¥ Led

Microsoft® Programming Series pm
information
about

Windows NT
5.0

':- ®
licrosoft®
/indowsNT*
/indows"95

Inside

indows NT

Second Edition

The Official
—=— | Guide to the

Architecture

and Internals of
Microsoft’s Premier
Operating System

David A. Solomon

Based on the first edition
by Helen Custer

Foreword by Lou Perazzoli

Microsoft Press

Inside

- Windows NT

Second Edition

David A. Solomon

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1998 by David A. Solomon. Portions copyright © 1998 by Microsoft Corporation.

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Solomon, David A. »
Inside Windows NT / David A. Solomon. -- 2nd ed.
p. cm.
Includes index.
ISBN 1-57231-677-2
1. Microsoft Windows NT. 2. Operating systems (Computers)
I. Title.
QA76.76.0635629 1998
005.4'469--dc21 97-31952
: CIP

Printed and bound in the United States of America.
23456789 QMQM 321098
Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at

mspress.microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of
Intel Corporation. ActiveX, BackOffice, DirectX, Microsoft, Microsoft Press, MS-DOS, Visual
C++, Win32, Windows, and Windows NT are registered trademarks and IntelliMirror, MSDN,
and NetMeeting are trademarks of Microsoft Corporation. Other product and company names
mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Sally Stickney
Technical Editor: Jim Fuchs

To my grandparents, Joe and Rita Solomon, who gave me
my first computer and whose lives were—and still are—a source

of inspiration and guidance for me.

BRIEF CONTENTS

FOreWOId ...
ACKNOWIEAGMENIS ...,
INrOQUCTION ..ot

CHAPTER ONE
Concepts and Tools

CHAPTER TWO
System Architecture

CHAPTER THREE
System Mechanisms

CHAPTER FOUR
Processes and Threads

CHAPTER FIVE
Memory Management

CHAPTER SIX
Security

CHAPTER SEVEN
The 1/0O System

CHAPTER EIGHT
Cache Manager

CHAPTER NINE

Windows NT File System (NTFS)

CHAPTER TEN

Windows NT 5.0 and Beyond

GIOSSAIY ..vvveies st a e
TNAEX .o

27

81

141

217

305

325

363

CONTENTS

FOIOWOIT ... e et XV
ACKNOWIEAGIMENIS ...t XiX
INETOQUCTION ..ottt XXi

CHAPTER ONE
Concepts and Tools

Foundation Concepts and Terms 1
WINB2 APl USRI 1
Services, Functions, and ROULINESccccvveviiiiiiceiiiiieeee e, 3
Processes and Threadsccoocvvieeiiiiiiiiiicee e 4
Virtual MEBMOTY ..o 6
Kernel Mode vs. User MOdeccovvviiiiiiiiciiccieeee e, 8
Objects and Handlesoooeiiiiiiiiieeicee e 12
SECUNTY it 13
REGISIIY ..ot 14
Networkingccceeeeeeeinnnn. e e aaaee s 15
UNICOAE ..t 16

Tools for Digging into Windows NT Internals .. 17
Windows NT Resource KitS.........ccccocvvireiiiieiiciie e, 18
Platform SDK and Windows NT DDKcoooviiiiiiiiieeeeeeceiiee. 19
Key Windows NT Base TOOIScccovuviiiiiiiiiiiiiiciiieeeee e 19
Free Builds and Checked Buildscccceviiieiiiiiiieciieee, 22
Examining Internal Data Structures and Variables 25

Conclusion 25

CHAPTER TWO

System Architecture 27
Requirements and Design Goals .27
Operating System Models 28

vVii

INSIDE WINDOWS NT

Architecture Overview - 32
POrtabIlity ...cooeeeeeee s 34
Symmetric MUltiproCessingcveeiiiiieiiee e 35
Windows NT Workstation vs. Windows NT Server.............ccco....... 39

Key System Components .44
Environment Subsystems and Subsystem DLLS ooovoeeeereeeeeen, 45
NTDLLDLL oo e 58
EXECULIVE .. 59
KEINEL . 60
Hardware Abstraction Layer (HAL)ooooviiiiieiiiieece e 63
DEVICE DIIIVEIS ...ttt 64
Peering into Undocumented Interfacescccccocevviiiiiiciiiiiine, 66
SYSIEM PrOCESSES ...vviviiiiiiiiiee et 70

Conclusion ereemseesmnenrenan S 79

CHAPTER THREE

System Mechanisms ' 81
Trap Dispatching S 81
Interrupt DiSpatChingcoeeiiiiei e 83
Exception DispatChingccooiiiiiiiiiic e 94
System Service DispatChingccocveiiiiiiiiiie e, 99
Object Managercceeuu.. . 101
EXeCUtiVe ODJECES ...vviiiiiiiiiie e 104
ODJECE SIUCTUIE ..ttt 106
23T T o7 0T 1o o 123
Kernel Synchronizationcccceoeiiiiiiciiecee e 125
Executive Synchronizationcccccciiiiiiiiii e 127
Windows NT Global FIagsccccccurmrimmmimrnsmnsssnssesssssmsssmssssssnssssssness 135
Local Procedure Calls (LPCS)ccccusmmrssnmsnnssans .137
(7075 Te [TT=] 1o 7o . .140

CHAPTER FOUR

Processes and Threads 141
Process Internals - 141
Data StIUCKUIES ...vvviiiecciieiec et 141
System Variables ... 148
Performance COUNEI'Scooeiveeieeeeeeee e 148

viii

Contents

Relevant FUNCHIONSccccvviiiiieceee e 150
Relevant TOOISviiiiiieee et 151
Flow of CreateProcess 156
Stage 1. Opening the Image to Be Executedcccccoevveeeeennn, 159
Stage 2: Creating the Windows NT Executive
Process ODJECEcviiiiiiiii e 162
Stage 3: Creating the Initial Thread and Its Stack
ANA CONEEXE ..t 168
Stage 4: Notifying the Win32 Subsystem About the
NEW ProCeSScooiiiiiiiiiiii i 168
Stage 5: Starting Execution of the Initial Thread......................... 169
Stage 6: Performing Process Initialization in the Context
Of the NEW ProCeSScoiiiiiieieeicciee e 170
Thread Internals......... 171
Data StrUCIUIEScooiiiiiiiiie e 171
System Variablesccccooiiiiiiii e 175
Performance COUNErScooviiiiiii e 176
Relevant FUNCHIONS ... 177
Relevant TOOISociiiieiecie e 178
Flow of CreateThread SR 180
Thread SChedulingccomirrinsniemsisscers s s menas 184
Overview of Windows NT Schedulingccccovvviiiieiniiincennnnen, 184
Priority LEVEIS .. 187
Win32 Scheduling APISooiiiieeee e 189
Relevant TOOISc...coiiiiieiiiie e 190
Real-Time Prioritiesccccooiiiiii 192
Interrupt Levels vs. Priority LEVEIScccoooviviiiiiieiiee e 193
THhread StAESvvii i 194
QUANTUM e 195
Scheduling Data StruCtUrESc.oeeviiieeiiiie e 197
System Variablesccccoooiuiiiiiie e 198
Scheduling SCEeNATIOSccvvviiiiicieee e 199
Context SWItChING ...eooiiieie e 203
[dle TRread ... 204
Adjusting Thread Schedulingccoociiiiiiiii 204
Thread Scheduling on Symmetric Multiprocessing Systems 212
Conclusion 215

INSIDE WINDOWS NT

CHAPTER FIVE

Memory Management 217
Services the Memory Manager Provides.........ccccccumerimssmrsmencnssennans 218
Reserving and Committing Virtual Memoryccccccvvviieeinneen. 219
Shared Memory and Mapped Filesc.cccocovveviiiiiiiic e 220
Protecting MemOTYoooiiiiiiiiiee e 222
CopY-ON-WIIE ..o 224
Heap FUNCHONScooiiiii e 226
System Memory POOISccovveiiiiiiiiiiee e 227
Digging into the Memory Manager 232
COMPONENTS ...ttt e e ae e 232
Internal SYNChronizationccccccceiviieiiie e 233
Tuning the Memory Managerccceoovvivieiiiei e 234
Examining Memory USageoooviiieiiiieniiiieice e 236
Address Space Layoutccccceeriemsniimmssmmsssssnssssssnsssmssnsssssnsassssnns 238
User Address Space Layoutcccoviiieeiieeniieiieiie e, e 241
System Address Space Layoutcccccoevveiiiiiieiiiie e, 246
Address Translation S 250
Translating a Virtual ADAressccovvieeiiie e 252
Page Dir€CIONES ...uvveeeiiiiiiie et 254
Process and System Page Tablescccoviiiiiiiiiiiiiiiceee 256
Page Table Entriesccccocoeiiiiciiiiincen e 256
Byte Within Pageccooiiiiii e 261
Translation Look-Aside BUFErc.ccocveveevieeereeeeeeeeeeeenn 261
Page Fault Handling EaeneeisssmisssssErsssssEessssssEEERsEEEssssEEsssssEEessmse 265
INVALIA PTES ..eviiiiciie et 266
Prototype PTESvviiieiceee e 267
IN-Paging [/Oooreeiee e 269
Collided Page Faultscccoceiiiiiiiiiiee e 270
Page FilES ..o 271
Virtual Address Descriptorscccccumsumsssanses .. 273
Working Setsccceemrnersnnrsnnssens .. 276
Paging PolICIESooiiiiie e 276
Process WOrking Setscoovviiiiiiiiiie e 278
Balance Set Manager and SWapper........ccccccovvvvveeeiiciieeee e, 281
System Working Setoooiiiiiiiiii e 282

Contents

Page Frame Database .. .- 285
Page List DynamicCscooooiiiiiiiiiiiiiiiieeie e 290
Modified Page WItEr..........oooiiiiiiiicicee e 292
PFN Data StrUCIUIESccvvieiiiieiciiee e 294

Section Objects...... .298

CONCIUSIONeemireemiienriennisesssssessesssssesssansasnsesansasansssanssnsssnsannnssssnsssnnns 304

CHAPTER SIX

Security 305

Security System Components - . .307

Protecting ODJECtSccoricemimrimnmnrnesssesse s s enanssnens 310
Security Descriptors and Access Control..........ccccevveeeevieeeennennn. 310
Access Tokens and Impersonationccccvvveeeeviieeeeiiiiiieeeeesiins 315

Security AUditingccccocmismnssmssissmncsssissnmsssssssssssnssssssnsssnsannssssansannes 320

[0 T T o 321
WinLogon Initializationccccoevieiiiiniie e e 322
USEr LOGON STEPS ..eeiuiiiiiiieiiiie ettt 323

Conclusion324

CHAPTER SEVEN

The 1/O System 325

1/0 System Structure and Model..........cccucernrmrnsmrssnnsnsssnssnsnssssssssnans 326
[/O MANAGET ...eecviieieeeeeeee et 328
I/O Functionsccccevvennnn s 329

DEVICE DIVEIS ...cirimiianrssannssnnsssnnssssnssssssssessssnssssnssssnssssessnsesmsssnsnsensness 332
Structure of @ DIVEToevieiciee e 338
SYNCAIONIZALION ...t 340

Data StruCtUrescccccceciimmmssnrsssissmsssmssssnsessssssssssssassssessnsssnsnssssnsssnnes 341
File ODJECES ...t 341
Driver Objects and Device ObJECESoeeviiieriiieiiieciiiiceis 344
[/O Request PaCKETcoiiieiiiiieeic e 348

1/0 Processing....... . 350
I/O Request to a Single-Layered Drivercccooviiiiiiiccis 350
I/0O Requests to Layered Driversccccoieeneiieiiiiie e 356

(02074107 [VE=] (o7 o [360

Xi

INSIDE WINDOWS NT

CHAPTER EIGHT

Cache Manager 363
Key Features of the Windows NT Cache Managerc.cccoeuuremrnaees 363
Single, Centralized System Cache..........cccccoviei i 364
The Memory Manager........cooviiiiiiiiiiieeece e 364
Cache CONEIENCYccoveiiiiiieecc e 365
Virtual Block Caching........ccoooiiiiieiiiicee e 367
Stream-Based Cachingccocvvvevivooiieeeieeen [T 367
Recoverable File System Support........cocovviiiiiiii e, 368
Cache Structurecccovirismrsnmnssnnnsenns 369
L0 1o = - 371
Cache Virtual SiZecocveiiiiiiii e 371
Cache Physical Size....... SRS 372
Cache Data Structuresccccecurimmsinmsssnssmsmssensssmsssses s ssssssensssssansas 374
Systemwide Cache Data Structuresc.cccccvviviiveei e 375
Per-File Cache Data Structurescccceevcviiiiee e 376
Cache OPerationcccrciseimsess s s s smsssmssns 378
Write-Back Caching and Lazy Writingccccovvoveeveiiieinieenees 379
Intelligent Read-Ahead ..., 382
System Threadsocvveiei i 384
Fast /O ..o OSSP PPSPSPRP 385
Cache Support Routinesc.cceveeeneee 387
Copying to and from the Cacheccccoceviiiiieeiiies e 388
Caching with the Mapping and Pinning Interfaces 389
Caching with the Direct Memory Access Interfaces T 390
Write Throttlingeciieiiie e 392
Conclusionc.cccmmmsmmrssmnssssnssnens R P 393

CHAPTER NINE

Windows NT File System (NTFS) 395
NTFS Design Goals and Features . . 395
High-End File System Requirementsccoeevveeiiiiiiininiecee, 395
Additional Features in NTFScccooiiiiiiiiii e 399
NTFS Internal Structureccccviuees .- 402
NTFS On-Disk Structurecccccccureerne .- 405
VOIUMBS ... 405
CIUSTETS e 406

Xii

Contents

Master File Table (MFT) ... 407
File Reference NUMDEIScccooiiiiiiiiiiiiic e 410
FilesS RECOIAScooovviieiiiiiici e 410
FIleNamesoooiiiii e 412
Resident and Nonresident Attributesccccocvviiii e 415
Filename INAeXINGoooiuiiiiiiiii e 419
Data COMPrESSION ...ccovvviiiiiiricie e 421
Recoverability SUPPOTrt ...t 426
Evolution of File System Designcccocceiviiiiiiiiiiesie e 426
Logging ...ceevvveeiinnn. PP OUPPRTON 430
RECOVEIY ..ot 436
Fault Tolerance Supportcccecernrmrsrcmrsscnrsaceens 440
Volume Management Featurescccocvveeiiiiiiiecciiie e, 440
Fault Tolerant VOIUMESoveiiiiiiiiiicccc e 443
NTFS Bad-Cluster RECOVEIYcooiiuiiiiiiiiiiiiiiccceeeee 445
Conclusion 450
CHAPTER TEN
Windows NT 5.0 and Beyond 451
Overview of the New Features in Windows NT 5.0ccccceevecunncs 451
ACHVE DIFECIOTY w.viiiiiiiii e 452
Distributed Security EXtENSIONScoooviieiiiiiiiieiie e, 453
ENCIYPLION Lo 455
Security Configuration EQItOrcoccoiviiiiiiiiiiiec e 457
Distributed File Servicescccccoovviiiiiee i 457
NTFS EXIENSIONS ..evviiiiiiiciiicc e 458
Microsoft Management Consoleooveiiiiiiiiieeiie e, 459
Microsoft Software Installer ... 460
Storage Management ettt nae e s 461
INEEHIMIITON . 461
Application DevelopmeENt.......ccoveviiiiiice e 462
JOD OBJECE . 462
Plug and Play and WDMccccoiiiiiiiiie e 464
Very Large Memory on Alphaccccovviiiiiieiiee e .. 465
USEr IMPrOVEMENTSooiiiiiiiieic et 467

Xiii

INSIDE WINDOWS NT

System Extensions............. . .- 470
CIUSTEIS i s 470
Microsoft Terminal SErverccccooiveiiie e 470

Plug and Play and Power Managementcccccumeminemnsmssmsnsesssnsnsens 472
The Evolution of Plug and Playccccooiiiiiiii e 473
Windows NT 5.0 Implementationccooeveveiiiiiiiinc e, 473
Driver Changesccoovveriiieeniiieeeiec i, TR RORTUPRPR 475
Windows NT 5.0 Plug and Play Architecturecccccoevvvvveeen, 476

64-Bit Windows NT. - earssssreriessssssssssseesssssssssessesses 480

CONCIUSTON ..ovieeriimnnienissnessmissnss s s sssessssnnssssssssmssasms snsmnassmsessnsssnmnsssnnsss 481

GIOSSAIY ..vvoioeiee e et 483
INAEX oo 505

Xiv

FOREWORD

People have constantly been asking me when the first edition of Inside Win-
dows NT would be updated. After three major releases of Windows NT, it became
obvious that enough things had changed that a revised edition was desperately
needed. For example, the client/server model for the graphics engine was
completely redone in Windows NT 4.0, moving most of the USER and GDI
components into kernel mode. Completion ports, which are the cornerstone
of high-performance I/0 applications, didn’t exist when the first edition of the
book was published. Many other small enhancements have been made to the
system as well, such as scatter/gather I/0, locking changes in the scheduler and
the memory manager for better scalability, changes in the scheduling algo-
rithm, and support for new APIs. Even though these changes have made
Windows NT a more robust and powerful operating system (although I'd like
to think that the fact that no kernel component has had to undergo major
changes is a testimony to the thoroughness of the initial design), they have also
meant that the material in the first edition of Inside Windows NT, which has
become a bible for Windows NT developers, has become somewhat dated and
in need of expansion.

About a year ago, David Solomon agreed to work on the second edition
of Inside Windows NT; and like most people, he greatly underestimated the time
it would take to write this book. (Even so, he did release it before Windows NT
5.0!) However, when I heard that David was slated to revise this important book,
I knew it would be the success the first edition was.

I first met David while we both worked for Digital Equipment Corpo-
ration. Even then, his interest in Windows NT was apparent. David called me
Jjust after Microsoft announced the first Windows NT Professional Developers
Conference (PDC) and asked me whether I thought that giving seminars to
aid customers migrating people from VAX/VMS to Windows NT would be an
undertaking that could succeed. Having great faith in Windows NT—and in
David—I told him to go for it. At the PDC, David was already working on a book
describing Windows NT in VAX/ VMS terminology and had pages of questions
to ask me and anyone else he could find.

David has done a fantastic job explaining how various pieces of the
operating system interact, describing the policies and rules that govern the ker-
nel and the kernel-mode architecture. Besides updating the content to reflect

XV

INSIDE WINDOWS NT

XVi

Windows NT 4.0, David has gone into greater depth on some of the data struc-
tures and internal components and has showed how to use tools distributed
with the system and with the Windows NT Resource Kit to examine internal
system structures and see their interrelationships. He has also folded in the
material on the Windows NT file system (NTFS), which was originally in a
separate publication, and has added an entire chapter on the cache manager.

Oddly, Windows NT 4.0, the version that this book is based on, is actually
the fourth version of Windows NT. I say “oddly” because the version number
of a software release rarely corresponds to the number of times the product
has been released in the retail market. The first version of Windows NT was
released in July 1993 with the version number 3.1. The version number wasn’t
picked to make people believe they were getting a more mature product—that
is, we weren’t saying not to buy any version having a number smaller than 3.0.
Rather, the 3.1 was chosen to maintain compatibility with existing applications.
Applications are built to use certain features of an operating system. To ensure
that those features exist, the application queries the operating system version
number. If the version number isn’t high enough, the application doesn’t in-
stall. Version-number checking is itself a black art. In designing Windows NT,
we tried to make it easier by providing simple APIs to check the version number.
Yet with each new release, you’ll find certain applications that don’t install properly
on the higherversion system because their version check is incorrect. (One
popular application tested for equality assuming that if the version wasn’t 4.0,
it must be 3.51.)

Because the first version of Windows NT was compatible with Windows
3.1, “get version number” returned 3.1. Hence, we could have called the product
Windows NT version 1.0 and returned a 3.1 to the applications. Application
writers have enough to worry about already, however, and this wrinkle would
only have added to the confusion. After much debate, we decided that it would
be 3.1, the same as 16-bit Windows.

The second version of Windows NT, code-named Daytona and released
in September 1994, was version 3.5. The version debate here was whether to
call it 3.2 or 3.5. This version focused on size and performance optimizations.

The third version of Windows NT was released in May 1995. This version
concentrated on minor improvements in the feature set, support for the Power
PC, and numerous performance optimizations. Because the feature set was
largely the same as that in 3.5, the version number was 3.51. The version num-
ber signified that this version was basically 3.5 with minimal feature changes
and that corporations shouldn’t expect significant operating issues when they
upgraded.

Foreword

In July 1996, the fourth version was released: Windows NT 4.0. This
version, code-named SUR (for Shell Update Release), had the same look and
feel as Windows 95. But the changes to Windows NT 4.0 were more than
cosmetic: for example, it contained many new features, and the performance
of the graphic subsystem was greatly enhanced by moving the graphic engine
(USER, GDI, and the video drivers) from a user-mode process (CSRSS) into
kernel mode. In the previous versions of Windows NT, the graphic engine was
in a separate process and the local procedure call mechanism was used to
issue requests. Moving the graphic engine into kernel mode eliminated the
overhead of process context switches while retaining the ability to share data
among multiple processes—the data is shared in the kernel’s address space
rather than in the user-mode process.

One of the changes in this edition of the book is that it doesn’t include
any discussion about the engineers or who did what, and why. It’s been nearly
ten years since a small group of people got together and designed the overall
kernel architecture for Windows NT. Since that time, the number of people
working on Windows NT has grown considerably, and it would be very hard to
be accurate with the names and not offend someone. With that said, let me tell
you who was present in November 1988 when we started designing what would
become Windows NT: Dave Cutler, Darryl Havens, Gary Kimura, Mark
Lucovsky, Steve Wood, and I. Since then, the Windows NT team has grown to
include over 200 full-time engineers who work on the core components (ker-
nel, graphics, drivers, file systems, network, directory services, security, setup,
administration, shells, OLE, RPC, and so on). Even more people work on an-
cillary products (such as Internet Explorer, NetMeeting, language run-time
libraries, and utilities).

I highly recommend the second edition of Inside Windows NT to every-
one who has an interest in the inner workings of Windows NT. After reading
this book, you’ll have a much greater understanding of how the system is tuned,
how to analyze a Windows NT system’s performance and capacity, and how the
pieces of Windows NT fit together. Even though I’ve worked on kernel-mode
code since the inception of Windows NT, reading David’s book was a treat.
So I'm sure you’ll enjoy it too!

Lou Perazzoli
Director, Windows NT Core OS
Microsoft Corporation

Xvii

ACKNOWLEDGMENTS

Having an interest in and a love for operating system internals, I have felt a
calling to write a book on the internals of Windows NT since I started teach-
ing a class on the topic in 1993. I had planned on doing my own book from
scratch until Frank Artale, director of Windows NT Program Management at
Microsoft, approached me after my Windows NT internals talks at TechEd 96
(to which 3000 came) to ask whether I was interested in writing the second
edition of Inside Windows NT. Having a great respect for the first edition—but
with definite ideas about how to improve it—I agreed; a few months later, a
contract was signed. After over a year of hard work, the book is finished. And
although I didn’t do everything I envisioned, there is always the next edition....

I want to thank the following people for their support and assistance for
this project, people without whom this book wouldn’t have seen the light of day:

B First, Helen Custer, for having written the first edition and estab-
lished such high expectations for the quality of information in this
book.

Frank Artale, who first approached me about doing this book.

Lou Perazzoli, director of the Windows NT Core OS group, for his
kind support for this project and his expertise on the memory man-
ager.

@ Stacey Lemire, Lou’s admin, who put up with my regular requests for
temporary office space and cardkeys on my many visits to Redmond.

Dave Cutler, Windows NT architect, who originally approved source
code access so that Jamie Hanrahan and I could develop the seminar
on which this book was based.

E Landy Wang, lead developer for the memory manager, for carefully
reviewing chapters on short notice and for spending time explain-
ing the intricacies of that awe-inspiring component of the system.

@ David Fields, Windows NT Workstation performance lead, for scru-
tinizing the description of working set trimming.

& Tom Miller, cache manager guru, for reviewing the cache manager
chapter before leaving for a big sailing trip.

XiX

INSIDE WINDOWS NT

XX

Brian Andrew, who reviewed the original NTFS book and then spent
time with me in the cafeteria going over his comments and preview-
ing the planned NTFS 5.0 extensions.

Ken Hiatt, lord of the Windows NT build lab, who always responded
instantly to my various requests for access to servers, special builds,
and source code trees.

Eric Stroo, acquisitions manager at Microsoft Press, who shepherded
me through the ups and downs of the project, being at the same time
encouraging and stern. Phone calls from Eric were the most feared.

Sally Stickney, my editor at Microsoft Press, whose careful attention
to detail amazed me throughout the whole process. Although Sally
was friendly and encouraging even when progress was slow, next to
Eric, phone calls from her were second on the “most feared” list.

Jim Fuchs, my technical editor, who ironed out technical details and

issues in the manuscript (and redid all my screen snapshots because
I sent them in wrong!).

H Jeffrey Richter, for reviewing many chapters, letting me stay at his

house during the final weeks of the book project, and in general
expressing disbelief that I was able to finish.

B Jamie Hanrahan, co-author of the Windows NT internals seminar

we give, for letting me use some of the figures he developed.

Trevor Porter and Richard Mouser of Compaq Corporation, who
arranged for the loan of a super speedy dual processor Pentium Pro
Compaq Professional Workstation 5000 for the book project. (You
can see me happily using it in Redmond in my bio in the back of this
book.) I used this machine for both kernel debugging and search-
ing through the Windows NT source code.

My reliable and trusted office staff, Mark Stevens and Ronnie Diaz,
for keeping my distractions to a minimum (and for calling me during
the day to ask, “What are you doing?”).

Last but not least, thanks to my wife, Shelly, and our three children,
Daniel, Rebecca, and Sarah, for enduring my absences, for giving
me patient encouragement to keep focused (even when I procrasti-
nated), and for the nice party when I came back home. Thanks for
the balloon. Moo.

o

David Solomon
March 1998

INTRODUCTION

The second edition of Inside Windows NT is intended for advanced computer
professionals (both developers and system administrators) who want to under-
stand how the core components of the Microsoft Windows NT operating system
work internally. With an understanding of Windows NT internals, developers
can better comprehend the rationale behind design choices when building ap-
plications specific to the Windows NT platform. Such knowledge can also help
them in debugging complex problems. System administrators can benefit from
this information as well, because understanding how the operating system
works under the covers will facilitate understanding the performance behav-
ior of the system as well as make it easier to troubleshoot system problems when
things go wrong. After reading this book, you should have a better understand-
ing of how Windows NT works and why it behaves as it does.

This book is based on Windows NT 4.0, Service Pack 3. Where Windows
NT 5.0 changes are known, they are called out in the text as notes and identi-
fied by a “Windows NT 5.0” graphic in the left margin, like this:

NOTE Thiskind of note describes a change planned for Windows
NT 5.0. You'll find notes like this throughout the text.

Differences in the Second Edition

This new edition of Inside Windows NT covers all the topics that were in the first
edition plus the cache manager, the Windows NT file system (NTFS), and a
preview of forthcoming changes in Windows NT 5.0. This edition is also much
more detailed than the first edition. For example, I’ve included code flows of
key system functions as well as more detailed descriptions of key internal data
structures and system global variables. I obtained this information primarily
from reading the Windows NT 4.0 source code and talking with key Windows
NT developers and architects. (I gratefully thank Microsoft for this support!)

Another key new feature of this revision is its hands-on approach. Although
I'relied on the source code to gather information for this edition, you can learn
or deduce much about Windows NT internals by using standard tools (such as
the kernel debugger and Performance Monitor) as well as other tools in the
Windows NT Resource Kit, the Win32 Software Development Kit (SDK), and

XXi

INSIDE WINDOWS NT

the Windows NT Device Driver Kit (DDK). So when a tool can be used to ex-
pose or demonstrate some aspect of Windows NT internal behavior, the steps
necessary to try the tool yourself are listed in “‘Experiment” boxes. These ap-
pear throughout the book, and I encourage you to try these as you're reading—
seeing visible proof of how Windows NT works internally will make much more
of an impression than just reading about it.

Topics Not Covered

Windows NT is a large and complex operating system. This book doesn’t cover
everything relevant to Windows NT internals but instead focuses on the base
system components. The only topic that was in the first edition that isn’t cov-
ered in this edition is networking. Windows NT networking has grown to be
such a significant part of the system that it merits its own book. I would hope
that someone writes such a book someday.

The other major area of the system not explored in this book is COM
(Component Object Model). COM (and DCOM—Distributed COM) is the
foundation of the Windows distributed object-oriented programming infra-
structure. COM is covered in detail in several other Microsoft Press books, one
of which is Inside COM, by Dale Rogerson.

Finally, because this is an internals book and not a user, programming,
or system administration book, it doesn’t describe how to use, program, or
configure Windows NT.

Structure of the Book

With the exception of the first three chapters (Concepts and Tools, System
Architecture, and System Mechanisms, respectively), which lay the foundation
terms and concepts used throughout the rest of the book, you can read the
remaining chapters—Processes and Threads, Memory Management, Security,
The I/0 System, Cache Manager, Windows NT File System (NTFS), and Win-
dows NT 5.0 and Beyond—in any order. You’ll get the most out of them, how-
ever, if you read them in sequence.

A Warning and Caveat

XXii

Because this book describes the internal architecture and operation of Windows
NT, much of the information is subject to change between releases (although
external interfaces, such as the Win32 API, are not subject to incompatible
changes). For example, I refer to internal Windows NT system routines, data

Introduction

structures, and variables as well as to algorithms and values used internally to
make resource-sizing and performance-related decisions. These details, by
definition, can change between releases.

By “subject to change,” I don’t necessarily mean that details described in this
book will change between releases—but you can’t count on them not changing.
Any software that makes use of these undocumented interfaces might not work
on future releases of Windows NT. Even worse, software that runs in kernel mode
(such as device drivers) that makes use of these undocumented interfaces might
result in a system crash when upgrading to a newer release of Windows N'T.

Updated Information and Errata

This book isn’t perfect. No doubt it contains some inaccuracies; or possibly, I've
omitted something I should have covered. If you find anything you think is
incorrect or if you believe I should have included material that isn’t here, please
feel free to send me e-mail at daves@solsem.com. If any significant errors are
discovered in this edition, I plan to publish them as Knowledge Base articles
in the Microsoft Press support Knowledge Base. You can search this Knowledge
Base by going to hitp://mspress.microsoft.com/support/.

xXiii

CHAPTEHR O N E

Concepts and Tools

In this chapter, I’ll introduce the key Microsoft Windows NT concepts and
terms I'll be using throughout the book, such as the Microsoft Win32 API, pro-
cesses, threads, virtual memory, kernel mode and user mode, objects, handles,
security, and the registry. I'll also introduce the tools that you can use to ex-
plore Windows NT internals, such as Performance Monitor, the kernel de-
bugger, and the various tools in the Windows NT Resource Kit and the Platform
Software Development Kit (SDK). In addition, I'll explain how you can use the
Windows NT Device Driver Kit (DDK) as a resource for finding further infor-
mation on Windows NT internals.

Be sure that you understand everything in this chapter—the remainder
of the book is written assuming that you do. '

Foundation Concepts and Terms

In the course of this book, I'll be referring to some structures and concepts
that might be unfamiliar to some readers. In this section, I'll define the terms
I'll be using throughout the book. You should become familiar with them be-
fore proceeding to subsequent chapters.

Win32 API

The Win32 application programming interface (API) is the primary program-
ming interface to the Microsoft Windows operating system family, including
Windows NT, Microsoft Windows 9x (including both Windows 95 and Windows
98), and Microsoft Windows CE. Although this book does not describe the
Win32 API, it explains the internal behavior and implementation of key Win32
API functions. For a comprehensive guide to programming the Win32 API, see
Jeffrey Richter’s book Advanced Windows (third edition, Microsoft Press, 1997).

Each operating system implements a different subset of Win32. For the
most part, Windows NT is a superset of all Win32 implementations. (A few
functions that exist in Windows 95 are not in Windows NT 4.0, but these will

INSIDE WINDOWS NT

be added in Windows NT 5.0.) The specifics of which services are implemented
on which platforms are included in the reference documentation for the Win32
API (available for free online at www.microsoft.com/msdn or on the MSDN Library
CD-ROMs). This information is also detailed in the file \mssdk\lib\win32api.csv
(a comma-delimited text file) installed as part of the Platform SDK that comes
with MSDN Professional.

NOTE MSDN stands for Microsoft Developer Network, Microsoft’s
support program for developers. MSDN offers four CD-ROM sub-
scription programs: MSDN Library, Professional, Enterprise, and
Universal. The content of MSDN Library is also available online at the
MSDN Web site. For more information, see www.microsoft.com/msdn.

What used to be a separate entity called the Win32 SDK has been incor-
porated into the Platform SDK. The Platform SDK includes the functions that
were formerly grouped separately as Win32, Microsoft BackOffice, and Microsoft
ActiveX. The Platform SDK header files, libraries, and documentation are part
of MSDN Professional. (The reference documentation is on MSDN Library or
online as noted earlier.)

For the purposes of this book, the Win32 API refers to the core set of
functions that cover areas such as processes, threads, memory management,
I/0, windowing, and graphics. The internals of the other major categories in
the Platform SDK, such as transactions, database, messaging, multimedia, and
networking services, are not covered in this book.

NOTE Although less interesting today, a small subset of Win32
(called Win32s) is available for Windows 3.1, thus allowing some 32-
bit Windows applications to run unchanged on Windows 3.1. Also,
as part of the cross-platform support for the Microsoft Foundation
Classes (MFC), object linking and embedding (OLE), and Compo-
nent Object Model (COM), a subset of Win32 has been implemented
on UNIX and OpenVMS. For more information on cross-platform
support, see www.mainsoft.com or www.bristol.com.

Although Windows NT was designed to support multiple programming
interfaces, Win32 is the primary, or preferred, interface to the operating system.
Win32 has this position because, of the three environment subsystems (Win32,
POSIX, and OS/2), it provides the greatest access to the underlying Windows
NT system services. As explained in Chapter 2, application programs on Win-
dows NT don’t call native Windows NT system services directly—rather, they
must go through one of the provided environment subsystem libraries.

