaint EnumWindows

Equalllect FormatMessage

GetActive Window GetCapture

GetClassName GetDC

GetFocus GetForegroundWindow

GetMessage GetMessagePos

GetMessageSource GetParent

528 Windows CE Programmer's Guide

GetScrollInfo

GetWindow

GetWindowRect

GetWindowTextLength

InflateRect

IsChiid

IsWindow

IsWindowVisible

Map WindowPoints

OffsetRect

PostMessage

PostThreadMessage

RegisterWindowMessage

ReleaseDC

ScrollDC

SendNotifyMessage

SetCapture

SetForegroundWindow

SetRect

SetScrollInfo

SetScrollRange

SetWindowPos

SubtractRect

TranslateMessage

UnregisterClass

WindowFromPoint

GetUpdateRect

GetWindowDC

GetWindowText

GetWindowThreadProcessld

IntersectRect

IsRectEmpty

IsWindowEnabled

KillTimer

MsgWaitForMultipleObjects

PeekMessage

PostQuitMessage

PtInRect

ReleaseCapture

ScreenToClient

SendMessage

SetActive Window

SetFocus

SetParent

SetRectEmpty

SetScrollPos

SetTimer

SetWindowText

TimerProc

UnionRect

UpdateWindow

Windows CE supports the following windows messages:

WM_ACTIV ATE WM_CANCELMODE

WM_CHAR WM_CLOSE

WM_COMMAND WM_COMPAREITEM

WM_COPYDATA WM_CREATE

WM_DELETEITEM WM_DRA WITEM

WM_ENABLE WM_ERASEBKGND

WM_FONTCHANGE WM_GETFONT

WM_GETTEXT WM_GETTEXTLENGTH

APPENDIX A Lists of Functions and Interfaces 529

WM_HELP

WM_KILLFOCUS

WM_MOVE

WM_PAINT

WM_SETFOCUS

WM_SETREDRA W

WM_SHOWWINDOW

WM_SYSCOLORC~GE

WM_TIMER

WM_ WINDOWPOSCHANGED

WM_HSCROLL

WM_MEASVREITEM

WM_NOTIFY

WM_QVIT

WM_SETFONT

WM_SETTEXT

WM_STYLECHANGED

WM_SYSCOMMAND

WM_VSCROLL

Windows CE supports the following windows macros:

FORWARD_ WM_NOTIFY

HANDLE_ WM_NOTIFY

MAKELPARAM

MAKELRESULT

MAKEWPARAM

MAPWINDOWRECT

CEUTIL Functions
CEUTIL API functions are described in the following table.

Note In order to use these APIs you must include ceutil.h and link with ceutil.lib.

Function

CeSvcOpen

CeSvcOpenEx

CeSvcClose

CeSvcGetString

CeSvcSetString

CeSvcGetDword

Description

Opens and returns a handle to the registry root for a specified
logical position.

Opens a nested subkey underneath an already open
registry handle.

Closes a handle previously returned by CeSvcOpen or
CeSvcOpenEx.

Reads a string value from a registry subkey and copies the data
into a buffer.

Writes a string, value to a registry subkey.

Reads a DWORD value from a registry key and copies the data
into a buffer.

530 Windows CE Programmer's Guide

Function

CeSvcSetDword

CeSvcGetBinary

CeSvcSetBinary

CeSvcDelete Val

CeGetDeviceld

CeGetSelectedld

CeSvcEnumProfIles

NLS Functions

Description

Writes a DWORD value to a registry subkey.

Reads a binary value from a registry subkey and copies the data
into a buffer.

Writes a binary value to a registry subkey.

Removes a named value from the specified registry key.

Returns a device ID for the currently connected device.

Returns a device ID for the currently selected device.

Enumerates all subkeys underneath a given subkey.

Windows CE supports the following National Language Support (NLS) functions.
Because the OS supports only Unicode, be sure you call the functions with wide
character variables.

CharLower GetSystemDefaultLCID

CharLowerButT GetTimeFormat

CharNext GetUserDefauitLanglD

CharPrev GetUserDefaultLCID

CharUpper IsDBCSLeadByte

CharUpperButJ IsDBCSLeadByteEx

CompareString IsValidCodePage

ConvertDefauitLocale IsVaiidLocaie

EnumCaiendarlnfo iswctype

EnumDateFormats LCMapString

EnumSystemCodePages lstrcat

EnumSystemLocaies lstrcmp

EnumTimeFormats Istrcmpi

FoldString Istrcpy

GetACP lstrlen

GetCPInfo MuitiByteToWideChar

GetCurrencyFormat SetLocaieInfo

GetDateFormat tolower

GetLocalelnfo toupper

GetNumberFormat _wcsicmp

GetOEMCP _wcsnicmp

APPENDIX A Lists of Functions and Interfaces 531

GetStringType

GetStringTypeEx

GetSystemDefaultLangID

_wcslwr

_wcsupr

WideCharToMultiByte

The following debugging functions and structures are supported by Windows CE:

Supported debugging functions

ContinueDebugEvent

DebugActiveProcess

DebugBreak

FlushInstructionCache

GetThreadContext

OutputDebugString

ReadProcessMemory

SetThreadContext

WaitForDebugEvent

WriteProcessMemory

Supported debugging structures

CREATE]ROCESS_DEBUG_INFO

CONTEXT

CREATE_THREAD_DEBUG_INFO

DEBUG_EVENT

EXCEPTION_DEBUG_INFO

EXIT_PROCESS_DEBUG_INFO

EXIT_THREAD_DEBUG_INFO

LOAD_DLL_DEBUG_INFO

OUTPUT_DEBUG_STRING_INFO

UNLOAD_DLL_DEBUG_INFO

Windows CE does not support the following debugging functions and structures
that are common to Windows-based desktop platfonns:

Unsupported debugging functions

IsDebuggerPresent

GetThreadSelectorEntry

FatalExit

FatalAppExit

SetDebugErrorLevel

532 Windows CE Programmer's Guide

Unsupported debugging structures

Windows Controls Functions
Windows CE supports the following windows controls functions:

CheckRadioButton

CreateWindow

EditWordBreakProc

GetScroUlnfo

ScroUWindowEx

SetScroUlnfo

SetScroURange

CommandBar_InsertComboBox

CreateWindowEx

EnagleWindow

GetWindowText

SendMessage

SetScroIlPos

SetWindowText

Windows CE supports the following windows controls macros:

Button_Enable

Button_GetState

Button_GetTextLength

Button_SetState

Button_SetText

ComboBox_AddString

ComboBox_Enable

ComboBox_FindString

ComboBox_ GetCount

ComboBox_GetDroppedControlRect

ComboBox_GetEditSel

ComboBox_GetItemData

ComboBox_GetLBText

ComboBox_GetText

ComboBox_InsertItemData

ComboBox_LimitText

ComboBox_SelectItemData

ComboBox_SetCurSel

ComboBox_SetExtendedUI)

ComboBox_SetItemHeight

Button_GetCheck

Button_GetText

Button_SetCheck

Button_SetStyle

ComboBox_AddltemData

ComboBox_DeleteString

ComboBox_FindltemData

ComboBox_FindStringExact

ComboBox_GetCurSel

ComboBox_GetDroppedState

ComboBox_ GetExtendedUI

ComboBox_GetItemHeight

ComboBox_GetLBTextLen

ComboBox_GetTextLength

ComboBox_InsertString

ComboBox_ResetContent

ComboBox_SelectString

ComboBox_SetEditSel

ComboBox_SetItemData

ComboBox_SetText

ComboBox_ShowDropdown

EdiCEmptyUndoBuffer

EdiCFmtLines

EdiC GetLine

EdiC GetModify

EdiC GetRect

EdiCGetText

EdiCLimitText

EdiCLineIndex

EdiCReplaceSel

EdiCScrollCaret

EdiCSetPasswordChar

EdiCSetRect

EdiCSetSel

EdiCSetText

EnableWindow

ListBox_AddString

ListBox_Enable

ListBox_FindString

ListBox_GetCaretIndex

ListBox_GetCurSel

ListBox_GetItemData

ListBox_GetItemRect

ListBox_GetSelCount

ListBox_GetText

ListBox_GetToplodex

ListBox_InsertString

ListBox_SelectItemData

ListBox_SelItemRange

ListBox_SetColumn Width

ListBox_SetHorizontalExtent

ListBox_SetItemHeight

ListBox_SetTabStops

ScrollBar_Enable

ScrollBar_GetRange

ScrollBar_SetRange

APPENDIX A Lists of Functions and Interfaces 533

EdiCCanUndo

EdiCEnable

EdiCGetFirstVisibleLine

EdiCGetLineCount

EdiCGetpasswordChar

EdiCGetSel

EdiC GetTextLength

EdiCLineFromChar

EdiCLineLength

EdiCScroll

EdiCSetModify

EdiCSetReadOnly

EdiCSetRectNoPaint

EdiCSetTabStops

EdiCUndo

ListBox_AddltemData

ListBox_DeleteString

ListBox_FindItemData

ListBox_FindStringExact

ListBox_GetCount

ListBox_GetHorizontalExtent

ListBox_GetItemHeight

ListBox_GetSel

ListBox_GetSelItems

ListBox_GetTextLength

ListBox_InsertItemData

ListBox_ResetContent

ListBox_SelectString

ListBox_SetCaretIndex

ListBox_SetCurSel

ListBox_SetItemData

ListBox_SetSel

ListBox_SetToplodex

ScrollBacGetPos

ScrollBar_Setpos

ScrollBar_Show

534 Windows CE Programmer's Guide

ShowWindow

Static_GetText

Static_SetText

Static_Enable

Static_GetTextLength

Windows CE supports the following windows controls messages:

BM_CLICK

BM_GETSTATE

BM_SETSTATE

BN_CLICKED

BN_DISABLE

BN_HILITE

BN_PAlNT

BN_UNHILITE

CB_ADDSTRING

CB_FlNDSTRING

CB_GETCOUNT

CB_GETDROPPEDCONTROLRECT

CB_GETDROPPEDWIDTH

CB_GETEXTENDEDUl

CB_GETITEMDATA

CB_GETLBTEXT

CB_GETLOCALE

CB_INITSTORAGE

CB_LIMlTTEXT

CB_SELECTSTRING

CB_SETDROPPEDWIDTH

CB_SETEXTENDEDUl

CB_SETlTEMDATA

CB_SETLOCALE

CB_SHOWDROPDOWN

CBN_DBLCLK

CBN_EDITCHANGE

CBN_ERRSPACE

CBN_SELCHANGE

CBN_SELENDOK

EM_CANUNDO

BM_GETCHECK

BM_SETCHECK

BM_SETSTYLE

BN_DBLCLK

BN_DOUBLECLICKED

BN_KlLLFOCUS

BN_SETFOCUS

BN_VNPUSHED

CB_DELETESTRING

CB_ANDSTRINGEXACT

CB_GETCURSEL

CB_GETDROPPEDSTATE

CB_GETEDITSEL

CB_GETHOruzONTALEXTENT

CB_GETlTEMHEIGHT

CB_GETLBTEXTLEN

CB_GETTOPINDEX

CB_INSERTSTRING

CB_RESETCONTENT

CB_SETCURSEL

CB_SETEDITSEL

CB_SETHOruzONTALEXTENT

CB_SETlTEMHEIGHT

CB_SETTOPINDEX

CBN_CLOSEUP

CBN_DROPDOWN

CBN_EDITUPDATE

CBN_KlLLFOCUS

CBN_SELENDCANCEL

CBN_SETFOCUS

EM_CHARFROMPOS

APPENDIX A Lists of Functions and Interfaces 535

EM_EMPTYUNDOBUFFER

EM_GETFIRSTVISIBLELINE

EM_GETLINE

EM_GETMARGINS

EM_GETPASSWORDCHAR

EM_GETSEL

EM_LINEFROMCHAR

EM_LINELENGTH

EM_POSFROMCHAR

EM_SCROLL

EM_SETLIMITTEXT

EM_SETMODIFY

EM_SETREADONL Y

EM_SETRECTNP

EM_SETTABSTOPS

EN_CHANGE

EN_HSCROLL

EN_MAXTEXT

EN_UPDATE

LB_ADDSTRING

LB_FlNDSTRING

LB_GETANCHORINDEX

LB_GETCOUNT

LB_GETHOR~ONTALEXTENT

LB_GETITEMHEIGHT

LB_GETLOCALE

LB_GETSELCOUNT

LB_GETTEXT

LB_GETTOPINDEX

LB_INSERTSTRING

LB_RESETCONTENT

LB_SELITEMRANGE

LB_SETANCHORINDEX

LB_SETCOLU~TH

LB_SETHORlZONTALEXTENT

LB_SETITEMHEIGHT

EM]MTLINES

EM_GETLIMITTEXT

EM_GETLINECOUNT

EM_GETMODIFY

EM_GETRECT

EM_LIMITTEXT

EM_LINEINDEX

EM~LINESCROLL

EM_REPLACESEL

EM_SCROLLCARET

EM_SETMARGINS

EM_SETPASSWORDCHAR

EM_SETRECT

EM_SETSEL

EM_UNDO

EN_ERRSPACE

EN_KILLFOCUS

EN_SETFOCUS

EN_VSCROLL

LB_DELETESTRING

LB_FlNDSTRINGEXACT

LB_GETCARETINDEX

LB_GETCURSEL

LB_GETITEMDATA

LB_GETITEMRECT

LB_GETSEL

LB_GETSELITEMS

LB_GETTEXTLEN

LB_INITSTORAGE

LB_ITEMFROMPOINT

LB_SELECTSTRING

LB_SELITEMRANGEEX

LB_SETCARETINDEX

LB_SETCURSEL

LB_SETlTEMDATA

LB_SETLOCALE

536 Windows CE Programmer's Guide

LB_SETSEL LB_SETTABSTOPS

LB_SETTOPINDEX LBN_DBLCLK

LBN_ERRSPACE LBN_KlLLFOCUS

LBN_SELCANCEL LBN_SELCHANGE

LBN_SETFOCUS SBM_SETSCROLLINFO

SET_GETPOS SELGETRANGE

SET_GETSCROLLINFO SET_SETPOS

SET_SETRANGE SET_SETRANGEREDRA W

STM_GETIMAGE STM_SETIMAGE

STN_CLlCKED STN_DISABLE

STN_ENABLE WM_CANCELMODE

WM_CHARTOITEM WM_CLEAR

WM_COMMAND WM_COMPAREITEM

WM_COMPAREITEM WM_COPY

WM_CTLCOLORBTN WM_CTLCOLOREDIT

WM_CTLCOLORLISTBOX WM_CTLCOLORSCROLLBAR

WM_CTLCOLORSTATIC WM_CUT

WM_DELETEITEM WM_DELETElTEM

WM_DRA WITEM WM_ENABLE

WM_GETFONT WM_GETTEXT

WM_GETTEXTLENGTH WM_HSCROLL

WM_PAINT WM_PASTE

WM_SETFONT WM_SETREDRAW

WM_SETTEXT WM_UNDO

WM_ VKEYTOITEM WM_VSCROLL

Windows Networking Functions
Windows CE supports the following Windows networking functions:

WNetCloseEnum

WNetOpenEnum

WNetCanceiConnection2

WNetDisconnectDialog

WNetGetConnection

WNetGetUniversalName

WNetEnumResource

WNetAddConnection3

WNetConnectionDialogl

WNetDisconnectDialogl

WNetGetUser

APPENDIX A Lists of Functions and Interfaces 537

Windows Sockets Functions
Windows CE supports the following Windows Sockets functions:

accept bind

closesocket connect

gethostbyaddr gethostbyname

gethostname getpeername

getsockname getsockopt

htonl htons

ineCaddr ineCntoa

ioctlsocket listen

ntohl ntohs

recv recvfrom

select send

sendto setsockopt

shutdown socket

WSACleanup WSAGetLastError

WSAStartup WSAIoctl

Winlnet Functions
Windows CE supports the following WinInet functions:

InternetOpen

InternetCloseHandle

InternetSetOption

InternetStatusCallback

InternetTimeToSystemTime

InternetFlndNextFile

InternetGetLastResponseInfo

InternetCreateUri

InternetCombineUrl

InternetConnect

InternetQueryOption

InternetSetStatusCailback

InternetTimeFromSystemTime

InternetReadFile

InternetQueryDataA vailable

InternetCrackUri

InternetCanonicaIizeUri

InternetOpenUri

Glossary

A
ACCEL data structure A structure that defines an
accelerator key used in an accelerator table.

accelerator table An array of ACCEL data
structures, each of which defines an accelerator.

