INEW
| GENERATION
SYSTEMS, inc.

2153 Golf Course Dr.
Reston, VA 22091
(703) 476-9143

MICROSHELL

UNIX Features for CP/M

User's Manual Version 1.21

May 30, 1982

Copyright (c) 1982
New Generation Systems, Inc.
2153 Golf Course Drive
Reston, Va. 22091
(703) 476-9143
All Rights Reserved

Summary of Changes in MicroShell Version 1.2 and 1.21
May 30, 1982

A number of significant enhancements have been added to the
current version of MicroShell while its size has been reduced by
one page (0.25 K bytes) to 9.25 K bytes.

The following is a brief summary of the changes:
- Input/Output Redirection: Direct BIOS calls supported

- Input Redirection: Added "CP/M" and "UNIX" modes.
Added "Transparent" flag. '

- Verbose Flag: Now causes all commands and input from
a file to be echoed.

- Output Redirection: User input to a program can now
be redirected.

- Redirection and the Printer: Added redirection to the
printer and redirection of printer output to the
console.

- Repeat of Previous Command capability
- New command "TYP": Paged file display

- User adjustable delays for running program demonstra-
tions with Microshell.

- CP/M error conditions no longer cause exit from
MicroShell. ‘

- Command (shell) file changes
- Abbreviated shell flag display

- Miscellaneous bug fixes.

A more detailed discussion of each change now follows:

1. Input/Output Redirection: Previous versions did not redirect
input or output which bypassed the CP/M BDOS and went directly to
the BIOS. All I/O can be redirected now, not just I/0 that goes
through the CP/M BDOS. So programs like Microsoft Basic and
Ashton Tate's dBase II, which do direct BIOS I/O, can now be
redirected.

2. Input Redirection: 1Input redirection is one of the most
difficult UNIX features to implement under CP/M due to the many
"ways" a program can get input from CP/M, how to recognize the
end of the input and what to do at the end of the input. We have

Summary of Changes in MicroShell Version 1.2 and 1.21

established two input redirection modes, set by the "M" mode
flag:

Mode "On" = CP/M mode: Input returns to the keyboard after
the end of the shell or input file. This is the default mode and
is the way "submit" works under CP/M. This mode permits, for
example, a file which could contain a number of initial Wordstar
commands (margins, help levels, tabs, etc) and then return the
input to the keyboard so the user can begin editing.

Mode "Off" = UNIX mode: At the end of the input file, i.e.
when a control Z is read from the file, a control Z followed by a
carriage return is returned to the program, which is then
responsible for properly terminating. This mode permits a
program to operate on normal text files and receive a special
signal at the end of the file. This protocol appears to be
compatible with some of the "software tools" packages that are on
the market.

Argument substitution (e.g. $1l), control character
substitution (e.g. “Z) and escape character processing (e.g. \¥§)
still are done in either input mode. In addition, line feed
gobbling may be occuring depending on the "G" gobble line feed
flag state. For those who can't live with this for some special
situation, there's a way to tell MicroShell to just pass the
characters through with no action - the new "T" Transparent flag.
If the "T" flag is set "ON", no special character recognition is
done in the input redirection process and the characters will be
passed "raw" to the program until the physical end of file is
reached. The physical end of file is not the control Z (which is
the logical end of file) but the end of the last sector assigned
to the file by CP/M. Action at the physical end of file depends
on the input mode ("M" flag); CP/M mode returns to the keyboard
and UNIX mode sends “Z followed by carriage return.

3. The Verbose flag is now default "On" and only causes lines of
commands read from shell files or redirected input from a file to
be echoed. These lines or characters taken from an input file
were not previously echoed. Commands given directly to the
MicroShell prompt are now not echoed again.

4. When output is being redirected to a file, input to a program
typed by the user is now also redirected to the file.

5. Printer Redirection:

a. Redirection to the printer: Output can be redirected to
the printer with:

program >S$P [program output goes only to printer]
or
program >+S$P [to echo output to screen]

Summary of Changes in MicroShell Version 1.2 and 1.21

b. Redirection of printer output: Output from the printer
can be redirected to a file with the following commands:

program >*filename [printer output goes only to file "filename"]
or

program >*+filename [printer output goes to file "filename" and
to the printer]

This feature is useful in capturing a report which the issuing
program only sends to the printer or in debugging printer setup
code in programs.

5. The previous command may be repeated by entering an
exclamation point followed by a carriage return. If a shell file
was the last command, MicroShell will repeat the last command of
the shell file - not reexecute the whole shell file. Though a
number of users had asked for the capability to edit the last
command, that code is presently too big to fit with our goal to
reduce the size of MicroShell.

6. Paged File Listing. A new command is recognized by MicroShell
- "TYP", "TYP" is the same as "TYPE" except that the output is
stopped every 23 lines until a character is typed.

7. There are three variable delays now built into MicroShell to
permit MicroShell's action to be slowed down when running a
demonstration shell file and/or for other special purposes. One
delay is in the routine which returns a line of input (BDOS call
10) during input redirection, one delay is in the routine which
returns a single character (BDOS call 1, 6, or direct BIOS call)
during input redirection and the third delay is just prior to
printing the command prompt. (This delay is specifically for
Heath systems that lose the prompt coming out of a program that
resets the video driver - like the Pie editor.) These delays
must be patched with DDT or a program may be written which sets
them. All three are in 1/10ths of a second (for a 2 MHz 8080) and
are set to a default value of 0. When "sh.com" is loaded with DDT
their locations are:

Single character delay: 2DB6 Hex
Line Input delay: 2DB7 Hex
Prompt delay: 2DB8 Hex

Therefore to set a 2 second line input delay, set 2DB7 to 20
(decimal). Heath users should set the prompt delay to 0.1 sec.

8. All CP/M error conditions are now trapped in MicroShell.
After a CP/M error, MicroShell issues a "-L" command internally
to relog the disks an@ returns to the prompt. If a "C is entered
after the MicroShell prompt, this action also occurs. Note that
this has the same functional effect as typing a "C to the CP/M
prompt but MicroShell's action is faster than a normal CP/M warm
start. (One of the side effects of "catching" “C's is the

Summary of Changes in MicroShell Version 1.2 and 1.21

somewhat strange screen action after a “C is typed - a carriage
return followed by "“C" overprinting the prompt. This is normal
in the method MicroShell must use to "catch" the “C.)

9. Command File Changes:

a. Some programs erase "$$$.sub" on drive A if they exit
abnormally to cause a submit file to be stopped. The BDS C
compiler is an example. MicroShell also now recognizes this
to terminate a shell file (or a multiple (semicolon)
command) if in progress. This feature - stopping shell
files when a program erases a "$$S.sub" file - is
automatically disabled when "submit" is run because submit
also erases "$SS.sub". It is sometimes desired to use
"submit® to build a "$$S.sub" file to execute upon exit from
MicroShell. The feature is also inhibited for an explicit
"era $$S.sub” issued from a shell file. For the shell file
to be terminated, an executing program must erase "$$$.sub”.
The clever user will see how to exit a shell file on some
desired condition by using this feature.

b. For "submit" compatibility, MicroShell now recognizes
either ":" or ";" in the first column of a line in a shell
file to signify a comment line. Also, MicroShell now
ignores the command "XSUB" so that all submit files should
run fine under MicroShell.

c. When operating from a user number other than 0, Micro-
Shell now will search user 0 of the current disk for a shell
file before beginning to look for ".com" files. This
permits common shell files to be kept only on user 0 of a
disk rather than in each user area. If the command is
preceeded with a disk drive, MicroShell first looks in the
current user # of the disk drive specified and then in user
0 of the disk drive specified for a shell file before
looking for ".com™ files. It is possible to create a link
to a library of shell files by putting a simple shell file,
say "cmd.sub" in user 0 of each disk drive. "cmd.sub" would
contain:

a:$1 S2 $3 $4 $5 $6 $7 (for shell file library on "A")

Then any shell file on drive A can be accessed by typing:

cmd [shellfile name) [args]

d. TIMBUS A new program - "TIMBUS.COM" - has been added to
the distribution disk specifically to support - dBase II users
using the "quit to" command. It may also be of use to
others. It would normally be used in a shell file and
performs the following action:

(1) Opens "$$S.sub" on the current drive (and user

area) or if not found, on drive A in the current user
area. :

10.

Summary of Changes in MicroShell Version 1.2 and 1.21

(2) Outputs the commands contained in the "$§S$.sub”
file in reverse order (last first) to the console.

(3) Renames "$$$.sub" to "--shtmp"” and then erases it
(so that shell file is not terminated by erasing
"$$S.sub".)

So here's how you would use "TIMBUS" with dBase II. Edit a
command file to run dBase II such as "rundbase.sub" which
will contain:

dbase $1 <ST [to run dBase and take input from keyboard]

timbus >temp.sub [to write dBase II "quit to" cmds to
temp. sub]

temp

Thus, MicroShell can continue to execute the dBase II "quit
to" commands even though MicroShell does not warm boot CP/M
to execute the "submit" ("SS$.sub") file that dBase II

writes.

In reducing the size of MicroShell while adding a number of

features, something clearly had to go. One of the things that
went was the long listing of the Flag Meanings when "-S" was
typed. The flags are now labeled very tersely as follows:

11.

ABBREV Meaning Default Value
FS File Search Oon

GL Gobble Line Feeds | - On

ucC Upper Case Command Line On

MD Mode for Input Redirection On

(On=CP/M//Of £=UNIX)
VB Verbose On
TR Transparent Input Off

Miscellaneous Errors Corrected:

a. ">>" with an explicit disk drive given would not work.
Fixed now.

b. A minus sign after a pipe symbol set the console
status on the left side of the pipe symbol instead of the
right side. This has been fixed.

c. Programs that set the disk drive directly to the BIOS
left MicroShell confused about which drive it was on.
This has been fixed we believe.

d. When MicroShell ran programs larger than one extent (16
or 32 K depending on the disk density) or attempted to load
overlays larger than one extent from a user area other than
0, they would sometimes bomb. This has been corrected.

Summary of Changes in MicroShell Version 1.2 and 1.21

e. One program from the CP/M Users Group would not run with
MicroShell - "SD" - which was a directory program. This
program alters error vectors inside of the CP/M BDOS. These
error vectors are not documented in the standard CP/M
documentation and are not supported by MicroShell. "sD"
will run if it is reassembled with "DOPT" set FALSE to
prevent "SD" from altering the error vectors.

12. A "BAD LOAD" error message has been added. If a program is
too large to be loaded under MicroShell, this message will be
printed and MicroShell will return to the command prompt.

13. In the revision 1.1 change notes, the patch point for
changing the number of columns displayed for the "dir" directory
command was given so that Apple users with only 40 columns and
Osborne users could keep the directory display on the screen.
This patch point is now 2D8E Hex when MicroShell is loaded with
DDT. After the number of columns has been changed as desired,
the new "sh.com" should be saved with "save 46 sh.com".

14. Revision 1.21 changes:

a. The scheme of printer redirection to a file was changed
to use the >* command line scheme instead of the shell flag in
revision 1.2. In addition, only printer output now goes tc the
file instead of being merged with console output.

b. When programs taking console input directly from the
BIOS (like Wordstar, Mbasic and dBase II) are run from a shell
file or with input redirection, MicroShell now does not echo the
input to the screen as the program itself does. This had
recsulted in double characters on the screen when the Verbose flag
was on.

c. In MicroShell 1.2, direct BIOS disk select calls were
rerouted to the BDOS to correct the problem of MicroShell and the
BDOS not knowing that a program had changed the disk drive. This

solution caused problems with formatting programs. In revision
1.21, this situation has been improved though a "-L" may be

necessary after running "format" or "copy" programs which
directly access the BIOS drive select.

d. Handling of the BDOS call 6, direct console I/0C with
redirection was corrected.

e. The remaining change in Revision 1.21 was to add the
Mode flag to the CUSTOMIZ program to permit changing its default
value.

Summary of Changes in MicroShell Version 1.2 and 1.21

A summary of the additional MicroShell special

characters and commands not listed in Appendix E of the manual:

Char

>>
>>+

>%
>*+
SP

e

+M

Special Characters
Meaning

Append Console Output to file
(with echo to console)

Redirect Printer Output to file
(with echo to printer)

Printer (Redirection to printer)
(with echo to console)

Control C typed on command line
is identical to -L flag

Repeat previous command

[MicroShell echoes last command]

MicroShell Flags

Example

stat >>filename
dir >>+filename

ws >*filename
ws >*+filename

stat *.* >S$P
stat *.* >+$P

& °C

[MicrcShell logs
in disks]

%

$ copy all

[copy executes]

% !

copy all

[copy executes again]

Sets CP/M Input Mode (return input to keyboard at
end of input or shell file) (Default) o

Sets UNIX Input Mode (send “Z and carriage return to
program at end of input or shell file)

Transparent Mode On; MicroShell ignores all special
characters ($,",\) during input or shell files.

Transparent Mode Off (Default)

Summary of Changes in MicroShell Version 1.1
February 24, 1982

1. The amount of memory that MicroShell takes away from the CP/M
Transient Program Area (TPA) has been reduced to 9.5 K bytes.

2. Some programs that used the default disk location at 0004 did
not work properly with MicroShell. The symptom was that the
wrong drive was made the default drive. This has been corrected.

3. The number of columns in the "dir" directory listing was made
a variable and can be changed from the CP/M default of 4 columns.
This may be useful for narrower screens than 80 columns. (Apple,
etc.) 1In fact, users with 80 column screens can change it to 5
columns if desired. It has not yet been added to CUSTOMIZ but is
found at location 2E94 hex if MicroShell is loaded with "DDT".
After setting this location to the desired number of columns for
"dir" to display, the new MicroShell image should be saved with
"save 47 sh.com".

4. CP/M "system" files were being shown in the "dir" directory
listing. This has been corrected and they no longer show unless
a "-s" flag follows "dir" in the command line. For example:
"dir -s *.*" will show all files in the current user aresa,
including "system" files.

