


Lisp Machine Manual

'l‘llird Edition

March 1981

Danicl Weinreb
David Moon

This report describes rescarch done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research is provided in
part by the Advanced Rescarch Projects Agency of the Depaittnent of Defense under Office of
Naval Rescarch Contract number N00014-80-C-0505.



©Copyright by the Massachusetts Institute of Technology; Cambridge, Mass. 02139
All rights reserved.



Preface

The Lisp Machine manual describes both the language and the "operating system” of the Lisp
machine. The language, a dialect of Lisp, is completcly documented by this manual. The
software environment and operating-system-like parts of the system contain many things which are
still in a state of flux. This manual confines itself primarily to the stabler parts of the system,
and does not address the window system and user interface at all. That documentation will be
released as a separate volume at a later time. '

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa network mail
to BUG-LMMAN@MIT-AL

Those not on the Arpanct may send U.S. mail to
Daniel I.. Weinreb or David A. Moon
Room 926
545 Technology Square
Cambridge, Mass. 02139

Note

The Lisp machinc is a product of the cfforts of many people too numerous to list here and cf
the unigque envirowment of thie M.LT. Artificial Intelligence Laboratory.

Portions of this manual were written by Richard Swllman, Mike McMahon, and Alan
Rawden. The chapter on the [.OOP iteration macro is a reprint of Laboratory for Computer
Science memo TW-169, by Glenn Burke.
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Lisp Machine Manual 1 Introduction
{. Introduction

1.1 General Information

The Lisp Machine is a new computer system designed - to provide a high performance and
economical implementation of the Lisp linguage. It is a personal computation system, which
means that processors and main memorics arc not time-multiplexed:  when using a Lisp Machine,
vou get your own processor and memory system for the duration of the scssion. [t is designed
this way to rclieve the problems of the running of large Lisp programs on time-sharing systems.
Fyvervthing on the Lisp Machine is written in Lisp. including all system programs; there is never
any necd to progiam in machine language. The system is highly interactive.

The Lisp Machine exccutes a new dialect of Lisp called Lisp Machine Lisp, developed at the
M.LT. Artificial Intelligence Laboratory for use in artificial intelligence rescarch and related fields.
It is closely reluted to the Maclisp dialect, and attempts to maintain a good degree of
compatibility with Maclisp, while also providing many improvements and new features.  Maclisp,
in turn, is based on Lisp LS.

This document is the reference manual for the Lisp Meuchine Lisp language. This decument s
not a iutsrial, and it semetiimes refers w functions and concepts that arc not explained until later
in the manual. 1o is asswined that you have a basic working knowledge of some [ ip dialect; you
will be able to figure out the rest of the linguage from this manual.

There aie also fiilitics explained i this manual that aie not reaily part of the Lisp language.
Some of these are subroutine packages of general use, and others are iovis used in writing
programs.  However, the Lisp Machine window system, 2and the major utility programs, are not
docuinented here,

i.2 Structure of the Manual

The manual starts out with an cxplanation of the language. Chapter 2 cxplains the different
primitive types of Lisp object, and presents some basic predicate functions for testing types.
Chapter 3 explains the process of evaluation, which is the heart of the Lisp language. Chapter 4
introduces the basic Lisp control structures.

The next several chapters explain the details of the various primitive data-types of the
language, and the functions that deal with them. Chapter 5 deals with conses and the higher-level
structures that can be bhuilt out of them, such as trecs, lists, assiciation lists, and property lists.
Chapter ¢ deals with symbols, chapter 7 with the various kinds ot numbers, and chapter 8 with

arrays. Chapter 9 explains character strings, which are a special kind of array.

Atier this there are some chapters that cxplain more about functions, function-calling, and
1elated matters: Chapter 10 presents all the Kinds of functicns in the language, explains function-
specs, and tells how o manipulate definitions of tunctions,  Chapters 11 and 12 discuss clusures
and stack-groups, two facilities usclul for creating coroutines and other idvanced control and
access structures. '
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Next, a fow lower-level issues are dealt with, Chapter 13 explains locatives, which are a kind
of pointer to memory cells. Chapter 14 explains the "subprimitive” functions, which arc primarily
uscful for implementation of the lLisp language itsclf and the Lisp Machine's "operating system”.
Chapter 15 discusses arcas, which give you control over storage allocation and locality of
reference.

Chapter 16 discusses the [lisp compiler, which converts Lisp programs into "machine
language”. Chapter 17 explains the Lisp macro facility, which allows users to write. their own
cxtensions to Lisp, extending both the interpreter and the compiler. The next two chapters go
into detail about two such extensions, onc that provides a powerful iteration control structure
(chapter 18), and onc that provides a powerful data structure facility (chapter 19).

Chapter 20 documents flavors. a language facility to provide . generic functions using the
paradigm used in Smalltalk and the Actor familics of languages, called "object-oriented
programming” or "message passing”. Flavors are widely used by the system programs of the Lisp
Machine, as well as heing available to the user as a language fcature.

Chapter 21 cxplains the Lisp Machine's Input/Output system, including streams and the
printed representation of Lisp objects. Chapter 22 documents how to deal with pathnames (the
names of files). '

Chapter 23 describes the package system. which allows many name spaces within a single Lisp
environment.  Chapter 24 documents the. "system™ facility, which helps you create and maintain
programs that reside in many files.

Chapter 25 discusses the facilities for multiple processes and how to write programs that use
concurrent computation.  Chapter 26 explains how exceptional conditions (errors) can be handled
by programs, handled by users, and dcbugged. Chapter 27 cxplains the instruction set of the
Lisp Machine, and tclls you how to examine the output of the compiler. Chapter 28 documents
some [unctions for querying the user, chapter 30 cxplains some functions for manipulating dates
and times, and chapter 31 contains other miscellancous functions and facilities.

1.3 Notational Conventions and Helpful Notes

There are scveral conventions of notation, and various points that should be understood
before reading the manual to avoid confusion. This section cxplains those conventions.

The symbol "=>" will be used to indicatc cvaluation in examples. Thus, when you see "foo
=> nil", this means the same thing as "the result of evaluating foo is (or would have been) nil”.

The symbul "= =>" will be used to indicate macro expansion in cxamples. This, when you
see "(foo har) ==> (aref bar 0)", this mcans the same thing as "the result of macro-expanding
(foo bar) is (or would have been) (aref bar 0)".

A typical description of a Lisp function looks like this:
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function-name argl/ arg? &optional arg3 (argd (foo 3))
The function-name function adds together arg/ and arg?, and then multiplies the result
by arg3. If arg3 is not provided, the multiplication isn’t done. function-name then
returns a list whose first element is this result and whose sccond clement is arg4. Here is
an cxample:
(function-name 3 4) => (7 (3 food))
(function-name 1.2 2 'bar) => (6 bar)

Note the use of fonts (typefaces). The name of the function is in bold-face in the first line of
the description. and the arguments are in italics. Within the text, printed representations of Lisp
objects are in a different bold-fact font, such as (+ foo 56), and argument rcferences are
italicized, such as arg/ and arg2. A different, fixed-width font, such as function-name, is
uscd for Lisp examples that are set off from the text.

The word "&optional™ in the list of arguments tells you that all of the arguments past this
point arc optional. The default value can be specified cxplicitly, as with arg4 whose default value
is the result of cvaluating the form (foo 3). If no default value is specified, it is the symbol nil.
This syntax is used in lambda-lists in the language, which are explained in scction 3.2, page 18.
Argument lists may also contain "&rest”, which is part of the same syntax.

Descriptions of variables, special forms, macros, and methods look like this:

typical-variable Variable
The variable typical-variable is used for typical things....

do-three-times Special I'ormn
A do-three-times form looks like
(do-three-times form)
It evaluates form three times.

with-foo-bound-to-nil Macro
The form (with-foo-bound-to-nil forml form2 ..) evaluates the forms with the symbol
foo bound to nil. It expands as follows: '
(with-foo-bound-to-nil
Sforml
form2 ...) ==>
(et ((foo nil))
Jorml
form2 ...)

message-name arg/ arg? &optional arg3 (to flavor-name)
This is the documentation of the effect of scnding a message named message-name,
with arguments argl, arg2, and arg3, to an instance of flavor flavor-name.

Most numbers shown arc in octal radix (base cight). Spelled out numbers and numbers
followed by a decimal point are in decimal. This is because, by default, Lisp Machine Lisp types
out numbers in base 8; don’t be surprised by this. To change it, sec the documentation on the
variables ibase and base (page 283).
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All uses of the phrase "Lisp rcader”, unless further qualified, refer to the part of Lisp which
reads characters from [/0 streams (the read function), and not the person reading this manual.

There are several terms which are used widely in other references on Lisp, but are not used
much in this document since they have become largely obsolete and misleading. For the benefit
of those who may have scen them before, they are: "S-expression”, which means a Lisp object;
"Dotted pair”, which means a cons; and "Atom", which means, roughly, symbols and numbers
and sometimes other things, but not conses. The terms "list” and "tree" are defined in chapter 5,
page 48. '

The characters acute accent (') (also called "single quote™) and semicolon (;) have special
meanings when typed to Lisp; they arc cxamples of what are called macro characters. Though
the mechanism of macro characters is not of immediate interest to the new user, it is important to
understand the effect of these two, which are used in the examples..

When the Lisp rcader encounters a "' ", it reads in the next Lisp object and encloses it in a
quote special form. That is, 'foo-symbol turns into (quote foo-symbol), and '(cons ’'a ’'b)
turns into (quote (cons (quote a) (quote b))). The reason for this is that "quote” would
otherwise have to be typed in very frequently, and would look ugly.

The semicolon is used as a commenting character. When the Lisp reader sces one, the
remainder of the line is discarded. '

The character "/" is used for quoting strange characters so that they are not interpreted in
their usual way by the Lisp rcader, but rather are treated the way normal alphabetic characters
arc treated. So, for example, in order to give a "/" to the reader, you must type "//", the first
"/" quoting the second one. When a character is preceeded by a "/" it is said to be slashified.
Slashifying also turns off the effects of macro characters such as "’ " and ";".

The following characters also have spccizil meanings, and may not be used in symbols without
slashification. These characters are cxplained in dectail in the scction on printed-representation
(section 21.2.2, page 283).

" Double-quote delimits character strings.
# -Number-sign introduces miscellaneous recader macros.
) Backquote is used to construct list structure.
, Comma is used in conjunction with backquote.
Colon is the package prefix.
| Characters between pairs of vertical-bars are quoted.
® Circle-cross lets you type in characters using their octal codes.
All Lisp code in this manual is written in lower case. In fact, the reader turns all symbols

into upper-case, and conscquently cverything prints out in upper case. You may write programs
in whichever case you prefer.

You will sce various symbols that have the colon () character in their names. By convention,
all "keyword" symbols in the Lisp machine system have names starting with a colon. The colon
character is not actually part of the print name; but is a package prefix indicating that the symbol
belongs to the package with a null name, which mecans the user package. So, when you print
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such a symbol, you won’t sce the colon if the current package is user. However, you should
always type in the colons where the manual tells you to. This is all cxplained in chapter 23;
“until you rcad that, just make believe that the colons are part of the names of the symbols, and
don’t worry that they sometimes don't get printed out for keyword symbols. :

This manual documents a number of internal functions and variables, which can be identified
by the "si:" prefix in their names. The "si" stands for "system internals”. These functions and
variables are documented here because they are things you sometimes neced to know -about.
However, they arc considered internal to the system and their bchavior is not as guaranteed as
that of cverything clsc. They may be changed in the future.

lisp Machine Lisp is descended from Maclisp, and a good deal of effort was expended to try
to allow Maclisp programs to run in Lisp Machine Lisp. Throughout the manual, there arc notes
about differences between the dialects. For the new user, it is important to note that many
functions herein exist solely for Maclisp compatibility; they should nor be used in new programs.
Such functions are clearly marked in the text.

The Lisp Machine character set is not quitc the same as that used on LT.S. nor on Multics;
it is described in full detail clsewhere in the manual. The important thing to note for now is that
the character "newline” is the same as "rcturn”, and is represented by the number 215 octal.
(This number should not be built into any programs.)

When the text speaks of "typing Control-Q" (for cxample), this mecans to hold down the
CTRL key on the keyboard (cither of the two), and, while holding it down, to strike the "Q"
key. Similarly, to type "Meta-P”, hold down cither of the META keys and strike "P". To type
"Control-Meta-T" hold down both CTRL and MIETA. Unlike ASCII, there are no “control
characters” in the character set; Control and Meta ure merely things that can be typed on the
keyboard.

Many of the functions refer to "areas”. The area feature is only of interest to writers of large
systems, and can be safely disregarded by the casual user. It is described in chapter 15.
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2. Primitive Object Types

2.1 Data Types

This section enumerates some of the various different primitive types of objects in Lisp
Machine Lisp. The types explained below include symbols, conses, various types of numbers,
two kinds of compiled code objects, locatives, arrays, stack groups, and closures. With each is
given the associated symbolic name, which is returned by the function data-type (page 158).

A symbol (these are sometimes called "atoms” or "atomic symbols” by other texts) has a print
name, a binding, a definition, a property list, and a package.

The print name is a string, which may be obtained by the function get-pname (page 81).
This string scrves as the printed representation (sce section 21:2.1, page 280) of the symbol. Each
symbol has a binding (sometimes also called the "value™), which may be any Lisp objcct. It is
also referred to sometimes as the "contents of the value cell”, since internally every symbol has a
cell called the value cell which holds the binding. It is accessed by the symeval function (page
78), and updated by the set function (page 78). (That is, given a symbol, you usec symeval to
find out what its binding is, and use set to change its binding.) Fach symbol has a definition,
which may also be any Lisp object. It is also referred to as the "contents of the function cell”,
since internally every symbol has a cell called the function cefll which holds the definition. The
definition can be accessed by the fsymeval function (page 79), and updated with fset (page 79),
although usually the functions fdefinition and fdefine arc employed (page 135). The property list
is a list of an even aumber of clements; it can be accessed directly by plist (page 80), and
updated directly by setplist (page 80), although usually the functions get, putprop, and remprop
(page 67) arc used. The property list is used to associate any number of additional attributes with
a symbol—attributes not used frequently enough to deserve their own cells as the value and
definition do. Symbols also have a package cell, which indicates which "package" of names the
symbol belongs to. 'This is explained further in the section on packages (chapter 23) and can be
disregarded by the casual user.

The primitive function for creating symbols is make-symbol (page 82), although most
symbols are created by read, intern, or fasload (which call make-symbol themselves.)

A cons is an object that carcs about two other objects, arbitrarily named the car and the cdr.
These objects can be accessed with car and cdr (page 49), and updated with rplaca and rplacd
(page 57). The primitive function for crcating conses is cons (page 49).

There are several kinds of numbers in Lisp Machine Lisp. Fixmums represent integers in the
range of -2t23 to 2123-1. Bignums represent integers of arbitrary size, but they are more
expensive to use than fixnums because they occupy storage and are slower. The system
automatically converts between fixnums and bignums as required. Flonums are floating-point
numbers. Small-flonums arc another kind of floating-point numbers, with less range and precision,
but less computational overhead. Other types of numbers arc likely to be added in the future.
See chapter 7, page 84 for full details of these types and the conversions between them.

The usual form of compiled, exccutable code is a Lisp object called a "Function Entry
Frame" or "FEF". A FEF contains the code for one function. This is analogous to what Maclisp
calls a "subr pointer”. FEFs arc produced by the Lisp Compiler (chapter 16, page 181), and are
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usually found as the definitions of symbols. The printed representation of a FEF includes its
name, so that it can be identified.

Another Lisp object which represents executable code is a "micro-code entry”. These are the
“microcoded primitive functions of the Lisp system, and user functions compiled into microcode.

About the only uscful thing to do with any of these compiled code objects is to apply it to
arguments. However, some functions are provided for examining such objects, for user
convenience. Scc arglist (page 137), args-info (page 138), describe (page 448), and
disassemble (page 448).

A locative (sce chapter 13, page 156) is a kind of a pointer to a single memory ccll anywhere
in the system. The contents of this cell can be accessed by cdr (sce page 49) and updated by
rplacd (scc page 57).

An array (sce chapter 8, page 98) is a sct of cells indexed by a tuple of integer subscripts.
The contents of the cells may be accessed and changed individually. There are several types of
arrays. Some have cells which may contain any object, while others (numeric arrays) may only
contain small positive numbers. Strings arc a type of array; the clements are 8-bit unsigned
numbers which encode characters. :

A list is not a primitive data type, but rather a data structure made up cut of conses and the
symbol nil. Sce chapter 5, page 48. :

2.2 Predicates

A predicate is a function which tests for some condition involving its arguments and returns
the symbol t if the condition is true, or the symbol nil if it is not true. Most of the following
predicates are for testing what data type an object has; some other general-purposc predicates are
also explained. ’ ’

By convention, the names of predicates usually end in the letter "p" (which stands for
"predicate™).

The following predicates are for testing data types. These predicates rcturn t if the argument
is of the typc indicated by the name of the function, nil if it is of some other type.

symbolp arg
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg
nsymbolp returns nil if its argument is a symbol, otherwise t.

listp arg

listp returns t if its argument is a cons, otherwise nil. Note that this means (listp nil) is
nil even though nil is the empty list. [This may be changed in the future.] ‘
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nlistp arg
nlistp returns t if its argument is anything besides a cons, otherwise nil. This is the
reccommended predicate for terminating iterations or recursions on lists. It is, in fact,
identical to atom, and so (nlistp nil) returns t. [This may be changed in the future, if
and when listp is changed.] . :

atom arg
The predicate atom returns t if its argument is not a cons, otherwise nil.

fixp arg
fixp rcturns t if its argument is a fixnum or a bignum, otherwise nil.

floatp arg ‘
floatp returns t if its argument is a flonum or a small flonum, otherwise nil.

small-floatp arg
small-floatp returns t if arg is a small fonum, otherwise nil.

bigp arg _ '
bigp returns t if arg is a bignum, otherwise nil.

numberp arg _
numberp returns t if its argument is any kind of number, otherwise nil.

stringp arg
stringp returns t if its argument is a string, otherwise nil.

arrayp arg
- arrayp returns t if its argument is an array, otherwise nil. Note that strings arc arrays.

subrp arg
subrp returns t if its argument is any compiled code object, otherwise nil. The Lisp
Machine system doesn’t use the term "subr”, but the name of this function comes from
Maclisp.

closurep arg
closurep returns t if its argument is a closure, otherwise nil.

entityp arg
‘entityp returns t if its argument is an entity, otherwise nil. See section 11.4, page 148 for
information about "entities".

locativep arg
locativep returns t if its argument is a locative, otherwise nil.

typep arg &optional type
typep is really two different functions. With onc argument, typep is not rcally a
predicate; it returns a symbol describing the type of its argument. With two arguments,
typep is a predicatc: which returns t if arg is of type f{ype, and nil otherwise. Note that
an object can be "of" more than one type, since one type can be a subsct of another.
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The symbols that can be returned by typep of one argument are:

:symbol arg is a symbol.

fixnum arg is a fixnum (not a bignum).
:bignum arg is a bignum.

flonum arg is a flonum (not a small-flonum).

:small-flonum arg is a small flonum.
list arg is a cons.
:locative arg is a locative pointer (sce chapter 13, page 156).

:compiled-function
arg is thc machine code for a compiled function (sametlmcs callcd a
FEF).

:microcode-function
arg is a function written in microcode.

:closure arg is a closure (sce chapter 11, page 144).

:select-method
arg is a sclect-method table (sce page 131).

:stack-group arg is a stack-group (sce chapter 12, page 149).

:string arg is a string.

:array arg is an array that is not a string.

random Rcturngd for any built-in data type that does not fit info one of the above
categories.

foo An object of user-defined data type foo (any symbol). The primitive type

of the object could be array, instance, or entity. Sec Named Stluctures
page 239, and Flavors, chapter 20, page 245.

The type arguiment to typep of two arguments can be any of the above keyword symbols
(except for :random), the name of a user-defined data type (cither a named structure or a
flavor), or one of the following additional symbols:

.:atom Any atom (as determined by the atom predicate).

fix ' Any kind of fixed-point number (fixnum or bignum).

float Any kind of floating-point number (flonum or small-flonum).

:number Any kind of number.

sinstance An instance of any flavor. See chapter 20, page 245.

:entity An entity. typep of one argument rcturns the name of the particular user-

defined type of the entity, rather than :entity.
Sce also data-type, page 158.
Note that (typep nil) => :symbol, and (typep nil “list) => nil; the latter may be
changed.
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The following functions are some other gencral purpose predicates.

eq x y

neq x

equal

(eq x y) => tif and only if x and y arc the same object. It should be noted that things
that print the same are not nccessarily eq to cach other. In particular, numbers with the
same valuc nced not be eq, and two similar lists are usually not eq. ’
Examples:

(eq 'a ’'b) => nil

(eq 'a ’a) => t

(eq (cons ’a ’'b) (cons ’'a ’'b)) => nil

(setq x (cons ’a 'b)) (eq x x) => t :
Note that in Lisp Machine Lisp equal fixnums arc eq; this is not true in Maclisp.
Equality does not imply eg-ness for other types ‘of numbers. To comparc numbers, use
=; secc page 87.

y
(neq x y) = (not (eq x »)). This is provided simply as an abbreviation for typing
convenience. :

Xy
The equal predicate returns t if its arguments arc similar (isomorphic) objects. (cf. eq)
Two nuimbers are equal if they have the same value and type (for cxample, a Honum is
never equal to a fixnum, cven if = is true of them). For conscs, equal is defined
recursively as the two car's being equal and the two cdr's being equal. Two strings are
equal il they have the same iength, and the characters composing them are the same; see
string-equal, page 117. Alphabetic case is ignored (but scc alphabetic-case-affects-
string-comparison, page 116). All other objects are equal if and only if they are eq.
Thus equal could have been defined by:
(defun equal (x y)
(cond ((eq x y) t)

((neq (typep x) (typep y)) nil)

((numberp x) (= x y))

((stringp x) (string-equal x y))

((1istp x) (and (equal (car x) (car y))

(equal (cdr x) (cdr y))))))

As a consequence of the above definition, it can be scen that equal may compute forever
when applied to looped list structure. In addition, eq always implies equal; that is, if
(eq a b) then (equal a b). An intuitive definition of equal (which is not quite correct) is
that two objects are equal if they look the same when printed out. For example:

(setg a "(1 2 3))

(setq b "(1 2 3))

(eq a b) => nil

(equal a b) => t

(equal "Foo" "foo") => t
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not x
null x
not returns t if x is nil, clse nil. null is the same as not; both functions are included for
the sake of clarity. Use null to check whether something is nil; use not to invert the
sense of a logical value. Even though Lisp uscs the symbol nil to represent falseness, you
shouldn’t make understanding of your program depend on this fortuitously. For example,
onc often writes:
{cond ((not (null TIst)) ... )
(- ))
rather than
(cond (1st ... )

(.- ))

There is no loss of cfficiency, since these will compile into exactly the same instructions.
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3. Evaluation

The following is a complete description of the actions taken by the evaluator, given a form to
cvaluate. ‘

If form is a number, the result is form.
If form is a string, the result is form.

If form is a symbol, the rcsult is the binding of form. If form is unbound, an crror is
signalled. The way symbols are bound is explained in section 3.1, page 13 below.

If form is not any of the above types, and is not a list, an error is signalled.

In all remaining cases, form is a list. ‘The evaluator cxamines the car of the list to figure out
what to do next. There are three possibilitics: this form may be a special form, a macro form,
or-a plain-old finction form. Conceptually, the evaluator knows specially about all the symbols
whosc appcarance in the car of a form make that form a special form, but the way the cvaluator
actually works is as follows. If the car of the form is a symbol, the evaluator finds the object in
the function call of the symbol (sce chapter 6, page 78) and starts all over as if that object had
been the car of the list. If the car isn't a symbol, then if it's a cons whose car is the symbol
macro, then this is a macro form; if it is a "special function” (sec page 129) then this is a
special form; otherwise, it should be a rcgular function, and this is a function form.

if form is a special form, then it is handled accordingly; each special form works differently.
Ail of them are documented in this manual. The internal workings of special forms arc explained
in more detail in page 129, but this hardly ever affects you.

If form is a macro form, then the macro is expanded as explained in chapter 17.

If form is a function form, it calls for the application of a function to arguments. The car of
the form is a function or the name of a function. The cdr of the form is a list of subforms.
Each subform is evaluated, sequentially. The values produced by evaluating the subforms are
“called the "arguments" to the function. The function is then applied to those arguments.
Whatever results the function returns arc the values of the original form.

There is a lot more to be said about evaluation. The way variables work and the ways in
which they are manipulated, including the binding of arguments, is explained in section 3.1, page
13. A basic cxplanation of functions is in section 3.2, page 18. The way functions can return
more than one value is explained in section 3.4, page 26. The description of all of the kinds of
functions, and the means by which they are manipulated, is in chapter 10. Macros are explained
in chapter 17. The evalhook facility, which lets you do somcthing arbitrary whenever the
evaluator is invoked, is explained in scction 26.6, page 413. Special forms are described all over
the manual; cach special form is in the section on the facility it is part of.
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3.1 Variables

In Lisp Machine Lisp, variables are implemented using symbols. Symbols are used for many
things in the language, such as naming functions, naming special forms, and being keywords;
they arc also uscful to programs written in Lisp, as parts of data structures. But when the
evaluator is given a symbol, it treats it as a variable, using the value ccll to hold the value of the
variable. If you evaluate a symbol, you get back the contents of the symbol’s value cell.

There are two different ways of changing the value of a variable. One is to ser the variable.
Sctting a variable changes its value to a new Lisp object, and the previous value of the variable is
forgotten. Setting of variables is usually done with the setq special form.

The other way to change the value of a variable is with binding (also called "lambda-
binding"). When a variable is bound, its old value is first saved away, and then the value of the

variable is made to be the new Lisp object. When the binding is undone, the saved value is

restored to be the value of the variable. Bindings are always followed by unbindings. The way
this is enforced is that binding is only donc by special forms that are defined to bind some
variables, then cvaluate some subforms, and then unbind those variables. So the variables arc all
unbound when the form is finished. This means that the cvaluation of the form doesn’t disturb
the values of the variables that are bound; whatever their old value was, before the evaluation of
the form, gets restored when the evaluation of the form is completed. 1If such a form is exited by
a non-local exit of any kind, such as *throw (see page 43) or return (scc page 41), the bindings
arc undone whencever the form is exited.

The simplest construct for binding variables is the let special form. The do and prog special
forms can also bind variables, in the same way let doecs, but they also control the flow of the
program and so are explained clsewhere (see page 35). let* is just a sequential version of let; the
other special forms below are only used for esoteric purposes.

Binding is an important part of the proccss of applying interpreted functions to arguments.

This is explained in the next section.

When a Lisp function is compiled, the compiler understands the use of symbols as variables.
However, the compiled code generated by the compiler does not actually use symbols to represent
variables. Rather, the compiler converts the references to variables within the program into more
efficient references, that do not involve symbols at all. A variable that has becn changed by the
compiler so that it is not implemented as a symbol is called a "local" variable. When a local
variable is bound, a memory cell is allocated in a hidden, internal place (the Lisp control stack)
and the value of the variable is stored in this ccll. You cannot use a local variable without first
binding it; you can only use a local variable inside of a speccial form that binds that variable.
Local variables do not have any "top level” value; they do not even exist outside of the form
that binds them. .

The variables which are associated with symbols (the kind which are used by non-compiled
programs) are called "special” variables.

Local variables and special variables do not behave quite the same way, because "binding"”
means different things for the two of them. Binding a special variable saves the old value away
and then uscs the value cell of the symbol to hold the new value, as explained above. Binding a
local variable, however, does not do anything to the symbol. In fact, it creates a new memory
cell to hold the value, ie. a new local variable.
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Thus, if you compile a function, it may do different things after it has been compiled. Here
is an cxample:

(setq a 2) ; Set the variable a to the value 2.
(defun foo () ~ ;Define a function named foo.

(let ((a 5)) ; Bind the symbol a to the value 5.

(bar))) ; Call the function bar.

(defun bar () ; Define a function named bar.

a) ; It just returns the value of the variable a.
(foo) => 5 - ; Calling foo returns 5.
(compile 'foo) ; Now compile foo.
(foo) => 2 ; This time, calling foo returns 2.

This is a very bad thing, because the compiler is only supposed to speed things up, without
changing what the function does. Why did the function foo do somecthing different when it was
compiled? Because a was converted from a special variable into a local variable. After foo was
compiled, it no longer had any cffect on the value cell of the symbol a, and so the symbol
retained its old contents, namely 2,

In most uses of variables in Lisp programs, this problem doesn’t come up. The reason it
happened here is because the function bar refers to the symbol a without first binding a to
anything. A reference to a variable that you didn’t bind yourself is called a free reference; in this
cxample, bar makes a frce reference to a.

We mentioned above that you can’t use a local variable without first binding it. Another way
to say this is that you can’t ever have a free reference to a local variable. If you try to do so,
the compiler will complain. In order for our functions to. work, the compiler must be told not to
convert a into a local variable; a must remain a special variable. Normally, when a function is
compiled, all variables in it are made to be "local”. You can stop the compiler from making a
variable local by "declaring”" to the compiler that the variable is "special”. When the compiler
sees references to a variable that has been declared special, it uses the symbol itself as the
variable instead of making a local variable.

Variables can be declared by the special forms defvar and defconst (see below), or by
explicit compiler declarations (sec page 185). The most common use of special variables is as
"global" variables: variables used by many different functions throughout a program, that have
top-level values.

