eeeeeeeeeeeeeeeee
g-\ Y
) &
Microso ft* Microso 'f'l
Windows™CE Windows'CE
D-ROM
I%cluged i

Included

The open, scalable Windows platform for the newest devices in:
® Communications @ Entertainment @ Mobile Computing

Programmer’s Guide

Microsoft Press

Microsoft

Windows' CE
Programmer’s

Guide

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, WA 98052-6399

Copyright © 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Windows CE Programmer’s Guide / Microsoft Corporation.
p. cm.
Includes index.
ISBN 1-57231-643-8
1. Microsoft Windows (Computer file) 2. Operating systems
(Computers) 1. Microsoft Corporation.
QA76.76.063M524135 1998
005.26'8--dc21 : 97-43824
CIP

Printed and bound in the United States of America.
123456789 QMQM 321098

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at

mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Microsoft, MS,
MS-DOS, Visual Basic, Visual C++, Win32, Windows, and Windows NT are registered trademarks
and Visual J++ and Visual Studio are trademarks of Microsoft Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Managing Editor: Ava Chen

Writers: Jason Black, Cheri Christensen, Jon Christiansen, Tom Clark, Kurt Ding, John Dohlen,
Peggi Goodwin, John Murray, Guy Smith, Waudean Thomas, Nuan Wen

Editors: Laurell Haapanen, Jeanne Hunt

Production: Teresa Atkinson, Troy Gudmundson, Bruce Vanderpool

For Microsoft Press:
Acquisitions Editor: Casey Doyle
Project Editor: Saul Candib

Contents

Preface xix

How This Book Is Organized xix

About the CD xxi

Microsoft Press Support Information xxi
Document Conventions xxii

For More Information xxii
Acknowledgments xxiii

Part1 Introduction to Windows CE Programming

Chapter 1 Overview of the Windows CE Operating System 3
Summary of the Windows CE Operating System 5
Kernel 7

Processes and Threads 7

Interrupt Handling 8

Memory Architecture 9

Physical Memory Usage 9

Persistent Storage 11
Communications Interface 12

Serial Communications 13

Network Communications 13

Telephony Application Programming Interface 15
Graphics, Windowing, and Event Subsystem 15

Window Management 16

Controls, Menus, Dialog Boxes, and Resources 17

Graphics Device Interface 18

User Input 19
Additional Support for Applications 19

Chapter 2 Programming Considerations 23
Introduction to Win32 Programming 24

Win32 Application Programming Interface 25
Windows CE Platform and Shell Considerations 26

iv Contents

Programming Tools 27
Windows CE Toolkits 27
Component Object Model 27
COM Threading Model 29
Structured Storage 29
Persistent Object State 30
Automation Through ActiveX Objects 30
Microsoft Foundation Classes 31
Active Template Library 31
National Language Support 32
Porting Win32-Based Applications to Windows CE 34
Hardware Considerations 34
API Considerations 36
Character Set Considerations 37
User Interface Considerations 37
Debugging and Testing Windows CE-Based Applications 38
Desktop Emulation Debugging and Testing 38
Remote Debugging and Testing 38
Non-Standard Debugging and Testing 39

Part2 Core Services

Chapter 3 Working with Processes and Threads 43
Creating and Terminating a Process 44
Scheduling Threads 44
Synchronizing Processes and Threads 45
Using Wait Functions 45 '
Using Synchronization Objects 48
Event Objects 48
Mutex Objects 52
Critical Section Objects 55
Interprocess Synchronization 56
Synchronization and Device /O 58
Synchronizing Access to a Shared Variable 58

Contents

Chapter 4 Accessing Persistent Storage 59
Object Identifiers 60
Working with Windows CE Databases 62
Creating and Deleting Databases 63
Getting Information About a Database 64
Enumerating Databases 64
Opening a Database 66
Working with Database Records 66
Reading Records and Properties 68
Sorting Records 70
Searching for Records 71

Chapter 5 Using Communications 75
Serial Communications 76
Implementing Serial Communications 77
Using a Modem 78
TAPI Callback Function 79
Windows CE Networking 80
Sending an ICMP Request 82
Communicating over the Internet 82
Using WinlInet to Access HTTP 83
Accessing Remote File Systems 83
Managing Network Connections with WNet 84
Determining Available Network Resources 84
Windows Sockets 85
Infrared Sockets 85
Using Infrared Sockets 87
Sample Infrared Socket Server 87
Sample Infrared Socket Client 88
Network Security Features 90
Certificate Authentication 90
Implementing a Secure Socket 92
Using a Deferred Handshake 92
TCP/IP 93
Data Link Protocols 94
Remote Access Service 94
Using RAS 95

vi Contents

Part3 User Interface Services

Chapter 6 Designing a User Interface for Windows CE 101
Designing Windows and Dialog Boxes 103

Developing Menus 105

Working with Command Bars 106

Choosing Controls 108

Using Color and Grayscale Palettes 116

Creating Icons and Bitmaps 118

Receiving User Input 119

Providing User Feedback 119

Chapter 7 User Input 121
Keyboard Input 121
User Input System 122
Key and Character Messages 123
Checking Other Keys 124
Hot Key Support 125
Processing Keyboard Messages 125
Using the Caret 126
Stylus Input 126
Stylus Messages 127
Inking Input 128

Chapter 8 Graphics Device Interface 131
Unique Features of the Windows CE GDI 132
Device Contexts 133
Using Device Contexts 134
Display Device Contexts 134
Printer Device Contexts 134
Memory Device Contexts 135
Graphic Objects 135
Saving and Restoring Device Contexts 136
Graphic Modes 136
Bitmaps 136
Using Bitmaps 137
Colors and Palettes 139
Using Colors 140
Creating and Using Palettes 141

Contents

vii

Pens 142
Brushes 143
Printing 144

Regions 145
Clipping Regions 146

Shapes and Lines 147

Text and Fonts 149
TrueType and Raster Fonts 150
Using Fonts 150
Enumerating Fonts 152
Formatting Text 153
Drawing Text 153

Chapter9 Windows 155
Sample Windows-Based Application 156
Window Fundamentals 159
Window Relationship Fundamentals 160
System-Defined Window Classes 161
Creating Windows 161
Application Windows 164
Destroying Windows 165
Window Styles 165
Nonclient Area Styles 167
Window Size and Position 168
Topmost Windows 169
Window Visibility 170
Window Relationships 170
Parent and Child Windows 171
Owner-Owned Windows 171
Messages and Message Queues 172
Message Queues 173
Posting Messages 173
Sending Messages 173
Receiving and Dispatching Messages 174
Processing Intermediate Messages 175
Messages and the Window Procedure 176
Message Types 176
Timers 179
Rectangles 180

viii Contents

Chapter 10 Overview of Controls 181
Overview of Windows Controls 182
Predefined Controls 183
Custom Controls 184
Control Notification Messages 185
Control Messages 185
Overview of Common Controls 186
Common Control Styles 187
Custom Draw Services 189
Paint Cycles, Drawing Stages, and Notification Messages 190
Using Custom Draw Services 190
Responding to the Prepaint Notification 191
Requesting Item-Specific Notifications 191
Drawing the Item 192
Changing Fonts and Colors 192
Sample Custom Draw Function 192
HTML Viewer Control 193

Chapter 11 Foundation Controls 197
Command Bars 197
Using Command Bars 198
Property Sheets 201
Property Sheet Pages 201
Using Property Sheets 202
Active and Inactive Property Sheet Pages 203
Rebars 204
Rebar Styles 205
Command Bands 206
Using Command Bands 208
Tab Controls 209
Tab Control Styles 209
Extended Tab Control Styles 211
Using Tab Controls 211
Tab Control Display Area 212
Tab Control Messages 212
Tab Control Image Lists 213
Tab Size and Position 213
Tab Control Structures 214
Tab Control Item States 214

Contents

Toolbars 214
Toolbar Styles 215
Toolbar Size and Position 216
Toolbar Buttons 216
Toolbar Button Styles 217
Toolbar Button States 218
Toolbar Features 219

Chapter 12 File and Scale Controls 221
Header Controls 221

Header Control Styles 222

Header Control Size and Position 222

Header Control Items 223

Header Control Messages 223

Advanced Header Control Features 224
Image Lists 225

Using Image Lists 225

Using Images in Image Lists 226

Using Overlays in Image Lists 227

List Views 228

List View Styles 229

Extended List View Styles 231

List View Structures 231

List View Item States 232

List View Image Lists 232

Items and Subitems 234

Callback Items and the Callback Mask 235

Columns 235

Arranging, Sorting, and Finding List Views 236

List View Item Position 237

Scroll Position 237

Editing Labels 238

Advanced List View Features 238
Trackbars 239

Trackbar Messages 240

Tree Views 241
Tree View Styles 242
Parent and Child Items 242
Item Labels 243
Tree View Item States 244
Editing Tree View Labels 245
Tree View Item Position 246
Item Selection 246
Item Information 246
Tree View Image Lists 247
Drag-and-Drop Operations 248
Up-Down Controls 249
Up-Down Control Styles 250
Position and Acceleration 250

Chapter 13 Informational Controls 253
Date and Time Picker Controls 253
Date and Time Picker Styles 254
Date and Time Picker User Interface 255
Format Strings 255
Preset DTP Display Formats 256
Custom Format Strings 256
Format Characters 257
Callback Fields 258
Month Calendar Controls 258
Month Calendar Styles 259
Day States 260
Times 260
Status Bars 261
Size and Height 261
Multiple-Part Status Bars 262
Status Bar Text 262
ToolTips 263
Progress Bars 264
Progress Bar Styles 264
Range and Current Position 264

Contents

xi

Chapter 14 Buttons 267
Button States 268
Changes to a Button State 268
Selecting a Button 269
Notification Messages from Buttons 269
Messages to Buttons 270
Button Color Messages 271
Button Default Message Processing 271
Check Boxes 273
Check Box Styles 274
Group Boxes 274
Push Buttons 275
Push Button Styles 276
Owner-Drawn Push Buttons 276
Radio Buttons 277
Radio Button Styles 277

Chapter 15 Window Controls 279
Edit Controls 279
Edit Control Styles 280
Text Buffer 282
Changing the Formatting Rectangle 283
Working with Text 283
Replacing Text 283
Cut, Copy, Paste, and Clear Operations 284
Modifying Text 284
Limiting User-Entered Text 284
Wordwrap Functions 285
Retrieving Points and Characters 285
Undoing Text Operations 285
Scrolling Text in an Edit Control 285
Tab Stops and Margins 286
Password Characters 286
Combo Boxes 287
Combo Box Styles 287
Edit Control Selection Fields 289
List Boxes 289
List Box Styles 290

Xii Contents

Scroll Bars 291
Scroll Bar Styles 292
Parts of a Scroll Bar 293
Scroll Box Position and Scrolling Range 294
Scroll Bar Requests 294
Static Controls 295
Static Control Styles 296

Chapter 16 Dialog Boxes, Menus, and Other Resources 299
Dialog Boxes 300
Application-Defined Dialog Boxes 302
Common Dialog Boxes 303
Message Boxes 304
Menus 306
Command Bar Menus 307
Menu Items 308
Owner-Drawn Menu Items 309
Menu Item Separators and Line Breaks 309
Scrolling Menus 309
Creating, Displaying, and Destroying Menus 310
Carets 310
Cursors 312
Icons 312
Bitmaps, Images, and Strings 313
Keyboard Accelerators 313
Accelerator Tables 314
Creating an Accelerator Table Resource 315

Part4 Connection Services

Chapter 17 Invoking Functions from a Desktop Computer 319

Initializing and Terminating Remote Application Programming Interface 319
Executing Functions and Applications 322

Retrieving Information 323

Handling RAPI Errors 324

Sample RAPI Program 324

Contents

Xiii

Chapter 18 Receiving Connection Notification 327
Registry-Based Notification 327
COM Interface-Based Notification 328
Notification and Unregistration Procedures 328
Notification when Reestablishing a Remote Connection 330
Unregistering an Application 331
Registering the IDccMan Class Identifier 331

Chapter 19 Transferring Files 333

Registering File Types and File Filters 334
Registering a File Extension Type 334
Generating a Class Identifier for a File Filter 335
Registering a File Filter 336
Sample File Filter Registry Entry 338

Implementing and Using a File Filter 339
Using Remote API Calls in a File Filter 341
Filter-Defined Error Values 341

Implementing a Dummy File Filter 341

Chapter 20 Synchronizing Data 343
Design Considerations 344
ActiveSync Service Provider 344
Desktop Client 344
Windows CE Client 345
Registering the ActiveSync Service Provider 346
Registry Settings for a Desktop Computer 346
Registry Settings for Windows CE-Based Platforms 347

Chapter 21 Installing and Managing Applications 349
General Procedure for Application Installation 349
CAB Wizard 350
inf File 351
Sample .inf File 359
Setup.dll File 361
Application Manager 362
.ini File Format for Application Manager 363
Sample Application Manager .ini File 364
Troubleshooting Application Installation 364

xiv Contents

Adding Custom Menus to Windows CE Explorer 365
CEUTIL: Helper DLL for Windows CE Services 367
Desktop Registry Structure 367
Examples of CEUTIL Functions 368

Part5 Web Services

Chapter 22 Mobile Channels 371
Creating Mobile Channels 373
Scripted Mobile Channels 374
Mobile Channels Extension to CDF 375
Top-level Channel URL 375
Extensions to Standard Tags and Attributes 376
CDF Tags for Mobile Channels 380
CDF Omissions 383
Mobile Channels Data Files 383
Mobile Channels Script Files 384
Item Script Selection 386
Channel Script Selection 387
Scripting 388
Example Channel Script 388
Example Item Script 392
Mobile Channels User Interface Elements 394
Channel Synchronization 394
Channel Browser 394
Active Desktop 395

Part 6 Interfaces to Bundled Applications

Chapter 23 Contacts Database 399
Programming with the Contacts Database 400
Opening the Contacts Database 401
Adding and Removing Address Cards 404
Retrieving and Modifying Address Cards 405

Contents

Chapter 24 Inbox 407

Message Heap 408

Message Store 408

Mail Messages 409
Message Header 410
Message Attachments 410

Working with Mail Messages 411
Retrieving Mail Messages 411

Using Message Flags 411

Inserting Mail Messages 412
Sending Mail Messages 413
Updating the Message Store 413
Moving and Copying Mail Messages 413
Attaching Files to Mail Messages 414
Handling Mail Errors 414

Chapter 25 Mail Transport Service 415
Registering a Transport Service 416

Registering a Transport Service Library 417

Adding a Transport Service for Inbox 417

Registry Entries Used by Inbox and the Transport Service 418
Implementing a Sample Transport Service 421

Managing Memory for Mail Allocations 422

Part7 Handheld PC

Chapter 26 Programming for an H/PC 425
Hardware for an H/PC 426
Using Flash Cards on an H/PC 427
H/PC Shell 428
Clipboard API 428
WM_HIBERNATE Message 429
Notification API 429
User Notifications 430
Application Notifications 431
Applications Bundled with an H/PC 432

Xvi Contents

Chapter 27 Designing a User Interface for an H/PC 433
Working with the Desktop and Taskbar 433
Designing Windows and Dialog Boxes 436

Choosing Menus and Controls 438

Receiving User Input for an H/PC 438

Providing Help 439

Chapter 28 Managing Power 441
Power Management States 442
Resuming Operation, Rebooting, and Resetting 444

Chapter 29 Writing Memory-Efficient Applications 445
Memory Pages 445
Types of Memory Allocation 446
Thread Local Storage 448
Monitoring How an Application Uses RAM 449
Using the Remote Memory Viewer 450
Process Information Window 450
Kernel Summary 452
Process Memory Map 454
Handling Low Memory Situations 455
System Out of Memory Dialog Box 457
Application Hibernation 458
Tips for Efficient Memory Use 459

Chapter 30 Connecting to the Desktop and Sending and Receiving Data 461
Connecting to Other Computers 461
Communications and Connectivity Hardware for an H/PC 463
Using the Built-In Serial Port 463
Using the Built-In Infrared Serial Port 464
Using a PC Card Serial Device 464
Communication and Connectivity Software for an H/PC 465

Contents

Xvii

Part8 PalmPC

Part9 Appendix

Chapter 31 Programming for a Paim PC 469
Application Guidelines 470
Installing Applications 471
Interfacing with the Shell 472
File Input and Output 472

Using Flash Cards on a Palm PC 474
User Input and Output 475
Communications and Connectivity Hardware for a Palm PC 476
Applications Bundled with a Palm PC 476
Web Services for a Palm PC 477
Voice Recorder Control for a Palm PC 477

Chapter 32 Palm PC Shell 481
Receiving Notifications 482
Navigation Control Buttons 483
Using Hardware Control Buttons 486
Input Panel and Input Methods 487
Input Panel 488
Programming with an Input Panel 489
Installable Input Methods 490
Input Methods Registry Values 491
Enabling Infrared Transfer from within an Application 492

Chapter 33 Designing a User Interface for a Paim PC 493
Design Guidelines 493

Working with the Desktop and Taskbar 494

Designing and Placing Dialog Boxes 496

Choosing Menus and Controls 496

Receiving User Input for a Palm PC 496

Appendix A Lists of Functions and Interfaces 499
ActiveSync Functions 499

ActiveSync Interfaces 499

Clipboard Functions 500

COM/OLE Functions 501

Connection Notification Interfaces 502

xviii Contents

Glossary 539

Index 573

Contacts Database Functions 503
Control Functions 503

Database Management Functions 504
Dialog Box Functions 504

File and Scale Control Functions 505
File Filter Interfaces 515

File System Functions 516

GDI Functions 516

Informational Controls Functions 518
Infrared Sockets Functions 519

Mail Functions 519

Menu Functions 520

Notification Functions 521

Process and Thread Functions 521
Registry Functions 522

RAS Functions 522

RAPI Functions 522

Resource Functions 524

Serial Communications Functions 525
Shell Functions 525

TAPI Functions 526

Transport Service Functions 526
User Input Functions 527

Windows Functions 527

CEUTIL Functions 529

NLS Functions 530

Windows Controls Functions 532
Windows Networking Functions 536
Windows Sockets Functions 537
Winlnet Functions 537

Xix

Preface

The Windows CE Programmer’s Guide provides all the information you need
to write applications for Windows CE-based devices using the Microsofte
Windowse CE application programming interface (API).

The Windows CE Programmer’s Guide is written for you, if you are one of
the following:

= A Win32 developer

Including a Win32, independent software vendor (ISV), an independent
hardware vendor (IHV), a service provider developer, or a corporate
MIS developer. You should be proficient in basic Win32 programming.
Additionally, you should understand the essentials of the Windows
message-driven programming model, and the most widely-used features
of the Win32 APL

= An embedded developer

Including a developer experienced in embedded development and 32-bit
embedded operating systems. You should have significant experience
using C or C++ and object-oriented methods.

= An internal developer or an original equipment manufacturer (OEM)

Including an internal developer who is responsible for creating internal
build tools, or an OEM who ports Windows CE to hardware platforms.

How This Book Is Organized

The Windows CE Programmer’s Guide contains the following chapters:
Part 1 Introduction to Windows CE Programming

Chapter 1 through Chapter 3 describe the four primary modules of the Windows
CE operating system: the kernel, the file system, the graphics windowing and
events subsystem (GWES), and the communications interface. They also discuss
what you should consider as you develop an application for Windows CE.

XX

Windows CE Programmer’s Guide

Part 2 Core Services

Chapter 4 and Chapter 5 discuss how Windows CE manages threads, memory,
and resources. They also describe the Windows CE communication interface
and information processing.

Part 3 User Interface Services

Chapter 6 through Chapter 16 provide the information you need to create a
graphical user interface. They discuss windows, controls, dialog boxes, menus,
and other resources, and offer tips for designing an effective user interface.

Part 4 Connection Services

Chapter 17 through Chapter 21 describe how Windows CE establishes a serial
connection with a Windows-based desktop computer to transfer files, debug
remotely, and synchronize databases on the two computers.

Part 5 Web Services

Chapter 22 introduces Mobile Channels technology and describes how to create a
mobile channel.

Part 6 Interfaces to Bundled Applications

Chapter 23 through Chapter 25 discuss how to implement Contacts, Inbox, and
Mail Transport Service functionality in your applications.

Part 7 Handheld PC

Chapter 26 through Chapter 30 describe programming information specific to the
H/PC, such as managing power and sending and receiving data.

Part 8 Palm PC

Chapter 31 through Chapter 33 describe programming information specific to the
Palm PC, such as working with the Palm PC shell.

Part 9 Appendix
The Appendix lists functions and interfaces supported by Windows CE.
Glossary

Preface xxi

About the CD

The disc contains the following:

= Windows CE Emulation Software Development Kit (SDK), version 2.0
= Online Help version of this book
= Windows CE Programmer’s Reference

Including documentation for all the Windows CE functions, structures,
messages, and macros

= Windows CE Device Driver Kit (DDK)
= Online Help version of the documentation for the Windows CE DDK
= Documentation for the Microsoft Platform SDK in online Help format

Including complete Win32 documentation

» To install the online Help or Windows CE Emulation Platform SDK
1. Run Setup.exe from the root directory on the CD.
2. Follow the instructions in each dialog box.

3. On the Setup Type dialog box, choose Custom installation and check only
Online help files to install just the documentation.

—Or—
Install the complete Emulation Platform SDK.

Microsoft Press Support Information

Every effort has been made to ensure the accuracy of this book and the contents
of the companion disc. Microsoft Press provides corrections for books through
the World Wide Web at http://mspress.microsoft.com/mspress/support/.

If you have comments, questions, or ideas regarding the book or companion disc,
send them by e-mail to Microsoft:

MSPINPUT @MICROSOFT.COM
or by postal mail to:

Microsoft Press

Attn: Windows CE Programmer’s Guide Editor
One Microsoft Way

Redmond, WA 98052-6399

Product support is not offered through these addresses.

xxii Windows CE Programmer’s Guide

Document Conventions

The following typographical conventions are used throughout this book.

Convention

Description

monospace

Bold

Italic

UPPERCASE

)

For More Information

Indicates source code, structure syntax, examples, user input, and
program output. For example,

ptbl->SortTable(pSort, TBL_BATCH);

Indicates an interface, method, function, structure, macro, or other
keyword in Windows CE, the Microsoft® Windows® operating
system, C, or C++. For example, CommandBar_Height is a
function. Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Indicates placeholders, most often method or function parameters;
these placeholders stand for information that must be supplied by
the implementation or the user. For example, IpButtons is a function
parameter. Also indicates new terms that are defined in the glossary.

Indicates flags, return values, messages, and properties. For
example, WSAEFAULT is a Windows Sockets error value,
MF_CHECKED is a flag, and TB_ADDBUTTONS is a message.
In addition, uppercase letters indicate segment names, registers,
and terms used at the operating-system command level.

Indicate one or more parameters that you pass to a function,
in syntax.

= Windows CE development

http://microsoft.com/windowsce/

= Windows CE logo requirements

http://microsoft.com/windowsce/logo/

= Windows CE operating system

Inside Windows CE by John Murray, available in the spring of 1998

= Customizing the Windows CE operating system
Windows CE Embedded Toolkit for Visual C++ 5.0 documentation
= The Microsoft Windows programming environment

The Microsoft Platform Software Development Kit and Programming
Windows by Charles Petzold

Preface Xxiii

Acknowledgments

The Windows CE developer documentation team would like to thank the
Windows CE program managers and developers and the Windows CE
product support specialists for their support.

PART 1

Introduction to Windows
CE Programming

Chapter 1 Overview of the Windows CE Operating System 3
Summary of the Windows CE Operating System 5

Kernel 7

Persistent Storage 11

Communications Interface 12

Graphics, Windowing, and Event Subsystem 15

Additional Support for Applications 19

Chapter 2 Programming Considerations 23

Introduction to Win32 Programming 24

Windows CE Platform and Shell Considerations 26
Programming Tools 27

Porting Win32-Based Applications to Windows CE 34
Debugging and Testing Windows CE-Based Applications 38

CHAPTER

1

Overview of the Windows CE
Operating System

Microsofte Windowse CE is a compact, highly efficient, multiplatform operating
system. It is not a reduced version of Microsofte Windowse 95, but was designed
from the ground up as a multithreaded, fully preemptive, multitasking operating
system for platforms with limited resources. Its modular design allows it to be
customized for products ranging from consumer electronic devices to specialized
industrial controllers.

General Features of Windows CE

Provides you with a modular operating system that you can customize for
specific products. The basic core of the operating system requires less than
200 KB of ROM.

Provides interrupt delivery, prioritizing, and servicing.
Runs on a wide variety of platforms.

Supports more than 1,000 of the most frequently used Microsofte Win32e
functions, along with familiar development models and tools.

Supports a variety of user-interface hardware, including touch screen and
color displays with up to 32-bits-per-pixel color depth.

Supports a variety of serial and network communication technologies.
Supports Mobile Channels to provide Web services for Windows CE users.

Supports COM/OLE, Automation, and other advanced methods of
interprocess communication.

4

Windows CE Programmer’s Guide

Windows CE has four primary modules or groups of modules.

= The kernel supports basic services, such as process and thread handling and
memory management.

= The file system supports persistent storage of information.

= The graphics windowing and events subsystem (GWES) controls graphics and
window-related features.

= The communications interface supports the exchange of information with
other devices.

The Windows CE operating system also contains a number of additional modules
that support such tasks as managing installable device drivers and supporting
COM/OLE. The following illustration describes how these features fit into the
overall structure of the Windows CE operating system.

Development Tools Shell

Built-in Drivers Installable Drivers

Windows CE operating system structure

Chapter 1 Overview of the Windows CE Operating System 5

Summary of the Windows CE Operating System

The following section outlines the major features of Windows CE. The features
mentioned are discussed in more detail throughout the chapter.

Kernel

The Kernel—the core of the operating system—provides system services for
managing threads, memory, and resources. It includes:

Preemptive, priority-based thread scheduling based on the Win32 process
and thread model. Priority inversion is prevented with a system of priority
inheritance that dynamically adjusts thread priorities.

Predictable thread synchronization mechanisms, including wait objects.
Examples of these mechanisms are named mutexes, critical sections, and
named and unnamed event objects.

Efficient memory management based on dynamic-link libraries (DLLs), which
link user applications at run-time.

A flat, virtual address space, with 32 MB of memory reserved for each
process. Process memory is protected by altering page protections.

On-demand paging for both read-only memory (ROM) and random access
memory (RAM).

Heap size that is limited only by available memory.

Control of interrupt handling. You can map interrupt requests (IRQs) to
hardware interrupts and implement your own interrupt service routines and
interrupt service threads.

Extensive debugging support, such as including just-in-time debugging.

Persistent Storage

The file system supports persistent storage of information. It includes:

Support for FAT file systems with up to nine FAT volumes.
Transactioned file handling to protect against data loss.
Demand paging for devices that support paging.

FAT file system mirroring to allow preservation of the file system if power is
lost or cold reset is needed.

Installable block device drivers.

6 Windows CE Programmer’s Guide

Communications Interface

The communications interface supports a wide range of technologies. It includes:

Support for serial communications, including infrared links.

Support for Internet client applications, including Hypertext Transfer Protocol
(HTTP) and File Transfer Protocol (FTP) protocols.

A Common Internet File System (CIFS) redirector for access to remote file
systems by means of the Internet.

A subset of Windows Sockets (Winsock) version 1.1, plus support for
Secure Sockets.

A Transmission Control Protocol/Internet Protocol (TCP/IP) transport layer
configurable for wireless networking.

An Infrared Data Association (IrDA) transport layer for robust
infrared communication.

Both Point-to-Point Protocol (PPP) and Serial Line Internet Protocol (SLIP)
for serial-link networking.

Support for local area networking through the network driver interface
specification (NDIS).

Support for managing phone connections with the Telephony API (TAPI).

A Remote Access Service (RAS) client for connections to remote file systems
by modem.

Graphics, Windowing, and Events Subsystem (GWES)

The GWES module supports the graphics and windowing functionality needed to
display text and images and to receive user input. It includes:

Support for a broad range of window styles, including overlapping windows.
A large selection of customizable controls.

Support for keyboard and stylus input.

A command bar combining the functionality of a toolbar and a menu bar.

An Out of Memory dialog box that requests user action when the system is
low on memory.

Chapter 1 Overview of the Windows CE Operating System 7

= Full UNICODE support.

= A multiplatform graphics device interface (GDI) that supports the
following features:

= Both color and grayscale displays, with color depths of up to 32 bits
per pixel.

= Palette management.

» TrueType and raster fonts.

= Printer, memory, and display device contexts (DCs).

= Advanced shape drawing and bit block transfer capabilities.

Kernel

The Windows CE kernel contains the core operating system functionality that
must be present on all Windows CE-based platforms. It includes support for
memory management, process management, exception handling, multitasking,
and multithreading.

The Windows CE kernel borrows much of what is best from Windows-based
desktop platforms. For example, all Windows CE-based applications run in a fully
preemptive, multitasking environment, in protected memory spaces. Windows CE
supports native Unicode strings, allowing you to internationalize applications.

Unlike the kernels found on Windows-based desktop platforms, the Windows CE
kernel uses DLLs to maximize available memory. The DLLs are written as
reentrant code, which allows applications to simultaneously share common
routines. This approach minimizes the amount of memory-resident code required
to execute applications.

Processes and Threads |

As a multitasking operating system, Windows CE can support up to 32
simultaneous processes, each process being a single instance of an application. In
addition, multithreading support allows each process to create multiple threads of
execution. A thread is a part of a process that runs concurrently with other parts.
Threads operate independently, but each one belongs to a particular process and
shares the same memory space. The total number of threads is limited only by
available physical memory.

8

Windows CE Programmer’s Guide

Processes rely on Win32 messages to initiate processing, control system
resources, and communicate with the operating system and the user. Each process
has its own message queue. For multithreaded applications, each thread also has
its own separate message queue. When there are no messages in the queue and the
thread is not engaged in any other activity, the system suspends the thread, saving
CPU resources.

Although a thread can operate independently, it often needs to be managed by
the process. For example, one thread may depend on another for information.
Thread synchronization suspends a thread’s execution until the thread receives
notification to proceed. Windows CE supports thread synchronization by
providing a set of wait objects, which stops a thread until a change in the wait
object signals the thread to proceed. Supported wait objects include critical
sections, named and unnamed events, and named mutex objects. For more
information, see Chapter 3, “Working with Processes and Threads.”

Windows CE implements thread synchronization with minimum processor
resources—an important feature for many battery-powered devices. And,
unlike many operating systems, Windows CE uses the kernel to handle thread-
related tasks, such as scheduling, synchronization, and resource management.
Consequently, an application need not poll for process or thread completion or
perform other thread-management functions.

Because Windows CE is preemptive, it allows the execution of a process or thread
to be preempted by one with higher priority. It uses a priority-based, time-slice
algorithm, with eight levels of thread priority, for thread scheduling.

Interrupt Handling

To provide efficient processing of interrupts, Windows CE splits interrupt
handling into two distinct parts: an interrupt service routine (ISR) and an interrupt
service thread (IST). When triggered, the ISR does little more than launch the IST
that is responsible for handling the event. Once the IST has been launched, the
ISR returns and the system can respond to the next interrupt.

Dividing interrupt handling this way allows the ISR to be very small and
fast. This minimizes interrupt latencies and speeds interrupt processing. The
Windows CE Embedded Toolkit for Visual C++ makes it possible for you to
specify interrupt timing and priorities for a specific platform.

Chapter 1 Overview of the Windows CE Operating System 9

Memory Architecture

The Windows CE kernel supports a single, flat, or unsegmented, virtual

address space that all processes share. Instead of assigning each process a
different address space, Windows CE protects process memory by altering page
protections. Because it maps virtual addresses onto physical memory using the
kernel, you do not need to be concerned with the physical layout of the target
system’s memory.

Approximately 1 GB of virtual memory is available to processes. It is divided into
33 slots, each 32 MB in size. The kernel protects each process by assigning it to

a unique slot with one slot reserved for the currently running process. Thus, the
number of processes is limited to 32, but there is no limit, aside from physical
memory, on the total number of threads.

The kernel prevents an application from accessing memory outside of its allocated
slot by generating an exception. Applications can check for, and handle, such
exceptions by using the try-except statement.

Windows CE allows memory mapping, which permits multiple processes to
share the same physical memory. Memory mapping results in very fast data
transfer between cooperating processes, or between a driver and an application.
Approximately 1 GB of virtual address space, distinct from that used for the
slots, is allocated for memory mapping.

Windows CE always allocates memory to applications one page at a time. The
system designer specifies page size when the operating system is built for the
target hardware platform. On a Handheld PC (H/PC), for example, the page size
is typically either 1 KB or 4 KB.

Physical Memory Usage

Windows CE-based platforms usually have no disk drive. Therefore, physical
memory, typically consisting of a combination of ROM and RAM, plays a
substantially different role on a Windows CE-based platform than it does on a
desktop computer.

10

Windows CE Programmer’s Guide

Because ROM cannot be modified by the user, it is used for permanent storage.
The contents of ROM, determined by the original equipment manufacturer
(OEM), includes the operating system and any built-in applications that the
manufacturer provides, for example, Microsofte Pocket Word and Microsofte
Pocket Excel on an H/PC. Depending on your product requirements, you can
also place application code in ROM.

Because on most Windows CE systems, RAM is maintained continuously, it is
effectively nonvolatile. This feature allows your application to use RAM for
persistent storage as well as program execution, compensating for the lack of a
disk drive. To serve these two purposes, RAM is divided into storage, also known
as the object store, and program memory. Program memory is used for program
execution, while the object store is used for persistent storage of data and any
executable code not stored in ROM.

To minimize RAM requirements on Windows CE-based devices, executable
code stored in ROM usually executes in-place, not in RAM. Because of this,
the operating system needs only a small amount of RAM for such purposes as
stack and heap storage.

Applications are commonly stored and executed in RAM. This approach is used
primarily by third-party applications that are added by the user. Because RAM-
based applications are stored in compressed form, they must be uncompressed
and loaded into program memory for execution. To increase the performance of
application software and reduce RAM use, Windows CE supports on-demand
paging. With it, the operating system needs to uncompress and load only the
memory page containing the portion of the application that is currently executing.
‘When execution is finished, the page can be swapped out, and the next page can
be loaded.

Like RAM-based applications, ROM-based executable code, including DLLs,
can be compressed. When compressed, the code does not execute in place, but
is handled much like its RAM-based counterpart. The code is uncompressed
and loaded a page at a time into RAM program memory, and then is swapped
out when no longer needed.

Chapter 1 Overview of the Windows CE Operating System 1

Persistent Storage

The storage memory portion of RAM is referred to as the object store. It includes
three types of data storage:

= The Windows CE file system, which contains application and data files.

= The Windows CE database, which provides structured storage. It offers an
alternative to storing user data and application data in files or in the registry.

= The Windows CE system registry, which is used to store the system
configuration and any other information that an application must
access quickly.

The Windows CE file system holds executable files and data files that the user
installs or creates. It supports up to nine FAT volumes. Each volume is treated
as a storage card. If a storage card has multiple partitions, then each partition is
treated as a separate volume. It is possible to support other types of file systems
by writing block device drivers. For more information on block device drivers,
see the documentation for the Windows CE Device Driver Kit (DDK). Files are
typically stored in compressed form. Applications access the file system with
standard Win32 file system functions. For more information about Windows file
management, see Chapter 4, “Accessing Persistent Storage.”

To reduce the data loss during a critical failure, such as loss of power, the
Windows CE file system is transactioned. In addition, the file system implements
a transactioned mirroring scheme to track FAT file system operations that are not
transactioned. The mirroring scheme restores the FAT volume if power is lost
while a critical operation is performed.

The Windows CE database provides general-purpose, structured storage of data,
but it is not a full-fledged database. In particular, Windows CE databases have
only one level of hierarchy. Records cannot contain other records, nor can they
be shared between databases. For more information about storage, see Chapter 4,
“Accessing Persistent Storage.”

Platforms that implement the Windows CE operating system commonly ship with
one or more built-in databases. For example, the H/PC comes with calendar and
contacts applications that use databases to store their information. Windows CE
provides an API that allows users and applications to create and use additional
databases as needed.

12 Windows CE Programmer’s Guide

The system registry is used to store a variety of information, such as system or
application configuration data. It is similar to the registry found on Windows-
based desktop platforms. Applications running on a Windows CE-based device
can access and modify information in the registry with standard Win32 functions.

It is also possible to access the Windows CE object store from an attached
desktop computer using one of the following approaches:

The Windows CE Remote API (RAPI) includes a set of functions that you can
use to manipulate the file system and the registry. An application running on
the desktop computer invokes RAPI functions, which act on the object store of
the linked Windows CE-based device. For more information, see Chapter 17,
“Invoking Functions from a Desktop Computer.”

Windows CE offers an extensive and sophisticated set of tools for transferring
data between a desktop computer and an attached Windows CE-based device.

For example, you can use these tools to synchronize data between a Windows
CE-based device and an attached desktop computer when you update a list of

contacts. For more information, see Chapter 20, “Synchronizing Data.”

The object store can also be modified when installing an application. For more
information, see Chapter 21, “Installing and Managing Applications.”

Communications Interface

Windows CE-based platforms support a variety of communications hardware

and data protocols, including serial input/output (I/O) support, such as infrared
transceiver support; a subset of the TAPI; and networking, which includes support
for the following:

Internet clients, including HTTP and FTP, and Internet security protocols.
Access to remote file systems through a CIFS redirector.

Internet Control Message Protocol (ICMP) messaging support.

A subset of Winsock version 1.1, including support for security protocols.
A RAS client.

TCP/IP and IrDA.

NDIS for local area networking.

PPP and SLIP for serial link and modem networking.

Chapter 1 Overview of the Windows CE Operating System 13

Serial Communications

Serial I/O is the simplest form of communication supported by Windows CE. It is
used when there is a direct, one-to-one connection between two devices. It can
take place over a variety of hardware connections, but most Windows CE-based
devices use simple serial cables or infrared transceivers. Transferring information
over a serial cable connection is similar to reading from or writing to a file, and it
uses some of the same functions. Windows CE also includes a set of functions
used to manage the connection itself.

Windows CE allows direct serial I/O over an infrared link using the same serial
communication functions that are used for wired connections. When using an
infrared link, the I/O is “raw,” which means that the bit stream is not processed
in any way. For example, there is no collision detection in Windows CE.

The IrDA protocols provide more robust communication than raw infrared (IR).
The IrDA protocols are available through Infrared Sockets (IrSock), which is an
extension of Winsock. As an alternative to using IrSock directly, [rComm uses the
same function calls as standard serial communication, but uses IrSock and the
IrDA protocols internally.

Network Communications

Windows CE supports a network stack with a number of options. Network
communications can take place over a variety of hardware, including infrared,
serial, Ethernet, and wireless links. Although the network stack is accessible only
through the Winsock interface, Windows CE also provides several high-level
APIs that use Winsock internally, and handle the details of setting up and
managing socket connections:

= The WinINET API provides support for Internet browsing protocols, including
FTP and HTTP 1.0. It also provides access to three Internet security protocols,
Secure Sockets Layer (SSL) 2.0, Secure Sockets Layer 3.0, and Private
Communication Technology (PCT) 1.0.

= The WNet API provides access to remote file systems through a Common
Internet File System (CIFS) redirector. Currently, operating system
connections are supported only for Microsofte Windowse 95 and Microsofte
Windows NTe. The redirector supports UNC names, such as
//serverXX/shareXX, but not drive letters.

= ICMP requests, commonly referred to as pings, are used to determine whether
or not a host is available.

14

Windows CE Programmer’s Guide

The Winsock interface provides direct access to the network stack. Windows CE
supports a subset of Winsock 1.1, as well as the three Internet security protocols
mentioned earlier. For infrared communication, Windows CE supports the IrSock
extension of Winsock, which enables socket-based infrared communication using
the industry-standard IrDA protocols.

Windows CE supports a RAS client at the same level in the network stack as
Winsock, but this client serves a different purpose. RAS is a multi-protocol router
used to connect remote devices. The Windows CE RAS client is identical to the
Win32 RAS, except it supports only one point-to-point connection at a time.

The TCP/IP suite, developed for the Internet, is arguably the most flexible and
widely implemented network protocol. It is supported by a wide variety of
systems and forms the core of the Windows CE network stack. Many Windows
CE-based mobile devices have wireless communication capabilities. However,
conventional TCP/IP stacks may work poorly with wireless technology because
they were intended to function efficiently on wired networks. The Windows CE
TCP/IP stack is designed to be configured for wireless networking.

At the base of the network stack, Windows CE supports data-link layers for serial-
link networks and local area networks (LANs). Many Windows CE-based devices
connect to a network using a serial communication link, such as a modem. To
support serial-link networking, Windows CE implements the widely used serial
line Internet (SLIP) and Point-to-Point Protocol (PPP). Three protocols are
available for authentication in serial-link communication: Password
Authentication Protocol (PAP), Challenge Handshake Authentication Protocol
(CHAP), and Microsoft CHAP.