ONE: Concepts and Tools

Interestingly, Win32 wasn’t slated to be the original programming inter-
face to Windows NT. Because the Windows NT project started as a replacement
for OS/2 version 2, the primary programming interface was the 32-bit OS/2
Presentation Manager API. A year into the project, however, Microsoft Win-
dows 3.0 hit the market and took off. As a result, Microsoft changed direction
and made Windows NT the future replacement for the Windows family of prod-
ucts as opposed to the replacement for OS/2. It was at this juncture that the
need to specify the Win32 API arose—prior to this point, the Windows API
existed only as a 16-bit interface.

Although the Win32 API would introduce many new functions that had
not been available on Windows 3.1, Microsoft decided to make the new API
compatible with the 16-bit Windows API in function names, semantics, and use
of data types whenever possible to ease the burden of porting existing 16-bit
Windows applications to Windows NT. So those of you who are looking at the
Win32 API for the first time and wondering why many function names and
interfaces seem inconsistent should keep in mind that the reason for the in-
consistency is to ensure that the Win32 API is compatibile with the old 16-bit
Windows API. -

Services, Functions, and Routines

Several terms in the Windows NT user and programming documentation have
different meanings in different contexts. For example, the word service can re-
fer to a callable routine in the operating system, a device driver, or a server
process. The following list describes what certain terms mean in this book:

B Win32 API functions Documented, callable subroutines in the
Win32 API. Examples include CreateProcess, CreateFile, GetMessage,
and so on.

B Windows NT system services (or executive system services)
Undocumented functions callable from user mode. For example,
NtCreateProcess is the internal system service the Win32 CreateProcess
function calls to create a new process.

B Windows NT internal routines Subroutines inside the Windows NT
executive, kernel, or hardware abstraction layer (HAL) callable only
from kernel mode (such as from device drivers or other Windows NT
operating system components). For example, ExAllocatePool is the
routine device drivers call to allocate memory from the Windows NT
system heaps.

INSIDE WINDOWS NT

B Windows NT services Processes started by the Windows NT service
control manager. (Although the registry defines Windows NT device
drivers as “services,” I don’t refer to them as such in this book.) For
example, the Schedule service is a user-mode process that supports
the at command (which is equivalent to the UNIX command cron).

DLL (dynamic-link library) A set of callable subroutines linked as a
binary image that can be dynamically loaded by applications that use
them. Examples include MSVCRT.DLL (the Microsoft Visual C++
run-time library) and KERNEL32.DLL (one of the Win32 API sub-
system libraries).

Processes and Threads

Although programs and processes appear similar on the surface, they are
fundamentally different. A programis a static sequence of instructions, whereas
a process is a set of resources reserved for the thread(s) that execute the pro-
gram. At the highest level of abstraction, a Windows NT process comprises the
following:

B An executable program, which defines initial code and data

B A private virtual address space, which is a set of virtual memory ad-
dresses that the process can use

B System resources, such as semaphores, communication ports, and
files, that the operating system allocates to the process when threads
open them during the program’s execution

B A unique identifier called a process ID (internally called a client ID)
B At least one thread of execution
A thread is the entity within a process that Windows NT schedules for

execution. Without it, the process’s program can’t run. A thread includes the
following essential components:

The contents of a set of volatile registers representing the state of the
processor

B Two stacks, one for the thread to use while executing in kernel mode
and one for executing in user mode

ONE: Concepts and Tools

B A private storage area for use by subsystems, run-time libraries, and
DLLs

B A unique identifier called a thread ID (also internally called a client
ID—process IDs and thread IDs are generated out of the same name-
space, so they never overlap)

The volatile registers, the stacks, and the private storage area are called
the thread’s context. Because this information is different for each machine
architecture that Windows NT runs on, this structure, by necessity, is archi-
tecture-specific. In fact, the CONTEXT structure returned by the Win32
GetThreadContext function is the only public data structure in the Win32 API
that is machine-dependent.

Although threads have their own execution context, every thread within
a process shares the process’s virtual address space (in addition to the rest of
the resources belonging to the process), meaning that all the threads in a
process can write to and read from each other’s memory. Threads can’t refer-
ence the address space of another process, however, unless the other process
makes available part of its private address space as a shared memory section (called
a file mapping object in the Win32 API).

NOTE Windows NT 5.0 introduces a job object. A job is a collec-
tion of processes that share a set of quotas, limits, and /or security re-
strictions. For more information on this new object, see Chapter 10.

Because in writing about multithreaded processes it’s often easier to state
“a process executes” rather than “a thread within a process executes,” in this
text I’ll occasionally refer to a process as requesting memory or generating an
exception. You should understand, however, that in Windows NT, the actual
agent of execution is always a thread within the process.

In addition to a private address space and one or more threads, each
process has a security identification and a list of open handles to objects such
as files, shared memory sections, or one of the synchronization objects such as
mutexes, events, or semaphores, as illustrated in Figure 1-1. .

The process access token contains the security identification and creden-
tials for the process. By default, threads don’t have their own access token, but
they can obtain one, thus allowing individual threads to impersonate remote
clients without affecting other threads in the process. (See Chapter 6 for more
details on process and thread security.)

INSIDE WINDOWS NT

Process
object

ey yEy

Virtual address space descriptors (VADs)

I__________j—)' Object I

ey | Thread > Thread >

Figure 1-1
A process and its resources

Handle table

The virtual address space descriptors (VADs) keep track of the virtual
addresses the process is using. The process can’t read or alter these structures
_ directly; the virtual memory manager creates and modifies them indirectly as
the program allocates memory. These data structures are described in more
depth in Chapter 5.
You'll find out much more about the internal structure of processes and
threads, the mechanics of process and thread creation, and the thread sched-
uling algorithms in Chapter 4, which is devoted to these topics.

Virtual Memory

Windows NT implements a virtual memory system based on a flat (linear) 32-
bit address space. Thirty-two bits of address space translates into 4 GB of vir-
tual memory. On most systems, Windows NT gives half of this address space (2
GB) to processes for their unique private storage and uses the other half for
its own protected operating system memory utilization. However, Windows NT
Server, Enterprise Edition, has a boot-time option on x86 systems (the /3GB
qualifier in boot.ini) that gives processes a 3-GB private address space (leav-
ing 1 GB for the operating system). This option (the base support was added
in Windows NT 4.0 Service Pack 3) allows applications such as database serv-
ers to keep larger portions of a database in the process address space, thus
reducing the need to map subset views of the database. Figure 1-2 shows the
two virtual address space layouts supported by Windows NT.

ONE: Concepts and Tools

: Windows NT Server, Enterprise
Default address space layout Edition (booted with /3GB)

— 00 o —————1
1
00000000
Unique per 2-GB user
process
process space 3-GB user
process Unique per
1 space process
7FFFFFFF
80000000 ‘ BFFFFFFF |
2-GB system space C0000000
Kernel/executive/HAL 1
Boot drivers
Systemwide System cache
Paged pool 1-GB system space Systemwide
Nonpaged pool
FFFFFFF FFFFFFFF |
Figure 1-2

Addpress space layouts supported by Windows NT

Recall that a process’s virtual address space is the set of addresses avail-
able for the process’s threads to use. Virtual memory provides a logical view
of memory that might not correspond to its physical layout. At run time, the
memory manager, with assistance from hardware, translates, or maps, the vir-
tual addresses into physical addresses, where the data is actually stored. By
controlling the protection and mapping, the operating system can ensure that
individual processes don’t bump into one another or overwrite operating sys-
tem data. Figure 1-3 on the following page illustrates three virtually contiguous
pages mapped to three discontiguous pages in physical memory.

Because most systems have much less physical memory than the total
virtual memory provided to the running processes (2 GB or 3 GB for each
process), when physical memory becomes full, the memory manager transfers,
or pages, some of the memory contents to disk. Paging data to disk frees physical
memory so that it can be used for other processes or for the operating system
itself. When a thread accesses a virtual address that has been paged to disk,
the virtual memory manager loads the information back into memory from
disk.

Details of the implementation of the memory manager, including how
address translation works and how Windows NT manages physical memory, are
described in detail in Chapter 5.

INSIDE WINDOWS NT

Virtual memory

Physical memory

Figure 1-3
Mapping virtual memory to physical memory

Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operat-
ing system data, Windows NT uses two processor access modes (even if the pro-
cessor on which Windows NT is running supports more than two): user mode
and kernel mode. User application code runs in user mode, whereas operating
system code (such as system services and device drivers) runs in kernel mode.
Kernel mode refers to a mode of execution in a processor that grants access
to all system memory and all CPU instructions. By providing the operating
system software with a higher privilege level than application software has, the
processor provides a necessary foundation for operating system designers to
ensure that a misbehaving application can’t disrupt the stability of the system
as a whole.

NOTE The architecture of the x86 processor defines four privi-
lege levels, or rings, to protect system code and data from being over-
written either inadvertently or maliciously by code of lesser privilege.
- Windows NT uses privilege level 0 (or ring 0) for kernel mode and
privilege level 3 (or ring 3) for user mode. The reason Windows NT
uses only two levels is to maintain source code portability across the
RISC-based architectures supported by Windows NT, since all main-
stream RISC-based processors have only two privilege levels.

For example, although each Win32 process has its own private memory
space, the operating system shares a single virtual address space. Fach page in
virtual memory is tagged as to what access mode the processor must be in to

ONE: Concepts and Tools

read and /or write the page. Pages in system space (the upper half of the 4-GB
virtual address space, from x80000000 through xFFFFFFFF) can be accessed
only from kernel mode, whereas all pages in the user address space (the lower
half, addresses x00000000 through x7FFFFFFF) are accessible from user mode.
Read-only pages (such as those that contain executable code) are not writable
from any mode.

Windows NT doesn’t provide any protection for components running in
kernel mode. In other words, once in kernel mode, system code has complete
access to system space memory and can bypass Windows NT security to access
objects. Because the bulk of the Windows NT operating system code runs in
kernel mode, it is vital that it be carefully designed and tested to ensure that
it doesn’t violate system security. This lack of protection also emphasizes the
need to take care when loading a third-party device driver since once in ker-
nel mode, the software has complete access to all operating system data.

Asyou'll see in Chapter 2, user applications switch from user mode to kernel
mode when they make a system service call. For example, a Win32 ReadFile
function eventually needs to call the internal Windows NT executive routine
that actually handles reading data from a file. That routine, because it accesses
internal system data structures, must run in kernel mode. The transition from
user mode to kernel mode is accomplished by the use of a special instruction
that causes the processor to change into kernel mode. The operating system
traps this instruction, notices that a system service is being requested, validates
the arguments the thread passed to the system function, and then executes the
service. Before returning control to the user thread, the processor mode is
switched back to user mode. In this way, the operating system protects itself and
its data from perusal and modification by user processes.

NOTE A transition from user mode to kernel mode (and back)
does not affect thread scheduling in itself—a mode transition is not
a context switch. Further details on system service dispatching are
included in Chapter 3.

Thus, it’s normal that a user thread spends part of its time executing in
user mode and part in kernel mode. In fact, because the bulk of the graphics
and windowing system also runs in kernel mode, graphics-intensive applica-
tions will spend more of their time in kernel mode than in user mode. An easy
way to test this is to run a graphics-intensive application such as Microsoft Paint
or Microsoft Pinball and watch the time split between user mode and kernel
mode using one of the performance counters listed in Table 1-1 on the next page.

INSIDE WINDOWS NT

Table 1-1 Mode-Related Performance Counters

Object: Counter ’ Function

System: % Total Privileged Time Percentage of time that the entire system has run
in kernel mode during a specified interval

System: % Total User Time Percentage of time that the entire system has run in
user mode during a specified interval

Processor: % Privileged Time Percentage of time that an individual CPU has run
in kernel mode during a specified interval

Processor: % User Time Percentage of time that an individual CPU has run
in user mode during a specified interval

Process: % Privileged Time Percentage of time that the threads in a process
have run in kernel mode during a specified interval

Process: % User Time Percentage of time that the threads in a process
have run in user mode during a specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel
mode during a specified interval

Thread: % User Time Percentage of time that a thread has run in user
mode during a specified interval

 EXPERIMENT: Kernel Mode vs. User Mode

- You can use Performance Monitor to- see how much txme your systcm' -
oy spends executing in kernel mode versus in user mode. Add the system
- counters % Total User Time and % Total Prmleged Time to'a new.
- chart, and then move the mouse rapidly back and forth. You should
- notice the % Total Prmleged Time line spiking, reflecting both the
lmouse mterrupts and the graphics updaung requlred by PerfMon it-
self. (See Figure 4y L
i To see how Performance Monitor uses kernel time and user time,
. rerun the. -experiment with the addition of the process counters % User
B Txme and % anﬂeged Tlme for every process in the system

: , 1.‘ ~"Select thc Proeess ob_]ect

2. Select ally processes in the Instance box (except &he Total
e process) ' /

; - 3. Click'Add, and then chck Done
B 3 Morve the mouse rapldly back and forth

10

ONE: Concepts and Tools

1,000 % Total User Time
ed Tim

Figure 1-4
Performance Monitor showing time split between kernel mode and
user mode

5. Type Ctrl-H to turn on highlighting mode. This highlights
‘the currently selected counter in white.

6. Scroll through the counters to identify the processes that were
running when you moved the mouse, and note Whether they
were running in user mode or kernel mode.

You should see Performance Monitor’s kemel-mode and user-mode
time go up when you move the mouse, since it is executing application
code in user mode and calling Win32 functions that run in kernel mode.

“You'll also notice a process named System running in kernel mode.
This process is the home for kernel-mode system threads——-—parts of the
operating system or device drivers that are running as mdependent
threads. (See Chapter 3 for more mformanon about these threads.)
What you're seeing is the Win32 subsystem’s Raw Input Thread han--
‘dling the mouse input. Finally, the process named Idle that you see
spending nearly 100 peréent of its time in kernel mode is not really a
process—it’s a fake process to account for idle CPU cycles. As you can .

- observe from the mode in which the Idle process runs, when Wmdows
NT has nothmg to do, it does it in kernel mode.

11

INSIDE WINDOWS NT

Objects and Handles

12

In the Windows NT executive, an object is a single, run-time instance of a stati-
cally defined object type. An object type (sometimes called an object class) com- .
prises a system-defined data type, services that operate on instances of the data
type, and a set of object attributes. If you write Win32 applications, you encoun-
ter process, thread, file, and event objects, to name just a few examples. These
objects are based on lower-level objects that are created and managed by the
Windows NT executive. In Windows NT, a process is an instance of the process
object type, a file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the
object’s state. An object of type stack, for example, would have a stack pointer
as one of its most important attributes. Object services, the means for manipu-
lating objects, usually read or change the object attributes. For example, the
push service for a stack object would change the value of the stack pointer.

NOTE Although there is a parameter named ObjectAtiributes that
a caller supplies when creating an object using either the Win32 API
or native object services, that parameter should not be confused with
the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data
structure is that the internal structure of an object is hidden from view. You
must call an object service to get data out of an object or to put data into it.
You can’t directly read or change data inside an object. This difference sepa-
rates the underlying implementation of the object from code that merely uses
it, a technique that allows object implementations to be changed easily over
time.

Objects provide a centralized means for accomplishing three important
operating system tasks:

B Providing human-readable names for system resources
B Sharing resources and data among processes

B Protecting resources from unauthorized access

Not all data structures in the Windows NT executive are objects. Only data
that needs to be shared, protected, named, or made visible to user-mode pro-
grams (via system services) is placed in objects. Structures used by only one
component of the executive to implement internal functions, for example, are
not objects. Objects and handles (references to an open instance of an object)
are discussed in more detail in Chapter 3.

ONE: Concepts and Tools

Security

Windows NT supports C2-level security as defined by the U.S. Department of
Defense Trusted Computer System Evaluation Criteria (DoD 5200.28-STD,
December 1985). This standard includes discretionary (need-to-know) protec-
tion for all shareable system objects (such as files, directories, processes, threads,
and so forth), security auditing (for accountability of subjects and the actions
they initiate), password authentication at logon, and the prevention of one user
from accessing uninitialized resources that were deallocated by another user
(such as free memory or disk space).

Windows NT 3.51 was formally evaluated at the C2 level and is on the U.S.
government Evaluated Products List. (Windows NT 4.0 is still in the evalua-
tion process.) Also, Windows NT has met the European organization ITSEC
(IT Security Evaluation Criteria) at the FC2/E3 (functional level C2 and as-
surance level E3, something normally associated only with B-level systems)
security level. Achieving a government-approved security rating allows an oper-
ating system to compete in that arena. Of course, many of these required ca-
pabilities are advantageous features for any multiuser system.

Windows NT has two forms of access control over objects. The first
form—discretionary access control—is the protection mechanism that most
people think of when they think of protection under Windows NT. It’s the
method by which owners of objects (such as files or printers) grant or deny
access to others.

Privileged access control is necessary for those times when discretionary
control isn’t enough. It’s a method of ensuring that someone can get to protected
objects if the owner isn’t available. For example, if the owner of an important
file grants read-only access to a select group of people on Friday and then ends
up in the hospital from a car crash on Saturday, on Monday you’re going to
need access to that protected object, just in case you need to change the ac-
cess privileges. In that case, under Windows NT, you (as an administrator) can
take ownership of the file so that you can manage its rights as necessary.

Security pervades the interface of the Win32 API. Its security features are
user-mode extensions to the security capabilities originally designed into the
Windows NT executive’s object architecture. The Win32 subsystem implements
object-based security in the same way the Windows NT executive does; the
Win32 subsystem protects shared Windows objects from unauthorized access
by placing Windows NT security descriptors on them. As in the Windows NT
executive, the first time an application tries to access a shared object, the Win32
subsystem verifies the application’s right to do so. If the security check succeeds,
the Win32 subsystem allows the application to proceed.

13

INSIDE WINDOWS NT

EXPERIMENT: C2 Compliance

- C2CONFIG, a tool.in the Windows NT Resource Klt, can help you de-
termine how secure your system is and what elements are lacking for
full security. Keep in mind that some security measures reduce the
usefulness of Windows NT. For example, while I can live without the
POSIX subsystem (whose existence is a security violation, since only
the Win32 subsystem is permitted), removing networking capability -

“seems a little harsh for a network operating system. Figure 1-5 shows
the C2CONFIG utility in action.

| File Systems 1 Yolume does not use the NTFS File System.
‘&8 05 Configuration Boat.INI Timeout is not 0.
126 05/2 Subsystem 0S/2 Subsystem is installed.
tef Posix Subsystem Posix Subsystem is installed.
" SecurityLog The Security Log will overwrite events over 7 days old.
%A Halton Audit Failure The System will not halt when the Security Log is full.
i Display Logon Message A Logon Message will not be displayed.
%:3 Last Usemame Display The previous username will be displayed at logon.
& Shutdown Button The shutdown button is not displayed on the logon dialog.
. i@ Password Length Blank passwords are permitted.
Guest Account The Guest user account is disabled.
Netwarking Dne or more network services are installed on the system.
Drive Letters & Printers Any user may assigh Drive Lellers and Printers.
Registry Security Unable to read the cument stalus ol this item.
File System Security Unablé to read the current status of this item.
Other Security ltems Unable to read the current status of this item.
Figure 1-5

The C2CONFIG utility from the Windows NT Resource Kit

Closed red padlocks indicate that the security feature is C2-corn-
pliant. As you can see in Figure 1-5, the system on which this snapshot
was taken fails miserably. But also notice that not all security measures
on this list are required for compliance.

The Win32 subsystem implements object security on a number of shared
objects, some of which were built on top of native Windows NT objects. The
Win32 objects include desktop objects, window objects, menu objects, and—as
in the Windows NT executive—{files, processes, threads, and several synchroni-
zation objects. Security internals will be discussed in more detail in Chapter 6.

Registry

If you've worked at all with Windows 95 or Wmdows NT, you’ve probably heard
about or looked at the registry. You can’t talk much about Windows NT internals
without referring to the registry, because it contains the information required

14

ONE: Concepts and Tools

to boot and configure the system, systemwide software settings that control the
operation of Windows NT, the security database, and per-user profile settings.

In addition, the registry is a window into in-memory volatile data, such
as the current hardware state of the system (what devices are loaded, the re-
sources they are using, and so on) as well as the Windows NT performance
counters. The performance counters, which aren’t actually “in the registry,” are
accessed through the registry functions. (See the Win32 API documentation
for more information about accessing performance counter information.)

Although many Windows NT users and administrators will never need to
look directly into the registry (since you can view or change most of the configura-
tion settings with standard administrative utilities), it is still a useful source of
Windows NT internals information because it contains the bulk of the infor-
mation needed to boot, configure, and operate the system. You'll find refer-
ences to individual registry keys throughout this book as they pertain to the
component being described. Since most registry keys referred to in this book
are under HKEY_LOCAL_MACHINE, the abbreviations shown in Table 1-2
are used throughout the book.

Table 1-2 Registry Abbreviations

Registry Path : Abbreviation

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control \System\.. \Control
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services \System\.. \Services
HKEY_LOCAL_MACHINE\Software \Software

For further information on the registry and its structure, see the Windows
NT Server Concepts and Planning manual as well as the Windows NT Workstation
Resource Guide. Also, the Windows NT Resource Kit has a help file named
regentry.hlp that describes most of the individual registry keys and values. This
file is the best place to go if you find a registry key and aren’t sure what it is.

Networking

The increasing availability of personal computers in the 1980s irrevocably al-
tered the nature of computing. Whereas once a single, large mainframe com-
puter might serve an entire company, smaller and cheaper microcomputers
proliferated and are now standard issue for rank-and-file employees. Enhanced
networking capabilities allow the smaller computers to communicate with one
another, often sharing hardware resources such as disk space or processing
power (in the form of file servers, print servers, or application servers). To

15

INSIDE WINDOWS NT

accommodate this change, the Windows NT system has networking capabili-
ties built directly into the operating system and provides the means for appli-
cations to distribute their work across multiple computer systems.

Windows NT also interoperates well with other operating systems, even
non-Microsoft ones. Thus, Windows NT is capable of communicating with Mac- -
intosh, UNIX, OpenVMS, NetWare, OS/2, and OS/400 as well as Windows 95,
Windows 3.1, and MS-DOS. It supports the following network transport pro-
tocols. (The first three protocols come with both Windows NT Workstation and
Windows NT Server—the latter two only with Windows NT Server.)

B NetBEUI (local Microsoft networks, not routable unless tunneled in
TCP/IP)

@ TCP/IP (fully routable, used on the Internet)
@ IPX/SPX (NetWare, or high-speed routing)
DLC (mainframes and printers connected directly to the network)

AppleTalk (Macintosh networks)

NOTE Windows NT 5.0 will contain significant networking en-
hancements, most notably a distributed global directory service named
the Active Directory. Besides storing objects such as computers, users,
groups, and printers, the Active Directory is programmatically ex-
tensible. For a brief description of this and other extensions to Win-
dows NT networking, see Chapter 10.

As mentioned in the Introduction to this book, networking isn’t covered
in this edition of Inside Windows NT. This topic should be treated some day in
detail in a separate Windows NT networking internals book.

Unicode

16

Windows NT differs from most other operating systems in that most internal
text strings are stored and processed as 16-bit-wide Unicode strings. Unicode
is an international character set standard that defines unique 16-bit values for
most of the world’s known character sets. (For more information about Uni-
code, see www.unicode.org as well as the programming documentation in the
MSDN Library.) '

Because most existing applications deal with 8-bit (single-byte) strings,
Win32 functions that accept string parameters have two entry points: a Unicode
(wide) and an ANSI (narrow) version. If you call the narrow version, input
string parameters are converted to Unicode before being processed by the
system and output parameters are converted from Unicode to ANSI before

ONE: Concepts and Tools

being returned to the application. Thus, if you have an older service or piece
of code that you need to run on Windows NT but this code is written in 8-bit
text strings, Windows NT will convert the 8-bit strings into Unicode for its own
use. However, Windows NT never converts the data inside files—it’s up to the
application to decide whether to store data as Unicode or as ANSI.

NOTE Windows NT 5.0 reaps the fruits of years of groundwork
laid by basing all text processing on Unicode. This version will have
a single worldwide binary for the operating system (instead of the
separate language versions that currently exist) that allows for the
separation of the language of the user, application, and input method.
Applications can also take advantage of new Win32 functions that
allow single worldwide application binaries that can support multiple
languages. For more information on the use of Unicode under Win-
dows NT 5.0, see Chapter 10.

Tools for Digging into Windows NT Internals

Although much of the information in this book is based on the Windows NT
source code, you don’t have to take everything on faith. Many details about the
internals of Windows NT can be learned, exposed, and demonstrated using
existing tools that come with Windows NT, the Windows N'T Resource Kit, the
Platform SDK, and the Windows NT DDK. These packages are briefly described
later in this section.

Throughout the book are “Experiment” sidebars that describe steps you
can take to examine a particular aspect of Windows NT internal behavior. I
encourage you to try out these experiments so that you can see in action many
of the internals topics described in this book.

Table 1-3 shows a complete list of all the tools used in this book and where
they come from. Although the capabilities of many of these tools overlap quite
a bit in terms of the information that they can display, each of them shows at
least one unique piece of information not available in any other utility.

In addition, you'll find several utilities at www.sysinternals.com that are also
useful for displaying (and even changing) internal Windows NT system infor-
mation. Because many of these tools rely on undocumented interfaces, however,
you run them at your own risk: neither I nor Microsoft Corporation endorse
or guarantee these utilities. Also, since many of these utilities involve the in-
stallation and execution of kernel-mode device drivers (which require admin-
istrator access), you're adding trusted code to the system that can bypass system
security, crash the system, or render the system unbootable. That said, many
of these utilities are useful for digging into the internals of Windows NT.

17

INSIDE WINDOWS NT

Table 1-3 Tools for Viewing Windows NT Internals

Tool Image Name Origin

Performance Monitor PERFMON Windows NT

Task Manager TASKMAN Windows NT

Kernel debugger I386KD and ALPHAKD Windows NT CD-ROM

‘ \support\debug directory

Windows debugger WINDBG Platform SDK

(another kernel

debugger)

Dependency Walker DEPENDS Resource Kit, Platform
SDK

API Monitor APIMON Windows NT CD-ROM
\support\debug directory
or Resource Kit

Quick Slice QSLICE Resource Kit

Process Viewer PVIEWER (in the Resource Kit) or Resource Kit or Platform

Process Explode

Process Statistics -
SDK

Task List

Object Viewer
Global Flags

Open Handles
Process Walker
Page Fault Monitor

PVIEW (in the Platform SDK)
PVIEW
PSTAT

TLIST
WINOB]J
GFLAGS
OH
PWALK
PFMON

SDK
Resource Kit

Resource Kit or Platform

Resource Kit

Platform SDK
Resource Kit*
Resource Kit*
Platform SDK

Resource Kit or Platform
SDK

* Supplement 2 or later.

Windows NT Resource Kits

The Windows NT Resource Kits are essential packages for power users, adminis-
trators, and even developers. Besides including many tools useful for displaying
internal system state, they contain a significant amount of “internals” documen-
tation in the Windows NT Workstation Resource Guide. This guide covers such
topics as system architecture, registry structure, file system structure, perfor-
mance monitoring, crash dumps, and how to use the Windows NT kernel debug-
ger. (The title of this guide is not representative of its contents, since most of
the material found in the book also applies to Windows NT Server—think of

18

ONE: Concepts and Tools

the Windows NT Workstation Resource Guide simply as more advanced Windows
NT technical documentation that isn’t included in the base product documen-
tation set.)

NOTE Onlyasmall subset of the Windows NT Resource Kit tools
have shortcuts in the Start menu folder, because many are command-
line-based. To see a complete list of the tools, open the Windows NT
Resource Kit Tools help file (rktools.hlp).

- There are two editions of the Resource Kits: the Windows NT Worksta-
tion Resource Kit and the Windows NT Server Resource Kit. The latter kit is
a superset of the former and can be installed on a Windows NT Workstation
system. In fact, only the Windows N'T Server Resource Kit is shipped to MSDN
and TechNet subscribers. (For information on MSDN, go to www.microsoft.com/
msdn. For TechNet information, see www.microsoft.com/technet.)

The license for the Windows NT Resource Kit tools permits multiple in-
stallations at a single site. Updates to the kits’ tools are available on fip.microsoft-
.com/bussys/winnt/winnt-public/reskit/nt40.

Platform SDK and Windows NT DDK

The Platform SDK and Windows N'T DDK are part of the MSDN Development
Platform. They are available through MSDN Professional, a quarterly CD-ROM
subscription.

Items of interest in the Platform SDK from an internals perspective in-
clude the Win32 API header files (\mssdk\include) as well as several utilities
(pviewer.exe, pwalk.exe, pfmon.exe, winobj.exe). Some of the Platform SDK
tools are also shipped as example source code in both the Platform SDK and
the MSDN Library. '

The Windows NT DDK is an abundant source of internals information.
It documents many of the internal system routines and data structures used
by device drivers. Besides the design and reference documentation, the actual
DDK kit itself contains header files that define key internal data structures
and constants as well as interfaces to many internal system routines. (See the
\ddK\inc directory—in particular, ntddk.h.) Also, the file \ddk\hlp\Isaauth.hlp
describes interfaces related to the security authentication system.

Key Windows NT Base Tools

Two tools that come with Windows NT bear special mention, since they pro-
vide access to the majority of the accessible internal Windows NT system infor-
mation: Performance Monitor and the kernel debugger.

19

INSIDE WINDOWS NT

20

Performance Monitor

I'll refer to Performance Monitor, in the Administrative Tools folder, through-
out this book—it can provide more information about how your system is operat-
ing than can any other single utility. It includes hundreds of counters for various
objects. For each major topic described in this book, a table of the relevant
Windows NT performance counters is included.

Performance Monitor contains a brief description for each counter. To
see the descriptions, click the Explain button while selecting a counter. For
information on how to interpret these counters to perform bottleneck detec-
tion or capacity planning, see the several chapters on performance monitor-
ing in the Windows NT Workstation Resource Guide, which, as mentioned earlier
in the chapter, is part of the Windows NT Resource Kit. These chapters are
“must reading” for anyone seriously interested in understanding Windows NT
performance.

NOTE All the Windows NT performance counters are accessible
programmatically—see the documentation on the Win32 perfor-
mance counter APIs in the MSDN Library. Also, the complete source
code for the Windows NT Performance Monitor utility as well as
the sources for other tools that use performance counters (such as
PVIEWER) are included as sample code with the Platform SDK and
MSDN Library.

Kernel Debuggers

Microsoft provides two kinds of kernel debuggers: the command-line versions
(I386KD.EXE for x86 systems and ALPHAKD for Alpha systems) that ship with
Windows NT and a GUI version (WINDBG.EXE) that ships with the Platform
SDK. You can use either kernel debugger, although some commands work
better in the command-line version (and vice versa). To debug a live system,
the Microsoft kernel debuggers require two computers: one to run the kernel
debugger and one to be the debugging target. There is also a kernel debugger
named SoftICE for Windows NT that doesn’t require two machines for live
kernel debugging. It is available for purchase from NuMega Corporation. (See
www.numega.com for details.) SoftICE runs only on x86 systems.

Although the main purpose of a kernel debugger is for crash dump analysis
or device driver debugging, it is also a useful tool for investigating Windows NT
internals because it can display internal Windows NT system information not
visible through any standard utility. For example, it can dump internal data
structures such as thread blocks, process blocks, page tables, I/O, and pool
structures. Throughout the book, the relevant kernel debugger commands and
output are included as they apply to each topic under discussion.

ONE: Concepts and Tools

The command-line kernel debuggers are documented in the Windows NT
Workstation Resource Guidein the chapter “Windows NT Debugger.” Additional
details aimed at device driver writers are included in the Windows NT DDK
(which is also where the GUI version is described). Also, there are several useful
Knowledge Base articles on the kernel debugger. Search for “debugref” in the
Windows NT Knowledge Base on www.microsoft.com (or look on the TechNet
CD-ROM, if you receive it). However, there is no complete list of the full set
of kernel debugger extension commands that dump internal Windows NT
structures. To get a brief list, type /? from the kernel debugger prompt.

The kernel debugger has two modes of operation:

B Open a crash dump file created as a result of a Windows NT system
crash. For additional information, see the Knowlege Base article
Q148658, “How to Load Windows NT MEMORY.DMP File Using
I386KD.EXE.” (Knowledge Base articles are available online at
www.microsoft.com/support, as well as through TechNet and MSDN.)

& Connect to a live system and examine the system state (or set break-
points, if you're debugging system code). This operation requires two
computers—a target and a host. The target system can be either
local (connecting the computer being debugged to a host running
the debugger via a null modem cable) or remote (connecting the
target via a modem). The target system must be booted with the
/DEBUG qualifier (in the boot selection entry in c\boot.ini or in
firmware settings for RISC systems).

The kernel debuggers and related files are not installed when you install
Windows NT. They reside underneath the \support\debug directory of the
Windows NT Workstation or Server distribution CD-ROM. As for the main
directory tree that contains the Windows NT binaries, there is a subdirectory
for each hardware architecture. For example, the \support\debug\i386 direc-
tory contains the kernel debugger and tools for the Intel platform. Also, in each
directory is a kernel debugger for each hardware architecture so that you can,
for example, open an Intel crash dump from an Alpha AXP system or vice versa.

NOTE Even though Windows NT no longer runs on the 386 chip,
for historical reasons, the x86 directories on the Windows NT dis-
tribution media are still called i386. Thus, the x86 kernel debugger
is called i386kd.exe.

In addition to the kernel debugger and related tools, the Windows NT CD-
ROM includes the debug symbol table files for all the Windows NT executable

21

INSIDE WINDOWS NT

images, libraries, and drivers. These are in the \support\debug\<platform>\
symbols tree. The file of most interest for this book is ntoskrnl.dbg (or
ntkrnlmp.dbg for multiprocessor systems), the symbol table file for the base
operating system image (NTOSKRNL.EXE) and the appropriate HAL .dbg
file. Later in the book, you’ll see how you can use these symbol table files to
display the names of internal Windows NT system routines and global variables.

NOTE Symbol table files must match the version of the image they
were taken from. For example, if you install a Windows NT service
pack, you must obtain the matching, updated DBG files for any of
the images that have changed, or you will get a checksum error when
trying to load them with the kernel debugger. These updated DBG
files are not included or installed when you download and install a
Service Pack from www.microsoft.com—they must be downloaded sepa-
rately. (If you receive MSDN Professional or TechNet, they’re in-
cluded on the Service Pack CD-ROM:s in the \support directory.)
Then they must be installed on top of a copy of the base DBG files
off the Windows NT CD-ROM. For more information, see Knowledge
Base article Q148659, “How to Set Up Windows NT Debug Symbols.”