Had bar been compiled, the compiler would have scen the fice reference and printed a
warning message: Warning: a declared special. It would have automatically declared a to be
special and proceeded with the compilation. It knows that free references mean -that special
declarations are nceded. But when a function is compiled that binds a variable that you want to
be treated as a special variable but that you have not explicitly declared, there is, in general, no
way for the compiler to automatically detect what has happened, and it will produce incorrect
output. So you must always provide declarations for all variables that you want to be treated as
special variables.
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When you declare a variable to be special using declare rather than local-declare, the
declaration is "global™; that is, it applics wherever that variable name is scen. After fuzz has
been declared special using declare, all following uses of fuzz will be treated by the compiler as
references to the same special variable. Such variables are called "global variables”, because any
function can use them; their scope is not limited to one function. The special forms defvar and .
defconst are useful for creating global variables; not only do they declare the variable special,
but they also provide a place to specify its initial value, and a place to add documentation. In
addition, since the names of these special forms start with "def" and since they arc used at the
top-level of files, the Lisp Machine editor can find them easily.

Here arc the special forms used for 'sctting variables.

setq Special Form
The special form (setq varl forml var? forml..) is used to set the value of a variable or
of many variables. First form/ is cvaluated, and varl is set to the result. Then form2 is
cvaluated, and var2 is set to the result, and so on for all the variables. setq rcturns the
last value sct, i.c. the result of the evaluation of its last subform.
Example: '

(setq x (+ 3 2 1) y (cons x nil))

X is set to 6, y is set to (B6). and the setq form rcturns (6). Note that the first sct was
performed before the second form was evaluated, allowing that form to use the new value
of x.

psetq Special IF'orm
A psetg form is just like a setq form, except that the variables are set "in parallel”; first
all of the forms arc cvaluated, and then the symbols are set to the resulting values.

Example:
(setq a 1)
(setqg b 2)
(psetq a b b a)
a => 2
b => 1

Here are the special forms used for binding variables.

let Special Form
let is used to bind some variables to some objects. A let form looks like
(let ((varl vforml)
(var2 vform2)
o)
bforml
bform2

When this form is evaluated, first the vforms are evaluated. Then the vars arc bound to
the values rcturned by the corresponding vforms. Thus the bindings happen in parallel;
all the vforms are cvaluated before any of the vars arc bound. Finally, the bforms are
evaluated scquentially, the old values of the variables ‘arc restored, and the result of the
last bform is returned. ‘ '
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let* Special Form
Clet* is the same as let cxcept that the binding is scquential. Fach var is bound to the
value of its vform before the next vform is cevaluated. This is useful when the computation
of a wform depends on the valuc of a variable bound in an earlier vform.

Tet-if Special Form
let-if is a variant of let in which the binding of vanab]es is conditional. The variables
must all be special variables. The special form
(1et-if cond
((var-l val-1) (var-2 val-2)...)
body-forml body-form2. . .)

first evaluates the predicate form cond. If the result is non-nil, the value forms val-1,
val-2, etc. arc evaluated and then the variables var-1, var-2, ctc. are bound to them. If
the result is nil, the vars and vals are ignored. Finally the body forms are cvaluated.

let-globally Special I'orm .
let-globally is similar in form to let (sece page 15). The difference is that let-globally
does not bind the variables; instead, it saves the old values and sers the variables, and
sets up an unwind-protect (scc page 44) to sct them back. The important difference
between let-globally and let is that when the current stack group (sce chapter 12, page
149) co-calls some other stack group, the old values of the variables arc not restored.
Thus let-globally makes the new valucs visible in all stack groups and processes that
don’t bind the variables themsclves, not just the current stack group.

progv Special I'orm
progv is a special form to provide the user with extra control over binding. It binds a
list of special variables to a list of values, and then evaluates some forms. The lists of
special variables and values are computed quantitics; this is” what makes progv different
from let, prog, and do: . :

(progv symbol-list value-list forml form2 ...)
first cvaluates symbol-list and value-list, and then binds each symbol to the corresponding
value. If too few valucs are supplied, the remaining symbols are bound to nil. If too
many values are supplied, the excess values are ignored.

After the symbols have been bound to the values, the forms are evaluated, and finally the
symbols’ bindings are undone. The result returned is the value of the last form.
Example:

(setq a 'foo b ’bar)

(progv (list a b 'b) (1ist b)
(1ist a b foo bar))
=> (foo nil bar nil)
During the evaluation of the body of this progv, foo is bound to bar, bar is bound to
nil, b is bound to nil, and a retains its top-level value foo.
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progw Special Form : .
progw is a somewhat modified kind of progv. Like progv, it only works for special
variables. A progw form looks like: '
(progw vars-and-val-forms-form forml form2 ...)

First, vars-and-val-forms-form is evaluated. Its value should be a list that looks like the
first subforin of a let:

((varl val-form-1)

(var? val-form-2)

Fach clement of this list is processed in turn, by evaluating the val-form, and binding the
var to the resulting. value. [inally, the forms arce cvaluated sequentially, the bindings are
undone, and the result of the last form is returned. Note that the bindings arc sequential,
not parallel.. '

This is a very unusual special form because of the way the ecvaluator is called on the
result of an cvaluation. Thus progw is mainly uscful for implementing speeial forms and
for functions part of whosc contract is that they call the interpreter. For an example of
the latter, sce sys:*break-bindings* (page 452); break implements this by using progw.

Here are the special forms for defining special variables.

defvar Special Form _

defvar is the rccommended way to declare the use of a global variable in a program.
Placed at top level in a file, '

(defvar variable)
declares variable special for the sake of compilation, and records its location for the sake
of the ecditor so that you can ask to sce wherc the variable is defined. If a second
subform is supplied,

(defvar variable initial-value)
variable is initialized to the result of evaluating the form initial-value unless it already has
a value, in which case it keeps that value. initial-value is not cvaluated unless it is used; .
this is useful if it docs something cxpensive like creating a large data structure.

defvar should be used only at top level, never in function definitions, and only for global
variables (those used by more than one function). (defvar foo 'bar) is roughly equivalent
to .
(declare (special foo))
(if (not (boundp ’'foo0))
(setq foo ’bar))

(defvar variable initial-value documentation)
allows you to include a documentation string which describes what the variable is for or
how it is to be used. Using such a documentation string is cven better than commenting
the use of the variable, because the documentation string is acccssible to system programs
that can show the documentation to you while you are using the machine.

If defvar is used in a patch file (see séction 24.7, pagc' 366) or is a single form (not a

region) evaluated with the editor’s compile/evaluate from buffer commands, if there is an
initial-value the variable is always set to it regardless of whether it is already bound.
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defconst Special Form

defconst is the same as defvar cxcept that if an initial value is given the variable is
always sct to it regardless of whether it is alrecady bound. The rationale for this is that
defvar declares a global variable, whose value is initialized to something but will then be
changed by the functions that use it to maintain some state. On the other hand,
defconst declares a constant, whose value will never be changed by the normal operation
of the program, only by changes so the program. defconst always sets the variable to the
specified value so that if, while devcloping or debugging the program, you change your
mind about what the constant value should be, and then you ecvaluate the defconst form
again, the variable will get the new value.

3.2 Functions

In the description of cvaluation on page 12, we said that evaluation of a function form works
by applying the function to the results of cvaluating the argument subforms. What is a function,
and what docs it mean to apply it? In Lisp Machine Lisp there are many kinds of functions, and
applying them may do many different kinds of things. For full dctails, see chapter 10, page 124.
Here we will explain the most basic kinds of functions and how they work. In particular, this
scction explains lambda lists and all their important features.

The simplest kind of user-defined function is the lambda-expression, which is a list that looks

like: o
(1ambda lambda-list bodyl body2...) -
The first element of the lambda-expression is the symbol lambda; the second eclement is a list
called the flambda list, and the rest of the clements arc called the body. The lambda list, in its
simplest form, is just a list of variables. Assuming that this simple form is being used, here is
what happens when a lambda expression is applied to some arguments. First, the number of
arguments and the number of variables in the lambda list must be the same, or else an crror is
signalled. Each variable is bound to the corresponding argument value. Then the forms of the
body are cvaluated sequentially. After this, the bindings are all undone, and the value of the last
form in the body is returned.

This may sound something like the description of let, above. The most important difference
is that the lambda-expression is not a form at all;  if- you try to evaluate a lambda-expression, you
will get told that lambda is not a defined function. The lambda-cxpression is a fiunction, not a
form. A let form gets evaluated, and the values to which the variables are bound come from the
cvaluation of some subforms inside the let form; a lambda-expression gets applied, and the values
are the arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with other
languages. Some other terminologies would refer to these as formal parameters, and to arguments
as actual paramelers. '

I.ambda lists can have more complex structurc than simply being a list of variables. There are
~additional features accessible by using certain keywords (which start with &) and/or lists as
clements of the lambda list.

The principal weakness of the simple lambda lists is that any function written with onc must

only take a certain, fixed number of arguments. As wc know, many very useful functions, such
as list, append, +, and so on, accept a varying number of arguments. Maclisp solved this
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~problem by the use of lexprs and Isubrs, which were somewhat inclegant since the parameters had
to be referred to by numbers instcad of names (c.g. (arg 3)). (For compatibility reasons, Lisp
Machine Lisp supports lexprs, but they should not be used in new programs).

In general, a function in Lisp Machine Lisp has zero or more required paramcters, followed
by zero or more optional parameters, followed by zero or one rest paramcter. This means that
the caller must provide cnough arguments so that cach of the required parameters gets bound,
but he may provide some extra arguments for cach of the optional parameters. Also, if there is a
rest parameter, he can provide as many cxtra arguments as he wants, and the rest parameter will
be bound to a list of all these extras. Also, optional parameters may have a default-form, which
is a form to be evaluated to produce the default argument if none is supplied.

Here is the exact explanation of how this all works. When apply (the. primitive function that
applies functions to arguments) matches up the arguments with the parameters, it follows the
following algorithm:

The first required parameter is bound to the first argument. apply continues to bind
successive required parameters to the successive arguments. If, during this process, there are no
arguments left but there are still some required parameters which have not been bound yet, then
an crror is caused ("too few arguments").

Next, after all required parameters are handled, apply continues with the optional parameters,
binding cach argument to cach successive paramcter. If, during this process, there are no
arguments left, cach remaining optional parameter’s default-form is evaluated, and the parameter
is bound to it. This is done onc paramcter at a time; that is, first one default-lfonn is evaluated,
and then the parameter is bound to it, then the next default-form is cvaluated, and so on. This
allows the default for an argument to depend on the previous argument.

Finally, if there is no rest parameter and there are no remaining arguments, we arc finished.
[f there is no rest parameter but there are still some arguments remaining, an error is caused
("too many arguments”). But if there is a rest parameter, it is bound to a list of all of the
remaining arguments. (If there arc no remaining arguments, it gets bound to nil.)

The way you express which parameters are required, optional, and rest is by means of
specially recognized symbols, which are called &-keywords, in the lambda list. All such symbols’
print names begin with the character "&". A list of all such symbols is the value of the symbol
lambda-list-keywords.

The keywords used here are &optional and &rest. The way they are used is best explained -
by means of examples; the following arc typical lambda lists, followed by descriptions of which
parameters are required, optional, and rest.

(a b c) a, b, and ¢ arc all required. The function must be passed three arguments.

(a b &optional c)
a and b arc required, ¢ is optional. The function may bc passed either two or
three arguments.

(optional a b c) .
a, b, and c are all optional. The function may be passed any number of
arguments between zero and three, inclusive.
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(&rest a) ais a rest parameter. The function may be passed any number of arguments.

(a b &optional ¢ d &rest e)
a and b are required, ¢ and d are optional, and e is rest. The function may be -
passed two or more arguments.

In all of the cases above, the default-form for each parameter is nil. To specify your own
default forms, instead of putting a symbol as the element of a lambda list, put in a list whose
first element is the symbol (the parameter itself) and whose sccond clement is the default-form.
For example:

(a &optional (b 3))
The default-form for b is 3. a is a required paramecter, and so it doesn’'t have a
default form.

(&optional (a ’foo) b (c (symeval a)) &rest d)
a’s default-form is 'foo, b’s is nil, and c¢’s is (symeval a). Note that if the
function whose lambda list this is were called on no arguments, a would be
bound to the symbol foo, and ¢ would be bound to the binding of the symbol
foo; this illustratcs the fact that each variable is bound immediately after its
default-form is evaluated, and so later default-forms may take advantage of carlier
parameters, in the lambda list. b and d would be bound to nil.

It is also possible to include, in the lambda list, some other symbols which are bound to the
values of their default-forms upon cntry to the function. These arc nor parameters, and they are
never bound to arguments; they just get bound, as if they appecared in a let form. (Whether you
usc thesc aux-variables or bind the variables with let is a stylistic decision.)

To include such symbols, put them after any parameters, preceeded by the &-keyword &aux.
Examples:

(a &optional b &rest ¢ &aux d (e 5) (f (cons a e))) _
d, e, and f are bound, when the function is called, to nil, 5, and a cons of the
first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list of arguments to which a rest-parameter is bound is set
up in whatever way is most cfficiently implemented, rather than in the way that is most
convenient for the function receiving the arguments. It is not guaranteed to be a '"real" list.
Sometimes the rest-args list is stored in the function-calling stack, and loses its validity when the
function returns. If a rest-argument is to be returned or made part of permanent list-structure, it
must first be copicd (sce copylist, page page 53), as you must always assume that it is one of
these special lists. The system will not detect the error of omitting to copy a rest-argument; you
will simply find that you have a value which scems to change behind your back. At other times
the rest-args list will be an argument that was given to apply; therefore it is not safe to rplaca
this list as you may modify permanent data structure. An attempt to rplacd a rest-args list will
be unsafe in this case, while in the first casc it would cause an ecrror, since lists in the stack are
impossible to rplacd.

There are some other keywords in addition to those mentioned here. Sec scction 10.7, page

135 for a complete list. You only need to know about -&optional and &rest in order to
understand this manual. '
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[Lambda lists provide “positional” arguments: the meaning of an argument comes from its
position in the lambda list. For example, the first argument to cons is the object that will be the
car of the new cons. Sometimes it is desirable to use "keyword" arguments, in which the
meaning of an argument comes from a "keyword" symbol that tells the callee which argument this
is. While lambda lists do not provide keyword arguments dircctly, there is a convention for
functions that want arguments passed to them in the keyword fashion. The convention is that the
function takes a rest-argument, whose value is a list of alternating keyword symbols and argument
values. If cons were written as a keyword-style function, then instcad of saying

{cons 4 (foo0))
you could say cither of

{(cons ’:car 4 ’:cdr (foo0))

or

(cons ’:cdr (foo) ’:car 4)
assuming the keyword symbols were :car and :cdr. Keyword symbols are always in the keyword
package, and so their printed representations always start with a colon; the rcason for this is
given in chapter 23.

This use of keyword arguments is only a convention; it is not built into the function-calling
mechanism of the language. Your function must contain Lisp programming to take apart the rest
paramcter and make sense of the keywords and values. ‘The special form keyword-extract (see -
page 39) may be uscful for this.

3.3 Some Functions and Special Forms

This section describes some functions and special forms. Some arc parts of the cvaluator, or
closely related to it. Some have to do specifically with issues discussed above such as keyword
arguments. Some are just fundamental Lisp forms that are very important.

eval x
{eval x) evaluates x, and returns the result.
Example:
(setq x 43 foo 'bar)
(eval (1ist 'cons x ’'foo0))
=> (43 . bar)

It is unusual to cxplicitly call eval, since usually evaluation is done implicitly. If you are
writing a simple Lisp program and explicitly calling eval, you are probably doing
something wrong. eval is primarily useful in programs which deal with Lisp itself, rather
than programs about knowledge or mathematics or games. :

Also, if you are only intcrested in getting at the valuc of a symbol (that is, the contents
of the symbol’s value cell), then you should usc the primitive function symeval (sec page
78).

Note: the actual name of- the compiled code for eval is "si:*eval™; this is because use of

the evalhook feature binds the function cell of eval. If you don’t understand this, you
can safely ignore it. : ‘ ‘

DSK:LMMAN;FD.EVA 69 v ’ 16-MAR-81




Some Functions and Special Forms 22 Lisp Machine Manual

apply

Note: unlike Maclisp, eval never takes a second argument; there arc no "binding context
pointers” in Lisp Machine Lisp. They are replaced by Closures (see chapter 11, page
144).

f arglist
(apply f arglist) applies the function fto the list of arguments arglist. arglist should be a
list; fcan be any function.
Examples:
(setq fred ’'+) (apply fred ’(1 2)) => 3
(setq fred "-) (apply fred (1 2)) => -1
(apply ’cons ’"((+ 2 3) 4))
((+ 2 3) . 4) not (5 . 4)

Of course, arglist may be nil.

Note: unhkc Maclisp, apply never takes a third argumcnt therc arc no "binding context
pointers” in Lisp Machine Lisp.

Compare apply with funcall and eval.

funcall [ &rest args

lexpr-

(funcall f al a2 ... an) applics the function f to the arguments al/, a2, .., an. f may
not be a special form nor a macro; this would not be mecaningful. :
Example:

(cons 1 2) => (1 . 2)

(setq cons ’plus)

(funcall cons 1 2) => 3
This shows that the use of the symbol cons as the name of a function and the use of
that symbol as the name of a variable do not intcract. The cons form invokes the
function named cons. The funcall form evaluates the variable. and gets the symbol plus,
which is the name of a different function.

funcall f &rest args :

lexpr-funcall is like a cross between apply and funcall. = (lexpr-funcall fal a2 ... an )
applies the. function fto the arguments a/ through an followed by the clements of the list
I. Note that since it treats its last argument specially, lexpr-funcall requires at least two
arguments, '

Examples: '
(Texpr-funcall ’plus 1 11 °(1 11)) =>6

(defun report-error (&rest args)
(1expr-funcall (function format) error-output args))

lexpr-funcall with two arguments does the same thing as apply.

Note: the Maclisp functions subrcall, Isubrcall, and arraycall arc not nceded on the Lisp
Machine; funcall is just as cfficient. arraycall is provided for compatibility; it ignores its first
subform (the Maclisp array type) and is otherwise identical to aref. subrcall and Isubrcall are
not provided.
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call function &rest argument-specifications
call offers a very general way of controlling what arguments you pass to a function. You
can provide cither individual arguments a la funcall or lists of arguments a la apply, in
any order. In addition, you can make some of the arguments optional. If the function is
not prepared to accept all the arguments you specify, no error occurs if the excess
arguments are optional ones. Instead, the excess arguments are simply not passed to the
function.

The argument-specs arc alternating keywords (or lists of keywords) and values. Fach
keyword or list of keywords says what to do with the valuc that follows. If a value
happens to require no keywords, provide () as a list of keywords for it.

Two keywords are presently defined: :optional and :spread. :spread says that the
following value is a list of arguments. Otherwise it is a single argument. :optional says
that all the following arguments are optional. Tt is not nccessary to specify :optional with
all the following argument-specs, because it is sticky.

Example: :
(call #’foo () x ’':spread y ’'(:optional :spread) z () w)

The arguments passed to foo are the value of x, the clements of the value of y, the
clements of the value of z, and the value of w. The function foo must be prepared to
accept all the arguments which come from x and y, but if it does not want the rest, they
arc ignored.

quote Special Form
(quote x) simply returns x. It is uscful specifically because x is not evaluated; the quote
is how you make a form that returns an arbitrary Lisp object. quote is used to include
constants in a form. '
Examples:
(quote x) => x
(setq x (quote (some Tlist))) x => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader normally converts
any form preceded by a single quote (') character into a quote form. '

For example,

(setq x ’'(some list))

is converted by read into

(setq x (quote (some T1ist)))

function Special Form
function special forms look like (function form). This means different things depending -
on whether form is a symbol, or a list. (Note that in neither case is form cvaluated.)

If you want to pass an anonymous function as an argument to a function, you could just
use quote; for example:
(mapc (quote (lambda (x) (car x))) some-list)

This works finc as far as the evaluator is concerned. However, the compiler cannot tell
that the first argument is going to be used as a function; for all it knows, mapc will
treat its first argument as a picce of list structure, asking for its car and cdr and so forth.
So the compiler cannot compile the function; it must pass the lambda-expression
unmodified. This means that the function will not get. compiled, which will make it
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cxecute more slowly than it might otherwise.

The function special form is one way to tell the compiler that it can go ahead and
compile the lambda-expression. You just use the symbol function instcad of quote:

(mapc (function (lambda (x) (car x))) some-list)
This will cause the compiler to generate code such that mapc will be passed a compiled-
code object as its first argument.

That’s what the compiler does with a function special form whose form is not a symbol.
The evaluator, when given such a form, just returns form; that is, it treats function just
like quote.
To casc typing, the rcader converts #’thing into (function thing). So #°' is similar to '
except that it produces a function form instcad of a quote form. So the above form
could be written as

(mapc #'(lambda (x) (car x)) some-1ist)

If form is a symbol, then function returns the contents of the function cell location of

Sorm; it is like fsymeval except that it is a special form instcad of a function, and so
{function fred) islike (fsymeval ’'fred)

function is the same for the compiler and the interpreter when form is a symbol.

Because of this, using function rules out the possibility of later changing the function
definition of x, including tracing it. Care is required!

The other way to tell the compiler that an argument that is a lambda expression should
be compiled is for the function that takes the function as an argument to use the
&functional keyword in its lambda list; see section 10.7, page 135. The basic system
functions that take functions as arguments, such as map and sort, have this &functional
keyword and hence quoted lambda exprcsswns given to them will be ucognued as
functions by the compiler.

In fact, mapc uses &functional and so the example given above is bogus; in the
particular case of the first argument to the function mapc, quote and function are
synonymous. It is good style to usc function (or #’) anyway, to make the intent of the

. program completely clear.

false

true

Takes no arguments and returns nil.

Takes no arguments and returns t.

comment Special Form

comment ignores its form and returns the symbol comment.
Example:
(defun foo (x)
(cond ((null x) 0)
" (t (comment x has something in it)
(1+ (foo (cdr x))))))
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progn

progl

prog2

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which are
ignored by the lisp rcader.
Example:

(defun foo (x)

(cond ((null x) 0)
(t (1+ (foo (cdr x)))) ;X has something in it
))

A problem with such comments is that they are discarded when the form is read into
Lisp. [f the function is read into Lisp, modified. and printed out again, the comment
will be lost. However, this style of opcration is hardly cver used; usually the source of a
function is kept in an cditor buffer and any changes are made to the buffer, rather than
the actual list structure of the function. Thus, this is not a real problem.

Special Form
A progn-form looks like (progn formi form2..). The forms are cvaluated in order from
left to right and the value of the last one is returned. progn is the primitive control
structure construct for "compound statcments”.  Although lambda-expressions, cond forms,
do forms, and many other control structure forms use progn implicitly, that is, they
allow multple forms in their bodics, there are occasions when one nceds to cvaluate a
number of forms for their side-cffects and make them. appear to be a single form.
Example:

{foo (cdr a)

(progn (setq b (extract frob))

(car b))
(cadr b))

Special Form
prog1 is similar to progn, but it rcturns the value of its first form. It is most commonly
used to evaluate an expression with side cffects, and return a value which must be
computed before the side effects happen.
Example: .

(setq x (progl y (setq y x)))
interchanges the values of the variables x and y.
Special Form

prog2 is similar to progn and progl, but it returns its second form. It is included
largely for Maclisp compatibility.

Sce also bind (page 168), which is a subprimitive that gives you maximal control over
binding.

The following three functions (arg, setarg, and listify) exist only for compatibility with
Maclisp lexprs. To write functions that can accept variable numbers of arguments, usc the
&optional and &rest keywords (sce section 3.2, page 18).
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arg x
(arg nil), when evaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. This is primarily a dcbugging aid, since lexprs also
receive their number of arguments as the value of their lambda-variable.

(arg i), when evaluated during the application of a lexpr, gives the value of the /’th
argument to the lexpr. i must be a fixnum in this case. It is an error if i is less than 1
or greater than the number of arguments supplicd to the lexpr.

Example: :
(defun foo nargs ' - ;define a lexpr foo.
(print (arg 2)) ;print the seccond argument.
(+ (arg 1) sreturn the sum of the first
(arg (- nargs 1)))) ;and next to last arguments.
setarg i x

setarg is used only during the application of a lexpr. (setarg / x) sets the lexpr’s i'th
argument to x. [ must be greater than zero and not greater than the number of
arguments passed to the lexpr. After (setarg i x) has been done, (arg /) will return x.

listify n
(listify #) manufactures a list of n of the arguments of a lexpr. With a positive argument
n, it returns a list of the first # arguments of the lexpr. With a negative argument n, it
returns a list of the last (abs #) arguments of the lexpr. Basically. it works as if defined
as follows: :
. (defun Tistify (n)
(cond ((minusp n)
(listifyl (arg nil) (+ (arg nil) n 1)))
(t
(listifyl n 1)) ))

(defun Tistifyl (n m) ; auxiliary function.
(do ((i n (1- 1))
(result nil (cons (arg i) result)))
((< i m) result) )) '

3.4 Multiple Values

The Lisp machine includes a facility by which the cvaluation of a form can produce more
than one value. When a function necds to rcturn more than one result to its caller, multiple
values -are a cleaner way of doing this than returning a list of the values or setq’ing special
variables to the cxtra values. In most Lisp function calls, multiple valucs are not used. Special
syntax is requircd both to produce multiple valucs and to receive them.

The primitive for producing multiple values is values, which takes any number of arguments
and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will rcturn three values. The other primitive for producing
multiple valucs is return, which when given more than onc argument returns all its arguments as
the values of the prog or do from which it is returning. The variant return-from also can
produce multiple valucs. Many system functions produce multiple values, but they all do it via
the values and return primitives.
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i The special forms for receiving multiple values are multiple-value, multiple-value-bind, and

multiple-value-list. These consist of a form and an indication of where to put the values
returned by that form. With the first two of these, the caller requests a certain number of
returned values. If fewer values are returned than the number requested, then it is exactly as if
the rest of the values were present and had the value nil. If too many valucs are rcturned, the
rest of the values are ignored. This has the advantage that you don’t have to pay attention to
extra values if you don’t care about them, but it has the disadvantage that error-checking similar
to that done for function calling is not present.

values &rest args »
Returns multiple values, the values of its arguments. This is the primitive function for
producing multiple values.

values-list Ilist
Returns multiple values, the clements of the /ist. (values-list '(a b c¢)) is the same as
(values 'a 'b 'c).

return and its variants can only be used within the do and prog special forms and their
variants, and so they arc cxplained on page 41.

multiple-value Special Form
(multiple-value var-list form) is a special form used for calling a function which is
cxpected to return more than one value. var-list should be a list of variables. form is
cvaluated, and the variables in var-list arc ser (not lambda-bound) to the values returned
by form. If more values are returued than there are variables in var-list, then the extra
values are ignored. If there are more variables than values returned, extra values of nil
are supplied. If nil appears in the var-list, then the corresponding value is ignored (you
can’t use nil as a variable.)
Example:
(multiple-value (symbol already-there-p)
. (intern "goo"))
In addition to its first value (the symbol), intern returns a sccond value, which is t if the
symbol returned as the first value was alrcady interned, or clse nil if intern had to create
it. So if the symbol goo was already known, the variable already-there-p will be set to
t, .otherwise it will be sct to nil. The third value rcturned by intern will be ignored.

multiple-value is usually used for effect rather than for value; however, its value is
defined to be the first of the values returned by form.

multiple-value-bind Special Form

This is similar to multiple-value, but locally binds the variables which receive the values,
rather than setting them. The form looks like:

(multiple-value-bind varlist form

body...)

First form is cvaluated. Then the variables in var-list are bound to the values rcturned by
Sorm. Then the forms of body are cvaluated sequentially, the bindings are undone, and
the result of the last form in body is returned. -
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multiple-value-1ist Special Form
(multiple-value-list form) cvaluates form, and returns a list of the values it rcturned.
This is uscful for when you don’t know how many values to expect.
Example:
(setq a (multiple-value-list (intern "goo")))
a => (goo nil #<Package User>)
This is similar to the example of multiple-value above; a will be set to a list of three
clements, the three values returned by intern. '

Due to the syntactic structure of Lisp, it is often the case that the value of a certain form is
the value of a sub-form of it. For cxample, the value of a cond is the valuc of the last form in
the sclected clause. In most such cascs, if the sub-form produces multiple values, the original
form will also produce all of those values. This passing-back of multiple values of course has no
cffect unless cventually onc of the special forms for receiving multiple values is reached. The
exact rule governing passing-back of multiple values is as follows:

If X is a form, and Y is a sub-form of X, then if the value of Y is unconditionally returned
as the value of X, with no intervening computation, then all the multiple values returned by Y
arc rcturned by X. In all other cases, multiple values or only single valucs: may be returned at
the discretion of the implementation; users should not depend on whatever way it happens to
work, as it may change in the future or in other implementations. The reason we don’t guarantee
nen-transmission of multiple values is because such a guarantee would not be very uscful and the
cfficiency cost of cnforcing it would be high. Even setq’ing a variable to the result of a form,
then returning the value of that variable might be inade to pass muliiple values by an optimizing
compiier which realized that the setqing of the variable was unnccessary.

Note that use of a form as an argument to a function never reccives multiple values from that
form. That is, if the form (foo (bar)) is evaluated and the call to bar rcturns many values, foo
will still only be called on onc argument (namely, the first value returned), rather than being
called on all the values returned. We choose not to generate several separate arguments from the
scveral values, because this would make the source code obscure; it would not be syntactically
obvious that a single form does not correspond to a single argument. Instead, the first value of a
form is used as the argument and the remaining values are discarded. Receiving of multiple
values is done only with the above-mentioned special forms.

For clarity, descriptions of the interaction of several common special forms with multiple
values follow. This can all be deduced from the rule given above.

The body of a defun or a lambda, and variations such as the body of a function, the body
of a let, etc., pass back multiple values from the last form in the body.

eval, apply, funcall, and lexpr-funcall pass back multiple values from the function called. '

progn passcs back multiple values from its last form. progv and progw do so also. prog1l
and prog2, howcver, do not pass back multiple valucs.