To support connections to LANs, Windows CE implements NDIS 4.0, but
supports only Ethernet miniport drivers. Windows CE does not support wide area
networks (WANs). For more information on NDIS support, see the documentation
for the Windows CE DDK.

Chapter 1 Overview of the Windows CE Operating System 15

Telephony Application Programming Interface

Using a modem involves making and managing a telephone connection, tasks
which fall outside most standard communication protocols. To facilitate the

use of a telephone connection, Windows CE includes a TAPI service provider
for an AT command-based modem, knows as a Unimodem. TAPI is a collection
of utilities that allows applications to take advantage of a variety of telephone
and communications services without needing detailed knowledge of the
particular technology. You can use the TAPI service provider with internal

or PC Card modems.

The Windows CE implementation of TAPI focuses on outgoing calls and provides
outbound dialing and address translation services. Windows CE does not support
inbound calls. To provide flexibility in the choice of hardware, TAPI supports
installable service providers.

Graphics, Windowing, and Event Subsystem

The Graphics Windowing and Event Subsystem (GWES) is the graphical user
interface between the user, your application, and the operating system. GWES
handles user input by translating keystrokes, stylus movements, and control
selections into messages that convey information to applications and the operating
system. GWES handles output to the user by creating and managing the windows,
graphics, and text that are displayed on display devices and printers.

GWES supports all the windows, dialog boxes, controls, menus, and resources
that make up Windows CE user interface. This interface allows users to control
applications by choosing menu commands, pushing buttons, checking and
unchecking boxes, and manipulating a variety of other controls. GWES provides
information to the user in the form of bitmaps, carets, cursors, text, and icons.

Even Windows CE-based platforms that lack a graphical user interface use GWES
basic windowing and messaging capabilities. These provide the means for
communication between the user, the application, and the operating system.

16 Windows CE Programmer’s Guide

As part of GWES, Windows CE provides support for active power management
to extend the limited lifetime of battery-operated devices. The operating system
automatically determines a power consumption level to match the state of
operation of the device.

The following illustration describes the basic GWES structure.

Application Window

=2 GWES -==--=f=osmommmmmmmmmsmsmss oo :

Message System

GWES structure

Window Management

The most central feature of GWES is the window. In Windows CE-based
platforms with traditional graphical displays, the window is the rectangular area
of the screen where an application displays output and receives input from the
user. However, all applications need windows in order to receive messages from
the operating system, even those created for devices that lack graphical displays.

Chapter 1 Overview of the Windows CE Operating System 17

When you create a window, Windows CE creates a message queue for the
window. The operating system translates the information it receives from
the user into messages which it places into the message queue of the active
window. The application processes most of these messages, and passes the
rest back to Windows CE for processing.

Windows CE does not send applications any messages dealing with the nonclient
area of the window. A window’s nonclient area is the area of the window where
an application is not allowed to draw, such as the title bar and scroll bars. The
window manager controls the nonclient area.

Windows CE does not support the Maximize and Minimize buttons. A user can
send the window to the back of the Z order by tapping the window’s button on the
taskbar. The user restores the window by tapping its taskbar button again.

The taskbar is always visible on Windows CE. You cannot hide the taskbar or use
the full screen to display a window.

Controls, Menus, Dialog Boxes, and Resources

GWES provides controls, menus, dialog boxes, and resources to provide the user
with a standard way to make selections, carry out commands, and perform input
and output tasks.

Controls and dialog boxes are child windows that allow users to view and
organize information and to set or change attributes. A dialog box is a window
that contains controls.

All menus in Windows CE are implemented as top-level, pop-up windows.
Windows CE supports scrolling menus that automatically add scroll arrows
when a menu does not fit on the screen.

Windows CE does not support menu bars, but it does support command bars,
which combine the functionality of a menu bar and tool bar in one control.
Command bars make efficient use of the limited space available on many
Windows CE-based devices.

18 Windows CE Programmer’s Guide

Windows CE supports the following types of controls, menus, dialog boxes,
and resources:

Application-defined dialog boxes Bitmaps

Carets Check boxes

Combo boxes Command band
Command bars Common dialog boxes
Cursors Custom draw service
Date and time picker controls Edit control

Group boxes Header controls

Icons Image lists

Images Keyboard accelerators
List boxes List views

Menus Message boxes
Month calendar controls Progress bars
Property sheets Push buttons

Radio buttons Rebars

Scroll bars Static controls

Status bars Strings

Tab controls Toolbars

ToolTips Track bars

Tree views Up-down controls

In addition to the controls listed in the previous table, Windows CE supports the
HTML viewer control, which makes it easier for you to add HTML support to
your applications.

Graphics Device Interface

The graphics device interface (GDI) is the GWES subsystem that controls the
display of text and graphics. You use GDI to draw lines, curves, closed figures,
text, and bitmapped images.

GDI uses a device context (DC) to store the information it needs to display text
and graphics on a specified device. The graphic objects stored in a DC include a
pen for line drawing, a brush for painting and filling, a font for text output, a
bitmap for copying or scrolling, a palette for defining the available colors, and a
region for clipping. Windows CE supports printer DCs for drawing on printers,
display DCs for drawing on video displays, and memory displays for drawing
in memory. ‘ ‘

Chapter 1 Overview of the Windows CE Operating System 19

GDI features supported by Windows CE are described in the following table.

GDI feature Description

Raster and TrueType fonts Allows only one of these to be used on a
specified system. TrueType fonts generate
superior text output because they are
scalable and rotatable.

Custom color palettes, and both palettized Supports color formats of 1, 2, 4, 8, 16, 24,
and nonpalettized color display devices and 32 bits per pixel (bpp). The first two
are unique to Windows CE.

Bit block transfer functions and raster Allows you to transform and combine

operation codes bitmaps in a wide variety of ways.

Pens and brushes Supports dashed, wide, and solid pens, and
patterned brushes.

Printing Supports full graphical printing.

Shape drawing functions Supports the ellipse, polygon, rectangle,

and round rectangle shapes.

User Input

You can configure Windows CE to meet the user input requirements of a variety
of different platforms. Currently, the keyboard, input panel, voice, and the stylus
are the usual input method on Windows CE-based devices.

Keyboard functionality in Windows CE is similar to that of Windows-based
desktop platforms. And, like those platforms, Windows CE supports hot keys.
A hot key gives the user high-priority system access for specific purposes, such
as canceling a time-consuming file transfer operation.

A unique feature of Windows CE is that it supports the use of a stylus and a
touch screen in place of a mouse. Touching the screen with the stylus mimics
the left-button mouse click.

Additional Support for Applications

Windows CE allows you to add several modules to facilitate program
development or add additional programming capabilities.

Windows CE Programmer’s Guide

The Microsoft Component Object Model (COM) is a powerful tool for object-
oriented development. Windows CE provides a set of functions and structures
designed to support application development based on COM. They can be
divided into two groups:

= COM

A simple protocol that defines COM objects along with a library that offers
object management services.

= Automation

A more sophisticated set of object management services that allows
applications to coordinate their interactions with each other.

Both services are derived from a subset of the Windows NT object services.
For more information on the use of COM/OLE, see the documentation for
the Microsoft Windows Platform SDK.

For Windows CE-based platforms intended to perform as adjuncts to a desktop
computer, Windows CE provides the following tools to allow a user to manage
and transfer data between a desktop computer and an attached Windows CE-based
device. These services include:

= A connection manager for establishing and maintaining the connection. For
more information, see Chapter 18, “Receiving Connection Notification.”

= A data synchronization interface to allow synchronization of shared data. For
more information, see Chapter 20, “Synchronizing Data.”

= File filters for importing and exporting files. For more information, see
Chapter 19, “Transferring Files.”

= RAPI for enabling a client on a desktop computer to request services,
such as file manipulation, from a server on an attached Windows CE-based
device. For more information, see Chapter 17, “Invoking Functions from a
Desktop Computer.”

= Application installation and management services for installing and
uninstalling Windows CE-based applications from an attached desktop
computer or other sources. For more information, see Chapter 21, “Installing
and Managing Applications.”

Chapter 1 Overview of the Windows CE Operating System 21

Windows CE-based devices may have one or more applications included on
ROM. The Contacts and Inbox applications are of particular interest because they
are open, general-purpose applications. If you have unique requirements, you can
use these applications as processing engines inside proprietary code.

To aid you in implementing compatible applications, the Windows CE SDK
provides a set of functions and structures that a custom application can use to
interface with the built-in Contacts and Inbox applications. They are:

= The Contacts Database API, which supports functions and structures for
querying and manipulating the records in a Contacts database. For more
information, see Chapter 23, “Contacts Database.”

= The Mail Interface API, which supports functions and structures that allow an
application to be compatible with the Windows CE Inbox mail client. This API
also provides services for mail transport and storage. For more information,
see Chapter 24, “Inbox.”

= The Mail Transport API, which allows applications to connect to the mail
server and transmit and receive messages. For more information, see Chapter
25, “Mail Transport Service.”

Most Windows CE-based devices have a shell to manage the user interface (UI)
and handle such tasks as launching applications and switching between tasks.
Because of the variety of Windows CE-based platforms, the operating system
contains no standard shell; each platform has a shell designed for its particular
needs. Refer to OEM documentation for information on the shell available for

a particular platform. The shells implemented for a Palm PC and an H/PC are
discussed in their respective platform-specific sections of this book.

Devices that are integral to a Windows CE-based platform, such as a wired serial
port, have built-in drivers that are provided by the OEM. You can install other
devices by means of the built-in serial port, PC Card slot, or USB port. Examples
of installable devices include modems, printers, digital cameras, and bar code
readers. Because these are added by the user, they require installable drivers.

The Win32 API provides a rich set of interface methods that make device drivers
easier to write and more adaptable. You use the same functions whether you are
dealing with a disk file, serial port, parallel port, pipe, or other type of device.
Devices and files that must be accessed by multiple processes or threads
simultaneously can be locked on a region-by-region basis. The Win32 API
supports both synchronous and asynchronous methods of device access, and is
designed with complex device interfaces in mind.

22 Windows CE Programmer’s Guide

For more information on Windows CE support for installable device drivers, see
the documentation for the Windows CE DDK.

To support development of devices and applications for a variety of locales,
Windows CE includes national language support (NLS). The national language
support API allows you to specify information about the system and the user
locale. Support for localization of applications includes built-in support for
French, German, Italian, Spanish, Brazilian Portuguese, and Japanese.

23

CHAPTER 2

Programming Considerations

Windows CE is an operating system (OS) based on the Win32 application
programming interface (API). Because of this relationship, you must understand
the Win32 programming environment to develop Windows CE-based
applications. If you are a Windows 95 or Windows NT programmer, you
already know how to write code for Windows CE and how to use an integrated
development environment (IDE). However, if you have never written an
event-driven application, you must become familiar with the fundamentals

of Windows programming.

Whether you are an experienced Windows software programmer or a beginner,
you must first determine the unique configuration of the hardware platform and
shell for which you are developing. Because Windows CE is a modular operating
system, an original equipment manufacturer (OEM) chooses specific modules and
components to configure Windows CE-based devices. For example, if you are
programming for a Handheld PC (H/PC), you must know how much RAM the
manufacturer has included.

Once you are familiar with your target platform, your next consideration is what
programming environment to use. For your programming environment, you can
choose among Microsofte Visual C++e, Microsofte Visual Basice or Microsofte
Visual J++™. For your Windows CE toolkit, you can choose among

the following:

= Windows CE Toolkit for Visual C++ 5.0

= Windows CE Toolkit for Visual Basic 5.0

= Windows CE Toolkit for Visual J++ 1.1

= Windows CE Embedded Toolkit for Visual C++ 5.0

24 Windows CE Programmer’s Guide

In addition to choosing a programming environment and toolkit, you must
determine whether or not to use other available programming tools, such as
the Microsoft Foundation Class (MFC) libraries or the Active Template
Library (ATL).

If you plan to port Windows-based desktop applications to Windows CE, you
need to consider how the hardware design of your target device affects ported
applications. As you will learn later in this chapter, memory, power, user-
interaction devices, and the broad range of CPU and communications options
are all critical concerns when porting. For example, hardware design determines
whether the user interacts with the device by typing on a keyboard, giving voice
commands, or writing on the screen with a stylus.

Other porting considerations include which Win32 APIs are supported by
Windows CE, how the interfaces of the two systems are similar and different,
and whether the desktop application uses the native language format used by
Windows CE. Though these issues require solutions specific to your application
and development needs, the guidelines in this chapter can help you write
applications that port smoothly.

To debug and test your code, the Windows CE IDE provides an emulator for
supported platforms, such as the H/PC. For unsupported platforms, such as a
platform with no user interface, Windows CE provides a debugging interface
that you can use to write your own tools.

The following sections discuss the programming considerations just mentioned
and direct you to additional information. For information on Windows CE
programming considerations, see http://www.microsoft.com/windowsce/.

Introduction to Win32 Programming

If you are an embedded software programmer, you may be unfamiliar with the
general techniques of event-driven programming in Windows. The purpose of this
section is to outline the fundamentals of the Windows programming model and
the related Win32 APL. If you are an experienced Windows programmer, you may
want to skip this section.

Windows is an event-driven operating system. An event may be a keystroke, a tap
on the screen, or a command for a window to repaint itself. Every time an event
takes place, the operating system sends a message to the relevant process.
Essentially, a Windows-based program receives messages, interprets those
messages, and takes an appropriate action.

Chapter2 Programming Considerations 25

A basic Windows-based program has three primary elements: a window, a
message pump, which is also called a message loop, and a message processor.
This section describes how these work together.

Although windows are commonly thought of in terms of visual display, they can
be defined as non-visible. For example, if you are programming an application
with no user interface, you will need a non-visible window to process messages.
Each window has a window handle, or Awnd, associated with a message processor
that handles messages for the window. Additionally, a window handle is used any
time you need to call a function that requires ~zwnd as a parameter.

A message pump is a simple loop that runs continuously while the application
runs, receiving messages and dispatching them to the appropriate message
processor. When events occur that generate messages, the operating system places
the messages in a message queue. Each queue has a message pump that takes the
messages one at a time and dispatches them to the appropriate message processor
for handling. Although a simple application will have a single queue, a
multithreaded application may have a queue for each thread. The message pump
continues running until it receives a message to terminate the application.

A simple Windows-based program has two primary functions: a message
processor, usually called a WndProc, and WinMain, which provides an entry
point to the program. The WndProc function processes messages for a particular
window. Although there are many Windows messages, only a few, such as
WM_PAINT and WM_CREATE, must be processed by the application. In
general, an application processes those messages that are relevant to its operation
and passes the remaining messages back to the operating system for default
processing. The primary purpose of WinMain is to host the principal message
pump for the application. It can also handle application initialization and
shutdown procedures.

Win32 Application Programming Interface

The term Win32 describes an API that is common to all of the Microsoft 32-bit
Windows-based platforms—Windows 95, Windows NT, and Windows CE.

The Win32 API is a library of functions and related data types that provide
applications with access to the features supported by Windows-based platforms.
A common API allows you to port applications easily, leverage what you already
know, and draw upon a library of existing programming knowledge, examples,
and third-party resources.

26

Windows CE Programmer’s Guide

Although the Win32 API provides you with a common set of interfaces for
Windows 95, Windows NT, and Windows CE, you must be aware of differences
among the platforms. For example, Windows CE is designed for embedded
platforms and therefore does not need to support all the Win32 functions.
Conversely, Windows CE includes functions specifically designed for embedded
platforms that are not supported by Windows-based desktop platforms.

For easy reference, the Win32 components are grouped by functionality into
categories, such as graphics device interface (GDI), multimedia, windows
management, remote procedure calls (RPC), and system services. Within the
GDI category, you will find such components as drawing functions, mouse
manipulation functions, and clipboard functions.

As a programmer, you will find three categories of Win32 components of
particular interest: processes and threads, memory management, and exception
handling. The first two are discussed in separate chapters in this guide. For more
information, see Chapter 3, “Working with Processes and Threads,” and Chapter
29, “Writing Memory-Efficient Applications.” Because Windows CE does not
support C++ exception handling, you must use the exception handling features
built into the Win32 API. For information on the exception handling macros
supported by Win32, see the appropriate Windows CE toolkit reference.

If you would like to know more about Windows programming, see Programming
Windows 95 by Charles Petzold, which is available from Microsoft Press.
Although this book does not specifically address Windows CE, it adequately
describes event-driven programming. You may also be interested in the sample
code included with the Windows CE SDK.

Windows CE Platform and Shell Considerations

The configuration of your target platform dictates what kind of user interface (UI)
and shell you need. Unlike Windows-based desktop platforms, Windows CE does
not have a standard UL Rather, the target hardware determines UI components.
Although most platforms require some kind of UL, the interface may not resemble
the one on a Windows-based desktop computer, and platforms incorporated into
larger systems or computers may have no Ul

If you need a Ul similar to that found on a Windows-based desktop computer,
Windows CE provides a shell component for that purpose. However, if you need a
different UI than the shell and the device manufacturer does not provide one, you
must build your own using the Windows CE Shell API. For example, you can use
this API to develop an application that allows the user to write directly on the
device’s screen with a stylus. Such capability is not included in the API for
Windows-based desktop platforms.

Chapter 2 Programming Considerations 27

Programming Tools

To write an application for Windows CE, you must assemble and use a set of
development tools based on one of the programming languages that Windows CE
supports. This tool set is your development system. Your language choices are
Visual C++, Visual Basic, or Visual J++. If you choose to program in C++, you
must then decide which of the C++ toolkits is appropriate for your application.
Finally, you can choose to use any of the specialized tools that are supported by
Windows CE: Component Object Model (COM), Microsoft Foundation Classes
(MFC), Active Template Library (ATL), and National Language Support (NLS).
These can aid you in writing your application.

Windows CE Toolkits

After you have chosen and installed a programming language, install one of the
following Windows CE toolkits:

= Windows CE Toolkit for Visual C++ 5.0

= Windows CE Toolkit for Visual Basic 5.0

= Windows CE Toolkit for Visual J++ 1.1

» Windows CE Embedded Toolkit for Visual C++ 5.0

The toolkit you choose becomes part of your existing IDE and supplies tools

for debugging and testing Windows CE-based applications. For example, the
Windows CE Toolkit for Visual C++ 5.0 is equipped with an emulator that

allows you to observe how your application functions without downloading your
program to a target device. Also, the Windows CE Toolkit for Visual C++ 5.0 and
the Windows CE Toolkit for Visual Basic 5.0 have tools that allow you to access
a remote device from a desktop computer and perform Windows CE-specific tasks
on the remote device.

The next sections discuss the specialized development tools that are supported by
Windows CE.

Component Object Model

COM allows you to develop independent, reusable software components that
connect together to form applications. COM components are binary bits of
executable code that function like mini-applications. They can be disconnected
and replaced at run time without relinking or recompiling the application.
Because COM is language-independent, you can write your components in any
programming language you choose.

28

Windows CE Programmer’s Guide

The benefit of using COM is that you can upgrade application components
independently of each other. This allows you to change or add application
features without having to upgrade the entire application. You can plug and
unplug components from your application, as well as interchange them with
other components. In order to achieve this flexibility, COM components must
be able to dynamically link together. Dynamic linking is accomplished through
encapsulation, the process of hiding the details of how a component is
implemented. You can do this by creating an interface through which a
component or a client can connect. A client is a program or component that uses
another component. All COM components must interact through an interface.
Additionally, all COM components must inherit from, and implement, the
IUnknown interface.

COM maintains the COM library, which contains a small number of functions

and data structures used to create interfaces and coordinate object services. To use
the libraries in Windows CE, call the ColnitializeEx function before you call any
other functions, except for the memory allocation functions. Similarly, to close the
libraries, call the CoUnitialize function.

COM objects operate according to the client/server model. A COM server is a
COM object that exports and implements interfaces in order to provide services
to clients. The server is responsible for implementing an interface and helping a
client navigate among various interfaces. A COM client creates an instance of a
server object and retrieves a pointer to it. Clients use the services provided by a
server object by calling an interface’s methods. A client need not have any
knowledge of the implementation details of the server. The underlying COM
libraries facilitate communication between a server and a client.

Windows supports two types of COM servers: an in-process (Inproc) server,
which resides as a dynamic-link library (DLL) in the client’s process, and an out-
of-process server, which resides as an executable file (.exe) on either the local or
a remote computer. Windows CE supports only in-process servers. A COM server
implements the QueryInterface method of the IUnknown interface to make its
services available to clients. This method receives an interface identifier (IID) and
returns a pointer to that interface if it is implemented within the server component.
A client can call methods only on an object that is an instance of the server class.
Thus, the client must instantiate the class before it invokes methods of a

COM object.

Chapter2 Programming Considerations 29

COM Threading Model

Windows CE supports only a free-threading model in which a component may be
called by any thread at any time. When you develop your application, ensure that
the component synchronizes itself to prevent simultaneous accesses by different
free threads. To register the threading model of a COM object, which is the named
value, you can add ThreadingModel to the object’s InprocServer32 key. Use the
string “Free” to present the information in a user-readable form.

Structured Storage

Structured storage is a file system within a file. COM uses it to efficiently store
multiple types of objects in one document. COM defines structured storage as a
collection of two types of COM objects, storage and stream. The former behaves
as a directory and the latter as a file. A storage object must implement the
IStorage interface and a stream object must implement the IStream interface.
Just as a directory in a file system can contain subdirectories and files, a storage
object can contain other storage objects and stream objects. A storage object
keeps track of the locations and sizes of the contained storage and stream objects.
A stream object stores data as a consecutive sequence of bytes.

Structured storage helps to reduce the performance penalties and overhead for
storing separate objects in a flat file. Other benefits include incremental access
and multiple uses of data in a transacted process, as well as providing facilities
for saving files in low-memory situations. Windows CE provides a default
implementation, currently for the H/PC platform, of the interfaces, functions, and
enumeration required for structured storage services. This default implementation
includes the following:

= IStorage, IStream, and IRootStorage

These interfaces provide methods for opening storage, committing
and reverting changes, copying and moving elements, and reading and
writing streams.

= JPersist and IPersistStorage

These interfaces provide methods for reading data formats of individual
objects and are capable of executing persistent storage.

= TLockBytes

This interface provides methods for writing files to specific types of physical
storage media, such as hard disks or tape drives. Objects implementing this
interface are known as LockBytes objects. Windows CE does not provide any
LockBytes objects when implementing default structured storage.

30

Windows CE Programmer’s Guide

= StgCreateDocfile, StgCreateDocfileOnlILockBytes, StgOpenStorage,
StgOpenStorageOnILockBytes

These functions allow clients to create a new compound file or to open an
existing one on a default or custom LockBytes object.

= STGM enumeration

The flags listed in STGM permit clients to specify the access modes for
regulating access to compound files.

Persistent Object State

Persistent object state refers to information about an object that must be preserved
beyond the object’s lifetime. Persistent states are typically stored in nonvolatile
memory, such as hard disks or battery-backed RAM. To make a persistent object
in COM, the object must support a persistent object interface. COM uses the
persistent object interface to coordinate operations for initializing, loading, and
saving persistent objects. To conform to the COM persistent object protocol,
client applications determine when and where an object should store its state and
the object determines the format for data storage. A persistent object must also
implement the IPersist interface because all persistent object interfaces inherit
from it. In Windows CE, only structured storage can be made persistent.

Automation Through ActiveX Objects

Just as a user interface helps a user communicate with a software application,
automation enables applications or scripting tools to interact with other
applications or tools. Automation is a COM-based technology that enables
interoperability among Microsofte ActiveX™ components, including OLE
components. To make their services available, applications or tools define COM
objects to expose their unique features in terms of methods, properties, and
events. Other applications and tools interact with the exposed objects to use these
services. The exposed COM objects are known as ActiveX objects and the
applications or tools calling ActiveX objects are known as ActiveX clients.

ActiveX clients invoke the IDispatch interface, or they call member functions
directly in the object’s virtual function table (VIBL). The table lists the addresses
of all the properties and methods of an object, including the member functions

of the interface it supports. The first three members of VIBL are the members of
the IUnknown interface. ActiveX objects implementing a VIBL interface are
standard COM objects. Clients must support pointers to access these objects.
However, the object implementing the IDispatch interface offers additional
features that makes the object accessible to a client without any pointer support.
Clients written in Visual Basic use IDispatch, whereas those written in C++ may
use both VBTL and IDispatch. The ActiveX objects in your applications should
support both interfaces.

Chapter2 Programming Considerations 3

ActiveX objects publish themselves by means of Type Libraries, which are used
by clients to determine the characteristics of an object, such as the supported
interfaces and the names and addresses of the members of each interface. The
developer of an ActiveX object should create the type library. Windows CE
offers full support of the four type-building interfaces: ICreateTypelnfo,
ICreateTypelnfo2, ICreateTypeLib and ICreateTypeLib2.

For a complete discussion of COM-based object services, see the documentation
for the Microsoft Platform SDK.

Microsoft Foundation Classes

MEC is a Windows class library and a complete, object-oriented application
framework. MFC for Windows CE includes additional classes unique to Windows
CE, such as the command bar control. Though you can write your own Windows
CE class libraries, you will find that using the ones provided in MFC saves you
time and effort. By organizing related and reusable Windows CE functions into
logical classes, MFC encapsulates much of the Windows CE APL.

As mentioned, MFC is an object-oriented application framework. An application
framework provides both a structural foundation and a set of fundamental
components that you can use to expand on the structure and adapt to different
purposes. An example of this is the MFC message mapping architecture. In non-
MEFC applications, the window procedure is a large switch statement that
determines what kind of message the window has received. The switch then
processes the message appropriately. The MFC framework manages messages
more efficiently than this by providing a message pump for every derived class.
The class uses message maps, rather than switch statements, to route messages to
the appropriate message handler function. A message map is a simple set of
macros defined in the MFC library. If you are using the Windows CE MFC Class
Wizard, the Wizard inserts the macros into your code for you when you select the
messages you want your class to handle.

Active Template Library

ATL for Windows CE is a template library specifically designed for creating
ActiveX controls and other COM components. Because your ATL components
implement only the specific interfaces that your project requires, the code you
create is smaller and faster than the code you would create by using MFC for the
same project.

32

Windows CE Programmer’s Guide

One important use of ATL is to help you create ActiveX servers. An ActiveX
server is a DLL or .exe that contains one or more COM components. The
components may include simple objects, dialog boxes, and property sheets that
belong to a full ActiveX control. A server also provides the class factories that
instantiate the components when they are requested by clients. It contains code
to enter and remove itself from the registry and notify COM when it can safely
be unloaded from memory. Windows CE supports only in-process servers, which
are DLLs that are loaded directly into the address space of the calling process.
Because an in-process server runs in the same address space as its host, it does
not incur the overhead associated with cross-process marshalling on every call.

National Language Support

If you plan to release your application in the international market, you must keep
language and cultural differences in mind when you develop specifications for
the user interface and feature set. Consider the following potential trouble spots:

= Text expansion. English text often grows when translated. In most cases, text
increases by 10 or 15 percent; in some languages, localized text can be as
much as 30 to 35 percent longer than the source text.

= Use of abbreviations. Ii some languages, abbreviations are not commonly
used, for example, in Georgian, days of the week are not abbreviated.

= Use of symbols, metaphors, and colors. Most have specific cultural meaning.
Some common symbols in the United States may not be recognized or may be
misunderstood in other countries—for example, a mailbox.

= Use of bidirectional text. Text may be written and read from left to right, right
to left, or top to bottom.

= Unique keyboard layout. Languages that use diacritical marks, such as Spanish
and French, must have keyboards that support dead keys.

= Use of an Input Method Editor. Some languages, such as Japanese, have
thousands of glyphs; therefore, the standard keyboard input is not sufficient to
represent all the characters.

= Word order and punctuation. Of particular concern are differences in the
punctuation of currency and other numbers, and the word order of dates.
Though in English, word order is critical to meaning, in highly inflected
languages, such as Spanish, word endings may have more significance.

Chapter2 Programming Considerations 33

The time to address these concerns is in the design phase of your project.

For example, you will be disappointed to discover—after your program is
completed—that the Spanish word aceptar will not fit onto your application’s
OK button. The following list provides tips for making your program easier to
translate or localize:

= Put all text strings that have to be translated in one location, such as a resource
or text file.

= Declare string buffers of a variable size.

» Use the correct sorting method, date, time, and currency representation for
that locale.

= Design controls, buttons, and the taskbar to accommodate different text length.

Windows CE makes your globalization efforts easier in two ways. Because
Windows CE is a Unicode environment, all characters are double-byte; therefore,
you do not have to be concerned with manipulating both single-byte and double-
byte characters. In addition, Windows CE includes NLS, which provides NLS
API as well as some font and keyboard functions. For a list of the NLS functions
supported by Windows CE, see the appendix “Lists of Functions and Interfaces.”

You must consider the constraints of the device on which your application will
run when you globalize your application. The following list describes some of the
complex interactions between your application, a Windows CE-based device, and
the needs of users in different countries:

= The manufacturer of the device, not the application programmer, determines
what countries or locales to support.

= Because a user does not log into the device, the user locale and the default
system locale are the same. For example, if you call the function
GetSystemDefaultLangID or the function GetUserDefaultLangID, you
obtain the same information.

= The Windows CE operating system loads only one keyboard driver. Although
it is possible to load a different keyboard driver than the one installed, you
would generally not do this because the device has a built-in keyboard.

= The locale can be changed by the programmer or by the user through an
application such as the Control Panel. Changing the locale often requires
changing the font, because the code page and character set change with the
locale change.

= Because RAM is limited on most Windows CE-based devices, it is not
practical to install multiple fonts. Therefore, using a different font requires
installing a new one, which can be time-consuming.

34 Windows CE Programmer’s Guide

For more information on NLS, see Developing International Software by Nadine
Kano, Microsoft Press. A

Porting Win32-Based Applications to Windows CE

Because Windows CE is a Win32-based operating system, you may be able

to re-use code developed for Windows-based desktop platforms with little
modification. Though porting existing code can be quicker and easier than writing.
it from scratch, keep the following differences between Windows CE and desktop
platforms in mind:

= Hardware design and function. For example, limited memory will influence
how you manipulate graphics.

= User interface. The conventional desktop computer model of a user interface
that features a keyboard, mouse, and screen may not be appropriate for a
Windows CE-based platform.

= Win32 API and related development tools. Windows CE supports a subset of
what is available for desktop platforms.

= Extensions to the Win32 APIL Some unique features of Windows CE may have
no Win32 counterparts, for example, the Notification API. Other Windows CE
features may replace comparable Win32 functionality, for example, the
Command Bar API.

Hardware Considerations

When you port code between platforms, remember that the hardware
configuration of most Windows CE-based platforms differs from that of a
desktop computer. In some cases, a Windows CE-based platform might not

be recognizable as a computer, though the functionality might be typical for a
desktop computer. In addition, a Windows CE-based device may have hardware
that has no counterpart on a conventional desktop computer, such as a Global
Positioning System (GPS) chip. The most important hardware considerations for
Windows CE-based devices are memory, power, user-interaction devices, and the
broad range of CPU and communications options. Just recompiling your code
with the appropriate Windows CE header files is not sufficient. You must
examine the code to be ported while keeping in mind memory, power use, and
user input devices.

Chapter2 Programming Considerations 35

Windows CE is designed to run on devices that have much less available memory
than desktop computers. They may have no disk drive or other mass-storage
device, or may support PC Cards that can be used as an alternative to a disk.
Even if mass storage is available on the device, RAM is used to store data and
applications and to execute programs. In general, you should limit the RAM
requirements of your application and associated data and resources.

Windows CE supports functions, structures, and messages that are not supported
in Win32, but that may be useful to you when you port code across platforms.
Many of these elements will help you manage limited resources. For example, if
memory resources become tight during operation, Windows CE has a procedure
to reduce memory use and restore available memory to acceptable levels. The key
to this procedure is the WM_HIBERNATE message, which notifies applications
of low memory. Because this message is not part of Win32, you must implement a
handler for it and cooperate when the message is received.

A Windows CE-based platform that operates on batteries has a limited energy
supply. If you develop an application for such a platform and must port it, follow
these guidelines to make the most of limited power resources:

= Avoid cycling the CPU unnecessarily. An active CPU, and the PeekMessage
function in particular, consume significant energy.

= Limit your use of common desktop computer hardware that drains batteries
rapidly, such as a modem.

= Do not exceed available battery resources. Windows CE displays a warning
message to users when batteries start to run low, but it does not send a message
to running applications. Therefore, if your application places substantial
demands on the batteries, you will need to poll the system with the
GetPowerStatusEx function to determine battery status.

Applications for desktop computers assume that the user will get information
from a relatively large screen and will communicate with the computer using a
keyboard and a pointing device. Windows CE-based platforms may use very
different hardware than this. The screen is generally smaller or absent, and the
platform may have no keyboard or pointing device at all. On the other hand, a
Windows CE-based platform may provide user-interaction hardware that is not
commonly found on a desktop computer, such as a microphone for speech
recognition or a stylus and screen for handwriting recognition. For more
information about user-interface considerations, see “User Interface
Considerations” later in this chapter.

36

Windows CE Programmer’s Guide

In addition, Windows CE offers a variety of communications hardware

options, including infrared (IrDA) and radio transceivers, that require special
consideration. Windows CE supports most standard communication methods,
including serial communication, TCP/IP, and IrDA stacks, through WinSocklt. It
also supports output by means of modems, infrared transceivers, and local-area
networks. For more information about different communications hardware and
communications programming, see Chapter 5, “Using Communications.”

API Considerations

When porting code from one platform to another, an important consideration is
the difference in the APIs supported by the two operating systems. As stated
earlier, Windows CE does not support any 16-bit functions and some Win32
functions are not implemented completely, for example, a full range of styles or
flags. Also be aware that Windows CE supports and extends an essential subset of
the Win32 API, while excluding functions that are not needed, or are redundant,
for Windows CE-based devices. For example, the Windows CE graphical device
interface provides a powerful, full-color graphical display system by supporting
many of the shape, bit-block transfer, palette, font, and color functions. However,
to remain compact, some of the Win32 special graphic functions, such as MoveTo
and LineTo, are eliminated.

In addition to supporting a subset of the Win32 API, Windows CE extends it in
a number of ways. Most of these extensions support the unique capabilities of
Windows CE-based platforms. Some, such as the command bar API, replace

a set of Win32 functions and work in a way that is more suitable for

Windows CE-based devices.

When you port an application from Win32 to Windows CE, remove unsupported
functions and modify your code to use supported functions. Then, thoroughly
review your code, keeping in mind the limitations and potentials of your platform.
For more information, see “Example Program for H/PC” in the online Help.

You can reuse any Visual C++, Visual Basic, or Visual J++ code in your
Windows CE-based application. If your application was developed using a
Microsoft IDE, such as Visual C++, Visual Basic, or Visual J++, you can
continue to use that IDE with Windows CE by installing the appropriate toolkit.

As discussed earlier, many Win32 applications are developed using MFC and
ATL. Windows CE supports subsets of both of these tools. In addition, Windows
CE supports a subset of COM/OLE, a powerful and flexible approach to object-
oriented programming that is used by many applications. You may be able to port
an application that uses COM/OLE, MFC, or ATL with only minor revisions.

Chapter2 Programming Considerations 37

Character Set Considerations

As stated earlier, Windows CE is a Unicode environment. While it supports
ASCII functionality to allow the exchange of text files, the native text format is
Unicode. The following list provides guidelines for converting ASCII-based code
to Unicode:

= Include Tchar.h. It has all the necessary conversions.
= Use the Win32 string functions, rather than the C run-time library equivalents.

= Use TCHAR or LPTSTR for declarations. Declaring character variables as
TCHAR allows the code to be compiled as either Unicode or ASCIIL.

= Use the TEXT macro for string literals, such as Text(*“a string”). The TEXT
macro identifies a string as Unicode when the UNICODE compile flag is used
or as an ANSI string when Unicode is not defined.

Use the size of (TCHAR) operator to ensure that your code is valid for both
Unicode and ASCII. When you increment pointers, remember that an ASCII
character is one byte, but that a Unicode character is two bytes.

User Interface Considerations

Some of the greatest differences between a Windows CE-based platform and a
standard desktop computer are in the UL Though some Windows CE-based
platforms, such as the H/PC, may be similar to a conventional desktop computer,
others may modify or eliminate altogether the familiar screen, keyboard, and
mouse of a desktop computer.

For Windows CE-based platforms, the screen is not as powerful and flexible a
way to communicate information to the user as it is with a desktop computer
because the screen is typically much smaller, with lower resolution. Though
some devices have color screens, many support only grayscale or monochrome
graphics. For devices that dispense with the screen entirely, you may need to
develop alternative ways to communicate information.

A key element of a graphical Ul is a pointing device, which enables a user to
interact with the various graphical elements of the UL Though a mouse may not
be appropriate, some Windows CE-based devices, such as an H/PC, have a touch
screen and stylus that work much the same way as a mouse. Others may have no
pointing device at all, and must depend on other navigation techniques, such as
arrow keys, or may use an entirely different approach to interaction, such as
speech recognition.

38 Windows CE Programmer’s Guide

Keyboards on Windows CE-based devices are generally more difficult to use and
are less flexible than they are on desktop computers. Because they may be too
small to support a full set of alphanumeric characters, they may provide only a
collection of special-purpose keys for users to communicate with the application.
Text-entry, if supported, may be through an input panel, which enables a user

to type characters by way of a touch screen, rather than a physical keyboard.
Because this method of text entry is more difficult for users, rely on other forms
of communication over text entry whenever possible.

Debugging and Testing Windows CE-Based
Applications

An effective set of debugging tools can speed up the time-consuming process of
debugging an application and make it easier to determine the source of problems.
The Windows CE IDE provides a set of tools for such tasks as emulation and
remote debugging on H/PCs, and special tools for debugging other Windows CE-
based platforms.

Desktop Emulation Debugging and Testing

The desktop emulation tool included with Windows CE allows you to write

and debug an H/PC application on any computer running Windows NT. With
emulation, you can test and debug your application without downloading your
software to a device. You can even use emulation to write a Windows CE-based
application without having a device. Though you can determine a great deal about
the functionality and appearance of your application with emulation, once your
application is running correctly in the emulation environment, you must download
it to a target device for final testing and evaluation. In addition to testing for
defects and reliability, testing for usability is critical, because most Windows CE-
based platforms have a small desktop area that can present access problems.

Remote Debugging and Testing

In addition to desktop emulation, Windows CE contains several tools that enable
you to examine your application as it runs. These remote tools are described in the
following table.

Chapter2 Programming Considerations 39

Tool Purpose

Remote Connection Server Creates a network connection between a desktop computer
and an H/PC. Remote Connection Server will not
synchronize a remote device and a desktop computer.

Remote Zoomin Enlarges a section of an H/PC screen.

Remote Registry Editor Edits the Windows CE registry. Because there is no tool
like RegEdit on an H/PC, you view and edit the H/PC
registry using this desktop tool.

Remote Object Viewer Allows you to view the object store on a remote H/PC
device and on a desktop computer.

Remote Spy Displays a graphical view, on a desktop computer, of the
system processes, threads, windows, and window
messages that are running on a remote H/PC.

In order to use the remote tools, you must connect your desktop computer to your
remote device with a standard serial cable connection. For information on how to
physically connect your desktop computer and a remote device, see the user’s
guide that came with your device.

Non-Standard Debugging and Testing

If you are developing software for a Windows CE-based platform, such as an
H/PC, you can use the Windows CE emulation environment and remote tools to
debug and test your application. However, if you are developing applications for
other Windows CE-based platforms, such as embedded systems, you will have to
devise your own debugging and testing tools.

The Windows CE API includes the interfaces necessary to create a full-featured
debugger application, such as the one provided with Visual C++ or WinDbg.
Although the creation tools exist, the limited size of the Windows CE
environment makes such a debugger unrealistic. If you decide to write a debugger
application, the best approach is to create a debug client using Windows CE
debug functions and to communicate the relevant events to a desktop computer-
based debugger. When writing a debugging application, choose one of the
following ways to start the debugging session:

= Launch a process with CreateProcess and specify DEBUG_PROCESS
or DEBUG_ONLY_THIS_PROCESS in the dwCreateFlags member. In
addition to the DEBUG_PROCESS flag, use CREATE_SUSPENDED to
prevent the application from running after it is initialized. Once suspended,
a debugger can initialize and add any appropriate break points.

—Or—

40

Windows CE Programmer’s Guide

= Attach to an already running application. To attach to a process, you must
obtain permission to access the process by calling OpenProcess and passing
in the identifier of the process you want to debug. If a valid handle is returned,
call DebugActiveProcess to start debugging. After attaching to the process,
the CREATE_PROCESS_DEBUG_EVENT returns the primary thread handle
and the multiple CREATE_THREAD_DEBUG_EVENTS return the secondary
thread handles. After attaching to the process and receiving the initial events,
the process’s thread is resumed. Unlike Windows NT, Windows CE has no
EXCEPTION_DEBUG_EVENT. All thread handles must be closed with
CloseHandle when you stop debugging.