Action button A hardware navigation control that
replaces the ENTER key on a keyboard.

Active Channel A Web site that has been enabled
for Webcasting to information-receiving
programs.

Active Desktop A new technology delivered in
Microsoft Pocket Internet Explorer that allows
you to include HTML documents, ActiveX
controls, and Java applets on your desktop.

active notification The state of a user notification
from the time the user is notified until the user
handles the event.

Active Server Pages (ASP) An open application
environment in which HTML pages, scripts, and
ActiveX components are combined to create
Web-based applications.

active window In an environment capable of
displaying multiple on-screen windows, the
window containing the display or document that
will be affected by current cursor movements,
commands, and text entry. Windows CE identifies
the active window by positioning it at the top of
the Z order and highlighting its title bar and
border.

539

ActiveX All component technologies, other than
OLE, that are built on the Microsoft Component
Object Model (COM).

ActiveX client An application or tool that calls an
ActiveX object.

ActiveX object An exposed object of the
Component Object Model (COM).

ADC See analog-to-digital converter.

address card The fundamental unit of record in
the Contacts database. Each address card contains
information about an individual. The information
consists of a set of data fields called properties.

Address Resolution Protocol (ARP)
A set of programs that are part of the Internet
Protocol (lP). Used to determine the hardware or
physical address of a node on a local area network
connected to the Internet when only the IF
address or logical address is known. When an
ARP request is sent to the network, the node that
has the IP address responds with its hardware
address.

AFD See auxiliary function driver.

American National Standards Institute (ANSI)
An organization of American industry and
business groups dedicated to the development of
trade and communication standards. ANSI sets
standards for programming languages to use when
porting programs. Internationally, ANSI is the
American representative to the International
Organization for Standardization.

540 American Standard Code for Information Exchange (ASCII)

American Standard Code for Information Exchange
(ASCII)
A coding scheme using 7 or 8 bits that assigns
numeric values to up to 256 characters, including
letters, numerals, punctuation marks, control
characters, and other symbols.

analog-to-digital converter (ACC)
A device that converts an analog signal, such as
sound or voltage, to binary code for use by a
computer.

annunciator An icon placed onto the taskbar to
indicate that a user notification is active.
Although taskbars can contain multiple
annunciator icons for different applications, only
one instance of an icon for any given application
is displayed at one time.

ANSI See American National Standards Institute.

apartment model A threading model that can be
used only on the thread that created it. See free
threading model and single threading model.

API See application programming interface.

application-defined message A message created
by an application to be used by its own windows
or to communicate with windows in other
processes. If an application creates its own
messages, the window procedure that receives the
message must interpret it and provide the .
appropriate processing.

application notification An application
notification starts an application at a specified
time or when a system event occurs. When an
application starts as the result of a notification, the
system specifies a command line parameter that
identifies the event that has occurred.

application programming interface (API)
A set of routines used by an application to direct
the performance of procedures by a computer's
operating system. For computers running a
graphical user interface, an API manages an
application's windows, icons, menus, and dialog
boxes.

application-specific integrated circuit (ASIC)
An integrated circuit designed to perform a
particular function by defining the interconnection
of a set of basic circuit-building blocks drawn
from a library provided by the circuit
manufacturer.

application switch A hardware navigation control
intended to launch or reactivate software
applications.

ASCII See American Standard Code for
Information Interchange.

ASIC See application-specific integrated
circuit.

ASP See Active Server Pages.

asynchronous operation 1. A process in a
multitasking system whose execution can proceed
independently, or in the background. Other
processes maybe started before the asynchronous
process has finished. 2. A data transmission
method that allows characters to be sent at
irregular intervals over a line by preceding each
character with a start bit and following it with a ~
stop bit. Compare synchronous operation.

authentication 1. The process of verifying that a
message comes from its stated source. 2. The
process of verifying the identity or access level of
a user, computer, and program.

Automation A technology based on the
Component Object Model (COM), which enables
interoperability among ActiveX components,
including OLE components. Formerly referred to
as OLE Automation.

auxiliary function driver The Windows CE
communication protocol manager.

B
bandwidth 1. The difference between the highest
and lowest frequencies that an analog
communications system can pass. For example, a
telephone accommodates a bandwidth of 3000
Hz, which is the difference between the lowest
(300 Hz) and highest (3300 Hz) frequencies it can
carry. 2. The data transfer capacity of a digital
communications system.

bi·directional parallel port An interface that
supports two-way parallel communications
between a device and a computer.

binary image builder file (.bib) A file used by the
Windows CE ROM image builder tool to
determine which modules and files to combine
when forming the ROM image, and where to
place the modules in memory.

Binary large Object (BLOB) 1. A large piece of
data, such as a bitmap, characterized by large field
values, an unpredictable table size, and data that
is formless from the perspective of a program. 2.
A keyword designating the BLOB structure,
which contains information about a block of data.

boot loader 541

bit block transfer (BlT, Bitblt) The process of
copying the bits that constitute a bitmap from one
device context to another. For example, a bit
block transfer can be used to move a bitmap
stored in memory to the screen for display. The
bits can also be altered during a bit block transfer.
As a result, light and dark portions of an image
can be reversed. Successive displays can thus be
used to change the appearance of an image or to
move it around on the screen.

bitmap A computer graphic represented as an
array of bits in memory that represent the
attributes of the individual pixels in an image
(1 bit per pixel in a black-and-white display,
multiple bits per pixel in a color or grayscale
display).

blink time The elapsed time, in milliseconds,
required to invert the caret display. This value is
half of the flash time.

BLOB See Binary large Object.

block mode A synchronous method of calling the
CeRapiInvoke function by storing input
parameters and output data in a single buffer.

boot loader A program that is automatically run
when a computer is switched on (booted). After
first performing a few basic hardware tests, the
bootstrap loader loads and passes control to a
larger loader program, which then typically loads
the operating system. The bootstrap loader
normally resides in the computer's read-only
memory (ROM).

542 brush

brush A tool used in paint programs to sketch or
fill in areas of a drawing with the color and
pattern currently in use. Paint programs that offer
a variety of brush shapes can produce
brushstrokes of varying width and, in some cases,
shadowing or calligraphic effects.

build environment The state of the development
workstation and the directory structure at the time
a program build is begun.

build window See command prompt window.

built-in device driver A software component that
permits a computer system to communicate with a
device. In Windows CE, it is linked with the
GWE component. The Windows CE built-in
driver consists of a model device driver (MDD)
layer and a platform dependent driver (PDD)
layer. Together, these layers make it possible for
applications to access physically different, but
functionally equivalent, hardware resources in the
same way on all Windows CE platforms.

c
cabinet file A self-contained file with a .cab
extension used for application installation and
setup. In a cabinet file, multiple files are
compressed into one file. They are commonly
found on Microsoft software distribution disks.

cache A special memory subsystem in which
frequently used data values are duplicated for
quick access. A memory cache stores the contents
of frequently accessed RAM locations and the
addresses where this data is stored. When the
processor references an address in memory, the
cache checks to see whether it holds that address.
If it does hold the address, the data is returned to
the processor; if it does not hold the address, a
regular memory access occurs. A cache is useful
when RAM accesses are slow compared with the
microprocessor speed, because cache memory is
always faster than main RAM memory.

callback function A function that receives
messages from the operating system. Callback
functions are application-defined.

caret A flashing line, block, or bitmap that marks
the location ofthe insertion point in a window's
client area.

cascading menu A hierarchical graphical menu
system in which a side menu of subcategories is
displayed when the pointer is placed on the main
category.

CDF See Channel Definition Format.

central processing unit (CPU) The computational
and control unit of a computer. The CPU is the
device that interprets and executes instructions. It
has the ability to fetch, decode, and execute
instructions and to transfer information to and
from other resources over the computer's main
data-transfer path, the bus. By definition, the CPU
is the chip that functions as the "brain" of a
computer. In some instances, however, the term
encompasses both the processor and the
computer's memory or, even more broadly, the
main computer console, as opposed to peripheral
equipment.

Certificate Authority (CA) An entity that attests to
the identity of a person or an organization. The
Certificate Authority's chieffunction is to verify
the identity of entities and issue digital certificates
attesting to that identity.

channel A subscription to a Web site that
conforms to the Channel Definition Format.

Channel Definition Format (CDF) A specification
developed by Microsoft and presented to the
World Wide Web Consortium (W3C) that allows
applications to send Web pages to users. Once a
user subscribes to a CDF channel, any software
that supports the CDF format automatically
receives any new content posted on the channel's
Web server. The default client subscription
application for Internet channel broadcasting in
Broadcast Architecture stores subscription
information as CDF files.

channel script A program written in HTML and
Visual Basic Script, JScript, Java Script, and other
scripting languages to specify the layout and
behavior of a channel.

class identifier (elSID) 543

channel synchronization The process of first
downloading Mobile Channels content into a
cache using the standard Internet Explorer 4.0
channel retrieval mechanism and then transferring
it onto a Windows CE-based device. Channel
synchronization makes it possible for users to
access Mobile Channels using either a Windows
CE-based device without a radio module or a
Windows-based desktop computer when the
device is not readily available.

check box An interactive control found in
graphical user interfaces. Check boxes are used to
enable or disable one or more features or options
from a set. When an option is selected, an X or a
check mark appears in the box.

child window A window that has the WS_CHILD
style. A child window always appears within the
client area of its parent window.

CIFS See Common Internet File System.

CIFS redirector A module through which one
computer gains access to another. Its function is
to reestablish disrupted connections and to
package and send remote file-system requests to
host targets.

class identifier (CLSID) A universally unique
identifier (UUID) that identifies a type of
Component Object Model (COM) object. Each
type of COM object item has its CLSID in the
registry so that it can be loaded and used by other
applications. For example, a spreadsheet may
create worksheet items, chart items, and
macro sheet items. Each of these item types has its
own CLSID that uniquely identifies it to the
system.

544 client

client 1. In object-oriented programming, a
member of a class (group) that uses the services of
another class to which it is not related. 2. A
process, such as a program or task, that requests a
service provided by another program-for
example, a word processor that calls on a sort
routine built into another program. The client
process uses the requested service without having
to know any working details about the other
program or the service itself. 3. On a local area
network or the Internet, a computer that accesses
shared network resources provided by another
computer, called a server.

client area The client area is the portion of a
window where the application displays output,
such as text or graphics. Also called a client
rectangle.

client coordinate A coordinate that is relative to
the upper-left comer of a window's client area.

Client Device Driver See Installable Device Driver.

clipping region A subregion of the client area to
which output is restricted. Clipping is used in
Windows CE in a variety of ways. For example,
word processing and spreadsheet applications clip
keyboard input to keep it from appearing in the
margins of a page or spreadsheet.

CLSID See class identifier.

cold boot A startup process that begins with
turning on the computer's power. Typically, a
cold boot involves some basic hardware checking
by the system, after which the operating system is
loaded from disk into memory. Compare warm
boot.

COM See Component Object Model.

COM class The definition of an object in code. In
COM, class refers to the general object definition,
whereas in C++, the class of an object is a data
type.

COM object A programming structure that
includes both data and functionality. A COM
object is defined and allocated as a single unit.
The only public access to a COM object is
through the programming structure's interfaces.
At a minimum, a COM object must support the
IUnknown interface, which maintains the
object's existence while it is being used and
provides access to the object's other interfaces.

COM port Short for communications port, the
logical address assigned by MS-DOS (versions
3.3 and later), and Microsoft Windows to each of
the four serial ports on an IBM personal computer
or a PC-compatible. COM ports also have come
to be known as the actual serial ports on a
computer's CPU where peripherals, such as
printers, scanners, and external modems, are
plugged in.

combo box A control that combines an edit
control with a list box. This allows the user to
type in an entry or choose one from the list.

command band A rebar control with a fixed band
at the top that contains a toolbar with a Close (X)
button, an OK button, and optionally, a Help (?)
button in the upper-right corner.

command bar A control window that can contain
buttons, combo boxes, and menu bars. Windows
CE-based applications can use a command bar
rather than a separate menu and toolbar to
efficiently utilize available screen space.

command prompt window A development
workstation command prompt window from
which the EDK user has run the Wince.bat tool.
Also called build window.

common control A standardized child window
that an application uses in conjunction with
another window to perform input/output tasks. A
common control enables users to view and
organize information and to set or change
attributes and properties. Most common controls
send the WM_NOTIFY message.

Common Internet File System (CIFS)
A standard proposed by Microsoft that would
compete directly with Sun Microsystems' Web
Network File System.

component A subset of the Windows CE
operating system. Windows CE is structured as a
collection of modules that are subdivided into
smaller components. Each module and component
is a self-contained subset of the Windows CE
operating system that can be used to construct a
customized operating system for a particular
device.

Component Object Model (COM) An open
architecture for cross-platform development of
client/server applications. It is based on object­
oriented technology as agreed upon by Digital
Equipment Corporation and Microsoft
Corporation. COM defines the interface (similar
to an abstract base class), IUnknown, from which
all COM-compatible classes are derived.

compound file A number of individual files
bound together in one physical ftle where each
individual ftle can be accessed as if it were a
single physical file.

cursor 545

Contacts database A collection of names,
addresses, telephone numbers, and other
information stored on a Handheld PC (HlPC) by
the Contacts application. The database is divided
into a set of records called address cards. The
database contains any number of address cards,
limited only by the amount of memory available
on the HlPC.

continuous resistive touch panel
See touch screen.

control A standardized child window on the
screen that can be manipulated by the user to
perform an action or display information. The
most common controls are buttons, which allow
the user to select options, and scroll bars, which
allow the user to move through a document or
position text in a window.

control identifier A value that uniquely identifies
a control.

control style A value, similar to a window style,
that specifies the appearance and behavior of a
control. The window procedure for the control
uses the style to determine how to draw the
control and process input.

CPU See central processing unit.

critical section object A segment of code that is
not reentrant and therefore does not support
concurrent access by multiple threads. Often, a
critical section object is used to protect shared
resources.

cursor A small bitmap whose location on the
screen is controlled by a pointing device, such as
a mouse, pen, or trackball. Some Windows CE­
based platforms only support the wait cursor (the
spinning hourglass).

546 database synchronization

D
database synchronization The process of bringing
two separate copies of a database into agreement.

database system application
programming interface
A set of functions that enable you to create and
manipulate Windows CE databases. Each
database consists of an arbitrary number of
records, and each record consists of at least one
property.

data link A connection that passes values
between two objects or locations.

date and time picker control A control that
displays information about dates and times, and
provides users with an easy way to modify this
information.

Dee See direct cable connection.

DDB See device-dependent bitmap.

DOE See dynamic data exchange.

001 See device driver interface.

DDK See device driver kit.

dead key A key used with another key to create
an accented character. A dead key, when pressed,
produces no visible character, but indicates that
the accent mark it represents is to be combined
with the character produced by the next letter key
pressed.

demonstration project A set of directories, code,
and environment variables that help users to
understand the EDK tools.

deserialize The process of converting a series of
bytes back into an object. See serialize.

desktop An on-screen work area that uses icons
and menus to simulate the top of a desk.. Its intent
is to make a computer easier to use by enabling
users to move pictures of objects and to start and
stop tasks in much the same way as they would if
they were working on a physical desktop.

desktop connectivity The services required to
connect a Windows CE-based device to a desktop
computer.

development workstation The computer
workstation running the EDK development tools.

device 1. A generic term for a computer
subsystem. Printers, serial ports, and disk drives
are often referred to as devices; such subsystems
frequently require their own controlling software,
called device drivers. 2. A hardware feature that
can-or must-be part of the target platform. For
example, a built-in device could be a low-battery
notification LED, while a PC Card modem is an
installable device.

device context A GDI structure containing
information that governs the display of text and
graphics on a particular output device. A device
context stores, retrieves, and modifies the
attributes of graphic objects and specifies graphic
modes. The graphic objects stored in a device
context include a pen for line drawing, a brush for
painting and filling, a font for text output, a
bitmap for copying or scrolling, a palette for
defining the available colors, and a region for
clipping.

device-dependent bitmap (DDB)
An array of bits that can only be used with a
particular display or printer.

device driver Software that provides control over
hardware devices. Device drivers are treated like
applications. In the Windows CE environment,
they are simply user-level dynamic-link libraries.

device driver interface (DDI) 1. The interface
between applications and the device drivers. 2. A
set of functions implemented in the model device
driver and called by the Graphics, Windowing,
and Events Subsystem (GWES).

device driver kit (DDK) A set of tools and libraries
that enable programmers to write Windows-based
software used to run hardware devices such as
printers.

device driver test kit (DDTK) A set of tools and
libraries that enable you to test the porting of your
device drivers to the Windows CE operating
system.

device-independent bitmap (DIB)
An array of bits combined with several structures
that specify the width and height of the bitmap
image (in pixels), the color format of the device
where the image was created, and the resolution
of the device used to create that image. A DIB
generally has its own color table, and can
therefore be displayed on a variety of devices.

device manager A program, included on all
Windows CE-based platforms, that manages
installable device drivers. The device manager
handles loading and unloading installable device
drivers, identifying the correct driver for plug­
and-play devices, managing running device
drivers, and notifying installable device drivers of
power-up and power-down events.