The experiment on pages 24-25 will show you how to generate a crash
dump you can use with the kernel debugger.

Free Builds and Checked Builds

22

There are two versions of Windows NT: the free build and the checked build. The
free build is the normal version of the system that you can purchase as a re-
tail product. It is built with full compiler optimizations turned on and has
internal symbol table information stripped out from the images. (These sym-
bol table files, or .DBG files, are shipped separately on the Windows NT CD-
ROM in the \support\debug\xxx\symbols subdirectory.)

The checked build is a special debug version of Windows N'T Workstation
(no checked build is available for Windows NT Server) that is available only
as part of the MSDN Professional (or higher) subscription. The checked build
is created by compiling the Windows NT sources with the compile-time flag
DEBUG set to TRUE. Much of the additional code in the checked-build bina-
ries is a result of using the ASSERT macro defined in the DDK header file
NTDDK.H. This macro tests some condition (such as the validity of a data
structure or parameter), and if the expression evaluates to FALSE, sends a
message to the kernel debugger and causes a breakpoint. (If the system was
not booted with the kernel debugger, failure of an ASSERT test will crash the
system.)

ONE: Concepts and Tools

EXPERIMENT: Generating a Crash -

~can you reliably generate a Windows NT crash dump? Just k I the
*W1n82 subsystem procesa (csrss exe) or theW‘mdews N’I“iqgcm

_you've enabled your Vﬁndows NT system to i:ak acr:
 this, open the System appletm the Control Panel, click théf “Smrmp—«
. Information To. The default name of the debugging file is <
“MEMORY.DMP, and it will be located in the system root: dm:ctory If -
. you didn’t have crash dumps enabled, you'll be instructed to reboot the: s

l should look hke the one in, F1gure 1 6.

Dump to Use with the Kernel Debugger

For the purposes of expemmentatlon, the easiest thmg to dois to Iook'
at a static crash dump file, since that doesn’t require two. syste, ‘ :

/Shutdown tab, and ensure that you've checkedW{ Debugging

system. When you've got the settings doue properly, the dtalog box S

Figure 1-6
Settmgs for creatmg a dump file

(continued)

23

INSIDE WINDOWS NT

EXPERIMENT: Generating a Crash Dump to Use with the Kernel Debugger continued

S example? 1fyour system’has 64 MB of R.AM you’n need at 1east a M-MB S
- page file and an additional 64 MB of free space to copy the crash dump
- to. If you want to create a smaller dump file, reboot your system after
L iaddmg the / MEMUSAGE qualifier in boot.ini to tell Windows NT. tcs;' s
. use less thSLcal memory than is actually present in the machine. -

" When you're ready to crash the system, make sure to save anythm ot
- you're workmg on, open a cemmand prompt, and type ki e.
" (This operation requires t the Windows NT' Resource Kit to be msta]led). i

- This will terminate the Win32 subsystem process, ‘which then' results_"
~_in the session manager (smss.exe) waking up and crashing the system. - -
- The process security descriptor for this process doesn't allow admin-
‘istrators to kill it. (Try killing it with Task Manager-—you’ll get an “ac-

 cess denied” error) The Kill utility in the Windows NT Resource Kit,
-~ however, enables a user rtght that allows. bypassmg object secunty S
After the sys’fﬁm rebnots, open the crash dump fﬂe foilomng these b

= steps : i , : S :

1. Qpen a command prompt wmdow

2. Type set _NT. SYMBOL PAYHmd \support\debug\ﬁz%\symbals
(or the address where your copy of the DBG filés resides—as
. noted earlier, you need to make sure you havc the updated
" versions if you'l have a Wmdows NT service pack mstalled)

3. Type 33861:(1. 26 \mnnt\mmwy dmp (or whatever the ﬁle spem;
fication of your crash dump fxle 15) ' FRRRN :

Once you re in the kernel debugger, try the > and B commands tavf |

see the online help For example, Iprocess 0 8 for a list of the pro-

. --cesses that were running at the time of the crash. Note that youcanlog '
. your kernel debugger sessroxx toa file using the logopen and: logclose o
- commands, Specific experiments with the kernel debugger are spread -

- throughout the remainder of this book so keep thls crash dump amund b
forlateruse R S

24

ONE: Concepts and Tools

The checked build is useful for device driver developers because stricter
argument validation is performed by key kernel-mode system support routines.
For example, if a driver (or some other piece of kernel-mode code) makes an
invalid call to a system function that is checking parameters with ASSERT state-
ments (such as acquiring a spinlock and the wrong interrupt level), the system
will stop execution when the problem is detected rather than allowing some
data structure to be corrupted and the system to crash at a later time. There
are more than 15,000 ASSERT tests just in the core operating system compo-
nents of Windows NT!

Examining Internal Data Structures and Variables

This book describes the key internal Windows NT data structures through
diagrams that show the connection between structures as well as through tables
that list the important elements of these structures. Although the general layout
and content of these structures is shown, detailed field-level descriptions (such
as size and data types) are not. However, a number of these data structures
(such as object dispatcher headers, wait blocks, events, mutants, semaphores,
and so on) are defined in the Windows NT DDK C header files (see \ddk\inc*.h)
and described in the DDK documentation.

This book also describes a number of internal system global variables.
These variables can contain, for example, numeric values of interest that might
not be accessible through any of the Windows NT performance counters (such
as the system maximum working set size, which is computed each time the
system boots). Or they can contain addresses or list heads of key system data
structures (such as the process or thread list).

Most of these internal structures and variables exist in the system address
space as static global data or are allocated from one of the Windows NT sys-
tem heaps (paged and nonpaged pool, which are examined in more detail in
Chapter 5). Since data in the system address space can be accessed only while
in kernel mode, if you want to access this data yourself, you must either write
your own device driver or use one of the system kernel-mode debuggers described
earlier. Of course, the location and content of these variables can change from
release to release, since they are not documented or supported for user access.

Conclusion

In this chapter, you've been introduced to the key Windows NT technical con-
cepts and terms that will be used throughout the book. You’ve also gotten a
glimpse of the many useful tools available for digging into Windows NT internals.
Now we're ready to begin our exploration of the internal design of the system,
beginning with an overall view of the system architecture and its key components.

25

CHAPTEHR R T WO

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be famil-
iar with, we’re ready to start our exploration of the internal design goals and
structure of Microsoft Windows NT. This chapter explains the overall archi-
tecture of the system—the key components, how they interact with each other,
and the context in which they run. To provide a framework for understanding
the internals of Windows NT, let’s first review the requirements and goals that
shaped the original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:

#@ Provide a true 32-bit, preemptive, reentrant, virtual memory operat-
ing system

Run on multiple hardware architectures and platfdrms
Run and scale well on symmetric multiprocessing systems

Be a great distributed computing platform, both as a network client
and a server

Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 appli-
cations

Meet government requirements for POSIX 1003.1 compliance

® Meet government and industry requirements for operating system
security '

i Be easily adaptable to the global market by supporting Unicode

27

INSIDE WINDOWS NT

To guide the thousands of decisions that had to be made to create a sys-
tem that met these requirements, the Windows NT design team adopted the
following design goals at the beginning of the project:

B Extensibility The code must be written to comfortably grow and
change as market requirements change.

® Portability The system must be able to run on multiple hardware
architectures and must be able to move with relative ease to new ones
as market demands dictate.

B Reliability and robustness The system should protect itself from
both internal malfunction and external tampering. Applications
should not be able to harm the operating system or other running
applications.

i Compatibility Although Windows NT should extend existing tech-
nology, its user interface and application programming interfaces
(APIs) should be compatible with older versions of Windows as well
as older operating systems such as MS-DOS. It should also interoper-
ate well with other systems such as UNIX, OS/2, and NetWare.

® Performance Within the constraints of the other design goals, the
system should be as fast and responsive as possible on each hard-
ware platform.

As we explore the details of the internal structure and operation of Win-
dows NT, you’ll see how these design goals and market requirements were wo-
ven successfully into the construction of the system. But before we start that
exploration, let’s examine the overall design model for Windows NT and com-
pare it to other modern operating systems.

Operating System Models

28

In most operating systems, applications are separated from the operating sys-
tem itself—the operating system code runs in a privileged processor mode
(referred to as kernel mode in this book), with access to system data and to the
hardware; applications run in a nonprivileged processor mode (called user
mode), with a limited set of interfaces available and with limited access to sys-
tem data. When a user-mode program calls a system service, the processor traps
the call and then switches the calling thread to kernel mode. When the system
service completes, the operating system switches the thread context back to user
mode and allows the caller to continue. ’

TWO: System Architecture

The design of the internal structure of the kernel-mode portion of such
systems varies widely. For example, traditional operating systems were mono-
lithic in nature, as illustrated in Figure 2-1. The system was constructed as a
single, large software system with many dependencies among internal compo-
nents. This interdependency meant that extensions to the system might require
many changes across the entire code base. Also, in a monolithic operating
system, the bulk of the operating system code runs in the same memory space,
which means that any operating system component could corrupt data being
used by other components.

A different structuring approach divides the operating system into mod-
ules and layers them one on top of the other. Each module provides a set of
functions that other modules can call. Code in any particular layer calls code only

Application { Application |
program T program

User mode

Kernel mode

Y Y

| System services

]

Operating
system
procedures

Y

Hardware

Figure 2-1
Monolithic operating system

29

INSIDE WINDOWS NT

30

in lower layers. On some systems, such as the Digital Equipment Corporation
(DEC) OpenVMS or the old Multics operating system, hardware even enforces
the layering (using multiple, hierarchical processor modes). One advantage of
alayered operating system structure is that because each layer of code is given
access to only the lower-level interfaces (and data structures) it requires, the
amount of code that wields unlimited power is limited. This structure also
allows the operating system to be debugged starting at the lowest layer, add-
ing one layer at a time until the whole system works correctly. Layering also
makes it easier to enhance the operating system because individual layers can
be modified or replaced without affecting other parts of the system.

Another approach to structuring an operating system is the client/server
microkernel model. The architecture in this approach divides the operating
system into several server processes, each of which implements a single set of
services—for example, memory management services, process creation ser-
vices, or processor scheduling services. Each server runs in user mode, waiting
for a client request for one of its services. The client, which can be either another
operating system component or an application program, requests a service by
sending a message to the server. An operating system microkernel running in
kernel mode delivers the message to the server; the server performs the opera-
tion; and the kernel returns the results to the client in another message, as il-
lustrated in Figure 2-2.

NOTE The client/server model of networking is distinctly differ-
ent from the client/server model of processing. In client/server net-
working, a server provides resources (such as files, printer, and storage
space) to the clients. Client/server processing is a method of distrib-
uting the processing load required by an application to best suit the
capabilities of network, server, and client so that one part of an applica-
tion is processed on a server machine while another is processed on
the client.

In reality, client/server systems fall within a spectrum, some doing very

little work in kernel mode and others doing more. For example, the Carnegie

Mellon University Mach operating system, a contemporary example of the
client/server microkernel architecture, implements a minimal kernel that com-
prises thread scheduling, message passing, virtual memory, and device drivers.
Everything else, including various APIs, file systems, and networking, runs in
user mode. However, commercial implementations of the Mach microkernel
operating system typically run at least all file system, networking, and memory

‘management code in kernel mode. The reason is simple: the pure microkernel

design is commercially impractical because it is too computationally expen-
sive—that is, it’s too slow.

TWO: System Architecture

Client Memory Network
application server server
Process File Display
server server i server

L :
1
1 Usermode
: Kernel mode
]
A ’
.
.
D —— Microkernel
| Hardware l
Send
Reply = -)
Figure 2-2

Client/server operating system

So what model does Windows NT embody? It merges the attributes of a
layered operating system with those of a client/server or microkernel operat-
ing system. Performance-sensitive operating system components run in kernel
mode, where they can interact with the hardware and with each other without
incurring the overhead of context switches and mode transitions. For example,
the memory manager, cache manager, object and security managers, network
protocols, file systems (including network servers and redirectors), and all thread
and process management run in kernel mode.

Of course, all of these components are fully protected from errant appli-
cations, because applications don’t have direct access to the code and data of
the privileged part of the operating system (though they can quickly call other
kernel services). This protection is one of the reasons that Windows NT has the
reputation for being both robust and stable as an application server and a
workstation platform yet fast and nimble from the perspective of core operat-
ing system services, such as virtual memory management, file I/O, networking,
and file and print sharing.

31

INSIDE WINDOWS NT

Does the fact that so much of Windows NT runs in kernel mode mean it
is more susceptible to crashes than a true microkernel operating system? Not
really. Consider the following scenario: suppose the file system code of an
operating system has a bug that causes it to crash from time to time. In a tra-
ditional operating system or a modified microkernel operating system, a bug
in kernel-mode code such as the memory manager or the file system would
likely crash the entire operating system. In a pure microkernel operating sys-
tem, such components run in user mode, so theoretically a bug would simply
mean that the component’s process exits. But in practical terms, the failure of
such a critical process would result in a system crash, since recovery from the
failure of such a component would likely be impossible.

The kernel-mode components of Windows NT also embody basic object-
oriented design principles. For example, they don’t reach into one another’s
data structures to access information maintained by individual components.
Instead, they use formal interfaces to pass parameters and access and /or modify
data structures.

Despite its pervasive use of objects to represent shared system resources,
however, Windows NT is not an object-oriented system in the strict sense. Most
of the operating system code is written in C for portability and because devel-
opment tools are widely available. C does not directly support object-oriented
constructs, such as dynamic binding of data types, polymorphic functions, or
class inheritance. Therefore, the C-based implementation of objects in Win-
dows NT borrows from, but does not depend on, esoteric features of particu-
lar object-oriented languages.

Architecture Overview

32

Now that you understand the basic model of Windows NT, let’s take a look at
the key system components that comprise its architecture. A simplified version
of this architecture is shown in Figure 2-3. Keep in mind that this diagram is
basic—it doesn’t show everything. The various components of Windows NT are
covered in detail later in the chapter.

In Figure 2-3, first notice the line dividing the user-mode and kernel-mode
parts of the Windows NT operating system. The boxes above the line repre-
sent user-mode processes, and the components below the line are kernel-mode
operating system services. As mentioned in Chapter 1, user-mode threads execute
in a protected process address space (although while they are executing in
kernel mode, they have access to system space). Thus, system processes, server
processes (services), the environment subsystems, and user applications each
have their own private process address space.

TWO: System Architecture

S Server) User
ystem processes Environment Jser
processes (services) subsystems applications
Subsystem DLLs I
* * * User mode
Kernel mode
Executive Windowing
Device drivers | Kernel and graphics

] Hardware abstraction layer (HAL)

Figure 2-3
Simplified Windows NT architecture

The four basic types of user processes are described in the following list:

B Special system support processes, such as the logon process and the ses-
sion manager, that are not Windows NT services (that is, not started
by the service controller).

B Server processes that are Windows NT services, such as the Event Log
and Schedule services. Many add-on server applications, such as
Microsoft SQL Server and Microsoft Exchange Server, also include
components that run as Windows NT services.

B Environment subsystems, which expose the native operating system
services to user applications, thus providing an operating system
environment, or personality. Windows NT ships with three environ-
ment subsystems: Win32, POSIX, and OS/2 1.2.

User applications, which can be one of five types: Win32, Windows
3.1, MS-DOS, POSIX, or OS/2 1.2.

In Figure 2-3, notice the “Subsystem DLLs” box below the “User applica-
tions” one. Under Windows NT, user applications do not call the native Windows
NT operating system services directly; rather, they go through one or more
subsystem dynamic-link libraries (DLLs). The role of the subsystem DLLs is to trans-
late a documented function into the appropriate undocumented Windows NT
system service calls. This translation might or might not involve sending a mes-
sage to the environment subsystem process that is serving the user application.

33

INSIDE WINDOWS NT

The kernel mode of the operating system includes these components:

The Windows NT executive contains the base operating system ser-
vices, such as memory management, process and thread manage-
ment, security, I/O, and interprocess communication.

The Windows NT kernel performs low-level operating system func-
tions, such as thread scheduling, interrupt and exception dispatch-
ing, and multiprocessor synchronization. It also provides a set of
routines and basic objects that the rest of the executive uses to imple-
ment higher-level constructs.

The hardware abstraction layer (HAL) is a layer of code that isolates
the kernel, device drivers, and the rest of the Windows NT execu-
tive from platform-specific hardware differences.

& Device drivers include both file system and hardware device drivers
that translate user I/O function calls into specific hardware device
1/0 requests.

The windowing and graphics system implements the graphical user in-
terface (GUI) functions (better known as the Win32 USER and GDI
functions), such as dealing with windows, controls, and drawing.

Each of these components is covered in greater detail both later in this chap-
ter and in the chapters that follow.

Before we dig into the details of these system components though, lets
review two key attributes of the Windows NT architecture—portability and
multiprocessing—and also examine the differences between Windows NT Work-
station and Windows NT Server.

Portability

34

Windows NT was designed to run on a variety of hardware architectures, in-
cluding Intel-based CISC systems as well as RISC systems. The initial release
of Windows NT supported the x86 and MIPS architecture. Support for the DEC
Alpha AXP was added shortly thereafter. Support for a fourth processor archi-
tecture, the Motorola PowerPC, was added in Windows NT 3.51. Because of
changing market demands, however, support for both the MIPS and PowerPC
was dropped after the release of Windows NT 4.0. Windows NT 5.0 will run only
on x86 and Alpha machines. Eventually, Windows NT will also run on the Merced
chip, the first implementation of the new 64-bit architecture family being jointly
developed by Intel and Hewlett-Packard, called IA64 (for Intel Architecture 64).
As Microsoft has stated publicly, Windows NT will be enhanced to support a
true 64-bit programming interface on both IA64 and Alpha systems.

TWO: System Architecture

Windows NT achieves portability across hardware architectures and plat-
forms in two primary ways:

Windows NT has a layered design, with low-level portions of the sys-
tem that are processor-architecture-specific or platform-specific iso-
lated into separate modules so that upper layers of the system can
be shielded from the differences among hardware platforms. The
two key components that provide operating system portability are
the HAL and the kernel. Functions that are architecture-specific
(such as thread context switching) are implemented in the kernel.
Functions that can differ from machine to machine within the same
architecture are implemented in the HAL.

B The majority of Windows NT is written in a portable language—the
operating system executive, utilities, and device drivers are written in
G, and portions of the graphics subsystem and user interface are
written in C++. Assembly language is used only for those parts of
the operating system that must communicate directly with system
hardware (such as the interrupt trap handler) or that are extremely
performance-sensitive (such as context switching). Assembly lan-
guage code exists not only in the kernel and the HAL but also in a
few places within the executive (such as the executive routines that
implement interlocked instructions as well as one module in the
local procedure call facility), in the kernel-mode part of the Win32
subsystem, and even in some user-mode libraries, such as the pro-
cess startup code in NTDLL.DLL (explained later in this chapter).

Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a single processor
among multiple threads of execution. When a computer has more than one
processor, however, it can execute two threads simultaneously. Thus, whereas
a multitasking operating system only appears to execute multiple threads at
the same time, a multiprocessing operating system actually does it, executing
one thread on each of its processors.

As mentioned at the beginning of the chapter, a key Windows NT design
goal from the start of the project was to run well on multiprocessor computer
systems. Windows NT supports symmetric multiprocessing (SMP). There is no master
processor—the operating system as well as user threads can be scheduled to

35

INSIDE WINDOWS NT

run on any processor. Also, all the processors share just one memory space. This
model contrasts with asymmetric multiprocessing (ASMP), in which the operat-
ing system typically selects one processor to execute operating system code
while other processors run only user code. The differences in the two multi-
processing models are illustrated in Figure 2-4.

Symmetric Asymmetric
Processor B Processor A

_| Processor B
k :

Operating | | User 3 User
system d thread /' thread /

User : : ser Operating | User 1\ ‘
thread /| ! reac{lx‘ g system thread 3
User : Operating ::; : User \ 3
thread 4 : ’ system : thread /

Figure 2-4 !
Symmetric vs. asymmetric multiprocessing

Processor A

1/0 devices I1/0 devices

Windows NT was architecturally designed to run on up to 32 processors.
The number of licensed processors is stored in the registry at HKLM\System\
CurrentControlSet\Control\Session Manager\LicensedProcessors. (Tamper-
ing with that data is a violation of the software license; and besides, modify-
ing Windows NT to use more processors is more complicated than just changing
this value.) The default value depends on the edition of Windows NT, as you
can see in Table 2-1.

36

TWO: System Architecture

Table 2-1 Number of Licensed Processors for
Various Editions of Windows NT

A Number of
Edition Licensed Processors
Windows NT Server, Enterprise Edition 8
Windows NT Server 4
Windows NT Workstation 2

System manufacturers that sell Windows NT Server systems that support
more than eight processors must ship their own remastered Windows NT CD-
ROM with a registry set to enable a higher number of processors. They might
also need to provide their own HAL.

One of the key issues with multiprocessor systems is scalability. To run
correctly on an SMP system, operating system code must adhere to strict guide-
lines and rules to ensure correct operation. Resource contention and other
performance issues are more complicated in multiprocessing systems than in
ordinary operating systems and must be accounted for in the system’s design.
Windows NT incorporates several features that are crucial to its success as a
multiprocessing operating system:

i The ability to run operating system code on any available processor
and on multiple processors at the same time. With the exception of
its kernel component, which handles thread scheduling and inter-
rupts, all operating system code can be preempted (forced to give
up a processor) when a higher-priority thread needs attention.

@ Multiple threads of execution within a single process, each of which
can potentially execute simultaneously on different processors.

B Fine-grained synchronization within the kernel as well as within
device drivers and server processes allow more components to run
concurrently on multiple processors.

B Server processes that use multiple threads to process requests from
more than one client simultaneously.

B Convenient mechanisms for sharing objects among processes and
flexible interprocess communication capabilities, including shared
memory and an optimized message-passing facility.

Chapter 4 describes how threads are scheduled in a multiprocessor system.

37

INSIDE WINDOWS NT

38

Are there two versions of Windows NT—one for uniprocessor systems and
one for multiprocessor ones? Not really. Besides the HAL, which by its very
nature is different for a uniprocessor system than for a multiprocessor system,
of the more than 2000 files on the Windows NT CD-ROM, only one fileis shipped
in different uniprocessor and multiprocessor versions: the core operating sys-
tem image that contains the executive and kernel, NTOSKRNL.EXE. The rest
of the binary files that comprise Windows NT (including all utilities, libraries,
and device drivers) are built to run properly on both uniprocessor and multi-
processor systems. For example, they handle multiprocessor synchronization
issues correctly. You should use this approach on any software you build,
whether it be a Win32 application or a device driver—build your code assum-

ing it might run on a multiprocessor system so that if it does, it won’t break.
The Windows NT CD-ROM includes two versions of NTOSKRNL.:

NTOSKRNL.EXE is the executive and kernel for uniprocessor
systems.

NTKRNLMP.EXE is the executive and kernel for multiprocessor
systems.

These two images are built from the same source files. They are built using
compile-time conditional code so that multiprocessor-specific support is not
included in the uniprocessor version of NTOSKRNL and vice versa. Because
of this, single processor systems don’t have to pay for the overhead of multi-
processor synchronization at the operating system level.

At installation time, the appropriate file is selected and copied to the local
\winnt\system32 directory. In either case, however, the file is named
NTOSKRNL.EXE on the local hard drive.

You'll notice that on the checked build CD-ROM (the special debug ver-
sion of Windows NT, which is explained on page 22 in Chapter 1), both
NTOSKRNL.EXE and NTKRNLMP.EXE are identical—they are both built for
multiprocessor systems. In other words, there is no uniprocessor version of the
checked build version of NTOSKRNL.

TWO: System Architecture

EXPERIMENT: Checking Which

Version of NTOSKRNL You’re Running

You can tell which version of NTOSKRNL you’re running by running
WINMSD.EXE. (From the Start menu, choose Programs, and then
select Administrative Tools, Windows NT Diagnostics.) If you click the
‘Versmn tab, you’ll see somethmg like the following;:

Wmdows NT Dlagnoshcs \WTWIN

As you can see, the system is running the multlprocessor free build
“for x86 systems. (This screen shot was taken from the dual processor
Pentium Pro workstanon that Compaq O gracmusly loaned me for this
book: prq]ect)

Windows NT Workstation vs. Windows NT Server

Many people wonder what exactly the differences are between Windows NT
Workstation, Windows NT Server, and Windows NT Server, Enterprise Edition.
First, Windows NT Server behaves differently than Windows NT Workstation
does—Windows NT Server is optimized to be a high-performance network
server platform, whereas Windows NT Workstation, although it has server
capabilities, is optimized for interactive desktop use.

39

INSIDE WINDOWS NT

40

Second, Windows NT Server, Enterprise Edition, is a superset of Windows
NT Server, which in turn is a superset of Windows NT Workstation. For example,
the following optionally installable networking and server components come
with Windows NT Server but are not available for Windows NT Workstation:

B Enterprise network management and directory services through the
formation of domains (groups of Windows NT systems treated as a
single security perimeter)

Disk fault-tolerance features (striping with parity and mirroring)
B Services for Macintosh: file and printer sharing, user administration

B Gateway Service for NetWare, which permits a number of Windows
NT clients to access a NetWare server using the Windows NT Server
as a gateway

TCP/IP server addressing management, such as a complete Domain
Name System (DNS) and Dynamic Host Configuration Protocol
(DHCP)

B Remote boot server for diskless MS-DOS, Windows 3.1, and Win-
dows 95 PCs

Windows NT Server, Enterprise Edition, contains additional components
and features beyond those in Windows NT Server, such as Microsoft Cluster
Server, Microsoft Message Queue Server, and Microsoft Transaction Server.
(The Windows NT 4.0 Option Pack, which installs on both Windows NT Server
and Windows NT Server, Enterprise Edition, includes the latter two compo-
nents in addition to Microsoft Internet Information Server 4.0 and Internet
Connection Services for Microsoft RAS.) Also, on x86 systems, Windows NT
Server, Enterprise Edition, can allow certain applications to have a 3-GB user
address space (as opposed to 2 GB on the other editions). This capability is
explained in further detail in Chapter 5.

There are also licensing differences between Windows NT Workstation
and Windows NT Server:

The Windows NT Workstation license permits only 10 unique IP con-
nections in a 10-minute period (though the code doesn’t enforce
this connection limit). Windows NT Server has no such restriction.

@ Windows NT Server supports an unlimited number of clients (as-
suming that you have licenses for all of them) accessing the built-in
file and print-sharing services, whereas Windows N'T Workstation

TWO: System Architecture

permits only up to 10 simultaneous inbound connections to shared
files or printers.

B Windows NT Server, Enterprise Edition, supports eight processors,
Windows NT Server four, and Windows NT Workstation only two.

Although Windows NT Server and Windows NT Server, Enterprise Edi-
tion, contain significant added functionality over Windows NT Workstation, the
majority of the files in all three products are identical, including such core
components as the executive, kernel, device drivers, utilities, and libraries.
However, a number of these components operate differently depending on
which edition is running.

How does Windows NT know which product is running? At boot time, the
registry is queried and the result is stored in the system global variable
MmProductType. One element of this information is in the registry key HKLM\
System\CurrentControlSet\Control\ProductOptions. Changing this informa-
tion is a violation of the software license. Table 2-2 shows the values for this key
as they correspond to the different editions of Windows NT.

Table 2-2 Product Type Registry Values

Edition of Windows NT Value of ProductOptions*
Windows NT Workstation WinNT

Windows NT Server (domain controller) LanmanNT

Windows NT Server (server only) ServerNT

* A different key, ProductSuite, distinguishes Windows NT Server, Enterprise Edition.

If user programs need to determine which Windows NT product is run-
ning, they can query for this information. (For sample code to do this, see the
article Q124305 “Which Windows NT (Server or Workstation) Is Running?”
in the MSDN Knowledge Base.) Device drivers running in kernel mode can
call the internal executive routine used by Windows NT itself, MmIsThisAn-
NtasSystem, documented in the Windows NT Device Driver Kit (DDK).

Based on the product type, several resource allocation decisions are made
differently at system boot time, such as the size and number of operating sys-
tem heaps (or pools), the number of internal system worker threads, and the
size of the system data cache. Also, run-time policy decisions, such as the way
the memory manager trades off system and process memory demands, differ

41

INSIDE WINDOWS NT

42

Windows NT vs. Windows 95 and Windows 98

Windows NT and Windows 95 (and its follow-on release, Windows 98) -
are part of the “Windows family of operating systems,” sharing a com-
mon subset API (Win32 and COM), device driver model (WDM), and
in some cases shared operating system code. Although Windows NT 4.0

~ doesn’t have some of the features that Windows 95 has today, Microsoft _
has always made it clear that Windows NT was to be the strategic op-

erating system platform for the future—not just for servers and busi-: -
ness desktops but eventually for consumers as well. Following are some

_ of the architectural differences and advantages that Windows NT has
- over Windows 95. (These comparisons also apply to Windows 98)

W Windows NT supports multiprocessor systemsmedows 95.
doesn’t.

" W Windows NT runs on a variety of machine architectures— =
Windows 95 is limited to x86 systems.

®m Windows 95 doesn’t have a file system that supports security -
(such as dlscretlonary access control).

B Windows NT is a fully 39-bit operating system—-—lt contains no
. 16-bit code. Windows 95 contains a large amount of old 16-bit
code from its predecessors, Windows 3.1 and MS-DOS,

W Windows NT is fully reentrant—significant parts of Windows
95 are nonreentrant (mainly the older 16-bit code taken from
Windows 3.1). This nonreentrant code includes the majority
of the graphics and window management functions (USER and

~ GDI). When a 32-bit application on Windows 95 attempts to call
a system service implemented in nonreentrant 16-bit code, it:
must first obtain a systemwide lock (or mutex) to block other
threads from entering the nonreentrant code base. And even
worse, a 16-bit application holds this lock while running. Thus, -

*although the core of Windows 95 contains a preemptive 32-bit
multithreaded scheduler, because so much of the system is
still implemented in nonreentrant code, applications many
times run single threaded.

TWO: System Architecture

B Windows NT provides an option to run 16-bit Windows appli-
cations in their own address space—Windows 95 always runs
16-bit Windows applications in a shared address space, in which
they can corrupt (and hang) each other. :

W Shared memory on Windows NT is visible only to the processes
_that have the same shared memory section (called file mapping
objects in the Win32 API) open. On Windows 95, all shared
‘memory is visible and writable from all processes, Thus, any
- process can write to any file mapping object.

oot W Windows 95 has some crmcal operating system pages that are
- writable from user mode, thus allowing a user apphcatlon to
crash the system. :

What does Windows 95 have that Wmdows NT 4.0 doesn’t? Full
- Plug and Play, power management, infrared support, and support for
the FAT32 file system. However, all of these features will be a part of
v - Windows NT 5. 0, makmg it the first release of Wmdows NT tobea true
superset of the Windows platform.

. The one thing both Windows 95 and Windows 98 can do that Win- - -
~dows NT will never do is run all older MS-DOS and Windows 3.1 ap-
phcatlons (notably ones that require direct hardware access) as well as
16~b1t MS-DOS device drivers. Whereas 100 percent compatibility with

S-DOS and Windows 3.1 was a mandatory goal for Windows 95, the
3 goal for Windows N’I‘ was to run most ex1st1ng 16-b1t apphcauons

between Windows NT Server and Windows NT Workstation. Even some thread-
scheduling details are handled differently in the two editions. Where there are
significant operational differences in the two products, these are highlighted
in the pertinent chapters throughout the rest of the book. Thus, unless oth-
erwise noted, everything in this book applies to both Windows NT Server and
Windows NT Workstation.

43

INSIDE WINDOWS NT

Key System Components

Now that we’ve looked at the high-level architecture of Windows NT, let’s delve
deeper into the internal structure and the role each of the key operating sys-
tem components plays. Figure 2-5 is a more detailed and complete diagram
of the Windows NT system architecture and components than was shown ear-
lier in the chapter (in Figure 2-3).

System Services
processes

Replicator Environment

Service
| controller | RPC subsystems Applications
| WinLogon | Alerter | POSIX |
Session Event User 0872 3
manager Logger applications Wing2

[NTDLL.DLL E
System e e i - .
threads User mode
Y Y Kernel mode
Executive APl
Win32 USER
I/0 system Cache Processes] Virtual
Security and GDI
Filo manager and threads memory
systems Object management/Executive RTL
Device drivers I ! Kernel

mm’“i Hardware abstraction layer (HAL) I

Figure 2-5
Windows NT architecture

44

‘The following sections elaborate on each major element of this diagram.
Chapter 3 explains the primary control mechanisms used by the system (such
as the object manager, interrupts, and so forth). Then the remaining chapters
of this book explore in even more detail the internal structure and operation
of key areas such as processes and threads, memory management, security, the
I/O system, the cache manager, and the Windows NT file system (NTFS).

Table 2-3 lists the filenames of the key components shown in Figure 2-5.
(You'll need to know these filenames because I'll be referring to some system
files by name.)

TWO: System Architecture

Table 2-3 Key Windows NT System Files
Filename Component(s)
SERVICES.EXE Service controller process
WINLOGON.EXE Logon process
SMSS.EXE Session manager process
PSXSS.EXE POSIX subsystem process
OS2SS.EXE OS/2 subsystem process
CSRSS.EXE* Win32 subsystem process
NTDLL.DLL Internal support functions and system service dis-

KERNEL32.DLL,
USER32.DLL,
GDI32.DLL.

PSXDLL.DLL

NTOSKRNL.EXE#**
 HAL.DLL

WIN32K.SYS

patch stubs to executive functions
Win32 subsystem DLLs

POSIX subsystem DLL

Executive and kernel

Hardware abstraction layer

Win32 USER and GDI kernel-mode components

* CSRSS stands for “client/server run-time subsystem”—but all the subsystems are client/
server run-time subsystems.

** Remember that there are two versions of NTOSKRNL on the Windows NT CD-ROM: one
for uniprocessors and one for multiprocessor systems. The correct one is copied to the
local system at installation time. Also, the filename NTOSKRNL is a bit misleading because
the kernel is only a small percentage of the total code in this file. (The majority of the code
comprises the executive.)