Multiple values are passed back from the last subform of an and or or form, but not from
previous forms since the return is conditional. Remember that multiple values are only passed
back when the value of a sub-form is unconditionally returned from the containing form. For
cxample, consider the form (or (foo) (bar)). If foo returns a non-nil first value, then only that
value will be rcturned as the value of the form. But if it returns nil (as its first value), then or
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returns whatever values the call to bar returns.

cond passes back multiple values from the last form in the sclected clause, but not if the
clause is only one long (i.e. the returned value is the value of the predicate) since the return is
conditional. This rule applies cven to the last clause, where the return is not really conditional
(the implementation is allowed to pass or not to pass multiple values in this case, and so you
shouldn’t depend on what it does). t should be used as the predicate of the last clause if multiple
values arc desired, to make it clear to the compiler (and any human rcaders of the code!) that
the return is not conditional.

The variants of cond such as if, select, selectq, and dispatch pass back multiple values
from the last form in the selected clause.

prog passcs back the number of values given as arguments to the return that returns from it.
Recall that return can be given many subforms, in which casc it causes the prog lo return many
values. (return form) looks a bit ambiguous; you might think it returns all the values returned
by form. In fact, it may or may not; as always the implementation is not constraincd not to
return extra values, and you should not depend on what it does in this case. If you want to
return from a prog with all the values returned by a form, use multiple-value-return (sece page
42): (multiple-value-return form) returns from a prog, passing back all the values of form.

do behaves like prog with respect to return.  All the values of the last exit-form are returned.

unwind-protect docs not pass back multiple valucs. It clearly should, but this is currently
difficult to implement. This will be fixed in the future.
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4. Flow of Control

Lisp provides a variety of structures for flow of control.

Function application is the basic method for construction of programs. Operations are written
as the application of a function to its arguments. Usually, Lisp programs are written as a- large
collection of small functions, cach of which implements a simple operation. ‘These functions
operate by calling one another, and so larger operations are defined in terms of smaller ones.

A function may always call itself in Lisp.- The calling of a function by ltself is known as
recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between repetitions) is
called iteration, and is provided as a basic control structurc in most languages. The do statement
of PL/I, the for statement of AI.GOL./60, and so on are cxamples of iteration primitives. Lisp
provides two general iteration facilitics: do and loop, as well as a varicty of special-purpose
iteration facilitics. (loop is sufficiently complex that it is. explained in its own chapter later in the
manual; scc page 204.) Therc is also a very general construct to allow the traditional "goto™
control structure, called prog. :

A conditional construct is onc which allows a program to make a decision, and do one thing
or another based on some logical condition. Lisp provides the simple onc-way conditionals and
and or, the simple two-way conditional if, and more gencral multi-way conditionals such as cond
and selectq. The choice of which form to use in any particular situation is a matter of personal
tastc and style.

There are some non-focal exit coatrol structures, analogous to the leave, exit, and escape
constructs in many modern languages. The general ones are *catch and *throw; there is also
return and its variants, used for exiting itcration the constructs do, loop, and prog.

Lisp Machine Lisp also provides a coroutine capability, cxplained in the section on sfack-
groups (chapter 12, page 149), and a multiple-process facility (see chapter 25, page 377). There is
also a facility for gencric function calling using message passing; sece chapter 20, page 245.

4.1 Conditionals

it Special Form ‘
if is the simplest conditional form. The "ifthen" form looks like:
(if predicate-form then-form)
predicate-form is evaluated, and if the result is non-nil, the then-form is cvaluated and
its result is returned. Otherwise, nil is returned.

In the "if-then-else” form, it looks like

(if predicate-form then-form else-form)
predicate-form is evaluated, and if the result is non-nil, thc then-form is evaluated and
its result is returned. Otherwise, the else-form is evaluated and its result is returned.
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If there are more than three subforms, if assumes you want more than one else-form;
they arce cvaluated sequentially and the result of the last onc is returned, if the predicate
returns nil. There is disagreement as to whether this consistutes good programming style
or not.

cond Special Form
The cond special form consists of the symbol cond followed by several clauses. Each
clause consists of a predicate form, called the antecedent, followed by zero or more
consequent forms.

(cond (anteccdent consequent consequent. . . )
(antecedent)
(antecedent consequent . . .)

)

The ideca is that cach clause represents a casc which is sclected if its antccedent is satisfied
and the antecedents of all preceding clauses were not satisfied. When a clause is sclected,
its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the current
clause is cvaluated. If the result is nil, cond advances to the next clause. Otherwise, the
cdr of the clause is treated as a list consequent forms which are evaluated in order from
left to right. After cvaluating the conscquents, cond returns without inspecting any
remaining clauses. The value of the cond special form is the valuc of the last consequent
evaluated, or the value of the antecedent if there were no consequents in the clause.  IF

cond runs out of clauses, that is, if cvery antecedent evaluates to nil, and thus no case is -

selected, the value of the cond is nil.

Example:
(cond ((zerop x) ; First clause:
(+y 3)) ; (zerop x)isthe antecedent.
; (+ y 3)is the consequent.
((null y) ;A clause with 2 consequents:

(setq y 4) ; this
(cons x z))- ;and this.

(2) ‘ ;A clause with no consequents: the antecedent is
; just z. Ifz is non-nil, it will be returned.
(t ; An antecedent of ©
105) ; is always satisfied.
) ' ; This is the end of the cond.

cond-every Special Form
cond-every has the same syntax as cond, but exccutes every clausec whose predicate is
satisfied, not just the first. [f a predicate is the symbol otherwise, it is satisfied if and
only if no preceding predicate is satisfied. The value returned is the valuc of the last
consequent form in the last clause whose predicate is satisfied. Multiple values are not
returned., ' '
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and Special Form »
(and forml form2 ... ) evaluates the forms one at a time, from left to right. If any form
cvaluates to nil, and immediately returns nil without evaluating the remaining forms. If
all the forms evaluate to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can use it as a logical and function, because
it returns a true value only if all of its arguments are true. So you can use it as a
predicate:
(if (and socrates-is-a-person
all-people-are-mortal)
(setq socrates-is-mortal t))

Because the order of cvaluation is well-defined, you can do
(if (and (boundp ’'x)
(eq x ’foo))
(setq y ’bar))
knowing that the x in the eq form will not be evaluated if x is found to be unbound.

You can also use and as a simple conditional form:
(and (setq temp (assq x y))
(rptacd temp z))
(and bright-day
glorious-day
(princ "It is a bright and glorious day."))

Note: (and) =>t, which is the identity for the and operation.

or Special 'orm v
(or forml form2 ...) evaluates the forms one by onc from left to right. If a form evaluates
to nil, or proceeds to evaluate the next form. If there are no more forms, or returns nil.
But if a form evaluates to a non-nil value, or immediatcly returns that value without

- cvaluating any remaining forms.

As with and, or can be uscd ecither as a logical or function, or as a conditional.
(or it-is-fish
it-is-fowl
(print "It is neither fish nor fowl."))

Note: (or) => nil, the identity for this operation.

selectq Special Form
selectq is a conditional which chooses onc of its clauses to exccute by comparing the
value of a form against various constants, which are typically keyword symbols. Its form
is as follows:
(selectq key-form

(test consequent consequent . . .)

(test consequent consequent . . .)

(test consequent consequent ... .)

The first thing selectq docs is to evaluate key-form; call the resulting value key. Then
selectq considers cach of the clauses in turn. If key matches the clausc’s fest, the
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conscquents of this clause arc cvaluated, and selectq rcturns the value of the last
conscquent. If there arc no matches, selectq returns nil.

A test may be any of:

1) Asymbol If the key is eq to the symbol, it matches.

2) A number If the key is eq to thc number, it matches. Only small
numbers (fixnums) will work.

3) Alist If the key is eq to one of the clements of the list, then it
matches. The clements of the list should be symbols or -
fixnums.

4) t or otherwise The symbols t and otherwise are special keywords which

match anything. Either symbol may be used, it makes no
difference; t is mainly for compatibility with Maclisp’s
caseq construct. To be uscful, this should be the last
clause in the selectq.

Note that the fests are not cvaluated; if you want them to be cvaluated use select rather
than selectq.
Fxample:
(selectq x
(foo (do-this))
(bar (do-that))
((baz quux mum) (do-the-other-thing))
(otherwise (ferror nil "Never heard of ~S" x)))
is equivalent to
(cond ((eq x *foo) (do-this))
((eq x ’bar) (do-that))
((memg x '(baz quux mum)) (do-the-other-thing))
(t (ferror nil "Never heard of ~S" x)))

Also sce defselect (page 134), a special form for defining a function whose body is like a
selectq.

select Special Form
select is the same as selectq, cxcept that the elements of the tests are evaluated before
they are used. :

This creates a syntactic ambiguity: if (bar baz) is scen the first element of a clause, is it
a list of two forms, or is it one form? select interprets it as a list of two forms. If you
want to have a clause whose test is a single form, and that form is a list, you have to
write it as a list of onec form.
Example:
(select (frob x)

(foo 1)

((bar baz) 2)

(((current-frob)) 4)

(otherwise 3))
is equivalent to
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(1et ((var (frob x)))
(cond ((eq var foo) 1)
{((or (eq var bar) (eq var baz)) 2)
((eq var (current-frob)) 4)

(t 3)))

selaector Special Form
selector is the same as select, except that you get to specify the function used for the
comparison instcad of eq. For example,
(selector (frob x) equal
((’(one . two)) (frob-one x))
(("(three . four)) (frob-three x))
(otherwise (frob-any x)))
is equivalent to
{let ((var (frob x)))
(cond ((equal var '(one . two)) (frob-one x))
((equal var ’'(three . four)) (frob-three x))
(t (frob-any x)))) .

dispatch Special Form
(dispatch byte-specifier number clauses...) is the same as select (not selectq), but the key
is obtained by cvaluating (Idb byte-specifier number). byte-specifier and number are both
cvaluated. Byte specifiers and Idb are cxplained on page 9%4.
Example:
(princ (dispatch 0202 cat-type
(0 "Siamese.")
(1 "Persian.")
(2 "Alley.")
(3 (ferror nil
"~S is not a known cat type."

. : cat-type))))
It is not necessary to include all possible values of the byte which will be dispatched on. .

selectq-every Special Form
selectq-every has the same syntax as selectq, but, like cond-every, executes every
selected clause instcad of just the first one. If an otherwise clause is present, it is
selected if and only if no preceding clause is selected. The value returned is the value of
the last form in the last selected clause. Multiple values are not returned. Example:
(selectg-every animal

((cat dog) (setq legs 4))

((bird man) (setq legs 2))

((cat bird) (put-in-oven animal))

((cat dog man) (beware-of animal)))

caseq Special Form :
The caseq special form is provided for Maclisp compatibility. Tt is exactly the same as
selectq. This is not perfectly compatible with Maclisp, because selectq accepts otherwise
as well as t where caseq would not accept otherwise, and because Maclisp does some
crror-checking that selectq does not. Maclisp programs that use caseq will work
correctly so long as they. don’t use the symbol otherwise as the key.
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4.2 Iteration

do Special Form

The do special form provides a simple gencralized iteration facility, with an arbitrary
number of "index variables” whose values are saved when the do is entered and restored
when it is left, i.c. they arc bound by the do. The index variables are used in the
iteration performed by do. At the beginning, they are initialized to specified values, and
then at the end of each trip around the loop the values of the index variables are
changed according to specified rules. do allows the programmer to specify a predicate
which determines when the itcration will terminate. The value to be returned as the result
of the form may, optionally, be specified.

do comes in two varieties.

The more general, so-called "new-style” do looks like:
(do ((varinitrepeat) ...)
(end-test exit-form . ..)
body. ..)

The first item in the form is a list of zero or more index variable specifiers. Each index
variable specifier is a list of the name of a variable var, an initial value form init, which
defaults to nil if it is omitted, and a repeat valuc form repeat. If repeat is omitted, the
var is not changed between repetitions.

An index variable specifier can also be just the name of a variable, rather than a list. In
this case, the variable has an initial valuc of nil, and is not changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of the first
iteration, .all the init forms are evaluated, then the vars are bound to the values of the
init forms, thecir old values being saved in the usual way. Note that the init forms are
cvaluated before the vars are bound, i.c. lexically outside of the do. At the beginning of
cach succeeding iteration those vars that have repeat forms get set to the values of their
respective repeat forms. Note that all the repear forms are evaluated before any of the
vars is set.

The sccond element of the do-form is a list of an end-testing predicate form end-fest, and
zero or more forms, called the exit-forms. This resembles a cond clause. At the
beginning of each itcration, after processing of the variable specifiers, the end-test is
evaluated. If the result is nil, exccution proceeds with the body of the do. If-the result
is not nil, the exit-forms are evaluated from left to right and then do returns. The value
of the do is the value of the last exit-form, or nil if there were no exit-forms (not the
value of the end-test as you might expect by analogy with cond).

Note that the end-fest gets cvaluated before the first time the body is evaluated. do first
initializes the variables from the inir forms, then it checks the end-test, then it processes
the body, then it deals with the repeat forms, then it tests the end-test again, and so on.
If the end-test rcturns a non-nil value the first time, then the body will ncver be
processed. : :
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If the sccond clement of the form is nil, there is no end-test nor exit-forms, and the body
of the do is executed only once. In this type of do it is an crror to have repeats. This
type of do is no more powerful than let; it is obsolete and provided only for Maclisp
compatibility.

If the sccond clement of the form is (hil), the end-test is never true and there are no
exit-forms. The body of the do is exccuted over and over. The infinite loop can be
tcrminated by use of return or *throw.

If a return special form is cvaluated inside the body of a do, then the do immediately
stops, unbinds its variables, and returns the values given to return. Sce page 41 for more
details about return and its variants. go special forms (sce page 41) can also be used
inside the body of a do and they mean the same thing that they do inside prog forms,
but we discourage their use since they complicate the control structure in a hard-to-
understand way.

The other, so-called "old-style” do looks like:
(do var init repeat. end-test body. . .)

“The first time through the loop var gets the value of the inif form; the remaining times
through the loop it gets the value of the repeat form, which is re-cvaluated cach time.
Nate that the inir form is evaluated before var is bound, i.e. lexically outside of the do.
Each time around the loop, after var is sct, end-test is cvaluated. If it is non-nil, the do
finishes and returns nil. If the end-rest evaluated to nil, the body of the loop is exccuted.
As with the new-style do, return and go may be used in the body, and they have the
sdine meaning.

Examples of the older variety of do:
(setqg n (array-length foo-array))
(do i 0 (1+ i) (= 1 n)
(aset 0 foo-array i)) ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null zz)
(zerop (f (car zz)))))
; this applies f to each element of x
; continuously until freturns zero.
; Note that the do has no body.

return forms are often uscful to do simple searches: ,
(do i 0 (1+ i) (= i n) ;lterate over the length of foo-array.
(and (= (aref foo-array i) 5) ;Ifwe find an clement which

: cquals 5,
(return i))) ; then return its index.
Examples of the new form of do:
(do ((i 0 (1+ 1)) ; This is just the same as the above example,
(n (array-length foo-array)))
((= 1 n)) ; but written as a new-style do.

(aset 0 foo-array i)) ; Notchow the setq is avoided.
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(do ((z 7Tist (cdr z)) ;zstartsaslist and is cdred each time.
(y other-Tist) ;ystartsas other-list, and is unchanged by the do.

(x)) - ; x starts as nil and is not changed by the do.
(nil) _ ; The end-test is nil, so this is an infinite loop.
body) ; Presumably the body uses return somewhere.

The construction ,
(do ((x e (cdr x))
(oldx x x))
((null x))
body) .

exploits parallel asmgnmcm to index variables. On the first iteration, the value of oldx is
whatever value x had before the do was entered. On succceding itcrations, oldx contains
the value that x had on the previous iteration.

In cither form of do, the body may contain no forms at all. Very often an iterative
algorithm can be most clearly expressed entirely in the repeats and exit-forms of a new-
style do, -and the body is empty.

(do ((x x (cdr x))
(y y (cdr y)) :
(z nil (cons {f x y) z))) ;exploits parallel assignment.
{(or {(null x) (null y))
(nreverse z)) - stypicaluse of nreverse.
) :no do-body required.

is like (méph’st 'f x y) (see page45).

Also scc loop (page 204), a general iteration facility based on a keyword syntax rather than a list-
structure syntax.

do-named Special Form
Sometimes -one do is contained inside the body of an outer do. The return function
always returns from the innermost surrounding do, but somctimes you- want to return
from an outer do while within an inner do. You can do this by giving the outer do a
name. You use do-named instcad of do for the outer do, and use return-from (see
page 42), specifying that name, to return from the do named :

The syntax of do-named is like do except that the symbol do is 1mmed1ately followed by
the name, which should be a symbol.
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Example:
(do-named george ((a 1 (1+ a))
(d 'foo))
((>a 4)7)
(do ((c b (cdr c)))
((null c))

(return-from george (cons b d))

o))

If the symbol t is used as the name, then it will bc made "invisible” to returns; that is,
returns inside that prog will return to the next outermost level whose name is not t.
(return-from t ...) will return from a prog named t.- This feature is not intended to be
used by user-written code; it is for macros to expand into.

progs and loops can have namcs just as dos can. Since the same functions arc used to
return from all of these forms, all of these names are in the same name-space; a return
returns from the innermost enclosing iteration form, no matter which of these it is, and
so you need to use names if you ncst any of them within any other and want to rcturn to
an outer one from inside an inner one.

dotimes Special F'orm
dotimes is a convenicnt abbreviation for the most common integer itcration. (dotimes
(index count) body...) performs body the number of times given by the value of count,
wiill index bound to 0, 1, elc. ‘on successive iterations.
Example:
(dotimes (i (// m n)
(frob 1))
is equivalent to:
(do ((i 0 (1+ 1))
(count (// m n)))
((z i count))
(frob 1))
except that the name count is not uscd. Note that i takes on values starting at zero -
rather than one, and that it stops before taking the value (// m n) rather than after.
You can usc return and go inside the body, as with do.

do11ist Special Form A ‘
dolist is a convenient abbreviation for the most common list iteration. (dolist (item list)
body...) performs body once for each element in the list which is the value of list, with
item bound to the successive clements. :
Example:
(dolist (item (frobs foo0))
(mung item))
is equivalent to:
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(do ((1st (frobs foo) (cdr 1st))
(item))
((null 1st))
(setq item (car Tst))
(mung item)) :
except that the name Ist is not used. You can use return and go inside the body, as
with do.

keyword-extract Special Form

keyword-extract is an aid to writing functions which take keyword arguments in the
standard fashion. The form-

(keyword-extract key-list iteration-var

keywords flags other-clauses. . .)

will parse the keywords out into local variables of the function. key-list is a form which
cvaluates to the list of keyword arguments; it is generally the function’s &rest argument.
iteration-var is a variable used to itcrate over the list; somctimes other-clauses will use the
form

(car (setq iteration-var (cdr iteration- var)))
to extract the next element of the list. (Note that this is not the same as pop.)

 keywords defines the symbols which are keywords to be followed by an argument. Each
ciement of keywords is either the name of a local variable which receives the argument
and is also the keyword, or a list of the keyword and the variable, for use when they are
different or the keyword is not to go in the keyword package. Thus if keywords is (foo
(ugh bletch) bar) then the keywords recognized will be :foo, ugh, and :bar. If :foo is
specified its argument will be stored into foo. If :bar is specified its argument will be
stored into bar. [f ugh is specified its argument will be stored into bletch.

Note that keyword-extract docs not bind these local variables; it assumes you will have
done that somewhere else in the code that contains the keyword-extract form.

Sflags defines the symbols which are keywords not followed by an argument. If a Hag is
scen its corresponding variable is sct to t. (You arc assumed to have initialized it to nil
when you bound it with let or &aux.) As in keywords, an clement of flags may be either
a variable from which the keyword is deduced, or a list of the keyword and the variable.

If there are any other-clauses, they are selectq clauses sclecting on the keyword being
processed. These can be used to do special processing of certain keywords for which
simply storing the argument into a variable is not good enough. After the other-clauses
there will be an otherwise clause to complain about any undefined keywords found in
key-list.

prog Special Form

prog 1s a spccnal form which provtdes temporary variables, sequential evaluation of forms,
and a "goto" facility. A typical prog looks like:
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(prog (varl var2 (var3init3) vard (varSinit5))
lagl :

statemenil

statement?2
“lag2

statement3

The first subform of a prog is a list of variables, cach of which may optionally have an

initialization form. 'The first thing evaluation of a prog form docs is to evaluate all of the

init forms. Then each variable that had an /nir form is bound to its value, and the

variables that did not have an inir form arc bound to nil.

Example: o

(prog ((a t) b (c 5) (d (car ’(zz . pp))))
<body>

The initial value of a is t, that of b is nil, that of ¢ is the fixnum 5, and that of d is
the symbol zz. The binding and initialization of the variables is done in parallel; that is,
all the initial values are computed before any of the variables are changed. prog* (see
page 41) is the same as prog ecxcept that this initialization is scquential rather than
parallel. '

The part of a prog after the variable list is called the body. Each clement of the body is
citiher a symbol. in which case it is called a g, or anything clse (almost always a list),
in which case it is called a statement.

After prog binds the variables, it processes each form in its body sequentially. tags are
skipped over. statements are cvaluated, and their returned valucs discarded. If the end of
the body is reached, the prog rcturns nil. However, two special forms ‘may be used in
prog bodies to alter the flow of control. If (return x) is evaluated, prog stops processing
its body, ecvaluates x, and returns the result. If (go tag) is evaluated, prog jumps to the
part of the body labelled with the fag, where processing of the body is continued. ‘fag is
not evaluated. return and go and their variants are cxplained fully below.

The compiler requires that go and return forms be lexically within the scope of the prog;
it is not possible for a function called from inside a prog body to return to the prog.
That is, the return or go must be inside the prog itself, not inside a function called by
the prog. (This restriction happens not to be enforced in the interpreter, but since all
programs are eventually compiled, the convention should be adhered to. The restriction
will be imposed in future implementations of the interpreter.)

Sce also the do special form, which uses a body similar to prog. The do, *catch, and
*throw special forms arc included in Lisp Machine Lisp as an attcmipt to encourage goto-
less programming style, which often lcads to more rcadable, more casily maintained code.
The programmer is recomnicnded to use thesc functions instcad of prog wherever
rcasonable.

If the first subform of a prog is a non-nil symbol (rather than a variable list), it is the

name of the prog, and return-from (sce page 42) can be used to rcturn from it. See
do-named, page 37.
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Fxample:
(prog (x y z) ;x, y, zarcprog variables - temporaries.
(setq y (car w) z (cdr w)) ; wis a free variable.
Toop
(cond ((null y) (return x))
{((nul1 z) (go err)))
rejoin
(setq x (cons (cons (car y) (car z))
X))
(setq y (cdr y)
z (cdr z))
{go Tloop)
err
(break are-you-sure? t)
(setq z y)

(go rejoin))

prog* Special Form
The prog* special form is almost the samc as prog. The only difference is that the
binding and initialization of the temporary variables is done sequentially, so each one can
depend on the previous ones. For example,
(prog* ((y z) (x (car y)))
(return x))
returns the car of the value of z.

go Special Form
The (go tag) special form is used to do a "go-to” within the body of a do or a prog.
The fag must be a symbol. It is not evaluated. go transfers control to the point in the
body labelled by a tag eq to the one given. If there is no such tag in the body, the
bodies of lexically containing progs and dos (if any) are examined as well. If no tag is
found, an crror is signalled.

Example:
(prog (x y z)
(setq x some frob)
Toop
do something
(i1f some predicate (go endtag) )
" do something more :
(if (minusp x) (go loop))
endtag
(return z))

return Special Form
return is used to cxit fmm a prog-like special form (prog, prog*, do, do-named,
dotimes, dolist, loop, ctc) The values of return’s arguments are returned by the prog as
its values.

In addition, break (sce page 451) recognizes the typed-in form (return value) specially. If
this form is typed at a break, value will be evaluated and rcturned as the value of break.
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If not specially recognized by break, and not inside a prog-like form, return will cause
an error.
Example:
(do ((x x (cdr x)).
(n 0 (*n 2)))
((null x) n)
(cond ((atom (car x))
(setg n (1+ n)))
((memq (caar x) ’(sys boom bleah))
(return n))))

Note that the return form is very unusual: it does not cver return a value. A return
form may not appear as an-argument to a regular function, but only at the top level of a
prog or do, or within certain special forms such as conditionals which are within a prog
or do. A return-as an argument to a rcgular function would be not only uscless but
possibly meaningless. The compiler does not bother. to know how to compile it correctly
in all cases. The same is true’ of go.

return is usually used with onc argument, to rceturn onc value, but it can also be used
with multiple arguments, to return multiple values from a prog or do. For cxample,
(defun assqn (x table)
(do ((1 table (cdr 1))
(n 0 (1+ n)))
((nul1 1) nil)
(if (eq (caar 1) x)
(return (car 1) n)))) ’ :
This function is like assq, but it returns an additional value which is the index in th
table of the entry it found. Sce scction 3.4, page 26 for more information.

return-from Special Form
A return-from form looks like (return-from name forml form2 ..). The forms are
evaluated, and then are rcturned from the innermost containing prog-like special form
whose name is name. Scc the description of do-named (page 37) in which named dos
and progs are explained.

return-1ist /st
list must not be nil. This function is like return exccpt that the prog returns all of the
clements of /ist; if list has more then one clement, the prog does a multiple-value return.

To direct the returned values to a prog or do-named of a specific name, use
(return-from name (return -list /is)) .

multiple-value-return Special Form o
(multiple-value-return (function argl arg? ...)) applies the function to the arguments, and

returns from the current do or prog with the same values as finction returns. This
function is not very well-named; it is rcally just a close rclative of return.

Also sce defunp (page 128), a variant of defun that incorporates a prog into the function body.
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4.3 Non-Local Exits

*catch Special Form
*catch is a special form used with the *throw function to do non-local exits. A *catch
form looks like (*catch rag form). First tag is evaluated; the result is called the "tag" of
the *catch. Then form is cvaluated and its valuc is returncd, except that if, during the
evaluation of form, the function *throw is called with the same tag as the tag of the
*catch, then the evaluation of form is aborted, and the *catch form immediately returns
the value that was the sccond argument to *throw without further evaluating form.

The tag’s arc used to match up *throw’s with *catch’s. (*catch ‘foo form) will catch a
(*throw 'foo form) but not a (*throw 'bar form). It is an crror if *throw is done when
there is no suitable *catch (or catch-all; sec below).

The values t and nil for tag arc special: a *catch whose tag is one of these values will
catch throws to any tag. These are only for internal use by unwind-protect and catch-
all respectively. The only difference between t and nil is in the error checking; t implies
that after a "cleanup handler” is exccuted control will be thrown again to the same tag,
therefore it is an error if a specific catch for this tag does not cxist higher up in the stack.
With nil, the error check isn’t done.

*catch returns up to four values; trailing null values arc not returned for reasons of
microcode simplicity, but the values not returned will dcfault to nil if they are received
with the multiple-value or multiple-value-bind special forms. If the catch completes
normally, the first value is the value of jomn and the sccond is nil. If a *throw occurs,
the first value is the second argument to *throw, and the sccond value is the first
argument to *throw, the tag thrown to. The third and fourth values are the third and
fourth arguments to *unwind-stack (sce page 44) if that was used in place of *throw;
otherwise these valucs are nil. To summarize, the four values returned by *catch are the
value, the tag, the active-frame-count, and the action.

Example ' '

(*catch ’negative
(mapcar (function (lambda (x)
(cond ((minusp x)
(*throw ’'negative x))

(T (f x)))))

y : ,
which returns a list of f of each element of y if they are all positive, othcrwise the first
negative member of y. :

*throw rag value
*throw is used with *catch as a structured non-local cxit mechanism.

(*throw fag x) throws the value of x back to the most recent *catch labelled with fag or
t or nil. Other *catches are skipped over. Both x and fag are cvaluated, unlike the
Maclisp throw function.

The values t, nil, and 0 for ag are reserved and used for internal purposes. nil may not -
be uscd, because it would cause an ambiguity in the returned values of *catch. t may
only be uscd with *unwind-stack. 0 and nil are used internally when returning out of
an unwind-protect. ' :
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See the description of *catch for further details.

catch Macro
- throw Macro
catch and throw are provided only for Maclisp compatibility. (catch form tag) is the
same as (*catch 'tag form), and (throw form tag) is the same as (*throw 'tag form). The
forms of catch and throw without tags are not supported. '

*unwind-stack tag value active-frame-count action -
This is a gencralization of *throw provided for program-manipulating programs such as
the crror handler.

tag and value arc the same as the corresponding arguments to *throw.

A tag of t invokes a special feature whereby the entire stack is unwound, and then the
function action is called (sce below). During this process unwind-protects reccive control,
but catch-alls do not. This feature is provided for the benefit of system programs which
want to unwind a stack completely.

active-frame-count, if non-nil, is the number of frames to be unwound. The definition of
a "frame” is implementation-dependent. If this counts down to zero before a suitable
*catch is found. the *unwind-stack terminates and that frame rewurns value to whoever
called it. This is similar to Maclisp’s freturn function.

If action is non-nil, whenever the *unwind-stack would be ready to terminate (either due
to active-frame-count or duc to tag being caught as in *throw), instcad action is called
with one argument, value. If tag is t, mecaning throw out the whole way, then the
function action is not allowed to return. Otherwise the function action may rcturn and its
value will be returned instecad of value from the *catch—or from an arbitrary function if
active-frame-count is in use. In this case the *catch docs not rcturn multiple values as it
normally does when thrown to. Note that it is often useful for action to be a stack-group.

Note that if both active-frame-count and action are nil, *unwind-stack is identical to
*throw.

unwind-protect Special Form
Sometimes it is necessary to evaluate a form and make sure that certain side-effects take
place after the form is evaluated; a typical example is:
(progn | -

(turn-on-water-faucet)

(hairy-function 3 nil ’'foo)

(turn-off-water-faucet))
The non-local exit facility of Lisp creates a situation in which the above code won’t work,
however: if hairy-function should do a *throw to a *catch which is outside of the
progn form, then (turn-off-water-faucet) will never be cvaluated (and the faucct will
~presumably be left running). This is particularly likely if hairy-function gets an crror and
the user tells the crror-handler to give up and flush the computation.