DHCP See Dynamic Host Configuration Protocol.

drag-and-drop 547

dialog box A temporary window that contains
controls. You can use it to display status
information and to get user input.

dialog box procedure An application-defined
callback function that the system calls when it has
input for a dialog box or has tasks for a dialog box
to carry out.

dialog box template A binary description of a
dialog box and the controls it contains. You can
create this template as a resource to be loaded
from the application's executable file, or created
in memory while the application runs.

DIB See device-independent bitmap.

direct cable connection (DCC) A RAS networking
connection between two computers or between a
computer and a Windows CE-based device, which
uses a serial or parallel cable directly connected
between the systems instead of a modem and a
phone line.

direct memory access (DMA) Memory access that
does not involve the microprocessor and is
frequently used for data transfer directly between
memory and an "intelligent" peripheral device,
such as a disk drive.

DLL See dynamic-link library.

drag-and-drop A technique for moving or
copying data between applications, between
windows within an application, or within a single
window in an application. The user selects the
data to be transferred and drags the data to the
desired destination. Windows CE supports drag­
and-drop operations. However, non-default drag­
and-drop operations, equivalent to right mouse
button drag-and-drop operations, are not
supported.

548 drop-down menu

drop-down menu A menu that drops from the
menu bar when requested and remains open
without further action until the user closes it or
chooses a menu item.

dummy file filter A means for transferring files of
nonstandard or possibly unknown extensions for
which no translation is necessary. Passing the file
through the dummy filter keeps the No Convertor
Selected dialog box from being issued to the user.

dynamic data exchange (DOE) An interprocess
communication method that allows two or more
programs running simultaneously to exchange
data and commands.

Dynamic Host Configuration Protocol (DHCP)
A Transmission Control ProtocollInternet
Protocol (TCPIIP) that enables a network
connected to the Internet to automatically assign a
temporary Internet protocol (JP) address to a host
when the host connects to the network.

dynamic-link library (DLL) A set of autonomous
functions that any application can use. DLLs are a
set of source code modules with each module
containing a set of functions.

E
edit control A rectangular window in which a
user can enter and edit text from the keyboard. An
edit control is also referred to as a text box.

embedded Software code or commands built into
their carriers. For example, application programs
insert embedded printing commands into a
document to control printing and formatting.
Low-level assembly is embedded in higher-level
languages, such as C, to provide more capabilities
or better efficiency.

Embedded Developers Kit (EDK) A set of tools
and libraries for creating a custom Windows CE
embedded operating systems. The EDK is part of
the Windows CE Embedded Toolkit for Visual
C++ 5.0.

environment variable An element of the operating
system environment, such as a path, a directory
name, or a configuration string. Environment
variables are typically set within batch files.

Ethernet A widely used LAN developed by
Xerox, Digital, and Intel. Ethernet networks
connect up to 1,024 nodes at 10 megabits per
second over twisted pair, coax, and optical fiber.

event An event is an occurrence that triggers a
notification. Windows CE supports timer and
system events.

event-driven operating system An operating
system that constantly evaluates and responds to
sets of events, such as key presses or mouse
movements.

event object A synchronization object that
enables one thread to notify another that an event
has occurred. Event objects are useful when a
thread needs to know when to perform its task.
For example, a thread that copies data to an
archive needs to be notified when new data is
available. By using an event object to notify the
copying thread of the availability of new data, the
thread can perform its task as soon as possible.

exception handling The process of dealing with
exceptions, or errors, as they arise during program
execution. Exceptions occur when a program
executes abnormally due to conditions outside the
program's control. Windows CE does not support
C++ exception handling.

execute in place (XIP) The process of executing
code directly from read-only memory (ROM),
rather than loading it from random access memory
(RAM) first. Executing the code in place, instead
of copying the code into RAM for execution,
saves system resources. Applications in other file
systems, such as PC Cards, cannot be executed in
this way.

Exit button A hardware navigation control that
functions as the ESC key on a keyboard.

extension key An entry in the registry,
corresponding to the extension of a given file, that
specifies which file filter will handle conversions
for that file type.

F
FAT See file allocation table.

file allocation table (FAT) A table that contains the
status of various segments of disk space used for
file storage. Also, the file system that maintains
the table.

file filter A Windows CE dynamic-link library
(DLL) that controls the transfer of data between a
desktop computer and a Windows CE-based
device.

file system In an operating system, the overall
structure in which files are named, stored, and
organized. A file system consists of files,
directories, and the information needed to locate
and access these items. The term can also refer to
the portion of an operating system that translates
requests for file operations from an application
program into low-level, sector-oriented tasks that
can be understood by the drivers controlling the
disk drives.

foreground window 549

file system application interface A subset of the
standard Win32 file system functions. These
functions let you create directories and data files,
read and write file data, and retrieve file and
directory information.

File Transfer Protocol (FTP) The protocol used for
copying files to and from remote computer
systems on a network using a Transmission
Control Protocol/lnternet Protocol (TCPIIP), such
as the Internet. This protocol also allows users to
use FTP commands to work with files, such as
listing files and directories on the remote system.

firmware A computer program that is saved in
hardware (such as a semiconductor ROM) as
contrasted with programs stored in volatile RAM.

flash memory Semiconductor memory that can
operate as ROM but, on an activating signal, can
rewrite its contents as though it were RAM.

flash time The elapsed time, in milliseconds,
required to display, invert, and restore the caret
display. This value is twice as much as the blink
time.

focus window The window that is currently
receiving keyboard input. The focus window is
always the active window, a descendent of the
active window, or NULL.

foreground thread The thread used to create the
window with which the user is currently working.

foreground window The window with which the
user is currently working. The system assigns a
slightly higher priority to the thread used to create
the foreground window than it does to other
threads.

550 free threading model

free threading model A model in which an object
can be used oil any thread at any time. See
apartment model threading and single threading
model.

FTP See File Transfer Protocol.

G
GOI See graphics device interface.

globalization The process of developing a
program core whose feature and code designs do
not make assumptions based on a single language
or locale, and whose source code simplifies the
creation of different language editions of a
program.

global variable A variable whose value can be
accessed and modified by any statement in a
program, not merely within a single routine in
which it is defined.

graphics object The pen, brush, bitmap, palette,
region, font, and path associated with a device
context. Windows CE does not support paths.

graphics device interface (GOI) The Windows CE
subsystem responsible for displaying text and
images on display devices and printers. The GDI
processes graphical function calls from a
Windows-based application. It then passes those
calls to the appropriate device driver, which
generates the output on the display hardware. By
acting as a buffer between applications and output
devices, the GDI presents a device-independent
view of the world for the application while
interacting in a device-dependent format with the
device. Because of the smaller memory footprint
of Windows CE-based devices, Windows CE
supports only a subset of the standard Win32
GDI.

Graphics, Windowing, and Events
Subsystem (GWES)
The Windows CE module that contains the
graphics and windowing functionality needed to
display text and images and to receive user input.
It includes all the functionality needed to create
and manage windows, controls, dialog boxes, and
resources such as icons and menus. It also
processes all user input. GWES includes the
graphics device interface, which displays text and
images on display devices and printers.

grayscale A sequence of shades ranging from
black through white, used in computer graphics to
add detail to images or to represent a color image
on a monochrome output device. Like the number
of colors in a color image, the number of shades
of gray depends on the number of bits stored per
pixel. Grays may be represented by actual gray
shades, by halftone dots, or by dithering.

gripper bar A gripper bar is a tall, thin rectangle
with a dark stripe running through it that appears
on a rebar or a command band control. By
touching and dragging a gripper bar with a stylus,
a user can repostion a rebar or command bar.
Gripper bars are especially useful for bringing
off-screen rebar or command bar controls into
view.

group box A rectangular area within a dialog box
in which you can group together other controls
that are semantically related. The controls are
grouped by drawing a rectangular border around
them. Any text associated with the group box is
displayed in its upper-left hand corner.

GUIO A globally unique identifier. See
Universally Unique Identifier.

GWES See GraphiCS, Windowing, and Events
Subsystem.

H
handle A variable that identifies an object; an
indirect reference to an operating system resource.

H/PC A Handheld PC.

header control A horizontal window that is
usually positioned above columns of data. It is
divided into partitions that correspond to the
columns, and each partition contains the title for
the column below it.

heap A portion of memory reserved for a
program to use for the temporary storage of data
structures whose existence or size cannot be
determined until the program is running. The
program can request free memory from the heap
to hold such elements, use it as necessary, and
later free the memory.

hibernation The way in which a Windows CE­
based device manages a memory shortage by
requesting applications free memory that is not
currently needed.

hibernation threshold The point at which the
system enters a limited memory state.

high-resolution performance counter
Hardware that provides high-resolution timing
useful in improving the performance of
applications.

hook A point in the Windows message-handling
mechanism where an application can install a
subroutine to monitor the message traffic in the
system and process certain types of messages
before they reach the target window procedure.
Windows CE does not support hooking.

hot key A keystroke or combination of
keystrokes that switches the user to a different
program, often a terminate-and-stay-resident
(TSR) program or the operating system user
interface. Hot keys generate a WM_HOTKEY
message.

idle priority 551

hot spot The pixel in a cursor that marks the
exact screen location affected by a mouse or pen
action, such as a button click. Messages include
the coordinates of a hot spot.

HTML See Hypertext Markup Language.

Hypertext Markup Language (HTML) viewer control
A control that provides programmers with the
ability to implement the Windows CE Pocket
Internet Explorer and the Help engine. It also
provides independent software vendors (ISVs)
with the ability to implement additional viewers
based on the HTML viewer control.

HTTP See Hypertext Transfer Protocol.

Hypertext Markup Language (HTML)
A markup language derived from the Standard
Generalized Markup Language (SGML). Used to
create a text document with formatting
specifications that tells a software browser how to
display the page or pages included in the
document.

Hypertext Transfer Protocol (HTTP)
The client/server protocol used to access
information on the Web.

lAS See Information Access Service.

ICMP See Internet Control Message Protocol.

icon A small bitmap that usually represents a
minimized application. Icons may also serve as
symbols in warning messages or other windows.

idle priority One of three thread priority groups.
Idle priority indicates that a thread's processing
can wait until all other threads have finished
running.

552 IEEE

IEEE See Institute of Electrical and Electronics
Engineers.

IHV See independent hardware vendor.

1M See input method.

image list A collection of images that are all the
same size, such as bitmaps or icons.

Inbox A mail client application provided with
WindowsCE.

independent hardware vendor (IHV)
A company that manufactures devices that
connect to Windows CE-based platforms, such as
PC Cards. IHV s must also produce Installable
Device Drivers for their devices. See Installable
Device Driver.

.inf file A CAB Wizard input file that specifies
information about the application.

Information Access Service (lAS)
A part of an IrDA infrared communication
protocol used so that devices can learn about the
services offered by another device.

infrared Of or relating to the range of invisible
radiation wavelengths from about 750
nanometers, just longer than red in the visible
spectrum, to 1 millimeter, on the border of the
microwave region.

Infrared Data Association (IrDA) The industry
organization of computer, component, and
telecommunications vendors who have
established the standards for infrared
communication between computers and peripheral
devices such as printers. Windows CE supports
the IrDA standard through the Winsock
Application Programming Interface (API).
Windows CE-based applications that
communicate over serial cables using the
Winsock API will communicate over IrDA­
compliant IR links with only minimal
reprogramming.

Infrared Link Access Protocol (IrLAP)
A data link layer protocol providing a reliable
point-to-point link, which effectively replaces a
three-wire serial cable connection.

Infrared Link Management Protocol (IrLMP)
A service multiplexing protocol that provides for
multiple sessions over a single point-to-point link.

.ini file An initialization file that registers an
application with an application manager. It
contains information such as the location of .cab
files, icon files, and the installation directory.

input method A mechanism that allows the user
to input text by means of a touch-sensitive display
screen. For example, the Palm PC supports two
input methods: a keyboard and a character
recognizer used for ink input.

input panel A user interface element that contains
a keyboard, operated by using a touch-sensitive
display screen and a stylus.

Installable Device Driver (100) A user-level DLL
that drives devices connected to a Windows CE­
based platform. It presents the functionality of
such a device to applications in terms of standard
Win32 file input/output functions. Some devices
built into a Windows CE-based platform may also
be driven by installable device drivers, depending
on the software architecture for those devices'
drivers.

Institute of Electrical and Electronics
Engineers (IEEE)
A organization formed in 1963 by electrical
engineering prefessionals from the United States
and other countries. The institute develops
electrical and communications standards, many
affecting aspects of computer technology, such as
network connectivity, and formats for
representing floating-point numbers.

interface 1. The point at which a connection is
made between two elements so that they can work
with one another. 2. Software that enables a
program to work with the user (the user interface,
which can be a command-line interface, menu­
driven, or a graphical user interface), with another
program such as the operating system, or with the
computer's hardware. 3. A card, plug, or other
device that connects pieces of hardware with the
computer so that information can be moved from
place to place. For example, standardized
interfaces such as RS-232-C standard and SCSI
enable communications between computers and
printers or disks. 4. A networking or
communications standard, such as the ISO/OSI
model, that defines ways for different systems to
connect and communicate.

Internet Protocol (IP) address 553

Internet Control Message Protocol (ICMP)
A network-layer Internet protocol that provides
error correction and other information relevant to
Internet Protocol (IP) packet processing, such as
testing whether a particular computer is connected
to the Internet ("pinging"), by sending a packet to
its IP address and waiting for a response. For
example, it can let the IP software on one machine
inform another machine about an unreachable
destination. See ping.

Internet Information Server (liS) A Web server
integrated into a Windows NT server.

Internet Protocol (IP) Provides the protocol for
connecting hosts over a network, breaking
messages into packets, addressing the packets,
routing them from the sender to the destination
network, and reassembling the packets into the
original message at the destination. IP
corresponds to the network layer in the
International Organization for Standardization
Open Systems Interconnection (ISO/OSI) model.

Internet Protocol (IP) address A 32-bit (4-byte)
binary number that uniquely identifies a host
computer connected to the Internet to other
Internet hosts, for the purposes of communication
through the transfer of packets. An IP address is
expressed in "dotted quad" format, consisting of
the decimal values of its four bytes, separated
with periods; for example, 127.0.0.1. The first
one, two, or three bytes of the IP address,
assigned by InterNIC Registration Services,
identify the network the host is connected to; the
remaining bits identify the host itself.

554 interrupt

interrupt A request for attention from the
processor. When the processor receives an
interrupt, it suspends its current operations, saves
the status of its work, and transfers control to a
special routine known as an interrupt handler,
which contains the instructions for dealing with
the particular situation that caused the interrupt.
Interrupts can be generated by various hardware
devices to request service or report problems, or
by the processor itself in response to program
errors or requests for operating-system services.
Interrupts are the processor's way of
communicating with the other elements that make
up a computer system. A hierarchy of interrupt
priorities determines which interrupt request will
be handled first if more than one request is made.
A program can temporarily disable some
interrupts if it needs the full attention of the
processor to complete a particular task.

interrupt identifier (interrupt 10) A unique value
used by the kernel to identify the device that
raised the interrupt and that requires more
processing. The kernel then uses the interrupt ID
to indicate whether all handling is complete, or
whether to launch an interrupt service thread that
handles further processing by the device driver.

interrupt priority One of three thread priority
groups. Interrupt priority is reserved for operating
system threads.

interrupt request line (IRQ) A hardware line over
which a device, such as an input/output port,
keyboard, or disk drive, can send interrupt
requests to the central processing unit (CPU).
Interrupt request lines are built into the
computer's internal hardware and are assigned
different levels of priority so that the CPU can
determine the sources and relative importance of
incoming service requests.

interrupt service routine (ISR) A small subroutine
that resides in the OEM Adaptation Layer. The
ISR executes in kernel mode and has direct access
to the hardware registers. Its sole job is to
determine what interrupt ID to return to the
interrupt support handler. Essentially, ISRs map
physical interrupts onto logical interrupts.

interrupt service thread (1ST) A thread created by
a device driver to wait on an event.

interrupt support handler A routine that registers
a driver so that it can handle a particular interrupt
and unregister it later. It also enables
communication between the interrupt service
routine, interrupt service thread, and subroutines
within the OEM Adaptation Layer (OAL).