Environment Subsystems and Subsystem DLLs

As shown in Figure 2-5, Windows NT has three environment subsystems: POSIX,
0S/2, and Win32. (OS/2 is available only for x86 systems.) As I'll explain shortly,
of the three, the Win32 subsystem is special in that Windows NT can’t run
without it. In fact, the other two subsystems are configured to start on demand,
whereas the Win32 subsystem must always be running.

The subsystem startup information is stored under the registry key HKLM\
System\CurrentControlSet\Control\Session Manager\Subsystems. The screen
shot from the Registry Editor in Figure 2-6 on the next page shows the values
under this key.

45

INSIDE WINDOWS NT

46

Debug : REG_EXPAND_SZ :
.+ | |Kmode : REG_EXPAND_SZ : %SystemRoot%\system32iwin32k.sys |
:-{|Optional : REG_MULTI_SZ : Os2 Posix]
“1|0s2 : REG_EXPAND_SZ : %SystemRoot%\system32\os2ss.exe

Posix: REG_EXPAND_SZ : %SystemRoot%\system32\psxss.exe
Required : REG_MULTI_SZ : Debug Windows]
‘Windows : REG_EXPAND_SZ : %SystemRoot%\system32\csrss.exe|

Figure 2-6
Registry Editor showing Windows NT startup information

The Required value lists the subsystems that load when the system boots.
The value has two strings: Windows and Debug. The Windows value contains
the file specification of the Win32 subsystem: CSRSS.EXE. Debug is blank (it’s
used for internal testing) and therefore does nothing. The Optional value
indicates that the OS/2 and POSIX subsystems will be started on demand. The
registry value Kmode contains the filename of the kernel-mode portion of the
Win32 subsystem, WIN32K.SYS (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base
Windows NT executive system services to application programs. Each sub-
system can provide access to different subsets of the native services in Windows
NT. That means that some things can be done from an application built on one
subsystem that can’t be done by an application built on another subsystem. For
example, a Win32 application can’t use the POSIX fork function.

Each executable image (.EXE) is bound to one and only one subsystem.
When an image is run, the process creation code examines the subsystem type
code in the image header so that it can notify the proper subsystem of the new
process. This type code is specified with the /SUBSYSTEM qualifier of the link
command and can be viewed with the builtin quick viewer in Windows NT
Explorer, the link /DUMP command, or the Exetype tool in the Windows NT
Resource Kit.

Function calls can’t be mixed between subsystems. In other words, a POSIX
application can call only services exported by the POSIX subsystem, and a
Win32 application can call only services exported by the Win32 subsystem. As
I'll explain later, this restriction is the reason that the POSIX subsystem, which
implements a very limited set of functions (only POSIX 1003.1), is not a use-
ful environment for porting UNIX applications.

As mentioned earlier, user applications don’t call Windows NT system
services directly. Instead, they go through one or more subsystem DLLs. These
libraries export the documented interface that the programs linked to that

TWO: System Architecture

EXPERIMENT: Viewing the Image Subsystem Type

You can see the image subsystem type by using either the Exetype tool
in the Windows NT Resource Kit or by dumping the image header with
the built-in quick viewer for images in Windows NT Explorer. For ex-
ample, notice the image types for two different Win32 images,
NOTEPAD.EXE (the smlple text edltor) and CMD, EXE (the W"mdom
NT command prompt):

“Cr\>exetype \winnt\system32\notepad exe
CFile "\winnt\system32\notepad.exe" is of the fo]}owing type-

‘Windows NT
‘, 32 bit machine

Built for the Intel 88386 processor
o Runs under the Windows: GUI subsystem

G \>e>(etype \mnnt‘&systemSZ\cmd exe
’ Fﬂ,a "\winnt\system32\cimd. exe" is of the faﬂowing type

Windows NT

32 bit machine

‘Built for the Intel 80386 processor

Runs under the Windows character-based subsystem

o In reality, there is just one Windows subsystem, not sepamte ones -
L for graphical i images and for character-based, or console, images. Also,

~ Windows NT is not supported on the Intel 386 processor—the text
-output. by the Exetype program hasn’t been updated.

- You can glean the same information from the outpui of the quick -

- viewer for images. The following example of a POSIX image was gener-
' ated by running Windows NT Explorer, selecting the file \NTRESKIT\

. POSIX\LS.EXE (one of the POSIX utilities in the Windows NT

~Resource Kit), domg a right mouse click, and selectmg Qulck View
~ Note that the subsystem type is POSIX R ~

Ls Bxe -] Qumk Vlew

Size of Image: 0000c000
Size of Headers: 00000400
Checksum: 00024410

Subsystem: Image run in the Posix

character subsystem..

Size of Stack Resernve: 00100000
Size of Stack Cornit: 00001000
Size of Hean Resane: DNNNNNN

47

INSIDE WINDOWS NT

48

subsystem can call. For example, the Win32 subsystem DLLs (such as
KERNEL32.DLL, USER32.DLL, and GDI32.DLL) implement the Win32 API
functions. The POSIX subsystem DLL implements the POSIX 1003.1 API.

When an application calls a function in a subsystem DLL, one of three
things can occur:

Y

@ The function is entirely implemented in user mode inside the sub-
system DLL. In other words, no message is sent to the environment
subsystem process, and no Windows NT executive system services are
called. The function is performed in user mode, and the results are
returned to the caller. Examples of such functions include Pt/nRect
and IsRectEmpty.

The function requires one or more calls to the Windows NT execu-
tive. For example, the Win32 ReadFile and WriteFile functions involve
calling the underlying internal (and undocumented) Windows NT
1/0 system services NtReadFile and NtWriteFile, respectively.

B The function requires some work to be done in the environment sub-
system process. (The environment subsystem processes, running in
user mode, are responsible for maintaining the state of the client
applications running under their control.) In this case, a client/
server request is made to the environment subsystem in that a mes-
sage is sent to the subsystem to perform some operation, perhaps
using the Windows NT executive’s local procedure call (LPC) facility
(described in more detail on page 60). The subsystem DLL then
waits for a reply before returning to the caller.

Some functions can be a combination of the second and third items above, such
as the Win32 CreateProcess and CreateThread functions.

Although Windows NT was designed to support multiple, independent
environment subsystems, from a practical perspective, having each subsystem
implement all the code to handle windowing and display I/O would result in
a large amount of duplication of system functions that, ultimately, would have
negatively affected both system size and performance. Because Win32 was the
primary subsystem, the Windows NT designers decided to locate these basic
functions there and have the other subsystems call on the Win32 subsystem to
perform display I/O. Thus, the POSIX and OS/2 subsystems will call services
in the Win32 subsystem to perform display I/O (specifically, console or char-
acter cell 1/0). .

Let’s take a closer look at each of the environment subsystems.

TWO: System Architecture

Win32 Subsystem

The Win32 subsystem consists of the following major components:

B The environment subsystem process (CSRSS.EXE), which contains
support for:

Q Console (text) windows
Q Creating and deleting processes and threads

Q Portions of the support for 16-bit virtual DOS machine (VDM)
processes

Q Other miscellaneous functions, such as GetTempFile, DefineDos-
Device, ExitWindowsEx, and several natural language support
functions

B The kernel-mode device driver (WIN32K.SYS), which contains the
following:

Q The window manager controls window displays; manages screen
output; collects input from keyboard, mouse, and other devices;
and passes user messages to applications.

Q The Graphical Device Interface (GDI) is a library of functions
for graphics output devices. It includes functions for line, text,
and figure drawing and for graphics manipulation.

Subsystem DLLs (such as USER32.DLL, ADVAPI32.DLL, GDI32.DLL,
and KERNEL32.DLL), which translate documented Win32 API func-
tions into the appropriate undocumented kernel-mode system service
calls to NTOSKRNL.EXE and WIN32K.SYS.

Graphics device drivers, which are hardware-dependent graphics
display drivers, printer drivers, and video miniport drivers.

Applications call the standard USER functions to create windows and
buttons on the display. The window manager communicates these requests to
the GDI, which passes them to the graphics device drivers, where they are
formatted for the display device. A display driver is paired with a video miniport
driver to complete video display support. Each video miniport driver provides
hardware-level support for its associated display driver.

The GDI provides a set of standard functions that let applications com-
municate with graphics devices, including displays and printers, without know-
ing anything about the devices. GDI functions mediate between applications

49

INSIDE WINDOWS NT

50

and graphics devices such as display drivers and printer drivers. The GDI in-
terprets application requests for graphic output and sends them to graphics
display drivers. It also provides a standard interface for applications to use
varying graphics output devices. This interface enables application code to be
independent of the hardware devices and their drivers. The GDI tailors its
messages to the capabilities of the device, often dividing the request into man-
ageable parts. For example, some devices can understand directions to draw
an ellipse; others require the GDI to interpret the command as a series of pixels
placed at certain coordinates. For more information about the graphics and
video driver architecture, see the book Graphics Drivers Design Guide in the
Windows NT DDK.

Prior to Windows NT 4.0, the window manager and graphics services were
part of the user-mode Win32 subsystem process. In Windows NT 4.0, the bulk
of the windowing and graphics code was moved from running in the context
of the Win32 subsystem process to a set of callable services running in kernel
mode (in the file WIN32K.SYS). The primary reason for this shift was to im-
prove overall system performance. Having a separate server process that con-
tains the Win32 graphics subsystem required multiple thread and process context
switches, which consumed considerable CPU cycles and memory resources even
though the original design was highly optimized.

For example, for each thread on the client side there was a dedicated,
paired server thread in the Win32 subsystem process waiting on the client
thread for requests. A special interprocess communication facility called fast
LPCwas used to send messages between these threads. Unlike normal thread
context switches, transitions between paired threads via fast LPC don’t cause
arescheduling event in the kernel, thereby enabling the server thread to run
for the remaining time slice of the client thread before having to take its turn
in the kernel’s preemptive thread scheduler. Moreover, shared memory buff-
ers were used to allow fast passing of large data structures, such as bitmaps, and
clients had direct but read-only access to key server data structures to minimize
the need for thread/process transitions between clients and the Win32 server.
Also, GDI operations were (and still are) batched. Batching means that a series
of graphics calls by a Win32 application aren’t “pushed” over to the server and
drawn on the output device until a GDI batching queue is filled. You can set
the size of the queue by using the Win32 GdiSetBatchLimit function, and you
can flush the queue at any time with GdiFlush. Conversely, read-only proper-
ties and data structures of GDI, once they were obtained from the Win32 sub-
system process, were cached on the client side for fast subsequent access.

Despite these optimizations, however, the overall system performance was
still not adequate for graphics-intensive applications. The obvious solution was
to eliminate the need for the additional threads and resulting context switches

TWO: System Architecture

by moving the window and graphics system into kernel mode. Also, once ap-
plications have called into the window manager and the GDI, those subsystems
can access other Windows NT executive components directly without the cost
of user-mode or kernel-mode transitions. This direct access is especially impor-
tant in the case of the GDI calling through video drivers, a process that involves
interaction with video hardware at high frequencies and high bandwidths.

7
" Is Windows NT Less Stable with
Win32 USER and GDI in Kernel Mode?

Some developers wondered whether moving this much code into ker-
nel mode would substantially affect system stability. The answer is that
it hasn’t. The reason the impact on system stability has been minimal
is that prior to Windows NT 4.0 (and this is still true today), a bug (such

_as an access violation) in the usermode Win32 subsystem process
(CSRSS) resulted in a system crash. Th1s crash occurs because the -
parent process of CSRSS (the session manager, SMSS, which is de-
scribed on page 75) does a wait operation on the process handle to
CSRSS, and if the wait ever returns, SMSS crashes the system—because

““the Win32 subsystem process was (and still is) a vital process to the

running of the system. Because it was the process that contained the

‘data structures that described the windows on the display, the death

of that process would kill the user interface. However, even a Windows

NT system operating as a server, with no interactive processes, couldn’t

~ run without this process, since server processes might be making use

‘ ‘of window messaging to drive the internal state of the application. With

Windows NT 4.0, an access violation ini the same code now running in

~ kernel mode simply crashes the system more quickly, since exceptions
in kernel mode result in a system crash.

There is, however, one additional theoretical danger that didn’t

- exist prior to ‘moving the wmdowmg and graphics system into Kernel

mode. Because thls body of code is now running in kernel mode, a bug

(such as the use of a bad pointer) could result in corruptmg kernel-

- mode protected data structures. Prior to Windows NT 4.0, such refer-
ences would have caused an access wolanon since kernel-mode pages
are not writable from user mode. But a system crash would have then

- resulted, as described earlier, With the code now running in kernel .

, Vmode, a bad pointer reference that caused a wnte operation to some .

(continued)

51

INSIDE WINDOWS NT

Is Windows NT Less Stable with Win32 USER and GDI in Kernel Mode? continued

:,3 kemel—mode page m;ght not 1mmediately cause a system crash butif -
it cormpted some data structure, a crash would likely result soon after &
There is a small chance, however, that such a reference could corrupt
memory buffer (rather than a data structure); possibly resulting in -
returning corrupt data to a user program or writing bad data to the disk. - -
B ffAnother area 0f pOSS1ble impact can come from the move of the
grapl:ncs drivers into kernel mode. Prewously, some portions of a graph~

~ icsdriverran w:thm ‘CSRSS; and others ran in kernel mode: Now; the
: ennre driver runsin kernel mode. Although Microsoft doesn’t develop
*_ all the graphics device drivers supported in Windows NT, it does work -

~ directly with hardware manufacturers to help ensure that theyare able

- to'produce reliable and efﬁcxent drivers. All drivers shipped with the
© system are submltted to the same rigorous. tesung as other executrve
o ‘components 2 :

-Finally, it’s 1mportant to understand that this desxgn (runnmg the”

i ,Wmdowmg and graphics subsystem in kernel mode) is not fundamen-

-~ tally risky. It is identical to the approaches : many other device drivers
~use (for example, network card drivers and hard disk drivers). All of
- these drivers have been operating in kernel mode since the inception

[of Windows NT with 2 high degree of rehabxhty.

+ Some people have speculated that the move of the window man-
ager and the GDIinto kernel mode will hurt the - preemptive multitasking
capability of Windows NT. The theory is that with all the additional

~‘Win32 processing time spent in kernel mode, other threads will have
“less. opportunity to-be run preemptively. This view is based on a mis-
- understanding of the Windows NT architecture. It is true that in many
‘other nominally preemptive operating systems; executing in kernel
- mode is never preempted by the operating system scheduler—or is
- preempted only at a certain limited number of predeﬁned points of
kernel reentrancy. In Windows NT, however, threads running anywhere
in the executive are preempted and scheduled alongside threads run-
ning in user mode, and all code within the executive is fully reentrant.
- Among other reasons, this capability is necessary to achieve a high
‘ degree of system scalability on SMP hardware. ,
' Another line of speculation is that SMP scaling will be hurt by this
change. This theory goes like this: previously, an interaction between
an apphcauon and the window manager or the GDI involved two threads,

52

TWO: System Architecture

. one 'i'n' the application and one in CSRSS.EXE. Therefore, on an SMP
[system, the two threads could run in parallel, thus improving through-
iput This analysxs shows a misunderstanding of how Windows NT worked

[in32 subsystem process run synchronously, that is, the client thread

nd it’s relatively easy to find the single CSRSS thread that is paired

¢ fairly intimate with each other and sharing state, the processors’

than on a single processor system. -

ager and the GDI, especially when more than one apphcatlon thread
/indows NT 3.51-based machine, a total of four threads (two in the

application plus two in CSRSS) are battling for time on the two pro-
cessors, Although only two are typlcaily ready to run at any given time,

to synchronme the private per-processor memory caches.

- out é‘ccreasmg system stablhty ‘

- .prior to version 4.0. In most cases, calls from a client appllcatmn tothe -

ent ¥' ely blocks waltmg on the server thread and begms to run agam
.only when the server thread has completed the call. Therefore, no. -
arallelism on SMP hardware can ever be achieved. This phenomenon
Iseasily observable with a busy graphics application using Performance -
‘Monitor on an SMP system. The observer will discover that on a two- .
rocessor system each processor is approximately 50 percent loaded,

off with the busy application thread. Indeed, because the two threads

ches must be flushed constantly to maintain coherency. This constant 4
flushing is the reason that with Windows NT 3.51 a smgle-threaded ,
graphlcs apphcaﬁ@n typically runs slightly slqwer on an SMP machme o

o As a result, the changes in Windows NT 4 0 have mcreased SMP‘
throughput of apphcanons that make heavy use of the window man--

busy. When two apphcauon threads are busy on a two-processor

the lack of a consistent pattern in which threads run results in a loss
‘of localif ity of reference and cache coherency. This loss occurs because
. the busy threads are likely to get shuffled from one processor to an- -
- other. In the Windows NT 4.0 design; each of the two application threads -
| essentially has its own processor, and the automatic thread affinity of - -
- Windews. NT tends to run the same thread on the same processor indefi-

-~ nitely, thus maximizing locality of reference and minimizing the need' ,

 As you can see, moving the window manager and the GDI from
‘user mode to kernel mode has s provided 1mproved performance w1th~ .

53

INSIDE WINDOWS NT

54

So, what remains in the user-mode process part of the Win32 subsystem?
All the drawing and updating for console or text windows are handled by it,
since console applications have no notion of repainting a window. It’s easy to
see this activity—simply open a command prompt and drag another window
over it, and you’ll see the Win32 subsystem process running like crazy as it
repaints the console window. But other than console window support, only a
few Win32 functions result in sending a message to the Win32 subsystem pro-
cess anymdre: process and thread creation and termination, network drive
letter mapping, and creation of temporary files. In general, a running Win32
application won't be causing many, if any, context switches to the Win32 sub-
system process.

POSIX Subsystem

POSIX, an acronym loosely defined as “a portable operating system interface
based on UNIX,” refers to a collection of international standards for UNIX-
style operating system interfaces. The POSIX standards encourage vendors
implementing UNIX-style interfaces to make them compatible so that pro-
grammers can move their applications easily from one system to another.

Windows NT implements only one of the many POSIX standards, POSIX.1,
formally known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990.
This standard was included primarily to meet U.S. government procurement
requirements set in the mid-to-late 1980s that mandated POSIX.1 compliance
as specified in Federal Information Processing Standard (FIPS) 151-2, devel-
oped by the National Institute of Standards and Technology. Windows NT 3.5,
3.51, and 4.0 have been formally tested and certified according to FIPS 151-2.
The required POSIX Conformance Document is shipped in the \HELP direc-
tory in the Platform SDK.

Because POSIX.1 compliance was a mandatory goal for Windows NT, the
operating system was designed to ensure that the required base system support
was present to allow for the implementation of a POSIX.1 subsystem (such as
the fork service, which is implemented in the Windows NT executive, and the
support for hard file links in the Windows NT file system). However, because
POSIX.1 defines a limited set of services (such as process control, interprocess
communication, simple character cell I/O, and so on), the POSIX subsystem
alone is not a complete programming environment. And because applications
can’t mix calls between subsystems on Windows NT, POSIX applications are
limited to the strict set of services defined in POSIX.1. This restriction means
that a POSIX executable on Windows NT can’t create a thread or a window or
use remote procedure calls (RPCs) or sockets. You can, however, do all these

TWO: System Architecture

EXPERIMENT: Watching the POSIX Subsystem Start

The Windows NT Resource Kit includes an optional set of POSIX utili-
ties that are installed in a \POSIX subdirectory underneath your Re-
source Kit directory. If you have this directory installed, follow these
steps:

1. Start a command prompt.

2. Type thist /t, and check that the POSIX subsystem isn’t already
running (that is, that there’s no PSXSS.EXE process under-
neath SMSS.EXE). ‘

3. Run one of the POSIX utilities in the Windows NT Resource
Kit (such as \NTRESKIT\POSIX\LS.EXFE).

4. You’ll notice a slight pause while the POSIX subsystem starts |
and the LS command displays the directory contents.

5. Run tlist /¢t again. This time, notice the existence of PSXSS.EXE
as a child of SMSS.EXE.

6. Rerun LS.EXE a second time; you'll notice a quicker response
(now that the POSIX subsystem is already started). *

7. Rerun LS.EXE, but pause the output by pressing Ctrl-S; issue
a tlist /t from another command prompt, and notice that the
POSIX support image (POSIX.EXE) was the process created
from the first command prompt and that it in turn created
the LS.EXE process. You should see something similar to the
following annotated output:

System (2) .
smss.exe (23) Session manager
csrss.exe (31)- Win32 subsystem
psxss.exe (187)— POSIX subsystem

explorer.exe (69) Program Manager
CMD.EXE (93) Command Prompt - 1s

posix.exe (178)~— POSIX support prqceés
1s.exe (97) POSIX application
being run

55

INSIDE WINDOWS NT

56

things in a Win32 application, the preferred subsystem environment for Windows
NT, which is why several companies—such as DataFocus (www.datafocus.com)
and ConsenSys (www.consensys.com) provide third-party UNIX-to-Win32 port-
ing libraries. With this approach, a UNIX application can be recompiled and
relinked as a Win32 executable and can slowly start to integrate calls to native
Win32 functions. For companies that want to port UNIX applications to Win-
dows NT with as few changes as necessary, the product OpenNT from OpenWay
(www.openway.com) includes a replacement (enhanced) POSIX subsystem with
a complete UNIX system service and utilities environment.

To compile and link a POSIX application on Windows NT requires the
POSIX headers and libraries from the Platform SDK. POSIX executables are
linked against the POSIX subsystem library, PSXDLL.DLL. Because by default
Windows NT is configured to start the POSIX subsystem on demand, the first
time you run a POSIX application, the POSIX subsystem process (PSXSS.EXE)
must be started. It remains running until the system reboots. (If you Kkill the
POSIX subsystem process, you won't be able to run more POSIX applications
until you reboot.) The POSIX image itself is not run directly—instead, a spe-
cial support image called POSIX.EXE is launched, which in turn creates a child
process to run the POSIX application.

For more information on the POSIX subsystem, see Chapter 29 in the
Windows NT Workstation Resource Guide. For more information on porting UNIX
applications to Windows NT, see the articles in MSDN Library. (Do a search
for POSIX.)

0S/2 Subsystem
The OS/2 environment subsystem, like the POSIX subsystem, is fairly limited
in usefulness:

B It supports only OS/2 1.2 16-bit character-based or video 1/O (VIO)
applications.

E It is supported only on x86 systems.

Microsoft does sell an add-on OS/2 1.2 Presentation Manager subsystem
for Windows NT, but even with this addition, you can’t run OS/2 2.x (or later)
applications.

Also, because Windows NT doesn’t allow direct hardware access by user
applications, OS/2 programs that contain I/O privilege segments that attempt
to perform IN/OUT instructions (to access some hardware device) as well
as advanced video I/O (AVIO) aren’t supported. Applications that use the

TWO: System Architecture

CLI/STI instructions are supported—but all the other OS/2 applications in
the system and all the other threads in the OS/2 process issuing the CLI in-
structions are suspended until an STT instruction is executed. Also worth noting
is the special support for calling 32-bit DLLs from OS/2 16-bit applications on
Windows NT, which can be useful in porting programs. (See the section “Win32
Thunking Mechanism” in Chapter 28 of the Windows NT Workstation Resource
Guide.)

The 16-MB memory limitation on native OS/2 1.2 doesn’t apply to Windows
NT—the OS/2 subsystem uses the 32-bit virtual address space of Windows NT
to provide up to 512 MB of memory to OS/2 1.2 applications, as illustrated in
Figure 2-7.

The tiled area is 512 MB of virtual address space that is reserved up front
and then committed or decommitted when 16-bit applications need segments.
The OS/2 subsystem maintains a local descriptor table (LDT) for each pro-
cess, with shared memory segments at the same LDT slot for all OS/2 processes.

| 2GB

08S/2 client code and data
RTL code

32-bit , . ,
-bi [- Tiled area (512 MB
16-bit Logical video buffer (LVB) mapped ¢)
to both 16-bit application code and
32-bit OS/2 subsystem code

Heap area (used for 32-bit
structures that can be mapped into
16-bit application space)

16-bit DLLs and executables
16-bit application shared memory

16-bit application private memory
(DosAllocSec and so on)

Low 32-bit user-mode area
0

Rt/ heap and more

Figure 2-7
OS/2 subsystem virtual memory layout

57

INSIDE WINDOWS NT

As we’ll discuss in detail in Chapter 4, threads are the element of a pro-
gram that execute, and as such they must be scheduled for processor time.
Although Windows NT priority levels range from 0 through 31, the 64 OS/2
priority levels (0 through 63) are mapped to Windows NT dynamic priorities
1 through 15. OS/2 threads never receive Windows NT real-time priorities 16
through 31.

As with the POSIX subsystem, the OS/2 subsystem starts automatically
the first time you activate a compatible OS/2 image. It remains running un-
til the system is rebooted.

For more information on how Windows NT handles running POSIX and
OS/2 applications, see the section “Flow of CreateProcess” on page 156 in Chap-
ter 4 of this book. For further information about the OS/2 subsystem on Win-
dows NT, see Chapter 28 in the Windows NT Workstation Resource Guide. For a
list of the OS/2 APIs supported, unsupported, and partially supported under
Windows NT, refer to the file OS2API.TXT in the Windows NT Resource Kit.

NTDLL.DLL

58

NTDLL.DLL is a special system support library primarily'for the use of sub-
system DLLs. It contains two types of functions:

System service dispatch stubs to Windows NT executive system
services

E Internal support functions used by subsystems, subsystem DLLs,
and other native images

The first group of functions provides the interface to the Windows NT
executive system services that can be called from user mode. There are more than
200 such functions, such as NitCreateFile, NtSetEvent, and so on. As noted ear-
lier, most of the capabilities of these functions are accessible through the Win32
API. (A number are not, however, and are for Microsoft internal use only.)

For each of these functions, NTDLL contains an entry point with the same
name. The code inside the function contains the architecture-specific instruc-
tion that causes a transition into kernel mode to invoke the system service
dispatcher (explained in more detail later in the chapter), which after making
some verifications, calls the actual kernel-mode system service that contains
the real code inside NTOSKRNL.EXE.

NTDLL also contains many support functions, such as the image loader
(functions that start with Ldr), the heap manager, and Win32 subsystem process
communication functions (functions that start with Csr), as well as general run-time

TWO: System Architecture

library routines (functions that start with Rtl). It also contains the user-mode
asynchronous procedure call (APC) dispatcher and exception dispatcher. (APCs
and exceptions are explained in Chapter 3.)

Executive

The Windows NT executive is the upper layer of NTOSKRNL.EXE. (The ker-
nel is the lower layer.) The executive includes five types of functions:

B Functions that are exported and callable from user mode. (The in-
terface to these functions exists in NTDLL.DLL, and the functions
are accessible through the Win32 API or some other environment
subsystem.)

B Functions that are exported and callable from user mode but are
not currently available through any documented subsystem func-
tion. (Examples include LPCs and various query functions such as
NitQuerylnformationxxx, specialized functions such as NitCreatePaging-
File, and so on.)

B Functions that can be called only from kernel mode that are ex-
ported and documented in the Windows NT DDK.

Functions that are meant to be called between kernel-mode compo-
nents but that are not documented (for example, internal support
routines used within the executive).

B Functions that are internal to a component.

The executive contains the following major components, each of which
is covered in detail in a subsequent chapter of this book:

8 The process and thread manager (explained in Chapter 4) creates and
terminates processes and threads. The underlying support for pro-
cesses and threads is implemented in the Windows NT kernel; the
executive adds additional semantics and functions to these lower-
level objects.

B The virtual memory manager (explained in Chapter 5) implements
virtual memory, a memory management scheme that provides a large,
private address space for each process and protects each process’s
address space from other processes. The memory manager also pro-
vides the underlying support for the cache manager.

59

INSIDE WINDOWS NT

B The security reference monitor (described in Chapter 6) enforces secu-

rity policies on the local computer. It guards operating system re-
sources, performing run-time object protection and auditing.

The I/0 system (explained in Chapter 7) implements device-inde-
pendent input/output and is responsible for dispatching to the ap-
propriate device drivers for further processing.

The cache manager (explained in Chapter 8) improves the perfor-
mance of file-based I/O by causing recently referenced disk data to
reside in main memory for quick access (and by deferring disk writes
by holding the updates in memory for a short time before sending
them to the disk). As you'll see, it does this using the memory man-
ager’s support for mapped files.

In addition, the executive contains four main groups of support functions
that are used by the executive components just listed. About a third of these

support functions are documented in the DDK, since they are also used by
device drivers. The four categories of support functions include:

Kernel

® The object manager, which creates, manages, and deletes Windows

NT executive objects and abstract data types that are used to repre-
sent operating system resources such as processes, threads, and the
various synchronization objects. The object manager is explained
later in this chapter.

The LPC facility passes messages between a client process and a server
process on the same computer. LPC is a flexible, optimized version
of remote procedure call (RPC), an industry-standard communication
facility for client and server processes across a network.

A broad set of common run-time library functions, such as string pro-
cessing, arithmetic operations, data type conversion, and security
structure processing.

Executive support routines, such as system memory allocation (paged
and nonpaged pool), interlocked memory access, as well as two spe-
cial types of synchronization objects: resources and fast mutexes.

The kernel performs the most fundamental operations in Windows NT, deter-
mining how the operating system uses the processor or processors and ensur-
ing that they are used prudently. It is the lowest layer in NTOSKRNL.EXE.

60

TWO: System Architecture

These are the primary functions the kernel provides:

® Thread scheduling and dispatching

® Trap handling and exception dispatching
® Interrupt handling and dispatching

Multiprocessor synchronization

Providing the base kernel objects that are used (and in some cases
exported to user mode) by the executive

The kernel is different from the rest of the executive in several ways.
Unlike other parts of the executive, the bulk of the kernel is never paged out
of memory. Similarly, although the kernel can be interrupted to execute an
interrupt service routine (see Chapter 3), its execution is never preempted by
another running thread. The kernel always runs in kernel mode and is de-
signed to be small, compact, and as portable as performance and differences
in processor architectures allow. For example, it does not probe accessibility
of parameters, since it assumes that its callers know what they are doing. The
kernel code is written primarily in C, with assembly code reserved for those
tasks that require the fastest possible code or that rely heavily on the capabili-
ties of the processor.

Like the various executive support functions mentioned in the preced-
ing section, a number of functions in the kernel are documented in the DDK
(search for functions beginning with Ke), since they are needed to implement
device drivers.

Kernel Objects

One goal for the kernel was to provide a low-level base of well-defined, pre-
dictable operating system primitives and mechanisms that would allow higher-
level components of the executive to do what they need to do. The kernel
separates itself from the rest of the executive by implementing operating sys-
tem mechanisms and avoiding policy making. It leaves nearly all policy deci-
sions to the executive, with the exception of thread scheduling and dispatching,
which the kernel implements.

Outside the kernel, the executive represents threads and other shareable
resources as objects. These objects require some policy overhead, such as object
handles to manipulate them, security checks to protect them, and resource

- quotas to be deducted when they are created. This overhead is eliminated in
the kernel, which implements a set of simpler objects, called kernel objects, that

61

INSIDE WINDOWS NT

62

help the kernel control central processing and support the creation of execu-
tive objects. Most executive-level objects encapsulate one or more kernel ob-
jects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for
controlling various operating system functions. This set includes the kernel
process object, the APC object, the deferred procedure call (DPC) object, and
several objects used by the 1/O system, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates
synchronization capabilities and alters or affects thread scheduling. The dis-
patcher objects include the kernel thread, mutex (called mutant internally),
event, kernel event pair, semaphore, timer, and waitable timer. The executive
uses kernel functions to create instances of kernel objects, to manipulate them,
and to construct the more complex objects it provides to user mode. Objects
are explained in more detail later in this chapter, and process and thread ob-
jects are described in Chapter 4.

Hardware Support

The other major job of the kernel is to abstract or isolate the executive and
device drivers from variations between the hardware architectures supported
by Windows NT. This job includes handling variations in functions such as
interrupt handling, exception dispatching, and multiprocessor synchronization.

Even for these hardware-related functions, the design of the kernel at-
tempts to maximize the amount of common code. The kernel supports a set
of interfaces that are portable across architectures and that are semantically
identical across architectures. Most of the code that implements this portable
interface is also identical across architectures.

Some of these interfaces are implemented differently on different archi-
tectures, however, or some of the interfaces are partially implemented with
architecture-specific code. These architecturally independent interfaces can
be called on any machine, and the semantics of the interface will be the same
whether or not the code varies by architecture. Some kernel interfaces (such
as spinlock routines, which are described in Chapter 3) are actually imple-
mented in the HAL (described in the next section) because their implemen-
tation can vary for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specific inter-
faces needed to support old MS-DOS programs. These x86 interfaces are not
portable in the sense that they can’t be called on a machine based on any other

TWO: System Architecture

architecture; they won't be present. This x86-specific code, for example, sup-
ports calls to manipulate global descriptor tables (GDTs) and LDTs, hardware
features of the x86.

Other examples of architecture-specific code in the kernel include the
interface to provide translation buffer and CPU cache support. This support
requires different code for the different architectures because of the way caches
are implemented.

Another example is context switching. Although at a high level the same
algorithm is used for thread selection and context switching (the context of the
previous thread is saved, the context of the new thread is loaded, and the new
thread is started), there are architectural differences among the implementa-
tions on different processors. Because the context is described by the proces-
sor state (registers and so on), what is saved and loaded varies depending on
the architecture.

Hardware Abstraction Layer (HAL)

As mentioned at the beginning of the chapter, one of the crucial elements of
the Windows NT design was its portability across a variety of hardware plat-
forms. The HAL is a key part of making this portability possible. The HAL is
aloadable kernel-mode module (HAL.DLL) that provides the low-level inter-
face to the hardware platform on which Windows NT is running. It hides
hardware-dependent details such as I/O interfaces, interrupt controllers, and
multiprocessor communication mechanisms—any functions that are architec-
ture-specific and machine-dependent.

So rather than access hardware directly, Windows NT internal compo-
nents as well as user-written device drivers maintain portability by calling the
HAL routines when they need platform-dependent information. For this rea-
son, the HAL routines are documented in the Windows NT DDK. To find out
more about the HAL and its use by device drivers, refer to the DDK.

Although there are many HALs on the Windows NT distribution media
(look for HAL*.DLL), only one is chosen at installation time and copied to the
system disk with the filename HAL.DLL. (Other operating systems, such as
VMS, select the equivalent of the HAL at system boot time.) For HALs needed
to support newer platforms that were not included on the Windows NT CD-
ROM, the manufacturer can supply the HAL with the system.