In order to allow the above program to work, it can be rewritten using unwind-protect
as follows:
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(unwind-protect
(progn (turn-on-water-faucet)
(hairy-function 3 nil ’foo))
A (turn-off-water-faucet))
If hairy-function does a *throw which attempts to quit out of the evaluation of the
unwind-protect, the (turn-off-water-faucet) form will be evaluated in between the time
of the *throw and the time at which the *catch returns. [f the progn returns normally,
then the (turn-off-water-faucet) is cvaluated, and the unwind-protect returns the result
of the progn.

One thing to note is that the body of an unwind-protect cannot return multiple values.
[This ought to be fixed, but it’s hard.]

The general form of unwind-protect looks like
(unwind-protect 1)1010¢1€df0rm
cleanup-forml
cleanup-form2

protected-form is cvaluated, and when it returns or when it attempts to quit out of the
unwind-protect, the cleanup-forms arc evaluated. The value of the unwind-protect is
the value of protected-form.

catch-al1 Alacro
(catch-all furm) is like (*catch some-tag form) except that it will catch a *throw to any
tag at all. Siuce the tag thrown to is the second returned value, the caller of catch-ail
may continuc throwing to that tag if hc wants. The onec thing that catch-all will not
catch is a *unwind-stack with a tag of t. catch-all is a macro which expands into
*catch with a tag of nil.

[f you think you want this, most likely you are mistaken and you really want unwind-
protect.

4.4 Mapping

map fcn &rest lists

mapc fen &rest [ists

maplist fon &rest lists

mapcar fcn &rest lists

mapcon fen &rest lists

mapcan fcn &rest lists
Mapping is a type of iteration in which a function is successively applied to pieces of a
list. There are scveral options for the way in which the picces of the list are chosen and
for what is done with the results returned by the applications of the function.

[For example, mapcar opcrates on successive elements of the list. As it goes down the
list, it calls the function giving it an element of the list as its one argument: first the
car, then the cadr, then the caddr, etc., continuing until the end of the list is reached.
The valuc returned by mapcar is a list of the results of the successive calls to the
function. An example of the use of mapcar would be mapcar’ing the function abs over
the list (1 -2 -4.5 6.0e15 -4.2), which would be written ‘as' (mapcar (function abs) (1
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-2 -4.5 6.0e15 -4.2)). The result is (1 2 4.5 6.0e15 4.2).

In general, the mapping functions take any number of arguments. For example,

(mapcar f xI x2 ... xn)
In this case f must be a function of » arguments. mapcar will proceed down the lists x/,
x2, ..., xu in parallel. The first argument to f will come from x/, the second from x2,
etc. The iteration stops as soon as any of the lists is exhausted.

There are five other mapping functions besides mapcar. maplist is like mapcar except
that the function is applied to the list and successive cdr's of that list rather than to
successive clements of the list. map and mapc arc like maplist and mapcar respectively,
except that they don’t rcturn any uscful value. These functions are used when the
function is being called merely for its sidc-effects, rather than its returned - values.
mapcan and mapcon arc like mapcar and maplist respectively, except that they combine
the results of the function using nconc instcad of list. That is, mapcon could have been
defined by
(defun mapcon (f x y)
(apply ’nconc (maplist f x y)))
Of course, this definition is less general than the real one.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used whercver they naturally apply because this incrcases the
clarity of the code. :

Often £ will be a lambda-expression, rather than a symbol: for example,
(mapcar (function (lambda (x) (cons x something)))
some-1ist)

The functional argument to a mapping function must be a function, acceptable to
apply—it cannot be a macro or the name of a special form.
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Here is a table showing the relations between the six map functions.

applies function to

| successive | successive |

| sublists | elements |

——————————————— e it e s 4

its own ] | |

second | map | mapc |

argument | | |
——————————————— e e e s o

, Tist of the | | |
returns function | maplist | mapcar |
results | | |
——————————————— e it 2

nconc of the | | |

function | mapcon ] mapcan |

results | | |
——————————————— e e e et o

There are also functions (mapatoms and mapatoms-all) for mapping over all symbols in
certain packages. See the explanation of packages (chapter 23, page 345).

DSK:LMMAN;FDFLO 82 ' 16-MAR-81



Manipulating List Structure 48 Lisp Machine Manual

5. Manipulating List Structure

This chapter discusses functions that manipulate conses, and higher-level structures made up
of conses such as lists and trees. It also discusses hash tables and resources, which are. related
facilities.

A cons is a primitive Lisp data object that is extremely simple: it knows about two other
objects, called its car and its cdr.

A list is recursively defined to be the symbol nil, or a cons whose cdr is a list. A typical list
is a chain of conses: the cdr of cach is the next cons in the chain, and the cdr of the last one is
the symbol nil. The cars of ecach of these conses are called the elements of the list. A list has
onc element for cach cons; the empty list, nil, has no clements at all. Here arc the printed
representations of some typical lists:

(foo bar) ;This Tist has two elements.

(a (b c d) e) ;This Tist has three elements. .
Note that the sccond list has three clements: a, (bcd), and e. The symbols b. ¢, and d are
not elements of the list itsclf. (They are clements of the list which is the second clement of the
original list.) ‘

A "dotted list” is like a list except that the cdr of the last cons does not have to be nil. This
name comes from the printed representation, which includes a "dot™ character. Here is an
example: "

(ab . c)
‘This "dotted list" is made of two conscs. The car of the first cons is the symbol a, and the cdr
of the first cons is the second cons. The car of the second cons is the symbol b, and the cdr of
the second cons is the symbol c. -

A tree is any data structure made up of conscs whose cars and cdrs are other conses. The
following are all printed representations of trees:
(foo . bar)

((a . b) (c . d))
((a .b) (cdef (g . 5)s) (7. 4))

These definitions are not mutually exclusive. Consider a cons whose car is a and whose cdr is
(b (cd)e). Its printed representation is
{ab (c d) e)
It can be thought of and treated as a cons, or as a list of four elements, or as a tree containing
six conses. You can even think of it as a "dotted list" whose last cons just happens to have nil
as a cdr. Thus, lists and "dotted lists" and trecs are not fundamecntal data types; they are just
ways of thinking about structures of conses.

A circular list is like a list cxcept that the cdr of the last cons, instead of being nil, is the
first cons of the list. This means the the conses are all hooked together in a ring, with the cdr of
cach cons being the next cons in the ring. While these are perfectly good Lisp objects, and there
arc functions to deal with them, many other functions will have trouble with them. Functions
that expect lists as their arguments often itcrate down the chain of conses waiting to see a nil,
and when handed a circular list this can cause them to compute forever. The printer (sec page
294) is one of these functions; if you try to print a circular list the printer will never stop
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producing text. You have to be careful what you do with circular lists.

The Lisp Machine internally uses a storage scheme called "cdr coding” to represent conses.
This scheme is intended to reduce the amount of storage used in lists. The use of cdr-coding is
invisible to programs except in terms of storage efficiency; programs will work the same way
whether or not lists arc cdr-coded or not. Several of the functions below mention how they deal
with cdr-coding. You can completely ignore all this if you want. However, if you are writing a
program that allocates a lot of conses and you are concerned with storage cfficiency, you may
want to learn about the cdr-coded representation and how to control it. The cdr-coding scheme is
discussed in scction 5.4, page 59.

5.1 Conses

car x
Returns the car of x..
Example:
(car '(a b c)) =>a

cdr x
Returns the cdr of x.
Example:
{(cdr "(a b c)) => (b c)

Officially car and cdr are only applicable to conses and locatives. However, as a maiter of
convenicnce, car and cdr of nil return nil.

c...MP x ' ,
All of the compositions of up to four car’s and cdr’s are defined as functions in their

own right. The names of thesc functions begin with "¢" and end with "r", and in
between is a sequence of "a™s and "d'’s corresponding to the composition performed by
the function. : ’
Example:

(cddadr x) isthesamecas (cdr (cdr (car (cdr x))))
The error checking for these functions is exactly the same as for car and cdr above.

cons x y '
cons is the primitive function to create a new cons, whose car is x and whose cdr is y.
Examples:
(cons ’a ’'b) => (a . b)
(cons ’a (cons ’'b (cons 'c nil))) => (a b c)
(cons ’a (b c d)) => (a b ¢ d)
ncons x

(ncons Xx) is the same as (cons x nil). The name of the function is from "nil-cons”.
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XCOons x y .
xcons ("exchanged cons”) is like cons cxcept that the order of the arguments is reversed.
Example: :

(xcons 'a 'b) => (b . a)

cons-in-area x y area-number ’
This function creates a cons in a specific area. (Areas are an advanced feature of storage
management, cxplained in chapter 1S; if you aren’t interested in them, you can safely
skip all this stuﬁ’) The first two arguments are the samc as the two arguments to cons,
and the third is the number of the arca in which to create the cons.
Example:
(cons-in-area

)

a 'b my-area) => (a . b)

ncons-in-area x area-number }
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

Xcons-in-area x y area-number
(xcons-in-area x y area-number) = (cons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mostly-constant list structure, or forms constructed by plugging variables into a template.
It is documented in the chapter on macros; see chapter 17, page 191.

car-location cons
car-location rctuins a locative pointer to the ceil containing the car of cons.

Note: there is no cdr-location function: it is difficult because of the cdr-coding scheme (see
section 5.4, page 59). ‘

5.2 Lists

length Ilist
length returns the length of list. The length of a list is the number of clements in it.
Examples:
(length n1'1) => 0
(length ’(a b c d)) =>
(length ’(a (b c) d)) => 3
length could have been defined by:
(defun Tength (x)
(cond {(atom x) 0)

((1+ (Tength (cdr x)))) ))

(defun Tength (x)
(do ((n 0 (1+ n))
(y x (cdr y)))

((atom y) n) ))
except that it is an- error to take length of a non-nil atom.

or by:
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first list

second /ist

third list

fourth [ist

fifth list

sixth list

seventh /ist
These functions take a list as an argument, and return the first, sccond, etc. clement of
the list. first is identical to car, second is identical to cadr, and so on. The reason
thesc names arc provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons. :

restl list

rest2 list

rest3d list

rost4 list
restn returns the rest of the clements of a list, starting with clement n (counting the first
clement as the zeroth). Thus restt is identical to cdr, rest2 is identical to cddr, and so
on. The rcason these names arc provided is that they make more sense when you are
thinking of the argument as a list rather than just as a cons.

nth n list
(nth #n [isr) returns the #'th clement of -/ist, where the zeroth clement is the car of the
list.
Examples:
{nth 1 '(foo bar gack)) => bar
(nth 3 ’"(foo bar gack)) => nil
If n is greater than the length of the list, nil is returned.

Note: this is not .the same as the InterLisp function called nth, which is similar to but
not cxactly the same as the Lisp Machine function nthedr. Also, some pcople have used
macros and functions called nth of their own in their Maclisp programs, which may not
work the same way; be careful.

nth could have been defined by:
(defun nth (n Tist)
(do ((i n (1- 1))
(1 Tist (cdr 1)))
((zerop i) (car 1))))

nthedr n list
(nthedr n list) cdrs list n times, and returns the result.
Examples: ,
(nthcdr 0 "(a b c)) => (a b c)
(nthcdr 2 "(a b c)) => (c)
In other words, it returns the n’th cdr of the list. If n is greater than the length of the
list, nil is returned.

This is similar to TnterLisp’s function nth, except that the InterLisp function is one-based
instead of zero-based; sce the InterLisp manual for details. nthedr could have been
defined by: : '
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Lists
(defun nthcdr (n Tist)
(do ((i 0 (1+ 1))
(list list (cdr 1ist)))
((= i n) Tist)))
Iast list-

last returns the last cons of fist. If list is nil, it rcturns nil. Notc that last is
unfortunately not analogous to first (first returns the first element of a list, but last
doesn’t return the last element of a list); this is a historical artifact.
Example:
(setq x "(a b c d))
(last x) => (d)
(rplacd (last x) '(e f))
x => "(abcdef)
last could have been defined by:
(defun last (x)
(cond ((atom x) x)
((atom (cdr x)) x)
((Tlast (cdr x))) ))

Tist &rest args
list constructs and returns a list of its arguments.
Example: '

(list 3 4 'a (car (b . ¢)) (+ 6 -2)) => (3 4 a b 4)

list could have been defined by:
(defun 1list (&rest args)
(1et ((1ist (make-1ist (length args))))
(do ((1 Tist (cdr 1))
(a args (cdr a)))
((nul1 a) list)
{rplaca 1 (car a)))))

Tist* &rest args S
list* is like list except that the last cons of the constructed list is "dotted". It must be

given at least one argumcnt
Example:

(1ist* 'a 'b 'c 'd) => (a b c . d)
This is like

(cons ’a (cons 'b (cons ’c ’'d)))

More examples:
(1ist* ’a 'b) => (a . b)
(1ist* ’'a) => a :

list-in-area area-number &rest args
list-in-area is exactly the same as list except that it takes an extra argument, an area

number, and creates the list in that area.
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list*-in-area areu-number &rcst args
list*-in-area is exactly the same as list* cxcept that it takes an extra argument, an area
number, and creates the list in that area.

make-1ist length &rest options
This creates and returns a list containing length clements. length should be a fixnum.
options are alternating keywords and values. The keywords may be either of the
following:

:area The value specifies in which area (see chapter.l15, page 177) the list
should be created. It should be cither an arca number (a fixnum), or nil
to mean the default area.

sinitial-value  The clements of the list will all be this value. It defaults to nil.

make-list always creates a cdr-coded list (sce scction 5.4, page 59).
Examples:
(make-Tist 3) => (nil nil nil) .
(make-1list 4 *:initial-value 7) => (7 7 7 7)

When make-list was originally implemented, it took exactly two arguments: the area and
the length. This obsolete form is still supported so that old programs will continue to
work, but the new keyword-argument form is preferred.

circular-1ist &rest args :
circular-list constructs a circular list whose clements are args, repeated inflinitely.
circular-list is the same as list except that the list itsclf is used as the last cdr, instead of
nil. circular-list is especially useful with mapcar, as in the expression
(mapcar (function +) foo (circular-list 5))
which adds each clement of foo to 5.

circular-list could have been defined by:
(defun circular-list (&rest elements)
(setq elements (copylistx elements))
(rplacd (last elements) elements)
elements)

copylist /ist &optional area
Returns a list which is equal to /ist, but not eq. copylist does not copy any elements of
the list: only the conses of the list itself. The returned list is fully cdr-coded (see section
5.4, page 59) to minimize storage. If the list is "dotted”, that is, (cdr (last list)) is a
non-nil atom, this will be true of the returned list also. You may opuonally specify the
arca in which to create the new copy.

copylist®* list &optional area
This is the same as copylist except that the last cons of the resulting list is never cdr-
coded (sec scction 54, page 59). This makes for incrcased efficiency if you nconc
somcthing onto the list later.
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copyalist /ist &optional area
. copyalist is for copying association lists (sce section 5.5, page 61). The list is copied, as
in copylist. In addition, cach clement of /ist which is a cons is replaced in the copy by a
new cons with the same car and cdr. You .may optionally specify the area in which to
create the new copy.

copytree tree
copytree copies all the conses of a tree and makes a new tree with the same fringe.

reverse [ist
reverse creates a new list whose clements are the clements of /ist taken in reverse order.
reverse does not modify its argument, unlike nreverse which is faster but does modify
its argument. '
Example:
(reverse '(a b (c d) e)) => (e (¢ d) b a)
reverse could have been defined by: .
(defun reverse (x)

(do ((1 x (cdr 1)) * ;scan down argument,
(r nil ‘ _ ; putting cach clement
(cons (car 1) r))) :intolist, until

((null 1) r))) ; no more clements.

nreverse [ist

nreverse reverses its argument, which should be a list. The argument is destroyed by
rplacd’s all through the list (cf. reverse). o
Example:

(nreverse "(a b c)) => (c b a)
nreverse could have been defined by:

(defun nreverse (x)

(cond ((null x) nil)
({nreversel x nil))))

(defun nreversel (x y) ; auxiliary function
(cond ((null (cdr x)) (rplacd x y)) '
((nreversel (cdr x) (rplacd x y)))))
; ; this last call depends on order of argument cvaluation.

Currently, nreverse does something inefficient with cdr-coded (see section 5.4, page 59)
lists, because it just uses rplacd in the straightforward way. This may be fixed someday.
In the meantime reverse might bc preferable in some cases.

append &rest lists

~ The arguments to append are lists. The result is a list which is the concatenation of the
arguments. The arguments are not changed (cf. nconc).
Example:

(append '(a b c) '(d e f) nil '(g)) => (ab cde f g)

append makes copics of the conses of all the lists it is given, except for the last one. So
the new list will share the conses of the last argument to append, but all of the other -
conses will be newly created. Only the lists are copied, not the elements of the lists.
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A version of append which only accepts two argumcents could have been defined by:
(defun append2 (x y) . '
(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)) )))

The generalization to any number of arguments could then be made (relying on car of nil
being nil): ‘
(defun append (&rest args)
(if (< (length args) 2) (car args)
(append2 (car.args) ' _
(apply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the real dcfinition
minimizes storage utilization by cdr-coding (sce section 5.4, page 59) the list it produces,
using cdr-next except at the end where a full node is used to link to the last argument,
unless the last argument is nil in which case cdr-nil is used.

&rest lists

nconc takes lists as arguments. It rcturns a list which is the arguments concatcnated
together. The arguments are changed. rather than copied. (cf. append, page 54)

Example:

(setq x "(a b c))
(setq y "(d e f))
(nconc x y) => (a b cdef)

=> (abcdef)
Note that the value of x is now different, since its last cons has been rplacd’d to the
value of y. If the nconc form is evaluated again, it would yield a piece of "circular” list
structure, whose printed representation would be (abcde fdefdef..), repeating
forever.

nconc could have been defined by:

(defun nconc (x y) ; for simplicity, this definition
(cond ((null x) y) ;only works for 2 arguments.
(t (rplacd (last x) y) ;hookyonto x
x))) ;and return the modified x.
nc x y

(nreconc x y) is exactly the same as (nconc (nreverse x) y) cxcept that it is more
efficient. Both x and y should be lists.

nreconc could have been defined by:
(defun nreconc (x y)
(cond ((null x) y)
((nreversel x y)) ))
using the samc nreversel as above.
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butlast lis
This creates and returns a list with the same clements as /ist, excepting the last clement.
Examples:
(butlast '(a b c d)) => (a b c)
(butlast '((a b) (c d))) => ((a b))
(butlast ’(a)) => nil
(butlast nil) => nil
The name is from the phrase "all elements but the last".

nbutlast [ist
This is the destructive version of butlast; it changes the cdr of the sccond-to-last cons of
the list to nil. [If there is no sccond-to-last cons (that is, if the list has fewer than two
clements) it returns nil.
Examples:
(setq foo "(a b ¢ d))
(nbutlast foo) => (a b ¢)
foo => (a b c)
(nbutlast ’(a)) => nil

firstn n list ,
firstn rcturns a list of length #, whose clements are the first # clements of list. If list is

fewer than 7 clements long, the remaining clements of the returned list will be .nil.

Example:
(Firstn 2 '(a b c d)) => (a b)
(firstn 0 "(a b ¢ d)) => nil
(firstn 6 "(a b cd)) => (a b c dnil nil)

nleft n list &optional tail
Returns a "tail” of [ist, i.e. one of the conses that makes up list, or nil. (nleft n list)
returns the last # elements of list. If n is too large, nleft will return /Jist.

(nleft n list tail) takes cdr of list enough times that taking # more cdrs would yield tail,
and returns that. You can sce that when (ai/ is nil this is the same as the two-argument
case. If tail is not eq to any tail of lisz, nleft will return nil.

1diff list sublist
list should be a list, and sublist should be one of the conses that make up /list. Idiff
(mecaning "list difference”) will return a new list, whose clements arc those clements of fist
that appear before sublist.
Examples:
(setg x "(a b c de))
(setq y (cdddr x)) => (d e)
(1diff x y) => (a b c)
but
(1diff "(a b c d) ’(c d)) => (a b ¢ d)
since the sublist was not eq to any part of the list.
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5.3 Alteration of List Structure

The functions rplaca and rplacd arc used to make alterations in alrcady-existing list structure;
that is, to change the cars and cdrs of existing conses.

The structure is not copied but is physically altered; hence caution should be exercised when
using these functions, as strange side-cffects can occur if portions of list structure become shared
unbeknownst to the programmer. The nconc, nreverse, nreconc, and nbutlast functions
already described, and the delq family deseribed later, have the same property.

rplaca x y
(rplaca x y) changes the car of x to y and rcturns (the modified) x. x must be a cons
or a locative. y may be any Lisp object.
Example:
(setq g "(a b c))
(rplaca (cdr g) 'd) => (d c)
Now g => (a d c)

rplacd x y .
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must be a cons
or a locative. y may be any Lisp object.
Example:
(setq x "(a b c))
(rplacd x 'd) => (a . d)
Now x => (a . dj

subst new old tree ‘

(subst new old tree) substitutes new for all occurrences of old in free, and returns the
modified copy of free. The original tree is unchanged, as subst recursively copies all of
iree replacing elements equal to old as it goes.

Example:

’ (subst 'Tempest ’'Hurricane
"(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have bcen defined by:

(defun subst (new old tree)
~(cond ((equal tree old) new) ;ifitem cqual to old, replace.
((atom tree) tree) ;if no substructure, return arg.
((cons (subst new old (car tree)) ;otherwise recurse.
(subst new old (cdr tree))))))
Note that this function is not "destructive™; that is, it docs not change the car or cdr of
any already-cxisting list structure.

"~ Note: certain details of subst may be changed in the future. It may possibly be changed

to use eq rather than equal for the comparison, and possibly may subslitute only in cars,
not in cdrs.- This is still being discussed.
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nsubst new old tree :
nsubst ‘is a destructive version of subst. The list structure of tree is altered by replacing
cach occurrence of o/d with new. nsubst could have been defined as
(defun nsubst (new old tree)

(cond ((eq tree old) new) ; Ifitem eq to old, replace.
((atom tree) tree) ;If no substructure, return arg.
(t - ;Otherwise, recurse.

(rplaca tree (nsubst new old (car tree)))
(rplacd treée {(nsubst new old (cdr tree)))
tree)))

sublis alist tree

sublis makes substitutions for symbols in a trce. The first argument to sublis is an
association list (sce section 5.5, page 61). The sccond argument is the tree in which
substitutions are to bc made. sublis looks at all symbols in the fringe of the tree; if a
symbol appears in the association list occurrences of it arc rcplaced by the object it is
associated with. The argument is not modified; new conses are created where necessary
and only where necessary, so the newly created tree shares as much of its substructure as
possible with the old. For example, if no substitutions are made, the result is just the
old tree.

Example:

(subtis "((x . 100) (z . zprime))
"(plus x (minus g z x p) 4))
=> (plus 100 {minus g zprime 100 p) 4)

sublis could have been defined by:
(defun sublis (alist sexp)
(cond ((atom sexp)
(let ((tem (assq sexp alist)))
(if tem (cdr tem) sexp)))
((let ((car (sublis alist (car sexp)))
(cdr (sublis alist (cdr sexp))))
(if (and (eq (car sexp) car) (eq (cdr sexp) cdr))
sexp
(cons car cdr))))))

nsublis alist tree
nsublis is like sublis but changes the original tree instead of creating new.

nsublis could have been defined by:
(defun nsublis (alist tree)
(cond ((atom tree) :

(Tet ((tem (assq tree alist)))
(if tem (cdr tem) tree)))

(t (rplaca tree (nsublis alist (car tree)))
(rplacd tree (nsublis alist (cdr tree)))
tree)))
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5.4 Cdr-Coding

This section explains the internal data format used to store conses inside the Lisp Machine.

Casual users don’t have to worry about this; you can skip this section if you want. It is only
important to read this scction if you require extra storage efficiency in your program.

The usual and obvious internal representation of conses in any implementation of Lisp is as a
pair of pointers, contiguous in memory. If we call the amount of storage that it takes to store a
Lisp pointer a "word”, then  conses normally occupy two words. One word (say it's the first)
holds the car, and the other word (say it’s the second) holds the cdr. To get the car or cdr of a
list, you just rcference this memory location, and to change the car or cdr, you just storc into
this memory location.

Very often, conses are used to store lists. [f the above representation is used, a list of n
clements requires two times # words of memory: # to hold the pointers to the clements of the
list, and 2 to point to the next cons or to nil. To optimize this particular case of using conses,
the Lisp Machine uses a storage representation called "cdr coding” to store lists. The basic goal is
to allow a list of n clements to be stored in only # locations, while allowing conses that are not
parts of lists to be stored in the usual way.

The way it works is that there is an cxtra two-bit field in cvery word of memory, called the
"cdr-code” field. There arc three meaningful values that this ficld can have, which are called cdr-
normal, cdr-next, and cdr-nil.  The' regular, non-compact way to store a cons is by two
contiguous words, the first of which holds the car and the second of which holds the cdr. In this
case, the cdi code of the first word is cdr-normal. (The cdr code of the seccond word doesn’t

matter; as we will sce, it is never looked at.)) The cons is represented by a pointer to the first of

the two words. When a list of # clements. is stored in the most compact way, pointers to the »
elements occupy # contiguous memory locations. The cdr codes of all these locations are cdr-next,
except the last location whose cdr code is cdr-nil. The list is represented as a pointer to the first
of the n words. '

Now, how are the basic operations on conses dcfined to work based on this data structure?
Finding the car is casy: you just read the contents of the location addressed by the pointer.
Finding the cdr is morc complex. First you must read the contents of the location addressed by
the pointer, and inspect the cdr-code you find there. If the code is cdr-normal, then you add
onc to the pointer, read the location it addresses, and return the contents of that location; that is,
you read the sccond of the two words. If the code is cdr-next, you add one to the pointer, and
simply return that pointer without doing any morc reading; that is, you rcturn a pointer to the
next word in the n-word block. If the code is cdr-nil, you simply return nil.

If you examinc these rules, you will find that they work fine even if you mix the two kinds
of storage representation within the same list. There’s no problem with doing that.

How about changing the structure? Like car, rplaca is very easy; you just store into the
location addressed by the pointer. To do an rplacd you must read the location addressed by the
pointer and cxamine the cdr code. If the code is cdr-normal, you just store into the location one
greater than that addressed by the pointer; that is, you storc into the seccond word of the two
words. But if the cdr-code is cdr-next or cdrnil, therc is a problem: there is no memory cell
that is storing the cdr of the cons. That is the cell that has been optimized out; it just doesn’t
exist.
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This problem is dealt with by the usc of "invisible pointers”. An invisible pointer is a special
kind of pointer, rccognized by its data type (lisp Machine pointers include a data type field as
well as an address ficld). The way they work is that when the Lisp Machine reads a word from
memory, if that word is an invisible pointer then it proceeds to read the word pointed to by the
invisible pointer and usc that word instcad of the invisible pointer itsclf. Similarly, when it writes
to a location, it first reads the location, and if it contains an invisible pointer then it writes to the
location addressed by the invisible pointer instcad. (This is a somewhat simplified explanation;
actually there are several kinds .of invisible pointer that are interpreted in different ways at
different times, used for things other than the cdr coding scheme.)

Here’s how to do an rplacd when the cdr code is cdr-next or cdr-nil. Call the location
addressed by the first argument to rplacd /. First, you allocate two contiguous words (in the
same arca that / points to). Then you store the old contents of / (the car of the cons) and the
sccond argument to rplacd (the new cdr of the cons) into these two words. You sct the cdr-code
of the first of the two words to cdr-normal. ‘Then you write an invisible pointer, pointing at the
first of the two words, into location /. (It doesn’t matter what the cdr-code of this word is, since
the invisible pointer data type is checked first, as we will see.)

Now, whenever any operation is done to the cons (car, cdr, rplaca, or rplacd), the initial
reading of the word pointed to by the Lisp pointer that represents the cons will find an invisible
pointer in the addressed cell. When the invisible pointer is scen, the address it contains is used
in place of the original address. So the newly-allocated two-word cons will be used for any
operation done on the original object.

Why is any of this important to users? In fact, it is all invisible to you; everything works the
same way whether or not compact representation is used, from the point of view of the scmantics
of the language. 'That is, the only difference that any of this makes is a difference in efficiency.
The compact representation is more efficient in most cases. However, if the conses are going to
get rplacd’ed, then invisible pointers will be created, extra memory will be allocated, and the
compact representation will be seen to degrade storage cfliciency rather than improve it. Also,
accesses that go through invisible pointers are somewhat slower,. since more memory references are
needed. So if you care a lot about storage efficiency, you should be careful about which lists get
stored in which represcntations.

You should try to use the normal representation for those data structures that will be subject
to rplacding operations, including nconc and nreverse, and the compact representation for other
structures. The functions cons, xcons, ncons, and their area variants make conses in the
normal representation. The functions list, list*, list-in-area, make-list, and append use the
compact representation. The other list-creating functions, including read, currently make normal
lists, although this might get changed. Somc functions, such as sort, take special care to operate
cfficiently on compact lists (sort effectively treats them as arrays). nreverse is rather slow on
compact lists, currently, since it simple-mindedly uses rplacd, but this will be changed.

(copylist x) is a suitable way to copy a list, converting it into compact form (see page 53).
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5.5 Tables

Lisp Machine Lisp includes functions which simplify the maintenance of tabular data
structures of scveral varietics. The simplest is a plain list of items, which models (approximately)
the concept of a ser. There are functions to add (cons), remove (delete, delq, del, del-if,
del-if-not, remove, remq, rem, rem-if, rem-if-not), and scarch for (member, memq, mem)
items in a list. Set union, intersection, and difference functions can be easily written using these.

Association lists are very commonly used. An association list is a list of conses. The car of
cach cons is a "key" and the cdr is a "datum”, or a list of associated data. The functions assoc,
assq, ass, memass, and rassoc may be uscd to retricve the data, given the key. For cxample,

((tweety . bird) (sylvester . cat)) ,
is an association list with two clements. Given a symbol representing the name of an animal, it
can retricve what kind of animal this is.