Windows CE has built-in support for just-in-time (JIT) debugging. JIT debugging
enables you to run an application outside of the development environment. When
an error occurs, the application calls the installed debugger. You register your JIT
debugger by placing the name of your debugger in the registry located at
HKEY_LOCAL_MACHINE\Debug. To enable JIT, you must warm-boot the
device after the JITDebugger value is added to the registry.

If you choose not to write a debugging application, you must create some
debugging tools inside your Windows CE-based application. Windows CE
provides both functions and structures to do this. For a list of supported
debugging functions, see the appendix “Lists of Functions and Interfaces.”

No matter what tools you use, you must thoroughly test your application on every
kind of device that will run your application.

PART 2

Core Services

Chapter 3 Working with Processes and Threads 43
Creating and Terminating a Process 44

Scheduling Threads 44

Synchronizing Processes and Threads 45
Interprocess Synchronization 56

Synchronization and Device /O 58

Synchronizing Access to a Shared Variable 58

Chapter 4 Accessing Persistent Storage 59
Object Identifiers 60
Working with Windows CE Databases 62

Chapter 5 Using Communications 75
Serial Communications 76

Using a Modem 78

Windows CE Networking 80

43

CHAPTER 3

Working with Processes
and Threads

When you start a Windows CE-based application, the operating system
automatically creates a process and a primary thread for that process. A process
is a single instance of a running application and a thread is the basic unit of
execution. Windows CE-based applications can incorporate multiple processes
and each process can contain multiple threads.

Every process has at least one thread. You create additional threads by calling
the CreateThread function. You call the ExitThread function to free up the
resources used by a thread when it is no longer needed. Calling Exit Thread
for an application’s primary thread causes the application to terminate.

Note Unlike processes on Windows-based desktop platforms, a Windows CE
process will terminate if its primary thread is terminated, even if there are other
active threads in existence for the process.

When the Windows CE operating system initializes, it creates a single 4 GB
virtual address space. It is divided into 33 slots, each 32 MB. The address space is
shared by all processes. When a process initializes, Windows CE selects an open
slot for the process in the system’s address space. Slot zero is reserved for the
currently running process. In addition to assigning a slot for each process,
Windows CE creates a stack and a message queue for each thread in the process.
Each stack has an initial size of at least 1 KB. Because the stack size is CPU-
dependent; the system allocates 4 KB for each stack on some devices. The
maximum number of threads is dependent upon the amount of available memory.

When a process initializes, the operating system stores in the slot assigned to the
process all dynamic-link libraries (DLLs), the stack, the heap, the application
code, and the data section for each process. DLLs are loaded at the top of the slot,
followed by the stack, the heap, and the executable file (.exe). The bottom 64 KB
is always left free.

44 Windows CE Programmer’s Guide

For an overview of processes and threads, see Chapter 1, “Overview of the
Windows CE Operating System.” For a list of the functions that support
manipulating processes and threads, see the appendix “Lists of Functions
and Interfaces.”

Creating and Terminating a Process

When you initiate a program from within a running application, the application
calls the CreateProcess function to load the new application into memory and
to create a new process with at least one new thread.

» To create and terminate a process
= (Call the CreateProcess function to create a process.

The IpApplicationName parameter must specify the name of the module to
execute. Windows CE does not support passing NULL for IpApplicationName.

= Call the TerminateProcess function to terminate a process.

Windows CE processes do not have exit codes and cannot terminate
themselves. You cannot use TerminateProcess to terminate a Protected
Server Library (PSL) for processes contained therein.

Scheduling Threads

When the operating system creates a new process, it also creates at least one
thread and assigns that thread a priority level. Processes running under Windows
CE are not assigned a priority class, so preemption is based solely on the thread’s
priority. Threads with a higher priority are scheduled to run first. Threads with
the same priority level run in a round-robin fashion, with each receiving a slice
of execution time. Threads at a lower priority do not run until all threads with a
higher priority have finished. All threads are created with a default priority of
THREAD_PRIORITY_NORMAL.

» To change the priority level of a thread

= Call the SetThreadPriority function passing in one of eight priority level
values. The values are described in the following table.

Chapter3 Working with Processes and Threads 45

Priority Description
THREAD_PRIORITY_TIME_CRITICAL Indicates 3 points above normal priority.
THREAD_PRIORITY_HIGHEST Indicates 2 points above normal priority.
THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above normal priority.
THREAD_PRIORITY_NORMAL Indicates normal priority.
THREAD_PRIORITY_BELOW_NORMAL Indicates 1 point below normal priority.
THREAD_PRIORITY_LOWEST Indicates 2 points below normal priority.
THREAD_PRIORITY_ABOVE_IDLE Indicates 3 points below normal priority.
THREAD_PRIORITY_IDLE Indicates 4 points below normal priority.

Synchronizing Processes and Threads

Windows CE supports preemptive multitasking. Multitasking operating systems
must ensure that processes and threads are synchronized. Windows CE provides
many ways to coordinate multiple threads of execution. For example, you can use
wait functions and synchronization objects. You pass a synchronization object as
a parameter to a wait function. The wait function does not return until its specified
criteria has been met. The type of wait function determines the set of criteria used.
When a wait function is called, it checks whether the wait criteria has been met.

If the criteria has not been met, the calling thread enters an efficient wait state,
consuming very little processor time.

Using Wait Functions

Windows CE supports two types of wait functions, single-object and multiple-
objects. The single object function is WaitForSingleObject. The multiple object
functions are WaitForMultipleObjects and MsgWaitForMultipleObjects.

The WaitForSingleObject function requires a handle of one synchronization
object. This function returns when one of the following occurs:

= The specified object is in the signaled state.

= The time-out interval elapses. You can set the time-out interval to INFINITE
to specify that the wait will not time out.

The WaitForMultipleObjects and MsgWaitForMultipleObjects functions
enable the calling thread to specify an array containing one or more
synchronization object handles. These functions return when one of the
following occurs:

= The state of any one of the specified objects is set to signaled or the states of
all objects have been set to signaled. You control whether one or all of the
states will be used in the function call.

46

Windows CE Programmer’s Guide

= The time-out interval elapses. You can set the time-out interval to INFINITE
to specify that the wait will not time out.

The following code example shows how to use the CreateEvent function to
create two event objects. It then uses the two created objects as parameters in
the function call to WaitForMultipleObjects. The WaitForMultipleObjects
function does not return until one of the objects is set to signaled.

HANDLE hEvents[2];
DWORD i, dwEvent;

for (i =0; i < 2; i++)

{
hEvents[i] = CreateEvent(
NULL, // no security attributes
FALSE, // auto-reset event object
FALSE, // initial state is nonsignaled
NULL); // unnamed object
if (hEvents[i] == NULL)
printf("CreateEvent error: %d\n", GetlLastError());
ExitProcess(0);
}
}
dwEvent = WaitForMultipleObjects(
2, // number of objects in array
hEvents, // array of objects
FALSE, // wait for any
INFINITE); // indefinite wait

switch (dwEvent)
{
case WAIT_OBJECT_O + 0:
break;

case WAIT_OBJECT_0 + 1:
break;

default:
printf("Wait error: %d\n", GetlLastError());
ExitProcess(0);

Chapter 3 Working with Processes and Threads 47

MsgWaitForMultipleObjects is similar to WaitForMultipleObjects, except
that it allows you to specify input event objects in the object handle array.
You select the type of input event to wait for in the dwWakeMask parameter.
MsgWaitForMultipleObjects does not return if there is unread input of

the specified type in the queue. It returns only when new input arrives.

For example, a thread can use MsgWaitForMultipleObjects with its
dwWakeMask parameter set to QS_KEY. This blocks its execution until the state
of a specified object has been set to signaled and there is keyboard input available
in the thread’s input queue. The thread can use the GetMessage or PeekMessage
function to retrieve the input.

When waiting for the states of all objects to be set to signaled, the multiple-object
functions do not modify the states of the specified objects until the states of all
objects have been set to signaled. For example, the state of a mutex object can be
signaled, but the calling thread does not get ownership until the states of the other
objects specified in the array have also been set to signaled. In the meantime,
some other thread may get ownership of the mutex object, thereby setting its state
to nonsignaled.

The following code example shows the use of the MsgWaitForMultipleObjects
function in a message loop. The loop continues until a WM_QUIT message
appears in the queue. The dwWakeMask parameter is set to QS_ALLINPUT so
all messages are checked.

int MessagelLoop
(
HANDLE* 1phObjects, // handles that need to be waited on
int cObjects // number of handles to wait on

while (TRUE)

{
// block-local variable
DWORD result ;
MSG msg ;

while (PeekMessage(&msg, NULL, @0, @, PM_REMOVE))

{
if (msg.message == WM_QUIT)
return 1;
DispatchMessage(&msg);
}

result = MsgWaitForMultipleObjects(cObjects, 1phObjects,
FALSE, INFINITE, QS_ALLINPUT);

48

Windows CE Programmer’s Guide

if (result == (WAIT_OBJECT_O@ + cObjects))

{
continue;
}
else
{
Other Code (result - WAIT_OBJECT_O0) ;
}

}

Be careful when using the wait functions and code that directly or indirectly
create windows. If a thread creates any windows, it must process messages.
Message broadcasts are sent to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Two
examples of code that indirectly create windows are DDE and COM Colnitialize.
If you have a thread that creates windows, use MsgWaitForMultipleObjects
rather than the other wait functions.

Using Synchronization Objects

A synchronization object is an object whose handle can be specified in one of
the wait functions. Windows CE uses event, mutex, and critical section objects
only for synchronization. Although it uses process and thread objects for
synchronization as well, they are available for other uses.

Event Objects

An event object is a synchronization object that allows one thread to notify
another that an event has occurred. A thread uses CreateEvent to create an event
object. The creating thread specifies the initial state of the object and whether it is
a manual-reset or auto-reset event object. The creating thread can also specify a
name for the event object. Threads in other processes can open a handle. of an
existing event object by specifying its name in a call to CreateEvent. For
additional information about names for mutex and event objects, see “Interprocess
Synchronization” later in this chapter. Windows CE uses event objects to tell a
thread when to perform its task or to indicate that a particular event has occurred.
For example, a thread that writes to a buffer resets the event object to signaled
when it has finished writing. By using an event object to notify the thread that its
task is finished, the thread can immediately start performing other tasks.

Chapter 3 Working with Processes and Threads 49

A single thread can specify different event objects in several simultaneous
overlapped operations. If this is the case, use one of the multiple-object wait
functions to wait for the state of any one of the event objects to be signaled. You
can also use event objects in a number of situations to notify a waiting thread

of the occurrence of an event. For example, overlapped input/output (I/0)
operations on files, named pipes, and communications devices use an event
object to signal their completion. For more information about the use of event
objects in overlapped I/O operations, see “Synchronization and Device I/O”
later in the chapter.

In the following code example, an application uses event objects to prevent
several threads from reading from a shared memory buffer while a master thread
is writing to that buffer. The master thread uses the CreateEvent function to
create a manual-reset event object. It sets the event object to nonsignaled when it
is writing to the buffer and then resets the object to signaled when it has finished
writing. The master thread then creates several reader threads and an auto-reset
event object for each thread. Each reader thread sets its event object to signaled
when it is not reading from the buffer.

j#fdefine NUMTHREADS 4
HANDLE hGlobalWriteEvent;

void CreateEventsAndThreads(void)

{
HANDLE hReadEvents[NUMTHREADS], hThread;
DWORD i, IDThread;

hGlobalWriteEvent = CreateEvent
(

NULL, // no security attributes
TRUE, // manual-reset event

TRUE, // initial state is signaled
"WriteEvent” // object name

)

if (hGlobalWriteEvent == NULL)
{

// error exit
}

50 Windows CE Programmer’s Guide

for(i = 1; i <= NUMTHREADS; i++)

{
hReadEvents[i] = CreateEvent
(
NULL, // no security attributes
FALSE, // auto-reset event
TRUE, // initial state is signaled
- NULL); // object not named
if (hReadEvents[i] == NULL)
{
// error exit
}
hThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE) ThreadFunction,
&hReadEvents[i], // pass event handle
0, &IDThread);
if (hThread == NULL)
{
// error exit
}
}

}

In the following code example, before the master thread writes to the shared
buffer, it uses the ResetEvent function to set the state of hGlobalWriteEvent,
an application-defined global variable, to nonsignaled. This blocks the reader
threads from starting a read operation. The master thread then uses the
WaitForMultipleObjects function to wait for all reader threads to finish any
current read operations. When WaitForMultipleObjects returns, the master
thread can safely write to the buffer. After it has finished writing, it sets
hGlobalWriteEvent and all the reader-thread events to signaled, which enables
the reader threads to resume their read operations.

VOID WriteToBuffer(VvOID)
(.
DWORD dwWaitResult, 1i;

if (! ResetEvent(hGlobalWriteEvent))
{

// error exit
}

Chapter3 Working with Processes and Threads 51

dwWaitResult = WaitForMultipleObjects
(

NUMTHREADS, // number of handles in array
hReadEvents, // array of read-event handles
TRUE, // wait until all are signaled
INFINITE); // indefinite wait

switch (dwWaitResult)

{
case WAIT_OBJECT_O:
// Write to the shared buffer.
break;
// An error occurred.
default:
printf("Wait error: %d\n", GetLastError());
ExitProcess(0);
}
if (! SetEvent(hGlobalWriteEvent))
{
// error exit
}

for(i = 1; i <= NUMTHREADS; i++)
if (! SetEvent(hReadEvents[i]))
{
// error exit
}
}

In the following code example, before starting a read operation, each reader
thread uses WaitForMultipleObjects to wait for the application-defined global
variable, hGlobalWriteEvent, and its own read event to be signaled. When
WaitForMultipleObjects returns, the reader thread’s auto-reset event has been
reset to nonsignaled. This blocks the master thread from writing to the buffer
until the reader thread uses the SetEvent function to set the event’s state back
to signaled.

52 Windows CE Programmer’s Guide

VOID ThreadFunction(LPVOID T1pParam)

{
DWORD dwWaitResult, i;
HANDLE hEvents[2];
hEvents[@] = (HANDLE) *1pParam; // thread’s read event
hEvents[1] = hGlobalWriteEvent;
dwWaitResult = WaitForMultipleObjects
(
2, // number of handles in array
hEvents, // array of event handles
TRUE, // wait ti11 all are signaled
INFINITE); // indefinite wait
switch (dwWaitResult)
{
case WAIT_OBJECT_O:
break;
// An error occurred.
default:
printf("Wait error: %d\n", GetLastError());
ExitThread(0);
}
if (! SetEvent(hEvents[0]))
{
// error exit
}
}
Mutex Objects

A mutex object is a synchronization object whose state is set to signaled when it is
not owned by any thread, and nonsignaled when it is owned. Its name comes from
its usefulness in coordinating mutually-exclusive access to a shared resource.
Only one thread at a time can own a mutex object. For example, to prevent two
threads from writing to shared memory at the same time, each thread waits for
ownership of a mutex object before executing the code that accesses the memory.
After writing to the shared memory, the thread releases the mutex object.

Chapter 3 Working with Processes and Threads 53

A thread uses the CreateMutex function to create a mutex object. The creating
thread can request immediate ownership of the mutex object and can also specify
a name for the mutex object. Threads in other processes can open a handle to an
existing mutex object by specifying its name in a call to CreateMutex. For
additional information about names for mutex and event objects, see “Interprocess
Synchronization” later in this chapter.

Any thread with a handle of a mutex object can use one of the wait functions to
request ownership of the mutex object. If the mutex object is owned by another
thread, the wait function blocks the requesting thread until the owning thread
releases the mutex object using the ReleaseMutex function. The return value of
the wait function indicates whether the function returned for some reason other
than the state of the mutex being set to signaled.

Once a thread owns a mutex, it can specify the same mutex in repeated calls to
one of the wait functions without blocking its execution. This prevents a thread
from deadlocking itself while waiting for a mutex that it already owns. To release
its ownership under such circumstances, the thread must call ReleaseMutex once
for each time that the mutex satisfied the conditions of a wait function.

If a thread terminates without releasing its ownership of a mutex object, the mutex
object is considered to be abandoned. A waiting thread can acquire ownership of
an abandoned mutex object, but the wait function’s return value indicates that the
mutex object is abandoned. To be safe, assume that an abandoned mutex object
indicates that an error has occurred and that any shared resource being protected
by the mutex object is in an undefined state. If the thread proceeds as though the
mutex object had not been abandoned, the object’s abandoned flag is cleared
when the thread releases its ownership. This restores typical behavior, if a handle
to the mutex object is subsequently specified in a wait function.

In the following code examples, a process uses the CreateMutex function first to
create a named mutex object, and in the second piece of code, to open a handle of
an existing mutex object. Additionally, it uses structured exception-handling to
ensure that the thread properly releases the mutex object.

54 Windows CE Programmer’s Guide

HANDLE hMutex;

hMutex = CreateMutex
(

NULL, // no security attributes
FALSE, // initially not owned
"MutexToProtectDatabase"); // name of mutex

if (hMutex == NULL)

{
// Check for error.

}

When a thread of this process writes to the database, it first requests ownership of
the mutex. If it gets ownership, the thread writes to the database and then releases
its ownership.

The example uses the try-finally structured exception-handling syntax to ensure
that the thread properly releases the mutex object. To prevent the mutex object
from being abandoned inadvertently, the finally block of code is executed no
matter how the try block terminates—unless the try block includes a call to the
TerminateThread function.

BOOL FunctionToWriteToDatabase(HANDLE hMutex)

{
DWORD dwWaitResult;

dwWaitResult = WaitForSingleObject(
hMutex, // handle of mutex
5000L); // five-second time-out interval

switch (dwWaitResult)

{
case WAIT_OBJECT_O:
try
{
// Write to the database.
}
finally
{
if (! ReleaseMutex(hMutex))
{
// Deal with error.
}
break;

Chapter3 Working with Processes and Threads 55

// Cannot get mutex ownership due to time-out.
case WAIT_TIMEOUT:
return FALSE;

// Got ownership of the abandoned mutex object.
case WAIT_ABANDONED:
return FALSE;
}

return TRUE;

Critical Section Objects

A critical section object is a synchronization object that prov1des synchronization
similar to that provided by mutex objects, except that critical section objects can
be used only by the threads of a single process. Like a mutex object, a critical
section object can be owned by only one thread at a time, which makes it useful
for protecting a shared resource from simultaneous access. There is no guarantee
about the order in which threads obtain ownership of the critical section; however,
Windows CE processes all threads equally.

A process is responsible for allocating the memory used by a critical section.
Typically, this is done by declaring a variable of the type CRITICAL_SECTION.
Before the threads of the process can use it, you must initialize the critical section
by using the InitializeCriticalSection function.

A thread uses EnterCriticalSection to request ownership of a critical section and
it uses the LeaveCriticalSection function to release ownership. If the critical
section object is currently owned by another thread, EnterCriticalSection waits
indefinitely for ownership. In contrast, when a mutex object is used for mutual
exclusion, the wait functions accept a specified time-out interval.

Once a thread owns a critical section, it can make additional calls to
EnterCriticalSection without blocking its execution. This prevents a thread from
deadlocking itself while waiting for a critical section that it already owns. To
release its ownership, the thread must call LeaveCriticalSection once for each
time that it entered the critical section.

Any thread of the process can use the DeleteCriticalSection function to release
the system resources that were allocated when the critical section object was
initialized. After this function has been called, the critical section object can no
longer be used for synchronization.

56

Windows CE Programmer’s Guide

When a critical section object is owned, the only other threads affected are those
waiting for ownership in a call to EnterCriticalSection. Threads that are not
waiting are free to continue running.

The following code example shows how a thread initializes, enters, and leaves a
critical section. As with the mutex example described earlier, this example uses
the try-finally structured exception-handling syntax to ensure that the thread
calls the LeaveCriticalSection function to release its ownership of the critical
section object.

CRITICAL_SECTION GlobalCriticalSection;

InitializeCriticalSection(&GlobalCriticalSection);

EnterCriticalSection(&GlobalCriticalSection);
// Access the shared resource.
}
finally
{
// Release ownership of the critical section.
LeaveCriticalSection(&GlobalCriticalSection);

Interprocess Synchronization

Because multiple processes can have handles to the same event or mutex object,
these objects can be used to accomplish interprocess synchronization. The process
that creates an object can use the handle returned by the creation function,
CreateEvent or CreateMutex. Other processes can open a handle to the object
by using its name in another call to the appropriate creation function.

Named objects provide an easy way for processes to share object handles. The
name specified by the creating process is limited to the number of characters
defined by MAX_PATH. It can include any character except the backslash path-
separator character (\). Once a process has created a named event or mutex object,
other processes can use the name to call the appropriate function, either
CreateEvent or CreateMutex, to open a handle to the object. Name comparison
is case-sensitive.

The names of event and mutex objects share the same name space. If you specify
a name that is in use by an object of another type when you create an object, the
function succeeds, but GetLastError returns ERROR_ALREADY_EXISTS. To
avoid this error, use unique names and be sure to check function-return values for
duplicate-name errors.

Chapter3 Working with Processes and Threads

57

If the name specified in a call to CreateEvent matches the name of an existing
event object, the function returns the handle of the existing object. When using
this technique for event objects, however, none of the calling processes should
request immediate ownership of the event. If multiple processes do request
immediate ownership, you may have difficulty predicting which process will
get the initial ownership.

The following code examples illustrate the use of object names by creating
and opening named objects. The first process uses the CreateMutex function
to create the mutex object. Note that the function succeeds even if there is an
existing object with the same name.

HANDLE hMutex;
DWORD dwErr;

hMutex = CreateMutex
(

NULL, // no security descriptor
FALSE, // mutex not owned
"NameOfMutexObject"); // object name

if (hMutex == NULL)
printf("CreateMutex error: %d\n", GetlLastError());
else
if (GetLastError() == ERROR_ALREADY_EXISTS)
printf("CreateMutex opened existing mutex\n");
else
printf("CreateMutex created new mutex\n");

The second process uses the CreateMutex function to open a handle of the
existing mutex.

HANDLE hMutex;

hMutex = OpenMutex
(

MUTEX_ALL_ACCESS, // request full access
FALSE, // handle not inheritable
"NameOfMutexObject"); // object name

if (hMutex == NULL)
printf("OpenMutex error: %d\n", GetlLastError());

58 Windows CE Programmer’s Guide

Synchronization and Device I/0

Windows CE supports both synchronous and asynchronous I/O operations
on files and serial communications devices. The WriteFile, ReadFile, and
WaitCommEvent functions can be performed either synchronously

or asynchronously.

When a function is executed synchronously, it does not return until the operation
has been completed. This means that the execution of the calling thread can be
blocked for an indefinite period while it waits for a time-consuming operation to
finish. Functions called for overlapped operation can return immediately, even
though the operation has not been completed. This enables a time-consuming I/O
operation to be executed in the background while the calling thread is free to
perform other tasks. For example, a single thread can perform simultaneous I/O
operations on different handles, or even simultaneous read-and-write operations
on the same handle.

Windows CE does not support the overlapped I/O features of Windows NT. The
IpOverlapped parameter to ReadFile or WriteFile must be NULL. Therefore,
Windows CE cannot signal the event passed in when the I/O operation is
completed. However, Windows CE does support simultaneous synchronous or
asynchronous calls to ReadFile or WriteFile made by separate threads that are
overlapped in time; this is not supported in Windows NT.

Synchronizing Access to a Shared Variable

The functions InterlockedDecrement, InterlockedExchange, and
InterlockedIncrement provide a simple mechanism for synchronizing access to a
variable that is shared by multiple threads. The threads of different processes can
use this mechanism, if the variable is in shared memory.

The InterlockedIncrement and InterlockedDecrement functions combine the
operations of incrementing or decrementing the shared variable and checking
the resulting value. This atomic operation is useful in a multitasking operating
system, in which the system can interrupt one thread’s execution to grant a slice
of processor time to another thread. Without such synchronization, one thread
could increment a variable, but be interrupted by the system before it can check
the resulting value of the variable. A second thread could then increment the same
variable. In this scenario, when the first thread receives its next time slice, it
checks the value of the variable, which has now been incremented not once, but
twice. The interlocked variable-access functions of Windows CE protect against
this kind of error. The InterlockedExchange function atomically exchanges the
values of the specified variables.

59

CHAPTER

4

Accessing Persistent Storage

The persistent storage that Windows CE makes available to applications is
called the object store. This is the part of memory that is not used for the
operating system.

The object store is used for the following purposes:

Registry entries

The registry is a hierarchical database in which Windows CE stores
information necessary to configure the operating system. It contains
information on user profiles, applications, hardware, ports in use, and so on.
The registry replaces most of the text-based initialization (.ini) files used in
MS-DOS and Windows 3.x configuration files, such as AUTOEXEC.BAT
and CONFIG.SYS.

Specific registry locations are described in various chapters of the Windows
CE Programmer’s Guide. An example of a registry location used for
synchronization is HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
CE Services\ Services\Synchronization\Objects.

Windows CE supports a subset of the Win32 registry functions. The
differences between the Windows CE functions and their Win32 counterparts
are minimal. The main difference is that Windows CE assigns a default
security descriptor to keys, so the parameter for security attributes in
RegCreateKeyEx should be set to NULL. For a list of the supported
functions, see the appendix “Lists of Functions and Interfaces.”

Files

The file system functions available to Windows CE-based applications are
those supported by the Windows CE kernel. Note that the C Runtime library
does not include any file access functions, such as fopen, fread, and fprintf.
The following discussion highlights specific points concerning the Windows
CE file system functions. For a list of the file system functions, see the
appendix “Lists of Functions and Interfaces.”

60

Windows CE Programmer’s Guide

CreateFile opens existing files as well as creates new files. Windows CE does
not support simultaneous read/write operations; thus, files cannot be created
with the overlapped attribute set. To write to a file in the equivalent of append
mode, call CreateFile and SetFilePointer. To overwrite the contents of a file,
call CreateFile and SetEndOfFile. ReadFile does not support asynchronous
reads nor does it support reads through a socket. WriteFile does not support
asynchronous writes, and, unlike MS-DOS, Windows CE interprets zero bytes
as a null write. To truncate or extend files, use SetEndOfFile.

A ROM file is a file stored on a device as read-only memory, for example,
flash memory or PC Cards. A ROM file is an option for dealing with the
memory limitations of a Windows CE-based platform. The GetFileAttributes
function has additional return values for files stored in ROM. The
FILE_ATTRIBUTE_INROM value identifies the file as read-only. The
FILE_ATTRIBUTE_ROMMODULE value indicates that the file is designed
to be executed in place, without first being copied to RAM. The CreateFile
function cannot be used to access this type of file; the LoadLibrary and
CreateProcess functions must be used instead.

Windows CE databases

The rest of this chapter discusses Windows CE databases and the functions
which relate to them. For a list of the Windows CE database functions, see
the appendix “Lists of Functions and Interfaces.”

Object Identifiers

Each object in the object store—whether a directory, file, database, or database
record—is associated with a unique object identifier. The system generates an
object identifier for each object when it is created. The most common use of
object identifiers is accessing databases and their records.

Object type Where to obtain the object identifier

Directory or file The dwOID member of WIN32_FIND_DATAW from

FindFirstFile or FindNextFile.

The dwOID member of
BY_HANDLE_FILE_INFORMATION from
GetFileInformationByHandle.

Database Return value of CeCreateDatabase or
CeFindNextDatabase.
Database record Return value of CeSeekDatabase,

CeReadRecordProps, or CeWriteRecordProps.

Chapter4 Accessing Persistent Storage 61

Another important use of object identifiers is to obtain information on any object
in the store. To accomplish this, a Windows CE-based application calls the
CeOidGetInfo function and supplies the object identifier in the parameter of type
CEOID. CeOidGetInfo returns the object data in a CEOIDINFO structure. This
structure’s wObjType member contains a flag that indicates the object type. The
data in the structure depends on the type of object. For example, if the object is a
database record, the CEQIDINFO structure’s wObjType member contains the
flag OBJTYPE_RECORD, indicating that the data for the object consists of a
CERECORDINFO structure. If there is no valid object for the object identifier
the return value of CeOidGetInfo is FALSE.

The following code example shows how to use the object identifier to obtain the
object type of any object in the object store.

CEOID WceObjID; // object didentifier
CEOIDINFO WceObjInfo; // structure that contains object info
TCHAR szMsg[MAX_STRING]; // string to display with object info

if (Ce0idGetInfo(WceObjID, &WceObjInfo))
{
switch (WceObjInfo.wObjType)
{
case OBJTYPE_FILE:
wsprintf(szMsg, TEXT("Object is a file: %s"),
WceObjInfo.infFile.szFileName);
break;
case OBJTYPE_RECORD:
wsprintf(szMsg, TEXT("Object is a record™));
break;
case OBJTYPE_DATABASE:
wsprintf(szMsg, TEXT("Object is a database: %s"),
WceObjInfo.infDatabase.szDbaseName);
break;
case OBJTYPE_DIRECTORY:
wsprintf(szMsg, TEXT("Object is a directory: %s"),
WceObjInfo.infDirectory.szDirName);
break;
default:
// handle error ...
break;

62 Windows CE Programmer’s Guide

Working with Windows CE Databases

A Windows CE database is simply a general-purpose, flexible, structured
collection of data. A Windows CE database consists of records, where each
record consists of one or more properties. A property refers to a data item that
consists of a property identifer, a data type identifier, and the data value. For
example, an application could use a database of address records, where the
properties of each record include a name, street address, city, state, zip code,
and telephone number. Windows CE supports integer, string, time, and byte
array, or BLOB, data types.

Devices that run the Windows CE operating system usually ship with several
built-in databases and allow users and applications to create additional databases.
For example, the Handheld PC (H/PC) comes with calendar and task list
applications that have databases for user data.

Note that databases allow only one level of hierarchy. That is, records cannot
contain other records. Nor can records be shared by databases—each record

is unique, has a unique object identifier, and is present in only one database.
The recommended maximum size of a record in bytes is given by the constant
CEDB_MAXRECORDSIZE. The recommended maximum property size is
given by CEDB_MAXPROPDATASIZE. Both of these constants are defined
in Rapi.h and Windbase.h.

Unlike traditional databases, opening and closing a Windows CE database does
not imply that any transactioning has occurred. The database is not committed at
closing, but rather it is committed after each individual call.

It is not possible to lock a Windows CE database to restrict access. Thus, several
applications can have open handles to the same database at the same time.
However, Windows CE supports several notification messages that can tell an
application when another application creates, modifies, or deletes database
records. The messages are sent to the specified window when you call
CeOpenDatabase and supply a non-null window handle.

Windows CE supports the following messages:

Message Description

DB_CEOID_CHANGED Another thread modified an object in the
object store. The message supplies the object
identifier.

DB_CEOID_CREATED Another thread created an object in the object
store. The message supplies the object
identifier.

DB_CEOID_RECORD_DELETED Another thread deleted a record. The message

supplies the record’s object identifier.

Chapter4 Accessing Persistent Storage 63

Each database includes information about the database as a whole, such as its
name, an optional database type identifier that you can use to group similar
databases, and up to four sort keys that describe how the records in the database
will be sorted.

Creating and Deleting Databases

The CeCreateDatabase function creates a database. When calling the function,
specify the name, an optional database type identifier, and optional sort order
specifications. CeCreateDatabase returns the object identifier of the newly
created database.

The database type identifier is an optional, application-defined value that allows
you to differentiate individual databases. For example, you can have a different
type of database for an address book than for a to-do list. The type identifier
allows you to group related databases for searching, record management, and
enumeration of databases.

For a discussion of sorting and sort orders, see “Sorting Records” later in
this chapter.

To delete a database, the application passes the database’s object identifier
to CeDeleteDatabase.

The following code example shows how to open a database of addresses by
calling the CeOpenDatabase function. If the database does not exist, call

the CeCreateDatabase function to create a new address database with three
different sort orders. After creating the database, try again to open the database.

// Global variables:
// g_oidAddressDatabase - Object identifier of address database
// g_hAddressDatabase - Open handle to the address database

BOOL OpenAddressDatabase (HWND hwndNotify, CEPROPID cepidSortProperty)
{
CEOID oidAddressDatabase; // Object identifier of address database
SORTORDERSPEC sort[MAX_MSG_PROPERTIES]; // Sort order descriptions

g_hAddressDatabase = CeOpenDatabase(&oidAddressDatabase,
TEXT("Addresses"), cepidSortProperty, @, hwndNotify);

if (g_hAddressDatabase == INVALID_HANDLE_VALUE)
{

64 Windows CE Programmer’s Guide

sort[0].propid = HHPR_LAST_NAME;

sort[0].dwFlags = 0; // sort in ascending order
sort[1].propid = HHPR_CITY;
sort[1].dwFlags = 0; // sort in ascending order
sort[2].propid = HHPR_STATE;
sort[2].dwFlags = 0; // sort in ascending order

g_oidDatabase = CeCreateDatabase(TEXT("Addresses"), 0,
MAX_MSG_PROPERTIES, sort);

g_hAddressDatabase = CeOpenDatabase(&oidAddressDatabase, NULL,
cepidSortProperty, 0,
NULL);
}

if (lg_hAddressDatabase)
return FALSE;

return TRUE;

Getting Information About a Database

Each database in the object store contains information about that database

as a whole, including its name, type identifier, and sort order specifications.
This information is defined in the CEDBASEINFO structure through the
CeCreateDatabase and CeSetDatabaselnfo functions. As discussed earlier,
this information can be accessed using CeQidGetInfo.

The database name is a null-terminated string that contains up to 32 characters.
The type identifier is a double-word value that can be used for any application-
defined purpose, typically to differentiate one type of database from another while
enumerating them. The sort order specification determines the order in which the
database seek functions examine the records in a database.

Enumerating Databases

Enumerating databases is the process of sequentially accessing each database in a
group. The group can either include all databases in the object store or only those
of a specified type. Enumeration can be used when a change needs to be made to
all databases of a certain type, or when synchronizing data between the desktop
computer and the Windows CE-based device.

Chapter 4 Accessing Persistent Storage 65

To enumerate databases, call the CeFindFirstDatabase and
CeFindNextDatabase functions.

CeFindFirstDatabase establishes and returns a handle to the enumeration context
for the type identifier specified. If the type identifier was zero, the context will
include all the databases. Note that CeFindFirstDatabase does not give the
object identifier for the first database. Use the handle to the enumeration

context to call CeFindNextDatabase repeatedly to obtain the object identifiers
for each database in turn. When there are no more databases of that type,
CeFindNextDatabase returns the value zero. To ensure that there was no
problem with the enumeration, call GetLastError and check for the
ERROR_NO_MORE_ITEMS value.

When the application is finished enumerating databases, it must close the handle
to the enumeration context by using the CloseHandle function.

The following code example enumerates all databases in the object store and adds
their names to a combo box.

HANDLE hEnumDB; // handle to a database enumerator
TCHAR szBuf[MAX_BUF]; // tmp string for combobox or message box
HWND hCB1; // combo box; value set by calling GetDlgltem

hEnumDB = CeFindFirstDatabase(0);
if (INVALID_HANDLE_VALUE == hEnumDB)

{
// error handling omitted...uses GetlLastError()
return; // continue only if FindFirst succeeds
}
while((WceObjID = CeFindNextDatabase(hEnumDB)) != @)
{
if (1Ce0idGetInfo(WceObjID, &WceObjInfo))
{
CloseHandle(hEnumDB) ;
// error handling omitted...uses GetLastError()
return; // continue only if FindNext succeeds
}
else
{
wsprintf(szBuf, WceObjInfo.infDatabase.szDbaseName);
SendMessage(hCB1, CB_ADDSTRING, @, LPARAM(szBuf));
}
}

CloseHand1e(hEnumDB) ;

66

Windows CE Programmer’s Guide

Opening a Database

Before accessing records or properties in a database, you must obtain a handle
to the database by calling the CeOpenDatabase function. Specify either the
database name or its object identifier. The CeOpenDatabase function returns
an open database handle that you can use in subsequent calls for reading or
modifying the database. When you finish using the database, close the handle
by calling the CloseHandle function.

Use the CEDB_AUTOINCREMENT flag when calling CeOpenDatabase to
increase performance when reading many properties. This flag directs the system
to automatically increment the seek pointer every time you access a database
property with the CeReadRecordProps function. The seek pointer marks the
record that will be read by the next read operation.

When calling CeOpenDatabase, you can specify the identifier of a property to
use as the sort order for the database. The system uses the sort order to increment
the seek pointer after each subsequent call to CeReadRecordProps, if the
CEDB_AUTOINCREMENT flag is specified. The sort order also determines
the property that the CeSeekDatabase function uses to traverse the database.

The following code example demonstrates the call to CeOpenDatabase.

CEOID objId; // database ID
TCHAR szDbName[MAX_SIZE]; // contains the database name
HANDLE hDb; // handle to the database
hDb = CeOpenDatabase(&objId, // tmp Tocation for the database id
szDbName, // database name
0, // sort order; @ indicates ignore
CEDB_AUTOINCREMENT, // flags
NULL); // window handle for notifications

// perform error checking on hDb handle before continuing...
// perform other operations on the database, then close it
CloseHandle(hDb);

For more information about sort order, see “Sorting Records” later in this chapter.
For more information about moving the seek pointer, see “Searching for Records”
later in this chapter.

Working with Database Records

You use several functions to work with database records. These functions allow
you to create, modify, and delete records and their properties.

Chapter 4 Accessing Persistent Storage 67

You can create new records or modify existing records using the
CeWriteRecordProps function. The function parameters include the handle to
the database and the object identifier of the record to add. If the object identifier
is zero, CeWriteRecordProps creates a new record.

To write properties to a record, fill an array of CEPROPVAL structures and pass
the address of the array to CeWriteRecordProps along with the database handle
and the record’s object identifier. Each structure contains a property identifier and
the data value for that property. To specify the data value, fill the val member,
which is defined as a CEVALUNION union. The CEPROPVAL structure also
includes a flag member that you can set to CEDB_PROPDELETE in order to
delete the specified property or properties. If the CeWriteRecordProps function
succeeds, the object identifier of the new or modified record is returned.

Use the CeDeleteRecord function to delete a record from a database, supplying
the object identifier of the record and the handle to the open database that
contains the record.

The following code example creates and writes a new property that is a byte array,
or BLOB.

CEPROPVAL NewProp; // the new property contains a BLOB
CEBLOB blob; // the BLOB contains a byte array
BYTE * pBuf = NULL; // the actual BLOB data

UINT cbBuf; // count of bytes needed in BLOB

// figure out the size needed, then allocate it
pBuf = (BYTE *) LocalAlloc(LMEM_FIXED, cbBuf);
// put the actual data into pBuf here...

// now set up to write the new BLOB property
NewProp.propid = CEVT_BLOB;
NewProp.wFlags = 0;
blob.dwCount = cbBuf; // count of bytes in the buffer
blob.1pb = pBuf; // set CEBLOB field to point to buffer
NewProp.val.blob = blob; // BLOB itself points to the buffer
oid = CeWriteRecordProps(hDb,

0, // new record
1, // one property
&NewProp); // pointer to the BLOB property

// perform error handling by checking oid...

Write a record into a database by filling an array of CEPROPVAL structures
and passing the array to the CeWriteRecordProps function, along with an open
handle to the database in which to add the record. The following code example
shows how to add a record to a database.

68 Windows CE Programmer’s Guide

// SetAddressData - Adds a name and address to an address database in
// the object store.

// Returns the object identifier of the record in which the name and
// address are written.

// pAddressData - Pointer to a structure that contains the name and
// address to add

// Global variable:
// g_hAddressDatabase - Open handle to the address database

CEOID SetAddressData(PADDRESSDATA pAddressData)
{
CEPROPVAL rgPropVal[ADDRESS_PROP_COUNT];
WORD wCurrent = 0;

// Use a C runtime function to zero-f111 the array of property
// values.
memset (&rgPropVal, @, sizeof(CEPROPVAL) * ADDRESS_PROP_COUNT);

rgPropVal[wCurrent].propid = HHPR_NAME;
rgPropVal[wCurrent++].val.lpwstr = pAddressData->pwszName;

rgPropVal[wCurrent].propid = HHPR_STREET;
rgPropVal[wCurrent++].val.lpwstr = pAddressData->pwszStreet;

rgPropVal[wCurrent].propid = HHPR_CITY;
rgPropVal[wCurrent++].val.lpwstr = pAddressData->pwszCity;

rgPropVal[wCurrent].propid = HHPR_STATE;
rgPropVal[wCurrent++].val.lpwstr = pAddressData->pwszState;

rgPropVal[wCurrent].propid = HHPR_ZIP_CODE;
rgPropVal[wCurrent++].val.ulVal = pAddressData->dwZip;

oid = CeWriteRecordProps(g_hAddressDatabase, @, wCurrent,
rgPropVal);

return oid;

Reading Records and Properties

After opening a Windows CE database, the seek pointer is positioned at the first
record according to the selected sort order.