63

INSIDE WINDOWS NT

[—
EXPERIMENT: List the HALs : W
- on Your Windows NT CD-ROM A
To see the list of HALs and their correspondmg sidckine type, run the .
o Uniprocessor to Multxprocessor Upgrade utility in the Windows NT
- Resource Kit (UPTOMP. EXE). This utility will copy the multlproces-- o
* sor version of the operating system image (NTKRNLMP EXE) to the-
\winnt\system32 directory, replacing the uniprocessor version (NTOS-
KRNL. EXE) (Note that the file is still called NTOSKRNL. EXEonthe
system disk.) Tt will also copy the approprzate HAL for the hardware -
- platform.
: To run the uuhty, set your defzmlt d1rectory to: thf: Rcsourc:e Kit and .
- type cputomp. The ut111ty looks for the Windows NT Workstation or
: Wmdows NT Server CD-ROM in the location you installed from (in -
- this case, 2 local CD-ROM). If your dlstrlbutmn medla 1s accessﬂ)Ie you
' should see a dlalog box hke thls

 Tosee the list of HALS, click the HAL To Install drop-down list box.

Device Drivers

64

Although device drivers are explained in detail in Chapter 6, this section pro-
vides a brief overview of the types of drivers and explains how to list the driv-
ers installed and loaded on your system.

Device drivers are loadable kernel-mode modules (typically ending in .SYS)
that interface between the I/O system and the relevant hardware. As stated in
the preceding section, device drivers on Windows NT don’t manipulate hardware

TWO: System Architecture

directly, but rather they call parts of the HAL to interface with the hardware.

Drivers are typically written in C (sometimes C++) and therefore, with proper

use of HAL routines, can be source code portable across the CPU architectures

supported by Windows NT and binary portable within an architecture family.
There are several types of device drivers:

® Hardware device drivers manipulate hardware (using the HAL) to write
output to or retrieve input from a physical device or network.

B File system drivers are Windows NT drivers that accept file-oriented
I/O requests and translate them into I/O requests bound for a par-
ticular device.

B Filter drivers, such as those that perform disk mirroring and encryp-
tion, intercept I/Os and perform some added-value processing be-
fore passing the I/O to the next layer.

B Network redirectors and servers are file system drivers that transmit re-
mote I/O requests to a machine on the network and receive such
requests, respectively.

Because installing a device driver is the only way to add user-written ker-
nel-mode code to the system, some programmers have written device drivers
simply as a way to access internal operating system functions or data structures
that are not accessible from user mode. For example, many of the utilities on
www.ntinternals.com combine a Win32 GUI image and a device driver that is
used to gather internal system state not accessible from the Win32 API.

You can list the installed drivers by going to Control Panel and clicking
the Devices icon. This displays the list of device drivers defined in the regis-
try. Device drivers and Win32 service processes are both defined in the same
place: HKLM\System\CurrentControlSet\Services. However, they are distin-
guished by a type code—type 1 is a kernel-mode device driver, and type 2is a
file system driver. For further details on the information stored in the regis-

~ try for device drivers, see the Registry Entries help file (REGENTRY.HLP) in
the Windows NT Resource Kit under the main chapter heading “CurrentControl-
Set\Services Subkeys.”

You can also list the currently loaded device drivers with the Drivers utility
(DRIVERS.EXE in the Windows NT Resource Kit) or the Pstat utility (shipped
in the Windows NT Resource Kit as well as in the \support\debug directory on
a Windows NT CD-ROM). The output at the top of the next page comes from
the Drivers utility.

65

INSIDE WINDOWS NT

C:\>drivers
ModuleName Code Data Bss Paged Init LinkDate
ntoskrnl.exe 282816 42112 435392 84352 Sun May 11 00:11:27 1997
hal.d11 24992 4224 9920 21120 Mon Mar 10 16:40:06 1997
atapi.sys 20736 1088 0 768 Thu Apr 10 15:06:59 1997

SCSIPORT.SYS 9824 32 15552 2208 Mon Mar 10 16:42:27 1997
cpq32fs2.sys 62080 288 0 640 Tue Aug 13 02:19:00 1996
Disk.sys 3328 0 7072 1600 Thu Apr 24 22:27:46 1997

0
0
0
0
0
0
CLASS2.SYS 7040 0 0 1632 1152 Thu Apr 24 22:23:43 1997

Ntfs.sys 68160 5408 0 269632 8704 Thu Apr 17 22:02:31 1997
Floppy.SYS 1088 672 0 7968 6112 Wed Jul 17 00:31:09 1996
Cdrom.SYS 12608 32 0 3072 3104 Wed Jul 17 00:31:29 1996
Nul1.SYS 0 0 0 288 416 Wed Jul 17 00:31:21 1996
KSecDD.SYS 1280 224 0 3456 1024 Wed Jul 17 20:34:19 1996
Beep.SYS. 1184 0 0 0 704 Wed Apr 23 15:19:43 1997
auddrive.SYS 15296 320 0 17632 11008 Wed Sep 04 17:09:02 1996

Total 2540928 219552 0 1689184 320736

Each loaded kernel-mode component (NTOSKRNL, the HAL, as well as
device drivers) is shown, along with the sizes of the sections in each image. (The
meaning of these sizes is explained in Chapter 5 in the experiment “Account-
ing for Physical Memory” on page 288.)

The Pstat utility also shows the loaded driver list, but only after it first
displays the process list and the threads in each process. Pstat includes one
important piece of information that the Drivers utility doesn’t: the load address
of the module in system space. As I’ll explain later, this address is crucial to
mapping running system threads to the device driver in which they exist.

Device drivers run in one of three contexts:

B In the context of the user thread that initiated an I/0 function

B In the context of a kernel-mode system thread

B As a result of an interrupt (called arbitrary thread context)
Interrupt processing is explained in Chapter 3. Further details about the

I/0 system, including the flow of control of an I/O request, are included in
Chapter 7.

Peering into Undocumented Interfaces

Just examining the names of the exported or global symbols in key system
images (such as NTOSKRNL.EXE, HAL.DLL, or NTDLL.DLL) can be very
enlightening—you can get an idea of the kinds of things Windows NT can do

66

TWO: System Architecture

versus what happens to be documented and supported today. Of course, just
because you know the names of these functions doesn’t mean that you can or
should call them—the interfaces are undocumented and are subject to change.
I suggest that you look at these functions purely to gain more insight into the
kinds of internal functions Windows NT performs, not to bypass supported
interfaces.

For example, looking at the list of functions in NTDLL.DLL gives you the
list of all the system services that Windows N'T provides to user-mode subsystem
DLLs vs. the subset that each subsystem exposes. Although many of these func-
tions map clearly to documented and supported Win32 functions, several are not
exposed via the Win32 API. Conversely, it’s also interesting to examine the
imports of Win32 subsystem DLLs (such as KERNEL32.DLL or ADVAPI32.DLL)
and which functions they call in NTDLL. Table 2-4 lists most of the commonly
used function name prefixes in alphabetical order.

Table 2-4 Commonly Used Prefixes

Prefix Component

Cc Cache manager

Ex Executive support routines

FsRil File system driver run-time library

Hal Hardware abstraction layer

Io I/0 system

Ke Kernel

Lsa Local security authentication

Mm Memory manager

Nt Windows NT system services (most of which are exported as
Win32 functions)

Ob Object manager

Ps Process support

Rtl Run-time library

Se Security

Zw Mirror entry point for functions beginning with N that assume

the previous caller was in kernel mode

Another interesting image to dump is NTOSKRNL.EXE—although many
of the exported routines used by kernel-mode device drivers are documented
in the Windows NT DDK, quite a few are not. You might also find it interesting

67

INSIDE WINDOWS NT

' EXPERIMENT- Listing Undocumented Functions |

You can dump the exportand i 1mport tabk:s of : ammage in several Way

" The easiest way is to use the builtin qmck viewer for i images in Win-

“dows NT Explorer. Just select the i lmage, nght mouse chck, and select

- Quick View from the pop-up menu. ... v

- The followmg outputis an excerpt from domg a qmck Viaw on. thc‘ .

‘Windows NT 4.0 Service Pack 3 version of NTOSKRNL. EXE As indi-
cated here, there are 0x3F6. (1014) exported funcnons '

Export Table

Mame: ntoskrnl.exe
Characteristics: 00000000
Time Date Stamp: 337546b5
Version: 0.00
Base: 00000001 N
Number of Functions: 0000036 e
Number of Names: 0000036 ;

Ordinal Entry Point Name

0022 0003be70 CcCanlWrite

0023 0003beal CcCopyRead

0024 0003bfd0 CcCopyWrite

0025 0003bf20 CcDefervrite

0026 0003bfa4 CcFastCopyRead

0027 0003be8c CcFastCopyWrite

0028 00008b74 CcFastMdiReadWait

0023 0003beaB CcFastReadNotPossible -

002a 0003beb4 CcFastReadWait
0003becc

Another tool to examine e the exports and i nnports of i unages is the 2y
Dependency Walker (DEPENDS. EXE), which i is contained in the Win-'
dows NT Server Resource Kit (Supplement 2 or later) and the Platform

- SDK. To use the Dependency Walker to examine an image; select the - -
file in Windows NT Explorer, rlght mouse chck, and select View. De- - :
pendencies in the pop-up menu. Or you can run it directly by runnmg ,

- DEPENDS.EXE in the Windows NT Resource Kit directory; orif you
have the Platform SDK installed, from the Start menu, choose Pro-- :

~ grams and then se]ect Platform SDK Tools, Depends L

68

TWO: System Architecture

. Here is a sample of output you can see by viewing the dependen-
‘cxes of NTOSKRNL usmg this tool:

.| NTOSKRNL.EXE

[{] [(i] cquireF astMutexUnsafe
2 (0x0002) 77 (0s004D) ExinterlockedAddLargeStatistic
3 (0=0003) 79 [0x004F) ExlnterlockedCompareE xchange64
4 (0x0004) 87 (0x0057) ExinterlockedPopEntrySList
5 (0x0005) 89 (0x0059) ExinterlockedPushEntiySList

{0 | :00p ¥ ntel ative o X k
“JE3) NTOSKRNL.EXE | 04/30/97 11:00p | 914,688 | A Intel x86 Native 0x801000

For more mformatlon on how to use thIS tool, see the Dependency
i ;aiker help file (DEPENDS HLP)

to take a look at the import table for NTOSKRNL and the HAL; this table
shows the list of functions in the HAL that NTOSKRNL uses and vice versa.

You can decipher the names of these exported functions more easily if
you understand the naming convention for Windows NT system routines. The
general format is:

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Opera-
tion tells what is being done to the object or resource, and Object identifies what
is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to
allocate from paged or nonpaged pool. KelnitializeThread is the routine that
allocates and sets up a kernel thread object.

69

INSIDE WINDOWS NT

System Processes

The following system processes appear on every Windows NT system. (Two of
these—Idle and System—don’t have a user-mode address space.)

® Idle process (contains one thread per CPU to account for idle CPU
time)

B System process (contains the kernel-mode system threads)

B Session manager (SMSS.EXE)

Win32 subsystem (CGSRSS.EXE)

i Logon process (WINLOGIN.EXE)

® Local security authentication server (LSASS.EXE)

70

Service controller (SERVICES.EXE) and its associated service

processes

To help you understand the relationship of these processes, use the Win-
dows NT Resource Kit ¢list /t command to display the process “tree,” that is, the
parent/child relationship between processes. Here is some annotated output

from tlist /&

C:\>tlist /t

System Process (0)
System (2)

smss.exe (20)

csrss.exe (30)
WINLOGON.EXE (34)
SERVICES.EXE (40)
SPOOLSS.EXE (65)
RPCSS.EXE (80)
NETDDE.EXE (194)
LSASS.EXE (43)

EXPLORER.EXE (87)
CMD.EXE (156)

TLIST.EXE (174)

Idle process

Home for kernel-mode system threads
Session manager

Win32 subsystem

Logon process

Service controller

Spooler service

RPC services

Network DDE service

Local security authentication server
Shell (parent of user process tree)
Process from which tlist was launched
Process running tlist producing this output

The next sections explain the key system processes shown in this output.

Idle Process

Despite the name shown, the first process listed in the preceding sample tlist /¢
output (process ID 0) is actually the System Idle process. As explained in Chap-
ter 4, processes are identified by their image name. However, this process (as

TWO: System Architecture

well as process ID 2, named System) is not running real user-mode images.
Hence, the names shown by the various system display utilities are hard-coded
text values that differ from utility to utility. Although most utilities call process
ID 2 System, not all do. Table 2-5 lists several of the names given to the Idle
process. (The Idle process is explained in detail in Chapter 4.)

Table 2-5 Names for Process ID 0 in Various Utilities

Utility Name for Process ID O
Task Manager System Idle process
Process Viewer (PVIEWER.EXE) Idle process

Process Status (PSTAT.EXE) Idle process

Process Exploder (PVIEW.EXE) System process

Task List (TLIST.EXE) System process

Quick Slice (QSLICE.EXE) System process

Now let’s look at system threads and the purpose of each of the system
processes that are running real images.

System Process and System Threads
The System process (always process ID 2) is the home for a special kind of
thread that runs only in kernel mode: a system thread. System threads have all
the attributes and contexts of regular user-mode threads (such as a hardware
context, priority, and so on) but are different in that they run only in kernel-
mode executing code loaded in system space, whether that be in NTOS-
KRNL.EXE or in any other loaded device driver. In addition, system threads
don’t have a user process address space and hence must allocate any dynamic
storage from operating system memory heaps, such as paged or nonpaged pool.
System threads are created by the PsCreateSystemThread function (docu-
mented in the DDK), which can be called only from kernel mode. Windows NT
as well as various device drivers create system threads during system initializa-
tion to perform operations that require thread context, such as issuing and
waiting for I/Os or other objects or polling a device.

71

INSIDE WINDOWS NT

!D

o

72

. EXPERIMENT. Examlmng the System Process

Yo ean see that the threads inside the System process must bekernel
- mode system threads because the start address for each thread isgreater
- than the start address of system space (which on most Windows NT
systems’ begms at 0x80000000). Also, if you look at the CPU time for
these ‘threads, youw'll see that those that have any GPU ume have run
"only in kernel mode ’ «

For example, the memory manager uses system threads to implement
such functions as writing dirty pages to the page file or mapped files, swapping
processes in and out of memory, and so forth. The kernel creates a system
thread called the balance set manager that wakes up once per second to check
and possibly initiate various scheduling and memory management-related
events. The cache manager also uses system threads to implement both read-
ahead and write-behind 1/Os. The file server device driver (SRV.SYS) uses
system threads to respond to network I/O requests for file data. Even the floppy
driver has a system thread to poll the floppy device. Further information on
specific system threads is included in the chapters in which the component is
described.

When you’re troubleshooting or going through a system analysis, it’s use-
ful to be able to map the execution of individual system threads back to the
driver or even to the subroutine that contains the code. For example, on a
heavily loaded file server, the System process will likely be consuming consid-
erable CPU time. But the knowledge that when the System process is running
“some system thread” is running isn’t enough to determine which device driver
or operating system component is running.

So if the System process is running, look at the execution of the threads
within that process (for example, with Performance Monitor). Once you find
the thread (or threads) that is running, get the start address of the thread (for
example, with Process Viewer, Pstat, or Tlist utility). Then, using the system
memory map displayed at the end of the output from the Pstat utility, you can
determine which system component contains the system thread that is running.
The detailed steps in the following experiment describe exactly how you can
map a system thread to a device driver.

TWO: System Architecture

EXPERIMENT: Mapping a

System Thread to a Device Driver

In this experiment, we'll find the Raw Mouse Input thread, a system
thread in the Win32 subsystem that determines which threads should
be notified of mouse movements and events. To cause this system

_thread to run, smlply move the mouse back and forth rapidly while
monitoring process CPU- time (using Task Manager, Performance
Monitor, or the Windows NT Resource Kit Qshce uuhty), and notice e
that the System process runs for a short period. As mentioned earlier, -
~ however; this indicates that s some system thread is running but not the
- specific driver that the system thread resides in. The following steps
_show how to go down to the thread granularity to find out which driver -

contams the thread that is runmng

1. Run Performance Momtor, chck Add Counter (or type Ctri-l),
select the thread object, and then select the % Processor Time

counter: (or % Privileged Time—the value would be identical).

2. Go to the Instance box, and select all the threads in the Sys-

- tem process. Do this by scrollmg down in the Instance box to
“the process named System, selecting the first thread (thread

» 0), and Whﬂe holdlng the mouse down, scroll down until the
~'process name changes. You should see 4s,0meth1ng like this:

i Add to Chart

(continued)

73

INSIDE WINDOWS NT

74

EXPERIMENT: Mapping a System Thread to a Device Driver continued

s,

9.
10.

‘Scroll through the counters to identify a thread that was .runa-
‘ning when you moved the mouse. ' :

“lect this thread by clicking on it with the mouse, as shown here:

Chck Add, and then move the mouse rapldly back- zmd forth
until you see one or two of the system’ threads runmng in Pe:
formance Monitor’s display.

Type Cirl- H to turn on highlighting mode. (This hlghhghts
the currently selected counter in white.)

Notice the relative thread number in the 1nstance column on/- ;-
the bottom of Performance Monitor’s graph window. . -

Now run Process Viewer (PVIEWER.EXE in the Windows NT Rie
Resource Kit or PVIEW.EXE in the Platform SDK or in Visual
C++), and select the System process (process ID 2). '

Scroll through the list of threads until you find the thread with 5
the same relative thread number you obtained in step 5. Se-- -

sy:llay [Dx?f]
TASKMGR [(0x8a)

0:00:26. 593
0:00:26.937
0:00:00.000
0:00:00.046

Notice that the staft address for thread 19~is Oxa00acefe.

Run Pstat, and find the driver that has the start and end ad-
dress containing the start address of the thread in question.
In the following partial output, notice that WINS2K.SYS starts
at 0xa0000000 and continues for 1,162,624 bytes (Oxllb‘dS‘O). ’

TWO: System Architecture

ModuleName Load Addr Code Data Paged LinkDate

ntoskrnl.exe 80100000 282816 42112 435392 Sat May 10 21:11:27 1997

hal.d11 80001000 24992 4224 9920 Mon Mar 10 13:40:06 1997
atapi.sys 80012000 20736 1088 0 Thu Apr 10 12:06:59 1997
win32k.sys a0000000 1162624 40064 @ Fri Apr 25 18:17:32 1997

Therefore, the ending address would be 0xa011bd80, and the thread
in question clearly falls within this range. .

If the address falls within NTOSKRNL.EXE, you can determine
the name of the specific subroutine by looking it up in the list of global
symbols contained in the associated symbol table file NTOSKRNL.DBG.
The easiest way to generate the list of global symbols in NTOSKRNL
is to start the kernel debugger (either by connecting to a live system
or by opening a crash dump file) and typing the x * command in the
kernel debugger with just NTOSKRNL.DBG loaded. Before typing x *,
use the flogopen command to create a log file of your kernel-debugging

_session. That way, you can save the output in a file and then search for
the addresses in question. You can also use the Visual C++ Dumpbin
utility (type dumpbin /symbols ntoskrnl.dbg), but you then have to search
for the address minus the base address of NTOSKRNL, since only the
offsets are listed.

Session Manager (SMSS)

The session manager (SMSS.EXE) is the first user-mode process created in the
system. A kernel-mode system thread running the routine ExInitializeSystem
creates the actual SMSS process. Besides performing a number of key system
initialization steps, the session manager acts as a switch and monitor between
applications and debuggers.

Much of the configuration information in the registry that drives the
initialization steps of SMSS can be found under \System.. \Control\Session
Manager. You'll find it interesting to examine the kinds of data stored there.
(For a description of the keys and values, see the Registry Entries help file,
REGENTRY.HLP, in the Windows NT Resource Kit.)

75

INSIDE WINDOWS NT

76

The following is a list of the initialization steps performed by the main
thread of SMSS:

1. Creates an LPC port object (\SmApiPort) and two threads to wait for
client requests (such as to load a new subsystem or create a session).

2. Creates system environment variables.

3. Defines the symbolic links for MS-DOS device names (such as COM1
and LPT1).

4. Creates additional paging files.

5. Opens known DLLs (so that the pages can be reused even if no user
processes are active).

6. Loads the kernel-mode part of the Win32 subsystem (WIN32K.SYS).

7. Starts the subsystem processes. (As noted earlier, the POSIX and
OS/2 subsystems are defined to start on demand.)

8. Starts the logon process (WINLOGON).

9. Creates LPC ports for debug event messages (DbgSsApiPort and
DbgUiApiPort) and threads to listen on those ports.

After performing these initialization steps, the main thread in SMSS waits
forever on the process handles to CSRSS and WINLOGON. If either of these
processes terminates unexpectedly, SMSS crashes the system, since Windows
NT relies on their existence.

Of course, the other threads inside SMSS are responding to messages sent
to the LPC ports listed above, such as requests to load subsystems, new sub-
systems starting up, and debug events.

Logon (WINLOGON)

The Windows NT logon process, WINLOGON, handles interactive user logons
and logoffs. WINLOGON is notified of a user logon request when the secure
attention sequence (SAS) keystroke combination is entered. The default SAS on
Windows NT is the combination Ctrl-Alt-Delete. The reason for the SAS is to
protect users from password-capture programs that simulate the logon process.
Once the username and password have been captured, they are sent to the local
security authentication server process (described in the next section) to be
validated. If they match, a process named USERINIT.EXE is created. This
process then looks in the registry and creates the system-defined shell (by
default, EXPLORER.EXE). Then USERINIT exits. This is the reason

TWO: System Architecture

EXPLORER is shown with no parent—its parent has died, and as explained
earlier, Tlist left-justifies processes whose parent is not running. (In reality,
EXPLORER is the grandchild of WINLOGON.)

The identification and authentication aspects of the logon process are
implemented in a replaceable DLL named GINA (Graphical Identification and
Authentication). The standard Windows NT GINA DLL, MSGINA.DLL, imple-
ments the default Windows NT logon interface. However, developers can pro-
vide their own GINA DLL to implement other identification and authentication
mechanisms in place of the standard Windows NT username/password method.
In addition, WINLOGON can load additional network provider DLLs that need
to perform secondary authentication. This capability allows multiple network
providers to gather identification and authentication information all at one
time during normal logon.

WINLOGON is active not only durlng user logon and logoff but also
whenever it intercepts the SAS from the keyboard. For example, when you press
Ctrl-Alt-Delete while logged in, the Windows N'T Security dialog box comes up,
providing the options to log off, start the Task Manager, lock the workstation,
shut down the system, and so forth. WINLOGON is the process that handles
this interaction. :

Local Security Authentication Server (LSASS)
The local security authentication server process receives authentication re-
quests from WINLOGON and calls the appropriate authentication package
(implemented as a DLL) to perform the actual verification, such as checking
whether a password matches what is stored in the SAM (the part of the regis-
try that contains the definition of the users and groups).

Upon a successful authentication, LSASS generates an access token ob-
ject that contains the user’s security profile. WINLOGON then uses this access
token to create the initial shell process. Processes launched from the shell then
by default inherit this access token.

For more details about security authentication and authentication pack-
ages, check out the DDK help file LSAAUTH.HLP. '

Service Controller (SERVICES)

Recall from earlier in the chapter that “services” on Windows NT can refer
either to a server process or to a device driver. This section deals with services
that are user-mode processes. Services are like UNIX “daemon processes” or
VMS “detached processes” in that they can be configured to start automatically
at system boot time without requiring an interactive logon. They can also be

77

INSIDE WINDOWS NT

78

started manually (such as by the Control Panel Services applet or by calling the
Win32 StartService function).

Service programs are really just Win32 images that call special Win32
functions to interact with the service controller, such as registering their suc-
cessful startup, responding to status requests, or pausing or shutting down the
service. For information on building services, see the technical articles as well
as the sample code in MSDN Library.

A number of Windows NT components are implemented as services, such
as the spooler, event log, support for RPCs, and various other networking compo-
nents. You can list the installed services by running Control Panel and click-
ing the Services icon or by using the Windows NT Resource Kit Netsvc utility.
Services are defined in the registry under HKLM\System\CurrentControlSet
\Services. The Resource Kit registry Entries help file (REGENTRY.HLP) docu-
ments the subkeys and values for services.

Services are started and stopped by the service controller, a special sys-
tem process running the image SERVICES.EXE that is responsible for start-
ing, stopping, and interacting with service processes. As mentioned earlier,
using the tlist /t command makes it easy to see which of the processes are ser-
vice processes. As shown in the following code, the processes underneath
SERVICES.EXE are service processes:

WINLOGON.EXE (34) =———————— Logon process
SERVICES.EXE (40) Service controller
SPOOLSS.EXE (65) Spooler service
RPCSS.EXE (80) ——— RPC services
NETDDE.EXE (194) Network DDE service

Keep in mind that services have three names: the process name you see

" running on the system, the internal name in the registry, and the display name

shown in Control Panel and in other utilities. (Not all services have a display
name—if a service doesn’t have a display name, the internal name is shown.)
So, to map a service process you see running back to the actual service that is
started, search the registry for the image name and you’ll find the service that
is defined to run that image. '

There isn’t always one-to-one mapping between service process and run-
ning services, however, because some services share a process with other ser-
vices. In the registry, the type code indicates whether the service runs in its own
process or shares a process with other services in the image. But at least you
can get some idea of the services that might be running inside that process.

TWO: System Architecture

Conclusion

In this chapter, we’ve taken a broad look at the overall system architecture of
Windows NT. We’ve examined the key components of Windows NT and seen
how they interrelate. In the next chapter, we’ll look in more detail at the core
system mechanisms that these components are built on, such as the object

manager and various synchronization objects.

79

CHAPTEHR T HREE

System Mechanisms

_ Microsoft Windows NT provides several base mechanisms that kernel-mode
components such as the executive, the kernel, and device drivers use. This chap-
ter explains the following system mechanisms and describes how they are used:

Trap dispatching, including interrupts, deferred procedure calls
(DPCs), asynchronous procedure calls (APCs), exception dispatch-
ing, and system service dispatching

The executive object manager (briefly introduced in Chapter 1)

B Synchronization, including spinlocks, kernel dispatcher objects, and
how waits are implemented

B Miscellaneous mechanisms such as Windows NT global flags

Local procedure calls (LPCs)

Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the pro-
cessor to code outside the normal flow of control. Either hardware or software
can detect them. The term trap refers to a processor’s mechanism for capturing
an executing thread when an exception or an interrupt occurs, switching it
from user mode into kernel mode, and transferring control to a fixed location
in the operating system. In Windows NT, the processor transfers control to the
kernel’s trap handler, a module that acts as a switchboard, fielding exceptions
and interrupts detected by the processor and transferring control to code that
handles the condition. Figure 3-1 on the following page illustrates some of the
conditions that activate the trap handler and the modules the trap handler calls
to service them.

81

INSIDE WINDOWS NT

Interrupt
service
Interrupt routines
INtSrrUPt memp- | — — dispatcr’l)er
System
System service Call mmmyp-| — - 4 service System
dispatcher services
Hardware exceptions — | = - = = - - - - e (Exception
Software exceptions frame) s Exception Exception
dispatcher handlers
Virtual address mmgp (- — = = = = = = — -
exceptions
\ Virtual memory
manager’s

Trap handler

pager

Figure 3-1
Trap dispatching

82

The kernel distinguishes between interrupts and exceptions in the fol-
lowing way. An interrupt is an asynchronous event (one that can occur at any
time) that is unrelated to what the processor is executing. Interrupts are gen-
erated primarily by I/O devices, processor clocks, or timers, and they can be
enabled (turned on) or disabled (turned off). An exception, in contrast, is a
synchronous condition that results from the execution of a particular instruc-
tion. Running the same program with the same data under the same condi-
tions can reproduce exceptions. Examples of exceptions include memory access
violations, certain debugger instructions, and divide-by-zero errors. The ker-
nel also regards system service calls as exceptions (although technically they’re
system traps).

Either hardware or software can generate exceptions and interrupts. For
example, a bus error exception is caused by a hardware problem, whereas a
divide-by-zero exception is the result of a software bug. Likewise, an 1/O de-
vice can generate an interrupt, or the kernel itself can issue a software inter-
rupt (such as an APC or DPC, described later in this section).

When invoked, the trap handler disables interrupts briefly while it records
the machine state (information that would be wiped out if another interrupt
or exception occurred). It creates a trap framein which it stores the execution
state of the interrupted thread. This information allows the kernel to resume

THREE: System Mechanisms

execution of the thread after handling the interrupt or the exception. The trap
frame is usually a subset of a thread’s complete context. (Thread context is
described in Chapter 4.)

The trap handler resolves some problems (such as some virtual address
exceptions) itself, but in most cases, it determines the condition that occurred
and transfers control to other kernel or executive modules. For example, if
the condition was a device interrupt, the kernel transfers control to the inter-
rupt service routine (ISR) that the device driver provided for the interrupting
device. If the condition was caused by a call to a system service, the trap handler
transfers control to the system service code in the executive. The remaining
exceptions are fielded by the kernel’s own exception dispatcher. The follow-
ing sections describe interrupt, exception, and system service dispatching in
greater detail.

Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must
notify the processor when they need service. Interrupt-driven devices allow the
operating system to get the maximum use out of the processor by overlapping
central processing with I/O operations. The processor starts an 1/O transfer
to or from a device and then executes other threads while the device completes
the transfer. When the device is finished, it interrupts the processor for service.
Pointing devices, printers, keyboards, disk drives, and network cards are gen-
erally interrupt driven.

System software can also generate interrupts. For example, the kernel can
issue a software interrupt to initiate thread dispatching and to asynchronously
break into the execution of a thread. The kernel can also disable interrupts
so that the processor isn’t interrupted, but it does so only infrequently—at
critical moments while it’s processing an interrupt or dispatching an exception,
for example.

A submodule of the kernel’s trap handler, called the interrupt dispatcher,
responds to interrupts. It determines the source of an interrupt and transfers
control either to an external routine (the ISR) that handles the interrupt or
to an internal kernel routine that responds to the interrupt. Device drivers
supply ISRs to service device interrupts, and the kernel provides interrupt
handling routines for other types of interrupts.

In the following subsections, you’ll find out about the types of interrupts
the kernel supports, the way device drivers interact with the kernel (as a part
of interrupt processing), and the software interrupts the kernel recognizes
(plus the kernel objects that are used to implement them).

83

INSIDE WINDOWS NT

84

Interrupt Types and Priorities

Different processors are capable of recognizing different numbers and types
of interrupts. The interrupt dispatcher maps hardware-interrupt levels onto a
standard set of interrupt request levels (IRQLs) recognized by the operating system.

IRQL priority levels have a completely different meaning than thread-
scheduling priorities (which are described in Chapter 4). A scheduling prior-
ity is an attribute of a thread, whereas an IRQL is an attribute of an interrupt
source, such as a keyboard or a mouse. In addition, each processor has an IRQL
setting that changes as operating system code executes.

The kernel defines a set of portable IRQLSs, which it can augment if a
processor has special interrupt-related features (a second clock, for example).
These IRQL levels are not the same as interrupt requests (IRQs) on an x86
system—the x86 architecture doesn’t implement the concept of IRQLs in hard-
ware (Alpha does). IRQLs rank interrupts by priority. Interrupts are serviced
in priority order, and a higher-priority interrupt preempts the servicing of a
lower-priority interrupt. Figure 3-2 shows the mapping of the portable IRQLSs
to the Alpha and %86 architectures.

The IRQLs from high level down through device level are reserved for
hardware interrupts. Dispatch/DPC-level and APC-level interrupts are soft-
ware interrupts that the kernel and device drivers generate. (DPCs and APCs

x86
31| " High N
30| - Powerfall - -

29 | - Interprocessor interrupt

Alpha

. 28| . Clock

7 High e | _ Profile)

- : _— — Hardware interrupts
6| - Interprocessor interrupt : Device'n ’
5[. Clock - |
4l Devicehigh | e
3 Device: -
2

— Software interrupts

Normal thread execution

Figure 3-2
Interrupt request levels (IRQLs)

THREE: System Mechanisms

are explained in more detail later in the chapter.) The low IRQL (also called
passive level) isn’t really an interrupt level at all; it’s the setting at which nor-
mal thread execution takes place and all interrupts are allowed to occur.

Each processor’s IRQL setting determines which interrupts that proces-
sor can receive. IRQLs are also used to synchronize access to kernel-mode data
structures. (You’ll find out more about synchronization later in the chapter.)
As a kernel-mode thread runs, it raises or lowers the processor’s IRQL. As
Figure 3-3 illustrates, interrupts from a source with an IRQL above the current
setting interrupt the processor, whereas interrupts from sources with IRQLs
equal to or below the current level are blocked, or masked, until an executing
thread lowers the IRQL.

IRQL setting
- High
. Power-
Processor A T—— ;
Interprocessor niotification
IRQL = Clock | ==3»— T Giock
- Device n :
Interrupts masked on — v L ol
Processor A ' Processor B
Device 1,
<€—| IRQL = Dispatch/DPC
Interrupts masked on
Processor B
Figure 3-3
Masking interrupts

A kernel-mode thread raises and lowers the IRQL of the processor on which
it is running, depending on what it’s trying to do. For example, when an inter-
rupt occurs, the trap handler (or perhaps the processor) raises the processor’s
IRQL to the assigned IRQL of the interrupt source. This elevation blocks all
interrupts at and below that IRQL (on that processor only), which ensures that
the processor servicing the interrupt is not waylaid by an interrupt at the same
or alower level. The masked interrupts are either handled by another processor
or held back until the IRQL drops. Because changing a processor’s IRQL has
such a significant effect on system operation, the change can be made only in
kernel mode—user-mode threads can’t change the processor’s IRQL.

85

INSIDE WINDOWS NT

86

Each interrupt level has a specific purpose. For example, the kernel is-
sues an interprocessor interrupt in order to request that another processor
perform an action, such as dispatching a particular thread for execution or
updating its translation look-aside buffer cache. The system clock generates
an interrupt at regular intervals, and the kernel responds by updating the clock
and measuring thread execution time. If a hardware platform supports two
clocks, the kernel adds another clock interrupt level to measure performance.
The HAL provides a number of interrupt levels for use by interrupt-driven
devices; the exact number varies with the processor and system configuration.
The kernel uses software interrupts (described later in this chapter) to initiate
thread scheduling and to asynchronously break into a thread’s execution.