Structured records can be stored as association lists or as stercotyped cons-structures where
cach element of the structure has a certain car-cdr path associated with it. However, these are
better implemented using structure macros (sce chapter 19, page 226).

Simple list-structure is very convenient, but may not be cfficient enough for large data bases
because it takes a long time to scarch a long list. Lisp Machine Lisp includes hash table facilities
for more cfficient but more complex tables (sce section 5.9, page 69), and a hashing function
{sxhash) to aid usecrs in constructing their own facilities.

5.6 Lists as Tables

memq ilem list

(memq item list) returns nil if item is not onc of the elements of list. Otherwise, it
returns the sublist of list beginning with the first occurrence of itemn; that is, it returns
the first cons of the list whose car is irem. The comparison is made by eq. Because
memgq rcturns nil if it doesn’t find anything, and somecthing non-nil if it finds something,
it is often used as a predicate.
Examples:

‘(memq ’a *(1 2 3 4)) => nil

(memq 'a '(g (x ay)cadeaf)) =>(adeaf)
Note that the value returned by memq is eq to the portion of the list beginning with a.
Thus rplaca on the result of memq may be used, if you first check to make sure memq
~did not return nil.

Example:
(1et ((sublist (memqg x z))) ; Search for x in the list z.
(if (not (null sublist)) ;Ifitis found,
(rplaca sublist y))) ; Replace it with y,

memgq could have been defined by:
(defun memq (item 1ist)
(cond ((null Tist) nil) :
((eq item (car 1list)) list
(t (memg item (cdr 1list))) ))
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memq is hand-coded in microcode and thercfore especially fast.

member item list
member is like memq, except equal is used for the comparison, instead of eq.

member could have been defined by:
(defun member (item list)
{(cond ((null Tist) nil)
((equal item (car list)) Tist)
(t (member item (cdr list))) ))

mem predicate item list
mem is the same as memq cxcept that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (mem 'eq a
b) is the same as (memqg a b). (mem ’equal a b) is the same as (member a b).

mem is usually used with cquality predicates other than eq and equal, such as =, char-
equal or string-equal. It can also be used with non-commutative predicates. The
predicate is called with ifem as its first argument and the clement of [ist as its sccond
“argument, so

(mem #°< 4 Tist)
finds the first element in /ist for which (K 4 x) is true; that is, it finds the first clement
greater than or cqual to 4. '

find-position-in-1ist item list
find-position-in-list looks down list for an clement which is eq to item, like memq.
However, it returns the numeric index in the list at which it found the first occurence of
item, or nil if it did not find it at all. This function is sort of the complement of nth
(sce page 51); like nth, it is zero-based.
Examples: '

(find-position-in-1list "a ’(a b c)) => 0
(find-position-in-Tlist 'c ’(a b c)) => 2
(find-position-in-Tist 'e ’(a b c)) => nil

find-position-in-1ist-equal item list
find-position-in-list-equal is exactly the same as find-position-in-list, except that the
comparison is done with equal instead of eq.

tailp sublist list
Returns t if sublist is a sublist of list (i.e. one of the conses that makes up /ist).
Otherwisce returns nil. Another way to look at this is that tailp returns t if (nthedr n list)
is sublist, for some value of n. tailp could have been defined by:
(defun tailp (sublist 1list)
(do 1ist list (cdr Tist) (null Tist)
(if (eq sublist 1list)
(return t))))
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delq item list &optional n
(delq item list) rcturns the /list with all occurrences of irem removed. eq is used for the
comparison. The argument /st is-actually modificd (rplacd’ed) when instances of item are
spliced out. delg should be used for value, not for effect. That is, use
' (setq a (delq 'b a))
rather than
(delg ’'b a)
These two are not cquivalent when the first element of the value of a is b. .

(delq item list n) is like (delq item list) except only the first n instances of item are
deleted. n is allowed to be zero. If n is greater than or cqual to the number of
occurrences of item in the list, all occurrences of item in the list will be deleted.
Example: '

(delq 'a '(b a c (ab) dace)) =>(bc (ab)de)

delg could have been defined by:
(defun delq (item list &optional (n 7777777)) ;1777777 as infinity.
(cond ((or (atom 1list) (zerop n)) Tist)
~ ((eq item (car 1list))
(delq item (cdr 1list) (1- n)))
(t (rplacd list (delq item (cdr Tist) n)))))

delete item list &optional n
delete is the same as delq except that equal is used for the comparison instead of eq.

del predicate item list. &optional n
del is the same as delq ecxcept that it takes an cxtra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (del 'eq a
b) is the same as (delq a b). (cf. mem, page 62)

remq item list &optional n
remq is similar to delq, except that the list is not altered; rather, a new list is rcturned.
Examples:
(setg x "(a b cde f))
(remg ’'b x) => (a c d e f)
x => (abcdef)
(remg 'b "(a b cbab)?2)=>(acab)

remove item list &optional n
remove is the same as remq except that equal is used for the comparison instead of eq.

rem predicate item list &optional n
rem is the same as’ remq except that it takes an extra argument which should be a
predicate of two argumecnts, which is used for the comparison instcad of eq. (rem 'eq a
b) is the same as (remq a b). (cf. mem, page 62)
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subset predicate list

rem-if-not predicate list
predicate should be a function of one argument. A new list is made by applying predicate
to all of the elements of /ist and removing the ones for which the predicate returns nil.
One of this function’s names (rem-if-not) mecans "remove if this condition is not true";
i.c. it keeps the clements for which predicate is true. The other name (subset) refers to
the function’s action if /ist is considered to represent a mathematical set.

subset-not predicate list
rem-1if predicate list
~ predicate should be a function of one argument. A new list is made by applying predicate
to all of the clements of /ist and removing the oncs for which the predicate returns non-
nil. Onc of this function’s names (rem-if) means "remove if this condition is true”. The
other name (subset-not) refers to the function’s action if /ist is considered to rcpresent a
mathematical set.

de1-1f predicate list
del-if is just like rem-if except that it modifies /ist rather than creating a new list.

del-if-not predicate list
del-if-not is just like rem-if-not except that it modifies /ist rather than creating a new
list.

evary list predicate &optional step-function
every retiirns t if predicate returns non-nil when applicd to every element of fist, or nil if
predicate returns nil for some clement. If step-function is present, it replaces cdr as the
function used to get to the next clement of the list; cddr is a typical function to use
here.

some /ist predicate &optional step-function
some returns a tail of fist such that the car of the tail is the first clement that the
predicate returns non-nil when applied to, or nil if predicate returns nil for every clement.
If step-function is present, it rcplaces cdr as the function used to get to the next element
“of the list; cddr is a typical function to use here.

5.7 Association Lists
assq item alist
(assq item alist) looks up item in the association list (list of conses) alist. The value is

the first cons whose car is eq to x, or nil if there is none such.
Examples:

(assq 'r *((a . b) (¢ . d) (r . x) (s . y) (r.2z2)))
=> (r . x)
(assq 'fooo ’((foo . bar) (zoo . goo))) => nil

(assq 'b ’((a b c) (b cd) (x.y z))) => (bcd)
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It is okay to rplacd the result of assq as long as it is not nil, if your intention is to
"update” the "table” that was assq’s second argument.

Example: ' :
(setq values ’{(x . 100) (y . 200) (z . 50)))
(assq 'y values) => (y . 200)

(rptacd (assq 'y values) 201)

(assq 'y values) => (y . 201) now

A typical trick is to say (cdr (assq x y)). Since the cdr of nil is guaranteed to be nil,
this yields nil if no pair is found (or if a pair is found whose cdr is nil.)

assq could have been defined by:
(defun assq (item Tist)
(cond ((null 1ist) nil)
((eq item (caar 1ist)) (car 1list))
((assq item (cdr 1list))) ))

assoc item alist o
assoc is like assqg cxcept that the comparison uses equal instcad of eq.
Example: ' )
(assoc "(a b) "((x . y) ({(ab) . 7) ((c . d) .e)))
=> ((a b) . 7)
assoc could have been defined by:
(defun assoc (item 1list)
(cond ((null 1list) nil)
((equal item (caar list)) (car list))
((assoc item (cdr Tist))) ))

ass predicate item alist
ass is the same as assq except that it takes an extra argument which should be a

predicate of two arguments, which is used for the comparison instcad of eq. (ass 'eq a .

b) is the samc as (assq a b). (cf. mem, page 62) As with mem, you may use non-
commutative predicates; the first argument to the predicate is item and the second is the
key cf the clement of alist.

memass predicate item alist
memass scarches alist just like ass, but returns the portion of the list beginning with the
pair containing item, rather than the pair itsclf. (car (memass x y z)) = (ass x y z).
(cf. mem, page 62) As with mem, you may use non-commutative predicates; the first
argument to the predicate is item and the sccond is the key of the clement of alist.

rassq item alist
rassq means "reverse assq”. It is like assq, but it tries to find an element of alist whose
cdr (not car) is eq to item. rassq could have been defined by:
(defun rassq (item in-list)
(do 1 in-Tist (cdr 1) (null 1)
(and (eq.item (cdar 1))
(return (car 1)))))
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rassoc item alist :
rassoc is to rassq as assoc is to assq. That is, it finds an element whose cdr is equal
to item.

rass predicate item alist
rass is to rassq as ass is to assqg. That is, it takes a predicate to be used instead of eq.
(cf. mem, page 62) As with mem, you may usc non-commutative predicates; the first
argument to the predicate is item and the second is the cdr of the clement of alist.

sassq item alist fcn
(sassq item alist fen) is like (assq item alist) cxcept that if jrem is not found in alist,
instcad of rcturning nil, sassq calls the function fen with no arguments. sassq could
have been defined by:
(defun sassq (item alist fcn)
(or (assq item alist)
(apply fcn nil)))

sassq and sassoc (see below) are of limited use. These arc primarily. leftovers from Lisp
LS.

sassoc item alist fen
(sassoc item dlist fen) is like (assoc item alist) except that if item is not found in alist,
instcad of rcturning nil, sassoc calls the function fen with no arguments. sassoc could
have been defined by: '
(defun sassoc (item aiist Fcn)
{(or (assoc item alist)
(apply fcn nil)))

pairlis cars cdrs
pairlis ‘takes two lists and makes an association list which associates clements of the first
list with corresponding elements of the second list.
Example: ‘
(pairlis ’(beef clams kitty) ’(roast fried yu-shiang))
=> ((beef . roast) (clams . fried) (kitty . yu-shiang))

5.8 Property Lists

From time immemorial, Lisp has had a kind of tabular data structure called a property list
(plist for short). A property list contains zero or more entrics; cach entry associates from a
keyword symbol (called the indicator) to a Lisp object (called the value or, sometimes, the
property). ‘There are no duplications among the indicators; a property-list can only have one
property at a time with a given name.

This is very similar to an association list. The difference is that a property list is an object
with a unique identity; the operations for adding and removing property-list entrics are side-
cffecting operations which alter the property-list rather than making a new one. An association list
with no entrics would be the empty list (), ic. the symbol nil. There is only onc cmpty list, so
all empty association lists arc the samc object. Each empty property-list is a scparate and distinct
object. :
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The implementation of a property list is a memory cell containing a list with an even number
(possibly zero) of clements. Each pair of clements constitutes a property; the first of the pair is
the indicator and the sccond is the value. The memory cell is there to give the property list a
unique identity and to provide for side-effecting operations.

The term "property list” is sometimes incorrectly used to refer to the list of entries inside the
property list, rather than the property list itself. This is regrettable and confusing.

How do we deal with "memory cells” in Lisp; ie. what kind of Lisp object is a property list?
Rather than being a distinct primitive data type, a property list can exist in one of three forms:

1. A property list can be a cons whose cdr is the list of entrics and whose car is not used
and available to the user to store something.

2. The system -associates a property list with every symbol (sce scction 6.3, page 80). A
symbol can be used where a property list is cxpected; the property-list primitives will
automatically ﬁnd the symbol’s plOpCl[y list and use it.

3. A property list can be a memory cell in the middle of some data structure, such as a list,
an array, an instance, or a defstruct. An arbitrary memory cell of this kind is named by a
locative (see chapter 13, page 156). Such locatives are typically created with the locf special form
(see page 202). .

Property lists of the first kind are called "disembodied” property lists because they are not
associated with a symbol or cther data structure. - The way to creaie a discmbodicd propeity list is

~ (ncons nil), or (ncons duta) to store data in the car of the property list.

Here is an example of the list of entrics inside the property list of a symbol named b1 which
is being used by a program which deals with blocks:
(color blue on b6 associated-with (b2 b3 b4))

There arc threc properties, and so the list has six clements. The first property’s indicator is
the symbol color, and its value is the symbol blue. One says that "the value of b1’s color
property is blue”, or, informally, that "b1’s color property is blue." The program is probably
representing the information that the block represented by b1 is paintcd blue. Similarly, it is
probably representing in the rest of the property list that block b1 is on top of block b6, and
that b1 is associated with blocks b2, b3, and b4.

get plist indicator
get looks up plist’s indicator property. If it finds such a property, it rcturns the value;
otherwise, it returns nil. [If plist is a symbol, the symbol’s associated property list is used.
For example, if the property list of foo is (baz 3), then
(get 'foo 'baz) => 3
(get 'foo 'zoo) => nil

get1 plist indicator-list » ‘
getl is like get, cxcept that the sccond argument is a list of indicators. getl searches
down plist for any of the indicators in indicator-list, until it finds a property whose
indicator is onc of the clements of indicator-list. If plist is a symbol, the symbol’s
associated property list is used.

DSK:LMMAN;FD.CON 130 : . 16-MAR-81




Property Lists: 68 Lisp Machinc Manual

getl returns the portion of the list inside plist beginning with the first such property which
it found. So the car of the returned list is an indicator, and the cadr is the property
value. - If none of the indicators on indicator-list are on the property list, getl returns nil.
For example, if the property list of foo were

(bar (1 2 3) baz (3 2 1) color blue height six-two)
then

(get1 'foo ’(baz height))

=> (baz (3 2 1) color blue height six-two)

- When more than one of the indicators in indicator-list is present in plist, which one getl
returns depends on the order of the properties. This is the only thing that depends on
that order. The order maintained by putprop and defprop is not defined (their behavior
with respect to order is not guarantced and may be changed without notice).

putprop plist x indicator
This gives plist an indicator-property of x. After this is done, (get plist indicator) will
return x. If plist is a symbol, the symbol’s associated property list is used.
Example: _
(putprop ’Nixon ’'not ’crook)

defprop Special Form
defprop is a form of putprop with "unevaluated arguments”, which is somctimes more
convenient for typing. Normally it doesn’t make sense to use a property list rather than a
symbol as the plist argument. '
Example:
(defprop foo bar next-to)
is the same as
(putprop ’'foo ’'bar ’'next-to)

remprop plist indicator
* This removes plist’s indicator property, by splicing it out of the property list. It returns
that portion of the list inside pf/ist of which the former indicator-property was the car.
car of what remprop returns is what get would have returned with the same arguments.
If plist is a symbol, the symbol’s associated property list is used. For example, if the
property list of foo was
(color blue height six-three near-to bar)
then
(remprop 'foo ’'height) => (six-three near-to bar)
and foo’s property list would be
(color blue near-to bar)
If plist has no indicator-property, then remprop has no side-effect and returns nil.
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5.9 Hash Tables

A hash table is a Lisp object that works something like a. property list. Each hash table has a
sct of entries, each of which associates a particular key with a particular value. The basic
functions that deal with hash tables can create entries, delete entries, and find the value that is
associated with a given key. Finding the value is very fast cven if therc are many entrics,
because hashing is used; this is an important advantage of hash tables over property lists.
Hashing is cxplained in section 5.9.4, page 73.

A given hash table can only associate one value with a given key; if you try to add a second
value it will replace the first.

Hash tables come in two kinds, the difference being whether the keys arc compared using eq

or using equal. In other words, there arce hash tables which hash on Lisp objects (using eq) and -

there arc hash tables which hash on trees (using equal). ‘The following discussion refers to the eq
kind of hash table; the other kind is described later, and works analogously.

Hash tables of the first kind arc crcated with the function make-hash-table, which takes
various options. New cntrics are added to hash tables with the puthash function. To look up a
key and find the associated value, the gethash function is used. To remove an entry, usc
remhash. Here is a simple example.

(setq a (make—hésh-tab]e))
{puthash ’color brown a)
(puthash ’name ’fred a)
(gethash ’'color a) => brown
(gethash ’name a) => fred

In this example, the symbols color and name are being used as keys, and the symbols
brown and fred are being used as the associated values. The hash table has two items in it, one
of which associates from color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Likewise values can be any
Lisp object. The Lisp function eq is used to compare keys, rather than equal. This means that
keys arc really objects, but it means that it is not reasonable to usc numbers other than fixnums
as keys.

When a hash table is first created, it has a size, which is the maximum number of entries it
can hold. Usually the actual capacity of the table is somewhat less, since the hashing is not
perfectly collision-frce.  With the maximum possible bad luck, the capacity could be very much
less, but this rarcly happens. If so many entries are added that the capacity is excceded, the hash
table will automatically grow, and the cntrics will be rehashed (new hash values will be
recomputed, and cverything will be rearranged so that the fast hash lookup still works). This is
transparent to the caller; it all happens automatically.
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The describe function (sec page 448) prints a varicty of uscful information when applied to a
hash table.

This hash table facility is similar to the hasharray facility of Interlisp, and some of the
function names arc the same. However, it is not compatible. The exact details and the order of
arguments are designed to be consistent with the rest of the Lisp Machine rather than with
Interlisp. For instance, the order of arguments to maphash is different, we do not have the
Interlisp "system hash table”, and we do not have the Interlisp restriction that keys and values
may not be nil. Note, however, that the order of arguments to gethash, puthash, and remhash
is not consistent with the Lisp machine’s get, putprop, and remprop, ecither. This is an
unfortunate result of the haphazard historical development of Lisp.

If the calling program is using multiprocessing, it must be carcful to make sure that there are
never two processes both referencing the hash table at the same time. There is no locking built
into hash tables; if you have two processes that both want to reference the same hash table, you
must arrange mutual exclusion yourself by using a lock or some other means. Even two processes
just doing gethash on the same hash table must synchronize themselves, becausc gethash may be
forced by garbage collection to rchash the table. Don’t worry about this if you don’t use
multiprocessing; but if you do use multiprocessing, you will have a lot of trouble if you don’t
understand this. . '

Hash -tables are implcmcﬁted with a special kind of array. arrayp of a hash table will return
t. However, it is illegal to use normal array operations on a hash table, and in general they will
not work. [lash tables should be manipulated only with the functions described below.

5.9.1 Hashing on Eq

This scction documents the functions for eq hash tables, which use objects as keys and
associate other objects with them.

make-hash-table &rest options
This creates a new hash table. Valid option keywords are:

'size Sets the initial size of the hash table, in entries, as a fixnum. The default
is 100 (octal). The actual size is rounded up from the size you specify to
the next size that is "good" for the hashing algorithm. You won’t
neccessarily be able to store this many entries into the table before it
overflows and becomes bigger; but except in the case of extreme bad luck
you will be able to store almost this many.

:area Spccifies the arca in which the hash table should be created. This is just
like the :area option to make-array (sce page 102). Defaults to nil (i.e.
default-cons-area).

:rehash-function
Specifies the function to -be used for rchashing when the table becomes
full. Dcfaults to the internal rchashing function that docs the usual thing.
If you want to write your own rchashing function, you will have to
understand all the internals of how hash tables work. These internals are
not documented here, as the best way to learn them is to read the source
code.
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rehash-size  Specifies how much to increase the size of the hash table when it becomes
full. This can be a fixnum which is the number of cntries to add, or it
can be a flonum which is the ratio of the new size to the old size. The
default is 1.3, which causes the table to be made 30% bigger cach time it
has to grow.

gethash key hash-table
Find the entry in hash-table whose key is key, and return the associated value. If there is
no such entry, rcturn nil. Returns a second value, which is t if an entry was found or
nil if there is no entry for key in this table.

puthash key value hash-table
Crcate an entry associating key to value; if there is alrcady an entry for key, then replace
the value of-that entry with value. Returns value. ‘The hash table automatically grows if
necessary.

remhash key hash-table
Remove any entry for key in hash-table. Returns t if therc was an entry or nil if there
was not.

maphash function hash-table
For cach cntry in hash-table, call function on two arguments: the key of the entry and
the value of the cntry.

cirhash hash-tuble
Remove all the entries from Aasii- tuble. Returns the hash table itself.

5.9.2 Hashing on Equal

This section documnents the functions for equal hash tables, which use trees as kcys and
associate objects with them. The function to make onc is slightly different from make-hash-
table because the implementations of the two kinds of hash table differ, but analogous operations
arc provided.

make-equal-hash-table &rest options
This creates a new hash table of the equal kind. Valid option keywords are:

'size Sets the initial size of the hash table, in entries, as a fixnum. The default
is 100 (octal). The actual size is rounded up from the size you specify to
the next "good" size. You won’t necessarily be able to store this many
entries into the table before it overflows and becomes bigger; but except
in the casc of cxtreme bad luck you will be able to store almost this
many.

:area Specifies the area in which the hash table should be created. This is just
like the :area option to make-array (sce page 102). Decfaults to nil (i.e.
default-cons-area).

:rehash-threshold
Specifies how full the table can be before it must grow. This is typically
a flonum. The default is 0.8, i.c. 80%. ‘ ’
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:growth-factor
Specifics how much to incrcase the size of the hash table when it becomes
full. This is a flonum which is the ratio of the new size to the old size.
The default is 1.3, which causes the table to be made 30% bigger each
time it has to grow.

gethash-equal key hash-table .
Find the entry in hash-table whose key is equal to key, and rcturn the associated value.
If there is no such entry, return nil. Rcturns a sccond value, which is t if an entry was
found or nil if there is no entry for key in this table.

puthash-equal key value hash-table
Create an entry associating key to value; if there is already an entry for key, then replace
the value of that entry with value. Returns value. If adding an entry to the hash table
exceeds its rchash threshold, it is grown and rchashed so that scarching does not become
too slow.

romhash-equal key hash-table
Remove any entry for key in hash-table. Rcturns t if there was an entry or nil if there
was not. '

maphash-equal function hash-table
For cach cntry in hash-table, call function on two arguments: the key of the entry and
the valuc of the entry.

clrhash-equal lash-table
Remove all the entries from hash-table. Returns the hash table itself.

5.9.3 Hash Tables and the Garbage Collector

The eq type hash tables actually hash on the address of the representation of the object.
When the copying garbage collector changes the addresses of object, it lets the hash facility know
so that gethash will rchash the table based on the new object addresses.

There will eventually be an option to make-hash-table which tells it to make a "non-GC-
protecting™ hash table. This is a special kind of hash table with the property that if one of its
keys becomes "garbage"”, i.c. is an object not known about by anything other than the hash table,
then the entry for that key will be silently removed from the table. When these exist they will be
documented in this section.
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5.9.4 Ilash Primitive

Hashing is a technique used in algorithms to provide fast retrieval of data in large tables. ‘A
function, known as a "hash function”, is crcated, which takes an object that might be used as a
key, and produces a number associated with that key. This number, or some function of it, can
be used to spccify where in a table to look for the datum associated with the key. It is always
possible for two different objects to "hash to the same value”; that is, for the hash function to
return the same number for two distinct objects. Good hash functions are designed to minimize
this by cvenly distributing their results over the range of possible numbers. Howecver, hash table
algorithms must still deal with this problem by providing a sccondary search, sometimes known as
a rehash. For morc information, consult a textbook on computer algorithins,

sxhash (ree
sxhash computes a hash code of a trce, and returns it as a fixnum, which may be
positive or ncgative. A property of sxhash is that (equal x y) implics (= (sxhash x)
(sxhash y)). The number returned by sxhash is some possibly large number in the
range allowed by fixnums. :

Here is an cxample of how to usce sxhash in maintaining hash tables of trees:
(defun knownp (x &aux i bkt) ;look up x in the table

(setq i1 (abs (remainder (sxhash x) 176)))
;The remainder should be reasonably randomized.

(setq bkt (aref table 1))
;bkt is thus a Tist of all those expressions that
;hash into the same number as does x.

(memq x bkt))

To write an "intern” for trees, one could
(defun sintern (x &aux bkt i tem)
(setq i (abs (remainder (sxhash x) 2n-1)))
;2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.
(setq bkt (aref table i))
(cond ((setq tem (memg x bkt))
(car tem))
(t (aset (cons x bkt) table i)

x)))

sxhash provides what is called "hashing on equal”; that is, two objects that are equal are
considered to -be "the same” by sxhash. Therefore, sxhash is useful for retrieving data when
two keys that are not the same object but are equal are considered the same. If you consider
two such keys to be different, then you need "hashing on eq"”, where two different objects are
always considered different. In some Lisp implementations, there is an easy way to creatc a hash
function that hashes on eq, namely, by rcturning the virtual address of the storage associated
with the object. But in other implementations, of which Lisp Machine Lisp is one, this doesn’t
work, becausc the address associated with an object can be changed by the relocating garbage
collector. The hash tables created by make-hash-table deal with this problem by using the
appropriate subprimitives so that they interface correctly with the garbage collector. If you nced a
hash table that hashes on eq, it is already provided; if you need an eq hash function for some
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other reason, you must build it yourself, cither using the provided eq hash table facility or
carcfully using subprimitives.

5.10 Sorting

Several functions are provided for sorting arrays and lists. These functions use algorithms
which always tcrminate no matter what sorting predicate is used, provided only that the predicate
always terminates. The main sorting functions arc not stable; that is, cqual items may not stay in
their original order. If you want a stable sort, use the stable versions. But if you don't care
about stability, don’t use them since stable algorithms are significantly slower.

After sorting, the argument (be it list or array) has been rcarranged intcrnally so as to be
completely ordered. In the case of an array argument, this is accomplished by permuting the
clements of the array, while in the list case, the list is rcordered by rplacd’s in the samec manner
as nreverse. ‘Thus if the argument should not be clobbered, the user must sort a copy of the
argument, obtainable by fillarray or copylist, as appropriate. Furthermore, sort of a list is like
delq in that it should not be used for effect; the result is conceptually the same as the argument
but in fact is a different Lisp object.

Should the comparison predicate cause an error, such as a wrong type argument error, the
state of the list or array being sorted is undefined. However, if the crror is corrected the sort
will, of course, proceed correctly. '

The sorting package is smait about compact lists; it sorts compact sublists as if thcy were
arrays. Sce scction 5.4, page 59 for an ecxplanation of compact lists,  and A. I. Memo 587 by
Guy L. Stecle Jr. for an explanation of the sorting algorithm.

sort table predicate
The first argument to sort is an array or a list. The second is a predicate, which must be
applicable to all the objects in the array or list. The predicate should take two arguments,
and return non-nil if and only if the first argument is strictly less than the second (in
some appropriate sense).

The sort function proceeds to sort the contents of the array or list under the ordering
imposed by the predicate, and returns the array or list modified into sorted order. Note
that since sorting requires many comparisons, and thus many calls to the predicate,
sorting will be much faster if the predicate is a compiled function rather than interpreted.
Example:
(defun mostcar (x)
(cond ((symbolp x) x) :
((mostcar (car x)))))

(sort 'fooarray
(function (lambda (x y)
(alphalessp (mostcar x) (mostcar y)))))
If fooarray contained these items before the sort:
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(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Ro1ling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
then after the sort fooarray would contain:
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
(Carpenters (Close to you))
((Rol11ling Stones) (Brown sugar))
(Tokens (The lion sleeps tonight))

When sort is given a list, it may change the order of the conses of the list (using

rplacd), and so it cannot be used merely for side-cffect; only the reiurned value of sort
will be the sorted list. This will mess up the original list; if you need both the original
list and the sorted list, you must copy the original and sort the copy (sec copylist, page
53). -

Sorting an array just moves the clements of the array into different places, and so sorting
an array for side-cffect only is all right.

sortcar x predicate
sortcar is the samc as sort cxcept that the predicate is applied to the cars of the clements
of x, instead of dircctly to the clements of x. Example:
(sortcar '((3 . dog) (1 . cat) (2 . bird)) #'<)
=>  ((1 . cat) (2 . bird) (3 . dog))

Remember that sortcar, when given a list, may change the order of the conses of the list
(using rplacd), and so it cannot be used merely for side-effect; only the returned value of
sortcar will be the sorted list.

stable-sort x predicate
stable-sort is like sort, but if two eclements of x arc equal, ie. predicate returns nil
.when applied to them in either order, then those two clements will remain in their
original order.

stable-sortcar x predicate
stable-sortcar is like sortcar, but if two clements of x are equal, i.e. predicate returns
nil when applied to their cars in cither order, then those two clements will remain in
their original order:.

sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of records of group-size
clements each. These records are considered as units, and are sorted with respect to one
another. The predicate is applied to the first clement of cach record; so the first elements
act as the keys on which the rccords are sorted.
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sort- grouped array-group-key array group-size predicate
This is like sort-grouped-array cxcept that the predicate is applied to four alguments
an array, an index into that array, a sccond array, and an index into the second array.
predicate should consider each index as the subscript of the first element of a record. in
the corresponding array, and compare the two records. This is more general than sort-
grouped-array since the function can get at all of the elements of the relevant records,
instead of only the first clement,

5.11 Resources

Storage allocation is handled differently by different computer systems. In many languagces,
the programmer must spend a lot of time thinking about when variables and storage units are
allocated and deallocated. In Lisp, frecing of allocated storage is normally donc automatically by
the Lisp system:; when an object is no longer accessible to the lisp cnvironment, it is garbage
collected. This relieves the programmer of a great burden, and makes writing programs much
easier. : ‘ :

However, automatic freeing of storage incurs an cxpense: morc computer  resources must be
devoted to the garbage collector. If a program is designed to allocate temporary storage, which is
then left as garbage. more of the computer must be devoted to the collection of garbage; this
expense can be high. In some cases, the programmer may decide that it is worth putting up with
the inconvenicnce of having to free storage under program control, rather than letting the system
do it automatically, in order to prevent a great deal of overhead from the garbage collector.