5. MicroShell was very intolerant of spaces after the ">" and
"¢" redirection operators. If spaces were present, garbage files
were sometimes created. This has been corrected and "white
space" -- spaces or tabs -- are now optional between the ">" or
"¢" and the file name. Note that no white space is allowed
between a ">" or "<" and a "+" or "-" modifier.

6. Double digit user numbers, if displayed in the prompt, could
cause MicroShell to bomb. This has been corrected.

7. See Section 3.6.7 of the manual for proper MicroShell
operation with the Wordstar word processing program.

8. Heath Users: When using the "Pie" editor from the Software
Toolworks with MicroShell, the user may notice that the first
prompt which MicroShell issues after exiting "pie"™ is missing
some of the first characters. This is caused by the fact that
"pie" issues a reset command to the video driver just prior to
exiting to CP/M. This reset command requires a relatively long
time for the video processor to complete (compared to other
functions.) Thus, when MicroShell tries to print its prompt, the
processor is still busy with the reset and misses some of the
first characters in the prompt string. This does not cause a
problem under CP/M alone because CP/M's warm start also takes
some time to complete. Since there's no warm start when running
under MicroShell, this can be solved in two ways. The first
method is to just hit return, issuing a blank command line;
MicroShell will just reprint the prompt. The second method is to
make a custom prompt (Section 2.4.5) that includes about 10
leading blanks before the "%n" to eat up some time and allow the
reset to finish.

COPYRIGHT NOTICE
Copyright (c), 19282 by New Generations Systems, Inc. All Rights
Reserved. No part of this publication may be reproduced for

commercial purposes without the express written permission of New
Generation Systems, Inc.

TRADEMARKS
The following trademarks are referenced throughout this manual:

ACT 80, ACT 86, PASCAL/M Sorcim Corporation

CompuPro Godbout Electronics

Cp/M, CBASIC, MAC Digital Research Corporation
Spellbinder Lexisoft, Inc .

UNIX : Bell Telephone Laboratories

Wordstar, Spellstar MicroPro International Corporation

: ; croshell witl Readi he 1]

Everyone is always anxious to run a new program without
having to read through the manual first. Here's how to run
MicroShell.

1. Copy the distribution disk before you do anything else. It
should have the following programs on it:

SH.COM MicroShell
CUSTOMIZ.COM MicroShell Customization Program
ECHO.COM A useful program for shell files which merely

echoes its arguments to the screen (for
messages from shell ("submit") files.)

FULLPRMP. SUB Demonstration shell files which will change
NORMPRMP.SUB the prompt.

2. With CP/M running in your computer, type "sh", followed by a
carriage return of course.

3. MicroShell will sign on with a "%" prompt (like UNIX).

4. Give MicroShell a few CP/M commands like "dir" and "stat" to
assure yourself that it's working.

5. Now try one of MicroShell's features; type:
dir >files
You shouldn't see anything but the disk will click as
MicroShell puts the directory listing into the file "files".
Look at "files" by typing:
type files

There's your directory! Now let's try another MicroShell
feature, multiple commands. Type:

dir >>files;type files
Now you see a second directory "appended” (the ">>") to the
end of the first. And the second half of the command line
executed as soon as the first was done!
6. Now try this. Type:
fullprmp
Now you've got a new prompt that includes the disk drive,

the user number and a bell (to tell you when a command is done.)
(If you got a "fullprmp?", you haven't copied the ".sub" files on

the distribution disk to the disk you're using. Go back and do
that and then continue.)

If you don't like that prompt, type:
normprmp

and you get the "%" prompt back. You can change the prompt
to your liking. See Section 2.4 on "Shell Flags."

7. Now you have the beginning of MicroShell and an idea of the
power of the UNIX operating system that it emulates under CP/M.
A summary of the special command line characters and shell flags
follows. Try each feature to get an idea of what MicroShell can
do. This summary is identical to Appendix E and can be removed
from the manual and used for reference.

ii

Summary of MicroShell Commands

Special MicroShell Characters in Command Line

W

Char Meaning | Example
> Output Redirection stat >filename
< Input Redirection ed file <script
! Pipe output to input of next cmd progl | prog2 | ...
- (""" and "!" are equivalent) stat ®.%!pip lst:=con:
- n*n in shell and input files causes “C (or “c) changed to 03
next character to be its control
equivalent.
When first character on a shell : this is a comment
file line, causes line to be
treated as a comment (ignored).
+ Echo redirected Output to Console stat >+filename
progl |+ prog2 |
- Return "character ready" to sysgen <-script
console input status calls progl |- prog2 | .
progl |+ prog2 |
3 Separate commands era ¥*.bak;stat;ed test <script
" Treat arguments with embedded echo "This is one argument”
o spaces or tabsas 1 argument and S :
ignore special characters inside
quotes
\ Ignore special meaning of next dir \>file
character (filename ">file™)
$ Argﬁment substitution in shell comfile test data
(command) files (0-19)
if "comfile.sub™ contains:
pip b:=za:$1
pip b:=za:$2
then MicroShell executes:
pip b:=a:test
pip b:=a:datsa
$T Redirect Input back to console pip
in a command file b:=za:$1
b:za:$2
ddt <$T

iii

Summary of MicroShell

Shell Flags

Commands (Cont)

Flag Meaning Example
+f or +F | Auxiliary file search enable % +F
(Default) (Auxiliary file search on)
-f or -F | Auxiliary file search disable % -F
(Auxiliary file search off)
+g or +G | Gobble line feeds during % +G
(Default)] Input redirection (Line feeds removed from input)
-g or -G | Don't gobble line feeds % -G
during Input Redirection
-1 or -L | Login current disk 7 -1
or (after changing disks) ¢ (new disk logged into
+1 or +L CP/M for writing)
-p or =P | Prompt string -p "%n%%" gives:
Uses "C"-like format:
or ¢ - Next char special (CR, LF)%
(%% gives %)
+p or +P n/N - Newline (CR, LF) -p "%nDrive:%D User%U %% gives:
a - Lower case drive
D - Upper case drive (CR, LF)Drive:A User:0 %
u/U - User number
-s or -S | Shell Status report % =S
- : File search: On
or (Shows status of flags) Gobble 1fs: Off
Ucase cmd: On
+S Or +38 Verbose: off
+u or +U Upper case translation of 7 +U
command line (like CP/M) % echo this is upper case
(Default) THIS IS UPPER CASE
-u or -U No case translation on command % -U
line (allows passing lower % echo this is lower case
case command line to a program)] this is lower case
+v or +V | Verbose mode: % +V (A1l commands echoed)
comfile test data
Echo commands before execution | pip b:=a:test
pip b:=a:data
-v or -V | Disable Verbose mode g =V
(Default) (No echo of commands)
-x or =X] Exit MicroShell and return to 7 -x
CP/M A>

iv

Table of Contents

OverVieW‘l.l...l.t.".....‘..l............

101 System Requirements l...‘l-ltll..'....l.......t......
1.2 Summary of MicroShell Features ..cceocecccrccrcccecccs

BaSiC MiCIOShell Commands 0.00.cooo'.at..oool...ootoo.o.‘o
ExeCuting MiCKOShEII ..lolo'o..l....ot’.oc.Ioooo..'l.

CP/M—like Functions e e ® 0000 600 P R R R R R R R I e o o s
Forming MicroShell Command Lines s.cceceecccccccccecee

b W W e

pDON
wWN -

2.3.1 Escaping MicroShell Special Characters
2.3.2 Multiple Commands on a Line ..ecesccccccvcccces
2.3.3 1Interrupting a MicroShell Command escececsosss

(Vo) [o s JENKo)]

2.4 MiCrOShell Flags l...'.on-0....0;..0....ooc'.lo...o.-

Issuing a Flag COMMANG «ceceecesncccccevcescecce 9
flag: File SearCh c.cceceecrsrccccccccncnes 10
flag: Gobble Line FeedS .eeeerevnssreccncns 10
flag: Login DiskS ceeeeeceoccncsccscaccnces 11
flag: Prompt Change ..ceeevocccvcsccccccence 12
flag: Status Report .cceececeacencececccces 13
flag: Upper Case Command Line .ecescececceces 14
flag: Verbose Mode: Command EChO cievesses 14
flag: eXit MicroShell O -

[SENENESENESE LR NE N
. o & o ¢ o * o
N A W R
* e ® L] * 0
VOOV S WNH
Xganoeram

205 Output RedireCtion e 6 6 606 @9 805 S¢S0 000 Es PSS OE S Ses s 15

2.5.1 Appending Output to a File ..ccceveccccccacss 15
2.5.2 Echoing Redirection to the Console «..eccvee. 15
2.5.3 Cautions in Redirecting Output ..cececececces 16

2.6 Input Redirection € 58 56 06 060856 06 08¢ 68 889 880000 eS s OSTs Ss 0 16

2.6.1 Redirecting Console StatuS .cseeseccccccccces 16
2.6.2 Normal Termination of Input Redirection 17
2.6.3 Input Redirection Errors ..eececececcccccccecse 17

2.7 Pipes .'..'O.‘.'...l.......0"0‘....'0.".l.....‘..c 18
2.7.1 Error Messages from Pipes ..ccccescsccccccccne 19
Automatic Program SearCh e ® ¢ a8 5 ¢ 0 8 0 s 00 ® 6 8o ¢ 8 & & 68 " o 0 0 0 0 LR 4 20

3.1 Main Command SearCh .c.ceecersccecsccsssvscccescssocsns 20
Benefit of Main Command SearCh ceccescccccccncscoses 21
File SEAICH eevecessscsssascssssoscssssscsosssscconsas 22
Benefit of Automatic File SearCh ..cececceccscsccscnece 23
Some Practical Applications ..eccescccccccccveccncsss 23

Some Practical LimitationsS .ccecesscecccccoscccccecns 23

WWwwww
L] L] * L) L] *
U WY

4.0

5.0

Table of Contents (Cont)

Shell Files © 9 5 6 0 © 6 9 8 8 0 2 6 0 0 6 5 @ 6 0 ¢ O 50 VO S P OSSN OO E SNl

4.
4.

4.
4.
4.
4.
4.
4

N W N

7
8

Constructing the Shell File .c.ivecrsesscccncccacees
Executing Shell Files and Argument Substitution
Null ArgumentsS seceececcssccscccscasacscse ceecsessaane
Control Characters in a Shell File .cccoieecctsassose
Comments in Shell FilesS .ccceeececns ceessesseccnnne .
Input Redirection in Shell FilesS ...cecececencencnne

4.6.1 Changing the Default Input Redirection
4.6.2 Redirecting Shell File Input to the Console .

Interrupting Shell FileS cececesccecsccotscasccnscns
Shell Files Which Return to CP/M e ® 6 5 05 0 & & 5 & s 0 0 e

MicrOShell Customizationo ooooo € ® ¢ 8 6 & 6 ¢ 0 P 0 S0 60006 s e BT 0N

(SN0 RE C REL R ST

*

O ~IM U Wi

Executing the CUSTOMIZ PrOGram ceseecesccccccscvccns
Changing the Search Path ..cceeecoctccecccccctocenns
Changing the MicroShell-Responsible File Extensions
Changing the Initial Prompt String ...ceccececcccescs
Changing the Shell File Extensioncccecececnccns
Changing the Initial Flag Defaults ..eceececccccanes
Ending the CUSTOMIZ Functioncceececvececcocanne
Setting Up CP/M for Automatic Loading of MicroShell

Appendices

A

m O O w

m

MicroShell History and Design
MicroShell Error Messages
MicroShell Compatibility
UNIX Reference Material
Summary of Commands

Index

26

26
26
27
28
28
28

29
29

30
30

32

32
33
34
35
36
36
37
37

Overview

1.0 QOverview

MicroShell is a CP/M program which adds powerful, user-
friendly capabilities to the CP/M operating system similar to
many of the functions available in the UNIX operating system.
Compatibility with existing CP/M software is retained while
adding the UNIX features to the operation of existing CP/M soft-
ware. New software applications and tools can be designed and
implemented with much less effort using the features available in
MicroShell. MicroShell can be tailored to a user's system and
experience level, providing additional information and help for a
new user or crisp, elegant power for an experienced user.

1.1 System Reguirements:

MicroShell requires CP/M 2.2, at least 32 K of memory and at
least one disk drive.

1.2 Summary of MicroShell Features:
Feature Section

o Basic MicroShell Commands 2
o All CP/M functions: ERA, DIR, REN, TYPE, SAVE, etc. 2.2
o Multiple commands on one line 2.3
o Custom user prompt to aid new or experienced users 2.4
0. Redirection of output to a file 2.5
o Redirection of input from a file 2.6

o Pipes: Redirection of the output of one prdégram

to the input of the next program 2.7
o Automatic Program and File Search 3
o Command Files (similar to CP/M's "submit" capability) 4
o] Customization of MicroShell 5
MicroShell History and Design App A
MicroShell Error Messages App B
MicroShell Compatibility App C
UNIX Reference Material App D
Summary of Commands App E
Index App F

Overview

The new user of MicroShell should first read the Preface --
How_to Run MicroShell without Reading the Manual, following the
examples by actually using MicroShell. After he has gained an
initial familiarity with MicroShell, Basic MicroShell Commands,

Section 2.0, will provide more details on using MicroShell.

Basic MicroShell Commands

2.0 Basic Microshell Commands

This section will cover the basic MicroShell Commands,
including:

- Executing MicrocShell

- CP/M-like functions

- Forming MicroShell command lines
MicroShell Flags

- Output Redirection

- Input Redirection

- Pipes

2.1 Executing MicroShell

The MicroShell program is named "sh.com" and is executed
by typing:

NN DR
L 1 . .

~NOYU W N
|

sh
or
sh [initial command line]

from the CP/M prompt ("A>", if the user is logged into CP/M on
the A disk drive.) MicroShell will respond with:

MicroShell Version X.X
Copyright (c) 1981 New Generation Systems

(If an initial command line was given, the command
is executed prior to the initial % prompt.)