Interrupt Processing
When an interrupt oceurs, the trap handler saves the machine’s state and then
calls the interrupt dispatcher with interrupts disabled. The interrupt dispatcher
immediately raises the processor’s IRQL to the level of the interrupt source to
mask interrupts at and below that level while interrupt servicing is in progress.
It then reenables interrupts so that higher-priority interrupts can still be serviced.
Windows NT uses an interrupt dispatch table (IDT) to locate the routine
that will handle a particular interrupt. The IRQL of the interrupting source
serves as a table index, and table entries point to the interrupt-handling rou-
tines, as shown in Figure 3-4.
~ On %86 systems, the IDT is a hardware structure pointed to by the pro-
cessor control region (PCR), whereas on Alpha systems, the IDT is a software
structure filled in at system initialization. The PCR and its extension the pro-
cessor control block (PRCB) contain information about the state of each pro-
cessor in the system. The kernel and the hardware abstraction layer (HAL) use
this information to perform architecture-specific and machine-specific actions.
The structures include such information as the currently running thread, the
next thread selected to run, the interrupt level of the processor, and so forth.
On Alpha systems, the PCR includes information on the version of the PAL-
code (“Privileged Architecture Library”—the Alpha operating system—specific
support code that is similar to BIOS libraries), the sizes of the various proces-
sor caches, the address of the machine check handler, and so forth. The PCR
and PRCB structures are defined publicly in the Windows NT Device Driver
Kit (DDK) header file ntddk.h, so you can examine that file for a complete
definition of these structures.

THREE: System Mechanisms

Interrupt dispatch

table (IDT)
High G- System shutdown routine
(D An interrupt occurs. Power @=————t—3p System power-down routine
. IP1 @=mmmentep- Interprocessor interrupt handler
Clock @ty Clock handler
Device n —-—) Device n ISR
® The interrupt dispatcher
retrieves the IRQL of the @ The interrupt dispatcher
interrupt source and indexes . [follows the pointer and calls
into the IDT. : i the correct handling routine.
k_) Device 1 . 3 Device 1 ISR
Dispatch/DPC ——) Thread dispatcher/DPC handler
APC @———t=3 APC handler
Low @iy (NONE)
Figure 3-4

Servicing an interrupt

On x86 systems, external I/O interrupts actually come into one of the
lines on an interrupt controller. The controller in turn interrupts the proces-
sor on a single line. Once the processor is interrupted, it queries the control-
ler to get the interrupt vector. The processor uses this vector to index into the
hardware IDT and to transfer control to the appropriate interrupt dispatch
routine. Although the x86 architecture can support up to 256 interrupt lines,
the number of lines a particular machine can support is determined by the
design of the interrupt controller the machine uses. Most x86 PCs have inter-
rupt controllers that use 16 interrupt lines.

On Alpha systems, when an interrupt occurs, PALcode determines the
vector at which the interrupt occurred. The PALcode makes this determina-
tion in a processor-specific manner using system-specific information from the
HAL. The PALcode also disables interrupts appropriately so that it can pass
control to the kernel. Once the PALcode has determined the vector at which
the interrupt occurred and disabled further interrupts, it calls the kernel,
passing the vector. The kernel uses this vector to index into the IDT and jump
to the appropriate interrupt dispatch routine.

87

INSIDE WINDOWS NT

88

EXPERIMENT Viewing the Processor Control Reglon

 You can view the contents of the PCR with the kernel dﬁbugger using
. the {pmcommand The following example is from an %86 system. (You
. ‘won’t be able to view the PRCB on an ¥86 system because the kernel
- debugger doesn’t have a (pmb command you can, however, view the
PRCB on an Alpha system.) -

> tper
PCR Prccesser 9 @ffdff@@@
U NtTib.ExceptionList: v8914896c
CNtTib.StackBase: 80148c50
NETib.StackLimit: 80145cce
NtTib.SubSystemTib: 00000000
. NtTib.Version; 00000000
- NtTib.UserPointer:: 00000000
NETib. SelfTib eeaeeaeé

selfper: ffdffaﬁﬁ,/ 2
Preb: ffdffl2e- =
JTrql: 0000001c
JIRR: 00000004 - Do :
CIDR: FFFf28de - o Sl
InterruptMode, 00000000 Lo)
©IDT: 80036400 -
' "GDT: 80036000
- TSS: 80264000 .

CurrentThread: 8@1;45a80/
NextThread: 00000000
IdJeThread: 80145a80 - .

After the service routine executes, the interrupt dispatcher lowers the
processor’s IRQL to where it was before the interrupt occurred and then loads
the saved machine state. The interrupted thread resumes executing where it
left off. When the kernel lowers the IRQL, lower-priority interrupts that were
blocked might materialize. If this happens, the kernel repeats the process to
handle the new interrupt.

Each processor has a separate IDT so that different processors can run
different ISRs, if appropriate. For example, in a multiprocessor system, each
processor receives the clock interrupt, but only one processor updates the
system clock in response to this interrupt. All the processors, however, use the
interrupt to measure thread quantum and to initiate rescheduling when a

THREE: System Mechanisms

thread’s quantum ends. Similarly, some system configurations might require
that a particular processor handle certain device interrupts.

Most of the routines that handle interrupts reside in the kernel. The
kernel updates the clock time, for example, and shuts down the system when
a power-level interrupt occurs. External devices such as keyboards, pointing
devices, and disk drives, however, also generate many interrupts. Therefore,
device drivers need a way to tell the kernel which routine to call when a de-
vice interrupt occurs.

The kernel provides a portable mechanism—a kernel control object called
an interrupt object—that allows device drivers to register ISRs for their devices.
An interrupt object contains all the information the kernel needs to associate
a device ISR with a particular level of interrupt, including the address of the
ISR, the IRQL at which the device interrupts, and the entryin the kernel’s IDT
with which the ISR should be associated. When an interrupt object is initial-
ized, a few instructions of assembly language code, called the dispatch code, are
stored in the object. When an interrupt occurs, this code is executed. This
interrupt-object resident code calls the real interrupt dispatcher, passing it a
pointer to the interrupt object. The interrupt object contains information this
second dispatcher routine needs in order to locate and properly call the ISR
the device driver provides. This two-step process is required because there is
no way to pass a pointer to the interrupt object (or any other argument for that
matter) on the initial dispatch since the initial dispatch is done by hardware.

Associating an ISR with a particular level of interruptis called connecting
~ an interrupt object, and dissociating an ISR from an IDT entry is called discon-
necting an interrupt object. These operations, accomplished by calling a kernel
function, allow a device driver to “turn on” an ISR when the driver is loaded
into the system and to “turn off” the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from
fiddling directly with interrupt hardware (which differs among processor
architectures) and from needing to know any details about the IDT. This ker-
nel feature aids in creating portable device drivers because it eliminates the
need to code in assembly language or to reflect processor differences in de-
vice drivers.

Interrupt objects provide other benefits as well. By using the interrupt
object, the kernel can synchronize the execution of the ISR with other parts
of a device driver that might share data with the ISR. (See Chapter 7 for more
information about how device drivers respond to interrupts.) Furthermore,
interrupt objects allow the kernel to easily call more than one ISR for any
interrupt level. If multiple device drivers create interrupt objects and connect
them to the same IDT entry, the interrupt dispatcher calls each routine when
an interrupt occurs at the specified interrupt line. This capability allows the

89

INSIDE WINDOWS NT

90

kernel to easily support “daisy-chain” configurations, in which several devices
interrupt on the same interrupt line.

Software Interrupts
Although hardware generates most interrupts, the Windows NT kernel also
generates software interrupts for a variety of tasks, including these:

E Initiating thread dispatching
Handling timer expiration

Asynchronously executing a procedure in the context of a particu-
lar thread

& Supporting asynchronous I/0 operations
These tasks are described in the following subsections.

Dispatch or deferred procedure call (DPC) interrupts When a thread can
no longer continue executing, perhaps because it has terminated or because
it voluntarily enters a wait state, the kernel calls the dispatcher directly to ef-
fect an immediate context switch. Sometimes, however, the kernel detects that
rescheduling should occur when it is deep within many layers of code. In this
situation, the ideal solution is to request dispatching but defer its occurrence
until the kernel completes its current activity. Using a DPC software interrupt
is a convenient way to achieve this delay.

The kernel always raises the processor’s IRQL to dispatch/DPC level or
above when it needs to synchronize access to shared kernel structures. This
disables additional software interrupts and thread dispatching. When the
kernel detects that dispatching should occur, it requests a dispatch/DPC-level
interrupt; but because the IRQL is at or above that level, the processor holds
the interrupt in check. When the kernel completes its current activity, it low- .
ers the IRQL below dispatch/DPC level, and the dispatch interrupt surfaces.

Activating the thread dispatcher by using a software interrupt is a way to
defer dispatching until conditions are right. However, Windows NT uses soft-
ware interrupts to defer other types of processing as well.

In addition to thread dispatching, the kernel also processes deferred
procedure calls (DPCs) at this IRQL. A DPC is a function that performs a sys-
tem task—a task that is less important than the current one. The functions are
called deferred because they might not execute immediately.

DPCs provide the operating system with the capability to generate an
interrupt and execute a system function in kernel mode. The kernel uses DPCs

THREE: System Mechanisms

to process timer expiration (and release threads waiting on the timers) and to
reschedule the processor after a thread’s quantum expires. Device drivers use
DPCs to complete I/0O requests. (See Chapter 7 for more information on DPCs
and the I/O system.)

A DPC is represented by a DPC object, a kernel control object that is not
visible to user-mode programs but is visible to device drivers and other system
code. The most important piece of information the DPC object contains is the
address of the system function that the kernel will call when it processes the
DPC interrupt. DPC routines that are waiting to execute are stored in a ker-
nel-managed queue called the DPC queue. To request a DPC, system code calls
the kernel to initialize a DPC object and then places it in the DPC queue.

Placing a DPC in the DPC queue prompts the kernel to request a software
interrupt at dispatch/DPC level. Because DPCs are generally queued by soft-
ware running at a higher IRQL, the requested interrupt doesn’t surface until
the kernel lowers the IRQL to APC level or low level. DPC processing is de-
picted in Figure 3-5.

@ Atimer expires, and the kemel
queues a DPC that will release

DPC) any threads waiting on the _Interrupt
timer. The kernel then dispatch table
requests a software interrupt. High

Power failure

@ After the DPC interrupt,

L control transfers to the
When the IRQL drops below . (thread) dispatcher.
dispatch/DPC level, a DPC
interrupt occurs. Dispatch/DPC Pa— —)L Dispatcher

APC

Low

DPC J=——3»{ DPC)

DPC queue
(@ The dispatcher executes each DPC routine
in the DPC queue, emptying the queue
as it proceeds. If required, the dispatcher
also reschedules the processor.
Figure 3-5
Delivering a DPC

91

INSIDE WINDOWS NT

92

Because user-mode threads execute at low IRQL, the chances are good
that a DPC will interrupt the execution of an ordinary user’s thread. DPC rou-
tines execute without regard to what thread is running, meaning that when a
DPC routine runs, it can’t assume what process address space is currently
mapped. DPC routines can call kernel functions, but they can’t call system
services, generate page faults, or create or wait on objects. They can, however,
access nonpaged system memory addresses, since system address space is always
mapped regardless of what the current process is.

DPCs are provided primarily for device drivers, but the kernel uses them
too. The kernel most frequently uses a DPC to handle quantum expiration. At
every tick of the system clock, an interrupt occurs at clock IRQL. The clock
interrupt handler (running at clock IRQL) updates the system time and then
decrements a counter that tracks how long the current thread has run. When
the counter reaches zero, the thread’s time quantum has expired and the ker-
nel might need to reschedule the processor, a lower-priority task that should
be done at dispatch/DPC IRQL. The clock interrupt handler queues a DPC
to initiate thread dispatching and then finishes its work and lowers the pro-
cessor’s IRQL. Because the DPC interrupt has a lower priority than do device
interrupts, any pending device interrupts that surface are handled before the
DPC interrupt occurs.

Asynchronous procedure call (APC) interrupts Asynchronous procedure
calls (APCs) provide a way for user programs and /or system code to execute
code in the context of a particular user thread (and hence a particular process

EXPERIMENT Monitormg lnterrupt and DPC Activlty

Using Performance Monitor, you can watch the percentage of
your system spends on handling interrupts and DPCs. The pro '
object and the system object both have %' Interrupt Time and %, DPC
- Time counters, which means you can monitor the ax:tmty ona pext-éCPU
or a systemwide basis. These objects also have counters to: mea,sure
number of i mterrupts and DPCs per second..- B
One situation in which you might want to look at these c(m_.n
~is if your system is spendlng an inordinate amount of time in kerne
mode and you can’t attribute all the kernel-mode CPU time to pro-
cesses. If total kernel-mode time is greater than the total kemg tir
_ of all processes, the remalnmg time has to be interrupts or DPCs, be
_cause time spent atinterrupt level and DPC 1evel is not charged

- thread or process. - S :

THREE: System Mechanisms

address space). Because APCs are queued to execute in the context of a par-
ticular thread and run at an IRQL less than 2, they don’t operate under the
same restrictions as a DPC. An APC routine can acquire resources (objects),
wait on object handles, incur page faults, and call system services.

Like DPCs, APCs are described by a kernel control object, called an APC
object. APCs waiting to execute reside in a kernel-managed APC queue. Unlike
the DPC queue, which is systemwide, the APC queue is thread-specific—each
thread has its own APC queue. When asked to queue an APC, the kernel in-
serts it into the queue belonging to the thread that will execute the APC rou-
tine. The kernel, in turn, requests a software interrupt at APC level, and when
the thread eventually begins running, it executes the APC.

There are two kinds of APCs: user mode and kernel mode. Kernel-mode
APCs don't require “permission” from a target thread to run in that thread’s
context, as user-mode APCs do. Kernel-mode APCs interrupt a thread and
execute a procedure without the thread’s intervention or consent.

The executive uses kernel-mode APCs to perform operating system work
that must be completed within the address space (in the context) of a particular
thread. It can use kernel-mode APCs to direct a thread to stop executing an
interruptible system service, for example, or to record the results of an asyn-
chronous I/O operation in a thread’s address space. Environment subsystems
use kernel-mode APCs to make a thread suspend or terminate itself or to get
or set its user-mode execution context. The POSIX subsystem uses kernel-mode
APCs to emulate the delivery of POSIX signals to POSIX processes.

Device drivers also use kernel-mode APCs. For example, if an I/O opera-
tion is initiated and a thread goes into a wait state, another thread in another
process can be scheduled to run. When the device finishes transferring data,
the I/O system must somehow get back into the context of the thread that
initiated the I/O so that it can copy the results of the I/O operation to the
buffer in the address space of the process containing that thread. The I/O
system uses a kernel-mode APC to perform this action. (The use of APCs in
the I/O system is discussed in more detail in Chapter 7.)

Several Win32 APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC,
use user-mode APCs. For example, the ReadFileEx and WriteFileEx functions
allow the caller to specify a completion routine to be called when the I/O
operation finishes. The I/O completion is implemented by queueing an APC to
the thread that issued the I/0. However, the callback to the completion rou-
tine doesn’t necessarily take place when the APC is queued, because user-mode
APCs are delivered to a thread only when it’s in an alertable wait state. A thread
can enter a wait state either by waiting on an object handle and specifying that
its wait is alertable (with the Win32 WaitForMultipleObjectsEx function) or by

93

'INSIDE WINDOWS NT

testing directly whether it has a pending APC (using SleepEx). In both cases, if
a usermode APC is pending, the kernel interrupts (alerts) the thread, trans-
fers control to the APC routine, and resumes the thread’s execution when the
APC routine completes.

APC delivery can reorder the wait queues—the lists of which threads are
waiting on what, and in what order they are waiting. (Wait resolution is described
later in this chapter.) If the thread was in a wait state when an APC is delivered,
after the APC routine completes, the wait is reissued or reexecuted. If the wait
is still not resolved, the thread returns to the wait state, but now it will be at the
end of the list of objects it is waiting on. For example, because APCs are used to
suspend a thread from execution, if the thread was waiting on any objects, its
wait will be removed until the thread is resumed, after which it will be at the end
of the list for the objects it was waiting on. For further details on the queue wait
order, see the Win32 Software Development Kit (SDK) Knowledge Base article
Q125657 “Mutex Wait Is FIFO But Can Be Interrupted” (which you can find at
hitp://support.microsoft.com/support/ or on the MSDN Library CD-ROMs).

Exception Dispatching

94

In contrast to interrupts, which can occur at any time, exceptions are condi-
tions that result directly from the execution of the program that is running.
Win32 introduced a facility known as structured exception handling, which allows
applications to gain control when exceptions occur. The application can then
either fix the condition and return to the place the exception occurred, un-
wind the stack (thus terminating execution of the subroutine that raised the
exception), or declare back to the system that the exception isn’t recognized,
and to continue searching for an exception handler that might process the
exception. This section assumes you're familiar with the basic concepts behind
Win32 structured exception handling—if you’re not, you should read the over-
view in the Win32 API reference documentation on the Platform SDK or
Chapter 16 in Jeffrey Richter’s book Advanced Windows (third edition, Microsoft
Press, 1997) before proceéding. Keep in mind that although exception han-
dling is made accessible through language extensions (for example, the __try
construct in Microsoft Visual C++), it is a system mechanism and hence is not
language-specific. Other examples of consumers of Windows NT exception
handling include C++ and Java exceptions.

All exceptions, except those simple enough to be resolved by the trap
handler, are serviced by a kernel module called the exception dispatcher. The
exception dispatcher’s job is to find an exception handler that can “dispose of”
the exception. Examples of architecture-independent exceptions that the ker-
nel defines include memory access violations, integer divide-by-zero, integer

THREE: System Mechanisms

overflow, floating-point exceptions, and debugger breakpoints. For a complete
list of architecture-independent exceptions, consult the Win32 API reference
documentation.

The kernel traps and handles some of these exceptions transparently to
user programs. For example, encountering a debugger breakpoint while ex-
ecuting a program being debugged generates an exception, which the kernel
handles by calling the debugger. The kernel handles certain other exceptions
by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For
example, a memory access violation or an arithmetic overflow generates an
exception that the operating system doesn’t handle. An environment subsystem
can establish frame-based exception handlers to deal with these exceptions. The
term frame-based refers to an exception handler’s association with a particular
procedure activation. When a procedure is invoked, a stack frame represent-
ing that activation of the procedure is pushed onto the stack. A stack frame
can have one or more exception handlers associated with it, each of which
protects a particular block of code in the source program. When an exception
occurs, the kernel searches for an exception handler associated with the cur-
rent stack frame. If none exists, the kernel searches for an exception handler
associated with the previous stack frame, and so on, until it finds a frame-based
exception handler. If no exception handler is found, the kernel calls its own
default exception handlers.

When an exception occurs, whether it is explicitly raised by software or
implicitly raised by hardware, a chain of events begins in the kernel. The CPU -
hardware transfers control to the kernel trap handler, which creates a trap
frame (as it does when an interrupt occurs). The trap frame will allow the sys-
tem to resume where it left off if the exception is resolved. The trap handler
also creates an exception record that contains the reason for the exception and
other pertinent information.

If the exception occurred in kernel mode, the exception dispatcher sim-
ply calls a routine to locate a frame-based exception handler that will handle
the exception. Because unhandled kernel-mode exceptions are considered
fatal operating system errors, you can assume that the dispatcher always finds -
an exception handler.

If the exception occurred in user mode, the exception dispatcher does
something more elaborate. As you’ll see in Chapter 4, the Win32 subsystem has
a debugger port and an exception port to receive notification of user-mode
exceptions in Win32 processes. The kernel uses these in its default exception
handling, as illustrated in Figure 3-6.

95

INSIDE WINDOWS NT

i Trap) ;
Exception mgp- handler N (Exception Ehxcedplt'o“
frame, client andlers

thread ID) N Exception Debugger

dispatcher || (first chance)
Frame-based
handlers

Debugger
(second chance)

Environment
subsystem

Kernel default
handler

Figure 3-6
Dispatching an exception

96

Debugger breakpoints are common sources of exceptions. Therefore, the

. first action the exception dispatcher takes is to see whether the process that

incurred the exception has an associated debugger process. If so, it sends the
first-chance debug message (via an LPC port) to the debugger port associated
with the process that incurred the exception. (The message is sent to the ses-
sion manager process, which then dispatches it to the appropriate debugger
process.) :

If the process has no debugger process attached, or if the debugger doesn’t
handle the exception, the exception dispatcher switches into user mode and
calls a routine to find a frame-based exception handler. If none is found, or if
none handles the exception, the exception dispatcher switches back into ker-
nel mode and calls the debugger again to allow the user to do more debugging.
(This is called the second-chance notification.)

All Win32 threads have an exception handler declared at the top of the
stack that processes unhandled exceptions. This exception handler is declared
in the internal Win32 start-of-process or start-of-thread function. The start-of-
process function runs when the first thread in a process begins execution. It
calls the main entry point in the image. The start-of-thread function runs when
a user creates additional threads. It calls the user-supplied thread start routine
specified in the CreateThread call.

THREE: System Mechanisms

m
EXPERIMENT: Viewing the Real
User Start Address for Win32 Threads

The fact that each Win32 thread begins execution in a system-supplied
function (and not the user-supplied function) explains why the start
address for thread 0 is the same for every Win32 process in the system
(and why the start addresses for secondary threads are also the same).

~ The start address for thread 0 in Win32 processes is the Win32 start-
of-process function; the start address for any other threads would be

- the Win32 start-of-thread function. To see the user-supplied function
address, use the Tlist utility in the Windows NT Resource Kit. Type Tlist
process-name or Tlist process-id to get the detailed process output that-
includes this information. For example, compare the thread start.

“addresses for the Wmdows NT Explorer process as reported by Pstat
- and Tlist:

: C.\k,pstat

i bid:796,pri: 8:Hnd: 63 Pf:. 7573 Ws: 1796K explorer.exe
tid pri Ctx Swtch StrtAddr- User Time Kernel Time State

95 14 21525 77f@52cc ©:00:09.373 0:00:45.745 Wait:UsérRequest
56 14 . 988 77f052c0 0:00:00.020 0:00:00.140 Wait:UserRequest
3¢ 14 :°. 108 77f052c0 0:00:00.010 ©0:00:00.010 Wait:LpcReceive

0:00:01.992 @

b3 '8 2397 77¥052¢c0 :00:04.496 Wait:UserRequest .

Ci\>tlist explorer B
- 150 expTorer exe - Program Manager
CWD: C: \NINNT\Profiles\Admin1strator\Desktop\
““CmdLine: ‘Explorer;exe :
VirtualSize: . - 25348 KB PeakVirtuaTSize 31852 KB
: workingsétSize. 1804 KB- PeakﬂorkingSetS1ze. 3276»KB
" ‘NumberOfThreads: 4 .
149 WInSZStartAddr Gxalﬁﬂgdbd LastErr: 0x96608@7e State Waiting
.86 Win32StartAddr:8x77c5d4a5 LastErr: exaaeaaeaa State Waiting
62 Win32StartAddr:0x00000977 LastErr: 0x00000000 State: Waiting.)
1?9 w1n325tartAddr 9x8106d8d4 LastErr: 9x@9@086@2 State Wa1t1ng o

» The start address of thread 0 reported by Pstat is the mternal Wln32 :
s start~0f-process function; the start addresses for threads 1 through 3
- are the mternal W1n32 start-of- thread functions. Tlist, on the other
* hand, shows the. user- snjpphed Win32 start address (the user function ‘
' ilcalled by the mtemal Win32 start functlon) ’ i

97

INSIDE WINDOWS NT

98

The generic code for these internal start functions is shown here:

void Win32StartOfProcess(.

LPTHREAD_START_ROUTINE 1pStartAddr,

LPVOID TpvThreadParm){

__try { ,
DWORD dwThreadExitCode = TpStartAddr(l1pvThreadParm);
ExitThread(dwThreadExitCode);

} __except(UnhandledExceptionFilter(

GetExceptionInformation())) {
ExitProcess(GetExceptionCode());

}

Notice that the Win32 unhandled exception filter is called if the thread
has an exception that it doesn’t handle. This function looks in the registry in
the HKLM\Software\Microsoft\Windows NT\CurrentVersion\AeDebug key
to determine whether to run a debugger immediately or to ask the user first.
The default “debugger” on Windows NT is DRWTSN32.EXE (Dr. Watson),
which isn’t really a debugger but rather a postmortem tool that captures the
state of the application “crash” and records it in a log file. If you have a com-
piler such as Visual C++ installed, the debugger that is to be run is changed
to MSDEV.EXE so you can debug programs that incur unhandled exceptions.

If the debugger isn’t running and no frame-based handlers are found, the
kernel sends a message to the exception port associated with the thread’s pro-
cess. This exception port, if one exists, was registered by the environment sub-
system that controls this thread. The exception port gives the environment
subsystem, which presumably is listening at the port, the opportunity to trans-
late the exception into an environment-specific signal or exception. For ex-
ample, when POSIX gets a message from the kernel that one of its threads
generated an exception, the POSIX subsystem sends a POSIX-style signal to
the thread that caused the exception. However, if the kernel progresses this
far in processing the exception and the subsystem doesn’t handle the excep-
tion, the kernel executes a default exception handler that simply terminates
the process whose thread caused the exception.

'EXPERIMENT: Viewing Exception Actwity{:

’ -You can monitor the exceptmn—dmpatchmg rate on your system Wlth

g ,jPerformance Monitor. Enter chart view, press Crl
‘the chart, select the System obj ect, select the Exception
counter and theﬁ chck the Add button to add the couﬁ

THREE: System Mechanisms

System Service Dispatching

As Figure 3-1 illustrated, the kernel’s trap handler dispatches interrupts, ex-
ceptions, and system service calls. In the preceding sections, you saw how in-
terrupt and exception handling work; in this section, you'll learn about system
services. A system service dispatch is triggered as a result of executing a syscall
instruction on Alpha processors or an int 2E on Intel x86 processors. Both of
these instructions cause a system trap, which causes the executing thread to
transition into kernel mode and enter the system service dispatcher. A numeric
argument indicates the system service number being requested. As Figure 3-7
illustrates, the kernel uses this argument to locate the system service informa-
tion in the system service dispatch table. This table is similar to the interrupt dis-
patch table described earlier in the chapter except that each entry contains a
pointer to a system service rather than to an interrupt handling routine.

I User mode
I Kernel mode
SY§f9m System service
service call Trap handler dispatch table
0
System

== = Service
dispatcher \ 2 Oty System service 2

3

n
! I
L System
service i

h extensions"[.

- -

Figure 3-7
System service exceptions

99

INSIDE WINDOWS NT

The system service dispatcher verifies the correct minimum number of
arguments and copies the caller’s arguments from the thread’s user-mode stack
to its kernel-mode stack (so that the user can’t change the arguments willy-nilly)
and then executes the system service. If the arguments passed to a system ser-
vice point to buffers in user space, these buffers must be probed for accessi-
bility before kernel-mode code can copy data to or from them.

Asyou’ll see in Chapter 4, each thread has a pointer to its system service
table. Windows NT has two built-in system service tables (though more can be
supported). The primary default table defines the core executive system ser-
vices implemented in NTOSKRNL.EXE. The other table includes the Win32
USER and GDI services implemented in the kernel-mode part of the Win32
subsystem, WIN32K.SYS. The first time a Win32 thread calls a Win32 USER
or GDI service, the address of the thread’s system service table is changed to
point to a table that includes the Win32 USER and GDI services.

The system service dispatch instructions for Windows NT executive ser-
vices exist in the system library NTDLL.DLL. Subsystem DLLs call functions
in NTDLL to implement their documented functions. The exception is Win32
USER and GDI functions, in which the system service dispatch instructions are
implemented directly in USER32.DLL and GDI32. DLL—there is no NTDLL-
.DLL in the middle. These two cases are shown in Figure 3-8.

As shown in Figure 3-8, the Win32 WriteFilefunction in KERNEL32.DLL
calls the NtWriteFile function in NTDLL.DLL, which in turn executes the ap-
propriate instruction to cause a system service trap, passing the system service
number representing NiWriteFile. The system service dispatcher (function Ki-
SystemService in NTOSKRNL.EXE) then calls the real N¢WriteFile to process
the I/O request. For Win32 USER and GDI functions, the system service dis-
patch calls functions in the loadable kernel-mode part of the Win32 subsystem,
WIN32K.SYS.

EXPERIMENT: Viewing System Service Activity

You can monitor system service aétivity by watching the,System Calls/
Sec performance counter in the System object. Run Performance Moni-
tor, and in chart view, press Ctrl-I to add a counter to the chart; select o
the System object, select the System Calls/Sec counter, and thcn chck
the Add button to add the counter to the chart: '

100

THREE:

System Mechanisms

Win32 kernel APIs

Win32 application ;

WriteFile in
KERNEL32.DLL

NtWriteFile in
NTDLL.DLL

Win32-

specific

Used by all
subsystems

Application

GDI32.DLL
or USER32.DLL

Win32 USER and

GDI APIs

Win32-
specific

User mode

Software interrupt

KiSystemServicein | Call NtWriteFile
NTOSKRNL.EXE | Dismiss interrupt
NtWiteFile in | Do the operation
NTOSKRNL.EXE |’ Return to caller
Figure 3-8

System service dispatching

Object Manager

As mentioned in Chapter 2, Windows NT implements an object model to pro-
vide consistent and secure access to the varied internal services implemented
in the executive. This section describes the Windows NT object manager, the
executive component responsible for creating, deleting, protecting, and track-
ing objects. The object manager centralizes resource control operations that
otherwise would be scattered throughout the operating system. It was designed
to meet the goals listed on page 103.

Kernel mode

Software interrupt

=

KiSystemService in
NTOSKRNL.EXE

Service entry point in
WIN32K.SYS

Call Win32 routine
Dismiss interrupt

v

Do the operation

Return to caller

101

INSIDE WINDOWS NT

EXPERIMENT: Exploring the Object Manager

Throughout this section, you’ll find expenmﬁms that show you how to
peer into the object manager database: These experlments make use
of the following tools, which you should become fanuhar Wlth if you: i
aren’t already:

| Object viewer (Platform SDK m \MSSDK\BIN\WI N
WINOBJ.EXE) S

B Open handles (Windows NT Resource Kit, in \NTRESKIT\
OH.EXE) (This utility was added to the Windows NT Server
Resource Kit Supplement Two. You won't find it in Barher k
editions of the Windows NT Server Resource Klt) '

W Kernel debugger thandle and ’olyeet commands

The object viewer pmmdes away to traverse the namespace that the
object manager maintains. (As I'll explain later, not all- Objects have
- names.) Try running this utility and exammmg the layout as slfxovm here

[.|| Earcname # EnorLogPortl.
- €0 arcname £BaseNamedObjectsd # fat E
I £ BaseNamedObjects Eodevice % LanmanServerannounceE vent] -

i B deviee Cdriver #¥ LsabuthenticationPort

i Ediver CFileSystem W NETLOGON_SERYICE_STAR
¢ COFieSystem CIKnownDlls WE ptfgd :
;.‘ - (2 KnownDlls C1nls ¥ NtLmSecuitySupportProviderP| © g
FCnls E00bjectTypes registry<)
;| €2 ObiectTypes Cpsss S GAM_SERVICE_STARTED
i pswss EIRPC Control ﬂ' SelsaCommandPortd

£ RPC.Control Esecurityd W SeLsalnitE vent
¢ [C2 security Ewindows # SeRmCommandPort
i L B windows o edfsg & SmApiPoit

& DbgSspiPortd A% SystemPoot
DbglUispiPort0 & ¥actSvlpePort
T dfs

In the Wmdows NT Resource Kit tools help for OH you’ll find out.

that you must enable object trackmg——an internal debuggmg feature

- in the executive—to run this utility. To enable object trackmg, set one
of the Windows NT global flags and reboot t your system. (See page 135

for more on global flags.) If you run OH and the flag isn t on, the utlhqz

102

THREE: System Mechanisms

~will set the flag in the registry and tell you to reboot. Because this flag
~ uses additional memory to track object usage information, you should
disable it with the Gflags utility after you've experimented with OH and
- then reboot your system again.

~An object viewer utility named Winobj is also available; you can
. find it at www.ntinternals.com. Although not shown in the examples that
~follow, Winobj displays more information about objects (such as the
. reference count, the number of open handles, security descriptors, and

-0 forth) than the object viewer in the Platform SDK does.

The object manager was designed to meet these goals:

B Provide a common, uniform mechanism for using system resources

B Isolate object protection to one location in the operating system so
that G2 security compliance can be achieved

B Provide a mechanism to charge processes for their use of objects so
that limits can be placed on the usage of system resources

Establish an object-naming scheme that can readily incorporate ex-
isting objects, such as the devices, files, and directories of a file sys-
tem, or other independent collections of objects

& Support the requirements of various operating system environments,
such as the ability of a process to inherit resources from a parent
process (needed by Win32 and POSIX) and the ability to create case-
sensitive filenames (needed by POSIX)

Establish uniform rules for object retention (that is, keeping an ob-
ject available until all processes have finished using it)

Internally, Windows NT has two kinds of objects: executive objects and ker-
nel objects. Executive objects are objects implemented by various components
of the executive (such as the process manager, memory manager, I/O sub-
system, and so on). Kernel objects are a more primitive set of objects imple-
mented by the Windows NT kernel. These objects are not visible to user-mode
code but are created and used only within the executive. Kernel objects pro-
vide fundamental capabilities, such as synchronization, on which executive
objects are built. Thus, many executive objects contain (encapsulate) one or
more kernel objects, as shown in Figure 3-9.

103

INSIDE WINDOWS NT

Name .- -
Owned by the | HandleCount " |
object manager |- ‘ReferenceCount -

Owned by the
kernel

‘Ketnel object -

.Owned by the
executive

Figure 3-9
Executive objects that contain kernel objects

Details about the structure of kernel objects and how they are used to
implement synchronization are given later in this chapter. In the remainder
of this section, we’ll focus on how the object manager works and on the struc-
ture of executive objects, handles, and handle tables. And although I'll describe
only briefly here how objects are involved in implementing Windows NT se-
curity access checking, I'll cover this topic thoroughly in Chapter 6.