[t usually is not worth worrying about frecing of storage when the units of storage are very
small things such as conses or small arrays. Numbers are not a problem, cither; fixnums and
small flonums do not occupy storage, and the system has a special way of garbage-collecting the
other kinds of numbers with low overhead. But when a program allocates and then gives up very
large objects at a high rate (or large objects at a very high rate), it can be very worthwhile to
keep track of that one kind of object manually, Within the Lisp Machine system, there are
several programs that are in this position. The Chaosnet software allocates and frees "packets”,
which are moderately large, at a very high rate. The window system allocates and frees certain
kinds of windows, which are very large, moderately often. Both of these programs manage their
objects manually, keeping track of when they are no longer used.

When we say that a program "manually frecs" storage, it does not really mcan that the
storage is freed in the same scnse that the garbage collector frees storage. Instead, a list of
unused objects is kept. When a new object is desired, the program first looks on the list to see if
there is one around already, and if there is it uses it. Only if the list is cmpty does it actually
allocate a new one. When the program is finished with the object, it returns it to this list.

The functions and special forms in this section perform the above function. The set of objects
forming cach such list is called a "resource”; for cxample, there might be a Chaosnct packet
resource.  defresource defines a new resource; allocate-resource allocates onc of the objects;
deallocate-resource frees one of the objects (putting it back on the list); and with-resource
temporarily allocates an object and then frees it.
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defresource Special Form
The defresource special form is uscd to define a new resource. 1hc form looks like this:
(defresource name
forml
form2

name should be a symbol; it is the name of the resource. The value cell and the
function cell of this symbol are both used; therefore, you may not have a variable or a
function by the same name as any resource. The forms are the body of the defresource
form, and should be the body of a function which creates and returns a new object of
the desired type. 'T'he body gets run when a caller tries to allocate an object and there
aren’t any on the list.

When the defresource form is cvaluated, the body is run once, creating a single object
to put on the list. If you specify (name t) instead of name in the defresource form, this
initial creation will be suppressed and the list will be initially empty.

allocate-resource name
Allocate an object from the rcsource specified by name. [f there is an object on the list,
remove it from the list and return it; otherwise, create a new one (using the body of the
defresource) and return it.

Note that the with-resource special form is usually what you want to use, rather than
allocate-resource itsclf; see below.

deallocate-resource name resource
Free the object resource, rcturning it to the list of the resource specified by name.

with-resource Special Form
The with-resource special form looks like this:
(with-resource (name variable)
Jorml
Sform2

The forms are evaluated sequentially with variable bound to an object allocated from the
resource of the given name. with-resource is often more convenient than calling
allocate-resource and deallocate-resource. Furthcrmore it is careful to free the object
when the body is exited, whether it returns normally or via *throw. This is done by
using unwind-protect; sce page 44.

Here is an example of the use of resources:
(defresource huge-16b-array
(make-array 1000 ’:type ’'art-16b))

(defun do-complex-computation (x y)
(with-resource (huge-16b-array temp-array)
e ;Within the body, the array can be used.
(aset 5 temp-array i) '
.)) ;The array is returned at the end.
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6. Symbols

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object. This object
is called the symbol's binding or value, since it is what you get when you evaluate the symbol.
The binding of symbols to values allows symbols to be used as the implementation of variables in
programs.

The value cell can also be empty, referring to no Lisp object, in which casc the symbol is
said to be wnbound. This is the initial state of a symbol when it is created. An attempt to
¢valuate an unbound symbol causes an crror.

Symbols are often used as special variables. Variables and how they work arc described in
section 3.1, page 13. The symbols nil and t arc always bound to themselves; they may not be
assigned, bound, or otherwise used as variables. Attempting to change the value of nil or t
(usually) causes an error.

set symbol value : ‘
set is the primitive for assignment of symbols. The symbol’s value is changed to value;
value may be any Lisp object. set returns value.
Example:
(set (cond ((eq a b) ’c)
| (t 'd))
'foo)

will cither sct ¢ to foo or set d to foo.

symeval sym
symeval is the basic primitive for retricving a symbol’s value. (symeval sym) returns
sym’s current binding. This is the function called by eval when it is given a symbol to
cvaluate. If the symbol is unbound, then symeval causes an error.

boundp sym
boundp returns t if sym is bound; otherwise, it returns nil.

makunbound sym
makunbound causes sym to become unbound.

Example:
(setq a 1)
a =>1

(makunbound ’a)
a => causcs an error.
makunbound returns its argument.
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value-cell-location sym
value-cell-location returns a locative pointer to sym’s value cell. See the section on
locatives (chapter 13, page 156). It is preferable to write
(locf (symeval sym))
instead of calling this function explicitly.

This is actually the internal value cell; there can also be an external value ccll. For
details, see the section on closures (chapter 11, page 144).

Note: the function value-cell-location works on symbols that get converted to local
variables (see scction 3.1, page 13); thc compiler knows about it spccially when its
argument is a quoted symbol which is the name of a local variable. It returns a pointer
to the cell that holds the value of the local variable.

6.2 The Function Cell

Every symbol also has associated with it a function cell. The function cell is similar to the
value cell; it refers to a Lisp object. When a function is referred to by name, that is, when a
symbol is applied or appears as the car of a form to be evaluated, that symbol’s function cell is
used to find its definition, the functional object which is to be applied. For cxample, when
cvaluating (+ 5 6), the cvaluator looks in +’s function cell to find the definition of +, in this
case a [I'F containing a compiled program, to apply to S and 6.

Maclisp does not have function cells; instead, it looks for special propertics on the property
list. This is onc of the major incompatibilities between the two dialects.

Like the value cell, a function cell can be empty, and it can be bound or assigned.
(However, to bind a function cell you must use the bind subprimitive; sce page 168.) The
following functions arc analogous to the valuc-ccll-related functions in the previous section.

fsymeval sym .
fsymeval returns sym’s definition, the contents of its function cell. If the function cell is
cmpty, fsymeval causes an error.

fset sym definition :
fset stores definition, which may be any Lisp object, into sym’s function cell. It returns
definition.

fboundp sym
fooundp returns nil if sym’s function cell is empty, i.e. sym is undefined. Otherwise it
returns t.

fmakunbound sym

fmakunbound causes syim to be undefined, ie. its function cell to be cmpty. It returns
sym.
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function-cell-location sym
function-cell-location rcturns a locative pointer to sym’s function cell. See the scction
on locatives (chapter 13, page 156). It is preferable to write
(locf (fsymeval sym))
rather than calling this function explicitly.

Since functions arc the basic building block of Lisp programs, the system provides a varlety
of facilities for dealing with functions. Refer to chapter 10 for details.

6.3 The Property List

Every symbol has an associated property list. See section 5.8, page 66 for documentation of
property lists. When a symbol is created, its property list is initially empty. :

The Lisp language itself docs not use a symbol’s property list for anything. (This was not
true in older Lisp implementations, where the print-name, valuc-cell, and function-cell of a
symbol were kept on its property list.) However, various system programs use the property list to
associate information with the symbol. For instance, the cditor uses the property list of a symbol
which is the name of a function to remember where it has the source code for that function, and
the compiler uses the property list of a symbol which is the name of a special form to remember
how to compile that special form.

Because of the cxistence of print-name, value, function, and package cells, none of the
Maclisp system property names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in former
times value and pname) exist in Lisp Machine Lisp.

p"list sym
This returns the list which represents the property list of sym. Note that this is not the
property list itself; you cannot do get on it. ‘

setplist sym list
This sets the list which represents the property list of sym to lisz. setplist is to be used
with caution (or not at all), since property lists sometimes contain internal system
properties, which are used by many useful system functions. Also it is inadvisable to have
the property lists of two different symbols be eq, since the shared list structure will cause
unexpected effects on one symbol if putprop or remprop is done to the other.

property-cell-location sym
This returns a locative pointer to the location of sym’s property-list cell. This locative
pointer is equally valid as sym itself, as a handle on sym’s property list.
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6.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short. This string
is used as the external representation of the symbol: if the string is typed in to read, it is read
as a reference to that symbol (if it is interned), and if the symbol is printed, print types out the
print-name. For more information, sce the scctions on the reader (see section 21.2.2, page 283)
and printer (see section 21.2.1, page 280). :

get-pname sym
This returns the print-name of the symbol symn.
Example:
(get-pname 'xyz) => "xyz"

samepnamep syml sym?2

This predicate returns t if the two symbols sym/ and sym2 have equal print-names; that
is, if their printed representation is the same. Upper and lower case letters are normally
considered the same. If either or both of the arguments is a string instcad of a symbol,
then that string is used in place of the print-name. samepnamep. is uscful for
determining if two symbols would be the same except that they are in different packages
(sce chapter 23, page 3495).

[xamples: '

' (samepnamep ’'xyz (maknam ’'(x y z)) => t

(samepnamep 'xyz (maknam ’'(w x y)) => nil
(samepnamep ’xyz "xyz") => t

This is the same function as string-equal (see page 117).

6.5 The Package Cell

Every symbol has a package cell which is used, for interned symbols, to point to the package
which the symbol belongs to. For an uninterned symbol, the package cecll contains. nil. For
information about packages in general, scc the chapter on packages, chapter 23, page 345. For
information about package cells, see page 352.

6.6 Creating Symbols

The functions in this section are primitives for creating symbols. However, before discussing
them, it is important to point out that most symbols are created by a higher-level mechanism,
namely the rcader and the intern function. Nearly all symbols in Lisp are created by virtue of
the reader’s having seen a sequence of input characters that looked like the printed representation
of a symbol. When the reader sces such a p.r., it calls intern (sce page 351), which looks up the
sequence of characters in a big table and sces whether any symbol with this print-name alrcady
cxists. If it does, read uses the already-existing symbol. If it does not, then intern creates a new
symbol and puts it into the table, and read uses that new symbol.

DSK:LMMAN:FD.SYM 67 - 16-MAR-81




Creating Symbols 82 Lisp Machine Manual

A symbol that has been put into such a table is called an interned symbol. Interned symbols
are normally created automatically; the first time someone (such as the reader) asks for a symbol
with a given print-name that symbol is automatically created.

These tables are called packages. In the Lisp machine, interned symbols are the province of
the package system. Although interned symbols are the most commonly used, they will not be
discussed further here. For more information, turn to the chapter on packages (chapter 23, page
345).

An uninterned symbol is a symbol used simply as a data object, with no special cataloging.
An uninterned symbol prints the same as an interned symbol with the same print-name, but
cannot be read back in.

Thc following functions can be used to create uninterncd symbols explicitly.

make-symbol pname &optional permanent-p

This crcates a new uninterned symbol, whose prmt— ame is the string pname. The value
and function bindings will be unbound and the property list will be empty. If permanent-
p is specified, it is assumed that the symbol is going to be interned and probably kept
around forever; in this case it and its pname will be put in the proper areas. I[f .
permanent-p is nil (the default), the symbol goes in the default arca and the pname is not
copied. permanent-p is mostly for the usc of intern itself.
Examples:

(setq a (make-symbol "foo")) => foo

(symeval a) => ERROR! »
Note that the symbol is not interned; it is simply created and returned.

copysymbol sym copy-props
This returns a new uninterned symbol with the same print-name as sym. If copy-props is
non-nil, then the value and function-definition of the new symbol will be the same as
those of sym, and the property list of the new symbol will be a copy of sym’s. If copy-
props is nil, then the ncw symbol will be unbound and undefined, and its property list
will be empty. :

gensym &optional x
gensym invents a print-name, and creates a new symbol with that print-name. It returns
the new, uninterned symbol.

The invented print-name is a character prefix (the value of si:*gensym-prefix) followed
by the decimal representation of a number (the value of si:*gensym-counter), e.g.
"g0001". The number is increased by one every time gensym is called.

If the argument x is present and is a fixnum, then sii*gensym-counter is set to x. If x
is a string or a symbol, then si:*gensym-prefix is sct to the first character of the string
or of the symbol’s print-name. After handling the argument, gensym creates a symbol as
it would with no argument.
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Examples:
if (gensym) => g0007
then ‘(gensym 'foo) => f0008

(gensym 32.) => f0032
(gensym) => f0033

Note that the number is in decimal and always has four digits, and the prefix is always
one character.

gensym is usually used to crecate a symbol which should not normally be scen by the
user, and whose print-name is unimportant, cxcept to allow casy distinction by eye
between two such symbols. The optional argument is rarely supplicd. The name comes
from "gencrate symbol”, and the symbols produccd by it arc often called "gensyms”.
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7. Numbers

Lisp Machine Lisp includes scveral types of numbers, with different characteristics. Most
numeric functions will accept any type of numbers as arguments and do the right thing. That is
to say, they arc generic. In Maclisp, there are generic numeric functions (like plus) and there
are specific numeric functions (like +) which only operate on a certain type, and are much more
cfficient. In Lisp Machine Lisp, this distinction does not exist; both function names exist for
compatibility but they arce identical. The microprogrammed structure of the machine makes it
possible to have only the generic functions without loss of efficiency.

The types of numbers in [isp Machine Lisp are:

fixnum Fixnums are 24-bit 2's complement binary integers. These are the "preferred,
most efficient” type of number.

bignum Bignums arc arbitrary-precision binary integers.

flonum Flonums are floating-point numbers. They have a mantissa of 32 bits and an

exponent of 11 bits, providing a precision of about 9 digits and a range of about
101300. Stable rounding is ecmployed.

small-flonum  Small flonums are another form of floating-point number; with a mantissa of 18
bits and an cxponent of 7 bits, providing a precision of about S digits and a

range of about 10t19. Stable rounding is cmployed. Small flonums arc useful .

because, like fixnums, and unlike flonums, they don’t requirc any storage.
Computing with small flonums is more eflicient than with regular flonums because
the operations are faster and consing overhead is eliminated,

Gencrally, Lisp objects have a unique identity; cach exists, independent of any other, and
you can use the eq predicate to determine whether two refcrences are to the same object or not.
Numbers arc the exception to this rule; they don’t work this way. The following function, when
compiled, may return nil (its behavior is considered undefined, but as this manual is written it
actually does return nil):

(defun foo ()
(Tet ((x (float 5)))
(eq x (car (cons x nil)))))
This is very strange from the point of view of Lisp’s usual object semantics, but the
implementation works this way,- in order to gain efficiecncy, and on the grounds that identity
testing of numbers is not recally an interesting thing to do. So, the rule is that the result of
applying eq to numbers is undefined, and may return either t or nil at will. If you want to
compare the values of two numbers, use = (sce page 87).

Fixnums and small flonums arc exceptions to this rule; some system code. knows that eq
works on fixnums uscd to represent characters or small intcgers, and uses memq or assq on
them. eq works as well as = as an cquality test for fixnums. Small flonums that arc = tend to
be eq also, but it is unwise to depend on this,

~ The distinction between fixnums and bignums is largely transparent to the user. The user
simply computes with integers, and the system represents some as fixnums and the rest (less
efficiently) as bignums. The system automatically converts back and forth between fixnums and
bignums based solely on the size of the integer. There are a few "low level” functions which
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only work on fixnums; this fact is noted in their documentation. Also when using eq on
numbers the user needs to be aware of the fixnum/bignum distinction.

Integer computations cannot "overflow", except for division by zero, since bignums can be of
arbitrary size. Floating-point computations can get exponent overflow or underflow, if the result is
too large or small to be represented. Exponent overflow always signals an error. Exponent
underflow normally signals an error, and assumcs 0.0 as the answer if the user says to proceed
from the crror. However, if the value of the variable zunderflow is non-nil, the crror is skipped
and computation procceds with 0.0 in place of the result that was too small.

When an arithmetic function of more than onc argument is given arguments of different
numeric types, uniform coercion rules are followed to convert the arguments to a common type,
which is also the type of the result (for functions which return a number). When an intcger
meets a small flonum or a flonum, the result is a small lonum or a flonum (respectively). When
a small flonum mects a regular flonum, the result is a regular flonum.

“Thus if the constants in a numecrical algorithm are written as small flonums (assuming this
provides adequate precision), and if the-input is a small Aonum, the computation will be done in
small-fonum mode and the result will a small flonum, while if the input is.a large flonum the
computations will be done in full precision and the result will be a flonum.

The Lisp machine never automatically converts between flonums and small flonums, in the
way it automatically converts between fixnums and bignums, since this would lead cither to
incfficiency or to unexpected numerical inaccuracies. (When a small Ronum meets a flonum, the
resuit is a flonum, but if you use only one type, all the results will be of the same type too.)
This means that a small-Ronum computation can get an cxponent overflow crror even when the
result could have been represented as a large flonum. ’

Floating-point numbers retain only a certain number of bits of precision; thercfore, the results
of computations are only approximate. Large flonums have 31 bits and small flonums have 17
bits, not counting the sign. The method of approximation is "stable rounding”. The result of an
arithmetic operation will be the fonum which is closest to the exact value. If the exact result falls
precisely halfway betwcen two flonums, the result will be rounded down if the least-significant bit
is 0, or up if the least-significant bit is 1. This choice is arbitrary but insures that no systematic
bias is introduced.

Integer addition, subtraction, and multiplication always produce an exact result. Integer
division, on the other hand, returns an integer rather than the exact rational-number result. The
quotient is truncated towards zero rather than rounded. The exact rule is that if A is divided by
B, yielding a quoticnt of C and a remainder of D, then A = B * C + D exactly. D is either
zero or the samc sign as A. Thus the absolute value of C is less than or equal to the true
quotient of the absolute valucs of A4 and B. This is compatible with Maclisp and most computer
hardware.

Unlike Maclisp, lisp Machine Lisp does not have number declarations in the compiler. Note
that because fixnums and small flonums require no associated storage they are as cfficient as
declared numbers in Maclisp. Bignums and (large) flonums arc less efficient, however bignum and
flonum intermediate results are garbage collected in a special way that avoids the overhead of the
full garbage collector. '
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The different types of numbers can be distinguished by their printed representations. A
lecading or embedded (but nor trailing) decimal point, and/or an cxponent separated by "c",
indicates a flonum. If a number has an exponent separated by "s”, it is a small Aonum. Small
flonums require a special indicator so that naive users will not accidentally compute with the lesser
precision. - Fixnums and bignums have similar printed representations since there is no numerical
value that has a choice of whether to be a fixnum or a bignum; an integer is a bignum if and
only if its magnitude too big for a fixnum. See the cxamples on page 284, in the description of

what the rcader understands.

7.1 Numeric Predicates

zerop x .
Returns t if x is zero. Otherwise it returns nil. If x is not a number, zerop causes an
error. For flonums, this only returns t for exactly 0.0 or 0.0s0; there is no "fuzz".

plusp x :
Returns t if its argument is a positive number, strictly greater than zero. Otherwise it
returns nil. If x is not a number, plusp causes an crror.

minusp x
Returns t if its argument is a negative number, strictly less than zero. Otherwise it
returns nil.  If x is not a number, minusp causcs an error.

oddp wmmber
: Returns t if number is odd, otherwise nil. [f number is not a fixnum or a bignum, oddp
causes an error.

svenp number
Returns t if number is even, otherwise nil. [f number is not a fixnum or a bignum,
evenp causcs an error.

signp Special Form - :
signp is used to test the sign of a number. It is present only for Maclisp compatibility,
and is not rccommended for use in new programs. (signp fest x) rcturns t if x is a
number which satisfies the test, nil if it is not a number or does not meet the test. fest
is not evaluated, but x is. test can be onc of the following:
I x<0
le x<0
e
n
ge
-, g
Examples:
(signp le 12) => t
(signp n 0) => nil
(signp g 'foo) => nil

I
ViV s

S
OOO

Sec also the data-type predicates fixp, floatp, bigp, small-floatp, and numberp (page 8).
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7.2 Numeric Comparisons

All of these functions require that their arguments be numbers, and signal an crror if given a
non-number. They work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp in which generally only the spelled-out names work for all kinds
of numbers).

Returns t if x and y are numerically equal. An intcger can be = to a flonum.

greaterp x y &rest more-args

> x y &rest more-args
greaterp comparcs its arguments from left to right. If any argument is not greater than
the next, greaterp returns nil. But if the arguments arc monotonically strictly decrcasing,
the result is t.
Examples:

(greaterp 4 3) => ¢t
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2 0) => nil

>= x y &rcst more-args

2 x y &rest more-args
> compares its arguments from left to right. [f any argument is less than the next, >
returns nil.  But if the arguments are monetonically decreasing or equal, the result is t.

lossp x y &rest more-args
< x y &rest mere-args
lessp compares its arguments from left to right. If any argument is not less than the
next, lessp returns nil. But if the arguments arc monotonically strictly increasing, the
result is t. :
Examples:
(lessp 3 4) => t
(lessp 1 1) => nil
(Tessp 01 2 3 4) => ¢t
(lTessp 01 3 2 4) => nil

{= x y &rest more-args

< x y &rest more-args .
< compares its arguments from left to right. If any argument is greater than the next, <
returns nil. But if the arguments are monotonically increasing or cqual, the result is t.

* X y
Returns t if x is not numerically equal to y, and nil otherwise.

max &rest args
max rcturns the largest of its arguments.
Example:
(max 1 3 2) => 3
max requires at least one argument.
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min &rest args
min rcturns the smallest of its arguments.
Example:
(min 1 3 2) => 1
min requires at least onc argument.

7.3 Arithmetic

All of these functions require that their arguments be numbers, and signal an crror if given a
non-number. They. work on all types of numbers, automatically performing -any required
cocrcions (as opposed to Maclisp, in which gencerally only the spelled-out versions work for all
kinds of numbers, and the "$" versions are nceded for flonums).

plus &rest args

+ &rest args

+$ &rest args :
Returns the sum of its arguments. If there are no arguments, it returns O, which is the
identity for this opcration.

difference arg &rcst args
Returns its first argument minus all of the rest of its arguments.

minus x
Returns the negative of x.
Examples:
(minus 1) => -1
(minus -3.0) => 3.0

- arg &rest args

-$ arg &rest args
With only one argument, - is the same as minus; it returns the negative of its argument.
With more than one argument, - is the same-as difference; it returns its first argument
minus all of the rest of its arguments.

abs x
Returns |x], the absolute value of the number x. abs could have been defined by:
(defun abs (x)
(cond ((minusp x) (minus X))

(t x)))

times &rest args

* &rest args

*$ &rest args
Returns the product of its arguments. If there are no arguments, it returns 1, which is
the identity for this opcration.
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quotient arg &rest args -
Returns the first argument divided by all of the rest of its arguments.

// arg &rest args
//% arg &rest args

The name of this function is written // rather than / because / is the quoting character .
in Lisp syntax and must be doubled. With more than one argument, // is the same as’

quotient: it rcturns the first argument divided by all of the rest of its arguments. With
only one arguitient, (// x) is the same as (// 1 x). The exact rules for the mcaning of
the quotient and remainder of two integers are given on page 85.

Examples:
(77 3 2) => 1 ;Fixnum division truncates.
(/77 3 -2) => -1
(/77 -3 2) => -1
(/77 -3 -2) =>1
(/77 3 2.0) => 1.5
(77 3 2.0s0) => 1.5s0
(/77 4 2) => 2

(/7 12.°2. 3.) => 2
(/7 4.0) => .25

remaindsr x y
\ x oy ‘ .
Returns the remainder of x divided by y. x and y must be intcgers (fixnums or
bignums). The exact ruies for the meaning of the quotient and remainder of two integers
arc given on page 85.

(N3 2) =>1

(\ -3 2) => -1

(\ 3 -2) =>1

(\ -3 -2) => -1

addl x
1+ x
1+$ x
(add1 x) is the same as (plus x 1).
subl x
1- x
1-$ x

(subt x) is the same as (difference x 1). Note that the short name may be confusing:
(1- x) docs not mean 1-x; rather, it means x-1.

ged x y

\\ x y
Returns the greatest common divisor of x and y. x and y must be integers (fixnums or
bignumes).
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*dif x y

*plus x y

*quo x y

*times x y ' :
These are the internal micro-coded arithmetic functions. There is no rcason why anyone
should need to write code with these explicitly, since the. compiler knows how to generate
the appropriate code for plus, +, ctc. These names are only here for Maclisp
compatibility.

7.4 Transcendental Functions

Most of these functions arc only for floating-point arguments; if given an integer they will
convert it to a flonum. If given a small-flonum, they will return a small-fonum. There are a
couple of exceptions, which are documented explicitly.

expt x y
~xy
~$ x vy ‘
Returns x raised to the y'th power. The result is an integer if both arguments are
integers (even if y is negative!) and foating-point if cither x or y or both is floating-point.
If the exponent is an integer a repeated-squaring algorithm is uscd, while if the exponent
is floating the result is (exp (* y (log x))). '

8xXp x
Returns e raiscd to the x’th power, where e is the base of natural logarithms.

log x
Returns the natural logarithm of x.

sgrt x
Returns the square root of x.

isqrt x
Integer square-root. x must be an integer; the result is the greatest integer less than or
equal to the exact square root of x.

sin x
Returns the sinc of x, where x is expressed in radians.

sind x
Returns the sine of x, where x is expressed in degrees.

cos x
Returns the cosine of x, where x is expressed in radians.

cosd x
Returns the cosine of x, where x is cxpressed in degrees.
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atan y x :
' Returns the arctangent of the angle j/x. It always returns a non-negative number
between zero and 2g.

atan2 y x
Returns the arctangent of the angle y/x, cxcept that it returns a number between -7 and
.

7.5 Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be forced, when
desired. :

fix x
Converts x from a flonum (or small-flonum) to an integer, truncating towards negative
infinity. The result is a fixnum or a bignum as appropriate. 1f x is already a fixnum or a
bignum, it is returned unchanged.

fixr x :
Converts x from a flonum (or small-flonum) to an integer, rounding to the ncarest integer.
If x is cxactly halfway between two integers, this rounds up (towards positive infinity).
fixr could have been defined by:
(defun fixr (x)
(if (fixp x) x (fix (+ x 0.5))))

float x
Converts any kind of number to a flonum.

small-float x :
Converts any kind of number to a small flonum.

7.6 Logical Operations on Numbers

Except for Ish and rot, these functions operate on both fixnums and bignums. Ish and rot
have an inherent word-length limitation and hence only operate on 24-bit fixnums. Negative
numbers are operated on in their 2’s-complement representation.

lTogior &rest args
Returns the bit-wisc logical inclusive or of its arguments. At lcast one argument is
required.
Example:
(logior 4002 67) => 4067

Togxor &rest args
Returns the bit-wise logical exclusive or of its arguments. At lcast one argument is
required.
Example:
(logxor 2531 7777) => 5246
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logand &rest args
Returns the bit-wise logical and of its arguments. At least one argument is required.
Examples:
(Togand 3456 707) => 406
(Togand 3456 -100) => 3400

lognot number
Returns the logical complement of aumber. This is the same as logxor’ing number with
.1_ .
Example:
(lognot 3456) => -3457

boole fir &rest args
boole is the gencralization of logand, logior, and logxor. fir should be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of fi is abed (a is the most significant bit,. d the Icast) then the truth
table for the Boolean operation is ‘as follows:

Yy
| 0 1
0] a ¢
x|
1l b d

If boole has more than three arguments, it is associated left to right; thus,

(boole fn x y z) = (boole fn (boole fn x y) 2)
With two arguments, the rcsult of boole is simply its second argument. At least two-
arguments arc required.

Examples:
(boole 1 x y) = (logand x y)
(boole 6 x y) = (logxor x y)
(boole 2 x y) = (logand (lognot x) y)

logand, logior, and logxor are usually preferred over the equivalent forms of boole, to
avoid putting magic numbers in the program.

bit-test x y
bit-test is a predicate which rcturns t if any of the bits designated by the I’s in x are 1’s
in y. bit-test is implemented as a macro which expands as follows:
(bit-test x y) ==> (not (zerop (logand x y)))

1sh x y
Returns x shifted left y bits if y is positive or zero, or x shifted right |y| bits if y is
ncgative. Zero bits are shifted in (at cither end) to fill unused positions. x and y must
be fixnums.
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Examples:
(1sh 4 1) => 10 ;(octal)
(1sh 14 -2) => 3
(1sh -1 1) => -2

ash x y
Shifts x arithmetically left y bits if y is positive, or right -y bits if y is negative. Unused
positions are filled by zcroes from the right, and by copies of the sign bit from the left.
Thus, unlike Ish, the sign of the result is always the same as the sign of x. If x is a
fixnum or a bignum, this is a shifting operation. If x is a flonum, this does scaling
(multiplication by a power of two), rather than actually shifting any bits.

rot x vy

Returns x rotated left y bits if y is positive or zero, or x rotated right |y] bits if y is
negative. The rotation considers x as a 24-bit number (unlike Maclisp, which considers x
to be a 36-bit number in both the pdp-10 and Multics implementations). x and y must
be fixnums.
Examples:

(rot- 1 2) => 4

(rot 1 -2) => 20000000

(rot -1 7) => -1

(rot 15 24.) => 15

haulong x

This returns the number of significant bits in |x|. x may be a fixnum or a bignum. Its

sign is ignored. The result is the least integer strictly greater than the basc-2 logarithm of

lx].

Examples:
(haulong 0) => 0
‘(haulong 3) => 2
(hauvlong -7) => 3

haipart x n
Returns the high n bits of the binary rcpresentation of }x|, or the low -n bits if n is
negative. x may be a fixnum or a bignum; its sign is ignored. haipart could have been
defined by:
(defun haipart (x n)
(setq x (abs x))
(if (minusp n)
(logand x (1- (ash 1 (- n))))
(ash x (min (- n (haulong x))

0))))
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7.7 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous set of bits is called
a byte. Note that we are not using the term byte to mean eight bits, but rather any number of
bits within a number. These functions use numbers called byte specifiers to designate a specific
byte position within any word. Byte specifiers are fixnums whose two lowest octal digits represent
the size of the byte, and whose higher (usually two, but sometimes morc) octal digits represent
the position of the byte within a number, counting from the right in bits. A position of zero
means that the byte is at the right end of the number. For cxample, the byte-specifier 0010 (i.e.
10 octal) refers to the lTowest cight bits of a word; and the byte-specifier 1010 refers to the next
cight bits. These byte-specifiers will be stylized below as ppss. ‘The maximum value of the ss
digits is 27 (octal), since a byte must fit in a fixnum although bytes can be loaded from and
deposited into bignums. (Bytes are always positive numbers.) The format of byte-specifiers is
taken from the pdp-10 byte instructions.