%

If the user has altered the default prompt from the "%" in
the delivered MicroShell, the custom prompt is displayed.

The initial command line may be any legal MicroShell
command. For example, if the user wanted to log into drive B
immediately, he could execute MicroShell with the following
command line:

sh b:

MicroShell would then change the default drive to B prior to
displaying the initial prompt. If a user desired to set some of
the shell flags (Section 2.4) on initial entry, a shell file
(Section 4) could be executed on initial entry to perform these

functions. If the file, "init.sub" contained the following
lines:

+V

b:

dir

then by typing:

Basic MicroShell Commands

sh init

vicroShell would turn on the Verbese flag (Section 2.4.8), change
the default drive to B, and display the directory prior to
issuing the initial prompt. The shell flags and shell files are
fully described in Sections 2.4 and 4 respectively.

Before we proceed to discuss MicroShell's other features,
here's how you get out of MicroShell and back to CP/M. Just
type the -x (or -X) "eXit" shell flag, by itself, in response to
the MicroShell prompt. MicroShell will exit back to CP/M and
CP/M will display its prompt for the current drive, e.g.:

$ -x (<---user types "-x", carriage return)
A> (<==-CP/M prompt)

2.2 Cp/M-like Functions

MicroShell, on initial entry, relocates itself just below
the CP/M Basic Disk Operating System (BDOS), replacing the CP/M
Console Command Processor (CCP). The CCP is the part of CP/M
which interprets commands by the user and performs the built-in
functions: DIR, ERA, REN, SAVE and TYPE. The vast majority of
user programs - word processors, compilers, accounting programs,
etc. - actually overlay the CCP to use its space in memory for
their own use. MicroShell replaces (overlays) the CP/M CCP but
does not permit user programs to overlay MicrcShell, as it must
remain present to perform many of its functions. All of this
action is invisible to the majority of CP/M programs which use
- CP/M's design entry points to accomplish their functions. Some
- programs, mostly older ones; "look around" inside of CP/NM to
perform some function. This is "not cricket" from a software
compatibility and transportability aspect and these programs may
not operate properly with MicroShell. See Appendix C for a list
of known compatible and incompatible programs.

Since MicroShell overlays the CP/M CCP, it performs all of
the functions that the CCP normally performs. The following
commands will be executed by MicroShell just as the CP/M CCP
would execute them, except as noted:

DIR [afn] - Directory listing

ERA [afn] - Erase file(s) (Note: No "*.*" warning)

REN newname=oldname - Rename a file

TYPE filename - Type a file

SAVE nn filename -~ Save "nn" 256-byte pages of memory be-
ginning at 100 Hex in file "filename"

drivename: - Change default drive

user NN - Change user area to area #NN

(Note: MicroShell allows the user to
access user areas 0-31. The CP/M CCP

only z2llows the user to access 0-15
while 16-31 can only be accessed from

a user program call to CP/M.)

>

Basic MicroShell Commands

We will assume that the MicroShell user is familiar with these
CP/M commands. The new CP/M user may wish to review these
commands in the Digital Research CP/M documentation.

The CP/M CCP also provides the user with certain line
editing functions to change a command line which has been entered
in error prior to executing it (e.g. backspace, delete, control:
u, x, r, e, etc.) These line editing features are supported by
MicroShell. Again, the new CP/M user may wish to review these
commands in the Digital Research documentation.

A final CP/M function which is also provided by MicroShell
is control P (or p) which toggles the printer on or off.

With the exception of the extended user area access provided
by MicroShell (0-31 vice 0-15), and the "era *.*" warning
message, all CP/M CCP functions execute identically under
MicroShell and provide the same error messages as the CP/M CCP on
encountering an error condition. ‘

2.3 Forming MicroShell Command Lines

The process of entering a command to MicroShell is identical
to CP/M, i.e. the main command or program nhame is entered first,
followed by any arguments the command requires. For example:

stat *.*

"ctat"™ is the main command (program) to be executed and "*.*" is
an argument to "stat" telling "stat" to display a list of all
files in the current directory (actually the current disk drive
and user number.) MicroShell accepts an identical command. In
addition, however, MicroShell permits additional arguments to be
given to perform special MicroShell functions. For example, if
the user typed:

stat *.* >statout

MicroShell would send the normal output of the "stat *.*" command
to the file "statout" instead of displaying it on the console.
This is called output redirection and is one of the UNIX features
brought to CP/M by MicroShell. It is discussed in detail in
Section 2.5. MicroShell's other features, input redirection,
pipes, multiple commands on one line, etc., are similarly in-
voked.

The maximum length of a command line to MicroShell is 84
characters.

A note is in order here about how MicroShell works. In the
previous example, "stat *.* >statout", MicroShell recognizes the
"sstatout" portion of the command, strips it from the command,
finds and loads the file "stat.com". "stat" never Kknows that
"sstatout" was typed. It sees the command just as if "stat * k0

Basic MicroShell Commancs

was typed from CP/M! The other special MicroShell commands are
similarly stripped out of the command line by MicroShell before
it is passed to the "main command”.

White Space in Command Lines: In general, "white space"
(spaces or tabs) may be used freely in commands to MicroShell.
In particular, "white space” is optional before and after redi-
rection symbols ("<", ">"), pipe symbols ("|") and semicolons.
One place there cannot be "white space" is between a redirection
symbol or pipe symbol and a "4 or "-" modifier. For example:
"stat *.* >+ out", "stat *.*>+out" and "stat *.* >+out" are all
legal command lines, but "stat * % > 4+ out" is not.

The other MicroShell special commands are covered in detail
in the following sections and summarized in Appendix E.

2.3.1 Escaping MicroShell Special Characters:

The characters ">", "<, "*", "|", ";" and "\" have a
special meaning to MicroShell when used anywhere in a command
line. If it is desired that they be used in a command line for
non-MicroShell functions (i.e. the user program needs them) their
special meaning may be ignored by MicroShell in one of the
following two ways:

1. Precede the special character with an "\", i.e.:
save 1 \>file

will create a filename ">file". To get a "\" to be passed
_through MicroShell, type two "\" 's, i.e.:

save 1 \\
will create a file named "\".

2. Enclose the entire argument containing the special
characters in guotes ("), i.e.:

save 1 "><|"

will create a file named ><|. (Note that quotes (") cannot
themselves be enclosed in guotes but must be escaped with a \.)

The characters "+" and "-" have a special meaning after ">,
n¢" or "|" and must be escaped with a "\" if the user really
wants to have the "+" or "-" as part of the file or command name.
It is best to stay away from the special characters; they're not
common in file names anyway.

To round out the discussion of special MicroShell
characters, all of the shell flags (Section 2.4), when used by
themselves on a command line, are recognized by MicroShell as
special commands and cannot be escaped.

6

Basic MicroShell Commands

2.3.2 Multiple Commands on a Lipe:

MicroShell will accept multiple commands on one line with
each command separated by a ";". For example, the MicroShell
command:

era *.bak;dir;stat

is equivalent to giving the following command sequence to CP/M:

A> era *.,bak

A> dir
""""" Cb/M displays directory
A srat T
T otat displays space remaining
as L TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

The only difference is that the MicroShell user can give all
three commands at once and watch them sequentially execute! He
doesn't have to wait for each command to complete before entering
another command. The benefit of this feature, which comes from
the UNIX operating system, is that we as human beings think in
terms of logical processes which may involve numerous commands to
accomplish. If we can type in all of the necessary commands to
carry out a logical process, we are then freed from that level of
detail and can concentrate on the results or on the next process.
Thus the computer and its software has done what it does best -
keep track of multiple and/or repetitive tasks while the user is
free to think about logical processes. In Section 4 we will
cover one higher step in this same philcsophy: putting a number
of individual commands into a file -- a shell file -- and execut-
ing them by merely typing the name of the file.

Limitati Multiple C s

There are several restrictions on the use of the multiple
command feature of MicroShell:

1. The maximum command line length of 84 characters cannot
be exceeded. The total command (i.e. all characters entered up
to the carriage return) is counted - not just each individual,
semicolon-separated command.

2. Only 17 arguments are permitted for each semicolon-
separated command. That is: a main command and 17 arguments to
the main command.

Basic MicroShell Commands

3. A shell file name (Section 4) causes any remaining
semicolon-separated commands to be ignored. For example, if
"copy.sub" is a shell file containing a number of MicroShell
commands, the command:

era *.bak:stat;copy filel file2 file3;stat
will result in the final ";stat" being ignored by MicroShell.

4. Any commands on a line after the MicroShell eXit flag
"_x" are ignored, since MicroShell relinquishes control to CP/M
after the "-x" flag is executed.

5. Any redirection specified in one command is not carried
over to the next semicolon-separated command. For example:

stat *.* >statout;dir

will cause only the "stat" output to be redirected to the file
"statout", while the directory display from "dir" will come to
the console as it normally would. This is not really a
restriction; it is what would logically be expected to happen.
It is mentioned to clarify the scope of action of redirection.

2.3.3 Interrupting a MicroShell Command:

If a series of commands are given on one line, typing ESCAPE
or DELETE (RUBOUT on some keyboards) will interrupt MicroShell
between semicolon-separated commands. This assumes that whatever
program is running does not "gobble up" any input typed while it
is running. As with interrupting CP/M's "submit", you may have
to hit the ESCAPE key repeatedly. This interrupt feature also -
works to interrupt shell files.

If a particular program has its own mechanism for being
interrupted (e.g. typing any key during a "type" or "dir"
function) MicroShell will not inhibit its action. For example,
if the following command line is typed:

dir;ed filename

and the user hits a key during the "dir" display, the "dir"
process will terminate and MicroShell will execute "ed filename".
Alternatively, if the user typed two ESCAPEs, the first would
interrupt the "dir" process and the second would interrupt the
whole command line. MicroShell would return with the prompt for
the next command.

Basic MicroShell Commands

2.4 MicroShell Flags

Several of MicroShell's features can be altered by the user
from within MicroShell itself. These commands to MicroShell are
called flags.

* Summary of MicroShell Flags *

*

3N

* Flag Meaning Default* *
* *
* F File Search (On/Off) On * *
* *
* G Gobble line feeds (On/Off) On * *
* *
* L Login disks - *
* *
* P Prompt change & * *
%* *
* S Status report of flags - *
* *
* U Upper case command line On * *
* *
* \Y4 Verbose mode: command echo Off = *
* *
* X eXit MicroShell to CP/M - *
* *
* * Default value may be user-customized with the CUSTOMIZ *
* program. %

2.4.1 Issuing a Flag Command:

A flag command is issued as a normal command to MicroShell,
either on initial startup, or in response to the MicroShell
prompt, or in a shell file or as one of multiple (semicolon-
separated) commands on a line. The flag is preceded by a "+" or
a "-" depending on whether the user wants to turn the feature on
(+) or off (-). Flags may be issued in upper or lower case.

For example:
% -F<carriage return>
turns off the automatic file search feature while:
% +V<carriage return>
turns the Verbose mode on. If there is not an "On/Off" function
associated with a flag, as with the "S" status report flag,
either a "+" or a "-" may precede the flag. " The following

command line is legal:

& +V;-L;-U;-S<carriage return>

(Ce]

Basic MicroShell Commands

and would turn on the Verbose Mode, login all disks again, turn
of f Upper case command line translation and print a status report
of the new flag conditions. :

2.4.2 F flag: File Search (On/Off) Default: On

The "F" flag turns MicroShell's automatic file search
feature on (+)(default) and off (-). The automatic search
features are explained in Section 3. The F flag only affects
file search not command search. If the user does not want Micro-
Shell to search for files that match MicroShell-responsible
extensions (.COM, .OVR, and .INT in the as-delivered Microfhell),
the command:

§ -F

will turn automatic file search off. It will remain of f until
the user either turns it back on with:

% +F

command or MicroShell is restarted from CP/NM (if the user hasn't
changed the default F flag condition with CUSTOMIZ.)

This flag is useful in cases where a program might be trying
to erase or rename a file and the user doesn't want that to
happen.

The automatic file search feature is really provided to
permit a program - to read files - like Wordstar reading its .OVR
files or CBASIC loading .INT files, etc. When programs are
erasing, rewriting or renaming files which have MicroShell-
responsible file extensions, the user should be very careful
about using the automatic file search feature. Be sure you know
what's happening before files are erased or changed forever.

Two common programs fit exactly this category, where
automatic file search is not desired: CP/M's PIP file copy
utility and several available programs named COPY. So MicroShell
explicitly recognizes when the user has invoked these two
programs and turns the F flag off. When PIP or COPY is complete,
MicroShell restores the F flag to its previous condition.

2.4.3 G flag: Gobble Line Feeds (On/Off) Default: On

During input redirection, MicroShell is often reading a file
of commands into a program -- for example an editor script. When
the file of commands is created with most editors, a carriage
return followed by a line feed is placed at the end of each line.

Now comes the confusing part. Programs can ask CP/M for
input characters from the keyboard in two ways; they can ask for

10

Basic MicroShell Commands

one character at a time (BDOS call 1 or 6) or a line of char-
acters until a carriage return is typed (BDOS call 10.)

Now consider our file which we want to use as input. If the
program calls for a line of input characters, MicroShell will
supply successive lines from the file, automatically stripping
the carriage return and line feed from the end of each line.
Since the program called for a line of input, MicroShell knows
that it shouldn't send the carriage return and linefeed. This is
the most common call for input characters. DDT takes its input
from this type of call, as does the command mode of the CP/M
editor, ED. So everything works fine.

On the other hand, if the program calls for its input one
character at a time, the linefeed after each carriage return in a
file is probably going to confuse most programs. Leaving the
linefeed out of the script file is one solution; but when the
file is "type"d, all the lines appear on top of each other,
distinctly confusing the user. Having MicroShell always throw
away linefeeds after carriage returns is an alternative solution.
This works fine for most programs, like CP/M's "ED" in the insert
mode and most editors. But what if youwanted to write a program
that took each character of a file, did something with it and
passeG& it on to the output? This type of program is called
a filter and is frequently used in the UNIX environment. If you
want MicroShell to do the file handling for you, redirecting
input and output so you can write a simple keyboard to screen
filter, then you don't want MicrcShell eating up the linefeeds!