Executive Objects

104

Each Windows NT environment subsystem projects to its applications a differ-
ent image of the operating system. The executive objects and object services
are primitives that the environment subsystems use to construct their own
versions of objects and other resources.

Executive objects are typically created either by an environment sub-
system on behalf of a user application or by various components of the
operating system as part of their normal operation. For example, to create a file,
a Win32 application calls the Win32 CreateFile function, implemented in the
Win32 subsystem DLL KERNEL32.DLL. After some validation and initializa-
tion, CreateFilein turn calls the native Windows NT service NiCreateFile to create
an executive file object.

THREE: System Mechanisms

The set of objects an environment subsystem supplies to its applications
might be larger or smaller than that the executive provides. The Win32 sub-
system uses executive objects to export its own set of objects, many of which
correspond directly to executive objects. For example, the Win32 mutexes and
semaphores are directly based on executive objects (which are in turn based
on corresponding kernel objects). In addition, the Win32 subsystem supplies
named pipes and mailslots, resources that are based on executive file objects.
Some subsystems, such as POSIX, don’t support objects as objects at all. The
POSIX subsystem uses executive objects and services as the basis for present-
ing POSIX-style processes, pipes, and other resources to its applications.

Table 3-1 lists the primary objects the executive provides and briefly de-
scribes what they represent. You can find further details on executive objects
in the chapters that describe the related executive components (or in the case
of executive objects directly exported to Win32, in the Win32 API reference
documentation).

Table 3-1 Executive Objects

Object Type Represents

Object directory A container object for other objects. The object directory is used to
implement the hierarchical namespace within which other object types

are stored.

Symbolic link A mechanism for referring to an object name indirectly.

Process The virtual address space and control information necessary for the
execution of a set of thread objects.

Thread An executable entity within a process.

Section A region of shared memory (called a file mapping object in Win32).

File An instance of an opened file or an I/O device.

Port A mechanism to pass messages between processes.

Access token The security profile (security ID, user rights, and so on) of a process
or a thread.

Event An object with a persistent state (signaled or not signaled) that can be
used for synchronization or notification.

Semaphore A counter that provides a resource gate by allowing some maximum
number of threads to access the resources protected by the semaphore.

Mutant* A synchronization mechanism used to serialize access to a resource.

Timer A mechanism to notify a thread when a fixed period of time elapses.

* Externally in the Win32 API, mutants are called mutexes. References to mutexes from here on refer to the
kernel mutant object. :

(continued)

105

INSIDE WINDOWS NT

Table 3-1 continued

Object Type Represents

Queue A method for threads to enqueue and dequeue notifications of the

Key

Profile

completion of I/O operations (called an I/O completion port in the
Win32 API).

A mechanism to refer to data in the registry. Although keys appear in the
object manager namespace, they are managed by the registry, in a way
similar to that in which file objects are managed. Zero or more key values
are associated with a key object; key values contain data about the key.

A mechanism for measuring execution time for a process within an
address range.

Object Structure

106

As shown in Figure 3-10, each object has an object header and an object body.
The object manager controls the object header, and the owning executive com-
ponents control the object bodies of the object types they create. In addition,
each object header points to the list of processes that have the object open and
a special object called the type object that contains information common to each
instance of the object.

Object name
Object header | Object directory
Security descriptor
Quota charges :)
Open handle count Type object
Open handles list Typé ame
“Object t
Re:ere,nzgecount > Access types _
Synchronizable? (Y/N)
Pageable? (Y/N)
Object body Methods:
Open, close, delete,
parse, security,
query name

Figure 3-10
Structure of an object

THREE: System Mechanisms

Object Headers

The object manager uses the data stored in an object’s header to manage ob-
jects without regard to their type. Table 3-2 briefly describes the object header
attributes.

Table 3-2 Standard Object Header Attributes

Attribute Purpose
Object name Makes an object visible to other processes for sharing
Object directory Provides a hierarchical structure in which to store object names

Security descriptor . Determines who can use the object and what they can do with it

Quota charges Lists the resource charges levied against a process when it opens a
handle to the object

Open handle count Counts the number of times a handle has been opened to the object
Open handles list List of the processes that have opened handles to the object

Object type Points to a type object that contains attributes common to objects
of this type

Reference count Counts the number of times a kernel-mode component has referenced
the address of the object

In addition to an object header, each object has an object body whose
format and contents are unique to its object type; all objects of the same type
share the same object body format. By creating an object type and supplying
services for it, an executive component can control the manipulation of data
in all object bodies of that type.

The object manager provides a small set of generic services that operate
on the attributes stored in an object’s header and can be used on objects of any
type (although some generic services don’t make sense for certain objects).
These generic services, some of which the Win32 subsystem makes available
to Win32 applications, are listed in Table 3-3 on the following page.

Although these generic object services are supported for all object types,
each object has its own create, open, and query services. For example, the I/0
system implements a create file service for its file objects, and the process man-
ager implements a create process service for its process objects. Although a
single create object service could have been implemented, such a routine would
have been quite complicated, because the set of parameters required to initial-
ize a file object, for example, differs markedly from that required to initialize
a process object. Also, the object manager would have incurred additional
processing overhead each time a thread called an object service to

107

INSIDE WINDOWS NT

108

Table 3-3 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and
giving it to another process

Query object Gets information about an object’s standard
attributes

Query security Gets an object’s security descriptor

Set security Changes the protection on an object

Wait for a single object Synchronizes a thread’s execution with one object

Wait for multiple objects ~ Synchronizes a thread’s execution with multiple
objects

determine the type of object the handle referred to and to call the appropri-
ate version of the service. For these reasons and others, the create, open, and
query services are implemented separately for each object type.

Type Objects

Object headers contain data that is common to all objects but that can take on
different values for each instance of an object. For example, each object has
a unique name and can have a unique security descriptor. However, objects also
contain some data that remains constant for all objects of a particular type.
For example, you can select from a set of access rights specific to a type of object
when you open a handle to objects of a particular type. The executive supplies
terminate and suspend access (among others) for thread objects and read,
write, append, and delete access (among others) for file objects. Another ex-
ample of an object-type-specific attribute is synchronization, the ability of a
thread to wait for objects of a particular type to be set to the signaled state,
described shortly.

To conserve memory, the object manager stores these static, object-type-
specific attributes once when creating a new object type. It uses an object of
its own, a type object, to record this data. As Figure 3-11 illustrates, a type object
also links together all objects of the same type, allowing the object manager
to find and enumerate them, if necessary.

Object 2

Figure 3-11

Process objects and the process type object

shown here:

I €3 arcname
I €1 BaseNamedObiects
i -0 device
i £ driver
I £ FileSystem
- €3 KnownDlls

nls

w bjectTypes
- €0 psxss
it | CIRPC Control
{ | £ secuity
L £ windows

“||&BController
- || ZR desktop
|| B device
gDi{ectory
2R diiver
Revent
EZEventPair
Riile<
&Z|oCompletiond
Bkey
gmulanl
Rpots

Bprocess

g Semaphore

H&thead
Rtimer

g token
Riypet

BBwindowStation

THREE: System Mechanisms
| Process _|
Object 1 \
Process Process Process
i T object 3™ >~ Object 4]

EXPERIMENT: Viewing the Type Objects

You can see the list of type objects declared to the object manager: w1th
the Object Viewer utility in the Platform SDK. Run \MSSDK\BIN\
WINNT\WINOBJ.EXE, and click on the \ObjectTypes dlrectory, as

109

INSIDE WINDOWS NT

Type objects can’t be manipulated from user mode because the object
manager supplies no services for them. However, some of the attributes they
define are visible through certain native services and through Win32 API rou-
tines. The attributes stored in the bodies of type objects are described in Table
3-4.

Table 3-4 Type Object Attributes

Attribute Purpose

Object type name The name for objects of this type (“prbcess,” “event,” “port,’
and so on)

Pool type Whether objects of this type should be allocated from

paged or nonpaged memory

Default quota charges Default paged and nonpaged pool values to charge to

process quotas

Access types The types of access a thread can request when opening a

”

handle to an object of this type (“read,” “write,” “terminate,”
“suspend,” and so on)

Generic access rights mapping A mapping between the four generic access rights (read,

write, execute, and all) to the type-specific access rights

Synchronization Whether a thread can wait on objects of this type

Methods One or more routines that the object manager calls

automatically at certain points in an object’s lifetime

110

Synchronization, one of the attributes visible to Win32 applications, refers
to a thread’s ability to synchronize its execution by waiting for an object to
change from one state to another. A thread can synchronize with executive
process, thread, file, event, semaphore, mutex, and timer objects. Section, port,
access token, object directory, symbolic-link, profile, and key objects don’t sup-
port synchronization.

Object Methods

The last attribute in Table 3-4, methods, comprises a set of internal routines
that are similar to C++ constructors and destructors, that is, routines that are
automatically called when an object is created or destroyed. The object man-
ager extends this idea by calling an object method in other situations as well,
such as when someone opens or closes a handle to an object or when some-
one attempts to change the protection on an object. Some object types specify
methods, whereas others don’t, depending on how the object type is to be used.

THREE: System Mechanisms

When an executive component creates a new object type, it can register
one or more methods with the object manager. Thereafter, the object manager
calls the methods at well-defined points in the lifetime of objects of that type,
usually when an object is created, deleted, or modified in some way. The meth-
ods that the object manager supports are listed in Table 3-5.

Table 3-5 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file,
that exists in a secondary object domain

Parse When the object manager is searching for an object name
that exists in a secondary object domain

Security When a process reads or changes the protection of an object,
such as a file, that exists in a secondary object domain

An example of the use of a close method occurs in the I/O system. The
I/O manager registers a close method for the file object type, and the object
manager calls the close method each time it closes a file object handle. This
close method checks whether the process that is closing the file handle owns
any outstanding locks on the file and, if so, removes them. Checking for file
locks is not something that the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it
deletes a temporary object from memory. The memory manager, for example,
registers a delete method for the section object type that frees the physical
pages being used by the section. It also verifies that any internal data structures
the memory manager has allocated for a section are deleted before the section
object is deleted. Once again, this is work the object manager can’t do because
it knows nothing about the internal workings of the memory manager. Delete
methods for other types of objects perform similar functions.

The parse method (and similarly, the query name method) allows the
object manager to relinquish control of finding an object to a secondary object
manager if it finds an object that exists outside the object manager namespace.
When the object manager looks up an object name, it suspends its search when
it encounters an object in the path that has an associated parse method. The
object manager calls the parse method, passing to it the remainder of the object
name it is looking for.

111

INSIDE WINDOWS NT

112

For example, when a process opens a handle to the object named \Device-
\FloppyO\docs\resume.doc, the object manager traverses its name tree until
it reaches the device object named FloppyO. It sees that a parse method is as-
sociated with this object, and it calls the method, passing to it the rest of the
object name it was searching for—in this case, the string\docs\resume.doc. The
parse method for device objects is an I/O routine. The routine takes the name
string and passes it to the appropriate file system, which finds the file on the
disk and opens it.

The security method, which is used by the I/O system, is similar to the
parse method. Itis called whenever a thread tries to change the security infor-
mation protecting a file. This information is different for files than for other
objects because security information is stored in the file itself rather than in
memory. The I/0 system, therefore, must be called in order to find the secu-
rity information and change it.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that
represents its access to the object. Referring to an object by its handle is faster
than using its name because the object manager can skip the name lookup and
find the object directly. Processes can also acquire handles to objects by inher-
iting handles at process creation time (if the creator specifies the inherit handle
flag on the CreateProcess call and the handle was marked as inheritable, either
at the time it was created or afterwards by using the Win32 SetHandlelnformation
function) or by receiving a duplicated handle from another process. (See the
Win32 DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads
can use the object. Using handles to manipulate system resources is not a new
idea. C and Pascal (and other language) run-time libraries, for example, re-
turn handles to opened files. Handles serve as indirect pointers to system re-
sources; this indirection keeps application programs from fiddling directly with
system data structures.

NOTE Executive components and device drivers can access ob-
jects directly, since they are running in kernel mode and therefore
have access to the object structures in system memory. However, they
must declare their usage of the object by incrementing either the
open handle count or the reference count so that the object will not
be deallocated while it’s still being used. (See the description of ob-
ject retention later in this section.)

THREE: System Mechanisms

Object handles provide additional benefits. First, except for what they
refer to, there is no difference between a file handle, an event handle, and a
process handle. This similarity provides a consistent interface to reference
objects, regardless of their type. Second, the object manager has the exclusive
right to create handles and to locate an object that a handle refers to. This
means that the object manager can scrutinize every user-mode action that
affects an object to see whether the security profile of the caller allows the
operation requested on the object in question.

e —
- EXPERIMENT: Viewing Open Handles with OH

As shown in the following example, the OH tool in the Windows NT

Server Resource Kit (supplement 2 or later) can display the handles

open by any or all processes. (Remember that OH requires enabhng
~an mternal option t:o track object information.)

C:\>0h /? .
Usage: OH [-p nl [-t typeName] [-al [name]
where: -p n -
displays only open hand}es for process with Clientlid of n
- «t-typeName - s

displays only open: object names:of specified type
-d .includes objects with no name. /
name -: displays only handles that contain the specified name.

C:\>oh -a

'2.-System "Process - 0004
2 System - . Key 0008 \REGISTRY
2 System Key ’ - geec

\REGISTRY\Mach1ne\Hardware\Descript1on\System\PCMCIA PCCARDs

: 2°System File~ 2010 \NINNT\systemSZ\config\system
2:System Port - 0014 \SeRmCommandPort: -

"2 System Key 0018 \REGISTRY\Machine\System\Setup
2 'System Directory’ 90lc \Device\HarddiskG
2 System Thread =+ - . 0020 ,

The dlsplay above shows the ﬁrst elght open handles in the System
~ name (except that the System process, as explamed in Chapter 1, doesn’t -
~ have an‘image), oh]ect type, handle value, and object name. Because
. we specified the -a flag, handles to objects that don’t have names (handle
~numbers 0x4; Oxlc, and OXQO) are mcluded :

113

INSIDE WINDOWS NT

114

An object handle is an index into a process-specific handle table, pointed
to by the executive process (EPROCESS) block (described in Chapter 4). The
first handle index is 4, the second 8, and so on. A process’s handle table con-
tains pointers to all the objects that the process has opened a handle to. It
consists of a fixed header and a variable size portion. The variable size part is
an array of handle table entries, each describing one open handle. If a pro-
cess opens more handles than can fit in the variable portion, the system allo-
cates a new, larger array and copies the old array into the new one.

NOTE In Windows NT 5.0, the handle table is implemented as a
three-level tree that can expand without requiring the recopying of
the existing handle table.

As shown in Figure 3-12, each handle entry consists of a structure with two
32-bit members. The first 32-bit member contains both a pointer to the object
header and three flags. (Because object headers are always 32-bit aligned, the
low-order 3 bits of this field are free for use as flags.) The second member is the
granted access mask for that object. (Access masks are described in Chapter 6.)

Audit on close

Protect from close
|_ I— Inheritable
Pointer to object header A|P|I
Access mask
]]
|
32 bits

Figure 3-12
Structure of a handle table entry

The first flag is the inheritance designation—that is, whether processes
created by this process will get a copy of the handle in their handle tables. As
already noted, handle inheritance can be specified on handle creation or later
with the SetHandleInformation function. The second flag indicates whether the
caller is allowed to close this handle. (This flag can also be specified with the
Win32 SetHandlelnformation function.) The third flag indicates whether clos-
ing the object should generate an audit message. (This flag is not exposed to
Win32—it is used internally by the object manager.)

THREE: System Mechanisms

EXPERIMENT: Viewing the
Handle Table with the Kernel Debugger

The 'handle command in the kernel debugger takes three arguments:
Thandle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table.
(Zero means display all handles.) The first handle is index 4, the second .
8, and so on. For example, typing 'handle 4 will show the ﬁrst handle
for the current process. '

The flags you can specify are a bitmask, where bit 0 means dlsplay -
only the information in the handle entry, bit 1 means display free handles
(not just used handles), and bit 2 means displays information about the
object that the handle refers to. The following command dlsplays full

_details about the handle table for process ID Oxaa:

> thandle 8 7 aa

processor number 0

Searching for Process with Cid == aa

PROCESS 8053f670 Cid: 0@aa Peb: 7ffdf00@ ParentCid: @05b
DirBase: 01549000 ObjectTable: 80699a88 TableSize: 30.
Image: CMD EXE) ‘

Handle Table at 89699a88 with. 30. Entr1es at elab3410 -
FIFO Order
- 0004: Object e19be546 Graﬂtedkccess ooefaalf
'ObJect el9beb48 Type: (80691bc@) Section
DbjectHeader e19be528
HandTeCount 1 PointerCount. 1

0008: Object: 89570310 GrantedAccess 00100003

Object: 80570310 Type (8069416@) Event

i ObJectHeader 8057028 ' -
HandleCount: 1 PointerCount: 1

Object Security

When you open a file, you must specify whether you intend to read or to write.
If you try to write to a file that is opened for read access, you get an error.
Likewise, in the executive, when a process creates an object or opens a handle
to an existing object, the process must specify a set of desired access rights—that
is, what it wants to do with the object. It can request either a set of standard
access rights (such as read, write, and execute) that apply to all object types or

115

INSIDE WINDOWS NT

116

specific access rights that vary depending on the object type. For example, the
process can request delete access or append access to a file object. Similarly,
it might require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the
security reference monitor, the kernel-mode portion of the security system, send-
ing it the process’s set of desired access rights. The security reference monitor
checks whether the object’s security descriptor permits the type of access the
process is requesting. If so, the reference monitor returns a set of granted ac-
cess rights that the process is allowed, and the object manager stores them in
the object handle it creates. How the security system determines who gets ac-
cess to which objects is explored in Chapter 6.

Thereafter, whenever the process’s threads use the handle, the object
manager can quickly check whether the set of granted access rights stored in
the handle corresponds to the usage implied by the object service the threads
have called. For example, if the caller asked for read access to a section object
but then calls a service to write to it, the service fails.

Object Retention

Because all user-mode processes that access an object must first open a handle
to it, the object manager can easily track how many of these processes, and even
which ones, are using an object. Tracking these handles represents one part
in implementing object retention—that is, retaining temporary objects only as
long as they are in use and then deleting them.

The object manager implements object retention in two phases. The first
phase is called name retention, and it is controlled by the number of open handles
that exist to an object. Every time a process opens a handle to an object, the
object manager increments the open handle counter in the object’s header. As
processes finish using the object and close their handles to it, the object man-
ager decrements the open handle counter. When the counter drops to zero, the
object manager deletes the object’s name from its global namespace. This dele-
tion prevents new processes from opening a handle to the object.

The second phase of object retention is to stop retaining objects (that is,
to delete them) when they are no longer in use. Because operating system code
usually accesses objects by using pointers instead of handles, the object man-
ager must also record how many object pointers it has dispensed to operating
system processes. It increments a reference count for an object each time it gives
out a pointer to the object; when kernel-mode components finish using the
pointer, they call the object manager to decrement the object’s reference count.
(For further details on object retention, see the DDK documentation on the
functions ObReferenceObjectByPointer and ObDereferenceObject.)

THREE: System Mechanisms

Figure 3-13 illustrates two event objects that are in use. Process A has the
first event open. Process B has both events open. In addition, the first event
is being referenced by some kernel-mode structure; thus the reference count
is 1. So even if process A and B closed their handles to the first event object,
it would remain because its reference count is 1. However, when process B closes
its handle to the second event object, the object would be deallocated.

Process A System space

Handles

] Handle table Event object

HandleCount=2

ReferenceCount=1
I-—) e

DuplicateHandle —o

Other structure

Process B

Handle table Event object
HandleCount=1
ReferenceCount=0
—q &

Figure 3-13
Handles and reference counts

So even after an object’s open handle counter reaches 0, the object’s ref-
erence count might remain positive, indicating that the operating system is still
using the object. Ultimately, the reference count also drops to 0. When this
happens, the object manager deletes the object from memory.

Because of the way object retention works, an application can ensure that
an object and its name remain in memory simply by keeping a handle open
to the object. Programmers who write applications that contain two or more
cooperating processes need not be concerned that one process might delete

117

INSIDE WINDOWS NT

an object before the other process has finished using it. In addition, closing
an application’s object handles will not cause an object to be deleted if the
operating system is still using it. For example, one process might create a sec- -
ond process to execute a program in the background; it then immediately
closes its handle to the process. Because the operating system needs the sec-
ond process to run the program, it maintains a reference to its process object.
Only when the background program finishes executing does the object man-
ager decrement the second process’s reference count and then delete it.

Resource Accounting

Resource accounting, like object retention, is closely related to the use of object
handles. A positive open handle count indicates that some process is using that
resource. It also indicates that some process is being charged for the memory
the object occupies. When an object’s handle count drops to 0, the process that
was using the object should no longer be charged for it.

Many operating systems use a quota system to limit processes’ access to
system resources. However, the types of quotas imposed on processes are some-
times diverse and complicated, and the code to track the quotas is spread
throughout the operating system. For example, in some operating systems, an
I/0 component might record and limit the number of files a process can open,
whereas a memory component might impose a limit on the amount of memory
a process’s threads can allocate. A process component might limit a user to
some maximum number of new processes he or she can create or a maximum
number of threads within a process. Each of these limits is tracked and en-
forced in different parts of the operating system.

In contrast, the Windows NT object manager provides a central facility
for resource accounting. Each object header contains an attribute called quota
charges that records how much the object manager subtracts from a process’s
allotted paged and /or nonpaged pool quota when a thread in the process opens
a handle to the object.

WindowsNT50p NOTE Windows NT 5.0 adds significant new capabilities in the

118

areas of quotas. A new object, called a job, will allow the grouping
of processes together that then share a set of quotas. These quotas
will include per-process and per-job usermode CPU time, minimum
and maximum working set size, and number of active processes. It
will also allow limiting access to windows outside the job and the
clipboard as well as security characteristics. For more information
on how quotas will change in Windows NT 5.0, see Chapter 10.

THREE: System Mechanisms

Each process on Windows NT points to a quota structure that records the
limits and current values for nonpaged pool, paged pool, and page file usage.
However, all the processes in your interactive session share the same quota
block (there is no documented way to create processes with their own quota
blocks), and system processes, such as services, have no quota limits.

The quotas start at 512 KB for paged pool and 64 KB for nonpaged pool.
The limits are “soft,” however, in that the system attempts to increase process
quotas automatically when they are exceeded. If opening an object will exceed
the paged or nonpaged quota, the memory manager is called to see whether
the quotas can be increased. The memory manager makes this decision on the
basis of the amount of memory remaining in the system pools. If it determines
that the quota can’t be increased, the open request to the object fails with a
“‘quota exceeded” error. But on most systems, quotas continue to grow as needed.

[—
EXPERIMENT: Viewing Process Quotas :

You can view the paged pool, nonpaged pool, and page file current

" usage, peak usage, and quota (limit) for a process with the Windows
NT Resource Kit Process Explode utility, PVIEW.EXE. (Performance
Monitor displays only the usage information, not the quotas.) In the
following example, the process selected has a peak paged pool usage
of 1536 KB, current usage of 1332 KB, and a quota of 1836 KB: &

rocess Explode

Peak paged pool usage
Current usage '

119

INSIDE WINDOWS NT

120

Object Names

An important consideration in creating a multitude of objects is devising a
successful system for keeping track of them. The object manager requires the
following to help you do so:

B A way to distinguish one object from another

A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to ob-
jects. This is an extension of what most operating systems provide—the abil-
ity to name selected resources, files, pipes, or a block of shared memory, for
example. The executive, in contrast, allows any resource represented by an
object to have a name. The second requirement, finding and retrieving an
object, is also satisfied by object names. If the object manager stores objects by
name, it can find an object by looking up its name.

Object names also satisfy a third requirement, allowing processes to share
objects. The executive’s object namespace is a global one, visible to all processes
in the system. One process can create an object and place its name in the glo-
bal namespace, and a second process can open a handle to the object by speci-
fying the object’s name. If an object is not meant to be shared in this way, its
creator doesn’t need to give it a name.

To increase efficiency, the object manager doesn’t look up an object’s
name each time someone uses the object. Instead, it looks up a name under
only two circumstances. The first is when a process creates a named object: the
object manager looks up the name to verify that it doesn’t already exist before
storing the new name in the global namespace. The second is when a process
opens a handle to a named object: the object manager looks up the name, finds
the object, and then returns an object handle to the caller; thereafter, the caller
uses the handle to refer to the object. When looking up a name, the object
manager allows the caller to select either a case-sensitive or a case-insensitive
search, a feature that supports POSIX and other environments that use case-
sensitive filenames.

Where the names of objects are stored depends on the object type. Table
3-6 lists the standard object directories found on all Windows NT systems and
what types of objects have their names stored there. Of the directories listed,
only \BaseNamedObjects and \?? are visible to user programs.

THREE: System Mechanisms

Table 3-6 Standard Object Directories

Directory Types of Object Names Stored

\?? MS-DOS device names (\DosDevices is a symbolic
link to this directory.)

\BaseNamedObjects = Mutexes, events, semaphores, waitable timers, and
section objects

\device Device objects

\driver Driver objects

\FileSystem File system driver objects and file system recognizer
device objects

\KnownDlls Section names and path for known DLLs (DLLs mapped
by the system at startup time)

\nls Section names for mapped national language

' support tables

\ObjectTypes Names of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

\security Names of objects specific to the security subsystem

\windows - Win32 subsystem ports and window stations

Because the base kernel objects such as mutexes, events, semaphores,
waitable timers, and sections have their names stored in a single object direc-
tory, no two of these objects can have the same name, even if they are of a
different type. This restriction emphasizes the need to choose names carefully
so that they don’t collide with other names (for example, prefix names with
your company and product name).

Object names are global to a single computer (or to all processors on a
multiprocessor computer), but they’re not visible across a network. The object
manager does, however, supply a hook—called a parse method—for accessing
named objects that exist on other computers. For example, the I/O manager,
which supplies file object services, extends the functions of the object manager
to remote files. When asked to open a remote file object, the object manager
calls a parse method, which allows the I/O manager to intercept the request
and deliver it to a network redirector, a driver that accesses files across the
network. Server code on the remote Windows system calls the object manager
and the I/O manager on that system to find the file object and return the
information back across the network.

121

INSIDE WINDOWS NT

EXPER!MENT Looking at the Base Named Objects

You can see the list of base objects that have names with the ObJectf ; |
Viewer utility in the Platform SDK. Run \MSSDK\BIN\WINNT\WIN-
OBJ.EXE, and click on \BaseNamedObjects, as shown here: .

FDiSharedHeap2344AC
@ SBDisharedHeap3CEE<
. 2 arcname * || 5% DHCPNEWIPADDRESS@
EE 5 Easetlamedibiects BemscignstD ata
i) device 2 emscigMutex
¥ B diiver o || ¥ LSA_RPC_SERVER_ACTIVE
4 I CFieSystem * || #MAPI-HPI4D417049E81CRADED
i 7 KnowrDlls 7 MAPI-HP*4D 417049E81CEADES
FCanls F: MAPI-HP+4D 417049E81CBADE<
é - 2 ObjectTypes 9 MCICDA_DeviceCritSec_0
; 0 psxss ¥ MCICDA_DeviceCritSec_1
; - C3 RPC Control #: MCICDA_DeviceCritSec_10
§ -0 security 9 MCICDA_DeviceCritSec_11
‘ L 23 windows - 4| #& MCICDA_DeviceCiitSec_12
& MCICDA_DeviceCritSec_13
A MCICDA_DeviceCritSec_14
A MCICDA_DeviceCiitSec_15

The named objects are shown on the mght The icons 1nd1ca:;e the :
object type. (Wzm:able timers aren’t shown.)

n Mutexes are indicated with a strange-looking bug, because, as -
I explained earlier, the kernel object that implements mutexes
is called a mutant. (I'll leave it-up to your imagination to de-
cide whether or not this bug resembles a mutant)

l Sections (Win32 file mappmg objects) are shown asa sectlon
" (slice) of a pie.

m Events don’t have an icon—the word “event” is spelled out (but '
broken into two lines). o :

~ B Semaphores are indicated w1th an icon that resembles a tram
51gnal or semaphore, :

Object directories The object directory object is the object manager’s means for
supporting this hierarchical naming structure. This object is analogous to a
file system directory and contains the names of other objects, possibly even
other object directories. The object directory object maintains enough infor-
mation to translate these object names into pointers to the objects themselves.

122

THREE: System Mechanisms

The object manager uses the pointers to construct the object handles that it
returns to user-mode callers. Both kernel-mode code and user-mode code (such
as subsystems) can create object directories in which to store objects. For ex-
ample, the I/O manager creates an object directory named \Device, which
contains the names of objects representing I/0 devices.

Symbolic links In certain file systems (on some UNIX systems, for example),
a symbolic link lets a user create a filename or a directory name that, when
used, is translated by the operating system into a different file or directory
name. Using a symbolic link is a simple method for allowing users to indirectly
share a file or the contents of a directory, creating a cross-link between different
directories in the ordinarily hierarchical directory structure.

The object manager implements an object called a symbolic link object,
which performs a similar function for object names in its object namespace.
A symbolic link can occur anywhere within an object name string. When a
caller refers to a symbolic link object’s name, the object manager traverses its
object namespace until it reaches the symbolic link object. It looks inside the
symbolic link and finds a string that it substitutes for the symbolic link name.
It then restarts its name lookup.

One place in which the executive uses symbolic link objects is in trans-
lating MS-DOS-style device names into Windows NT internal device names. In
MS-DOS, a user refers to floppy and hard disk drives using the names A:, B:, C:,
and so on. Moreover, the user can add pseudo drive names with the subst (sub-
stitute) command or by mapping a drive letter to a network share. Once they
are created, these drive names must be visible to all processes on the system.

-The Win32 subsystem makes drive letters protected, global data by plac-
ing them in the object manager namespace under the \?? object directory. (Prior
to Windows NT 4.0, this directory was named \DosDevices; it was renamed \??
for performance reasons, since that name places it first alphabetically.) When
the user or an application creates a new drive letter, the Win32 subsystem adds
another object under the \?? object directory.

Synchronization

The concept of mutual exclusion is a crucial one in operating systems develop-
ment. It refers to the guarantee that one, and only one, thread can access a
particular resource at a time. Mutual exclusion is necessary when a resource
doesn’t lend itself to shared access or when sharing would result in an unpre-
dictable outcome. For example, if two threads copy a file to a printer port at
the same time, their output could be interspersed. Similarly, if one thread reads

123

INSIDE WINDOWS NT

124

a memory location while another one writes to it, the first thread will receive
unpredictable data. In general, writable resources can’t be shared without re-
strictions, whereas resources that aren’t subject to modification can be shared.
Figure 3-14 illustrates what happens when two threads running on different
processors both write data to a circular queue. '

Because the second thread got the value of the queue tail pointer before
the first thread had updated it, the second thread inserted its data into the same
location that the first thread had used, overwriting data and leaving one queue
location empty. Even though this figure illustrates what could happen on a
multiprocessor system, the same error could occur on a single-processor sys-
tem if the operating system were to perform a context switch to the second
thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical
sections. To ensure correct code, only one thread at a time can execute in a
critical section. While one thread is writing to a file, updating a database, or
modifying a shared variable, no other thread can be allowed to access the same
resource. The code shown in Figure 3-14 is a critical section that incorrectly
accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating sys-
tems, is especially important (and intricate) for a tightly coupled, symmetric multi-
processing (SMP) operating system such as Windows NT, in which the same

Time

Processor A Processor B

Get queue tail
Insert data at current location °

Get queue tail

Increment tail pointer

Insert data at current location /*ERROR*/
Increment tail pointer

.

.

.

.

.

\l

Figure 3-14
Incorrect sharing of memory

THREE: System Mechanisms

system code runs simultaneously on more than one processor, sharing certain
data structures stored in global memory. In Windows NT, it is the kernel’s job
to provide mechanisms that system code can use to prevent two threads from
modifying the same structure at the same time. The kernel provides mutual-
exclusion primitives that it and the rest of the executive use to synchronize their
access to global data structures.

In the following sections, you’ll find out how the kernel uses mutual ex-
clusion to protect its global data structures and what mutual-exclusion and
synchronization mechanisms the kernel provides to the executive that it, in
turn, provides to user mode.

Kernel Synchronization

At various stages during its execution, the kernel must guarantee that one, and
only one, processor at a time is executing within a critical section. Kernel critical
sections are the code segments that modify a global data structure such as the
kernel’s dispatcher database or its DPC queue. The operating system can’t
function correctly unless the kernel can guarantee that threads access these
data structures in a mutually exclusive manner.

The biggest area for concern is interrupts. For example, the kernel might
be updating a global data structure when an interrupt occurs whose interrupt-
handling routine also modifies the structure. Simple single-processor operating
systems sometimes prevent such a scenario by disabling all interrupts each time
they access global data, but the Windows NT kernel has a more sophisticated
solution. Before using a global resource, the kernel temporarily masks those
interrupts whose interrupt handlers also use the resource. It does so by rais-
ing the processor’s IRQL to the highest level used by any potential interrupt
source that accesses the global data. For example, an interrupt at dispatch/DPC
level causes the dispatcher, which uses the dispatcher database, to run. There-
fore, any other part of the kernel that uses the dispatcher database raises the
IRQL to dispatch/DPC level, masking dispatch/DPC-level interrupts before
using the dispatcher database.

This strategy is fine for a single-processor system, but it’s inadequate for
a multiprocessor configuration. Raising the IRQL on one processor doesn’t
prevent an interrupt from occurring on another processor. The kernel also
needs to guarantee mutually exclusive access across several processors.

The mechanism the kernel uses to achieve multiprocessor mutual exclu-
sion is called a spinlock. A spinlock is a locking mechanism associated with a
global data structure, such as the DPC queue shown in Figure 3-15.

125

INSIDE WINDOWS NT

126

Processor A Processor B

Do Do

Try to acquire Try to acquire
DPC queue DPC queue
spinlock spinlock

Until SUCCESS Until SUCCESS

Begin (pPC J==3(DPC) | Begin

Remove DPC from queue DPC queue Add DPC from queue
End ‘ End ‘
Release DPC queue\spinlock Release DPC qUéue spinloék
[:I Critical section
Figure 3-15
Using a spinlock

Before entering either critical section shown in the figure, the kernel must
acquire the spinlock associated with the protected DPC queue. If the spinlock
isn’t free, the kernel keeps trying to acquire the lock until it succeeds. The
spinlock gets its name from the fact that the kernel (and thus, the processor)
is held in limbo, “spinning,” until it gets the lock.