Tdb ppss num
ppss specifics a byte of num to be cxtracted. The ss bits of the byte starting at bit pp are
the lowest ss bits in the returned value, and the rest of the bits in the rcturned value are
zero. ‘The name of the function, Idb, mecans "load byte". num may be a fixnum or a
bignum.
Example:
(1db 0306 4567) => 56

Toad-byte num position size
This is like !db exccpt that instcad of using a bytc specifier, the position and size are
passced as separate arguments. The argument order is not analogous to that of Idb so that
load-byte can be compatible with Maclisp.

Tdb-tast ppss y _
Idb-test is a predicate which returns t if any of the bits designated by the byte specifier
ppss are 1's in y. That is, it rcturns t if the designated ficld is non-zero. Idb-test is
implemented as a macro which cxpands as follows:
(1db-test ppss y) ==> (not (zerop (1db ppss y)))

mask-field ppss num
This is similar to Idb; however, the specified byte of num is returned as a number in
position pp of the returned word; instead of position 0 as with Idb. num must be a
fixnum. '
Example:
(mask-field 0306 4567) => 560

dpb byte ppss. num
Returns a number which is the same as num except in the bits specified by ppss. The
low ss bits of byte arc placed in those bits. byte is interpreted as being right-justified, as
if it were the result of Idb. num may be a fixnum or a bignum. The name means
"deposit byte".
Example:
(dpb 23 0306 4567) => 4237 -
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deposit-byte num position size byte
This is like dpb except that instcad of using.a byte specificr, the position and size are
passed as separate arguments. The argument order is not analogous to that of dpb so that
deposit-byte can be compatible with Maclisp.

deposit-field byte ppss num
This is like dpb, cxcept that byte is not taken to be left-justified; the ppss bits of byfe are
used for the ppss bits of the result, with the rest of the bits taken from num. num must
be a fixnum.
Example:
(deposit-field 230 0306 4567) => 4237

The behavior of the following two functions depends on the size of fixnums, and so functions
using them may not work the same way on future implementations of the Lisp Machine. Their
names start with "%" because they arc more like machine-level subprimitives than the previous
functions.

%1ogldb ppss fixnum ,
%logldb is like Idb except that it only loads out of fixnums and allows a byte size of 30
(octal), i.c. all 24. bits of the fixnum including the-sign bit.

%1ogdpb byte ppss fixnum
%logdpb is like dpb except that it only deposits into fixnums. Using this to change the
sign-bit will leave the result as a fixnum, while dpb would produce a bighum result for
arithmetic coriectiess. %logdpb is good for manipulating fixnum bit-masks such as are
used in some internal system tables and data-structures.

7.8 Random Numbers

The functions in this scction provide a pscudo-random number generator facility. The basic
function you use is random, which rcturns a new pseudo-random number each time it is called.
Between calls, its state is saved in a data object called a random-array. Usually there is only one
random-array; however, -if you want to create a reproducible series of pscudo-random numbers,
and be able to reset the state to control when the series starts over, then you nced some of the
other functions here.

random &optional arg random-array
(random) returns a random fixnum, positive or negative. If arg is present, a fixnum
between 0 and arg minus 1 inclusive is returned. If random-array is present, the given
array is used instcad of the default one (sce below). Otherwise, the default random-array
is used (and is created if it docsn’t alrcady exist). The algorithm is exccuted inside a
without-interrupts (see page 379) so two processes can use the same random-array
without colliding.

A random-array consists of an array of numbers, and two pointers into the array. The
pointers circulate around the array; cach time a random number is requested, both pointers are
advanced by one, wrapping around at the end of the array. Thus, the distance forward from the
first pointer to the sccond pointer, allowing for wraparound, stays the same. Let the length of
the array be length and the distance between the pointers be offser. To generate a new random
number, each pointer is set to its old valuc plus one, modulo length. Then the two clements of
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the array addressed by the pointers arc added together; the sum is stored back into the array at
the location where the second pointer points, and is rcturned as the random number after being
normalized into the right range.

This algorithm produces well-distributed random numbers  if length and offSet arc chosen
carefully, so that the polynomial xt#length+ xtoffSet+1 is irreducible over the mod-2 integers.
The system uses 71. and 35.

The contents of the array of numbers should be initialized to anything moderately random, to
make the algorithm work. The contents get initialized by a simple random number generator,
based on a number called the seed. The initial value of the sced is set when the random-array is
created, and it can be changed. To have several different controllable rescttable sources of
random numbers, you can create your own random-arrays. If you don’t care about reproducibility
of scquences, just use random without the random-array argument.

si:random-create-array length offset seed &optional (area nil)
Creates, initializes, and returns a random-array. flength is the length of the array. offset is
the distance betwecen the pointers and should be an integer less than length. seed is the
initial value of the sced, and should be a fixnum. This calls si:random-initialize on the
random array before returning it.

si:random-initialize array &optional new-seed
array must be a random-array, such as is created by si:random-create-array. If new-
seed is provided, it should be a fixnum, and the sced is set to it. si:random-initialize
reinitializes the contents of the array from the sced (calling random dmnbw the contents
of the array and the pointers, but not the seed).

7.9 24-Bit Numbers |

Somectimes it is desirable to have a form of arithmetic which has no overflow checking (which
would produce bignums), and truncates rcsults to the word size of the machine. In Lisp Machine
Lisp, this is provided by the following sct of functions. Their answers are only correct modulo
2124,

These functions should not be used for "efficiency”; they are probably less efficient than the
functions which do check for overflow. They arc intended for algorithms which require this sort
of arithmetic, such as hash functions and pseudo-random number generation.

%24-bit-plus x y
Returns the sum of x and y modulo 2124. Both arguments must be fixnums.

%24-bit-difference x y
Returns the difference of x and y modulo 2124, Both arguments must be fixaums.

%24-bit-times x y
Returns the product of x and y modulo 2124, Both arguments must be fixnums.
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7.10 Double-Precision Arithmetic

These peculiar functions are uscful in programs that don’t want to use bignums for one reason

or another. They should usually be avoided, as they are difficult to use and understand, and they -

depend on special numbers of bits and on the use of two’s-complement notation.

multiply-fractions numl num?
Returns bits 24 through 46 (the most significant half) of the product of num! and num?2.
If you call this and %24-bit-times on the samc arguments aum! and num?2, regarding
them as integers, you can combine the results into a double-precision product. [If numli
and num?2 are regarded as two's-complement fractions, -1 < num < 1, %multiply-
fractions returns 1/2 of their correct product as a fraction. (The namec of this function
isn’t too great.) :

%divide-double dividendf24:46] dividendf0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the single-precision quotient.  Causes an crror if division by zero or
if the quotient won't fit in single precision.

%remainder-double dividendf24:46] dividendf0:23] divisor
Divides the double-precision number given by the first two arguments by Lhc third
argument, and returns the remainder. Causes an crror if division by zero.

%float-double high24 low24
high24 and Jow24, which must be fixnums, are concatenated to produce a 48-bit unsigned
positive integer. A flonum containing the samne value is constructed and returned. Note
that only the 31 most-significant bits are retained (after removal of leading zeroes.) This
function is mainly for the benefit of read.
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8. Arrays

An array is a Lisp object that consists of a group of cclls, cach of which may contain an
object. The individual cells are selected by numerical subscripts. '

The dimensionality of an array (or, the number of dimensions which the array has) is the
number of subscripts used to refer to one of the elements of the array. The dimensionality may
be any integer from one to seven, inclusively.

The lowest value for any subscript is zero; the highest valuc is a property of the array. Each
dimension has a size, which is the lowest number which is too grecat to be used as a subscript.
For example, in a one-dimensional array of five clements, the size of the onc and only dimension
is five, and the acceptable values of the subscript are zero, one, two, three, and four..

The most basic primitive functions for handling arrays are: make-array, which is used for
the creation of arrays, aref, which is used for ¢xamining the contents of arrays, and aset, which
is used for storing into arrays.

An- array is a rcgular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an clement of an array. There arc many
functions, described in this chapter, which take arrays as arguments and perform uscful opcrations
on them.

Another way of handling arrays, inherited from Maclisp, is to trcat them as functions. In this
" case each array has a name, which is a symbol whose function definition is the array. 'The Lisp
machine supports this style by allowing an array to be applied to arguments, as if it were a
function. The arguments are trcated as subscripts and the array is referenced appropriately. The
store spccial form (sce page 114) is also supported. This kind of array referencing is considered
to be obsolete, and is slower than the usual kind. It should not be used in new programs.

There are many types of arrays. Some types of arrays can hold Lisp objects of any type; the
other types of arrays can only hold fixnums or flonums. The array types are known by a set of
symbols whose names begin with "art-" (for ARray Type).

The most commonly used type is called art-q. An art-q array simply holds Lisp objects of
any type.

Similar to the art-q type is the art-q-list. Like the art-q, its clements may be any Lisp
object. The difference is that the art-qg-list array "doubles” as a list; the function g-I-p will
take an art-q-list array and return a list whose clements are those of the array, and whose actual
substance is that of the array. If you rplaca clements of the list, the corresponding element of
the array will change, and if you store into the array, the corresponding clement of the list will
change the same way. An attempt to rplacd the list will cause an error, since arrays cannot
implement that operation.

There is a sct of types called art-1b, art-2b, art-4b, art-8b, and art-16b; thesc names are
short for "1 bit", "2 bits", and so on. Each element of an art-nb array is a non-negative
fixnum, and only the least significant » bits are remembered in the array; all of the others are
discarded. Thus art-1b arrays store only 0 and 1, and if you storc a 5 into an art-2b array and
look at it later, you will find a 1 rather than a 5.
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These arrays arc used when it is known beforchand that the fixnums which will be stored are
non-negative and limited in size to a certain number of bits. Their advantage over the art-q
array is that they occupy less storage, because more than one clement of the array is kept in a
single machine word. (For example, 32 clements of an art-1b array or 2 clements of an art-16b
array will fit into one word). :

There are also art-32b arrays which have 32 bits per elecment. Since fixnums only have 24
bits anyway, these arc thc same as art-q arrays except that they only hold fixnums.

Character strings are implemented by the art-string array type. This type acts similarly to the
art-8b; its clements must be fixnums, of which only the Icast significant cight bits are stored.
However, many important system functions, including read, print, and eval, trcat art-string
arrays very differently from the other kinds of arrays. These arrays are usually- called strings, and
chapter 9 of this manual deals with functions that manipulate them.

The art-float array type is a special-purpose type whose clements are fonums. When storing
into such an array the value (any kind of number) will be converted to a flonum, using the float
function (sce page 91). The advantage of storing flonums in an art-float array rather than an
art-q array is that thc numbers in an art-float array are not true Lisp objccts. Instead the array
remembers the numerical value, and when it is aref'ed creates a Lisp object (a flonum) to hold
the value. Because the system does special storage management for bignums and flonums that are
intermediate results, the use of art-float arrays can save a lot of work for the garbage-collector
and hence greatly increase performance. An intermediate result is a lisp object passed as an
argument, stered in a local variable, or returned as the value of a function, but not stored into a
global variable, a now-ari-float array, or list structure. art-fioat arrays aiso provide a locaiity of
reference advantage over art-qg arrays containing flonums, since the flonums are contained in the
array rather than being separate objects probably on different pages of memory.

There are three types of arrays which cxist only for the implementation of stack groups; these
types are called art-stack-group-—head, art-special-pdl, and art-reg-pdl. Their clements may
be any Lisp object; their use is explained ‘in the scction on stack groups (see chapter 12, page
149).

array-types Variable
The value of array-types is a list of all of the array type symbols such as art-q, art-4b,
art-string and so on. The values of these symbols are internal array type code numbers
for the corresponding type.

array-types array-type-code
Given an internal numeric array-type code, returns the symbolic name of that type.

array-elemants-per-q Variable
array-elements-per-q is an association list (see page 64) which associates cach array type
symbol with the number of array clements stored in one word, for an array of that type.
If the value is negative, it is instcad the number of words per array clement, for arrays
whose clements arc more than onc word long.
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array-elements-per-q array-iype-code
Given the intcrnal array-type code number, returns the number of array clements stored
in one word, for an array of that type. If the value is negative, it is instead the number
of words per array element, for arrays whose clements are more than one word long.

array-bits-per-element Variable
The value of array-bits-per-element is an association list (sce page 64) which associates
cach array type symbol with the number of bits of unsigned number it can hold, or nil if
it can hold Lisp objects. This can be used to tell whether an array can hold Lisp objects
or not.

array-bits-per-element array-type-code
Given the internal array-type code numbers, returns the number of bits per cell for
unsigned numeric arrays, or nil for a type of array that can contain Lisp objects.

array-element-size array
Given an array, returns the number of bits that fit in an clement of that array. For array
that can hold general Lisp objects, the result is 24., assuming you will be storing
unsigned fixnums in the array. ‘ '

8.1 Extra Features of Arrays

Any array may have an array leader. An array leader is like a one-dimensional art-q array
which is attached to the main array. So an array which has a leader acts like two arrays joined
together. The leader can be stored into and examined by a special set of functions, different from
those used for the main array: array-leader and store-array-leader. The leader is always one-
dimensional, and always can hold any. kind of Lisp object, regardless of the type or
dimensionality of the main part of the array.

Very often the main part of an array will be a homogencous set of objects, while the leader
will be used to remember a few associated non-homogeneous pieces of data. In this case the
leader is not used like an array; cach slot is used differently from the others. Explicit numeric
subscripts should not be used for the leader clements of such an array; instead the leader should
be described by a defstruct (see page 228).

By convention, element 0 of the array leader of an array is used to hold the number of
elements in the array that are "active” in some sense. When the zeroth element is used this way,
it is called a fill pointer. Many array-processing functions recognize the fill pointer. For instance,
if a string (an array of type art-string) has seven elements, but its fill pointer contains the value
five, then only elements zero through four of the string are considered to be "active”; the string’s
printed reprcsentation will be five characters long, string-scarching functions will stop after the
fifth element, etc.

The system does not provide a way to turn off the fill-pointer convention; any array that has
a leader must reserve element 0 for the fill pointer or avoid using many of the array functions.

Leader clement 1 is used in conjunction with the "named structure” feature to associate a

"data type" with the array; sce page 239. Element 1 is only trcated spccially if the array is
flagged as a named structure.
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The following cxplanation of displaced arrays is probably not of interest to a beginner; the
section may be passed over without losing the continuity of the manual.

Normally, an array is represented as a small amount of header information, followed by the
contents of the array. However, sometimes it is desirable to have the hcader information removed
from the actual contents. One such occasion is when the contents of the array must be located in
a special part of the Lisp Machine’s address space, such as the- area used for the control of
input/output devices, or the bitmap memory which generates the TV image. Displaced arrays are
also used to reference certain special system tables, which are at fixed addresses so the microcode
can access them easily.

If you give make-array a fixnum or a locative as the valuc of the :displaced-to option, it
will create a displaced array referring to that location of virtual memory and its successors.
References to cleinents of the displaced array will access that part of storage, and return the
contents; the regular aref and aset functions are uscd. If the array is one whose clements are
Lisp objects, caution should be used: if the region of address space does not contain typed Lisp
objects, the integrity of the storage system and the garbage collector could be damaged. If the
array is onc whose clements are bytes (such as an art-4b type), then there is no problem. Tt is
important to know, in this case, that the clements of such arrays are allocated from the right to
the left within the 32-bit words.

It is also possible to have an array whose contents, instcad of being located at a fixed place
in virtwal memory, aic defined to be those of another array. Such an array is called an indirect
array, and is created by giving make-array an array as the valuc of the :displaced-to option.
The effects of this are simple if both arrays have the same type; the two arrays share all
clements. An object stored in a certain clement of one can be retrieved from the corresponding
clement of the other. This, by itself, is not very useful. However, if the arrays have different
dimensionality, the manncr of accessing the clements differs. Thus, by creating a one-diinensional
array of nine clements which was indirccted to a sccond, two-dimensional array of threc elements
by three, then the clements could be accessed in either a one-dimensional or a two-dimensional
manner. Weird effects can be produced if the new array is of a different type than the old array;
this is not generally rccommended. Indirecting an art-mb array to an art-sb array will do the
"obvious” thing. For instance, if m is 4 and s is 1, cach clement of the first array will contain
four bits from the second array, in right-to-left order.

[t is also possible to create an indirect array in such a way that when an attempt is made to
reference it or store into it, a constant number is added to the subscript given. ‘This number is
called the index-offset, and is specified at the timec the indirect array is created, by giving a
fixnum to make-array as the value of the :index-offset option. Similarly, the length of the
indirect array nced not be thce full length of the array it indirects to; it can be smaller. The
nsubstring function (see page 118) creates such arrays. When using index offsets with multi-
dimensional arrays, there is only one index offset; it is added in to the "lincarized" subscript
which is the result of multiplying each subscript by an appropriate cocfficient and adding them
together.
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8.2 Basic Array Functions

make-array dimensions &rest options.
This is the primitive function for making arrays. dimensions should be a list of fixnums
which are the dimensions of the array; the length of the list will be the dimensionality of
the array. TFFor convenience when making a one-dimensional array, the single dimension
may be provided as a fixnum rather than a list of one fixnum,

options are alternating keywords and values. The keywords may be any of the following:

.area

‘type

.displaced-to

leader~length

:leader-list

The value specifies in which area (see chapter 15, page 177) the list
should be created. It should be cither an arca number (a fixnum), or nil
to mean the default area. '

The value should be a symbolic name of an array type; the most common
of these is art-q, which is the default. The clements of the array are
initialized according to the type: if the array is of a type whose elements
may only be fixnums or flonums, then every clement of the array will
initially be 0 or 0.0; otherwise, cvery clement will initially be nil. See
the description of array types on page 98. The value of the option may
also be the value of a symbol which is an array typc name (that is, an
internal nuineric array type code).

If this is not nil, then the array will be a displaced array. If the value is
a fixnum or a locative, make-array will crcate a regular displaced array
which refers to the specified section of virtual address space. [f the value
is an array, make-array will create an indirect array (sec page 101).

The value should be a fixnum. The array will have a leader with that
many elements. The elements of the leader wili be initialized to nil unless
the :leader-list option is given (sce below).

The value should be a list. Call the number of clements in the list n.
The first n elements of the leader will be initialized from successive
clements of this list. If the :leader-length option is not specified, then
the length of the leader will be n. If the :leader-length option is given,
and its value is greater than n, then the nth and following leader
clements will be initialized to nil. If its value is less than n, an error is
signalled. The leader elements are filled in forward order; that is, -the car
of the list will be stored in leader element O, the cadr in ¢lement 1, and
SO on.

.displaced-index-offset

If this is- present, the value of the :displaced-to option should be an
array, and the valuc should be a non-negative fixnum; it is made to be
the index-offset of the created indirect array. (See page 101.)

:named-structure

If this is not nil, it is a symbol to be stored in the named-structure cell of
the array. The array will be tagged as a named structure (sce page 239.)
If the array has a leader, then this symbol will be stored in leader
clement 1 regardless of the value of the :leader-list option.
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aref

ar-1
ar-2
ar-3

Examples:

;; Create a one-dimensional array of five clements.

(make-array 5)

;; Create a two-dimensional array,

;; three by four, with four-bit clements.

(make-array '(3 4) ’:type ’art-4b)

;; Create an array with a three-clement leader.

(make-array 5 ’:leader-length 3)

;; Create an array with a lcader, providing

;» initial valucs for the leader clements.

(setq a (make-array 100 ’:type ’'art-1b

":leader-list "(t nil)))

(array-leader a 0) => t

(array-leader a 1) => nil

;; Create a named-structure with five leader

;; elements, initializing some of them.

(setq b (make-array 20 ’:leader-length 5
*:leader-1ist '(0 nil foo)
':named-structure ’'bar))

(array-leader b 0) => 0

(array-leader b 1) => bar
(array-leader b 2) => foo
(array-leader b 3) => nil
(array-leader b 4) => nil

make-array returns the newly-created array, and also returns, as a sccond value, the
number of words allocated in the process of creating the array, i.e. the %structure-total-
size of the array. :

When make-array was originally implemented, it took its arguments in the following
fixed pattern:
(make-array area type dimensions
&optional displaced-to leader

displaced-index-offset

named-structure)
leader was a combination of the :leader-length and :leader-list options, and the list was
in reverse order. This obsolete form is still supported so that old programs will continue
to work, but the new keyword-argument form is preferred.

array &rest subscripts
Returns the clement of array selected by the subscripts. The subscripts must be fixnums
and their number must match the dimensionality of array.

array i

array i j

array i j k

These are obsolete versions of aref that only work for one, two, or three dimensional
arrays, respectively. There is no reason ever to use them.
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aset x array &rest subscripts
Stores x into the clement of array selected by the subscripis. 'The subscripts must be
fixnums and their number must match the dimensionality of array. The returned value is
X. '

as-1 x array i

as-2 x array i j

as-3 x array i j k
These are obsolete versions of aset that only work for one, two, or three dimensional
arrays, respectively. There is no reason ever to use them.

aloc array &rest subscripts
Returns a locative pointer to the clement-cell of array selected by the subscripts. The
subscripts must be fixnums and their number must match the duncnsnonallty of array. See
the explanation of locatives in chapter 13, page 156.

ap-1 array i

ap-2 array i j

ap-3 array i j k
These arc obsolete versions of aloc that only work for one, two, or three dimensional
arrays, respectively. There is no rcason ever to use them.

The compiler turns aref into ar-1, ar-2, etc. according to the number of subscripts specified,
turns aset into as-1, as-2, etc.. and turns aloc into ap-1, ap-2, ctc. For arrays with more
than 3 dimensions the compiter uses the slightly less clficient form since the special routines only
exist for 1, 2, and 3 dimensions. There is no reason for any program to call ar-1, as-1, ar-2,
etc. explicitly; they are documcnted because’ there used to be such a rcason, and many old
programs use these functions. New programs should use aref, aset, and aloc.

A related function, provided only for Maclisp compatibility, is arraycall (page 114).

array-leader array i
array should be an array with a leader, and 7 should be a fixnum. This returns the /’th
element of array’s leader. This is analogous to aref.

store-array-leader x array i
array should be an array with a leader, and 7 should be a fixnum. x may be any object.
x is stored in the i'th element of array’s leader. store-array-leader returns x. This is
analogous to aset.

ap-leader array i
array should be an array with a leader, and i should be a fixnum. This returns a locative
pointer to the i’th clement of array’s leader. Sce. the explanation of locatives, chapter 13,
page 156. This is analogous to aloc.
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8.3 Getting Information About an Array

array-type array
Returns the symbolic type of array.
Example:
(setq a (make-array '(3 5)))
(array-type a) => art-q

array-length array A
array may be any array. This returns the total number of elements in array. For a one-

dimensional array, this is onc greater than the maximum allowable subscript. (But if fill

pointers arc being used, you may want to usc array-active-length.)
Example:
(array-length (make-array 3)) => 3
(array-length (make-array '(3 5)))
=> 17 ;octal, which is 15. decimal

array-active-length array
If array docs not have a fill pointer, then this returns whatever (array-length array)
would have. If array does have a fill pointer, array-active-length returns it. See the
general explanation of the use of fill pointers, on page 100.

array-#-dims array
Returns the dimensionality of array. Note that the name of the function includes a "#",
which must be siashified if you want to be able o read your program in Maclisp. (It
doesn’t need to be slashificd for the Lisp machine reader, which is smarter.)’
Example:
(array-#-dims (make-array '(3 5))) => 2

array-dimension-n »u array
array may be any kind of array, and n should be a fixnum. If n is between 1 and the
dimensionality of array, this returns the #’th dimension of array. If n is O, this returns
the length of the lcader of array; if array has no leader it returns nil. If n is any other
value, this returns nil.
Examples:

(setq a (make-array '(3 5) ':leader-length 7))
(array-dimension-n 1 a) => 3
(array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n 0 a) => 7

array-dimensions array
array-dimensions returns a list whose eclements are the dimensions of array.
Example:
(setq a (make-array '(3 5)))
(array-dimensions a) => (3 5)
Note: the list returned by (array-dimensions x) is equal to the cdr of the list returned
by (arraydims x).
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arraydims array 4
array may be any array; it also may be a symbol whose function cell contains an array,
for Maclisp compatibility (sec scction 8.10, page 113). arraydims rcturns a list whose first
clement is the symbolic name of the type of array, and whose remaining elements are its
dimensions.

Example:
(setq a (make-array '(3 5)))
(arraydims a) => (art-q 3 5)

array-in-bounds-p array &rest subscripts
This function checks whether subscripts is a legal sct of subscripts for array, and returns t
if they are; otherwisc it returns nil.

array-displaced-p array
array may be any kind of array. This predicate returns t if array is any kind of displaced
array (including an indircct array). Otherwise it returns nil.

array-indirect-p array
array may be any kind of array. This predicate rcturns t if array is an indircct array.
Otherwise it rcturns nil.

array-indexed-p array
array may be any kind of array. This predicate returns t if array is an indircct array with
an index-offset.  Otherwise it returns nil. ‘

array-has-leader-p array
array may be any array. This predicate returns t if array has a leader; otherwise it
returns nil. :

array-leader-length array
array may be any array. This returns the length of array’s leader if it has one, or nil if
it does not.

8.4 Changing the Size of an Array

adjust-array-size array new-size
If array is a one-dimensional array, its size is changed to be new-size. If array has more
than one dimension, its size (array-length) is changed to new-size by changing only the
last dimension.

If array is made smaller, the extra elements are lost; if array is made bigger, the new
elements arc initialized in the same fashion as make-array (sce page 102) would initialize
them: cither to nil or 0, depending on the type of array.
Example:

(setq a (make-array 5))

(aset 'foo a 4)

(aref a 4) => foo

(adjust-array-size a 2)

(aref a 4) -=> anecrror occurs
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If the size of the array is being increased, adjust-array-size may have to allocate a new .
array somewhere. In that case, it alters wray so that references to it will be made to the
new array instead, by means of "invisible pointers” (sce structure-forward, page 160).
adjust-array-size will return this new array if it creates one, and otherwise it will return
array. Bc careful to be consistent about using the returned result of adjust-array-size,
because you may end up holding two arrays which are not the same (i.e. not eq), but
which share the same contents.

array-grow array &rest dimensions .
array-grow creates a new array of the same type as array, with the specified dimensions.
Those clements of array that are still in bounds arc copied into the new array. The
clements of the new array that arc not in the bounds of array arc initialized to nil or 0 as
appropriate. If array has a leader, the new array will have a copy of it. array-grow
returns the new array and also forwards array to it, like adjust-array-size.

Unlike adjust-array-size, array-grow always crcatcs a new array rather than growing or
shrinking the array in place. But array-grow of a multi-dimensional array can change all
the subscripts and move the clements around in memory to keep cach clement at the
same logical place in the array.

return-array array
This peculiar function attempts to rcturns array to free storage. If it is displaced, this
returns the displaced array itsclf, not the data that the array points to. Currently return-
array does nothing if the array is not at the end of its region, i.e. if it was not the most
recently allocated non-list object in its arca. This will eventually be renamed to reclaim,
when it works for other objects than arrays.

If you still have any references to array anywhere in the Lisp world after this function
returns, . the garbage collector can get a fatal error if it sees them. Since the form that
calls this function must get the array from somewhere, it may not be clear how to legally
call return-array. One of the only ways to do it is as tollows:
(defun func ()
(1et ((array (make-array 100)))

(return-array (progl array (setq array nil)))))
so that the variable array does not refer to the array when return-array is called. You

should only call this function if you know what you are doing; otherwise the garbage
collector can get fatal errors, Be careful.

8.5 Arrays Overlaid With Lists
These functions manipulate art-q-list arrays, which were introduced on page 98.

g-1-p array
array should be an art-q-list array. This returns a list which shares the storage of array.
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Example:
(setq a (make-array 4
(aref a 0) => nil
(setq b (g-1-p a)) => (nil nil nil nil)
(rplaca b t)
b => (t nil nil nil)
(aref a 0) => t
(aset 30 a 2)
b => (t nil 30 nil)

1]

:type 'art-q-list))

The following two functions work strangely, in the same way that store docs, and should not be
usced in new programs.

get-list-pointer-into-array array-ref
The argument array-ref is ignored, but should be a reference to an art-q-list array by
applying the array to subscripts (rather than by aref). This returns a list object which is a
portion of the "list" of the array, beginning with the last clement of the last array which
has been called as a function.

get-locative-pointer-into-array array-ref
get-locative-pointer-into-array is similar to get-list-pointer-into-array, cxcept that it
returns a locative, and docsn't require the array to be art-g-list. Use aloc instead of this
function in new programs.

8.6 Adding to the End of an Array

array-push array x :

array must be a one-dimensional array which has a fill pointer, and x may be any object.
array-push attenipts to store x in the clement of the array designated by the fill pointer,
and increase the fill pointer by one. If the fill pointer does not dcsignate an clement of
the array (specifically, when it gets too big), it is unaffected and array-push returns nil;
otherwise, the two actions (storing and incrementing) happen uninterruptibly, and array-
push returns the former value of the fill pointer, i.e. the array index in which it stored x.
If the array is of type art-q-list, an operation similar to nconc has taken place, in that
the element has been added to the list by changing the cdr of the formerly last element.
The cdr coding is updated to ensure this.

array-push-extend array x &optional extension
array-push-extend is just like array-push except that if the fill pointer gets too large,
the array is grown to fit the new clement; ie. it never "fails" the way array-push does,
and so never returns nil. extension is the number of clements to be added to the array if
it nceds to be grown. It defaults to somcthing reasonable, based on the size of the array.

array-pop array
array must be a onc-dimensional array which has a fill pointer. The fill pointer is
decreased by one, and the array clement designated by the new value of the fill pointer is
returned. If the new valuc docs not designate any clement of the array (specifically, if it
had alrcady reached zero), an error is caused. The two operations (dccrementing and
array referencing) happen uninterruptibly. If the array is of type art-g-list, an opcration
similar to nbutlast has taken place. The cdr coding is updated to ensure this.
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8.7 Copying an Array

fillarray array x
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. There are two forms of this function, depending on the type of x.