So after all this explanation, MicroShell has a flag to
selectively gobble linefeeds on single character input -- you
choose. . Note that MicroShell always gobbles a linefeed after a
carriage return when a program asks for a line of input
characters; you can't change that (and probably wouldn't want
to.)

If you find you want this flag off most of the time, 1if
you're using filters a lot instead of editor scripts, use
CUSTOMIZ to change the default. Also remember that you can make
up a shell file which sets this flag, executes some command and
then restores the flag.

2.4.4 L _flag: Login Disks

The L flag is provided to login a new disk, if disks are
changed after MicroShell is started. If a disk is changed after
MicroShell has accessed it once, then CP/M logs the disk as
Read/Only and any attempt to write on the disk will result in a
BDOS error. MicroShell exits to CP/M and warm starts CpP/M after
all BDOS errors.

Issuing the L flag (eithér +L or -L or +1 or -1, there's no

difference), will cause MicroShell to login drive A, login the
disk on the drive the user is currently on (the default drive)

11

Basic MicrcShell Commands

and reset all other disks in the system. Then if the user
selects a new drive, CP/M will log it in as read/write.

For example, if the user is currently on drive B and wants
to put a new disk in drive B, he performs the following steps:

1. Change the disk in drive B.
2. Type -L or +L followed by a carriage return.

The head will load on drive A to login A and then on B to
login B, (since B was the default drive.) Both drives A and B
are now logged back into CP/M for read and write. If another
drive is selected after the -L, CP/M will log it in again, since
it "forgets" all disks logged in prior to the -L command.

All of this happens without the warm start that usually
happens in CP/M. This is good and bad. Good because it's
shorter. Good because on some double density systems it permits
a single density disk without CP/M on the system tracks to be
logged into drive A, permitting for example, PIPing between two
single-density disks. Why bad? Bad because in some double
density systems, density selection only occurs during a real warm
start. On these systems, MicroShell must be exited to log in a
different density disk. Try your system to see what it requires.
The CompuPro system we use will properly determine disk density
within MicroS€hell.

2.4.5 P _flag: Prompt Change Default: "% "

The P flag permits the MicroShell prompt to be changed from
within MicroShell. The following are examples of possible
prompts:

% (default)

Drive: A User:0

%

% (bell) (bell sounds after %)
On Drive:A User:0 (Wordy!! but possible)

Enter command:

The flexibility for setting the prompt to match the user's
needs is available. Short prompts for experienced users; long for
occasional users; bells for users who do something else while
their programs run!

This flag has an argument: the new prompt string. For
example, the proper command to get the default prompt (back) is:

-p "%n%% " (Note the space after the last "%")

It looks like a lot to type to just get a "% " to typel!?

12

Basic MicroShell Commands

Well, here are the syntax rules for the prompt string. The
syntax is a rough takeoff from the formatted print syntax for the
C programming language.

Character Meaning

% Special character: next character means some-
thing special

N or n New line: <carriage return, line feed. %n
means substitute a carriage return and line-
feed. Note that unless you want a really
unusual display, most prompt strings should
begin with %n.

D Upper case drive letter. %D substitutes the
currently-selected drive in the prompt
string.)

d Lower case drive letter. %d as above.

U or u User number. %u substitutes currently sel-

ected user number into prompt string.

Since "$" has special meaning, to get a "%" to print in the
prompt string, enter two "%"'s - %%. If embedded spaces or tabs
are desired in the prompt, enclose the whole prompt string in
guotes, like we did for the default prompt. (When using CUSTOMIZ
to set the initial prompt string, guotes are neither required nor
allowed when spaces are embedded in the prompt string.) If a
bell or some other control character is desired in the prompt,
just type it into the prompt string. ‘ o S

low you can build your own prompt. You can put the prompt
command in a shell file and execute it when desired by typing the
name of the shell file. Look at our examples, "normprmp.sub" and
"fullprmp.sub", on the distribution disk.

Maximum Prompt Length: 40 characters.

Note that with an intelligent terminal, some really unusual
displays can be generated. For example, you could always have
the prompt clear the screen, or change pages.

2.4.6 S _flag: Status Report

The S flag provides a display of the status of the four
flags which can be set on or off. The S flag can be issued as +8
or -S (or +s or -s). The report looks like:

File search: On
Gobble 1lfs: On
Ucase cmd: . On
Verbose: Off

13

Basic MicreShell Commands

2.4.7 U _flag: Unper‘Case Command Lipe (On/Off) Defaplt: On

The U flag permits the command line passed to a program to
either be in the CP/M-compatible upper case only mode or in
upper/lower case as the user types it. (This is the command line
which is set up at 80 Hex by the CP/M CCP or MicroShell prior to
executing a program.)

Regardless of the state of this flag, MicroShell translates
all file names (i.e. the "main command" name and the setup of the
secondary file control blocks at 5C Hex) to upper case to remain
compatible with CP/M upper case file names.

It is often desirable to pass a program upper and/or lower
case arguments. Issuing the -U flag will permit this. Note, on
the other hand, that some programs will not like to see lower
case arguments, so use this capability with caution.

2.4.8 V _flac: Verbose Mode: Command Echo(QOn/Off) Default: Off

The V flag permits the user to have MicroShell echo each
command line just prior to executing it. This is useful when
running shell files to see that argument substitution is
occurring as intended. When executing a 1line with multiple
commands in it (i.e. semicolon-separated commands) each
individual command is echoed to the console prior to execution.

Redirection of output does not redirect the command echo if
the V flag is on; the echo is always displayed on the console.

The Verbose flag only echoes command lines not all input to
the shell. For example, if a shell file contains inline data to
a program after a command line, only the command line is echoed
to the console -- the data is not. This may take some getting
used to for a CP/M user who is used to "submit" echoing
everything in the submit file to the console. Likewise, if the
input is redirected from a file, e.g. a file of commands to an
editor, the input data is not echoed to the console.

2.4.9 X flag: exit MicroShell

The X flag permits the user to exit MicroShell back to CP/M.
A warm start of CP/M occurs leaving the user at the CP/M prompt.

See Section 4 on shell files for a method of exiting Micro-
Shell to execute a CP/M command and then automatically reloading
MicroShell. This is useful for running large programs which need
the space used by MicroShell.

14

Basic MicroShell Commands

2.5 OQutput Redirection:

Output redirection is the process of redirecting a program's
output from the console (i.e. the user's terminal) to a file.
This capability is one of the UNIX features which MicroShell
provides. For example, the CP/M command:

stat *.*

would normally send the CP/M utility "stat" output to the
console. Under MicroShell, if the user types the command:

stat *.* >filename

MicroShell will redirect the output of "stat" to the file
"filename". White space, blanks or tabs, are not permitted
between the ">" redirection symbol and the filename. Using
output redirection, the output of any program which runs under
CP/M may be captured in a file for later use, editing, printing,
etc. Creating documentation for a program is now much easier and
more accurate since the exact screen output can be saved in a
file for later incorporation into a manual. Or consider the
problems of debugging a program which sends special characters to
the CRT (e.g. cursor positioning, screen-clear, etc.). It's
often hard to tell what's happening if the wrong special char-
acters are being sent. With MicroShell, just redirect the output
to a file and then look at the file with an editor or DDT to see
what characters were sent.

2.5.1 Appending Output to a File:

To append output to an existing file, a modification of the
basic output redirection function is also provided. If a user
desires to place the output from a program at the end of an
existing file, he types the following command line to MicroShell:

progname >>filename

MicroShell places the output of the program "progname" at the end
of the file "filename". White space, blanks or tabs, are pnot
permitted between the ">>" redirection symbol and the filename.

2.5.2 Echoing Redirection to the Console:

Both output redirection (">") and appending (">>") may be
echoed to the console by following the—eutput redirection symbol
with a plus sign ("+"). Thus, the command:

stat *.* >+filename

would result in MicroShell placing the output from "stat" in the
file "filename" with a simultaneous echo of the output to the
console (i.e. a normal console display.) This permits the user
to see what MicroShell is putting into the file and to respongd to
program prompts if the program requires inputs from the user.

15

Basic MicrcShell Commands

2.5.3 Cautions in Redirecting Output:

1. If output containing control characters is redirected,
some care must be exercised with control Z's (1A Hex). Since a
control Z is used@ by CP/M and many CP/M programs to mark the end
of a text file, the first occurrence of a control Z is often
considered@ to be the end of the file. To most of the editors and
word processors around, the rest of the file just isn't there.
So if output containing control Z's is redirected to a file, a
simple utility can be written as a filter to change the control
7's to an unused character (like). MicroShell's input redi-
rection feature can be used to feed the file to this utility and
the output redirected to another file, or a pipe can be used.

2. When redirecting a program's output to a file, the size
of the file often grows faster than one would expect. MicroShell
will issue an error message if the disk fills up while it is
redirecting output:

Disk Full

3. If a program does direct output to the BIOS, bypassing
the CP/M BDOS, MicroShell cannot redirect its output. Where
possible, these programs should be modified to use the CP/M 2.2
direct I/0 system call (BDOS function 6.)

4. Input that the user types into a program whose output is
being redirected is displayed on the console but not redirected.
See App. B for a method of invoking a second shell under Micro-
Shell which will redirect all output (except direct BIOS calls.)

2.6 Input Redirection:

Input redirection is the process of redirecting a program's
input from the console (i.e. keyboard) to a file. For example,

the CP/M command:
ed filename

would normally require the user to enter various editing commands
from the keyboard. If the user is making identical changes to a
number of different files, entry of the editing commands from the
keyboard is not only repetitious but also error-prone. Under
MicroShell, the user can place the proper editing commands in a
file, say "edscript”, and cause "ed" to take its input from the
file "edscript" by typing the command:

ed filename <edscript
Any program which requires keyboard input can therefore take
its input from a file instead of the keyboard. As with output

redirection, blanks and/or tabs are not permitted between the "<"
redirection symbol and the filename.

2.6.1 Redirecting Console Status:

Since some programs make a console status call to CP/M

16

Rasic MicroShell Commands

before calling for input data, MicroShell includes a provision
for returning "character ready" to a program. If the user types:

progname <-inputfil

MicroShell sees the "-" as a command to return "character ready"
on program requests for console status. This has been made a
separate command in MicroShell because some programs .sample
"console status" as a means of determining if the user is
attempting to interrupt or abort the program (e.g. "type", "dir",
"dat", etc.) In these cases the user would not want to redirect
status with the minus sign "-".

2.6.2 Normal Termination of Input Redirection:

When redirecting input to a program, normal termination will
occur when the program completes its action and exits back to
CP/M. This exit will occur in one of three ways:

1. Program executes a return instruction. This is what
programs do that are designed not to overlay the Cp/M CCP.
Without MicroShell, when they exit, CP/M prompts for the
next command without doing a warm start. Under MicrcShell,
the MicroShell prompt occurs (after MicroShell closes any
output redirection files.)

2. Program jumps to location 0 which is the warm start
entry point for CP/M. Without MicroShell, CP/M normally
does a warm start before prompting for the next command.
Under MicroShell, action is the same as in #1 above; no warm
start occurs.

3. Program calls CP/M "System Reset" BDOS call (0).
Without MicroShell, CP/M executes a warm start as in #2
above. Under MicroShell, action is the same as in #1 and #2
above.

Input redirection does not alter the exit that a program
makes but the user must remember that the input file must have
the same characters in it that would be typed if there were no
input redirection. 1I.e., if a program interprets a blank line
(Return only) to mean exit, then the input file must end in a
blank line. If the program expects a control C or control Z,
then the input file must have that control character in it.
These control characters make for awvkward editing (especially
control 2) and if there's any other way to exit the program, it's
a lot better to use it and stay away from control characters.
This may seem difficult to grasp at first, but experience will
make it clear.

2.6.3 Input Redirection Errors:

There are two possible error messages which MicroShell may
generate during input redirection:

17

Basic MicroShell Commands

End i file: input f]

If a program attempts to read past the physical end of
an input file during input redirection from the file, Micro-
Shell will issue this message and shift the input source to
the console. Note that MicroShell does not stop at control
Z's for two reasons:

1. To permit non-text files to be used in input re-
direction.

2. To permit control Z's in text files, e.g.: editor
scripts where control Z's need to be read by the editor, and
files with screen control characters in them.

If this error message occurs, in most cases there's a
problem. The file probably has not caused the program
reading it to terminate normally. But to keep things from
blowing up, MicroShell gives the input back to the user in
these cases.

n | : : nout £il

When input redirection is in progress for programs
which are reading lines of buffered input from a file (BDOS
call 10), the calling program establishes a maximum
allowable buffer length into which the characters are placed
by CP/M. Without input redirection, if the user attempts to
enter more characters into the buffer than its maximum size
allows, CP/M merely terminates the call for a line of input
and returns to the user. This is occasionally seen in DDT
when more than 31 characters are typed. During input re-
direction on buffered input calls, MicroShell monitors the
maximum buffer size of the caller to ensure that the buffer
is not overflowed. This situation is normally caused by
some error that results in a line of input from an input
file being too long for the caller's buffer. After sending
the error message, MicroShell terminates the current com-
mand, any shell file or multiple commands that may be
pending and prompts for the next command.