Spinlocks, like the data structures they protect, reside in global memory.
The code to acquire and release a spinlock is written in assembly language for
speed and to exploit whatever locking mechanism the underlying processor
architecture provides. (For example, on Intel processors, Windows NT uses an
instruction that exists only on 486 processors or better; this is one of the rea-
sons that Windows NT doesn’t run on Intel 386 platforms anymore.) On many
architectures, spinlocks are implemented with a hardware-supported test-and-
set operation, which tests the value of a lock variable and acquires the lock in
one atomic instruction. Testing and acquiring the lock in one instruction pre-
vents a second thread from grabbing the lock between the time when the first
thread tests the variable and the time when it acquires the lock.

When a thread is trying to acquire a spinlock, all other activity ceases on
that processor. Therefore, a thread that holds a spinlock is never preempted
but is allowed to continue executing so that it will release the lock quickly. The
kernel uses spinlocks with great care, minimizing the number of instructions
it executes while it holds a spinlock.

THREE: System Mechanisms

The kernel makes spinlocks available to other parts of the executive
through a set of kernel functions. Device drivers, for example, require spinlocks
in order to guarantee that device registers and other global data structures are
accessed by only one part of a device driver (and from only one processor) at
a time. Spinlocks are not for use by user programs—user programs should use
the objects described in the next section.

Executive Synchronization

Executive software outside the kernel also needs to synchronize access to global
data structures in a multiprocessor environment. For example, the memory
manager has only one page frame database, which it accesses as a global data
structure, and device drivers need to ensure that they can gain exclusive ac-
cess to their devices. By calling kernel functions, the executive can create a
spinlock, acquire it, and release it. '
Spinlocks only partially fill the executive’s needs for synchronization mech-
anisms, however. Because waiting on a spinlock literally stalls a processor, spin-
locks can be used only under the following strictly limited circumstances:

The protected resource must be accessed quickly and without com-
plicated interactions with other code.

The critical section code can’t be paged out of memory, can’t make
references to pageable data, can’t call external procedures (includ-
ing system services), and can’t generate interrupts or exceptions.

These restrictions are confining and can’t be met under all circumstances.
Furthermore, the executive needs to perform other types of synchronization
in addition to mutual exclusion, and it must also provide synchronization mech-
anisms to user mode.

The kernel furnishes additional synchronization mechanisms to the execu-
tive in the form of kernel objects, known collectively as dispatcher objects. The user-
visible synchronization objects acquire their synchronization capabilities from
kernel dispatcher objects. Each user-visible object that supports synchronization
encapsulates at least one kernel dispatcher object. The executive’s synchroniza-
tion semantics are visible to Win32 programmers through the WaitForSingleObject
and WaitForMultipleObjects functions, which the Win32 subsystem implements by
calling analogous system services supplied by the object manager. A thread in a
Win32 application can synchronize with a Win32 process, thread, event, sema-
phore, mutex, waitable timer, I/O completion port, or file object.

127

INSIDE WINDOWS NT

128

One other type of executive synchronization object worth noting is called
executive resources. Executive resources provide both exclusive access (like a
mutex) as well as shared read access (multiple readers sharing read-only ac-
cess to a structure). However, they’re available only to kernel-mode code and
thus are not accessible from the Win32 API. Resources are not dispatcher ob-
jects, but rather data structures allocated directly from nonpaged pool that have
their own specialized services to initialize, lock, release, query, and wait on them.
The executive resource structure is defined in NTDDK.H, and the executive
support routines are documented in the DDK reference documentation.

The remaining subsections describe the implementation details of wait-
ing on dispatcher objects.

Waiting on Dispatcher Objects
A thread can synchronize with a dispatcher object by waiting on the object’s

* handle. Doing so causes the kernel to suspend the thread and change its dis-
- patcher state from running to waiting, as shown in Figure 3-16. The kernel

removes the thread from the dispatcher ready queue and no longer considers
it for execution.

"—---) lnﬂlallzed ---...~

Set object to
signaled state

]
]
]
1 Thread waits

: on an object
handle

S omm

-

-

-
e L

~ -
- -
-~y -
N oaemmmm™

Figure 3-16
Waiting on a dispatcher object

THREE: System Mechanisms

At any given moment, a synchronization object is in one of two states:
either the signaled state or the nonsignaled state. A thread can’t resume its exe-
cution until the kernel changes its dispatcher state from waiting to ready. This
change occurs when the dispatcher object whose handle the thread is waiting
on also undergoes a state change, from the nonsignaled state to the signaled
state (when a thread sets an event object, for example). To synchronize with
an object, a thread calls one of the wait system services supplied by the object
manager, passing a handle to the object it wants to synchronize with. The thread
can wait on one or several objects and can also specify that its wait should be
canceled if it hasn’t ended within a certain amount of time. Whenever the
kernel sets an object to the signaled state, it checks to see whether any threads
are waiting on the object. If they are, the kernel releases one or more of the
threads from their waiting state so that they can continue executing.

The following example of setting an event illustrates how synchronization
interacts with thread dispatching:

1. A user-mode thread waits on an event object’s handle.

2. The kernel changes the thread’s scheduling state from ready to
waiting and then adds the thread to a list of threads waiting for the
event.

3. Another thread sets the event.

4. The kernel marches down the list of threads waiting on the event. If
a thread’s conditions for waiting are satisfied,* the kernel changes
the thread’s state from waiting to ready. If it is a variable-priority
thread, the kernel might also boost its execution priority.

5. Because a new thread has become ready to execute, the dispatcher
reschedules. If it finds a running thread with a priority lower than
that of the newly ready thread, it preempts the lower-priority thread
and issues a software interrupt to initiate a context switch to the
higher-priority thread.

6. If no processor can be preempted, the dispatcher places the ready
thread in the dispatcher ready queue to be scheduled later.

* Some threads might be waiting for more than one object, so they continue waiting.

129

INSIDE WINDOWS NT

What Signals an Object

The signaled state is defined differently for different objects. A thread object
is in the nonsignaled state during its lifetime and is set to the signaled state
by the kernel when the thread terminates. Similarly, the kernel sets a process
object to the signaled state when the process’s last thread terminates. In con-
trast, the timer object, like an alarm, is set to “go off” at a certain time. When
its time expires, the kernel sets the timer object to the signaled state.

When choosing a synchronization mechanism, a program must take into
account the rules governing the behavior of different synchronization objects.
Whether a thread’s wait ends when an object is set to the signaled state varies
with the type of object the thread is waiting on, as Table 3-7 illustrates.

Table 3-7 Definitions of the Signaled State

Set to Signaled Effect on
Obiject Type. State When Waiting Threads
Process Last thread terminates -All released
Thread Thread terminates All released
File I/O operation completes All released
Event (notification type) Thread sets the event All released
Event (synchronization type) = Thread sets the event One thread released,;
‘ event object reset
Semaphore Semaphore count drops All released
to 0
Timer Set time arrives or time All released
interval expires
Mutex Thread releases One thread released
the mutex

130

When an object is set to the signaled state, waiting threads are generally
released from their wait states immediately. Some of the kernel dispatcher
objects and the system events that induce their state changes are shown in
Figure 3-17.

For example, a notification event object (called a manual reset event in
the Win32 API) is used to announce the occurrence of some event. When the
event object is set to the signaled state, all threads waiting on the event are
released. The exception is any thread that is waiting on more than one object
ata time; such a thread might be required to continue waiting until additional
objects reach the signaled state.

THREE: System Mechanisms

Dispatcher Effect of signaled state

object

Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Timer

Thread

Figure 3-17

State change

Owning thread
releases the mutex.

A

Nonsignaled Signaled

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

A

Nonsignaled Signaled

Resumed thread
acquires the mutex.

One thread releases the
semaphore, freeing a resource.

Nonsignaled Signaled

A thread acquires the
semaphore. More resources
are not available.

A thread sets the event.

Nonsignaled Signaled

Kernel resumes one
or more threads.

Dedicatied thread sets one
event in the event pair.

A

Nonsignaled Signaled

Kernel resumes the
other dedicated thread.

Timer expires.

A

Nonsignaled Signaled

A thread (re)initializes
the timer.

Thread terminates.

A
~—

Nonsignaled Signaled

A thread reinitializes the
thread object.

Selected kernel dispatcher objects

on waiting threads

Kernel resumes one
waiting thread.

Kernel resumes one
waiting thread.

Kernel resumes one or
more waiting threads.

Kernel resumes one or
more waiting threads.

Kernel resumes waiting
dedicated thread.

Kernel resumes all
waiting threads.

Kernel resumes all
waiting threads.

131

INSIDE WINDOWS NT

132

In contrast to an event object, a mutex object has ownership associated
with it. Itis used to gain mutually exclusive access to a resource, and only one
thread at a time can hold the mutex. When the mutex object becomes free, the
kernel sets it to the signaled state and then selects one waiting thread to exe-
cute. The thread selected by the kernel acquires the mutex object, and all other
threads continue waiting. '

This brief discussion was not meant to enumerate all the reasons and
applications for using the various executive objects, but rather to list their basic
functionality and synchronization behavior. For information on how to put
these objects to use in Win32 programs, see the Win32 reference documenta-
tion on synchronization objects or Richter’s Advanced Windows.

Data Structures

~ Two data structures are key to tracking who is waiting on what: dispatcher headers

and wait blocks. Both of these structures are publicly defined in the DDK include
file ntddk.h. The definitions are reproduced here for convenience:

typedef struct _DISPATCHER_HEADER {
UCHAR Type;
UCHAR Absolute;
UCHAR Size;
UCHAR Inserted;
LONG SignalState;
LIST_ENTRY WaitlListHead;
} DISPATCHER_HEADER;

typedef struct _KWAIT_BLOCK {
LIST_ENTRY WaitListEntry;
struct _KTHREAD *RESTRICTED_POINTER Thread;
PVOID Object;
struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock;
USHORT WaitKey;
USHORT WaitType;
} KWAIT_BLOCK, *PKWAIT_BLOCK, #RESTRICTED_POINTER PRKWAIT_BLOCK;

The dispatcher header contains the object type, signaled state, and a list
of the threads waiting on that object. The wait block represents a thread wait-
ing on an object. Each thread that is in a wait state has a list of the wait blocks
that represent the object(s) the thread is waiting on. Each dispatcher object
has a list of the wait blocks that represent which threads are waiting on the ob-
ject. This list is kept so that when a dispatcher object is signaled, the kernel can
quickly determine who is waiting on that object. The wait block has a pointer

THREE: System Mechanisms

to the object being waited on, a pointer to the thread waiting on the object,
and a pointer to the next wait block (if the thread is waiting on more than one
object). It also records the type of wait (any or all) as well as the position of that
entry in the array of handles passed by the thread on the WaitForMultipleObjects
call (zero if the thread was waiting on only one object).

Figure 3-18 shows the relationship of dispatcher objects to wait blocks to
threads. In this example, thread 1 is waiting on object B, and thread 2 is wait-
ing on objects A and B. If object A is signaled, the kernel will see that because
thread 2 is also waiting on another object, it can’t be readied for execution. On
the other hand, if object B is signaled, the kernel can ready thread 1 for exe-
cution right away since it isn’t waiting on any other objects.

Thread objects

<
Thread 1
€
Wait block list @ Thread 2
Wait block list @
Dispatcher objects
Size lType
State i Wait blocks
. r >
ObjectA 1 \\ait list head < 3p-(— Listentry —
Object-type- ‘ ® Thread
specific data Object
Key | Type
Next link
Size | Type <€)
S Thread 2 wait block
ate
Object B j < <Bm
- Wait list head — <€ P~ Listentry —<€=—tP— Listentry —
Obiect.type. Thread ® Thread
specific data | Object Object
o Key l Type Key I Type
Next link Next link
Thread 1' wait block Thread 2 wait block
Figure 3-18

Wait data structures

133

INSIDE WINDOWS NT

m
EXPERIMENT: Looking at Wait Queues ‘ ‘

Although many process viewer utilities indicate whether a thread isin
await state (and if so, what kind of wait), you can see the list of obJects
a thread is waiting on only with the kernel debugger /thread command.

For example, the following excerpt from the output of a /process com-
mand shows that the thread is waiting on an event object:

> !process

THREAD 80618039 C1d 97 7f . Teb: 7ffdeddo w1n32Thread e199cea8
WAIT: (WrUserRequest) UserMode Non-Alertable)
805b4ab@ SynchronizationEvent

Although the kernel debugger doesn't have a command for format-
ting the contents of a dispatcher header, we know the layout (described
on page 132), so we can interpret its contents manually: -

> dd 8@5b4abd .
0x805B4ABO 0Q040001 00000009 80618@9¢-8061809¢C ceseeeeeaide

From this, we can ascertain that no other threads are waiting on this
event object, because the wait list head forward and backward point-
ers (the third and fourth 32-bit values) point to the same location (a
single wait block). Dumping the wait block (at address Ox8061809c)‘
yields the following:

> dd 8861809c
0x8061809C 805b4ab8 805b4ab8 80618030 805b4ab0 L. J[.0.a..d0.
0x806180AC 8061809c 00010000 000Q0000 G00ORO0R ..a.............

- The first two 32-bit values point to the list head of the wait blocks ‘
in the dispatcher header. The third 32-bit value is the pointer to the
thread object. The fourth value points to the dispatcher object itself.
The fifth value (0x8061809c) is the pointer to the next wait block. From

- this, we can conclude that the thread is not waiting on any other ob-
jects, since the next wait block field points to the wait block itself.

134

THREE: System Mechanisms

Windows NT Global Flags

Windows NT has a set of flags stored in a systemwide global variable named
NtGlobalFlag that enable various internal debugging, tracing, and validation
support in the operating system. The system variable NtGlobalFlagis initialized
from the registry key HKLM\System\CurrentControlSet\Control\Session
Manager\GlobalFlag at system boot time. By default, this registry value is 0, so
it’s likely that on your systems, you're not using any global flags. In addition,
each image has a set of global flags that also turns on internal tracing and vali-
dation code (though the bit layout of these flags is entirely different than the
systemwide global flags). Although the use of these flags is not documented
or supported for customer use, they can be a useful tool for exploring the
internal operation of Windows NT.

Fortunately, the Windows NT Resource Kit (supplement 2 or later) con-
tains a utility named GFLAGS.EXE that allows you to view and change the
system global flags (either in the registry or in the running system) as well as
image global flags. Gflags has both a command-line and a GUI interface. To
see the command-line flags, type GFLAGS /?. If you run the utility without any
switches, the dialog box shown in Figure 3-19 is displayed.

Figure 3-19
Setting system debugging options with Gflags

135

INSIDE WINDOWS NT

136

You can toggle between the settings in the registry (by clicking System
Registry) and the current value of the variable in system memory (by clicking
Kernel Mode). You must press the Apply button to make the changes. (You’ll
exit if you press the Okay button.) Although you can change flag settings on
the running system, most flags require a reboot to take effect, and there is no
documentation on which do and which don’t require rebooting. So when in
doubt, reboot after changing a global flag.

The Image File Options choice requires that you fill in the filename of
a valid executable image. This option is used to change another set of global
flags that apply to an individual image (rather than to the whole system). In
Figure 3-20, notice that the flags are different than the operating system ones
shown in Figure 3-19.

Figure 3-20
Setting image global flags with Gflags

THREE: System Mechanisms

m
& EXPERIMENT: Enabling Image Loader Tracing .
To see an example of the detailed tracing information you can obtain
by setting global flags, try running GFLAGS on a system booted with
the kernel debugger that is connected to a host system runnmg KD or
‘\VVIDH)B(}
~oAsan example, try enabhng the Show Loader Snaps. ﬂag To do
this, select Kernel Mode, click the Show Loader Snaps check box, and
- click the Apply button. Then run an image on this machine, and in the
fkmrneldebuggeryoullseevohnnesof(nnputhkethefbﬂomnng
LDR: PID: 0xb8 started. - notepad' '
LDR: NEW PROCESS '
Image Path: C: \WINNT\system32\notepad exe (notepad exe)
Current Directory: C:\ddk\bin)
Search Path: C:\WINNT\System32;C: \NINNT\system C \WINNT
_LDR: notepad.exe bound to comdig32.d11.... :

LDR: ntd11.d11 used by comd1g32.d11
. 'LDR: Snappingfimpqrt’s for comd1g32;dﬂl from: ntd11.d1

S, D

 LDR: KERNEL32.d11 loaded. - Calling init routine at 77fele00
LDR: RPCRT4.d11 loaded. - Calling init routine at 77e1b6d5 .
LDR: ADVAPI32.d11 toaded, - Calling init routine at 77dclees
_ LDR: USER32.d11 loaded. - CaTHng 1n'it routine ‘at 77e78037

Local Procedure Calls (LPCs)

A local procedure call (LPC) is an interprocess communication facility for
high-speed message passing. It is not available through the Win32 API; it is an
internal mechanism available only to Windows NT operating system compo-
nents. Here are some examples of where LPCs are used:

B Remote procedure calls use LPCs to communicate between processes
on the same system.

B A few Win32 APIs result in sending messages to the Win32 subsystem
process.

B WinLogon uses LPC to communicate with the local security authen-
tication server process, LSASS.

B The security reference monitor (an executive component explained
in Chapter 6) uses LPC to communicate with the LSASS process.

137

INSIDE WINDOWS NT

[
EXPERIMENT: Viewing LPC Port Objects |

You can see named LPC port objects with the Object Viewer utility in
the Platform SDK. Run\mssdk\bin\winobj, and select the root d1rec- ’
tory A plug icon 1dent1ﬁes the port objects as shown here: *

) = [[wEg #% DosDevices
E FCa?? | Caarcname ¥ EnorLogPortl.
4 €2 arcname -|{ E2BaseNamedObjects0 B fat
‘ I €3 BaseNamedObjects - {|E0device W LanmanServerannounceE vent
i 0 device [Cdiiver f LsasuthenticationPort
| S diver ., || EFileSystem ¥ NETLOGON_SERVICE_STAR .
& - COFileSystem 4| E23KnownDlls E ntfsg :
I £ KnownDlis Cnls ﬂ' NtLmSecuritySupportProviderP:
FCnls E0bjectTypes registry<
- €3 ObjectTypes Cpsxss S SAM_SERVICE_STARTED
o pswss 1| E3RPC Control # Sel saCommandPort4
4 | E3RPC Contiol Clsecuityd Y SeLsalnitE vent
; }‘ (1 secuiity || Cowindows # SeRmCommandPort
¢ L Cwindows <] edfed & SmApiPort
#¥ DbgSshpiPortd #% SystemRioot
; " {|#° DbgUispiPartd & XactSLpcPort
et dfs

Tc see the LPC port objects used by RPC, select the\RPC Control
dxrectory, as shown here: '

[] fr :protected_storage

s ke "' epmapper
¢ D arcname # lslpc
© - C3BaseNamedObiects Fole18
¢ 3 device & 0le20
i | driver | ole3d
& O FileSystem]| olett
4 1 C3KnownDlls TP oless
i FEnis S olede
£ -0 ObjectTypes & oledt
i G pswss || ole5@
; : o # ole52
spoolss

138

THREE: System Mechanisms

Typically, LPCs are used between a server process and one or more client
processes of that server. An LPC connection can be established between two
user-mode processes or between a kernel-mode component and a user-mode
process. For example, as noted in Chapter 2, Win32 processes send occasional
messages to the Win32 subsystem by using LPC. Also, some system processes
use LPC to communicate, such as WinLogon and LSASS. An example of a
kernel-mode component using LPC to talk to a user process is the communi-
cation between the security reference monitor and the LSASS process.

LPC is designed to allow three methods of exchanging messages:

A message that is shorter than 256 bytes can be sent by calling LPC
with a buffer containing the message. This message is then copied
from the address space of the sending process into system address
space, and from there to the address space of the receiving process.

B If a client and a server want to exchange more than 256 bytes of data,
they can choose to use a shared section to which both are mapped.
The sender places message data in the shared section and then sends
a small message to the receiver with pointers to where the data is to
be found in the shared section.

B When a server wants to read or write larger amounts of data than
will fit in a shared section, data can be directly read from or written
to a client’s address space. The LPC component supplies two func-
tions that a server can use to accomplish this. A message sent by the
first method is used to synchronize the message passing.

LPC exports a single executive object called the port object to maintain the
state needed for communication. Although LPC uses a single object type, it has
several kinds of ports:

i Server connection port A named port that is a server connection
request point. Clients can connect to the server by connecting to
this port.

Server communication port An unnamed port a server uses to
communicate with a particular client. The server has one such port
per active client.

Client communication port An unnamed port a particular client
thread uses to communicate with a particular server.

i Unnamed communication port An unnamed port created for use
by two threads in the same process.

139

INSIDE WINDOWS NT

LPG is typically used as follows: A server creates a named server connec-
tion port object. A client makes a connect request to this port. If the request is
granted, two new unnamed ports, a client communication port and a server com-
munication port, are created. The client gets a handle to the client communi-
cation port, and the server gets a handle to the server communication port. The
client and the server will then use these new ports for their communication.

A completed connection between a client and a server is shown in Figure
3-21.

Client address Kernel address space Server address
space space
Connection port

Client process Server process

Figure 3-21
Use of LPC ports

Conclusion

In this chapter, we’ve examined the key base system mechanisms on which the
Windows NT executive is built. With this foundation laid, we’re ready to explore
the individual executive components in more detail, starting with processes and
threads. ‘

140

CHAPTEMR FOUWUR

Processes and Threads

This chapter explains the data structures and algorithms that deal with pro-
cesses and threads in Microsoft Windows NT 4.0. The first section focuses on
the internal structures that make up a process. In the second section, the steps
involved in creating a process (and its initial thread) are outlined. Then comes
the section on thread internals. The chapter concludes with a description of
the thread-scheduling algorithms.

Where there are relevant performance counters or system variables, these
are mentioned. Although this book is not a Microsoft Win32 programming
book, the process-related and thread-related Win32 functions are listed so that
you can pursue additional information on their use.

Because processes and threads touch so many components in Windows
NT, a number of terms and data structures (such as working sets, objects and
handles, the system memory heaps, and so on) are referred to in this chapter
but are explained in detail elsewhere in the book. To fully understand this
chapter, you need to be familiar with the terms and concepts explained in
Chapter 1 and Chapter 2, such as the difference between a process and a thread,
the Windows NT virtual address space layout, the difference between user
mode and kernel mode, and the role of key system components such as the ex-
ecutive, kernel, and hardware abstraction layer (HAL).

Process Internals

This section describes the key Windows NT process data structures. Also listed
are key system variables, performance counters, and functions and tools that
relate to processes.

Data Structures

Each Windows NT process is represented by an executive process (EPROCESS)
block. Besides containing many attributes about a process, an EPROCESS block
contains and points to a number of other related data structures. For example,

141

INSIDE WINDOWS NT

142

each process has one or more threads, represented by executive thread
(ETHREAD) blocks. (Thread data structures are explained in the section
“Thread Internals” on page 171) The EPROCESS block and its related data
structures exist in system space, with the exception of the process environment
block (PEB), which exists in the process address space (since it contains infor-
mation that is modified by user-mode code).

In addition to the EPROCESS block, the Win32 subsystem process
(GSRSS) maintains a parallel structure for each Windows NT process that
executes a Win32 program. Also, the kernel-mode part of the Win32 subsystem
(WIN32K.SYS) has a per-process data structure that is created the first time
a thread calls a Win32 USER or GDI function that is implemented in kernel
mode.

Figure 4-1 is a simplified diagram of the process and thread data structures.
Each data structure shown in the figure is described in detail in this chapter.

Process
= environment [<€
block

Thread
environment
block

Process address space

System address space

—)LWin32 process block ‘
Process

block Handle table

Thread
| —ﬁ block

Figure 4-1
Data structures associated with processes and threads

FOUR: Processes and Threads

First let’s focus on the process block. (We’ll get to the thread block in the
section “Thread Internals” later in the chapter.) Figure 4-2 shows the key fields
in an EPROCESS block.

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

PsActiveProcessHead === Next process block 3| EPROCESS

Quota block

Memory management information

Exception port

Debugger port

)' Primary access token [

&)' Handle table l

Process environment block

Image filename

Image base address

Process priority class

)l Win32 process blocﬂ

Figure 4-2
Structure of an executive process block

143

INSIDE WINDOWS NT

_:EXPERIMENT Displayingthe
- Format of an EPROCESS Block T e
- For a list of most of the fields that make up an EPROCESS bIock and
their offsets in hexadecimal, type Yprocessfields in the kernel debuggen o
(To learn how to set up and use the kernel debugger, 8ee page 21 in ‘
Chapter 1.) The output Tooks like this: " :
KDx86> !processfields =
EPROCESS: structure offsets: : ‘
Pcb: , ‘ S el
ExitStatus: . L ... BX68 .
LockEvent: 0x6c
LockCount: RN ox7c
CreateTime: - o 0x80 -
ExitTimes ; S 0x88
- LockOwner: . o ~ - 0x90
UnaqueProcessId S 0x94
. ‘ActiveProcesslinks: . 0x98
“QuotaPeakPoolUsage[8]: o 2xa0
QuotaPoolUsagel[0]: I 0xa8
1Pagef11eUsage) 0xb0
CommitCharge: . o 0xb4
PeakPagefileUsage: " 0xb8
PeakVirtualSize: oxbe
~ VirtualSize: ’ o 0xco ¢
Vm: el 0xc8
LastProtoPteFault: = . Oxf8
DebugPort: ’ oxfe
ExceptionPort: : . 0x100
- ObjectTable: o exled
Token: " » . .Bx108
WorkingSetLock: ~ o - Ox10c
WorkingSetPage: . .. o - Bxl2c
ProcessOutswapEnabled: ; L 0x130
ProcessOutswapped:. 0x131
AddressSpacelnitialized: ' - 0x132
AddressSpaceDeleted: - -~ - - . ° - 0x133
AddressCreationLtock: . -« ' " @x134
ForkInProgress: - . - ¥ © o Bx158: ¢
VmOperation:: ~- = #x15¢
VmOperationEvent: & ik 0x16@
PageDirectoryPte: - - © U Texled
LastFaultCount: " . 0x168
VadRoot: - Lo exlTe
VadHint: _ - ox174

144

FOUR: Processes and Threads

CloneRoot: 0x178
NumberOfPrivatePages: 0x17¢
NumberOflockedPages: ‘ 0x180

* ForkWasSuccessful: 0xl5e .
* ExitProcessCalled: . Bx186
‘CreateProcessReported: ‘ 0x187
“SectionHandle: : 0x188

© o Peb: B ' Coo e gx18e
‘SectionBaseAddress: ©ax190
“QuotaBlock: ; ' -9x194
LastThreadExitStatus . 9x198
WorkingSetWatch: = 0x19c¢
InheritedFromUniqueProcessid: 0xlad
GrantedAccess: 0xla8
DefauTtHardErrorPracess1ng . @xlac
LdtInformation: - axlbe
VadFreeHint: L . Ox1b4
VdmObjects: : ox1b8
ProcessMutant: -) i 0xlbc
‘ImageFileName[0]: . : 0xldc
“mTrimFaultValue: Oxlec
Win32Process: ' - Bx1f4
W1n32N1ndowStatian , 0x1a0

: The chesyields command shows the format of a process block not
its contents. (The /process command actually dumps the contents of a
- process block. An annotated example of the output from this com- -
" mand is included later in this section, in Figure 4-5, on page 156.) Al-
 though some of the field names are self-explanatory, the output doesn’t
' give the data type of the fields, nor does it show the format of the struc-
tures that are included within or pointed to by the EPROCESS block
_(such as the kernel process block; quota block, and so on). By exam-
' ining the offsets, however, you can at least tell the length of a field.
. (Hint: Fields that are 4 bytes long and refer to some other structure .
: .are llkely pomters D : . :

Table 4-1 explains some of the fields in the preceding experiment in more
detail and includes references to other places in the book where you can find
more information about them. As I've said before and will no doubt say again,
processes and threads are such an integral part of Windows NT that it’s impos-
sible to talk about them without referring to many other parts of the system.
To keep this chapter manageable, however, I've covered those related subjects
(such as memory management, security, objects, and handles) elsewhere.

145

INSIDE WINDOWS NT

Table 4-1 Contents of the EPROCESS Block

Element

Purpose

Additional
Reference

Kernel process
(KPROCESS) block

Process
identification

Quota block

Virtual address space
descriptors (VAD)

Working set
information

Virtual memory
information

Exception local
procedure call
(LPC) port

Debugging LPC port

Access token
(ACCESS_TOKEN)

Handle table

Common dispatcher object header, pointer to
the process page directory, list of kernel
thread (KTHREAD) blocks belonging to the
process, default base priority, quantum, affinity
mask, and total kernel and user time for the
threads in the process.

Unique process ID, parent process ID, name
of image being run, window station process is
running on.

Limits on nonpaged pool, paged pool, and
page file usage plus current and peak process
nonpaged and paged pool usage. (Note: This
structure can be shared by several processes:
all the system processes point to the single
systemwide default quota block; all the pro-
cesses in the interactive session share a single
quota block set up by Winlogon [WINLOG-
ON.EXE].)

Series of data structures that describes the
status of the portions of the address space
that exist in the process.

Pointer to working set list (MMWSL structure);
current, peak, minimum, and maximum work-
ing set size; last trim time; page fault count;
memory priority; outswap flags; page fault
history.

Current and peak virtual size, page file usage,
hardware page table entry for process page
directory.

Interprocess communication channel to which
the process manager sends a message when
one of the process’s threads causes an
exception.

Interprocess communication channel to which
the process manager sends a message when one
of the process’s threads causes a debug event.

Executive object describing the security pro-
file of this process.

Address of per-process handle table.

Thread scheduling
(page 184)

Memory
management
(Chapter 5)

Memory
management

(Chapter 5)

Memory
management
(Chapter 5)

Local procedure calls
(Chapter 3, page 127)

Local procedure calls
(Chapter 3, page 127)
Security (Chapter 6)

Object handles
(Chapter 3, page 112)

146

FOUR: Processes and Threads

Additional
Element Purpose . Reference
Process environment Image information (base address, version Page 166

block (PEB) numbers, module list), process heap infor-
mation, thread-local storage utilization.
(Note: The pointers to the process heaps start
at the first byte after the PEB.)

Win32 subsystem Process details needed by the kernel-mode
process block component of the Win32 subsystem.
(W32PROCESS)

Two key substructures of the executive process block are the kernel pro-
cess (KPROCESS) block and the process environment block (PEB). The KPRO-
CESS block (which is sometimes called the PCB, or process control block)
is illustrated in Figure 4-3 and contains the basic information that the Windows
NT kernel needs to schedule threads. (Page directories are covered in Chap-
ter 5, and kernel thread blocks are described in more detail later in this chapter.)

Dispatcher header

® 3| Process page directoryJ

Kernel time

User time

Inswap/Outswap list entry

° 3| KTHREAD |3 - - -

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

Figure 4-3
Structure of the kernel process block

147

INSIDE WINDOWS NT

The PEB, which lives in the user process address space, contains informa-
tion needed by the image loader, the heap manager, and other Win32 system
DLLs that need to be writable from user mode. (The EPROCESS and KPRO-
CESS blocks are accessible only from kernel mode.) The PEB is always mapped
at address 0x7FFDF000. The basic structure of the PEB is illustrated in Figure

4-4 and is explained in more detail later in the chapter.

Image base address

Module list

Thread-local storage data

Code page data

Critical section time-out

Number of heaps

Heap size information

GDI shared handle table

Operating system version number information

Image version information

Image process affinity mask

Figure 4-4
Fields of the process environment block

System Variables

A few of the key system global variables that relate to processes are listed in
Table 4-2. These variables are referred to later in the chapter, when the steps

in creating a process are described.

Performance Counters

148

Windows NT maintains a number of counters with which you can track the pro-
cesses running on your system; you can retrieve these counters programmati-
cally or view them with the Performance Monitor utility (PERFMON.EXE).
Table 4-3 lists the performance counters relevant to processes (except for
memory management-related counters, which are described in Chapter 5).

3| Process heap

FOUR: Processes and Threads

Table 4-2 Process-Related System Variables

Variable Type Description
PsActiveProcessHead Queue header List head of process blocks
PsldleProcess EPROCESS Idle process block
PsInitialSystemProcess Pointer to Pointer to the process block of the initial
EPROCESS system process (process ID 2) that contains
the system threads
PspCreateProcess- Array of 32-bit Array of pointers to routines to be called on
NotifyRoutine pointers process creation and deletion (maximum
: of eight)
PspCreateProcess- DWORD Count of registered process notification
NotifyRoutineCount routines
PspCidTable Pointer to Handle table for process and thread client

HANDLE_TABLE IDs

Table 4-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in
the process have run in kernel mode during a specified
interval.

Process: % Processor Time Describes the percentage of CPU time that the threads

in the process have used during a specified interval. This
count is the sum of % Privileged Time and % User Time.

Process: % User Time Describes the percentage of time that the threads in
the process have run in user mode during a specified
interval.

Process: Elapsed Time Describes the total elapsed time in seconds since this

process was created.

Process: ID Process Returns the process ID. This ID applies only while the
process exists, because process IDs are reused.

Process: Thread Count Returns the number of threads in the process.

149

INSIDE WINDOWS NT

Relevant Functions

For reference purposes, the Win32 functions that apply to processes are de-
scribed in Table 4-4. For further information, consult the Win32 API documen-
tation in the MSDN Library.

Table 4-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s
security identification

CreateProcess- Creates a new process and thread and its primary thread

AsUser using an alternate security identification and then
executes a specified .EXE

OpenProcess Returns a handle of the specified process object

ExitProcess Exits the current process

TerminateProcess Terminates a process

FlushInstruction- Empties another process’s instruction cache

Cache

GetProcessTimes Obtains another process’s timing information, describing
how much time the process has spent in user and kernel
mode

GetExitCodeProcess ~ Returns the exit code for another process, indicating how
and why the process shut down

GetCommandLine Returns the command-line string passed to the process

GetCurrent- Returns the ID of the current process

ProcessID)

GetProcessVersion Returns the major and minor versions of the Windows
version on which the specified process expects to run

GetStartuplnfo Returns the contents of the STARTUPINFO structure
specified during CreateProc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>