1/0 Input/Output.

IP See Internet Protocol.

IrCOMM An infrared implementation of the serial
line communication driver. IrCOMM is supported
by Windows CEo

IrDA See Infrared Data Association.

IrLAP See Infrared Link Access Protocol.

IrLMP See Infrared Link Management Protocol.

IrLPT A protocol for printing through a serial
infrared connection.

IRQ See interrupt request line.

IrSOCK Short for Infrared Sockets, IrSock is an
implementation of the Winsock protocol.

ISR See interrupt service routine.

ISV Independent software vendor.

item script A program written in HTML and
Visual Basic Script, JScript, Java Script, or other
scripting languages that specifies the behavior of
an item within a channel.

K
kernel The main module of the Windows CE
operating system. The kernel provides system
services for managing threads, memory, and
resources.

Key A field or expression used to identify a
record; often used as the index field for a database
table.

keyboard accelerator A keystroke or combination
of keystrokes that invokes a command. Also
called an accelerator, shortcut key, and keyboard
shortcut.

L
LAN See local area network.

launch entry A registry entry that specifies the
order in which applications launch.

layered device driver A sample device driver that
comes with the Embedded Toolkit. It contains two
layers: a model device driver (MDD) layer and a
platform-dependent driver (PDD) layer. See model
device driver and platform-dependent driver.

list box A window that displays a list of character
strings. The user selects a string from the list by
tapping it with the stylus. When a string is
selected, it appears highlighted. You can use a
vertical or horizontal scroll bar with a list box to
scroll lists that are too long for the control
window. The list box automatically hides or
shows the scroll bar, as needed.

logical palette 555

list view A common control that displays a
collection of items, such as files or folders. Each
item has an icon and a label.

load file A file that contains a list of commands
for the Load function to process. You use load
file commands to direct Ppcload.dll to create
directories on a Windows CE-based device, copy
files into the directories, edit registry entries,
execute programs on the Windows CE-based
device, and add items to the unload script. The
fully qualified path name of the load file is given
as a command line argument to Load.

local area network (LAN) A group of computers
and other devices dispersed over a relatively
limited area and connected by a communications
link that enables any device to interact with any
other on the network. LAN s commonly include
microcomputers and shared resources such as
laser printers and large hard disks. The devices on
a LAN are known as nodes, and the nodes are
connected by cables through which messages are
transmitted.

localization The process of adapting a program
for a specific international market, which includes
translating the user interface, resizing dialog
boxes, customizing features if necessary, and
testing results to ensure that the program still
functions properly.

logical palette An array of colors, or color palette,
that an application creates and associates with a
device context and uses for graphics output.

556 main priority

M
main priority One of three thread priority groups.
Main is the default priority.

main window The window that serves as the
primary interface between the user and an
application.

MOD See model device driver.

MOl See multiple-document interface.

menu A list of items that represent an
application's commands. A menu item can be
either a string or a bitmap.

menu handle A unique value of type HMENU
used to identify a menu.

menu item A string or bitmap displayed in a
menu. Choosing a menu item either sends a
command message or activates a pop-up menu.

menu template A menu template defines a menu,
including the items on a menu bar and all
submenus.

message A structure or set of parameters used
for communicating information or a request.
Messages can be passed between the operating
system and an application, different applications,
threads within an application, and windows within
an application.

message box A secondary window that is
displayed to inform a user about a particular
condition.

message identifier (message 10) A unique value
that identifies a message. System-defined
messages use named constants, such as
WM_PAINT, as message identifiers. Windows
CE reserves message-identifier values in the range
Ox0400 through Ox7FFF for application-defined
messages.

message queue An ordered list of messages
awaiting transmission, from which they are taken
up on a first-in, first-out (FIFO) basis.

message store The database in the object store
for storing mail messages.

MFC See Microsoft Foundation Classes.

Microsoft Foundation Classes The C++ class
library that Microsoft provides with its C++
compiler to assist programmers in creating
Windows-based applications. MFC hides the
fundamental Windows API in class hierarchies so
that programmers can write a Windows-based
application without needing to know the details of
the native Windows API.

Mobile Channels A Windows CE technology that
represents a fourth type of IE4 channel to allow
the user to access the Web with great mobility.

modal dialog box A modal dialog box requires
the user to supply information or cancel the dialog
box before allowing the application to continue.

model device driver (MOD) The platform-neutral
layer of a built-in device driver supplied by
Microsoft. See built-in device driver.

modeless dialog box A modeless dialog box
allows the user to supply information and return
to a previous task without closing the dialog box.

module A subset of the Windows CE operating
system. Windows CE is structured as a collection
of modules. Each module is a self-contained
subset of the Windows CE operating system that
can be used to construct a customized operating
system for a particular device.

monolithic device driver A sample device driver
that comes with the Windows CE Embedded
Toolkit for Visual C++ 5.0.

month calendar control A child window that
displays a monthly calendar. The calendar can
display one or more months at a time.

multiple-document interface (MOl)
A user interface in an application that allows the
user to have more than one document open at the
same time. MDI is not supported by Windows
CEo

mutex object An interprocess synchronization
object whose state is set to signaled when it is not
owned by any thread, and nonsignaled when it is
owned. Only one thread at a time can own a
mutex.

N
NaN Not a number.

national language support (NLS) A function
which enables you to specify system and user
locale information.

NOIS A programming interface for different
protocols sharing the same network hardware.

network stack An operating system component
responsible for processing data that is transmitted
or received over a network.

node 1. In local area networks, a device that is
connected to the network and is capable of
communicating with other network devices. 2. In
tree structures, a location on the tree that can have
links to one or more nodes below it. Some authors
make a distinction between node and element,
with an element being a given data type and a
node comprising one or more elements as well as
any supporting data structures.

nonclient area The parts of a window that are not
a part of the client area. A window's nonclient
area consists of the border, menu bar, title bar,
and scroll bar.

object identifier (object 10) 557

nonqueued message A message sent directly to a
window procedure.

nonsignaled See synchronization object.

notification A signal from the operating system
that an event has occurred. This could be a timer
event or a system event such as establishing a
network connection. An application registers a
notification for an event and the system generates
a notification when the event occurs. Windows
CE provides an application programming
interface (API) that can be used to register events
and select options that determine the type of
notification.

notification function A Windows CE function that
allows an application to register its name and an
event with the system. When the event occurs the
kernel automatically starts the named application.

notification message A message a control sends
to its parent window when events, such as input
from the user, occur.

o
object A file, directory, database, or database
record that resides in an object store.

object 10 See object identifier.

object identifier (object 10) 1. A unique value
which identifies each object in the object store. 2.
In reference to the Contacts database, an object
identifier is a unique value that the system assigns
to each address card when it is added. An
application uses the object identifier when
querying an address card's properties or when
modifying or deleting an address card.

558 object store

object store The persistent storage that Windows
CE makes available to applications. For example,
Windows CE reserves part of its available random
access memory (RAM) for the operating system
and uses the rest for the object store. This data can
be stored in files, registry entries, or in Windows
CE databases.

OEM See original equipment manufacturer.

OEM adaptation layer (OAL) That portion of
Windows CE that must be provided by the
hardware manufacture to adapt Windows CE to
their platform.

OLE Object Linking and Embedding. See
Automation.

option button A small round button with a label
next to it. The label may be text, an icon, or a
bitmap. Option buttons, also known as radio
buttons, are usually grouped together in a group
box, representing a set of related, but mutually
exclusive options. When a user selects an option
button, all other option buttons in the same group
are automatically unselected.

original equipment manufacturer (OEM)
For Windows CE, an OEM is a company that
manufacturers a hardware platform and ports
Windows CE to that platform.

overlapped communication operation
The performance of two distinct communication
operations simultaneously, for example, a
simultaneous read and write operation. Windows
CE does not support overlapped communication
operation, but does support multiple reads/writes
pending on a device.

overlapped window A window with the
WS_OVERLAPPED style. Overlapped Windows
are top-level windows designed to serve as an
application's main window.

p
packet A unit of information transmitted as a
whole from one device to another on a network.

parallel port The input/output connector for a
parallel interface device.

parent window A window that has one or more
child windows.

parser An application that breaks data into
smaller chunks so that a program can act upon the
information. For example, Mobile Channels uses
a Channel Definition Format parser to parse a
channel.

pASP See pocket Active Server Pages.

path 1. In communications, a link between two
nodes in a network. 2. A route through a
structured collection of information, as in a
database, a program, or files stored on disk. 3. In
programming, the sequence of instructions a
computer carries out in executing a routine. 4. In
file storage, the route followed by the operating
system in finding, sorting, and retrieving files on a
disk. 5. In graphics, an accumulation of line
segments or curves to be filled or overwritten with
text.

PC Card A trademark of the Personal Computer
Memory Card International Association
(PCMCIA) that is used to describe add-in cards
that conform to the PCMCIA specification. A PC
Card is a removable device approximately the
same size as a credit card that is designed to plug
into a PCMCIA slot. Type I cards are primarily
used as memory-related peripherals. Type II cards
accommodate devices such as modem, fax, and
network cards. Type III cards accommodate
devices that require more space, such as wireless
communications devices and rotating storage
media, including hard disks.

PCT See Program Comprehension Tool.

POD See platform dependent driver.

pen A drawing tool used to draw lines and
curves.

persistent object The Component Object Model
(COM) defines standards through which clients
can request objects to be initialized, loaded, and
saved to and from a data store, such as a flat file,
structured storage, or memory. COM objects that
adhere to these standards are called persistent
objects.

personal information manager (PIM)
A category of software applications such as Lotus
Notes or Microsoft Exchange that allow the user
to manage scheduling, tasks, and contact
information.

phone-book Entries in the Remote Access
Service (RAS) phone·book contain the
information necessary to establish a RAS
connection. Unlike Windows NT, which keeps
the phone-book entries in a file, Windows CE
stores these entries in the registry.

PIM See personal information manager.

ping A protocol for testing whether a particular
computer is connected to the Internet by sending a
packet to its Internet Protocol (IP) address and
waiting for a response.

Point·to·Point Protocol (PPP) 559

platform 1. The foundation technology of a
computer system. Because computers are layered
devices composed of a chip-level hardware layer,
a firmware and operating-system layer, and an
applications program layer, the bottommost layer
of a machine is often called a platform. 2. In
everyday usage, the type of computer or operating
system being used. 3. The hardware upon which
an implementation of Windows CE will run. 4.
The directory structure containing the hardware­
specific files needed to build an implementation
of Windows CEo

Platform Dependent Driver (POD)
The platform-specific layer of built-in device
drivers that is supplied by an original equipment
manufacturer. See built-in device driver.

platform directory The root of the directory
structure where platform-specific files are stored.
Each subdirectory in the platform directory
specifies the name of a development workstation.

pocket Active Server Pages (pASP)
A scaled-down version of the Active Server Pages
optimized for server-side Mobile Channels
scripting.

Point-to·Point Protocol (PPP) An advanced serial
packet protocol commonly used for dial-up
connections.

560 POP

POP See Post Office Protocol.

POP3 See Post Office Protocol 3.

pop-up menu A menu that appears on the screen
when a user selects a certain item. Pop-up menus
can appear anywhere on the screen, and they
generally disappear when the user selects an item
in the menu.

pop-up window A special type of overlapped
window typically used for dialog boxes, message
boxes, and other temporary windows that appear
outside an application's main window.

pOSition index An identifier associated with each
address card in the Contacts database. The
position index indicates the address card's
position relative to the other address cards in the
database. A position index is distinct from an
object identifier.

POSIX See Portable Operating System Interface
for Computer Environments.

Portable Operating System Interface for
Computer Environments (POSIX)
An IEEE standard that defines the open systems
environment standards for system interfaces,
shells, tools, testing, verification, real-time
processing, security, system administration,
networking, and transaction processing. The
standard is based on UNIX system services, but it
allows implementation on other operating
systems.

Post Office Protocol (POP) A standard protocol
for transferring mail messages on demand from a
mail server.

Post Office Protocol 3 (POP3) A standard protocol
for transferring mail messages on demand from a
mail server.

PPP See Point-to-Point Protocol.

Ppsh A parallel port shell utility that enables you
to download a binary image from the development
workstation to the target platform and gives you
access to debugging processes running on the
development platform.

predefined control A control belonging to a
window class supplied by Windows CEo

preemptive multitasking The ability of the
operating system to schedule execution time for
multiple processes and threads by periodically
suspending the execution of the currently
executing thread and switching to another high­
priority thread.

priority class A range of thread priority levels.
Whereas Win32 utilizes four priority classes with
seven base priority levels per class, Windows CE
has only eight base priority levels. Hence, for
processes running under Windows CE,
preemption is based solely on the thread's
priority.

priority inheritance A process by which a thread
that is blocking a shared resource needed by a
higher priority thread inherits the priority of that
higher priority thread in order to free the resource
for use by the higher priority thread, thus
preventing priority inversion.

priority inversion Priority inversion is a situation
in which a higher priority thread A spawns lower­
priority thread B to access a shared resource that
is already in use by lower-priority thread C with
greater priority than thread B, blocking higher­
priority thread A. This situation can be averted by
a process of priority inheritance.

process An executing application that consists of
a private virtual address space, code, data, and
other operating-system resources, such as files,
pipes, and synchronization objects that are visible
to the process. A process also contains one or
more threads that run in the context of the
process.

program comprehension tool (peT)
A software engineering tool that facilitates the
process of understanding the structure and/or
functionality of computer programs.

program memory Program memory is used for
stack and heap storage for both system and non­
system programs. Non-system applications are
taken from storage memory, uncompressed, and
loaded into program memory for execution.

progress bar A common control that indicates the
progress of a lengthy operation by displaying a
colored bar inside a horizontal rectangle. The
length of the bar in relation to the length of the
rectangle corresponds to the percentage of the
operation that is complete.

project 1. The implementation of an instance of
Windows CEo 2. The directory structure-under
Public-containing files that define which
components will be included in an
implementation of Windows CE.

property With respect to the database application
programming interface, a property refers to a data
item that consists of a property identifier, data
type, and value. Windows CE supports several
data types such as integer, string, time, and binary
large object (BLOB).

QWERTY keyboard 561

property sheet A type of dialog box that lists the
attributes or settings of an object, such as a file,
application, or hardware device. A property sheet
presents the user with a tabbed, index card-like
selection of property pages, each of which
features standard dialog box-style controls for
customizing parameters.

public-key encryption An asymmetric scheme that
uses a pair of keys for encryption: The public key
encrypts data, and a corresponding secret key
decrypts it. For digital signatures, the process is
reversed: The sender uses the secret key to create
a unique electronic number that can be read by
anyone possessing the corresponding public key,
which verifies that the message is truly from the
sender.

push button A small rectangular control that a
user can tum on or off. A push button, also known
as a command button, has a raised appearance in
its default off state and a depressed appearance
when it is turned on.

Q
queued message A message in a message queue.

QWERTY keyboard A keyboard layout named for
the six leftmost characters in the top row of
alphabetic characters on most keyboards-the
standard layout of most typewriters and computer
keyboards.

562 radio button

R
radio button See option button.

RAM See Random Access Memory.

Random Access Memory Semiconductor-based
memory that can be read and written by the CPU
or other hardware devices.

RAPI See Remote Application Programming
Interface.