2.7 Pipes:

A powerful feature of the UNIX "shell" is the ability to

"pipe" the output of one program to the input of another program.
This permits building a powerful command from a series of simple

tools. If the user types:

progl | prog2 | prog3 |
the output from "progl" is sent to the input of "prog2" and the
output of "prog2" is sent to the input of "prog3". The vertical

bar ("|") is the command for MicroShell to create a pipeline.
An up-arrow (""") is equivalent to the "|" for Microfhell, since

18

Bacic MicroShell Commands

some terminals don't have the vertical bar. "Pipes" are actually
a shorthand for output redirection of the first program followed
by input redirection of the second program. (The UNIX user will
excuse this simplification of the full UNIX inter-process
communication capability.) MicroShell permits the same output
and input modifiers, "+" and "-", to be used with pipelines to
achieve simultaneous console echo and/or console status
redirection. For example, the command:

progl |+ prog2

would echo the output of "progl" to the console as it was being
fed to "prog2". The command:

progl |- prog2

would cause MicroShell to send "character ready" status to
"prog2" for its input. These two modifiers may be combined in
the same pipe as:

progl |+- prog2
The order of the "+" and "-" is not significant.

The MicroShell "pipe" function is implementeé using
temporary files which MicroShell erases after the "pipe" is
complete. The MicroShell pipe function is better understood by
knowing that internally MicroShell actually performs a pipe as
follows:

progl >pypel;prog2 <pypel >pype2;prog3 <pype2 ...

The names for the temporary pipe files -- "pype#" -- were chosen
to avoid conflict with a user's existing file names. Our
apologies to anyone who had been using "pypel®", "pype2", etc.
MicroShell will erase the temporary pipe files after the pipe is
successfully completed (after the input redirection step.) If a
pipe does not terminate normally due to a full disk or an input
redirection error, the temporary file will be left on the disk
for the user to view, erase, etc. Temporary pipe files are
always written to the default disk drive (i.e. the drive from
which the command was initiated.) The user must insure that
sufficient space exists on the drive for a temporary file
containing all the output that the program being piped will
generate. If the user wants to use another disk drive for the
temporary file, explicit output and input redirection is
necessary, €.9d.:

progl >a:temp;prog2 <a:temp;era a:temp
2.7.1 Error Messages from Pipes:

MicroShell has no special pipe error messages. Appropriate
output and/or input error messages will be issued if appropriate.

19

Automatic Program Search

3.0 Automatic Program Search

MicroShell contains two automatic search features to
simplify operation under CP/M: main command (i.e. the "com"
file) search and file search.

3.1 Main Command Search: If the user enters the command:
stat *.*

to CP/M, CP/M first looks for the program "stat.com", loads the
program from the disk into main memory and then executes the
program. The program to be executed will be called the "main
command”. CP/M will only "look" in one place for the program -
on the current disk drive under the current user number. If the
user is logged onto disk drive B in user number 0, CP/M will look
on disk drive B for a file "stat.com" in user area 0. If CP/M
does not find "stat.com" on the current drive in the current
user number, CP/M will display the error message:

stat?
and prompt the user for another command.

MicroShell expands CP/M's normal search for a file to
execute as follows:

1. MicroShell 1looks first on the current drive in the
current user area for a shell file with the same root name, e.g.
in the above example "stat.sub". If this file is found, Micro-
Shell assumes the file contains text -- commands to be executed
by -MicroShell. -See Section 4 for more information on- shell
files. If a shell file is not found, MicroShell begins looking
for a ".com" file on the current drive and user number. If
found, it is loaded and executed.

2. If the file is not found in step 1, MicroShell "looks"
at the current user number. If the user number is greater than
0, MicroShell "looks" on the current disk drive in the user 0
area for the file. If found, the file is loaded, the user number
restored from 0 to the initial user number and the program is
executed. If the file is not found in user 0 (or user 0 was the
initial user area), MicroShell's search proceeds to step 3.

3. MicrosShell now looks at the search path specified by the
user in the MicroShell CUSTOMIZ procedure (Section 5.) The
search path contains from 0 to 3 additional disk drives for
MicroShell to check. As delivered, disk drive A is specified in
the search path, but the user may customize the search path to
fit the needs of his system. MicroShell continues the search for
the "main command" in user area 0 of the disk located on one of
the specified disk drives. If the file is found, MicrosShell
loads it, restores the user number and default disk drive to
their initial values and executes the program. If the "main
command” is not found after searching all drives in the search

20

Automatic Program Search

path, MicroShell issues an error message, e.d.:
stat? (or whatever the command name was)

anéd prompts the user for another command.
Example: The user is initially logged onto disk drive B in user
number 1 and issues the command: .

stat *.*

The search path will be assumed to be the as delivered path
containing only drive A. MicroShell's search for "stat.com"
proceeds as follows:

c:orag

The user may override MicrcShell's normal search path by
specifying an explicit disk drive in the command. When an
explicit disk drive is given, MicroShell looks first in the
current user number on the disk drive specified and then in user
0 of the drive specified. For example, if the user issued the
command:

a:stat *.*

from disk drive B, user area 0, MicroShell would immediately look
on disk drive A, user 0 for "stat.com". If "stat.com" was not
found there, MicroShell would not look further but would issue
the error message:

asstat?

and prompt the user for the next command. The user may want to
use this feature if different versions of a program exist on two
separate drives and the user specifically wants the version on
another drive.

If the user is logged onto disk drive B, in user area 1 and
issues the command:
a:stat *.*

MicroShell will look first on disk drive A in user area 1 for the
file "stat.com". If the program is not found there, MicroShell
will look in user area 0 on drive A before reporting failure.

3.2 Benefit of Main Command Search:

This feature may seem complex after reading the above
discussion, but MicroShell's action is actually simple and
logical; the user is freed from either prefacing commands with a
disk drive or having to have a copy of all programs on every disk
(and user area.) The concept of a "system disk" analogous to
UNIX's "/bin" directory is not only feasible but greatly
simplifies the whole operation under CP/M. If the user keeps a

21

Automatic Program Search

disk with all routinely used programs in disk drive A, he can
then operate from drive B, in any user area, without concerning
himself with where his programs are located. The user merely
types the desired command line and MicroShell does the work of
finding the program.

For single drive systems, the user can move to any user
number on drive A without copving his programs to that user
number.

Users with a hard disk may wish to "customize" MicroShell to
reflect their system configuration using MicroShell's CUSTOMIZ
program (Section 5). If the hard disk is drive C, for example,
the user may wish to change the as delivered search path from
drive A to drive C. Or, using CUSTOMIZ, the user could specify
that drive C be checked first (after the default drive check
which cannot be omitted) and then drive A. The flexibility is
available to satisfy the user's needs.

2.3 Eile Search:

As a separate search function, MicroShell performs a search
for any files which a "main command" i.e. a program, may attempt
to access. 1I1f, for example, the user issued the command:

ddt file.ext

from drive B under CP/M, (without MicroShell), CP/M would loacd
"3ddt.com” from drive B and execute it. DDT would then attempt to
load the file "file.ext" from drive B. If DDT didn't £find
"file.ext” on drive B, it would issue the error message "?" and
await another command.

Microfhell "oversees" all attempts of a program to open a
file. If the attempt by the program to open a particular file is
unsuccessful, MicroShell "steps in" to help out the program as
follows:

‘1. MicroShell has a list of file extensions or file types
for which it is responsible. The file extension is ".ext" in
the example above; in general, the file extension is the part of
a filename after the ".". If MicroShell sees that a program was
unsuccessful in opening a file, and the file extension of the
file name is one for which MicroShell is responsible, an
automatic file search is performed.

2. MicroShell uses the same search path that it uses for
"main command" searching to look for the file which the user
program is trying to open. Since MicroShell knows that the
program was already unsuccessful in opening the file from the
current disk drive and user number, it is not rechecked by Micro-
Shell. Instead, user number 0 of the current drive is checked
first if the program was running in a user number greater than 0.
If the file is found in user 0, MicroShell opens it and then
returns control to the program which can then read and/or write

22

Automatic Program Search

from the file just as if the file was in the current drive and
user area.

2. If MicroShell does not find the file in user area 0 on
the current drive, the search path specified for "main command”
search is used to attempt to find the file. I.e., with the as
delivered search path of drive "A", MicroShell would look on
drive A, user area 0 for the file. If found, MicroShell would
open the file and return control to the user program to use the
file. (Note: MicroShell changes the disk drive byte in the file
control block to reflect the drive the file was found on.)

4. If after looking down the search path for the file,
MicroShell cannot locate it, MicroShell returns control to the
user program with the normal CP/M open failure code. The user
program will then proceed to do whatever it does when it can't
find the file.

3.4 Benefit of Automatic File Search:

The benefits which MicroShell provides with the file search
feature are similar to those of the "main command"” search; the
user does not need to be concerned with where all the files that
a program needs are located. He merely executes the programs as
if all the necessary files were on the current disk drive and
user area and MicroShell handles the tedium of locating the
files.

3.5 Some Practical Applications:

1. One popular word‘processing program, Wordstar, needs to
access two overlay (".ovr") files for normal operation. Though

Wordstar permits one disk drive other than the current drive to
be searched for these files, no check across user areas is
supported. Under MicroShell, the overlay files may be on the
system disk, and MicroShell will find them for Wordstar from any
user number or disk drive. See Section 3.6.7 below.

2. Many Cbasic application programs "chain" to subsequent
" int" files from a main menu program. MicroShell can supervise
this chaining process and permit all ".int" files to be kept on
the system disk.

3. The C compiler used to develop part of MicroShell, BDS
C, uses two ".com" files to compile a program. After completing
the first pass, the first ".com” file, "ccl.com”", chains to the
csecond ".com" file, "cc2.com", to generate the compiled code.
Although a command flag for "ccl" is available to specify the
drive from which "cc2" is to be locaded, MicroShell can relieve
the user of this detail.

3.6 Some Practical Limitations:

There are some limitations which the user should keep in
mind in using MicroShell's file search features.

23

Automatic Program Search

3.6.1 MicroShell permits up to three disk drives to be
automatically searched. The disk drive search path is set by the
user with the CUSTOMIZ program. As delivered, MicroShell has
only Drive A in its search path. The user should remember that
each drive which MicroShell checks requires a finite amount of
time: the drive must be selected and the directory read by CP/M.
This time will depend on the user's particular computer system
and disk drives and how many drives are checked. Therefore, the
user should make the search path as short as possible while
satisfying his particular needs.

3.6.2 To accomplish the automatic file search, MicroShell
must compare the file extension on every failed attempt to open a
file, with the list of file extensions for which MicroShell is
responsible. Six extensions are permitted to be MicroShell-
responsible file extensions. In the as delivered program, these
are set to ".com", ".ovr", and ".int" but the user may change
these using the "install" program. As with the search path, the
user should specify only those file extensions which are nec-
essary for his situations.

3.6.3 There will be times when the user may not want Micro-
Shell to do any automatic file searching. MicroShell has a flag
("~f" - Section 2.4.2) which permits the file search feature to
be turned off and on from within MicroShell. Thus the user can
turn it off while he runs one particular program and then turn it
back on. Or he may create a shell file (Section 4) to take care
of the details of this flag and to execute a particular command.
The status flag ("-s") may be used to determine if file search is
turned off or on.

3.6.4 Some programs scan the disk directory for a desired
file prior to attempting to open it. If they don't "see" the
desired program in the directory, they don't try to open the
file. MicroShell can't help these programs because it is not
possible to easily determine what file the program may be search-
ing for (e.g. it may be using a wild character, "*" or "2", in
the search.)

3.6.5 Some programs look for a file to erase before or
after performing some action. Copy utilities (like CP/M's PIP)
are an example of these. The user must remember that if file
search is enabled and the file extension of the file being erased
matches one in MicroShell's list, it will look down the search
path for the file. This can have some undesirable effects if the
user is not aware of what is happening. (like the wrong file gets
erased!) Be careful in selecting the MicroShell-responsible
extensions. A shell file (Section 4) which turns off the file
search feature, executes the desired program and then turns the
file search back on is one way to solve this problem. Two
specific programs are used freguently enough to warrant Micro-
Shell automatically handling this situation: PIP and COPY. (COPY
was chosen as the frequent name given to many copy programs.)
MicroShell will automatically turn off the file search flag when

24

Automatic Program Search

either of these programs are run and then turn it back on (if it
was initially on) after the programs terminate without any user
action. If for some reason the user really wants the file search
feature to be active with these features, the programs can be
renamed so that MicroShell will not recognize them.

3.6.6 Automatic Searches and Shell Files: After a user
issues a command line to MicroShell, the first thing MicroShell
looks for is a shell file to execute. For example, if the user
types:

stat *.*

MicroShell first looks on the current drive (in the current user
area) for a file named "stat.sub"™ (or whatever the shell file
extension may have been customized to by the user.) It is
important to note that MicroShell only looks on the current drive
and in the current user number for a shell file; it does not do
an automatic search for shell files. If it finds "stat.sub",
MicroShell assumes that it is a file of commands. The file is
read and the commands in it are sequentially executed by Micro-
Shell. If a file "stat.sub" is not found, MicroShell begins a
search for "stat.com", looking down the search path described
previously if necessary. So, in order to execute a program (a
"com" file) MicroShell makes at least two disk accesses: first to
look for a shell file by the same root name and then for the
"com" file. Automatic searching for shell files was not
incorporated because of the increased time it would have caused
in normal program location and loading.

Note that shell files need not reside on the default disk
drive. 1If the shell file "compile.sub" is on drive A and the
user is logged into drive B, typing "a:compile” will locate and
execute the shell file.

3.6.7 Automatic Searches and Wordstar: MicroShell's auto-
matic file search feature operates properly with the Wordstar
word processing program to locate "ws.com"™ and the necessary
" ovr" overlay files. Two points need to be observed. First, do
not set any attributes on the files, i.e. do not make them
"system" or "read-only" files. Second, Wordstar has its own
built-in capability to check another drive for the overlay files.
This feature can conflict with MicroShell's automatic file search
facility if it is not set up properly. The Wordstar variable is
"DEFDSK:" and can be set using the Wordstar install program. See
page 8-6 of the Wordstar Version 3.0 manual. If "DEFDSK:" is set
to "0", Wordstar will do no searching itself and MicroShell will
handle finding the overlay files. Alternatively, if the overlay
files will always be on the same drive, it may be set to the
number for that drive (A=1l, B=2, etc.) The latter method permits
proper operation if Wordstar is used outside of MicroShell but
requires that the overlay files always be on the drive specified.
With "DEFDSK:" set properly, Wordstar may be invoked from Micro-
Shell in any user area on any disk and MicroShell will locate
"ws.com" and the overlay files automatically.