If x is a list. then fillarray fills up array with the elements of lisz. If x is too short to fill
up all of array, then the last element of x is used to fill the remaining clements of array.
If x is too long, the extra elements arc ignored. If x is nil (the empty list), array is filled
with the default initial valuc for its array type (nil or Q).

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains an
array), then the clements of array are filled up from the clements of x. If x is too small,
then the extra clements of array are not affected.

If array is multi-dimensional, the clements are accessed in row-major order: the last
subscript varies the most quickly. The same is true of x if it is an array.

fillarray rcturns array.

Tistarray array &optional limit
array may be any type of array, or, for Maclisp compatibility, a symbol whosc function
cell contains an array. listarray creates and rcturns a list whose clements are those of
array. A limit is present, it should be a fixnum, and only the first limit (if there are
moie than that many) clements of array are used, and so the maximuin length of the
returned list is limit. :

If array is multi-dimensional, the clements are accessed in row-major order: the last
subscript varics the most quickly.

1ist-array-leader array &optional limit
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. list-array-leader creates and rcturns a list whose elements are
those of array’s leader. If limit is present, it should be a fixnum, and only the first Jimit
(if there are morc than that many)- elements of array’s leader are used, and so the
maximum length of the returned list is /imit. If array has no leader, nil is returned.

copy-array-contents fiom to
from and to must be arrays. The contents of from is copied into the contents of o,
clement by clement. If to is shorter than from, the rest of from is ignored. If from is
shorter than fo, the rest of fo is filled with nil if it is a q-type array, or 0 if it is a
numeric array or a string, or 0.0 if it is a flonum array. 'This function always returns t.

Note that even if from or to has a leader, the whole array is used; the convention that
leader element 0 is the "active” length of the array is not used by this function. The
leader itself is not copied.

copy-array-contents works on multi-dimensional arrays. ffom and fo are "lincarized"

subscripts, and column-major order is used, ie the first subscript varies fastest (opposite
from fillarray).
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copy-array-contents-and-leader fiom 1o
This is just like copy-array-contents, but the Icader of from (if any) is also copied into
fo. copy-array-contents copies only the main part of the array.

copy-array-portion fiom-array from-start from-end to-array lo-start lo-end

The portion of the array from-array with indices greater than or cqual to from-start and
less than from-end is copied into the portion of the array to-array with indices greater than
or equal to fo-start and less than to-end, element by clement. If there arc more clements
in the sclected portion of fo-array than in the sclected portion of from-array, the extra
clements arc filled with the default value as by copy-array-contents. If there are more
elements in the sclected portion of from-array, the cxtra ones arc ignored. Multi-
dimensional arrays arc treated the same way as copy-array-contents treats them. This
function always returns t. '

bitblt alu width height from-array fiom-x from-y fto-array lo-x- to-y
Srom-array and 1o-array must be two-dimensional arrays of bits or bytes (art-1b, art-2b,
art-4b, art-8b, art-16b, or art-32b). bitblt copics a rectangular portion of from-array
into a rectangular portion of fo-array. The value stored can be a Boolean function of the
new value and the value already there, under the control of alu (sce below). This
function is most commonly used in connection with raster images for TV displays.

The top-left corner of the source rectangle is (aref from-array from-x from-y). The top-left
corner of the destination rectangle is (aref fo-array to-x to-y). width and height are the
dimensions of both rectangles. If width or height is rzero, bitblt does nothing.

fiom-array and fo-array are allowed to be the same array. bitblt normally traverses the
arrays in increasing order of x and y subscripts. [If widih is ncgative, then (abs width) is
used as the width, but the processing of the x direction is done backwards, starting with
the highest value of x and working down. If height is negative it is trecated analogously.
When bitblt'ing an array to itself, when the two rectangles overlap, it may be necessary to
work backwards to achieve the desired effect, such as shifting the entirc array upwards by
a certain number of rows. Note that negativity of width or height does not affect the (x,3)
coordinates specified by the arguments, which are still the top-left corner even if bitbit
starts at some other corner.

If bitblt gocs outside the bounds of the source array, it wraps around. This allows such
opcrations as the replication of a small stipple pattern through a large array. If bitblt goes
outside the bounds of the destination array, it signals an error.

If src is an clement of the source rectangle, and dst is the corresponding clement of the
destination rectangle, then bitblt changes the valuc of dst to (boole alu src dst). Secc the
boole function (page 92). There are symbolic names for some of the most useful alu
functions; they are tv:alu-seta (plain copy), tv:alu-ior (inclusive or), tv:alu-xor
(exclusive or), and tv:alu-andca (and with complement of source).

bitblt is written in highly-optimized microcode and goes very much faster than the same
thing written with ordinary aref and aset opcrations would. Unfortunately this causes
bitblt to have a couple of strangc restrictions. - Wrap-around does not work correctly if
from-array is an indirect array with an index-oftset. bitblt will signal an crror if the first
dimensions of from-array and to-array are not both intcgral multiples of the machine word
length. For art-1b arrays, the first dimension must be a multiple of 32., for art-2b
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arrays it must be a multiple of 16., etc.

8.8 Matrices and Systems of Linear Equations

The functions in this section perform some uscful matrix operations. The matrices are
represented as two-dimensional Lisp arrays. These functions are part of the mathematics package
rather than the kernel array system, hence the "math:” in the names.

math:multiply-matrices matrix-1 matrix-2 &optional matrix-3
Multiplies matrix-1 by matrix-2. If matrix-3 is supplied, multiply-matrices storcs the
results into marrix-3 and returns matrix-3; otherwise it creates an array to contain the
answer and returns that. All matrices must be two-dimensional arrays, and the first
dimension of matrix-2 must cqual the second dimension of matrix-1.

math:invert-matrix marrix &optional into-matrix
Computes the inverse of matrix. 1f into-matrix is supplicd, stores the result into it and
returns it; otherwise it creates an array to hold the result, and returns that. matrix must
be two-dimensional and square. The Gauss-Jordan algorithm with partial pivoting is used.
Note: if you want to solve a set of simultancous cquations, you should not use this
function; use math:decompose and math:solve (scc below).

math:transpose-matrix marrix &optional into-matrix
Transposes matrix. 16 into-matrix is supplied, stores the result into it and rcturns it;
otherwise it creates an array to hold the result, and returns thai. metrix must be a two-
dimensional array. into-matrix, if provided, must be two-dimensional and have sufficient
dimensions to hold the transpose of matrix.

math:determinant matrix
Returns the determinant of matrix. matrix must be a two-dimensional square matrix.

The next two functions are used to solve sets of simultancous linear equations.
math:decompose takes a matrix holding the coefficients of the equations and produces the LU
decomposition; this decomposition can then be passed to math:solve along with a vector of right-
hand sides to get the values of the variables. If you want to solve the same equations for many
different sets of right-hand side values, you only nced to call math:decompose once. In terms of
the argument names used below, these two functions exist to solve the vector equation 4 x = b
for x. A is a matrix. b and x are vectors.

math:decompose a &optional /u ps
Computes the LU decomposition of matrix a. If u is non-nil, stores the result into it
and rcturns it; otherwise it creates an array to hold the result, and returns that. The
lower triangle of fu, with oncs added along the diagonal, is L, and the upper triangle of

Iu is U, such that the product of L and U is a. Gaussian elimination with partial

pivoting is used. The lu array is permuted by rows according to the permutation array ps,
which is also produced by this function; if the argument ps is supplied, the permutation
array is stored into it; otherwise, an array is created to hold it. This function returns two
values: the LU decomposition and the permutation array.
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math:solve /u ps b &optional x '
This function takes the LU decomposition and associated permutation array produced by
math:decompose, and solves the set of simultaneous cquations defined by the original
matrix a and the right-hand sides in the vector b. If x is supplied, the solutions are
stored into it and it is returned; otherwise, an array is created to hold the solutions and
that is returned. b must be a one-dimensional array.

math:1ist-2d-array array
Returns a list of lists containing the values in array, which must be a two-dimensional
array. There is one element for cach row; cach clement is a list of the values in that
Tow.

math:fil11-2d-array array list
This is the opposite of math:list-2d-array. [list should be a list of lists, with each
clement being a list corresponding to a row. array’s clements are stored from the list.
Unlike fillarray (sce page 109), if /ist is not long enough, math:fill-2d-array "wraps
around"”, starting over at the beginning. The lists which are clements of /st also work
this way.

8.9 Planes

A plane is an array whosc bounds, in cach dimension, arc plus-infinity and minus-infinity; all
integers are legal as indices. Plancs are distinguished not by size and shape, but by number of
diinensions alone. When a plane is creaied, a default value wust be specified. At that moment,
cvery component of the plane has that value. As you can’t cver change more than a finite
nuinber of components, only a finite region of the plane need actually be stored.

The regular array accessing functions don’t work on planes. You can use make-plane to
crcate a plane, plane-arel or plane-ref to get the value of a component, and plane-aset or
plane-store to store into a component. array- # -dims will work on a plane.

A plane is actually stored as an array with a leader. The array corresponds to a rectangular,
aligned region of the plane, containing all the components in which a plane-store has been done
(and others, in general, which have never been altered). The lowest-coordinate corner of that
rectangular region is given by the plane-origin in the array leader. The highest coordinate corner
can be found by adding the plane-origin to the array-dimensions of the array. The plane-
default is the contents of all the clements of the plane which are not actually stored in the array.
The plane-extension is the amount to cxtend a plane by in any direction when the plane needs
to be extended. The default is 32.

If you never use any negative indices, then the plane-origin will be all zeroes and you can
usc regular array functions, such as aref and aset, to access the portion of the plane which is
actually stored. This can be uscful to speed up certain algorithms. In this case you can cven use
the bitblt function on a two-dimensional planc of bits or bytes, provided you don’t change the
plane-extension to a number that is not a multiple of 32.

DSK:LMMAN;FD.ARR 101 16-MAR-81



Lisp Machine Manual 113 Maclisp Array Compatibility

make-plane fype rank default &optional (extension32.)
Creates and rcturns a plane. (ype is the array type symbol (c.g. art-1b). rank is the
number of dimensions. default is the default component value as cxplained above.
extension is the amount to extend by as explained above.

plane-origin plane
A list of numbers, giving the lowest coordinate values actually stored.

plane-default plane
This is the contents of the infinite number of plane clements which are not actually
stored.

plane-extension plane
The amount to extend the planc by in any direction when plane-store is done outside of
the currently-stored portion.

plane-aref plane &rest subscripts

plane-ref plane subscripts
These two functions return the contents of a spccnf ied clement of a plane. They differ
only in the way they take their arguments; plane-aref wants the subscripts as arguments,
while plane-ref wants a list of subscripts.

plane-aset datum plane &rest subscripts

plYane-store datum plane subscripts
These two functions store damum into the specified element of a plane, extending it if
necessary, and return datwm. They differ only in the way they take their arguments;
plane-aset wants the subscripts as arguments, while plane-store waats a list of
subscripts. .

8.10 Maclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility, and should not be
used in new programs.

Fixnum arrays do not exist (however, sce the Lisp Machine’s small-positive-integer arrays).
Flonum arrays exist but you do not use them in the same way;, no declarations are required or
allowed. "Un-garbage-collected” arrays do not exist. Readtables and obarrays arc represcnted as
arrays, but unlike Maclisp special array types are not used. See the descriptions of read (page
292) and intern (page 351) for information about readtables and obarrays (packages). There are
no "dead" arrays, nor are Multics "cxternal” arrays provided.

The arraycall function exists for compatibility but should not be used (see aref, page 103.)

Subscripts are always checked for validity, regardless of the value of *rset and whether the
code is compiled or not. However, in a multi-dimensional array, an error is only caused if the
subscripts would have resulted in a refcrence to storage outside of the array. For example, if you
have a 2 by 7 array and refer to an clement with subscripts 3 and 1, no error will be caused
despite the fact that the reference is invalid; but if you refer to element 1 by 100, an error will
be caused. In other words, subscript errors will be caught if and only if they refer to storage
outside the array; some errors arc undetected, but they will only clobber some other clement of
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the same array rather than clobbering something completely unpredictable.

Currently, multi-dimensional arrays arc stored in column-major order rather than row-major
order as in Maclisp. Row-major order means that successive memory locations differ in the last
subscript, while column-major order means that successive memory locations differ in the first
subscript. This has an cffect on paging performance when using large arrays; if you want to
reference every clement in a multi-dimensional array and move lincarly through memory to
improve locality of reference, vou must vary the first subscript fastest rather than the last.

loadarrays and dumparrays arc not provided. However, arrays can be put into "QFASL"
files; sec scction 16.7, page 189.

The *rearray function is not provided, since not all of its functionality is available on the
Lisp Machine. The most common uses can be replaced by adjust-array-size.

In Maclisp, arrays arc usually kept on the array property of symbols, and the symbols are
used instead of the arrays. In order to provide some degree of compatibility for this manner of
using arrays, the array, *array, and store functions arc provided, and when arrays arc applied
to arguments, the arguments are trcated as subscripts and apply returns the corresponding clement
of the array.

array &quote symbol (ype &cval &rest dims
This crecates an art-q type array in default-array-area with the given dimensions. (That
is, dims is given to make-array as its first argument.) fype is ignored. [f symbol is nil,
the array is returned; otherwise, the array is put in the function cell of symbol, and
symbol is returned.

*array symbol type &rest dims .
This is just like array, except that all of the arguments are evaluated.

stora Special Form
The form (store array-ref x) stores x into the specified array clement. array-ref should be
a form which references an array by calling it as a function (aref forms are not
acceptable). First x is evaluated, then array-ref is evaluated, and then the value of x is
stored into the array cell last referenced by a function call, presumably the one in array-

ref.

xstore x array-ref
This is just like store, but it is not a special form; this is because the arguments are in
the other order. This function only exists for the compiler to compile the store special
form into, and should ncver be used by programs.

arraycall ignored array &rcst subscripts

(arraycall t array subl sub2...) is the samc as (aref array subl sub2..). It exists for
Maclisp compatibility.
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9. Strings

Strings are a type of array which represent a sequence of characters. The printed
representation of a string is its characters enclosed in quotation marks, for example "foo bar".
Strings are constants, that is, cvaluating a string rcturns that string. Strings are the right data
type to use for text-processing.

Strings are arrays of type art-string; each clement holds an cight-bit unsigned fixnum. This
is becausc characters are represented as fixnums, and for fundamental characters only cight bits
arc used. The functions described in this section provide a varicty of useful operations on strings.
Scveral of the functions actually work on any type of onc-dimensional array and may be usecful
for other than string processing. art-16b arrays (arrays of 16-bit positive numbers) are sometimes
used instead of strings; the extra bits allow for multiple fonts or an cxpanded character set. The
way characters work, including multiple fonts and the extra bits from the keyboard, is cxplained
in scction 21.1, page 276. Notc that you can typc in the fixnums that represent characters using
"#/" and "#\"; for example, #/f reads in as the fixnum that represents the character "f",
and # \return rcads in as the fixnum that represents the special "return” character. Sce page 286
for details of this syntax.

In place of a string, most of these functions will accept a symbol or a fixnum as an
argument, and will coerce it into a string. Given a symbol, its print name, which is a string,
will be used. Given a fixnum, a one-character string containing the character designated by that
fixnum will be uscd.

Since strings are arrays, the usual array-referencing function aref is used to cxtract the
characters of the string as fixnums. For example,
(aref "frob" 1) => 162 ;lower-caser
Note that the character at the beginning of the string is clement zcro of the array (rather than
onc); as usual in Lisp Machine Lisp, everything is zero-based.

It is also legal to store into strings (using aset). As with rplaca on lists, this changes the
actual object; one must be careful to understand where side-cffécts will propagate to. When you
are making strings that you intend to change later, you probably want to create an array with a
fill-pointer (see page 100) so that you can change the length of the string as well as the contents.
The length of a string is always computed using array-active-length, so that if a string has a
fill-pointer, its value will be used as the length.

9.1 Characters

character x
character coerces x to a single character, represented as a fixnum. If x is a number, it
is returned. If x is a string or an array, its first element is returned. If x is a symbol,
the first character of its pname is returned. Otherwise, an error occurs. The way
characters arc represented as fixnums is explained in section 21.1, page 276.
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char-equal chl ch2
This is the primitive for comparing characters for cquality; many of the string functions
call it. ch/ and ch2 must be fixnums. The result is t if the characters are equal ignoring
case and font, otherwise nil. %%ch-char is the byte-specifier for the portion of a
character which excludes the font information.

char-lessp chl ch2
This is the primitive for comparing characters for order; many of the string functions call
it. chl and ch2 must be fixnums. 'The result is t if ci/ comes before ch2 ignoring case
and font, otherwise nil.” Details of the ordering of characters are in section 21.1, page
276. ‘

9.2 Upper and Lower Case Letters

alphabetic-case-affects-string-comparison Variable
This variable is normally nil. If it is t, char-equal, char-lessp, and the string scarching
and comparison functions will distinguish between upper-casc and lower-case letters. It it
is nil, lower-casc characters behave as if they were the same character but in upper-case.
It is all right to bind this to t around a string opcration, but changing its global value to
t will break many system functions and uscr interfaces and so is not recommended.

char-upcase ch
If ch, which must be a fixnum, is a lower-case alphabetic character its upper-case form is
returned; otherwise, ch itself is returned. If font information is present it is preserved.

char-downcase ch
If ¢h, which must be a fixnum, is a upper-case alphabetic character its lower-case form is
returned; otherwise, ch itself is returned. If font information is present it is prescrved.

string-upcase siring
Returns a copy of string, with all lower case alphabetic characters replaced by the
corresponding upper casc characters.

string-downcase string
Returns a copy of string, with all upper casc alphabetic characters replaced by the
corresponding lower case characters. '

9.3 Basic String Operations

string x
string coerces x into a string. Most of the string functions apply this to their string
arguments. If x is a string (or any array), it is returned. If x is a symbol, its pname is
returned.  If x is a non-negative fixnum less than 400 octal, a one-character-long string
containing it is created and rcturned. If x is a pathname (sce chapter 22, page 332), the
"string for printing" is rcturned. Otherwise, an error is signalled.
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string-Tength siring
string-length rcturns the number of characters in swring. This is 1 if string is a number,
the array-active-length (sce page 105) if siring is an array, or the array-active-length
of the pname if string is a symbol.

string-equal stwringl string? &optional (idx! 0) (idx20) liml lim2
string-equal compares two strings, returning t if they are equal and nil if they are not.
The comparison ignores the extra "font" bits in 16-bit strings and ignores alphabetic case.
equal calls string-equal if applicd to two strings.

The optional arguments idx! and idx2 arc the starting indices into the strings. The
optional arguments liml and /im2 arc the final indices; the comparison stops just before
the final index. /iml and lim2 default to the lengths of the strings. These arguments are
provided so that you can cfficicntly compare substrings.
Examples:

(string-equal "Foo" "foo") => t

(string-equal "foo" "bar") => nil :

(string-equal "element" "select" 0 1 3 4) => t

hstring-equal swingl idxl string? idx2 count
%string-equal is the microcode primitive which string-equal calls. [t returns t if the
count characters of stringl starting at idx/! are char-equal to the couns characters of
string2 starting at idx2, or nil if the characters are not equal or if cownt runs off the
length cof either array. -

Instead of a fixnum, count may also be nil. In this case, %string-equal comparcs the
substring from idx/ to (string-length stringl) against the substring from idx2 to (string-
length siring2). 1f the lengths of these substrings differ, then they are not cqual and nil
is returned.

Note that stringl and siring2 must really be strings; the usual coercion of symbols and

" fixnums to strings is not performed. This function is documented because certain
programs which require high efﬁciency and are willing to pay the price of less gencrality
may want to use %string-equal in place of string-equal.

Examples:
To compare the two strings foe and bar:
(%4string-equal foo 0 bar 0 nil)
To sec if the string foo starts with the characters "bar":
(%string-equal foo 0 "bar" 0 3)

string-lessp stringl string?
string-lessp compares two strings using dictionary order (as defined by char-lessp). The
result is t if stringl is the lesser, or nil if they are equal or string2 is the lesser.

substring string start &optional end area
This extracts a substring of string, starting at the charactcr specified by start and going up
to but not including the character specified by end. start and end arc 0-origin indices.
The length of the returned string is end minus start. [f end is not spccified it defaults to
the length of string. The arca in which the result is to be consed may be optionally
specified.
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Example:
(substring "Nebuchadnezzar" 4 8) => "chad"

" nsubstring string start &optional end area
nsubstring is the same as substring except that the substring is not copied; instead an
indirect array (sce page 101) is created which sharcs part of the argument string.
Modifying one string will modify the other.

Note that nsubstring does not necessarily use less storage than substring: an nsubstring
of any length uscs at least as much storage as a substring 12 characters long. So you
shouldn't usc this just "for efficiency”; it is intended for uses in which it is important to
have a substring which, if modified, will cause the original string to be modified too.

string-append &rest sirings
Any number of strings are copicd and concatenated into a single string. With a single
argument, string-append simply copics it. If the first argument is an array, the result
will be an array of the same type. Thus string-append can be used to copy and
concatenate any type of 1-dimensional atray.
Example:
(string-append #/! "foo" #/!) => "Ifool"

“string-nconc modified-string &rest strings

string-nconc is like string-append except that instcad of making a new string containing
the concatenation of its arguments, string-nconc modifies its first argument. modified-
siring must have a fill-pointer so that additional characters can be tacked onto it
Compare this with array-push-extend (page 108). The value of string-nconc is
modified-string or a new, longer copy of it; in the latter casc the original copy is
- forwarded to, the new copy (sece adjust-array-size, page 106). Unlike nconc, string-
nconc with morc than two arguments modifies only its first argument, not cvery argument
but the last. '

string-trim charset string
This returns a substring of string, with all characters in char-set stripped off of the
beginning and end. char-set is a set of characters, which can be represented as a list of
characters or a string of characters.
Example: ‘
(string-trim '(#\sp) " Dr. No ") => "Dr. No"
(string-trim "ab" "abbafooabb") => "foo"

string-left-trim charlist string
This rcturns a substring of string, with all characters in char-list stripped off of the
beginning. char-set is a set of characters, which can be represented as a list of characters
or a string of characters.

string-right-trim charlist string
‘This rcturns a substring of string, with all characters in char-fist stripped off of the end.
char-set is a set of characters, whicl can be represented as a list of characters or a string
of characters. '
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string-reverse siring .
Returns a copy of string with the order of characters reversed. This will reverse a 1-
dimensional array of any type.

string-nreverse string
Returns string with the order of characters reversed, smashing the original string, rather
than creating a new one. If siring is a number, it is simply rcturned without consing up
a string. This will reverse a 1-dimensional array of any type.

string-pluralize siring
string-pluralize returns a string containing the plural of the word in the argument slnng
Any added charactcrs go in the samc case as the last character of string.
[xample:
(string-pluralize "event") => "events"
(string-pluralize "Man") => "Men"
(string-pluralize "Can") => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"
FFor words with multiple plural forms depending on the meaning, string-pluralize cannot
always do the right thing. ' :

9.4 String Searching

string-search-char char siring &optional (from0) fo
string-search-char scarches through swring starting at the index ﬁom which defaults to
the beginning, and returns the index of the first character which is char-equal to char,
or nil if none is found. If the r argument is supplicd, it is used in place of (string-
length siring) to limit the extent of the search.
Example:
(string-search-char #/a "banana") => 1

%string-search-char char string from to
%string-search-char is the microcode primitive which string-search-char and other
functions call. string must be an array and char, from, and to must be fixnums. Except
for this lack of type-coercion, and the fact that none of the arguments is optional,
%string-search-char is the same as string-search-char. This function is documented
for the benefit of those who require the maximum possible efficiency in string searching.

string-search-not-char char string &optional (from0) to
string-search-not-char scarches through string starting at the index from, which defaults
to the beginning, and rcturns the index of the first character which is not char-equal to
char, or nil if none is found. If the fo argument is supplied, it is used in place of
(string-length string) to limit the extent of the search.
Example:
(string-search-not-char #/b "banana") => 1
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string-search key string &optional. (from0) to

string-search scarches for the string key in the string stwring. The scarch begins at from,
which defaults to the beginning of s&ring. The value returned is the index of the first
character of the first instance of key, or nil if none is found. If the fo argument is
supplied, it is used in place of (string-length string) to limit the extent of the search.
Example:

(string-search "an" "banana") => 1

(string-search "an" "banana" 2) => 3

string-search-set charset string &optional (from0) to
string-search-set scarches through string looking for a character which is in char-set.
The scarch begins at the index fiom, which dcfaults to the beginning. It returns the
index of the first character which is char-equal to some element of char-set, or nil if
nonc is found. I[f the to argument is supplied, it is used in place of (string-length
string) to limit the extent of the scarch. char-set is a sct of characters, which can be
represented as a list of characters or a string of characters.
Example: ‘
(string-search-set '(#/n #/0) "banana") => 2
(string-search-set "no" "banana") => 2

string-search-not-set char-set string &optional (from0) to
string-search-not-set scarches through string looking for a character which is not in
char-set. The scarch begins at the index from, which dcfaults to the beginning., It
returns the index of the first character which is not char-equal to any element of char-
sef, or nil if none is found. If the ro argument is supplied, it is used in place of
(string-length swring) to limit the extent of the scarch. char-set is a sct of characters,
which can be represented as a list of characters or a string of characters. :
Example: » ,
(string-search-not-set ’'(#/a #/b) "banana") => 2

string-reverse-search-char char string &optional from (to0)

string-reverse-search-char searches through string in reverse order, starting from the
index one less than from, which defaults to the length of string, and returns the index of
the first character which is char-equal to char, or nil if none is found. Note that the
index returned is from the beginning of the string, although the search starts from the
end. If the ro argument is supplied, it limits the extent of the search.
Example: '

(string-reverse-search-char #/n "banana") => 4

string-reverse-search-not-char char string &optional from (to 0)
string-reverse-search-not-char secarches through string in reverse order, starting from
the index one less than from, which defaults to the length of string, and returns the
index of the first character which is not char-equal to char, or nil if none is found.
Note that the index returned is from the beginning of the string, although the search
starts from the end. If the to argument is supplied, it limits the cxtent of the scarch.
Example: .

(string-reverse-search-not-char #/a "banana") => 4
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string-reverse-search key string &optional from (to0)

string-reverse-search scarches for the string key in the string swring. The search
proceeds in reverse order, starting from the index onc less than from, which defaults to
the length of string, and returns the index of the first (leftmost) character of the first
instance found, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. The fiom condition,
restated, is that the instance of key found is the rightmost onc whose rightmost character
is before the from’th character of string. If the 1o argument is supplied, it limits the
extent of the search. :

Example:

(string-reverse-search "na" "banana") => 4

string-reverse-search-set charset string &optional from (to0) :
string-reverse-search-set scarches through swring in reverse order, starting from the
index one less than from, which defaults to the length of string, and returns the index of
the first character which is char-equal to some clement of char-set, or nil if none is
found. Note that the index returned is from the beginning of the string, although the
scarch starts from the end. If the fo argument is supplicd, it limits the extent of the
scarch. char-set is a sct of characters, which can be represented as a list of characters or
a string of characters.
(string-reverse-search-set "ab" "banana") => 5

string-reverse-search-not-set charser string &optional from (to0)
string-reverse-search-not-set scarches through stsing in reverse order, starting from the
index one less-than from. which defaules o the length of siring, and returns the index of
the first character which is not char-equal to any clement of char-set, or nil if none is
found. Note that the index returned is from the beginning of the string, although the
search starts from the end. If the ro argument is supplied, it limits the extent of the
scarch. char-set is a set of characters, which can be represented as a list of characters or
a string of characters.
(string-reverse-search-not-set '(#/a #/n) "banana") => 0

See also intern (page 351), which given a string will return "the" symbol with that print
name.

9.5 170 to Strings

The special forms in this section allow you to create [/O strcams which input from or output
to a string rather than a real I/0 device. See scction 21.5.1, page 297 for documentation of I/0
streams.

with-input-from-string Special Form
The form
(with-input-from-string (var string)
body) .
evaluates the forms in body with thc variable var bound to a stream which reads
characters from the string which is the value of the form string. The value of the special
form is the value of the last form in its body.
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The strecam is a function that only works inside the with-input-from-string special form,
so be carcful what you do with it. You cannot usc it after control leaves the body, and
you cannot nest two with-input-from-string special forms and use both streams since the
special-variable bindings associated with the streams will conflict. It is done this way to
avoid any allocation of memory.

After string you may optionally specify two additional "arguments”. The first is index:
(with-input-from-string (var string index)
body)

uses index as the starting index into the string, and sets index to the index of the first
character not rcad when with-input-from-string rcturns. If the whole string is rcad, it
will be set to the length of the string. Since index is updated it may not be a general
expression; it must be a variable or a setf-able reference. The index is not updated in
the cvent of an abnormal exit from the body, such as a *throw. The valuc of index is
not updated until with-input-from-string rcturns, so you can’t usc its value within the
body to sce how far the rcading has gotten.

Use of the index feature prevents multiple values from being returned out of the body,
currently. ‘ :

(with-input-from-string (var string index limit)
body)
uscs the value of the form /imit, if the value is not nil, in place of the length of the
string. If you want to specify a limit but not an index, write nil for index.

with-output-to-string Special Form
This special form provides a variety of ways to send output to a string through an 170
strcam. ,

(with-output-to-string (var)
body)
evaluates the forms in body with var bound to a stream which saves the characters output
to it in a string. The value of the special form is the string.

(with-output-to-string (var string)
body)

will append its output to the string which is the value of the form string. (This is like
the string-nconc function; see page 118.) The value returncd is the valuc of the last
form in the body, rather than the string. Multiple values are not returned. string 