Chapter 4 Accessing Persistent Storage 69

The CeReadRecordProps function reads properties from the record where

the seek pointer is currently positioned. When calling CeReadRecordProps,
indicate the properties to be read by specifying an array of property identifiers.
Also specify the buffer into which the function is to write the property
information, and a value indicating the size of the buffer. If you specify the
CEDB_ALLOWREALLOC flag, the system will reallocate the buffer if it is too
small to hold the property information. Note that the system stores records in
compressed format and must decompress records as they are read. For efficiency,
you should read all of the desired properties in a single call rather than in several
separate calls.

When the property is read successfully, the property information is copied into the
specified buffer as an array of CEPROPVAL structures, and the function returns
the record’s object identifier.

If the system cannot find a requested property in the specified
record, the CEPROPVAL structure for that property receives the
CEDB_PROPNOTFOUND flag. All of the variable size data, such
as strings and BLOBs, are copied to the end of the buffer. The
CEPROPVAL structures contain pointers to this data.

If you specified the CEDB_AUTOINCREMENT flag when opening the database,
CeReadRecordProps increments the seek pointer.

The following code example demonstrates how to read properties from the
database using the autoincrement and reallocation flags.

CEOID objId; // object identifier; use for db, each record
HANDLE hDb; // handle to the database
WORD cProps; // count of properties returned by Read operation
LPBYTE pBuf = NULL; // no init size; let CeReadRecordProps realloc
DWORD cbBuf; // count of bytes in buffer
hDb = CeOpenDatabase(&objId, // tmp location for the database id
szDbName, // database name
0, // sort order; @ indicates ignore
CEDB_AUTOINCREMENT,
NULL); // window handle for notifications

// perform error checking on hDb handle before continuing...
while (objId = CeReadRecordProps(hDb,
CEDB_ALLOWREALLOC,

&cProps, // return count of properties
NULL, // retrieve all properties
&pBuf, // buffer to return prop data
&cbBuf)) // count of bytes in pBufl
{ // record is now available in pBufl

// add code here to manipulate the props in this record
}

70

Windows CE Programmer’s Guide

// at this point, all records have been read from the database
CloseHandle(hDb);

Sorting Records

When creating a new database, you can specify up to four sort order descriptions
to associate with the database. A sort order description is a SORTORDERSPEC
structure that contains the identifier of a property on which the database records
are to be sorted. The structure also includes a combination of flags that indicate
whether to sort the records in ascending or descending order, whether the sort is
case-sensitive, and whether to place records that do not contain the specified
property before or after all other records. By default, sorting is done in descending
order and is case-sensitive. Records not containing a specified property are placed
at the end of all other records.

Note Sorts on binary properties are not allowed.

Because sort orders increase the amount of time and system resources needed to
perform each insertion or deletion, it is best to use the minimum number of sort
orders for an application. However, do not use too few. While it is possible to use
CeSetDataBaselInfo to reorder the database, this process is even more expensive
in terms of time and system resources. It could take several minutes to reorder a
large database.

Typically, each record in a database contains a similar set of properties, and each
type of property shares the same property identifier. For example, each record in a
Contacts database might contain a name, street address, city, state, zip code, and
telephone number. Each name property would have the same property identifier,
each street address property would have the same property identifier, and so on.
You can select one of these properties and direct the system to sort the records
based on it. The order in which the records are sorted affects the order in which
the database-seeking function CeSeekDatabase finds records in the database.

You specify the sort order when you call the CeOpenDatabase function. Only
one sort order can be active for each open handle. However, by opening multiple
handles to the same database, you can use more than one sort order.

Note Multiple sort orders cannot be specified for a single property.

Chapter 4 Accessing Persistent Storage 4l

Searching for Records

Use the CeSeekDatabase function to search for a record in a database. The
CeSeekDatabase function always uses the current sort order as specified in the
call to CeOpenDatabase. If the CEDB_AUTOINCREMENT flag was specified,
each read operation on the database will automatically increment the seek pointer
from the current position to the next position.

The CeSeekDatabase function can perform different types of seek operations.
When calling the function, you specify a flag that indicates the type of seek
operation, and a value whose meaning depends on the specified flag. For example,
to find a particular record, you specify the CEDB_SEEK_CEOID flag and the
object identifier of the desired record. When CeSeekDatabase finds a record, the
seek pointer is positioned at that record. Any subsequent read operation takes
place at the location of the seek pointer.

Note A seek can only be performed on a sorted property value.

Seek operations are affected by the sort order associated with the open database
handle. For example, suppose the Contacts database was opened using a sort on
the name property. If you specify the CEDB_SEEK_VALUEFIRSTEQUAL flag
and a value of “Joe Smith,” the CeSeekDatabase function will search from the
beginning of the database looking only at the name property of each record,
stopping when, and if, a matching property is found.

You can change the sort order that was set when the database was created by
using the CeSetDatabaseInfo function, but this is not usually advised. The
system maintains a set of indexes and other information that it uses to optimize
database searches for the specified sort orders. When new sort orders are
specified, the system must revise all of that internal information, which can take
several minutes for large databases. The following code example demonstrates a
call to CeSeekDatabase.

72 Windows CE Programmer’s Guide

CEOID oid, oidSeek; // Object identifier of record sought/returned
DWORD dwlIndex; // Index of record seeked to

// set value of oidSeek appropriately...
// actual set operation omitted from this fragment
// Perform the seek
oid = CeSeekDatabase(hDb,
CEDB_SEEK_CEOID, // request a seek operation
oidSeek, // specifies the record to seek
&dwIndex); // on success, index to the record
if (loid)
// error handling goes here; omitted from this fragment...
// Continues at this point only if record found
// After finding the record, read it and get its data
oid = CeReadRecordProps(hDb, CEDB_ALLOWREALLOC,
&wCount, NULL, &1pBuffer, &wSize);

The following code example shows how to find a record in a database and

read its properties into a buffer. The function GetAddressData takes two
parameters: the object identifier of a record and a pointer to an application-
defined ADDRESSDATA structure that receives the record’s property data.
First, the GetAddressData function allocates a temporary buffer for the property
data, and then it calls the CeSeekDatabase function to find the record that has
the specified object identifier. If the record is found, the CeReadRecordProps
function reads the property data into the temporary buffer. Finally, the property
data is copied from the temporary buffer into the application-defined
ADDRESSDATA structure.

// GetAddressData - Retrieves the contents of an address record
// Returns a code that indicates the result of the function

// pAddressData - Pointer to an application-defined ADDRESSDATA
// structure that receives the data from the address record
//

// Global variable:

// g_hAddressDatabase - Open handle to the address database

ECODE GetAddressData(CEOID oidSeek, PADDRESSDATA pAddressData)

{
LPBYTE 1pBuffer; // Buffer for address record
WORD wSize = 1024; // Size of buffer
CEOID oid; // Object identifier of record found or read
DWORD dwlIndex; // Index of record seeked to
WORD wCount; // Number of properties in record
int i; // Loop counter
CEPROPID propid; // Property identifier
WORD wlLength; // String length

ECODE ec = EC_SUCCESS; // Error/success code

Chapter 4 Accessing Persistent Storage 73

1pBuffer = (LPBYTE) LocalAlloc(LMEM_FIXED, wSize);
if (!1pBuffer)
return EC_OUTOFMEMORY;

oid = CeSeekDatabase(g_hAddressDatabase, CEDB_SEEK_CEOID,
oidSeek, &dwlIndex);

if (loid)
return EC_SEEK_FAILURE;

oid = CeReadRecordProps(g_hAddressDatabase, CEDB_ALLOWREALLOC,
&wCount, NULL, &lpBuffer, &wSize);

if (loid)
return EC_READ_FAILURE;

for (i = 0; i < wCount; i++)
{
propid = ((CEPROPVAL*) 1pBuffer)[i].propid;

switch (propid)

{
case HHPR_NAME:
{
// Copy the addressee’s name.
TCHAR* pData;
wLength =
1strlen(((CEPROPVAL*) 1pBuffer)[i].val.lpwstr);
pData = (TCHAR*) LocalAl1loc(LMEM_FIXED,
wlLength * sizeof(TCHAR) + 1);
If (pData)
{
1strcpy(pData,
((CEPROPVAL*) 1pBuffer)[i].val.lpwstr);
pAddressData->pwszName = pData;
}
else
{
ec = EC_OUTOFMEMORY;
}
}
break;

case HHPR_STREET:
{

74 Windows CE Programmer’s Guide

// Copy the addressee’s street address.
TCHAR* pData;

wLength =
Tstrlen(((CEPROPVAL*)1pBuffer)[i]l.val.lpwstr);
pData = (TCHAR*) LocalAlloc(LMEM_FIXED,
wLength * sizeof(TCHAR) + 1, FALSE);
if (pData)
{
1strcpy(pData,
((CEPROPVAL*) 1pBuffer)[il.val.lpwstr);
pTaskData->pwszDescription = pData;

}
else
{
ec = EC_OUTOFMEMORY;
}
}
break;
// Copy the remaining record properties to
// the ADDRESSDATA structure.
default:
break;
}
if (ec != EC_SUCCESS)
break;
}
if (1pBuffer)
LocalFree(1pBuffer);
return ec;

75

CHAPTER 5

Using Communications

Windows CE supports a wide range of communications options for transmitting
and receiving data. You can use communications for a variety of tasks, including:
= Downloading files from a desktop computer or network

= Exchanging information with another Windows CE-based device

= Sending and receiving e-mail

= Sending data to a server

= Browsing the Internet

= Reading bar codes

To support the many different types of communication, Windows CE-based
devices can include a variety of hardware. Some hardware may be an integral part
of the device. For example, many Windows CE-based devices include a connector
for a serial cable or an infrared (IR) transceiver. If a PC Card slot is available,
users can also extend the built-in capabilities of the device with third-party
communications hardware, such as a modem or a bar code reader. Available
communications hardware includes:

= Serial cables

= IR transceivers

= Wireless transceivers
= Modems

= Bar code readers

Windows CE supports two basic types of communications technology: serial and
network. While some hardware can support only one type, the same hardware is
often used for both. Which type of communication is appropriate is governed in
large part by how the communicating devices are connected.

76 Windows CE Programmer’s Guide

You can use serial communications when two devices have a one-to-one
connection. Each sender has only one possible receiver, and vice versa. A
common example is two devices connected by a serial cable. Because there
is no ambiguity about where the data is from and where it is going, it can be
streamed from one device to the other with little or no processing. Examples
of serial communications include:

= Transferring information from a desktop computer to a Windows CE-based
device by means of a serial cable

= Sending text to a printer using an IR transceiver

With networks, every transmission is usually seen by many receivers, whether

or not they are the intended recipient. For one-to-one communication to take
place over a network, simply streaming the information will not work. Each
transmission must also include addresses that identify the sender and the intended
recipient. A receiver can thus monitor the network and pick out only those
transmissions that are addressed to it. It can then use the senders address to
respond. The Windows CE network stack handles addressing and related tasks.
You use a network for such tasks as:

= Downloading a file from a corporate local area network to a
Windows CE-based device

= Browsing the Internet using a modem connection to an independent
service provider

= Sending e-mail when you are away from home using a wireless service

Serial Communications

Serial communication requires a one-to-one connection between transmitter and
receiver, typically by way of a serial cable. IR transceiver modems are also used
for serial communications.

From the standpoint of software, each serial device is identified by its COM port
name, for example, “COM1:” and “COM2:.” The COM-port assignments are
stored in the registry under \HKEY_LLOCAL_MACHINE\Drivers. Because they
may be installable, check \HKEY_LLOCAL_MACHINE\Active to see which
drivers are loaded.

Serial communication over a COM port is similar to reading from, or writing
to, a file, and it uses some of the same functions. Regardless of the hardware,
the basic procedure works as described in the next section, “Implementing
Serial Communications.”

Chapter 5 Using Communications 77

Using IR transceivers is more complex. Windows CE supports two ways to use

an IR transceiver for serial communications. One approach supported by some
Windows CE-based devices treats the IR transceiver like a serial cable. The data
is not processed by the system in any way. The sending and receiving applications
are responsible for dealing with collision-detection and other potential problems.
This approach is referred to as raw infrared, or raw IR.

The COM port assigned to raw IR is determined by the original equipment
manufacturer (OEM) and is listed in the registry. Because it may share a port
assignment with a wired serial connector, you should check the registry. If the
port is shared, you must use EscapeCommFunction to set the port to IR mode.

A second approach to serial IR communications uses the Infrared Data
Association (IrDA) protocols. These protocols are part of the network

stack, and are discussed in “Infrared Sockets” later in this chapter. To simplify
their use for serial communications, Windows CE provides an emulator
(IrComm), that enables an application to communicate using the IrDA protocols
in much the same way it does with raw IR.

From a programming standpoint, the main difference between raw IR and
IrComm is that they have different COM-port assignments. With IrComm,
there is also no need to explicitly configure the port for IR by calling
EscapeCommFunction.

Implementing Serial Communications

This procedure outlines how to implement serial communications in an
application. With the exception of step 3, the procedure is identical for
all three approaches.

» To use serial communications
1. Determine which COM port you need to open.
Port numbers are stored in the \HKEY_LOCAL_MACHINE\Drivers registry
key. Active drivers are listed in the \HKEY_LOCAL_MACHINE\Active
registry key.
2. Call CreateFile with [pFileName set to the COM-port name, for
example,“COM1:.”

The colon (:) is part of the port name and must be included. Set the
IpSecurityAttributes parameter to NULL and the dwFlagsAndAttributes
parameter to zero.

3. For raw IR transmission, place the port in IR mode by calling.
EscapeCommFunction with hFile set to the handle returned
by CreateFile and dwFunc set to SETIR.

4. Call SetCommTimeouts to set the communication timeouts.

78

Windows CE Programmer’s Guide

5. Call the ReadFile and WriteFile functions to transmit and receive serial data.

When one thread is waiting for a ReadFile function to return, ReadFile calls
issued by other threads are blocked until the initial ReadFile call returns. The
same is true for the WriteFile function.

6. Call CloseHandle to close the serial port.

Using a Modem

An application that uses a modem must be able to handle such tasks as dialing the
appropriate phone number and breaking the connection when the session is over.
To simplify the process of using a modem, Windows CE supports a subset of the
Microsoft telephony application programming interface (TAPI), which handles
only outbound calls. TAPI provides a set of functions that applications can use

to handle the process of making and managing a modem connection, but not the
actual transfer of data.

» To make a modem connection using TAPI
1. Call linelnitialize to initialize TAPL

This function returns the number of line devices available. You must provide
the name of the callback function that TAPI should use to return data. For
more information, see “TAPI Callback Function” later in this chapter.

2. Call lineOpen to open the line.
. Call lineMakeCall.

When the call is set up, TAPI returns a LINE_REPLY message through
the callback function. This message indicates only that the call has been
established at the local end, perhaps indicated by a dial tone.

As the connection process proceeds, TAPI returns a series of
LINE_CALLSTATE messages through the callback function
indicating the progress of the connection, for example, dialtone
and ringing. When the connection is completed, TAPI returns a
LINECALLSTATE_CONNECTED message.

During information transfer, TAPI continues to manage the connection, but
the application handles data transmission and reception. When transmission is
finished, TAPI returns a LINE_CALLSTATE message, such as one indicating
that a remote disconnect has occurred.

4. Call lineClose to close the line.
5. Call lineShutdown to terminate the session.

Chapter5 Using Communications 79

TAPI Callback Function

TAPI sends messages to an application through a callback function
implemented by the application. Implement the callback function
according to the following definition.

void CALLBACK LineCallbackFunc (DWORD hDevice, DWORD dwMsg, DWORD
wCallbackInstance, DWORD dwParaml, DWORD dwParam2, DWORD dwParam3);

hDevice

A handle to the line device associated with the callback. Do not use the
HANDLE type for this parameter.

dwMsg

The line device message. Line device messages are described in the

following table.

Message

Description

LINE_ADDRESSSTATE

LINE_CALLINFO
LINE_CALLSTATE
LINE_CLOSE
LINE_CREATE
LINE_DEVSPECIFIC
LINE_LINEDEVSTATE
LINE_REMOVE

LINE_REPLY

LINE_REQUEST

Indicates that the status of an address on a currently
open line has changed

Indicates that call information has changed

Indicates that the status of the call has changed
Indicates that the line device has been forcibly closed
Indicates that a new line device has been created
Indicates that a device-specific event has occurred
Indicates that the state of a line device has changed

Indicates that a device has been removed, usually
for good

Reports the results of function calls that completed
asynchronously

Reports the arrival of a new request from
another application

80 Windows CE Programmer’s Guide

dwCallbackInstance
The callback instance data.

dwParaml
A message parameter, used as needed to send additional information.

dwParam?
A message parameter, used as needed to send additional information.

dwParam3
A message parameter, used as needed to send additional information.

Windows CE Networking

Windows CE supports a variety of networking options that range from
serial link networking over a modem to wireless communications.
Networking capabilities include:

Sending an ICMP request, also known as a ping

Communicating over the Internet with the Windows CE
Internet API, known as Winlnet

Accessing remote file systems
Using Windows Sockets
Using network security features

Accessing an IR transceiver using the IrDA protocols

There are several types of networking that are supported:

Local area networking

Wired serial-link networking using serial cables or modems
Infrared networking

Wireless networking

Windows CE network support is organized in layers. The network stack is
responsible for taking data from applications, breaking it into one or more
packets, and adding whatever header information is necessary to ensure that
the packet arrives at its destination. The following illustration describes the
schematics of the network stack.

Chapter 5 Using Communications 81

Network stack schematics

There are several ways to access the network stack:

The Windows Sockets (Winsock) API provides applications with the means
to exchange packets with a remote site. It handles all the details of creating
the needed header information, but leaves the format of the data up to the
application. All network communication on Windows CE uses Winsock
directly or indirectly.

The WinlInet API supports high-level data protocols, such as Hypertext
Transmission Protocol (HTTP) or File Transfer Protocol (FTP). These APIs
ensure that the data is properly structured and relieve applications of the need
to use Winsock directly.

A Common Internet File System (CIFS) redirector gives applications access to
remote file systems. Windows CE also provides support for a Remote Access
Service (RAS) client, which allows a Windows CE-based device to connect to
a remote host.

82 Windows CE Programmer’s Guide

The following sections describe the Windows CE network stack from the top to
the bottom.

Sending an ICMP Request

Send an Internet Control Message Protocol (ICMP) request, or ping, to determine
whether or not a particular host is available.

» To send an ICMP request
1. Call ICMPCreateFile to create a handle on which requests can be issued.

2. Call ICMPSendEcho to send an ICMP echo request. It returns the status of
the host.

3. Call ICMPCloseHandle to close the handle created by ICMPCreateFile.

Communicating over the Internet

Much of the communication that takes place over the Internet involves the use
of high-level protocols, such as HTTP. These protocols specify how the data
contained in the packets must be structured.

Winlnet provides a set of tools for developing Internet client applications, such as
browsers, that use the FTP and HTTP Internet protocols. WinlInet also simplifies
the details of making and using socket connections. Use Winlnet to:

= Connect to remote sites.

= Download HTML pages.
= Send FTP requests to upload or download files, or to get directory listings.

The Windows CE version of WinlInet is similar to WinInet for WindoWs-based
desktop platforms, with two significant differences:

= Most callback functions are handled synchronously in Windows CE.
Only InternetReadFile and InternetQueryDataAvailable operate
in both synchronous and asynchronous modes.

» Windows CE supports Unicode by default.

Winlnet uses Internet handles that are passed to functions that offer specific
Internet services, such as making an HTTP request. These handles are generally
organized in a tree. The following illustration describes a hierarchy that you might
use for HTTP communications.

Chapter 5 Using Communications 83

hinternetOpen

hinternetConnect1 Jll hinternetConnect2

' hHttpOpent _hHitpOpenA Wl hHttpOpenB

Hierarchy of HTTP communications

The hinternetOpen handle is the root of the tree and is used by all HTTP
sessions. The hInternetConnect handle identifies a particular site. It is used to
open a connection to the site that is then represented by an hHttpOpen handle.
This handle can then be used to send an HTTP request.

When a parent node handle is closed, all its child handles will be closed
recursively. In the previous example, closing hlnternetConnect2
also closes hHttpOpenA and hHttpOpenB.

For more information about how to use Winlnet, see the Microsoft
Platform SDK.

Using WinInet to Access HTTP

This procedure outlines how to use Winlnet to access an internet site using the
HTTP protocol.

» To use the HTTP protocol
1. Call InternetOpen to get an Internet handle.
Call InternetConnect to create a session handle for the site.
Call HttpOpenRequest to open the site and prepare it for the HTTP request.
Call HttpSendRequest to send the request.

Call InternetReadFile or InternetQueryDataAvailable to
download information.

6. Call InternetCloseHandle to close open handles.

A

Accessing Remote File Systems

For access to remote file systems, Windows CE supports a CIFS redirector. The
CIFS protocol is also referred to as the Server Message Block (SMB) protocol.
A redirector is a module through which one computer gains access to another.
The redirector has two purposes: to reestablish disrupted connections and to
handle remote file system requests by packaging them and then sending them
to the target host for processing. The target host returns the results to the
originating computer.

84

Windows CE Programmer’s Guide

The Windows CE redirector allows connections to computers running Windows
NT, Windows 95, or any other server that is compliant with the NT LM 0.12
dialect of the CIFS specification. Applications gain access to the redirector either
through the Windows CE WNet API or the Universal Name Convention (UNC).
Drive letters are not supported.

To use the WNet functions under Windows CE, the redirector dynamic-link
library (DLL), known as Redir.dll, and the NetBios DLL, known as Netbios.dll,
must be installed on the system. If these DLLs are not installed, the WNet
functions return ERROR_NO_NETWORK.

Note The NetBios DLL contains only what is necessary to support the CIFS
redirector. The NETBIOS applications interface is not supported by Windows CE.

Managing Network Connections with WNet

Use one of following functions to establish a network connection:

= WNetAddConnection3, if you know the information needed to identify the
network resource.
—Or-—

= WNetConnectDialogl, if you need feedback from the user. This function
prompts the user to choose a local name or UNC in a dialog box.

You can terminate a connection using any of these functions:

= Use WNetCancelConnection2 to break the connection and remove the folder
from the \NETWORK directory.
—Or—

= Use WNetDisconnectDialog to start a general browsing dialog box that allows
the user to manage the disconnection.
—Or—

= Use WNetDisconnectDialogl to disconnect from a network resource. If

the underlying network returns WN_OPEN_FILES, the function prompts
the user for confirmation. If an error occurs, it informs the user.

Determining Available Network Resources

The WNet API includes a set of functions to enumerate the available
network resources.

Chapter 5 Using Communications 85

> To create a network resource list
1. Call WNetOpenEnum, which returns an enumeration handle used in step 2.

2. Call WNetEnumResource to package the information about the resources in
the form of an array of NETRESOURCE structures.

3. Call WNetOpenEnum to enumerate a container’s resources. A container is a
network resource that contains other resources.

4. Call WNetCloseEnum to close the enumeration handle.

Windows Sockets

Sockets are a general purpose, connection-oriented networking interface
supported by most operating systems. The Windows implementation of sockets,
commonly called Winsock, is designed to run efficiently on Windows while
maintaining compatibility with the Berkeley Software Distribution standard,
known as Berkeley Sockets. The Winsock API is the only way for an application
to access the TCP/IP or IrDA protocols on a Windows CE-based device. High-
level APIs, such as Winlnet, use Winsock internally, but it can also be

used directly.

Windows CE supports all of the standard Winsock 1.1 calls. It also implements
WSAIoctl, which is provided to allow applications to set and query secure
socket options.

Each socket that is created has an associated SOCKADDR structure that
identifies the underlying transport protocol. Because the length of a network
address is protocol-dependent, each supported protocol has its own SOCKADDR
structure. The Windows CE implementation of Winsock supports two transport
protocols, TCP/IP and IrDA. Their associated SOCKADDR structures

are SOCKADDR_IN for TCP/IP protocol and SOCKADDR_IRDA for

IrDA protocol. '

For more information on Winsock, see the documentation for the Microsoft
Platform SDK.

Infrared Sockets

Winsock is typically used with the TCP/IP protocols. Infrared Sockets (IrSock), is
an extension to Winsock that allows it to be used also for IR communication using
the IrDA protocol. Each endpoint must support an IrDA-compliant device and an
IrDA-compliant protocol stack.

86 Windows CE Programmer’s Guide -

Some Winsock functions work differently with IrDA than they do with TCP/IP.
The principal differences are:

Name service

Conventional Winsock name service is best suited to fixed networks in which
the group of devices that can accept a socket connection is relatively static.
Conversely, IrDA is designed to handle browsing for whatever resources

are within range. It works in an ad hoc manner, and devices come and go
frequently as they move in and out of range.

Because of these differences, IrSock does not use the conventional Winsock
name service functions. Instead, name service is incorporated into the
communication stream.

Method of addressing

Addressing is based on Logical Service Access Point Selectors (LSAP-SELSs),
numbered from 1 through 127. Because of the small range of values available,
it is usually better not to bind sockets directly to an LSAP-SEL. Instead, the
Information Access Service (IAS) provides a means for dynamic binding of
sockets to LSAP-SELs.

To use IAS, a server application binds a socket to an IAS service name.
The client application uses the service name when using Connect. Neither
application knows, or needs to know, the LSAP-SEL that is assigned by the
IAS. This procedure is outlined in the following sections.

Enhanced socket options

Windows CE includes two socket options to access the unique features of the
IrDA protocol:

= TRLMP_IAS_SET allows an application to set a single class in the local
IAS. The application specifies the class to set, the attribute, and the
attribute type. The application must allocate a buffer of the necessary size
for the passed parameters.

= JRLMP_RAW_MODE allows an application to switch between the reliable
TinyTP mode, which is the default setting, and the less reliable I'LMP
mode. This option is only available after calling socket to obtain a socket
handle and before calling bind and connect.

Chapter5 Using Communications 87

Using Infrared Sockets

The basic procedure for using IrSock is similar to that for Winsock. Server
applications and client applications have somewhat different procedures.

To create and use a socket with a server application

1. Allocate a stream socket with socket. Use AF_IRDA for the address format
parameter and SOCK_STREAM for the type.

2. Bind the service name to the socket with bind. Pass a SOCKADDR_IRDA
structure for the address parameter.

Listen for an incoming connection with listen.
Accept an incoming client with accept.
Use send and recv to communicate with the client.

A

Close the socket with closesocket.

To create and use a socket with a client application
1. Allocate a stream socket with socket, as with the server application.
2. Search for the server, and retrieve its ID with getsockopt.

3. Connect to the server with connect, using SOCKADDR_IRDA for the
name parameter.

4. Use send and recv to communicate with the server.
5. Close the socket with closesocket.

The code examples in the following two sections demonstrate these procedures,
using IAS. You could run these samples on a pair of Handheld PCs (H/PCs) or
Palm PCs, for example.

Sample Infrared Socket Server

This sample IrSock server allocates a socket and binds it to the IAS name,
“MyServer.” It then allocates a single connection object and prepares the server
to listen for incoming connections. When the client contacts the server, the server
accepts the connection. It then receives a string from the client, passes one back,
and closes the connection.

88 Windows CE Programmer’s Guide

#include <windows.h>
f#include <af_irda.h>

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR 1pCmdLine, int nCmdShow)

{
SOCKET ServerSock,
ClientSock;
SOCKADDR_IRDA address = {AF_IRDA, 0, 0, 0, 0, "MyServer"};
char helloServer[25]; // ASCII String
TCHAR helloText[25]; // UNICODE String
int idx = 0;
ServerSock = socket(AF_IRDA, SOCK_STREAM, 0);
bind(ServerSock, (struct sockaddr *)&address, sizeof(address));
Tisten(ServerSock, 1);
ClientSock = accept(ServerSock, 0, 0);
recv(ClientSock, helloServer, sizeof(helloServer), 0);
for (idx = @; idx <= sizeof(helloServer); idx++)
helloText[idx] = helloServer[idx];
MessageBox (NULL, helloText, TEXT("IR Server"), MB_0K);
send(ClientSock, "Hello Client!"™, strlen("Hello Client!")+l, 0);
closesocket(ClientSock);
closesocket(ServerSock);
return 0;
}

Sample Infrared Socket Client

This sample IrSock client opens a socket and makes five attempts to locate a
server. If none is found, it displays a message box to inform the user of the failure.
When a server is detected, the client queries the server for its device identifier and
sends a greeting to the service named “My Server.” It then waits for the server to
respond, displays a message box with the response, and closes the socket.

Chapter5 Using Communications 89

include <windows.h>
#include <af_irda.h>

j#fidefine NumRetries 5

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
‘ LPTSTR 1pCmdLine, int nCmdShow)

{
SOCKET sock;
SOCKADDR_IRDA address = {AF_IRDA, 0,0,0,0, "MyServer"};
EVICELIST devList;
int devListlLen = sizeof(devlList),
cnt = 0,
idx = 0;
char helloClient[25];
TCHAR helloText[25];

sock = socket(AF_IRDA, SOCK_STREAM, 0);
devList.numDevice = 0; // initialize number of devices to zero

while ((devList.numDevice == 0) && (cnt <= NumRetries))
{
getsockopt(sock, SOL_IRLMP, IRLMP_ENUMDEVICES,
(char *)&devlList, &devlListlLen);

cnt++;
Sleep(1000); // Wait one second before retrying
}
if (cnt > NumRetries)
{
MessageBox (NULL, TEXT("Server could not be located"),
TEXT("IR Client™), MB_OK);
}
else
{

// Get socket address of server
for (idx = 0; idx <= 3; idx++)
address.irdaDeviceID[idx] =
devList.Device[0].irdaDeviceID[idx];

connect(sock, (struct sockaddr *)&address,
sizeof (SOCKADDR_IRDA));

send(sock, "Hello Server!", strlen("Hello Server!™)+1, 0);

recv(sock, helloClient, sizeof(helloClient), 0);

for (idx = 0; idx <= sizeof(helloClient); idx++)
helloText[idx] = helloClient[idx];

90 Windows CE Programmer’s Guide

MessageBox (NULL, helloText, TEXT("IR Client"), MB_0K);

closesocket(sock);
}
return 0;
}

Network Security Features

Windows CE supports program comprehension tool (PCT) 1.0 and Secure
Sockets Layer (SSL) versions 2.0 and 3.0 security protocols. These protocols
are available either through WinlInet or directly from Winsock.

The simplest approach to using the security protocols is to use WinInet.

» To access security protocols with WinInet
1. Connect with InternetConnect, using the INTERNET_FLAG_SECURE flag.
For HTTP, invoke HttpOpenRequest, with the desired security flags set.

2. Proceed with the remainder of the session as described in “Using WinlInet to
Access HTTP” earlier in this chapter.

Certificate Authentication

Authentication is the process of determining whether or not a remote host can

be trusted. To establish its trustworthiness, the remote host must provide an
acceptable authentication certificate based on public-key cryptography. Windows
CE supports X.509-style certificates.

Remote hosts establish their trustworthiness by obtaining a certificate from a
Certificate Authority (CA). The CA may, in turn, have certification from a higher
authority, and so on, creating a chain of trust. To determine whether a certificate
is trustworthy, an application must determine the identity of the root CA, and then
decide if it can be trusted.

Windows CE maintains a database of trusted CAs. When a secure connection is
attempted by an application, Windows CE extracts the root certificate from the
certification chain and checks it against the CA database. It delivers the root
certificate to the application through a certificate validation callback function,
along with the results of the comparison against the CA database.

Applications bear ultimate responsibility for deciding whether or not the
certificate is acceptable. They are free to accept or reject any certificate, based

on whatever criteria are appropriate. If the certificate is rejected, the connection

is not completed. At a minimum, a certificate should meet the following two
requirements: It should be current, and the identity contained within the certificate
should match the identity of the root CA.

Chapter5 Using Communications 91

The certificate validation callback function must be implemented by all
client applications that use secure sockets. The value it returns determines
whether or not the connection will be completed by Winsock. It must have
the following syntax:

int SslValidate (

DWORD dwType
LPVOID pvArg
DWORD dwChainlLen
LPBLOB pCertChain
DWORD dwFlags

)

The parameters contain the following information:

The dwType parameter specifies the type of data pointed to by pCertChain.
This must be SSL_CERT_X.509, specifying that pCertChain is a pointer to
an X509 style certificate.

The pvArg parameter is the application-defined context, passed by the
SSLVALIDATECERTHOOK structure.

The dwChainLen parameter is the number of certificates pointed to by
pCertChain. It will always be equal to one.

The pCertChain parameter is a pointer to the root certificate.

If the root issuer of the certificate could not be found in the CA database, the
dwFlags parameter will contain SSL_CERT_FLAG_ISSUER_UNKNOWN.
The application can either attempt to verify the issuer itself, or return
SSL_ERR_CERT_UNKNOWN.

The values returned by the callback function are described in the following table.

Return value Description

SSL_ERR_BAD_DATA The certificate is not properly formatted.
SSL_ERR_BAD_SIG The signature check failed.
SSL_ERR_CERT_EXPIRED The certificate has expired.
SSL_ERR_CERT_REVOKED The certificate has been revoked by its issuer.

SSL_ERR_CERT_UNKNOWN The issuer is unknown, or some unspecified

problem arose in the processing of the certificate,
rendering it unacceptable.

SSL_ERR_OKAY The certificate is acceptable.

92 Windows CE Programmer’s Guide

Implementing a Secure Socket

The following procedure outlines how to establish a secure socket connection.

» To implement a secure socket
1. Create a socket with socket.

2. Set the socket in secure mode with setsockopt. Set the level parameter to
SO_SOCKET, optname to SO_SECURE, and set optval to a DWORD set
to SO_SEC_SSL.

3. Specify the certificate validation callback function by invoking WSAToctl
with the SO_SSL._SET_VALIDATE_CERT_HOOK control code.

4. To specify a particular security protocol, invoke WSAIoctl with the
SO_SSL_GET_PROTOCOLS control code to determine the default protocols.
Then call WSAIoctl with the SO_SSL._SET_PROTOCOLS control code to
select the protocols to be enabled. Otherwise, Windows CE will select the
protocol to be used.

5. Make a connection with connect.

The certificate callback function is automatically invoked. The connection
can be completed only if the callback function verifies the acceptability of
the certificate by returning SSL_ERR_OKAY.

6. Transmit and send as usual.
The send and recv functions automatically encrypt and decrypt the data.
7. When finished, close the socket with closesocket.

Using a Deferred Handshake

A deferred handshake allows an application to create an unsecured connection
and then later convert it to a secure connection.

» To implement secure sockets with a deferred handshake
1. Create a socket with socket.
2. Set the socket in secure mode with setsockopt.

The level parameter should be set to SO_SOCKET, optname should be set
to SO_SECURE, and optval should be a DWORD set to SO_SEC_SSL.

3. Specify the certificate validation callback function by invoking WSAToctl
with the SO_SSL_SET_VALIDATE_CERT_HOOK control code.

4. Set the socket in deferred handshake mode with WSAIoctl. The
control code should be set to SO_SSL._SET_FLAGS and the flag
set to SSL_FLAG_DEFER_HANDSHAKE.

Chapter 5 Using Communications 93

TCP/IP

Establish a non-secure connection with the remote party using connect.
Transmit and receive unencrypted data as usual.

To switch to secure mode, invoke WSAloctl with the
SO_SSL_PERFORM_HANDSHAKE control code.

The certificate callback function is automatically invoked. The handshake
is successful only if the callback function verifies the acceptability of the
certificate by returning SSL,_ERR_OKAY.

Transmit and receive as usual.
The send and recv functions encrypt and decrypt the data automatically.
When finished, close the socket with closesocket.

TCP/IP stacks are designed to work efficiently on wired networks. They

may perform differently on wireless networks. For example, settings that are
appropriate to a 10 Mbps Ethernet connection may consume more bandwidth than
necessary on a wireless network by generating unneeded retransmission requests.

To use wireless networking efficiently, some TCP/IP parameters may need to
be tuned to the characteristics of the supporting network. Because network
parameters are maintained on a per-adapter basis, applications must determine
the appropriate adapter and change the associated registry settings. For more
information about modifying the registry, see Chapter 4, “Accessing Persistent
Storage.” The parameters most likely to need modification are:

Receive window size. The registry key for this parameter is <Adapter
Name>\tcpip\parms\TcpWindowSize. In general, larger receive windows work
better with high-delay, high-bandwidth networks. For greatest efficiency, the
receive window should be an even multiple of the TCP Maximum Segment
Size (MSS). It should not exceed the system maximum. The registry key for
this parameter is tcpip\parms\GlobalMaxTcpWindowSize.

Initial roundtrip time. The registry key for this parameter is <Adapter
Name>\tcpip\parms\TcplInitialRTT. Roundtrip times are generally longer
for wireless networks than for wired networks.

Delayed acknowledgment timer. The registry key for this parameter is
<Adapter Name>\tcpip\parms\TcpDelAckTicks.

94

Windows CE Programmer’s Guide

Data Link Protocols

Windows CE provides data-link layer support for both serial input/output (I/O)
and local area networks (LANS). It supports the following:

= Point-to-Point Protocol (PPP) and serial line Internet protocol (SLIP) for
serial- and modem-based networking.

= Dynamic Host Configuration Protocol (DHCP) and Address Resolution
Protocol (ARP) for LANSs.

= A subset of NDIS 4.0:
= Only Ethernets are supported.
= Only Miniport drivers are supported, not intermediate or legacy drivers.

NDIS 4.0 does not expose an API to applications. For information related to
device drivers, see the documentation for the Windows CE DDK.

NDIS 4.0 for Windows CE is packaged as a DLL, rather than a .sys file. This
feature permits the ARP and NDIS modules to be partially installed. If an OEM
chooses this option, the network stack will be configured for them but the DLLs
will not be added to ROM. If the modules are needed for an application, the DLLs
can be added to RAM.

Remote Access Service

RAS is a software-based multiprotocol router that is used to connect a remote
device, known as a RAS client, to a host desktop computer, known as an RAS
server. RAS applications are usually executed on the client device and connect
to the server using PPP/SLIP.

Windows CE provides support for an RAS client. While most of the standard
Win32 RAS functions are supported, only one point-to-point connection at a
time is allowed. The connection can be a wired serial connection or a dial-up
modem connection.

Entries in the RAS phone book contain the information necessary to establish an
RAS connection. Windows CE stores these entries in the registry. The RAS phone
book information includes:

= The phone number to dial, along with country code and area code.

= The IP addresses to use while the connection is active.

= The network protocols.

= The type of device being used to make the connection.

Chapter 5 Using Communications 95

Windows CE-based applications that use RAS while running under emulation can
link to Coredll.lib to resolve the RAS API entry points. This is the proper method
for device builds, or use the NT RAS API set, that is, link to NT Rasapi32.1ib. The
NT Remote Access Service needs to be installed on the desktop computer with at
least one port configured for dial out. A modem is also required to use RAS.

Using RAS

This procedure outlines how to connect with a RAS server.

To use RAS
1. Determine which phone number to call.

If the number is in the phone book, you can retrieve it with RasEnumEntries.
2. Establish a connection with RasDial.

= Ignore the dialExtensions parameter, and set it to NULL.

= Set the IpszPhoneBook parameter to NULL.

Phone book entries are stored in the registry.
= Set the dwNotifierType parameter to OXFFFFFFFF.

If the application needs to receive messages from RAS, the messages must
be sent to an HWND. There is no support for callback functions.

3. When the session is complete, terminate it with RasHangup.

If an HWND was specified in the RasDial call, it receives a
WM_RASDIALEVENT message every time a change-of-state event occurs. The
wParam and [Param values carry the following information:

» wParam: RASCONNSTATE indicates the state that the RasDial remote access
connection process is about to enter.

= [Param: A non-zero value for dwError indicates which error has occurred.