25

Shell Files

4.0 Shell Files

MicroShell's shell file capability provides all of the
functions of CP/M's "submit" feature and adds some additional
features. This capability allows the user to have MicroShell
execute a series of commands from a file. This file is cften
called either a shell file or a command file.

4.1 Constructing the Shell File:

Using an editor, the user types the desired command lines
into a file. ("pip filename=con:" may be used to more quickly
create a short file. Remember to explicitly type the line feed
after a carriage return which the editor normally adds automatic-
ally.)

The filename for the shell file should have an extension of
" sub™ to allow MicroShell to recognize it as a shell file. This
extension may be changed by the user by the CUSTOMIZ program.
(See Section 5.)

Any of MicroShell's features may be included in the commands
placed in the shell file with the following restrictions:

-X flag: This is the last command MicroShell
will execute before exiting to
CP/M.

Another shell file: Another shell file may only be
placed as the last command in a
shell file since MicroShell will
not execute nested shell files.

With these restrictions, all other MicreShell commands
including redirection, pipes, multiple commands on a line, shell
flags, and CP/M commands (ERA, DIR, REN, TYPE, USER, default
drive selection) may be included. MicroShell will perform normal
disk drive searches for programs specified in shell files as
described in Section 3.

4.2 Executing Shell Files and Argument Substitution:

To execute a shell file under MicroShell, the user types the
name of the shell file, with or without the extension, followed
by any arguments to be substituted in the commands in the shell
file.

For example, if the file "show.sub" contained the following
line:

type $1;stat $1
and was executed by typing:

"show doc"

26

Shell Files

MicroShell will substitute "doc" for all occurrences of "$1" in
the shell file and execute the commands. The user can see the
command lines after substitution has taken place, prior to
MicrcShell actually executing them, by turning on the "verbose"
(+V) shell flag.

MicroShell accepts a total of 18 arguments, including the
argument containing the shell file name ("show" in the example
above.) MicroShell will in fact substitute the shell file name
as typed for any occurrences of "$0" in the shell file.

If the character following a "$" in a shell file is not
numeric, MicroShell will recognize that it is not an argument
substitution. If there are two "$"s in a shell file, MicroShell
will substitute one "$" for the two, to remain compatible with
the CP/M "submit" convention.

4.3 Null Arguments:

To permit shell files to handle a varying number of
arguments, no error is generated for a missing argument and
MicroShell merely "closes up" the command line with the "$n" for
the argument that was not specified.

For example, the Digital Research Macro Assembler, MAC, will
take an optional argument specifying certain options, i.e.:

MAC filename SPZ

The "S$SPZ" is optional. If the shell file "domac.sub" contained
the line:

mac $1 $2;load $l;era $l.hex
and was executed by typing:
domac test $PZ
then MicroShell would issue to CP/M the commands:
MAC TEST S$PZ
LOAD TEST
ERA TEST.HEX
If the second argument was omitted by the user, e.g.:
domac test
MicroSheil would issue the commands
MAC TEST

LOAD TEST
ERA TEST.HEX

27

Shell Files

The space containing the "$2" in "domac.sub” would be "closed up”
by MicroShell.

4.4 Control Characters in a Shell File:

If control characters are necessary in a shell file, they
may be entered with an editor that will insert actual control
codes, or they may be entered by the seqguence "“C", where "C" is
the letter associated with the control code (i.e. TAB = "I).
When MicroShell reads the line, it will substitute the
appropriate control character for the "C sequence. If a "tY is
really desired in the file, it must be "escaped” with a "\" (i.e.
"\“")., This substitution occurs when lines of a shell file are
read and during input redirection when lines of buffered input
(CP/M BDOS call 10) are read. It does not occur during input
redirection when single characters (CP/M BDOS calls 1 and 6) are
read.

4.5 Comments in Shell Files:

If a command line in a shell file begins with ":", the
entire line is ignored by MicroShell in executing the shell file.
This permits commenting of shell files for future edification,
understanding, etc. Command lines may be "commented out" there-
fore by merely placing a ":" at the beginning of the line.

4.6 Input Redirection in Shell Files:

In addition to permitting normal input redirection, ("<") in
2 shell file command line, MicroShell provides a default
redirection of input to the shell file if no other redirection of
input is specified. This is analogous to the action of CP/M's

"XSUB" placed in a submit file.

For example, if the shell file "disasm.sub” contained the
following lines:

ddt Sl.com >Sl.asm
L100 S2
GO

and was executed by typing:
disasm test 1000

then the first line would cause MicroShell to load "DDT" with the
file "test.com" loaded by "DDT" and output redirected to
"TEST.ASM". When "DDT" called for the first line of console
input, MicroShell would supply the line ",100 1000". DDT would
then output a listing of "test.com” from 100 hex to 1000 hex
which MicroShell would redirect to the file "TEST.ASM". When DDT
called for a second line of input, MicroShell would supply the

28

Shell Files

line "GO" causing DDT to exit. MicroShell would then close the
file "TEST.ASM" and return to the user with the prompt for the
next MicroShell command.

This example demonstrates the power of MicroShell to make a
more powerful tool by combining existing tools. The user could
edit the resulting file, as desired, and reassemble it. A dis-
assembler for free!

4.6.1 Changing the Default Input Redirection:

Input redirection to a shell file may be changed from the
default input redirection from the shell file itself (which has
the same effect as "XSUB"™ in a "submit" file) by issuing an
explicit input redirection command in the shell file. 1In the
above example, if the first line of the shell file "disasm.sub"
were changed to:

ddt $l.com >$l.asm <script

then MicroShell would supply command lines to DDT from the file
"script" instead of from the shell file "disasm.sub" itself.
After the command with explicit input redirection terminates,
MicroShell will revert back to redirecting input from the shell
file on successive command lines, unless they also contain
explicit input redirection commands.

The user should note that if DDT exhausts the command lines
in "script" MicroShell will not shift the input back to the shell
file. Some care must be used in writing files for input
redirection to ensure they contain sufficient commands to cause
their caller to eventually terminate. If a caller requests more
input from a file than the file contains, MicroShell will issue
the message:

End input file: input from console

and shift the input to the console for further input. As
discussed in Section 2.6, this may result in garbage being fed to
the program after the final control Z is sent (i.e. the data
between the control Z end-of-file marker and the physical end of
the file. Not all editors fill the final sector with control Z's
after the end-of-file control Z.)

4.6.2 Redirecting Shell File Input to the Console:

If the user desires to be able to enter input to a program
executed by a shell file from the console (keyboard), a special
input file name "S$T" is provided. Thus, in a shell file (and
only in‘a shell file) if a command line contained:

ddt $1 <ST

29

Shell Files

DDT calls for input would be supplied from the console (key-
board). The next line which MicroShell reads from the shell file
will undergo the normal input redirection process; i.e. if no
explicit input direction is given, input is redirected to the
shell file itself.

4.7 Interrupting Shell Files:

Either the ESCAPE key or the DELETE key (RUBOUT on some
keyboards) will interrupt a shell file which is in progress. If
the program currently running polls console status to see if an
interrupt key has been struck, two ESCAPEs (or DELETEs) may be
necessary to ensure one of them gets past the program and is seen
by MicroShell.

4.8 Shell Files Which Return to CP/M:

It may be desirable to execute a command from MicroShell
which requires all of the available working memory in the
computer, overlaying MicroShell. This can be easily accomplished
by creating a shell file which in turn creates a CP/¥ "submit"
file and exits to CP/M to execute the "submit" file. The time
overhead is not significant compared to the run time of programs
which require that much memory. Here's how to do it:

Create a shell file, say "dolong.sub", which has the follow-
ing lines in it: ‘

a:

echo $1 $2 $3 $4 $5 >long.sub (as many args as req'd)
echo a:sh b: >>long.sub

submit long

-X

This shell file will build a submit file, "long.sub", which
"submit" will process to a "$$$.sub" file on drive A, "-x" then
exits MicroShell to permit the CP/M CCP to execute the "$$$.sub"”
file. ' _

To execute the shell file to do, for example, a compile with
a compiler that requires all of memory, issue the command:

¢ dolong compile progname argl arg2 arg3 arg4

[MicroShell builds "submit" file and exits to CP/M]
A>compile progname argl arg2 arg3 argé

[CP/M CCP executes "$$S.sub"” file to do compile]
A>a:sh b:

[CP/M CCP reloads "sh.com" as last command]
%
[MicrcShell restarts, goes to drive B (or wherever
you want, and waits for the next command.]

30

Shell Files

Another example of a useful shell file which returns to CP/M
is the following file, called "reboot.sub":

a:
echo a:sh b: >boot.sub

submit boot
-x

Execution of "reboot" will cause CP/M to warm start, reload
"sh.com" and change to drive B. This may be used to login a
different density disk on those systems requiring a warm start to
change disk density. (For some systems, the "-L" login flag --
Section 2.4.4 -- will work. It depends on how the BIOS was
written for a particular system.

31

MicroShell Customization

5.0 MicroShell Customization

MicroShell, as delivered on the distribution disk, is set up
for the "average" user but since many different environments are
possible under CP/)M, many users will want to "customize"
MicroShell for their particular needs.

The CUSTOMIZ program distributed with MicroShell will permit
the user to change several of MicroShell's features, including:

Sect Feature Default
5.2 Search Path Drive A
5.3 MicroShell-Responsible File COM OVR INT
Extensions :
5.4 1Initial Prompt String $ (actual string="%n%% ")
5.5 Shell File Extension SUB

5.6 Flag settings:

F - File Search On
G - Gobble Line Feeds On
U - Upper Case Command Line Cn
V - Verbose Mode Off

5.1 Executing the CUSTOMIZ Program:

Running the CUSTOMIZ program is mostly self-explanatory.
The program is executed by typing:

CUSTOMIZ
from either CP/M or MicrcShell. It will sign on with:

MicroShell Customization Program - Version X.X
Copyright (c) 1981 New Generation Systems, Inc.

It then looks on the current drive for a copy of 'sh.com' to
customize. If it does not find 'sh.com', it will ask for the
drive that 'sh.com' is on. (Note: if CUSTOMIZ is executed under
Microfhell, automatic file search may relieve you of this
choice.) After locating and reading in 'sh.com', it asks where
to write the new 'sh.com':

Enter drive to write new 'sh.com' on.

Note: If same drive as o0ld 'sh.com', o0ld 'sh.com' will be renamed
‘*sh.old’'.

Drive:

32

MicroShell Customization

It then waits for the user to enter the drive. With this
housekeeping out of the way, CUSTOMIZ displays the current status
of the user-changeable features:

khkkkkhkhdbhdkhkhkdhkhkdhhkdddhhkhhhkhhhhdhhdhhdhkhdhkhhhhhkhkdrhkdhhdhhdhdkddhdhk

* Current MicroShell Setup *
X X XXX 2 EI I EEITT LIS SIS SIS ETSS LIS AT A SIS S S A S S 2 2 A L & & & 2 & &
- Search Path: A
MicroShell-Responsible File Extensions: COM OVR INT
Initial Prompt String: %n%$
- Shell File Extension: SH
Flag settings: F - File Search: On
G - Gobble Line Feeds: On
U - Upper Case Command Line: On

V - Verbose Mode: Echo Command Lines: Off
Y X R IR LR R XL XE XTI T LT LT LTEEEIILIEILIILIIIEAL LSS IS E I L 2 2 2 &

(G 0F- VSR N
It

Enter number of item to change (0 = no more changes):

The user then enters the number of the item he wants to

change, 1 - 5. CUSTOMIZ returns to the main status display above
after each item is changed to display the new values and ask if

meore changes are desired.
5.2 Selection 1 - Changing the Search Path:

To alter the Search Path, the user enters 1 and CUSTOMIZ
displays:

kkhkhhkdhkhkhkhkdhkhkhhkhkhkhhkdhkhhhkdkhkhkhdhhdhdhdddhbddhdbhhhkhddhhkhddhhhhhkdkdhkd

* MicroShell Search Path *
hkkkhkkhkkhhkhkrhkhkhhhhhkdhkhkhkhkhkhhhhkdhhhhhhkdkdhhdkhkhdhdhhdhhkhhkhhhhkhhhhhkddhd

Additional disk drives MicroShell searches after failing to find a
program on the current drive. Maximum of 3.

Current search path: A

First drive to check --> Current Value: A
Enter drive letter,
(Return=no change,0=end of search path):

The user is now given the opportunity to change the first
drive that MicroShell checks (after the default drive) from the
as delivered value of "A" to his choice. Since this is the first
place MicroShell checks after the default drive, it should be the
most likely place to find the majority of programs. For two
drive systems, it should probably remain "A", leaving "B" as the
"work disk". For hard disk systems, it should be one of the hard

disk drives. For single drive systems, the user should enter "QO"
so that MicroShell does not waste time rechecking drive A.

CUSTOMIZ will now prompt for the second and third drives to
check.

33

MicroShell Customization

Second drive to check =--> Current Value: None
Enter drive letter,
(Return=no change,0=end of search path):
Third drive to check --> Current Value: None
Enter drive letter,
(Return=no change,0=end of search path):

For two drive systems, "O" should be entered@ for Second
drive and CUSTOMIZ will return to the main status display. EHard
disk system users with multiple drives logically located on the
hard disk should enter the drive letters as the Second and Third
drives for MicroShell to check. The Search Path feature is
described in Section 3.1.