RAS See remote access server.

raster font A font in which each glyph (character
or symbol) is of a particular size and style,
designed for a specific resolution of device and
described as a unique bitmap. There are seven
system raster fonts available in several sizes
stored in the Windows CE read-only memory
(ROM). The built-in fonts are built into the
Windows CE operating system. Raster fonts are
also known as bitmap fonts and non-scalable
fonts.

raw infrared (raw IR) A method of receiving data
through an infrared transceiver. Raw IR treats the
IR transceiver like a serial cable and does not
process data in any way. The application is
responsible for handling collision detection and
other potential problems.

read-only memory (ROM) Any semiconductor
circuit serving as a memory that contains
instructions or data that can be read but not
modified, regardless of whether it was placed
there by a manufacturer or by a programming
process.

rebar control A rebar control acts as a container
for child windows. A rebar control contains one
or more bands. Each band can contain one child
window, which can be a toolbar or any other
control.

record A data structure that is a collection of
elements, each with its own name and type. The
elements of a record represent different types of
information and are accessed by name. A record
can be accessed as a collective unit of elements
or the elements can be accessed individually. A'
collection of records is a database. A Windows
CE database consists of an arbitrary number of
records, where each record consists of one or
more properties. Each of the records in a specific
database typically contain a similar set of
properties. A Windows CE database should not be
confused with a full-fledged relational database. It
is simply a general-purpose, flexible, structured
collection of data.

rectangle A function that draws a rectangular
image.

reentrant code Code written so that it can be
shared by several programs or threads within a
single process simultaneously. When code is
reentrant, one thread can safely interrupt the
execution of another thread, execute its own code
and then return control to the first thread in such ~
way that the first thread does not fail or behave in
an unexpected way.

region A rectangle, polygon, ellipse, or a
combination of two or more of these shapes used
by Windows-based applications to define a part of
the client area to be painted, inverted, filled with
output, framed, or used for hit testing.

registered notification The state of a user
notification from the time CeSetUserNotification
is called until the time the user is notified.

registry A central hierarchical database used to
store infonnation necessary to configure the
system for applications and hardware devices.
The registry contains infonnation-such as the
applications installed on the computer and the
types of documents each can create, property
sheet settings for folders and application icons,
what hardware exists on the system, and which
ports are being used-which the operating system
continually references during operation.

remote access server (RAS) A Windows NT
feature by which a single serial connection
provides a remote workstation with host
connectivity, Windows NT ftle services, or Novell
ftle and printing services (NWLink). Windows
CE supports the standard Win32 RAS functions;
however it allows only one connection at a time.
RAS functions can be implemented for direct
serial connections or dial-up modem connections.

Remote Application Programming Interface (RAP I)
Enables applications running on a desktop
computer-the RAPI client-the ability to make
function calls on a Windows CE-based device­
the RAPI server. RAPI runs over Winsock and
TCP/IP.

resource Binary data the resource compiler or
programmer adds to an application's executable
file. Windows resources include icons, cursors,
menus, dialog boxes, bitmaps, fonts, keyboard

. accelerator tables, message table entries, string
table entries, version data, and user defined data.

Rich Ink The underlying technology that enables
a user to write and draw on a touch-sensitive
screen with a stylus.

rocker switch A hardware navigation control
designed to perfonn spatial navigation, much like
the UP ARROW key and the DOWN ARROW
key.

scan code 563

ROM See read-only memory.

ROM image Files and binaries as they appear in
physical memory as defined by the binary image
builder (.bib) ftle.

router An intennediary device on a
communications network that expedites message
delivery. On a single network linking many
computers through a mesh of possible
connections, a router receives transmitted
messages and forwards them to their correct
destinations over the most efficient available
route. On an interconnected set of local area
networks using the same communications
protocols, a router serves the somewhat different
function of acting as a link between these local
area networks, enabling messages to be sent from
one network to another.

s
scan code A code number transmitted to a
computer whenever a key is pressed or released.
Each key on the keyboard has a unique scan code.
This code is not the same as the ASCII code for
the letter, number, or symbol shown on the key; it
is a special identifier for the key itself and is
always the same for a particular key. When a key
is pressed, the scan code is transmitted to the
computer, where a portion of the read-only
memory basic input/output system (ROM BIOS)
dedicated to the keyboard translates the scan code
into its ASCII equivalent. Because a single key
can generate more than one character (lowercase
"a" and uppercase "A," for example), the ROM
BIOS also keeps track of the status of keys that
change the keyboard state, such as the SHIFT key,
and takes them into account when translating a
scan code.

564 script

script A program consisting of a set of
instructions to an application or utility program.
The instructions usually use the rules and syntax
of the application or utility.

scripting language A simple programming
language designed to perform special or limited
tasks, sometimes associated with a particular
application or function. An example of a scripting
language is Visual Basic Script.

scroll bar In some graphical user interfaces, a
vertical or horizontal bar at the side or bottom of a
display area that can be used with a mouse for
moving around in that area. Scroll bars often have
four active areas: two scroll arrows for moving
line by line, a sliding scroll box for moving to an
arbitrary location in the display area, and the gray
areas in the scroll bar for moving in one-window
increments.

scrOlling menu A menu with top arrows used to
scroll menu items up and down.

SDK See Software Development Kit.

secure socket layer (SSL) A proposed open
standard developed by Netscape Communications
for establishing a secure communication channel
to prevent the interception of critical information,
such as credit card numbers. The primary purpose
of the SSL is to enable secure electronic financial
transactions on the Web, although it is designed to
work with other Internet services as well.

Serial Infrared (SIR) Part of the basic Infrared
Data Association (IrDA) communication protocol,
a Serial Infrared physical layer provides for serial
infrared links.

serial cable A cable that connects to a serial port.
It is used to transfer information between two
devices. See serial port.

serial input/output (serial 110) A communications
channel that transmits data one bit at a time.

serialize The process of converting an object to a
series of bytes for transmission to another device.
See deserialize.

serial line Internet protocol (SLIP)
A data link protocol that allows transmission of
Internet Protocol (IP) data packets over dial-up
telephone connections, thus enabling a computer
or a local area network to be connected to the
Internet or some other network.

serial port An input/output location (channel) that
sends and receives data to and from a computer's
central processing unit or a communications
device one bit at a time. Serial ports are used for
serial data communication and as interfaces to
peripheral devices, such as mice and printers.

server 1. On a local area network (LAN), a
computer running administrative software that
controls access to the network and its resources,
such as printers and disk drives, and provides
resources to computers functioning as
workstations on the network. 2. A program that
responds to requests from another program or
task. See client.

service identifier (service 10) An identifier used
by a service to uniquely identify messages. This
value should be changed only by the service
library.

session identifier (session ID) An identifier
generated by a mail transport service. Each time a
Post Office Protocol 3 (POP3) connection is made
to the server, the server looks at all ofthe
currently stored messages and assigns a session
ID to each message, numbered 1 through the total
number of messages. This makes it easier to
reference a particular message without having to
use its long unique ID. The session ID can be
trusted only during a single connection to the mail
server.

SGML See Standard Generalized Markup
Language.

shared directory On a local area network, a
directory on a disk that is located on a computer
other than the one the user is operating. A shared
directory differs from a network drive in that the
user has access to only that directory.

shared library Any code module that can be
accessed and used by many programs. Shared
libraries are used primarily for sharing common
code between different executable files or for
breaking an application into separate components,
thus allowing easy upgrades. In Windows CE,
shared libraries are usually referred to as
dynamic-link libraries (DLLs).

shell A program that enables the user to connect
with the kernel and, thus, the system, usually
providing some basic services in addition to
facilitating the loading and executing of
programs.

sibling window A child window that has the same
parent window as one or more other child
windows.

signaled See synchronization object.

sort order 565

Simple Mail Transfer Protocol (SMTP)
A standard Internet Protocol (IP) for sending
e-mail documents, discussed in RFC821. The
format of SMTP messages is discussed in
RFC822.

single threading model A model in which all
objects are executed on a single thread. Contrast
multithreaded application; see free threading
model, apartment model threading.

SIR See Serial Infrared.

SLIP See Serial Line Internet Protocol.

SMTP See Simple Mail Transfer Protocol.

spin button A control containing a pair of arrow
buttons that a user can tap with the stylus to
increment or decrement a value. A spin button
control is most often used with a companion
control, called a buddy window, in which a
current value is displayed. Also called up-down
control.

socket An object that represents an endpoint for
communication between processes across a
network transport. Sockets have a datagram or
stream type and can be bound to a specific
network address. Windows Sockets provides an
application programming interface (API) for
handling all types of socket connections in
Windows.

Software Development Kit (SDK) A set of tools
and libraries for creating software applications for
Windows operating systems.

sort order The order in which a set of records or
other data objects are to be sorted, or the function
that defines this order. Possible sort orders for an
array of strings, for example, could include
alphabetical order or ascending order by length.

566 SSL

SSL See secure socket layer.

stack A region of reserved memory in which
programs store status data such as procedure and
function call addresses, passed parameters, and
sometimes local variables.

Standard Generalized Markup Language (SGML)
An information-management standard adopted by
the International Organization for Standardization
(ISO) in 1986 as a means of providing platform­
and application-independent documents that
retain formatting, indexing, and linked
information. SGML provides a grammar-like
mechanism for users to define the structure of
their documents, and the tags they will use to
denote the structure in individual documents.

static control A control used to display text, to
draw frames or lines separating other controls, or
to display icons. A static control does not accept
user input.

status bar A horizontal window positioned at the
bottom of a parent window. A status bar, also
known as a status window, displays status
information defined by the application.

storage memory Storage memory is similar to a
RAM disk on a desktop computer. It is used to
store data and non-system applications.

stream mode An asynchronous method of calling
CeRapiInvoke by using an IStream type
interface to exchange arbitrary-sized data in any
order and direction.

stylus A pointing device used on a touch­
sensitive surface.

subfolder A directory, or logical grouping of
related files, within another directory.

submenu A menu that appears as the result of the
selection of an item on another higher-level menu.

symbol A name that represents a register, an
absolute value, or a memory address (relative or
absolute).

sysgen phase Refers to the process of defining
and building the selected modules and
components, as governed by the Makefile located
in the directory
%_PUBLICROOT%\Common\Cesysgen.

system-defined message A message the system
uses to control the operations of an application
and to provide input and other information for an
application to process. An application can also
send or post a system-defined message. An
application generally uses this message to control
the operation of control windows created by using
preregistered window classes.

system registry functions The functions used to
manipulate keys and values in the registry. A
Windows CE-based application uses the standard
Win32 registry functions.

synchronization The process of updating
information between the desktop computer and a
Windows CE-based device to ensure that data is
the same on both computers.

synchronization object An object whose handle
can be specified in one of the wait functions to
coordinate the execution of multiple threads. A
synchronization object will be a member of one of
the synchronization classes. Synchronization
classes are used when access to a resource must
be controlled to ensure integrity of the resource.
The state of a synchronization object is either
signaled, which can allow the wait function to
return, or non signaled, which can prevent the
function from returning. More than one process
can have a handle of the same synchronization
object, making interprocess synchronization
possible. There are four types of synchronization
objects: mutex, semaphore, event and critical
section. Of these, Windows CE supports only
event and critical section.

synchronous operation 1. Two or more processes
that depend upon the occurrences of specific
events such as common timing signals. 2. Data
transmission method in which there is constant
time between successive bits, characters, or
e~ents. The timing is achieved by the sharing of a
smgle clock. Each end of the transmission
synchronizes itself with the use of clocks and
information sent along with the transmitted data.
Characters are spaced by time, not by start and
stop bits. 3. A function call that blocks execution
of a process until it returns. Compare
asynchronous operation.

T
tab control A control that is analogous to a set of
dividers in a notebook or labels in a file cabinet.
A tab control is used in a property sheet to
provide a way for a user to move from one
property page to another.

TAPI See Telephony Application Programming
Interface.

TEXT 567

target platform The system for which Windows
CE is being adapted.

TCP/IP See Transmission Control Protocolllnternet
Protocol.

telephony Telephone technology; the conversion
of sound into electrical signals, its transmission to
another location, and its reconversion to sound
with or without the use of connecting wires. '

Telephony Application Programming
Interface (TAPI)
A set of functions in the Win32 API that lets a
computer communicate directly with telephone
systems. Windows CE supports TAPI version 1.5.
It provides the basic functions, structures, and
messages for establishing outgoing calls and
controlling modems from a Windows CE-based
device.

Telephony Service Provider Interface (TSPI)
The Windows CE TSPI defines the external
interface of a service provider to be implemented
by vendors of telephony equipment. A telephony
service provider accesses vendor-specific
equipment through a standard device driver
interface. Installing a service provider allows
Windows CE applications that use elements of
tele~hony to access the corresponding telephony
eqmpment.

TEXT A Win32 macro that exists so that code can
be compiled either as American National
Standards Institute (ANSI) text or as Unicode. For
Windows CE, which supports only Unicode, the
macro forces the compiler to convert ANSI
characters to Unicode characters. For example,
passing the ANSI string "Hello Windows CEl"
through the TEXT macro converts all characters
in the string to 16-bit wide characters.

568 thread

thread A process that is part of a larger process
or program. A thread can execute any part of an
application's code, including code that is
currently being executed by another thread. All
threads share the virtual address space, global
variables, and operating-system resources of their
respective processes.

thread identifier The unique identifier associated
with a specific thread. Note that thread
identification numbers are reused; they identify a
thread only for the lifetime of that thread.

thread local storage (TLS) A Win32 mechanism
that allows multiple threads of a process to store
data that is unique for each thread. For example, a
spreadsheet application can create a new instance
of the same thread each time the user opens a new
spreadsheet. A dynamic-link library that provides
the functions for various spreadsheet operations
can use thread local storage to save information
about the current state of each spreadsheet.

thread synchronization The method used to
coordinate the execution of two or more threads.
There are two states in synchronization, signaled
and non-signaled. Threads can either modify the
state of the synchronization object or wait for the
object to reach a signaled state.

time-out value A specified time interval used by a
timer. Each time the time-out value elapses,
Windows CE sends a WM_TIMER message to
the window associated with the timer.

timer An internal routine that causes the system
to send a WM_ TIMER message whenever a
specified interval elapses.

TLB See Translation Look-aside Buffer.

TLS See thread local storage.

toolbar A row, column, or block of on-screen
buttons or icons. When these buttons or icons are
depressed, macros or certain functions of the
application are activated.

ToolTip A small rectangular pop-up window that
displays a brief description of a command bar
button's purpose.

top-level window A window that has no parent
window.

topmost window A window with the
WS_EX_TOPMOST style. A topmost window
overlaps all other non-topmost windows.

touch pad An input device that functions like a
mouse to control cursor movements.

touch panel See touch screen.

Touch screen A computer screen designed to
recognize the location of a touch on its surface.
For example, by touching the screen the user can
make a selection. Touch screens often serve in
place of a mouse or other pointing device.

trackbar A common control, also known as a
slider control, that consists of a bar with tick
marks on it and a slider, also known as a thumb.
When a user drags the slider or clicks on either
side of it, the slider moves in the appropriate
direction, tick by tick.

Translation Look-aside Buffer (TLB)
A table used in a virtual memory system, which
lists the physical address page number associated
with each virtual address page number. A TLB is
used in conjunction with a cache whose tags are
based on virtual addresses. The virtual address is
presented simultaneously to the TLB and to the
cache so that cache access and virtual-to-physical
address translation can occur simultaneously.

Transmission Control Protocolnnternet
Protocol (TCP/IP)
Transport and address protocols; TCP is used to
establish a connection for data transmission, and
IP defines the method for sending the data in
packets. TCPIIP is the fundamental basis of the
Internet.

transport functions A set of functions, exported
by a mail transport service dynamic-link library,
that are used to transfer mail messages from one
location to another.

tree view control A hierarchical display of labeled
items. The top item in the hierarchy is called the
root. If an item has other items below it in the
hierarchy, it is also referred to as a parent. Items
subordinate to parents are called children. Child
items, when displayed, are indented below their
parent item. The hierarchy may be expanded or
collapsed at any level to display or hide child
items.

TrueType Fonts A scalable outline font whose
glyphs are stored as a collection of line and curve
commands, plus a collection of hints.

TSP A telephony service provider.

TSPI See Telephony Service Provider Interface.

U
UNC See universal naming convention.