PART 3

User Interface Services

Chapter 6 Designing a User Interface for Windows CE 101
Designing Windows and Dialog Boxes 103

Developing Menus 105

Working with Command Bars 106

Choosing Controls 108

Using Color and Grayscale Palettes 116

Creating Icons and Bitmaps 118

Receiving User Input 119

Providing User Feedback 119

Chapter 7 User Input 121
Keyboard Input 121
Stylus Input 126

Inking Input 128

Chapter 8 Graphics Device Interface 131
Unique Features of the Windows CE GDI 132
Device Contexts 133

Bitmaps 136

Colors and Palettes 139

Pens 142

Brushes 143

Printing 144

Regions 145

Shapes and Lines 147

Text and Fonts 149

Chapter9 Windows 155

Sample Windows-Based Application 156
Window Fundamentals 159
System-Defined Window Classes 161
Creating Windows 161

Application Windows 164
Destroying Windows 165

Window Styles 165

Window Size and Position 168
Window Relationships 170
Messages and Message Queues 172
Timers 179

Rectangles 180

Chapter 10 Overview of Controls 181
Overview of Windows Controls 182
Overview of Common Controls 186

Custom Draw Services 189

HTML Viewer Control 193

Chapter 11 Foundation Controls 197
Command Bars 197

Property Sheets 201

Rebars 204

Command Bands 206

Tab Controls 209

Toolbars 214

Chapter 12 File and Scale Controls 221
Header Controls 221

Image Lists 225

List Views 228

Trackbars 239

Tree Views 241

Up-Down Controls 249

Chapter 13 Informational Controls 253
Date and Time Picker Controls 253
Month Calendar Controls 258

Status Bars 261

ToolTips 263

Progress Bars 264

Chapter 14 Buttons 267

Button States 268

Messages to Buttons 270

Button Color Messages 271

Button Default Message Processing 271
Check Boxes 273

Group Boxes 274

Push Buttons 275

Radio Buttons 277

Chapter 15 Window Controls 279
Edit Controls 279

Combo Boxes 287

List Boxes 289

Scroll Bars 291

Static Controls 295

Chapter 16 Dialog Boxes, Menus, and Other Resources 299
Dialog Boxes 300

Menus 306

Carets 310

Cursors 312

Icons 312

Bitmaps, Images, and Strings 313

Keyboard Accelerators 313

101

CHAPTER 6

Designing a User Interface for
Windows CE

An application’s user interface serves two main purposes: to receive user input
and provide user output. How well your application handles these tasks depends
on your hardware capability, your operating system configuration, and the input
and output requirements of your target platform.

Before designing your application, you need to ask some important questions
about its interface: Will it be graphical or non-graphical? How will your
application receive user input? Will users type commands with a keyboard, with
a touch screen, with voice commands, or with buttons on a console? How will
you provide feedback to the user? Will your device support an LCD screen or
audio feedback?

Windows CE supports a range of device platforms, from handheld computers

to industrial embedded systems. Its modular design allows you to use only the
features you need to create applications for the specific platform you have chosen.
Because user interface requirements vary from one platform to another, this
chapter describes general design considerations for a graphical user interface.
Platform-specific design considerations, such as those pertaining to a Handheld
PC (H/PC) or Palm PC, are discussed in later chapters.

A well-designed user interface focuses on users and their tasks. Good user-
interface design considers general design principles as well as how graphics,
color, and layout influence the usability of an application. Apply the following
design concepts when creating an interface focused on the needs of

the user.

= Give the user control

Allow the user, not the computer or software, to initiate actions. Remember,
the goal of the user is not to use the application, but to accomplish a task.

102

Windows CE Programmer’s Guide

Use familiar concepts

To increase familiarity with the interface, allow users to manipulate
representations of the tasks they perform. For example, if you provide

a desktop-like interface, allow users to drag icons depicting documents
to an icon depicting a trash bin when deleting a file. For other types of
interfaces, be sure buttons and icons relate to the tasks they perform. One
example of this would be to display a wrench icon to start an automotive
maintenance application.

Another way to increase your user’s familiarity with the interface is to

avoid using modes whenever possible. Modes, which occur when identical
commands or keystrokes perform different actions in different situations,
force users to think about how the application works instead the tasks at hand.
Though modes are best avoided, warning boxes and message boxes are two
types of modes that are necessary and appropriate.

Be consistent

Consistency makes the interface familiar and predictable, which reduces user
errors and improves performance. Consistency is enhanced with components
that have a similar appearance and behavior and with actions that have the
same result regardless of context. For example, in a desktop environment,
scroll bars operate the same way, regardless of whether the scroll bar is in

a list box or window. To achieve consistency, reuse standard commands
across tasks and present commands in the same way in each task.

Allow interactive discovery

Let the user explore the interface through trial and error, while warning him or
her about potential damage to the system or data. To minimize user problems,
provide clear error messages and indicate appropriate actions for the user to
take to recover from an error or correct the problem that caused it. If possible,
make actions reversible or recoverable.

Provide feedback

Present the user with timely visual and audio cues to confirm that the software
is responding to input.

Focus on aesthetics

Effective visual design is aesthetically pleasing. An attractive interface

helps the user select appropriate competing information and suggests a
high-quality application.

Design with simplicity

Simple interfaces, with an uncluttered display, are easy to learn and easy to
use. Show only the most important controls directly on the interface and hide
the rest in menus. Reduce the number of different tasks presented in a single

window or screen and group related tasks together. Simplicity is especially
important in Windows CE-based devices with small displays.

Chapter 6 Designing a User Interface for Windows CE 103

= Support multiple input methods

Whenever possible, provide multiple methods for performing an operation.
To accomplish this, support different types of input devices if possible, and
provide keyboard shortcuts or accelerators for specific tasks, if your device
supports a keyboard.

Designing Windows and Dialog Boxes

Many graphical user interfaces use a desktop metaphor, which simplifies common
file operations by presenting them in a familiar context. Depicting files as paper
documents, directories as folders, and deleted items within a trash can are
examples of the desktop metaphor. Though appropriate for most applications
running on an HPC or similar device, this metaphor may not be appropriate for
some embedded systems, such as a car navigation application or a point-of-sale
device. If the desktop metaphor is not appropriate for your application, use
another familiar metaphor that seems suitable. Virtual reality applications
commonly use a room metaphor.

Whatever metaphor you choose, it is important to provide a context or point

of reference for your application. When using the desktop metaphor, you can
accomplish this by presenting objects in standard windows and dialog boxes. If
using a different metaphor, you may choose to forgo using windows entirely, and
present objects only in dialog boxes. If you do use windows in your application,
they should occupy the full screen, unless your application will be used in
conjunction with another application. An online Help system is one example of
an application whose windows do not take up the full screen because the user
benefits from seeing its windows displayed with another application. If you are
creating an application whose windows do not take up the full screen, design the
window to be a fixed size, because Windows CE does not support the resizing of
windows by users.

Windows CE supports several window styles. Some contain borders, while others
contain scroll bars. One common window style is WS_OVERLAPPED. This
window style displays a window button on the taskbar. This is important because
users navigate from one open window to another by tapping an application’s
window button on the taskbar and restore a window by tapping its taskbar button
again. An application displays a button on the taskbar only if its primary window
contains the WS_OVERLAPPED style. Additionally, when the system is running
low on power, it sends the WM_HIBERNATE message to all windows that have
a button on the taskbar. If an application does not have a button on the taskbar it
cannot receive and respond to this message.

104

Windows CE Programmer’s Guide

Dialog boxes are secondary windows that contain controls and provide
information to a user about actions. Windows CE supports three types of dialog
boxes: application-defined dialog boxes, message boxes, and property sheets.

An application-defined dialog box helps users perform tasks specific to an
application. It provides a great deal of flexibility by allowing you to place controls
directly onto the body of the dialog box. This is especially useful when designing
interfaces that do not use a desktop metaphor, because you can design an entire
application interface using only application-defined dialog boxes to house
controls. When using an application-defined dialog box, include only as many
controls as are necessary for your application and space them adequately.

An application-defined dialog box can be modal or modeless. A modal dialog box
requires the user to supply information or cancel the dialog box before allowing
the application to continue. A modeless dialog box allows the user to supply
information and return to a previous task without closing the dialog box.

A message box is a modal dialog box that displays a message and
prompts for user input. It typically contains a text message and one
or more predefined buttons.

A property sheet is a collection of tabbed dialog boxes that enables a user to view
and modify the properties of an object.

In a desktop metaphor, a dialog box typically contains OK and Cancel
commands, which initiate a user’s request or dismiss the window, respectively.
In Windows CE, the X button represents both the Close and Cancel commands.
Follow these guidelines for using the X and OK buttons in dialog boxes:

= If the only buttons in a dialog box are the OK and Cancel (X) buttons, place
them in the top right corner of the command bar, as they appear in a standard
Windows CE dialog box.

= If a dialog box does not have an OK or Cancel (X) button, place the
Close (X) button in the command bar. Place all other buttons in the
body of the dialog box.

= When the OK and X buttoné perform the same function, use the OK button,
because users are more comfortable clicking the OK button than the X button
to confirm an action.

» Never place an OK button both in the command bar and in the body of a
dialog box, because many users find this confusing. However, you can place
a Cancel button in the body of a dialog box and an X button on the command
bar, if you like.

Chapter 6 Designing a User Interface for Windows CE 105

Developing Menus

Menus are collections of commands, attribute selections, separators, and other
selectable elements. All menus in Windows CE are implemented as top-level,
pop-up windows that do not support buttons. Although Windows CE supports
owner-drawn menu items, it handles them as it would other menu items.

‘Windows CE does not support menu bars. Instead, it combines the functionality
of a menu bar and a toolbar into one control, called a command bar, which makes
efficient use of the screen space available on many Windows CE-based devices.

Windows CE supports the following four types of menus:

= Pop-up

A pop-up menu is a floating menu that displays commands specific to the
object selected by the user, or to the object’s immediate context. A pop-up
menu appears at the location on the screen where the user accessed it. It is
typically used for common commands that rarely change in content and for
items that require a small amount of screen space. Restrict the number of
items in a pop-up menu to less than 10.

= Scrolling

Scrolling menus are unique to Windows CE. With scrolling menus, you do not
have to limit the size of a menu to the number of items that fit on the screen. If
a menu is taller than the height of the display area, Windows CE adds scrolling
arrows so the user can scroll the menu up and down. If a menu has too many
columns to fit within the width of the display area, Windows CE ignores all
column breaks and makes the menu a single-column scrolling menu.

= Cascading

A cascading menu is a secondary menu or submenu that appears when a
certain option is selected in the parent menu. A triangular arrow next to the
parent item in a menu indicates a cascading menu. Windows CE displays
cascading menus in alphabetical order. If the height of a cascading menu
exceeds the maximum screen height of 240 pixels, the menu adopts a multiple-
column mode, which shows the remaining menu items in an adjacent column.
Use a cascading menu to group related menu items or when a choice leads to a
short list of related options.

106 Windows CE Programmer’s Guide

= Pull-down

A pull-down menu contains commands accessed from a command or menu
bar. It is commonly used to display text, but can also contain graphics, colors,
and shading. When creating a pull-down menu, display all possible command
choices on the menu. Items that cannot be chosen due to the state of the
application should be dimmed. Use a pull-down menu to provide access to a
small number of items whose content rarely changes.

Working with Command Bars

One of the challenges you may encounter when creating a Windows CE-based
application is having to design for a small screen. To maximize the screen real
estate available for applications in the client area, the operating system supports a
new type of control, the command bar. Command bars are unique to Windows CE
because they combine a menu bar, toolbar, and address bar. Windows CE
supports multiple command bars, each containing gripper controls that enable
users to hide buttons and menus. Command bars can contain combo boxes, edit
boxes, and buttons, as well as other types of controls. They also can include the
Close (X) button, the Help (?) button, and the OK button, usually found on the
title bar of Windows-based desktop applications.

Command bars vary from 480 pixels to 640 pixels in length depending on the
screen resolution. Microsoft recommends that you always display a command
bar in Windows CE-based applications when using the desktop metaphor.
Because Windows CE does not allow you to place an application’s title or icon
on the command bar, users identify an application by the label and icon on its
taskbar button.

Command bars are composed of bands, separated by gripper controls. Each band
can contain up to one child window, which can be a toolbar or any other control.
The default is to display a toolbar. Additionally, each band can have its own
bitmap, which is displayed as a background for the toolbar on that band. A user
can resize or reposition a band by dragging its gripper bar. If a band has a text
label next to its gripper bar, a user can maximize the band and restore it to its
previous size by tapping the label with the stylus. For more information, see
Chapter 11, “Foundation Controls.”

A command bar menu is a list of commands that drops down when a user taps the
menu’s caption on the command bar with the stylus. Menu titles on a command
bar appear in bold text. If you include a menu bar, always position it as the first
(leftmost) element on the command bar. If you provide File, Edit, View, Insert,
Format, Tools, and Window menus, always place them in this order, from left
to right. The menu titles appear as bold text surrounded by a rectangular frame.

Chapter 6 Designing a User Interface for Windows CE 107

Windows CE supports ToolTips for command bar and toolbar buttons, but not for
menus or combo boxes on a command bar. ToolTips usually display only the title
of a button command, but they can also display the shortcut key for the command.
If you include a shortcut key, follow these guidelines:

= Place the shortcut key two spaces after the text, in parentheses.
= Capitalize only the first letter of the control key abbreviation.
= Capitalize the command identifier.

= Use a plus sign, with no spaces, between the control key and the letter,
for example, CTRL+B.

You can place check boxes or radio buttons on the command bar to enable users
to toggle between different views. Moving between views can make windows
more readable by eliminating unnecessary scrolling. A command bar button can
display both text and images. This allows you to include text as part of a button
label to provide descriptions, which eliminates the need for ToolTips.

If you choose to place a label next to your edit control on a command bar, you
have two choices. You can insert a static text field above or to the left of the
control. Alternatively, you can include an edit control label inside the text field as
the default text. In this case, you would enclose the label between angle brackets,
for example, <name>. Because the user can no longer see the control’s label when
he or she types text in the field, using a static text field is preferable. The default
system font for applications based on Windows CE version 2.0 is Tahoma, 9
point. Windows CE version 1.0 used MS Sans Serif, 8 point, which is a smaller
raster font. If your device has a small screen size and a low-contrast LCD, you
should use a non-bold typeface when displaying control labels, unless the labels
appear on a light gray background.

If you provide individual New, Open, Save, and Print buttons on a command bar,
you must position them in this order, from left to right. If you provide individual
Bold, Italic, and Underline buttons, you must also place them in this order, from
left to right. Always make buttons at least 23 pixels high and 23 pixels wide.
Leave at least 2 pixels between adjacent controls and at least 4 pixels between a
control and the edge of the screen. If you plan to support touch interaction in
which users use a finger rather than a stylus, make all buttons at least 38 x 38
pixels. However, to conserve space, consider creating a combo box button instead
of three or four separate buttons. You can also create a TAB and ARROW KEY
navigation order for command bar buttons. When a command bar button has the
input focus, the button activates if the user presses the SPACEBAR or the
ENTER key. The user must be able to select either option.

Windows CE Programmer’s Guide

Choosing Controls

Windows CE supplies a set of pre-constructed elements, known as controls, that
you can use to build an application. Controls, objects that users interact with to
enter or manipulate data, commonly appear in dialog boxes, but can also appear
on toolbars and command bars. Windows CE supports many predefined controls,
which can be divided into two categories: window controls and common controls.
Window controls send the WM_COMMAND message and include buttons,
combo boxes, edit controls, list boxes, scroll bars, and static controls. Common
controls send the WM_NOTIFY message and include all other controls. They are
divided into the following sub-categories: foundation controls, file controls, scale

controls, informational controls, and miscellaneous controls that are used for
specific Windows CE-based platform functionality.

Due to the large number of controls available in Windows CE, determining
which control to use in a specified situation is often difficult. When choosing a
control, you must consider the type of input you are trying to capture, the abilities
and limitations of the control, and the characteristics of your platform’s screen.
To assist you in this task, all predefined Windows CE controls and their uses are
described in the following tables.

Windows CE Window Controls

Control

Description

Use

Check box

Radio button

A two-part control consisting of
a square box and text options.
Each option acts as a switch that
can be turned on — selected —
or off — deselected. When an
item is turned on, a check
appears within the square box;
otherwise, the square box is
empty. Users can select more
than one option.

A two-part control consisting of
a small circle and text options.
When an option is selected, the
circle appears highlighted or
filled. Only one option can be
selected at one time.

When setting properties,
attributes, or values.
When more than one
choice can be selected.
‘When ample screen space
is available.

When options do

not change.

‘When setting properties,
attributes, or values.
When only one choice can
be selected.

When ample screen space
is available.

‘When options do

not change.

Chapter 6 Designing a User Interface for Windows CE 109

Control Description Use
Push button (Command A square or rectangle with atext To perform an action.
button) or graphic label inside. When To display a menu
selected, an application or window.
immediately performs the To set a condition or
associated action or command. property value.
When ample screen space
is available.
Group box A rectangular frame that To visually relate a group

Combination box

Edit control

surrounds a group of controls.

A control possessing the
characteristics of both an edit
control and a list box or drop-
down list box. Information may
either be typed into the edit
control field or selected from
items displayed in the list box.

A rectangular box in which
information can be typed by the
user or in which information is

displayed for read-only purposes.

Edit controls typically contain
captions and can be designated
as either single-line or
multiple-line.

of related controls.
To visually relate
elements within a control.

When options are large in
number and not frequently
selected.

When the list of options
may change.

When only one choice can
be selected.

When screen space is
limited; use with a
drop-down list box
combination only.

To capture unlisted data.
When users prefer to type
information rather than
select it from a list.

‘When a keyboard

is present.

‘When options are difficult
to categorize and vary

in length.

When screen space

is limited.

When a keyboard is
present.

When providing a list of
options is not feasible.

110

Windows CE Programmer’s Guide

Control Description Use

List box A rectangular box containing a ‘When options are large
list of items from which either a in number and not
single selection is made, or frequently selected.

Drop-down list box

Scroll bar

Static control

multiple selections are made.
Lists can contain either text or
graphics. If the list exceeds the
boundaries of the box, scroll bars
appear, enabling users to view
the remaining items.

A rectangular box with an arrow
button on the side. When the
arrow button is selected, the box
displays a hidden list of items
which seems to drop-down from
a single item. If the list exceeds
the boundaries of the box, scroll
bars appear, enabling users to
view the remaining list.

A rectangular container
consisting of a scroll area, a
slider box, and arrows. Scroll
bars are typically found on
primary and secondary windows.

A text field that displays read-
only information.

When screen space makes
radio buttons or check
boxes impractical.

When the list of options
may change.

When ample screen space
is available.

When only one choice can
be selected.

When screen space

is limited.

‘When options are large

in number and not
frequently selected.

To view information that
uses more than the allotted
space.

To display a caption.
To provide instructional
information.

To display descriptive
information.

Foundation controls, used to contain or manage other controls, are described in

the following table.

Chapter 6 Designing a User Interface for Windows CE 1

Windows CE Foundation Controls

Control

Description

Use

Command band

Command bar

Toolbar

Property sheet

Tab control

A special kind of rebar
control. It has a fixed band
at the top containing a
toolbar with a Clese (X)
button, and optionally, a
Help (?) button and OK
button, in the right corner.
By default, each band in the
command bands control
contains a command bar.
You can override this if you
want a band to contain
some other type of

child window.

A toolbar that combines a
menu bar as well as the
Close (X) button, the Help
(?) button, and the OK
button. A command bar can
contain menus, combo
boxes, buttons, and
separators. A separator is a
blank space you can use to
divide other elements into
groups or to reserve space
in a command bar.

A panel that contains a set
of controls.

A control to define property
sheets. It accepts dialog box
layout specifications and
automatically creates tabbed
property pages.

A tab control resembles a
divider in a notebook and is
used to define sections of
information within the

same window.

To provide easy access to
frequently used commands
or options.

When screen space

is limited.

To provide easy access to
frequently used commands
or options.

‘When screen space

is limited.

To provide easy access to
frequently used commands
or options.

When creating
property sheets.

To present repetitive,
related information.

To present options or
settings that can be applied
to one object.

112

Windows CE Programmer’s Guide

Control Description Use

Rebar A control that acts as a When screen space
container for a child is limited.
window. It contains one or To hide and show portions
more bands; each band can of a command bar.

contain one child window,
which can be a toolbar or
any other control. Each
band can have its own
bitmap, which is displayed
as a background for the
toolbar on that band. A user
can resize or reposition a
band by dragging its gripper
bar. If a band has a text
label next to its gripper bar,
a user can maximize the
band and restore it to its
previous size.

File controls, used to display files, are described in the following table.

Windows CE File Controls

Control Description Use

Header control A heading above a column To display text
of text or numbers that can and graphics.
be divided into two or more To aid the user in
parts for multiple columns. sorting or sizing columns
Each part can operate likea of information.
command button to support
a different function.

Image list A special list box that To display a relationship
contains a collection of between a set
images that are all the same of containers.
size, such as bitmaps or ‘When ample screen space
icons. Image lists manage is available.
images, but do not display When the displaying of
them. They are designed to icons or images
be used with list view and is appropriate.
tree view controls.

Tree view A special list box that To display a relationship
displays a hierarchical set of between a set
labeled items as an indented of containers.

outline. It includes buttons
that allow the outline to be
expanded and contracted.

When ample screen space
is available.

Chapter 6 Designing a User Interface for Windows CE 113
Control Description Use
List view A special list box that When the displaying of

displays a collection of files
or folders consisting of an
icon and a label. Selection
and navigation in this
control work similarly to
that in a folder window.

icons is appropriate.
When ample screen space
is available.

Scale controls, used to increment scaled values, are described in the

following table.

Windows CE Scale Controls

Control

Description

Use

Spin box

Trackbar control (Slider)

An edit control with an
associated spin button
control. A spin box allows
the user to select an option
by scrolling through a small
list or by typing an item in
the edit control field.

A bar with tick marks on it
and a slider or thumb. The
tick marks represent a range
of values. When a user
drags the slider arm, it
moves in the appropriate
direction, tick by tick.

When options are
infrequently selected and
small in number.

When screen space

is limited.

To capture unlisted data.
‘When users prefer to type
information rather than
select it from a list.

When only one choice can
be selected.

To set an attribute.

When only one choice can
be selected.

When a limited range of
possible settings exist.
When options

are incremented.

When ample screen space
is available.

Informational controls, used to provide information about tools, processes, or
time, are described in the following table.

Windows CE Informational Controls

Control

Description

Use

Progress bar

A display-only control that
consists of a rectangular bar
that fills from left to right.

To provide visual feedback
concerning completion of
a process.

‘When ample screen space
is available.

114 Windows CE Programmer’s Guide

Description

Control Use

Date and time picker A control that provides To modify date and
users with an easy a way to time information.
modify date and time When screen space

Status bar

Month calendar control

ToolTip

information. Each field in
the control displays a time
element, such as month,
day, hour, or minutes.

An area within a window,
typically at the bottom,

that displays information. It
can contain

display-only controls.

A child window that
displays a monthly
calendar. The calendar can
display one or more months
at a time.

A small pop-up window
containing information
about a control. A ToolTip
appears when a pointer is
moved over a control not
possessing a label.

is limited.

To provide information
about the current state of
what is being viewed in
the window.

To provide a descriptive
message about a selected
menu or toolbar.

To select date information.
When screen space
is limited.

To identify a control that
has no caption.

To reduce screen clutter
caused by control captions.

Miscellaneous controls, used for specific Windows CE-based platform
functionality, are described in the following table.

Windows CE Miscellaneous Controls

Control Description Use

HTML viewer control A control that provides the To view HTML text and
functionality required to embedded images. For more
implement the Windows CE information about the
Pocket Internet Explorer. HTML viewer control,

see Chapter 10, “Overview
of Controls.”

Chapter 6 Designing a User Interface for Windows CE 115

Control Description Use

Rich Ink control A control that captures To accept user input
.stylus motions in order to without using a keyboard.
emulate the act of writing or For more information about
drawing on paper. The the Rich Ink control, see
control’s document view, Chapter 7, “User Input.”

under the touch screen,
serves as electronic paper.
In addition to capturing
images, Active Ink also has
editing and formatting
capabilities.

In addition to predefined controls, Windows CE supports a new custom draw
service. The custom draw service is not a predefined control; it is a service that
makes it easy to customize a common control’s appearance. You can use the
custom draw service to change a common control’s color or font, or to partially or
completely draw the control. This is useful when your interface uses several text
boxes, because you can draw the borders of the text box before the user inserts
text, and then hide borders when displaying text. This enables you to place text
closer together, making your interface appear less cluttered.

Besides using the controls included in Windows CE, you can also create your
own custom controls. When designing custom controls, avoid the following
pitfalls common to many designs:

= Controls are difficult to use.

Make controls easy to use. For example, make controls larger; use colors that
contrast with the screen background; remove nearby controls and unnecessary
images; and place controls in a central location. Additionally, when you design
a control, have a variety of people test its usability. Also consider differences
in the capabilities of the people that need to use the control.

= Controls are too close together.

They should be spaced far enough apart so that users do not accidentally select
one control while intending to select another.

= Controls are hard to interpret.

A control should in some way resemble or depict its corresponding function so
that users can determine how to use it. For example, it is common to place an
image of scissors on a button control that is used to “cut” or remove text.

= Controls are hard to distinguish.

Controls should have easily recognizable differences. When you have several
similar controls close together and lined up, people confuse them with each
other. Distinguish controls by size, position, shape, and color, and always
distinguish a control by more than a single feature.

116 Windows CE Programmer’s Guide

Controls are hidden.

Controls should be obvious so that users do not overlook them. If you want
to remove a control from view, place it where users expect to find it, such as
in a menu.

Controls are not predictable.

Controls that have the same function should operate the same way. Controls
should also function the same regardless of where they are placed. Also,
controls should follow a consistent rule. If a control uses a different operating
principle, design the control so that it will not be confused with controls that
operate under different operating principles. Additionally, users expect a
control to behave in ways consistent with previous experiences or cultural
norms. For example, moving a slider control to the right represents an increase
whereas moving the slider to the left represents a decrease.

Using Color and Grayscale Palettes

Designers often rely on color to make an application aesthetically pleasing.
However, using color randomly or excessively can affect usability. To use color
effectively, keep the following guidelines in mind when designing your interface:

Display no more than four colors on a single screen at one time and limit the
colors for your entire application to fewer than eight. The more colors you use,
the more confusing the screen will appear to the user.

Use color in combination with other emphasis techniques to discriminate areas
on the interface and identify crucial features. Never use color alone to
distinguish elements, because users may have difficulty distinguishing colors
in inadequate lighting. Use fonts, icons, screen placement, or patterns in
addition to color to distinguish screen elements.

Avoid spectrally extreme color combinations, such as red and blue or yellow
and purple, because they can make images seem blurred.

Design applications for a grayscale display whenever possible because many
users may not have color displays. Then, when the application is finished, you
can add color.

Use bright colors for extended viewing, because dim colors may not be legible
once a user’s eyes adapt to the color.

Avoid colors lacking contrast as well as colors of equal brightness, because
they are not easily distinguished.

Use black, gray, and white to improve resolution in fine detail.

Use common color associations, such as red for stop, or green for go, to
avoid confusion.

Chapter 6 Designing a User Interface for Windows CE 117

The color design model for Windows CE uses a 16-color Windows palette,
based on the Windows 95 color scheme, and is measured in bits per pixel (bpp).
Windows CE supports pixel formats of 1, 2, 4, 8, 16, 24, and 32 bbp. Your
application should determine the color format supported by a display device,
and then adopt a complimentary display strategy.

Note An 8-bpp display driver can display a 32-bpp device independent bitmap
(DIB) by mapping each color in the DIB color table to a specific color on the
device. The palette available in the application displaying the bitmap determines
what mapping is used. The application can lose color information if it does not
use an appropriate palette or if a bitmap uses more colors than the palette can
hold.

Standard Windows CE 16-Color Palette

Color: Red Green Blue Color: Red Green Blue
White 255 255 255 Dark Blue 0 0 128
Teal 0 255 255 Yellow 255 255 0
Purple 255 0 255 Green 0 255 0
Blue 0 0 255 Dark Yellow 128 128 0
Light Gray 192 192 192 Dark Green 0 128 0
Dark Gray 128 128 128 Red 255 0 0
Dark Teal 0 128 128 Dark Red 128 0 0
Dark Purple 128 0 128 Black 0 0 0

Standard Windows CE 16-color palette

Some Windows CE-based devices support only a 2-bpp palette, with four gray-
scale colors: black, white, light gray, and dark gray. On a grayscale display, a
single-pixel graphical element, such as a dot or a line, can be difficult to
distinguish without a strong, contrasting color adjacent to it. For example, white
and light gray elements can be hard to see unless presented against a black or dark
gray background.

118

Windows CE Programmer’s Guide

Likewise, light colors may be difficult to distinguish. When using light colors,
you may need to double the thickness of pixels or lines to strengthen them. Light
gray works well for creating a shadow effect around large controls on a white
background and for anti-aliasing, which adds colored pixels to a graphic to
smooth jagged edges. If you use light gray as a background color for your screen,
use a white line to visually separate key areas, such a command bar or owner-
drawn menu, from other areas of the screen.

Windows CE does not arbitrate between the palettes of the background and
foreground applications. Because of this, you should use only the first ten and last
ten colors included in the stock palette of a display device, which are generally
the standard Windows VGA colors.

Creating Icons and Bitmaps

In a graphical user interface, icons convey attributes or tasks. An effective icon
clearly represents its function and is easy to remember; an ineffective icon reduces
the usability of an application by making it appear obscure and unapproachable.

Icons are used in different ways. They can either resemble what they represent—
for example, a book used to represent a dictionary—or they can represent a
characteristic of something, such as a gas pump to represent a gas station. Icons
can also be symbolic representations, which may or may not be clear to the user.
An example of this type of icon is the light bulb icon found in many Windows-
based applications, which turns on and off the TipWizard.

Icons are most often used on buttons, but they can be used for progress indicators
as well. When a Windows CE color icon has a Windows 95 equivalent, both icons
use the same design and color. However, you must create a 16-color version and a
grayscale version of the icon to ensure that it displays correctly on both color and
2-bpp devices.

Note The icon editor in the Windows CE Toolkit for Visual C++ 5.0 can create
icon (.ico) files that retain both 16-color and 2-bpp gray versions of an icon.

In addition to using Windows 95 icon equivalents, you can create your own icons
using the standard Windows 16-color palette. To add dimensionality to an icon,
use highlights and shadows, but remember, the icons you create must translate
correctly to 2-bpp gray if your device supports both grayscale and color displays.
The following table shows how the 16-color palette translates to four grays.

Chapter 6 Designing a User Interface for Windows CE 119

Color Red Green Blue Gray conversion
Black 0 0 0 Black
White 255 255 255 White
Dark gray 128 128 128 Dark gray
Light gray 192 192 192 Light gray
Dark red 128 0 0 Black

Red 255 0 0 Dark gray
Dark yellow 128 128 0 Dark gray
Yellow 255 255 0 Light gray
Dark green 0 128 0 Black
Green 0 255 0 Dark gray
Dark cyan 0 128 128 Dark gray
Cyan 0 255 255 Light gray
Dark blue 0 0 128 Black
Blue 0 0 255 Dark gray
Dark magenta 128 0 128 Dark gray
Magenta 255 0 255 Light gray

Receiving User Input

User input devices allow users to interact with the user interface. Windows CE
supports several types of user input devices, such as a keyboard, a touch screen,
a stylus, ink input, and voice recognition, though the types of user input devices
available on your hardware platform may vary. For general design considerations
for user input devices, see Windows Interface Guidelines for Software Design.

Providing User Feedback

In addition to receiving user input, a user interface provides feedback to the

user by displaying messages. Messages are communications to the user that are
displayed on the screen. They either inform the user of the system’s activities or
status, or they prompt the user to complete some action. To be effective, messages
should be clear, concise, and understandable to the user. To assist you in creating
effective messages, use the following guidelines when writing message text:

= Write using active voice, which is easier to understand than passive voice.

= Always state the problem, cause, and solution in your message text, no matter
how obvious the solution may be.

120

Windows CE Programmer’s Guide

= Place important information at the beginning of your text. It is easier to
remember than items placed in the middle.

= Keep messages brief and simple, with sentences that target a fifth-grade
reading level. This will ensure that your message is communicated effectively
to users of varying verbal abilities.

= Avoid using unnecessary technical terminology in your messages. Most
users do not enjoy searching through reference material in order to translate
a message.

= Avoid blaming the user for errors. Threatening remarks that blame the user for
problems can heighten anxiety and increase the chance of more errors.

= Avoid patronizing or condescending messages. They are annoying and
often offensive.

= Avoid relying on default system-supplied messages, because they are often
cryptic and can be frustrating to the user.

You can also include an identification number in your message text in order
to identify the message for support purposes. If you include an identification
number, place it at the end of the message text and not in the title bar or at
the beginning of the text where it may curtail the user’s ability to quickly
read the message.

121

CHAPTER 7

User Input

User input is the means by which a user communicates with an interactive device,
such as a Windows CE-based device. An original equipment manufacturer (OEM)
can configure Windows CE to meet the user input requirements of a variety of
different hardware platforms. Windows CE supports keyboard, mouse, and stylus
input devices.

Different Windows CE-based platforms support different combinations of input
devices. For example, some platforms, such as the Palm PC, support a touch
screen, rather than a keyboard, for text entry. Other platforms may include
handwriting recognition software in place of, or in addition to, a keyboard.
Keep your target platform in mind when you design an application.

Keyboard Input

The keyboard is an important means of user input on many Windows CE-based
devices. Windows CE maintains a device-independent keyboard model that
enables it to support a variety of keyboards. Because most Windows CE-based
devices have built-in keyboards, the OEM usually determines the keyboard layout
for a specified Windows CE-based device.

At the lowest level, each key on the keyboard generates a scan code when it

is pressed and released. The scan code is a hardware-dependent number that
identifies the key. Unlike Windows-based desktop platforms, Windows CE has
no standard set of window keyboard scan codes. For this reason, you should not
depend on scan code values unless your application will only run on platforms
for which you know the scan code values.

122 Windows CE Programmer’s Guide

The keyboard driver maps each scan code to a virtual key code. The virtual key
code is a hardware-independent number that identifies the key. Because keyboard
layouts vary from language to language, Windows CE offers only the core set of
virtual key codes that are found on all keyboards. This core set includes the Latin
letters, numbers, and a few other critical keys, such as the function and arrow
keys. Keys not included in the core set also have virtual key code assignments,
but their values vary from one keyboard layout to the next. Therefore, you should
only depend on the virtual key codes that are in the core set.

In addition to mapping, the keyboard driver determines which characters

the virtual key generates. A single virtual key generates different characters
depending on the state of other keys, such as the SHIFT and CAPS LOCK keys.
Do not confuse virtual key codes with characters. Although many of the virtual
key codes have the same numerical value as one of the characters that the key
generates, the virtual key code and the character are two different things. For
example, the same virtual key generates the uppercase “A” character and the
lowercase “a” character.

User Input System

The user input system delivers keyboard messages containing scan code, virtual
key code, and character information to the appropriate window. To understand
how this system works, you need to understand the relationship between the
active window, the focus window, and the foreground window.

Each thread maintains its own active window and focus window. The active
window is a top-level window. The focus window is either the active window
or one of its descendents. At any one time, there is one thread in the system that
is considered the foreground thread. The active window of this thread is the
foreground window. The user-input system places keyboard messages in the
message queue of the foreground thread. The thread’s message loop pulls the
message from the queue and sends it to the thread’s focus window. If the focus
window is NULL, the active window receives the message.

To summarize the relationship between these window types:

= The active window is always a top-level window or NULL.

= The focus window is always the active window, a descendent of the active
window, or NULL.

= The foreground window is always the active window of the foreground thread.

Chapter 7 UserInput 123

There are a number of ways that a thread can become the foreground thread. If an
application calls the SetForegroundWindow function and specifies a top-level
window, the thread that owns the window becomes the foreground thread and
the window becomes its active window. This function also moves the window

to the top of the Z order. You can use SetForegroundWindow on any top-level
window. For more information on Z order, see Chapter 9, “Windows.”

In most cases, if the user taps on a window, the system will bring that

window to the foreground. The thread that created the window becomes the
foreground thread. If the foreground window is hidden or destroyed, the system
designates another window as the foreground window. In that case, the new
foreground window’s thread becomes the foreground thread. You can use the
GetForegroundWindow function to get the current foreground window.

In general, an application thread does not need to set the foreground window
explicitly. This is usually done by the system as the user selects and closes
windows with the stylus. Use the SetActiveWindow function to activate a
window. If the calling thread is the foreground thread, then the new active
window automatically becomes the foreground window. When the activation
changes, the system sends a WM_ACTIVATE message to the window that is
being deactivated and to the window that is being activated. A thread can use
the GetActiveWindow function to access its active window.

An application thread uses the SetFocus function to move the focus between
its windows. When the focus changes, the system sends a WM_KILLFOCUS
message to the window that is losing the focus. It sends a WM_SETFOCUS
message to the window that is gaining the focus.

The system ensures that the focus window is always the active window or a
descendent of the active window. If the focus is changed to a window with a
different top-level ancestor, the system first changes the activation, and then it
changes the focus.

Key and Character Messages

Windows CE includes two kinds of messages for keyboard events: keystroke
messages, which control a windows behavior, and character messages, which
determine the text that is displayed in the window.

Windows CE generates a keystroke message whenever the user presses or
releases a key. When the user presses a key, the system generates either a
WM_KEYDOWN or WM_SYSKEYDOWN message. If the user holds a key
down long enough to start the keyboard’s automatic repeat feature, the system
generates repeated WM_KEYDOWN or WM_SYSKEYDOWN messages.
‘When the user releases a key, a WM_KEYUP or WM_SYSKEYUP message
is generated.

124

Windows CE Programmer’s Guide

System keystroke messages are generated when the user types a key in

" combination with the ALT key or when the user types a key and the focus is

NULL. If the focus is NULL, the keyboard event is delivered to the active
window. These messages have the WM_SYS prefix in the message name.

Windows CE does not automatically generate character messages. An
application’s message loop calls TranslateMessage to generate character
messages. TranslateMessage translates the keyboard message into the
appropriate character message. Not all keystroke messages generate
character messages.

Windows CE includes four character messages: WM_CHAR, WM_SYSCHAR,
WM_DEADCHAR and WM_SYSDEADCHAR. The WM_CHAR message
contains the character and flags that provide other information. Applications
that display characters that the user types from a keyboard process the .
WM_CHAR message.

Some non-English keyboards provide keys that enable the user to add diacritic
marks to characters produced by subsequent keystrokes. In these cases, the system
generates a WM_DEADCHAR message when the diacritic key is pressed. When
the user presses a subsequent key, Windows CE generates a single WM_CHAR
message if the diacritic and character can be combined, or two WM_CHAR
messages if they cannot be combined. Applications typically do not process
WM_DEADCHAR messages.

If the keystroke is a WM_SYSKEY style message, the system generates
corresponding WM_SYSCHAR and WM_SYSDEADCHAR messages.
Applications usually do not process these messages.

Checking Other Keys

While processing a keyboard message, an application sometimes needs to
determine the status of a different key than the one that generated the current
message. You can use the GetKeyState function to determine the state of certain
keys. This function returns the key’s state at the time the current message was
generated. The GetAsyncKeyState function returns the state of the key at the
time of the call.

The Windows CE version of these functions differ slightly from their desktop
counterparts. Unlike the equivalent functions in Windows-based desktop
platforms, GetKeyState supports only a limited number of keys, and
GetAsyncKeyState returns the current key state even if a window in another
thread has the keyboard focus.

Chapter 7 Userlnput 125

Hot Key Support

A hot key is a key combination that generates a WM_HOTKEY message.
The message is routed to a particular window, regardless of whether or
not that window is the current foreground window or focus window.

You define a hot key by calling the RegisterHotKey function and specifying the
combination of keys that generates the WM_HOTKEY message, the handle of the
window to receive the message, and the hot key identifier. When the user presses
the hot key, the system places a WM_HOTKEY message in the message queue

of the thread that created the specified window. The wParam parameter of the
message contains the hot key identifier. Before the application terminates, it
should use the UnregisterHotKey function to destroy the hot key.

Processing Keyboard Messages

The window procedure of the window that has the keyboard focus receives
keystroke messages when the user types on the keyboard. An application that
responds to keyboard input typically processes WM_KEYDOWN messages only.

In general, you should use the TranslateMessage function in your message
loop to translate every message, not just keystroke messages. Although
TranslateMessage has no effect on other types of messages, using it ensures
that keyboard input is translated correctly.

When a window procedure receives the WM_CHAR message, it should
examine the character code that accompanies the message to determine how
to process the character.

If a window procedure processes system keyboard messages, it should pass the
message to the DefWindowProc function. Otherwise, all system operations
involving the ALT key will be disabled whenever that window has the
keyboard focus. Windows CE uses the WM_SYSCHAR message to implement
menu mnemonics.

The IParam parameter of a keystroke message contains the following additional
information about the keystroke that generated the message.

Information type Explanation

Repeat count Specifies the number of times the keystroke was repeated as a
result of the user holding down the key.

Scan code Gives the hardware-dependent scan code of the key.

126 Windows CE Programmer’s Guide

Information type Explanation

Context code Has a value of one, if the ALT key was pressed, and of zero, if it
was released.

Previous key state Has a value of one, if the pressed key was previously down, and
zero, if it was previously up. It has a value of one for
WM_KEYDOWN and WM_SYSKEYDOWN keystroke
messages generated by the automatic repeat feature.

Transition state Has a value of one, if the key was released, or of zero, if it
was pressed.

Using the Caret

A window that receives keyboard input displays the characters the user types in
the window’s client area. A window should use a caret to indicate the position in
the client area where the next character will appear. The window should create
and display the caret when it receives the keyboard focus and it should hide and
destroy the caret when it loses the focus. A window can perform these operations
when the WM_SETFOCUS and WM_KILLFOCUS messages are processed.