CUSTOMIZ then returns to the main status display and asks
for the next item to change:

Enter number of item to change (0 = no more changes):

5.3 Selecti 2 - . the Mi Shell-R ible Fil
Extensions:

If the user types 2, CUSTOMIZ displays:

khkkdkhkkdhhkhhdhhhdhdhhdhhhhhhhhhddhhrdhhdhhdhrhhdhdhdhhhhddhhdhkhdhhhhhhhdhdsk

* MicroShell-Responsible File Extensions *
dhkhkhkhkhhkkdddhhdhkdddhhdhdhkkhhhhhdhhhdhhkdhhdhdhhhbhhhhkhdhhhkdhdhhkdkhkdhdddddd

File extensions for which MicroShell will perform automatic file
search. .

Current extensions: COM OVR INT
Enter/change extensions. Maximum number is 6.

Extension #1 Current Value: COM
Enter new extension
(Return for no change) (0 to end):

These are the file extensions for which MicroShell will
perform automatic file search. Section 3.3 describes the
Automatic File Search feature. The user may leave COM as the
first extension for which MicroShell is responsible by typing
Return, or may change the extension as desired (upper or lower
case), or may end the MicroShell-Responsible File Extensions by
entering "0". If "0" is entered, any existing extensions follow-
ing #1 are deleted and CUSTOMIZ returns to the main status dis-
play. Otherwise, extension #2 is displayed:

Extension #2 Current Value: OVR

Enter new extension
(Return for no change) (0 to end):

34

MicrcEhell Customization

The user has the same choices here. $#3 - #6 follow
similarly:

Extension #3 Current Value: INT
Enter new extension
(Return for no change) (0 to end):

Extension #4 Current Value: None
Enter new extension
(Return for no change) (0 to end):

Extension #5 Current Value: None
Enter new extension
(Return for no change) (0 to end):

Extension #6 Current Value: None
Enter new extension
(Return for no change) (0 to end):

"None" means there is currently no extension entered for
that extension #. Some discretion should be used in entering
a lot of extensions at first until the user is familiar with the

action of the MicroShell automatic file search feature.

After either "0" is entered to end the file search
extensions or all six extensions have been entered, CUSTOMIZ
returns to the main status display and prompts for the next item
to change:

Enter number of item to change (0 = no more changes):

5.4 Selection 3 - Changing the Initial Prompt String:
If the user now types 3, CUSTOMIZ displays:

khkhkdhkhkkdhkhkdkdhkhkkdhhhkhdhhhhkhdhhhhdhhhhkhhkhkhhkrhhhkhdhhhkhhhkhdrhhhhkhrkhhhdhhhhhx

* Initial MicroShell Prompt String *
khhhkhkhkhkkhhhkddhhkkdhhhbdhhkhhkdddhhdhhkhkhhhkhhhrrhkhhkhdhhhddhkhhhkdkdrhdhddk

Initial prompt string. See the MicroShell Manual for the proper
format. A maximum of 40 characters are permitted in the prompt
string.
Current prompt: ¥n%%
Enter new initial prompt string
(Return for no change):

This allows the user to enter any allowable prompt as the
initial MicroShell prompt instead of the "% ". Section 2.4.5 of
the manual describes the prompt string format. Changing this
prompt does not affect the ability to temporarily change the
prompt from within MicroShell.

MicroShell Customizaticn

After entering the initial prompt string, CUSTOMIZ returns
to the main status display and prompts for the next item to
change:

Enter number of item to change (0 = no more changes):

5.5 Selection 4 - Changing the Shell File Extension:
If the user now types 4, CUSTOMIZ displays:

khkkhhkhkdkhhhhkrhkhkhhkhhkkhhkhkkhhdhhkdhddhhdbhhhdkhkkkhkhhkhhhkddhdkhddhhhhkhdhdddhhhk

* Shell File Extension *

MicroShell will directly execute files of commands with this file
extension.

Current shell extension: SUB

Enter shell file extension (3 characters)
(Return for no change):

The extension of the files which MicroShell recognizes as
shell files (similar to CP/M's "submit" files) may be changed.
The initial value is "SUB"™ to be compatible with CP/M "submit"
files. If this extension is changed, the names of the demonstra-
tion shell files provided on the distribution disk should be

changed accordingly.

CUSTOMIZ then returns to the main status display and asks
for the next itemto—change.

Enter number of item to change (0 = no more changes):

5.6 Selection 5 - Changing the Initial Flag Defaulfs:

If the user enters 5, the initial flag default values can be
changed. CUSTOMIZ displays:

36

Micrce€fhell Customizaticn

khkkhkhkhkhkkdhhkdhkhdhhhkhhkkhkhdhkhkkhkhhkhkdhhddhdhddhkhhdtdbdhhdhddhddhdrhddihtdd

b Initial Flag Defaults *
khkhkkdhhhdhhrhhdhddhhhdhhkhkhdhhhkhhhdhhhhdhhdthddddrhdddhhkdhhdrhdhhdhdhkddddrdd

The default value of 4 of MicroShell's flags may be set by the user.
See the MicroShell Manual for the meaning of each flag.

F - File Search: On
Enter desired default value (On/Off)
(Return for no change):

G - Gobble Line Feeds: On
Enter desired default value (On/Off)
(Return for no change):

U - Upper Case Command Line: On
Enter desired default value (On/Off)
(Return for no change):

V - Verbose Mode: Echo Command Lines: Off
Enter desired default value (On/Off)
(Return for no change):

Each of the MicroShell flags is presented for the user to
change the initial default value. Section 2.4 describes the
function of each of the shell flags. Changing the initieal
default value does not affect the ability to change each of the
flags from within MicroShell. CUSTOMIZ then returns again to the
main status display and prompts for further changes:

Enter number of item to change (0 = no more changes):

5.7 Selection 0 - Ending the CUSTOMIZ Function:

If the user types "0", indicating no further changes are to
be made, CUSTONIZ writes the new 'sh.com' file to the specified
disk and returns to CP/M (or MicroShell, if it was executed from
MicroShell.) 1If there was already a "sh.com™ file on the disk
selected as the destination disk, it is renamed to "sh.old".

5.8 Setting Up CP/M for Automatic Loading of MicroShell:

If it is desired that MicroShell be loaded on initieal
startup of CP/M, the CP/M Console Command Processor (CCP) may be
patched to accomplish this action. You will have to have a
familiarity with the "SYSGEN" and "DDT" CP/M utilities to do
this.

On initial entry, CP/N looks to see if there is a command

present in the CCP buffer at the beginning of the CCP. If there
is, the command is immediately executed without waiting for user

37

MicreShell Customization

input. In a standard CP/M system, there are 127 bytes available
in this buffer for the initial command.

Note: Some manufacturers have used part or all of this buffer
for various purposes in their implementation of CP/M. If the
buffer does not initially contain spaces and the Digital Research
copyright notice, it may already be used in your configuration.
Proceed@ with caution; if you patch over existing code and/or
data, there may be a problem.

Follow the following steps to patch the CCP command buffer:

1. Obtain a memory image of your CP/M system. "SYSGEN" (or
your system's equivalent function) is used to get the CP/M system
from the system tracks of the disk in drive A. The following
commands will do this in the "standard" CP/M system:

A>ddt :
DDT VERS 2.2 (<-- DDT signs on and prompts:)
-£100 4000 O (<-- £ill memory with 0's)

-g0 (<-- go back to CP/M)

A>sysgen

(SYSGEN signs on and prompts:)

Source drive name (or RETURN to skip).a (<-- answer "a")

Source on A then type return. (<== type RETURN)

Function complete. (<=- got system)

Destination drive name (or RETURN to terminate). (<-- enter

a RETURN to this)

A>save 48 cpmsh.com (<-- this may save more than may be
necessary for your system but it
won't hurt.)

2. Load the memory image with "ddt" and find the CCP. It
may be located at different memory addresses depending on how
your system implementer configured CP/M. First, look at 980 Hex
for it. That's the "standard" location.

A>ddt cpmsh.com

DDT VERS 2.2 (<-- DDT signs on and prompts:)
NEXT PC

3100 0100

-de80 (<-- this displays memory at 280 hex.)

-- Maximum length of command buffer

| -~ Start of command buffer

.
0980 C3 5C DD C3 58 DD 7F 00 20 20 20 20 20 20 20 20 .\..X...

|
| -- Length of current command in buffer
I
|

COPYRIGH

0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48

09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1879, DIGI
0SB0 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH ..
09CO 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 .voevveeconvsensne
—————————— (Remainder of "d" display omitted) ----------mooomooomme—m

38

Micrcfhell Customization

(Note: Your display should look something like the
output above with the addresses at 981-2 and 984-5
possibly offset depending on the size of your CP/M
system. As an example of the power of output
redirection, the display above was "captured" from
"ddt" with the output redirection of MicroShell to
avoid a lengthy and error-prone retyping of the data.)

3. If you don't see a similar display, go to step 4 below.
If it looks the same (except for the addresses), you can enter
your initial command as follows:

@. Decide what you want MicroShell to do on startup.
You can just enter "sh" and MicroShell will load and
display its initial prompt. Or you might want to run a
shell file to display the directory, show the remaining
size, etc. To run a shell file on initial startup, you
could enter "sh startup" if the shell file name is
"startup.sub".

b. Translate your desired command to upper case ASCII
hex; "sh" would be 53 48. "sh startup" would be 53 48
20 53 54 41 52 54 55 50.

c. Enter the command into the buffer using the DDT
"set" command, starting at 988 Hex, with the length of
the command:

-s987 (<=- length of command goes at 987 Hex.)

987 00 2 (<-- Enter the total number of bytes
including spaces in your command.)

988 20 53 (== _"S")

989 20 48 (<== "H")

98A 20 O (<=- 0 must terminate the command string)

98A 20 . ({(-- enter "." when done entering
command.)

-39 80 (<=- check your command by displaying.)

0980 C3 5C DD C3 58 DD 7F 02 53 48 00 20 20 20 20 20 .\..X...SH.

0990 20 20 20 20 20 20 20
0SA0 54 20 28 43 29 20 31
09B0 54 41 4C 20 52 45 53
08C0 00 00 00 00 00 00 00

20
39
45
00

43
37
41
00

4F 50 59
39 2C 20
52 43 48
00 00 00

52 49
44 49
20 20
00 00

—————————— (Remainder of "d" display omitted)

47
47
00
00

-

48 COPYRIGH
49 T (C) 1979, DIGI
00 TAL RESEARCH ..
00 ® & ¢ 8 0 ¢ 0 e s 0 0 e e v

e s . D W G e G s G (e G Gao Whn B o G B

4, If you didn't find the beginning of the CCP at 980 Hex,
you have a non-standard CP/M configuration. Look through memory
using the DDT "d" display command until you find the Digital
Research copyright message. If you don't find it, chances are
your system integrator has used this buffer space for his own
purposes and it is not available to you. If you do find it,
enter your command as in 3 above, adjusting the memory addresses
you "set" accordingly. (To help you with one non-standard system,
the Godbout CompuPro system has the CCP starting at 1600 hex in

MicroShell Customization

the memory image.)
5. Exit DDT and SAVE the modified CP/M memory image.

-g0 (<-- exit DDT)
A>save 48 cpmsh.com (<=-- overwrites old "cpmsh.com")

6. After copying MicroShell (and any files required by your
startup command) to a new disk, SYSGEN the new disk with the
patched CP/M that you saved in step 5 above.

7. With the new disk in drive A, MicroShell will load on
startup (reset) and either prompt for a command or execute an
initial command if you specified that. Note that the "-x"
MicroShell flag will now cause an exit to CP/M, a warm start of
CP/M and a reload of MicroShell. The only way to "escape" to
CP/M with this patch installed is to erase or rename "sh.com"”.
Then when MicroShell is exited with the "-x" flag, CP/M won't be
able to find "sh.com", will display "sh?" and then prompt you for
another CP/M command. Also notice that any time MicroShell gets
a CP/M error (bad sector, read only, disk select, etc.), it will
exit to CP/M and do a warm start. With the CCP patched to auto-
load MicroShell, control will immediately be returned to
MicroShell. If you get lots of errors (new user, etc.), this can
be useful to avoid having to retype "sh" after CP/M errors.

40

APPENDIX A

History and Design of MicroShell

We began using CP/¥ in January 1978. It was a vast improve-
‘ment in microcomputer operating systems; relatively easy to use,
efficient in memory and disk usage and a tremendous bargain for
its price. We happily used CP/M and its facilities to develop
software adapting to its various features and limitations. Then
in 1980 a revolutionary event occurred: we were introduced to
the UNIXtm operating system developed by Bell Laboratories for
the Digital Equipment Corporation PDP-11 minicomputer series. We
were elated. Always having been shy about "big" computer operat-
ing systems and their complexity, UNIX pleasantly surprised us.
It was easy to learn, easy to use and very powerful.

The user—interface to UNIX is its "shell" program, equiva-
lent to CP/M's Console Command Processor (CCP). The idea for
MicroShell really began when we used a DEC VAX minicomputer.
Instead of being greeted at the terminal with DEC's operating
system, VMS, we saw what looked like UNIX's "shell™! The Soft-
ware Tools, which began in a book by the same name by Kernighan
and Plauger and were later expanded by Lawrence Berkeley Labor-
atory at the University of California, had been installed "on top
of" DEC's operating system. The Software Tools include a UNIX-
like "shell" and give the appearance of running UNIX without
losing compatibility with the native operating system or requir-
ing the development of a whole new operating system for the VAX.

The idea was born! Why not develop a "shell" to lie "on top
“of"™ CP/M?! “And in the spring of 1981, MicrcShell was thus
conceived.

It was decided to implement the best functional features of
the UNIX "shell"™ in MicroShell. The initial language chosen for
development .of MicroShell was "C" - the language developed by
Bell Labs for writing the UNIX operating system. The Software
Tools had been developed in RATFOR, a structured preprocessor for
FORTRAN, which resulted in good transportability of the Software
Tools from one operating system and computer to another. It was
decided that the code generated by RATFOR was too large for the
limited CP/M environment. In addition, transportability was a
secondary goal. So BDS C was chosen as MicroShell's language.