Unicode A 16-bit character set capable of
encoding almost all known characters and is used
as a worldwide character-encoding standard.
Windows CE uses Unicode exclusively at the
system level.

up-down control 569

Uniform Resource Locator (URL)
The address of a resource on the Internet. URL
syntax is in the form protocol:llhostllocalinfo,
where protocol specifies the means of returning
the object, such as Hypertext Transfer Protocol
(HTTP) or File Transfer Protocol (FTP). Host
specifies the remote location where the object
resides, and localinfo is a string (often a file
name) passed to the protocol handler at the remote
location. Also called Universal Resource Locator,
Uniform Resource Identifier (URI).

Unimodem 1. The universal modem driver,
provided with Windows CE, that translates
Telephony Service Provider Interface (TSPI) calls
into AT commands, and sends the commands to a
virtual device driver that talks to the modem. 2. A
universal modem that supports standard modem
AT commands. Windows CE currently supports
only PCMCIA modems.

universal naming convention (UNC)
The system of naming files among computers on a
local area network so that a file has the same path
when accessed from any of the computers on the
network. For example, if the directory c: on
computer servern is shared under the name
pathdirs, a user on another computer would open
\servern.ext to access the file c:.ext on servern.

Universally Unique Identifier (UUID)
A 128-bit value that uniquely identifies objects
such as OLE servers, interfaces, manager entry­
point vectors, and client objects. Universally
unique identifiers are used in cross-process
communication, such as remote procedure calling
(RPC) and OLE. Also called globally unique
identifier (GUID).

up-down control See spin button.

570 URL

URL See Uniform Resource Locator.

user level driver See installable device driver.

user notification A warning to the user that a
timer event has occurred. The notification may
require the user to perform some action to handle
the notification or may generate a sound to alert
the user. For example, the system may display a
dialog box and playa sound or icon before a
scheduled appointment. The user would tap the
dialog box OK button to acknowledge the
appointment. User notifications are always
associated with an application.

UUID See universally unique identifier.

V
virtual key code A device-independent value that
identifies the purpose of a keystroke as interpreted
by the Windows keyboard device driver.

W
wait function Allows a thread to block its own
execution. Wait functions do not return until the
specified criteria have been met. The type of wait
function determines the set of criteria used. When
a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not
been met, the calling thread enters an efficient
wait state, consuming very little processor time
while waiting for the criteria to be met. Windows
CE supports only single object wait functions.

warm boot The restarting of a running computer
without firstturning off the power. Also called
soft boot, warm start. Compare cold boot.

wave file A file format in which Windows stores
sounds as waveforms. Such files have the
extension .wav.

Web Browser ActiveX control An ActiveX control
that programmers can use to add Internet
browsing capabilities to applications.

Win32 The application programming interface in
Windows 95, Windows NT, and Windows CE
that enables applications to use the 32-bit
instructions available on 80386 and higher
processors.

window A rectangular area on the screen where
an application displays output and receives user
input. On a Windows CE-based device that
supports a graphical display, a window, rather
than the screen itself, is the primary output device.
Windows are also the means by which
applications send and receive messages to the
operating system. Therefore, all Windows CE­
based applications-even those that lack a visual
interface-need to create and manage windows.

window class A set of attributes that Windows
CE uses as a template to create a window. Each
window class has a window procedure that
processes messages for all windows of that class.
Every window in a Windows CE-based
application is a member of a window class.

window control A predefined child window used
in conjunction with another application window
to provide a standardized way for users to make
selections, carry out commands, and perform
input and output tasks. Windows controls
typically send WM_COMMAND messages.

window coordinate The position of a window in
relation to the upper-left comer of the screen or,
for a child window, the upper-left comer of the
parent window's client area.

window handle A 32-bit value, assigned by
Windows CE, that uniquely identifies a window.

window procedure A function, called by the
operating system, that controls the appearance and
behavior of its associated windows. The
procedure receives and processes all messages to
these windows.

window style A named constant that defines an
aspect of the window's appearance and behavior
not specified by the window's class.

Windows CE Services The software supplied with
Windows CE that provides ready-made services
to aid the applications developer. These services
generally deal with interactions between the
desktop computer and the Windows CE-based
device, and include the Explorer window, file
filters, RAPI, ActiveSync, and the Applications
Manager.

Winlnet function Win32 Internet functions
(Winlnet) that assist you in adding Internet access
to your applications using Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP),
and gopher.

Zorder 571

Winsock Name commonly used for the Windows
Sockets programming interface, used to provide a
protocol independent transport interface.
Windows CE supports most of the common
Winsock functions.

x
X.509 An international message-handling
standard for message authentication and
encryption. X.509 is published by the Internal
Telecommunications Union (lTV), formerly the
International Telegraph and Telephone
Consultative Committee (CCITT) standards body.

XIP See execute in place.

z
Z order A stack of overlapping windows. Each
window has a unique position in the Z order.

Index

A
Accelerator tables

resource, creating 315
use described 314

Accessing
persistent storage 59
remote file systems 83

Action navigation control button 483
Actions, chorded 484
Active Desktop 395
Active Template Library (ATL) 31
Active window 122
ActiveSync

functions, interfaces 499
module described 343
Service Provider

implementing 344
registering 346

ActiveX
objects, automation through 30
servers, creating 31

AddAddressCard function 404
Adding

address cards 404
applications with Application Manager 362
bitmaps to image lists 226
colunms to list view control 235
custom menus to Windows CE Explorer 365
devices 21
tabs to tab control 211

Address cards
adding, removing 404
retrieving, modifying 405
use described 399

Allocation, memory 445
APIs

CEUTIL 529
clipboard 428
notification, HlPC use 429
RAPI See Remote application programming interface

(RAPI)
shell, Windows CE 26
Telephony See Telephony API (TAPI)
Projects, functions (table) 475
Win32 25

Application development
command bars 106
controls 108
creating icons, bitmaps 118
dialog boxes, application-defined 302
general design concepts 101
menus 105
providing user feedback 119
receiving user input 119
user interface design 10 1
using palettes 116
windows, dialog boxes 103

573

Application Manager described, registering applications 362
Application-defined dialog boxes 302
Applications

accelerator tables 314
adding, removing with Application Manager 362
button notification messages 269
dialog box creation 301
embedding Rich Ink control in 128
HlPC

bundled with 432
notifications 431

handwriting, support for 439
hibernation 458
HTML viewer control, interaction with (illustration) 196
Inbox 407
installation 349
mail, writing process 407
memory-efficient

monitoring RAM usage 449
tips for 459
writing 445

menu items, checked or unchecked 308
Palm PC

bundled with 476
enabling infrared transfer from within 492
guidelines 470
installation 471
writing input panel-aware for 489

remote function and execution 322
sample Windows-based 156
specifying database sort orders 70
Win32-based, porting to Windows CE 34
Windows CE-based, debugging 38-39
windows, overlapped 164

Apps navigation control button 483

574 Index

Architecture
communications (figure) 12
memory 9
Windows CE operating system, overview 3

Arranging items in list views 236
Arrow buttons 249
ASCII

accelerators 315
converting to Unicode, guidelines 37

Assigning image list to list view control 233
Attaching files to messages 414
Attachments, message 410
Attributes check-mark 308
Audience for Programmer's Guide xix
Authentication

certificate, described 90
serial-link communications protocols 14

Automation support 19

B
Bars

gripper 204
progress See Progress bars
scroll 291
status See Status bars

Batteries, managing power 441
Berkeley Sockets standard 85
Bitmaps

adding to image lists 226
as CE resources 313
color

values, palette indexes 140
support 116

creating 118
icons See Icons
use described 136
using 137

Blink time of carets, setting 311
Block mode versus streaming 322
Booting and rebooting 444
Boxes

check 273
group 274
list 289

Browser
Channel 394
HIPC 434

Brushes, using 143
Buffer, text 282

Buttons

c

arrow 249
check boxes 273
color messages 271
command 275
default message processing (table) 271
group boxes 274
Help, enabling, disenabling 203
messages to 270
notification messages 269
option 277
push 275
radio 277
selection 269
states, changes to 268
toolbar 216
use described 267
X, OK, application design guidelines 104

CAB files
application installation 349
creating 350

CAB Wizard 350
Calendar, month, controls

day states 260
described 258
styles 259
times in 260

Callback
items, masks 235
fields, data and time picker (DTP) 258
function

certificate authentication, return values 91
TAPI79

Cancel command and X button 104
Carets

displaying, using 310
hiding, destroying 311
using 126

Cascading menus 105
CDF See Channel Definition Format (CDF)
CEAppMgr .ini file

format 363
sample 364

CeAppMgr.exe 362
CeCreateProcess function 322
CeRapiInvoke function 322
Certificate authentication described 90
Certificate Authority (CA) 90

CEUTIL
API descriptions 529
examples of functions 368
use described 367

Challenge Authentication Protocol (CHAP) 14
Changing window styles 165
Channel Browser 394
Channel Definition Format (CDF)

mobile channel extension to 375
omissions 383
standard described 371
tags for Mobile Channels 380

Channels
Mobile See Mobile Channels
synchronization 394

Characters
limit of user-entered 284
messages 123
porting, character set considerations 37
retrieving 285

Check boxes
button type 267
general use 273
styles 274

Check state, buttons 268
Checking key states 124
Check mark attribute, menu item 308
Child

items in tree views 242
windows

as controls 161
described 171
relationships 160

Chorded actions 484
Class identifier (CLSID)

generating for file filter 335
subkeys 337

Classes
control styles 183
predefined window (table) 183
trackbar 239
tree view 241
up-down control 249

Client
desktop, described 344
Windows CE, described 345

Clipboard
API 428
functions (table) 500

Clipping
regions 146
use in Windows CE 146

Close command and X button 104
CLSID (class identifier) 335,337
Code, porting 34

Index 575

Color
16-color translation to grays (table) 118
formats supported 18
guidelines for application development 116
standard 16-color palette (table) 117

Colors
and palettes 139
button messages 271
changing in applications with custom draw 192
using 140

Columns
fitting to display area 309
in controls 235

COM
component object model described 27
functions 501
interface-based notification 328
ports, communication over 76
support 19
threading model 29

CombineRgn function, ways to use 145
Combo boxes, use described 287
Command bands controls

use described 206
using 208

Command bar controls
adding buttons, tool tips 199
creating 198
use described 197

Command bars
described 164
developing for applications 106
labels 107
menus 106, 307
use described 105

Command buttons 275
Command line

CAB Wizard 350
CeAppMgr.exe 362

Common controls
customizing appearance of 189
overview 186
styles 187

Common dialog boxes 303
Common Internet File System (CIFS) 83
Communicating over Internet 82
Communications

devices, HlPC 463
HlPC, software 465
infrared 13
interface described 6
module 12
network 75,13
Palm PC, hardware 476

576 Index

Communications (continued)
serial 13,75,525
types supported by Windows CE 75

Component Object Model (COM) See COM
Computers, connecting H/PC to other 461
Connecting

H/PC to other computers 461
to desktop, sending data 461

Connection Notification interfaces (table) 502
Connections

to desktop, notification 329
using deferred handshake 92

Connectivity
H/PC devices, software 463, 465
Palm PC, hardware 476

Contacts database
adding, removing address cards 404
elements of 399
functions (table) 503
opening 401
programming with 400
use described 399

Control
functions (table) 503
identifiers 185
styles 183

Controls
categories of, choosing for applications 108
columns 235
combo boxes 287
command bands 206
command bars 197
control functions (table) 503
custom 184
customizing appearance of 115
date and time picker (DTP) 253
described 17
determining behavior 190
edit

changing formatting rectangle 283
described 279
styles 280
working with text 282-283

file (table) 112
foundation 197
H/PC applications 438
header

advanced features 224
items, messages 223
size, position, styles 222
use described 221

HTML viewer, creating, using 193
informational (table) 113,253,518
items, subitems 234
labels 107

Controls (continued)
list boxes 289
list views 228
management (table) 110
messages 185
miscellaneous (table) 114
month calendar 258
notification messages 185
overview 181
paint cycles, draw stages 190
Palm PC

Voice Recorder 477
designing 496

predefined 183
progress bars 264
rebars 204
Richlnk 128
scale (table) 113
static 295
status bars 261-262
tab 209
tool tips 263
toolbars 214
trackbars 239
tree views 241
undoing operations 285
up-down, spin button 249
using in dialog boxes 302
window

classes 161
(table) 108

windows
overview 182
use described 182, 279

Windows, functions (table) 532
Conventions, document xxii
Converting ASCII-based code to Unicode, guidelines 37
Copyfilt file filter sample 339
Copying messages 413
CreateAddressBook function 401
Creating

accelerator tables, resources 315
bitmaps 137
CAB files 350
carets 310
command

band controls 206
bar combo box 287
bars 198

Contacts database 401
custom control 184
databases 63
icons 118,226
image lists 225
menus 310

Creating (continued)
Mobile Channels 373
palettes 141
pop-up windows 164
processes 44
property sheets 202
regions 145
timers 179
toolbars 214
trackbars 239
tree views 241
up-down controls 249
viewers 193
windows 161

Critical section objects, using 55
Cursors 225,312
Custom controls 115, 184
Custom draw services

changing fonts, colors 192
described 115, 189
drawing item yourself 192
processing NM_CUSTOMDRA W notification

messages 192
requesting item-specific notifications 191
responding to

notification messages 190
prepaint notification 191

Customizing control's appearance 115
Cut, copy, paste and clear operations 284

o
Data

files, mobile channel 383
link layer support (NDIS and PPP/SLIP) 94

Database management functions (table) 504
Databases

Contacts 399,503
creating, deleting 63
enumerating 64
getting information about 64
opening 66
reading records, properties 68
retrieving information 323
searching for records 71
sorting records 70
working with

records 66
Windows CE 62

Date and time picker (DTP) controls
callback fields 258
custom format strings 256
described 253
format characters 257
format strings 255
styles 254
user interface 255

Day states, month calendar 260
DB_CDOID_ notification messages 402
DCs See Device contexts (DCs)
Debugging

desktop emulation 38
just-in-time (JIT) 40
Windows CE, 38-39

Deferred handshakes 92
Defining

property sheet pages 202
rectangles 180

Deleting
databases 63
menus 310
windows 165

Design
HlPC user interface 433
Palm PC user interlace 493

Designing
application user interfaces 101
HlPC windows, dialog boxes 436
menus 105
windows, dialog boxes 103

Desktop
client described 344
emulation tool 38
HlPC 433

Index 577

metaphor for graphical user interfaces 103
Palm PC, working with 494

Desktop computers
connecting to, sending and receiving data 461
synchronizing data with Windows CE-based device 343
user interface considerations 37

Destroying
carets 311
menus 310
timers 179
windows 165

Developing menus 105
Development support, devices and applications 22

578 Index

Device contexts (DCs)
described, types supported 133
display 134
graphic objects, modes 135-136
memory 135
printer 134
saving, restoring 136
use described 18
using 134

Device
-dependent bitmaps (DDBs) 136
drivers, writing with Win32 API 2
-independent bitmaps (DIBs)

color values, palette indexes 140
use described 136
using 137

Devices
adding 21
color, Windows CE design model 116
H1PC

communication and connectivity 463
keyboard 438

PC Card serial, using 464
user input, design 119

Dialog boxes
application-defined 302
common, use described 303
designing 103
foregrounding 302
functions (table) 504
H1PC, designing 436
messages boxes 304
model and modeless 300
Palm PC, designing for 496
print common 303
procedures 300·
property sheets 201
supported styles (table) 303
System Out of Memory 457
system-defined window classes 161
types, descriptions (table) 301
use described 17,103,300

Disconnection notification at 330
Dispatching messages 174
Display device contexts 134
Display devices, color range of 139
Displaying

HTML documents 194
menus 310

DLLs
CEUTIL 367
Setup 361

Documentation
acknowledgements xxiii
typographical conventions xxii

Drag-and-drop tree view controls 248
Draw services, custom

changing fonts, colors 192
described 115,189
drawing items yourself 192
harnessing functionality 190
processing NM_CUSTOMDRA W notification

messages 192
requesting item-specific notifications 191
responding to prepaint notification 191

Draw stage of controls 190
Drawing

items in applications 192
text 153
with Rich Ink control 128
lines, shapes 147

Dummy file filters 341

E
Edit controls

changing formatting rectangle 283
described 279
password characters 286
selection fields 289
single-line, multiline 280
styles 280
tabs, margins 286
text