Use the CreateCaret, ShowCaret, DestroyCaret, and HideCaret functions to
control the visibility of the caret. Use the SetCaretPosition function to change
the position of the caret as the user types.

Stylus Input

In many Windows CE environments, users interact with applications by using a
stylus and a screen. The stylus and screen provide a direct and intuitive alternative
to mouse interaction.

The stylus generates an input event whenever the user touches the screen with a
stylus or moves the stylus when the tip is touching the screen. To an application,
stylus input is a subset of mouse input. When a user presses and releases a stylus
on a screen, the application processes these events clicks with the left mouse
button. When a user moves the stylus across the screen, the application processes
this as a mouse move event.

Stylus input events in a window are posted to the message queue of the thread that
created the window.

Chapter 7 User Input 127

Stylus Messages

A window receives a stylus message whenever a stylus event occurs within the
window’s client area. When the user presses the stylus to the screen, the window
receives a WM_LBUTTONDOWN message. When the stylus is lifted from the
screen, the window receives a WM_LBUTTONUP message. A window will
receive a WM_LBUTTONDBLCLK instead of a WM_LBUTTONDOWN
under the following conditions:

= The window class was registered with the CS_DBLCLKS class style.

= The stylus touches the screen within a certain distance of the last
stylus location.

= The stylus touches the screen within a certain time limit after the stylus
touched the screen.

If the user moves the stylus while pressing it to the screen, Windows CE generates
a WM_MOUSEMOVE message.

Styles input messages supported by Windows CE are described in the

following table.

Message Meaning

WM_LBUTTONDBLCLK The user double-tapped the screen.
WM_LBUTTONDOWN The user pressed the screen.

WM_LBUTTONUP The user released the stylus from the screen.
WM_MOUSEMOVE The user moved the stylus while the tip was pressed to

the screen.

The [Param parameter of a stylus message indicates the position of the stylus
tip. The low-order word is the x-coordinate and the high-order word is the
y-coordinate. The coordinates are specified in client coordinates. In the client-
coordinate system, all points are specified relative to the upper-left corner of
the client area.

The wParam parameter contains flags that indicate the status of the other stylus
buttons and the CTRL and SHIFT keys at the time of the stylus event. Check

for these flags when the way you process a stylus event depends on the state of
another stylus button or on the CTRL key or SHIFT key. The wParam parameter
can be a combination of the following flags.

Value _ Meaning
MK_CONTROL The CTRL key is down.
MK_LBUTTON The stylus is touching the screen.

MK_SHIFT The SHIFT key is down.

128 Windows CE Programmer’s Guide

Inking Input

The Rich Ink control allows you to capture stylus motions with little effort. It
provides a convenient means for applications to accept input from a user without
using a keyboard. For a user, taking notes or drawing sketches with the Rich Ink
control is very much like writing or drawing on paper.

In addition to capturing images, Rich Ink has powerful editing and formatting
capabilities. For example, when the user deletes a word from handwritten notes
on the screen, the control automatically closes the resultant word gap. Some
examples of how Rich Ink can be used include:

» An electronic form application that accepts a user’s handwritten signature.

= A calendar application with an embedded Rich Ink control that allows a user
to jot down a “To-Do” list for a selected date.

» To embed the Rich Ink control in your application

1. Call InitCommonControls to load the common control dynamics-link
library (DLL).

2. Call InitInkX to load and initialize the Rich Ink control.

3. Call CreateDialog to instantiate a dialog box with a custom ink control.
—Or—

1. Call InitCommonControls to load the common control DLL.

2. Call InitInkX to load and initialize the Rich Ink control.

3. Call CreateWindow and specify the class name as WC_INKX.

The EReceipt and InkControl sample codes provide two examples of
the implementation.

After initialization, the Rich Ink control communicates with the calling
application using the standard Windows CE messaging system. It sends the
IM_SHOWCMDBAR message to the ink control to show or hide the command
bar. It sends the IM_GETDATALEN, IM_GETDATA, and IM_SETDATA
messages between the ink control and the application to transmit inking data, such
as a note or sketch. It sends the IM_REINIT message to the ink control to erase
all the content from the control. It sends the standard EM_GETMODIFY and
EM_SETMODIFY messages to the ink control to determine if its content has
been modified and to set the modification flag in the control, respectively.

Chapter 7 UserInput 129

As an example of using the ink control, consider a calendar application with
a Rich Ink control, named as InkX, embedded in a dialog box. The control’s
command bar can be toggled by using SendDlgItemMessage to send an
IM_SHOWCMDBAR message. The state of the command bar is specified in
the accompanying wParam:

SendDlgltemMessage(hInk, IM_SHOWCMDBAR, (WPARAM)m_bCmdBar, 0OL);

Here hlnk is a handle to the InkX control and m_bCmdBar is set to either TRUE
or FALSE to specify whether or not the command bar is visible.

To save an edited or a newly created note, you must get the data length
by sending:

InkDatalLen=SendD1gltemMessage(hInkX, IM_GETDATALEN, 0, OL);

For each date entry, the application keeps an ink note, pInkData, of the BYTE
pointer type. The application should first allocate sufficient memory to store the
ink note, and then pass the pInkData pointer to the control through the messages
[Param parameter:

InkDatalen=SendDlgItemMessage(hInkX, IM_GETDATA, InkDatalen,
(LPARAM)pInkData);

When the user taps a calendar date, the application should retrieve any previously
saved ink data and bring up the ink control. It then sends the following message to
refresh the document view with the retrieved ink data:

SendDlgItemMessage(hInkX, IM_SETDATA, dwInkDatalLen, (LPARAM)pInkData);

The dwinkDataLen parameter gives the length of the ink data; pInkData is a
pointer to the data itself. You should release the ink data, pInkData, once it has
been passed to the ink control.

131

CHAPTER 8

Graphics Device Interface

In Windows CE, as in Windows-based desktop platforms, the graphics device
interface (GDI) controls the display of text and graphics. You use GDI to draw
lines, curves, closed figures, text, and bit images.

The principle features of the Windows CE GDI are listed in the following table.

GDI feature Supported attributes

Filled Shapes Ellipse, polygon, polyline, rectangle, rounded rectangle
and lines

Pens and brushes Dashed, wide, and solid pens; pattern brushes

Bit block transfer PatBlt, BitBlt, MaskBIt, StretchBlt, TransparentImage
functions

ROP Codes All ROP2, ROP3, and ROP4 codes

Colors Pixel depths of 1, 2, 4, 8, 16, 24, and 32 bits per pixel (bpp)
Fonts TrueType and raster fonts

Printing Full graphical printing

Palettes Functions that create, change, query, and realize palettes

The Windows CE GDI is designed for devices with limited system resources.
Therefore, it does not include many of the special graphic functions found in
Windows-based desktop platforms. As a consequence, the Windows CE GDI is
a powerful, full color graphical display system with a relatively small footprint.

For more information about GDI in Windows-based desktop platforms, see

the documentation for the Microsoft Platform SDK. For an introduction to the
GDI in 32-bit Windows programming, see Programming Windows 95, by Charles
Petzold (Microsoft Press).

132 Windows CE Programmer’s Guide

Unique Features of the Windows CE GDI

The following GDI features are available only in Windows CE, not in Windows-

based desktop platforms.
GDI feature Windows CE supports
Bit block transfer The new TransparentImage function,

Colors and palettes

which transfers all portions of a bitmap
except for those drawn in a specified
“transparent” color.

All of the pixel formats supported in
Windows-based desktop platforms, as
well as a 2-bits-per-pixel (bpp) format.

Windows CE does not support the following GDI features found in Windows-

based desktop platforms.
GDI feature Windows CE does not support
Bitmaps Compressed bitmap formats.

Colors and palettes

Device contexts

Fonts

Graphics objects
Pens and brushes

Dithering or a standard palette. If there is
no color table associated with an image, the
color palette selected in the device context
(DC) becomes the default color table.

Windows CE does not arbitrate between the
palettes of the background and foreground
applications. The application running in the
foreground has complete control over the
system palette.

Information DCs.
Streching or polygon-fill graphic modes.
Class or private type device contexts.

Multiple mapping modes. It supports only
the text-mapping mode, which maps the
logical coordinate systems to the physical
coordinate system in a 1:1 ratio.

Multiple font styles. Windows CE allows
either raster or TrueType fonts to be used
on a specified system, but not both.

Paths or metafiles.

" Dotted pens, inside frame pens, pen endcap

styles, hatched brushes, or wide, dashed
pens, though it does support wide pens and
dashed pens.

Chapter 8 Graphics Device Interface 133

GDI feature

Windows CE does not support

Printing

Regions

Shape and line drawing

Device Contexts

Print spooling or the printing of multiple
copies. Windows CE has no print manager.

Windows CE does not send graphical
information directly to output devices.
Instead, it passes all graphical operations to
device drivers that, in turn, send the
information to display devices and printers.
One of the reasons Windows CE has a
small footprint is because it does not need
to maintain hardcoded routines for
interfacing with multiple output devices.

Non-rectangular regions. Like Windows 95,
but unlike Windows NT, Windows CE
represents regions using 16-bit values.

Functions necessary to draw an arc, a beizer
curve, a chord, a pie, a polypolygon, or a
polypolyline.

A device context (DC) is a GDI structure containing information that governs

the display of text and graphics on a particular output device. You use a DC to
store, retrieve, and modify the attributes of graphic objects and to specify graphic
modes. The graphic objects stored in a DC include a pen for line drawing, a brush
for painting and filling, a font for text output, a bitmap for copying or scrolling, a
palette for defining the available colors, and a region for clipping.

DCs supported by Windows CE are described in the following table.

Device context type

Display
Printer
Memory

Supports drawing operations on display devices.
Supports drawing operations on printers.

Supports drawing operations on device-dependent bitmaps or
DIB sections.

134

Windows CE Programmer’s Guide

The graphics modes control general display characteristics, such as how colors
are mixed. Graphics modes supported by Windows CE are described in the
following table.

Graphics mode type ‘ Description

Background mode Defines how background colors are mixed
with window or screen colors for text and
bitmap operations.

Drawing mode Defines how foreground colors are mixed
with window or screen colors for pen,
brush, bitmap, and text operations.

Note Windows CE does not support multiple mapping modes. The only mapping
mode is MM_TEXT, which maps logical coordinates to the physical coordinates
in a 1:1 ratio from left to right and top to bottom.

Using Device Contexts

You cannot directly modify a device context (DC). You obtain access to a DC
indirectly by using functions that return a handle to a DC.

Display Device Contexts

You create a display device context to draw in the client area of a display device.
To do so, call the BeginPaint or GetDC function and supply a handle to a
window. Windows CE will return a handle to a display device context with
default objects, attributes, and graphic modes. You can begin drawing using these
defaults, or you can choose a new object, change the attributes of an existing
object, or choose a new mode. When you have finished drawing in the display
area, you must release the device context by calling the EndPaint or ReleaseDC
function. Use BeginPaint and EndPaint together, and use GetDC and
ReleaseDC together. You use BeginPaint and EndPaint when you are
processing WM_PAINT messages in your window procedure. The rest of the
time, you generally use GetDC and ReleaseDC to obtain and release a DC.

Note Windows CE supports only common DCs.

Printer Device Contexts

You obtain a handle to a printer DC by calling the CreateDC function. Call the
DeleteDC function to delete the printer DC when you are finished printing.

Chapter 8 Graphics Device Interface 135

Note You must delete, rather than release, a printer device context; the
ReleaseDC function fails if you try to use it to free a printer device context.

Memory Device Contexts

You use a memory device context to store bit images in memory rather than
sending them to an output device. A memory DC allows Windows CE to treat

a portion of memory as a virtual device. You can create a memory DC for a
particular device by calling the CreateCompatibleDC function and supplying a
handle to the device’s DC. Memory DCs are also called compatible DCs because
they are created to be compatible with a particular device. Windows CE will
create a temporary 1 pixel x 1 pixel, monochrome bitmap and select it into the DC
after calling CreateCompatibleDC. Before you can begin drawing with this DC,
you must use the SelectObject function to select a bitmap with the appropriate
width and height into the DC. Once the new bitmap is selected into the memory
DC, you can use the DC to store images. For more information on image storage,
see the “Bitmaps” section later in this chapter.

Graphic Objects

All newly created DCs start with a default brush, palette, font, pen, and region.
You can examine a default object’s attributes by calling the GetCurrentObject
and GetObject functions. The GetCurrentObject function returns a handle
identifying the current pen, brush, palette, bitmap, or font, and the GetObject
function initializes a structure containing that object’s attributes.

To replace a default object, call one of the following object-specific
creation functions.

Graphic object Creation functions

Bitmap CreateBitmap, CreateCompatibleBitmap,
CreateDIBSection

Brush CreateDIBPatternBrushPt, CreatePatternBrush,
CreateSolidBrush

Palette CreatePalette

Font CreateFontIndirect

Pen CreatePen, CreatePenIndirect

Each of these functions returns a handle identifying the new object. After you
retrieve a handle, you can call the SelectObject function to select the new object
into the DC. However, you should save the handle to the default object. When
you finish using the new object, use SelectObject to restore the default object,
and delete the new object with the DeleteObject function.

136 Windows CE Programmer’s Guide

Bitmaps

Note Failure to delete objects that are no longer in use can cause serious
performance problems.

Saving and Restoring Device Contexts

Use the GetDeviceCaps function to retrieve device data using a device context
for any of the following types of devices:

= Raster displays
= Dot-matrix printers
= Ink-jet printers

= Laser printers

GetDeviceCaps can provide information about a device’s color format and raster
capabilities, as well as its shape, text, and line drawing capibilites. You supply
GetDeviceCaps with a handle to a device context and an index specifying the
type of data to be retrieved. '

The SaveDC function records the condition of your device context’s graphic
objects and graphic modes on a special GDI stack. You can call this function to
save your application’s original state, providing you with a “clean slate” for later
drawing. Call RestoreDC to return the DC to this original state.

Graphic Modes

Windows CE initializes a device context with default graphic modes. You can get
the current background mix mode with the GetBkMode function and set it with
the SetBkMode function. In Windows CE, the background mix mode effects the
appearence of text and dashed pens. You can set the foreground mix mode with
the SetROP2 function. The foreground mix mode controls how the brush or pen
colors and the image colors are combined. SetROP2 returns the mix mode for the
last foreground mix mode.

You can change the viewport origin from its default starting point of the upper-
left corner of the screen with the SetViewportOrgEx function.

A bitmap is an array of bits that, when mapped to a rectangular pixel array on
an output device, creates an image. You use bitmaps to create, modify, and
store images.

Chapter 8 Graphics Device Interface 137

There are two types of bitmaps: device-dependent bitmaps (DDBs) and device-
independent bitmaps (DIBs). A DDB does not have its own color table and can
therefore only be properly displayed by a device with the same display memory
organization as the one on which it was created. A DIB, on the other hand,
generally has its own color table, and therefore can be displayed on a variety

of devices.

Virtually all graphs information in Windows CE is stored in DIB format.
Windows CE supports DDBs only to remain compatible with applications
written for early versions of Windows. You should use DIBs in all applications
you write for, or port to, Windows CE.

The BITMAP structure contains all of the height, width, and color data needed
to draw a DDB. The data needed to draw a DIB is stored in a BITMAPINFO
structure which consists of a BITMAPINFOHEADER structure and two or
more RGBQUAD structures. The BITMAPINFOHEADER structure contains
information about the dimensions and color format of a DIB. Each RGBQUAD
structure defines one of the bitmap’s colors.

Windows CE supports bitmaps with pixel depths of 1, 2, 4, 8, 16, 24, and 32 bits
per pixel (bpp). For more information on colors in Windows CE, see Chapter 6,
“Designing a User Interface for Windows CE.”

Windows CE does not support compressed bitmap formats, such as run-length
encoded bitmaps.

Using Bitmaps

You can create a DIB with the CreateDIBSection function, and then select it
into a device context with the SelectObject function. You use the DeleteObject
function to delete the DIB.

In order to store a DDB in memory, you must first create a memory DC

with the CreateCompatibleDC function. This function creates a DC that

is compatible with the specified device. The DC contains a single-bit array

that serves as a placeholder for a bitmap. You can use the CreateBitmap or
CreateCompatibleBitmap function to create a bitmap of the desired size, and
then select it into the DC with the SelectObject function. Windows CE then
replaces the single-bit array with an array large enough to store color information
for the specified rectangle of pixels.

138

Windows CE Programmer’s Guide

When you draw using the handle returned by CreateCompatibleDC, the output
does not appear on a device’s drawing surface; instead, it is stored in memory.

To copy the image stored in memory to a display device, call the BitBIt function.
BitBlt copies the bitmap data from the bitmap in the source DC into the bitmap in
the target DC. In this case, the source DC is the memory DC, and the target DC is
the display DC. Thus, when BitBlt completes the transfer, the image will appear
on the screen. By reversing the source and target DCs, you can use BitBlt to
transfer images from the screen into memory.

BLT functions, such as BitBIt, can be used to modify as well as transfer bitmaps.
These functions modify a destination bitmap by combining it with a pen, a brush,
and, in some cases, a source bitmap, in a format specified by a raster operation
(ROP) code. Each ROP code specifies a unique logical pattern for combining
graphic objects. For example, the SRCCOPY ROP simply copies a source bitmap
to a destination bitmap while the MERGECOPY ROP merges the colors of a
source rectangle with a specified pattern.

The ROP code types are described in the following table.

ROP type Description

ROP2 Combines a pen or brush with a destination bitmap in one of 16 possible
combinations.

ROP3 Combines a brush, a source bitmap, and a destination bitmap in one of

256 possible combinations.

ROP4 Uses a monochrome “mask” bitmap to combine a foreground ROP3 and
a background ROP3. The mask uses zeros and ones to indicate the areas
where each ROP3 will be used.

When the source and destination bitmaps are different sizes, you can use the
StrechBlt function to perform a BLT between the two bitmaps. StrechBIt
copies a bitmap from a source rectangle into a destination rectangle, stretching
or compressing the bitmap to fit the destination rectangle.

You can use the PatBIt function to paint a selected rectangle using a selected
brush and an ROP3 code.

You can use the TransparentImage to transfer all portions of a bitmap except for
those drawn in a specified transparent color. This function is especially useful for
transferring non-rectangular images, such as icons.

Note Windows CE supports arbitrary bit pixel formats, which allow you to use
blt functions between bitmaps with different pixel depths.

Chapter 8 Graphics Device Interface 139

The BITMAPINFO structure defines the dimensions and color information for a
DIB. The BITMAPINFO structure must include a color table if the images are
palettized, usually with formats of 1, 2, 4, and 8 bbp. For non-palettized images
with 16 bpp or 32 bpp, the color table must be three entries long; the entries must
specify the value of the red, green, and blue bitmasks. Because GDI ignores the
color table for 24-bpp bitmaps, you should store the image’s pixels in blue-green-
red (BGR) format.

Colors and Palettes

Some display devices and printers display only monochrome images; others
use hundreds, thousands, or even millions of colors. You should design your
applications to display properly on devices with a variety of color capabilities.

The color range available to a display device is determined primarily by the pixel
depth that it supports. Pixel depth is measured in bits per pixel (bpp). Each bit
can have a value of 1 or 0. A pixel depth of 1 bpp allows only two values, black
and white. A pixel depth of 2 bpp has four possible color values or all possible
combinations of Os and 1s with two bits. In general, the number of possible colors
is equal to 2 raised to the power of the pixel depth. Windows CE supports pixel
depths of 1, 2, 4, 8, 16, 24, and 32 bpp.

Note Windows CE supports a pixel depth of 2 bpp, which is not supported in
Windows-based desktop platforms.

A color palette is an array that contains the color values that can be displayed or
drawn on a output device. Color palettes are used by devices that can only display
a subset of their potential colors at any specified time.

Each time you create a device context, Windows CE creates a default palette for
that device context. Windows CE has no standard color palette. It assigns colors
to a bitmap based on the bitmap’s associated color table. If an image has no color
table, Windows CE uses the color palette in the currently selected DC.

The default palette typically has 256 entries (colors), though the exact number
varies. The device determines which colors are in the default palette. Display
devices, for example, often use the 16 standard VGA colors and four other
Windows-defined colors. Printer devices may use other default colors.

If you specify a pen or text color that is not in the default palette, Windows CE
will approximate the color with the closest color in the palette.

140 Windows CE Programmer’s Guide

You cannot change the entries in the default palette. However, you can create
your own logical palette and select the palette into a DC in place of the default
palette. You can use logical palettes to define and use colors that meet your
specific needs. Windows CE enables you to create multiple logical palettes. You
can attach each logical palette to a unique DC or you can switch between multiple
logical palettes in a single DC.

Windows CE supports both palettized and non-palettized color display devices.
Palettized devices have a color palette coded directly into their display card.
Non-palettized devices use the pixels’ bit values in the frame buffer to directly
define colors in terms of their red, green, and blue values. You can use the
GetDeviceCaps function to determine whether or not a device supports

color palettes.

Using Colors

You can use the GetDeviceCaps function, which specifies the NUMCOLORS
value, to discover the number of colors a device supports. Usually, this count
corresponds to a physical property of the output device, such as the number of
inks in the printer or the number of distinct color signals the display adapter can
transmit to the monitor.

Windows and applications use parameters and variables having the COLORREF
type to pass and store color values. You can extract the individual values of the
red, green, and blue components of a color value by using the GetRValue,
GetGValue, and GetBValue macros, respectively. Use the RGB macro to

create a color value from individual red, green, and blue component values.

If you request a color that the display device cannot generate, Windows CE
will approximate it with a color that the device can generate. For example, if
you attempt to create a red pen for a black and white printer, you will receive
a black pen instead— Windows CE uses black as the approximation for red.

You can discover how Windows CE will approximate a specified color by using
the GetNearestColor function. The function takes a color value and returns the
color value of the closest matching color the device can generate.

Note Windows CE does not support dithering.

Windows CE handles colors in bitmaps differently than colors in pens,

brushes, and text. Compatible bitmaps, created by using the CreateBitmap

or CreateCompatibleBitmap function, retain color information in a device-
dependent format. No color values are used, and the colors are not approximated.

Chapter 8 Graphics Device Interface 141

DIBs retain color information either as color values or color palette indexes. If
color values are used, the colors may be approximated as necessary. Color palette
indexes can only be used with devices that support color palettes. Although
Windows does not approximate colors identified by indexes, the colors in the
bitmap could change if the palette changes.

Note An offscreen DIB section should have the same color table as the screen,
otherwise GDI will have to perform a time-consuming, color-translating BLT
when the DIB section is transferred to the screen. For grayscale devices, the color
table should be 0x000000, 0x808080, 0xc0c0c0, and Oxffffff. For color devices,
the application should first query the stock palette to determine its color display
capabilities, and then build a matching color table.

Creating and Using Palettes

To create a logical palette, you should assign values to the members of

a LOGPALETTE structure and pass a pointer to the structure to the
CreatePalette function. The function returns a handle to a logical palette
with the values specified in the LOGPALETE structure.

To gain access to the colors in the logical palette, use the SelectPalette function
to select the palette into the current device context, and then use the
RealizePalette function to make the system palette the same as the palette in the
current device context. You can use the colors in the palette as soon as the logical
palette has been realized.

Note The GetSystemPaletteEntries and RealizePalette functions will fail if the
device associated with the selected device index does not have a settable palette.
You can use GetDeviceCaps to find out if the device has a settable palette.

Your logical palette should have just enough entries to represent the colors you
need. You can use the GetDeviceCaps function to retrieve the maximum palette
size associated with a device, or the SIZEPALETTE member.

You can use the SetPaletteEntries function to change the colors in an existing
logical palette. After you have updated the colors, use RealizePalette to update
the display. If you select a logical palette into more than one DC, any changes
you make to the logical palette will affect all the DCs to which it is attached.

You can use the GetPaletteEntries function to retrieve the color values for a
logical palette. Use the GetNearestPaletteIndex function to retrieve the value
in a specified logical palette that most closely matches a specified color value.

142

Windows CE Programmer’s Guide

Pens

Use the DeleteObject function to delete a logical palette. Be sure that the logical
palette is not selected into a device context when you delete it.

Windows CE does not arbitrate between the palettes of the background and
foreground applications. The application running in the foreground has complete
control over the system palette. Because of this, you should generally use only the
first ten and last ten colors included in the stock palette of a display device, which
are generally the standard Windows VGA colors. Applications that use other
colors may not display properly when they run in the background. Because
Windows CE does not perform any color matching operations between the
foreground and background applications, background applications cannot

call RealizePalette.

In Windows CE, a pen is a graphic object for drawing lines. Drawing applications
use pens to draw freehand lines and straight lines. Computer-aided design (CAD)
applications use pens to draw visible lines, section lines, center lines, and so on.
Word processing and desktop publishing applications use pens to draw borders
and rules. Spreadsheet applications use pens to designate trends in graphs and to
outline bar graphs and pie charts.

Windows CE stock pens include the BLACK_PEN and the WHITE_PEN,
which each draw a solid, 1-pixel-wide line in their respective color, and the
NULL_PEN which does not draw. You obtain the stock pens with the
GetStockObject function.

You use the CreatePen or CreatePenIndirect functions to create a custom pen
with a unique color, width, or pen style.

The pen styles supported by Windows CE are described in the following table.

Pen style Description
PS_SOLID Draws a solid line
PS_DASH Draws a dashed line
PS_NULL Does not draw a line

Windows CE supports wide pens and dashed pens, but it does not support wide,
dashed pens, dotted pens, inside frame pens, geometric pens or pen endcap styles.
All Windows CE pens are cosmetic.

You can create a pen with a unique color by storing the red, green, blue (RGB)
triplet that specifies the desired color in a COLORREF structure and passing this
structure’s address to the CreatePen or CreatePenlIndirect function. In the case
of CreatePenIndirect, the COLORREF pointer is actually incorporated into the
LOGPEN structure, which is used by CreatePenIndirect.

Chapter 8 Graphics Device Interface 143

Brushes

Note The wide pen requires a lot of GDI computation. To improve the
performance of a handwriting application, use a standard-sized pen whenever
possible.

In Windows CE, a brush is a graphic object for painting the interior of closed
shapes. Drawing applications use brushes to paint shapes; word processing
applications use brushes to paint rules; CAD applications use brushes to paint
the interiors of cross-section views; and spreadsheet applications use brushes
to paint graphs.

When you call a function that creates a brush, such as CreatePatternBrush,

it returns a handle to a logical brush. When you select the logical brush into
the DC with the SelectObject function, the device driver for the corresponding
device creates the physical brush that will be used for painting.

When you call a painting function, GDI maps a pixel in the brush bitmap to the
window origin of the client area. The window origin is the upper-left corner of the
window’s client area. The coordinates of the mapped pixel are called the brush
origin. The default brush origin is the upper-left corner of the brush bitmap, at

the coordinates (0, 0). You can use the SetBrushOrgEx function to change the
location of the brush origin by a specified number of pixels. To make the changes
effective, you must use the SelectObject function to select the modified brush.

Windows CE supports three types of logical brushes: stock brushes, solid brushes,
and pattern brushes.

The seven types of stock brushes consist of the white brush, black brush, gray
brush, light gray brush, dark gray brush, the null brush (which does not paint),
and the hollow brush. You can use the GetStockObject function to select one
of the stock brushes. ‘

Windows CE maintains 21 stock brushes whose colors are used in window
elements such as menus, scroll bars, and buttons. You can obtain a handle to a
system stock brush with the GetSysColorBrush function. Furthermore, you can
retrieve the color window element with the GetSysColor function, and set a color
corresponding to a window element with the SetSysColors function.

A solid brush contains 64 pixels of the same color in a square thatis 8 x 8
pixels. You can call the CreateSolidBrush function to create a solid brush
of a specified color. To paint with your solid brush, use SelectObject to
select it into a specified DC.

144 Windows CE Programmer’s Guide

Printing

You can create a pattern brush from an application-defined bitmap or a DIB.
To create a logical pattern brush, you must create a bitmap, and then call the
CreatePatternBrush or CreateDIBPatternBrushPt function, supplying a
handle that identifies the bitmap or DIB.

Windows CE does not support hatched brushes. However, you can achieve

the effect of a hatched brush by creating a pattern brush with the desired hatch
pattern using the CreateDIBPatternBrushPt function. You can create bitmaps
of multiple sizes as well.

Windows CE does not send printing commands directly to output devices.
Instead, it passes all output information to device drivers, which, in turn,
send the information to display devices and printers. Windows CE has a
small footprint in part because it does not need to maintain hardcoded
routines for interfacing with multiple output devices.

Most applications strive for what you see is what you get (WYSIWYG) output.
Ideally, WYSIWYG would mean that text drawn with a specified font and size
on the screen would have a similar appearance when it is printed. However, it is
almost impossible to obtain true WYSIWYG output, partly because of differences
between video and printer technologies.

To obtain a WYSIWYG effect when drawing text, call the CreateFont function
and specify the typeface name and logical size of the font you would like to draw
with, and then call the SelectObject function to select the font into a printer DC.
Windows CE will select a physical font that is the closest possible match to the
specified logical font.

Before you start a print job, you should use SetAbortProc to establish an abort
procedure. Your abort procedure should include a modeless dialog box that allows
a user to cancel a print job. Once you have initialized the necessary variables,
registered your AbortProc function, and displayed your modeless Cancel dialog
box, you can start the print job by calling the StartDoc function.

Once you have started the print job, you can define individual pages in the
document by calling the StartPage and EndPage functions and embedding the
appropriate calls to GDI drawing functions within this bracket. After you have
defined the last page, you can close the document and end the print job with the
EndDoc function.

"As previously stated, Windows CE does not have a print manager. It will not

spool or print more than a single copy of a document at a time.

Chapter 8 Graphics Device Interface 145

Regions

Note The display driver does all the rendering in Windows CE and scales the
output to the printer resolution. If you intend to print text, you should use a
system with TrueType fonts because raster fonts cannot be scaled to different
printer resolutions without severely compromising the quality of the text.

In Windows CE, a region is a rectangle that can be filled, painted, inverted,
framed, and tested to see if it contains a particular point.

You create a region by calling CreateRectRgn or CreateRectRgnIndirect.
These functions return a handle identifying the new region. Once you have a
handle to a region, you can select the region into a DC with the SelectObject
function. You can perform a variety of operations on a region: You can combine
or compare it with another region, paint or invert its interior, draw a frame around
it, retrieve its dimensions, and test whether or not a particular point lies within it.

Note When using the CreateRectRgn and CreateRectRgnIndirect functions,
use values for regions that can be represented by 16-bit integers because that is
how region data is stored in Windows CE.

The following table describes in which ways you can use the CombineRgn
function to combine two regions together.

Value Meaning

RGN_AND The intersecting parts of two original regions define a new region.

RGN_COPY A copy of the first of the two original regions defines a new region.

RGN_DIFF The part of the first region that does not intersect the second defines a
new region.

RGN_OR The two original regions define a new region.

RGN_XOR Those parts of the two original regions that do not overlap define a
new region.

You can use the EqualRgn function to determine whether or not two regions are

equal in size and shape. You can use the FillRgn function to paint the interior of
aregion with a specified brush.

Windows CE does not support the InvertRgn or InvertRect functions. You can
achieve the effect of InvertRect by using the PatBIt function with an ROP code
of DSTINVERT.

146 Windows CE Programmer’s Guide

You can retrieve the dimensions of a region’s bounding rectangle by calling the
GetRgnBox function. The bounding rectangle is the smallest rectangle that can be
drawn around a region. Use the OffsetRgn function to move a region a specified
number of logical units. Use GetRegionData to retrieve data describing a region.

Note The GetRegionData function returns a different number of rectangles for a
specified region than its Windows equivalent.

The PtInRegion function determines if a point is inside a specified rectangle. To
determine if the point is in a region, you must pass the location of the point along
with a region’s handle to PtInRegion.

Clipping Regions
You can use clipping regions to restrict your output to a specified subregion of

the client area. To use a clipping region, you must select it into the DC associated
with the display device.

Clipping is used in Windows CE in a variety of ways. Word processing and
spreadsheet applications clip keyboard input to keep it from appearing in the
margins of a page or spreadsheet. CAD and drawing applications clip graphics
output to keep it from overwriting the edges of a drawing or picture.

Some DCs provide a predefined or default clipping region. For example, the
device context created by the BeginPaint contains a predefined rectangular
clipping region that corresponds to the invalid rectangle that needs to be
repainted. However, the DCs created by the CreateDC and GetDC functions
contain empty clipping regions; clipping is only done to keep graphics output in
the window’s client area. '

You can perform a variety of operations on clipping regions. Some of these
operations require a handle identifying the region and some do not. For example,
you can perform the following operations directly on a DC’s clipping region.

= Determine whether part of the client area intersects a region by calling the
RectVisible function. v

= Exclude a rectangular part of the client area from the current clipping region
by calling the ExcludeClipRect function.

= Combine a rectangular part of the client area with the current clipping region
by calling the IntersectClipRect function.

Chapter 8 Graphics Device Interface 147

After obtaining a handle identifying the clipping region, you can perform any
operation that is common with regions, such as:

= Combine a copy of the current clipping region with a second region by calling
the CombineRgn function.

= Compare a copy of the current clipping region to a second region by calling
the EqualRgn function.

= Determine whether a point lies within the interior of a copy of the current
clipping region by calling the PtInRegion function.

Shapes and Lines

Windows CE allows you to draw lines and a variety of filled shapes including an
ellipse, a polygon, a rectangle, and a rounded rectangle.

A line is a set of highlighted pixels on a raster display or a set of dots on a printed
page identified by two points: a starting point and an ending point. In Windows
CE, the pixel located at the starting point is always included in the line, and the
pixel located at the ending point is always excluded.

You can draw a series of connected line segments by calling the Polyline
function and supplying an array of points that specify the ending point of
each line segment.

Note Windows CE does not support the LineTo or the MoveToEx functions.
However, you can use the Polyline function in Windows CE to achieve the same
results that you would get in Windows-based desktop platforms if you called the
MoveToEx function and then made repeated calls to the LineTo function.

Filled shapes are geometric shapes that Windows CE outlines with the current
pen and fills with the current brush. Windows CE supports four filled shapes:
ellipse, polygon, rectangle, and round rectangle, which is a rectangle with
rounded corners.

An application written for Windows uses filled shapes in a variety of ways.
Spreadsheet applications, for example, use filled shapes to construct charts and
graphs; drawing applications allow users to draw figures and illustrations using
filled shapes.

148

Windows CE Programmer’s Guide

An ellipse is a closed curve defined by two fixed points—f1 and f2—such that
the sum of the distances—d1I + d2—from any point on the curve to the two fixed
points is constant. The following illustration describes an ellipse drawn by using
the Ellipse function.

Result of the Ellipse function

When calling Ellipse, you supply the coordinates of the upper-left and lower-right
corners of the ellipse’s bounding rectangle. A bounding rectangle is the smallest
rectangle that completely surrounds the ellipse.

A polygon is a filled shape with straight sides. Windows CE uses the currently
selected pen to draw the sides of the polygon, and the current brush to fill it.
Windows CE fills all enclosed regions within the polygon with the current brush.

Note Windows CE does not support multiple fill modes. When it fills a polygon,
it fills all subareas created by intersecting lines within the polygon. This manner
of filling is equivalent to the Winding fill mode used on Windows-based desktop
platforms.

A rectangle is a four-sided polygon whose opposing sides are parallel and equal
in length, and whose interior angles are 90 degrees. Although you can use the
Polygon function to draw a rectangle if you supply it with all four sides, it is
easier to use the Rectangle function. This function requires only the coordinates
of the upper-left and the lower-right corners.

You can use the RoundRect function to draw a rectangle with rounded corners.
Supply this function with the coordinates of the lower-left and upper-right corners
of the rectangle, and the width and height of the ellipse used to round each corner.

You can use the FillRect function to paint the interior of a rectangle. You can use
the FillRgn function to fill a region using the specified brush.

Chapter 8 Graphics Device interface 149

Because Windows CE does not support paths, many line-drawing functions
that are available in the Windows-based desktop platforms are not available
in Windows CE. Windows CE does not support functions to draw an arc, a
beizer curve, a chord, a pie, a polypolygon, or a polypolyline. However, you
can approximate these shapes using existing Windows CE drawing functions.
For example, you can create an arc using the Ellipse function with an
appropriately defined clipping region.

Note The Ellipse and RoundRect functions require a lot of GDI computation. To
increase your application’s performance, use these functions sparingly.

Text and Fonts

In Windows CE, a font is a collection of glyphs that share a common design. A
font is characterized by its typeface, style, and size.

A font’s typeface determines the specific characteristics of the glyphs, such as the
relative width of the thick and thin strokes used in any specified character. The
style determines a font’s weight and slant. Font weights can range from thin to
black. Slants can be roman (upright) and italic. The size of a font is the distance

from the bottom of a lowercase “g” to the top of an adjacent uppercase “M,”
measured in points. A point is approximately 1/72 of an inch.

In Windows CE, fonts are grouped into families that share common stoke-width
characteristics. Fonts within a family are distinguished by size and style. The font
families are described in the following table.

Font family name Description

Decorative Specifies a novelty font, for example, Old English.

Dontcare Specifies a generic family name. This name is used when
information about a font does not exist or does not matter.

Modern Specifies a monospace font with or without serifs. Monospace
fonts are usually modern; examples include Pica, Elite, and
Courier New.

Roman Specifies a proportional font with serifs, for example, Times
New Roman.

Script Specifies a font that is designed to look like handwriting;

examples include Script and Cursive.

Swiss Specifies a proportional font without serifs, for example, Arial.

150 Windows CE Programmer’s Guide

These family names correspond to constants found in the WINGDI.H header
file: FF_DECORATIVE, FF_DONTCARE, FF_MODERN, FF_ROMAN,
FF_SCRIPT, and FF_SWISS. Use these constants when you create, select,
or retrieve information about a font.

TrueType and Raster Fonts

Using Fonts

Windows CE supports raster and TrueType font technologies but allows only
one type to be used on a specified system. The choice of TrueType or raster font
types is made when the system is designed and cannot be changed afterwards
by an application.

The differences between raster and TrueType fonts have to do with the way the
glyph for each character or symbol is stored in the respective font-resource file. A
raster font glpyh is a tiny bitmap that represents a single character’s size. Because
the bitmaps for each glyph in a raster font are designed for a specific resolution on
a particular device, raster fonts are generally considered to be device-dependent.

A TrueType font glyph contains outlines and hints. Windows CE uses these hints
to adjust the outlines used to draw the glyphs. These hints and the respective
adjustments are based on the amount of scaling used to reduce or increase the size
of the glyph. Because TrueType characters can be scaled up or down and still
retain their original appearance, they are considered to be device-independent.

A font’s glyphs are stored in a font-resource file. A font-resource file for a raster
font is stored in a .fon file. TrueType fonts have two files, a short .fot header file
and a .ttf file that contains the actual data.

Use the AddFontResource function to load a font from a font-resource file.
When you finish using an installed font, use the RemoveFontResource function
to remove it. Whenever you add or delete a font resource, you should use the
SendMessage function to send a WM_FONTCHANGE message to all top-
level windows in the system. This message notifies other applications that the
application has added or removed a font to the internal font table. You do not
need to use AddFontResources to create or realize system fonts.

There are two stages to selecting a font. In the first stage, you specify the ideal
font you would like to use. This theoretical font is called a logical font. In the
second stage, an internal algorithm finds the physical font that is the closest match
to your specified logical font. A physical font is a font stored on the device or in
the operating system. The process of finding the physical font that most closely
matches a specified logical font is called font mapping.

Chapter 8 Graphics Device Interface 151

» To use a font
1. Use the EnumFontFamilies function to list the available fonts.

This is especially useful when you want to determine which fonts are available
from a specified font family or typeface.

2. Use the values returned by the font enumeration function to initialize the
members of a LOGFONT structure.

3. Create the logical font by calling the CreateFontIndirect function and
passing it a pointer to the initialized LOGFONT structure.

4. Select the logical font into the current device context with the
SelectObject function.

When you call SelectObject, Windows CE loads the physical font that most
closely matches the logical font specified in the LOGFONT structure.

When initializing the members of the LOGFONT structure, be sure that the
IfCharSet member specifies a specific character set. This member is used in the
font mapping process and the results will be inconsistent if this member is not
initialized correctly. If you specify a typeface name in the IfFaceName member
of the LOGFONT structure, be sure that the IfCharSet value contains a
matching value.

Windows CE keeps a table containing all the fonts available for application use.
When you call CreateFontIndirect, Windows CE chooses a font from this table.

Windows CE provides six stock logical fonts. You can use the GetStockObject
function to obtain a stock font. The stock font values are described in the
following table.

Value Meaning

ANSI_FIXED_FONT Specifies a monospace font based on the Windows
character set, usually represented by a Courier font.

ANSI_VAR_FONT Specifies a proportional font based on the Windows
character set, usually represented by the MS Sans
Serif font.

DEVICE_DEFAULT_FONT Specifies the preferred font for the specified device,

usually represented by the System font for
display devices.