By June 1981, MicroShell in "C" was up and running and in
daily use with CP/M. At 12K, MicroShell still was larger than
desired. So a rewrite of portions of MicroShell into assembly
language was begun. The current version of MicroShell is about
9.5k bytes. Though slightly larger than we ultimately desire, we
believe it presently represents an acceptable tradeoff between
capabilities included and memory size requirements.

History and Design of MicroShell (Cont)

MicroShell is executed from CP/M by typing "sh". CP/M loads
in MicroShell which then relocates itself below CP/M (just below
the Basic Disk Operating System - BDOS). MicroShell replaces the
CP/M Console Command Processor (CCP) and performs all of the
functions of the CP/M CCP plus additional UNIX-shell-like func-
tions. It remains resident during execution of programs until it
is deliberately exited by the user. In this respect it is
similar to Wordstar and other programs which themselves perform
CCP functions while remaining resident.

Appendix B
MicroShell Error Messages
(Filename)?

MicroShell cannot find the file "Filename" to execute along

its search path. See Section 3 for an explanation of Micro-
Shell's search path.

Arg > 19

Argument substitution for an argument number greater than
the 19 permitted was found in a shell file. Change the shell
file to use no more than 19 arguments.

Can't load "sh" from shell

User has attempted to execute MicroShell ("sh.com") from
within MicroShell itself. MicroShell has not been
extensively tested in this mode and may not handle all
conditions properly so it is currently prohibited. An ad-
venturesome user may experiment with running in this mode by
placing an explicit drive prefix in the command, e.g.:

a:sh

One of the things which can be done in this mode (MicroShell
running within MicroShell) is to redirect all output of the
child shell (the second "sh" invoked). If this is done with
the ">+" operator, the result is a file of the entire
terminal session of the child shell. So if the prompt is
changed to look like the CP/M prompt, this could be used to
prepare documentation of what appears to be a CP/M session.
There are many possibilities here.

Can't open input file
Occurs during input redirection. MicroShell can't find the
file specified on the command line as the input redirection
file.

Can't open output file
Occurs during output redirection. MicroShell can't open the

output redirection file. The directory is probably full;
remove some files from the directory and repeat the command.

MicroShell Error Messages (Cont)
Disk Full

The disk has filled up while MicroShell is redirecting
output (or during the first command in a pipe.) The command
is aborted. Make room on the disk for the output redirec-
tion file or specify a disk other than the default disk on
the command line, e.g. "stat *.* >+a:statout”. The disk for
the temporary pipe files ("PYPEl1l", etc.) cannot be
specified; it is always the default disk. Use output
redirection to a temporary file instead of a pipe if another
disk is desired for the temporary file.

End input file: input from console

If a program attempts to read past the physical end of an
input file during input redirection from the file (or during
the second command in a pipe), MicroShell will issue this
message and shift the input source to the console. If this
error message occurs, in most cases there's a problem. The
file probably has not caused the program reading it to
terminate normally. Look at the input file and see if it is
supplying the program with enough input to properly cause
the program to terminate. (See Section 2.6.3)

Too many characters from input file

When input redirection is in progress (or during the second
command in a pipe) for programs which are reading lines of

buffereé input from a file (BDOS call 10), the calling
program establishes a maximum allowable buffer length into
which the characters are placed by CP/M. Without input
redirection, if the user attempts to enter more characters
into the buffer than its maximum size allows, CP/M merely
terminates the call for a line of input and returns to the
user. This is occasionally seen in DDT when more than 31
characters are typed. During input redirection on buffered
input calls, Microfhell monitors the maximum buffer size of
the caller to ensure that the buffer is not overflowed.
This situation is normally caused by some error that results
in a line of input from an input file being too long for the
caller's buffer. After sending the errcr message, Micro-
Shell terminates the current command, any shell file or
multiple commands that may be pending and prompts for the
next command. Look at the input file for lines longer than
the calling program's buffer capacity.

MicroShell Error Messages (Cont)

Two output or input files

CP/M

Two output or input redirection files were specified. The
following are examples of illegal commands:

% stat *.* >statout >statoutl (Two output files)

% ed test <script <edscript (Two input files)

% type script | ed test <script (Two input files in 2nd
half of command.)

% type script >outfile | ed test (Two output files in 1lst

half of command.)

Note: Pipes are actually an output redirection of the first
half of the pipe to a temporary file ("PYPE#") followed by
an input redirection from that temporary file in the second
half of the pipe. An input redirection in the first half or
an output redirection (or another pipe) in the second half
of the pipe are legal.

Error Messages

The CP/M Basic Disk Operating System (BDOS) issues various
other messages, beginning with:

BDOS ERROR ON (Drive): ecesceoeses

See the Digital Research CP/M documentation for the meaning
of these errors.

APPENDIX C
MicroShell Compatibility with other Programs
Compatible Programs: Many popular CP/M compatible programs have

been run under MicroShell with satisfactory operation. The
following is a partial list:

l. CP/M utilities: ASM,DDT,ED,LOAD,STAT,PIP,SYSGEN
2. Assemblers: MAC, ACT 80, ACT 86

3. Word Processors: Wordstar/Spellstar, Benchmark,
Spellbinder

4. Languages: BDS C, CBASIC II, BASCOM, PASCAL/M
5. Apple CP/M (with Microsoft Softcard)

Incompatible Programs: Programs which are incompatible with
MicroShell are usually accessing information inside of CP/M
rather than using the normal CP/M entry points. MicroShell
depends on a program using the normal entry points for CP/M: the
BDOS entry point at location 5 and the warm start entry point at
location 0. If a program directly accesses the BIOS jump table,
Micrcfhell will work properly although it will not be able to
redirect input or output. If the program changes the BIOS jump
table entries, MicroShell may not work properly.

The following programs are known to be incompatible with
MicroShell:

1. CP/M utilities:

MOVCPM - Requires that the CP/M CCP be present.
Exit MicroShell to do MOVCPM.

SUBMIT - MicroShell provides a capability equiv-
alent to the CP/M SUBMIT function. SUBMIT
itself requires that the CP/M CCP be present. A
useful feature is described in Section 4 for hav-
ing MicroShell create a submit file and then exit
to CP/M to execute the submit file. This permits
long programs, which require all of the computer's
memory, to be started from MicroShell and Micro-
Shell relocaded automatically on completion of the
program.

2. CP/M User Group Programs

Some of the earlier utilities in the CP/M Users'
Group did not access CP/M via its design entry
points. Some of these programs may not operate
correctly with MicroShell.

Appendix D
BIBLIOGRAPHY

The following books and articles represent a few of the
sources of information on the UNIX operating system and its
Shell.

Bourne, S. R., "An Introduction to the UNIX Shell." The Bell
System Technical Journal 57 (1978):2797-2822.

Gautier, Richard L. Using the UNIX Svstem. Reston Publishing
Company, Inc. A Prentice-Hall Company, 198l. :

Hall, D. E.; Scherrer, D.K.; and Sventek, J. S. "A Virtual

Operating System." 1In Communications of fthe ACM 23 (1980):495-
502.

Johnson, Stephen C. "UNIX Time-Sharing System: Language

Development Tools." Bell System Technical Journal 57 (1978):
1971-90.

Kernighan, Brian W., and Plauger, P. J. Software Tools. Reading,
Massachusetts: Addison-Wesley, 1976.

Kernighan, Brian W., and Ritchie, Dennis M. The C Ezgg_mmmmg
Language. Englewood Cliffs: Prentice-Hall, 1978.

Thomas, Rebecca and Yates, Jean A User Guide to fthe UNIX
System. Berkeley, California: OSBORNE/McGraw-Hill, 1982.

Appendix E

Summary of MicroShell Commands

Special MicroShell Characters in Command Line

Output Redirection stat >filename

< Input Redirection ed file <script

' Pipe output to input of next cmd progl | prog2 | ...

- (""" and "|" are equivalent) stat ¥*.%|pip lst:=con:

. "“n in shell and input files causes “C (or “c¢) changed to 03
next character to be its control
equivalent.

: When first character on a shell : this is a comment

file line, causes line to be
treated as a comment (ignored).

+ Echo redirected Output to Console stat >+filename
progl |+ prog2 | ...

- Return "character ready" to sysgen <-script
console input status calls progl |- prog2
| progl |+ prog2

Separate commands era ¥, bak;stat;ed test <script

e

" —Treat argunents with embedded ‘echo "This is one argument"
spaces or tabs as 1 argument and
ignore special characters inside

quotes
\ Ignore special meaning of next dir \>file
character (filename ">file")
$ Argument substitution in shell comfile test data

(command) files (0-19)
if "comfile.sub"™ contains:
pip b:=za:$1
pip b:=a:$2
then MicroShell executes:
pip b:=a:test
pip b:=a:data

$T Redirect Input back to console pip
in a command file b:=a:$l
b:za:$2
ddt <$T

Summary of MicroShell

Shell Flags

Commands (Cont)

0
Flag Meaning Example
+f or +F | Auxiliary file search enable % +F
(Default) (Auxiliary file search on)
-f or -F | Auxiliary file search disable % -F
(Auxiliary file search off)
!
+g or +G | Gobble line feeds during % +G
(Default)] Input redirection (Line feeds removed from input)
-g or =G | Don't gobble line feeds % -G
during Input Redirection
-1 or -L | Login current disk 2 -1
or (after changing disks) % (new disk logged into
+1 or +L CP/M for writing)
~-p or -P | Prompt string - ~p "%n%%" gives:
Uses "C"-like format:
or % - Next char special (CR, LF)%
(%% gives %)
+p or +P n/N - Newline (CR, LF) -p "4nDrive:%D User%U %" gives:
d - Lower case drive
D - Upper case drive (CR, LF)Drive:A User:0 %
u/U - User number
-s or =S | Shell Status report % =S
‘ 7 B | File search: On
or (Shows status of flags) Gobble 1fs: Off
Ucase cmd: On
+S Oor +3 Verbose: orf
+u or +U Upper case translation of % +U
command line (like CP/M) % echo this is upper case
(Default) THIS IS UPPER CASE
-u or -U | No case translation on command % =U
line (allows passing lower % echo this is lower case
case command line to a program)} this is lower case
+v or +V | Verbose mode: 7 +V (A1l commands echoed)
comfile test data
Echo commands before execution | pip b:=za:test
pip b:=za:data
-v or -V | Disable Verbose mode % -V
(Default) (No echo of commands)
~-x or -YX | Exit MicroShell and return to 7 -x
CP/M A>

APPENDIX F

INDEX

* Character 6, App E Editing Command Lines 5
$ character 26 End input file 18
$T input 29, App E ERA CP/M Command U4
+ Character 6, 15, App E Error Messages App B
- Character 6, 17, App E Escaping Special Characters 6
: character 28 Executing MicroShell 3
; Character 6, App E Exit MicroShell 14, 36
< Character 6, App E F Flag 10
> Character 6, App E File Search 10, 20, 22, 34
>> Character 6, App E Flags 9, App E
\ Character 6, App E FULLPRMP Progranm i
® Character 6, 28, App E G Flag 10
| Character 6, App E Gobble Line Feeds 10, 36

History of MicroShell App A
Appending to a File 15 Initial Flag Defaults, Changing 36
Argument Substitution 26 Initial Prompt, Changing the 35
Auto Load MicroShell 37 Interrupting MicroShell 8, 30
Automatic File Search 22, 34 L Flag 11
Auto. File Search Extensions 22, 34 Line Feeds 10, 36
Automatic Program Search 20 Login Disks 11, 30
C Programming Language A-1, D=1 Lower Case Commands 14
CCP Buffer 38 Memory Reguirements 1
Changing Disk Drives Ui MicroShell Compatibility App C
Changing MicroShell-Responsible MicroShell Customization 32

File Extensions 34 MicroShell Design App A

Changing Initial Flag Defaults 36 MicroShell History App A
Changing the Initial Prompt 35 MicroShell-Responsible File
Changing the Search Path 22, 33 Extensions, Changing 34
Changing the Shell File Extension 36 Multiple Commands on a Line 7
Command Files 26 NORMPRMP Program ii
Command Line Length 5 Null Arguments in Shell Files 27
Command Lines 5 Overview 1
Command Summary App E P Flag 12
Commands App E PIP, COPY programs 24
Comments in Shell Files 28 Pipes 18
Compatibility App C Program Search 20
Control Characters in Shell Files. 28 Prompt 12, 35
Control Z 16 Prompt String Characters 13, App E
COPY, PIP programs 24 Pype File 19
CP/M CCP Buffer 38 RATFOR A-1
CP/M Functions U4 Redirection, Input 16
CP/M Warm Starts 17, 40 Redirection, Input Status 16
Customizing MicroShell 32 Redirection, Output 15
CUSTQMIZ Program 32 Redirection, Termination 17
Design of MicroShell App a Reloading MicroShell 30
DIR CP/M Command 4 REN CP/M Command &4
Disassembler 28 Requirements, System 1
Disk Change 11, 30 S Flag 13
Disk Density Changes 12, 31 SAVE CP/M Command &4
Echo Commands 14, 36 Search Path 22, 33
ECHO Program i, 30, App E Search, Automatic Command 20

INDEX (Cont)

Search, Automatic File 22, 34
Semi-colon 6, App E

Shell File Extension, Changing 36
Shell Files 26
Shell Flags 9, App E
Software Tools A-1, D=1

Special Characters

App E

" Character 6, App E

$

character

26

$T input 29, App E

o+

VWV A we e

Character
Character
character
Character
Character
Character

6, 15, App E
6, 17, App E
28

6, App E

6, App E

6, App E

> Character 6, App E

Status Report 13

SUB File Extension 26, 36
Submit Files with MicroShell 30
Summary 1

Summary of Commands App E
System Requirements 1

Too many characters 18

TYPE CP/M Command 4

U Flag 14

UNIX A-1, D=1

UNIX Reference Material APP D
Upper Case Commands 14

USER CP/M Command 4

V Flag 14

Warm Starts, CP/M 17, 40

X Flag 14

Z, Control 16