Editing

buffer 282
cut, copy, paste, clear operations 284
replacing 283
retrieving points, characters 285
scrolling in 285
undoing operations, wordwrap 285

address cards 405
labels in list view controls 238
tree view label 245

Ellipse function (illustration) 147
Enumerating databases 64
Error messages, application design guidelines 119
Error-handling

mail 414
RAPI 324

Errors, file filters, defined values 341
Event objects, using 48
Examples

channel script 388
item script 392

Exception-handling 26
Exit navigation control button 483

Explorer, adding custom menus to 365
Exporting defined 334
Extended list view styles 231

F
Features

File

for toolbars 219
graphics device interface (GDI) 18, 131
header control, advanced 224
list view, advanced 238
Windows CE (list) 3

controls 112, 221
formats

CEAppMgr.ini 363
.inf file 351

scale control functions (table) 505
system functions (table) 516

Files
attaching to messages 414
extension types, registering 334
filters See Filters
.inf

sample 359
use described 351

retrieving information about 323
types, registering 334

Filters
file

Finding

2bp sample registry entry 338
Copyfilt sample 339
dermed error values 341
described, formats 333
export, import 334
generating CLSID for 335
implementing dununy 341
implementing, using 339
registering 336
registering, generally 334
using remote API calls in 340

address cards 405
items in list views 236

Flags
mail 409
message 411
window style 165

Focus
state, buttons 268
window 122

Folders, message store 408

Fonts
and text 149
changing in

applications with custom draw 192
edit control 282

enumerating 152
font-family names (table) 149
stock values 151
TrueType, raster 150
using 150
Windows CE support 18

Foreground window 122

Index 579

Format strings, date and time picker (DTP) controls 255
Formats, file, supported by Windows CE 333
Formatting

text 153
rectangles, changing 283

Foundation controls 197
Functions

ActiveSync (table) 499
clipboard (table) 500
COM/OLE 501
Contacts database 503
control (table) 503
database management (table) 504
dialog box (table) 504
file

and scale control (table) 505
system (table) 516

GDI (table) 516
mail (table) 519
menu (table) 520
NLS 530
notification (table) 521
process and thread (table) 521
Projects API (table) 475
RAPI (table) 522
RAS (table) 522
registry (table) 522
resource (table) 524
serial communication (table) 525
shell (table) 525
Telephony API (TAPI) 526
transport service 526
userinput (table) 527
windows (table) 527
Windows

controls (table) 532
networking (table) 536
Sockets (table) 537

WinINET (table) 537

580 Index

G
GDI See Graphics device interface (GDI)
Graphic

modes of device contexts 136
objects, device contexts 135

Graphics and bitmaps, creating 118
Graphics device interface (GDI)

described 18
functions (table) 516
principle features of 131
unique features of 132

Graphics Windowing and Event Subsystem (GWES)
controls, menus, dialog boxes, resources 17
described 6, 15
GDI described 18
structure (figure) 16

Grayscale
conversion from 16-color (table) 118
palettes, using in application development 116

Gripper bars 204
Group boxes

button type 267
general use 274

GUID Generator tool 335
Guidelines

hardware control buttons, using 486
Palm PC application design 470

Guidgen.exe 335
GWES See Graphics Windowing and Event Subsystem 15

H
HIPC

applications bundled with 432
clipboard API 428
communications

and counectivity devices 463
and connectivity software 465

connecting
to desktop, sending and receiving data 461
to other computers 461

designing windows, dialog boxes 436
expanded screen 436
hardware 426
Help, providing 439
IR serial port, using 464
managing power 441
menus, controls, choosing 438
notification API 429
programming considerations 425,461
receiving user input 438

HIPC (continued)
serial port, using 463
shell 428
user

interface design 433
notifications 430

WM_HIBERNATE message 429
working with desktop, taskbar 433

Handheld PC See HIPC
Handles

device contexts 134
menu 308
multiple processes sharing 56
window 25

Handli.Jig interrupt 8
Handshake, using deferred 92
Handwriting recognition applications, support 439
Handwritten notes, signatures 128
Hardware

HlPC 426
navigation control buttons, working with 483
Palm PC communications, connectivity 476
porting considerations 34

Header controls
advanced features 224
items, messages 223
size, position, styles 222
use described 221

Headers message 410
Heaps

mail memory allocation 422
mail 408

Help
button support 203
HlPC, providing 439

Hibernation
of applications 458
state for applications 178

Hiding
caret 311
command bands control 208
windows 170

HKEY_CLASSES_ROO1\CLSID key, registering file
filters 337

Hot keys described, support 125
Hot tracking 229
Hover selection 229
HTML

displaying documents 194
viewer control, creating 193-194

H'ITP protocol, using 83

I/O operations and synchronization 58
ICeFileFilter interface summary (table) 515
ICeFileFilterOptions interface summary (table) 515
ICeFileFilterSite interface summary (table) 515
ICMP (ping) requests 82
Icons

creating 118, 226
message box styles supported (table) 305
use described 312
See also Images

IDccMan interface identifier 331
IDccMan::ShowCommSetting notification with 330
Identification, application messages 120
Identifiers

control 185
message 172
object 60

IDs, session, unique 421
Image lists

described 225
list view control 232
tab control 213
using 225-227

Images
background 229
bitmaps

color use 140
described 136
using 137,313

masked, nonmasks 225
using in image lists 226

Implementing
ActiveSynch Service Provider 344
file filters 339
sample transport service 421

Importing defined 334
Inbox

adding transport service for 417
application described 407
folder 408
mail allocation memory management 422
registry entries used by 418

.inf file 351, 359
Information, database, getting 64
Informational controls 113,253,518
Infrared

communications 13
Data Association (IrDA) protocols 77
sockets

sample server 87-88
use described 85
using 87

transfer, Palm PC applications 492

Initializing RAPI 319
Inking input 128
In-process servers 28
Input

inking 128
methods (1M)

installable 490
registry values 491

Palm PC
file 472
panel and methods 487

Index 581

types recognized by date and time picker (DTP)
controls 255

user 121-122
Installation of Palm PC applications 471
InstalledFilters subkey, registering file filters 336
Installing applications, general procedure 349
Interactive services, registering 416
Interfaces

ActiveSync 499
file filter 515
HlPC user 433
persistent object 30
shell component 26
Windows CE communications 6
Winsock 13

Internet
communicating over 82
controls 181

Interrupt handling 8
IR serial port, HlPC 464
IrSock (Infrared Sockets)

sample
client 88
server 87

use described 85
Item script

example 392
selection, Mobile Channels 386

Item states list view 232
Items

arranging, sorting, finding 236
described 234
header control 223
list view

callback 235
retrieving information about 234

menu See Menu items
tree view

hierarchy 241
parent, child 242

582 Index

J
Just-in-time (JIT) debugging 40

K
Kernel

described 7
memory architecture 9
Remote Memory Viewer 452
system services provided 5

Keyboard
accelerators 313
HlPC input support 438
messages, processing 125
user input 121, 19
Windows CE 37

Keys
checking state of 124
hot, support 125

Keystroke messages 123

L
Labels

controls 107
list views 238
pages 202
tree views 243, 245

Language, national, support 32
Libraries

Active Template (ATL) 31
Microsoft Foundation Classes (MFC) 31

Library transport service, registering 417
Line breaks, menu items 309
Lines and shapes, drawing 147
List boxes

described 289
styles 290

List views
advanced features 238
arranging, sorting, finding items 236
callback items, masks 235
extended styles 231
image lists 232
item

and subitem 234
position 237
retrieving information about 234
states 232

label editing 238
scroll position 237

List views (continued)
setting column display order 236
structure name changes 231
styles 229
use described 228
virtual 238

Lists
image, using 225-227
tree view image 247

Loading resources, function calls (table) 299
Localization support 22
Logical palettes 141
Low memory situations, handling 455

M
Macros, application, Palm PC 471
Mail

allocations, managing memory for 422
error-handling 414
flags 409
functions (table) 519
interface described 407
transport service See Transport services

Management controls (table) 110
Managing power 441
Mapping

fonts 150
memory 9
user-defined to system-defined settings 401

Margins in edit controls 286
Masks

callback 235
masked images 225

Memory
allocation

pages 445
thread local storage 448
types 446

architecture 9
device contexts 135
-efficient applications, writing 445
low, handling 455
managing for mail allocations 422
mapping, allocation 9
optimization in message store 408
persistent storage 11
physical usage 9
System Out of Memory dialog box 457
tips for efficient use 459
viewing in Remote Memory Viewer 450

Menu functions (table) 520

Menu items
described, choosing 307-308
making radio item 308
owner-drawn 309

Menus
command bar 106, 307
creating, displaying, destroying 310
custom, adding to Windows CE Explorer 365
designing 105
RlPC applications 438
implementation 17
Palm PC, designing 496
scrolling 309
use described 307

Message
attachments 410
boxes

described 103
foregrounding 305
supported styles (table) 305
system-defined window classes 161

flags, using 411
headers 410
heap, described 408
loops 156
queues 172
store

described 408
flags 409
inserting message into 412
retrieving messages from 411
updating 413

working with 411
Messages

and message queues 172
and window procedures 176
attaching files to 414
buttons

color 271
default processing (table) 271
notification (table) 269
to 270

control 185
copying, moving 413
data structure 409
deleted 408
guidelines for text 119
header control 223
inserting into message store folder 412
intermediate, processing 175
key and character 123
keyboard, processing 125
passing to windows 173

Messages (continued)
posting 173
receiving and dispatching 174
retrieving 411
sending 173, 413
stylus 127
tab control

processing 212
(table) 211

time fields treatment 260
timer 179
trackbar 240
tree view items 246
types of 176
use described 304
Windows CE processing 25
WM_HIBERNATE, RlPC 429

Microsoft Foundation Classes (MFC) 31
Microsoft Press support information xxi
Miscellaneous controls (table) 114
MLEs (multiline edit controls) 280
Mobile Channels

creating 373
data files 383
described, benefits 371
extension to CDF 375
script files

described 384,387
example 388
item script selection 386

scripting
CDF files for 380
CDF omissions 383
described 374,388

Index 583

extensions to standard tags, attributes 376
top-level channel URL 375

using Channel Browser 394
Modal dialog boxes 300
Modeless dialog boxes 300
Modems

general use 78
TAPIlUnimodem 15

Modes, block versus stream 322
Modifying

address cards 405
text 284

Modules, communications 12
Monitoring RAM usage in applications 449
Month calendar controls

day states 260
described 258
styles 259
times in 260

584 Index

Moving messages 413
Mutex objects, using 52
MyMail subkey registry values (table) 418

N
Name changes

list view structure 231
tab control structure 214

Names database 64
National language support (NLS) 22,32
Navigation control buttons, Palm PC 483
NDIS data link protocol 94
Network

communication 13
connections, managing with WNet 84
stack, schematic (figure) 80

Networking
Windows CE capabilities 80
Windows functions (table) 536

Networks
determining available resources, other information 84
security features 90
TCPIIP on wired and wireless 93

NLS functions 530
Notification

and unregistration procedures 328
at connection to desktop 329
at disconnection 330
COM interface-based 328
Connection interfaces (table) 502
functions (table) 521
H1PC user 430
Palm PC, receiving 482
registry-based 327
unregistration process 331
when establishing remote connection 330
with IDccMan::ShowCommSetting 330

Notification API 429
Notification messages

control 185

o

from buttons 269
H1PC application 431
NM_CUSTOMDRA W, processing 192
paint cycles, drawing states 190
property pages 201

Object identifier, use in address cards 400
Object store

Contacts database application 399
object identifiers 60
use described 59

Objects
ActiveX, automation through 30
critical section, using 55
event, using 48
mutex, using 52
persistent object state 30
synchronization, using 48

OK button, application design guidelines 104
OLE, COM/OLE functions supported (table) 501
Opening

Contacts database 401
databases 66

Operating system
architectural overview 3
kernel

described 7
system services of 5

modularity 3
processes and threads 7

Out-of-process servers 28
Output, Palm PC 472
Overlapped windows 164
Overlays, using in image lists 227
Owner-drawn menu items 309
Owner-owned windows 171

p
Packets described 80
Pages

labels 202
memory, allocation described 445
property sheet

active, inactive 203
described 201
setting position 204

setting sizes for scroll bar 294
Paint cycle of controls 190
Palettes

and colors 139
creating, using 141
GDI support 18
standard 16-color (table) 117
using for application development 116

PaImPC
application

bundled with 476
guidelines 470
installation 471

communications and connectivity hardware 476
designing user interface for

dialog box placement 496
generally 493
menus and controls 496
working with desktop, taskbar 494

file input, output 472
infrared transfer, enabling 492
input panel 487-488
installable input methods 490
navigation control buttons 483
notification system 482
programming for 469
shell 472, 481
user input, output 475
using hardware control buttons 486
virtual key mapping 483
Voice Recorder control 477

Parent
items in tree views 242
windows 171

Passwords, characters in edit controls 286
Paths, retrieving information 323
PC Card serial devices, using on H/PC 464
Pdir.cpp 324
Pens described, using 142
Persistent

memory storage 11
object state 30
storage 5, 59

Ping requests, sending 82
Pixels

arbitrary format support 138
Windows CE support 137

Platforms
configuration, considerations 26
device, supported by Windows CE 101
porting code between, API considerations 36

Pocket Internet Explorer 434
Point to Point (PPP) protocol 14
Pop-up

menus 105
windows 164

Porting
API considerations 36
character set considerations 37
hardware considerations 34
user interface considerations 37
Win32 applications to Windows CE 34

Ports
H/PC IR serial, using 464
H/PC serial, using 463

Position index, use in address cards 400
Positioning

caret 311
header control 222
list view items 237

Index 585

property sheet window in application 204
scroll bars 294
tabs in tab control 213
toolbars 216
trackbar tick marks 240
tree view items 246
up-down controls 250
windows 168

Posting messages 173
Power, managing 441-442
Point to Point (PPP)

protocol 14
and SLIP protocol 94

Predefined controls 183
Print common dialog boxes 303
Printers

device contexts 134
retrieving device data for 136

Printing
limitations 463
process 144
text 145
WYSIWYG output 144

Priority threads 44
Procedures

dialog boxes 300
window, and messages 176

Process functions (table) 521
Processes

Contacts database applications 400
creating, terminating 44
interprocess synchronization 56
synchronizing with threads 45
and threads 7
working with 43

Processing
accelerator keystrokes for a specified thread 314
button messages (table) 271
intermediate messages 175
keyboard messages 125
NM_CUSTOMDRA W notification messages 192

Program memory described 9
Programmer's Guide

document conventions xxii
organization xix
preface xix

586 Index

Programming
for Palm PC 469
HlPC considerations 425, 461
Win32, introduction to 24
Windows CE considerations 23
with Contacts database 400

Progress bars
control described 264
range, current position 264
styles 264

Properties database, reading 68
Property

sheets
pages 201-204
use described 103,201

tags, use in address cards 400
Protocols

data link: 94
HTIP Internet, using WinInet to access 83
Infrared Data Association (IrDA) 77
Secure Sockets Layer (SSL) 90
Server Message Block (SMB) 83
Winsock transport 85

Pull-down menus 105
Push buttons

button type 267
general use 275
styles 276

Push state, buttons 268
pwcHeaders (message headers) 410

Q
Queues, message 172

R
Radio buttons

button type 267
general use 277

Radio menu items, using 308
RAM

how applications use 449
persistent storage 11
role on Windows CE-based device 9

Range, current position of progress bars 264
RAPI See Remote application programming interface (RAPI)
RAS 94, 13, 522
Raster fonts 18, 150
Raster Operation (RaP) code types (table) 138
Read/write, read-only text 282
Rebar controls

styles 205
use described 204

Rebooting computer 444
Receiver's message queue 173
Receiving messages 174
Records

address cards 404
database

reading 68
searching for 71
sorting 70
working with 66

Rectangles, defining 180
Redirector, use described 83
Regions

clipping 146
creating 145

Registering
ActiveSynch Service Provider 346
applications with Application Manager 362
desktop applications

COM interface-based notification 328
registry-based notification 327

dummy file filters 342
file

extension types 334
filters 336
types, filters 334

HlPC applications for system event notification 431
HTML viewer control 194
llT debugger 40
transport services 416-417

Registry
entries

2bp sample registry editor 338
handling with CEUTIL helper utility 367
Inbox, transport services 418

functions (table) 522
1M values 491

Relationship, window, fundamentals 160
Releasing resources, function calls (table) 300
Remote

application programming interface See Remote
application programming interface (RAPI)