OEM_FIXED_FONT Specifies a monospace font based on an OEM
character set. For IBM computers and compatibles,
the OEM font is based on the IBM desktop computer
character set.

152

Windows CE Programmer’s Guide

Value Meaning

SYSTEM_FONT Specifies the System font. This is a proportional font
based on the Windows character set, and is used by
the operating system to display window titles, menu
names, and text in dialog boxes. The System font is
always available. Other fonts are available only if
they have been installed.

SYSTEM_FIXED_FONT Specifies a monospace font compatible with the
System font in Windows versions earlier than 3.0.

Enumerating Fonts

You can enumerate the available fonts by calling the EnumFonts or
EnumFontFamilies function. These functions send information about the
available fonts to a callback function that the application supplies. The callback
function stores the information in the LOGFONT structure and in either the
NEWTEXTMETRIC structure for TrueType fonts or the TEXTMETRIC
structure for raster fonts. By using the information returned from these functions,
you can limit the user’s choices to available fonts only.

The EnumFontFamilies function is similar to the EnumFonts function

but includes some extra functionality for use with TrueType fonts. The
EnumFontFamilies function enumerates all the styles associated with a specified
typeface, not simply the bold and italic attributes. For example, when the system
includes a TrueType font called Courier New Extra-Bold, EnumFontFamilies
lists it with the other Courier New fonts.

Note Despite its name, EnumFontFamilies actually enumerates the styles
associated with a specified typeface—for example, Arial—rather than a font
family, such as Roman.

If you do not supply a typeface name, the EnumFonts and EnumFontFamilies
functions supply information about one font in each available family. To
enumerate all the fonts in a DC, you can specify NULL for the typeface

name, compile a list of the available typefaces, and then enumerate each

font in each typeface.

A font resource is a group of individual fonts in a specified character set that has
various combinations of heights, widths, and pitches. You can load font resources
and add the fonts in each resource to the operating system font table by using the
AddFontResource function. To remove a font resource from the font table, you
can use the RemoveFontResource function.

Chapter 8 Graphics Device Interface 153

Formatting Text

Windows CE provides a complete set of functions to format and draw text in an
application’s client area and on a printed page.

The default text color for a display DC is black; the default background color

is white; and the default background mode is OPAQUE. Use the SetTextColor
and GetTextColor functions to respectively set and retrieve the color of text
drawn in the client-area of a window or printed by a color printer. Use the
SetBkColor and GetBkColor functions to respectively set or retrieve the
background color. Use the SetBkMode and the GetBkMode functions to
respectively set or retrieve the background mode. The background mode specifies
the logical method for combining the selected background color with the current
colors on the video display.

You can use the GetTextExtentPoint32 function to compute the width and height
of a string of text. You can use the GetTextMetrics function to retrieve a font’s
logical dimensions. You can call the GetDeviceCaps function to determine the
dimensions of an output device.

| Drawing Text

After you have selected a font, set your text-formatting options, and computed
the necessary character width and height values for a string of text, you can draw
characters and symbols using either the DrawText or ExtTextOut function.
‘When you call one of these functions, the operating system passes the call to the
graphics engine, which in turn passes the call to the appropriate device driver.

In most cases ExtTextOut is faster than DrawText. However, there are some
instances when DrawText is more efficient, as in the case where you need to
draw multiple lines of text within the borders of a rectangular region. DrawText
does not work with rotated text.

155

CHAPTER 9

Windows

A message is the means by which the user communicates with Windows CE and
your application. A window object, which is usually referred to as a window, is
the means by which an application receives messages from the user and the
operating system.

In Windows CE-based systems with graphical displays, windows are the primary
input and output devices. Applications use the graphics device interface (GDI) to
display output in a window. The messaging system passes user input to a window
in the form of messages. Unlike Windows-based desktop platforms, not all
Windows CE-based devices have a graphical display. However, because all
applications need to process messages, all applications must have windows,

even those that do not have a graphical display.

Every window is a member of a window class. A window class is a template for
creating window objects. When you write an application, you register at least one
window class that you use to create a window or windows.

Note Windows CE does not support dynamic data exchange (DDE), multiple-
document interface (MDI), or window properties.

For specific information about designing windows, see Chapter 6, “Designing a
User Interface for Windows CE.”

156 Windows CE Programmer’s Guide

Sample Windows-Based Application

Every Windows CE-based application must have WinMain as its entry point

function. WinMain performs a number of tasks, including registering the window
. class for the main window and creating the main window. WinMain registers the

main window class by calling the RegisterClass function and it creates the main

window by calling the CreateWindowEx function. WinMain does not need to

do these things itself; it can call other functions to perform any or all of

these tasks.

The system does not automatically display the main window after creating it.
Rather, the application’s WinMain function uses the ShowWindow function
to display the window.

Even the simplest Windows-based application has a message loop and a window
procedure. The message loop, typically part of an application’s WinMain
function, enables your application to receive messages and to dispatch them to
the appropriate window procedure. The window procedure is a function that
processes the messages that the system sends to your window. The system calls
your window procedure as a result of the messages that your message loop
receives and dispatches. You usually do not call your window procedure directly
from your application. Each window class specifies an initial window procedure.

This section contains a code example that is used to create a simple Windows-
based application. This sample application demonstrates the basic framework
common to all Windows-based applications, and begins executing with the
WinMain function that performs the following tasks:

1. WinMain stashes the application-instance handle in a global variable. Because
this handle is used in various places throughout a program, it is common to put
it in a global variable that is accessible to all functions. The smallest possible
interval a timer can measure is the system-tick interval.

2. WinMain calls the application-defined InitApplication function that calls the
RegisterClass function to register the application’s main window class. More
complicated applications may need to register more window classes and to
determine whether other instances of the application are running.

3. WinMain calls the application-defined InitInstance function that calls the
CreateWindow function to create a window. CreateWindow returns a
window handle identifying the new window. This handle is used to refer to
the window in subsequent function calls.

4. WinMain creates the message loop by calling the GetMessage,
TranslateMessage, and DispatchMessage functions in the format displayed
in the sample application. This loop receives messages and dispatches them to
the window procedures.

Chapter9 Windows 157

Note that the application does not directly call the window procedure,
MainWndProc. The system calls this function as the message loop receives

and dispatches messages. In this application, MainWndProc processes only the
WM_CLOSE message that tells the window to close. When the window receives
a WM_CLOSE message, it calls the PostQuitMessage function that causes the
next call to GetMessage to return FALSE. This, in turn, causes the message loop
to terminate and the application to exit.

Windows CE sends many other messages to the window besides WM_CLOSE.
MainWndProc passes all other messages to the DefWindowProc function,
which is the default window procedure provided by the system. You should pass
all messages to DefWindowProc that you do not process yourself; otherwise,
your window may not function correctly.

#include <windows.h>
#define ZeroVar(v) \ memset(&v, 0, sizeof(v))

HINSTANCE g_hInstance;
const TCHAR* const pszMainWndClassName = TEXT("MainWndClass");

//Here is the application’s window procedure.
LRESULT CALLBACK MainWndProc(
HWND hwnd,
UINT message,
WPARAM wParam,
LPARAM 1Param
)
{
switch (message)
{
case WM_CLOSE:
DestroyWindow(hwnd);
PostQuitMessage(0);
return 0;
}
return DefWindowProc(hwnd, message, wParam, 1Param);

158 Windows CE Programmer’s Guide

BOOL InitInstance(void)

{
BOOL bRet = FALSE;
HWND hwndMain;
hwndMain = CreateWindow(
pszMainWndClassName,
TEXT("Main"),
WS_OVERLAPPED |WS_SYSMENU,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
NULL,
NULL,
g_hInstance,
NULL
)
ShowWindow(hwndMain, SW_SHOW);
UpdateWindow(hwndMain);
bRet = TRUE;
return bRet;
}

BOOL InitApplication(void)
{
BOOL bRet = FALSE;
WNDCLASS wc;

ZeroVar(wc);

// Set up information about the class.

wc.style =0;

wc.TpfnWndProc = MainWndProc;

wc.cbClsExtra =0;

wc.cbWndExtra =0;

wc.hInstance = g_hlnstance;

wc.hlcon =0;

wc.hCursor =0;

wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wc.TpszMenuName = NULL;

wc.1pszClassName = pszMainWndClassName;

bRet = RegisterClass(&wc);
return bRet;

Chapter9 Windows 159

int WINAPI WinMain (
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR TpCmdLine,
int nCmdShow
)

MSG msg;
g_hlnstance = hInstance;

if (!InitApplication())

{
goto Teave;
}
if (!InitInstance())
{
goto leave;

while (GetMessage(&msg, NULL, 0, 0))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

leave:
return 0;
}

Window Fundamentals

The appearance and behavior of a window is largely determined by its inherent
attributes and its relationship to other windows. You assign attributes to a window
by setting window styles and extended styles, and by calling functions that alter
window attributes.

Windows are always rectangular. They are placed above and below each other
along an imaginary line that runs perpendicular to the screen. This stack of
windows is called the Z order. Each window has a unique position in the Z order.
Windows that appear first in the Z order are considered to be in front of, or on top
of, windows that appear later in the Z order. A window’s position in the Z order
affects its screen appearance. Windows may partially or totally obscure each other
depending on their location, size, and position in the Z order.

160 Windows CE Programmer’s Guide

A window is divided into a nonclient area, which is occupied by borders,

scroll bars, and various other controls, and a client area, which is everything else.
You are free to draw in the client area, but not in the nonclient area. In Windows
CE, the nonclient area of a window is controlled exclusively by the window
manager. Windows CE does not send applications any messages dealing with the
nonclient area.

A window may be visible or hidden, depending on whether or not its
WS_VISIBLE style is turned on or off. A window that has the WS_VISIBLE
style turned off will not be visible on the screen. A window that has the
WS_VISIBLE style turned on may or may not be visible on the screen, depending
on whether it is obscured by other windows. Covering or uncovering a window
with another window does not change the WS_VISIBLE style.

Every window has a unique identifier called a window handle. When you create a
window, you receive a window handle, which you can then use to call functions
that use the window. Handles are especially useful in applications that create
multiple child windows. Applications can change the window’s handle by

calling the SetWindowLong function and retrieve the handle by calling the
GetWindowLong function.

Window Relationship Fundamentals

When you create a window, you can designate it as a child of another window. A
window that has a child is referred to as a parent window. Windows CE has rules
governing the display and behavior of parent and child windows. For example, a
child window always appears in front of its parent window and can only draw
inside its parent window.

Child windows can have their own child windows. A child window that can

trace a relationship to a parent window through a chain of parent-child window
relationships, however long, is said to be a descendent of the parent window.
Likewise, a parent window that can trace a relationship to a child window through
a chain of parent-child windows is said to be an ancestor window of that child
window. For example, if Window A is the child window of one of Window B’s
child windows, Window A is a descendent of Window B, and Window B is an
ancestor of Window A.

A window that has no parent is called a top-level window. Windows that have
the same parent are referred to as sibling windows. Even though they may be
in different applications, all top-level windows are considered siblings.

A window can be defined as another window’s owner. Top-level windows may
own other top-level windows. Unlike a window in the parent-child relationship,
an owned window is allowed to draw outside of its owner’s window.

Chapter9 Windows 161

System-Defined Window Classes

Windows CE includes several system-defined windows classes. Because
Windows CE registers these classes, you do not need to; you can immediately
create windows with them.

The simplest group of these built-in classes are the controls. Controls provide
simple display and user interaction. You generally create controls as child
windows of a more complicated window.

Dialog boxes are windows that manage a number of controls. You create them
with a template that specifies which controls are to be included in the dialog box.
The dialog box then manages the user interaction between the controls and the
rest of the program.

Message boxes are specialized dialog boxes. They generally have minimal
text and a few buttons. Because the system handles the details of creating
and interacting with the dialog box, message boxes are easy to use.

Creating Windows

You create windows with the CreateWindow or CreateWindowEx function.
The only difference between these functions is that CreateWindowEx supports
the extended style parameter, dwExStyle, while CreateWindow does not. These
functions take a number of parameters that specify the attributes of the window
being created.

Note In Windows CE, CreateWindow is implemented as a macro which calls
CreateWindowEx.

Windows CE includes additional functions, including DialogBox, CreateDialog,
and MessageBox, for creating special-purpose windows such as dialog boxes and
message boxes.

162 Windows CE Programmer’s Guide

The CreateWindowEx function has the following prototype.

HWND

CreateWindowEx(
DWORD dwExStyle, //Extended style parameter
LPCWSTR 1pClassName, //Class name parameter
LPCWSTR 1pWindowName, //Window name parameter
DWORD dwStyle, //Style parameter
int X, //Horizontal parameter
int Y, //Vertical parameter
int nWidth, //Width parameter
int nHeight, //Height parameter
HWND hwndParent, //Parent parameter
HMENU hMenu, //Menu parameter
HINSTANCE hInstance, //Instance handle parameter
LPVOID TpParam); //Creation data parameter

The window attributes in CreateWindowEx are described in the following table.

Window attributes

Description

Extended style

Class name

Window name

The dwExStyle parameter specifies one or more window
extended styles. These have their own set of WS_EX_*
flags and should not be confused with the WS_* flags.

Every window belongs to a window class. Except for
built-in classes, like controls, an application must register
a window class before creating any windows of that class.
The IpClassName parameter specifies the name of the
class that is used as a template for creating the window.

The window name, which is also called window text, is a
text string that is associated with a window. The
IpWindowName parameter specifies the window text for
the newly created window. Windows use this text in
different ways. A main window, dialog box, or message
box typically displays its window text in its title bar. A
button control, edit control, or static control displays its
window text within the rectangle occupied by the control.
A list box, combo box, or scroll bar control does not
display its window name. All windows have the text
attribute, even if they do not display the text.

Chapter9 Windows 163

Window attributes

Description

Style

Horizontal and
vertical coordinates

Width and height coordinates

Parent

Menu

Instance handle

Creation data

The dwStyle parameter specifies one or more window
styles. A window style is a named constant that defines
an aspect of the window’s appearance and behavior. For
example, a window with the WS_BORDER style has a
border around it. Some window styles apply to all
windows; others apply only to windows of specific
window classes. For more information about windows
styles, see the “Window Styles” section later in

this chapter.

The X and Y parameters specify the horizontal and
vertical screen coordinates, respectively, of the window’s
upper-left corner.

The nWidth and nHeight parameters determine the width
and height of the window in device units.

The hwndParent parameter specifies the parent or
the owner of a window, depending on the style flags
passed in.

If neither WS_POPUP nor WS_CHILD is specified, the
hwndParent parameter may be a valid window handle or
NULL. If the parameter is NULL, the new window is a
top-level window without a parent or owner. If it is non-
NULL, the new window is created as a child of the
specified parent window.

If WS_CHILD is specified, the hiwndParent parameter
must be a valid window handle. The new window is
created as a child of the parent window.

If the WS_POPUP style is specified, the new window is
created as a top-level window and the hwndParent
parameter specifies the owner window. If WS_POPUP is
specified, and the parameter is NULL, the new window is
partially owned by Windows CE. The WS_POPUP style
overrides the WS_CHILD style.

Windows CE does not support menu bars. In Windows
CE, you can use the hMenu parameter to identify only a
child window. Otherwise, it must be NULL.

The hlnstance parameter identifies the handle of
the specific instance of the application that creates
the window.

Every window receives a WM_CREATE message when
it is created. The IpParm parameter is passed as one of
the message parameters. Although it can be any value, it
is most commonly a pointer to a structure that contains
data that may be needed to create a particular window.

164 Windows CE Programmer’s Guide

The class name for a new window class has to be a Unicode string. You can use
the TEXT macro to cast a string as Unicode, for example, TEXT(“classname”).

An application uses the SetWindowText function to change the window text after
it creates the window. It uses the GetWindowTextLength and GetWindowText
functions to retrieve the window text from a window.

Application Windows

An overlapped window is a top-level window that is meant to serve as an
application’s main window. It can also have a command bar, task bars, and scroll
bars. An overlapped window used as a main window typically includes all of
these components. An application creates an overlapped window by specifying
the WS_OVERLAPPED or WS_OVERLAPPEDWINDOW style in the
CreateWindowEx function.

Because many Windows CE-based devices have small screens, you should use the
full screen for your primary window. To accommodate different screen sizes, use
either the dimensions returned by the GetSystemMetrics function to define the
size of your primary window or specify CW_USEDEFAULT in the nWidth and
nHeight parameters that you send to CreateWindow or CreateWindowEx.

The qualities of an application window depend on the platform for which it was
designed. For Windows CE-based platforms that support graphical user interfaces,
a typical application window may include a command bar, a client area, and a
vertical scroll bar.

The command bar is a Windows CE toolbar that can contain menus, controls,
and separators. An application’s command bar typically contains a menu bar as
well as a Close (X) button, a Help (?) button, and an OK button. Windows CE
does not support the Maximize or Minimize buttons found in Windows-based
desktop platforms.

Items on the menu bar represent the main categories of commands. Choosing an
item on the menu bar typically opens a pop-up menu whose items correspond to
the tasks within a specified category. By choosing a command, the user directs the
application to carry out a task. In Windows CE, menu bars are always contained
within command bars; Windows CE does not support stand-alone menu bars.

Note In Windows CE, the command bar is considered part of the client area.

A pop-up window is a special type of overlapped window used for dialog boxes,
message boxes, and other temporary windows that appear outside an application’s
main window. Title bars are optional for pop-up windows; otherwise, pop-up
windows are the same as overlapped windows of the WS_OVERLAPPED style.

Chapter9 Windows 165

You create a pop-up window by specifying the WS_POPUP style in
CreateWindowEx. To include a title bar, specify the WS_CAPTION style.

Destroying Windows

In general, an application must destroy all the windows it creates. Use the
DestroyWindow function to destroy a window. When a window is destroyed,
the system hides the window, sends a WM_DESTROY message to the window
procedure of the window being destroyed, and removes any internal data
associated with the window. The window handle becomes invalid and can no
longer be used by the application.

Destroying a window automatically destroys the window’s descendant windows.
The DestroyWindow function sends a WM_DESTROY message to the initial
window being destroyed and then to its descendant windows. Any windows
owned by the window are also automatically destroyed.

You should destroy any window that is no longer needed. Before destroying a
window, you should save or remove any data associated with the window and
release any system resources allocated for the window. Windows CE releases
any resources that you do not release.

Destroying a window does not affect the window class from which the window
is created. You can still create new windows by using the class, and any existing
windows of that class continue to operate.

Window Styles

Window styles are attributes that are controlled by specific window style flags.
There are also extended window styles that have their own set of flags. For this
discussion, “window style” refers to the basic window styles, as well as the
extended window styles. However, when you write code, you must distinguish
between the two. The basic window styles have a prefix of WS_#*; the extended
styles have a prefix of WS_EX_*.

Most window styles are set when you create a window. There are a few, however,
which are sometimes useful to change while a program is running. Use the
SetWindowLong function to change a window style.

166 Windows CE Programmer’s Guide

General window styles supported by Windows CE are described in the

following table.

Style Description

WS_CHILD Specifies a child window. This should not be
changed after the window is created.

WS_POPUP Specifies a pop-up window. This style should
not be changed after the window is created.

WS_VISIBLE Specifies a window that is initially visible. This

WS_DISABLED

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_GROUP

WS_TABSTOP

WS_EX_NOACTIVATE

WS_EX_NODRAG

style can be turned on and off to change
window visibility.

Specifies a window that is initially disabled.
A disabled window cannot receive input from
the user.

Excludes the area occupied by child windows
when drawing occurs within the parent window.
This style is used on the parent window.
Windows CE windows always have the
WS_CLIPCHILDREN style.

Excludes the area occupied by sibling windows
that are above a window.

Specifies the first control of a group of controls.
This style is used primarily when creating
dialog boxes. The group consists of this first
control and all controls defined after it, up to the
next control for which the WS_GROUP style is
specified. Because the first control in each
group often has the WS_TABSTOP style, a
user can move from group to group.

Specifies a control that can receive the
keyboard focus when the user presses the TAB
key. This style is used primarily when creating
controls in a dialog box. Pressing the TAB key
changes the keyboard focus to the next control
with the WS_TABSTOP style.

Specifies that a window cannot be activated. If
a child window has this style, tapping it does
not cause its top-level parent to activate.
Although a window that has this style will still
receive stylus events, neither it nor its child
windows can get the focus.

Specifies a stationary window that cannot be
dragged by its title bar.

Chapter9 Windows 167

Style

Description

WS_EX_NOANIMATION

WS_EX_TOPMOST

Prevents a window from showing animated
exploding and imploding rectangles and from
having a button on the taskbar.

Creates a window that will be placed and
remain above all non-topmost windows.
To add or remove this style, use the
SetWindowPos function.

Note Windows-based desktop platforms do not support the WS_EX_NODRAG,
WS_EX_NOACTIVATE, and WS_EX_NOANIMATION styles. These styles are

only available in Windows CE.

Nonclient Area Styles

Styles that affect the appearance of the nonclient area of a window are described

in the following table.

Style Description

WS_BORDER Specifies a window with a
thin-line border.

WS_CAPTION Specifies a window with a title bar

WS_DLGFRAME

WS_HSCROLL
WS_VSCROLL

WS_OVERLAPPED

WS_SYSMENU

WS_EX_CAPTIONOKBTN
WS_EX_CLIENTEDGE

WS_EX_CONTEXTHELP

and border.

Specifies a window with a dialog box border
style. A window with this style cannot have a
title bar.

Specifies a window with a horizontal scroll bar.

Specifies a window with a vertical
scroll bar.

Specifies a window with
the WS_BORDER and
WS_CAPTION styles.

Specifies a window with a window menu on its
title bar. Use in conjunction with the
WS_CAPTION style.

Includes an OK button in the title bar.

Specifies a window with a border with a sunken
edge.

Includes a Help button (?) in the title bar of the
window.

168 Windows CE Programmer’s Guide

Style Meaning
WS_EX_DLGMODALFRAME Specifies a window with a
double border.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and
WS_EX_WINDOWEDGE styles.

WS_EX_STATICEDGE Specifies a window with a three-dimensional
border style. This style should be used for items
that do not accept user input.

WS_EX_WINDOWEDGE Specifies a window with a border with a
raised edge.

Note Windows CE does not have a system menu, but you can use the
WS_SYSMENU style to add the standard Clese (X) button to a window’s title
bar.

Window Size and Position

A window’s size and position are expressed as a bounding rectangle, given
in coordinates relative to the screen or to the parent window. The coordinates
of a top-level window are relative to the upper-left corner of the screen; the
coordinates of a child window are relative to the upper-left corner of the
parent window.

For example, a top-level window having the coordinates (10, 10) is placed 10
pixels to the right of the upper-left corner of the screen and 10 pixels down from
it. A child window having the coordinates (10, 10) is placed 10 pixels to the right
of the upper-left corner of its parent window’s client area and 10 pixels down
from the upper-left corner of that client area.

‘When you create a window, you can set the initial size and position of the window
directly or direct the system to calculate the initial size and position by specifying

CW_USEDEFAULT in the CreateWindow or CreateWindowEx function. After
creating a window, set the window’s size or position by calling the MoveWindow
or SetWindowPos function.

If you need to create a window with a client area of a particular size, use the
AdjustWindowRectEx function to calculate the required size of a window
based on the desired size of the client area. Pass the resulting size values to
the CreateWindowEx function.

Chapter9 Windows 169

Though you can create a window of any size, you should not create one that

is larger than the screen on your target device. Before setting a window’s size,
check the width and height of the screen by using GetSystemMetrics with the
SM_CXSCREEN and SM_CYSCREEN flags.

You can use the GetWindowRect function to retrieve the coordinates of a
window’s bounding rectangle. GetWindowRect fills a RECT structure with the
coordinates of the window’s upper-left and lower-right corners. The coordinates
are relative to the upper-left corner of the screen, even for a child window. The
ScreenToClient or MapWindowPoints function maps the screen coordinates
of a child window’s bounding rectangle to coordinates relative to the parent
window’s client area.

The GetClientRect function retrieves the position and size of a window’s client
area. Because the coordinates are relative to the client area itself, the client area’s
upper-left corner is always at location (0, 0) and the coordinates of the lower-right
corner are the width and height of the client area. Because the command bar is
part of the client area in Windows CE, it is included in the dimensions returned
by the GetClientRect function.

Use the WindowFromPoint function to retrieve the handle to the window that
occupies a particular point on the screen. Use the ChildWindowFromPoint
function to retrieve the handle to the child window that occupies a particular point
in the parent window’s client area. Use the ClientToScreen function to convert
the client coordinates of a specified point to screen coordinates. Conversely, use
the ScreentoClient function to convert the screen coordinates of a specified point
into client coordinates.

Use the SetWindowPos function to change a window’s position in the Z order.
This function can place a window at the top of the Z order, at the bottom of the
Z order, or behind a specific sibling window. SetWindowPos is the primary
function for positioning windows. This function can change all aspects of a
window’s position and visibility.

Topmost Windows

A topmost window is a window that has the WS_EX_TOPMOST style. Topmost
windows are above all non-topmost sibling windows in the Z order. You can
create a topmost window by specifying the WS_EX_TOPMOST style when you
create the window. You can also make a window a topmost window by calling
the SetWindowPos function and setting the hWndlInsertAfter parameter to
HWND_TOPMOST.

A window may lose its topmost style by calling SetWindowPos and setting
the hWndlInsertAfter parameter to HWND_NOTOPMOST. If a window is
positioned directly after a non-topmost window, then that window loses its
WS_EX_TOPMOST style.

170

Windows CE Programmer’s Guide

Do not confuse topmost with top-level. Top-level refers to whether or not a
window has a parent, whereas topmost refers to a specific style that controls
the Z order for the window.

You can set the SetWindowLong function to give a the window the
WS_EX_TOPMOST style. However, this function does not change
the window’s Z order.

Window Visibility

You can control a window’s visibility by using the ShowWindow or
SetWindowPos functions to turn its WS_VISIBLE style on or off. Think of the
WS_VISIBLE style as a way to hide a window. If this style is turned off, neither
the window nor any of its descendants will be drawn on the screen. In other
words, hiding a window hides the window itself, as well as all of its children,

all of their children, and so on. Even though a child window is hidden when its
parent is hidden, the child window’s WS_VISIBLE style is not changed when
its parent’s style is changed. A child window may have the WS_VISIBLE style
turned on and still not be visible, if it has a parent or ancestor window with a
WS_VISIBLE style turned off.

You can use the IsWindowVisible function to determine whether or not a
window is visible. This function checks the window and its ancestors to determine
if the window is visible. A window may be considered visible, but may not appear
on the screen, if it is covered by other windows.

By default, the CreateWindowEx function creates a hidden window, unless you
specify the WS_VISIBLE style. Typically, an application sets the WS_VISIBLE
style after it has created a window to keep details of the creation process hidden
from the user. For example, an application may keep a new window hidden while
it customizes the window’s appearance.

Changing the visibility of a window does not automatically change the visibility
of any windows it owns. Also, if you create a dialog box whose parent window
is not visible, the dialog box will be visible. To avoid this inconsistency, do not
create a dialog box that is owned by an invisible window.

Window Relationships

The thread and process that create a window own it. Most functions that modify a
window will only work if they are called by the thread that created the window.
This ownership by a thread or process is not related to the owner-owned
relationship between windows.

Chapter9 Windows 1

When a thread or process terminates, Windows CE removes all windows that are
owned by that thread or process. Windows that are removed when a thread or
process terminates do not always receive WM_DESTROY messages. For this
reason, it is a good idea for you to destroy your windows explicitly, rather than
depending on the system to do it.

Parent and Child Windows

As previously mentioned, when you create a window, you can designate it as a
child of another window by specifying the WS_CHILD style when you call the
CreateWindowEx function. A child window has only one parent window. A
parent can have any number of child windows and these, in turn, can have their
own child windows. Use the IsChild function to determine whether a window is
a descendant window of a specified parent window.

You can change the parent window of an existing child window by calling the
SetParent function. When you do, the system removes the child window from
the client area of the old parent window and moves it to the client area of the
new parent window. The GetParent function retrieves the handle to a window’s
parent window.

A child window is always kept directly in front of its parent window. You cannot
place a child window behind its parent or other ancestor window. When the Z
order or screen position of a window is changed, its children automatically move
along with it. A child window is positioned relative to the upper-left corner of its
parent’s client rectangle.

Although you can place or size a child window outside of a parent window,
Windows CE does not allow a child window to draw any part of itself outside of
its parent’s client rectangle. In Windows CE, a parent window cannot draw on its
children, and a window cannot draw on siblings that are in front of it. In other
words, all windows behave as if they have the WS_CLIPCHILDREN and
WS_CLIPSIBLING styles. You can avoid some of these restrictions by using the
GetDCEX function.

When you use DestroyWindow to destroy a window, its children are destroyed
as well.

Owner-Owned Windows

As previously mentioned, one window can own another. In such cases, the
window that owns another window is called the owner window, and the window
that is owned is called the owned window. Although the relationship between an
owner window and an owned window is similar to the relationship between a
parent and child window there are some differences. For example, unlike child
windows, owned windows can draw outside of their owners.

172

Windows CE Programmer’s Guide

You can create an owner-owned relationship between top-level windows when
you create a window with the WS_POPUP style. Because top-level windows
do not have parents, the window that you specify as the parent when you call
the CreateWindow function becomes the owner of the new window. Owned
windows can in turn own other windows. You can use the GetParent function
to return the owner of a specified window. When a window is destroyed, any
windows that it owns are also destroyed.

Owner-owned windows move as a group. If you move a window forward in the Z
order, its owner window and owned windows move forward with it. Windows CE
keeps owned windows in front of their owners. Although Windows CE does not
prevent you from inserting a top-level window between an owner window and

an owned window, it does keep owned groups of windows together when one

is moved in the Z order. This means that when you change a window’s Z order,
Windows CE displaces any windows that are between the window and its owned
or owner windows. Moving or sizing a window does not affect the location or size
of its owner or owned windows.

You can create a WS_POPUP window with a NULL owner. When you do,

the window becomes partially owned by the desktop. If Windows CE moves

the desktop to the top of the Z order, these windows will remain on top of the
desktop. However, if you move the window to the top of the Z order, it does

not pull the desktop with it. Threads in the system that do not usually have

any kind of window interface use this style when they need to display a message
to the user.

Messages and Message Queues

Both Windows CE and applications use messages to communicate with windows.
Although messages are generally used to notify a window of particular events,
some messages cause the window to perform an action.

Messages consist of a message identifier and optional parameters. The term
“message” is used to mean either the message identifier or the identifier and
the parameters together. The specific meaning is usually clear from the context.

A message identifier is a named constant that identifies a message. When a
window procedure receives a message, it uses a message identifier to determine
how to process the message. For example:

WM_CREATE is sent to a window when it is created.
WM_DESTROY is sent to a window when it is destroyed.

WM_PAINT is sent to a window when the window’s client area has changed and
must be repainted.

Chapter9 Windows 173

Message parameters contain data or the location of data that a window procedure
will use to process the message. The meaning and value of the message
parameters depend on the message identifier. A message parameter can contain
an integer, packed bit flags, a pointer to a structure containing additional data, or
other information. A window must check the message identifier to determine how
to interpret the message parameters.

Message Queues

The message queue coordinates the transmission of messages for a specified
thread. Every thread can have only one message queue. When a message is
passed to a window, it is placed on the message queue of the window’s
thread. The thread receives and dispatches the message.

There are two ways to pass a message to a window. The first is called posting

a message; the second is called sending a message. In this section, the term
“receiver’s message queue” refers to the message queue of the thread that created
the receiver window.

Posting Messages

Use the PostMessage function to post a message to a window. PostMessage
combines the message identifier and parameters into a message and places it

on the receiver’s message queue. Eventually, the receiver’s message loop removes
the message from the message queue and dispatches it to the appropriate

window procedure.

PostMessage is an asynchronous function. Windows CE does not synchronize
between the sending thread and the receiving thread for posted messages. When
the call to PostMessage returns, there is no guarantee that the window procedure
for the receiver window has processed the message. In fact, if the message was
posted to the same thread, the window procedure definitely has not processed
the message.

You can post a message without specifying a window. If you supply a NULL
window handle when you call the PostMessage function, the message is posted
to the queue associated with the current thread. Because no window handle is
specified, you must process the message directly from the message loop. This is
one way to create a message that applies to the entire application, instead of to a
specific window.

Sending Messages

Use the SendMessage function to send messages to a window. Unlike
PostMessage, SendMessage is a synchronous function. It does not return until
the window procedure of the receiver window has processed the message.

174

Windows CE Programmer’s Guide

You typically send a message when you want a window procedure to perform a
task immediately. The SendMessage function sends the message directly to the
window procedure of the receiver window. The SendMessage function waits until
the window procedure completes processing and then returns the message result.
Parent and child windows often communicate by sending messages to each other.
For example, a parent window that has an edit control as its child window can set
the text of the control by sending a message to it. The control can notify the
parent window of user-initiated changes to the text by sending messages back to
the parent.

If the receiving thread is the same as the sending thread, SendMessage calls the
window procedure directly. If the receiving thread is a different thread from the
sending thread, the two message queues synchronize the message passing. The
sending thread does not continue executing until the receiving thread processes
the message. The receiving thread does not process the message, if it is not
executing a message loop. Consequently, if you send a message to a window in a
thread that is not executing a message loop, the sending thread stops responding.

Recelvmg and Dispatching Messages

A message loop that receives and dispatches messages is the heart of
every Windows CE-based application. Every thread that creates a
window is continuously receiving messages and dispatching messages
to window procedures.

You can use the GetMessage function to receive messages. When a thread calls
GetMessage, Windows CE examines the thread’s message queue for incoming
messages. Windows CE processes messages in the following order:

1. Windows CE-based checks for messages that were placed on the queue by the
SendMessage function. After the system removes the message from the queue,
it dispatches the message to the appropriate window procedure from within the
GetMessage function. This is done to guarantee that the sender and receiver
message queue remain synchronized. The receiver must call GetMessage for
the sent messages to be processed.

2. If no sent message is found, Windows CE checks the queue for messages that
were placed on the queue by a call to PostMessage.

3. If no posted message is found, Windows CE checks the queue for messages
that were posted by the user input system.

By processing user input messages at a lower priority, the system guarantees
that each input message and any posted messages that result from it are
processed completely before moving on to the next input message.

4. If no posted input messages are found, Windows CE checks the queue
for WM_QUIT messages that were placed on the queue by a call
to PostQuitMessage.

Chapter9 Windows 175

5. If no posted quit messages are found, Windows CE checks the
queue for WM_PAINT messages that were placed on the queue
by the windowing system.

6. If no paint messages are found, Windows CE checks the queue for
WM_TIMER messages that were placed on the queue by the timer system.

When GetMessage receives any of the previous messages, it returns the message
content. It is then the responsibility of the thread to call DispatchMessage to
dispatch the message to the correct window procedure. If the message is a
WM_QUIT message, the return value of GetMessage is zero, which causes the
thread to end its message loop.

The system dispatches messages in the GetMessage call of the message loop, and
the application dispatches messages by using the DispatchMessage function in
the message loop. Windows CE handles the details of finding the window
procedure of the receiver window.

Processing Intermediate Messages

You may need to process some of the messages you receive from GetMessage
before you send them out using DispatchMessage. The most common processing
routines are TranslateMessage, TranslateAccelerator, and IsDialogMessage.
Some of these routines can dispatch messages internally because the application
no longer needs to call DispatchMessage in the main message loop.

You usually call TranslateMessage before you call DispatchMessage.
TranslateMessage determines which characters go with keyboard messages.
TranslateMessage posts the characters to the message queue to be picked up
on the next pass of the message loop.

Use the TranslateAccelerator function to intercept keyboard messages and
generate menu commands. Use the IsDialogMessage function to ensure the
proper operation of modeless dialog boxes.

You can remove a message from its queue with the GetMessage function. Use
the PeekMessage function to examine a message without removing it from its
queue. This function fills an MSG structure with information about the message.
However, you should use the PeekMessage function carefully. Because the
PeekMessage function does not block waiting for a message, it is commonly used
in loops in Windows-based desktop platforms. This allows an application to
continue processing whether or not there are any messages in its queue. In a
Windows CE-based application, if an application does not block waiting for a
message or some other event, the kernel cannot put the CPU into low-power
mode, which can quickly drain the device’s batteries. Also, in Windows CE,
PeekMessage does not remove WM_PAINT messages.

176

Windows CE Programmer’s Guide

Messages and the Window Procedure

A window procedure is a function that receives and processes all messages sent to
the window. The window procedure in the sample program at the beginning of
this chapter was called the MainWndProc. Every window class has a window
procedure, and every window created with that class initially uses the same
window procedure to respond to messages. Although you can set the window
procedure for an individual window after the window is created, this is a more
advanced programming technique.

The system sends a message to a window procedure by passing the message
data as arguments to the procedure. The window procedure then performs
an appropriate action for the message; it checks the message identifier and,
while processing the message, uses the information specified by the
message parameters.

A window procedure rarely ignores a message. If it does not process a message,
it should pass the message along for default processing. The window procedure
does this by calling the DefWindowProc function, which performs a default
action and returns a message result. The window procedure must then return this
value as its own message result. Most window procedures process just a few
messages and pass the others on to DefWindowProc.

Window procedures can be, and often are, shared by more than one window. The
handle of the specific window receiving the message is available as an argument
of the window procedure.

Message Types

Windows CE supports both system-defined messages and application-defined
messages. System-defined messages have message identifiers ranging from 0
to 0x3ff. Messages with message identifiers ranging from 0x400 to Ox7fff are
available for application-defined messages.

There are two types of system-defined messages: general window messages,
which are used for all windows, and special purpose messages, which apply to
a particular class of windows. General window messages cover a wide range of
information and requests, including messages for stylus and keyboard input and
window creation and management.

The prefix of the symbolic constant for the message generally identifies the
category to which the message belongs. For example, general window messages
all start with WM, whereas messages that apply only to button controls start
with BM.

Chapter9 Windows

177

Message types supported by Windows CE are described in the following table.

Message prefix

Description

BM
BN
CB
CBN
CDM
CDN
CPL
DB
DM
DTM
DTN
EM
EN
HDM
HDN
IMN
LB
LBN
LINE
LVM
LVN
MCM
MCN
NM
PBM
PSM
PSN

SB

SBM
STM
STN

Button message

Button notification

Combo box message

Combo box notification
Common dialog box message
Common dialog box notification
Control panel message

Object store message

Dialog box default push button message
Date time picker and HTML viewer messages
Date time picker notification
Edit control message

Edit control notification

Header control message

Header control notification
Input context message

List box control message

List box notification

Line device message

List view message

List view notification

Month calender message

Month calendar notification
Messages sent by a variety of controls
Progress bar message

Property sheet message

Property sheet notification
Rebar message

Rebar notification

Status bar window message
Scroll bar message

Static bar message

Static bar notification

Toolbar message

178

Windows CE Programmer’s Guide

Message prefix Description

TBM Trackbar message

TBN Trackbar notification

TCM Tab control message

TCN Tab control notification
TVM Tree view message

TVN Tree view notification

UDM Up-down control message
UDN Up-down control notification
WM General window messages

You can define your own messages for use by your own windows. If you create
your own messages, be sure that the window procedure that receives them
interprets and processes them correctly. The operating system makes no attempt
to interpret application-defined messages.

In some situations, you need to use messages to communicate with windows

that are controlled by other processes. In this situation, call the
RegisterWindowMessage function to register a message identifier. The message
number returned by this function is guaranteed to be unique throughout the
system. By using this function, you prevent the conflicts that can arise if different
applications use the same message identifier for different purposes.

Windows CE defines a WM_HIBERNATE message to notify an application when
system resources are running low. When an application receives this message, it
should attempt to release as many resources as possible. Every Windows CE-
based application that uses even moderate amounts of system resources should
implement a handler for the WM_HIBERNATE message.

Note If an application’s window is not visible, it cannot receive a
WM_HIBERNATE message. This is because the WM_HIBERNATE message is
only sent to applications that have a button on the taskbar, which only visible
windows do. A window that is hidden will not get this message, even if it is a top-
level, overlapped window.

Windows CE does not support hooking messages because the extra
processing required by hooks could seriously degrade the performance
of Windows CE-based devices.

Chapter 9 Windows 179

Timers

A timer is a system resource that can notify an application at regular intervals. An
application associates a timer with a window and sets the timer for a specific time-
out period. Each time the specified interval, or time-out value, for a specified
timer elapses, the system uses a WM_TIMER message to notify the window
associated with the timer. Because the accuracy of a timer depends on the system
clock rate and how often the application retrieves messages from the message
queue, the time-out value is only approximate. The smallest possible interval a
timer can measure is the system tick interval.

Use the SetTimer function to create a timer. The timer can be associated with a
particular window or with just the thread. If you associate the timer with a
window, then message loop processing will cause the WM_TIMER message to
be dispatched to the window’s window procedure. If you do not associate the
timer with a window, you must design the message loop to recognize and handle
the WM_TIMER message.