Access Server See Remote Access Server (RAS)
connections, notification when reestablishing 330
debugging, testing of Windows CE-based applications 38
function and application execution 322
Memory Viewer, using 450

Remote Access Service (RAS)
client support 13
described, Window CE support 94
using 95

Remote application programming interface (RAPI)
calls in file filter 340
described 319
error-handling 324

Remote application programming interface (RAPI)
(continued)

functions 319,522
initializing, terminating 319
sample program 324
using calls in file filter 340

Removing applications with Application Manager 362
Replacing text 283
Requests, scroll bars 294
Resetting computer 444
Resource functions (table) 524
Resources

described 299
font 152
functions-actions (table) 299
network, determining available with WNet 84
release functions (table) 300

Restoring device contexts 136
Retrieving

database, file information 323
menu handles 308
messages 411
path information 323
points, characters 285

Rich Ink control 128
Rocker navigation control button 483
ROP code types (table) 138

s
Samples

2bp file filter registry entry 338
CEAppMgr .ini file 364
.inf file 359
infrared socket

client 88
server 87

Palm PC virtual key mapping 483
RAPI program 324
Svcsampl transport service 421
Windows-based application 156

Scale controls, functions 113, 221,505
Scheduling threads 44
Screen

HlPC expanded 436
PalmPC 475

Script files, mobile channel 384
Scripted Mobile Channels 374
Scripting, description of process 388
Scripts

channel, selection 387
item, selection 386

Scroll bars
scroll boxes' position, range 294
parts of 293
styles 292
use described 291

Scroll position oflist view control 237
Scrolling

menus 105, 309
text in edit control 285

SDK, Windows CE 21
Searching

creating, displaying dialog box 300
for database records 71

Secure Sockets
implementing 92
Layer (SSL) security protocol 90
using deferred handshakes 92

Security network, features described 90
Selecting buttons 269
Selection fields in edit controls 289
Sending

messages 173,413
ping requests 82

Separators, menu item 309
Serial communications

functions (table) 525
implementing 77
process described 13, 76

Serial Line Interface (SLIP) 14
Serial port

HlPC 463
HlPC, built-in IR 464

Server Message Block (SMB) protocol 83
Servers

ActiveX, creating 31
in-process, out-of-process 28

Session IDs described 421

Index 587

Setting menu item's check mark attribute 308
Setup.dll 361
Shapes and lines, drawing 147
Shell

API, Windows CE 26
considerations 26
functions (table) 525
HlPC 428
Palm PC 472,481
Windows CE 21

Shortcut keys
application design guidelines 107
use described 313

Signatures, handwritten 128
Size and height, status bar controls 261

588 Index

Sizing
toolbars 216
windows 168

SLEs (single-line edit controls) 280
Slider controls 239
Smtp.dll 415-416
Sockets

Berkeley standard 85
described 85
infrared 85-88
secure 92
Windows, functions (table) 537

Software, HlPC communications, connectivity 465
Sort order, address book 400
Sorting

database records 70
items in list views 236

Spin button controls: 249
Stack, network 80
Starting processes 44
States

list view items 232
tab control item 214
too1bar button 218
tree view item 244

Static controls 295-296
Status bars

controls described 261
text 262

Stopping processes 44
Storage

persistent, accessing 59
structured 29

Streaming versus block mode 322
Streams, object storage 29
Strings

in toolbar controls 217
loading, support 313

Structured storage 29
Styles

check box 274
combo box 287
common control 187
date and time picker (DTP) controls 254
edit control 280
header control 222
list

box 290
view 229
view, extended 231

month calendar 259
progress bar 264
push button 276
radio button 277
rebar 205

Styles (continued)
scroll bar 292
static controls 296
tab controls 209, 211
toolbar button 217
toolbar 215
tree view 242
up-down controls 250
window nonclient area 167
window 165

Stylus
HlPC input support 438
inking input 128
messages 127
use described 19
user input 19, 126

Subitems described 234
Support

COM and OLE services 19
for device and application development 22
hot key 125
localization 22

Svcsampl sample transport service 421
Synchronization

and I/O operations 58
channel 394
interprocess 56
module, registry entries 346
objects, using 48

Synchronizing

T

access to shared variable 58
data between Windows CE and desktop computer 343
processes and threads 45

Tab controls
adding tabs to 211
display area 212
image lists 213
item states 214
messages (table) 211
processing messages 212
structure name changes 214
styles 209,211
tab size, position 213
use described 209
vertical, creating 212

Tab stops, margins 286
TAPI See Telephony API (TAPI)
TAPIlUnimodem support 15
Taskbar

HlPC 433
PalmPC 494

TCPIIP, wired and wireless networks 9
Telephony API (T API)

callback function 79
described 15, 526
functions (table) 526
making modem connections 78

Templates
Active Template Library (ATL) 31
dialog box 300
window classes 155

Terminating
processes 44
RAPI319

Testing
desktop emulation 38
Windows CE-based applications 38-39

Text
and fonts 149
boxes See Edit controls
buffer of edit control 282
cut, copy, paste, clear operations 284
drawing, formatting 153
edit control character limit 284
password characters 286
printing 145
read/write, read-only 282
replacing 283
retrieving points, characters 285
status bar 262
tab stops, margins 286
undoing operations 285
vertical, tab controls 212
wordwrap functions 285
working with 283

Thread functions (table) 521
Threads

and processes 7
changing priority level of 44
event objects 48
local storage 448
scheduling 44
synchronizing with processes 45
working with 43

Time in month calendar control 260
Time, and date picker (DTP) controls

callback fields 258
custom format strings 256
described 253
format characters 257
format strings 255
preset display formats 256
styles 254
user interface 255

Time-out values 179
Timers described, using 179

Toolbar controls
bitmap assignments 216
button states 218
displaying strings 217
features for 219
size, position 216
styles 215
toolbar button styles 217
toolbar buttons 216
use described 214

Toolbars
buttons

described 214
states 218
styles 217
using 216

command bars 164
transparent 219

Toolkits, Windows CE 27
Tools

desktop emulation 38
GUm Generator 335
remote debugging and testing 38

ToolTips
adding to command bar 199
described, using 263

Topmost and top-level windows 169
Touchscreen, user input 19
Trackbars

messages 240
use described 239

Transparent toolbars, creating 219
Transport services

adding for Inbox 417
functions (table) 526
implementing sample 421
library, registering 417
mail 415
registering 416
registry entries used by 418
working with client applications 415

Tree views
described 241
item

drag-and-drop operations 248
image lists 247
information 246
label editing 245
labels 243
position, selection 246
states 244

parent, child items 242
styles 242

TrueType font support 18, 149-150

Index 589

590 Index

Types
device contexts (table) 133
message 176

Typographical conventions xxii

u
Undoing operations 285
Unicode

format, RAPI 319
string support 313

Unique IDs described 421
Unregistering applications from notification 331
Unregistration procedures 328
Updating message store 41
Up-down controls 249-250
URL, top-level channel 375
User

v

input
described 121
devices, application design 119
functions (table) 527
WPC, receiving 438
Palm PC 475,496
stylus 126
system 122
Windows CE 19

interface design guide 101,493
limiting entered text 284

Variables, synchronizing access to shared 58
Viewer control, HTML 193
Viewing

memory usage in system 450
Mobile Channels with Channel Browser 394

Views
list

tree

advanced featnres 238
extended styles 231
item and subitem 234
item states 232
label editing 238
scroll position 237
structnre name changes 231
styles 229
use described 228

described 241
drag-and-drop operations 248
image lists 247
item information 246

Views (continued)
tree (continued)

item label 243, 245
item selection, states 244, 246
parent, child items 242
styles 242

Virtual
key mapping, Palm PC 483
list views 238

Virtual-key code keystrokes 315
Visibility of wIndows 170
Voice Recorder control for Palm PC 477

w
Wait functions, using 45
Win32

API
writing device drivers 21
described 25

porting applications to Windows CE 34
programming

environment 23
introduction to 24

Setup .infformat 351
Window classes

described 155
system-defined 161

Window
management 16
procedure described 176

Windowing and Event Subsystem 15
Windows

and messages 155
application 164
as input, output devices 155
caret use 126
client and nonclient areas 159
controls functions (table) 108,532
controls, overview 182,279
creating 161
designing 103
destroying 165
functions (table) 527
fundamentals 159
WPC

designing 436
desktop and 433

handles 25
making

dialog box on top 302
message box on top 305

message box styles supported (table) 305

Windows (continued)
networking functions (table) 536
owner-owned 171
parent, child 171
passing messages to 173
pop-ups 164
relationships

between active, focus and foreground 122
described 170

sample application 156
scroll bar requests 294
size, position 168
Sockets functions (table) 537
sockets 85
status 261
styles 165
topmost, top-level 169
visibility 170

WindowsCE
accessing persistent storage 59
Active Desktop 395
-based application

installation 349
memory allocation 446
support 19

buttons, check boxes 267
CD contents xxi
channel synchronization 394
client described 345
command bars, use described 106
connecting to desktop 461
controls

file and scale 221
informational 253
overview, Internet 181

custom draw service support 189
databases, working with 62
device contexts supported 133
dialog boxes, menus, resources 299
documentation acknowledgements xxiii
Explorer, adding custom menus to 365
graphics device interface (GDI) 131
Graphics Windowing and Event Subsystem (GWES) 6,

15
kernel 7
mail interface 407
memory allocation 445
modular design for easy application development 101
more information about xxii
network

communications 13
security features 90

networking capabilities 80
operating system overview 3

Index 591

Windows CE (continued)
PC Cards detection 464
persistent storage 5
printing

functionality 463
process 144

programming
considerations 23
tools 27

RAS
support 94
using 95

SDK, functions 21
serial communications 13
shell API 26
supported controls, menus, dialog boxes, resources 17
synchronizing data with desktop computer 343
toolkits 27
unique features not found in desktop platforms 132
user input 19
user interface design guide 101

WinInet
accessing HTIP Internet protocol 83
API described 82
functions (table) 537

Winsock
support 13
transport protocols 85
use described 85

Wizard, CAB 350
WNet

API described 83
managing network counections with 84

Wordwrap functions 285
Wrapper functions 401
WYSIWYG output, obtaining 144

x
X button, application design guidelines 104

Get
Vi , Cin the art of

JSUa ++.

U.S.A. $39.99
U.K. £37.49 [V.A.T. included]
Canada $53.99
ISBN 1-57231-510-5

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

For a solid guide to everything from Developer

Studio® fundamentals to compiler optimization,

this is the book you're searching for. It's a complete

look at Visual C-t+®-including the redesigned

development environment of version 5.0. You'll find

guidance on:

• Getting started in Developer Studio and using
AppWizard

• Working with the text editor, the graphics editor,
and the dialog editor

• Using ClassWizard for creating and maintaining
classes and using the Gallery to add ready-made
components

• Using and writing ActiveX® controls

• Using the debugger, optimizing your programs, and
customizing Developer Studio

Appendixes include tables of ASCII and ANSI charac­

ters, descriptions of MFC classes supported by

ClassWizard, and an introduction to Visual Basic®

Scripting Edition. The enclosed CD-ROM includes

sample code to help you get started quickly. In short,

this volume is invaluable for anyone who wants to

master the powerful development tools in Visual C-t+

version 5.

........ s~e,r Windows
l~ I applications

U.S.A. $39.99
U.K. £37.49 [V.A.T. included]
Canada $53.99
ISBN 1-57231-511-3

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at msoress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, caII1-800-MSPRESS in the
U.S. (in Canada, call1-800-26~-2222).

Prices and availability dates are subject to change.

MFCI
MFC DEVELOPER'S WORKSHOP is the first book to

provide developer-driven, task-oriented relieffor
those using the MFC library to program forWindows®.
It targets troublesome, frequently encountered
tasks-and provides solutions for them. In addition,
carefully selected articles from Microsoft's huge
Knowledge Base supplement the main text and
amplify the topics being discussed. Intended for
those with at least one year of experience developing
MFC applications for Windows, MFC DEVELOPER'S
WORKSHOP covers:

• The functionality of AppWizard and the modularity
of the class library

• Frame window architecture
• Document templates
• Dialog boxes-techniques for modifying their

attributes and behavior

• Using Windows common controls
• Using ActiveX® controls and implementing OLE

features such as drag and drop

• Resource-only DLLs and saving the state of MFC
applications

Build

U.S.A. $49.99
U.K. £46.99 [V.A.T. included]
canada $66.99
ISBN 1-57231-565-2

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call1-800-MSPRESS in the
U.S. (in canada, call 1-800-268-2222).

Prices and availability dates are subject to change.

Building on the solid achievements of three previous
editions, INSIDE VISUAL C++®, Fourth Edition, pre­
sents detailed and comprehensive coverage of Visual
C++ and the intricacies of 32-bit programming in
Windows®. This book is loaded with inside information
and real-world examples to help you fully exploit the
capabilities of Microsoft's powerful and complex
development tool.

Microsoft the power of
VisualC++

in both hands.
This four-volume collection is the complete printed product documentation for Microsoft Visual e++
version 5.0, the development system for Win32~ In book form, this information is portable, easy to access
and browse, and a comprehensive alternative to the substantial online help system in Visual e++. The
volumes are numbered as a set-but you can buy any or all of the volumes, any time you need them. So
take hold of all the power. Get the MICROSOFT VISUAL e++ 5.0 PROGRAMMER'S REFERENCE SET.

Microsoft" Visual C-I+" MFC
Library Reference, Part 1
U.S.A. $39.99
UK £36.99
Canada $53.99
ISBN 1-57231-518-0

Microsoft" Visual C-I+" MFC
Library Reference, Part 2
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-57231-519-9

Microsoft" Visual C++"
Run-Time Library Reference
U.S.A. $39.99
U.K. £36.99
Canada $53.99
ISBN 1-5723.1-520-2

Microsoft" Visual C++"
Language Reference
U.S.A. $29.99
U.K. £27.49
Canada $39.99
ISBN 1-57231-521-0

Microsoft Press" products are available worldwide wherever quality computer books are sold. For more information, contact your book or computer retailer,
software reseller, or local Microsoft Sales Office, or visit our Web site at mspress microsoft com. To locate your nearest source for Microsoft Press products,
or to order directly, call1-800-MSPRESS in the U.S. (in Canada, call 1-800-268-2222). .

Prices and availability dates are subject to change.

CE
Programmer's Guide

Apply Windows development to a
new world of computing appliances.
Working with Microsoft Windows CE, Win32® developers
everywhere can create applications that will run on a
new range of emerging hardware-from highly portable and
personal computing devices such as handheld PCs, smart
phones, and game consoles to office equipment and factory automation
systems. Devices running Windows CE can communicate with each
other, share information with PCs running Windows, and connect to
the Internet. The flexible, modular design of Windows CE lets you
optimize the operating system for a specific device-and offers the
world's most popular, time-tested , user-friendly way to work with a
computer.

In short, boundless new opportunities start with the Windows CE
operating system. And this book is your most important guide to
building Win32 applications for Windows CEo

MICROSOFT WINDOWS CE PROGRAMMER'S GUIDE-here's what's in it
for you:
• It's the only printed version of the online documentation from the

Windows CE SDK. It's a handy, single volume that lets you use the
documentation anywhere you go.

• You'll see how your expertise in developing for Windows applies
directly to developing for Windows CE, using CjC++ and a subset
of the Win32 API.

• You can use this book to build, debug, and run Windows CE
applications for the handheld PC on your desktop computer-you
don't have to own any new equipment to get started.

• You can do a thorough evaluation of Windows CE for the handheld
PC without wading through the entire SDK.

mspress.microsoft.com
U.S.A.
U.K.
Canada

Valuable tools and
information on CD-ROM!

• Windows CE 2.0 Software
Development Kit (SDK)

• Online, searchable version of
the Windows CE Win32 API
reference

• Handheld PC emu lation
environment and tools

• Microsoft Foundation Classes
(MFC) for Windows CE reference

The new world of Windows CE:
• Highly portable and personal

computing devices

• Game consoles

• Smart phones

• TV set-top boxes

• DVD players and home
app liances

• Process monitoring devices

• Control , instrumentation, and
data col lection devices

• Office equipment and point-of­
sale devices

$49.99
£46.99 [VAT.included]

$69.99
ISBN 1-57231 -643 -8 [Recommended]

Operating Systems/ Microsoft Windows CE

7 9 4 9 781572 316430 Microsoft Press