If the call to SetTimer includes a TimerProc callback function, the procedure
is called when the timer expires. This call is done inside the GetMessage or
PeekMessage function. This means that a thread must be executing a message
loop to service a timer, even if you are using a timer callback procedure.

A new timer starts timing its interval as soon as it is created. An application can
change a timer’s time-out value by using the SetTimer function, and it can
destroy a timer by using the KillTimer function. To use system resources
efficiently, applications should destroy timers that are no longer necessary.

You can use the timer and window identifiers to identify timers associated with a
window. You can identify timers that are not associated with a particular window
by using the identifier returned by the SetTimer call.

Timer messages have a low priority in the message queue. Although you know
that the window associated with a timer is notified sometime after the timer
interval expires, you cannot know the exact time it will receive the notification.

Timers expire at regular intervals, but a timer that expires multiple times before
being serviced does not generate multiple WM_TIMER messages.

180 Windows CE Programmer’s Guide

Rectangles

Windows CE uses rectangles to specify clipping regions, identify portions of the
client area that need to be repainted, and define areas for displaying text and
graphics among other things. Use a RECT structure to define a rectangle. The
structure specifies the coordinates of two points: the upper-left and lower-right
corners of the rectangle. The sides of the rectangle extend from these two points
and are parallel to the x-axis and the y-axis.

Because applications can use rectangles for many different purposes, the
Windows rectangle functions do not use an explicit unit of measure. Instead,
all rectangle coordinates and dimensions are given in signed, logical values.
The function in which the rectangle is used determines the unit of measure.

The SetRect function creates a rectangle, the CopyRect function makes a copy of
a specified rectangle, and the SetRectEmpty function creates an empty rectangle.
An empty rectangle is any rectangle that has zero width, zero height, or both. The
IsRectEmpty function determines whether a specified rectangle is empty. The
EqualRect function determines whether two rectangles are identical — that is,
whether they have the same coordinates.

The InflateRect function increases or decreases the width or height of a rectangle
or both. The OffsetRect function moves a rectangle by a specified amount. The
PtInRect function determines whether a specified point lies within a specified
rectangle. The point is in the rectangle if it lies on the left or top edge of the
rectangle or is completely within the rectangle. The point is not in the rectangle
if it lies on the right or bottom edge. The IntersectRect function creates a new
rectangle that is the intersection of two existing rectangles. The UnionRect
function creates a new rectangle that is the union of two existing rectangles.

181

CHAPTER 10

Overview of Controls

In Windows CE, a control is a child window that an application uses in
conjunction with another window to perform simple input and output (I/0)
tasks. Controls are most often used within dialog boxes, but they can also
be used in other windows. Controls offer users a familiar interface, making
applications easier to use and learn.

Windows CE defines two basic kinds of controls: windows controls and common
controls. Windows controls, which include buttons, combo boxes, edit controls,
list boxes, scroll bars, and static controls, all send WM_COMMAND messages.
Common controls, which include most other controls, generally send a
WM_NOTIFY message, though a few send WM_COMMAND messages as well.

To use windows controls, you must include either the Windows.h or the
Winuser.h header file in your application (Windows.h includes Winuser.h).
To use most of the common controls, you must include the Commctrl.h header
file in your application. To use property sheets, which are a type of common
control, you must include the Prsht.h header file.

You can use macros to send messages for both common and windows controls.
For more information about message-related macros, see the appendix “Lists
of Functions and Interfaces.”

Windows CE currently supports the HTML viewer control, which is neither a
standard windows control nor a common control. The HTML viewer control
provides a simple interface for rendering HTML text, displaying embedded
images, and notifying the application of user events.

182

Windows CE Programmer’s Guide

Overview of Windows Controls

A windows control is a predefined child window that enables a user to make
selections, carry out commands, and perform input and output tasks. When
Windows creates controls for a dialog box, each control is the child of the dialog
box. When an application creates a control, the control is the child of a window
identified by the application. A control sends messages, called notification
messages, to its parent window when the control is manipulated by the user.

The application relies on these notification messages to determine what action
the user wants the application to take.

Controls are most often used within dialog boxes, but they can also be used in
other windows. Controls within dialog boxes provide the user with the means to
type text, select options, and direct a dialog box to complete its action. Controls
in other windows provide a variety of services, such as letting the user choose
commands, scroll down the screen, and view and edit text.

Windows CE supports the following windows controls:

Check Boxes
Combo Boxes
Edit Controls
Group Boxes
List Boxes
Push Buttons
Radio Buttons
Scroll Bars
Static Controls

You can create windows controls individually by specifying the name of the
window class when calling the CreateWindowEx function.

Because controls are windows, you can manipulate them by using the window-
management functions, such as ShowWindow and EnableWindow. If the
window class for a control supports control messages, you can also manipulate a
control of that class by using the SendMessage function to send these messages
to the control.

For guidelines on using controls in user interface design, see Chapter 6,
“Designing a User Interface for Windows CE.”

Chapter 10 Overview of Controls 183

Predefined Controls

Windows provides several predefined window classes for controls. Controls
belonging to these window classes are called predefined controls. An application
creates a predefined control of a particular type by specifying the appropriate
window class name in either the CreateWindowEx function or the dialog box
template. Predefined window classes are described in the following table.

Window class Description

BUTTON Creates a button control, which notifies the parent window when the
user clicks the control.

COMBOBOX Creates a combo box —a combination of list box and edit control —
that lets the user select and edit items.

EDIT Creates an edit control, which lets the user view and edit text.

LISTBOX Creates a list box, which displays a list from which the user can
select one or more items.

SCROLLBAR Creates a scroll bar control, which lets the user choose scroll
direction and distance in a related window.

STATIC Creates a static control, which often acts as a label for another
control. Static controls can display both text and images, such
as icons.

Each predefined window class has a corresponding set of control styles that
enable an application to vary the appearance and behavior of the controls it
creates. For example, the BUTTON class supports styles to create push buttons,
radio buttons, check boxes, and group boxes. You specify the style when you
create the control.

In addition to control styles, each predefined window class has a corresponding
set of notification and control messages. Applications rely on the notification
messages to determine when the user has provided input to the controls. For
example, a push button sends a BN_CLICKED message to the parent window
when the user clicks the button. Applications use the control messages to retrieve
information from the controls and to manipulate the appearance and behavior of
the controls. For example, an application can send a BM_GETCHECK message
to a check box to determine whether it currently contains a check mark.

Most programmers make extensive use of predefined controls in dialog boxes
and other windows. Because predefined controls offer many capabilities, a full
discussion of each is beyond the scope of this chapter.

184

Windows CE Programmer’s Guide

Custom Controls

You can create custom controls to perform tasks not supported by predefined
controls. Windows CE provides the following ways to create custom controls:

= Use owner-drawn buttons, list boxes, and combo boxes.
= Use the subclass procedure to produce a custom control.

= Register and implement an application-defined window class.

Buttons, list boxes, and combo boxes have owner-drawn styles available that
direct the control to send a message to the parent window whenever the control
must be drawn. This feature enables you to alter the appearance of a control. For
buttons, the owner-drawn style affects how the system draws the entire control.
For list boxes and combo boxes, the parent window draws the items within the
control, and the control draws its own outline.

You can designate list boxes, combo boxes, and buttons as owner-drawn controls
by creating them with the appropriate style. When a control has the owner-drawn
style, Windows CE handles the user’s interaction with the control as usual,
performing such tasks as detecting when a user has chosen a button and then
notifying the button’s owner of the event. However, because the control is owner-
drawn, the parent window of the control is responsible for the visual appearance
of the control.

You can use the subclass procedure to create a custom control. The subclass
procedure alters selected behaviors of the control by processing those messages
that affect the selected behaviors. All other messages pass to the original window
procedure for the control.

You can create custom controls by registering an application-defined window
class and specifying the name of the window class in the CreateWindowEx
function or in the dialog box template. The process for registering an application-
defined window class for a custom control is the same as for registering a class
for an ordinary window. Each class must have a unique name, a corresponding
window procedure, and other information.

At a minimum, the window procedure draws the control. If an application uses
the control to let the user type information, the window procedure also processes
input messages from the keyboard and stylus and sends notification messages to
the parent window. In addition, if the control supports control messages, the
window procedure processes messages sent to it by the parent window or other
windows. For example, controls often process the WM_GETDLGCODE message
sent by dialog boxes to direct a dialog box to process keyboard input in a
specified way.

Chapter 10 Overview of Controls 185

Control Notification Messages

A control sends a notification message to its parent window to notify the parent
about user input or changes to the control. The notification message is a
WM_COMMAND message that includes a control identifier and a notification
code identifying the nature of the event. A control identifier is a unique number
that the application uses to identify the control sending the message. In Windows
CE, control identifiers are only valid for child windows.

The application sets the identifier for a control when it creates the control.
The application specifies the identifier either in the AMenu parameter of the
CreateWindowEx function or in the id member of the dialog box template,
which is the DLGITEMTEMPATE structure.

A control must retrieve its identifier before it can send notification messages.
A control can use the GetDIgCtrlID function to retrieve its control identifier.

Control Messages

A parent window or other windows send control messages to direct a control to
perform specific tasks. The window procedure processes these messages and
carries out the requested action.

Control messages can be predefined or application-defined. Windows has several
predefined messages, such as WM_GETTEXT and WM_GETDLGCODE, that it
sends to controls. These messages typically correspond to window-management
functions that carry out actions on windows. The window procedure for an
application-defined control processes any predefined control message that affects
the operation of the control. Such messages are described in the following table.

Message Recommendation

WM_GETDLGCODE Process if the control uses the ENTER, ESC, TAB, or arrow
keys. The IsDialogMessage function sends this message to
controls in a dialog box to determine whether to process the
keys or pass them to the control.

WM_GETFONT Process if the WM_SETFONT message is
also processed.
WM_GETTEXT Process if the control text is not the same as the title

specified by the CreateWindowEx function.

WM_GETTEXTLENGTH Process if the control text is not the same as the title
specified by the CreateWindowEx function.

WM_KILLFOCUS Process if the control displays a caret, a focus rectangle, or
another item to indicate that it has the input focus.

186 Windows CE Programmer’s Guide

Message Recommendation

WM_SETFOCUS Process if the control displays a caret, a focus rectangle,
or another item to indicate that it has the input focus.

WM_SETTEXT Process if the control text is not the same as the title
specified by the CreateWindowEx function.

WM_SETFONT Process if the control displays text. Windows CE sends

this message when creating a dialog box that has the
DS_SETFONT style.

Because an application-defined control message is specific to the designated
control, you must explicitly send it to the control by using the SendMessage
or SendDIgItemMessage function. The numeric value for each message must
be unique and must not conflict with the values of other window messages.

Overview of Common Controls

Common controls are a set of windows that are supported by the common
control library, which is a dynamic-link library (DLL) included with the
Windows operating system. Like other control windows, a common control

is a child window that an application uses in conjunction with another window
to perform I/O tasks.

Common controls offer users a familiar interface for performing common tasks,
which makes applications easier to use and learn. Most common controls send
the WM_NOTIFY message instead of the WM_COMMAND message sent by
Windows Controls.

To use most of the common controls, you must include the Commectrl.h header
file in your application. To use property sheets, you must include the Prsht.h
header file.

Before you can create or use any common controls, you have to register them.
You can do this in either of two ways. You can call the InitCommonControls
function, which registers all the common controls at once, except for the rebar,
month calendar, and date and time picker controls. Or, you can call the
InitCommonControlsEx function, which registers a specific common control
class. Calling either of these functions ensures that the common DLL is loaded.

Chapter 10 Overview of Controls

187

Windows CE supports the following common controls:

Command bands
Command bars

Date and time picker
Header controls
Image lists

List views

Month calendar controls
Progress bars
Property sheets
Rebars

Status bars

Tab controls
Toolbars

ToolTips

Trackbars

Tree views

Up-down controls

Windows CE does not support the following controls commonly used on
Windows-based desktop platforms: animation controls, ComboBoxEx
controls, drag lists, flat scroll bars, hot keys, Internet Protocol (IP) address
controls, or rich edit controls. Windows CE supports ToolTips only for
toolbar and command bar buttons.

For general guidelines on using common controls in user interface design,
see Chapter 6, “Designing a User Interface for Windows CE.”

Common Control Styles

Though Windows CE supports some styles that apply to a broad spectrum

of common controls, each of the common controls also has a set of styles that
are unique to that control. Unless noted otherwise, these unique styles apply to
header controls, toolbar controls, rebars, and status windows.

188 Windows CE Programmer’s Guide

Common control styles supported by Windows CE are described in the

following table.

Style

Description

CCS_ADJUSTABLE

CCS_BOTTOM

CCS_NODIVIDER

CCS_NOMOVEY

CCS_NOPARENTALIGN

CCS_NORESIZE

CCS_TOP

CCS_LEFT

CCS_RIGHT

Enables a toolbar’s built-in customization features,
which allow the user to drag a button to a new
position or to remove a button by dragging it off the
toolbar. In addition, the user can double-click the
toolbar to display the Customize Toolbar dialog box,
which allows the user to add, delete, and rearrange
toolbar buttons.

Causes the control to position itself at the bottom of
the parent window’s client area and sets the width of
the control to be the same as the parent window’s
width. Status windows have this style by default.

Prevents a 2-pixel highlight from being drawn at the
top of the control.

Causes the control to resize and move itself
horizontally, but not vertically, in response to a
WM_SIZE message. Header windows have this style
by default. This style does not apply if your control
has the CCS_NORESIZE style.

Prevents the control from automatically moving to the
top or bottom of the parent window. Instead, the
control keeps its position within the parent window
despite changes to the size of the parent. If the
application also uses the CCS_TOP or
CCS_BOTTOM styles, it adjusts the height to the
default, but does not change the position and width of
the control.

Prevents the control from using the default width and
height when setting its initial size or a new size.
Instead, the control uses the width and height
specified in the request for creation or sizing.

Causes the control to position itself at the top of the
parent window’s client area and matches the width of
the control to the width of the parent window.
Toolbars have this style by default.

Causes the control to display vertically on the left side
of the parent window.

Causes the control to display vertically on the right
side of the parent window.

Chapter 10 Overview of Controls 189

Style Description

CCS_NOMOVEX Causes the control to resize and move itself vertically,
but not horizontally, in response to a WM_SIZE
message. This message does not apply if your control
has the CCS_NORESIZE style.

CCS_VERT Causes the control to display vertically.

Custom Draw Services

Windows CE supports the custom draw service. The custom draw service is not
a common control; it is a service that makes it easy to customize a common
control’s appearance. You can use it to change a common control’s color or font,
or to partially or completely draw the control.

A common control that supports the custom draw service provides this service by
sending an NM_CUSTOMDRAW notification at specific times during drawing
operations. The [Param of the NM_CUSTOMDRAW notification is a reference
to an NMCUSTOMDRAW structure. If the control is a list view, it uses

the NMLVCUSTOMDRAW structure; if it’s a tree view, it uses the
NMTVCUSTOMDRAW structure. This structure contains information that the
application can use to determine how to draw the control. The following common
controls can provide the custom draw service:

Command bands
Header controls
List views
Toolbars
Trackbars

Tree views

For information about custom draw services for common controls, see the “Paint
Cycles, Drawing Stages, and Notification Messages” and “Using Custom Draw
Services” sections later in this chapter.

190 Windows CE Programmer’s Guide

Paint Cycles, Drawing Stages, and Notification Messages

Like all Windows-based applications, common controls paint and erase
themselves based on messages received from the system or other applications.
The process of a control painting or erasing itself is called a paint cycle. Controls
that support custom draw send NM_CUSTOMDRAW notification messages
periodically throughout each paint cycle. This notification message is
accompanied by an NMCUSTOMDRAW structure or another structure that
contains an NMCUSTOMDRAW structure as its first member.

In addition to other information, the NMCUSTOMDRAW structure informs
the parent window about what stage of the paint cycle the control is in. This is
referred to as the draw stage, and is represented by the value in the structure’s
dwDrawStage member. A control informs its parent about four basic, or global,
draw stages. The flag values, defined in Commctrlh, that represent these stages
in the structure are described in the following table.

Global draw stage value Description

CDDS_PREPAINT Before the paint cycle begins.
CDDS_POSTPAINT After the paint cycle is complete.
CDDS_PREERASE Before the erase cycle begins.
CDDS_POSTERASE After the erase cycle is complete.

Each of the preceding values can be combined with the CDDS_ITEM flag to
specify draw stages for items. Item-specific values contained in Commctrl.h
are described in the following table.

Item-specific draw stage value Description
CDDS_ITEMPREPAINT Before an item is drawn.
CDDS_ITEMPOSTPAINT After an item has been drawn.
CDDS_ITEMPREERASE Before an item is erased.
CDDS_ITEMPOSTERASE After an item has been erased.

You must process the NM_CUSTOMDRAW notification message and then
return a specific value that informs the control what it must do.

Using Custom Draw Services

The key to harnessing custom draw functionality is in responding to the
NM_CUSTOMDRAW notification messages that a control sends. The return
values your application sends in response to these notifications determine the
control’s behavior for that paint cycle.

Chapter 10 Overview of Controls 191

This section contains information about how your application can use
NM_CUSTOMDRAW notification return values to determine the control’s
behavior. Use the NM_CUSTOMDRAW notification message for:

= Responding to the prepaint notification
= Requesting item-specific notifications
= Drawing the item yourself

= Changing fonts and colors

Responding to the Prepaint Notification

At the beginning of each paint cycle, the control sends the NM_CUSTOMDRAW
notification message, which specifies the CDDS_PREPAINT value in the
dwDrawStage member of the accompanying NMCUSTOMDRAW structure.
The value that your application returns to this first notification dictates how and
when the control sends subsequent Custom Draw notifications for the rest of that
paint cycle. In response to the first notification, your application can return a
combination of flags, as described in the following table.

Return value Effect

CDRF_DODEFAULT The control draws itself. It does not send additional
NM_CUSTOMDRAW messages for this paint cycle.
This flag cannot be used with any other flag.

CDRF_NOTIFYITEDRAW The control notifies the parent of any item-specific
drawing operations. It sends NM_CUSTOMDRAW
notification messages before and after it draws items.

Requesting Item-Specific Notifications

If your application returns CDRF_NOTIFYITEMDRAW to the initial
prepaint custom draw notification, the control sends notifications for each
item it draws during that paint cycle. These item-specific notifications have
the CDDS_ITEMPREPAINT value in the dwDrawStage member of the
accompanying NMCUSTOMDRAW structure. Your application can request
that the control send another notification when it is done drawing the item by
returning CDRF_NOTIFYPOSTPAINT to these item-specific notifications.
Otherwise, your application can return CDRF_DODEFAULT and the control
will not notify the parent window until it starts to draw the next item.

192

Windows CE Programmer’s Guide

Drawing the ltem

If your application draws the item, it should return CDRF_SKIPDEFAULT. This
allows the control to skip items that it need not draw, which conserves system
resources. Keep in mind that returning this value means that the control will not
draw any portion of the item, so your application must draw any item images.

Changing Fonts and Colors

Your application can use custom draw to change an item’s font. To do this, select
the HFONT you want into the device context specified by the hdc member of the
NMCUSTOMDRAW structure associated with that notification. Because the
font you select might have different metrics than the default font, be sure that
you include the CDRF_NEWZFONT bit in the return value for the notification
message. For more information on using this functionality, see the sample code
in the “Sample Custom Draw Function” section later in this chapter.

The font that your application specifies is used to display that item when it is
not selected. Custom draw does not allow you to change the font attributes for
selected items.

Sample Custom Draw Function

The following code example shows how an application-defined function
processes custom draw notification messages sent by a child list view control.
Upon receiving the prepaint notification CDDS_PREPAINT, the function
requests item-specific notifications by returning CDRF_NOTIFYITEMDRAW.
When it receives the subsequent item-specific notifications, it selects a previously
created font into the provided device context and specifies new colors before
returning CDRF_NEWFONT.

Chapter 10 Overview of Controls 193

LRESULT DoNotify(HWND hwnd, UINT msg, WPARAM wParam, LPARAM 1Param)

{
LPNMLISTVIEW pnm = (LPNMLISTVIEW)1Param;
switch (pnm->hdr.code){
case NM_CUSTOMDRAW: {
LPNMLVCUSTOMDRAW 1plvcd = (LPNMLVCUSTOMDRAW)1Param;
if(1plvcd->nmcd.dwDrawStage == CDDS_PREPAINT)
return CDRF_NOTIFYITEMDRAW;
if(1plved->nmed.dwDrawStage == CDDS_ITEMPREPAINT){
if(!(Tplved->nmcd.dwlitemSpec % 3))
SelectObject(1plvcd->nmcd.hdc, g _hNewFont);
else
return(CDRF_DODEFAULT);
Tplvcd->clrText = RGB(150, 75, 150);
1plved->clrTextBk = RGB(255,255,255);
return CDRF_NEWFONT;
}
}
default:
break;
}
return 0;
}

HTML Viewer Control

The Hypertext Markup Language (HTML) viewer control provides a viewer for
displaying HTML text and embedded images. The HTML viewer provides the
functionality required to implement Microsofte Pocket Internet Explorer and the
Help engine. ’

You can also create other viewers based on the HTML viewer control. An HTML
source can include references to other sources, which may provide different types
of data. If the application determines that some of the data it retrieves is of a type
other than HTML, it can invoke another type of viewer to display that data.

194 Windows CE Programmer’s Guide

To use the HTML viewer control, you must include the Htmlctrl.h header file
and either link your application with the Htmlview.dll dynamic link, or load
the HTML viewer DLL by calling the LoadLibrary function. When you call
LoadLibrary, pass “Htmlview.dll” as the IpLibFileName parameter.

Before you can create or use the HTML viewer control, you have to register
it by calling the InitHTML Control function.You create an HTML viewer
control by specifying DISPLAYNAME in the IpClassName parameter to the
CreateWindow function.

» To create the HTML viewer control

1.

Load the HTML viewer DLL by calling the LoadLibrary function, specifying
“Htmlview.dll” in the IpLibFileName parameter.

Register the HTML viewer control class by calling the
InitHTML Control function.

. Create a window for the HTML viewer control by calling the CreateWindow

function, specifying DISPLAYNAME in the I[pClassName parameter.

» To display an HTML document

1.

Clear the current contents of the HTML viewer control by sending it a
WM_SETTEXT message.

Load an HTML document and copy the document’s text to the control by
sending the control a series of DTM_ADDTEXT messages for ASCII or
DTM_ADDTEXTW messages for Unicode.

. When the document processing is complete, send the control a

DTM_ENDOFSOURCE message.

. Process any NM_HOTSPOT notifications sent by the control when the user

taps a link or submits a form.

. For each NM_INLINE_IMAGE notification received from the control,

load the image so that the HTML viewer control will display the
image-loading icon.

After the image has loaded successfully, send the control a DTM_SETIMAGE
message containing the bitmap handle (HBITMAP) of the image to display.

If the image does not load successfully, send a DTM_IMAGEFAIL message,
which indicates to the control that it should display the broken image icon.

For each NM_INLINE_SOUND notification received from the control,
load the sound, and then play it the number of times indicated in the
dwLoopCount parameter.

Chapter 10 Overview of Controls 195

The following code example shows how to create an HTML viewer control.

ffdefine DISPLAYCLASS TEXT("DISPLAYCLASS™)

BOOL g_bMakeFit = TRUE; // DTM_ENABLESHRINK Shrink-enable flag
TCHAR const c_szHTMLControllLibrary[] = TEXT("htmlview.d11");

HINSTANCE g_hInstHTMLCtr1; // HTML Control Viewer instance
HINSTANCE hInstance; // Application instance

HWND m_hwndHtm1; // Handle to HTML DISPLAYCLASS window

g_hInstHTMLCtr1 = LoadLibrary(c_szHTMLControlLibrary);
InitHTMLControl(hInstance);
LRESULT WndProc (HWND hwnd, UINT msg, WPARAM wp, LPARAM 1p)

{
switch (message)

{
case WM_CREATE:
{
m_hwndHtml = CreateWindow(DISPLAYCLASS, NULL,
WS_CHILD | WS_VISIBLE | WS_VSCROLL | WS_CLIPSIBLINGS,
rc.left, rc.top, rc.right - rc.left, rc.bottom - rc.top,
hWnd, (HMENU)IDC_HTMLVIEW, g_hInst, NULL);
SetFocus(m_hwndHtm1);
PostMessage(m_hwndHtml, DTM_ENABLESHRINK, @, g_bMakeFit);
break;
}
}

Note When calling the LoadLibrary and CreateWindow functions, the library
or class name has to be a Unicode string. Use the TEXT macro to cast a string as
Unicode, for example, TEXT(“Htmlview.dll”).

Pocket Internet Explorer is an example of an application that uses the HTML
viewer control. The application (Webview.exe) links with the dynamic-link
library that provides the HTML viewer control (Htmlview.dll). The application
provides the user interface, retrieves the data from the Uniform Resource
Locators (URL), and interprets the data.

196 Windows CE Programmer’s Guide

The following illustration describes how the application interacts with the HTML
viewer control.

URL
interpreter and
Data Retriever

 Presentation
Lookup

User
interface

Other
Viewer

Interaction between the application and HTML viewer control

Note The HTML viewer control interface is not an ActiveX control, and does not
expose any COM interfaces.

197

CHAPTER 11

Foundation Controls

The controls described in this chapter are all common controls that contain or
manage other controls. For example, a command bar can contain menus, combo
boxes, and buttons. A command band can contain a variety of controls including
command bands. All of the controls described in this chapter are designed as
containers for other controls.

The following controls are described in this chapter:

= Command bars

= Property sheets
= Rebars

= Command bands
= Tab controls

= Toolbars

Command Bars

A command bar is a toolbar that can include a menu bar as well as the Close (X)
button, the Help (?) button, and the OK button, usually found on the title bar of
Windows-based desktop applications. A command bar can contain menus, combo
boxes, buttons, and separators. A separator is a blank space you can use to divide
other elements into groups or to reserve space in a command bar.

198 Windows CE Programmer’s Guide

You create a command bar by using the CommandBar_Create function.
Windows CE registers this class when it loads the common control dynamic-link
library (DLL). You can use the InitCommonControls function to ensure that this
DLL is loaded.

File Edit Yiew Format Too

Windows CE command bar

Using Command Bars

You can create a command bar to organize your application’s menus and buttons.

» To create a command bar

1. Initialize an INITCOMMONCONTROLSEX structure with
ICC_BAR_CLASSES in the dwICC member.

2. Register the command bar class by calling the InitCommonControlsEx
function, and then passing in the INITCOMMONCONTROLSEX structure.

3. Create the commands bands control by calling the
CommandBar_Create function.

4. Add controls to the command bar by calling the
CommandBar_InsertMenubar, CommandBar_AddBitmap,
CommandBar_AddButtons, and
CommandBar_InsertComboBox functions.

5. Add the Close and Help buttons by calling the
CommandBanr_AddAdornments function and passing CMDBAR_HELP
in the dwFlags parameter. Windows CE automatically adds the Close button.

In addition to creating and registering command bars, you can use command bar
functions to perform the following procedures:

= Destroy a command bar.

= Determine a command bar’s height.

= Add bitmaps, buttons, and ToolTips to a command bar.

= Insert combo boxes and menu bars into a command bar.

= Determine whether or not a command bar is visible.

= Obtain a handle to a command bar menu or submenu.

= Show or hide a command bar.

= Redraw a command bar.

Chapter 11 Foundation Controls 199

The window procedure for a command bar automatically sets the size of the
command bar and positions it along the top of the parent window’s client area.
It also destroys the command bar when its parent window is destroyed. Use
the CommandBar_Destroy function to destroy the command bar without
destroying the parent window.

Unlike a scroll bar and a status bar, the command bar is part of the client area of
your application. To determine the useable portion of the application window,
use the CommandBar_Height function to retrieve the command bar’s height in
pixels, and then subtract the height of the command bar from the size of the client
rectangle, which you obtain by calling GetClientRect.

Use the CommandBar_AddAdornments function to add the Close button
(X), the Help button (?), and the OK button to a command bar. Though every
command bar must have a Close button, the OK button and the Help button are
optional. Do not call the CommandBar_AddAdornments function until after
you have added all the other elements to the command bar.

A command bar stores the information needed to draw the button images in an
internal list, which is empty when the command bar is created. Each image has

a zero-based index that you use to associate the image with a button. Use the
CommandBar_AddBitmap function to add an array of images to the end of the
list. This function returns the index of the first new image that was added. The
system includes a set of predefined command bar buttons with header files that
define constant values for their indexes.

You can add both buttons and ToolTips to your command bar. Use the
CommandBar_InsertButton function to add a single button or separator
to a command bar. Use the CommandBar_AddButtons function to add
several command bar buttons or separators at once to a command bar. To
create a separator, specify TBSTYLE_SEP as the fsStyle member of the
TBBUTTON structure you pass in the [pButton parameter. Use the
CommandBar_AddTooltips function to add ToolTips describing the
command bar buttons.

Use the CommandBar_InsertComboBox function to create a combo box and
insert it into a command bar. This function always creates a combo box with the
WS_CHILD and WS_VISIBLE styles. You can specify other supported combo
box styles as well.

To insert a menu bar into a command bar, you can use either the
CommandBar_InsertMenubar or CommandBar_InsertMenubarEx function.
CommandBar_InsertMenubar inserts a menu bar identified by a resource
identifier. CommandBar_InsertMenubarEx inserts a menu bar identified by
either a resource name or menu handle.

200

Windows CE Programmer’s Guide

Note Each element in a command bar has a zero-based index by which command
bar functions can identify it. The leftmost element has an index of zero, the
element immediately to its right has an index of one, and so on. When you use any
of the CommandBar_Insert functions, the menu bar, button, or combo box is
inserted to the left of the button whose index you specify in the iButton parameter.

Although Microsoft style guidelines recommend that you always have either a
command bar or a command bands control in Windows CE-based applications,
you can provide users with the option to hide the command bar, as long they can
retrieve it. Use the CommandBar_Show function to show or hide the command
bar. Use the CommandBar_IsVisible function to determine whether a command
bar is visible.

Use the CommandBar_GetMenu function to obtain the handle of a menu bar
in a command bar. To obtain the handle of a submenu on the menu bar, use the
GetSubMenu function.

Call CommandBar_DrawMenuBar to redraw the command bar after modifying
a menu bar on the command bar. Do not use the DrawMenuBar function for
menu bars on the command bar.

Note Do not use OXFFFFFFFF as the command identifier of a command bar
control. This identifier is reserved for use by the command bar.

The following code example shows how to create a command bar.

INITCOMMONCONTROLSEX icex;

icex.dwSize = sizeof(icex);

icex.dwICC = ICC_BAR_CLASSES;

InitCommonControlsEx(&icex);

HWND hwndCB, hwnd;

hwndCB = CommandBar_Create(g_hInst, hwndParent, ID_COMMANDBAR);
CommandBar_InsertMenubar(hwndCB, g_hInst, IDM_MAINMENU, 0);

CommandBar_AddBitmap(hwndCB, HINST_COMMCTRL, IDB_STD_SMALL_COLOR, 15,
16, 16);

CommandBar_AddButtons (hwndCB, sizeof(tbButtons)/sizeof(TBBUTTON),
tbButtons);

hwndCombo = CommandBar_InsertComboBox(hwndCB, g_hInst, COMBO_WIDTH,
CBS_DROPDOWNLIST | WS_VSCROLL, ID_COMBOBOX, 16);

CommandBar_AddAdornments(hwndCB, CMDBAR_HELP, 0);

Chapter 11 Foundation Controls 201

For an example of how to use a command bar in an application, see the Cmdbar
sample application described in “Windows CE Sample Applications” in the
online Help.

Property Sheets

A property sheet is a system-defined dialog box that you use to view or modify
the attributes, or properties, of an object. A property sheet includes a frame, a title
bar, and three buttons: OK, Cancel (X), and Help (?), which are located at the top
of the window. To use property sheets, you must include the Prsht.h header file in
your application.

A property sheet contains and manages one or more related dialog boxes, called
property pages. Each property page has a tab, similar to a tab on a file folder or
in a notebook. A user selects a property page by tapping its tab with a stylus. The
dialog box procedures for each property page receive notification messages when
the user clicks the buttons on that page.

Compose l Read { Delete Serwces

Deleted Items folder options:

P

Delete local (O Immediately
messages

O Manualhr

' Delete server () Immediately
| Messages @ Upon disconnect
() Manually

Windows CE property sheet

Property Sheet Pages

Each page in a property sheet is an application-defined modeless dialog box that
manages the controls that allow a user to view and edit the properties of an object.
A property sheet must contain at least one property page, but cannot contain more
than the value of MAXPROPPAGES as defined in the header files.

202

Windows CE Programmer’s Guide

A property sheet sends notification messages to the dialog box procedure for a
page when the page becomes active or inactive and when the user clicks the
OK, Cancel (X), or Help (?) button. The notifications are sent in the form of
WM_NOTIFY messages. The [Param parameter of the WM_NOTIFY messages
points to an NMHDR structure, which includes the window handle of the
property sheet dialog box.

Some notification messages require that a property sheet page return either TRUE
or FALSE in response to the WM_NOTIFY message. To respond, the page must
use the SetWindowLong function to set the DWL_MSGRESULT value for the
page dialog box to either TRUE or FALSE.

Note The dialog box procedure for a page must not call the EndDialog function.
Doing so will destroy the entire property sheet, not just the page.

Each page has a corresponding label, which the property sheet displays in the tab
that it creates for the page. Because all property sheet pages expect you to use a
Roman font, not bold, you must ensure that the font is not bold by specifying the
DS_3DLOOK style in the dialog box template.

Note Users access property sheets by using an ALT+Tap action. In Windows CE,
use ALT+Tap for any operation for which you would use a right-click mouse
event on a Windows-based desktop platform.

Using Property Sheets

Before creating a property sheet, you must define one or more pages.

» To define a property sheet page

1. Create a PROPSHEETPAGE structure that contains information about a
property sheet’s icon, label, dialog box template, dialog box procedure, and
other attributes.

2. Call the CreatePropertySheet function and pass it a pointer
to the PROPSHEETPAGE structure. The function returns
a HPROPSHEETPAGE handle to the property page.

Once you have defined one or more property sheet pages, you can create a
property sheet. One way to create a property sheet is to specify the address of

a PROPSHEETHEADER structure in a call to the PropertySheet function.
The structure defines the icon and title for the property sheet and also includes

a pointer to an array of HPROPSHEETPAGE handles. When PropertySheet
creates the property sheet, it includes the pages identified in the array. The order
of the array determines the order of the pages in the property sheet.

Chapter 11 Foundation Controls 203

Another method to create a property sheet is to specify an array

of PROPSHEETHEADER structures instead of an array of
HPROPSHEETPAGE handles. In this case, PropertySheet creates
handles for the pages before adding them to the property sheet.

The PropertySheet function automatically sets the size and initial position of a
property sheet. The position is based on the position of the owner window, and
the size is based on the largest page specified in the array of pages when the
property sheet is created.

After creating a property sheet, you can add and remove pages by using the
PSM_ADDPAGE message. Note that the size of the property sheet cannot change
after it has been created, so the new page must be no larger than the largest page
currently in the property sheet. To remove a page, use the PSM_REMOVEPAGE
message. When you define a page, you can specify the address of the
PropSheetPageProc callback function that the property sheet calls when it
creates or removes the page. Using PropSheetPageProc allows you to initialize
and cleanup individual property sheet pages.

To destroy a page that was created by the CreatePropertySheetPage function
but was not added to the property sheet, use the DestroyPropertySheetPage
function. Destroying a property sheet automatically destroys all of the pages that
have been added to it. The system destroys the pages in reverse order from that
specified in the array used to create the pages.

You specify the title of a property sheet in the PROPSHEETHEADER structure
that you used to create the property sheet. If the dwFlags member includes the
PSH_PROPTITLE value, the property sheet adds the prefix “Properties” to the
specified title string. Use the PSM_SETTITLE message to change the title after a
property sheet has been created.

By default, a property sheet uses the name string specified in the dialog box
template as the label for the property page sheet page. You can override the name
string by including the PSP_USETITLE value as the dwFlags member of the
PROPSHEETPAGE structure that defines the page. When PSP_USETITLE is
specified, the pszTitle member must contain the address of the label string for
the page.

Active and Inactive Property Sheet Pages

A property sheet can have only one active page at a time. The active sheet is at
the top of the overlapping stack of pages. The user activates a page by selecting
its tab; an application uses the PSM_SETCURSEL message to activate a page.
Before the page that will become the active page is visible, the property sheet
sends it the PSN_SETACTIVE notification message. The page should respond
by initializing its control windows.

204 Windows CE Programmer’s Guide

Rebars

The property sheet determines whether to enable or disable the Help button for

an active page by checking for the PSP_HASHELP style. If the page has this
style, it supports the Help button. If the PSP_HASHELP style is not present, it
disables the button. When the user clicks the Help button, the active page receives
the PSN_HELP notification message. The page should respond by displaying
help information.

When the user clicks OK, the property sheet sends the PSN_KILLACTIVE
notification message to the active page, giving it an opportunity to validate

the user’s changes. If the page determines that the changes are valid, it should
call the SetWindowLong function to set the DWL_MSGRESULT value for

the page to FALSE. In this case, the property sheet sends the PSN_APPLY
notification message to each page, directing it to apply the new properties to the
corresponding item. If the page determines that the user’s changes are not valid, it
should set DWL_MSGRESULT to TRUE and display a dialog box informing the
user of the problem. The page remains active until it sets DWL_MSGRESULT to
FALSE in response to a PSN_KILLACTIVE message.

The property sheet sends the PSN_RESET notification message to all pages when
the user clicks the Cancel button, indicating that it is about to destroy the property
sheet. A page should use the notification to perform cleanup operations.

Note To set the position of a property sheet window in an application, use the
SetWindowPos function rather than the MoveWindow function. Call
SetWindowPos in the dialog box procedure of the property page that will open
first when the user activates a property sheet.

A rebar control, which has one or more bands, is a container for child windows.
Each band can contain one child window, which can be a toolbar or any other
control. Each band can have its own bitmap, which is displayed as a background
for the toolbar on that band. A user can resize or reposition a band by dragging its
gripper bar. If a band has a text label next to its gripper bar, a user can maximize
the band and restore it to its previous size by tapping the label with the stylus.

Windows CE rebar

Chapter 11 Foundation Controls 205

Rebar Styles

Like other common controls, a rebar control sends WM_NOTIFY messages to its
parent window. A rebar control also forwards to its parent window all messages it
receives from the child windows assigned to its bands.

You create a rebar control by specifying REBARCLASSNAME in the
IpClassName parameter to the CreateWindowEx function. This class is
registered when the common control dynamic-link library (DLL) is loaded.

You can use the InitCommonControlsEx function to ensure that this DLL is
loaded. To register the rebar control class using the InitCommonControlsEx
function, specify the ICC_COOL_CLASSES flag as the dwICC member of the
INITCOMMONCONTROLSEX structure you pass in the IpInitCtrls parameter.

Rebar controls support the Windows CE custom draw service, which makes it
easy to customize a rebar control’s appearance. For more information on custom
draw service, see Chapter 10, “Overview of Controls.”

Rebar styles supported by Windows CE are described in the following table.

Style Description

CCS_VERT Causes the control to appear vertically at the left side
of the parent window.

RBS_AUTOSIZE Specifies that the layout of a band will automatically

change when the size or position of its control
changes. When the layout changes, the control sends
an RBN_AUTOSIZE notification.

RBS_BANDBORDERS Displays narrow lines to separate adjacent bands.

RBS_FIXEDORDER Displays multiple bands in the same order at all times.
A user can move bands to different rows, but the band
order is static.

RBS_SMARTLABELS Displays the icon for a band that has one only when
the band is minimized. If a band has a text label, the
label is displayed only when the band is in its restored
state or in its maximized state.

RBS_VARHEIGHT Displays a band at the minimum required height,
when possible. Without this style, the command bands
control displays all bands at the same height, using the
height of the tallest visible band to determine the
height of other bands.

RBS_VERTICALGRIPPER Displays the size grip vertically, instead of
horizontally, in a vertical command bands control.
This style is ignored for command bands controls that
do not have the CCS_VERT style.

206

Windows CE Programmer’s Guide

Note Windows CE is the only Windows-based platform that supports the
RBS_SMARTLABELS style for rebar controls.

Windows CE also supports a rebar band style, called RBBS_NOGRIPPER. When
you assign this style to a band in a rebar, the band does not have a gripper. This
style applies to individual bands, not to the entire rebar.

Command Bands

The command bands control is a special kind of rebar control. It has a fixed
band at the top containing a toolbar with a Close (X) button, and optionally, a
Help (?) button and an OK button, in the right corner. By default, each band
in the command bands control contains a command bar. You can override this,
however, if you want a band to contain some other type of child window.

| File Edit View Go Favorites

file: ff fwindows/default.him

Windows CE command band

To create a command band <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>